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Abstract

We study a Ginzburg–Landau model for an inhomogeneous superconductor in the

singular limit as the Ginzburg–Landau parameter κ = 1/ε→∞. The inhomogeneity

is represented by a potential term V (uε) = 1
4
(a(x)−|uε|2)2, with a given smooth func-

tion a(x) which is assumed to become negative in finitely many smooth subdomains,

the “normally included” regions. For hex = O(| ln ε|) we study the Gamma-limit

of this inhomogeneous Ginzburg-Landau functional. The vanishing of a(x) near the

inner boundaries imply that the associated operators are strictly but not uniformly

elliptic, leading to many questions to be resolved near the boundaries of the nor-

mal regions. The method we use is an extension of many techniques including the

product estimate from Sandier-Serfaty, Jacobian estimates from Jerrard-Soner and

an appropriate Hodge decomposition adapted to our problem.

To resolve these problems, we first study the Γ-limit in the simpler case when

a(x) is varying but bounded below by a positive constant a0. Second, we consider

singular limits of the three-dimensional Ginzburg-Landau functional for a supercon-

ductor with thin-film geometry, in a constant external magnetic field, where d(x) is

the thickness of the thin film. The superconducting domain is multiply connected

and has characteristic thickness on the scale ε > 0, and we consider the simultaneous

limit as the thickness ε→ 0 and the Ginzburg-Landau parameter κ→∞. We assume

v



that the applied field is strong (on the order of ε−1 in magnitude) in its components

tangential to the film domain, and of order log κ in its dependence on κ. Finally,

we study the Γ-limit of the inhomogeneous superconducting Ginzburg-Landau model

with a(x) vanishing on the boundary of the normal regions.
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Chapter 1

Introduction

The history of superconductivity began with Dutch physicist Kammerling Onnes’s

discovery of superconductivity in mercury in 1911. He observed that the electrical

resistance of various metals disappeared completely in a small temperature range

at a critical temperature Tc, which is a characteristic of the material. Since then,

many other superconducting materials have been discovered and the theory of su-

perconductivity has been developed. In 1950 Ginzburg and Landau introduced the

Ginzburg-Landau model with magnetic field as a phenomenological model to describe

superconductivity. They introduced the complex superconducting order parameter u,

which is such that |u|2 represents the density of superconducting charge carriers (the

Cooper pairs). The ultimate justification for the Ginzburg–Landau model came in

1957, when Gor′kov and Eliashberg demonstrated that the Ginzburg-Landau equa-

tions could be derived as a limit of the microscopic theory of Bardeen, Cooper, and

Schrieffer [BCS]. The Ginzburg-Landau model has a great importance in the mod-

elling of superconductivity ( with Nobel prizes awarded for it: Ginzburg, Landau,

and Abrikosov). Through the influential work of Abrikosov [A], the Ginzburg-Landau
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model allows one to predict the possibility of a mixed state in type II superconductors

where triangular vortex lattices appear. These vortices have since been the objects

of many observations and experiments.

In addition to its importance in the modelling of superconductivity, the Ginzburg–

Landau Model turns out to be the simplest case of gauge invariance, and vortices to

be the simplest case of topological solitons ; moreover, it is mathematically extremely

close to the Gross-Pitaevskii model for superfluidity, and models for rotating Bose-

Einstein condensates, in which quantized vortices are also essential objects, and to

which the Ginzburg–Landau techniques have been successfully exported.

1.1 The two-dimensional Ginzburg-Landau model

Let D be a smooth, bounded, simply connected region in R2 and u ∈ H1(D,C) where

H1(D,C) is the Sobolev space W1,2(D,C) (see [E]). We define the superconducting

Ginzburg–Landau energy:

Eε(uε, Aε) :=
1

2

∫
D

{
|∇Auε|2 +

1

2ε2
(|uε|2 − 1)2 + (hε − hex)2

}
dx. (1.1.1)

In this expression, D represents the section of an infinitely long cylinder. The

first unknown u : D → C is a complex-valued function, called an ”order parameter”

and it describes the material phase in the Landau theory of phase transitions: |u|2

is the density of Cooper pairs of superconducting electrons. The material is in the

superconducting phase if |u| ' 1, while it is in the normal phase if |u| = 0. The two

phases are able to coexist in the sample. The second unknown is A, the electromag-

netic vector-potential of the magnetic-field, A : D → R2. The induced magnetic field

2
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points in the e3 direction and is given by h = ∇⊥A = ∂1A2− ∂2A1, it is a real-valued

function in D. The notation ∇A denotes the covariant gradient ∇ − iA; ∇Au is a

vector with complex components. The parameter ε is the inverse of the ”Ginzburg-

Landau parameter” usually denoted κ, a non dimensional parameter depending only

on the material, and related to the ratio of penetration depth (scale of variation of h)

and coherence length (scale of variation of u). We will consider the regime of small

ε, corresponding to large-κ (type-II superconductors). In Chapter 3, we denote the

thickness of the thin film by ε and the GL-parameter by κ and we take limit when

both ε→ 0 and κ→∞.

The superconducting current is given by

j = 〈iu,∇Au〉 (1.1.2)

where 〈., .〉 = Re ab, and the bar denotes the complex conjugation. Note that if we

identify C with R2 via a = a1 + ia2 ∈ C and b = b1 + ib2 ∈ C corresponds to the

vectors (a1, a2), (b1, b2) then 〈a, b〉 = (a, b) where (., .) is the usual scalar product on

R2. The energy admits a gauge-invariance: it is invariant under the action of the

unitary group in the form u → ueif , A → A + ∇f ; we will explain this more in

Chapter 2. The parameter hex > 0 represents the intensity of the applied field which

assumed to be directed in e3 direction.

In this thesis the energy Fε that we are going to study is slightly different from

the classical Ginzburg-Landau energy in the sense that there is a term penalizing the

variations of the order parameter u. We denote this function by a(x) : D → R and

3
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the energy becomes

Fε(uε, Aε;D) :=
1

2

∫
D

{
|∇Auε|2 +

1

2ε2
(|uε|2 − a(x))2 + (hε − hex)2

}
dx. (1.1.3)

If the material is homogeneous, the function a in Fε is taken to be a constant,

proportional to Tc − T . Here T is the body’s temperature and Tc is the material’s

critical temperature. Inhomogeneous superconducting materials can arise naturally

due to material defects or the presence of grain boundaries. A consequence of having

material inhomogeneities is that they tend to pin or stabilize supercurrent patterns.

The classical Ginzburg-Landau theory can be modified to take normal inclusions into

account. This is done by having the critical temperature, Tc, depend on position

which is equivalent to having a = a(x). It is possible that a(x) may vanish or change

sign within the domain (see [CDG96], [CR] and [ABP]).

In our work we define

Ω := D \ ∪jωj for j = 1, ...,m (1.1.4)

where ωj ⊂ D is smooth, bounded, simply connected, and we allow a(x) to be zero

on the inner boundaries ∂ωj, ∀ j = 1, ...,m for both superconducting thin film and

pinning Ginzburg-Landau. We require throughout the thesis that a(x) satisfies the

following:

(H1) a(x) ∈ C2(D).

(H2) {x ∈ Ω, a(x) > 0}

(H3) ∇a(x) 6= 0 for all x ∈ ∂ωi, i = 1, ...,m. More specifically, ∃δ > 0 s.t. there are

4
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non-negative constants mi, and Mi such that

mi ≤
a(x)

dist (x, ∂ωi)
≤Mi.

for dist (x, ∂ωi) < δ.

The Euler-Lagrange equations corresponding to the energy (1.1.3) are,

(GL)


−(∇Au)2u = 1

ε2
u(a(x)− |u|2) in Ω

−∇⊥h = (iu,∇Au) in Ω

(1.1.5)

with the boundary conditions,


h = hex on ∂D

∇Au · ν = 0 on ∂D
(1.1.6)

where ∇⊥ denotes the operator (−∂2, ∂1) and ν is the outward pointing unit normal

to ∂D.

1.2 Vortices and critical fields.

The mathematical studies of the superconductors Ginzburg–Landau model started by

the pioneering work of Bethuel, Brezis, and Hélein [BBH] on the simpler Ginzburg–

Landau model

Gε(uε) :=
1

2

∫
D

{
|∇uε|2 +

1

2ε2
(|uε|2 − 1)2

}
dx (1.2.1)

5
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over the space H1(D), with u|∂D = g, where g ∈ L2(D). This model has been studied

by numerous authors (see e.g. [JS], [LM], [DM] and [SS04]), after the work of Bethuel,

Brezis, and Hélein [BBH]. In order to pass from (1.2.1) to (1.1.1), it suffices to set the

magnetic potential A and the applied field hex to be zero in Eε. The Euler-Lagrange

equation associated with (1.2.1) is


−∆u = u

ε2
(1− |u|2) in D,

u = g on ∂D.
(1.2.2)

It is an important model problem in the Calculus of Variations as it contains different

length scales such as the vortex core, vortex spacing, and its space of solution has a

rich topological structure (see [BBH]). For this problem we define the current of u by

ju = (iu,∇u), (1.2.3)

where (a, b) = Re ab, and the bar denotes the complex conjugation. Using differential

form, we can represents ju as

ju =
n∑
k=1

(iu, ∂ku)dxk. (1.2.4)

It is related to the Jacobian determinants Ju of u through

Ju =
1

2
d(ju) =

1

2
d(iu, du), (1.2.5)

6
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where

Ju =
∑
j<k

(i∂ju, ∂ku)dxj ∧ dxk. (1.2.6)

Bethuel, Brezis, and Hélein obtained in their book [BBH] a complete description

of the asymptotic behaviour of the minimizers of the functional (1.2.1) with given

Dirichlet data g. They proved that asymptotically the minimizers have finitely many

singularities called vortices. Each of these vortices carries π| log ε| amount of energy

and the number of the vortices is determined by the winding number of the Dirichlet

data g. Their results indicate that a natural scaling for this functional is | log ε|.

In [JS02] Jerrard and Soner studied the Γ-limit of (1.2.1) divided by the scaling

factor | log ε| and proved that: for a sequence {uε}, Gε(uε)
| log ε| is uniformly bounded in ε.

Then, the Jacobian of these functions is precompact in the dual of Hölder continuous

functions, and any limit J is an atomic Radon measure with weights equal to an

integer multiple of π. The support of J is the asymptotic location of the vortices and

the weights of J at these points are related to the limiting degree of uε. In [SS04]

Sandier and Serfaty presented an optimal lower bound of (1.2.1). It is a product-type

lower bound on Ginzburg-Landau, a slight improvement of the existing lower bounds

by [JS02].

Previous works studied the vortices of the functional (1.2.1) but with a pinning

term a(x) instead of 1. This functional with non-constant a(x) was proposed by

Rubinstein in [R95] as a model of pinning vortices for Ginzburg-Landau minimizers.

André and Shafrir [AS] studied the asymptotics of minimizers for a smooth a. One of

the first works to consider a discontinuous pinning term, which models a composite

two-phase superconductor, was [LM]. In this work, a single inclusion described by a

7
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pinning term independent of the parameter ε was considered for a simplified Ginzburg-

Landau functional with Dirichlet boundary condition g on ∂D where D is a simply

connected domain. Namely the pinning term is

a(x) =


1 if x ∈ Ω

b if x ∈ ω

with 0 < b < 1. Here Ω = D \ ω where ω is a simply connected open set s.t. ω ⊂ D.

The main objective of [LM] was to establish that the vortices are attracted (pinned) by

the inclusion ω, and their location inside ω can be obtained via minimization of certain

finite-dimensional functional of renormalized energy. Dos Santos and Misiats in [DM]

proved that for small ε, minimizers have d distinct zeros (vortices) which are inside

the pinning domains and they have a degree equal to 1. The question of finding the

locations of the pinning domains with vortices is reduced to a discrete minimization

problem for a finite-dimensional functional of renormalized energy. They found the

position of the vortices inside the pinning domains and showed that, asymptotically,

this position is determined by local renormalized energy which does not depend on

the external boundary conditions.

Given ε, the behaviour of minimizers and critical points of the Ginzburg–Landau

model for superconductors (1.1.1) is determined by the value of the external field hex.

There are three critical values of hex or critical fields Hc1 , Hc2 , and Hc3 , for which

phase-transitions occur. Below the first critical field, which is of order O(| log ε|) (as

first established by Abrikosov), the superconductor is everywhere in its supercon-

ducting phase |u| ∼ 1 and the magnetic field doesn’t penetrate. At Hc1 , the first

vortices appear. Sandier and Serfaty [SS] showed that there exists a constant Hc1

8
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proportional to | log(ε)| as ε→ 0, such that if hex < Hc1 , then minimizers for Eε are

purely superconducting, satisfying |u| > 0 in Ω where Ω is simply connected domain.

By the interesting case where a(x) = 0 at finitely many isolated points {x1, ..., xn}

where Ω = D\{x1, ..., xn}, André, Bauman, and Phillips [ABP] in this strong pinning

case were able to show that the transition threshold for hex, denoted by Hc1 , is of

order 1 as ε→ 0 instead of O(| log ε|).

Between Hc1 and Hc2 the superconducting and normal phases coexist in the sam-

ple, and the magnetic field penetrates through the vortices. This is called the mixed

state and has been studied extensively (see [SS07]). When Hc2 = O( 1
ε2

), the vor-

tices are so densely packed that they overlap each other, and at Hc2 a second phase

transition occurs, after which |u| ∼ 0 inside the sample. In the interval [Hc2 , Hc3 ],

superconductivity persists near the boundary, this is called surface superconductivity,

and after Hc3 = O( 1
ε2

), superconductivity is completely destroyed and u ≡ 0, so the

sample is completely in the normal phase (see [SS07]).

A mathematical study for the Ginzburg-Landau equations corresponding to the

energy (1.1.1) with variable a(x) was done by Aftalion, Sandier, and Serfaty in [ASS]

where the case 1
2
≤ a(x) ≤ 1 was considered. In [JS] Jerrard and Soner proved the

compactness of rescaled current and Jacobian, and study the Γ-limit in the critical

case when hex is of order O(| log ε|). Sandier and Serfaty in [SS00] proved that the

induced magnetic fields associated to minimizers of the energy functional converge

as ε → 0 to the solution of a free-boundary problem. This free boundary-problem

has a nontrivial solution only when the applied magnetic field is of the order of the

”first critical field” i.e O(| log ε|). Alama and Bronsard in [AB06] present two results

for different regimes of the applied field hex in the case where a(x) ≡ 1. First, they

9
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show that when the applied field is fixed (independent of ε) there are no interior

vortices in Ω but the holes ωj act as ”Giant Vortices”, with non-zero winding of the

phase of u for large enough hex. Next, they show that interior vortices appear at

hex = O(log ε). Another related problem, arising in the context of Bose-Einstein

condensates, is presented by Aftalion, Alama, and Bronsard in [AAB]. In [AAB] the

domain D is a disk, and a(x) is chosen to be radial with a positive in a symmetric

circular annulus Ω and negative in the hole. As in [AB06] they present two results

one concerning pinning for bounded rotations, and one concerning the breakdown of

pinning when the rotation ω = O(| ln ε|). In the second result, the vortices again

appear far from the hole, and accumulate along a finite number of concentric circles

with radii explicitly determined by the function a(x). Alama, and Bronsard combine

many aspects of both papers in [AB05], where they study the case of general multiply

connected domain where a(x) is positive in Ω and negative in the hole. Full Ginzburg-

Landau model (1.1.1) with discontinuous pinning term a(x) was later considered by

Kachmar [Kac10] and by Aydi and Kachmar [AK].

In [ABGS10] Alama, Bronsard, and Galvão-Sousa studied thin film limits of the

full three-dimensional Ginzburg-Landau model for a superconductor in an applied

magnetic field oriented obliquely to the film surface. They obtained Γ-convergence

results in several regimes, determined by the asymptotic ratio between the magnitude

of the parallel applied magnetic field and the thickness of the film. In their other work

[ABGS13] they considered singular limits of the three-dimensional Ginzburg-Landau

functional for a superconductor with thin-film geometry, in a constant external mag-

netic field. They proved that the Ginzburg-Landau energy Γ-converges to an energy

associated with a two-obstacle problem, posed on the planar domain which supports

10
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the thin film. The same limit is obtained regardless of the relationship between ε and

κ in the limit. A different type of thin film problem has been studied by Contreras

and Sternberg [CS10] and Contreras [Con11]. In their setting, the superconductor

is a thin shell, built from depositing an ε-thick coating on a fixed two-dimensional

surface in R3. The limiting problem in this case is a Ginzburg-Landau model on

an embedded 2-manifold, and they obtain remarkable results connecting the lower

critical field and the appearance of vortices to the geometry of the limiting surface.

1.3 The mathematical methods for Ginzburg- Lan-

dau models

In this section we give a brief idea of the history of the mathematical methods used

to study the Γ-convergence of the Ginzburg–Landau model.

Sandier and Serfaty [SS00] studied the Ginzburg–Landau energy of superconduc-

tors submitted to a possibly non-uniform magnetic field (applied fields of intensity

p(x)hex), in the limit of a large Ginzburg-Landau parameter κ. They proved that

(1.1.1) converges in a sense similar to Γ-convergence to the limiting functional for

hex = λ| log ε| for λ > 0

E(f) =
λ

2

∫
D
| −∆(f − p) + f |+ 1

2

∫
D
|∇(f − p)|2 + |f − p|2 (1.3.1)

defined over

V = {f ∈ H1
p(Ω)/−∆(f − p) + f is a Radon measure}

11
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where Radon measure is the set of all bounded signed measure (see [E]). More pre-

cisely, they proved that the induced magnetic fields of minimizers of (1.1.1) converge,

after a renormalization, to the minimizer of (1.3.1). For a definition of Gamma-

convergence see (Definition 2.2.1).

Jerrard and Soner [JS] studied the Γ-convergence of the Ginzburg–Landau energy

(1.2.1). Compactness results for the scaled Jacobian of uε are proved under the

assumption that Gε(uε) ≤ C| log ε|2. In addition, the Γ-limit of Gε(uε)
| log ε|2 is shown to be

G(j∗) :=
1

2
‖j∗‖2

2 + ‖∇ × j∗‖M,

where j∗ is the limit of juε
| log ε| and and ‖.‖M is the total variation of a Radon measure.

These results are applied to the Ginzburg–Landau functional (1.1.1) with external

magnetic field hex = λ| log ε|. The Γ-limit of Eε
| log ε|2 is given by

E(u,A) :=
1

2

[
‖j∗ − A‖2

2 + ‖∇ × j∗‖M + ‖∇ × A− λ‖2
2

]
.

where j∗ as above and A is the limit of Aε
| log ε| . Proving the Γ-limit can be done in two

steps (see Definition 2.2.1).

The main tool to prove the lower bound inequality is the vortex balls construction.

Each ball will contain amount of energy at least of π|d| log r
ε

where d = deg( u
|u| , ∂B),

and r is the radius of B. The vortex balls are not completely intrinsic to (u,A)

and not unique, they have a simple relation to the configuration (u,A), namely that

the measure
∑

i 2πdiδpi is close in certain norm to the gauge-invariant version of the

Jacobian determinant of u, an intrinsic quantity depending on (u,A). We use this

relation to find a sharp lower bound of the Jacobian in term of the Ginzburg-Landau

12
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energy.

At the same period of time two papers, [Sa] and [Jer99], came with the idea

of constructing these balls. Jerrard in [Jer99] showed that the unbounded part of

the energy is concentrated on a small number of small sets called ”vortex balls”.

He and Soner later on [JS02] used these balls to find a sharp lower bound of the

Jacobian in term of the Ginzburg–Landau energy which they called the ”Jacobian

estimates”. While Sandier in [Sa] showed that given any arbitrary configuration

(u,A), one can describe it energetically as a collection of vortices glued together, as

long as its Ginzburg–Landau energy is not extremely large, but without assuming

that it solves any equation.

It is important to mention the work of Sandier and Serfaty [SS04] where they

proved a new inequality for the Jacobian associated to the Ginzburg–Landau energy

in any dimension. They proved the lower bound of (1.2.1) in any dimension which is

a product-type lower bound called ”product estimate”.

The proof relies on the same ingredient as the other proof of lower bound , i.e. on

the ball construction method of [Jer99] and [Sa], but the main new idea is to use a

deformation of the metric, and thus a construction of growing ellipses instead of balls.

Ellipses allow the freedom necessary to ”separate” the directions. This sharp lower

bound of the Jacobian in term of the Ginzburg–Landau energy was introduced also

by Jerrard and Soner [JS] to study the 2 dimensional case. In our thesis we modify

and adapt the ”product estimate” method to prove the lower bound.

The main tool used to study the upper bound is the Hodge decomposition method.

13
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With this method we decompose the space L2(D) into three subspaces

U = {−∇⊥ψ, ψ ∈ H1
0(D; R)},

V = {∇ζ, ζ ∈ H1(D; R)},

W = {W ∈ C1(D; R2), ∇⊥ ·W = 0, ∇ · (W ) = 0, W · ν = 0 on ∂D}.

(1.3.2)

s.t. any j ∈ L2(D) can be written as:

j = U + V +W

where U ∈ U , V ∈ V , and W ∈ W (see Lemma 3.3.2 in Chapter 3). Then we

construct a sequence which converges to the desired limit j.

Jerrard and Soner [JS] came up with the idea of using the Hodge decomposition

to construct a sequence of functions to obtain an upper bound that matchs the lower

bounds for the Ginzburg–Landau energy. This construction is very similar to the

construction given by Sandier and Serfaty [SS00] for the functional with applied

magnetic field. [JS] introduced this Hodge-decomposition so that it would be easier

to generalize to higher dimensions.

More details and informations on the methods used to study the Ginzburg–Landau

model can be found in the book of Sandier and Serfaty [SS07].

1.4 Main results

In our thesis, we concentrate on the Γ-convergence of Ginzburg-Landau energy is

related to (1.1.3).

14
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1.4.1 The Ginzburg-Landau model with a pinning term bounded

from below.

In chapter 2 we consider the Γ-convergence of Fε(u,A; Ω) where Ω is as in (1.1.4)

with a pinning term a(x) that is bounded from below by a positive number. The aim

of this chapter is to introduce ”the methods” we will use to find the Γ-limit in order

to be able to adapt them in the case where a(x) is allowed to vanish on the inner

boundaries (Chapter 3, 4). The fact that a(x) vanishes on the inner boundaries is

technically more difficult and will require several additional steps. We combine many

methods in a novel approach for these problems.

The Γ-limit is obtained by finding an appropriate lower bound and then construct-

ing a sequence that gives us the matching upper bound. Most of the previous works

have considered the Γ-limit of (1.1.1) when a(x) ≡ 1. Our main result in Chapter 2 is

Theorem 2.2.2. To prove Theorem 2.2.2, for the lower bound we modified the method

of Sandier and Serfaty [SS04] which gives an inequality for the Jacobian associated to

the Ginzburg-Landau energy in any dimension. What we had to modify is the vortex

balls construction and this is due to the presence of a(x). For the upper bound we

use a Hodge decomposition method inspired by [JS] and [ABGS13].

1.4.2 Superconducting thin film

In Chapter 3 we consider the Γ-limit of the 3D Ginzburg-Landau functional in a thin

film geometry

Iε,κ(u,A) :=

∫
Dε

(
|∇Au|2 +

κ2

2
(1− |u|2)2

)
dx+

1

2

∫
R3

|h− hex|2dx. (1.4.1)

15



Ph.D. Thesis - Sara S. Alzaid McMaster University - Mathematics

This energy reflects the fact that the magnetic field is present everywhere. The

superconducting thin film is given by Dε which we assume is multiply connected and

the thickness of the film is given by d(x) and is allowed to be zero on the boundaries

of the holes. Hence the superconductor domain is multiply-connected and has a

characteristic thickness on the scale ε > 0. We consider the limiting as the thickness

ε → 0 and the Ginzburg-Landau parameter κ → ∞. As in [ABGS13] it turns out

that the relationship between ε→ 0 and κ→∞ doesn’t affect the limiting problem.

The superconducting sample is represented by the domain Dε ⊂ R3,

Dε = {(x′, x3) ∈ R3 : x′ ∈ Ω, εf(x′) < x3 < εg(x′)},

where Ω := ω0\∪jωj, j = 1, ...,m and ωj ⊂ ω0 ⊂ R2 is smooth and simply connected,

f, g : Ω→ R are smooth functions on Ω with f(x′) < g(x′) for all x′ ∈ Ω, and ε > 0.

We denote by

d(x′) = g(x′)− f(x′)

the thickness of the film for given x′ ∈ Ω. We assume d(x) satisfies (H1)-(H3). We

rescale the domain by ε in the x3 direction in order to recognize the correct scaling

for hex in terms of the thickness parameter and of the Ginzburg-Landau parameter

κ. The energy transforms as follows:

Ĩε,κ(u,A) =:

∫
D

(
1

2
|(∇′ − iA)u|2 +

1

2ε2
|(∂3 − iA3)u|2 +

κ2

4
(1− |u|2)2

)
dx

+
1

2

∫
R3

(
|h3 − hex3 |2 +

1

ε2
|h′ − h′ex|2

)
dx,

16
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We choose the strength of the exterior applied field to be related to the thickness

parameter ε, and to be on the scale of the first critical field in κ via,

hex =

(
H ′

log κ

ε
,H3 log κ

)
. (1.4.2)

where H = (H ′, H3) = (H1, H2, H3) ∈ R3 is fixed constant vector (independent of

ε, κ). For applied fields of the form (1.4.2), the energy of minimizers of Ẽε,κ will be on

the order of [log κ]2. That leads to introduce the following normalization, and study

the family of functionals

Iε,κ(u,A) :=
1

(log κ)2
Ĩε,κ(u,A)

and configuration (u,A) with bounded values of Eε,κ.

Define the space,

Z := {j ∈ L2(Ω,R3) : j = (j′(x′), 0), J :=
1

2
∇× j ∈M(D,R3)},

where M(D,R3) is the space of vector-valued Radon measures on D. Given j ∈ Z

and B′ : R2 → R2, we define the limiting functional I∞(j;F ) where F = ∇′ × B′ as

below:

I∞(j;F ) =


1
2
||d(x′)∇× j||M(Ω) + 1

2

∫
Ω
d(x′)|j′ −B′|2, if j ∈ Z

∞ otherwise
(1.4.3)

The main result is that the Γ-limit of Iε,κ is related to I∞ (see Theorem 3.1.3).

We prove this in the usual two steps: first, bounded sequences are compact and the

17
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energy is lower semicontinuous in the energies which yields the Theorem 3.1.3. The

proof of Theorem 3.1.3 is a direct application of [SS04] when n = 3. To get the lower

bound inequality, we integrate out the variable x3 in the energy to reduce the 3D

problem to a two-dimensional total variation, weighted by the film thickness function

d(x′).

The second part of the Γ convergence result is the construction of recovery se-

quences which is given by Theorem 3.1.4. We had many difficulties proving the

upper bound: first, we had to modify the Hodge decomposition Lemma to adapt it to

the case where d(x) is zero on the inner boundaries. We did this by introducing the

space H ( see Definition 3.3.1) then we define the Hodge decomposition with respect

to the weighted inner product,

〈v, w〉 =

∫
Ω

d(x)v · w dx′

on L2(Ω; R2).

1.4.3 Pinning in the Ginzburg-Landau Model for Supercon-

ductors

In chapter 4 we consider the Γ-convergence of a two-dimensional Ginzburg–Landau

model

Eε(ψ,A) =
1

2

∫
D

{
|∇Aψ|2 +

1

2ε2
[
(|ψ|2 − a(x))2 − (a−)2

]
+
∣∣h− hex∣∣2}dx (1.4.4)

18
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for an inhomogeneous superconductor with finitely many ”normal regions” in the

interior. The inhomogeneity is introduced via a potential term

V (ψ) =
1

4

[ (
a(x)− |ψ|2

)2 − (a−)2
]
,

with real-valued function a(x). The presence of the inhomogenity a(x) creates prob-

lems near the boundaries of the pinning sites. Indeed, under our hypotheses,
√
a+(x) 6∈

H1(Ω), and this results in a singular boundary layer as ε → 0. Following [AB05], a

remarkable identity (see Lassoued & Mironescu [LM]) allows us to remove the singular

boundary layer part from the rest of the energy. Define a functional,

Jε(η) :=

∫
D

{
1

2
|∇η|2 +

1

4ε2

[(
η2 − a(x)

)2 − (a−)2
]}

dx,

and let ηε ∈ H1(D; R) be the (unique) minimizer. With u = ψ/ηε we have:

Eε(ψ,A) = Jε(ηε) +

∫
D

{
η2
ε

2
|∇Au|2 +

η4
ε

4ε2
(|u|2 − 1)2 +

1

2
(h− hex)2

}
dx

=: Jε(ηε) + Fε(u,A),

and the object of interest becomes the reduced energy Fε. We define

Ωε =
{
x ∈ Ω : dist (x, ∂Ω) > ε

1
3

}
where we can show that

η2
ε ≤ (1 + ε

1
3 )2a(x). (1.4.5)

In Theorem 4.2.1 we prove the first part of the Γ-convergence which is the lower
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bound. We modified the method of the product estimate by Sandier and Serfaty

[SS04] to the case when a(x) vanishes. The lower bound of Fε is defined in the whole

domain Ω but to be able to see the pinning term a(x) in the limit we have to be away

from the normal regions by any δ > 0 for all δ.

For the upper bound which is given in Theorem 4.2.2 , using a result of Montero

[M07] we reduced the decomposition of the energy Eε into the multiply connected

domain Ω and then we adapt an appropriate Hodge decomposition as in Chapter 3.

Having η2
ε in the energy which depends on ε complicate matters. Nevertheless we

apply the Hodge decomposition with a(x) in the full domain and adapt the steps of

Theorem 3.1.4 in Chapter 3 on those functions.

1.5 Open problems

There are many open problems left. Finding the obstacle problem associated to the

Γ-limit in Chapter 3 and 4 is the next step. The solution of the obstacle problem gives

us the location of the vortices and hence tells us where they first appear. Previous

results (see [ASS], [ABGS13] and [SS00]) found the obstacle problem when a(x) is

bounded below by a positive number, their results need to be extended to the case

when a(x) vanishes. One of the most interesting cases to study is the case where the

pinning term a(x) vanishes at a point in a simply connected domain. The problems

studied in Chapter 3 and 4 should be helpful in solving this problem. Indeed we hope

to be able to solve this question by shrinking the holes in our results. The problem is

that the associated elliptic problems are very degenerate. Finally, we hope to extend

the results of [ASS] to the case where a(x) vanishes at isolated points.

20



Chapter 2

Γ-Convergence of the

Ginzburg–Landau Functional with

a Pinning Term Bounded by a

Positive Number.

This chapter is a warm up for the next 2 chapters. We introduce the methods needed

to solve the later problems and we do this by solving a new problem which is less

technically difficult but for which we combine the previous results in a new way.
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2.1 Introduction

Let D ⊂ R2 be a smooth simply-connected domain, and define Ω := D \ ∪mi=1ωi,

where i is bounded by n, and ωi ⊂ D is smooth and simply-connected. The Ginzburg-

Landau energy is given by:

Eε(u,A) :=
1

2

∫
Ω

[∣∣∇Au
∣∣2 +

1

2ε2

(
|u|2 − a(x)

)2]
dx+

1

2

∫
D

∣∣∣h− hex∣∣∣2dx (2.1.1)

for ε := 1
κ
> 0, where κ is the Ginzburg-Landau parameter, u ∈ H1(Ω,C),

∇A := ∇− iA, and |u|2 represents the density of superconducting election pairs. The

function A ∈ H1(D,R2) is the magnetic potential and h := ∇ × A is the induced

magnetic field. The applied magnetic field hex is a vector field and we take it to be

of O(| log ε|). The energy here is different from the original Ginzburg-Landau Energy

where a(x) ≡ 1. In our case a : Ω −→ R is a smooth varying function which has a

minimum, the minimum of a(x) represents the pinning sites for the vortices and here

are more conditions we consider on a(x):

(H1) a(x) ∈ C2(D).

(H2) There exists a constant a0 > 0 such that a0 ≤ a(x) ≤ 1.

The Ginzburg-Landau equations associated to the functional (2.1.1) when minimizing
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for (u,A) ∈ H := H1(Ω,C)×H1(D,R2) are:

−∇2
Au+ 1

ε2
(|u|2 − a(x))u = 0 in Ω; (2.1.2)

−∇⊥h = j := 〈iu,∇Au〉 in Ω; (2.1.3)

h = hex on ∂D; (2.1.4)

h = Hj(constant) in ωj,j = 1, ...,m. (2.1.5)

Integrating the second equation around each ∂ωj will give us an extra boundary

condition,

∫
∂ωj

∂h

∂ν
ds =

∫
∂ωj

∇⊥h · τds

= −
∫
∂ωj

Im {u∇u} · τds+

∫
∂ωj

A · τds

= −2π deg(u, ∂ωj) +

∫
ωj

hdx

= −2π deg(u, ∂ωj) +Hj|ωj|. (2.1.6)

The functional Eε is gauge-invariant: if ϕ ∈ H2(D,R) is any scalar potential, then

Eε(u exp(iϕ), A+∇ϕ) = E(u,A). The invariance of the Energy causes a problem for

the minimization of GL. Indeed, if {un, An}n is minimizing sequence, then for any

sequence of functions {fn}n, {(uneifn , An +∇fn)}n is also a minimizing, for any fn.

Thus no good bounds on {un, An}n can be deduced from the fact that GL(un, An)

is bounded independently of n. Using a particular gauge transformation, namely

Coulomb gauge, solves this problem.

Definition 2.1.1 Let D ⊂ R2 be a smooth simply-connected domain. We say A :
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D −→ R2 satisfies the Coulomb gauge condition in D if


divA = 0 in D

A · ν = 0 on ∂D
(2.1.7)

where ν is the outward pointing unit normal to ∂D.

We will use Proposition 3.3 from [SS07],

Proposition 2.1.2 Let D be a smooth, bounded, simply connected domain in R2.

There exists a constant C > 0 such that if A : D → R2 satisfies the Coulomb gauge

condition, then

‖A‖2
H1(D,R2) ≤ C‖curlA‖2

L2(D),

and

‖A‖2
H2(D,R2) ≤ C‖curlA‖2

H1(D).

Now assume that |hex| is a function of ε and the following limit exists and is finite:

λ := lim
ε→0

| log ε|
|hex|

(2.1.8)

and suppose that for a sequence of functions (uε, Aε),

Eε(uε, Aε) ≤ C(log ε)2. (2.1.9)

Using (2.1.9) and with our choice of gauge we have

∥∥∥ Aε
| log ε|

∥∥∥
L∞(Ω)

≤ C, (2.1.10)
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∥∥∥ hε
| log ε|

∥∥∥
L2(D)

≤ C. (2.1.11)

Hence there exist subsequence Aε and hε which converge to A in L∞(Ω) and h in

L2(D) respectively as ε → 0. We will use these subsequences and their limits later

on.

We define the current and Jacobian as follow,

Definition 2.1.3 For a complex-valued uε, the current of uε is defined as the 1-form:

j(uε) := (iuε, duε) (2.1.12)

where (a, b) = Re (āb). Using differential forms, j(uε) can be written as

j(uε) =
2∑

k=1

(iuε, ∂kuε)dxk. (2.1.13)

It is related to the Jacobian determinant by:

Juε =
1

2
d(juε) =

1

2
d(iuε, duε) (2.1.14)

where

Juε =
∑
j<k

(i∂juε, ∂kuε)dxj ∧ dxk.

Definition 2.1.4 Consider f : Ω→ R.

1. If f is bounded and continuous, we write

‖f‖C0(Ω) := sup
x∈Ω
|f(x)|
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2. the αth-Hölder seminorm of f is:

[f ]C0,α(Ω) := sup
x,y∈Ω
x 6=y

(f(x)− f(y)

‖x− y‖α
)
.

and the αth-Hölder norm of f is:

‖f‖C0,α(Ω) = ‖f‖C0(Ω) + [f ]C0,α(Ω).

Definition 2.1.5 For k ∈ N, the Sobolev spaces W−k,p(Ω) are defined as dual spaces

(W k,q(Ω))′, where q is conjugate to p : 1
p

+ 1
q

= 1. Their elements are distributions:

W−k,p(Ω) :=
{
u ∈ D′(Ω), u =

∑
|α|≤k

∂αuα, for some uα ∈ Lp(Ω)
}
.

Naturally W−k,p(Ω) is a Banach space with the norm:

‖u‖W−k,p(Ω) = sup
v∈Wk,p(Ω)
‖v‖

Wk,p(Ω)
6=0

∣∣〈u, v〉∣∣
‖v‖Wk,p(Ω)

(2.1.15)

For any integer k, ∂α is a bounded operator from W k,p to W k−|α|,p.

Definition 2.1.6 A sequence {fn} in Lp(Ω) is said to converge weakly in Lp(Ω) to

f ∈ Lp(Ω) if for any φ ∈ Lq(Ω) where q is the conjugate of p we have

lim
n→∞

∫
Ω

φ · fndx =

∫
Ω

φ · fdx

We write

{fn}⇀ f in Lp(Ω)
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to mean that f and each fn belong to Lp(Ω) and {fn} converges weakly in Lp(Ω) to

f .

Definition 2.1.7 Let (X,A, µ) be a signed measure space. A ∈ A is non-negative,

(respectively, non-positive) if

∀E ⊆ A, for which E ∈ A,we have µ(E) ≥ 0, (respectively, µ(E) ≤ 0.)

For each A ∈ A we define

µ+(A) = sup{µ(A), 0},

and

µ−(A) = − inf{−µ(A), 0},

µ+, respectively, µ−, is the positive, respectively, negative, variation of µ. For any

signed measure space (X,A, µ), the total variation |µ| is defined as:

∀A ∈ A, |µ|(A) = µ+(A) + µ−(A).

Definition 2.1.8 Let V be an n-dimensional (n finite) vector space with inner prod-

uct g. The Hodge star operator (denoted by ?) is a linear operator mapping p-forms

on V to (n− p)-forms, i.e.,

? : Ωp → Ωn−p. (2.1.16)
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2.2 Γ-limit and Main results.

The Γ-limit was first introduced by E. de Giorgi and T. Franzoni in 1975 and since

then was much developed especially in connection with applications to problems in

the Calculus of Variations.

Definition 2.2.1 (Γ-Convergence)

Let X be a topological space and Fn : X → R+ a sequence of positive functionals

on X. Then Fn are said to Γ-converge to Γ-limit F : X → R+ if the following two

conditions hold:

1. Lower bound inequality: For every sequence (xn) ∈ X such that xn → x as

n→ +∞,

F (x) ≤ lim inf
n→∞

Fn(xn).

2. Upper bound inequality: For every x ∈ X, there is a sequence (xn) converging

to x such that

F (x) ≥ lim sup
n→∞

Fn(xn).

Our main result is to find the Γ-limit for the Ginzburg-Landau functional and this

is done by finding the lower bound and then the matching upper bound as stated in

the following Theorem:

Theorem 2.2.2 Let (H1)-(H2) be satisfied and assume that (2.1.9) holds. Then

there exists j ∈ L2(Ω) and J ∈ M(Ω) ∩H−1(Ω) such that j(uε)
hex

⇀ j in L2(Ω), and

Juε
hex

= ∇× j(uε)
hex

⇀ J in the sense of measure. Moreover,

lim inf
ε→0

Eε(uε, Aε)

(log ε)2
≥ 1

2

[
‖aJ‖M(Ω) +

∫
Ω

a(j − A)2dx+ λ

∫
D
|∇ × A− 1|2dx

]
,
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where M(Ω) is the space of vector-valued Radon measures on Ω, and A is the limit of

Aε
hex

in L∞(D). Finally, If Ω is smooth and bounded, then for any given j ∈ L2 such

that ∇ × j/2 is a Radon measure, there exists a sequence {uε} in H1(Ω) such that

jε
hex
, Jε
hex

defined in (2.1.12) and (2.1.14) converge to j, and J respectively, weakly in

L2 and in (Co,α(Ω))′ for every 0 < α ≤ 1, and for this sequence the above limit is

achieved with an equality.

The proof of this Theorem will be done in many steps and we will need first to

obtain certain results.

2.3 Jacobian estimate and lower bound

In this section we follow Sandier and Serfaty to find a sharp Jacobian estimate in

terms of the magnetic Ginzburg-Landau energy, we do this by modifying Theorem 1

in [SS04].

Theorem 2.3.1 Let (uε, Aε) be such that Eε(uε, Aε) ≤ C| log ε|2 and hε = curlAε.

Then up to extraction the rescaled Jacobians J(uε,Aε)
hex

weakly converge to J, a measure-

valued 2-form, in (C0,α
c (Ω))′, where 0 < α ≤ 1, (iuε,∇uε)

hex
⇀ aj in L2(Ω), and

lim inf
ε→0

1

| log ε|2
Eε(uε, Aε) ≥

a

2
|J |(Ω) +

1

2

∫
Ω

a|j − A|2dx+
λ

2

∫
D
|h∗ − 1|2dx (2.3.1)

where A and h∗ are the limits of Aε and hε defined in (2.1.10) and (2.1.11).

Proof:

We prove this Theorem in 4 steps as in [SS04] with a minor modification due to

the presence of a(x).
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Step 1. (Modified vortex balls). Sandier and Serfaty constructed their vortex

balls based on the fact that |uε| is an S1 valued in the limit. Since we have |uε| is

close to a(x) when ε→ 0, we used the vortex balls constructed by Aftalion, Sandier,

and Serfaty [ASS]. Define the domain

Ωε := {x ∈ Ω : dist (x, ∂Ω) > ε},

and recall Proposition 1.1 from [ASS],

Proposition 2.3.2 Assume hex ≤ λ| log ε| for some λ > 0 and that (H1) to (H2)

are satisfied, then there exists a positive constant ε0 such that if ε < ε0 and (uε, Aε)

is a minimizer of Eε, there exists a family of balls of disjoint closures (depending on

ε) (Bi)i∈Iε = (B(pi, ri))i∈Iε satisfying.

{x ∈ Ωε, |
√
a(x)− |uε(x)|| ≥ 2

| log ε|2} ⊂ ∪i∈IεB(pi, ri), (2.3.2)∑
i∈Iε ri ≤

1
| log ε|2 , (2.3.3)

1
2

∫
Bi
|∇uε|2dx ≥ πa(pi)|di|| log ε|(1− o(1)), (2.3.4)

where di = deg(u/|u|, ∂Bi) if Bi ⊂ Ω, and 0 otherwise.

Step 2. (Compactness of the Jacobian).

Using the points {pi} in Proposition 2.3.2 we define the measure,

µε = π
∑

{i|pi∈Ωε}

diδpi . (2.3.5)
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From Proposition 2.3.3, it follows that

C| log ε|2 ≥ Eε(uε, Aε) ≥
∑
i

πa(pi)|di|| log ε|(1− o(1))

≥ a0

∑
i

π|di|| log ε|(1− o(1))

where a0 is given by hypothesis (H2) on a(x). Hence

1

2

∫
Ω

|µε|dx =
π
∑

i |di|
| log ε|

≤ C,

thus (µε) is a bounded sequence of measures, and we can assume that µε converges

to some µ∗ in the sense of measures.

µε ⇀ µ∗ in the sense of measure, (2.3.6)

|µε| = π
∑
{i|pi∈Ω}

|di|⇀ |µ∗| in the sense of measure. (2.3.7)

We have, following [SS04] and proved in details in Chapter 4 Proposition 4.3.2,

that

‖ ? Juε − µε‖(C0,α
c (Ω))′ ≤ C

Eε(uε, Aε)

| log ε|2
, (2.3.8)

where ? is the Hodge operator with respect to the Euclidean metric (see definition

(2.1.8)). The compactness of µε
| log ε| in (C0,α

c (Ω))′ for any 0 < α ≤ 1 is true because

of its boundedness in (C0)′ and the compact embedding of (C0,α(Ω))′ in (C0)′. It

follows that Jε
| log ε| subsequentially converges in (C0,α

c (Ω))′ to the same limit as µε
| log ε| ,

i.e. to a measure J .
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Step 3. (Jacobian estimate).

Let X, Y be continuous vector field compactly supported in Ω. It follows from

the energy bound (2.1.9) that

jε,X =
|X · ∇uε|
| log ε|

, jε,Y =
|Y · ∇uε|
| log ε|

(2.3.9)

are bounded in L2 and therefore converge weakly subsequentially. Using Proposition

2.3.2, there exist a collection of balls {Bi} satisfying (2.3.2), (2.3.3), and (2.3.4). Let

X, Y be continuous vector fields compactly supported in Ω, we have

1

2| log ε|

∫
Bi

|X · ∇uε|2 + |Y · ∇uε|2
dx1dx2

|X ∧ Y |
≥ πa(pi)|di|(1− o(1)) (2.3.10)

(as we see a(x) appears in the right hand side because of our vortex balls construction

which is different than the one in [SS04]). Using the definition of µε (2.3.5), and

notting that a(x) is near a(pi)− o(1), we sum over i and get

1

2| log ε|

∫
∪iBi
|X · ∇uε|2 + |Y · ∇uε|2

dx1dx2

|X ∧ Y |
≥
∣∣∣ ∫

Ω

(1− o(1))adµε

∣∣∣, (2.3.11)

where o(1) is a quantity that tends to zero when ε→ 0. Dividing the above inequality

by | log ε| and using (2.3.8) we find

lim inf
ε→0

1

2| log ε|2

∫
∪iBi
|X · ∇uε|2 + |Y · ∇uε|2 ≥ |X ∧ Y |

∣∣∣∣∣
∫

Ω

aJ(∂x1 , ∂x2)

∣∣∣∣∣
≥

∣∣∣∣∣
∫

Ω

aJ(X, Y )

∣∣∣∣∣, (2.3.12)

where J is the limit of Juε
| log ε| . Using (2.3.9) we fix a convergent subsequence and let
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jX , jY denote the weak limits of the normalized current juε
|uε|| log ε| . Then

|jε,X |2 ⇀ |jX |2 + νX , |jε,Y |2 ⇀ |jY |2 + νY , (2.3.13)

weakly as measures, where νX and νY are positive Radon measures, called the defect

measures of the sequences. Following [SS04], (proved in details in Chapter 4 Theorem

4.3.1), we get

1

2
(‖νX‖+ ‖νY ‖) ≥

∣∣∣∣∣
∫

Ω

aJ(X, Y )

∣∣∣∣∣. (2.3.14)

Step 4. (Lower bound).

We first prove the lower bound of the gradient part
∫

Ω
|∇uε|2 using the Jacobian

estimate (2.3.12). We choose e1, e2 an orthonormal (moving) frame that may depend

on x ∈ Ω, and f, g ∈ C0
c (Ω) with |f | ≤ 1 and |g| ≤ 1. Then, let X1 = fe1, X2 = ge2.

The inequality

|∇uε|2 ≥
∣∣X1 · ∇uε

∣∣2 +
∣∣X2 · ∇uε

∣∣2 (2.3.15)

holds. Since
∣∣Xi · juε

∣∣ ≤ ∣∣Xi · ∇uε
∣∣∣∣uε∣∣, we have

∣∣Xi · juε
∣∣−√a∣∣Xi · ∇uε

∣∣ ≤ (∣∣uε∣∣−√a)∣∣Xi · ∇uε
∣∣

Since that juε
| log ε| is bounded in L2(Ω), hence weakly compact, and that

(∣∣Xi · juε
∣∣−√a∣∣Xi · ∇uε

∣∣)
+

| log ε|
→ 0 (2.3.16)
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as ε→ 0 in L1(Ω). It follows that denoting by φXi the weak L2 limit of

√
a
∣∣Xi · ∇uε

∣∣
| log ε|

, i = 1, 2

and by (2.3.13) we have
√
a|Xi · j| ≤ φXi almost everywhere, where j is the weak

limit of the normalized currents. Denoting by νX1 and νX2 the defect measures of

∣∣X1 · ∇uε
∣∣

| log ε|
,

∣∣X2 · ∇uε
∣∣

| log ε|

respectively, it follows from (2.3.15) and the definition of defect measure that

lim inf
ε→0

1

| log ε|2

∫
Ω

|∇uε|2 ≥ ‖νX1‖+ ‖νX2‖+

∫
Ω

|φX1|2 + |φX2|2

using the above result, we are led to

lim inf
ε→0

1

| log ε|2

∫
Ω

|∇uε|2 ≥ 2

∣∣∣∣∣
∫

Ω

aJ(X1, X2)

∣∣∣∣∣+

∫
Ω

a|X1 · j|2 + a|X2 · j|2

≥ 2

∣∣∣∣∣
∫

Ω

fgaJ(e1, e2)

∣∣∣∣∣+

∫
Ω

a|j|2

+

∫
Ω

(|f |2 − 1)a|j · e1|2 + (|g|2 − 1)a|j · e2|2.

(2.3.17)

Taking the supremum over all such frames e1, e2 and all compactly supported |f | ≤

1, |g| ≤ 1 proves the lower bound of the gradient part of the energy.
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To prove the lower bound (2.3.1) we expand the energy as follow:

Eε(u,A) =
1

2

∫
Ω

|∇Au|2 +
1

2ε2
(
|u|2 − a

)2
dx+

1

2

∫
D

∣∣h− hex|2dx
≥ 1

2

∫
Ω

|∇u− iAu|2dx+
1

2

∫
D

∣∣h− hex|2dx
=

1

2

∫
Ω

[
|∇u|2 + |A|2|u|2 − 2A〈iu,∇u〉

]
dx+

1

2

∫
D

∣∣h− hex|2dx.
The lower bound of first integral is given by (2.3.17). For the rest, we use the

energy bound (2.1.9) and letting Aε and hε be the convergent subsequences followed

from (2.1.10) and (2.1.11) to A in L∞(Ω) and h∗ in L2(Ω) respectively and using the

fact that |u|2 → a(x) a.e. in Ω, we have

lim inf
ε→0

1

2| log ε|2
[ ∫

Ω

(
|Aε|2|uε|2 − 2Aεjuε

)
dx+

∫
D
|hε − hex|2dx

]
≥ 1

2

∫
Ω

(
a(x)|A|2 − 2a(x)Aj

)
dx+

1

2

∫
D

∣∣h∗ − λ|2dx
(2.3.18)

(2.3.17) and (2.3.18) yield the full conclusion of the Theorem 2.3.1.

♦

2.4 Upper bound

We first define the space Z by

Z := {j ∈ L2(Ω; R2) : J :=
1

2
∇× j ∈M(Ω; R2)}.
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Proposition 2.4.1 Let j ∈ Z and consider any sequence εn such that εn → 0. Then

there exists a sequence {un, An} ⊂ H1(Ω; C)×H1(D,R2), satisfying

j(un)

| log εn|
→ j in Lp(Ω), for all p < 2,

Jun
| log εn|

→ J :=
1

2
∇× j weakly in M(Ω; R2), and strongly in (Cα

0 (Ω))′, 0 < α < 1,

An
| log ε|

→ A in L∞(D),

with j(un) := (iun, dun) and Jun := 1
2
dj(un). Moreover,

Eε(un, An) ≤ 1

2

∫
Ω

{
a(x)dµ+ a(x)(j − A)2

}
dx+

1

2

∫
D
|∇ × A− λ|2dx.

To prove this proposition we follow [JS] and [ABGS13]. We require the following

Hodge decomposition with respect to the weighted inner product ,

〈v, w〉 =

∫
Ω

a(x)v · w dx

on L2(Ω; R2). We define the following subspaces:

U = {−1

a
∇⊥ψ, ψ ∈ H1

0(Ω; R)},

V = {∇ζ, ζ ∈ H1(Ω; R)},

W = {W ∈ C1(Ω; R2), ∇⊥ ·W = 0, ∇ · (aW ) = 0, W · ν = 0 on ∂Ω}.

(2.4.1)

Recall Lemma 3.1 and its proof from [ABGS13].

Lemma 2.4.2 Any Z ∈ L2(Ω; R2) admits a unique orthogonal decomposition Z =

U + V +W with U ∈ U , V ∈ V, and W ∈ W, with respect to the inner product 〈., .〉.
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The space W is a finite dimensional where dim(W) = m.

Proof of Lemma 2.4.2. First, we assume Z ∈ C∞(Ω,R) .We define ψ and ζ as

the solutions to the boundary-value problems,


−∇ ·

(
1

a(x)
∇ψ
)

= curlZ in Ω,

ψ = 0 on ∂Ω,


∇ · (a(x)∇ζ) = div [aZ] in Ω,

∂ζ
∂ν

= Z · ν on ∂Ω,

the existence of solutions to these boundary-value problems is standard because a(x)

is bounded below. Then, it is easy to verify that W := Z + 1
a
∇⊥ψ − ∇ζ satisfies

curlW = 0 = div [aW ] in Ω, and W · ν = 0 on ∂Ω. Moreover, by integration by parts

we see that W ⊥ 1
a
∇⊥ψ ⊥ ∇ζ in the inner product 〈., .〉.

To identify the space W , we apply Lemma 1.1 of [BBH] and note that any W ∈

W may be written as W = 1
a
∇⊥ξ with ξ constant on each component of ∂Ω, and

∇ · 1
a
∇⊥ξ = 0 in Ω. Our domain Ω = D \ ∪jωj is multiply connected, then we

follow the treatment of [ABGS13]. For each fixed j = 1, ...,m we define functions

ξi ∈ H1
0(Ω) which solve

∇ · 1

a
∇ξi = 0, in Ω,

ξi|∂ωj = cij, j = 1, . . . ,m

ξi|∂D = 0,

1

2π

∮
∂ωj

1

a

∂ξi
∂ν

dx = δi,j j = 1, . . . ,m,


(2.4.2)

where cij are constants (determined by the solutions,) and δi,j is Kronecker’s delta.

We got the last equation by integrating around each ωj as earlier (2.1.5).
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We can obtain the existence of such ξi by minimizing

Fi(ξ) =
1

2

∫
Ω

1

a
|∇ξ|2dx+ 2πξ|ωi

over W where

W := {ξ ∈ H1
0(D) with ξ|ωj = constant}. (2.4.3)

By the Poincaré inequality and the trace inequalities, Fi is bounded below on H1
0(Ω),

and by convexity it attains a unique minimizer ξi. A simple computation shows that

minimizers give weak solutions to the boundary-value problem (2.4.2). Indeed, the

first variation yields,

0 = DFi(ξi)u =

∫
Ω

[
1

a
∇ξi · ∇u]dx+ 2πξ|ωi . (2.4.4)

for all u ∈ H1
0(Ω). The equation and boundary conditions then follow from choosing

u with values either zero or one in the appropriate domains ωj.

ξ =
m∑
i=1

Φiξi(x), Φi :=
( 1

2π

∮
∂ωj

1

a

∂ξ

∂ν
dx
)
.

Thus, W = 1
a
∇⊥ξ ∈ W is parametrized by the m constants Φi, i = 1, ...,m, and W

which is a finite dimensional space of order m. The general result for Z ∈ L2(Ω; R2)

is obtained by density.

♦

Proof of Proposition 2.4.1

Let j ∈ Z be given, as well as εn → 0. From the energy bound (2.1.9), the

potential Aε
| log ε| is bounded and hence has a limit that we call A. We choose the vector
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potentials An = | log εn|A, and construct a sequence of order parameters un to satisfy

the demands of the theorem.

We apply the Hodge decomposition given in Lemma 2.4.2 to our j ∈ Z, and write

j = U + V +W = −1

a
∇⊥ψ +∇ζ +W

with ψ ∈ H1
0(Ω), ζ ∈ H1(Ω), and W ∈ W , a mutually orthogonal splitting in the

inner product 〈., .〉. Since ∇× (V +W ) ≡ 0 then J = 1
2
∇× j = 1

2
∇×U and V +W

doesn’t contribute to the weak Jacobian. We need to construct sequences wε and uε

which converge to V +W and U respectively. As in [JS] we may associate to V,W an

S1-valued map wε. The singular part of the Jacobian is contained in U ; for this part

we construct a family uε with points vortices via an appropriate Green’s function.

Putting these two parts together, the desired recovery sequence will have the form

vn = uεnwεn .

Constructing the sequences is an adaptation of the proof of Theorem 1.2 in

[ABGS10] since they worked with a(x) is bounded below, the main difference is that

we work on the full Ginzburg-Landau Energy where a(x) is shown only in the part∫
Ω

1
4ε2

(
|u|2 − a(x)

)2
.

Step 1. (Recovering V +W )

From the proof of Lemma 2.4.2, we may write V = ∇ζ, ζ ∈ H1(Ω) and W =

1
a
∇⊥ξ with ξ(x) =

∑m
i=1 Φiξi(x), for ξi as in (2.4.2) with Φi real constants. Let

Mi,n = [Φi| log εn|], i = 1, ...,m, where brackets denote the integer part, Set

Ξn :=
m∑
i=1

Mi,nξi, Wn = −1

a
∇⊥Ξn.
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We note that

‖Wn −W log εn‖C1 ≤ C, (2.4.5)

for constant C depending on W (but independent of n.)

Since

curlWn =
m∑
i=1

Mi,n∇⊥ ·
1

a
∇⊥ξi = 0,

∮
∂ωj

Wn · τ ds =
m∑
i=1

Mi,n

∮
∂ωj

1

a

∂ξi
∂ν

ds = 2πMj,n,

an integer multiple of 2π for each j = 1, . . . ,m, it follows that Wn is locally a gradient,

Wn = ∇ηn for ηn possibly multiple valued, but for which eiηn is smooth and single-

valued in Ω. We may then define the complex order parameter

wn = exp i(ηn + ζ log εn).

By construction,

j(wn)

log εn
=

(iwn,∇wn)

log εn
→ V +W (2.4.6)

in C1(Ω̄). Since |wn| = 1, we may easily calculate the contribution to the energy

using the orthogonality:

1

2

∫
ω

|∇wn|2 dx =
1

2

∫
Ω

|∇ηn +∇ζ log εn|2 dx

=
1

2

∫
Ω

|Wn|2 +
(log εn)2

2

∫
Ω

|∇ζ|2 dx

≤ (log ε)2

2

∫
Ω

{
|W |2 + |V |2

}
dx+O(1), (2.4.7)
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using (2.4.5) in the last line. This completes Step 1.

The treatment of the component U = − 1
a
∇⊥ψ ∈ U will require several steps.

First, we restrict to ψ ∈ C∞0 (Ω); the result for general ψ ∈ H1
0 (Ω) will follow from a

diagonal argument.

Step 2: Approximating the measure µ := curlU = −∇× 1
a
∇⊥ψ by Dirac masses

(representing vortices.) As µ is smooth, and absolutely continuous w.r.t. Lebesgue

measure, we will use the notation µ or µ(x)dx interchangeably.

We will need the result of Lemma 7.5 of [JS] and recall its proof.

Lemma 2.4.3 There exists families {pεi}Nεi=1 of points and integers σεi = ±1, satisfying

µε :=
π

| log ε|
∑

σεiδpεi ⇀ µ(x)dx weakly in M(Ω) and strongly in W−1,p(Ω) ∀p < 2

and in (C0,α
0 (Ω))′ for 0 < α ≤ 1 (2.4.8)

|µε| := π

| log ε|
∑

δpεi ⇀ |µ(x)|dx weakly in M(Ω) and strongly in W−1,p(Ω) ∀p < 2

and in (C0,α
0 (Ω))′ for 0 < α ≤ 1 (2.4.9)

|pεi − pεj| ≥ c0| log ε|−
1
2 ∀j 6= i, dist (pεi , ∂Ω) ≥ c0| log ε|−

1
2 ∀i (2.4.10)

where c0 is small constant that depend on ‖µ‖∞, and M is the space of all bounded

Radon measures.

Proof: . Write Ω = ∪Ωε
i , where for each i, Ωε

i is a set of the form Ω∩Qεi , and Qεi is

a cube of side length | log ε|− 1
4 . For each i, let

N ε
i =


b| log ε|

∫
Ωεi
|µ|dxc dist (Ωε

i , ∂Ω) > 0

0 otherwise.
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Also let σεi = sgn(
∫

Ωεi
µdx). In each Ωε

i select N ε
i points {pεi}

Nε
i

i=1 that are roughly

equally distributed. Note that N ε
i = ‖µ‖∞| log ε| 12 for all i. This implies that the

points can be chosen so that the distances are bounded below as in (2.4.10). Finally,

define

µε :=
∑
i

Nε
i∑

j=1

σεiδpεij .

Upon relabelling, this collection of points has the same form as in (2.4.8)-(2.4.10).

By construction it is easy to see that this sequence of measures has uniformly

bounded mass, so weak convergence in M will follow from strong convergence in

W−1,p, p < 2. For the latter, since functions in W 1,q, q > 2 are Hölder continuous,

it suffices to verify that for 0 < α ≤ 1,

sup
‖φ‖C0,α≤1

∣∣∣∣∣
∫

Ω

φdµε −
∫
φ(x)µ(x)dx

∣∣∣∣∣→ 0 (2.4.11)

as ε → 0. To verify this, note that if dist (Ωε
i , ∂Ω) > 0 and ‖φ‖C0,α ≤ 1 also the

number of sets Ωε
i such that dist (Ωε

i , ∂Ω) > 0 is bounded by C| log ε| 12 , then

∣∣∣∣∣
∫

Ωεi

φdµε −
∫
φ(x)µ(x)dx

∣∣∣∣∣ ≤ C| log ε|−(1/2)−(α/4)

Similarly, one can show the limit at the boundary vanishes.

♦

We go back to our problem of approximating the measure µ = ∇×U = ∇× 1
a
∇⊥ψ,

let Nn ∈ N be any sequence of whole numbers with

Nn

log εn
−→ 1
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where εn is a subsequence of ε which goes to zero when n→∞.

By using Lemma 2.4.3, there exist families of points {pni }i=1,...,Nn in the set K =

suppψ and associated integers σni ∈ {−1, 1} with the following properties:

|pni − pnj | ≥ c0N
−1/2
n for i 6= j, for constant c0 = c0(‖µ‖∞) and dist (pni , ∂Ω) ≥ c0N

−1/2
n ;

(2.4.12)

lim
α→0

R(α) = 0 where R(α) = lim sup
n→∞

∑
i 6=j:

|pn
i
−pn
j
|≤α

∣∣log |pni − pnj |
∣∣

N2
n

, (2.4.13)

µn :=
2π

Nn

Nn∑
i=1

σni δpni ⇀ µ, (2.4.14)

|µn| =
2π

Nn

Nn∑
i=1

δpni ⇀ |µ|, (2.4.15)

the convergence in (2.4.14),(2.4.15) is weakly in the sense of measures, and strongly

in (C0,α
0 )′ for all 0 < α ≤ 1. By |µ| we mean the total variation of the measure

µ = curlU which is smooth and compactly supported in K ⊂ Ω.

As in [SS00] we modify the measures µn by regularizing the Dirac mass. Let

µni := εnH1b∂B(pni ,εn), the element of arclength on Sni := ∂B(pni , εn), normalized with

mass 2π. We define the measures

νn =
1

Nn

Nn∑
i=1

σni µ
n
i ,

with pni ∈ K, σεi ∈ {0, 1} as above. Since each µni −→ δpni strongly in (C0,α
0 (Ω))′ for

all 0 < α ≤ 1, and weakly in M(Ω), we may conclude that (2.4.14),(2.4.15) hold as
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well for νn,

νn −→ µ, |νn| −→ |µ|, strongly in (C0,α
0 (Ω))′ and weakly in M(Ω). (2.4.16)

By Fubini’s theorem we also note that the product measures also converge,

νn ⊗ νn −→ µ⊗ µ, (2.4.17)

strongly in [C0,α
0 (Ω× Ω)]′ and weakly in M(Ω× Ω).

Now for the general µ ∈ H−1(Ω) ∩M(Ω), we get approximating measures µm

tending to µ as m→∞ in H−1 norm and in sense of measure which satisfy properties

(2.4.14), and (2.4.15). As in Lemma 2.4.3 we define the sequence

µmn :=
2π

Nn

Nn∑
i=1

σni δpni , (2.4.18)

and we define

νmn =
1

Nn

Nn∑
i=1

σni µ
nm
i . (2.4.19)

For fixed n as m tends to∞, µmn → µn and νmn → νn from the convergence of µm → µ.

We have for fixed m as n tends to ∞, µmn → µm and νmn → µm from(2.4.14), (2.4.16)

and (2.4.17). We take a diagonal sequences , call it µn and νn which will tend to µ

weakly because of the stronge convergence in H−1.
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Step 3: We introduce the Dirichlet Green’s function, Ga(x, y) in Ω, which solves


−∇x ·

1

a(x)
∇xGa(x, y) = δy(x), in Ω,

Ga(·, y) = 0, on ∂Ω,

for each fixed y ∈ Ω. By standard elliptic theory (see [GT] and recall a > 0 is smooth

in Ω) we may conclude that Ga(x, y) is smooth in Ω× Ω \ {y = x}, and

Ga(x, y) = −a(x)

2π
log |x− y|+ γ(x, y), (2.4.20)

where the regular part γ has the property that for every compact set K ⊂⊂ Ω, there

exists C(K) <∞ with

sup
y∈K
x∈Ω

|γ(x, y)| ≤ C(K).

Given U ∈ U , we then obtain the potential function ψ ∈ H1
0(Ω) from curlU = µ

by solving 
−∇ · 1

a(x)
∇ψ = µ in Ω,

ψ = 0 on ∂Ω,

and we recover U = − 1
a
∇⊥ψ. Using the Green’s function representation, we have

ψ(x) =

∫
Ω

Ga(x, y) dµ(y).

Since µ ∈ H−1(Ω)∩M(Ω), we may calculate the weighted norm of U in terms of the
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measure µ as follows:

∫
Ω

a(x) |U |2 dx =

∫
Ω

1

a
|∇ψ|2 dx

= −
∫

Ω

ψ · ∇⊥
(

1

a
∇⊥ψ

)
dx

=

∫
Ω

ψ(x) dµ(x)

=

∫
Ω

∫
Ω

Ga(x, y) dµ(y) dµ(x). (2.4.21)

Step 4: There exists a sequence ψn ∈ H1
0 (Ω) for which − 1

a
∇⊥ψn −→ U strongly in

Lp(Ω) for all p < 2, and

lim sup
n→∞

∫
Ω

1

a
|∇ψn|2 dx ≤

∫
Ω

a(x) d|µ|(x) +

∫
Ω

a(x)|U |2 dx. (2.4.22)

For each n, we define ψn(x) =
∫

Ω
Ga(x, y) dνn(y), and so ψn solves


−∇ · 1

a(x)
∇ψn = νn in Ω,

ψn = 0 on ∂Ω.

By (2.4.16) and elliptic regularity, we have ψn → ψ in W 1,p(Ω) for all p < 2, and thus

− 1
a
∇⊥ψn → U in Lp(Ω) for all p < 2 as claimed.

To estimate the energy we use the Green’s representation. Since νn ∈ H−1(Ω) for

fixed n, by (2.4.21) we conclude that

∫
Ω

1

a
|∇ψn|2 dx =

∫
Ω

∫
Ω

Ga(x, y) dνn(y) dνn(x).

For any 0 < α < 1, let ∆α = {(x, y) ∈ Ω × Ω : |x − y| ≤ α}. Fix χα ∈ C∞(Ω̄ × Ω̄)
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with 0 ≤ χα ≤ 1, and

χα(x, y) =


1, if x ∈ ∆α,

0, if x /∈ ∆2α.

For any α ∈ (0, 1), Ga(x, y)(1− χα(x, y)) is smooth, and hence by the strong (C0,α
0 )′

convergence νn → µ we have:

lim
n→∞

∫
Ω

∫
Ω

Ga(x, y)(1−χα(x, y))dνn(y) dνn(x) =

∫
Ω

∫
Ω

Ga(x, y)(1−χα(x, y))dµ(y) dµ(x).

(2.4.23)

For the complementary integral, we use (3.3.16) to observe that

∫
Ω

∫
Ω

Ga(x, y)χα(x, y)dνn(y) dνn(x)

=

∫
K

∫
∆2α

[
a(x)

2π
log

1

|x− y|
+ γ(x, y)

]
χα dνn(y) dνn(x)

≤
∫
K

∫
∆2α

a(x)

2π
log

1

|x− y|
dνn(y) dνn(x) + Cα

=
1

N2
n

Nn∑
i,j=1

∫∫
∆2α

a(x)

2π
log

1

|x− y|
dµni (y) dµni (x) + Cα. (2.4.24)

To evaluate the remaining integral, we consider the contribution due to distinct

points pni 6= pnj in ∆2α separately. We adapt an argument in Proposition 7.4 of [SS07].

Define the index set

Jn = {(i, j) : |pni − pnj | ≤ 2α}.

Let Rn = 1
4
c0N

−1/2
n , where c0 = c0(ψ) is the constant in (2.4.12). We also define balls
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B̃n
i = B(pni , Rn), i = 1, . . . , Nn. By the choice of Rn, they are disjoint, as is the union

⋃
(i,j)∈Jn

(
B̃i × B̃j

)
⊂ ∆3α.

We also observe that for any R ≤ Rn and (i, j) ∈ Jn, since R ≤ 1
4
|pi − pj|, we have

1

2
≤ |x− y|
|pni − pnj |

≤ 3

2
for all x ∈ B(pni , R), y ∈ B(pnj , R). (2.4.25)

For (i, j) ∈ Jn we then have (recalling that Sin = ∂B(pni , εn) = suppµni ,)

∫∫
B̃ni ×Bnj

log
3

|x− y|
dx dy ≥

∫∫
B̃ni ×Bnj

log
2

|pni − pnj |
dx dy

= π2R4
n log

2

|pni − pnj |

=
R4
n

4

∫∫
S̃ni ×Snj

log
2

|pni − pnj |
dµni (x) dµnj (y)

≥ R4
n

4

∫∫
S̃ni ×Snj

log
1

|x− y|
dµni (x) dµnj (y),

using (2.4.22) in the first and last lines. Summing over all pairs (i, j) ∈ Jn, and using

the disjointness of the union of the B̃n
i × B̃n

j , we obtain:

1

N2
n

∑
(i,j)∈Jn

∫∫
Sni ×Snj

a(x)

2π
log

1

|x− y|
dµni (x) dµnj (y)

≤ C

R4
nN

2
n

∑
(i,j)∈Jn

∫∫
B̃ni ×Bnj

log
3

|x− y|
dx dy

≤ C

∫∫
∆3α

log
3

|x− y|
dx dy =: R(α). (2.4.26)

As | log |x − y|| is integrable, the remainder R(α) → 0 as α → 0, and so this term

48



Ph.D. Thesis - Sara S. Alzaid McMaster University - Mathematics

will not contribute to the limiting energy.

Finally, we consider the contribution from the self-energy of the vortices pni . We

parametrize the integrals over Sni = ∂B(pni , εn) using complex notation, that is we

write x, y ∈ ∂B(pni ,
1
εn

) as x = pni + εne
iθ, y = pni + εne

iτ , 0 ≤ θ, τ < 2π. Then we

have:

1

N2
n

∫∫
Ω

a(x)

2π
log

1

|x− y|
dµni (y) dµni (x)

=
1

N2
n

∫ 2π

0

∫ 2π

0

a
(
pni + εne

iθ
)

2π
[log εn + log |ei(θ−τ) − 1|]dθ dτ

=
1

Nn

∫ 2π

0

a
(
pni + εne

iθ
)
dθ +O(N−2

n )

=
1

Nn

∫
Ω

a(x) d|µni |(x) +O(N−2
n ).

Summing over all i = 1, . . . , Nn, we arrive at

1

N2
n

Nn∑
i=1

∫∫
Ω

a(x)

2π
log

1

|x− y|
dµni (y) dµni (x) =

1

Nn

∫
Ω

a(x) d|νn|(x) +O(N−1
n )

=

∫
Ω

a(x) d|µ|(x) +O(N−1
n ). (2.4.27)

Passing to the limit εn → ∞, we thus obtain from (2.4.23),(2.4.24),(2.4.26), and

(2.4.27), that

lim sup
n→∞

∫
Ω

∫
Ω

Ga(x, y)dνn(y) dνn(x)

≤
∫

Ω

a(x) d|µ|(x) +

∫
Ω

∫
Ω

Ga(x, y)(1− χα(x, y))dµ(y) dµ(x) + Cα + CR(α).
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By hypothesis, the measure µ is bounded, and so we may apply dominated conver-

gence to pass to the limit α→ 0 and obtain the desired bound (2.4.22), as

lim sup
n→∞

∫
Ω

1

a
|∇ψn|2 dx = lim sup

n→∞

∫
Ω

∫
Ω

Ga(x, y)dνn(y) dνn(x)

≤
∫

Ω

a(x) d|µ|(x) +

∫
Ω

∫
Ω

Ga(x, y)dµ(y) dµ(x)

=

∫
Ω

a(x) d|µ|(x) +

∫
Ω

a(x) |U |2 dx,

by (2.4.21).

Step 5: Let Un = −Nn
1
a
∇⊥ψn. Then, ∇⊥Un = Nn∇ ·

(
1
a
∇ψn

)
= 0 locally in

Ω\∪Nni B(pni , εn). Moreover, if C is a simple closed curve in Ω\∪Nni B(pni , εn), we have

∫
C

Un · τ ds ∈ 2π Z,

by the normalization |dµni | = 2π. Thus, we may write Un = ∇φn in Ω \∪Nni B(pni , εn),

with φn which is multiple valued, but for which ∇φn and eiφn are single-valued in

Ω \ ∪Nni B(pni , εn).

To remove the singularity at each vortex core we define,

ρni (x) :=


0 if |x− pni | < εn

2
,

2
√
a(x)

εn

(
|x− pni | − 1

)
if εn

2
≤ |x− pni | ≤ εn,√

a(x) if |x− pni | > εn,

and ρn :=
∏Nn

i=1 ρ
n
i . The function ρni (x) here is defined differently than the way Alama,

Bronsard, and Galvão-Sousa did in [ABGS13].
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A simple computation shows that

∫
Ω

{
1

2
|∇ρni |2 +

1

4ε2n
((ρni )2 − a(x))2)

}
dx ≤ C0,

with constant C0 independent of n. Also ρ2
n =

∏Nn
i=1(ρni )2 ≤ a(x) for all x ∈ Ω.

(ρ2
n − a(x))→ 0 in Lq for all q <∞, indeed

∫
Ω

∣∣∣ρn2 − a(x)
∣∣∣q =

∫
Ω

∣∣∣∏
i

(ρni )2 − a(x)
∣∣∣q

≤
∫
{x∈Ω| εn

2
≤|x−pi|≤εn}

∣∣∣∏
i

a(x)
( 2

εn
|xi − pni | − 1

)2 − a(x)
∣∣∣q

≤
∫
{x∈Ω| εn

2
≤|x−pi|≤εn}

∣∣∣∏
i

a(x)
( 2

εn
εn − 1

)2 − a(x)
∣∣∣q = 0.

Now define un = ρne
iφn , with ρn, φn as in the preceding paragraphs. We then

have:

∫
Ω

{
1

2
|∇un|2 +

1

4ε2n

(
|un|2 − a(x)

)2
}
dx

=

∫
Ω

{
1

2
ρ2
n|∇φn|2 +

1

2
|∇ρn|2 +

1

4ε2n

(
ρ2
n − a(x)

)2
}
dx

≤ N2
n

2

∫
Ω

a(x)
1

a(x)2
|∇ψn|2 dx+ C0Nn

≤ N2
n

2

∫
Ω

1

a(x)
|∇ψn|2 dx+ C0Nn.

From (2.4.22) we then conclude that

lim sup
n→∞

1

(log εn)2

∫
Ω

{
1

2
|∇un|2 +

1

4ε2n

(
|un|2 − a(x)

)2
}
dx

≤ 1

2

∫
Ω

a(x) d|µ|(x) +
1

2

∫
Ω

a(x)|U |2 dx. (2.4.28)
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Since (ρ2
n − a(x))→ 0 in Lq for all q <∞, we also conclude that

j(un)

Nn

=
1

Nn

(iρne
iφn ,∇ρneiφn)

= − 1

Nn

(ρn)2∇φn

= − 1

Nn

(ρn)2Un

= −a(x)
1

a(x)
∇⊥ψn +

(a(x)− ρ2
n)

a(x)
∇⊥ψn −→ a(x)U in Lp(Ω) for all p < 2.

(2.4.29)

Step 6: Putting it all together.

This follows as in [JS]; with the modification needed due to the presence of a(x).

Write j ∈ Z as j = U + W̃ with U ∈ U and W̃ = V + W , V ∈ V , W ∈ W . Let wn

be as defined in Step 1 and un as constructed in Step 5, and define vn = unwn. Since

|wn| = 1, we have

j(vn) = j(un) + ρ2
nj(wn) −→ a(x)U + a(x)W̃ = a(x)j. (2.4.30)

in Lp(Ω) for all p < 2.

To estimate the energy, we again use the fact that |wn| = 1 to expand:

1

N2
n

∫
Ω

|∇vn|2 dx =
1

N2
n

∫
Ω

{
|∇un|2 + ρ2

n|∇wn|2 + j(un) · j(wn)
}
dx.

We claim that the last term is negligible. Indeed, from Step 1, j(wn)
log εn

= ∇Φn, with
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Φn = ηn + ζ log εn and ∇Φn → W̃ in C1, and therefore,

1

N2
n

∫
Ω

j(un) · j(wn) dx = −
∫

Ω

1

a(x)
∇⊥ψn · ρ2

n∇Φn dx

=

∫
Ω

∇⊥ψn · ∇Φn = 0.

We calculate, using (2.4.28), (2.4.7), and (2.4.30) and that ρ2
n ≤ a(x)

lim sup
n→∞

1

N2
n

Eεn(vn;An)

= lim sup
n→∞

1

N2
n

∫
Ω

{1

2
|∇un|2 +

1

2
ρ2
n|∇wn|2 − An · j(vn) +

1

2
|vn|2|An|2

+
1

4ε2
(|un|2 − a(x))2

}
dx+

1

2

∫
D
|∇ × An − hex|2dx

= lim sup
n→∞

1

N2
n

∫
Ω

{1

2
|∇un|2 +

1

2
ρ2
n|∇wn|2 − An · j(vn) +

1

2
ρ2|An|2

+
1

4ε2
(|un|2 − a(x))2

}
dx+

1

2

∫
D
|∇ × An − hex|2dx

≤ 1

2

∫
Ω

a(x) d|µ|+ a(x)|U |2dx+
1

2

∫
Ω

a(x)
(
|W̃ |2 − 2A · j + |A|2

)
dx

+
1

2

∫
D
|∇ × A− λ|2 dx

≤ 1

2

∫
Ω

a(x) d|µ|+ 1

2

∫
Ω

a(x)
(
|U |2 + |W̃ |2 − 2A · j + |A|2

)
dx

+
1

2

∫
D
|∇ × A− λ|2 dx

=
1

2

∫
Ω

a(x) d|µ|+ 1

2

∫
Ω

a(x)|j − A|2 +
1

2

∫
D
|∇ × A− λ|2dx,

This completes the proof of the Γ-convergence result.

♦

Remark 2.4.4 The multiply connected domain didn’t affect our lower bound since

the method of [SS04] used vector fields X and Y which are compactly supported in

53



Ph.D. Thesis - Sara S. Alzaid McMaster University - Mathematics

Ω. On the other hand the boundary conditions will be involved in the equations the

magnetic field satisfiy as will be seen in the following section.

2.5 Generalization to the case when a(x) is rapidly

oscillating

In this section we give an idea how the holes affect the problem in the case a(x)

oscillates between 1
2

and 1 in the domain. [ASS] studied this case in a simply connected

domain and to generalize it to a multiply connected domain we follow directly the

method above and the only different will be the extra conditions of the magnetic field

h on the inner boundaries.

Since aε(x) is rapidly oscillating function describing impurities, as in [ASS] the

frame work for passing to the limit when ε is small is that of homogenization theory.

When passing to the limit in,

−div
( 1

aε
∇hε

)
+ hε = 2π

∑
i

diδpi .

we obtain a different limiting operator, that is

−div
(
A0∇h∗

)
+ h∗ = µ∗,

where µ∗ is a positive measure which is supported in an inner domain Ωλ and A0

is the homogenized limit of the matrix Aε = 1
aε
I in sense of H−convergence, (see

definition below)
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Define the space V

V = {h ∈ W 1,q
0 (D) s.t. h|ωj = constant}.

Definition 2.5.1 We say that the family of 2 × 2 matrices Aε H−converges to A0

when ε→ 0, if and only if, for any f in H−1(Ω), the solution vε in V

−div (Aε∇vε) + vε = f in Ω

satifies

vε ⇀ v0 weakly in V

Aε∇vε ⇀ A0∇v0 weakly in (L2(Ω))2,

where v0 is the V solution of

−div (A0∇v0) + v0 = f.

As above we assume that hex is a function of ε and that the following limit exists

and is finite,

λ = lim
ε→0

| log ε|
hex(x)

.

Moreover, we make the following hypotheses on the function aε(x):

(H1) There exists a constant a0 > 0 such that a0 ≤ a(x) ≤ 1.

(H2) There exists a constant C and a sequence ηε (which may tend to 0 with ε) such

that 1
ηε
� hex and |∇aε| ≤ C

ηε
.
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(H3) There exist a continuous function a(x) and a nonnegative functions βε(x) such

that aε(x) = a(x) + βε(x) and for any ε > 0 and any x ∈ Ω, minB(x,δ(ε)) βε = 0,

where

δ(ε)� 1

(log | log ε|) 1
2

.

(H4) The family of matrices Aε H−converges to A0.

2.5.1 Deriving the limiting equation

For any (pi, di) satisfying Proposition 2.3.2, we can define

µε =
2π

hex

∑
i∈Iε

diδpi , (2.5.1)

a measure of vorticity per unit of applied field. It will remain a bounded family of

measures by the following Lemma,

Lemma 2.5.2 (Lemma 2.1 from [ASS])

Let (uε, Aε) be a family of minimizers of Eε with hε = curlAε, we can extract a

sequence εn → 0 such that there exists h∗ − 1 ∈ V, and µ∗ ∈M(Ω) with

hεn
hex
− 1 ⇀ h∗ − 1 in V,

µεn → µ∗ in the sense of measure.

The following Proposition gives the equations that h∗ satisfies.

Proposition 2.5.3 (Proposition 2.1 from [ASS]).

Let µ∗ and h∗ be the measures and fields defined in Lemma 2.5.2. then there exists

r0 < 2 such that µ∗ ∈ W−1,r(Ω) ∀ r ∈ (0, r0), and h∗ is the unique solution in W 1,r(Ω)
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of 

−div (A0∇h∗) + h∗ = µ∗ in Ω

h∗ = 1 on ∂D

h∗ = Hj on ∂ωj, j = 1, ...,m∫
ωj
A0∇h∗ · ν = −2πδj +Hj|ωj|, j = 1, ...,m.

(2.5.2)

Proof: The proof of this proposition follows exactly [ASS] except for the boundary

conditions and we are going to include it for convenience.

Step1. We prove that hε satisfy

1

hex

(
− div

(∇hε
aε

)
+ hε

)
= fε in Ω, (2.5.3)

with fε = µε + ϕε, where ϕε → 0 strongly in (W 1,q
0 )′ for q > 2. We start from

the second Ginzburg-Landau equation:

−∇⊥hε = (iuε,∇Aεuε),

divide by aε which is positive and take the curl:

−div
(∇hε
aε

)
= curl

((iuε,∇uε)
aε

− Aε
|uε|2

aε

)
,

hence

− div
(∇hε
aε

)
+ hε = curl

(iuε,∇uε)
aε

+ curl
(
Aε

(
1− |uε|

2

aε

))
. (2.5.4)
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Now consider a test-function ξ ∈ W 1,q
0 (Ω), q > 2

∣∣∣∣ ∫
Ω

ξcurl
(
Aε

(
1− |u|

2

aε

))∣∣∣∣ =

∣∣∣∣ ∫
Ω

∇⊥ξ · Aε
(

1− |u|
2

aε

))∣∣∣∣
≤ C‖Aε‖L∞(Ω)‖∇ξ‖L2(Ω)‖aε − |u|2‖L2(Ω)

The bound (2.1.2), ‖Aε‖L∞(Ω) ≤ o(hex) and the energy bound, ‖aε−|u|2‖L2(Ω) ≤

Cεhex, yield ∣∣∣∣ ∫
Ω

ξcurl
(
Aε(1−

|u|2

aε
)
)∣∣∣∣ ≤ o(1)‖ξ‖L2(Ω).

consequently, curl
(
Aε(1− |u|

2

aε
)
)
→ 0 strongly in (W 1,q

0 )′ for q > 2. Combining

this with (2.5.4) and lemma 2.5.2 we get the desired result.

Step2. We prove that fε converges to µ0, the weak limit of µε, in W−1,r(Ω) for any

r < 2.

Indeed, from the upper bound of the energy Eε,
1

aεhex
∇hε is bounded in L2(Ω),

hence, using (2.5.3) implies that fε is bounded in H−1, hence in W−1,p for p < 2.

But fε = µε + ϕε, where ϕε is bounded in W−1,p for p < 2 which means that

µε is also bounded in W−1,p for p < 2 and in the sense of measure too, then

as in [ASS] we can apply the theorem of Murat which implies that µε must be

compact in W−1,r for r < p. Since it is also the case of ϕε which converges to

zero, this implies that fε is compact in W−1,r for r < p. In addition, its limit

in the sense of distributions is µ0, hence it must converge to µ0 in W−1,r.

Step3. As in [ASS] to pass to the limit in (2.5.3) directly we require a right-hand side

in H−1. So we are going to pass it in the duality sense as in [ASS] for a fixed

right-hand side. Let g ∈ W−1,q(Ω) for q > 2. Using the hypothesis (H4) on a(x)
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we can use Meyers [M] and Berestycki and Brezis [BB2] : there exists a q0 > 2,

such that if g is in W−1,q with 2 < q ≤ q0, then equation



−div

(
∇vε
aε

)
+ vε = g in Ω

vε = 0 on ∂D

vε = Hj on ∂ωj∫
ωj

1
aε
∂vε
∂ν

= −2πδj +Hj|ωj|, j = 1, ...,m.

(2.5.5)

has a unique solution vε in V. Thus, we have

V′

〈
hε
hex
− 1, g

〉
W−1,q(Ω)

= W−1,q′ (Ω)

〈
fε − 1, vε

〉
V, (2.5.6)

where 1
q

+ 1
q′

= 1, and we want to pass to the limit.

More precisely, Meyers’ theorem yields that the operator Rε which maps g to vε,

is a bounded linear operator from W−1,q(Ω) to V (for2 < q ≤ q0), hence up to

extraction of a subsequence, vε has a weak limit v0 in V. v0 is the solution of:



−div

(
A0∇v0

)
+ v0 = g in Ω

v0 = 0 on ∂Ω

v0 = Hj on ∂ωj∫
ωj
A0

∂v0

∂ν
= −2πδj +Hj|ωj|, j = 1, ...,m.

(2.5.7)

Since this possible weak limit v0 is unique, the whole sequence vε converges to
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v0 weakly in V. In addition, fε converges strongly to µ∗ in W−1,q′ , thus we have

W−1,q′ (Ω)

〈
fε − 1, vε

〉
V → 〈µ∗ − 1, v0〉.

On the other hand, hε
hex
− 1 converges weakly to h∗ − 1 in V. Thus

V′
〈 hε
hex
− 1, g

〉
W−1,q(Ω)

→ 〈h∗ − 1, g〉.

Therefore, we pass to the limit in (2.5.3), and we are led to

V′〈h∗ − 1, g〉W−1,q(Ω) =W−1,q′ (Ω) 〈µ∗ − 1, v0〉V. (2.5.8)

Meyers’ aforementioned theorem, also yields that for q′0 ≤ q′ < 2, (2.5.2) has

a unique solution in W 1,q′(Ω). Since (2.5.8) holds for any g in W−1,q(Ω), it

implies that h∗ is this solution.

♦

2.5.2 Main result

The Γ-limit for the Energy when aε(x) is rapidly oscillating is given by the following

Theorem,

Theorem 2.5.4 Let’s assume that (H1) to (H4) are satisfied. Let (uε, Aε) be a family

of minimizers of Eε, and hε = curlAε the associated magnetic field. Then, as ε→ 0,

hε
hex
− 1 ⇀ h∗ − 1 weakly in V,
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where h∗ is the minimizer of

E(f) =
λ

2

∫
Ω

a(x)| − div (A0∇f) + f |+ 1

2

∫
Ω

∇f · A0∇f +
1

2

∫
D
|f − 1|2.

Moreover,

lim
ε→0

Eε(uε, Aε)

|hex|2
= E(h∗) =

λ

2

∫
Ω

a|µ∗|+
1

2

∫
Ω

h∗ · A0∇h∗ +
1

2

∫
D
|h∗ − 1|2, (2.5.9)

1

aε

|∇hε|2

|hex|2
→ ∇h∗ · A0∇h∗ + λaµ∗, in the sense of measures. (2.5.10)

The proof follows exactly [ASS].

61



Chapter 3

Singular Limits for Thin Film

Superconductors in Strong

Magnetic Fields

In this chapter we study the Γ-limit of the 3D Ginzburg-Landau functional with a

constant external magnetic field in a thin film geometry where the thickness of the

film which is given by d(x) is allowed to be zero on the boundaries of the holes. The

superconducting domain is multiply-connected and has a characteristic thickness on

the scale ε > 0. We consider the limit as the thickness ε → 0 and the Ginzburg-

Landau parameter κ → ∞. This model has been studied by Alama, Bronsard, and

Galvão-Sousa (see [ABGS13]) when d(x) is strictly positive in a simply-connected

domain.

The superconducting sample contains the domain Dε ⊂ R3,

Dε = {(x′, x3) ∈ R3 : x′ ∈ Ω, εf(x′) < x3 < εg(x′)},
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where Ω := ω0 \ ∪mi=1ωi ⊂ R2 is a bounded multiply-connected domain in the plane

and ωi ⊂ ω0 for all i = 1, ...,m are simply-connected domains, f, g : Ω → R are

smooth functions on Ω with f(x′) < g(x′) for all x′ ∈ Ω, and ε > 0. We denote by

d(x′) = g(x′)− f(x′)

the thickness of the film for given x′ ∈ Ω. We assume that d(x) satisfies the following

conditions:

(H1) d(x) ∈ C2(D).

(H2) d(x) > d0 in Ωδ where

Ωδ := {x ∈ Ω s.t. dist (x, ∂Ω) > δ}

for δ > 0 i.e. d(x) vanishes only near ∂ωj ∀ j = 1, ..., n

(H3) ∇d(x) 6= 0 for all x ∈ ∂ωi, i = 1, ...,m. More specific, ∃δ > 0 s.t. there are

non-negative constants mi, and Mi such that

mi ≤
d(x)

dist (x, ∂ωi)
≤Mi.

for dist (x, ∂ωi) < δ.

Note that it follows from the above hypotheses that d(x) is bounded away from zero

on the exterior boundary ∂D.
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3.1 Introduction

The energy of the configuration (u,A) is given by:

Iε,κ(u,A) :=
1

2

∫
Dε

(
|∇Au|2 +

κ2

2
(1− |u|2)2

)
dx+

1

2

∫
R3

|h− hex|2dx, (3.1.1)

where, hex ∈ R3 is a constant external magnetic field.

3.1.1 Rescaling

Since we have three parameters in our problem, ε, κ, and hex, we need to identify

limiting regimes. We rescale the domain following Alama, Bronsard, and Galvão-

Sousa (see [ABGS13]) by ε in the x3 direction in order to recognize the correct scaling

for hex in terms of the thickness parameter.

Let,

x = (x′, x3) = (x1, x2, x3) =
(
x1,x2,

x3

ε

)
∈ Ω1

A(x) = (A1,A2, εA3)(x),

u(x) = u(x)

with this scaling we could define u in a fixed (ε− independent) domain

D := D1 = {(x′, x3) : f(x′) < x3 < g(x′), x′ ∈ Ω}.

The magnetic field in the new coordinates is h(x) =
(
ε−1h′(x), h3(x)

)
. The energy is

Iε,κ(u,A) = εĨε,κ(u,A),
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where

Ĩε,κ(u,A) =:

∫
D

(
1

2
|(∇′ − iA)u|2 +

1

2ε2
|(∂3 − iA3)u|2 +

κ2

4
(1− |u|2)2

)
dx

+
1

2

∫
R3

(
|h3 − hex3 |2 +

1

ε2
|h′ − h′ex|2

)
dx,

where ∇′ = (∂1, ∂2) and the rescaled external field takes the form

hex = (hex1 , h
ex
2 , h

ex
3 ) = (εhex1 , εh

ex
2 ,h

ex
3 )

3.1.2 Introducing the problem

We consider the Γ-limit of the energy as both ε → 0 and κ → ∞. We choose an

exterior applied field related to the thickness parameter ε, and on the scale of the

first critical field in κ,

hex =

(
H ′

log κ

ε
,H3 log κ

)
.

In the rescaled functional Ĩε,κ this means

hex = H log κ (3.1.2)

where H = (H ′, H3) = (H1, H2, H3) ∈ R3 is fixed constant vector (independent of

ε, κ). It is natural for the Ginzburg-Landau Model to choose applied field of order

log κ (see [SS07], [AB06], and [BJOS11]) for both the 2D and 3D cases. Since the

cost of a vortex p is in an annulus A = B(p,R) \ B(p, 1
κ
) is of order log κ in 2D and

3D. For applied fields of the form (3.1.2), the energy of minimizers of Ĩε,κ will be on

the order of [log κ]2. That leads to introduce the following normalization, and study
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the family of functionals

Iε,κ(u,A) :=
1

(log κ)2
Ĩε,κ(u,A)

and configuration (u,A) with bounded values of Iε,κ.

3.1.3 Spaces and gauges

We introduce our spaces for the configuration (u,A).

u ∈ H1(D1,C). For A, we first choose a fixed Â with ∇×Â = H = (H1, H2, H3).A

convenient choice is :

Â :=

(
H2x3 −

1

2
H3x2,

1

2
H3x1 −H1x3, 0

)
. (3.1.3)

which fixes a gauge for Â. Then, we take our A in the following space

A ∈ A := {A ∈ H1
loc(R

3,R3) : A− Â log κ ∈ H̆1
div (R3,R3)}, (3.1.4)

where H̆1
div (R3,R3) is the closure of the space of smooth, compactly supported

divergence-free vector fields F ∈ C∞0 (R3,R3) in the Dirichlet norm (see [GP99]),

||F ||H̆1
div (R3,R3) =

[ ∫
R3

|DF |2dx
]2

.

Next we define the weighted Sobolev space W 1,p
m,k,

Definition 3.1.1 Consider a real number 1 < p <∞, an integer m ≥ 1, and a real

number k > −1 satisfying k + p > m (so in particular this condition holds for p = 2
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and k = m since m is a positive integer). For such m, k and p, we define the norm

‖s‖k,m =
{∫

Ω

{dm|∇s|p + dk|s|p}dx
} 1
p
, (3.1.5)

for s ∈ C∞(Ω), we define W 1,p
k,m(Ω) to be the closure of C∞(Ω) with respect to ‖.‖k,m.

We also define Lpk(Ω) to be the closure of C∞(Ω) with respect to the norm

‖s‖k =
{∫

Ω

dk|s|pdx
} 1
p
. (3.1.6)

The following Theorem gives us facts about W 1,p
k,m(Ω). It is taken from [M07]

(Theorem A.1).

Theorem 3.1.2 For 1 < p <∞, k > −1 and a positive integer m ≥ 1 so that k+p >

m, the space W 1,p
k,m(Ω) is reflexive, and embeds compactly in Lpk(Ω). Furthermore,

Poincaré inequality holds for functions s ∈ W 1,p
k,m(Ω) with zero average, that is, there

is a constant C = C(Ω) such that, for any s ∈ W 1,p
k,m(Ω) with

∫
Ω

dks dx = 0

one has ∫
Ω

dk|s|p dx ≤ C

∫
Ω

dm|∇s|pdx.

Recall the current and the Jacobian. The current (or momentum density) is:

j = j(u) = (iu,∇u), where (a, b) = Re ab,
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and the weak Jacobian, J = 1
2
∇× j. For u ∈ H!(Ω; C), j ∈ L2(Ω; R3), and so J is

defined in the sense of distributions, and we will see that it will also be measure-valued

( see [JS02].)

The limiting behaviour of Iε,κ will be described in terms of the limit of j and J

rather than the order parameter u. The choice of using j and J to study the limiting

problem is due to the high increase of the number of vortices in the limit which in

fact becomes unbounded.

It will be convenient to represent j and J as differential forms,

j = j1dx
1 + j2dx

2 + j3dx
3 ∈ Λ2(R3) (3.1.7)

J = dj = J1dx
2 ∧ dx3 + J2dx

3 ∧ dx1 + J3dx
1 ∧ dx2 ∈ Λ2(R3) (3.1.8)

as the natural mapping between forms and vector fields is an isometry in Euclidean

space R3.

We define the following domain,

Z := {j ∈ L2(Ω,R3) : j = (j′(x′), 0), J :=
1

2
∇× j ∈M(D,R3)}, (3.1.9)

where M(D,R3) is the space of vector-valued Radon measures on D. For j ∈ Z, the

corresponding Jacobian takes the form J = (0, 0, J3(x′)). we define the functional

I∞(j;F ) =


1
2
||d(x′)∇× j||M(Ω) + 1

2

∫
Ω
d(x′)|j′ −B′|2, if j ∈ Z

∞ otherwise
(3.1.10)
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where

F = ∇′ ×B′ = hex3 − (hex1 , h
ex
2 ) · ∇′

(
f(x′) + g(x′)

2

)
with B′ : R2 → R2. This is the vortex density functional which was suggested by

previous work of [CRS96]. In this limit, the magnetic field is predetermined by the

strength and direction of the original applied field hex ∈ R3 and by the geometry of

the domain Dε, and is part of the variational problem for the thin film limit.

3.1.4 Main results

Our main result is that the Γ-limit of Iε,κ is related to I∞ when we allow d(x′) =

0 on ∂ωi. We prove this in two steps: first, bounded sequences are compact and the

limit is lower semicontinuous in the energies:

Theorem 3.1.3 For any pair of sequences εn → 0 and κn →∞, assume {(un, An)}n∈N ⊂

H1(D,C)×A satisfy the norm bound,

sup
n∈N

Iεn,κn(un, An) < +∞,

and define jn = j(un) = (un, dun) and Jn = 1
2
djn as in (3.1.8). Then there exists a

subsequence (which we continue to denote {εn, κn}) and j ∈ Z, with J = 1
2
∇ × j,

such that
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1. along the subsequence,

|un|2 → 1, in L4(Ω), , (3.1.11)

An
log κ

− Â ⇀ 0, in H̆1
div (R3,R3), (3.1.12)

jn
|un| log κ

⇀ j, in L2(D,R3), (3.1.13)

Jn
log κ

⇀ J, in the weak-? topology on (C0,γ(D))′, (3.1.14)

for all 0 < γ < 1.

2. Furthermore,

lim inf
n→∞

Iεn,κn(un, An) ≥ I∞(j;F∗) +
1

2

∫
Ω

d3(x′)

12
|H ′|2dx′,

and F∗ is defined by

F∗(x
′) = H3 − (H1, H2) · ∇′

(
f(x′) + g(x′)

2

)
, (3.1.15)

and I∞ is defined as in (3.1.10).

Note that: Following Alama, Bronsard, and Galvão-Sousa [ABGS13] in the case

where the applied field is of order |hex| = O(log κ) the same limit is obtained regardless

of the relationships between ε→ 0 and κ→∞.

The second part of the Γ-convergence result is the construction of recovery se-

quences:

Theorem 3.1.4 Let j ∈ Z and consider any sequences εn, κn such that εn → 0 and
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κn →∞. Then there exists a sequence {(un, An)} ⊂ H1(D; C)×A, satisfying

jn
log κn

→ j in Lp(D), for all p < 2

Jn
log κn

→ J :=
1

2
∇× j weakly in M(D; R3), and strongly in (C0,γ

0 (D))′, 0 < γ < 1,

with jn := (iun, dun) and Jn := 1
2
djn. Moreover

lim sup
n→0

Iεn,κn(un, An) ≤ I∞(j, F∗) +
1

2

∫
Ω

d3(x′)

12
|H ′|2dx′

with F∗ as in (3.1.15).

3.2 Compactness and lower bound

In this section we prove the first part of the Γ-convergence. As usual when we deal

with the Ginzburg-Landau functional, the gauge invariance is an issue. The choice of

A we made fixes a gauge. We consider the case where the thickness d(x) = 0 on ∂ωi.

The proof of lower bound is not different than the one in [ABGS13]. They used

the method of Sandier and Serfaty [SS04] which works with compactly supported

functions and so works for multiply connected domains. We are going to recall the

proof for completeness. We recall Lemma 3.1 in [GP99]:

Lemma 3.2.1 Let g ∈ L2(R3; R3) such that div g = 0 in D′(R3). Then there is a

unique B ∈ H1(R3,R3) such that ∇ × B = g and divB = 0. As a consequence, it

follows that

‖B‖H̆1
div

=

[ ∫
R3

|∇ ×B|2dx
] 1

2

(3.2.1)

71



Ph.D. Thesis - Sara S. Alzaid McMaster University - Mathematics

is equivalent to the usual (Dirichlet) norm on the space H̆1
div (R3,R3).

Proof of Theorem 3.1.3

Let K := supn∈N Iεn,κn(un, An) < +∞. From the energy bound

∫
D

(|un| − 1)4dx ≤
∫
D

(|un|2 − 1)2dx ≤ K(log κn)2

κ2
n

→ 0 (3.2.2)

In particular, |un| → 1 in L4(D).

Also from the energy bound,

h′n
log κn

−H ′ → 0 in L2(R3,R3). (3.2.3)

and

1

2

∫
R3

(
|h3 − hex3 |2

)
dx ≤ K(log κ)2

thus along a subsequence, we may conclude the weak convergence,

h3n

log κn
−H3 ⇀ l in L2(R3). (3.2.4)

As the vector [ hn
log κn

−H] ⇀ H̃ := (0, 0, l) in L2(R3,R3), and each div hn = 0 in the

sense of distributions, we may conclude that div H̃ = 0.

As a consequence of Lemma 3.2.1 and (3.2.4), we conclude that there exists Ã ∈

H̆1
div (R3,R3) with ∇× Ã = H̃ = (0, 0, l) and

An
log κn

− Â→ Ã, (3.2.5)
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weakly in H̆1
div (R3,R3), and in the norm topology on Lp(D), 1 ≤ p < 6. Since

H̃ := (0, 0, l) in L2(R3,R3) with div H̃ = 0, we conclude that ∂3l = 0 (in the sense of

distributions,) and thus l = 0, and also H̃ = 0 = Ã (by Lemma 3.2.1.) In particular,

(3.2.5) implies

An
log κn

− Â→ 0 weakly in H̆1
div (R3,R3), and in the norm on Lp(D), 1 ≤ p < 6.

(3.2.6)

In particular h = hex in Dc. To obtain the lower bound we adapt the method of

[SS04]. Expanding the quadratic term in the energy bound, we obtain:

2K ≥ 2Iεn,κn(un, An)

≥ (log κn)−2

∫
D

(|∇′un|2 − 2A′n · (iun,∇′un) + |un|2|A′n|2)dx

=

∫
D

(1

2

∣∣∣ ∇′un
log κn

∣∣∣2 − ∣∣∣ A′n
log κn

∣∣∣2(|un|2 − 1)−
∣∣∣ A′n
log κn

∣∣∣2)dx

By (3.2.5), the last term is bounded, and

∫
D

∣∣∣ A′n
log κn

∣∣∣2∣∣|un|2 − 1
∣∣dx ≤ ∥∥∥ A′n

log κn

∥∥∥2

L4

∥∥|un|2 − 1
∥∥
L4 ≤ C

log κn
κn

,

by the energy bound and the Lp boundedness of A′n
log κn

. Thus we have

∫
D

∣∣∣ ∇′un
log κn

∣∣∣2dx ≤ C, (3.2.7)
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with constant C depending on K. we may also obtain

∫
D

1

ε2n

∣∣∣ ∂3un
log κn

∣∣∣2dx ≤ C

and we have strong convergence in x3-direction,

∂3un
log κn

→ 0 in L2(Ω; C). (3.2.8)

We now work on the currents, jn := (iun,∇un). Following [JS] we normalize the

current as follows,

j̃ :=
jn

|un| log κn
=

(iun,∇un)

|un| log κn
.

each component of j̃n = (j̃1,n, j̃2,n, j̃3,n) is (for fixed n) pointwise (a.e.) bounded,

|j̃k,n| ≤
|∂kun|
log κn

, k = 1, 2, 3, (3.2.9)

so j̃n is well defined almost everywhere in D. Moreover, from (3.2.7) and (3.2.8) it

follows that there exists j = (j′, 0) ∈ L2(D; R3) such that (along subsequence)

j̃′n ⇀ j′, j̃′3,n → 0

in L2(D). Writing

jn
log κn

= j̃n + (|un| − 1)j̃n,

we recall that (|un| − 1)→ 0 in L4(D) (see (3.2.2)) and thus obtain that

j′n
log κn

⇀ j′,
j′3,n

log κn
→ 0 in L

4
3 (D). (3.2.10)
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We continue as in the proof of Theorem 2 of [SS04]. Let e1, e2, e3 be the standard

basis in R3, and define vector fieldsXk = hkek, k = 1, 2, 3, with hk ∈ C0(D) and |hk(x)| ≤

1 for all x ∈ D, k = 1, 2, 3, . By (3.2.7), we have

∣∣Xk · ∇′un
∣∣

log κn
=

∣∣hk∂kun∣∣
log κn

⇀ φXk , k = 1, 2, 3, (3.2.11)

weakly in L2 and pointwise a.e. in D. By (3.2.8), φX3 = 0. we define the defect

measure νXk corresponding to the weak convergence in (3.2.11):

∣∣∣Xk · ∇′un
log κn

∣∣∣2 ⇀ |φXk |2 + νXk in the sense of measures (3.2.12)

for k=1,2,3. Because of the strong convergence in (3.2.8), it follows that νX3 ≡ 0.

For the compactness of the Jacobian we recall Theorem 1 from [SS04]

Theorem 3.2.2 Let (un, An) be a family of H1(Ω,C)×H1(R3,R3) such that

Iεn,κn(un, An) ≤ | log κn|2.

Then, up to extraction sequence

jun
| log κn|

⇀ J in (C0,γ
0 (D))′,

where J is a measure-valued 2-form. Moreover, for all continuous vector-fields X and

Y compactly supported in D,

|X · ∇un|
| log κn|

,
|Y · ∇un|
| log κn|
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are bounded in L2 and if we let νX , νY be their defect measures, we have

‖νX‖
1
2‖νY ‖

1
2 ≥

∣∣∣ ∫
D
J(X, Y )

∣∣∣. (3.2.13)

We apply Theorem 3.2.2: by the energy bound,

Eκn(un;D) :=

∫
D

(1

2
|∇un|2 +

κn
4

(|un|2 − 1)2
)
dx ≤ C[log κn]2,

with constant C independent of n (using the estimates (3.2.7), (3.2.8), and (3.2.2)),

we may conclude that

Jn
log κn

∗−⇀ J

in the weak* topology on (C0,γ
0 (D))′, for 0 < γ ≤ 1. Moreover, the limiting Jacobian

is a Radon measure-valued two-form. Furthermore, the same theorem relates the

limiting Jacobian to the defect measure νXk via a product formula (see Lemma 3.2.3

below.) Recall Lemma 2.2 in [ABGS13]:

Lemma 3.2.3 The limiting Jacobian J = 1
2
dj has the form J = J3dx

1 ∧ dx2 with

J3 = J3(x′), and the limiting current j ∈ Z.

Proof: We make use of the product formula from [SS04] in the case where Nκ =

O(log κ), which we review here. Let E be a bounded smooth domain in R3, and

vκ ∈ H1(E,C) satisfying

Eκ(vκ;E) :=

∫
E

(
1

2
|∇vκ|2 +

κ2

4
(|vκ|2 − 1)2

)
≤ C[log κ]2,

for constant C independent of κ. Let X, Y be continuous, compactly supported vector

fields in E, and νX , νY the defect measures (defined as in 3.2.12) for vκ as κ → ∞.
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Then, the normalized Jacobians Jκ
log κ

?
⇀ J in (C0,γ

0 (Ω))′ for all 0 < γ ≤ 1, and the

defect measures are related to the limiting Jacobian via:

|νX |(E) |νY |(E) ≥
∣∣∣∣∫
E

J(X, Y )

∣∣∣∣2 . (3.2.14)

Here we denote by |ν|(E) the total variation of the measure ν over the set E.

We note as above that for any E ⊂ Ω, Eκn(un;E) ≤ [log κn]2Iεn,κn(un, An)) ≤

C[log κn]2. Let E be any open ball contained in Ω, and Xk = hk ek, with hk ∈ C0(E)

and |hk| ≤ 1, k = 1, 2, 3. Applying the product formula we then obtain,

|νX1|
1
2 (E)|νX3|

1
2 (E) ≥

∣∣∣∣∫
E

J(X1, X3)

∣∣∣∣ =

∣∣∣∣∫
E

h1 h3 J(e1, e3)

∣∣∣∣ .
Taking the supremum over all such h1, h3, and from (3.2.8) we have νX3 ≡ 0, we

conclude that, as a Radon measure, J(e1, e3) = 0 in the ball E. By an analogous

computation with X2 and X3 (as above), we also have J(e2, e3) = 0 in the ball E.

This holds for any ball E ⊂ Ω, and thus these measures vanish identically in Ω, and

thus the Jacobian has the form J = J3 dx
1 ∧ dx2.

Furthermore, since Jn = 1
2
djn for each n, it follows that dJn = 0 (in the sense

of distributions.) Normalizing by log κn and passing to the limit, we retain dJ = 0,

and hence ∂3J3 = 0 in D′(Ω), so J3 = J3(x′). This also implies that (in the sense of

D′(Ω),)

0 = J1 = ∂2j3 − ∂3j2 = −∂3j2,

0 = J2 = ∂3j1 − ∂1j3 = ∂3j1.
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Thus, the limiting current must have the form j =
(
j′(x′), 0

)
and J = 1

2
∇×j ∈M(Ω),

and hence j ∈ Z.

♦

It remains to verify the lower bound inequality. First from the definition of the

defect measures and the product formula from Theorem 1 of [SS04], we have

lim inf
n→∞

∫
D

∣∣∣ ∇′un
log κn

∣∣∣2 ≥ ∑
k=1,2

lim inf
n→∞

∫
D

∣∣∣Xk · ∇′un
log κn

∣∣∣2
≥ |νX1|(D) + |νX2|(D) +

∫
D

(φ2
X1

+ φ2
X2

)

≥ 2
∣∣∣ ∫
D
J(X1, X2)

∣∣∣+

∫
D

(X1 · j)2 + (X2 · j)2

= 2
∣∣∣ ∫
D
h1h2J(e1, e2)

∣∣∣+

∫
D

(h2
1|j · e1|2 + h2

2|j · e2|2). (3.2.15)

The above estimate is valid for any hk ∈ C0(Ω) with |hk(x)| ≤ 1, k = 1, 2. We

choose these functions to obtain an estimate in terms of the total variation of the

measure J3 = J(e1, e2). By the Hahn decomposition, we may write J3 = µ+ − µ− for

mutually singular, nonnegative finite measures µ+, µ−, supported on the disjoint sets

E+, E− ∈ Ω, respectively. Take sequence h1,i, h2,i ∈ C0(Ω) with |hk,i| ≤ 1, k = 1, 2,

such that

h1,i → 1 h2,i → XE+ −XE−

pointwise a.e. in Ω. Since that h1,ih2,iJ(e1, e2) → J and h2
k,i|j · ek|2 → |j|2 a.e. in D

for k = 1, 2 also h1,ih2,iJ ≤ J and h2
k,i|j · ek|2 ≤ |j|2 then we may pass to the limit

i → ∞ on the right hand side of (3.2.15) (using Lebesque dominated convergence
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theorem,) and we conclude that

lim inf
n→∞

∫
D

∣∣∣ ∇′un
log κn

∣∣∣2 ≥ 2|J3|(D) +

∫
D
|j|2. (3.2.16)

Finally, we derive the form of the lower bound for the full energy. First,

lim inf
n→∞

Iεn,κn(un, An) ≥ lim inf
n→∞

1

2[log κn]2

∫
D

(
|∇′un|2 − 2A′n · j′n + |A′n|2

+ (|un|2 − 1)|A′n|2
)
dx

≥ ‖J3‖+
1

2

∫
D

[
|j|2 − 2Â · j + Â|2

]
dx

+ lim inf
n→∞

1

2[log κn]2
(|un|2 − 1)|A′n|2dx

the last integral on the right will tend to zero as n → ∞, indeed using Cauchy

Schwartz inequality with the energy bound and (3.2.6) we get

lim inf
n→∞

1

2[log κn]2

∫
D

(|un|2 − 1)|A′n|2dx ≤ lim inf
n→∞

(∫
D

(|u|2 − 1)2dx
) 1

2
(∫
D

∣∣ An
| log κn|

∣∣4dx) 1
2

≤ lim inf
n→∞

C

κn
| log κn| −→ 0.

Now to reduce the 3D functional to 2D since both J3 = J3(x′) and j′ = j′(x′) we

may integrate out the variable x3, to a two-dimensional total variation, weighted by

the film thickness function d(x′),

‖J3‖M(D) = ‖d(x′)J3‖M(Ω),

The limiting vector potential Â (defined in (3.1.3)) is x3 − dependent, but this de-

pendence may be averaged out (to produce the desired effective field F∗.) Indeed, we
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decompose Â′ as follows:

Â′ =
(
− 1

2
H3x2,

1

2
H3x1

)
+ (H2x3,−H1x3) =: Â⊥ + (H2x3,−H1x3).

Expanding the energy and integrating out x3, we have:

∫
D
|j′ − Â′|2 =

∫
D
|j′ − Â⊥ − (H2,−H1)x3|2dx

=

∫
Ω

d(x′)|j′ − Â⊥|2 − 2

∫
Ω

(j′ − Â⊥) · (h2,−H1)

∫ g(x′)

f(x′)

x3dx3dx
′

+

∫
Ω

|(H2,−H1)|2
∫ g(x′)

f(x′)

x2
3dx3dx

′

=

∫
Ω

d(x′)|j′ − Â⊥|2 − 2

∫
Ω

d(x′)
(f + g)

2
(j′ − Â⊥) · (H2,−H1)dx′

+

∫
Ω

d(x′)
(f 2 + fg + g2)

3
|(H2,−H1)|2dx′

=

∫
Ω

d(x′)
∣∣j′ − Â⊥ − (f + g

2

)
(H2,−H1)

∣∣2dx′ + ∫
Ω

d3(x′)

12

∣∣H ′∣∣2dx′.
(3.2.17)

We conclude that

lim inf
n→∞

Iεn,κn(un, An) ≥ ||d(x′)J3||M(Ω) +
1

2

∫
Ω

d(x′)
(
|j′ −B′∗|2 +

d2(x′)

12
|H ′|2

)
dx′

with

B′∗ := Â⊥ +
(f + g

2

)
(H2,−H1). (3.2.18)

Since ∇′×B′∗ = F∗ with F∗ as given in (3.1.15), this concludes the proof of Theorem

3.1.3.

♦
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3.3 The recovery sequence

In this section we prove the existence of a recovery sequence and the Γ-limsup in-

equality (Theorem 3.1.4).

We introduce the space H,

Definition 3.3.1 We define the space H to be the closure in the norm

‖f‖2
H :=

∫
Ω

1

d(x)
|∇f |2dx

of the linear subspace of C∞0 (Ω) consisting of all functions which are constant in a

neighbourhood of ωi for each i = 1, ...,m.

Note that: Since d(x) is locally integrable, this norm is well-defined and H defines

a Hilbert space. This follows the work of Trudinger [T] as in Alama-Bronsard [AB05].

As d(x) is bounded above in Ω, the H-norm dominates the usual H1-norm on Ω, and

so the Poincaré, trace, and Sobolev inequalities hold for functions in H.

Now we define the Hodge decomposition with respect to the weighted inner prod-

uct,

〈v, w〉 =

∫
Ω

d(x)v · w dx′

on L2(Ω; R2). We define the following subspaces:

U = {−1

d
∇⊥ψ, ψ ∈ H(Ω; R)},

V = {∇ζ, ζ ∈ H1(Ω; R)},

W = {W ∈ C1(Ω; R2), ∇⊥ ·W = 0, ∇ · (dW ) = 0, W · ν = 0 on ∂Ω}.

(3.3.1)

Given what is known regarding Hodge decompositions, the main issue for us is
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the regularity of ψ, ζ. Assuming that ψ ∈ H will guarantee the existence of a unique

solution in H. For the subspace V , we use a result by Montero [M07] which proves

the existence of a unique solution ζ ∈ H1(Ω,R).

Lemma 3.3.2 Any Z ∈ L2(Ω; R2) admits a unique orthogonal decomposition Z =

U + V +W with U ∈ U , V ∈ V, and W ∈ W, with respect to the inner product 〈., .〉.

The space W is finite dimensional space where dim(W) = m.

Proof.

As we saw in Chapter 2, following [JS], the only subspace which is affected by the

multiply connected domain is the space W . First, we assume Z ∈ C∞(Ω; R2). we

define ψ and ζ as the solutions to the boundary-value problems,


−∇ ·

(
1

d(x)
∇ψ
)

= curlZ in Ω,

ψ = 0 on ∂Ω,


∇ · (d(x)∇ζ) = div [dZ] in Ω,

∂ζ

∂ν
= Z · ν on ∂Ω,

Due to our case where d(x) is zero on inner boundaries, the existence and unique-

ness of the above systems of equation are not straight forward.

We recall Lemma 2.2 in [M07].

Lemma 3.3.3 Consider an integer m ≥ 1, and assume that d(x) satisfies (H1)-(H3).

For every φ0 ∈ C0,α(Ω) such that

∫
Ω

dmφ0dx = 0

there is ζ ∈ W 1,2
m,m(Ω) (defined as in (3.1.1)), unique up to a constant, that satisfies

− div (dm∇ζ) = dmφ0 (3.3.2)
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weakly in Ω, that is,

∫
Ω

dm∇s · ∇ζ =

∫
Ω

dmφ0s for all s ∈ W 1,2
m,m(Ω). (3.3.3)

Furthermore, ζ ∈ C2,α(Ω) and ∇ζ · ν = 0 on Ω.

We conclude that for the second system of equations, there exist a unique solution

ζ ∈ C2,α(Ω). Indeed, using the above Lemma, we choose m = 1 and let φ0 = div [dZ]
d
∈

C0,α(Ω), then ∫
Ω

dφ0 =

∫
Ω

div [dZ] =

∫
∂Ω

dZ · ν = 0,

by the boundary conditions on aZ (i.e. Z · ν = 0 on ∂Ω). We can get the general

ζ ∈ H1 by density.

Now for the first system where ψ ∈ H, because of the definition of our space with

the weighted norm the system is well-defined and it has a unique solution by Reisz

Representation Theorem.

If W := Z + 1
d(x)
∇⊥ψ − ∇ζ, then it is clear that W satisfies curlW = 0 =

div [dW ] in Ω, and W.ν = 0 on ∂Ω. By integration by parts, we could see W ⊥
1
d
∇⊥ψ ⊥ ∇ζ in the inner product 〈., .〉.

Finally, applying Lemma 1.1 of [BBH] to identify the space W , any W ∈ W can

be written as W = 1
d
∇⊥ξ with ξ constant on each componant of ∂Ω, and ∇· 1

d
∇ξ = 0

in Ω. In our case where Ω = ω0 \ ∪mi=1ωi is multiply-connected domain, we follow the

treatment of [AB06]. For each fixed i = 1, ...,m we define functions ξi ∈ H(Ω) which
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solve

∇ · 1

d
∇ξi = 0, in Ω,

ξi|∂ωj = cij, j = 1, . . . ,m

ξi|∂ω0 = 0,

1

2π

∮
∂ωj

1

d

∂ξi
∂ν

dx = δi,j j = 1, . . . ,m,


(3.3.4)

where cij are constants (determined by the solutions,) and δi,j is Kronecker’s delta.

We got the last equation by integrating around each ωj.

We can obtain the existence of such ξi by minimizing

Fi(ξ) =
1

2

∫
Ω

1

d
|∇ξ|2dx+ 2πξ|ωi

over the class of ξ ∈ H(ω) with ξ|ωj constant. By the Poincaré inequality and the

trace inequalities, Fi is bounded below on H, and by convexity it attains a unique

minimizer ξi. A simple computation shows that minimizers give weak solutions to

the boundary-value problem (3.3.4). Indeed, the first variation yields,

0 = DFi(ξi)u =

∫
Ω

[
1

d
∇ξi · ∇u]dx+ 2πξ|ωi . (3.3.5)

for all u ∈ H. The equation and boundary conditions then follow from choosing u

with values either zero or one in the appropriate domains ωj where each ξi is smooth

in the interior and on the boundary as in [AB05].

ξ =
m∑
i=1

Φiξi(x), Φi :=
( 1

2π

∮
∂ωj

1

d

∂ξ

∂ν
dx
)
.

Thus, W = 1
d
∇⊥ξ ∈ W is parametrized by the m constants Φi, i = 1, ...,m, and W
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is finite dimensional of order m. The general result for Z ∈ L2(Ω; R2) is obtained by

density.

♦

We are now ready to construct the recovery subsequence,

Proof of Theorem 3.1.4. (Upper bound part of the Γ-convergence)

Let j ∈ Z be given, as well as the sequence κn →∞. We choose vector potentials

An = Aex where hex = ∇ × Aex, and construct sequence of order parameters un of

the form un(x) = vn(x′) which gives us the desired result. As noted in [ABGS10], for

configurations of this form, the three-dimensional energy Ĩε,κ reduces to,

Gκn(vn, F ) =

∫
Ω

d(x′){1

2
|(∇− iB′)vn|2 +

κ2
n

4
(|vn|2 − 1)2 +

(d(x′))2

24
|h′ex|2|vn|2}dx′,

(3.3.6)

with B′∗ defined as in (3.2.18) and F∗ = ∇′ × B′∗. We will drop the prime since we

will be working in two dimensions from now on. We apply the Hodge decomposition

above to our given j ∈ Z. and write

j = U + V +W = −1

d
∇⊥ψ +∇ζ +W.

where ψ ∈ H(Ω) ⊂ H1
0(Ω), ζ ∈ H1(Ω) and W ∈ W .

We will deal with V and W first. Since they are irrotational, they won’t affect the

weak Jacobian J = 1
2
∇× j, and carry no vorticity. As in [JS02], we may associate to

V, W an S1-valued map wκ. For the singular part of the Jacobian which is contained

in U , we first consider smooth U and we construct a family uκ with points vortices

via an appropriate Green’s function then use a diagonal argument to get the general
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case. Putting these two parts together, the desired recovery sequence will have the

form vn = uκnwκn .

Step 1: The components V + W ∈ V ⊕W . This step follows [ABGS13] and we

recall the proof for completeness.

From Lemma 3.3.2, we can write V = ∇ζ, ζ ∈ H1(Ω) andW = 1
d
∇⊥ξ, with ξ(x) =∑m

i=1 Φiξi(x), for ξi as in (3.3.4) with Φi real constants. Let Mi,n = [Φi log κn], i =

1, ...,m, where brackets denote the integer part, Set

Ξn :=
m∑
i=1

Mi,nξi, Wn = −1

d
∇⊥Ξn.

We note that

‖Wn −W log κn‖C1 ≤ C, (3.3.7)

for constant C depending on W (but independent of n.)

Since

curlWn =
m∑
i=1

Mi,n∇⊥ ·
1

d
∇⊥ξi = 0,

∮
∂ωj

Wn · τ ds =
m∑
i=1

Mi,n

∮
∂ωj

1

d

∂ξi
∂ν

ds = 2πMj,n,

an integer multiple of 2π for each j = 1, . . . ,m, it follows that Wn is locally a gradient,

Wn = ∇ηn for ηn possibly multiple valued, but for which eiηn is smooth and single-

valued in Ω. We may then define the complex order parameter

wn = exp i(ηn + ζ log κn).
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By construction,

j(wn)

log κn
=

(iwn,∇wn)

log κn
→ V +W (3.3.8)

in C1(Ω̄). Since |wn| = 1, we may easily calculate the contribution to the energy

using the orthogonality:

1

2

∫
ω

d(x)|∇wn|2 dx =
1

2

∫
Ω

d(x)|∇ηn +∇ζ log κn|2 dx

=
1

2

∫
ω

d(x)|Wn|2 +
(log κn)2

2

∫
Ω

d(x)|∇ζ|2 dx

≤ (log κ)2

2

∫
Ω

d(x)
{
|W |2 + |V |2

}
dx+O(1), (3.3.9)

using (3.3.7) in the last line. This completes Step 1.

The treatment of U = −1
d
∇⊥ψ ∈ U will be done in several steps. First, we start

with ψ ∈ C∞0 (Ω), then use a diagonal argument for ψ ∈ H.

Step 2: Since U ∈ U then there exists a sequence {ψtm} ⊂ C∞0 (Ω) with Ktm :=

suppψtm ⊂⊂ Ω and dist (Ktm , ∂Ω) ≥ tm with tm → 0.

Define

dtm(x) = max{tm, d(x)}

then dtm(x) is positive and d(x) ≤ dtm(x).

For this tm we define the measure

µtm = −∇× 1

dtm
∇⊥ψtm
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since ψtm is compactly supported in Ktm ⊂ Ω then by (H3) on d(x), we have

µtm = −∇× 1

d
∇⊥ψtm

Let Ωtm = {x ∈ Ω s.t. dist (x, ∂Ω) ≥ tm} choose tm small enough s.t. minΩ̄tm
d >

tm, and to start with we follow proof of Proposition 2.4.1 in Chapter 2 with minor

modifications since we have a positive dtm .

Let Nn ∈ N be any sequences of whole numbers with

Nn

log κn
−→ 1.

We apply Lemma 2.4.3 in Chapter 2 (see [JS]), there exist family of points {pni }i=1,...,Nn

in the set Ktm = suppψtm and associated integers σni ∈ {−1, 1} with the following

properties:

|pni − pnj | ≥ c0N
−1/2
n for i 6= j, for constant c0 = c0(ψtm) and dist (pni , ∂Ω) > c0N

−1/2
n ;

(3.3.10)

lim
α→0

R(α) = 0 where R(α) = lim sup
n→∞

∑
i 6=j:

|pn
i
−pn
j
|≤α

∣∣log |pni − pnj |
∣∣

N2
n

, (3.3.11)

µn :=
2π

Nn

Nn∑
i=1

σni δpni ⇀ µtm , (3.3.12)

|µn| =
2π

Nn

Nn∑
i=1

δpni ⇀ |µ
tm|, (3.3.13)

where the convergence in (3.3.12) and (3.3.13) is weakly in the sense of measures.

and strongly in (C0,γ
0 )′ for all 0 < γ ≤ 1. By |µtm| we mean the total variation of
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the measure µtm = curlU tm (see Definition 2.1.7). Since ψtm ∈ C∞0 (Ω) then µtm is

smooth and compactly supported in Ktm ⊂ Ω.

As in [SS00] and Chapter 2 we modify the measures µn by regularizing the Dirac

mass. Let µni := κnH1b∂B(pni ,1/κn), the element of arclength on Sni := ∂B(pni , 1/κn),

normalized with mass 2π. We define the measures

νn =
1

Nn

Nn∑
i=1

σni µ
n
i ,

with pni ∈ K, σκi ∈ {0, 1} as above. Since each µni −→ δpni strongly in (C0,γ
0 (Ω))′ for

all 0 < γ ≤ 1, and weakly in M(Ω), we may conclude that (3.3.12),(3.3.13) hold as

well for νn,

νn −→ µtm , |νn| −→ |µtm |, strongly in [C0,γ
0 (Ω)]′ and weakly in M(Ω).

(3.3.14)

By Fubini’s theorem we also note that the product measures also converge,

νn ⊗ νn −→ µtm ⊗ µtm , (3.3.15)

strongly in (C0,γ
0 (Ω× Ω))′ and weakly in M(Ω× Ω).

Step 3: We introduce the Dirichlet Green’s function, Gdtm (x, y) in Ω, which solves


−∇x ·

1

dtm(x)
∇xGdtm (x, y) = δy(x), in Ω,

Gdtm (·, y) = 0, on ∂Ω,
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for each fixed y ∈ Ω. By standard elliptic theory, since that the coefficient of the

elliptic operator 1
dtm

is smooth in Ω and bounded below we conclude that the solution

Gdtm (x, y) is smooth in Ω× Ω \ {y = x} (see GT), and

Gdtm (x, y) = −dtm(x)

2π
log |x− y|+ γ(x, y), (3.3.16)

where the regular part γ has the property that for every compact set K ⊂⊂ Ω, there

exists C(K) <∞ with

sup
y∈K
x∈Ω

|γ(x, y)| ≤ C(K).

For U tm = 1
dtm
∇⊥ψtm with suppU tm ⊂ Ktm , we may obtain the potential function

ψtm from curlU tm = µtm ,where µtm is smooth, by solving


−∇ · 1

dtm (x)
∇ψtm = µtm in Ω,

ψtm = 0 on ∂Ω,

and we recover U tm = − 1
dtm
∇⊥ψtm . Using the Green’s function representation, we

have

ψtm(x) =

∫
Ω

Gdtm (x, y) dµtm(y) =

∫
Ktm

Gdtm (x, y) dµtm(y).
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We may calculate the weighted norm of U tm in terms of the measure µtm as follows:

∫
Ω

dtm(x) |U tm|2 dx =

∫
Ω

1

dtm

∣∣∇ψtm∣∣2 dx
= −

∫
Ω

ψtm · ∇⊥
(

1

dtm
∇⊥ψtm

)
dx

=

∫
Ω

ψtm(x) dµtm(x)

=

∫
Ω

∫
Ω

Gdtm (x, y) dµtm(y) dµtm(x). (3.3.17)

Step 4. In this step we prove that there exits a sequence ψn ∈ H1
0(Ω) for which

1
dtm
∇⊥ψn −→ U tm strongly in Lp(Ω) for all p < 2, and

lim sup
n→∞

∫
Ω

1

dtm
|∇ψn|2 dx ≤

∫
Ω

dtm(x) d|µtm|(x) +

∫
Ω

dtm(x)|U tm|2 dx. (3.3.18)

As you may notice dtm(x) is positive, then this step follows step 2 of the proof of

Proposition 2.4.1 .

For each n, we define ψn(x) =
∫

Ω
Gdtm(x, y) dνn(y), and so ψn solves


−∇ · 1

dtm (x)
∇ψn = νn in Ω,

ψn = 0 on ∂Ω.

By (3.3.14) and elliptic regularity, we have ψn → ψtm in W 1,p(Ω) for p < 2, and thus

− 1
dtm
∇⊥ψn → U tm in Lp(Ω) for all p < 2 as claimed.

To estimate the energy we use the Green’s representation. Since νn ∈ H−1(Ω) for
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fixed n, following (3.3.17) we conclude that

∫
Ω

1

dtm
|∇ψn|2 dx =

∫
Ω

∫
Ω

Gdtm (x, y) dνn(y) dνn(x).

For any 0 < α < 1, let ∆α = {(x, y) ∈ Ω × Ω : |x − y| ≤ α}. Fix χα ∈ C∞(Ω̄ × Ω̄)

with 0 ≤ χα ≤ 1, and

χα(x, y) =


1, if x ∈ ∆α,

0, if x /∈ ∆2α.

For any α ∈ (0, 1), Gdtm (x, y)(1−χα(x, y)) is smooth, and hence by the strong (C0,γ
0 )′

convergence νn → µtm we have:

lim
n→∞

∫
Ω

∫
Ω

Gdtm (x, y)(1− χα(x, y))dνn(y) dνn(x)

=

∫
Ω

∫
Ω

Gdtm (x, y)(1− χα(x, y))dµtm(y) dµtm(x).

(3.3.19)

For the complementary integral, we use (3.3.16) to observe that

∫
Ω

∫
Ω

Gdtm(x, y)χα(x, y)dνn(y) dνn(x)

=

∫ tm

K

∫
∆2α

[
dtm(x)

2π
log

1

|x− y|
+ γ(x, y)]χα dνn(y) dνn(x)

≤
∫ tm

K

∫
∆2α

dtm(x)

2π
log

1

|x− y|
dνn(y) dνn(x) + Cα

(3.3.20)
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∫
Ω

∫
Ω

Gdtm(x, y)χα(x, y)dνn(y) dνn(x)

=
1

N2
n

Nn∑
i,j=1

∫∫
∆2α

dtm(x)

2π
log

1

|x− y|
dµni (y) dµni (x) + Cα.

(3.3.21)

To evaluate the remaining integral, we consider the contribution due to distinct

points pni 6= pnj in ∆2α separately. We adapt an argument in Proposition 7.4 of [SS07]

Define the index set

Jn = {(i, j) : |pni − pnj | ≤ 2α}.

Let Rn = 1
4
c0N

−1/2
n , where c0 = c0(ψ) is the constant in (3.3.10). We also define balls

B̃n
i = B(pni , Rn), i = 1, . . . , Nn. By the choice of Rn, they are disjoint, as is the union

⋃
(i,j)∈Jn

(
B̃i × B̃j

)
⊂ ∆3α.

We also observe that for any R ≤ Rn and (i, j) ∈ Jn, since R ≤ 1
4
|pi − pj|, we have

1

2
≤ |x− y|
|pni − pnj |

≤ 3

2
for all x ∈ B(pni , R), y ∈ B(pnj , R). (3.3.22)
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For (i, j) ∈ Jn we then have (recalling that Sin = ∂B(pni ,
1
κn

) = suppµni ,)

∫∫
B̃ni ×Bnj

log
3

|x− y|
dx dy ≥

∫∫
B̃ni ×Bnj

log
2

|pni − pnj |
dx dy

= π2R4
n log

2

|pni − pnj |

=
R4
n

4

∫∫
S̃ni ×Snj

log
2

|pni − pnj |
dµni (x) dµnj (y)

≥ R4
n

4

∫∫
S̃ni ×Snj

log
1

|x− y|
dµni (x) dµnj (y),

using (3.3.22) in the first and last lines. Summing over all pairs (i, j) ∈ Jn, and using

the disjointness of the union of the B̃n
i × B̃n

j , we obtain:

1

N2
n

∑
(i,j)∈Jn

∫∫
Sni ×Snj

dtm(x)

2π
log

1

|x− y|
dµni (x) dµnj (y)

≤ C

R4
nN

2
n

∑
(i,j)∈Jn

∫∫
B̃ni ×Bnj

log
3

|x− y|
dx dy

≤ C

∫∫
∆3α

log
3

|x− y|
dx dy =: R(α). (3.3.23)

As | log |x − y|| is integrable, the remainder R(α) → 0 as α → 0, and so this term

will not contribute to the limiting energy.

Finally, we consider the contribution from the self-energy of the vortices pni . We

parametrize the integrals over Sni = ∂B(pni ,
1
κn

) using complex notation. We write

94



Ph.D. Thesis - Sara S. Alzaid McMaster University - Mathematics

x, y ∈ ∂B(pni ,
1
κn

) as x = pni + 1
κn
eiθ, y = pni + 1

κn
eiτ , 0 ≤ θ, τ < 2π. Then we have:

1

N2
n

∫∫
Ω

dtm(x)

2π
log

1

|x− y|
dµni (y) dµni (x)

=
1

N2
n

∫ 2π

0

∫ 2π

0

dtm(pni + eiθ

κn
)

2π
[log κn + log |ei(θ−τ) − 1|]dθ dτ

=
1

Nn

∫ 2π

0

dtm

(
pni +

eiθ

κn

)
dθ +O(N−2

n )

=
1

Nn

∫
Ω

dtm(x) d|µni |(x) +O(N−2
n ).

Summing over all i = 1, . . . , Nn, we arrive at

1

N2
n

Nn∑
i=1

∫∫
Ω

dtm(x)

2π
log

1

|x− y|
dµni (y) dµni (x) =

1

Nn

∫
Ω

dtm(x) d|νn|(x) +O(N−1
n )

=

∫
Ω

dtm(x) d|µtm|(x) +O(N−1
n ).

(3.3.24)

Passing to the limit κn → ∞, we thus obtain from (3.3.19),(3.3.20),(3.3.23), and

(3.3.24), that

lim sup
n→∞

∫
Ω

∫
Ω

Gdtm (x, y)dνn(y) dνn(x)

≤
∫

Ω

dtm(x) d|µtm|(x) +

∫
Ω

∫
Ω

Gdtm (x, y)(1− χα(x, y))dµtm(y) dµtm(x)

+ Cα + CR(α).
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By hypothesis, the measure µtm is bounded, and so we may apply dominated conver-

gence to pass to the limit α→ 0 and obtain the desired bound (3.3.18), as

lim sup
n→∞

∫
Ω

1

dtm
|∇ψn|2 dx = lim sup

n→∞

∫
Ω

∫
Ω

Gdtm (x, y)dνn(y) dνn(x)

≤
∫

Ω

dtm(x) d|µtm|(x) +

∫
Ω

∫
Ω

G(x, y)dµtm(y) dµtm(x)

=

∫
Ω

dtm(x) d|µtm|(x) +

∫
Ω

dtm(x) |U tm |2 dx,

by (3.3.17).

Step 5. Constructing a sequence un ∈ H1
0(Ω).

Let Un = −Nn
1
dtm
∇⊥ψn. Then, ∇⊥Un = Nn∇ ·

(
1
dtm
∇ψn

)
= 0 locally in Ω \

∪Nni B(pni ,
1
κn

). Moreover, if C is a simple closed curve in Ω \ ∪Nni B(pni ,
1
κn

), we have

∫
C

Un · τ ds ∈ 2π Z,

by the normalization |dµni | = 2π. Thus, we may write Un = ∇φn in Ω\∪Nni B(pni ,
1
κn

),

with φn which is multiple valued, but for which ∇φn and eiφn are single-valued in

Ω \ ∪Nni B(pni ,
1
κn

).

We now define an auxiliary function ρn as in [JS] and [ABGS13] to remove the

singularity at each vortex core,

ρni (x) :=


0 if |x− pni | < 1

2κn
,

2κn|x− pni | − 1 if 1
2κn
≤ |x− pni | ≤ 1

κn
,

1 if |x− pni | > 1
κn
,

(3.3.25)
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and ρn :=
∏Nn

i=1 ρ
n
i . A simple computation shows that

∫
Ω

d(x)

{
1

2
|∇ρni |2 +

κ2
n

4
((ρni )2 − 1)2)

}
dx ≤ C0,

with constant C0 independent of n. Also

(ρ2
n − 1)→ 0 in Lq for all q <∞, (3.3.26)

indeed from (3.3.25)

∫
Ω

∣∣∣ρn2 − 1
∣∣∣q =

∫
Ω

∣∣∣∏
i

(ρni )2 − 1
∣∣∣q

≤
∫
{x∈Ω| εn

2
≤|x−pi|≤εn}

∣∣∣∏
i

( 2

εn
|xi − pni | − 1

)2 − 1
∣∣∣q +

∫
{x∈Ω| |x−pi|>εn}

|1− 1|

≤
∫
{x∈Ω| εn

2
≤|x−pi|≤εn}

∣∣∣∏
i

( 2

εn
εn − 1

)2 − 1
∣∣∣q = 0

Now define un = ρne
iφn , with ρn, φn as in the preceding paragraphs. We then

have:

∫
Ω

dtm(x)

{
1

2
|∇un|2 +

κ2
n

4

(
|un|2 − 1

)2
}
dx

=

∫
Ω

dtm(x)

{
1

2
ρ2
n|∇φn|2 +

1

2
|∇ρn|2 +

κ2

4

(
ρ2
n − 1

)2
}
dx

≤ N2
n

2

∫
Ω

1

dtm(x)
|∇ψn|2 dx+ C0Nn.

From (3.3.18) we then conclude that

97



Ph.D. Thesis - Sara S. Alzaid McMaster University - Mathematics

lim sup
n→∞

1

(log κn)2

∫
Ω

dtm(x){1

2
|∇un|2+

κ2
n

4

(
|un|2−1

)2}dx

≤ 1

2

∫
Ω

dtm(x) d|µtm |(x) +
1

2

∫
Ω

dtm(x)|U tm|2 dx. (3.3.27)

Using (3.3.26) we also conclude that

j(un)

Nn

=
1

Nn

(iun,∇un)

=
1

Nn

(iρne
iφn ,∇(ρne

iφn))

=
1

Nn

(iρne
iφn ,∇ρneiφn + ρni∇φneiφn)

=
1

Nn

(iρn,∇ρn + ρni∇φn)

=
1

Nn

(
(iρn,∇ρn) + (iρn, iρn∇φn)

)
the first part is zero since ρn is real-valued and using the fact that Un = ∇φn, we

have

j(un)

Nn

=
1

Nn

−Nnρ
2
nUn

= − ρ2
n

dtm
∇⊥ψn

= − 1

dtm
∇⊥ψn +

(1− ρ2
n)

dtm
∇⊥ψn −→ U tm in Lp(Ω) for all p < 2. (3.3.28)

Step 6. Putting everything together.

Write j ∈ Z as j = U + V + W with U ∈ U , V ∈ V , and W ∈ W . Let wn be

defined as in Step 1 and un as constructed in Step 5, and define vn = unwn. Since
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|wn| = 1, we have

j(vn) = (ivn,∇vn)

= (iunwn, wn∇un + un∇wn)

= (iunwn, wn∇un) + (iunwn, un∇wn)

= |wn|2(iun,∇un) + |un|2(iwn,∇wn)

= j(un) + ρ2
nj(wn) −→ U tm + V +W = jtm (3.3.29)

in Lp(Ω) for all p < 2.

To estimate the energy, we again use the fact that |wn| = 1 to expand:

1

N2
n

∫
Ω

d(x)|∇vn|2 dx =
1

N2
n

∫
Ω

d(x)
{
|∇un|2 + ρ2

n|∇wn|2 + j(un) · j(wn)
}
dx.

We claim that the last term is o(1). Indeed, from Step 1, j(wn)
log κn

= ∇Φn, with Φn =

ηn + ζ log κn and ∇Φn → V +W in C1, and therefore,

1

N2
n

∫
Ω

d(x)j(un) · j(wn) dx = −
∫

Ω

∇⊥ψn · ρ2
n

d(x)

dtm(x)
∇Φn dx

= −
∫

Ω

[
∇⊥ψn · ∇Φn − (1− d(x)

dtm(x)
ρ2
n)∇⊥ψn · ∇Φn

]
dx

= ∗+ ∗∗

∗ is zero by integration by parts and the definition of Φn. Now to calculate ∗∗ we use

definition of ρn and split the integral,

∫
Ω

I :=

∫
Ω

(
1− d(x)

dtm(x)
ρ2
n

)
∇⊥ψn · ∇Φndx =

∫
Ω\∪iB

I +

∫
{ 1

2κn
≤|x−pni |≤

1
κn
}
I
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The second integral, let B := { 1
2κn
≤ |x− pni | ≤ 1

κn
}

∫
B

(1− d(x)

dtm(x)
ρ2
n)∇⊥ψn · ∇Φndx ≤ ‖∇φn‖∞

∫
B

∇⊥ψn

≤ ‖∇φn‖∞
(∫

B

|∇⊥ψn|2
) 1

2 |V olB|

≤ o(1)

The first integral we use the uniform bound of ∇Φn and we know that a = dtm

except for a small area around the inner boundaries then we use Hölder’s inequality

∫
Ω\∪iBi

(
1− d(x)

dtm(x)

)
∇⊥ψn · ∇Φndx

≤ ‖∇Φn‖∞

(∫
Ω\∪iBi

|∇ψn|2dx

) 1
2(∫

Ω\∪iBi
(1− d(x)

dtm(x)
)2dx

) 1
2

≤ ‖∇Φn‖∞‖ψn‖H1
0

(∫
{x∈Ω;d(x)≤tm}\∪iBi

(
1− d(x)

dtm(x)

)2

dx

) 1
2

≤ O(tm)

Next we calculate,

lim sup
n→∞

1

N2
n

Gκ(vn;F∗) = lim sup
n→∞

1

N2
n

∫
Ω

d(x)
{1

2
|∇un|2 +

1

2
|∇wn|2 + j(un) · j(wn)

−B∗ · j(vn) + |B∗|2|vn|2 +
κ2
n

4
(|un|2 − 1)2 +

d(x)2|H ′|2

24
ρ2
n

}
dx

= lim sup
n→∞

1

N2
n

∫
Ω

d(x)
{1

2
|∇un|2 +

1

2
|∇wn|2 +O(tm)−B∗ · j(vn)

+ |B∗|2|vn|2 +
κ2
n

4
(|un|2 − 1)2 +

d(x)2|H ′|2

24
ρ2
n

}
dx
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lim sup
n→∞

1

N2
n

Gκ(vn;F∗) ≤ lim sup
n→∞

1

N2
n

∫
Ω

dtm(x)
{1

2
|∇un|2 +

κ2
n

4
(|un|2 − 1)2 −B∗ · j(un)

+ |B∗|2|un|2 +O(tm)}+ d(x){1

2
|∇wn|2 −B∗ · j(wn)

+ |B∗|2|wn|2 +
d(x)2|H ′|2

12
ρ2
n

}
dx

≤ 1

2

∫
Ω

dtm(x)d|µtm|+ 1

2

∫
Ω

dtm(x)|U tm −B∗|2 dx+O(tm)

+ d(x)
1

2

∫
Ω

{∣∣(V +W )−B∗
∣∣2 +

d2(x)|H ′|2

12

}
dx.

where B∗ is defined as in (3.2.18), and d(x) ≤ dtm(x).

Finally take the limit when tm → 0. The first term will converge to 1
2

∫
Ω
d(x)d|µ|

by the uniform convergence of dtm → a in Ω and by the convergence of µtm in sense

of measure and in H−1(Ω).

To deal with the second integral, by definition of U tm

U tm = − 1

d(x)
∇⊥ψtm = − 1

dtm(x)
∇⊥ψtm

where d(x) = dtm(x) in Ktm , hence

lim
tm→0

∫
Ω

d(x)|U tm|2 = lim
tm→0

∫
Ω

d(x)|1
a
∇⊥ψtm|2

= lim
tm→0

∫
Ω

1

d
|∇⊥ψtm|2

=

∫
Ω

1

d
|∇⊥ψ|2 =

∫
Ω

d(x)|U |2

using the fact that ψtm converges to ψ in H.

=⇒ 1

2
lim
m→∞

∫
Ω

dtm(x)|U tm −B∗|2 =
1

2
lim
m→∞

∫
Ω

d(x)|U tm −B∗|2 =
1

2

∫
Ω

d(x)|U −B∗|2
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Back to the upper bound,

lim sup
n→∞

1

N2
n

Gκ(vn;F∗) ≤
1

2

∫
Ω

d(x)d|µ|+ 1

2

∫
Ω

d(x){|j|2 −B∗ · j + |B∗|2 +
d2(x)|H ′|2

12
}dx

≤ 1

2

∫
Ω

d(x)d|µ|+ 1

2

∫
Ω

d(x){|j −B∗|2 +
d2(x)|H ′|2

12
}dx

= I∞(j;F∗) +

∫
Ω

d2(x)|H ′|2

24
dx. (3.3.30)

with F∗ = curlB∗. As in [SS07] to get the upper bound in terms of the general µ ∈

H−1(Ω)∩M(Ω). A diagonal argument together with (3.3.30), yields a sequence nk →

∞, that we write in shorthand {n}, such that, writing {un, An} instead of {unk , Ank},

both (3.3.30) and (3.3.12) hold. This completes the proof of the Γ-convergence result.

♦
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Chapter 4

Γ-Limit For a Ginzburg-Landau

Functional with Normal Inclusions.

In this chapter we study the Γ-Limit for the Ginzburg Landau Functional for super-

conductors with normal inclusions. We will study the full energy with holes, by first

decoupling the nergy using the decomposition of Lassoued and Mironescu which will

put a(x) in front of the gradient part of the energy. Then, we modify the method of

Sandier and Serfaty [SS04] and use it to find the lower bound. Finally, we modify the

Hodge decomposition we presented in Chapter 2 for the upper bound.

Let D ⊂ R2 be a smooth simply-connected domain, ψ ∈ H1(D,C) the complex-

valued order parameter, A ∈ H1(D,R) the vector potential, h = curlA = ∂xAy −

∂yAx, and hex is a constant applied field. We will study the energy

Eε(ψ,A) :=

∫
D

{
1

2
|(∇− iA)ψ|2 +

1

4ε2

[(
|ψ|2 − a(x)

)2 − (a−)2
]

+
1

2
(h− hex)2

}
dx,

(4.0.1)

Note that subtracting (a−)2 alters the usual inhomogeneous Ginzburg–Landau energy
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by a constant, which would give the highest order term O(ε−2) as ε → 0. Note that

the energy density is still non-negative everywhere in the sample D. We assume the

following conditions on a(x);

(H1) a(x) ∈ C2(D).

(H2) {x ∈ D : a(x) ≤ 0} = ∪nj=1ωj, with finitely many smooth, simply connected

domains ωj ⊂⊂ D.

(H3) ∇a(x) 6= 0 for all x ∈ ∂ωj, j = 1, . . . , n. More specific, ∃δ > 0 s.t. there are

non-negative constants mi, and Mi such that

mi ≤
a(x)

dist (x, ∂ωj)
≤Mi.

for dist (x, ∂ωj) < δ.

(H4) we do not allow any isolated pinning points a(x0) = 0, we admit only normal

inclusions with nonempty interior.

We define

Ω = D \ {x : a(x) ≤ 0} = D \

(
n⋃
j=1

ωj

)
.

Note that it follows from the above hypotheses that a(x) is bounded away from zero

on the exterior boundary ∂D.
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4.1 Preliminaries

4.1.1 Spaces, gauges, and equations

We define here the appropriate spaces and the Euler-Lagrange equations for the min-

imizers.

Definition 4.1.1 We define the space H̆1
div(R

2,R2) to be the closure of the space of

the smooth, compactly supported divergence-free vector fields F ∈ C∞0 (R2,R2).

Definition 4.1.2 We say that (ψ,A) ∈ H if ψ ∈ H1(Ω,C) and A ∈ H1(D,R2) such

that

divA = 0 in D, A · ν = 0 on ∂D. (4.1.2)

The functional Eε is gauge-invariant: if ϕ ∈ H2(D,R) any scalar potential, then

Eε(u exp(iϕ), A + ∇ϕ) = E(u,A). The use of particular gauge, namely Coloumb

gauge as in (4.1.2) eliminates the degenercy.

Minimizers of Eε satisfy the Ginzburg-Landau Equations in Ω,

−∇2
Aψ + 1

ε2
(|ψ|2 − a(x))ψ = 0 in D; (4.1.3)

−∇⊥h = j := 〈iψ,∇Aψ〉 in D; (4.1.4)

h = hex on ∂D; (4.1.5)

h = Hi(constant) in ωj, j = 1, ...,m. (4.1.6)

4.1.2 Decoupling the density profile

As ε→ 0 we expect that the potential term in the energy Eε will force |ψ|2 → a+(x).

The hypotheses on a(x) do not allow
√
a+ ∈ H1(D), and so this creates a singular
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boundary layer near the zero set of a. Here we study this boundary layer, so that it

can be effectively removed from our energy calculations in the following sections.

Define a functional,

Jε(η) :=

∫
D

{
1

2
|∇η|2 +

1

4ε2

[(
η2 − a(x)

)2 − (a−)2
]}

dx, (4.1.7)

for real-valued functions η ∈ H1(D; R). Critical points of Jε solve the boundary-value

problem

−∆η +
1

ε2
(η2 − a(x))η = 0, in D;

∂η

∂ν
= 0, on ∂D. (4.1.8)

Recall Proposition 2.1 in [AB05].

Proposition 4.1.3 (Proposition 2.1 in [AB05]).

Problem (4.1.8) admits a unique positive solution ηε, which is the unique minimizer

of Jε in H1(D) up to a complex multiplier of modulus one. In addition,

(i) 0 < ηε(x) ≤ maxD a, and |∇ηε| ≤ C/ε;

(ii)

Jε(ηε) ≤ C| log ε| and ηε is bounded in L∞(Ω). (4.1.9)

(iii) There exists a constant C independent of ε so that

|ηε(x)−
√
a+(x)| ≤ Cε1/3

√
a+(x) for every x ∈ Ω with dist (x, ∂Ω) ≥ ε1/3;

(4.1.10)

(iv) For every j = 1, . . . , n and x ∈ ωj with dist (x, ∂ωj) ≥ ε1/3,

0 < ηε(x) ≤ Cε1/6 exp
[
−dist (x, ∂ωj)/ε

2/3
]
, (4.1.11)
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where C > 0 is a constant independent of ε.

In particular, (iv) implies that ηε → 0 locally uniformly in the holes ωj. The

assertion (iv) implies that |η2
ε (x)−a+(x)| is small with respect to a+(x) itself provided

we remain at a small distance (ε1/3) from the boundary of each ∂ωj.

In addition we recall the result of Proposition 2.3 of [AAB] which implies that the

negativity of a(x) in the normal regions ωj acts more or less like an imposed Dirichlet

condition:

Proposition 4.1.4 Assume |hex| ≤ C0| ln ε| for some constant C0 > 0. Then, for

any minimizer (ψ,A) of Eε in H,

∫
Ω

(|ψ|2 − a)2dx+

∫
∪ωj
|ψ|4dx ≤ C1ε

2| ln ε|2, (4.1.12)

with constant C1 depending on C0. Moreover, |ψ(x)| → 0 locally uniformly in ∪jωj

and

|ψ(x)| ≤ Cε1/6 exp
[
−dist (x, ∂ωj)/ε

2/3
]

(4.1.13)

for all x ∈ ωj with dist (x, ∂ωj) ≥ ε1/3 and j = 1, . . . , n.

We define spaces we need for the energy decomposition as follow:

Definition 4.1.5 We define the space H1
η2
ε

to be

H1
η2
ε

:= {u ∈ W 1(Ω; C) : ‖u‖2
H1
η2
ε

:=

∫
Ω

η2
ε |∇u|2dx <∞}

and the space H1
a to be

H1
a := {u ∈ W 1(Ω; C) : ‖u‖2

H1
a

:=

∫
Ω

a|∇u|2dx <∞}.
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We now apply the remarkable observation (see [LM]) that the energy of the profile

ηε and the remaining complex order parameter u = ψ/ηε decouple exactly into two

independent pieces. Recall lemma 2.3 in [AB05]

Lemma 4.1.6 Let (u,A) ∈ H. Then, u = ψ/ηε is well defined, belongs to H1
η2
ε
, and

Eε(ψ,A) = Jε(ηε) + Fε(u,A) (4.1.14)

where

Fε(u,A) =

∫
D

{
η2
ε

2
|∇Au|2 +

η4
ε

4ε2
(|u|2 − 1)2 +

1

2
(h− hex)2

}
dx. (4.1.15)

Proof: Note that u is well defined in D, since ηε > 0. The decomposition and the

fact that u ∈ H1
η2
ε
(Ω) follow exactly as in Serfaty [S].

In Lemma 4.1.6, the energy is decomposed in the full domain D we will require

the following Lemma to be able to reduce it to the multiply connected domain Ω. We

recall Lemma B.1 from [M07].

Lemma 4.1.7 There is f ∈ W 1,2
0 (Ω), global minimizers of (4.1.7) in W 1,2

0 (Ω). Fur-

thermore, there is ε1 > 0 such that f is not constant when ε ∈ (0, ε1). In this case,

one can choose them to satisfy the following properties:

(1) 0 < f ≤ ηε in Ω.

(2) For some C > 0, ηε ≤
√
a(x) + Cε

1
3 for all x ∈ D.

(3) For any α ∈ (0, ε
1
3 ), there are constants C > 0 and 0 < ε2 ≤ ε1 such that, for
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any 0 < ε ≤ ε2, and all x ∈ Ω, one has

√
a(x)− Cεα ≤ f(x).

(4) For any β > 0 there are numbers ε0, λ0 > 0 such that

f ≥ λ0a
1+β(x)

for all x ∈ Ω and ε ∈ (o, ε0).

(5) There is a constant C > 0 independent of ε > 0 such that, for 0 < ε ≤ ε2, one

has

0 ≤ J(f ; Ω)− J(ηε;D) ≤ C.

Proof: the proof follows exactly [M07].

Using Lemma 4.1.7 we reduce the decomposition to the multiply connected domain

to use it in the proof of the upper bound. Indeed, let f ∈ W 1,2
0 (Ω) be a real valued

function defined as in Lemma 4.1.7. Define ψ = fu in Ω, and u = 0 in D \ Ω. Then

we conclude that

Eε(ψ,A) =

∫
Ω

{
f 2

2
|∇Au|2 +

f 4

4ε2
(|u|2 − 1)2 +

1

2
(h− hex)2

}
dx

+

∫
Ω

{
1

2
|∇f |2 +

1

4ε2
(
f 2 − a(x)

)2
}
dx

= Fε(u,A; Ω) + J(f). (4.1.16)

We use the decomposition given in Lemma 4.1.6 to decouple the energy in order

to be able to adapt our method we used in Chapter 2. Note that J(ηε) ≤ C| log ε| so
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when we divide by | log ε|2 this term will tend to zero when ε → 0 and we left with

the functional Fε only.

Since Eε(uε, Aε) ≤ C(log ε)2 and Fε ≤ Eε, then

Fε(uε, Aε : D) ≤ C(log ε)2 (4.1.17)

Define Ωε = {x ∈ Ω|dist (x, ∂Ω) > ε
1
3}, then using (iii) from Proposition 4.1.3 we can

approximate ηε by a in Fε(uε, Aε) and get

Fε(uε, Aε) ≥ F a
ε := Fε(uε, Aε)

∣∣
Ωε

≥ 1

2

∫
Ωε

(1−ε
1
3 )2a(x)|∇Auε|2+

(1− ε 1
3 )4a2(x)

2ε2
(|uε|2−1)2dx+

1

2

∫
D

(h−hex)2dx

=
(1− ε 1

3 )2

2

∫
Ωε

a(x)|∇Auε|2+
(1− ε 1

3 )2a2(x)

2ε2
(|uε|2−1)2dx+

1

2

∫
D

(h−hex)2dx

(4.1.18)

where F a
ε satisfies the bound (4.1.17).

For the compactness and the lower bound, we will use F a
ε as in (4.1.18) instead of

Fε and by taking the limit ε→ 0 we will get the desired result in the whole domain.

For the upper bound and to match our lower bound we use the decomposition of Eε

in the multiply connected domain Ω which is given by (4.1.16).

Let,

lim
ε→0

hex
| log ε|

= λ ≥ 0, (4.1.19)

then

Fε(uε, Aε) ≤ Eε(uε, Aε) ≤ C| log ε|2
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With our choice of gauge (see Definition 2.1.1),

∥∥∥ Aε
| log ε|

∥∥∥
L∞(D)

≤ C. (4.1.20)

From the energy bound (4.1.17) we may conclude that,

∥∥∥ hε
| log ε|2

− λ
∥∥∥
L2(D)

≤ C. (4.1.21)

Hence there exist subsequences Aε and hε which converge to A and h∗ in L∞(Ω) and

L2(D) respectively. We will use these subsequences later on.

4.2 Main results

For any regular complex-valued u, the current of u is defined as

ju = (iu, du) =
2∑

k=1

(iu, ∂ku)dxk, (4.2.22)

where (., .) denotes the scalar product in C identified with R2 i.e. (a, b) = Re āb. It

is related to the Jacobian determinant Ju of u through

Ju =
1

2
d(ju) =

1

2
d(iu, du), (4.2.23)

where

Ju =
∑
j<k

(i∂ju, ∂ku)dxj ∧ dxk.
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Define the space

Z := {j ∈ L2(Ω) s.t. J := ∇× j ∈M(Ω)}, (4.2.24)

where M(Ω,R3) is the space of vector-valued Radon measures on Ω.

We define the functional

F∞(j;A) =


1
2
‖a(x)J‖M(Ω) + 1

2

∫
Ω
a(x)|j − A|2 + 1

2

∫
D |∇ × A− λ|

2dx, if j ∈ Z

∞ otherwise

(4.2.25)

Our main result is proving that Fε Γ-converges to F∞. We prove this in two steps:

first, bounded sequences are compact and the limit is lower semicontinuous in the

energies:

Theorem 4.2.1 Let {uε} be a family such that Fε ≤ | log ε|2, then for fixed δ > 0 up

to extraction,

Juε
Nε

⇀ J∗ measure-valued 2-form in (C0,γ
c (Ω))′, γ > 0

| juε√
Nε| log ε

|⇀ j∗, in L
2(Ω),

lim inf
ε→0

1

Nε| log ε|
Fε(uε, Aε) ≥ 2|J∗|(Ω) +

∫
Ω

|j∗−A|2 +
1

2

∫
D
|∇×A− λ|2dx, (4.2.26)

where juε is defined in (4.2.22). Moreover, for a fixed δ > 0 and Ωδ defined as in

(4.3.2) we have

lim inf
ε→0

1

Nε| log ε|
Fε(uε, Aε) ≥ 2a|Jδ|(Ωδ)+

∫
Ωδ

a|jδ−A|2+
1

2

∫
D
|∇×A−λ|2dx, (4.2.27)
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where jδ is the limit of juε in Ωδ.

The second part of the Γ-convergence result is the construction of recovery se-

quences:

Theorem 4.2.2 Let j ∈ Z and consider any sequences εn such that εn → 0. Then

there exists a sequence {(un, An)} ⊂ H1(Ω; C)×H1(D; R2), satisfying

jn
| log εn|

→ j in Lp(Ω), for all p < 2

Jn
| log εn|

→ J :=
1

2
∇× j weakly in M(Ω; R2), and strongly in (Cγ

0 (Ω))′, 0 < γ < 1,

with jn := (iun, dun) and Jn := 1
2
djn. Moreover

lim sup
n→∞

1

N2
n

Fε ≤ F∞(j, A). (4.2.28)

4.3 Jacobian Estimate

In this section we modify the method of Sandier and Serfaty [SS04] to find a sharp

Jacobian estimate in terms of the Ginzburg-Landau energy. In this section we will

be working in the domain Ωε where we could use F a
ε given by (4.1.18).

Let M(ε) be any function of ε satisfying

∀ α > 0, lim
ε→0

εαM(ε) = 0, lim
ε→0

| log ε|
M(ε)α

= 0, and logM(ε) = o(| log ε|) as ε→ 0.

(4.3.1)

For example M(ε) = exp
√
| log ε| satisfies this. For any δ > 0, we define the space

Ωδ by,

Ωδ := {x ∈ Ω : dist (x, ∂Ω) > δ}, (4.3.2)
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and Ωε by

Ωε := {x ∈ Ω : dist (x, ∂Ω) > ε
1
3}. (4.3.3)

Theorem 4.3.1 Let uε be a family of H1(Ω,C) such that

Fε(uε) ≤ Nε| log ε| �M(ε), (4.3.4)

with M(ε) as in (4.3.1). Then, for any given δ > 0 up to extraction of a subsequence

Juε
Nε

⇀ J∗ in (C0,γ
c (Ω))′, ∀0 < γ ≤ 1,

where J∗ is a measure-valued 2-form. Moreover, for all continuous vector-fields X

and Y compactly supported in Ω,

√
a
∣∣X · ∇uε∣∣√
Nε| log ε|

,

√
a
∣∣Y · ∇uε∣∣√
Nε| log ε|

are bounded in L2 and if we let νX , νY be their defect measures, we have

‖νX‖
1
2‖νY ‖

1
2 ≥

∣∣∣∣∣
∫

Ω

J∗(X, Y )

∣∣∣∣∣. (4.3.5)

Note that: in our thesis Nε = | log ε| most of the time. We will recall some results

needed to prove our Theorem and the proof will follow after.

4.3.1 Modified vortex-balls

We recall Proposition 5.2 from [AB05],
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Proposition 4.3.2 Assume (4.1.17). For any C > 0 there exist positive constants

ε0, C0 so that for any (u,A) satisfying (4.1.17) there exists a finite collection {Bi =

B(pi, ri)}i = 1, ...,m of disjoint balls such that:

[1.] {x ∈ Ωε : |u| < 1− (2/M(ε))} ⊂ ∪mi=1Bi; (4.3.6)

[2.]
m∑
i=1

ri ≤ 1/M(ε); (4.3.7)

[3.] If Bi ⊂ Ωε,∫
Bi

a(x)

2
|∇Au|2dx ≥ πa(pi)|di|| log ε|

(
1− o(1)

)
for all i. (4.3.8)

where di = deg(uε, ∂Bi). The o(1) appearing in the lower bound is a function that

goes to zero with ε and which depends only on K. Moreover, letting

µε = π
∑

{i|pi∈Ωε}

diδpi . (4.3.9)

‖ ? aJuε − aµε‖(C0,1
0 (Ωε))′

≤ C
F a
ε (uε)

M(ε)
. (4.3.10)

where ? is the Hodge star operator defined in (2.1.8).

Proof: The proof of the existence of these balls is exactly the same as [AB05] but

we are going to state it for convenience.

Let Uδ,t := {x ∈ Ωδ : f(x) < 1 − t}, and γt = ∂Uδ,t. Using the co-area formula

as in [SS00], there exists t0 ∈ (0, | log ε|−4) and a finite set of balls B1, . . . , Bk with

radii s1, . . . , sk which cover γt0 , satisfying
∑

i si ≤ Cε| log ε|8. In Ωδ \ Uδ,t0 we have

f = |u| ≥ 1−t, and we may write u = f eiφ for a (possibly multi-valued) H1
loc function

φ(x).
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We then let the balls grow continuously, using the process described in, [SS00], to

obtain a lower bound in the expanding balls,

∫
Bi\Uδ,t0

[a
2
|∇φ|2

]
≥ π

(
min
Bi

a

)
|di|
(
| log ε| − C0o(| log ε|)

)
,

with constant C0 independent of ε. Note that the minimum of a(x) over Bi is non-

increasing as the radii increase and as balls are merged (when they touch in the

expansion process.) We terminate the process when the sum of the radii of the balls

equals | log ε|−12. By continuity of a(x) we may then replace the minimum of a on

each ball by the value at its center pi, making an error which is small compared to

a(pi) itself. This error can then be absorbed into the coefficient of o(1). Finally,

∫
Bi

[a
2
|∇u|2

]
≥
∫
Bj\Uδ,t0

[a
2

(1 + f 2 − 1)|∇φ|2
]

≥ (1− C| log ε|−4)

∫
Bj\Uδ,t0

a

2

[
|∇φ|2

]
≥ (1− C| log ε|−4)

(
πa(pi)|di|(| log ε| − C0o(| log ε|))

)
≥ πa(pi)|di|(| log ε| − C0o(| log ε|)),

for constant C0 independent of ε, which completes the sketch of the proof of the first

part of the Proposition.
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To prove (4.3.10), we first consider χ : R+ → R+ as follows


χ(x) = x if |x− 1| ≥ 1

2

χ(x) = 1 if |x− 1| ≤ 1−M(ε)−1

χ is continuous and piecewise affine otherwise.

We then define

ũε = χ(|uε|)
uε
|uε|

.

It is easy to check that ‖uε − ũε‖L∞(Ω) ≤ C/M(ε) and defining juε and jũε as in

(4.2.22),

‖
√
a(juε − jũε)‖2

L2(Ωε)
≤ CM(ε)−2F a

ε (uε),

where |αdx + βdy|2 = α2 + β2. It follows that for any smooth compactly supported

function ξ

∣∣∣∣∣
∫

Ωε

aξ(Juε − Jũε)

∣∣∣∣∣ =
1

2

∣∣∣∣∣
∫

Ωε

(juε − jũε) ∧ d(aξ)

∣∣∣∣∣
≤ 1

2

∣∣∣∣∣
∫

Ωε

a(juε − jũε) ∧ d(ξ)

∣∣∣∣∣+
1

2

∣∣∣∣∣
∫

Ωε

ξ(juε − jũε) ∧ d(a)

∣∣∣∣∣
= (1) + (2)

Since
∫

Ωε
a|∇uε|2 ≤ ηaε (uε), then

(1) =
1

2

∣∣∣∣∣
∫

Ωε

a(juε − jũε) ∧ d(ξ)

∣∣∣∣∣ ≤ CM(ε)−1
√
F a
ε (uε)‖ξ‖C0,1

0 (Ωε)
.
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To estimate (2), let ρ(x) := dist (x, ∂Ω) and in Ωε you can always write a =

ρ(x)b(x) where 0 < b0 < b(x) and ∇ρ = 1 because of (H3). For some fixed δ > 0,

rewrite (2) as

∫
Ωε

ξ(juε − jũε) ∧ d(a) =

∫
ε

1
3<ρ<δ

ξ(juε − jũε) ∧ d(a) +

∫
δ≤ρ

ξ(juε − jũε) ∧ d(a)

= (i) + (ii).

Since a(x) is bounded below in {x ∈ Ω| ρ ≥ δ}, then

(ii) =

∫
δ≤ρ

ξ(juε − jũε) ∧ d(a) ≤ CM(ε)−1
√
F a
ε (uε)‖ξ‖C0,1

0 (Ωε)
.

For (i), we write

∣∣∣∣∣
∫
ε

1
3<ρ<δ

ξ(juε − jũε) ∧ d(a)

∣∣∣∣∣ =

∣∣∣∣∣
∫
ε

1
3<ρ<δ

1√
a
ξ
√
a(juε − jũε) ∧ d(a)

∣∣∣∣∣
≤
(∫

ε
1
3<ρ<δ

( 1√
a

)2
) 1

2

(∫
ε

1
3<ρ<δ

ξ2a
∣∣∣(juε−jũε)∧d(a)

∣∣∣2) 1
2

≤ | log ε|
√
F a
ε (uε)

M(ε)
‖ξ‖C0,1

0 (Ωε)
‖∇a‖L2(Ωε).

Indeed, ∣∣∣∣∣
∫
ε

1
3<ρ<δ

( 1√
a

)2
dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
ε

1
3<ρ<δ

1

bρ
dx

∣∣∣∣∣ ≤ C

∣∣∣∣∣
∫
ε

1
3<ρ<δ

1

ρ
dx

∣∣∣∣∣
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In the simplest case that Ωε = Bri(xi) we use polar coordinates

∣∣∣∣∣
∫
ε

1
3<ρ<δ

1

ρ
dx

∣∣∣∣∣ =

∣∣∣∣∣2π
∫ δ

ri+ε
1
3

1

r − ri
rdr

∣∣∣∣∣
≤ 2πδ log(r − ri)

∣∣∣δ
ri+ε

1
3

= 2πδ
(

ln(δ − ri)− ln ε
1
3

)
≤ C| log ε|.

In general, near the boundary, one can change coordinate frame to a frame with tan-

gential and normal components to ∂Ω, in this coordinate ρ(x1, x2) = x2 which implies

that
∫

1
x2

= log x2.

So (i) ≤ | log ε|
√
Faε (uε)

M(ε)
‖ξ‖, but by hypotheses | log ε|2

M(ε)
−−→
ε→0

0. Therefore we have,

∣∣∣∣∣
∫

Ωε

a(Juε − Jũε)ξ

∣∣∣∣∣ ≤ CM(ε)−1
√
F a
ε (uε)‖ξ‖C0,1

0 (Ωε)
.

and therefore

‖ ? aJuε − ?aJũε‖(C0,1
0 )′ ≤ C

√
F a
ε (uε)

M(ε)
. (4.3.11)

We wish to estimate the measure norm of ?aJũε − aµε. Let ξ be a smooth com-

pactly supported function. Since |ũε| = 1 outside of Ωε ∩ (∪iBi) we have Jũε = 0

there. Therefore

∫
Ωε

ξaJũε =
∑
Bi 6⊂Ωε

∫
Bi∩Ωε

ξaJũε +
∑
Bi⊂Ωε

∫
Bi

ξaJũε = I1 + I2 (4.3.12)
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From the definition of Ωε and since the Euclidean radius of any ball is less than M(ε)−1

it follows that if Bi 6⊂ Ωε and x ∈ Bi ∩ Ωε then |ξ(x)| = |ξ(x)|
d(x,∂Ωε)

d(x, ∂Ωε) ≤
‖ξ‖

C
0,1
0 (Ω)

M(ε)
.

It follows that

I1 ≤ C
F a
ε (uε)

M(ε)
‖ξ‖C0,1

0
. (4.3.13)

To deal with the second integral we define ξ̄ to be equal to ξ(pi) on Bi = B(pi, ri) ⊂ Ωε

and ξ̄ = 0 elsewhere. Then letting U be the union of the Bi’s which are included in

Ωε, we have |ξ − ξ̄| ≤ ‖ξ‖C0,1
0
/M(ε) on U while

∫
U

ξ̄aJũε =
∑
Bi⊂Ωε

ξ(pi)

∫
Bi

aJũε

=
∑
Bi⊂Ωε

ξ(pi)

∫
Bi

aJuε

=
∑
Bi⊂Ωε

πa(pi)diξ(pi) =

∫
ξadµε,

where we used the fact that |ũε| = 1 on ∂Bi. Therefore

∣∣∣I2 −
∫
ξadµε

∣∣∣ ≤ C
F a
ε (uε)

M(ε)
‖ξ‖C0,1(Ωε). (4.3.14)

It follows from (4.3.11), (4.3.12), (4.3.13), and (4.3.14) that for any compactly sup-

ported smooth ξ with support on Ωε∣∣∣∣∣
∫
ξaJuε −

∫
ξadµε

∣∣∣∣∣ ≤ C
F a
ε (uε)

M(ε)
‖ξ‖C0,1 .

This conclude the proof (4.3.10).

♦
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4.3.2 Proof of Theorem 4.3.1

Let X, Y be continuous vector field compactly supported in Ω. It follows from (4.3.4)

that
√
ajε,X =

√
a
∣∣X · ∇uε∣∣√
Nε| log ε|

,
√
ajε,Y =

√
a
∣∣Y · ∇uε∣∣√
Nε| log ε|

(4.3.15)

are bounded in L2 and therefore converge weakly subsequentially. Using Proposition

4.3.2, there exists a collection of balls {Bi}i satisfying the properties (4.3.6), (4.3.7),

and (4.3.8). Then it follows from (4.3.8) that

1

2| log ε|

∫
Bi

a|X · ∇uε|2 + a|Y · ∇uε|2
dx dy

|X ∧ Y |
≥ π|di|a(pi)

(
1− o(1)

)
. (4.3.16)

By the definition of µε (4.3.9), a(x) is near a(pi) − o(1) and summing over i, we

have

1

2| log ε|

∫
∪iBi

a|X · ∇uε|2 + a|Y · ∇uε|2
dx dy

|X ∧ Y |
≥
∣∣∣ ∫

Ωε

a(1− o(1))dµε

∣∣∣, (4.3.17)

Dividing the above inequality by Nε we find

lim inf
ε→0

1

2Nε| log ε|

∫
∪iBi

a|X · ∇uε|2 + a|Y · ∇uε|2 ≥ |X ∧ Y |
∣∣∣ ∫

Ω

dµ∗

∣∣∣, (4.3.18)

Note that: µε converges strongly µ∗ in (C0,γ(Ω))′ in Ω, it follows that the rescaled

Jacobian subsequentailly converges in (C0,γ(Ω))′ to the same limit as µε i.e to a

measure we call it J∗. But to see a(x) in the limit we have to be away from the

boundary by δ > 0. (i.e. aJuε
Nε

⇀ aJδ in Ωδ). This note implies that

lim inf
ε→0

1

2Nε| log ε|

∫
∪iBi

a|X ·∇uε|2 +a|Y ·∇uε|2 ≥ |X ∧Y |
∣∣∣ ∫

Ωδ

aJδ(∂x, ∂y)
∣∣∣, (4.3.19)

121



Ph.D. Thesis - Sara S. Alzaid McMaster University - Mathematics

where Jδ is the limit of N−1
ε Juε in Ωδ. Note that

Jδ(X, Y ) = |X ∧ Y |Jδ(∂x, ∂y).

Using (4.3.15) we fix a convergent subsequence, and let jδX , jδY denote the weak

L2 limits of

∣∣X·∇uε∣∣
| log ε| and

∣∣Y ·∇uε∣∣
| log ε| respectively. Then

a|jε,X |2 ⇀ a|jδX |2 + νX , a|jε,Y |2 ⇀ a|jδY |2 + νY , (4.3.20)

weakly as measures, where νX and νY are positive Radon measures, called the defect

measures of the sequence. We claim that

lim inf
ε→0

1

2Nε| log ε|

∫
∪mi Bi

a|X · ∇uε|2 + a|Y · ∇uε|2 ≤
1

2

(
‖νX‖+ ‖νY ‖

)
(4.3.21)

Using (4.3.19) we find

1

2

(
‖νX‖+ ‖νY ‖

)
≥
∣∣∣ ∫

Ωδ

aJδ(X, Y )
∣∣∣. (4.3.22)

Also,

1

2

(
‖νX‖+ ‖νY ‖

)
≥
∣∣∣ ∫

Ω

J∗(X, Y )
∣∣∣. (4.3.23)

4.4 Lower bound

In this section we find the lower bound of the energy Fε (Theorem 4.2.1) which is the

first part of the Γ-convergent.

Note that: From Theorem 4.2.1 we do have the lower bound (4.2.26) up to the
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inner boundary (in the whole Ω) but a(x) will not be shown in the inequality. To see

a(x) in the lower bound we have to be away from the inner boundaries by δ where

δ > 0 as in (4.2.27).

Proof of Theorem 4.2.1: The first part follows from Theorem 4.3.1. Since

η2
ε

2
|∇Au|2 and η4

ε

4ε2
(|u|2 − 1)2 are positive quantities, we have

Fε(u,A) =

∫
D

{
η2
ε

2
|∇Au|2 +

η4
ε

4ε2
(|u|2 − 1)2 +

1

2
(h− hex)2

}
dx

≥
{∫

Ω

η2
ε

2
|∇Au|2 +

η4
ε

4ε2
(|u|2 − 1)2 +

1

2

∫
D

(h− hex)2

}
dx

≥ (1− ε 1
3 )2

2

∫
Ωε

a(x)|∇Auε|2 +
(1− ε 1

3 )2a2(x)

2ε2
(|uε|2 − 1)2dx

+
1

2

∫
D

(h− hex)2dx

= F a
ε (u,A). (4.4.1)

Hence it is enough to prove the lower bound of the energy F a
ε . We prove the second

part in two steps:

Step 1 We first prove the lower bound of the gradient part of the energy

lim inf
ε→0

1

2| log ε|2

∫
Ω

|∇uε|2 ≥ lim inf
ε→0

1

2| log ε|2

∫
Ωε

a|∇uε|2

≥ 2a|Jδ|(Ωδ) +

∫
Ωδ

a|jδ|2. (4.4.2)

and we do this by using the compactness result and the Jacobian estimate (4.3.23).

Choose e1, e2 an orthonormal (moving) frame that may depend on x ∈ Ωε and
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f, g ∈ C0
c (Ω) with |f | ≤ 1 and |g| ≤ 1. Then, let X1 = fe1, X2 = ge2. The inequality

|∇uε|2 ≥
n∑
i=1

|Xi · ∇uε|2 (4.4.3)

holds. Since |Xi · juε| ≤ |Xi · ∇uε||uε|, we have

η2
ε (x)

(
|Xi · juε| − |Xi · ∇uε|

)
≤ η2

ε (|uε| − 1)|Xi · ∇uε|.

Using the bound on η2
ε and |uε| ≤ C, we infer directly that η2

ε juε√
Nε| log ε

is bounded in

L2(Ω), hence weakly compact, and that

η2
ε (x)

(
|Xi · juε| − |Xi · ∇uε|

)
+√

Nε| log ε|
→ 0 (4.4.4)

as ε→ 0 in L1(Ω).

Note that in Ωε we could approximate η2 by a, it follows that denoting by φXi the

weak L2 limit of √
a|Xi · ∇uε|√
Nε| log ε|

,

we have
√
a|Xi · jδ| ≤ φXi almost everywhere, where jδ is the restriction of the weak

limit j of the normalized currents in Ωδ. Denoting by νX1 , and νX2 the defect measures

of √
a|X1 · ∇uε|√
Nε| log ε|

, and

√
a|X2 · ∇uε|√
Nε| log ε|

respectively, it follows from (4.4.3) and the very definition of defect measure that

lim inf
ε→0

1

Nε| log ε|

∫
Ωε

a|∇uε|2 ≥ ‖νX1‖+ ‖νX2‖+

∫
Ωε

|φX1|2 + |φX2|,
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thus using Theorem 4.3.1 and the above, we are led to

lim inf
ε→0

1

Nε| log ε|

∫
Ωε

a|∇uε|2 ≥ 2

∣∣∣∣∣
∫

Ωδ

aJδ(X1, X2)

∣∣∣∣∣+ lim inf
ε→0

∫
Ωδ

a|X1 · juε|2 + a|X2 · juε|2

≥ 2

∣∣∣∣∣
∫

Ωδ

aJδ(X1, X2)

∣∣∣∣∣+

∫
Ωδ

a|jδ|2 +

∫
Ωδ

a(|f |2 − 1)|jδ · e1|2

+

∫
Ωδ

a(|g|2 − 1)|jδ · e2|2.

Taking the supremum over all such frames e1, ..., en and all compactly supported

|f | ≤ 1, |g| ≤ 1 proves the Theorem.

Step 2 Now to complete the proof of the lower bound for the functional Fε (i.e.

Eε), we will combine (4.4.2) and the compactness of hε and Aε given by (4.1.21) and

(4.1.20). For any sequence (uε, Aε) s.t. (4.1.17) holds where (Aε) and (hε) are the

subsequences defined in (4.1.20) and (4.1.21), we have

lim inf
ε→0

1

Nε| log ε|
Fε ≥ lim inf

ε→0

1

Nε| log ε|
F a
ε

≥ lim inf
ε→0

1

Nε| log ε|
(ε

1
3 − 1)2

2

∫
Ωε

a
(
|∇uε|2 − 2Aε · juε + |Aε|2|uε|2

)

+ lim inf
ε→0

1

Nε| log ε|
1

2

∫
D

(h− hex)2dx

by (4.3.22), (4.4.4), and (4.1.21), we get

≥ 2

∣∣∣∣∣
∫

Ωδ

aJδ(X1, X2)

∣∣∣∣∣+
∫

Ωδ

a|jδ|2+lim inf
ε→0

(ε
1
3 − 1)2

2

∫
Ωε

a
(
−2Aε·juε

+|Aε|2|uε|2
)
dx+

1

2

∫
D

(h∗ − λ)2dx
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By (4.1.20), we get

≥ 2

∣∣∣∣∣
∫

Ωδ

aJδ(X1, X2)

∣∣∣∣∣+

∫
Ωδ

a|jδ|2 +

∫
Ωδ

a
(
− A · jδ + |A|2

)
dx

+
1

2

∫
D

(h∗ − λ)2dx

≥ 2

∣∣∣∣∣
∫

Ωδ

aJδ(X1, X2)

∣∣∣∣∣+
∫

Ωδ

a|jδ−A|2dx+
1

2

∫
D

(h∗−λ)2dx

(4.4.5)

We do have the lower bound (4.4.5) up to the inner boundary (in the whole Ω)

but a(x) will not be shown in the inequality. i.e.

lim inf
ε→0

1

Nε| log ε|
Eε = lim inf

ε→0

1

Nε| log ε|
Fε

≥ 2

∫
Ω

d|µ∗|+
∫

Ω

|j∗|2dx+
1

2

∫
D

(h∗ − λ)2dx (4.4.6)

4.5 Upper bound

In this section we find the upper bound for the functional Fε(u,A).To match it with

the lower bound we found earlier we use Lemma 4.1.7 where Eε is decomposed into

Fε and J(fε) in the multiply connected domain Ω. We use the Hodge decomposition

introduced in Chapter 2 and 3. The main difficulty is a(x) near the inner holes. We

will apply the Hodge decomposition with a(x) in the full domain Ω. For the subspace

U which contributes the Jacobian, we use one of the advantages of the space H where

any function ψ ∈ H can be approximated by compactly supported smooth functions

ψtm . We apply the same steps of Theorem 3.1.4 in Chapter 3 on those functions. We
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will get the upper bound of the energy with U tm = − 1
a
∇ψtm . Taking m → ∞ with

some regularity results we claim the upper bound in the whole domain Ω.

Proof of Theorem 4.2.2. We have used f defined in Lemma 4.1.7 to reduce to

the multiply-connected domain Ω and since f ≤ ηε in Ω we have

Fε(u,A : Ω) =

∫
Ω

f 2
ε

2
|∇Au|2 +

f 4
ε

4ε2
(|u|2 − 1)2dx+

∫
D
|h− hex|2dx

≤
∫

Ω

η2
ε

2
|∇Au|2 +

η4
ε

4ε2
(|u|2 − 1)2dx+

∫
D
|h− hex|2dx.

which allows us to work with ηε instead of f.

For any j ∈ Z, by using the Hodge decomposition introduced by Lemma 3.3.2 in

Chapter 3, j can be written as

j = U + V +W = −1

a
∇⊥ψ +∇ζ +W. (4.5.1)

where

U ∈ U := {−1

a
∇⊥ψ, ψ ∈ H(Ω; R)} = {−1

a
∇⊥ψ, ψ ∈ C∞0 }H,

V ∈ V := {∇ζ, ζ ∈ H1(Ω; R)},

W ∈ W = {W ∈ C1(Ω; R2), ∇⊥ ·W = 0, ∇ · (aW ) = 0, W · ν = 0 on ∂Ω}.

(4.5.2)

Since ∇× (V +W ) ≡ 0 then V +W doesn’t contribute to the weak Jacobian. We

need to construct sequences wε and uε which converge to V +W and U consequently.

As in [JS] we may associate to V,W an S1-valued map wε. The singular part of the

Jacobian is contained in U ; for this part we construct a family uε with points vortices
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via an appropriate Green’s function. Putting these two parts together, The desired

recovery sequence will have the form vn = uεnwεn .

Recovering V +W . Constructing the sequence wεn is straight forward and it follows

exactly Step 1 of the upper bound in Chapter 3.

From Lemma 3.3.2, we can write V = ∇ζ, ζ ∈ H1(Ω) andW = 1
a
∇⊥ξ, with ξ(x) =∑m

i=1 Φiξi(x), for ξi as in (3.3.4) with Φi real constants. Let Mi,n = [Φi ln εn], i =

1, ...,m, where brackets denote the integer part, Set

Ξn :=
m∑
i=1

Mi,nξi, Wn = −1

a
∇⊥Ξn.

We note that

‖Wn −W ln εn‖C1 ≤ C, (4.5.3)

for constant C depending on W (but independent of n.)

Since

curlWn =
m∑
i=1

Mi,n∇⊥ ·
1

a
∇⊥ξi = 0,

∮
∂ωj

Wn · τ ds =
m∑
i=1

Mi,n

∮
∂ωj

1

a

∂ξi
∂ν

ds = 2πMj,n,

an integer multiple of 2π for each j = 1, . . . ,m, it follows that Wn is locally a gradient,

Wn = ∇ϕn for ϕn possibly multiple valued, but for which eiϕn is smooth and single-

valued in Ω. We may then define the complex order parameter

wn = exp i(ϕn + ζ ln εn).
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By construction,

j(wn)

log εn
=

(iwn,∇wn)

log εn
→ V +W (4.5.4)

in C1(Ω̄). Since |wn| = 1, we may easily calculate the contribution to the energy

using the orthogonality:

1

2

∫
Ω

η2
ε (x)|∇wn|2 dx =

1

2

∫
Ω

η2
ε (x)|∇ϕn +∇ζ ln εn|2 dx

=
1

2

∫
Ω

η2
ε (x)|Wn|2 +

(ln εn)2

2

∫
Ω

η2
ε (x)|∇ζ|2 dx

≤ (ln ε)2

2

∫
Ω

η2
ε

{
|W |2 + |V |2

}
dx+O(1)

(4.5.5)

Recovering U . Constructing the sequence un is a little bit delicate since we don’t

know how ηε is close to a(x) near ∂ωi and here we take one of the advantages of the

space H where every function in this space can be approximated by a sequence of

compactly supported functions in C∞0 i.e. since U ∈ U then there exists a sequence

{ψtm} ⊂ C∞0 (Ω) with Ktm = suppψtm ⊂⊂ Ω and dist (Ktm , ∂Ω) ≥ tm with tm −−−→
m→∞

0. s.t.

U = lim
m→∞

−1

a
∇⊥ψtm

Assume that tm > ε
1
3 then by (iii) in Proposition 4.1.3 we can write U as

U = lim
m→∞

U tm = lim
m→∞

lim
ε→0

−1

η2
ε

∇⊥ψtm
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Indeed,

∣∣∣∣∣(−1

η2
ε

− −1

a

)(
∇⊥ψtm

)∣∣∣∣∣ =

∣∣∣∣∣(−a+ η2
ε

η2
εa

)(
∇⊥ψtm

)∣∣∣∣∣
=

∣∣∣∣∣((ηε −
√
a)(ηε +

√
a)

η2
εa

)(
∇⊥ψtm

)∣∣∣∣∣
≤

∣∣∣∣∣((ε
1
3
√
a)((2 + ε

1
3 )
√
a)

η2
εa

)(
∇⊥ψtm

)∣∣∣∣∣
≤

∣∣∣∣∣((ε
1
3 )(2 + ε

1
3 )

(1− ε 1
3 )
√
a

)(
∇⊥ψtm

)∣∣∣∣∣
≤

∣∣∣∣∣( ε
2
3

t
1
2
m

)(
∇⊥ψtm

)∣∣∣∣∣
≤

∣∣∣∣∣(ε 1
2

)(
∇⊥ψtm

)∣∣∣∣∣ −−→ε→0
0

We fix tm and we construct a sequence un as follow,

Step 1. we define the measure

µtm = curlU tm = −∇× 1

η2
ε (x)
∇⊥ψtm

Let Nn ∈ N be any sequences of whole numbers with

Nn

log εn
−→ 1,

and εn is a subsequence of ε which goes to zero when n→∞.

Applying Lemma 2.4.3 in Chapter 2, there exist family of points {pni }i=1,...,Nn in

the set Ktm = suppψtm and associated integers σni ∈ {−1, 1} with the following
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properties:

|pni − pnj | ≥ c0N
−1/2
n for i 6= j, for constant c0 = c0(ψtm); (4.5.6)

lim
α→0

R(α) = 0 where R(α) = lim sup
n→∞

∑
i 6=j:

|pn
i
−pn
j
|≤α

∣∣log |pni − pnj |
∣∣

N2
n

, (4.5.7)

µn :=
2π

Nn

Nn∑
i=1

σni δpni ⇀ µtm , (4.5.8)

|µn| =
2π

Nn

Nn∑
i=1

δpni ⇀ |µ
tm|, (4.5.9)

where the convergence in (4.5.6) and (4.5.8) is weakly in the sense of measures and

strongly in (C0,γ
0 )′ for all 0 < γ ≤ 1. By |µtm | we mean the total variation of the

measure µtm = curlU tm . Since that ψtm ∈ C∞0 (Ω) then µtm is smooth and compactly

supported.

We modify the measures µn by regularizing the Dirac mass. Let µni := εnH1b∂B(pni ,εn),

the element of arclength on Sni := ∂B(pni , εn), normalized with mass 2π. We define

the measures

νn =
1

Nn

Nn∑
i=1

σni µ
n
i ,

with pni ∈ K, σεi ∈ {0, 1} as above. Since each µni −→ δpni strongly in [C0,γ
0 (Ω)]′ for

all 0 < γ ≤ 1, and weakly in M(Ω), we may conclude that (4.5.8),(4.5.9) hold as well

for νn,

νn −→ µtm , |νn| −→ |µtm |, strongly in [C0,γ
0 (Ω)]′ and weakly in M(Ω).

(4.5.10)
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By Fubini’s theorem we also note that the product measures also converge,

νn ⊗ νn −→ µtm ⊗ µtm , (4.5.11)

strongly in [C0,γ
0 (Ω× Ω)]′ and weakly in M(Ω× Ω).

Step 2: We introduce the Dirichlet Green’s function, Gηε(x, y) in Ω, which solves


−∇x ·

1

η2
ε (x)
∇xGηε(x, y) = δy(x), in Ω,

Gηε(·, y) = 0, on ∂Ω,

(4.5.12)

for each fixed y ∈ Ω. By standard elliptic theory (see [GT]) (recall η2
ε (x) is smooth in

Ω and positive) we may conclude that Gη2
ε (x)(x, y) is smooth in Ω×Ω \ {y = x}, and

Gηε(x, y) = −η
2
ε (x)

2π
ln |x− y|+ γ(x, y), (4.5.13)

where the regular part γ has the property that for every compact set Ktm ⊂⊂ Ω,

there exists C(Ktm) <∞ with

sup
y∈Ktm
x∈Ω

|γ(x, y)| ≤ C(Ktm).

If we are away from the boundary (i.e a is bounded below and positive), then we may

define

Ga(x, y) = −a(x)

2π
ln |x− y|+ γ(x, y) (4.5.14)
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to be the solution of the Dirichlet Green’s function given by (4.5.12) with a(x) instead

of η2
ε .

We then obtain the potential function ψtm ∈ C∞0 (Ω) (by standard elliptic theory

and the smoothness of f 2, see [GT]) from curlU tm = µtm by solving


−∇ · 1

η2
ε (x)
∇ψtm = µtm in Ω,

ψtm = 0 on ∂Ω,

and we recover U tm = − 1
η2
ε (x)
∇⊥ψtm . From uniqueness of the solution and using the

Green’s function representation, we have

ψtm(x) =

∫
Ω

Gηε(x, y) dµtm(y).

We may calculate the weighted norm of U tm in terms of the measure µtm as follows:

∫
Ω

η2
ε (x) |U tm |2 dx =

∫
Ω

1

η2
ε (x)

∣∣∇ψtm∣∣2 dx
= −

∫
Ω

ψtm · ∇⊥
(

1

η2
ε (x)
∇⊥ψtm

)
dx

=

∫
Ω

ψtm(x) dµtm(x)

=

∫
Ω

∫
Ω

Gηε(x, y) dµtm(y) dµtm(x). (4.5.15)

Step 3. In this step we prove that there exits a sequence ψn ∈ H1
0(Ω) for which

1
f2
εn

(x)
∇⊥ψn −→ U tm strongly in Lp(Ω) for all p < 2, and

lim sup
n→∞

∫
Ω

1

η2
ε (x)
|∇ψn|2 dx ≤

∫
Ω

a(x) d|µtm|(x) +

∫
Ω

a(x)|U tm|2 dx. (4.5.16)
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For each n, we define ψn(x) =
∫

Ω
Gηε(x, y) dνn(y), and so ψn solves


−∇ · 1

η2
εn

(x)
∇ψn = νn in Ω,

ψn = 0 on ∂Ω.

By (4.5.10) and elliptic regularity (see [GT]), we have ψn → ψtm in W 1,p(Ω) for all

p < 2, and thus − 1
η2
εn

(x)
∇⊥ψn → U tm in Lp(Ω) for all p < 2 as claimed.

To estimate the energy we use the Green’s representation. Since νn ∈ H−1(Ω) for

fixed n, by (4.5.15) we conclude that

∫
Ω

1

η2
εn(x)

|∇ψn|2 dx =

∫
Ω

∫
Ω

Gηεn (x, y) dνn(y) dνn(x).

For any 0 < α < 1, let ∆α = {(x, y) ∈ Ω × Ω : |x − y| ≤ α}. Fix χα ∈ C∞(Ω̄ × Ω̄)

with 0 ≤ χα ≤ 1, and

χα(x, y) =


1, if x ∈ ∆α,

0, if x /∈ ∆2α.

For any α ∈ (0, 1), Gηε(x, y)(1 − χα(x, y)) is defined away from the singularity so it

is smooth, and hence by the strong [C0,γ
0 ]′ convergence νn → µtm we have:

lim
n→∞

∫
Ω

∫
Ω

Gηε(x, y)(1− χα(x, y))dνn(y) dνn(x)

= lim
n→∞

∫
Ω

∫
Ω

{−η
2
ε (x)

2π
log |x− y|+ γ(x, y)}(1− χα(x, y))dνn(y) dνn(x)

since we are away from the boundary, then we may use the connection between a(x)
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and η2
ε together with (4.5.14) and get

lim
n→∞

∫
Ω

∫
Ω

Gηε(x, y)(1− χα(x, y))dνn(y) dνn(x)

≤ lim
n→∞

∫
Ω

∫
Ω

{−(ε
1
3
n + 1)a(x)

2π
log |x− y|+ γ(x, y)}(1− χα(x, y))dνn(y) dνn(x)

≤ lim
n→∞

∫
Ω

∫
Ω

(
Ga(x, y)− ε

1
3
na(x)

2π
log |x− y|

)
(1− χα(x, y))dνn(y) dνn(x)

≤
∫

Ω

∫
Ω

Ga(x, y)(1− χα(x, y))dµtm(y) dµtm(x) (4.5.17)

For the complementary integral, we use (4.5.13) to observe that

∫
Ω

∫
Ω

Gηε(x, y)χα(x, y)dνn(y) dνn(x)

=

∫
Ktm

∫
∆2α

[
η2
εn(x)

2π
log

1

|x− y|
+ γ(x, y)

]
χα dνn(y) dνn(x)

≤
∫
Ktm

∫
∆2α

η2
εn(x)

2π
log

1

|x− y|
dνn(y) dνn(x) + Cα

=
1

N2
n

Nn∑
i,j=1

∫∫
∆2α

η2
εn(x)

2π
log

1

|x− y|
dµni (y) dµni (x) + Cα. (4.5.18)

To evaluate the remaining integral, we consider the contribution due to distinct

points pni 6= pnj in ∆2α separately. Define the index set

Jn = {(i, j) : |pni − pnj | ≤ 2α}.

Let Rn = 1
4
c0N

−1/2
n , where c0 = c0(ψ) is the constant in (4.5.6). We also define balls
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B̃n
i = B(pni , Rn), i = 1, . . . , Nn. By the choice of Rn, they are disjoint, as is the union

⋃
(i,j)∈Jn

(
B̃i × B̃j

)
⊂ ∆3α.

We also observe that for any R ≤ Rn and (i, j) ∈ Jn, since R ≤ 1
4
|pi − pj|, we have

1

2
≤ |x− y|
|pni − pnj |

≤ 3

2
for all x ∈ B(pni , R), y ∈ B(pnj , R). (4.5.19)

For (i, j) ∈ Jn we then have (recalling that Sin = ∂B(pni , εn) = suppµni ,)

∫∫
B̃ni ×Bnj

log
3

|x− y|
dx dy ≥

∫∫
B̃ni ×Bnj

log
2

|pni − pnj |
dx dy

= π2R4
n log

2

|pni − pnj |

=
R4
n

4

∫∫
S̃ni ×Snj

log
2

|pni − pnj |
dµni (x) dµnj (y)

≥ R4
n

4

∫∫
S̃ni ×Snj

log
1

|x− y|
dµni (x) dµnj (y),

using (4.5.19) in the first and last lines. Summing over all pairs (i, j) ∈ Jn, and using

the disjointness of the union of the B̃n
i × B̃n

j , we obtain:

1

N2
n

∑
(i,j)∈Jn

∫∫
Sni ×Snj

η2
εn(x)

2π
log

1

|x− y|
dµni (x) dµnj (y)

≤ C

R4
nN

2
n

∑
(i,j)∈Jn

∫∫
B̃ni ×Bnj

log
3

|x− y|
dx dy

≤ C

∫∫
∆3α

log
3

|x− y|
dx dy =: R(α). (4.5.20)

As | log |x − y|| is integrable in this region, the remainder R(α) → 0 as α → 0, and
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so this term will not contribute to the limiting energy.

Finally, we consider the contribution from the self-energy of the vortices pni . We

parametrize the integrals over Sni = ∂B(pni , εn) using complex notation, that is we

write x, y ∈ ∂B(pni , εn) as x = pni + εne
iθ, y = pni + εne

iτ , 0 ≤ θ, τ < 2π. Then we

have:

1

N2
n

∫∫
Ω

η2
εn(x)

2π
log

1

|x− y|
dµni (y) dµni (x)

=
1

N2
n

∫ 2π

0

∫ 2π

0

a
(
pni + eiθεn

)
2π

[
log εn + log

∣∣ei(θ−τ) − 1
∣∣] dθ dτ

=
1

Nn

∫ 2π

0

a
(
pni + eiθεn

)
dθ +O(N−2

n )

=
1

Nn

∫
Ω

η2
εn(x) d|µni |(x) +O(N−2

n ).

Note that: we were able to use a(pni +eiθεn) since that the vortex balls were constructed

away from the boundary. Also in the following computation we have µtm is away from

the boundary, far enough that again we can use a(x).
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Summing over all i = 1, . . . , Nn, we arrive at

1

N2
n

Nn∑
i=1

∫∫
Ω

η2
εn(x)

2π
log

1

|x− y|
dµni (y) dµni (x) =

1

Nn

∫
Ω

η2
εn(x) d|νn|(x) +O(N−1

n )

=

∫
Ω

η2
εn(x) d|µtm|(x) +O(N−1

n )

=

∫
Ω

(η2
εn(x)− a(x)) d|µtm|(x)

+

∫
Ω

a(x) d|µtm|(x) +O(N−1
n ).

=

∫
Ω

(1 + ε
1
3
n )a(x) d|µtm|(x)

+

∫
Ω

a(x) d|µtm|(x) +O(N−1
n ) .

(4.5.21)

Passing to the limit εn → 0, we thus obtain from (4.5.17),(4.5.18),(4.5.20), and

(4.5.21), that

lim sup
n→∞

∫
Ω

∫
Ω

Gηε(x, y)dνn(y) dνn(x)

≤
∫

Ω

a(x) d|µtm|(x)+

∫
Ω

∫
Ω

Ga(x, y)(1−χα(x, y))dµtm(y) dµtm(x)+Cα+CR(α).

By hypothesis, the measure µtm is bounded, and so we may apply dominated conver-

gence to pass to the limit α→ 0 and obtain the desired bound (4.5.16), as

lim sup
n→∞

∫
Ω

1

η2
εn

|∇ψn|2 dx = lim sup
n→∞

∫
Ω

∫
Ω

Gηε(x, y)dνn(y) dνn(x)

≤
∫

Ω

a(x) d|µtm|(x) +

∫
Ω

∫
Ω

Ga(x, y)dµtm(y) dµtm(x)

=

∫
Ω

a(x) d|µtm |(x) +

∫
Ω

a(x) |U tm|2 dx,
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by (4.5.15).

Step 4. Let Un = −Nn
1

η2
ε (x)
∇⊥ψn. Then, ∇⊥Un = Nn∇ ·

(
1

η2
ε (x)
∇ψn

)
= 0 locally

in Ω \ ∪Nni B(pni , εn). Moreover, if C is a simple closed curve in Ω \ ∪Nni B(pni ,
1
κn

), we

have ∫
C

Un · τ ds ∈ 2π Z,

by the normalization |dµni | = 2π. Thus, we may write Un = ∇φn in Ω \∪Nni B(pni , εn),

with φn which is multiple valued, but for which ∇φn and eiφn are single-valued in

Ω \ ∪Nni B(pni , εn). We now define an auxiliary function ρn as in Chapter 2 to remove

the singularity at each vortex core,

ρni (x) :=


0 if |x− pni | < 1

2
εn,

2
εn
|x− pni | − 1 if 1

2
εn ≤ |x− pni | ≤ εn,

1 if |x− pni | > εn,

and ρn :=
∏Nn

i=1 ρ
n
i . A simple computation shows that

∫
Ω

η2
ε (x)

{
1

2
|∇ρni |2 +

η2
ε (x)

4ε2n
((ρni )2 − 1)2)

}
dx ≤ C0,

with constant C0 independent of n. Also (ρ2
n − 1)→ 0 in Lq for all q <∞.

Now define un = ρne
iφn , with ρn, φn as in the preceding paragraphs. We then

have:
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∫
Ω

η2
ε (x)

{
1

2
|∇un|2 +

η2
ε (x)

4ε2n

(
|un|2 − 1

)2
}
dx

=

∫
Ω

η2
ε (x)

{
1

2
ρ2
n|∇φn|2 +

1

2
|∇ρn|2 +

η2
ε

4ε2
(
ρ2
n − 1

)2
}
dx

≤ N2
n

2

∫
Ω

1

η2
ε (x)
|∇ψn|2 dx+ C0Nn.

From (4.5.16) we then conclude that

lim sup
n→∞

1

(log εn)2

∫
Ω

η2
ε (x){1

2
|∇un|2 +

η2
ε (x)

4ε2
(
|un|2 − 1

)2}dx

≤ 1

2

∫
Ω

a(x) d|µtm |(x) +
1

2

∫
Ω

a(x)|U tm|2 dx.

(4.5.22)

Since (ρ2
n − 1)→ 0 in Lq for all q <∞, we also conclude that

j(un)

Nn

= − 1

η2
ε (x)
∇⊥ψn +

(1− ρ2
n)

η2
ε (x)

∇⊥ψn −→ U tm in Lp(Ω) for all p < 2. (4.5.23)

Putting everything together. Write j ∈ Z as j := limm→∞ j
tm = limm→∞ U

tm +

V + W with limm→∞ U
tm = U ∈ U , V ∈ V , and W ∈ W . Let wn be defined as in

Step 1 and un as constructed in Step 5, and define vn = unwn. Since |wn| = 1, we

have

j(vn)/Nn =
1

Nn

(j(un) + ρ2
nj(wn)) −→ U tm + V +W = jtm (4.5.24)

in Lp(Ω) for all p < 2.
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To estimate the energy, we again use the fact that |wn| = 1 to expand:

1

N2
n

∫
Ω

η2
ε (x)|∇vn|2 dx =

1

N2
n

∫
Ω

η2
ε (x)

{
|∇un|2 + ρ2

n|∇wn|2 + j(un) · j(wn)
}
dx.

We claim that the last term is o(1). Indeed, from Step 1, j(wn)
log εn

= ∇Φn, with

Φn = ϕn + ζ log κn and ∇Φn → V +W in C1, and therefore,

1

N2
n

∫
Ω

η2
ε j(un) · j(wn) dx = −

∫
Ω

∇⊥ψn · ρ2
n∇Φn dx

= −
∫

Ω

[
∇⊥ψn · ∇Φn − (1− ρ2

n)∇⊥ψn · ∇Φn

]
dx −→ 0

by integration by part and the definition of Φn the first integral is tending to zero

when n → ∞ and since that ρ2
n ≤ 1 the second integral is tending to zero when

n→∞.

The energy bound
∫
D |h−hex|

2dx ≤ C| log ε|2 leads to ‖ Aε
hex
‖L∞ ≤ C which implies

that Aε/| log ε| has a limit ,say A ,in Lp, p <∞. Let An := | log εn|A and hn = ∇×An

then calculate,

lim sup
n→∞

1

N2
n

Fε(vn;An; Ω) = lim sup
n→∞

1

N2
n

(∫
Ω

f 2
εn(x){1

2
|∇un|2 +

1

2
|∇wn|2 − An · j(vn)

+ |An|2|vn|2 +
f 2
εn(x)

4ε2n
(|un|2 − 1)2}+

1

2

∫
D

(hn − hex)2dx

)

≤ lim sup
n→∞

1

N2
n

(∫
Ω

η2
εn(x){1

2
|∇un|2 +

1

2
|∇wn|2 − An · j(vn)

+ |An|2|vn|2 +
η2
εn(x)

4ε2n
(|un|2 − 1)2}+

1

2

∫
D

(hn − hex)2dx

)
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lim sup
n→∞

1

N2
n

Fε(vn;An; Ω) = lim sup
n→∞

1

N2
n

(∫
Ω

η2
εn(x){1

2
|∇un|2 +

η2
εn(x)

4ε2n
(|un|2 − 1)2 + |∇wn|2

− An · j(vn) + |An|2ρ2
n}+

1

2

∫
D

(hn − hex)2dx

)
.

but

lim sup
n→∞

1

N2
n

∫
Ω

η2
εn(x)|∇wn|2 = lim sup

n→∞

1

N2
n

∫
Ω

η2
εn(x)(|V |2 + |W |2)

= lim sup
n→∞

∫
Ωε

η2
εn(x)(|V |2 + |W |2)

+ lim sup
n→∞

∫
Ω\Ωε

η2
εn(x)(|V |2 + |W |2)

≤ lim sup
n→∞

∫
Ωε

(1 + ε
1
3
n )2a(x)(|V |2 + |W |2)

+ lim sup
n→∞

∫
Ω\Ωε

η2
εn(x)(|V |2 + |W |2)

≤
∫

Ωε

a(x)(|V |2 + |W |2)

+ lim sup
n→∞

‖max
D

a‖
∫

Ω\Ωε
(|V |2 + |W |2)

the second integral is vanishingly small since V and W are integrable and Ω \Ωε is a

small set which implies

lim sup
n→∞

1

N2
n

∫
Ω

η2
ε (x)(|V |2 + |W |2) ≤

∫
Ω

a(x)(|V |2 + |W |2) + o(1).
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Hence,

lim sup
n→∞

1

N2
n

Fε(vn;An) ≤ 1

2

∫
Ω

a(x)d|µtm|+ a(x)
(
|U tm |2 + |V |2 + |W |2 + |A|2

)
dx

+
1

2

∫
D

(∇× A− λ)2dx− lim sup
n→∞

1

N2
n

∫
Ω

η2
εn(x)An · j(vn)dx.

(4.5.25)

We estimate the last term

lim sup
n→∞

1

N2
n

∫
Ω

η2
εn(x)An · j(vn)dx = lim sup

n→∞

1

N2
n

∫
Ω

η2
εn(x)A log εn · j(vn)dx

We add and subtract the mix term η2
εn(x)jtm in the integral

∫
Ω

η2
εn(x) · j(vn)

Nn

− η2
εn(x)jtm + η2

εn(x)jtm − a(x) · jtmdx

=

∫
Ω

η2
εn(x)

(j(vn)

Nn

− jtm
)

+
(
η2
εn(x)− a(x)

)
jtmdx

Since that jtm is compactly supported in Ktm then we could use (4.1.10) on the second

integral

≤
∫

Ω

η2
εn(x)

(j(vn)

Nn

− jtm
)

+ ε
1
3 (2 + ε

1
3 )a(x)jtmdx

using (4.5.24), the first part
∫

Ω
η2
εn(x)

(
j(vn)
Nn
− jtm

)
−−−→
n→∞

0 which implies

lim sup
n→∞

1

N2
n

∫
Ω

η2
εn(x)An · j(vn)dx ≤

∫
Ω

a(x)A · jtmdx
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Hence ∫
Ω

(
η2
εn(x) · j(vn)

Nn

− a(x) · jtm
)
dx

n→∞−−−→ 0. (4.5.26)

We substitute in (4.5.25)

lim sup
n→∞

1

N2
n

Fε(vn;An) ≤ 1

2

∫
Ω

a(x)d|µtm|+ a(x)
(
|U tm|2 + |V |2 + |W |2 + |A|2 + 2A · jtm

)
dx

+
1

2

∫
D

(∇× A− λ)2dx

=
1

2

∫
Ω

a(x)d|µtm|+ a(x)
(
jtm − A

)2

dx+
1

2

∫
D

(∇× A− λ)2dx

Taking the limit when m → ∞. We get the convergence of the first term to

1
2

∫
Ω
a(x)d|µ| by the strong convergence of µtm in (C0,γ

0 ))′.

To deal with the second integral, we know by definition of U tm = limε→0− 1
η2
ε (x)
∇⊥ψtm =

− 1
a(x)
∇⊥ψtm where a(x) grows linearly near ∂ωi (i.e.|∇a(x)| > δ > 0) , we conclude

∫
Ω

a(x)|U tm|2 →
∫

Ω

a(x)|U |2. (4.5.27)

and

lim sup
n→∞

1

N2
n

Fε(vn;An) ≤ 1

2

∫
Ω

a(x)d|µ|+ a(x)
(
j − A

)2

dx+
1

2

∫
D

(∇× A− λ)2dx

(4.5.28)

As in [SS07] to get the upper bound in terms of the general µ ∈ H−1(Ω)∩M(Ω).

A diagonal argument together with (4.5.28), yields a sequence nk →∞, that we write

in shorthand {n}, such that, writing {un, An} instead of {unk , Ank}, both (4.5.28) and
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(4.5.8) hold.

Hence,

lim sup
n→∞

1

N2
n

Eε(vn;An) = lim sup
n→∞

1

N2
n

Fε(vn, An : Ω)

≤ 1

2

∫
Ω

a(x)d|µ|+ a(x)
(
j − A

)2

dx+
1

2

∫
D

(∇× A− λ)2dx

(4.5.29)

This completes the Γ-convergence result.
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