
Modeling Elevator System With Coloured Petri

Nets

MODELING ELEVATOR SYSTEM WITH COLOURED PETRI

NETS

BY

MOHAMMED ASSIRI, B.Ed.

a thesis

submitted to the department of software engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Mohammed Assiri, June 2015

All Rights Reserved

Master of Applied Science (2015) McMaster University

(Software Engineering) Hamilton, Ontario, Canada

TITLE: Modeling Elevator System With Coloured Petri Nets

AUTHOR: Mohammed Assiri

B.Ed., (Major of Computer)

King Khaled University, Abha, Kingdom of Saudi Arabia

SUPERVISOR: Dr. Ryszard Janicki

NUMBER OF PAGES: xiii, 94

ii

Dedication

To my inspiring parents,

Saad and Sharifah

To my supportive and beloved wife,

Eman

To my sweet daughters,

Lara and Rema

Abstract

A fairly general model of the elevator system is presented. Coloured Petri Nets (CPN)

and CPN tools are adopted as modeling tools. The model, which is independent of

the number of floors and elevators, covers different stages of the elevator system in

substantial detail. The model assists simulation-based analysis of different algorithms

and rules which govern real elevator systems. The results prove the compatibility and

applicability of this model in various situations and demonstrate the expressive power

and convenience of CPN.

iv

Acknowledgements

First and foremost, all the praises and thanks are due to Allah Almighty for giving

me the ability and strength to accomplish this thesis. Then, I would like to extend

my sincere gratitude and appreciation to my supervisor Prof. Ryszard Janicki for

his thoughtful guidance, continuous support, and constructive feedback through my

MASc Journey.

I would also like to express my appreciation to my examination committee, Prof.

Alan Wassyng and Prof. Emil Sekerinski for their valuable comments. As well, I

would like to acknowledge my colleague Mohammed Alqarni for the productive dis-

cussions and insightful suggestions that have contributed significantly to the progress

of this thesis. In addition, I am grateful to Prince Sattam bin Abdulaziz University

for providing the financial support to undertake this work.

Last, but certainly not least, I wish to extend my heartfelt gratitude to my in-

spiring parents, my dear siblings, my beloved wife, and my sweet daughters for their

endless love, prayers, and encouragement that have made all of my achievements

possible.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 The Elevator System . 1

1.2 Objectives . 2

1.3 Related Works . 3

1.4 Contributions . 4

1.5 Thesis Outline . 5

2 Coloured Petri Nets 6

2.1 Overview . 6

2.2 Informal Introduction to CPN . 7

2.2.1 The Structure of CPN-based Models 7

2.2.2 CPN ML Language . 8

2.2.3 A Simple Example . 10

2.3 Formal Definitions . 12

2.4 Computer Tools . 14

vi

3 The Abstract Version of CPN-based Model of the Elevator System 16

3.1 Introduction . 16

3.2 The Abstract Car-Structure Sub-model 20

3.2.1 Dynamic Initialization of Places 23

3.3 The Abstract Hall-Call Sub-model . 24

3.4 The Abstract Car-call Sub-model . 31

3.5 The Abstract System-cycle Sub-model 34

4 The Timing Version of CPN-based Model of the Elevator System 39

4.1 Introduction . 39

4.2 The Timing Car-Structure Sub-model 40

4.3 The Timing Hall-call Sub-model . 44

4.4 The Timing Car-call Sub-model . 48

4.5 The Timing System-cycle Sub-model 51

5 The Parking Optimizer Model 55

5.1 Introduction . 55

5.2 The Election Sub-model . 57

5.3 The Assignment Sub-model . 61

5.4 The Position Sub-model . 63

6 The Analyses 68

6.1 Introduction . 68

6.2 The Reachability Analysis . 69

6.3 The Simulation-based Performance Analysis 75

vii

7 Conclusion 87

7.1 Discussion . 87

7.2 Future Work . 88

viii

List of Figures

2.1 The basic components of CPN-based models 7

2.2 The process of illuminating buttons (as an example) 11

2.3 An example of a hierarchical CPN-based model 12

2.4 An example of the visualization extension 15

3.1 The sub-models of the elevator system 17

3.1 The development phases of the proposed model 20

3.2 The abstract car-structure sub-model 21

3.3 The abstract hall-call sub-model . 25

3.4 Assigning hall calls to cars . 26

3.5 Generating arbitrary and identified floors’ numbers 29

3.6 Adding directions to the produced floor numbers 31

3.7 The abstract car-call sub-model . 32

3.8 Coordinating between cars and their car calls 33

3.9 Producing arbitrary car calls . 33

3.10 Producing specified car calls . 34

3.11 The abstract system-cycle sub-model 35

3.12 The maintenance stage . 36

3.13 The transition stage . 37

ix

3.14 The arrival stage . 38

4.1 The timing car-structure sub-model 41

4.2 The timing hall-call sub-model . 44

4.3 Releasing hall calls . 46

4.4 Assigning timing hall calls . 48

4.5 The timing car-call sub-model . 49

4.6 The timing system-cycle sub-model 51

4.7 The arrival stage of the timing system-cycle sub-model 52

4.8 The maintenance stage of the timing system-cycle sub-model 54

5.1 The parking optimizer model . 56

5.2 The election sub-model . 57

5.3 Counting the placed hall calls . 58

5.4 Sorting the floors of the placed hall calls 59

5.5 Electing the most requested floors . 60

5.6 The assignment sub-model . 61

5.7 Processing the floors by the assignment sub-model 62

5.8 Altering the cars’ parking floors by the assignment sub-model 63

5.9 The position sub-model . 64

5.10 Identifying the scope of floors . 65

5.11 Completing the information of scopes 66

5.12 Altering the cars’ parking floors by the position sub-model 67

6.1 The standard report of the abstract version (1) 71

6.1 The standard report of the abstract version (2) 72

6.2 The standard report of the timing version (1) 73

x

6.2 The standard report of the timing version (2) 74

6.3 The monitors’ statistics of the abstract version 77

6.4 Produced calls from the abstract version 78

6.5 Results from the abstract version . 79

6.6 Observing different experiments through the Visualization Extension 80

6.7 The monitors’ statistics of timing version 81

6.8 The calls of the timing version . 82

6.9 Results from the timing version . 83

6.10 Results from the techniques of the parking optimizer model 84

6.11 The comparison between two different algorithms 85

6.12 The comparison between different numbers of cars 86

xi

List of Tables

2.1 The definitions of the simple example 11

3.1 The colour set Cars . 21

3.2 The colour set Database . 23

3.3 The essential parameters of the car-structure sub-model 24

3.4 The colour set Hall Call . 26

3.5 The parameters of the abstract hall-call sub-model 30

3.6 The colour set Specific Floors . 33

3.7 The parameters of the car-call sub-model 34

3.8 The parameter of the system-cycle sub-model 36

4.1 The colour set Timing Cars . 41

4.2 The colour sets Timing Database 43

4.3 The extra parameter of the timing car-structure sub-model 43

4.4 The colour set Hall’s Buttons . 45

4.5 The parameters of the timing hall-call sub-model 46

4.6 The colour sets Requested Hall Call and Coordinator 48

4.7 The colour sets Car’s Buttons and Calls’ Counters 50

4.8 The parameters of the timing car-call sub-model 50

4.9 The colour sets of the arrival stage 53

xii

5.1 The parameters of the parking optimizer model 56

5.2 The colour sets of the election sub-model 59

5.3 The colour set Identified Floor . 61

5.4 The colour sets Scope and Scope Statistics 64

xiii

Chapter 1

Introduction

This chapter overviews the elevator system. Section 1.1 introduces the elevator sys-

tem. Section 1.2 defines the thesis objective. Section 1.3 presents related works.

Section 1.4 lists the thesis contributions. Finally, section 1.5 presents the thesis out-

line.

1.1 The Elevator System

Elevator systems are an integral aspect of buildings from the point at which they are

first designed. Transportation between floors, especially with heavy goods, is almost

impossible using stairs for ordinary people at least. With high-rise buildings being

the typical candidate for elevator systems, such systems are usually very complex.

Multiple elevators must be controlled by a centralized control mechanism. The com-

plexity of these elevator systems arises from factors such as scheduling needs, resource

allocation, and stochastic control, to name a few. Handling these jobs usually results

1

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

in systems behaving as discrete event systems Ramadge and Wonham (1989). More-

over, the differences among the types of buildings and their traffic patterns arise also

the complexity of the elevator systems. For example, passenger elevators may exist in

residential, institutional, or commercial buildings with some or mix of these popular

traffic patterns [George R. Strakosch (2010); Barney (2003a)]: up-peak traffic (also

called incoming traffic) where the traffic flows mostly from the first floor to other

floors, down-peak traffic (also called outgoing traffic) where the traffic flows mostly

to the first floor from other floors, and balanced traffic (also called random traffic)

where none of the two previous patterns dominates.

1.2 Objectives

This thesis focuses on proposing a model of the elevator system that fulfilments the

constraints of the following definition [Ghezzi et al. (2003)]: An elevator system is

to be installed in a building with m floors and n cars. The elevator and the control

mechanisms are supplied by the manufacturer. The internal mechanism of an elevator

system is assumed (given). The problem concerns the logistics of moving cars between

floors according to the following constraints:

1. Each elevator’s car has a set of buttons - one for each floor. These buttons

illuminate when pressed and signal the elevator to move to the corresponding

floor. The illumination is cancelled when the corresponding floor is visited by

the car.

2. On the wall outside the elevator each floor has two buttons (with the exception

of the ground and the top floors). One button is pressed to request an upward

2

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

moving elevator and another button is pressed to request a downward moving

elevator. If both buttons are pressed, then each direction is assigned to a differ-

ent car. These buttons illuminate when pressed. The illumination is cancelled

when the assigned car visits the floor.

3. When an elevator has not received any requests for service, it should be held at

its parking floor with its doors closed until it receives further requests.

4. All requests for elevators from floors (i.e. hall calls) must be serviced eventually.

The applied algorithm controls the priority of floors.

5. All requests for floors within elevators (i.e. car calls) must be serviced eventu-

ally, with floors usually serviced sequentially in the direction of travel.

6. Each elevator’s car has an emergency button which when pressed causes a warn-

ing signal that is sent to the site manager. The car is then deemed ”out of

service”. Each car has a mechanism to cancel its ”out of service” status.

1.3 Related Works

The elevator system is one of the software engineering benchmarks which are fre-

quently used to test the expressive power, readability, and convenience of various

formal specification techniques Ghezzi et al. (2003). Petri Nets is one formal specifi-

cation technique.

The elevator system is one of the software engineering benchmarks that are fre-

quently used to test the expressive power, readability and convenience of various

formal specification techniques [Ghezzi et al. (2003)]. It has been modeled many

3

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

times in the past, and that includes Petri Nets.

In [Lin and Fu (1996)] and [Huang and Fu (1998)], dynamic scheduling of the

elevator system was modeled by Petri Nets, and hybrid Petri Nets. Timed Petri

Nets, Abstract Petri Nets and Elevator Control Petri Nets were used in [Cho et al.

(1999); Etessami and Hura (1989); Ahmad et al. (2014)], respectively. Furthermore,

the elevator system was modeled by Coloured Petri Nets in [Fernandes et al. (2007)],

and Timed Coloured Petri Nets in [Liqian et al. (2004)] and [Ye et al. (2011)].

Nevertheless, all of these previous models are either static or dependent on a par-

ticular number of elevators and floors (often one place was required for each elevator

car), the concept of colour as a data type was not fully utilized, or other formalisms

such as UML were substantially involved.

1.4 Contributions

Modeling the elevator system by means of Coloured Petri Nets supports the proposed

model to not only fulfilment the thesis objective (section 1.2), but also to distinguish

by the following attributes:

• The proposed model is independent of the number of floors and cars. (i.e.

the number of places and transitions is fixed for any given number of floors

and cars). This is not only because of the appropriate choice of the modelling

language, but also because of the proper structure of the model.

• The proposed model covers different stages of the elevator system in substantial

detail through the division of the model into sub-models to simplify the structure

and also to allow easier tracking of errors and faults.

4

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

• The proposed model is flexible enough to be adapted to different algorithms

and rules that govern real elevator systems, and may eventually evolve into a

’standard’ formal model of the elevator system.

1.5 Thesis Outline

The structure of this thesis is as follows:

• Chapter 2 introduces the principles of Coloured Petri Nets (CPN), which is

the modeling language of the proposed model.

• Chapter 3 demonstrates the abstract version of the elevator system, which

concerns the logistics of moving the elevator system.

• Chapter 4 presents the timing version of the elevator system, which extends

the abstract version to include more features.

• Chapter 5 discusses two techniques of the parking optimizer model, which is

expected to reduce the waiting time.

• Chapter 6 provides the analyses of the proposed model through two techniques.

• Chapter 7 concludes this thesis and mentions future work.

5

Chapter 2

Coloured Petri Nets

This chapter presents briefly the concepts of Coloured Petri Nets (CPN). Section

2.1 overviews CPN. Section 2.2 discusses informal introduction to CPN. Section 2.3

defines CPN. Finally, section 2.4 presents the computer tools of CPN.

2.1 Overview

Coloured Petri Nets (CPN) was first proposed in [Jensen (1981)] and later substan-

tially modified and enhanced in [K. Jensen (1994)]. CPN is an extension of Petri

Nets (c.f. [Reisig (1991)]), and it is often used to model behaviours of rather complex

systems. CPN preserves useful properties of Petri Nets and at the same time extend

the initial formalism to allow the distinction between tokens. Coloured Petri Nets

(CP-nets or CPNs) is a graphical language for constructing models of concurrent sys-

tems and analysing their properties. CPN is a discrete-event modeling language that

combines the capabilities of Petri Nets with the capabilities of high-level program-

ming languages. Petri Nets provides the foundation of the graphical notations and

6

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

the basic primitives for modeling concurrency, communication, and synchronisation.

2.2 Informal Introduction to CPN

This informal introduction demonstrates the main graphical notations of CPN-based

models and the basics of CPN ML language with a simple example.

2.2.1 The Structure of CPN-based Models

A graphical structure of a CPN-based model is built using places, transitions, and

arcs (see Figure 2.1).

placetransition
arc inscription

colour set

token colours
[guards]

priority value

Figure 2.1: The basic components of CPN-based models

Places are drawn as ovals that represent the states of the model. Each place

is associated with one colour set and either the multi-set of the token colours or

the empty set. The colour set, which is written as an inscription near the place,

determines the syntactic format of the data values that are attached to tokens. The

possible colour sets are given in section 2.2.2.

Arcs are drawn as arrows that guide the flow of the model. Each arc has an

inscription that declares explicitly the quantities and the types of the transferred

token colours.

7

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Transitions are drawn as rectangles that represent the events of the model. Each

transition has input and output places to which they are connected through arcs (i.e.

input places are those connected by arcs going into transitions while output places are

those connected by arcs going from transitions). In addition, each transition may be

associated with guards and/or a priority value. They, by default, are located at the

top-left corner and the bottom-left corner of the transition, respectively. The guards

enable or disable the transitions while the priority values administer the sequence of

enabled transitions.

Places and transitions may have names, which are written inside them. Even

though names are not formal (i.e. do not affect the execution of the model), mean-

ingful names can improve the readability of the model dramatically.

2.2.2 CPN ML Language

CPN ML language is a flexible, expressive, and extensible language that is founded

on the functional programming Language: Standard ML (SML/NJ implementa-

tion). CPN ML provides modeling ability similar to high-level programming lan-

guages, where both places and transitions are explicitly described, and data types

and hierarchical decomposition are supported. Through the use of CPN ML lan-

guage, the modeling nets have not only types and inscriptions, but also colour sets,

token colours, variable declarations, and functions.

The colour set can be simple or compound. A simple colour set is defined by one

of five basic types: integer (int), real, string, Boolean (bool), or unit. These five types

are inherited from Standard ML into CPN ML (also exist in major programming

languages) and therefore are self-explanatory. The construct ”with” allows defining

8

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

both a subset of a basic set and a simple enumeration set.

A compound set is a combination of different pre-defined colour sets. It is formed

by one of three constructors; product, record, or list. The former two constructors

differ syntactically because the record constructor labels each combined set while the

product constructor does not. However, they are similar semantically as they define a

fixed content structure. In contrast, the list constructor defines a flexible length list

of a predefined set.

A non-empty token colour is constructed as ”M ‘S” where M denotes the mul-

tiplicity of the token colour S. Multiple token colours are structured by a special

operator [++], as:

M1‘S1 + +M2‘S2 + +M3‘S3

An arc inscription is an expression that evaluates to a multi-set. An expression

is structured from constants, declared variables, defined functions, or a combination

of them. Similar to expressions in programming languages, arc expressions also may

contain arithmetic operators. Besides distributing token colours over places, arc ex-

pressions may also alter the values of transferred token colours.

A transition guard is a Boolean expression that evaluates to either true or false.

It is enclosed by square brackets, and requires at least one of comparison operators

such is =, <> (means 6=), <,>,<= (means ≤), or >= (means ≥). Additionally, a

compound expressions is formed by logic operators such as not, andalso (means and),

orelse (means or).

Finally, functions are the best candidate for complex calculations or extended

expressions. Functions may involve arc inscriptions, transition guards, or initialized

token colours. Note that the use of node functions and arc expression functions allows

9

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

multiple arcs to connect the same pair of nodes with different arc expressions. All

these concepts are easily interpreted when any graphical example is seen as in Figure

[2.2], for example.

2.2.3 A Simple Example

Figure 2.2 shows a simple model that demonstrates the process of the buttons illumi-

nation. In this model, each button a single state either the button is unilluminated or

the button is illuminated. To switch between the two states, we need two transitions,

illuminate and unilluminate. Finally, the arcs connect the places and the transitions.

Furthermore, we use the CPN ML language to define the colour sets of the places

and the expressions of the arcs. Firstly, both places have the colour set Buttons,

which is a compound colour set consists of two simple sets defined in Table 2.1.

Consequently, each token has a floor’s number and illumination’s state. Secondly, the

arcs that connect the places to the transitions are called input arcs and expressed by

the variable button. In contrast, the arcs that connect the transitions to the places

are called output arcs and expressed by functions illuminate and unilluminate (see

table 2.1).

10

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

unilluminated
buttons

Buttons

1`{floor_location=2,illumination=off}++
1`{floor_location=3,illumination=off}

unilluminate(button)

button

button

illuminate(button)

illuminated
buttons

1`{floor_location=1,illumination=on}

Buttons

illuminate

unilluminate

Figure 2.2: The process of illuminating buttons (as an example)

Table 2.1: The definitions of the simple example
M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

colset Floor = int; (* a simple colour set *)

var i:Floor; (* variable *)

colset Light = bool with (on,off); (*enumeration colour set *)

colset Buttons = record floor_location:Floor *

illumination:Light; (* compound colour set *)

var button:Buttons; (* variable *)

fun illuminate(button:Buttons)= (* function *)

{floor_location=(#floor_location button),illumination=on}

fun unilluminate(button:Buttons)= (* function *)

{floor_location=(#floor_location button),illumination=off}

1.2.3 An Example by CPNs

In figure [1.2], when transition illuminate fires (i.e. is enabled), it removes a token, for

example 1‘floorlocation = 2, illumination = off , from the input place unilluminated

buttons and put them through connected arcs into the output place illuminated button.

A transition can fire when it is possible to consume tokens from its input that adheres

to restrictions expressed by the inscriptions on the arcs connecting those places to the

transition. Moreover, the colours of the tokens, which are consumed from a transition

input and placed into its output, when it fires, is specified by the inscriptions next to

individual arcs.

5

The process of illuminating buttons starts from place unilluminated buttons when

each token represents an elevator button of the colour set Buttons. Illuminating

11

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

a button requires transition illuminate to fire (i.e. be enabled). In this model, all

transitions have no guards, and thereby they are always enabled as long as there

is a token in the input places. After the firing of transition illuminate, a token if

removed from the input place unilluminated buttons and placed through connected

arcs into the output place illuminated button. The process of unilluminating buttons

is performed similarly.

Finally, CPN supports hierarchical modeling in a fashion similar to programs being

constructed from modules. For instance, figure 2.3 has one place that represents

the state of unilluminated buttons, and a hierarchical model that represents that

Illumination process. Hence, Figure 2.3 and Figure 2.2 are equivalent.

unilluminated
buttons

Buttons

1`{floor_location=2,illumination=off}++
1`{floor_location=3,illumination=off}

Illumination
 Process

Hierarchical ModelHierarchical Model

Figure 2.3: An example of a hierarchical CPN-based model

2.3 Formal Definitions

A non-hierarchical and a hierarchical Coloured Petri Nets are defined as follows

[Jensen and Kristensen (2009)]:

• A Non-hierarchical Coloured Petri Net is a tuple:

CPN = (P, T,A,Σ, C,N,E,G, I) where:

– P is a set of places.

– T is a set of transitions.

12

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

– A is a set of arcs

– In CPN sets of places, transitions, and arcs are pairwise disjoint P ∩ T =

P ∩ A = T ∩ A = ∅

– Σ is a set of colour sets defined within CPN model. This set contains all

possible colours, operations and functions used within CPN.

– C is a colour function that maps places in P into colours in Σ.

– N is a node function that maps A into (P × T) ∪ (T × P).

– E is an arc expression function that maps each arc a ∈ A into the expres-

sion e. The input and output types of the arc expressions must correspond

to the type of nodes that the arc is connected to.

– G is a guard function. It maps each transition t ∈ T into guard expression

g. The output of the guard expression must evaluate to a Boolean value

of true or false.

– I is an initialization function. It maps each place p into an initialization

expression i. The initialization expression must evaluate to multi-set of

tokens with a colour corresponding to the colour of the place C(p).

• A Hierarchical Coloured Petri Nets is a tuple:

CPNM = (CPN, Tsub, Pport, PT), where :

– CPN = (P, T,A,Σ, C,N,E,G, I) is a non-hierarchical Coloured Petri Net.

– Tsub ⊆ T is a set of substitution transitions.

– Pport ⊆ P is a set of port places.

13

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

– PT : Pport → IN,OUT, I/O is a port type function. It maps a port types

into port places.

For more details and theory of CPN, the reader is referred to [Jensen and Kris-

tensen (2009)].

2.4 Computer Tools

There are a variety of tools that can be used for CPN (c.f. [Jensen et al. (2006);

Westergaard (2013)]). In this thesis the CPN Tools v.4.0 from [AIS Group (2013)]

has been used. The CPN Tools was initially developed by the CPN Group at Aarhus

University, Denmark, and since 2010 by the AIS group, Eindhoven University of

Technology, The Netherlands. The CPN Tools is composed of a graphical editor for

constructing models, a state space tool for verifying properties of models, and a sim-

ulator for executing the CPN ML language.

However, even though CPN Tools provides a graphical execution of nets, it is not

always convenient to observe the desired properties. Therefore, some tools were de-

veloped to improve the visual effects of a CPN model. For example, the PNV tool

[Kindler and Páles (2004)] provides 3D visualization of PN-based models. Another

tool, the BRITNeY Suite visualization tool [Westergaard (2006)] is compatible with

CPN Tools of [AIS Group (2013)]. In [Jørgensen (2008)] the BRITNeY Suite visual-

ization tool was used for a proposed elevator system. Nevertheless, the fourth version

of CPN tools [Westergaard (2013)] allows third parties to use standard Java-based

applications directly. As a consequence, a visual aid called Visualization v.0.1 was

developed to observe the proposed model of the elevator system (see an example in

14

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Figure 2.4).

Figure 2.4: An example of the visualization extension

15

Chapter 3

The Abstract Version of

CPN-based Model of the Elevator

System

This chapter discusses the abstract version of the proposed model of the elevator

system. Section 3.1 introduces the model. Section 3.2 presents the car-structure

sub-model of the proposed model. Section 3.3 Studies the hall-call sub-model in

detail. Section 3.4 presents the car-call sub-model. Finally, section 3.5 discusses the

system-cycle sub-model.

3.1 Introduction

Due to the complexity of the elevator system and the desired flexibility of the struc-

ture, the proposed model is composed of four major interconnected but independent

sub-models (see Figure 3.1).

16

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Figure 3.1: The sub-models of the elevator system

These sub-models include the car-structure sub-model, the hall-call sub-model, the

car-call sub-model, and the system-cycle sub-model. The functions and connections

between sub-models are described as follows: The car-structure sub-model represents

the elevator’s cars. It is at the centre of all other sub-models that concurrently control

the elevator’s cars. Typically, an elevator car is requested by two types of controls:

either a hall-call or a car-call. As the names suggest, a hall-call is placed by pressing

a button located in the hallway of a given floor while a car-call is place by pressing

a button inside the car of the elevator. When a hall-call is placed, by relying on

algorithms the hall-call sub-model will assign the hall-call to the appropriate car of

the car-structure sub-model. Similarly, the car-call sub-model coordinates the placed

car-calls with the cars of the car-structure sub-model. Finally, the system-cycle sub-

model operates the cars of the car-structure sub-model to service the requested calls.

17

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

It is worth mentioning here that the design of the proposed model experienced

several phases. It was started as one single model shown in Figure 3.1 (a) and de-

veloped in Figure 3.1 (b). However, the more the initial model was developed, the

more its complexity increased. Therefore, the model then was divided into two sub-

models, namely the hall-calls (Figure 3.1 (d)) and the elevator-system (Figure 3.1

(c)). Eventually, the proposed model was divided more into four sub-models, which

were described earlier, for the purpose of covering different stages of the elevator sys-

tem in substantial detail besides the flexibility of tracking errors.

Car_Call

Car_Call

Car_Call

car_info

Car_Info

hall_call

Hall_Calls

Car_Call

Car_Call

Car_Calls

Coordinator

order
recorded

[get_car(hcall,parking)
andalso
status=idle]

[order_id=car_id][cfloor<>des]

[cfloor=des]

[cfloor=des] transit

(order_id,cfloor,des,dir)

if cfloor>des then
(order_id,cfloor-1,des,dir)
else
(order_id,cfloor+1,des,dir)

(order_id,cfloor,des,dir)

(car_id,status,parking)

(hcall,hall_dir)
(order_id,cfloor,des,dir)

(order_id,idle,spot(order_id))

(order_id,cfloor,des,dir)

(order_id,cfloor,des,dir)

(order_id,cfloor,des,dir)

(car_id,hcall,hall_dir)

(car_id,hcall,hall_dir)

(order_id,cfloor,des,dir)

(order_id,cfloor,des,dir)

(order_id,cfloor,des,dir)

(a) The first phase

18

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

cars

car_info

Car_Info

hall calls

hall_call

Hall_Calls

The Heart of the System

more orders?

car calls

car_call

Car_Calls

move

completed

serve

[1>0]

done
get car

send c.call

send h.call

[2>1]

transite

moving

car in progress

CI

HC

CC

(b) The second phase

the prosccesor

Car_Info

doors

Car_Info

Cars

Car_Info
Car_Info

cars_info()

Car_Info

site manager
and err record Car_Info

out of
service

Car_Info

CF

CF CF_Cars

cf_cars()

CF

C F

CF CF_Cars

cf_cars()

CF

log

Car_Info

transit

[transit(car_info)]

arrive[match(car_info)]

start

[start(car_info)]

error [error(car_info)]
1

more
orders

[next(car_info)]

done

[finish(car_info)]

rest the
car

[rest()]

car_info

car_info

car_info

car_info

arrive(car_info) car_info

car_info

chg_src(car_info)

update_cars(car_info)

car_info

car_info

car_info

car_info

update_CF(car_info,fc)

fc

car_info

return_car(car_info)

rest_car(car_info)

fc

rest_CF(car_info,fc)

car_info

(c) The third phase (The elevator-system sub-model)

19

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

randomINT

hall__calls

certain

INT

wanted_floor_calls

match
Hall Calls

Hall_Calls
Hall Calls

add

INT

Cars

Car_Info Car_Info

cars_info()

Car_Info

CF_Cars

cf_cars()

send

upasn_up(n)

send2

donw asn_down(n)

requester

n

random()

n

up_dir(n)

n

n

n

down_dir(n)

car_info

hall_calls

send_hall_call(car_info,hall_calls)

fc

fc

(d) The third phase

Figure 3.1: The development phases of the proposed model

3.2 The Abstract Car-Structure Sub-model

The car-structure model (Figure 3.2) consists of just two places Cars and Database,

which also belong to other sub-models as they are fusion places. Moreover, the car-

structure sub-model features essential parameters and dynamic initializations.

The main reason of modeling the car-structure as an independent sub-model is

that almost all other sub-models contain the two places of the car-structure sub-

model. Therefore, the two places were defined once in an independent sub-model

that has a recognizable name.

20

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

CarsCarsCars DatabaseDatabaseDatabase

Database

initialize_database()

Cars

initialize_cars()

Figure 3.2: The abstract car-structure sub-model

The first place has the colour set Cars, which is a record colour set of the

Cartesian product of the sets described in Table 3.1.

Table 3.1: The colour set Cars

Colour Sets Definitions

Car ID {i | i ∈ Z+ ∧ i ≤ total number of cars}

Range {r | r ∈ Z ∧ lowest floor ≤ r ≤ highest floor}

Status {up, down, emergency, idle, out of service}

Desired Floors {[l] | l ∈ Range}

Call Issuer {request, system, non, reservation}

Cars

{(car id, current floor, status, parking floor, desired floors,

call issuer) | car id ∈ Car ID, current floor ∈ Range, status ∈

Status, parking floor ∈ Range, desired floors ∈ Desired Floors,

call issuer ∈ Call Issuer}

Consequently, each token, which represents a car, has the following components:

• Car id : it represents a unique identification number of the car. In other words,

the ids are consecutive numbers from one to the total number of cars.

• Current floor : it indicates the car’s position through its journey between floors.

21

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

• Status : it represents five possible statuses for the car. First, ”idle” indicates the

car is inactive but standing by for serving calls. Second, ”emergency” indicates

that either a passenger pressed the emergency button located inside the car,

or an error occurs in the car’s operating; accordingly, the car is suspended as

”out of service”. Finally, ”up” and ”down” indicate the direction of the car’s

journey.

• Parking floor : it stores the floor’s number on which the car is held when it

is idle. The initial value of the parking floor is calculated in general by the

following equations:

Floors′ Number = (highest floor − lowest floor) + 1

Scope = |floors′ number ÷ cars′ number|

Scope Head = ((scope ∗ car id)− (scope− 1)) + (lowest floor′s − 1)

Scope Tail = (scope ∗ car id) + (lowest floor − 1)

∴ Spot(car id) = scope′s head (car id)

There are other possibilities for the function Spot, such as:

– Assigning each car to the last floor of its scope.

Spot (car id)= scope’s tail (car id)

– Assigning manually each car to a specific floor, especially when the above

equations are impractical.

– Assigning all cars to a constant value. For example:

Spot (car id) = 1

22

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

where all cars will be held on the first floor.

Nevertheless, if the parking-optimizer model is enabled, each car will be assigned

dynamically and continuously to the most requested floors (see chapter 5).

• Desired floors : it is a list that shows the car’s destinations. This list accepts no

duplication of its elements.

• Call issuer : it denotes the motivation of the car’s journey where ”Request”

denotes the car is serving placed calls by passenger, ”System” denotes the car

is executing a system-generated call, ”Non” denotes the car is idle, and ”Reser-

vation” denotes the car is being reserved and accepting only car calls.

The second place of the car-structure sub-model has the colour set Database,

defined in Table 3.2. In principle, this is a list of all the necessary information about

the states of cars. This list is used by the algorithms of the hall-call sub-model.

Table 3.2: The colour set Database

Colour Sets Definitions

Car Info {(current floor, status, destinations, car id) | current floor ∈ Range,
status ∈ Status, destinations ∈ Desired Floors, car id ∈ Car ID}

Database {[d] | d ∈ Car Info}

Furthermore, the car-structure sub-model has essential parameters that are very

convenient for simulation-based analysis. The parameters are defined in Table 3.3:

3.2.1 Dynamic Initialization of Places

As most places of the proposed model, both places; Cars and Database are initialized

dynamically by defined functions. For instance, the function of place Cars is defined

23

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Table 3.3: The essential parameters of the car-structure sub-model

Parameter Legal value

Cars’ number {n | n ∈ Z+}

Lowest floor number {f | f ∈ Z+ ∧ f < highest floor}

Highest floors number {h | h ∈ Z+ ∧ lowest floor < h}

as follows: (Pseudocode)

function initialize cars () =

map (function f(i) ={car id=i, current floor=spot(i), status=idle,

parking floor=spot(i), desired floors=[],

call issuer=non,) l=[car ids];

In the above function, ”map” is a built-in function inherited from the Standard ML

library. Practically, ”map f l” means for each element of the list l, applies the function

f. Thus, the number of floors and cars has no effect on the models’ structure (i.e. the

number of places and transitions is fixed for any given number of floors and cars).

3.3 The Abstract Hall-Call Sub-model

This sub-model assigns a placed hall call to the most appropriate car based on the

applied given algorithms (which are subject to changes and replacements). Further-

more, this sub-model generates hall calls from arbitrary floors and a selected floor in

order to facility efficiently the examination of various rules and algorithms during the

simulation-based analysis.

24

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

counter

selected
floor's num

requested call

floor's
number

CarsCars

DatabaseDatabasePrk SysPrk SysPrk Sys

all floors'
numbers

watch
generators

log

Release Random
 Number

Release

Assign Hall Call

Assign
Direction

n

rn_random()

new_call

new_call

car

hall_call

snd_hcall
(car,hall_call)

n+1

i i-1

i

i new_call

hall_call

i

i+1

asn_dir(new_call)

hall_call

db
upd_db
(hall_call,
db,car)

INT

1`1

()

Range

Range

selected_floor

INT

1`1

Hall_Call
Hall_Call

[rn_guard(n,i)]

[r_guard(i)]

[asn_hcall_guard
(hall_call,car,db)]

Hall_Call

Database

Database

initialize_database()

initialize_cars()

Cars

Cars

Figure 3.3: The abstract hall-call sub-model

The processing of hall calls (see Figure 3.4) is initialized from place requested call

where each token represents a placed hall-call of the colour set Hall Call defined in

Table 3.4. Each token has an appropriate direction and a floor number where the hall

call was placed. Assigning a hall call to a car requires the firing of transition Assign

Hall Call that is enabled if and only if its guards, which represent appropriate rules,

are holding. The specific rules that must be satisfied are comprised of the following:

25

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

1. The selected car is either idle or travelling toward the direction of the hall call,

2. The selected car is not reserved,

3. The selected car is elected by the applied algorithm.

requested call

Hall_Call

CarsCars

initialize_cars()

DatabaseDatabase

initialize_database()

Prk SysPrk Sys

Hall_Call

log

Hall_Call

Assign Hall Call

[asn_hcall_guard
(hall_call,car,db)]

car

hall_call

snd_hcall
(car,hall_call)

hall_call

hall_call

db
upd_db
(hall_call,
db,car)

Figure 3.4: Assigning hall calls to cars

Table 3.4: The colour set Hall Call

Colour Set Definition

Hall Call {(hall call floor, status) | hall call floor ∈ Range, status ∈ Status}

After firing transition Assign Hall Call, the token of a placed hall call is removed

from place requested call and assigned into the desired-floors list of the selected car

in place Cars with a guided direction, i.e. up or down, if the selected car is idle.

Furthermore, this sub-model has been tested successfully with three algorithms that

process the assignment of hall calls to cars, namely the nearest-car algorithm, the

minimum-waiting algorithm, and the scope algorithm. The adoption of these algo-

rithms and probably many other algorithms that require simultaneous access to all

26

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

cars’ states, can be applied by means of place Database (see car-structure sub-model)

The place Database facilities the adoption of many different algorithms that re-

quire simultaneous access to all cars’ states, therefore other algorithms can easily be

applied.

The nearest-car algorithm [Barney (2003a)] starts by analysing the token of place

Database. First, the cars with proper status (i.e. cars that are idle or travelling toward

the requested hall call) are extracted from the token (each car is represented by a

single tuple, so selecting the cars is done by extracting appropriate tuples). Once the

proper cars are elected, the distances between hall-call floor and cars’ current floors

are calculated by the absolute value of the difference between current floors and the

hall call floor for each car. Accordingly, the hall call is assigned to the car of the

minimum distance to the hall call floor.

The minimum-waiting algorithm improves the nearest-car algorithm by further

calculation of stop time consumed by the already placed and being served calls be-

tween the floor of the new hall call and each car’s current floor. Thus travel times plus

stop times are calculated for each car and based on that, the car with the expected

minimum waiting-time is assigned to serve the new hall call.

The scope algorithm [Siikonen and Hakonen (2003); Barney (2003b)] is often em-

ployed in express elevators and sky-lobby floors, where each car serves a specified

range of floors with the allowance of transit floors. The scope algorithm is imple-

mented as extra guards on transition Assign Hall Call. For instance, a guard that

identifies the range floor of each car, is written as:

H ≤ A ≤ T.

where:

27

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

H = the head floor of the car’s scope

A = the answered hall-call floors

T = the tail floor of the car’s scope

It is worth mentioning here that optimizing the elevator systems is continuously

developed and plenty of algorithms, other than the mentioned above, have been pro-

posed. Some algorithms require mainly hardware assistance, such as using cameras,

sensors, or both [Liu et al. (2008); Kim and Moon (2001)], while others are more con-

cerned about energy saving [Liu et al. (2010)], or relying on destination registration

method [Xu et al. (2010)]. There are also some algorithms that are genetic [Bolat

and Cortes (2011)] or are based on fuzzy logic approach [Munoz et al. (2008)].

In addition, the abstract hall-call sub-model facilities a simulation-based analysis

of different algorithms through controllably producing two classes of calls: an identi-

fied call of a specific floor that is assumed to be requested repeatedly, and arbitrary

calls since the values of hall calls in real elevator systems are usually unpredictable

(see Figure 3.5).

28

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

counter

selected
floor's num

floor's
number

all floors'
numbers

watch
generators

Release Random
 Number

Release

n

rn_random()

new_call

new_call

n+1

i

i

INT

1`1

()

Range

Range

selected_floor

INT

1`1

[rn_guard(n,i)]

[r_guard(i)]

Figure 3.5: Generating arbitrary and identified floors’ numbers

An arbitrary call is produced by a token of colour set unite defined as a single

element, which is represented as ”()”, in place all floors’ numbers. When transi-

tion Release Random Number fires, a copy of the token is converted to an arbitrary

number ranged from lowest to highest floor in place floor’s number. Conversely, an

identified call is produced by transferring a token from place selected floor’s num to

place floor’s number when transition Release firs. The value and quantity of tokens

in place selected floor’s num are set by parameters shown in Table 3.5.

29

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Table 3.5: The parameters of the abstract hall-call sub-model

Parameter Legal value

Producing mode {finite, infinite}

Times of finite hall calls {y | y ∈ Z ∧ 0 < y}

The most requested floor {r | r ∈ Range}

Duplication of most requested floor {d | d ∈ Z ∧ 0 ≤ d}

The algorithm of assigning hall calls {minimum waiting, nearest, scope}

Production’s pause number (∗) {p | p ∈ Z ∧ 0 < p}

(∗) The parameter production’s pause number disables transition Release Random

Number in order to balance between the production and the assignment of the hall

calls (i.e. it determines the maximum number of tokens in place requested call).

In addition, a produced floor number is associated with a direction (Figure 3.6)

based on the three rules.

• If the produced number equates the highest floor, then it is associated restrict-

edly with the down direction,

• Else if the produced number equates the lowest floor, then it is associated

restrictedly with up direction.

• Otherwise, the produced is associated non-deterministically (which is modelled

as a uniformly distributed random choice) to up direction or down direction.

Thus, a hall call of a valid floor’s number and an appropriate direction is produced

correctly and completely.

30

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

requested call

floor's
number

Assign
Direction

new_call

asn_dir(new_call)

Range

Hall_Call

Figure 3.6: Adding directions to the produced floor numbers

3.4 The Abstract Car-call Sub-model

This sub-model (see Figure 3.7) provides the coordination between the cars and their

car calls. Additionally and similarly to the abstract hall-call sub-model, this sub-

model produces both arbitrary and identified car calls.

31

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

CarsCarsCars log

car call

all floors'
numbers counter

specific
floors' num

DatabaseDatabase

watch
generator

Coordinate

Release Floor's Number

Reproduce

archive(car,car_call,
new_call,sf)car_callcar

snd_ccall(car,
new_call,sf)

new_call

rn_random()

n+1

n

sf

place_calls
(car,sf)

db
upd_db_
(new_call,
db,car,sf)

i+1

i

i

i-1

car_call

reproduce(sf)sf

car

INT

1`1[rfn_guard(n,i)]()

RangeINT

1`1

Specific_Floors

initialize_sfloors()

[rep_guard
(sf,car,car_call)]

0Car_Calls

initialize_log()initialize_cars()

CarsDatabase

initialize_database()

[coord_guard(car_call,car,sf,new_call)]

Database

Figure 3.7: The abstract car-call sub-model

The coordination between a car and its car calls (Figure 3.8) starts from place car

call where each token represents a placed car call of the colour set Range, which is

a floor number ranged from the lowest to the highest floor. Placing a car call in a

car demands firing transition Coordinate that is enabled when its guards are satisfied

with respect to the producing mode’s state, and the applied algorithm on the abstract

hall-call sub-model (i.e. in the scope algorithm, the car serves only within the floors

of its defined scope). After firing transition Coordinate, the placed car call is removed

from place car call and inserted into the car’s desired-floors list with an appropriate

direction, if the car is idle. Concurrently, the list of the specified calls, in place specific

floors’ num of the color set Specific Floors defined in Table 3.6, is merged into the

car’s desired-floor list upon the firing of transition Coordinate.

32

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

CarsCars log

car call

specific
floors' num

DatabaseDatabase

Coordinate

archive(car,car_call,
new_call,sf)car_callcar

snd_ccall(car,
new_call,sf)

new_call

sf

place_calls
(car,sf)

db
upd_db_
(new_call,
db,car,sf)

Range

Specific_Floors

initialize_sfloors()

Car_Calls

initialize_log()initialize_cars()

CarsDatabase

initialize_database()

[coord_guard(car_call,car,sf,new_call)]

Figure 3.8: Coordinating between cars and their car calls

Table 3.6: The colour set Specific Floors

Colour Set Definition

Specific Floors

{(car id, specific calls, repeated
times) | car id ∈ Car ID, Spe-
cific calls ∈ Desired Floors, re-
peated times ∈ Z}

In addition, the abstract car-call sub-model features two mechanisms of producing

car calls. First, arbitrary car calls where a single call is placed into the selected car

(Figure 3.9). Second, specified calls where a list of selected floors is placed entirely

into the selected car (Figure 3.10). The list of specified calls is re-produced frequently

based on the parameters defined in Table 3.7.

car call

all floors'
numbers counter

watch
generator

Release Floor's Number

rn_random()

n+1

n

i+1
i

INT

1`1[rfn_guard(n,i)]()

RangeINT

1`1

Figure 3.9: Producing arbitrary car calls

33

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

specific
floors' num

Reproduce

reproduce(sf)sf

Specific_Floors

initialize_sfloors()

[rep_guard
(sf,car,car_call)]

Figure 3.10: Producing specified car calls

Table 3.7: The parameters of the car-call sub-model

Parameters Legal values

Producing mode {finite, infinite}

Times of finite car calls {x | x ∈ Z ∧ 0 ≤ x}

Most desired floors {[f] | f ∈ Range}

Frequency of desired floors {d | d ∈ Z ∧ 0 ≤ d}

Production’s pause number {p | p ∈ Z ∧ 0 < p}

3.5 The Abstract System-cycle Sub-model

This sub-model deals with the system cycle of the elevator cars during the opera-

tion of the elevator system. Each elevator car experiences three separate stages; the

maintenance, the arrival, and the transition (see Figure 3.11).

34

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

CarsCars

Cars

initialize_cars()

Cars

out of service

Cars

error log

Cars

DatabaseDatabase

Database

initialize_database()

Databasesuccess log

Cars

Doors

Doors

initialize_doors ()

Database

Database

initialize_database()

Database

Maintain

[mnt_guard(car)]

0

Restart

[rst_guard(car)]

Transfer

[trn_guard(car)]

Arrive

[arr_guard(car,door)]

suspend
(car)

car

car

car

restart(car)

car

transfer(car)

upd_trn(car,db) db
cararrive(car)

car

doordoor

upd_arr(car,db)

db

upd_susp
(car,db)

db

db upd_rst
(car,db)

Figure 3.11: The abstract system-cycle sub-model

The maintenance stage models the suspension of a car as presented in Figure 3.12.

A car is suspended by either an emergency case when the car’s emergency button is

pressed, or an operation failure case when an error occurs during the execution of the

elevator system. Transition Maintain fires if and only if a car is ”out of service” or in

”emergency”, and it has the highest priority in the entire sub-model (i.e. when it is

enabled, all other transitions are blocked). After the firing of transition Maintain, the

car’s token is transferred temporarily from place Cars to place out of service, and the

token in place Database is updated accordingly. Hence, the car is not accessible by any

other sub-models that have no access to place out of service. However, a pending car

can be restarted either automatically or manually based on the value of parameter

restart pending cars automatically (see Table 3.8). If the parameter is assigned to

”yes”, then transition Restart is enabled immediately. Otherwise, transition Restart

requires altering manually the status of the pending car to a different status other

35

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

than ”emergency” or ”out of service”. In both cases, the firing of transition Restart

results in car’s token being returned to place Cars and place Database being updated,

and therefore the car is accessible by other sub-models.

CarsCars

out of service

error log

Database

Database

Maintain

Restart

suspend
(car)

car

car

car

restart(car)

upd_susp
(car,db)

db

db upd_rst
(car,db)

Cars

initialize_cars()

[rst_guard(car)]

Cars

initialize_database()

[mnt_guard(car)]

0

Cars

Figure 3.12: The maintenance stage

Table 3.8: The parameter of the system-cycle sub-model

Parameter Legal value

Restart pending cars automatically {”yes”,”no”}

The transition stage describes the process of moving elevator cars between floors

as presented in Figure 3.13. Transition Transfer is enabled if and only if transition

Maintain is disabled, the car’s desired-floors list is not empty, and the car’s current

floor matches no calls of the desired-floors list. After firing the transition Transfer,

the car’s token is updated as follows. If the car’s desired-floors list has calls beyond

the car’s current floor,then it remains shifted on the same direction. Otherwise, its

36

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

direction is reversed. In both cases, the token in place Database is updated accord-

ingly.

CarsCars

DatabaseDatabase

Database

Transfer
car

transfer(car)

upd_trn(car,db) db

Cars

initialize_cars() [trn_guard(car)]

initialize_database()

Figure 3.13: The transition stage

Once a car reached its desired destination, it is said to be in the arrival stage

as presented in Figure 3.14. At this stage, transition Arrive is enabled if and only

if transition Maintain is disabled, and the car’s current floor matches a requested

floor (i.e. an element) of the desired-floors list. After firing transition Arrive, the

car’s token is updated by dropping the requested floor from the car’s desired-floors

list, and then if the car’s desired-floors list has more floors, then the car continues

serving the requested floors. Otherwise, the car is set to idle if the car’s current

floor agrees with parking floor, or the car is dispatched to the parking floor with an

appropriate direction. Finally, place Doors represents the doors’ operations. Since

such operations are almost trivial, they are included in one place that can be converted

into an hierarchical sub-model that shows all the activates of doors.

37

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

CarsCars

Cars

initialize_cars()

DatabaseDatabase

Database

initialize_database()

success log

Cars

Doors

Doors

initialize_doors ()

Arrive

[arr_guard(car,door)]

cararrive(car)

car

doordoor

upd_arr(car,db)

db

Figure 3.14: The arrival stage

38

Chapter 4

The Timing Version of CPN-based

Model of the Elevator System

This chapter presents the timing version of the elevator system model. Section 4.1

introduces the new features of the timing version. Section 4.2 explains the timing car-

structure sub-model. Section 4.3 discusses the timing hall-call sub-model. Section 4.4

presents the timing car-call sub-model. Finally, section 4.5 studies the timing system-

cycle sub-model.

4.1 Introduction

Similarly to the abstract version of the elevator system, the timing version is built

from four major sub-models that are interconnected but independent. However, the

definitions of some colour sets are extended, and the structure of some sub-models is

modified partially or completely.

The abstract version, which is discussed in previous chapter, concerns the logical

39

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

movement of elevator system. In contrast, the timing version, which is presented

in this chapter, extends the abstract version to include the modeling of buttons’

illumination, the calculation of waiting and serving times, and the predetermining of

the number of accepted calls.

Illuminating a hall button of the elevator system starts when the button is pressed

as modelled by the timing hall-call sub-model. Later in the timing system-cycle, the

illumination is cancelled when the assigned car visits the floor where the button was

pressed. Additionally and similarly, a car button is illuminated when it is pressed as

modelled by the timing car-call sub-model, and the button is unilluminated when the

car, which carries the button, arrives at the corresponding floor of the button.

The waiting time is the period time starts when a hall call is placed and ends

when the assigned car arrives at the floor of the placed hall call. On the other hand,

the serving time starts with the placing of a car call and finishes when the car arrives

at the requested floor of the placed car call.

Finally, the predetermining the number of accepted calls leads to the controlling

of traffic congestion during the simulation-based analysis as explained in the timing

car-structure sub-model (next section).

4.2 The Timing Car-Structure Sub-model

The timing car-structure sub-model (Figure 4.1) is structurally equivalent to the

abstract car-structure sub-model where two places namely Timing Cars and Timing

Database are composed this sub-model. However, the colour sets of this sub-model

are extended to include the time registration into the database of the elevator system

as well as for each car independently.

40

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

CarsTiming Cars

Timing_Cars

initialize_tcars()

DatabaseTiming Database

Timing_Database

initialize_tdatabase()

Timing DatabaseTiming Cars

Figure 4.1: The timing car-structure sub-model

Table 4.1: The colour set Timing Cars

Colour Sets Definitions

Car ID {i | i ∈ Z ∧ 1 ≤ i ≤ total number of cars}

Range {x | x ∈ Z ∧ lowest floor ≤ x ≤ highest floor}

Status {up, down, emergency, idle, out of service}

Desired Floors {[l] | l ∈ Range}

Call Issuer {request, system, non, reservation}

INT {n | n ∈ Z}

REAL {r | r ∈ R}

Timing Hall Call
{(hall call,direction,time) | hall call ∈ Range, direction ∈ Sta-

tus, time ∈ R}

Timing Hall Calls {[h] | h ∈ TimingHallCall}

Timing Cars

{(car id, current floor, status, parking floor, desired floors,

call issuer, stops limitation, time period, served hall calls) |

car id ∈ Car ID, current floor ∈ Range, status ∈ Status, park-

ing floor ∈ Range, desired floors ∈ Desired Floors, call issuer

∈ Call Issuer, stops limitation ∈ INT, time period ∈ REAL,

served hall calls ∈ Timing Hall Calls}

The colour set Timing Cars is a record colour set of the Cartesian product of the

41

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

predefined sets in Table 4.1.

As a result, each token is extended with following components:

• Stops’ limitation: it is intended to predetermine the maximum number of served

calls, during the simulation-based analysis in order to control the traffic conges-

tion. Two types of values are allowed: a constant positive integer where small

numbers define light traffic and vice versa, or a dynamic value where a function

is used to return to each car an arbitrary positive number that is continuously

changed after its assigned calls are served. For example, if the function returns

two, then after accomplishing two calls, a new value for the stop limitation is

generated.

• Served hall calls : it is a list that used to temporarily stores and transfers the

tokens of assigned hall calls from the timing hall-call sub-model to the timing

system-cycle sub-model as one of several steps to calculate the waiting time.

The full steps are discussed in the timing hall-call sub-model.

• Time period : it is a real number shows the operational time of the car.

The other components have been discussed in the abstract car-structure sub-model

in section 3.2.

The colour set Timing Database is the list defined in Table 4.2. Hence, not only

each car has time registered in the database, but also the times of all cars are acces-

sible through a single token.

42

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Table 4.2: The colour sets Timing Database

Colour Sets Definitions

Timing Car’s Data

{(current floor, status, destinations, car id, time) | current

floor ∈ Range, status ∈ Status, destinations ∈ Desired Floors,

car id ∈ Car ID, time ∈ REAL}

Timing Database {[g] | g ∈ TimingCar′sData}

Finally, the timing car-structural sub-model has one extra parameter defined in

Table 4.3, besides the parameters defined in Table 3.3.

Table 4.3: The extra parameter of the timing car-structure sub-model

Parameter Legal value

Stops’ limitation {s | s ∈ Z+ ∧ s = 0 ∨ 1 ≤ s}

The value of parameter stops’ limitation is processed by the following function

(Pseudocode):

function stops’ limitation value () =

if the parameter "stops’ limitation" = 0 then

return random(1, floors’ number);

else

return the parameter "stops’ limitation";

Accordingly, an arbitrary number from one to the floors’ number is assigned indecently

to each car when the value of parameter stops’ limitation is zero. Otherwise, the value

of stops’ limitation is returned to all cars as a constant value.

43

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

4.3 The Timing Hall-call Sub-model

This sub-model is developed from the abstract hall-call sub-model to include the

button illumination and waiting time calculation (Figure 4.2).

Prk Sys

Hall_Call

Prk Sys

CarsTiming Cars

Timing_Cars

initialize_tcars()

Coordinator

Coordinator

initialize_coordination()

Hall's_Buttons

Hall's_Buttons

initialize_halls'_buttons()

Hall's_Buttons

Requested
Hall Call

Requested_Hall_Call

DatabaseTiming Database

Timing_Database

initialize_tdatabase()

Release Hall Call

[releas_guard(HB,C)]

Assign Hall Call

[asn_guard(rhc,car,DB)]

Cupd_coord(HB,C)

illuminate_hall_btn(HB,C)

carasn_hcall(car,rhc)

(#hall_call rhc)

rhc

hall_call(HB,C,DB)

released(C) C

HB

DB

upd_asn
(car,rhc,DB)

DB

DB

Timing Cars

Timing Database

Figure 4.2: The timing hall-call sub-model

44

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

The button illumination is associated to the method of producing hall calls that

starts from place Hall’s Buttons, which contains a single token of colours set Hall’s

buttons defined in Table 4.4. In principle, It is a list comprises of three internal lists

of hall calls namely illuminated buttons (IB), unilluminated-specified buttons (USB),

and unilluminated-unspecified buttons (UUB). All possible hall calls are distributed

between these three lists and represented as tuples of colour set Hall Call. Producing

a hall call requires the firing of transition Release Hall Call that is enabled if and

only if the following guards are satisfied:

1. The USB list and UUB list are not both empty,

2. If the limit of producing calls is finite, then it has not been already reached,

3. The number of produced calls is less than the value of parameter pause number

(see Table 4.5) in order to balance between the producing process and the

assignment process.

Table 4.4: The colour set Hall’s Buttons

Colour Sets Definitions

Hall Call
{(hall call floor,status) | hall call floor ∈ Range, status ∈ Sta-
tus}

Hall Calls {[h] | h ∈ HallCall}

Halls Buttons
{(IB, USB, UUB) | IB ∈ Hall Calls, USB ∈ Hall Calls, UUB
∈ Hall Calls}

45

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Coordinator

Coordinator

initialize_coordination()

Hall's_Buttons

Hall's_Buttons

initialize_halls'_buttons()

Requested
Hall Call

Requested_Hall_Call

DatabaseTiming Database

Timing_Database

initialize_tdatabase()

Release Hall Call

[releas_guard(HB,C)]

Cupd_coord(HB,C)

illuminate_hall_btn(HB,C)

hall_call(HB,C,DB)

HB

DB

DB

Figure 4.3: Releasing hall calls

Table 4.5: The parameters of the timing hall-call sub-model

Parameters Legal values

Producing mode {finite, infinite}

Times of finite hall calls {y | y ∈ Z ∧ 0 ≤ y}

The most requested floors {[hall call] | hall call ∈ Hall Call}

Frequency of most re-

quested floors
{d | d ∈ Z ∧ 0 ≤ d}

The algorithm of assigning

hall calls
{minimum waiting,nearest, scope}

The travel time {t | t ∈ R+}

The average time of stops {s | s ∈ R+}

Production’s pause number {p | p ∈ Z+}

After firing transition Release Hall Call, a tuple of either the USB list or the UUB

46

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

list is removed and placed into both the IB list and place Requested Hall Call. The

choice of either USB list or UUB list is based on the following rules:

1. When a list is empty, the other list is always selected.

2. The difference between both lists’ length is less or equal to the value of param-

eter frequency of most requested floors.

3. The internal choice between tuples is sequential in USB list and arbitrary in

UUB list.

Finally, the waiting time is calculated through three steps. First, when a hall call is re-

leased from place Hall’s Buttons and put in place Requested Hall Call, the placed hall

call is attached with the current times of all cars (as a token of colour set Requested

Hall Call defined in Table 4.6). Second, when the placed hall call is assigned to a

car, it is removed from place Requested Hall Call and inserted into the two lists of

the assigned car; the desired-floors list as a floor number of the colour set Range,

and the served-hall-call list as a tuple of the colour set Timing Hall Call defined in

Table 4.1. In the served-hall call list, only the time of the assigned car, when the hall

call was released, is remained attached to the tuple of the colour set Timing Hall

Call. Eventually, when the assigned car arrives at the floor or the placed hall call,

then the waiting time is calculated as the absolute value of the difference between

the current time of the car’s arrival and the registered time when the hall call was

released (this step is executed by the timing system-cycle sub-model).

47

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Prk Sys

Hall_Call CarsTiming Cars

Timing_Cars

initialize_tcars()

Coordinator

Coordinator

initialize_coordination()
Requested
Hall Call

Requested_Hall_Call

DatabaseTiming Database

Timing_Database

initialize_tdatabase()

Assign Hall Call

[asn_guard(rhc,car,DB)]

carasn_hcall(car,rhc)

(#hall_call rhc)

rhc released(C) C

DB

upd_asn
(car,rhc,DB)

Figure 4.4: Assigning timing hall calls

Table 4.6: The colour sets Requested Hall Call and Coordinator

Colour Sets Definitions

Car’s Time {(car id,time) | car id ∈ Car ID, time ∈ R}
Cars’ Times {[c] | c ∈ Car′s T ime}

Requested Hall Call
{(hall call, waiting times) | hall call ∈ Hall Call, waiting
times ∈ Cars’ Times}

Coordinator
{(specified call, unspecified call, next selection, released
calls) | specified call ∈ Z, unspecified call ∈ Z, next se-
lection ∈ Z, released calls ∈ Z}

4.4 The Timing Car-call Sub-model

Similar to the timing hall-call sub-model, this sub-model (Figure 4.5) is developed

from the abstract car-call sub-model to cover the modeling of buttons’ illumination

and the calculation of the serving times.

Place Car’s Buttons has tokens equate numerically to the cars’ number. Each

token is formed from of the colour set Car’s Buttons, which is a list that contains

three internal lists, namely the illuminated car buttons (ICB) of the colour set Served

Calls, the unilluminated-specified car buttons (USCB), and the unilluminated-unspecified

48

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

CarsTiming Cars

Timing_Cars

initialize_tcars()

Calls_Counters

Calls_Counters

initialize_coord ()

DatabaseTiming Database

Timing_Database

initialize_tdatabase()

Car's_ButtonsCar's_Buttons

Car's_Buttons

initialize_car's_buttons ()

Car's_Buttons

Place Car Call

[plc_gaurd(CB,CC,car)]

CCupd_ccoord(CB,CC)

DBcarsnd_ccall(CB,CC,car) upd_db_(CB,CC,DB,car)

CB illuminate_btn(CB,CC,car)

Timing DatabaseTiming Cars

Figure 4.5: The timing car-call sub-model

car buttons (UUCB) both are of the colour set Floors defined in Table 4.7. Conse-

quently, the illumination of the car’s buttons and also the calculation of the serving

times start from place Car’s Buttons that requires the firing of transition Place Car

Call. Transition Place Car Call is enabled if and only if the following guards are

hold:

1. The UUCB list and the USCB list are not both empty,

2. The selected car has not already reached its maximum number of accepted calls,

3. If the limit of producing calls is finite, then it has not been already reached,

4. The applied algorithm on the timing hall-call sub-model is applicable on the

car call and the selected car.

After firing transition Place Car Call, a floor number from either the UUCB list or

49

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

the USCB list is transferred into two lists. The two lists are the desired-floors list

of a car that is often selected non-deterministically, and the ICB list as a tuple of

colour set Served Calls (i.e. the floor number is attached with the current time of

the selected car). Thus, the button is illuminated and the current time of the selected

car is registered as it is used later in timing system-cycle sub-model to calculate the

serving time of the placed car call.

Table 4.7: The colour sets Car’s Buttons and Calls’ Counters

Colour Sets Definitions

Floors {[f] | f ∈ Range}

Served Calls {[(floor, time)] | floor ∈ Range, time ∈ R}

Cars Buttons
{(car id,ICB,USCB,UUCB) | car id ∈ Car ID, ICB ∈

Served calls, USCB ∈ Floors, UUCB ∈ Floors}

Calls’ Counters
{(specified call, unspecified call, next selection) | specified

call ∈ Z, unspecified call ∈ Z, next selection ∈ Z}

Table 4.8: The parameters of the timing car-call sub-model

Parameters Legal values

Producing mode {finite, infinite}

Times of finite car calls {y | y ∈ Z ∧ 0 ≤ y}

The most desired floors {[f] | f ∈ Range}

The frequency of most de-

sired floors
{d | d ∈ Z ∧ 0 ≤ d}

50

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

4.5 The Timing System-cycle Sub-model

This sub-model (see Figure 4.6) is developed from the abstract system-cycle sub-

model to extend the arrival stage and the maintenance stage with extra functions

besides their original functions discussed in the abstract system-cycle sub-model.

CarsTiming Cars

Timing_Cars

initialize_tcars()

Timing Cars

out of service

Timing_Cars

DatabaseTiming Database

Timing_Database

initialize_tdatabase()

Doors

Doors

initialize_counters ()

Database_Timing Database

Timing_Database

initialize_tdatabase()

Car's_ButtonsCar's_Buttons

Car's_Buttons

initialize_car's_buttons ()

Car's_Buttons
Hall's_ButtonsHall's_Buttons

Hall's_Buttons

initialize_halls'_buttons()

Hall's_Buttons

warning
to manager

Hall Call
LOG

Hall_Call_LOG

Car Call
LOG

Car_Call_LOG

initialize_car_call_log ()

Maintain

[mnt_guard(car,c)]

0

Restart

[rst_guard(car)]

Transfer

[trn_guard(car)]

Arrive

[arr_guard(CB,car,cnt)]

suspend(car)

car

car

restart(car)

car

transfer(car)

upd_trn(car,DB) DB

cararrive(car,cnt)

upd_cnt(car,cnt) cnt

upd_arr(car,DB)

DB

upd_susp(car,DB)DB

DB
upd_rst
(car,DB)

unilluminate_hall_btn
(HB,car)

HBCB unilluminate_btn
(CB,car)

reset_car's_btns(CB)CB
return_hall_call
(HB,car)

HB

log_hall(car) log_car(CB,CL,car)CL

Timing Database

Timing Database

Figure 4.6: The timing system-cycle sub-model

In the arrival stage, when transition Arrival fires, the time of a delivered call is

calculated and logged. If the delivered call was a hall call then the waiting time

is the absolute value of the difference between the arrival time of the car and the

registered time when the hall call was placed (see the timing hall-call sub-model).

The calculated result is stored in place Hall Call LOG of the colour set Hall Call

LOG defined in Table 4.9. Similarly, the serving time of a delivered car call is the

51

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

absolute value of the difference between the arrival time of the car and the registered

time when the car call was placed (see the timing car-call sub-model). The result

is stored in place Car Call LOG of the colour set Car Call LOG defined in Table

4.9. The type of a delivered call (i.e. whether it is a hall call, a car call, or both) is

determined by checking simultaneously the illuminated-car-buttons list of place Car’s

Buttons, the illuminated-buttons list of place Hall’s Buttons, and the served-hall-calls

of place timing Cars. Moreover, each delivered hall call or car call is returned to its

original list after it was removed from the illuminated-buttons list or illuminated-car-

buttons list, respectively. Finally, the colour set Doors is re-defined (see Table 4.9)

to include counters that track the dynamic values of parameter stops limitations.

CarsTiming Cars

Timing_Cars

initialize_tcars()

DatabaseTiming Database

Timing_Database

initialize_tdatabase()

Doors

Doors

initialize_counters ()

Car's_ButtonsCar's_Buttons

Car's_Buttons

initialize_car's_buttons ()

Hall's_ButtonsHall's_Buttons

Hall's_Buttons

initialize_halls'_buttons()

Hall Call
LOG

Hall_Call_LOG

Car Call
LOG

Car_Call_LOG

initialize_car_call_log ()

Arrive

[arr_guard(CB,car,cnt)]

cararrive(car,cnt)

upd_cnt(car,cnt) cnt

upd_arr(car,DB)

DB

unilluminate_hall_btn
(HB,car)

HBCB unilluminate_btn
(CB,car)

log_hall(car) log_car(CB,CL,car)CL

Figure 4.7: The arrival stage of the timing system-cycle sub-model

52

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Table 4.9: The colour sets of the arrival stage

Colour Sets Definitions

Doors

{(car id, current delivery number, deliveries’ total) | car

id ∈ Car ID, current delivery number ∈ Z , deliveries’

total ∈ Z}

Hall Call LOG
{(hall call, waiting time) | hall call ∈ Hall Call, waiting

time ∈ R}

Serving times
{[(floor, serving time)] min floor ∈ Range, serving time

∈ R}

Car Call LOG
{(car id, serving times) | car id ∈ Car ID, serving times

∈ Serving Times}

In the maintenance stage (Figure 4.8), when transition Maintain fires, not only

a car is suspended, but also all assigned hall calls and car calls of the pending car

are returned to places Hall’s Buttons and Car’s Buttons, respectively. In addition, a

warning message is sent to the site manager, which is denoted by place warning to

manager.

53

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

CarsTiming Cars

Timing_Cars

initialize_tcars()

out of service

Timing_Cars

Database_Timing Database

Timing_Database

initialize_tdatabase()

Car's_ButtonsCar's_Buttons

Car's_Buttons

initialize_car's_buttons ()

Hall's_ButtonsHall's_Buttons

Hall's_Buttons

initialize_halls'_buttons()

warning
to manager

Maintain

[mnt_guard(car,c)]

0

Restart

[rst_guard(car)]

suspend(car)

car

car

restart(car)

upd_susp(car,DB)DB

DB
upd_rst
(car,DB)

reset_car's_btns(CB)CB
return_hall_call
(HB,car)

HB

Figure 4.8: The maintenance stage of the timing system-cycle sub-model

54

Chapter 5

The Parking Optimizer Model

This chapter presents the parking optimizer model. Section 5.1 introduces the model.

Section 5.2 studies the election sub-model. Section 5.3 and section 5.4 discuss the

assignment technique and the position technique, respectively.

5.1 Introduction

Holding idle cars on selected floors, where hall calls are mostly placed, improves sub-

stantially the passenger’s satisfaction and the system’s energy and efficiency [Brand

and Nikovski (2004); Zheng et al. (2013)]. Therefore, the cars are initially distributed

in fair distances between the floors, and subsequently the hierarchical parking opti-

mizer model continuously analyses the placed hall calls and then, based on different

techniques, assigns the elected floors to the cars. The parking optimizer model (Figure

5.1) is composed of three sub-models, namely the election sub-model, the assignment

sub-model, and the position sub-model. The parameters that facility the control of

the parking optimizer model are defined in Table 5.1.

55

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Table 5.1: The parameters of the parking optimizer model

Parameters Legal values

Parking system state {”enable”, ”disable”}

Analysing hall calls { x | x ∈ Z+ }

Applied parking technique {”new assignment”, ”new position”}

elected floors

Range

Position ModelPosition Sub-modelPosition Sub-model

Election ModelElection Sub-modelElection Sub-model

Assignment ModelAssignment Sub-modelAssignment Sub-model

Figure 5.1: The parking optimizer model

Finally, the processes of all sub-models are restrictedly sequential. Therefore, all

transitions have priorities (c.f. [van der Aalst et al. (2013)]) that are represented by

numbers appear in the down-left corner of each transition.

56

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

5.2 The Election Sub-model

The election sub-model (Figure 5.2) counts the reputation of all placed hall calls, and

then nominates the floors where most of hall calls were repeatedly placed.

elected floor
counter

INT

1`1

sorted
list

INT_List

1`[]

candidate
floors

Floors_Statistics

processed
call counter

INT

1`0

floors
statistics

Floors_Statistics

initialize_statistics()

Prk SysPrk Sys

Hall_Call

Prk Sys

elected floors

Out
Range

Out

Lock SysLock Sys

INT

1`0

Lock Sys

Elect Floor

[elect_guard(tl,n,fs)]

3

Sort Floors' Recursion

[sort_guard(n,fs)]

2

Count Call

[count_guard(hall_call,fs,n,i)]

1

Sweepe Unelected
 Floors

5

upd_pcc(n,i,tl)

hall_call

upd_efc(tl,n)

fs

fs
n

update_list(tl,n)

n

count(hall_call,fs)

i

tlsort_recursion(fs,tl)

n fsn+1

tl

update_statistics(fs)

(#floor fs)

i

1i

fs

fs

Figure 5.2: The election sub-model

The first step (Figure 5.3) starts from place Parking System (Prk Sys), which

transfers a copy of each placed hall call from the hall-call sub-model. The counting

of hall calls’ reputation demands the firing of transition Count Call that is enabled

57

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

if and only if its guards are satisfied with respect to the parking system state, the

number of call that are being counted, and the token’s value of place Lock of the

system (Lock Sys).

Place Lock Sys is functionally similar to an inhibitor arc. If there is a token

in a place, an inhibitor arc disables a transition (see [Janicki and Koutny (1995)]).

Similarly, if place Lock Sys has the value zero ”0”, then transition Count Call is

disabled and this locks the system from analysing more hall calls. The important of

place Lock Sys appears when a car is in the maintenance stage of the system-cycle

sub-model and not accessible by the parking optimizer models (i.e. the assignment

of all elected floors can not be accomplished successfully).

However, after firing transition Count Call, a token is removed from place Prk Sys.

Accordingly, the token’s value of place processed call counter is increased, and also

the reputation times of the corresponding floor in place floors statistics is increased.

The colour set floors statistics defined in Table 5.2.

processed
call counter

INT

1`0
floors

statistics

Floors_Statistics

initialize_statistics()

Prk SysPrk Sys

Hall_Call

Lock SysLock Sys

INT

1`0

Count Call

[count_guard(hall_call,fs,n,i)]

1

hall_call

count(hall_call,fs)n fsn+1 i

Figure 5.3: Counting the placed hall calls

58

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Table 5.2: The colour sets of the election sub-model

Colour Sets Definitions

Floors statistics {(floor,times) | floor ∈ Range, reputation ∈ Z}

INT List { [x] | x ∈ Z }

the second step (Figure 5.4) begins when the number of the counted hall calls

in place processed call counter reaches the requested number of parameter analysing

hall calls defined in Table 5.1. As a result, transition Count Call is disabled and

conversely transition Sort Floors’ Recursion is enabled. The firing of transition Sort

Floors’ Recursion sorts orderly the reputation times of the placed hall calls in place

sorted list, and also copies each processed token from place floors statistics to place

candidate floors.

sorted
list

INT_List

1`[]
candidate

floors
Floors_Statistics

processed
call counter

INT

1`0
floors

statistics

Floors_Statistics

initialize_statistics()

Lock SysLock Sys

1`0

Sort Floors' Recursion

[sort_guard(n,fs)]

2

Sweepe Unelected
 Floors

5

fs

fs
n

tlsort_recursion(fs,tl)

update_statistics(fs)1i

fs

Figure 5.4: Sorting the floors of the placed hall calls

The final step (Figure 5.5) starts when all reputations of all hall calls are sorted,

and thereby transition Sort Floors’ Recursion is disabled (i.e. its guard is dissatisfies

when all floors in place floors statistics have reputation times of zero). In contact,

transition Elect Floor is enabled with respect to the number of the candidate floors

59

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

versus the number of cars.

Therefore, there are three probabilities for the number of the candidate floors. If

the candidate floors are numerically less than or equal to the cars, then transition

Elect Floor fires all candidate floors to place elected floors. Otherwise, if the candidate

floors are numerically greater than the cars, then transition Elect Floor fires a number

of candidate floors equates the number of cars if the selected parking technique is ”new

assignment”. On the other hand, if the selected parking technique is ”new position”,

then transition Elect Floor fires the candidate floor till the number of the unique

reputation times equates the number of the cars (i.e. identical reputation times are

counted once) see the position sub-model.

In addition, after transition Elect Floor completes the nomination of the floors, it

rests some input places to their initial values, and transition Sweep Unelected Floors

removes by firing the remain tokens in place candidate floors. Thus, the election

sub-model is ready for a new process.

elected floor
counter

INT

1`1

sorted
list

INT_List

1`[]
candidate

floors
Floors_Statistics

elected floors
Out

Range

Elect Floor

[elect_guard(tl,n,fs)]

3
upd_efc(tl,n)

update_list(tl,n)

n

tl

(#floor fs)

fs

Figure 5.5: Electing the most requested floors

60

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

5.3 The Assignment Sub-model

The assignment sub-model (Figure 5.6) performs the technique of assigning the elected

floors to the available cars regardless of the cars’ scopes.

elected
floor

Range
ID

INT

1`0

identified
floor

Identified_Floor

elected floors

In
Range

In

CarsCars

Cars

initialize_cars()

Lock SysLock Sys

INT

1`0

Lock Sys

Count Elected Floors

[count__guard()]

4

Assign ID to Floor

6

Alter Car's Parking Floor

[alter_guard(car,f)]

7

n

floor

assign
(n,floor)

floor

n-1

f

car

alter(car,f)

iunlock(i)

ii+1

nn+1

floor

Cars

Figure 5.6: The assignment sub-model

Table 5.3: The colour set Identified Floor

Colour Set Definition

Identified Floor
{(floor id,floor’s number) | floor id ∈ Car ID, floor’s number

∈ Range}

61

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

The initial step is counting the elected floors for two reasons. First, the elected

floors may be less than the cars. Second, each elected floor must be associated with

identification number (ID) to deterministically assign the floor to the car that has the

same identification number, and thereby each car’s parking floor is altered only once.

Counting the elected floors requires the firing of transition Count Elected Floors

that is enabled if the selected technique is ”new assignment”. When all elected floors

were counted, transition Count Elected Floors is disabled since there are no more

tokens in place elected floors. In contrast, transition Assign ID to Floor is enabled.

For each firing of transition Assign ID to Floor, each elected floor is associated with an

identification number and transferred to place identified floor of colour set Identified

Floor defined in Table 5.3.

elected
floorID

elected floors

In
Range

Count Elected Floors

Assign ID to Floor

n

floor

floor

n-1

nn+1

floor

Range

[count__guard()]

4

INT

1`0

6

Figure 5.7: Processing the floors by the assignment sub-model

62

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

The final step is assigning the elected floors to the cars through the firing of

transition Alter Car’s Parking Floor. Thus, the technique is completed and the

parking system is unlocked.

identified
floor

Identified_Floor

CarsCars

Cars

initialize_cars()

Lock SysLock Sys

INT

1`0

Assign ID to Floor

6

Alter Car's Parking Floor

[alter_guard(car,f)]

7

assign
(n,floor)

f

car

alter(car,f)

iunlock(i)

ii+1

Figure 5.8: Altering the cars’ parking floors by the assignment sub-model

5.4 The Position Sub-model

The position sub-model (Figure 5.9) performs the technique of altering the cars’

parking floors with respect to their scopes, which perhaps reduces the overall waiting

time.

63

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

scopes

req
times

Scope_Statistics

cmpl
nxt

cmpl
orders

cmpl
prv

elected floors

In Range

new
position

Identified_Floor

CarsCars

Cars

Lock SysLock Sys

Identify Scope

Count Scope's
Elected Floors

Identify Next
 Scope

Decide Position

Identify Previous
 Scope

Alter Car's
 Parking Floor

s

s

identify_prv(s,t)

identify(s,floor)

s

s

identify_nxt(s,t)

s

count_floors(s)

decide(s)

f

car alter(car,f)

iunlocksys(i)

ii+1

t

t

floor

s

re_initialize(i)

n
INT

1`0

[scope_guard(s,floor)]

4

Scope

initialize_scope()

[n<>0]

6

Scope

[prv_guard(s,t)]

7 Scope

[nxt_guard(s,t)]

8

Scope

9

In

[alter_guard(car,f)]

10

Cars

Lock Sys

initialize_cars()

Figure 5.9: The position sub-model

Table 5.4: The colour sets Scope and Scope Statistics

Colour Sets Definitions

Scope
{(scope id,prev,next,elected floors) | scope id ∈ Car ID, prev
∈ Z, next ∈ Z, elected floors ∈ INT List}

Scope Statistics
{(scope id,floors’ number) | scope id ∈ Car ID, floors’ number
∈ Z}

The first step is specifying the scopes of the elected floors by the firing of transtion

Identify Scope that is enabled if the selected technique is ”new position”. After each

firing of transition Identify Scope, an elected floor is removed from place elected floors

and inserted into the list of the corresponding scope in place scopes of the colours set

Scope defined in Table 5.4.

64

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

scopes

elected floors

In Range

Identify Scope

identify(s,floor)s

floor

[scope_guard(s,floor)]

4

Scope

initialize_scope()

Figure 5.10: Identifying the scope of floors

The second step starts by counting the elected floors in each scope when transition

Count Scope’s Elected Floors is enabled and the parking system is locked (i.e. the

value of place Lock Sys is one). After the firing of transition Count Scope’s Elected

Floors, a token (representing a scope) is transferred from place scopes to two places;

place complete orders (cmpl orders) as a copy of the original token, and place request

times (req times) as a token of the colour set Scope Statistics defined in Table 5.4.

After the counting of the elected floors in each scope, each scope is associated with

the number of elected floors of the lower and higher scope. Calculating the elected

floors of a lower scope requires the firing of transition Identify previous Scope. After

the firing of transition Identify previous Scope, a token of the colour set Scope (S)

from place cmpl orders and another token of the colour set Scope Statistics (SS)

from place req times are removed.

The selection of the tokens is deterministic by the guards of transition Identify

previous Scope as follows:

if a ”scope id (S) of place (cmpl orders) is one, then it is associated with the ”scope

id (SS)” of place (req times) that is equal to the number of cars

(i.e. if scope id (S) is 1 = the scope id (SS) is cars’ number).

65

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Otherwise, each ”scope id (S)” of place (cmpl orders) is associated with the ”scope id

(SS)” of place (req times) that is less by only one

(i.e. scope id (S) = (scope id (SS)) −1).

Similarly, the calculation of the elected floors of a higher scope is acquired through

firing transition Identify Next Scope that has the following guards:

each ”scope id (S)” of place (cmpl prv) is associated with a ”scope id (SS)” of place

(req times) that is greater by only one

(i.e. scope id (S) = scope id (SS) +1)

unless the ”scope id (S)” of place (cmpl prv) equates numerically the cars’ number,

then the ”scope id (SS)” of place (req times) must be one.

scopes

req
times

Scope_Statistics

cmpl
nxt

cmpl
orders

cmpl
prv

Lock SysLock SysCount Scope's
Elected Floors

Identify Next
 Scope

Identify Previous
 Scope

s

s

identify_prv(s,t)

s

s

identify_nxt(s,t)

count_floors(s)

t

t

n
INT

1`0

Scope

initialize_scope()

[n<>0]

6

Scope

[prv_guard(s,t)]

7 Scope

[nxt_guard(s,t)]

8

Scope

Figure 5.11: Completing the information of scopes

The third step (Figure 5.12) is selecting a new parking floor for each scope through

66

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

the firing of transition Decide Position. After the firing of transition Decide Position,

a token of place complete next (cmpl nxt) is moved to place new position as a token

of the colour set Identified Floor defined in Table 5.2.

The new parking floor of a scope is chosen according to the following rules:

1. If the scope has many elected floors, then the floor of the highest reputation

time is selected (the list of the elected floors of the colour set Scope is sorted).

2. If the scope has only one elected floor, then this floor is selected.

3. If the scope has no elected floors, then the head floor or the tail floor of the

scope is selected in account of the number of the elected floors of the lower and

higher scopes.

The final step is assigned each selected floor to a car through the firing of transition

Alter Cars Parking Floor. Thus, this technique is completed and the parking system

is unlocked.

new
position

Identified_Floor

CarsCars

Cars

Lock SysLock Sys

Decide Position

Alter Car's
 Parking Floor

decide(s)

f

car alter(car,f)

iunlocksys(i)

ii+1

INT

1`0

9

[alter_guard(car,f)]

10

initialize_cars()

Figure 5.12: Altering the cars’ parking floors by the position sub-model

67

Chapter 6

The Analyses

This chapter provides the analyses of the proposed model of the elevator system

(for both the abstract version and the timing version). Section 6.1 introduces the

techniques of analysing CPN-based models. Section 6.2 discuses the reachability

analysis. Finally, section 6.3 presents the simulation-based performance analysis.

6.1 Introduction

Analysing a CPN model is carried out by various techniques and tools [van der Aalst

and Stahl (2011)]. In this thesis, the focus is on two techniques, namely the reach-

ability analysis (section 6.2) and the simulation-based performance analysis (section

6.3).

The reachability analysis is a formal verification technique where typically a tool

is executed to construct a graph of nodes that represent reachable markings and arcs

that represent enabled transitions of the markings. In this thesis, the State Space

68

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

tool [Jensen et al. (2006)], which has been embedded into the CPN Tools [AIS Group

(2013)], was used to analyse the proposed model. The tool reported automatically

some properties of the analysed model as shown in (Figure 6.1) and (Figure 6.2).

The simulation-based performance analysis is based on executing the proposed

model constantly while its data is being recorded, and then measured and compared.

Consequently, this technique is flexible but also is time-consuming. In this thesis, this

technique was performed by the simulator tool of the CPN Tools and also was com-

bined with monitors supported by the CPN Tools. The monitors are data-collectors

and controller techniques that guide the simulation of the model (Figure 6.3 and

Figure 6.7).

6.2 The Reachability Analysis

The full reachability analysis of all sub-models could not be obtained because of the

deep concurrency among the sub-models, which results in the state space explosion

problem. Therefore, it must be noticeable that the reported results are true for

only 58781 nodes of the abstract version and 60251 nodes of the timing version of

the proposed model. Some of the reported results of the partial analysis may differ

from the reported results of the full analysis of the same model, and thereby the

reported results of the partial analysis are not fully reliable. However, few results

from the partial analysis are expected to exist or increase in the full analysis of the

proposed model. For example, the dead markings that have no enabled transitions

as a consequence of LOG places, such as place success log (in Figure 3.11).

Finally, the reported results of the partial analysis are explained as follows:

69

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

• First, the statistics of (Figure 6.1 (a)) and (Figure 6.2 (a)) show the reachable

markings and arcs of both the abstract version and the timing version of the

CPN-based models of the elevator system, respectively.

• Second, the boundedness properties from (Figure 6.1 (b)) and (Figure 6.2 (b))

account for the maximum and minimum numbers of tokens for each place ac-

cording to the parameters in (Figure 6.1 (c)) and (Figure 6.2 (c)), respectively.

• Third, both models have no home markings that are reachable from all mark-

ings, and consequently no infinite occurrence sequences as presented under home

properties and fairness properties in (Figure 6.1 (a)) and (Figure 6.2 (a)), re-

spectively.

• Finally, the liveness properties specify the dead markings and the dead transi-

tions that are never enabled, such as transition Maintain and transition Restart,

which indicates the maintenance stage of the system-cycle sub-model were never

enabled and thereby there was no operation failure in both models (as explained

in the maintenance stage of the abstract system-cycle sub-model). Moreover,

both versions of the proposed model have no live transitions that always have

the possibility of becoming enabled.

70

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(a) The first part of the standard report

Figure 6.1: The standard report of the abstract version (1)

71

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(b) The second part of the standard report

(c) The adopted parameters

Figure 6.1: The standard report of the abstract version (2)

72

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(a) The first part of the standard report

Figure 6.2: The standard report of the timing version (1)

73

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(b) The second part of the standard report

(c) The adopted parameters

Figure 6.2: The standard report of the timing version (2)

74

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

6.3 The Simulation-based Performance Analysis

The proposed model was analysed via the simulation-based performance analysis with

different parameters that include the number of cars and floors, the applied algorithm,

and the specified floors. After a series of simulating the proposed model, the collected

data proves the compatibility and applicability of this model in various situations.

One of the case studies, for example, was four cars serving a twenty-floor building

(see the adopted parameter in Figure 6.4 (a)). The collected data shows the following:

1. Car calls were produced by the abstract version and the timing version for

each car to each floor. Additionally in the timing version, the car-call buttons

were illuminated when released and unilluminated when the cars visited the

corresponding floors (Figure 6.4 (b, c) and Figure 6.8 (d, e)).

2. Hall calls were produced by the abstract version and the timing version from

all floors to request upward moving cars (with the exception of the highest

floor) and downward moving cars (with the exception of the lowest floor). All

produced hall calls were assigned and delivered successfully. Additionally in

the timing version, the hall-call buttons were illuminated when released and

unilluminated when the cars visited the floors of the requested hall calls (Figure

6.4 (d) and Figure 6.8 (b, c)).

3. All cars were held at their parking floors when they received no calls (Figure

6.5 (c) and Figure 6.9 (c)).

4. All requested hall calls were served eventually during the implementation of the

adopted algorithms (Figure 6.5 (b) and Figure 6.9 (a)).

75

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

5. All requested car calls were served eventually and sequentially in the direction

of cars’ travel (Figure 6.5 (b) and Figure 6.9 (b)).

6. The maintenance stage of the system-cycle sub-model is designed to deal with

the emergency and failure cases. This stage helped in discovering some errors

during the programming of the proposed model (CPN ML language was used to

code the functions that implement the transitions’ guards and arcs’ expressions).

Some of the discovered and fixed errors were in reversing the cars’ direction,

synchronizing the database, and controlling the overproduction of calls. More-

over, the maintenance stage provides a controllable mechanism to restart the

out-of-service cars, and also the timing version models the sending of a warning

signal to the site manager (see section 3.5 and section 4.5).

Therefore, the thesis objective was accomplished completely and successfully.

Furthermore, the collected data from different parameters can be measured and

compared. Three experiments are presented as follows:

• Figure 6.6 shows the observation of the cars’ behaviours through the developed

Visualization Extension.

• Figure 6.10 presents results of elected floors by the two techniques of the parking

optimizer model.

• Figure 6.11 compares the waiting times between the adoption of the nearest-

car algorithm and the minimum-waiting algorithm. In contrast, Figure 6.12

compares the waiting times between the adoption of different numbers of cars

during the scope algorithm.

76

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Figure 6.3: The monitors’ statistics of the abstract version

77

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(a) The adopted parameters

(b) The log of car calls (c) Placed specific floors

(d) Placed hall calls

Figure 6.4: Produced calls from the abstract version

78

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(a) The error and success logs (b) The success log

(c) Cars (d) Database

Figure 6.5: Results from the abstract version

79

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(a) (b)

(c) (d)

Figure 6.6: Observing different experiments through the Visualization Extension

80

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Figure 6.7: The monitors’ statistics of timing version

81

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(a) The buttons of the hall calls

(b) Placed hall calls (c) The coordinator of the hall calls

(d) The buttons of the car calls (e) The counters of the car calls

Figure 6.8: The calls of the timing version

82

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(a) Recorded waiting times (b) Recorded serving times

(c) Cars (d) Database

Figure 6.9: Results from the timing version

83

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(a) The assignment technique (b) The position technique

Figure 6.10: Results from the techniques of the parking optimizer model

84

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(a) Results by the minimum-waiting algorithm (b) Results by the nearest-car algorithm

(1,
up
)	

(10
,up
)	

(11
,up
)	

(12
,up
)	

(13
,up
)	

(14
,up
)	

(15
,up
)	

(16
,up
)	

(17
,up
)	

(18
,up
)	

(19
,up
)	

(2,
up
)	

(3,
do
wn
)	

(4,
do
wn
)	

(5,
do
wn
)	

(6,
do
wn
)	

(7,
do
wn
)	

(8,
do
wn
)	

(9,
do
wn
)	

0	

20	

40	

60	

80	

100	

120	

140	

Placed	
 Hall	
 Calls	

Th
e	

Av

er
ag
e	

W
ai
3n

g	

in
	
 S
ec
on

ds
	

Nearest	
 Car	
 Algo.	

Minimum	
 Time	
 Algo.	

(c) The chart of the comparison

Figure 6.11: The comparison between two different algorithms

85

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

(a) Results from adopting four cars (b) Results from adopting five cars

-­‐10	

10	

30	

50	

70	

90	

110	

130	

150	

(1,
up
)	

(10
,up
)	

(11
,up
)	

(13
,do
wn
)	

(14
,do
wn
)	

(15
,do
wn
)	

(16
,do
wn
)	

(17
,do
wn
)	

(18
,up
)	

(19
,up
)	

(2,
up
)	

(21
,do
wn
)	

(22
,do
wn
)	

(23
,do
wn
)	

(24
,do
wn
)	

(25
,do
wn
)	

(26
,do
wn
)	

(27
,do
wn
)	

(28
,do
wn
)	

(29
,do
wn
)	

(3,
do
wn
)	

(30
,do
wn
)	

(31
,do
wn
)	

(32
,do
wn
)	

(33
,do
wn
)	

(34
,do
wn
)	

(35
,do
wn
)	

(36
,do
wn
)	

Av
er
ag
e	

W
ai
*n

g	

Ti
m
e	

in
	
 S
ec
on

ds
	

Placed	
 Hall	
 Calls	

Four	
 Cars	

Five	
 Cars	

(c) The chart of the comparison

Figure 6.12: The comparison between different numbers of cars

86

Chapter 7

Conclusion

This chapter concludes this thesis in section 7.1, and discuses future work in section

7.2.

7.1 Discussion

In this thesis, a fairly general CPN-based model of the elevator system is proposed.

The proposed model has an abstract version that concerns substantially the logistics

of moving cars between floors, as well as a timing version that supports more features

such as the illumination of buttons and the calculation of waiting and serving times.

The proposed model successfully fulfilments the objective of this thesis, which consid-

ers the constraints of elevator system giving by [Ghezzi et al. (2003)]. Additionally,

The proposed model shows the expressive power and convenience of Coloured Petri

Nets.

The proposed model includes four sub-models that cover different stages and func-

tions of the elevator system in substantial detail. The flexibility of the proposed model

87

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

allows the adoption of many different algorithms and different rules. In addition, the

division of the sub-models allows easier tracking of errors and faults.

The sub-models are the car-stricture sub-model that models the elevator’s cars,

the hall-call sub-model that processes the production and the assignment of hall

calls, the car-call sub-model that also produces and coordinates the car calls, and the

system-cycle sub-model that models the operation of elevator’s cars between floors.

Furthermore, an optimizer model for the parking system of the elevators is pre-

sented. The optimizer model proposes two techniques for selecting the most appro-

priate floors on which idle cars must be held. The main advantage of this optimizer

model is reducing the waiting time of the passengers and consequentially increasing

their stratification.

Finally, two analyses techniques were applied to test the proprieties of the pro-

posed model, namely the reachability analysis through the state space tool, and the

simulation-based performance analysis by means of the simulator tool included in

the CPN Tools. Besides the analyses, a visual aid tool was developed to facility the

convenient monitor of the system’s behaviours.

7.2 Future Work

In this thesis, the proposed CPN-base model of the elevator system can be improved

more through three possible areas.

• First, adopting more complex algorithms such as geriatric algorithms or algo-

rithms based on fuzzy logic.

• Second, improving the analyses by resolving the state space explosion problem

88

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

to accomplish a full reachability analysis of the model, applying other techniques

of analyses, or both.

• Third, developing a Java-based extension that extracts and compares direct

data from the proposed model with instance support of charts. This extension

can be launched directly from CPN Tools as a third-party extensions.

89

Bibliography

Ahmad, F., Fakhir, I., Khan, S., and Khan, Y. (2014). Petri net-based modeling

and control of the multi-elevator systems. In Neural Computing and Applications,

volume 24, pages 1601–1612. Springer London.

AIS Group (2013). CPN Tools by The University of Technology, Eindhoven, The

Netherlands. www.cpntools.org .

Barney, G. (2003a). Elevator Traffic Handbook: Theory and Practice. Taylor &

Francis.

Barney, G. (2003b). Vertical transportation in tall buildings. Elevator World, 51(5),

66–75.

Bolat, B. and Cortes, P. (2011). Genetic and tabu search approaches for optimizing

the hall call-car allocation problem in elevator group systems. Appl. Soft Comput.

(Netherlands), 11(2), 1792–800.

Brand, M. and Nikovski, D. (2004). Optimal parking in group elevator control. In

IEEE International Conference on Robotics and Automation, volume 1, pages 1002–

1008.

90

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Cho, Y. C., Gagov, Z., and Kwon, W.-H. (1999). Timed Petri net based approach

for elevator group controls. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, volume 2, pages 1265–1270.

Etessami, E. S. and Hura, G. S. (1989). Abstract Petri net based approach to problem

solving in real time applications. Fourth IEEE Region 10 International Conference,

pages 234–239.

Fernandes, J. M., Baek Jorgensen, J., and Tjell, S. (2007). Requirements Engineering

for Reactive Systems: Coloured Petri Nets for an Elevator Controller. In 14th Asia-

Pacific Software Engineering Conference, pages 294–301.

George R. Strakosch, R. S. C. (2010). Wiley: The Vertical Transportation Handbook.

Ghezzi, C., Jazayeri, M., and Mandrioli, D., editors (2003). Fundamentals of Software

Engineering. Pearson Prentice Hall, 2nd edition.

Huang, Y.-H. and Fu, L.-C. (1998). Dynamic scheduling of elevator systems over

hybrid Petri net/rule modeling. In IEEE International Conference on Robotics

and Automation, volume 2, pages 1805–1810.

Janicki, R. and Koutny, M. (1995). Semantics of inhibitor nets. Information and

Computation, 123(1), 1–16.

Jensen, K. (1981). Coloured Petri Nets and the Invariant Method. Theoretical Com-

puter Science, 14(3), 317–336.

Jensen, K. and Kristensen, L. M. (2009). Coloured Petri Nets Modelling and Valida-

tion of Concurrent Systems. Berlin. Springer.

91

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Jensen, K., Christensen, S., and Kristensen, L. M. (2006). CPN Tools State Space

Manual. Department of Computer Science, Univerisity of Aarhus.

Jørgensen, J. B. K. (2008). Coloured Petri nets and graphical animation: a proposal

for a means to address problem frame concerns. Expert Systems, 25(1), 54–73.

K. Jensen (1994). Coloured Petri Nets. Springer.

Kim, J.-H. and Moon, B.-R. (2001). Adaptive elevator group control with cameras.

In IEEE Transactions on Industrial Electronics, volume 48, pages 377–382.

Kindler, E. and Páles, C. (2004). 3D-visualization of Petri net models: Concept and

realization. In Applications and Theory of Petri Nets, pages 464–473. Springer.

Lin, C.-H. and Fu, L.-C. (1996). Petri net based dynamic scheduling of an elevator

system. In IEEE International Conference on Robotics and Automation, volume 1,

pages 192–199.

Liqian, D., Qun, Z., and Lijian, W. (2004). Modeling and analysis of elevator system

based on timed-coloured Petri net. In Fifth World Congress on Intelligent Control

and Automation, volume 1, pages 226–230.

Liu, H., Qian, Y.-L., Liu, Q., and Li, J.-T. (2008). Count passengers based on Haar-

like feature in elevator application. In 2008 International Conference on Machine

Learning and Cybernetics, volume vol.2, page 1202, Piscataway, NJ, USA.

Liu, Y., Hu, Z., Su, Q., and Huo, J. (2010). Energy saving of elevator group con-

trol based on optimal zoning strategy with interfloor traffic. In 3rd International

Conference on Information Management, Innovation Management and Industrial

Engineering, ICIII, volume 3, pages 328–331, Kunming, China.

92

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Munoz, D. M., Llanos, C. H., Ayala-Rincon, M., and van Els, R. H. (2008). Dis-

tributed approach to group control of elevator systems using fuzzy logic and FPGA

implementation of dispatching algorithms. Engineering Applications of Artificial

Intelligence, 21(8), 1309–1320.

Ramadge, P. J. and Wonham, W. M. (1989). The control of discrete event systems.

In Proceedings of the IEEE 77.1, pages 81–98.

Reisig, W. (1991). Petri nets, an introduction, 2nd ed. Berlin. Springer Berlin Hei-

delberg.

Siikonen, M.-L. and Hakonen, H. (2003). Efficient evacuation methods in tall build-

ings. Elevator World, 51(7), 78–83.

van der Aalst, W. M. P. and Stahl, C. (2011). Modeling Business Processes: A Petri

Net-Oriented Approach. The MIT Press.

van der Aalst, W. M. P., Stahl, C., and Westergaard, M. (2013). Strategies for

modeling complex processes using colored petri nets. In Transactions on Petri

Nets and Other Models of Concurrency VII, pages 6–55. Springer.

Westergaard, M. (2006). The BRITNeY Suite: A Platform for Experiments. In 7th

Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools

(CPN 2006).

Westergaard, M. (2013). CPN tools 4: multi-formalism and extensibility. In Appli-

cation and Theory of Petri Nets and Concurrency, pages 400–409. Springer.

Xu, Y., Luo, F., and Lin, X. (2010). Hybrid destination registration elevator group

control system with artificial immune optimization algorithm. In 2010 8th World

93

M.A.Sc. Thesis - Mohammed Assiri McMaster - Software Engineering

Congress on Intelligent Control and Automation (WCICA 2010), pages 5067–5071,

Piscataway, NJ, USA.

Ye, J., Li, J., Deng, F., and Wang, C. (2011). Simulation of the intelligent control

circuit based on Petri net. In 6th International Conference on Computer Science

& Education, pages 66–69.

Zheng, L., Guang, S., and Hui, D. (2013). Research of elevator group scheduling

system based on reinforcement learning algorithm. In International Conference on

Measurement, Information and Control (ICMIC), volume 1, pages 606–610.

94

