
FINDING APPROXIMATE REPEATS WITH MULTIPLE
SPACED SEEDS

FINDING APPROXIMATE REPEATS IN DNA

SEQUENCES USING MULTIPLE SPACED SEEDS

By SARAH BANYASSADY, B.S.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the

Requirements for the Degree Master of Science

McMaster University © Copyright by Sarah Banyassady, September 2015

McMaster University MASTER OF SCIENCE (2015) Hamilton, Ontario (Computa-

tional Science and Engineering)

TITLE: Finding Approximate Repeats in DNA Sequences Using Multiple Spaced

Seeds AUTHOR: Sarah Banyassady, B.S. (Amirkabir University) SUPERVISOR:

Professor William F. Smyth NUMBER OF PAGES: xv, 84

ii

Abstract

In computational biology, genome sequences are represented as strings of characters
defined over a small alphabet. These sequences contain many repeated subsequences,
yet most of them are similarities, or approximate repeats. Sequence similarity search
is a powerful way of analyzing genome sequences with many applications such as
inferring genomic evolutionary events and relationships. The detection of approximate
repeats between two sequences is not a trivial problem and solutions generally need
large memory space and long processing time. Furthermore, the number of available
genome sequences is growing fast along with the sequencing technologies. Hence,
designing efficient methods for approximate repeat detection in large sequences is of
great importance.

In this study, we propose a new method for finding approximate repeats in DNA
sequences and develop the corresponding software. A common strategy is to index the
locations of short substrings, or seeds, of one sequence and store them in an efficiently
searchable structure. Then, scan the other sequence and look up the structure for
matches with the stored seeds. A novel feature of our method is its efficient use
of spaced seeds, substrings with gaps, to generate approximate repeats. We have
designed a new space-efficient hash table for indexing sequences with multiple spaced
seeds. The resulting seed-matches are then extended into longer approximate repeats
using dynamic programming. Our results indicate that our hash table implementation
requires less memory than previously proposed hash table methods, especially when
higher similarities between approximate repeats are desired. Moreover, increasing the
length of seeds does not significantly increase the space requirement of the hash table,
while allowing the same similarities to be computed faster.

iii

Acknowledgements

I would like to express my gratitude to my supervisor, Professor Bill Smyth, for his

support during my studies, his useful comments, remarks, and commitment throughout

this thesis. I would like to thank Professor Brian Golding for introducing me to the

topic, his advice, assistance, and guidance on the way.

iv

Table of Contents

List of Figures vii

List of Tables xii

List of Symbols xiii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Background . 2
1.3 Motivation and Objectives . 3
1.4 Thesis Organization . 4

2 Definitions and Background Information 5
2.1 Biological Sequences . 5
2.2 Repeats . 6
2.3 Similarity Metrics . 7
2.4 The Hit and Extend Approach . 10

3 Literature Review 14
3.1 Exhaustive Search Methods . 14
3.2 Heuristic Search Methods . 17

4 Methodology 26
4.1 E-MEM Modifications . 27
4.2 The Algorithm Outline . 28
4.3 Initialization . 30
4.4 Hit Identification . 31
4.5 Hash Tables . 35

v

4.6 Hit Extension . 46
4.7 Report the Output . 52
4.8 Usage . 53

5 Results 57
5.1 Preliminaries . 57
5.2 Seed Weight . 60
5.3 Number of Threads: -t parameter . 63
5.4 Indexing Step Size: -K parameter . 64
5.5 Number of Subsequences: -d parameter 67
5.6 Maximum Edit Distance: -D parameter 68
5.7 Hash Time vs. Extension Time . 70
5.8 PatternHunter II . 72
5.9 YASS . 73

6 Conclusions 77
6.1 Summary and Conclusions . 77
6.2 Future Work . 78

Bibliography 79

vi

List of Figures

2.1 An example of a repeat. 6
2.2 Example of exact and approximate repeats in x. 7
2.3 A sample scoring matrix for DNA sequence alignment. The diagonal

elements are the match scores. The rightmost column and the bottom
row contain the gap scores. All the other elements are the scores of
different mismatches. 9

2.4 A consecutive seed identifies 10 consecutive matches between x1 and x2.
Here, x1[3 . . . 12] = x2[2 . . . 11] = CGTTAGAACT are the matching hits. 11

2.5 A spaced seed identifies non-consecutive matches between x1 and x2.
Mismatched letters are in bold type. x1[3 . . . 12] = CGTTAGACAT and
x2[2 . . . 11] = CGTAAGAAAT are the matching hits. 12

2.6 Hit identification using multiple spaced seeds. (a) is an example of
multiple spaced seeds. (b) shows two pairs of matching hits between
x1 and x2. One pair is x1[3 . . . 12] and x2[2 . . . 11] identified by s1. The
other pair is x1[7 . . . 17] and x2[6 . . . 16] identified by s2. 12

2.7 A transition-constrained seed of weight w = 7 identifies hits between
x1 and x2. Transitions are in bold type. The underlined letters indi-
cate a transversion. x1[3 . . . 12] = CGTGGTAGCT and x2[2 . . . 11] =
CGAGACAGCT are the matching hits. 13

vii

3.1 The Smith andWaterman algorithm on the sequencesR = GTGAATTCA
and Q = GACTTA, assuming s(x, y) = +2 for matches, s(x, y) = −1
for mismatches, and Ck = −k as the gap cost. (a) the alignment ma-
trix M is filled using Equations (3.1) and (3.2). The gray cell is the
maximum element of M . (b) shows how to trace back each element of
M . The gray cells indicate the backtracking path from the maximum
element 8. (c) the first optimal local alignment or the alignment with
the maximum score 8. 16

3.2 The BLAST algorithm on the sequences R = AGCCTCGCTT and Q =
AATCCTCGCACC, assuming l = 6, s(x, y) = +2 for matches, and
s(x, y) = −1 for mismatches. (a) shows the 1st step of the algorithm in
which the reference sequence hits are identified. (b) a matching hit pair
is found in the query sequence during the 3rd step of the algorithm. (c)
indicates the extension process in the step 4. The extension stops in
both directions when the score drops by more than 1 unit. The score of
the final local alignment equals 12. 20

4.1 A small chunk of zebrafish chromosome 10 in Fasta format. 30
4.2 4 letters are encoded into 1 byte. 31
4.3 Indexing the reference sequence R using the spaced seed s1 and building

the corresponding hash table. (a) s1 is aligned with the reference
sequence R at the position p = 1. The table provides the hit, the key
value, and the hash index computed for p = 1 . . . 4. (b) The positions
p = 1 . . . 4 are stored in the hash table according to the hash indices
given in the last column of the left table. For example, p = 1 is stored
in the entry indexed by h(KEY11) = h(77) = 5. 32

4.4 Computing the key value for the hit h11 of the Figure 4.3a. 33
4.5 Continue indexing the reference sequence R using the spaced seed s1. (a)

The table provides the hit, the key value, and the hash index computed
for p = 5 . . . 9. (b) The positions p = 5 . . . 9 are added to the hash table
according to the hash indices. Since KEY11 = KEY15 = KEY19 = 77,
the positions p = 5, and p = 9 are stored in the same entry of the hash
table as p = 1 stored. Similarly, p = 4 and p = 8 are hashed to the
same entry as the positions of two matching hits. 34

viii

4.6 Scanning the query sequence Q using the spaced seed s1 and looking up
the hash table of Figure 4.5b. (a) s1 is aligned with the query sequence
Q at the position q = 2. The table provides the hit, the key value, and
the hash index computed for q = 1 . . . 5. (b) KEY12 is found at index
7 of the hash table colored in red. Therefore, the position q = 2 is
reported with all the positions stored at index 7 in the form of (4, 2)
and (8, 2). Similarly for q = 5, the pair (7, 5) is reported as a matching
hit pair between R and Q. 35

4.7 An example of hash collision. 37
4.8 An example of the hash table structure of our program. The entries

j = 1, 2, and 4 of the main table keep pointer to the secondary tables.
No element has been hashed so far to the entries with a NULL value. 38

4.9 Resizing of the secondary tables (a) All the entries of T2 are occupied
(b) To add another element to T2, m2 is doubled (m2new = 2×m2old

).
Then, all the element of T2 are rehashed using the new size m2new in
the hash function . 41

4.10 The darker column of the main table contains the size counters. The
size counter corresponding to the table T2 is 1. This means that the
table size has been doubled once, so its current size is 2×m2initial

. . . . 41
4.11 One entry of the main table. The top figure shows the two data members

without considering padding bytes. In the bottom figure, 7 padding
bytes are inserted after the size counter to make the address start at
position 8. 42

4.12 The main table T is split into two tables to avoid padding bytes. Tsize

is for the size counters and Taddress keeps the address of the secondary
tables. 43

4.13 Storing lists into the secondary table entries. 45
4.14 The gapless extension algorithm (part 1). 47
4.15 The gapless extension algorithm (part 2). 48
4.16 A hit pair at positions (p0, q0) = (4, 2) between R and Q. The middle

positions (pmid, qmid) are in red. 50

ix

4.17 The first steps of the right extension process for the hit pair of Figure 4.16.
The matrix origin is (pmid, qmid) = (8, 6). In this example, we set
Xdrop = 4, Smatch = 2, Smismatch = −2, and Sgap = −3. The max
value is the so far maximum score and is updated each time a new
antidiagonal is filled. −i stands for negative infinity and indicates the
entries with a value less than max−Xdrop. 51

4.18 The extended repeat pair obtained from applying right and left gapped
extensions on the hit pair of Figure 4.16. The output left and right
positions are (pl, pr) = (3, 16) and (ql, qr) = (1, 14). 51

4.19 The distance and length conditions to determine if an extended repeat
pair is eligible to be reported. 52

4.20 A sample output of the program with only one reference and one query
sequence. 53

5.1 Hchr19 vs. Mchr19; Running the program with Lmin set to be 50 and
in parallel with 4 threads. The graph shows the space consumption and
the running time for different seed weights. 60

5.2 Hchr19 vs. Mchr19; Running the program with Lmin set to be 50 and in
parallel with 4 threads. The graph shows the number of output repeats
and the running time for different seed weights. 61

5.3 MchrX vs. HchrX; Running the program with Lmin set to be 50 and
in parallel with 4 threads; (a) shows the space consumption and the
running time for different seed weights; (b) shows the number of output
repeats and the running time for different seed weights. 62

5.4 Hchr19 vs. Mchr19; Running the program with Lmin set to be 50 and
(a) 2w11 (b) 2w22 as the spaced seed set. The graphs show the total
memory consumption and the execution time in serial and parallel modes. 64

5.5 Hchr19 vs. Mchr19; Running the program in parallel with 4 threads;
Lmin set to be 50 and (a) 2w11 (b) 4w11 is used as the spaced seed
set. These graphs show the hash table size and the running time for
different K values. 65

x

5.6 Hchr19 vs. Mchr19; Running the program in parallel with 4 threads;
Lmin set to be 50 and (a) 2w11 (b) 4w11 is used as the spaced seed set.
These graphs show the number of output repeats and the running time
for different K values. 66

5.7 Hchr19 vs. Mchr19; Running the program in parallel with 4 threads;
Lmin set to be 50 and (a) 2w11 (b) 2w22 is used as the spaced seed set.
These graphs show the space consumption for different d values. 67

5.8 Hchr19 vs. Mchr19; Running the program in parallel with 4 threads;
Lmin set to be 50 and (a) 2w11 (b) 2w22 is used as the spaced seed set.
These graphs show the running time for different d values. 68

5.9 Hchr19 vs. Mchr19; Running the program in parallel with 4 threads;
Lmin set to be 50 and 2w22 is used as the spaced seed set. 69

xi

List of Tables

5.1 The genomic sequences used in the experiments. 58
5.2 The spaced seed sets used in the experiments. 58
5.3 The average repeat length for different seed weights; Lmin set to be 50. 63
5.4 Repeat length information for Hchr19 vs. Mchr19; Running the program

in parallel with 4 threads; Lmin set to be 50 and 2w22 is used as the
spaced seed set. 70

5.5 Execution time in seconds for various steps of the program; Running
the program in parallel with 4 threads; Lmin set to be 50. 71

5.6 The hash table size (in GB) for Hchr19 as the reference sequence; n1

equals 58, 617, 616 and k is 2. 72
5.7 The hash table size (in GB) for Pchr18 as the reference sequence; n1

equals 76, 611, 499 and k is 2. 72
5.8 The hash table size (in GB) for HchrX as the reference sequence; n1

equals 156, 040, 895 and k is 2. 73
5.9 The hash table size (in GB) for MchrX as the reference sequence; n1

equals 171, 031, 299 and k is 2. 73
5.10 Hchr19 vs. Mchr19; Running both programs in parallel with 4 threads;

2w22 is used as the spaced seed set in our program. 74
5.11 HchrX vs. MchrX; Running both programs in parallel with 4 threads;

2w22 is used as the spaced seed set in our program. 75
5.12 Hchr19 vs. Mchr19; Comparing the average edit distance of 50 randomly

selected output repeats of YASS with our program in different settings. 75
5.13 HchrX vs. MchrX; Comparing the average edit distance of 50 randomly

selected output repeats of YASS with our program in different settings. 76

xii

List of Symbols

d number of divided subsequences

Dmax maximum edit distance between repeat copies

h hash function

hip hit of seed si at position p of the reference sequence

hiq hit of seed si at position q of the query sequence

K indexing step size

k number of spaced seeds/a constant depending on the context

KEYip key value of hip

KEYiq key value of hiq

l seed length

Lmin minimum length of approximate repeats

M alignmnet matrix

m length of the query sequence/size of the main hash table depending on the
chapter

mj size of the secondary hash table of entry j

n length of the reference sequence

n1 length of the reference sequence

n2 length of the query sequence

xiii

p position in the reference sequence

pl left position of a repeat in the reference sequence

pr right position of a repeat in the reference sequence

prev array of previous occurrences

Q query sequence

q position in the query sequence

ql left position of a repeat in the query sequence

qr right position of a repeat in the query sequence

R reference sequence

si seed number i

Sgap gap score

Slext score of left extended segment

Smatch match score

Smin minimum score of a repeat

Smismatch mismatch score

Srext score of right extended segment

Stotal total repeat score

T main hash table

t number of threads

Tj secondary hash table of entry j

Taddress main hash table of addresses

Tsize main hash table of size counters

xiv

w seed weight

wi weight of seed number i

Xdrop threshold score of X-drop method

xv

Chapter 1

Introduction

1.1 Problem Statement

Locating various types of repeated segments in genome sequences is an important and

well-studied problem which plays a major role in analyzing genomic data. The repeated

segments are classified into different categories depending on their length, frequency,

degree of similarity, etc. Exact repeats which are identically matching substrings form

one of the interesting repeat categories. There exist numerous studies on finding exact

repeats in genome sequences [1], [2]. Since exact repeats are not informative for many

biological questions [3], researchers are also interested in approximate repeats. An

approximate repeat is a repeating substring in which the instances are similar, but not

identical. The similarity degree between string segments is measured by some metrics

which define match, mismatch, and/or gap scores.

The problem of finding approximate repeats, in a general form, is as follows. We

have two genome sequences, a reference and a query, and a similarity metric. Our goal

is to find all pairs of approximate repeats between the reference and the query with at

least a certain degree of similarity, according to the given metric.

1

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

1.2 Background

A considerable number of research studies have been done so far to find approximate

repeats in genome sequences. The preliminary algorithm for this problem is the

exhaustive search of all possible solutions proposed in 1981 [4]. It gives all pairs of

approximate repeats with the desired similarity degree, but due to its quadratic time

complexity it can only be used for small sequences.

Subsequent methods considered non-exhaustive search and employed a heuristic

to restrict the search space and speed up the process. FASTA [5], [6] and BLAST [7]

are two of the well-known early works of such methods. BLAST innovated a filtration

technique known as the hit and extend approach. The key idea behind the hit and

extend approach is to seek only the segment pairs of the reference and the query

that fit some patterns, presumed to be a potential similarity [8]. These patterns are

called seeds and the corresponding fitted substrings appear in both sequences are

called hits. The neighbouring regions of the hits are then investigated in order to

extend the hits into longer approximate repeats. Later, a family of tools was derived

from BLAST [9]–[11]. The seed pattern of the BLAST family is an exact match

of k continuous letters. This means that a hit in BLAST consists of k consecutive

letter-matches with no mismatches in between.

In 2002, a new seed pattern, spaced seed, was introduced in PatternHunter [12].

Spaced seeds improved the sensitivity and speed by allowing mismatches to occur

within the hits. In a spaced seed, some gaps are arranged between the consecutive

letter-matches to capture mismatches. It has been shown later that more spaced seeds

can raise the sensitivity even further with a small cost [13]–[16]. Therefore, the spaced

seed model was extended into multiple spaced seeds as used in PatternHunter II [13].

Most satisfactory methods for this problem rely on the hit and extend approach [17].

2

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

The common way of implementing such a method comprises three steps: 1) indexing

the locations of the reference sequence hits in an efficiently searchable structure; 2)

scanning the query sequence and looking up the structure for the hits of the query

sequence; 3) extending the matching hit pairs from left and right, in both reference

and query sequences, to get longer approximate repeats.

1.3 Motivation and Objectives

Despite decades of research on this problem, improving similarity search efficiency

still remains of great importance. Genome sequences are usually millions of letters

or larger. Therefore, indexed based approaches require substantial memory resources

only for indexing the reference sequence. Moreover, the amount of sequenced genome

data is continuously growing. Considering the above point and the fact that some

genome similarities are not yet found by the existing tools, we see a need to find more

space-efficient, sensitive, and faster tools for similarity searching in genome sequences.

In this project, we present a new software program for computing pairs of approxi-

mate repeats between two DNA sequences. We use the source code of another repeat

finding program, E-MEM [18], as a framework. E-MEM is a software for computing

maximal exact matches in very large genomes based on the hit and extend approach.

It exploits a BLAST-like continuous seed to detect the hits and a hash table as the

lookup structure. Since we aim to find approximate repeats, the E-MEM seed in our

program is replaced by multiple spaced seeds. The key advantage of spaced seed over

continuous seed is that it provides greater sensitivity, i.e., increases the chance of

finding approximate repeats. On the other hand, for technical reasons explained in

Chapter 4, use of spaced seed forces us to fully index the reference sequence, while

E-MEM’s use of continuous seed does not require a full-indexed reference sequence.

3

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

This increases the amount of data we store in the hash table. Hence, we redesign

the E-MEM hash table, and make a new flexible and space-efficient hash table with

greater capacity to handle numerous hits produced by multiple spaced seeds.

1.4 Thesis Organization

The rest of this document is organized as follows. Definitions and background in-

formation are given in Chapter 2. In Chapter 3, we review the literature on the

problem of finding approximate repeats. Chapter 4 describes the methodology. In this

chapter, the software design and implementation details are presented. The hash table

structure and memory issues are also discussed. We also provide the program usage

instructions, and explain its available options and their corresponding parameters. In

Chapter 5, we conduct experiments on some human and mouse chromosomes in order

to compare the execution time and memory requirement of our software with two

similar tools, PatternHunter II [13] and YASS [19]. We test the software with various

spaced seeds and in different parameter settings to study the impact of these changes

on the software performance. We also show the trade-off between the execution time

and the number of output repeats for different settings. Finally, conclusions are drawn

in Chapter 6.

4

Chapter 2

Definitions and Background Information

In this chapter, we define the concepts and terms used throughout this thesis. Sec-

tion 2.1 describes the biological sequences we are dealing with. The precise definition of

exact and approximate repeats are given in Section 2.2. In Section 2.3, we discuss how

sequence similarity is usually measured in this context and define different similarity

metrics. Section 2.4 is to clarify one of our frequently used terms, the hit and extend

approach. The concepts of hits and seeds which arise from the hit and extend approach

are also defined in this section.

2.1 Biological Sequences

A biological sequence is a molecule of nucleic acid or protein. It can be organized into

classes based on the underlying molecule type: DNA, RNA, or protein. This study

focuses on DNA sequences.

2.1.1 DNA Sequences

DNA is a usually very long and unbroken nucleic acid molecule. The building blocks

of this molecule are nucleotides. Nucleotides consist of four types of bases: Adenine,

5

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Cytosine, Guanine, and Thymine, denoted respectively by letters A, C, G, and T .

The process of obtaining the order of the four nucleotide bases in a DNA molecule

is called DNA sequencing. Using sequencing technologies, a DNA sequence can be

represented as a string over the alphabet Σ = {A,C,G, T}.

2.2 Repeats

Let x = x[1 . . . n] denote a string of length n, where x[i . . . j] is a substring from

position i to position j. A repeat in string x is a collection of identical or similar

substrings of x which occur more than once. In Figure 2.1, the repeating substring

CAC makes a repeat which occurs 3 times at positions 1, 3 and 10.

index: 1 2 3 4 5 6 7 8 9 10 11 12

x = C A C A C T G T G C A C

Figure 2.1: An example of a repeat.

Suppose u is a repeating substring of length l in x which occurs at starting positions

i1, i2 and i3. Each instance of the repeating substring u, including x[i1 . . . i1 + l],

x[i2 . . . i2 + l], and x[i3 . . . i3 + l], is called a copy or an occurrence of the repeat. In

the example of Figure 2.1, x[1 . . . 3], x[3 . . . 5], and x[10 . . . 12] are the repeat copies.

A repeat pair is any two copies of a repeating substring within a sequence or

between two sequences.

2.2.1 Exact Repeats

An exact repeat is a repeat in which the copies are exactly identical substrings. For

example, in Figure 2.2, the repeating substring u =ACCT makes an exact repeat pair

with two copies at positions 1 and 7.

6

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

index: 1 2 3 4 5 6 7 8 9 10 11 12

x = A C C T G T A C C T T T

Figure 2.2: Example of exact and approximate repeats in x.

2.2.2 Approximate Repeats

An approximate repeat is a repeat in which the copies are “similar”, but not

necessarily identical. Again in Figure 2.2, the two substrings x[1 . . . 6] = ACCTGT

and x[7 . . . 12] = ACCTTT form an approximate repeat pair.

2.3 Similarity Metrics

The similarity between the copies of an approximate repeat can be quantified by

distance metrics or scoring systems, both are defined below.

2.3.1 Distance

The distance between two strings is the minimum number of operations required to

transform one string into the other. Typical transformation operations include:

• substitution of one letter for another, for example substituting T for G trans-

forms ACCTGT to ACCTTT.

• insertion of a single letter, for example inserting one T transforms ACCGT to

ACCTGT.

• deletion of a single letter, for example deleting one G transforms ACCTGT to

ACCTT.

7

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Among different kinds of distances, the two following metrics are more commonly used

in biological applications:

2.3.1.1 Hamming Distance

The Hamming distance is defined only between two strings of equal length and is

the minimum number of substitutions that can transform one string into the other [20].

For example, the Hamming distance between x1 = AACAGTT and x2 = ACCTTTT

equals 3, because the 3 substitutions A→C, A→T, and G→T are necessary to change

x1 to x2.

2.3.1.2 Edit Distance

The edit distance is the minimum number of insertions, deletions, and substitutions

that can transform one string into the other [20]. For example, in order to transform

x1 = ACCTTGT to x2 = ACTTGG at least one deletion of C and one substitution of

G for T are required. Therefore, the edit distance between x1 and x2 is 2.

If the distance between two substrings is less than a given threshold, Dmax, we say

that the two substrings are similar enough to be copies of an approximate repeat.

2.3.2 Scoring Systems

Another way of quantifying the similarity between two strings is to align the two

strings, assign a score to each aligned pair and sum up the scores of all pairs. In an

alignment, one of the following states applies to each letter of one string:

• match if it is aligned with an identical letter of the other string.

• mismatch if it is aligned with a non-identical letter of the other string.

• gap if it is aligned with nothing.

8

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

A C G T –
A +5 -1 -2 -1 -3
C -1 +5 -3 -2 -4
G -2 -3 +5 -2 -2
T -1 -2 -2 +5 -1
– -3 -4 -2 -1

Figure 2.3: A sample scoring matrix for DNA sequence alignment. The diagonal
elements are the match scores. The rightmost column and the bottom row contain the
gap scores. All the other elements are the scores of different mismatches.

The scoring systems are to specify the score of these states. A scoring scheme usually

rewards a match with a positive number and penalizes a mismatch or a gap with

negative numbers.

To provide a comparison between distance and score, a mismatch is interpreted

as a substituted letter and a gap as an inserted/deleted letter in one of the strings.

Therefore, when transforming one string into the other, the substitution operation

is used to correct mismatches and insertion/deletion operation is used to correct

gaps. The above-proposed distance definitions assign unit cost to every transformation

operation, while in scoring schemes various scores are assigned to various alignment

states. A scoring scheme may also assign different scores to different mismatch states,

in case the substitution of one letter for another is more probable than some other

substitution. In this case, a scoring matrix or substitution matrix is created to define

a score for each specific pair of letters [20]. Figure 2.3 shows an example of a scoring

matrix for DNA sequence alignment.

9

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

2.3.2.1 Optimal Alignment

Any two strings can be aligned in different ways. Among all the possible alignments,

the one with the maximum score is chosen as the optimal alignment. The optimal

alignment score is the metric of similarity level. For example, using the matrix defined

in Figure 2.3 for scoring the alignments of x1 = AGTGATG and x2 = GTTAG, the

optimal alignment is the following with the score of 14:

A G T G A T G
– G T T A – G
-3 +5 +5 -2 +5 -1 +5 =14

The optimal alignment score of two substrings must be above a given threshold,

Smin, in order for them to be similar enough to be identified as two copies of an

approximate repeat

2.4 The Hit and Extend Approach

The hit and extend approach, initiated by Altschul et al. [7], is a standard heuristic

method for finding repeat pairs within a sequence or between two sequences. It involves

two steps:

1. Hit identification: in this first step, we search for short identical or similar

substrings, called hits. The hits can be found quickly using some patterns

defined below.

2. Hit extension: in this second step, we look for similarities around the hits and

extend both copies of a hit from left and right to generate longer repeats.

10

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

2.4.1 Seeds

Seeds are short string patterns used for identifying hits in the first step of the hit and

extend approach. Here, we introduce some various seed models:

2.4.1.1 Consecutive Seed

The simplest kind of seed captures k consecutive matches between two strings. A

consecutive seed is represented by k successive 1’s each 1 denotes a required match.

For example, s = 1111111111 is a consecutive seed of length l = 10 which identifies any

10 consecutive matches between two strings, as shown in Figure 2.4. The substrings

captured by the seed are the hits.

s = 1 1 1 1 1 1 1 1 1 1
x1 = A G C G T T A G A A C T A
x2 = C C G T T A G A A C T C

Figure 2.4: A consecutive seed identifies 10 consecutive matches between x1 and x2.
Here, x1[3 . . . 12] = x2[2 . . . 11] = CGTTAGAACT are the matching hits.

2.4.1.2 Spaced Seed

A spaced seed captures k matches while some fixed positions in between are allowed to

mismatch. In other words, the spaced seed allows some mismatches in certain positions

of the hits. The spaced seed is a string over the alphabet Σ = {1, ∗}; where 1 denotes

a required match and ∗ denotes a free position. A free position can have either a

match or a mismatch. The number of 1’s in a seed pattern is called the weight of

seed. For example, s = 111 ∗ 111 ∗ ∗1 is a spaced seed of length l = 10 and weight

w = 7. It seeks hits of length 10 with all positions matching except the 4th, 8th, and

9th which are allowed to mismatch. This is shown in Figure 2.5.

11

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

s = 1 1 1 ∗ 1 1 1 ∗ ∗ 1
x1 = A G C G T T A G A C A T A
x2 = C C G TA A G AA A T C

Figure 2.5: A spaced seed identifies non-consecutive matches between x1 and x2.
Mismatched letters are in bold type. x1[3 . . . 12] = CGTTAGACAT and x2[2 . . . 11] =
CGTAAGAAAT are the matching hits.

2.4.1.3 Multiple Spaced Seeds

This model is a set of spaced seeds as shown in Figure 2.6a. Multiple spaced seeds

identify a pair of hits between two strings if there is at least one seed in the set which

identifies the hits. Figure 2.6b shows an example.

s1 = 1 1 1 ∗ 1 1 1 ∗ ∗ 1
s2 = 1 1 1 ∗ 1 1 ∗ 1 1 ∗ 1
s3 = 1 1 ∗ 1 ∗ 1 1 1 ∗ 1 1 1

(a)

s1 = 1 1 1 ∗ 1 1 1 ∗ ∗ 1
x1 = A G C G T T A G A C A T A C G C C
x2 = C C G T A A G A A A T C C G T C
s2 = 1 1 1 ∗ 1 1 ∗ 1 1 ∗ 1

(b)

Figure 2.6: Hit identification using multiple spaced seeds. (a) is an example of multiple
spaced seeds. (b) shows two pairs of matching hits between x1 and x2. One pair is
x1[3 . . . 12] and x2[2 . . . 11] identified by s1. The other pair is x1[7 . . . 17] and x2[6 . . . 16]
identified by s2.

2.4.1.4 Other Kinds

More complicated seed models include transition-constrained seeds [8], vector seeds [14],

and neighbour seeds [17], to name a few. The readers are referred to [21], [22] for more

information on seeds. Here, we only give a brief description of transition-constrained

seeds.

Transition-constrained Seed:

DNA substitutions are of two types. Transitions are interchanges of A↔G or C↔T.

12

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Transversions are all the other substitutions. Transitions are more frequent in real

genomic data than transversions. For this reason, the transition-constrained seed

model has been invented [8], [11]. The transition-constrained seed is a string over the

alphabet Σ = {1, ∗, T}. Like the spaced seeds, 1 stands for a match and ∗ denotes a

free position. Positions with T ’s can have either transition substitutions or matches,

but not transversions. The weight of a transition-constrained seed is the sum of the

number of 1’s and half the number of T ’s. Figure 2.7 shows an example.

s = 1 1 ∗ 1 T ∗ 1 1 T 1
x1 = A G C G T GG T A G C T A
x2 = C C G A GA C A G C T C

Figure 2.7: A transition-constrained seed of weight w = 7 identifies hits between x1
and x2. Transitions are in bold type. The underlined letters indicate a transversion.
x1[3 . . . 12] = CGTGGTAGCT and x2[2 . . . 11] = CGAGACAGCT are the matching
hits.

13

Chapter 3

Literature Review

A large body of research has provided tools for comparing and aligning protein and

nucleic acid sequences. In this chapter, we review some of the most influential or

recent works. The focus of classical studies in this area has been on relatively short

sequences such as a single protein or a single gene [23]. These studies give rigorous

solutions by exhaustive search procedures.

3.1 Exhaustive Search Methods

Exhaustive search methods compare each letter of one sequence with all the letters in

the other sequence. With these algorithms, comparison of a sequence of length n with

a sequence of length m requires nm comparisons. The Smith and Waterman algorithm,

proposed in the early 1980s [4], is one of the well-known exhaustive search methods.

3.1.1 Smith and Waterman Algorithm

The Smith and Waterman algorithm gives an exact solution to the problem of finding

optimal local alignments between two sequences. It uses dynamic programming to

14

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

find all the local alignments scoring above a given threshold. The algorithm works as

described below.

A reference sequence R of length n, a query sequence Q of length m, and a scoring

scheme are given. The scoring scheme includes a score s(x, y) for each pair of letters

and a cost function Ck for gaps of length k. To find the pairs of segments with high

similarity between R and Q, the algorithm first sets a matrix M with n+ 1 rows and

m+ 1 columns. We call M the dynamic programming matrix or the alignment matrix.

The value of M(i, j) represents the maximum similarity score of the two subsequences

ending at R[i] and Q[j]. M is filled according to the following formulas:

M(i, 0) = M(0, j) = 0, 0 ≤ i ≤ n and 0 ≤ j ≤ m (3.1)

M(i, j) = max

M(i− 1, j − 1) + s(R[i], Q[j])

max
k≥1
{M(i− k, j)− Ck}

max
l≥1
{M(i, j − l)− Cl}

0

, 1 ≤ i ≤ n and 1 ≤ j ≤ m

(3.2)

In Equation (3.2), case 1 is interpreted as “R[i] and Q[j] are aligned”. Case 2 and 3

respectively show the cases when R[i] is at the end of a length k gap and when Q[j]

is at the end of a length l gap. Finally, case 4 indicates there is no similarity up to

R[i] and Q[j]. To find the pair of segments with the maximum score the maximum

element of M is found. Then, the matrix elements leading to this maximum element

are traversed using a backtracking procedure. Backtracking stops when it reaches

a zero element. This process gives the optimal local alignment. Figure 3.1 shows a

simple example. The next best alignment is found by backtracking from the second

largest element of M that is not traversed in the first backtrack [4].

15

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

– G T G A A T T C A
– 0 0 0 0 0 0 0 0 0 0
G 0 2 1 2 1 0 0 0 0 0
A 0 1 1 1 4 3 2 1 0 2
C 0 0 0 0 3 3 2 1 3 2
T 0 0 2 1 2 2 5 4 3 2
T 0 0 2 1 1 1 4 7 6 5
A 0 0 1 1 3 3 3 6 6 8

(a)

– G T G A A T T C A
– 0 0 0 0 0 0 0 0 0 0
G 0↖←↖← 0 0 0 0 0
A 0 ↑ ↖ ↑ ↖↖←← 0 ↖
C 0 0 0 0 ↑ ↖↖↖↖←
T 0 0 ↖← ↑ ↖↖↖←↖
T 0 0 ↖↖ ↑ ↖↖↖←←
A 0 0 ↑ ↖↖↖ ↑ ↑ ↖↖

(b)

GAATTCA
| | | | |
GACTT – A

(c)

Figure 3.1: The Smith and Waterman algorithm on the sequences R = GTGAATTCA
and Q = GACTTA, assuming s(x, y) = +2 for matches, s(x, y) = −1 for mismatches,
and Ck = −k as the gap cost. (a) the alignment matrixM is filled using Equations (3.1)
and (3.2). The gray cell is the maximum element of M . (b) shows how to trace back
each element of M . The gray cells indicate the backtracking path from the maximum
element 8. (c) the first optimal local alignment or the alignment with the maximum
score 8.

The Smith and Waterman algorithm guarantees to find the optimal local alignment

between the reference and query sequences. The time complexity of the described

algorithm is O(nm2) and its space complexity is O(nm). Using a linear cost function

for gaps (Ck), the algorithm can be implemented so to run in O(nm) time with no

change in the space complexity.

The exhaustive algorithms work very well on short sequences; however, they are

very time-consuming and impractical for large problems. Therefore, other solutions

are needed which focus only on some regions of similarities between the two sequences

and search with fewer comparisons. With this motivation, heuristic search methods

have been proposed. Heuristic search methods may lose accuracy by missing some

similarities, but are fast in practice.

16

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

3.2 Heuristic Search Methods

3.2.1 FASTA

FASTA [6] is a program for DNA and protein similarity searching first proposed as

FASTP in 1985 [5]. In comparison with exhaustive search methods, FASTP improved

the speed of searching a 500,000-letter protein sequence, by more than two orders of

magnitude [6]. FASTA finds regions of similarity between two sequences using heuristic

search with a short consecutive seed. The search algorithm of FASTA proceeds through

five main steps:

1. A lookup table of positions is constructed for short substrings, or hits, in the

first sequence. Then, the hits of the second sequence are looked up in the table

of the first sequence. The seed length is a user-defined parameter which can have

values from 1 to 6 for DNA sequences and 1 or 2 for protein sequences.

2. For each matching pair of hits found with the lookup table, the offset between

the starting positions of the hits in the two sequences is calculated. The pairs

with equal offset values are located on the same diagonal of the alignment matrix

M (see Section 3.1.1) and can form diagonal regions. The diagonal regions are

scored according to the seed length and offset value, and the 10 highest scoring

regions are detected.

3. These 10 regions are rescored using a substitution matrix (see Section 2.3.2)

and for each one of them, a subregion with maximal score is identified. The

subregions are called initial regions.

4. The algorithm proceeds by checking whether multiple initial regions can be

joined to increase scores. However, only those initial regions whose scores are

17

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

above a threshold are considered. Given a gap cost, FASTA joins compatible

initial regions with maximal scores.

5. In the final step, a modification of the alignment method described by Needleman

and Wunsch [24] and Smith and Waterman [4] is performed on the joined regions.

The algorithm assumes that the final optimal alignment is adjacent to or includes

the highest scoring initial region. Therefore, it performs a banded dynamic

programming procedure around that region [6].

As mentioned above, FASTA is faster than its preceding methods. It achieves much

of its speed by the constant lookup time of the positions table [25]. In spite of speed

improvement, FASTA is not suitable for large scale alignment. It is still slow and needs

a large amount of memory for very long sequences [12], [23]. Also in the lookup table,

FASTA uses a strict one-to-one mapping function which limits the maximum seed

length to the logarithm of the table size [25]. Another deficiency is that FASTA loses

accuracy by restricting the alignment to only a strip centred around a highly similar

region, while the optimal alignment may extend beyond this strip. Increasing the

strip width can reduce the possibility of misaligning, but also reduces the algorithm’s

speed [9].

3.2.2 BLAST Family

3.2.2.1 BLAST

The Basic Local Alignment Search Tool (BLAST) was proposed in 1990 [7]. BLAST

finds regions of local similarity between protein and nucleic acid sequences. It introduced

the hit and extend approach, which can be implemented using lookup tables. BLAST

is practically faster than FASTA since it seeks only the more significant patterns in

18

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

the sequences, without sacrificing much accuracy.

The main strategy of BLAST is to search only for the segment pairs with a score

above some cutoff. An overview of the BLAST algorithm for DNA sequences is as

follows:

1. Identify hits in the reference sequence according to a consecutive seed of length

l, with default l = 11.

2. Enter the positions of the hits into a hash table with a one-to-one mapping

function.

3. Scan the query sequence for hits of length l. Search for the hits in the hash table

where the matching hits can be found in constant time.

4. Extend every pair of the matching hits to the left and right without allowing

gaps. At the same time, compute the score of the alignment with match and

mismatch scores. Stop extending once the score falls a certain amount below the

best score yet found.

5. Report the final alignment, if it scores more than a threshold, Smin [7].

A simple example of the above steps is given in Figure 3.2. The BLAST time complexity

is proportional to the product of the lengths of the reference and query sequences,

the same as the preceding algorithms. However, discarding the hits shorter than l

significantly reduces the number of hits need to be extended. This feature makes the

algorithm run faster than its preceding methods.

19

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

R = A G C C T C G C T T

hit 1: AGCCTC
hit 2: GCCTCG

hit 3: CCTCGC
hit 4: CTCGCT

hit 5: TCGCTT

(a)

Q = A A T C C T C G C A C C

A match with hit 3

(b)

R = A G C C T C G C T T
| | | | | | |

Q = A A T C C T C G C A C C

score : 2 -1 2 2 2 2 2 2 -1

(c)

Figure 3.2: The BLAST algorithm on the sequences R = AGCCTCGCTT and Q =
AATCCTCGCACC, assuming l = 6, s(x, y) = +2 for matches, and s(x, y) = −1 for
mismatches. (a) shows the 1st step of the algorithm in which the reference sequence
hits are identified. (b) a matching hit pair is found in the query sequence during
the 3rd step of the algorithm. (c) indicates the extension process in the step 4. The
extension stops in both directions when the score drops by more than 1 unit. The
score of the final local alignment equals 12.

3.2.2.2 Gapped BLAST

The original BLAST only generates gapless alignments. Since the more biologically

meaningful similarities may contain insertions and deletions, a modification to BLAST,

Gapped BLAST, was introduced in 1997 [9]. Gapped BLAST includes two major

refinements:

1. The criterion for extending the hits has been modified such that instead of one

20

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

pair of hits, two pairs of hits are required for extension. Also, the two pairs of

hits must satisfy the following conditions to be extended: i) the two pairs are

not overlapping and ii) they are on the same diagonal of the alignment matrix

and within a fixed distance of one another.

2. The extension phase has been developed such that it can produce gapped

alignments. To reduce the computational cost imposed by the gapped extension,

a moderate score, Sg, was introduced. The eligible hits are first extended without

gaps. If the resulting alignment score exceeds Sg, then a gapped extension is

applied on the hits using a dynamic programming procedure.

These refinements not only give the ability to generate gapped alignments, but also

speed up the algorithm 3 times over the original BLAST [9].

3.2.2.3 BLASTZ

BLASTZ [11] is a modified version of the Gapped BLAST designed for comparing

two large genome sequences. It also provides additional search options as user-defined

parameters. One option is to force the program to report only the matching regions

that locate in the same order and orientation in both sequences. Another difference

between BLASTZ and Gapped BLAST is that BLASTZ uses a scoring scheme which

includes a substitution matrix and a linear cost function for gaps of length k [11].

3.2.2.4 Other versions

There are several other tools derived from BLAST, some designed for specific purposes.

For example, MegaBLAST [10], with a consecutive seed of length l = 28, is designed

for comparing highly similar sequences. It makes the BLAST algorithm faster for

21

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

closely related sequences, but does not provide proper output for distant similarities

and is not efficient for huge sequences [12].

In general, performing large scale alignment on modern genomic data with members

of the BLAST family is both slow and space-consuming [13]. Moreover, many align-

ments are missed by these tools, because of their ungapped and inflexible seed patterns.

A short seed generates many random hits and increases the computational cost; on

the other hand, a long consecutive seed misses distant similarities and decreases the

sensitivity of the program.

3.2.3 PatternHunter

PatternHunter [12] made an advance in similarity searching by introducing the spaced

seed model. It designs a sensitive spaced seed for weight w = 11 with length l = 18. It

also supports user-defined or randomly generated seed patterns. In addition to the

improved sensitivity, PatternHunter increases the speed with a new hit-processing

technique. PatternHunter is 5 to 100 times faster than Blastn1 on various size genome

sequences, considering the same sensitivity degree in both tools [13].

The PatternHunter algorithm follows the hit and extend approach of the BLAST

family. The generated hits are entered into a hash table consisting of two arrays. One

array has 4w entries (for explanation, see Section 4.4.1), each entry for a single possible

hit. This array stores the position of the first occurrence of every detected hit. The

second array with n entries keeps the positions of all the next occurrences.

Similar to Gapped BLAST, PatternHunter first extends the hit pairs without

allowing gaps and calculates the scores. Then, the gapped extension is applied only to

the segment pairs whose score are above some threshold. For the gapped extension, it

uses a different method in which neighbouring high scoring segments and local short
1BLAST for nucleotide sequences.

22

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

hits are joined together.

The amount of memory used by PatternHunter has been estimated in the article [12].

For two sequences of length n and m and a spaced seed of weight w, PatternHunter

requires approximately (4w+1 +m+ (5 + ε)n) bytes. From this amount, (4w+1 + 4n)

bytes are for the hash table and (n + m) bytes are for storing the input sequences.

The remaining εn bytes indicates a variable amount used by other data structures.

According to an experiment conducted on two bacterial genome sequences [12],

PatternHunter runs 20 times faster than Blastn, uses 1
10 of the Blastn memory and

also yields better output quality according to the alignments score.

3.2.3.1 PatternHunter II

The idea of spaced seed pattern has been extended into multiple spaced seeds in

PatternHunter II [13]. The authors also described a greedy algorithm for optimizing

multiple spaced seeds to maximize sensitivity. In fact, the problem of computing

multiple optimal spaced seeds is NP-hard [13], but the proposed greedy method gives

a near optimal solution. Various studies have focused on design and evaluation of

spaced seeds [16], [26]–[33] including several software programs for computation of

sensitive sets [15], [34]–[37].

PatternHunter II designs a set of 16 spaced seeds of weight w = 11 with length

l ≤ 21. A separate hash table is build for each one of the seeds. Therefore, the memory

consumption for the hash tables is (4w+1 + 4n)k bytes, in which k denotes the number

of seeds. Since the memory consumption in PatternHunter tools is exponentially

dependent on the seed weight, the use of longer and heavier seeds is very expensive

and inefficient.

PatternHunter II with k = 2, 4 and 8 runs over 1000 times faster than the Smith

23

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

and Waterman algorithm, while it approaches the same sensitivity2. It has also been

shown that PatternHunter II with k = 2 improves Blastn sensitivity about 3%, while

running twice as fast [13].

3.2.4 YASS

Yet Another Similarity Searcher (YASS) was proposed in 2005 [8], [19]. YASS is a

DNA local alignment tool based on the hit and extend approach. Two improvements

were introduced by this tool: i) the transition-constrained seed model which increases

the sensitivity to biologically meaningful similarities and ii) a new hit criterion for

detecting groups of hits that are potential high similarities.

The first step of YASS algorithm is similar to the other hit and extend approaches.

In its default mode, YASS exploits a single transition-constrained seed of weight w = 9

to detect hits and constructs a lookup table to store them. Assume R[i1 . . . i1 + k1− 1]

and Q[j1 . . . j1 + k1 − 1] form a hit pair detected between the reference and query

sequences, and R[i2 . . . i2 + k2 − 1] and Q[j2 . . . j2 + k2 − 1] form another pair. To

determine whether these two pairs are eligible for the next step or not, the two following

conditions must be verified:

1. The inter-hit distance is less than some predefined value, that is, the two hits

are close to each other in both sequences. This condition can be formulated as

follows:

max(|i2 − i1|, |j2 − j1|) < ρ (3.3)

2. The diagonal distance of the two pairs is less than a predefined bound. In other

words, the two hit pairs occur at neighbouring diagonals of the alignment matrix.
2The Smith and Waterman algorithm finds all the solutions and has 100% sensitivity.

24

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

This condition can be expressed as follows3:

|(i2 − i1)− (j2 − j1)| < δ (3.4)

Any two pairs of hits satisfying the above conditions are grouped together and ready

to be extended. To avoid groups of strongly overlapping hits or groups with just a

single hit, a filtering criterion, called group size, is defined. Group size is the minimum

number of matching individual letters in all the hits of a group. With the group size

parameter, YASS can make a balance between the sensitivity and the number of useless

extensions, since the extension is invoked only for groups of sufficient size [8], [19].

In an experiment [8], YASS performance has been compared with a BLAST

tool4 according to the execution time and the number of exclusive similarities5. It

indicates that YASS runs relatively faster than BLAST, while computing more exclusive

similarities, and so is more sensitive.

YASS provides a set of transition-constrained seeds and also supports user-defined

seed patterns. Therefore, the user can either select the seeds from the predefined set

or import arbitrary seed patterns designed for specific purposes. However, design-

ing transition-constrained seeds with good performance remains an expensive and

challenging problem.

3YASS performs some statistical analysis on the input sequences for computing the ρ and δ
parameters.

4NCBI BLAST 2.2.6
5The similarities that have been detected exclusively by one of the programs.

25

Chapter 4

Methodology

In this chapter, the program we developed for finding approximate repeats in DNA

sequences is described. This program takes as input two DNA sequences, a reference

and a query, and a set of spaced seeds, and outputs a list of approximate repeat pairs

between the two sequences along with their length and score. This list includes all the

pairs of approximate repeats that share a pattern according to the given seeds, with a

minimum length and an edit distance no more than some threshold.

As mentioned before, our program follows the hit and extend approach. The hits are

detected according to the given set of spaced seeds and stored in a memory-efficient hash

table. Then, the matching pairs of hits between the reference and query are extended

into longer repeat pairs. We used the source code of the E-MEM software [18] as a

framework to implement our program in C++. The source code of our program is freely

available at http://www.cas.mcmaster.ca/~bill/approxrepeats/. In Section 4.1,

we mention the major modifications made to the E-MEM program. Then, we provide

an outline for the algorithm of our method in Section 4.2. We give a more detailed

description of each step in subsequent sections.

26

http://www.cas.mcmaster.ca/~bill/approxrepeats/

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

4.1 E-MEM Modifications

E-MEM computes maximal exact matches1 rather than approximate repeats, so it

works with a single consecutive seed. This allows E-MEM to not index all the positions

of the reference sequence into the hash table. In fact, it is sufficient for E-MEM to

index only every l positions of the reference, assuming l to be the seed length. The

reason behind this reduction is as follows. For any maximal exact match of length

Lmin or more between the reference and query sequences, there must be a hit of length

l in the reference sequence that starts at a position that is a multiple of Lmin − l + 1

and is completely contained in the maximal exact match. Therefore, any maximal

exact match can be detected by one of the hits starting at multiples of Lmin − l + 1 in

the reference sequence and it is sufficient if only such hits are indexed into the hash

table [18].

The same argument cannot be applied to the case of spaced seeds and approximate

repeats. For any approximate repeat, there must be a hit obtained from a spaced seed

that is completely contained in the repeat, but the spaced seed may fit at any position

along the repeat. In other words, the hit may start at any position of the reference

sequence. Therefore, all the positions of the reference sequence need to be indexed

into the hash table. This leads to a major difference in the hash table size and the

amount of required memory for storing the hash table. Let n denote the reference

sequence length. E-MEM indexes n/l positions of the reference sequence into the hash

table, while in our program, all the n positions are indexed into the table. Therefore,

we redesigned the E-MEM hash table to make it space-efficient for this increase in

the amount of data. Moreover, our program indexes each position of the reference
1A maximal exact match between two sequences is a match, or an exact repeat pair, that cannot

be extended on either side [18].

27

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

sequence k times, assuming k to be the number of spaced seeds. For this reason, we

arranged k hash tables, one dedicated to each seed.

Another major modification we made to the E-MEM program is in the extension

phase. The extension process in E-MEM stops whenever a mismatch between the

two sequences is visited. However, in extending an approximate repeat pair, both

mismatches and gaps are allowed. This makes the extension phase of our program more

complicated and expensive than the E-MEM extension process. Next, the algorithm

outline of the program is presented. In the rest of this document, n1 denotes the

reference sequence length and n2 denotes the query sequence length.

4.2 The Algorithm Outline

// Initialization

1. Load the input sequences, R and Q, and a set of k spaced seeds.

// Index the reference sequence and build k hash tables.

2. Scan the reference sequence and align every position, p = 1 . . . n1, with all the

seeds, si (i = 1 . . . k), to make k hits. For each hit hip:

2.1. Compute a key value KEYip.

2.2. Store p in an entry of the ith hash table according to the key value KEYip

(p is the hip starting position in the reference sequence).

// Scan the query sequence and extend the eligible hit pairs.

3. Scan the query sequence and align every position, q = 1 . . . n2, with all the seeds,

si (i = 1 . . . k), to make k hits. For each hit hiq:

3.1. Compute a key value KEYiq.

28

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

3.2. Lookup the key value KEYiq in the ith hash table.

3.3. IfKEYiq is found, for all the positions recorded for this key in the hash table,

{p | p is stored in the location of KEYiq} report (hip, hiq) as a matching

pair. For each matching pair of hits:

3.3.1. Extend the hit pair without allowing gaps until the score drops by a

certain amount, Xdrop.

3.3.2. If the score of the resulting repeat pair is above some threshold Smin,

perform gapped extension on the initial hit pair (hip, hiq) using dynamic

programming.

3.3.3. Report both the left and right positions of the extended pair in the

referenc sequence (pl, pr) and in the query sequence (ql, qr).

3.3.4. If the extended repeat pair is shorter than Lmin, ignore the pair.

3.3.5. If the edit distance between the repeat copies is more than Dmax, ignore

the pair.

3.3.6. If the repeat pair is completely contained in some other recently detected

repeat, ignore the pair.

3.3.7. Store the repeat pair positions, (pl, pr) and (ql, qr), in some temporary

memory.

// Remove redundant pairs and report the output.

4. Sort the repeat pairs based on the starting position in the query sequence.

5. Remove successive pairs which are completely contained in each other.

6. Output the remaining repeat pairs.

29

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

>gi|685508232|ref|NC_007121.6| Danio rerio strain Tuebingen chromosome 10, GRCz10
TCAGGATGATGATGCGGCGACACACACAGCAGGACTGGAGACAGAGCGCTCTGATGAACATGACAGTGAA
GGTGAACATCTCCCATGGCCTTCACAGTACCCAGATCTAAACATTATTGAGCACTGTGGGCTGTTTTAGG
GGAGCGAGTCAGGAGAGGTTTTCCTCCAGCAGCATCAGCAGTGACCTGAACACTATTCTGAAGAAGAACA
GCTCACAACCCCTCTGACCACTGTGCAGGACTCCTGTCTGTCAATCACTACACTGAGGAGGAGGAGCTAC
AGCACTGACGCCCTATTCACACGGGGCGTCAGCGTCAACGCTTCCCATTCACTTTGAATGGGT

Figure 4.1: A small chunk of zebrafish chromosome 10 in Fasta format.

4.3 Initialization

The input sequences should be provided in two Fasta format files. Fasta format is a

text file format which represents biological sequences with single letters. A Fasta file

may contain a single or multiple sequences. Each sequence in a Fasta file begins with a

description line, followed by lines of sequence data. The description line is started with

a “>” character to be distinguished from the data lines. The data lines usually do not

exceed 80 characters. Figure 4.1 shows an example of a sequence in Fasta format2.

For simplicity in this document, we refer to all sequences in the reference input file

as the reference sequence, R, and all sequences in the query input file as the query

sequence, Q. The k spaced seeds must be given in a regular text file in which the spaced

seeds are separated with newline. As mentioned in Section 2.1.1 a DNA sequence is

represented as a string over the 4-letter alphabet of Σ = {A,C,G, T}. In addition

to these 4 letters, a sequenced DNA molecule may contain unknown bases which are

denoted by N in Fasta format. These unknown bases must be either disregarded from

computation (as explained in Section 4.8.1) or replaced with known bases. In the

latter case, since an N symbol stands for any of the 4 alphabet letters, it is replaced

with a randomly selected one. By this replacement, a DNA sequence consists of only 4
2Obtained from http://www.ncbi.nlm.nih.gov/

30

http://www.ncbi.nlm.nih.gov/

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

different letters and each letter is encoded using 2 bits, as shown below.

A→ 00, C → 01, G→ 10, T → 11

In order to store an input sequence, we create an array of 64-bit integers and encode

every 32 letters of the sequence into a 64-bit integer. The whole sequence is stored

as an array of integers by packing every 4 letters into 1 byte. As a result, n/4 bytes

of memory is required for storing a sequence of length n. Figure 4.2 shows a small

example.

GCTA → (10,01,11,00)binary = (156)decimal

Figure 4.2: 4 letters are encoded into 1 byte.

4.4 Hit Identification

Hit identification has two steps: 1) indexing the reference sequence 2) scanning the

query sequence. In this section, we explain how the matching hit pairs are identified

between the reference and query sequences in these two steps.

4.4.1 Indexing the Reference Sequence

In this step, all the positions of the reference sequence are indexed into the hash table.

We start from the first position and move along the reference sequence until the end.

For each position, p = 1 . . . n1, all the k seeds, si (i = 1 . . . k), are aligned one by one

with the substring starting at p to obtain a hit. A key value is computed for the hit of

seed si at position p, denoted by KEYip. In order to store the hit position in a hash

table, there must be a hash function h which maps a key value into a hash table entry

(see Section 4.5). Using this hash function, we compute a hash index for the key value,

31

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Chapter 4

Methodology

p : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R : A A G C A A T C A A T C A A T C A G T C
s1 : 1 1 ú 1 1 ú 1 1

p hit1p KEY1p h(KEY1p)
1 AAGCAATC (00,00,01,00,11,01)b = 77 5
2 AGCAATCA (00,10,00,00,01,00)b = 516 3
3 GCAATCAA (10,01,00,11,00,00)b = 2352 8
4 CAATCAAT (01,00,11,01,00,11)b = 1235 7

In this chapter, the program we developed for finding approximate repeats in DNA
sequences is described. This program takes as input two DNA sequences, a reference
and a query, and a set of spaced seeds, and outputs a list of approximate repeat pairs
between the two sequences along with their length and score. This list includes all the
pairs of approximate repeats that share a pattern according to the given seeds, with a
minimum length and an edit distance no more than some threshold. figure

mar-
gin

figure
mar-
gin

As mentioned before, our program follows the hit and extend approach. The hits
are detected according to the given set of spaced seeds and stored in a memory-e�cient
hash table. Then, the matching pairs of hits between the reference and query are
extended into longer repeat pairs. We used the source code of the E-MEM software [18]

27

(a)

1

2

3 516

4

5 77

6

7 1235

8 2352

1

2

3
4

(b)

Figure 4.3: Indexing the reference sequence R using the spaced seed s1 and building
the corresponding hash table. (a) s1 is aligned with the reference sequence R at the
position p = 1. The table provides the hit, the key value, and the hash index computed
for p = 1 . . . 4. (b) The positions p = 1 . . . 4 are stored in the hash table according to
the hash indices given in the last column of the left table. For example, p = 1 is stored
in the entry indexed by h(KEY11) = h(77) = 5.

h(KEYip), and store p into the entry indexed by h(KEYip) in the ith hash table. An

example is provided in Figure 4.3 to show this process.

To compute a key value for the hit of seed si at position p, first the letters of the

hit that are aligning with ∗’s of the seed si are removed. Then, the 2-bit code of the

remaining letters is taken as the key value. Figure 4.4 gives an example of computing

key values. Assuming wi to be the weight of seed si, the key values obtained from si

are integers of 2wi bits and within the interval [0, 22wi) = [0, 4wi). Thus, the number

of all possible key values is 4wi for the ith hash table3. The key values are stored in

64-bit integers. In order for 4wi to fit in a 64-bit integer, the seed weight wi must not

exceed 32 (wi ≤ 32).

Following this approach, if the seed si is aligned with a different position p′ and

produces the same key value as it does for p (KEYip = KEYip′), then it is concluded
3If there is only a single spaced seed of weight w, the number of all possible key values is 4w. Using

a one-to-one hash function (e.g. h(x) = x), the hash table must provide 4w different entries, each for
a different key value. This explains the 4w factor in the memory consumption of PatternHunter [12],
[13] in Section 3.2.3

32

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

R : A A G C A A T C
s1 : 1 1 ∗ 1 1 ∗ 1 1

A A C A T C
2-bit : 00 00 01 00 11 01

KEY11 : 00 00 01 00 11 01 = (77)decimal

Figure 4.4: Computing the key value for the hit h11 of the Figure 4.3a.

that the two hits starting at positions p and p′ are matching hits. Obviously, for the

function h, if KEY = KEY ′, then h(KEY) = h(KEY ′). Since the key values of

two matching hits are equal, the corresponding hash indexes are also equal. As a

result, p and p′ are stored in the same entry of the hash table in the form of a list.

See Figure 4.5 for an example. As we move forward, some other positions may also be

added to this list (e.g. p = 9 in Figure 4.5). These positions, which are stored in a

same entry of the hash table, represent matching hits in the reference sequence, i.e,

the occurrences of a same pattern in the reference sequence.

33

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Chapter 4

Methodology

p : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R : A A G C A A T C A A T C A A T C A G T C
s1 : 1 1 ú 1 1 ú 1 1

p hit1p KEY1p h(KEY1p)
5 AATCAATC (00,00,01,00,11,01)b = 77 5
6 ATCAATCA (00,11,00,00,01,00)b = 772 2
7 TCAATCAA (11,01,00,11,00,00)b = 3376 1
8 CAATCAAT (01,00,11,01,00,11)b = 1235 7
9 AATCAATC (00,00,01,00,11,01)b = 77 5

In this chapter, the program we developed for finding approximate repeats in DNA
sequences is described. This program takes as input two DNA sequences, a reference
and a query, and a set of spaced seeds, and outputs a list of approximate repeat pairs
between the two sequences along with their length and score. This list includes all the
pairs of approximate repeats that share a pattern according to the given seeds, with a
minimum length and an edit distance no more than some threshold. figure

mar-
gin

figure
mar-
gin

As mentioned before, our program follows the hit and extend approach. The hits
are detected according to the given set of spaced seeds and stored in a memory-e�cient
hash table. Then, the matching pairs of hits between the reference and query are
extended into longer repeat pairs. We used the source code of the E-MEM software [18]

27

(a)

1 3376

2 772

3 516

4

5 77

6

7 1235

8 2352

1,5,9

2

3
4,8

6
7

(b)

Figure 4.5: Continue indexing the reference sequence R using the spaced seed s1. (a)
The table provides the hit, the key value, and the hash index computed for p = 5 . . . 9.
(b) The positions p = 5 . . . 9 are added to the hash table according to the hash indices.
Since KEY11 = KEY15 = KEY19 = 77, the positions p = 5, and p = 9 are stored
in the same entry of the hash table as p = 1 stored. Similarly, p = 4 and p = 8 are
hashed to the same entry as the positions of two matching hits.

4.4.2 Scanning the Query Sequence

This step begins after indexing the whole reference sequence has finished. Like the

previous step, we start from the first position of the query sequence and move along

it until the end. For each position, q = 1 . . . n2, all the k seeds, si (i = 1 . . . k), are

aligned one by one with the substring starting at q to obtain a hit. Then, a key value

is computed for every hit using the same approach as used for the reference sequence.

This way, the matching hits between the reference and query sequences will have

equal key values. For the hit of seed si at position q, h(KEYiq) is computed to find

the positions of the reference sequence in which the matching hits occur. Then, the

entry of the ith hash table indexed by h(KEYiq) is looked up for the matches. In that

location, there is a list containing the positions of all the reference hits whose key

values equal KEYiq. For every p in the list, (p, q) is reported as a matching hit pair

between the reference and query sequences as shown in Figure 4.6.

34

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Chapter 4

Methodology

q : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q : T C A G T C C A T T A A G G G A C T G T
s1 : 1 1 ú 1 1 ú 1 1

q hit1q KEY1q h(KEY1q)
1 TCAGTCCA (11,01,10,11,01,00)b = 3508 not found
2 CAGTCCAT (01,00,11,01,00,11)b = 1235 7
3 AGTCCATT (00,10,01,01,11,11)b = 607 not found
4 GTCCATTA (10,11,01,00,11,00)b = 2892 not found
5 TCCATTAA (11,01,00,11,00,00)b = 3376 1

In this chapter, the program we developed for finding approximate repeats in DNA
sequences is described. This program takes as input two DNA sequences, a reference
and a query, and a set of spaced seeds, and outputs a list of approximate repeat pairs
between the two sequences along with their length and score. This list includes all the
pairs of approximate repeats that share a pattern according to the given seeds, with a
minimum length and an edit distance no more than some threshold. figure

mar-
gin

figure
mar-
gin

As mentioned before, our program follows the hit and extend approach. The hits
are detected according to the given set of spaced seeds and stored in a memory-e�cient
hash table. Then, the matching pairs of hits between the reference and query are
extended into longer repeat pairs. We used the source code of the E-MEM software [18]

27

(a)

1 3376

2 772

3 516

4

5 77

6

7 1235

8 2352

1,5,9

2

3
4,8

6
7

(b)

Figure 4.6: Scanning the query sequence Q using the spaced seed s1 and looking up the
hash table of Figure 4.5b. (a) s1 is aligned with the query sequence Q at the position
q = 2. The table provides the hit, the key value, and the hash index computed for
q = 1 . . . 5. (b) KEY12 is found at index 7 of the hash table colored in red. Therefore,
the position q = 2 is reported with all the positions stored at index 7 in the form of
(4, 2) and (8, 2). Similarly for q = 5, the pair (7, 5) is reported as a matching hit pair
between R and Q.

4.5 Hash Tables

In this section, we first give a brief description of hash tables and address the issues

related to hashing techniques. We proceed by proposing our new hash table design

and discussing how hashing issues are handled in our program.

A hash table is a data structure that allows the storage and retrieval of data in an

average constant time. This data structure consists of a table T where the data to

be searched is stored, and a hash function h which maps each element of data into a

table index. The element is then stored in the table entry indicated by the assigned

index. Every element of data must be represented with a unique key value. This key

value is the input of the hash function to assign an index to the element. As a result,

the hash function is a function on the set of all possible key values to the set of all

table indices. In the next two sections, we discuss the hashing issues.

35

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

4.5.1 The Hash Table Size

When the number of all possible key values is small, the hash table size can be large

enough to accommodate all possible keys. In this case, the hash function can simply

be a one-to-one mapping function. However, when the set of all possible key values

is large, it is not space-efficient to set the hash table size as large as this set. In this

case, a non-injective function is used as the hash function. As discussed before, in our

program the number of all possible key values is 4w for a single hash table related to

a seed of weight w. The exponential dependence of this number on the seed weight,

makes the use of a one-to-one hash function (as in PatternHunter [12], [13]) inefficient,

specially for long and heavy seeds.

4.5.2 Hashing Collisions

When using a non-injective hash function, there is a situation in which the two key

values are not equal, but the hash indices computed by the hash function are equal as

shown below.

KEY 6= KEY ′ , while h(KEY) = h(KEY ′)

This situation is called a hashing collision. Figure 4.7 provides an example. Since

two elements with different key values cannot be stored in one entry of the table, a

hash table needs a strategy for resolving collisions. A well-designed hash function can

reduce the number of collisions, but according to the pigeon hole principle, there may

still be some collisions for which a resolution technique is required.

Two of the most commonly used collision resolution techniques are chaining and

open addressing. In chaining, a chain is created out of all the colliding elements at one

entry. A pointer to the chain is stored in the table entry. In open addressing, when a

36

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

h(KEY) = KEY mod 12;
KEY = 13→ h(KEY) = (13 mod 12) = 1
KEY ′ = 25→ h(KEY ′) = (25 mod 12) = 1

Figure 4.7: An example of hash collision.

new element has to be inserted into an occupied location of the table, a series of table

entries are examined in some order defined by the hash function, until an unoccupied

one is found. Then, the new element is stored in the first found unoccupied entry of

the table [38].

4.5.3 The Program Hash Table Structure

The hash table structure of our program is described as follows. As mentioned before,

k hash tables are designed for the k seeds. In each hash table, we use two levels of

hashing. The first level is essentially the same as hashing with chaining, but instead

of making a chain out of the elements hashed to an entry j, a secondary hash table

Tj is used. This is shown in Figure 4.8. The first-level hash table is called the main

table and denoted by T . m denotes the main table size. The real data is stored in the

secondary tables, while the main table entries keep only the address of the secondary

tables. Notice that the key values are not stored in the hash table, because at any

time they can be retrieved given the seed number, the hit position and the reference

sequence. This design gives a saving in memory consumption. Once an element is

hashed as the first element to the entry j of the main table, the secondary table Tj is

created in the entry j with an initial size mj > 1. The collisions at the first level are

resolved by the secondary tables. The secondary tables employ open addressing (see

Section 4.5.2) as the collision resolution technique. The purpose of the main table is

to divide the elements into smaller groups which are stored as the secondary tables.

Then, the collisions are resolved easier and faster in these small size tables.

37

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

1

2

3 NULL

4

NULL

1

1

1

The Main !
Table

The Secondary !
Tables

Figure 4.8: An example of the hash table structure of our program. The entries
j = 1, 2, and 4 of the main table keep pointer to the secondary tables. No element has
been hashed so far to the entries with a NULL value.

4.5.3.1 The Hash Functions

The two levels of hashing use different hash functions. For the main table, we choose

a division method hash function. A division hash function is in the following form:

h(key) = key mod m (4.1)

It takes the reminder of the key value divided by the table size, m, to map the key

value into a table index. To reduce the number of collisions for a division hash function,

certain values of m that provide a fair distribution of the elements among the table

entries are desired. A good choice for m is a prime number not too close to an exact

power of 2 [38].

In the secondary tables, a hash function relevant to open addressing must be used.

Double hashing is a method of producing a series of hash indices for open addressing

38

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

and has the following general form:

h(key, c) = [h1(key) + c h2(key)] mod m (4.2)

in which h1 and h2 are two auxiliary hash functions, c is a step counter starting from

1, and m is the hash table size. If the hash index generated for c = 1 indicates an

occupied entry of the hash table, the c value is incremented by 1 and a new hash

index is computed using c = 2. This process continues until an unoccupied entry is

visited. Therefore, this hash function produces a series of hash indices to be examined

sequentially in the case of a collision. In the above formula, m denotes the hash table

size which equals mj for the secondary tables.

To ensure that the entire hash table is searched by the generated series of hash

indices in double hashing, the value h2(key) must be relatively prime to the hash table

size mj. One approach to satisfy this condition is to set mj to be a power of 2 and

to design h2 such that it always produces an odd number [38]. We choose h1 to be a

simple division hash function, and h2 to be a division hash function combined with a

bit-OR operation as follows:

h1(key) = key mod mj (4.3)

h2(key) = (key mod m′j) | 1 (4.4)

wherem′j is the largest power of 2 less thanmj . The bit-OR operation in Equation (4.4),

is an OR operation between 1 and the least significant bit of (key mod m′j) value. It

does not change odd values of (key mod m′j), but converts even values of (key mod

m′j) to odd numbers.

39

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

4.5.3.2 The Hash Table Size

As discussed in the beginning of this chapter, n1 elements are hashed into one hash

table4. Here, we define the size of the main and secondary tables such that one hash

table can accommodate n1 elements. We set m to be the smallest prime number

greater than n1/k and mj to be the closest power of 2 to the number k. Therefore, a

hash table is capable of having n1/k secondary tables, each table with initially about

k entries.

Since the number of elements hashing to each secondary table is unknown, there is

always a chance for secondary tables to overflow. We say that a secondary table Tj of

size mj has overflowed, if for a new element hashed to this table, an empty location is

not found after running c = mj steps in the hash function. In case a secondary table

Tj overflows, the table size mj is doubled. Then, all the elements in Tj are rehashed

considering the new table size as shown in Figure 4.9.

In order to keep track of the secondary table sizes, a column of one-byte entries

is added to the main table. This column is initially filled with zeros. An entry of

the column, called the size counter, is incremented by 1 each time its corresponding

secondary table size is doubled. Figure 4.10 shows an example. A one-byte memory

slot can represent the numbers from 0 to 255. This means that a size counter can

indicate up to 255 times doubling of a table size which is more than adequate for our

needs.

4Notice that the key values of these n1 elements are not necessarily distinct, so some of them will
be stored together in one entry of a secondary table as a list. These elements indicate the positions
of matching hits (see Section 4.4.1).

40

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

1

2

3 NULL

4

NULL

1

e1 1
e2
e3

1

(a)

e3 1
2

e1 3
e4 4

e2

1

2

3 NULL

4

NULL

1

1

(b)

Figure 4.9: Resizing of the secondary tables (a) All the entries of T2 are occupied
(b) To add another element to T2, m2 is doubled (m2new = 2×m2old

). Then, all the
element of T2 are rehashed using the new size m2new in the hash function

e3 1
2

e1 3
e4 4

e2

1 0

2 1

3 0 NULL

4 0

0 NULL

1

1

Figure 4.10: The darker column of the main table contains the size counters. The size
counter corresponding to the table T2 is 1. This means that the table size has been
doubled once, so its current size is 2×m2initial

.

41

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

4.5.3.3 The Main Table Entries

This section answers the question of how big an entry of the main table is in bytes. In

a 64-bit processor, the size of an address is 8 bytes. Therefore, we expect each T entry

to take 9 bytes, 1 byte for the size counter and 8 bytes for the address of a secondary

table. However, in practice, the number of bytes depends on the table implementation.

One way is to implement a T entry as a structure or a class object containing two data

members and make an array out of the structure or the class instances. Using this

approach, a T entry would take 16 bytes of memory. The reason for the extra 7 bytes

is data structure padding applied to such a structure to avoid decrease in the system’s

performance. A computer reads from or writes to memory in word-sized chunks. With

a 8-byte computer word, the data to be read should be at a memory offset equal to

some multiple of 8. Since this is not the case in the structure of a T entry, 7 padding

bytes are inserted between the two pieces of data to align the next data to the 8th

byte. This is shown in Figure 4.11.

The solution to avoid the padding bytes is to implement the main table T as

two separate arrays, Tsize and Taddress, each with only a single data member as in

Figure 4.12. This way, a main table entry takes 9 bytes as it was expected.

Size
counter

Address of the secondary table

9 bytes

0 1 2 3 4 5 6 7 8

Size
counter

!
Padding bytes Address of the secondary table

16 bytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4.11: One entry of the main table. The top figure shows the two data members
without considering padding bytes. In the bottom figure, 7 padding bytes are inserted
after the size counter to make the address start at position 8.

42

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

e3 1
2

e1 3
e4 4

e2

1

2

3 NULL

4

NULL

1

1

1 0

2 1

3 0

4 0

0

Figure 4.12: The main table T is split into two tables to avoid padding bytes. Tsize is
for the size counters and Taddress keeps the address of the secondary tables.

4.5.3.4 The Secondary Table Entries

Entries in the secondary tables contain the real data which means the lists of the

matching hits positions. Different data structures can be used for implementing these

lists, such as linked lists, vectors, and arrays. When indexing the reference sequence

and constructing the hash table, the lists extend as we move forward on the reference.

Although the size of a list is not known in advance, it is known that if all the lists of a

hash table are merged together, we get a list containing all the integers of the range

[1, n1]. This is because all the positions of the reference sequence from 1 to n1 are

indexed once for every seed and stored in the corresponding hash table. This property

leads to a space-efficient implementation which is also used in PatternHunter [12], [17].

Below, we describe an approach similar to the one of PatternHunter.

For each hash table, we create an array, namely prev, of length n1 + 1. The tail of

each list in stored in the secondary table entry. All the previous element of a list are

stored in prev using the following rules:

43

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

1. prev[i] is initially set to zero for 0 ≤ i ≤ n1.

2. prev[i] keeps the previous element of the value i for 1 ≤ i ≤ n1.

Since the value i appears only once among all the lists, there is no conflict between the

elements of the prev array. An example of this implementation is given in Figure 4.13.

Finally, having the tail of each list, we can retrieve all the other elements from tail to

head using the second rule.

By this implementation, every hash table has a supplementary array of length

n1 + 1. Each element of this array and each entry of a secondary table is an integer of

the range [1, n1].

44

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

1

2

3 NULL

4

NULL

1 0

2 1

3 0

4 0

0

1,5,9

4,8

6

2

7
3

(a) The given lists in white rectangles are supposed
to be stored into the secondary tables. Each list is
connected to its intended destination by a dashed line.

8

7
3

6

1

2

3 NULL

4

NULL

9

2

1 0

2 1

3 0

4 0

0

prev

0 0

0 1

0 2

0 3

0 4

1 5

0 6

0 7

4 8

5 9

(b) During the process, at each time, the tail of a list
is stored in the secondary table entry. For example, at
first the list 1, 5, 9 has only one element, 1, which is
stored in the secondary table entry. Then, 5 is added
to the list. Since 5 is the list tail, it is stored in the
secondary table entry and 1 is stored in prev[5]. Next,
9 is added as the tail and takes the place of 5. 5 is
stored in prev[9].

Figure 4.13: Storing lists into the secondary table entries.

45

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

4.5.3.5 Memory Requirement

In this section, we give an estimate for the amount of memory required by a single

hash table and k hash tables, considering a 64-bit processor. We use 32-bit integers

to represent the numbers of the range [1, n1]. Therefore, an entry of the secondary

tables or the prev array takes 4 bytes of memory. In a single hash table, we have

approximately n1/k secondary tables, each with about k entries. Therefore, the amount

of memory required for the secondary hash tables is approximately 4× k× n1/k = 4n1

bytes. The supplementary array prev uses exactly 4(n1 +1) bytes which can be rounded

to 4n1 bytes. The main table has about n1/k entries of size 9 bytes as discussed in

Section 4.5.3.3. In total, a hash table requires about 4n1 + 4n1 + 9n1/k = 8n1 + 9n1/k

bytes. Therefore, the amount of required memory for the k hash tables is approximated

by 8n1k + 9n1 = (8k + 9)n1 bytes.

4.6 Hit Extension

Referring back to the algorithm outline in Section 4.2, so far we have explained the

steps 1 to 3.3 which are mainly about the hit identification phase. In the following

sections, we continue the outline from step 3.3.1 and discuss the extension phase of

the algorithm.

4.6.1 Gapless Extension

Once a pair of matching hits (hip, hiq) is detected during the scan of the query sequence,

it is reported to the extension phase. The extension phase in our program is similar to

that in Gapped BLAST [9]. Extending a hit pair without considering gaps is much

faster and less expensive than a gapped extension process. Hence, first, a gapless

46

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&EngineeringM.Sc. Thesis - Sarah Banyassady McMaster - Computational Science &Engineering

Input: R, Q; hits starting positions (p0, q0); hit length l; allowed drop Xdrop;
match score Smatch; mismatch score Smismatch; minimum score Smin.
// Evaluate the score of the hit pair

1: set p Ω p0; q Ω q0; Shit Ω 0
2: for k = 1 to l do
3: if R[p] = Q[q] then
4: Shit Ω Shit + Smatch

5: else
6: Shit Ω Shit + Smismatch

7: end if
8: p Ω p+ 1; q Ω q + 1
9: end for

4.6.2 Gapped Extension

For the gapped extension, an approach proposed in MegaBLAST [10] is used. This

approach is a banded dynamic programming procedure which restricts the search

space with X-drop method. The dynamic programming matrix, M , is filled using the

following recursion:

M(i, j) = max

Y
_____________]
_____________[

M(i ≠ 1, j ≠ 1) + Smatch, if i > 0, j > 0, and R[i] = Q[j]

M(i ≠ 1, j ≠ 1) + Smismatch, if i > 0, j > 0, and R[i] ”= Q[j]

M(i, j ≠ 1) + Sgap, if j > 0

M(i ≠ 1, j) + Sgap, if i > 0

(4.5)

The algorithm is implemented such that only three antidiagonals of the matrix need to

be kept. Antidiagonal k is the set of all matrix entires with i+ j = k. Therefore, three

lists are su�cient for storing the matrix and finding the optimal extension, i.e., the

extension with maximum score. For a given hit pair of length l with start positions

49

Figure 4.14: The gapless extension algorithm (part 1).

extension procedure is applied to the pair. If the score of the resulting extended pair

is not less than Smin,5 the original hit pair is passed to the next step for a gapped

extension process. For both the gapped and gapless extensions, we follow the so-called

X-drop method, used in BLAST and many other programs [7], [9], [10]. In this

approach, we extend the hit pair in each of the two directions and stop once the score

drops by Xdrop below the so far maximum score. Figures 4.14 and 4.15 provide the

gapless extension procedure in pseudocode. First, in Figure 4.14 we evaluate the score

of the given hit pair as the center of the later-extended repeat. Next, in Figure 4.15

the hit pair is extended to the right (lines 10 to 19) and then to the left (lines 20 to

30). Finally, the scores of the central segment, the right and the left extensions are

added together to be compared with Smin (lines 31 and 32).

5The minimum score, Smin, in our program is equivalent to the moderate score, Sg, of Gapped
BLAST. We have employed the method described in the Gapped BLAST paper to compute a reliable
value for Smin. In this method, the letter frequency of the input sequences is used to choose Sg such
that the expected number of invoked extensions is limited [9].

47

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science &Engineering
1: set p Ω p0; q Ω q0; Shit Ω 0
2: for k = 1 to l do
3: if R[p] = Q[q] then
4: Shit Ω Shit + Smatch

5: else
6: Shit Ω Shit + Smismatch

7: end if
8: p Ω p+ 1; q Ω q + 1
9: end for

// X-drop algorithm for extending to the right
10: set Srext Ω 0; max Ω 0
11: while Srext > max ≠ Xdrop and p Æ n1 and q Æ n2 do
12: if R[p] = Q[q] then
13: Srext Ω Srext + Smatch

14: else
15: Srext Ω Srext + Smismatch

16: end if
17: if Srext > max then max Ω Srext

18: p Ω p+ 1; q Ω q + 1
19: end while

// X-drop algorithm for extending to the left
20: set p Ω p0 ≠ 1; q Ω q0 ≠ 1 Û reset the positions to the left of the hits
21: set Slext Ω 0; max Ω 0
22: while Slext > max ≠ Xdrop and p > 0 and q > 0 do
23: if R[p] = Q[q] then
24: Slext Ω Slext + Smatch

25: else
26: Slext Ω Slext + Smismatch

27: end if
28: if Slext > max then max Ω Slext

29: p Ω p ≠ 1; q Ω q ≠ 1
30: end while

// Report the pair if it scores no less than Smin

31: set Stotal Ω Shit + Srext + Slext

32: if Stotal Ø Smin then report (p0, q0) for the gapped extension

49
Figure 4.15: The gapless extension algorithm (part 2).

48

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

4.6.2 Gapped Extension

For the gapped extension, an approach proposed in MegaBLAST [10] is used. This

approach is a banded dynamic programming procedure which restricts the search

space with X-drop method. The dynamic programming matrix, M , is filled using the

following recursion:

M(i, j) = max

M(i− 1, j − 1) + Smatch, if i > 0, j > 0, and R[i] = Q[j]

M(i− 1, j − 1) + Smismatch, if i > 0, j > 0, and R[i] 6= Q[j]

M(i, j − 1) + Sgap, if j > 0

M(i− 1, j) + Sgap, if i > 0

(4.5)

The algorithm is implemented such that only three antidiagonals of the matrix need to

be kept. Antidiagonal k is the set of all matrix entires with i+ j = k. Therefore, three

lists are sufficient for storing the matrix and finding the optimal extension, i.e., the

extension with maximum score. For a given hit pair of length l with start positions

(p0, q0), we first find the middle of the two hits as follows:

pmid = p0 + bl/2c

qmid = q0 + bl/2c

Figure 4.16 shows a hit pair between two sample sequences and its middle positions.

We construct the matrix M and set (pmid, qmid) as the origin. Then, we extend the hit

pair from the middle to the right and fillM along antidiagonals as shown in Figure 4.17.

The matrix entries with a score below the X-drop criterion are filled with negative

infinity to not be considered in computation further. The extension terminates if either

49

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

p : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R : A A G C A A T C A A T C A A T C A G T C
Q : T C A G T C C A T T A A G G G A C T G T
q : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4.16: A hit pair at positions (p0, q0) = (4, 2) between R and Q. The middle
positions (pmid, qmid) are in red.

the right end of one sequence is reached or the last two antidiagonals are all negative

infinities. Then, the maximum value of the last non-infinity antidigonal is picked as

the optimal score of the right extension, Sr, and its coordinates are marked as (pr, qr).

The output of this process is the right positions of the extended pair, pr and qr, the

score Sr, and edit distance of the right extension Dr.

Again, we extend the hit pair in a similar way from the middle to the left and get

the left positions, pl and ql, the left optimal score Sl, and the left edit distance Dl.

See Figure 4.18 for the final extended repeat pair. At the end, the length and the edit

distance of the obtained repeat is compared with thresholds as shown in Figure 4.19.

The repeat pair is reported if it satisfies the threshold conditions.

50

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

p 8 9
q 0 -3 -i
6 -3 2
7 -i

(a) Initially max = 0.
After filling the 2nd an-
tidiagonal max = 2.

p 8 9 10
q -3 -i -i
6 -3 2 -1
7 -i -1
8 -i

(b) max = 2

p 8 9 10
q -i -i
6 2 -1 -i
7 -i -1 0
8 -i -i

(c) max = 2

p 8 9 10
q -i
6 -1 -i
7 -1 0 -i
8 -i -i 1
9 -i

(d) max = 2

p 8 9 10 11
q
6 -i
7 0 -i -i
8 -i 1 2
9 -i -2
10 -i

(e) max = 2

p 8 9 10 11 12
q
6
7 -i -i -i
8 1 2 -1
9 -i -2 -1
10 -i -i

(f) max = 2

Figure 4.17: The first steps of the right extension process for the hit pair of Figure 4.16.
The matrix origin is (pmid, qmid) = (8, 6). In this example, we set Xdrop = 4, Smatch = 2,
Smismatch = −2, and Sgap = −3. The max value is the so far maximum score and is
updated each time a new antidiagonal is filled. −i stands for negative infinity and
indicates the entries with a value less than max−Xdrop.

p : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R : A A G C A A T C A A T C A A T C A G T C
Q : T C A G T C C A T T A A G G G A C T G T
q : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4.18: The extended repeat pair obtained from applying right and left gapped
extensions on the hit pair of Figure 4.16. The output left and right positions are
(pl, pr) = (3, 16) and (ql, qr) = (1, 14).

51

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

1: if (Dl +Dr) ≤ Dmax and (pr − pl + 1) ≥ Lmin and (qr − ql + 1) ≥ Lmin then
2: report (pl, pr) and (ql, qr) as a repeat pair
3: end if

Figure 4.19: The distance and length conditions to determine if an extended repeat
pair is eligible to be reported.

4.7 Report the Output

The program outputs a list of approximate repeat pairs between the reference and

query sequences. It also reports the score and length of the repeat pairs. Each line

of the output represents a single repeat by giving the following information from left

to right: the left and right positions in the reference sequence (pl, pr), the left and

right positions in the query sequence (ql, qr), the repeat score, and the repeat size, or

length. Since the length of a repeat copy in the reference may differ from its copy in

the query, two lengths are reported. The first one refers to the reference copy and the

second one is the length of the query copy.

Since there can be multiple query sequences, the repeats are displayed in groups

according to their query sequence. Each group starts by a header line which contains

a short description of the corresponding query sequence. Inside a group, the repeat

are sorted based to the staring positions in the query (ql). In case there are multiple

reference sequences, an identifier is displayed on the left of each line to specify which

reference sequence this repeat belongs to. Figure 4.20 shows a sample output of the

program.

52

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Last login: Wed Jul 29 21:45:42 on ttys000
Sarahs-MacBook-Pro:~ Sarah$ cd desktop
Sarahs-MacBook-Pro:desktop Sarah$ cd mac
Sarahs-MacBook-Pro:mac Sarah$./e-mem -L 30 Query Ref seed2
Indexing Query...
Done!
Scanning Ref...
Done!
> gi|684237074|gb|CM002897.1|
 (14071 , 14105) (40 , 75) score: 51 size:35, 36
 (40266 , 40303) (40 , 76) score: 55 size:38, 37
 (77928 , 77966) (40 , 76) score: 56 size:39, 37
 (26397 , 26427) (41 , 73) score: 44 size:31, 33
 (40270 , 40304) (41 , 77) score: 52 size:35, 37
 (40453 , 40488) (41 , 76) score: 52 size:36, 36
 (40453 , 40490) (41 , 75) score: 53 size:38, 35
 (73048 , 73078) (41 , 71) score: 42 size:31, 31
 (84757 , 84791) (41 , 75) score: 50 size:35, 35
 (73047 , 73079) (43 , 75) score: 50 size:33, 33
 (73125 , 73154) (43 , 73) score: 45 size:30, 31
 (14072 , 14103) (44 , 76) score: 49 size:32, 33
 (39642 , 39673) (44 , 76) score: 45 size:32, 33
 (39742 , 39772) (44 , 76) score: 44 size:31, 33
 (72980 , 73011) (44 , 76) score: 45 size:32, 33
 (85669 , 85698) (44 , 74) score: 41 size:30, 31
 (87141 , 87173) (44 , 77) score: 51 size:33, 34
 (87390 , 87421) (44 , 75) score: 44 size:32, 32
 (28876 , 28907) (45 , 77) score: 49 size:32, 33
 (40455 , 40488) (45 , 79) score: 49 size:34, 35
 (85641 , 85672) (45 , 75) score: 47 size:32, 31
 (87139 , 87171) (45 , 76) score: 45 size:33, 32
 (29634 , 29663) (46 , 75) score: 40 size:30, 30
 (72953 , 72983) (46 , 75) score: 45 size:31, 30
 (73047 , 73077) (46 , 76) score: 46 size:31, 31
 (73125 , 73155) (46 , 75) score: 45 size:31, 30
 (85916 , 85945) (46 , 75) score: 40 size:30, 30
 (26397 , 26426) (47 , 76) score: 44 size:30, 30
 (28875 , 28906) (47 , 76) score: 46 size:32, 30
 (85640 , 85670) (47 , 76) score: 45 size:31, 30
 (2640 , 2672) (48 , 78) score: 44 size:33, 31
 (85640 , 85670) (49 , 79) score: 42 size:31, 31
 (28876 , 28908) (78 , 110) score: 46 size:33, 33
 (13853 , 13913) (300 , 362) score: 104 size:61, 63
 (40266 , 40304) (300 , 341) score: 61 size:39, 42
 (22695 , 22739) (301 , 347) score: 72 size:45, 47
 (24242 , 24299) (301 , 359) score: 97 size:58, 59
 (26397 , 26427) (301 , 333) score: 44 size:31, 33
 (26609 , 26657) (301 , 351) score: 80 size:49, 51
 (37320 , 37372) (301 , 354) score: 87 size:53, 54
 (55661 , 55715) (301 , 356) score: 91 size:55, 56
 (73304 , 73352) (301 , 349) score: 78 size:49, 49
 (2640 , 2677) (302 , 341) score: 58 size:38, 40
 (13317 , 13374) (302 , 359) score: 96 size:58, 58
 (13319 , 13375) (302 , 358) score: 94 size:57, 57
 (13391 , 13436) (302 , 347) score: 72 size:46, 46
 (24244 , 24300) (302 , 358) score: 94 size:57, 57
 (25496 , 25553) (302 , 359) score: 96 size:58, 58
 (25500 , 25554) (302 , 356) score: 90 size:55, 55
 (28022 , 28067) (302 , 346) score: 71 size:46, 45
 (28321 , 28358) (302 , 339) score: 56 size:38, 38
 (28875 , 28907) (302 , 335) score: 47 size:33, 34
 (29056 , 29104) (302 , 350) score: 78 size:49, 49
 (31804 , 31862) (302 , 359) score: 97 size:59, 58
 (33588 , 33634) (302 , 348) score: 74 size:47, 47
 (35249 , 35306) (302 , 359) score: 96 size:58, 58
 (35255 , 35307) (302 , 355) score: 87 size:53, 54
 (35420 , 35469) (302 , 353) score: 82 size:50, 52
 (36212 , 36254) (302 , 344) score: 66 size:43, 43
 (36462 , 36518) (302 , 358) score: 94 size:57, 57
 (37319 , 37372) (302 , 356) score: 93 size:54, 55
 (39363 , 39397) (302 , 336) score: 50 size:35, 35
 (40508 , 40566) (302 , 360) score: 98 size:59, 59
 (40610 , 40656) (302 , 348) score: 74 size:47, 47

Figure 4.20: A sample output of the program with only one reference and one query
sequence.

4.8 Usage

To run the program, three input files are required. The input files must contain

the reference sequence, the query sequence, and the set of spaced seeds, respectively.

Moreover, the user is provided with some options to adjust the desired settings or

to reset default values of the program parameters. Below, we describe the available

options.

4.8.1 Available Options

-t Option

The program is parallelized using OpenMP directives. With -t option, the user

can set the number of threads in parallel mode. The default is 1 thread, i.e., the

sequential execution.

-K Option

As we discussed in Section 4.1, unlike E-MEM, all the positions of the reference

53

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

sequence are required to be indexed in our program. However, we provide the

option of indexing every K positions for the users who prefer a faster and less

space-consuming mode in sacrifice of accuracy. The K value, called the indexing

step size, is set through -K option. The program scans both the reference and

query sequences in every K positions. The default value for K is 1.

-d Option

To reduce the memory consumption, the input sequences can be split into d

subsequences using -d option. The d subsequences are overlapped to avoid

missing the repeats which locate at marginal regions. The reference subsequences

are considered one at a time and a hash table is built for each. This way, the hash

table memory requirement decreases by a factor of d. However, each reference

subsequence must be compared with d query subsequences one by one. This

increases the execution time, since the query sequence is scanned d times. The

default value for d is 1. This procedure is implemented as a part of the E-MEM

program. More details can be found in the E-MEM paper [18].

-D Option

This option is used to set Dmax, the maximum edit distance (as defined in

Section 2.3.1.2) between the repeat copies. By default Dmax equals 5, which

means that edit distance only up to 5 is tolerated between approximate repeat

copies.

-s Option

The scoring system is set by -s option. It includes a match, a mismatch, and

a gap score. Therefore, this option takes three numbers which can be positive

or negative. The default scores are 2, −2, and −3, respectively for matches,

mismatches and gaps.

54

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

-x Option

This option is to set the Xdrop score. The default value of Xdrop is 5.

-L Option

The user can set the minimum length of repeats, Lmin, by this option to exclude

shorter repeats from the output. The default value of Lmin is the length of the

shortest given seed.

-n Option

When choosing this option, the unknown bases (N ’s) of the input sequences are

ignored. This is implemented as part of the E-MEM program [18] and works

as follows. First of all, since the unknown bases usually appear as blocks of

N ’s, the start and end positions of theses blocks are stored while reading the

input sequences. Later in the hit detection process, the hits that share a region

with these blocks are excluded from the rest of the computation. Finally in the

extension process, repeat pairs are not extended beyond the borders of the N ’s

blocks.

-r Option

In order to compute repeats between the reference and the reverse complement6

of the query sequence, this option must be chosen. When choosing -r option, the

program only computes the reserve complement repeats.

-b Option

-b is used to compute both forward and reverse complement repeats.

6The reverse complement of a DNA sequence is the sequence in reverse direction in which A and
T letters are interchanged as are C and G letters.

55

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

-c Option

-c is set to report the query position of a reverse complement repeat relative to

the original query sequence. This option must be used with either -b or -r.

-l Option

-l shows the length of query sequences on the header lines in the output.

-o Option

By default, the output is printed on the terminal. The -o option is used to print

the output in a file, namely Output.

-h Option

-h displays the help menu, containing the list of all possible options.

56

Chapter 5

Results

This chapter presents the experimental results. We have tested our program under

different parameter settings and studied the impact of these parameters on the program

performance. In the first section, we briefly describe the test genomic sequences, the

spaced seed sets, and the metrics we used for performance measurement. The effect of

seed weight is studied in the next section, followed by the results obtained from varying

the values of the -t, -K, -d, and -D parameters. We also examine the percentage of

the running time spent on various parts of the program. In the two last sections, we

compare the memory requirement of our program with PatternHunter II [13], and

propose a comparison of run time, resource usage and output quality with YASS [19].

5.1 Preliminaries

The experiments are performed on some human, mouse and chimpanzee chromosomes1.

For the spaced seeds, we use different sets of seeds. Some sets are directly computed

by the algorithm of Ilie and Ilie [31], while others are combinations of the former sets.

Tables 5.1 and 5.2 provide the information of the test sequences and the seed sets.
1Obtained from http://www.ncbi.nlm.nih.gov/

57

http://www.ncbi.nlm.nih.gov/

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Table 5.1: The genomic sequences used in the experiments.

Id Desceription Length (Base No.)
Hchr19 Homo sapiens (human) chromosome 19 58,617,616
HchrY Homo sapiens chromosome Y 57,227,415
HchrX Homo sapiens chromosome X 156,040,895
Mchr19 Mus musculus (mouse) chromosome 19 61,431,566
MchrX Mus musculus chromosome X 171,031,299
Pchr18 Pan troglodytes (chimpanzee) chromosome 18 76,611,499
PchrY Pan troglodytes chromosome Y 26,342,871

Table 5.2: The spaced seed sets used in the experiments.

Set Id Pattern Length Weight

2w11
111*1*1**1*11*111 17

11
1111***1**1***1*1*111 21

2w16
111*1*1**1*11*111**11*1*11 26

16
1111***1**1***1*1*111**1*1111 29

2w22
111*111**1*1111111***1***1****1*11**1*11 40

22
11*11*1****1*1**111111*11***1*****1***1*1*111 45

2w27
111*111**1*1111*111***1***1****1*11**1*11***11*1*11 51

27
11*11*1****1*1**1111*11*11***1*****1***1*1*111***1*1111 55

2w32
111*11*11*1*111111***1***1*1***11*11111*1*1****1**1**1****111 61

32
11*1*1**11**1*111111**1***1***11****1*1*1111*11**1*1******1*1***111 67

4w11

111*111**1*1111 15

11
11*11*1****1*1**1111 20
111***1***1****1*11**1*11 25
11*11***1*****1***1*1*111 25

All the experiments of this chapter are conducted on the same computers with 4

cores Intel i7-2600 processor at 8 × 3400 MHz and 16 GB of RAM, running Linux

Mageia 1. Our program is used with the default parameters, unless otherwise stated.

58

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

5.1.1 Time Measurement

During the program execution, three times are recorded. The first is the time spent on

constructing the hash tables, called the hash time. The hash time is actually the time

of indexing the reference sequence, or step 2 of the program outline in Section 4.2. The

second is the time spent on scanning the query sequence and extending the hits. This is

the running time of step 3 in the outline which is shown to be the most time-consuming

step of the program and is called the extension time. The third is the total execution

time of the program.

5.1.2 Space Measurement

For space consumption, we report three numbers:

1. The hash tables size.

2. The physical memory (RAM) used by the current process.

3. The virtual memory used by the current process.

The hash tables size is the amount of memory used by the hash tables. This number

can be compared with the estimate we made in Section 4.5.3.5. The amount of physical

and virtual memory are measured by reading the proc filesystem during execution,

when memory usage is at its maximum level. In the rest of this document, the total

memory consumption refers to the sum of physical and virtual memory used in the

program.

59

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

5.2 Seed Weight

In this section, we study the impact of seed weight on the run time, the space con-

sumption, and the number of output repeats. The seed sets used in this experiment are

2w11, 2w16, 2w22, 2w27 and 2w32. Figure 5.1 illustrates both the space consumption

and the total execution time for these seed sets.

Figure 5.1: Hchr19 vs. Mchr19; Running the program with Lmin set to be 50 and in
parallel with 4 threads. The graph shows the space consumption and the running time
for different seed weights.

The hash table size, RAM and virtual memory usage increases as the seeds gets

heavier and longer. This can be interpreted as follows. As the seed weight increases,

the number of possible key values increases as well. The more diverse key values

require more entries in the hash table, and therefore, make the hash table bigger. On

the other hand, the total execution time decreases significantly with increasing weight.

Heavier seeds cause fewer matches between the hits of the reference and query because

they impose a more strict matching pattern. This reduces the number of matching hit

60

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Nu
m

be
r o

f O
ut

pu
t R

ep
ea

ts

0

90000

180000

270000

360000

Execution Time (s)
0 2750 5500 8250 11000

w = 11
w = 16
w = 22
w = 27
w = 32

Figure 5.2: Hchr19 vs. Mchr19; Running the program with Lmin set to be 50 and
in parallel with 4 threads. The graph shows the number of output repeats and the
running time for different seed weights.

pairs which are passed to the extension phase and yields a faster speed.

Figure 5.2 shows the trade-off between the number of output repeats and the

execution time for the above-mentioned seed sets. According to this figure, the seed set

2w22 gives almost the same accuracy as 2w16 and 2w11, while running at much faster

speed. As anticipated, the faster speed is achieved at the cost of memory. Looking

back at Figure 5.1, we see the memory consumption of 2w22 is twice of 2w11, but its

execution time is about 1
10 of 2w11. This shows the superiority of 2w22 against 2w11

and 2w16. The two other sets, 2w27 and 2w32, do not have a major difference with

2w22 in terms of the space consumption and time, but they respectively miss about

75% and 97% of the repeats reported by 2w22. The same experiment is conducted

on MchrX vs. HchrX and the results are provided in Figure 5.3. The behaviour of

the two graphs is similar to Figures 5.1 and 5.2. In this case, 2w27 and 2w32 fail to

detect about, respectively, 81% and 94% of the repeats detect by 2w22. To clarify

the reason for this great loss, the average length of output repeats for each of these

cases is given in Table 5.3. The average length of repeats reported by 2w11, 2w16,

61

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

and 2w22 is about 54. On the other hand, the seed length of the two other sets, 2w27

and 2w32, is above 54, except for one seed (see Table 5.2). These long seeds miss the

shorter repeats which in this case constitute a major portion of the output repeats.

(a)

N
um

be
r o

f O
ut

pu
t R

ep
ea

ts

0

600000

1200000

1800000

2400000

Execution Time (s)
0 15000 30000 45000 60000

w = 11
w = 16
w = 22
w = 27
w = 32

(b)

Figure 5.3: MchrX vs. HchrX; Running the program with Lmin set to be 50 and in
parallel with 4 threads; (a) shows the space consumption and the running time for
different seed weights; (b) shows the number of output repeats and the running time
for different seed weights.

According to these experiments, it is preferred to use longer and heavier seeds with

our program especially to improve the speed. However, it should be considered that

62

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

very long seeds miss the short repeats.

Table 5.3: The average repeat length for different seed weights; Lmin set to be 50.

Seed Set 2w11 2w16 2w22 2w27 2w32

Hchr19 vs. Mchr19 53.98 53.97 53.98 59.99 68.94

MchrX vs. HchrX 53.82 53.82 53.82 60.31 68.44

5.3 Number of Threads: -t parameter

We run the program in serial and parallel with 2 and 4 threads. As shown in Figure 5.4,

increasing the number of threads, t, from 1 to 2 decreases the total execution time by

about half, and increasing it to 4 reduces the execution time to about 1
3 of the serial

time. Notice that even in the parallel mode the hash tables are constructed in serial.

Parallelization is applied only to the process of scanning the query and extension, so

the hash time remains unchanged. Figure 5.4 also shows that a small overhead in

space is caused by parallelization. This overhead does not include the hash table size,

since running the program in parallel does not change the number of stored hits. Also,

as expected, parallelization does not affect the output repeats in any way.

63

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

M
em

or
y

(M
B

)

1000

1500

2000

2500

3000

Execution Time (s)
0 10000 20000 30000 40000

t = 1
t = 2
t = 4

(a)

M
em

or
y

(M
B

)

1000

2125

3250

4375

5500

Execution Time (s)
0 650 1300 1950 2600

t = 1
t = 2
t = 4

(b)

Figure 5.4: Hchr19 vs. Mchr19; Running the program with Lmin set to be 50 and (a)
2w11 (b) 2w22 as the spaced seed set. The graphs show the total memory consumption
and the execution time in serial and parallel modes.

5.4 Indexing Step Size: -K parameter

In this section, the program is tested for different values of -K option which defines the

indexing step size (see Section 4.8.1). The variation of running time, space usage and

number of output repeats is studied here. Figure 5.5 demonstrates a decrease in the

total execution time and the hash table size for higher values of K. It is seen that, the

reduction in the execution time is much faster than the reduction in the hash table

size as K increases. This indicates that in addition to the hits that are not indexed

into the hash table due to K = 2, numerous hits that were matching before are also

lost. These latter lost matches have a great impact on the execution time.

We expect a loss of accuracy forK values greater than 1 as discussed in Section 4.8.1.

Figure 5.6 illustrates the trade-off between the running time and the number of output

repeats for different K values. According to this figure, a large number of repeats

(about 72%) is missed only by increasing K from 1 to 2. However, the running time

also decreases by about 93%. In this experiment, we used 2w11 and 4w11 as the

64

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

(a)

(b)

Figure 5.5: Hchr19 vs. Mchr19; Running the program in parallel with 4 threads; Lmin

set to be 50 and (a) 2w11 (b) 4w11 is used as the spaced seed set. These graphs show
the hash table size and the running time for different K values.

65

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

spaced seed sets to see whether employing more spaced seeds can compensate the loss

of accuracy caused by increasing K. However, for different K values, 4w11 generated

almost the same number of repeats as 2w11.

N
um

be
r o

f O
ut

pu
t R

ep
ea

ts

0

87500

175000

262500

350000

Execution Time (s)
0 3750 7500 11250 15000

K = 1
K = 2
K = 3
K = 4

(a)

N
um

be
r o

f O
ut

pu
t R

ep
ea

ts

0

87500

175000

262500

350000

Execution Time (s)
0 3750 7500 11250 15000

K = 1
K = 2
K = 3
K = 4

(b)

Figure 5.6: Hchr19 vs. Mchr19; Running the program in parallel with 4 threads; Lmin

set to be 50 and (a) 2w11 (b) 4w11 is used as the spaced seed set. These graphs show
the number of output repeats and the running time for different K values.

66

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

5.5 Number of Subsequences: -d parameter

The parameter d, the number of divided subsequences, is expected to affect both the

space usage and the execution time as discussed in Section 4.8.1. The hash table size,

RAM and virtual memory usage for various d values are graphed in Figure 5.7. Notice

that since the reference sequence is divided into d subsequences, the hash tables are

constructed and destroyed d times. We have chosen the largest of these d values to

represent the hash table size of the program. In Figure 5.7, raising d by a factor of 2

decreases the hash table size, RAM, and virtual memory by a factor between 1.4 and

2. Figure 5.8 shows the total execution time which experiences only a small increase

due to scanning the query sequence multiple times.

M
em

or
y

(M
B

)

0

400

800

1200

1600

d
1 2 4

Hash Table RAM Virtual

(a)

M
em

or
y

(M
B

)

0

750

1500

2250

3000

d
1 2 4

Hash Table RAM Virtual

(b)

Figure 5.7: Hchr19 vs. Mchr19; Running the program in parallel with 4 threads; Lmin

set to be 50 and (a) 2w11 (b) 2w22 is used as the spaced seed set. These graphs show
the space consumption for different d values.

This parameter does not have any effect on the accuracy. It has been designed

only to save more memory, if it is necessary.

67

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

(a) (b)

Figure 5.8: Hchr19 vs. Mchr19; Running the program in parallel with 4 threads; Lmin

set to be 50 and (a) 2w11 (b) 2w22 is used as the spaced seed set. These graphs show
the running time for different d values.

5.6 Maximum Edit Distance: -D parameter

The program can produce more and longer repeats if one allows higher edit distances

between copies of a repeat with -D option. In Figure 5.9, we show the effect of

increasing Dmax on the number of output repeats as well as the running time. This

parameter does not affect the space consumption.

It is shown that increasing Dmax from 5 to 15 moderately slows down the program,

while multiplying the number of output repeats by about 16. One can reduce this

number by choosing a larger Lmin which excludes the shorter repeats, but this does

not make a considerable difference to the running time or the space usage. The reason

is that the shorter repeats are excluded after the extension phase, prior to the last

step of the algorithm2. Notice that further increase of Dmax does not provide gains
2Notice that a repeat length is determined only after it has been extended, therefore the short

repeats cannot be identified earlier. However, the program has a mechanism to avoid extending the
hit pairs that are not potentially long enough: If a hit pair is located in a region which is either
surrounded by blocks of N ’s or close to the sequence endpoints and cannot be extended at least as
much as Lmin, it is excluded before the extension is applied.

68

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Nu
m

be
r o

f O
ut

pu
t R

ep
ea

ts

0

1750000

3500000

5250000

7000000

Execution Time (s)
0 300 600 900 1200

D = 5
D = 10
D = 15
D = 20
D = 25

Figure 5.9: Hchr19 vs. Mchr19; Running the program in parallel with 4 threads; Lmin

set to be 50 and 2w22 is used as the spaced seed set.

as much as it did before and the graph seems to be convergent. One reason for this

phenomenon is the fixed amount of Xdrop score during the experiment which avoids

the extension to be continued past the Xdrop threshold. Table 5.4 shows a similar

increasing behaviour for the average and the maximum repeat length as higher values

of Dmax are applied. Although, the average repeat length grows slowly, the maximum

length is almost doubled by increasing the maximum distance from 5 to 10. The third

row of this table contains the values of Dmax/Lmin which indicate the maximum value

of edit distance in unit length for the repeats of these experiments. This number is

increasing from 0.1 to 0.5, which means that the repeat copies in Dmax = 5 are at

most 10% divergent from one another, while they are up to 50% divergent in case of

Dmax = 25.

69

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Table 5.4: Repeat length information for Hchr19 vs. Mchr19; Running the program in
parallel with 4 threads; Lmin set to be 50 and 2w22 is used as the spaced seed set.

Dmax 5 10 15 20 25

Average Repeat Length 53.98 57.89 62.68 66.18 68.63

Maximum Repeat Length 120 202 225 267 288

Dmax/Lmin 0.1 0.2 0.3 0.4 0.5

5.7 Hash Time vs. Extension Time

This section justifies our claim regarding the extension phase being the most time-

consuming step of the program. Table 5.5 gives the hash time and the extension time

for several runs with different parameter settings. The last two columns represent the

percentage of the total running time spent on each of these two steps. We see that

the hash time is often less than 6% and always less than 50% of the total execution

time. On the other hand, in most cases, the extension time occupies more than 90%

of the total execution time. There is a non-linear increase in the hash percentage for

the the first two sets of test (Hchr19 vs. Mchr19 and MchrX vs. HchrX) as the seed

weight increases. This non-linear behaviour comes from the slow increase in the hash

time and the fast decrease in the total execution time, which is also seen in Figures 5.1

and 5.3a. As explained in Section 5.2, the fast decrease of the total execution time is

the result of reduction in the number of matching hits and fewer number of invoked

extensions.

70

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Table 5.5: Execution time in seconds for various steps of the program; Running the
program in parallel with 4 threads; Lmin set to be 50.

Seed Hash Extension Total Running Hash Extension
Set Time (s) Time (s) Time (s) Percentage Percentage

Hchr19

2w11 32 10,339 10,381 0.30% 99.6%

vs.
2w16 42 4,682 4,745 0.88% 98.7%

Mchr19 2w22 49 810 879 5.57% 92.1%

score:
2w27 54 206 279 19.35% 73.8%

(+2,-2,-3) 2w32 55 61 136 40.44% 44.8%

MchrX

2w11 94 53,147 53,285 0.18% 99.7%

vs.
2w16 140 25,834 26,067 0.54% 99.1%

HchrX 2w22 142 5,204 5,418 2.62% 96%

score:
2w27 153 1,145 1,359 11.29% 84.2%

(+2,-2,-3) 2w32 163 357 581 28.05% 61.4%

HchrY

2w11 14 3,650 3,677 0.38% 99.3%

vs.
2w16 18 2,748 2,783 0.65% 98.7%

PchrY 2w22 18 2,052 2,093 0.86% 98%

score:
2w27 20 1,689 1,725 1.16% 97.9%

(+1,-3,-4) 2w32 21 1,462 1,499 1.40% 97.5%

71

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

5.8 PatternHunter II

Here, the hash table size of our program is compared with the one of PatternHunrter

II [13]. The PatternHunter II hash table has a fixed size of (4w+1 + 4n1)k bytes, in

which k is the number of seeds, w is the seed weight, and n1 is the reference sequence

length (see Section 3.2.3.1). In Section 4.5.3.5, we provided an estimate of the hash

table size in our program which is (8k+9)n1 bytes. Here, we also compare this estimate

with the real size. Tables 5.6 to 5.9 contain the information about the hash table

size for 4 different sequences. Our program has been executed with default parameter

settings in all these tests.

Table 5.6: The hash table size (in GB) for Hchr19 as the reference sequence; n1 equals
58, 617, 616 and k is 2.

Seed Set 2w11 2w16 2w22

PatternHunter II 0.47 32.44 131,072.44

Our Estimate 1.36 1.36 1.36

Real Hash Table Size 1.02 1.38 1.43

Table 5.7: The hash table size (in GB) for Pchr18 as the reference sequence; n1 equals
76, 611, 499 and k is 2.

Seed Set 2w11 2w16 2w22

PatternHunter II 0.6 32.57 131,072.57

Our Estimate 1.78 1.78 1.78

Real Hash Table Size 1.30 1.87 1.91

The PatternHunter II hash table is smaller than our hash table (about half-size) for

a light seed like 2w11. However, it requires an extreme amount of memory with seeds

72

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Table 5.8: The hash table size (in GB) for HchrX as the reference sequence; n1 equals
156, 040, 895 and k is 2.

Seed Set 2w11 2w16 2w22

PatternHunter II 1.19 33.16 131,073.16

Our Estimate 3.63 3.63 3.63

Real Hash Table Size 2.56 3.65 3.80

Table 5.9: The hash table size (in GB) for MchrX as the reference sequence; n1 equals
171, 031, 299 and k is 2.

Seed Set 2w11 2w16 2w22

PatternHunter II 1.30 33.27 131,073.27

Our Estimate 3.98 3.98 3.98

Real Hash Table Size 2.81 3.85 4

of weight 16 or higher which makes the use of these seeds impractical. We see that our

estimate for the table size is not dependent on the seed weight, and similarly, the real

size of hash tables is not considerably affected by the seed weight. There is a small

increase in our hash table size for higher weights which is the result of more diverse key

values generated by these weights. As it is seen and explained in Section 5.2, diversity

of the key values increases the number of occupied entries in the hash table.

5.9 YASS

Here, we compare the running time, the space usage and the output of our program

with YASS [19] which was introduced in Section 3.2.4. Table 5.10 provides this

information for Hchr19 and Mchr19. In this experiment, the space consumption of

the two programs are almost equal. Our program runs about 6 to 7 times faster than

73

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

YASS, but the output repeats of YASS are significantly longer. One reason for the

longer repeats of YASS is the criterion it uses for merging the neighbouring hits. It

groups the nearby hits together to generate large repeats.

Table 5.10: Hchr19 vs. Mchr19; Running both programs in parallel with 4 threads;
2w22 is used as the spaced seed set in our program.

YASS
Dmax = 5 Dmax = 20 Dmax = 30

Lmin = 50 Lmin = 100 Lmin = 120

No. of Output Repeats 302,678 337,093 179,279 232,135

Average Length 484.901 53.9848 112.989 138.758

Maximum Length 3,799 120 267 295

Execution time (s) 6,661 879 1,042 1,052

RAM (GB) 2.52 2.42 2.42 2.42

Virtual Memory (GB) 2.75 2.65 2.65 2.65

YASS does not provide an option to control the distance between repeat copies.

Therefore, we tested our program with different Dmax values and tried to approach

YASS lengths, but we are still far from those lengths. We also conducted another

comparison experiment for HchrX and MchrX. The results are given in Table 5.11.

This time our program is executed 10 times faster and consumes less memory, but again

YASS reports much longer repeats. The number of output repeats of our program with

Dmax = 5 is high as compared to YASS. Therefore, Lmin and Dmax were increased in

the next two tests to exclude some shorter repeats and include more longer ones.

Considering the large difference in repeat length of the two programs, we expect a

considerable difference in distance of repeat copies as well. Our program guarantees not

to report repeats with an edit distance more than Dmax, but as mentioned above, there

is no control over the maximum allowable distance in YASS. We evaluated the edit

74

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Table 5.11: HchrX vs. MchrX; Running both programs in parallel with 4 threads;
2w22 is used as the spaced seed set in our program.

YASS
Dmax = 5 Dmax = 15 Dmax = 20

Lmin = 50 Lmin = 100 Lmin = 150

No. of Output Repeats 70,046 2,227,364 266,177 22,704

Average Length 2,444.11 53.8301 110.816 165.85

Maximum Length 7,984 275 526 833

Execution time (s) 67,479 5,801 6,980 7,183

RAM (GB) 9.64 6.49 6.49 6.49

Virtual Memory (GB) 9.86 6.71 6.71 6.71

distance (as defined in Section 2.3.1.2) of 50 randomly selected output repeats of YASS

and compared them with similar data from our program output. The results are given

in Tables 5.12 and 5.13. The output repeats in YASS have higher edit distances in

comparison with our program output, where edit distances does not exceed Dmax. The

average ratio of edit distance to repeat length is also computed to scale the distances

to unit length. This ratio is higher for YASS which indicates lower similarity between

the repeat copies of its output.

Table 5.12: Hchr19 vs. Mchr19; Comparing the average edit distance of 50 randomly
selected output repeats of YASS with our program in different settings.

YASS
Dmax = 5 Dmax = 20 Dmax = 30

Lmin = 50 Lmin = 100 Lmin = 120

Avg. Edit Distance 127.2 4.7 16.7 25.3

Avg. Length 421.5 54.7 111.1 141.3

Avg. Edit Distance/Length 0.3 0.08 0.15 0.18

75

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

Table 5.13: HchrX vs. MchrX; Comparing the average edit distance of 50 randomly
selected output repeats of YASS with our program in different settings.

YASS
Dmax = 5 Dmax = 15 Dmax = 20

Lmin = 50 Lmin = 100 Lmin = 150

Avg. Edit Distance 706.3 4.5 12.9 17.2

Avg. Length 2359.5 53.4 112.6 166.3

Avg. Edit Distance/Length 0.3 0.08 0.11 0.1

76

Chapter 6

Conclusions

6.1 Summary and Conclusions

We proposed a new software program for detecting approximate repeats between two

DNA sequences. The program builds an efficient hash table for indexing sequences

with multiple spaced seeds. The hash table combines the speed advantage of open

addressing and space saving of dynamic resizing. The hash table size is not sensitive

to the seed weight and enables us to use spaced seeds of any length with weights up to

32. Employing large spaced seeds of such weights is almost impractical in previously

proposed similar software programs. It was shown by experiment that we can achieve

faster speed using longer seeds of higher weights without losing significant accuracy.

There is always a trade-off between the accuracy and resource usage. We showed

this trade-off by plotting the number of output repeats against execution time for

different parameter settings. The program provides the user with a control over the

similarity degree of output repeats in the form of maximum edit distance. With this

parameter, the user can increase the number of output repeats and get more distant

ones, but at the cost of speed. The efficient use of heavy spaced seeds, along with the

bound on the maximum allowable distance between repeat copies, makes the program

77

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

an appropriate tool for detecting repeats of higher similarity.

Similar to all the hit and extend methods, the initial similarities, or hits, detected

by the hash table are extended into longer repeats. Our program first runs a simple

and fast gapless extension to exclude regions of low similarity. Then, it applies a

second extension which allows gaps using dynamic programming. This step was shown

to be the most time-consuming part of the program and is a barrier to getting very

long and distant repeats.

6.2 Future Work

In this project, we mainly focused on the hit detection process and the hash table

optimization. The hit extension process is still an expensive procedure and needs to

be improved. To make the output repeats of this program longer, a possible solution

would be merging of the overlapping or nearby repeats together. Implementing this

solution will need some computations and definition of metrics, like the ones defined

in YASS, to specify which repeats are suitable to be grouped together. This way not

only can the program detect longer similarities, but the time-consuming extension

process can be less frequently invoked or replaced by faster procedures.

78

Bibliography

[1] E. Rivals, L. Salmela, and J. Tarhio, “Exact search algorithms for biological

sequences”, in Algorithms in Computational Molecular Biology: Techniques,

Approaches and Applications, M. Elloumi and A. Y. Zomaya, Eds. Hoboken, NJ:

John Wiley & Sons, 2011, ch. 5, pp. 91–111. doi: 10.1002/9780470892107.ch5.

[2] S. Faro and T. Lecroq, “The exact online string matching problem: a review of

the most recent results”, ACM Comput. Surv., vol. 45, no. 2, 13–13:42, Mar.

2013. doi: 10.1145/2431211.2431212.

[3] G. Achaz, F. Boyer, E. P. Rocha, A. Viari, and E. Coissac, “Repseek, a tool to

retrieve approximate repeats from large DNA sequences”, Bioinformatics, vol.

23, no. 1, pp. 119–121, Jan. 2007. doi: 10.1093/bioinformatics/btl519.

[4] T. F. Smith and M. S. Waterman, “Identification of common molecular sub-

sequences”, J. Mol. Biol., vol. 147, no. 1, pp. 195–197, Mar. 1981. doi:

10.1016/0022-2836(81)90087-5.

[5] D. J. Lipman and W. R. Pearson, “Rapid and sensitive protein similarity

searches”, Science, vol. 227, no. 4693, pp. 1435–1441, Mar. 1985. doi:

10.1126/science.2983426.

79

http://dx.doi.org/10.1002/9780470892107.ch5
http://dx.doi.org/10.1145/2431211.2431212
http://dx.doi.org/10.1093/bioinformatics/btl519
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1126/science.2983426

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

[6] W. R. Pearson and D. J. Lipman, “Improved tools for biological sequence

comparison”, Proc. Natl. Acad. Sci. U. S. A., vol. 85, no. 8, pp. 2444–2448,

Apr. 1988.

[7] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local

alignment search tool”, J. Mol. Biol., vol. 215, no. 3, pp. 403–410, Oct. 1990.

doi: 10.1016/S0022-2836(05)80360-2.

[8] L. Noé and G. Kucherov, “Improved hit criteria for DNA local alignment”, BMC

Bioinf., vol. 05, no. 1, p. 149, Oct. 2004. doi: 10.1186/1471-2105-5-149.

[9] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and

D. J. Lipman, “Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs”, Nucleic Acids Res., vol. 25, no. 17, pp. 3389–3402,

1997. doi: 10.1093/nar/25.17.3389.

[10] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, “A greedy algorithm for

aligning DNA sequences”, J. Comput. Biol., vol. 7, no. 1-2, pp. 203–214, Feb.

2000. doi: 10.1089/10665270050081478.

[11] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison, D.

Haussler, and W. Miller, “Human–mouse alignments with BLASTZ”, Genome

Res., vol. 13, no. 1, pp. 103–107, Jan. 2003. doi: 10.1101/gr.809403.

[12] B. Ma, J. Tromp, and M. Li, “PatternHunter: faster and more sensitive homology

search”, Bioinformatics, vol. 18, no. 3, pp. 440–445, Mar. 2002. doi: 10.1093/

bioinformatics/18.3.440.

[13] M. Li, B. Ma, D. Kisman, and J. Tromp, “PatternHunter II: highly sensitive

and fast homology search”, J. Bioinf. Comput. Biol., vol. 2, no. 3, pp. 417–439,

2004. doi: 10.1142/S0219720004000661.

80

http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1186/1471-2105-5-149
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1089/10665270050081478
http://dx.doi.org/10.1101/gr.809403
http://dx.doi.org/10.1093/bioinformatics/18.3.440
http://dx.doi.org/10.1093/bioinformatics/18.3.440
http://dx.doi.org/10.1142/S0219720004000661

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

[14] B. Brejová, D. G. Brown, and T. Vinař, “Vector seeds: an extension to spaced

seeds”, J. Comput. Syst. Sci., vol. 70, no. 3, pp. 364–380, May 2005. doi:

10.1016/j.jcss.2004.12.008.

[15] J. Buhler, U. Keich, and Y. Sun, “Designing seeds for similarity search in genomic

DNA”, J. Comput. Syst. Sci., vol. 70, no. 3, pp. 342–363, May 2005. doi:

10.1016/j.jcss.2004.12.003.

[16] Y. Sun and J. Buhler, “Designing multiple simultaneous seeds for DNA similarity

search”, J. Comput. Biol., vol. 12, no. 6, pp. 847–861, Jul. 2005. doi:

10.1089/cmb.2005.12.847.

[17] M. Csuros and B. Ma, “Rapid homology search with neighbor seeds”, Algorith-

mica, vol. 48, no. 2, pp. 187–202, May 2007. doi: 10.1007/s00453-007-0062-

y.

[18] N. Khiste and L. Ilie, “E-MEM: efficient computation of maximal exact matches

for very large genomes”, Bioinformatics, vol. 31, no. 4, pp. 509–514, Feb. 2015.

doi: 10.1093/bioinformatics/btu687.

[19] L. Noé and G. Kucherov, “YASS: enhancing the sensitivity of DNA similarity

search”, Nucleic Acids Res., vol. 33, no. suppl 2, W540–W543, Jul. 2005. doi:

10.1093/nar/gki478.

[20] W. F. Smyth, Computing Patterns in Strings. Harlow, England: Pearson

Addison-Wesley, 2003.

[21] M. C. Frith and L. Noé, “Improved search heuristics find 20 000 new alignments

between human and mouse genomes”, Nucleic Acids Res., vol. 42, no. 7, e59,

Apr. 2014. doi: 10.1093/nar/gku104.

81

http://dx.doi.org/10.1016/j.jcss.2004.12.008
http://dx.doi.org/10.1016/j.jcss.2004.12.003
http://dx.doi.org/10.1089/cmb.2005.12.847
http://dx.doi.org/10.1007/s00453-007-0062-y
http://dx.doi.org/10.1007/s00453-007-0062-y
http://dx.doi.org/10.1093/bioinformatics/btu687
http://dx.doi.org/10.1093/nar/gki478
http://dx.doi.org/10.1093/nar/gku104

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

[22] D. G. Brown, “A survey of seeding for sequence alignment”, in Bioinformatics

Algorithms, I. I. Mandoiy and A. Zelikovsky, Eds. Hoboken, NJ: John Wiley &

Sons, 2008, ch. 6, pp. 117–142. doi: 10.1002/9780470253441.ch6.

[23] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L.

Salzberg, “Alignment of whole genomes”, Nucleic Acids Res., vol. 27, no. 11,

pp. 2369–2376, Jun. 1999. doi: 10.1093/nar/27.11.2369.

[24] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search

for similarities in the amino acid sequence of two proteins”, J. Mol. Biol., vol.

48, no. 3, pp. 443–453, Mar. 1970. doi: 10.1016/0022-2836(70)90057-4.

[25] K. Popendorf, H. Tsuyoshi, Y. Osana, and Y. Sakakibara, “Murasaki: a fast,

parallelizable algorithm to find anchors from multiple genomes”, PLoS One, vol.

5, no. 9, e12651, 2010. doi: 10.1371/journal.pone.0012651.

[26] K. P. Choi and L. Zhang, “Sensitivity analysis and efficient method for identifying

optimal spaced seeds”, J. Comput. Syst. Sci., vol. 68, no. 1, pp. 22–40, Feb.

2004. doi: 10.1016/j.jcss.2003.04.002.

[27] K. P. Choi, F. Zeng, and L. Zhang, “Good spaced seeds for homology search”,

Bioinformatics, vol. 20, no. 7, pp. 1053–1059, Feb. 2004. doi: 10.1093/

bioinformatics/bth037.

[28] I.-H. Yang, S.-H. Wang, Y.-H. Chen, P.-H. Huang, L. Ye, X. Huang, and K.-M.

Chao, “Efficient methods for generating optimal single and multiple spaced

seeds”, in Proc. 4th IEEE Symp. Bioinformatics and Bioengineering (BIBE),

2004, pp. 411–416. doi: 10.1109/BIBE.2004.1317372.

82

http://dx.doi.org/10.1002/9780470253441.ch6
http://dx.doi.org/10.1093/nar/27.11.2369
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1371/journal.pone.0012651
http://dx.doi.org/10.1016/j.jcss.2003.04.002
http://dx.doi.org/10.1093/bioinformatics/bth037
http://dx.doi.org/10.1093/bioinformatics/bth037
http://dx.doi.org/10.1109/BIBE.2004.1317372

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

[29] F. P. Preparata, L. Zhang, and K. P. Choi, “Quick, practical selection of effective

seeds for homology search”, J. Comput. Biol., vol. 12, no. 9, pp. 1137–1152,

Nov. 2005. doi: 10.1089/cmb.2005.12.1137.

[30] Y. Kong, “Generalized correlation functions and their applications in selection

of optimal multiple spaced seeds for homology search”, J. Comput. Biol., vol.

14, no. 2, pp. 238–254, Mar. 2007. doi: 10.1089/cmb.2006.0008.

[31] L. Ilie and S. Ilie, “Multiple spaced seeds for homology search”, Bioinformatics,

vol. 23, no. 22, pp. 2969–2977, 2007. doi: 10.1093/bioinformatics/btm422.

[32] L. Egidi and G. Manzini, “Spaced seeds design using perfect rulers”, in Proc.

18th Int. Symp. String Processing and Information Retrieval (SPIRE), 2011,

pp. 32–43. doi: 10.1007/978-3-642-24583-1_5.

[33] ——, “Better spaced seeds using quadratic residues”, J. Comput. Syst. Sci., vol.

79, no. 7, pp. 1144–1155, Nov. 2013. doi: 10.1016/j.jcss.2013.03.002.

[34] G. Kucherov, L. Noe, and M. Roytberg, “A unifying framework for seed sensitivity

and its application to subset seeds”, J. Bioinf. Comput. Biol., vol. 4, no. 2,

pp. 553–569, Apr. 2006. doi: 10.1142/S0219720006001977.

[35] L. Ilie, S. Ilie, and A. Mansouri Bigvand, “SpEED: fast computation of sensitive

spaced seeds”, Bioinformatics, vol. 27, no. 17, pp. 2433–2434, 2011. doi:

10.1093/bioinformatics/btr368.

[36] S. Ilie, “Efficient computation of spaced seeds”, BMC Res. Notes, vol. 5, no. 1,

123, Feb. 2012. doi: 10.1186/1756-0500-5-123.

[37] D. Do Duc, H. Q. Dinh, T. H. Dang, K. Laukens, and X. H. Hoang, “AcoSeeD:

an ant colony optimization for finding optimal spaced seeds in biological sequence

83

http://dx.doi.org/10.1089/cmb.2005.12.1137
http://dx.doi.org/10.1089/cmb.2006.0008
http://dx.doi.org/10.1093/bioinformatics/btm422
http://dx.doi.org/10.1007/978-3-642-24583-1_5
http://dx.doi.org/10.1016/j.jcss.2013.03.002
http://dx.doi.org/10.1142/S0219720006001977
http://dx.doi.org/10.1093/bioinformatics/btr368
http://dx.doi.org/10.1186/1756-0500-5-123

M.Sc.Thesis - Sarah Banyassady McMaster - Computational Science&Engineering

search”, in Proc. 8th Int. Conf. Swarm Intelligence (ANTS), 2012, pp. 204–211.

doi: 10.1007/978-3-642-32650-9_19.

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 3rd. ed. Cambridge, Massachusetts: MIT Press, 2009.

84

http://dx.doi.org/10.1007/978-3-642-32650-9_19

	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Problem Statement
	Background
	Motivation and Objectives
	Thesis Organization

	Definitions and Background Information
	Biological Sequences
	Repeats
	Similarity Metrics
	The Hit and Extend Approach

	Literature Review
	Exhaustive Search Methods
	Heuristic Search Methods

	Methodology
	E-MEM Modifications
	The Algorithm Outline
	Initialization
	Hit Identification
	Hash Tables
	Hit Extension
	Report the Output
	Usage

	Results
	Preliminaries
	Seed Weight
	Number of Threads: -t parameter
	Indexing Step Size: -K parameter
	Number of Subsequences: -d parameter
	Maximum Edit Distance: -D parameter
	Hash Time vs. Extension Time
	PatternHunter II
	YASS

	Conclusions
	Summary and Conclusions
	Future Work

	Bibliography

