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Abstract 

Air pollution is highly variable in both space and time, which presents many challenges to 

researchers when they wish to model concentrations. The modelling of air pollution is necessary 

for a number of reasons, which include the determination of human health effects, providing 

warning of health risks, and to understand general ecosystem health. In this thesis, modelling of 

air pollution through both space and time has been explored, with a focus on improving models 

that can be used to assign air pollution exposure. The techniques presented in this thesis have 

leveraged the ability of mobile monitoring units to collect air pollution concentration data multiple 

locations throughout a study period. First, we explore the use of combining mobile air pollution 

monitoring data with traditional fixed location monitoring. We find that the mobile data is able to 

provide insight into changes in spatial pattern between two temporal periods that could not be 

identified solely with the fixed location monitors, which demonstrates value in this monitoring 

approach that can be built upon with refinement of techniques. Second, we present a method to 

determine the amount of classical error that will be introduced when a long-term mean 

concentration is calculated from a discontinuous time-series dataset, which are the type of datasets 

collected by mobile air pollution monitoring. Third, we merge mobile and stationary air pollution 

monitoring data, along with meteorological, transportation, and land use information to model the 

hourly air pollution field using neural network models. The models developed allowed for the 

assignment of air pollution exposure incorporating human activity patterns. Also, they can be used 

to provide a spatially refined air quality health index. Lastly, we demonstrate exposure assignment 

that incorporates human activity patterns to calculate the dose exposure for students during their 

trips to school.  
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This work commences with a demonstration of the basic utility of mobile air pollution 

monitoring data, which is to increase the number of monitored locations. Building on that utility 

of mobile technology, a technique was developed to estimate the error when mobile units are used 

for long-term estimates, similar to stationary monitoring units; and we were able to provide guiding 

principles for mobile monitoring data collection. Furthering our objective, to better understand the 

value of mobile data in a fully integrated monitoring network, we utilized both mobile and 

stationary data collection techniques together, in a single model, to produce accurate estimates of 

an air pollution field on an hourly basis. Finally, the research culminates with the demonstration 

of how mobile monitoring can be used for activity based air pollution exposure estimates, which 

was shown with a case-study of students’ trips between home and school. Overall, the chapters in 

this thesis work toward a better understanding of how to incorporate mobile monitoring data into 

air pollution assessment studies. 
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Chapter 1:  Introduction 

1.1 Introduction 

Air pollution is a global issue, with most regions of the globe affected by 

concentrations that are known to have negative health outcomes. For example, global 

estimates of particulate matter 2.5 microns or smaller in aerodynamic diameter (PM2.5) 

suggest a population-weighted geometric mean concentration of 20 µg/m3 (van Donkelaar 

et al., 2010). The anthropogenic component of PM2.5 is estimated to account for 8, 12.8 and 

9.4 percent of global mortality for cardiopulmonary disease, lung cancer and ischemic heart 

disease, respectively (Evans et al., 2013). The debate of air pollution as a carcinogen also 

ended during the preparation of this thesis, with the International Agency for Research on 

Cancer (World Health Organization) classifying air pollution a human carcinogen 

(International Agency for Research on Cancer, 2013).  

Many government organizations (e.g. Environmental Protection Agency, USA; 

Environment Canada, Canada; World Health Organization, International) have set 

standards for air quality. These standards are continually refined as knowledge about the 

health effects improves, such as understanding the effects associated with short-term 

exposure (Brook et al., 2010). The refinement of these standards and the improved 

knowledge of the health effects is driven by improved exposure estimates both spatially 

and temporally. This need to refine exposure estimates is called for in the epidemiological 

literature, in particular the need to move away from central site monitors for exposure 

assignment (Baxter et al., 2013b; Ozkaynak et al., 2013).   
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Recently mobile monitoring technologies have become widely available. They 

include both units that can be set-up in different locations (semi-stationary), and truly 

mobile technologies that can monitor air pollution concentrations as they travel. Even 

autonomous mobile air pollution monitors have been developed (Reggente et al., 2010). 

Mobile monitoring of air pollution is promising to overcome some of the deficiencies of 

stationary monitoring units, such as the lack of spatial coverage; however, the data these 

mobile systems produce is different from the spatially static long-term time-series data that 

is generally produced from air pollution monitoring. This chapter will introduce the works 

that identified the importance of monitoring air pollution in space, move into an overview 

of how stationary monitoring networks are developed, define the objectives of this research, 

and then conclude with a description of the thesis contents. 

1.2 Air Pollution Spatial Variability 

Goldstein and Landovitz (1977a, 1977b), in a pair of papers, analyzed the air 

pollution field for New York City, NY, using the monitoring network, which consisted of 

40 stationary monitoring units. Their initial research was to determine if a single monitor 

would be able to capture the spatial-temporal field across New York City. They assessed 

hourly SO2 and bi-hourly smoke shade concentrations. The pair-wise correlation statistics 

between stations revealed a broad range of values from r = -0.7 to 1.0.  Further analysis 

identified that high pair-wise correlations in one time period (season) did not result in high 

correlations for other periods, often even the sign of the correlation statistic would change 

(Goldstein and Landovitz, 1977a). These initial findings indicated that the then current 
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practice of utilizing a single station in epidemiological air pollution research was 

unsuitable, and those results should be re-examined. 

Building on these findings in their second paper, (Goldstein and Landovitz, 1977b) 

were interested to see if Tobler’s first law of geography held; if stations nearer to each other 

demonstrated a higher correlation than those further apart. Simply put, their results were 

not what they expected, and stations that were nearer to each other did not demonstrate a 

stronger correlation than those further apart. As well, by comparing relative downwind 

stations and those stations with relative direction out of the wind path, the downwind 

stations did not possess stronger correlation than the stations that were not aligned. The two 

papers by Goldstein and Landovitz set the stage for increased methodological development 

for the siting of air pollution monitors. This knowledge has led us to the use of land use 

regression modelling in air pollution where distance between locations is not the critical 

factor, but that the surrounding land uses are the critical factor (D. J. J. Briggs et al., 1997). 

Handscombe and Elsom (1982) analyzed 24-h concentrations from the Greater 

London Area Pollution Monitoring Network, applying correlation techniques similar to 

Goldstein and Landovitz (1977a, 1977b). In contrast to the American’s findings, their data 

demonstrated a high correlation between monitors. It was suggested that the American 

monitors capture a greater proportion of larger particles (10 µm and greater) compared to 

the British monitors, which primarily capture finer particles, and these larger particles are 

more spatially heterogeneous. Their spatial heterogeneity occurs because they settle out of 

the atmosphere faster due to their increased weight. To effectively capture their spatial 

distribution a denser network would be required compared to finer particles, suggesting the 
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American network was not dense enough. Applying the correlation analysis between sites, 

they deemed many stations redundant.  With a required correlation of r = 0.9, 19% of the 

stations could be removed from the network.  

These three papers laid the foundation for the need to investigate and understand 

the particular location, pollutant and objectives of the study when an air pollution 

assessment is conducted. 

1.3 Locating Air Pollution Monitors 

Shortly following the publications of Goldstein and Landovitz; Lee et al. (1978) 

published an approach on how to locate air pollution monitors effectively. Citing that the 

“EPA has provided only subjective and often conflicting guidelines to local agencies. These 

local agencies must subjectively weigh such location criteria as pollutant concentration, 

source location and meteorological conditions, population density, growth projections and 

geographic coverage in determining instrument location, and must also resolve the question 

of sampling frequencies.”  The approach relied on an atmospheric simulation model to 

estimate the air pollution field for the study domain. The model's input data are annual point 

source data. The model predicted probabilities of violating a standard at any location on a 

grid. They took from the field of facility location problems and applied a discrete space 

model. This process partitioned the region into a n x n grid, potential monitors were located 

at the centroid of each cell. Applying a hierarchical interpreted rendering of the EPA 

guidelines, they determined the first monitoring priority is that monitors are to be located 

in areas with the highest air pollution concentrations; the second priority was to locate 

monitors near areas of high population density or growth. They formulated a mathematical 
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programming problem that would identify the locations that maximize the identification of 

the number of expected standard violations. A second formula, which when maximized, 

indicated the monitor locations that would maximize the population that would be covered 

when monitors identified standard violations. They added a constraint for proximity to 

ensure all monitors were not located coincidentally. Their procedure maximized the first 

problem constrained by resources (number of available monitors) and the proximity 

constraint. Then they maximized the second problem with both the resource and proximity 

constraints along with a detection criterion constraint to ensure a similar solution to the first 

priority. The use of a dispersion model is common in air pollution monitoring network 

design to obtain potential realizations of the field from which monitors can be located 

(Mazzeo and Venegas, 2007; Zwack et al., 2011) 

The identification of pollution standard violations is an effective objective when 

acute air pollution effects are of interest. Noll and Mitsutomi (1983) proposed a design 

approach to optimize monitor location based on dose. They applied a dispersion model to 

output hourly concentrations across a grid of receptor cells. At each 1-hour step in the 

model, they identified clusters of receptors that were contiguous and estimated to be above 

a prescribed concentration. Each cluster was then assigned a dose based on all receptor 

cells in the cluster; sum of area dosage. Grid receptors that occurred in a high number of 

clusters became potential monitoring locations. Each monitoring location was given an 

efficiency score based on the proportion of the total study areas’ dose accounted for at each 

location. To determine which monitoring locations were chosen, the station with the highest 

efficiency was selected first. All the clusters it was associated with were removed, and 
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efficiency scores were recalculated for all other potential monitoring locations. This 

algorithm was continued until the number of available monitors was reached. Their 

approach of focusing on dose may provide a monitoring network that is better optimized to 

estimate the health effects of long-term elevated air pollution concentrations across a study 

area, assuming the monitors end up being located in areas with sufficient population. Their 

technique did not include a population control. As well, areas with estimated low dosage 

would be avoided by this approach. However, areas of low air pollution concentrations are 

important for epidemiology to conduct statistical analysis with high power (Le and Zidek, 

2006). The approach proposed by Noll and Mitsutomi (1983) is a greedy optimization 

technique. Greedy techniques are characterized by making the locally optimal choice at 

each iteration of the technique, which may not result in the global optima. 

Another greedy optimization technique was proposed by Modak and Lohani in a 

set of three papers (Modak and Lohani, 1985a, 1985b, 1985c). In their first paper, they 

applied a spatial correlation approach, which first required a correlation cut-off used to 

indicate the degree of correlation that stations would be considered uncorrelated. The 

technique is based on a pattern score, which is the number of stations that are correlated to 

the station above the correlation cut-off. The algorithm they propose operates as: 

(1) Select the station with the highest pattern score, 

(2) Select the next station with the minimum overlap to the previous station based on 

pattern score, 

(3) Select the next station with the minimum overlap to the previously selected stations, 

(4) Stop if the entire domain is covered or if the number of available monitors is 

reached. 
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Temporal variation must be removed prior to this technique, it is also only 

applicable for locating monitors to a regular grid with no significant topological 

characteristics. 

Modak and Lohani (1985b) extended their methodology to allow for multiple 

objectives. They retained pattern score as an objective and included a violation score, which 

was based on the number of air pollution occurrences above a set of standards. Each level 

in the standard was given a weight, with higher weights given to standards of higher 

concentrations.  The violation score was the weighted sum of the violations.  A utility score 

was derived based on the product of the pattern and violation score to use for the 

optimization. 

Most air pollution monitoring networks have multiple objectives because often the 

monitoring network is developed to full-fill a government organization's mandate. There 

are also multiple end-users with different needs and a multitude of pollutants. Generally 

these multi-objective or multi-pollutant networks require a compromise between individual 

optimal solutions for pollutants or objectives (Chen and Xu, 2012). This compromise can 

be applied through weights applied to pollutants or objectives when solving the objective 

function (Chen et al., 2006), goal-programming (Chen and Xu, 2012), or providing a set of 

solutions (Pareto front) to choose from by adjusting the weights (Boix et al., 2011). All the 

approaches to multi-objective network design require a decision maker with the expertise 

to provide some input regarding the weighting of objectives.  

Locating monitors using geostatistical techniques is very common. These 

monitoring networks formulate the objective function to locate monitors that will maximize 
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data collection in areas of the domain with high-kriging variance (Baalousha, 2010; Nunes 

et al., 2006; Trujillo-Ventura and Ellis, 1991; Zimmerman, 2006). This approach can be 

applied prior to any monitors being located if a dispersion model is available or if historic 

data from a network can be used as input for kriging. By designing a network to minimize 

kriging variance, spatial interpolation will be improved. However, the areas of high kriging-

variance may not exhibit the highest concentration, which is important if health effects are 

to be identified. 

Kanaroglou et al. (2005) adopted a location-allocation model for the optimal 

location of a dense network of pollution monitors, which was to be used to assess exposure. 

They first developed a demand surface, which was based on an air pollution model 

calibrated from a network of monitors covering Ontario and then applied the model to the 

study area (Toronto, Ontario). The demand surface represented the spatial variability of 

pollutants, these values were calculated with a formula inspired by the semi-variogram 

equation. High values of the demand surface required increased monitoring. To this point, 

the method would be very similar to approaches that apply kriging variance. They modified 

this surface by increasing values where higher populations occurred. The location-

allocation technique ensured they were able to identify locations that represent differences 

in land use and transportation network, as part of the initial model; and the distribution of 

the population. This approach can be modified to include any set of particular 

characteristics that are of concern. Combining population into the design of pollution 

monitoring is a common technique to ensure the network covers the population of the 

domain (Langstaff et al., 1987). 
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This overview of the approaches for locating air pollution monitors presents a 

number of different techniques with varying objectives. This review does not judge any 

particular technique as superior, only that with the number of approaches available no 

single approach can satisfy all current or future objectives. 

 

1.4 Objectives of this Research 

Recently, there has been a call for new techniques to model ambient air pollution 

concentrations from the epidemiological literature (Baxter et al., 2013b; Buonanno et al., 

2013). In particular, the models should be able to estimate exposure with finer resolutions 

and be applicable for use with activity analysis data. For example, instead of assigning a 

long-term value at a single location, the model should be able to assign different exposures 

based on a person’s location and activity throughout the day. One technique that has 

recently been adopted for the monitoring of air pollution concentrations, that may be able 

to help satisfy the need for improved modelling, is mobile air pollution modelling. Mobile 

monitoring systems are beginning to become widespread in air pollution studies (Adams et 

al., 2012; DeLuca et al., 2012; Ferri et al., 2010; Kanaroglou et al., 2013; Xu et al., 2007; 

Zwack et al., 2011). These mobile systems are able to collect air pollution concentrations 

at a variety of locations, which is unique compared to traditional stationary monitoring 

units.   

The value of this mobile data has yet to be fully exposed because of the differences 

in the data collection processes, the monitoring techniques (a single mobile monitoring unit 

typically collects data with variation in both space and time) and the reduction in long-term 

single location data from these monitors. It is this author’s hope that this research can 
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contribute to the better understanding of air pollution modelling and exposure assignment 

through the inclusion of mobile monitoring techniques. This thesis considers the main 

objective through four lenses that comprise sub-objectives aligned to the main goal.  

1.4.1 Objective One 

The first objective is to determine if mobile air pollution monitoring in Hamilton, 

Ontario, Canada is able to identify changes in air pollution exposure that are not captured 

by the stationary monitoring network. This research will explore the use of mobile air 

pollution data with a standardization technique currently applied in the literature to 

determine where ambient air pollution concentrations are changing, identifying both 

increases and decreases in ambient air pollution using mobile air pollution monitoring data. 

1.4.2 Objective Two 

The second objective build on the techniques applied in the first objective to better 

understand how the adjustment of short-term mobile air pollution concentrations using 

fixed location stationary monitoring units leads to long-term estimates. This objective 

identifies the errors introduced when a discontinuous time-series of measurements are used 

to estimate a long-term mean concentration, which may be applied as the estimate of 

ambient exposure to air pollutants. 
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1.4.3 Objective Three 

The third objective is to leverage both mobile and stationary air pollution 

monitoring to develop air pollution models that can operate in real-time to model air 

pollution surfaces with across the City of Hamilton, Ontario that include the spatial 

variation in air pollution concentrations. These models can be applied for real-time 

mapping of air pollution risk, as well since they model air pollution on an hourly basis they 

can be applied for estimating air pollution exposure with an activity based analysis.  

1.4.4 Objective Four 

The final objective is to conduct an activity-based air pollution exposure study in 

the Hamilton, Ontario region to demonstrate the utility of activity-based air pollution 

exposure modelling. Specifically looking at the dose of particulate matter air pollution for 

students during their trips to and from school when they use active transportation. This 

analysis relies on the air pollution model developed in objective three to assign activity and 

location specific air pollution concentrations and the resulting dose exposure. 

1.5 Thesis contents 

The thesis contains five chapters in addition to this introduction, comprised of four 

substantive chapters (either published or prepared for publication) and a concluding chapter 

exploring the contributions of this research and identifying future research. The four 

substantive chapters each align to one of the objectives in section 1.4 and form a body work 

that is coherent and advances the understanding of the utility of mobile air pollution 

monitoring data.  
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Chapter two examines the change in air pollutant concentrations between 2005 and 

2010 occurring in the City of Hamilton, Ontario, Canada. After analysis of stationary air 

pollutant concentration data, we analyze mobile air pollutant concentration data. Air 

pollutants included in the analysis are CO, PM2.5, SO2, NO, NO2, and NOX.  Stationary 

monitoring indicates a continuous reduction in air pollutant concentrations. Stationary 

monitors only cover a small spatial extent of Hamilton. Mobile monitoring of air pollutant 

concentrations, averaged over census tract boundaries, indicates both improvement and 

decline in air quality. These improvements and declines in air quality are spatially clustered 

throughout Hamilton. Mobile data indicated a significant decline in median pollutant 

concentration for CO, SO2, PM2.5, and NO2; but a significant increase in NO and the 

resulting total NOX concentrations. Air quality change in Hamilton is spatially 

heterogeneous and is not captured based on the current stationary monitoring network. 

Coupling of mobile and stationary air pollutant concentration monitoring provides a more 

accurate spatial assessment of local air quality. 

Chapter three explores how air pollution observational epidemiologic studies that 

require long-term mean concentrations assigned to the subjects may be affected by both 

Berkson and classical error when using discontinuous time-series data.  Researchers have 

begun to use mobile monitoring techniques that allow for rapid relocation of monitors to 

attempt to reduce Berkson, but in our study we demonstrate this approach creates classical 

error due to the incomplete dataset for the period of interest. A data adjustment method is 

presented that harnesses a fixed-location monitor’s observations of the entire period of 

interest to adjust each datum in the incomplete dataset to reduce the classical error in the 
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calculation of the observation’s mean. A computer simulation is applied to test the 

adjustment method, where complete datasets of time-series observations from the 

monitoring network in Paris, France, are sampled to simulate incomplete collection. The 

classical error in the determination of the long-term mean is based on the actual long-term 

mean (using all observations); the error in calculating the mean concentration is determined 

for both the adjusted and unadjusted incomplete datasets. Three periods of interest are 

examined, which include one-week, one-season, and one-year. The computer simulation to 

generate incomplete samples varies the number of repeat observations during the period of 

interest and the length of each observation. We find the adjustment approach is beneficial 

when the incomplete dataset is comprised of less than one-quarter of the entire time-series 

of potential observations, and as the incomplete dataset approaches one-third of all potential 

observations in the period of interest, the adjustment approach may introduce additional 

error. As well, we find that it is best to balance the total number of sampling hours between 

the number of repeated observations and the length of each observation to minimize 

classical error. We conclude the article with suggestions to help aid researchers in designing 

mobile monitoring campaigns with minimized classical error. 

Chapter four presents two models that capture the real-time spatial variation of air 

pollution in Hamilton, Ontario, Canada. We applied neural network models within a 

framework that is inspired by land use regression. Mobile air pollution monitoring 

campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution 

data were modeled with a number of predictor variables that included information on the 

surrounding land use characteristics, the meteorological conditions, air pollution 
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concentrations from fixed location monitors, and traffic information during the time of 

collection. The two pollutants that were modelled included Fine Particulate Matter and 

Nitrogen Dioxide. During the model fitting process, we reserved twenty percent of the data 

to determine the prediction validation. The models’ performances were measured with a 

coefficient of determination at 0.78 and 0.34 for PM2.5 and NO2, respectively. We apply a 

relative importance measure to identify the importance of each variable in the neural 

network to partially overcome the black box issues of neural network models. 

Chapter five presents an analysis of the PM2.5 exposure of children in Hamilton, 

Ontario, Canada during their trips to and from school. Air pollution exposure was estimated 

with a neural network model using a land use regression approach, with a prediction 

accuracy of R2 = 0.78. This model was built with a combination of air pollution data 

collected by both mobile and stationary monitoring units. The doses were calculated for 

250 different students’ routes to and from school for both cycling and walking as the mode 

of travel. During morning cycling trips the average dose was 2.17 µg (range 0.085 – 5.67 

µg), afternoon trips were higher with a mean of 2.19 µg (range of 0.097 – 5.61 µg). Walking 

tips were higher with a mean dose of 3.19 µg (range 0.126 – 8.327) in the morning and 3.23 

µg (range of 0.14 – 8.26 µg). Students’ average household ambient PM2.5 concentrations 

were 15.7 µg/m3
 and 15.6 µg/m3 in the morning and afternoon respectively. The school 

concentrations were higher at 18.3 µg/m3 and 19.3 µg/m3
 for the morning and afternoon 

respectively. Students living in lower income neighbourhoods were not found to have 

higher PM2.5 doses during their trips to or from school with either mode of transportation. 

The primary policy implication from this work is for programs that encourage active 
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transportation to and from school. If these programs can encourage more students to cycle 

versus walk they can reduce the students’ exposure to air pollution.  

Chapter six concludes the thesis by detailing the contributions of the work to the 

field of air pollution monitoring. This chapter also identifies future avenues for exploration 

that were identified within this document or were identified by the author during the 

completion of this work.  
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Chapter 2: Mobile Air Monitoring: Measuring Change in Air Quality in 

the City of Hamilton, 2005–2010 

2.1 Introduction 

Numerous air pollution studies demonstrate the detrimental effects of various air 

pollutants on human health; effects which result in an adverse impact on life expectancy 

and quality of life (Neupane et al., 2010; Sanhueza et al., 2010; Pope et al., 2009; Medina-

Ramon et al., 2006; Kan et al., 2010; and Chiusolo et al., 2011).  Pope et al., (2009), for 

example found that a decrease by10 µg/m3 in the mean annual concentration of particulate 

matter under 2.5 microns in aerodynamic diameter (PM2.5) is associated with an increase 

in life expectancy of 0.77 years.  Similar health impacts from increased air pollution were 

found in the Netherlands (Brunekreef 1997), Finland (Nevalainen and Pekkanen 1998), and 

Canada (Coyle et al., 2003). Thus, reducing air pollution in urban areas has become an 

important initiative of governments globally including those of Canada (Environment 

Canada 2011a). 

  Air pollutant concentrations are typically measured with stationary air quality 

monitors, often few in number due to high initial and continued maintenance costs, which 

results in a sparse spatial coverage of monitors. Ontario, Canada has a stationary, ambient 

air quality monitoring network with 37 stations in southern Ontario, operated by the Ontario 

Ministry of the Environment and Climate Change (MOE). Three of those stations are 

located in the City of Hamilton; these stations are invaluable for their long-term record of 

pollution. Unfortunately, the three Hamilton monitors are clustered near the core of the 

city, and they do not capture the spatial contrasts of the urban-suburban or industrial-



Ph.D. Thesis – M. Adams; McMaster University – School of Geography and Earth Sciences 

21 

 

commercial-residential environments. Vardoulakis et al., (2005) have demonstrated that 

the concentrations recorded by stationary monitors may not reflect the values of 

surrounding areas, and, therefore, may not be adequate in assessing population exposure. 

Mobile monitoring techniques can evaluate air quality while in transit, using 

specialized vehicles. Air is collected during transit and analyzed onboard for pollutant 

concentrations. Mobile monitoring techniques are a powerful addition to air quality data 

obtained from stationary monitoring networks, because of the ability to move to many 

collection locations. The complementarities between mobile and stationary monitors allow 

for a more detailed picture of air pollution impacts to be constructed.  Data collection 

mobility is particularly important because short-term peak exposures to air pollution can 

have serious detrimental health impacts (Atkinson et al., 2006; Dominici et al., 2006; Pope 

et al., 2006).  For example, the mobile unit can roam city-wide (Wallace et al., 2009); or 

focus on specific locations of concern such as areas with high amounts of road dust 

(DeLuca et al., 2012) and areas undergoing temperature inversions  (Wallace et al., 2010).  

Given the links between air pollution, health, and overall quality of life, we 

investigate the change in air quality occurring in the City of Hamilton over a six-year 

period, from 2005 to 2010. Specifically, we demonstrate that stationary monitors, while 

sufficient for examining long-term trends, are insufficient in capturing all spatial variability 

throughout the city.  Further, we demonstrate how information from stationary monitors 

can be combined with data from mobile monitors to provide a more detailed assessment of 

the variability of several pollutants.  In terms of specific pollutants, we examine the 

concentrations of sulphur dioxide (SO2), which is related primarily to heavy industry; 
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nitrogen oxide (NO), nitrogen dioxide (NO2), total nitrogen oxides (NOX) and carbon 

monoxide (CO), which is linked primarily to traffic; and PM2.5 which is tied to both 

industry and traffic but is largely attributed to open sources; approximately 72% of all 

emissions. Open sources include road dust resuspension, construction, and farming 

(Environment Canada 2011b). Each of the pollutants examined have both acute and chronic 

health effects (Kampa and Castanas 2008; Pope and Dockery 2006). 

2.2 Study Area 

The City of Hamilton (Hamilton), with a population of 520 000 (Statistics Canada 

2012) is situated at the western end of Lake Ontario (43.3oN, 79.9oW), and is separated into 

an upper and lower city by the Niagara Escarpment (average height ~90 m). Several 

suburban satellite villages are incorporated in the larger urban area, suburban sprawl. Four 

major expressways encapsulate most of the city proper (Figure 2.1).  Transportation 

corridors include highway and railroad traffic between the Greater Toronto Area and the 

United States of America; and shipping flows, which initiate and terminate at Hamilton 

Harbour. 

Between 2005 and 2010, Hamilton has witnessed the downsizing of its primary 

metals industry; a shutdown of one of its major steel manufacturers; and the closure of 

several other its industries, which were located in the traditional industrial zone of the city 

(City of Hamilton, 2010). Suburbanization and diversification of employment occurred 

with the establishment of several new industrial zones throughout the city. These zones are 

defined as Bayfront, East Hamilton, Stoney Creek, Red Hill, Ancaster, Flamborough, West 

Innovation District, and the Airport/Airport Employment Growth District zones (City of 
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Hamilton, 2011). Zones are indicated on a map of Hamilton in Figure 2.1. These newly 

developed zones increase the potential for spatial variation in pollutant concentrations. 

Variability which may be attributed to increased and new traffic between zones, 

construction-related pollutants, and the redevelopment of traditionally rural land to an 

urban land form.  

Hamilton’s air quality is of interest due to the known  past spatial variability of air 

pollutant concentrations (Wallace et al., 2010; Wallace et al., 2009; Sahsuvaroglu et al., 

2006; Jerrett et al., 2001; Finkelstein et al., 2004; Finkelstein et al., 2003; Buzzelli et al., 

2003). This variability is partially attributed to: (1) Meteorological conditions including 

northeast lake effect winds passing over the traditional industrial core and depositing 

pollution in the city, and atmospheric inversion conditions resulting in pollutant buildups, 

particularly in the lower city (Wallace et al., 2010); (2) Pollutant releases from 143 facilities 

spread throughout the city (Environment Canada 2011c); and (3) Emissions from vehicular 

traffic.  
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Figure 2.1 The City of Hamilton study area map. Industrial areas of the city are 

numbered: 1 - Bayfront, 2 – East Hamilton, 3 – Stoney Creek, 4 – West Innovation 

District, 5 – Red Hill, 6 – Airport Employment Growth District, 7 – Ancaster, 8 – 

Dundas, 9 – Flamborough. 

2.3 Methods 

2.3.1 Mobile Monitoring  

Mobile monitoring methods are fully described in Wallace et al., (2009). An 

industrial van equipped to measure CO, SO2, PM2.5, NO, NO2 and NOX, traversed Hamilton 

collecting air samples through a roof-mounted air intake (~3 m above ground level). Air 

samples were analyzed onboard with three different air quality monitoring instruments. The 
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make and model, the principle of operation, operating range, and precision of the 

continuous pollution monitoring instrumentation are presented in Table 2.1. Two global 

positioning system (GPS) units collected positional information: (1) A roof-mounted 

Garmin GPS16-HVS detector; and (2) A windshield mounted Garmin 18 GPS. Pollutant 

and positional data were simultaneously logged with a Campbell 23X data logger and 

stored in an integrated database with 1-second temporal resolution. Mobile data collection 

occurred between speeds of 5 and 25 km per hour. 

Table 2.1 Mobile air quality monitoring instrumentation 

Pollutant Instrument Type Principle of Operation Operating Range Precision 

NO, NO2, 

NOX 

Thermo Scientific 

Model 42i 
Chemi-luminescence 0 – 1000 ppb 0.4 ppb 

CO 
Thermo Scientific 

Model 48 
Gas Filter Correlation 0 – 50 ppm 0.1 ppm 

SO2 Monitor Labs 8850 Fluorescence 0 – 10000 ppb 5 ppb 

PM2.5 Grimm Model 1.107 Laser Optical 0 – 6,500 µg/m3 1 µg/m3 

 

2.3.2 Air Pollutant Data from Stationary Monitors 

Six years, January 1st, 2005 to December 31st, 2010, of hourly averaged air pollutant 

concentration data from stationary monitors were obtained from the Ontario Ministry of 

the Environment’s Historical Air Pollution Data Base (OMOE 2011). These stationary 

monitors are active automated monitors reporting average air quality on an hourly basis. 

Pollutant concentrations included: CO (ppm), SO2 (ppb), PM2.5 (µg/m3), NO (ppb), NO2 

(ppb), and NOX (ppb). Three stationary monitors were located in Hamilton: Hamilton 

Downtown, Hamilton Mountain, and Hamilton West (see Figure 2.1 for locations). 

Hamilton Downtown was the only station with a complete dataset for all pollutants. PM2.5 
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data were available for all stations. SO2, NO, NO2, and NOX data were available for 

Hamilton Mountain beginning January 2007.  

All three Hamilton Air quality monitors are located in close proximity; the 

maximum distance between any two monitors is less than 5 km. Both the Hamilton 

Downtown and Hamilton West monitors are located in the lower city, and the Hamilton 

Mountain monitor is located in the upper city. The Hamilton Mountain monitor is located 

to the direct south of the Hamilton Downtown monitor. And the Hamilton West monitor is 

located to the direct west of the Hamilton Downtown monitor. During north-east wind 

conditions the monitors would receive winds passing over the traditionally industrial zone 

of Hamilton. North-east winds are the secondary winds in Hamilton; none of the monitors 

are located on the path to receive pollutant concentrations of a north-east wind passing 

through the new industrial zones. South-west winds are the primary winds.  

2.3.3 Air Pollution Data from Mobile Surveys 

Mobile pollution survey campaigns occurred during 16 days in 4 months for 2005-

2006 and 21 days in 5 months for 2009-2010, between November and April for both 

biennial groups. No data collection occurred in March or April during 2005-2006 surveys, 

or January during 2009-2010 surveys. Surveys for both time periods included a 

combination of city-wide and targeted area scans. Targeted areas included industrial 

sectors, the downtown core, specific neighborhood studies, and along major traffic 

corridors.   

All mobile air pollutant concentration data collected in each biennial grouping were 

used in producing models. To reduce variation in data due to seasonality effects, data were 
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standardized. Data standardization followed a similar approach to Larson et al., (2009), to 

remove seasonal variation. The formula for standardization is presented in equation 1. 

 
𝑀𝑆𝑡 = 𝑀𝑂𝑡  ×  

𝑆2𝑌𝑡

𝑆𝐷𝑡
 (1)  

where, 

MSt = standardized mobile value at time t, 

MOt = original mobile value at time t, 

S2Yt = biennial period mean from the MOE Downtown Stationary monitor that time 

t falls in, 

SDt = daily mean from the MOE Downtown stationary monitor that time t falls in.  

 

This standardization was applied to increase/decrease values relative to the two-

year mean collected under conditions of generally lower/higher pollutant concentrations. 

Standardization was based only on the Hamilton Downtown stationary monitor values 

because it was the only stationary monitor with a complete dataset. 

2.4 Statistical Methods 

Descriptive statistics are presented separately for both the mobile and stationary 

data. Mobile and stationary data were each grouped into two biennial groups, which were 

2005-2006 and 2009-2010. Both mobile and both stationary biennial groups were 

distributed log-normal, as expected for air pollution data. We report median values as the 

central tendency when comparing between biennial groups because it is an appropriate 

measure of central tendency for a log-normal distribution.  

For both mobile and stationary data, we determined if significant increases or 

decreases occurred between the first and second biennial periods for Hamilton’s air 

pollutant concentrations, without spatial considerations, with the Wilcoxon rank sum two-

sample unpaired test. This test determines if a significant difference in the median values 
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between biennial groups occur. The Wilcoxon test was chosen over the t-test because of 

the log-normal distributions and zero data; zero data resulted from either no air pollutants 

occurring in the air, or values below the detection limit of the monitoring instrumentation. 

Zero data do not allow for a natural logarithm to be taken to transform the data to 

approximate a normal distribution. 

In understanding if significant differences, in stationary monitoring data, occurring 

between biennial periods were discrete or continuous phenomena, linear models were 

applied to determine the amount of explanatory power time has to changes in concentration 

measured at the Hamilton Downtown stationary monitor. If differences were discrete, no 

downward or upward trend in air pollutant concentrations would be significant. Stationary 

monitor pollutant concentrations were averaged with a 30-day running mean to capture 

long-term trends without averaging out seasonal or yearly variability. These running means 

were calculated using the running mean function from the package igraph (Csardi and 

Nepusz 2006) for the statistical software environment R, which was used for all non-spatial 

statistics (R Development Core Team 2011).  The running averages were plotted against 

time, and linear regression models were estimated based on the Hamilton Downtown 

station’s air pollution data. Linear models included time, measured in hours, as the 

independent variable and the natural logarithm of the pollutant’s running mean as the 

dependent variable. The natural logarithm was used to transform data; this could be taken 

because the running mean removed all zero values. 

Inverse distance squared weighting (IDW) interpolation was used to estimate air 

pollutant surfaces from the mobile data for each pollutant, in both biennial periods. IDW 
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was applied because these values are irregularly spaced, and air pollution is a continuous 

phenomenon. IDW is appropriate because we previously minimize seasonality concerns 

with the standardization, and samples are spaced relatively near. We limit our evaluation 

of the interpreted surface to the areas which initially contained monitoring points; i.e. no 

extrapolation. Model accuracy was assessed as the agreement (correlation) between the 

mobile monitored location's value and the corresponding interpolated surface value. 

Spearman’s rho was used to assess correlation between estimated and actual values because 

data were log-normal distributed with many zero values present.  

Mean air pollutant concentration within each census tract (CT) was computed from 

the surfaces.  Only CTs with mobile air pollution data for both biennial periods were 

included in further analysis. For each CT, the difference between biennial periods for air 

pollutant concentrations were calculated, either as an increase or decrease in concentration 

to the latter period. To determine if global clustering of differences in air pollutant 

concentrations were occurring, we applied Moran’s I to the CTs positive and negative 

values of air quality change. Local Moran’s I was applied post hoc used to identify specific 

significant spatial clustering in CT values. Local significant spatial clustering is an 

indication of spatial variability of air pollutant concentrations throughout Hamilton. 

2.5 Results 

Stationary monitor (Hamilton Downtown) air pollutant concentrations, decreased 

for all pollutants during the study period. Biennial periods’ median values for all pollutants 

were statistically significantly lower in the latter period. Biennial periods’ median values 

for stationary monitors are presented in Table 2.2. 
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Table 2.2 Downtown Hamilton air pollution monitor descriptive statistics 

Pollutant Years Mean S.D. Min Max Median* 

CO 

(ppm) 

05-06 0.31 0.20 0 2.83 0.27 

09-10 0.21 0.18 0 5.02 0.18 

SO2 

(ppb) 

05-06 5.03 7.99 0 93 2 

09-10 3.32 6.50 0 136 1 

PM2.5 

(µg/m3) 

05-06 9.76 9.3 0 82 7 

09-10 7.48 6.72 0 64 5 

NO 

(ppb) 

05-06 9.16 20.57 0 393 3 

09-10 5.66 11.9 0 179 2 

NO2 

(ppb) 

05-06 18.36 10.75 1 77 16 

09-10 13.41 8.93 0 59 11 

NOX 

(ppb) 

05-06 27.72 28.30 2 470 19 

09-10 18.85 18.47 0 231 13 
*All median values between biennial groupings were statistically significant using the Wilcoxon test 

with p < 0.001, rejecting the null hypothesis of the distributions of both groups being equal. 

 Linear regression models, with mean air pollutant concentration at the Hamilton 

Downtown monitor as the dependent variable and time as the independent variable, were 

all statistically significant (p < .05), with explanatory abilities between 10% and 35% of 

pollutant concentration variation. The explanatory abilities of the models were based on a 

continual decline during the period; indicated by all negative coefficients for time (hour). 

Air pollution decline is continuous during the study period at the Hamilton Downtown 

stationary monitor. Adjusted R2 and coefficient values are presented with running mean 

plots in Figure 2.2. 
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Table 2.3 Descriptive statistics for normalized mobile monitoring data. Normalized by 

Hamilton Downtown daily station average for CO, SO2, PM2.5, NO, NO2 and NOX. 

Pollutant Years N Mean S.D. Median* 

CO 

(ppm) 

05-06 2097 1.24 1.57 0.96 

09-10 6974 1.40 5.43 0.71 

SO2 

(ppb) 

05-06 2178 24.87 33.18 13.71 

09-10 2178 8.73 11.00 4.43 

PM2.5 

(µg/m3) 

05-06 1187 32.67 43.23 23.96 

09-10 2384 18.46 14.83 14.96 

NO 

(ppb) 

05-06 2197 39.18 58.26 21.2 

09-10 7309 76.75 91.49 42.62 

NO2 

(ppb) 

05-06 1913 20.86 16.99 17.06 

09-10 5017 15.96 15.45 12.46 

NOX 

(ppb) 

05-06 2036 52.27 48.74 39.34 

09-10 8048 71.84 70.95 44.94 
*All Median Values between biennial groupings were statistically significant using the Wilcoxon test 

with p < 0.001, rejecting the null hypothesis of distributions equality.  

 

Mobile sampled air pollutant concentration data were statistically significantly 

increased and decreased when comparing the first to the latter biennial period, depending 

on which air pollutant concentration was evaluated. Air pollutant concentrations median 

values are presented in Table 2.3. CO, SO2, PM2.5, and NO2 were all significantly lower (α 

= 0.001) in the latter biennial period. NO and NOX were both significantly higher (α = 

0.001) in the later biennial period.  

Mobile data based IDW estimated pollutant surfaces’ accuracy were high. 

Spearman's rho values were between 0.646 – 0.844, indicating a strong agreement between 

the monitored mobile values and those estimated at each monitored location from the IDW 

pollutant surfaces. 
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Figure 2.2 Hamilton’s air pollution 30-day running averages. SO2, PM2.5, CO, NO, NO2 

and NOX concentrations from the stationary monitors in Hamilton. 

 

Census tracts’ mean air pollutant concentrations, estimated with mobile data, were 

heterogeneous in decline and improvement between 2005-2006 and 2009-2010. CTs 
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overall, decline significantly in median pollutant concentration for CO, SO2, PM2.5, and 

NO2; but increase for NO and NOX. The numbers of CTs which increase and decrease in 

mean air pollutant concentrations, in the latter biennial period, are presented in Table 2.4. 

These locations of CT air quality improvement and decline are mapped for Hamilton in 

Figure 2.3.  

 

Table 2.4 Descriptive statistics for change in mean/median pollution level comparing 

2005-2006 to 2009-2010 for the census tract level of geography. 

Pollutant N Improved Declined Mean Median Moran’s I 

CO 67 45 22 -0.637 -0.374 0.373* 

SO2 67 53 14 -4.878 -4.77 0.786* 

PM2.5 50 43 7 -7.573 -8.635 0.442* 

NO 89 18 71 26. 25 19.45 0.511* 

NO2 87 53 34 -1.166 -2.052 0.402* 

NOX 64 31 33 4.686 1.702 0.503* 

*p < 0.001  

 

Global Moran’s I indicates statistically significant spatial clustering of the CTs that 

increase or decrease in the latter biennial period for all pollutants. Moran’s I statistics are 

presented in Table 2.4. Applications of local Moran’s I indicate statistically significant 

local clustering of increased and decreased air pollutant concentrations at the CT 

geographic level. CTs that are significantly locally clustered for each pollutant, based on 

local Moran’s I, are mapped for Hamilton in Figure 2.4.      
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Figure 2.3 Locations of air quality improvement and decline between 2005-2006 and 

2009 - 2010 at the census tract level of geography. MOE stationary monitors are included 

for each map, only those monitors with full data sets for the period between January 2005 

and December 2010 are included. 
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Figure 2.4 Spatial clustering of air quality improvement and decline between 2005-2006 

and 2009 - 2010 at the census tract level of geography. Significant clusters were 

determined with the local Moran’s I. 

Epidemiological, environmental justice, and spatial variability studies require a 

much larger area to be interpolated than is available for Hamilton, an area that generally 

covers the exposed population. To help with this issue in Hamilton, an NO2 study employed 
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short-term passive monitors (n = 100). These passive monitors were distributed throughout 

the city and left in place for a period of time and then analyzed to determine local pollutant 

accumulation. Unfortunately passive monitors are subject to damage/vandalism, which 

occurred in about 5% of the monitors initially deployed for the Hamilton NO2 study 

(Sahsuvaroglu et al., 2006). Mobile monitoring allowed a more extensive area of Hamilton 

to be validly interpolated, with convex hulls generated by the sample points covering areas 

between 96 and 207 km2, depending on the pollutant.  Additionally, spatially diverse 

sample collection occurred covering the complexities of the urban terrain of Hamilton, 

similar to Zwack et al., (2011).  

Stationary monitoring indicated air quality improvement from 2005 - 2010, whereas 

mobile monitoring indicated areas that experience both improvement and decline thereby 

corroborating other results on the spatial heterogeneity of air pollutant concentrations in 

Hamilton (Wallace et al., 2010; Wallace et al., 2009; Sahsuvaroglu et al., 2006; Finkelstein 

et al., 2004; Buzzelli et al., 2003; Finkelstein et al., 2003; Jerrett et al., 2001). Local 

Moran’s I tests indicate significant local clustering in all air pollutant concentrations 

evaluated at the CT level. City trends for CO, SO2, PM2.5, and NO2 air quality indicate 

improvement, but 33%, 21%, 14%, and 39% of the census tracts respectively show a 

decline in air quality. NO and NOX city-wide trends indicate a decline in air quality, with 

20% and 48% of the census tracts improving in air quality respectively. Hamilton’s census 

tracts with declining air quality would not have been quantified based solely on the current 

stationary monitors, which indicated air quality improvement over the time period.  
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CO and NOX pollutant concentration increases were significantly clustered in 

Hamilton’s Bayfront industrial area, see Figure 2.4.  CO pollutant releases, from industrial 

sources in this area, declined by one-third between 2005 and 2010, which is in opposition 

to the increased concentrations; NO2 releases from industrial sources do not change 

significantly (Environment Canada 2011c). Seven of the days monitored within 2009 – 

2010, experienced offshore north-east winds, winds which would pass over the industrial 

area pushing pollutants towards the city. These elevated concentrations are likely due to 

CO and NOX being brought towards the city during these north-east wind conditions. 

Elevated NOX levels occurred in the eastern most part of the city. This area is a 

recent suburban satellite community with continued housing development during the study 

period. These elevated NOX levels may be derived from the increasing vehicular traffic that 

couples with the increased population. Elevated NO, NO2, and NOX concentration clusters 

occur to the south and south-west of the Bayfront industrial region. This may be partially 

attributable to wind patterns, and similar to the eastern part of the city, some of these CTs 

have increased in population from 2006 – 2011(Statistics Canada 2012). The increased 

population will increase local traffic and traffic congestion resulting in increased NO, NO2, 

and NOX. 

Significant reductions of SO2 and PM2.5 occur throughout most of the waterfront 

area, which can be attributed to economic decline and localized industrial departure.  Two 

pockets indicate an overall increase in SO2, both located to the south-west of the industrial 

waterfront. In each pocket, the sampling was more intense in the second time period, with 

seven of the twenty-one days of monitoring occurring with north-east winds passing over 
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the industrial area.  Elevated PM2.5 concentrations clustered in Dundas Valley, to the west 

of the Bayfront industrial area. This area consists of a growing community with significant 

housing construction and is surrounded by other growing communities to the north, north-

east, south and west.  Additionally, a major highway runs along the eastern and southern 

parts of the cluster of census tracts.  Dundas valley also often suffers from increased air 

pollutant concentrations due to temperature inversions (Wallace et al., 2010). 

2.6 Conclusions 

Mobile monitoring coupled with stationary monitoring provided a more detailed 

spatial distribution of Hamilton’s air quality.  Values from various mobile monitoring scans 

of the city, standardized to the Hamilton Downtown stationary monitor, allow for the use 

of multi-season data to be utilized, with minimal variation due to seasonal fluctuations. 

These data may be used for epidemiological, environmental justice, and local spatial 

variation studies. Mobile data collection allows for air pollutant concentrations to be 

obtained with a higher spatial distribution and density than is possible with stationary or 

passive monitors. Lastly, the comprehensive collection of mobile air pollutant data allowed 

for the estimation of varying concentrations within Hamilton. This more comprehensive 

collection resulted in the determination that the current stationary monitors are inadequate 

in distribution to quantify the change in air quality for the entire city of Hamilton, Ontario, 

Canada.  
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Chapter 3: A Method for Reducing Classical Error in Long-Term 

Average Air Pollution Concentrations from Incomplete Time-Series Data 

3.1 Introduction 

Air pollution exposure negatively affects human health including reduced cognitive 

function (Hutter et al., 2013), reduced lung function (Wallner et al., 2012), early childhood 

cancer (Ghosh et al., 2013), increased low and underweight births (Padula et al., 2012), and 

mortality and morbidity due to cardiovascular and respiratory diseases (Hoek et al., 2013). 

Observational epidemiologic studies that use ambient air pollution concentrations assigned 

to research subjects are the primary method of determining the association between long-

term air pollution exposure and health effects. Hoek et al., (2013) reviewed long-term air 

pollution exposure studies of health effects and cardio-respiratory mortality, including such 

research studies as the Harvard Six Cities, American Cancer, German Cohort, California 

Teachers and the Nurses’ Health Study. These studies were fundamental in identifying 

possible associations and health effect outcomes to varying levels of air pollution. 

Current air pollution studies assess exposure over space, because air pollution in cities 

is long-known to vary spatially and that a single value or monitor is not representative 

(Goldstein & Landovitz, 1977a, 1977b); however, the number of air pollution monitoring 

stations is typically limited, often due to their high-cost, and concentration data must be 

spatially interpolated to provide values for each individual's location. Kriging or land-use 

regression modelling are commonly employed to spatially interpolate air pollution 

concentrations at unmonitored locations (Jerrett et al., 2005; Kanaroglou et al., 2005; 

Kumar, 2009). The effectiveness of these spatially refined estimates is dependent on a well-
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designed spatial sampling approach, which, in general, should maximize the probability of 

capturing the spatial variability (Delmelle, 2014). For a primer on spatial sampling see 

Delmelle (2014), who introduces two-dimensional sampling, geostatistical sampling, and 

second-phase sampling. More in-depth information on spatial sampling for a spatially 

correlated phenomena can be found in (Griffith, 2005).  

Two types of error, Berkson and classical, affect observational epidemiologic studies 

(Heid et al., 2004). Classical error occurs when multiple measurements, commonly in time-

series data, do not represent the true value of interest because of the type of monitoring 

strategy. In other cases, this occurs because of missing values in the time series. These 

effects may combine to bias the estimated effect measure upwards or downwards 

(Armstrong 1998). Berkson error reduces the study’s power, which results in increased 

confidence intervals on the coefficients. This error occurs when subjects are assigned a 

group-average exposure (Armstrong 1998), for example by assigning all residents within 2 

km of a pollution monitor the same value. 

Attempts to reduce classical error (in estimating a long-term mean) caused by 

incomplete datasets have included adjusting data values based on a fixed-location 

continuous monitor (Larson et al., 2009; Adams et al., 2012; Kanaroglou et al., 2013; Hoek 

et al., 2002). This practice entails determining if air pollution conditions in the study area 

are above or below average by comparing the current concentration at a fixed-location 

continuous monitor to its long-term mean. The incomplete data are then adjusted to account 

for the above or below average conditions. After the adjustment, all observations in the 

incomplete dataset should be closer to the true long-term mean, which when averaged 
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together should reduce classical error in estimating the long-term mean concentration. The 

adjustment method requires that regional phenomena affect air pollution concentrations 

uniformly in the study area. If this occurs, when one monitor is observing higher than 

average concentrations, all monitors should be observing higher than average 

concentrations. Thus, if monitoring times were biased, in that, data were collected mainly 

during above or below average conditions, this bias would be reduced. 

Researchers increasingly use mobile monitoring to collect data on air pollution 

concentrations (Adams et al., 2012; Kanaroglou et al., 2013; Larson et al., 2009; Reggente 

et al., 2010); this concentration data is often collected to supplement existing monitoring 

networks that have few air pollution monitors. Mobile monitoring is different from 

traditional fixed-location continuous air pollution monitoring because the monitors are 

designed for rapid relocation, which researchers take advantage of in an attempt to reduce 

Berkson error by monitoring at various locations. This strategy produces incomplete time-

series datasets that are prone to give rise to classical error.  

Our study evaluates an adjustment formula, which is designed to reduce classical error 

when one uses incomplete time-series datasets to estimate a long-term mean concentration.  

Evaluation is based on a set of incomplete datasets derived through sampling from a 

database of observations obtained with continuous fixed-location monitors. The error is 

determined by calculating the actual long-term mean, which is estimated from the entire 

time-series, with both the adjusted and unadjusted incomplete datasets. It is critical that 

researchers understand the effect that mobile monitoring may have on the assignment of 

ambient air pollution concentrations to subjects in their research and identify any 
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approaches to reducing Berkson and classical error. Understanding the effect of the 

adjustment method will help ensure appropriate study designs. 

3.2 Methods 

3.2.1 Observed Air Pollution Data 

The Paris, France, air pollution monitoring network was selected for study, which 

consists of 67 air pollution monitors. We focus on observations from 2012, which was a 

year that Paris’ air pollution concentrations often exceeded guidelines for particulate 

matter, nitrogen dioxide, ozone, and benzene; along with highly variable weather 

conditions. In January to March, meteorological conditions were conducive to escalated air 

pollution episodes. Pollution concentrations reduced in the next months because of cool 

and wet weather, which continued through the autumn (Airparif, 2013). The temporal 

variability of Paris’ air pollution concentrations in 2012 provides us with a suitable dataset 

for testing the proposed adjustment method, because, without temporal variability, even 

incomplete datasets would adequately represent the long-term mean, and no adjustment 

would be necessary. 

This study examined the effect of the adjustment method of particulate matter 10 

microns or smaller in aerodynamic diameter (PM10) concentrations, which were observed 

at 24 locations with fixed-location continuous monitors and reported as hourly averages. 

We present a map of the locations in Figure 3.1. Monitors were located in the following 

four land-use types: urban, peri-urban, rural, and transportation focused locations. All 

monitors in the network are within 60 km of the central monitor (PA04C), located in the 

city centre, which will be used to determine any adjustments to the data. 



Ph.D. Thesis – M. Adams; McMaster University – School of Geography and Earth Sciences 

47 

 

 

Figure 3.1 Paris, France study area and air pollution monitors. Monitors identified by 

their ID. Circles with radii of 15, 30 and 60 km are included and centre on the Paris 

Centre monitor. An inset is included of the downtown region. 

 

During 2012, each fixed monitor recorded 8,784 hourly-observations. Missing, 

erroneous, or incomplete data in these time-series ranged between 1.6 percent and 7.4 

percent (mean = 3.3 percent). The network’s central monitor’s missing data were filled by 

down filling with the previous hours’ values. Down-filling was chosen over spatial 
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interpolation for this monitor to not increase its correlation with the other monitors; 

increased correlation would increase the datasets similarity and artificially increase the 

effectiveness of the adjustment method. When a datum in the time-series was missing for 

the central monitor, the down filling would replace the missing value with the previous 

hour’s record. The other stations’ missing data were filled by spatially interpolating a value 

with the other monitoring stations’ data, excluding the central location. The spatial 

interpolation method was inverse distance squared interpolation. 

3.2.2 Time-Series Correlation 

The adjustment method requires that monitors in the study area be temporally 

correlated. Without correlation between monitors, the application of this or a similar 

adjustment method would be in vain. We identify the level of correlation with Pearson’s r 

correlation coefficient, which is calculated between each monitor and the adjustment 

monitor (Paris Centre monitor). Natural logarithms of the data were used because the data 

were distributed log-normal. To investigate if the correlation between monitors were 

associated with the distance between monitors or the station type, we regressed the 

correlation coefficients against distance to the Paris Centre monitor while controlling for 

the different monitoring land use types. If the distance in the model was significant, it would 

indicate the adjustment approach is biased based on distance to the central monitor.  

3.2.3 Adjustment method 

In our adjustment method, we term the fixed-location continuous monitor used to 

adjust the incomplete datasets as the adjustment monitor. Our adjustment method is a linear 

adjustment defined with by equation 2. 
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𝑂𝐴 = 𝑂𝑅  ÷  

𝑙𝑜𝑔𝑒(𝑆ℎ + 𝑒)

𝑙𝑜𝑔𝑒(𝑆𝐿 + 𝑒)
 (2)  

Where, OR is the air pollution observation to be adjusted, OA is the adjusted air 

pollution observation, SH is the concurrent hourly observation at the adjustment monitor, 

and SL is the long-term arithmetic mean at the adjustment monitor. We add the base of the 

natural logarithms (e) as a constant to all values in the adjustment monitor’s dataset to 

ensure the lowest value after the logarithm is taken is not less than one. Zero values in Sh 

would be indivisible, and the adjustment formula would fail. Paris Centre is used as the 

adjustment monitor because of its central location in the city. We limit the influence of 

extreme values when adjusting data by using log-values of the adjustment monitor’s data.  

3.2.4 Computer Simulation to Generate Incomplete Observations 

We test our adjustment approach with a computer simulation to generate incomplete 

observations of air pollution time-series data. These incomplete data were obtained by 

sampling the Paris, France, time-series data. We analyzed the adjustment method for three 

periods of interest, which included one-week, one-season, and one year; one-season and 

one-year are general periods of interest in epidemiological studies, and one-week was 

chosen to explore the method with a shorter period. The geometric mean was chosen to 

represent the long-term mean for a period of interest, because, the monitoring stations’ data 

were distributed log-normal, and it is a better expected value of the data than the arithmetic 

mean. 

Mobile monitoring that collects incomplete time-series data consists of two 

parameters that detail how sampling is conducted at a single location, which include the 

number of repeated observations (the number of times a monitor is set-up at a location) and 
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the length of each observation. Regular relocation is common in mobile monitoring (Adams 

et al., 2012; Kanaroglou et al., 2013). Our computer simulation generated the incomplete 

observations varying those two parameters. We first stipulated that the total number of 

sampling hours (total sample hours) be less than one-third of the total hours in the period 

of interest, which ensures that the monitor would be able to observe three locations during 

the period of interest. For the one-week simulation, samples lengths included 1, 2, 4, 8, 16, 

and 32 hours. For the one-season (2,184 hours) simulation, sample lengths included 

additional sample lengths of 64, 128, 256 and 512 hours. The one-year (8,784 hours) 

simulation included all the sample lengths used for one-week and one-season with the 

addition of 1,024 and 2,048 hours. Sample counts began at one and were doubled until the 

total number of hours sampled would be greater than one-third of the period of interest.  

The process of the computer simulation for the selection of incomplete datasets follows: 

(1) Define the simulation parameters: 

a. Sample Length (SL) 

b. Sample Count (SC) 

c. Period of Interest (POI) 

(2) Randomly choose a time-period equal to the length of the POI. For the one-year 

simulation, this step is skipped as one-year cannot be varied. The one-week and 

one-season periods of interest are selected by a time-period with the correct 

number of continuous hours, in that, they could begin at any hour within the 

year with sufficient hours remaining. 

(3) Choose one monitor at random and select data for the time-period, excluding 

the Paris Centre monitor. 
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(4) Calculate the long-term mean from the entire dataset obtained in 3.   

(5) Select SC samples of SL length without repetition from the dataset obtained in 

step 3 to generate the incomplete sample. 

(6) Apply the adjustment method to the incomplete sample.  

(7) Determine the percent error in estimating the long-term mean for both the 

adjusted and unadjusted incomplete sample. 

For each combination of sample length, sample count, and period of interest, we 

repeated the simulation 50,000 times. 

3.2.5 Statistical Analysis 

We determined if the adjustment method reduced classical error using statistical 

analysis. The statistical significance comparisons were conducted with the student’s t-test 

comparing the adjusted error and unadjusted error calculated for each of the 50,000 

simulations. This was conducted for each combination of the period of interest, sample 

length, and sample count; α = 0.05. Air pollution monitoring data and the error data were 

distributed log-normal; appropriate transformations were used to satisfy the assumptions of 

the statistical tests. Throughout the results, we refer to the percent error in calculating the 

long-term mean concentration from the unadjusted incomplete dataset or the adjusted 

incomplete dataset as the unadjusted error and adjusted error, respectively. All statistical 

analysis and simulations were conducted in R (R Core Team, 2013). 
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3.3 Results 

3.3.1 Monitor Correlation 

 The minimum correlation between any monitor with the Paris Centre 

monitor was r = 0.7, with a maximum of r = 0.91, and a mean r = 0.83 (s.d. = 0.05). Table 

3.1 presents the pairwise correlations between all monitors with the adjustment monitor. It 

also includes the Euclidean distance between each monitor and the adjustment monitor, and 

each monitor's minimum, maximum, and geometric mean air pollution concentrations.  

A linear regression model with the dependent variable of correlation between each 

monitor and the adjustment monitor, using the predictor variables of (1) distance between 

the monitors and (2) dummy variables for each of the land-use types, identified only one 

significant variable, which was rural land use; rural monitors’ correlation with the Paris 

Centre monitor were significantly lower (p < 0.05) than the other monitors. The distance 

between any monitor to the Paris Centre monitor was not a significant factor in the linear 

regression model. Further analysis excluded the rural monitors because of their 

significantly lower correlations to the Paris Centre monitor, and research suggests that rural 

and urban ambient air pollution should be examined separately because of different causal 

factors and resulting air pollution conditions (Pedersen et al., 2013). 

The one-week period of interest simulations demonstrated, for all combinations of 

sample lengths and counts, significantly reduced the classical error for calculating the long-

term mean from incomplete datasets. Table 3.2 presents the unadjusted classical error and 

the amount of reduction in the classical error by applying the adjustment method.  
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Table 3.1 Descriptive statistics of Paris’ air pollution monitors.  Correlation and distance 

to the Paris Central Monitor, the monitor’s land-use type, and the minimum, maximum 

and geometric mean values for their time-series of data. 

  Distance to 

Central Paris 

Monitor (m) 

 Concentration 

 Pearson’s r Type Min Max 

Geo- 

Mean 

PA18 0.91** 3,611 Urban 1 166 21.7 

VITRY 0.88** 9,437 Urban 1 172 21.5 

ISSY 0.88** 7,326 Urban 1 128 20.4 

OPERA 0.87** 1,851 Transportation 1 282 29.7 

DEF 0.87** 8,984 Urban 0 172 21.9 

BASCH 0.87** 3,972 Transportation 4 154 35.8 

NOGENT 0.86** 9,968 Urban 0 108 17.9 

GON 0.86** 16,609 Urban 0 132 21 

GEN 0.86** 8,880 Peri-Urban 0 180 21.5 

BOB 0.86** 8,850 Urban 1 144 20.7 

TREMB 0.85** 19,528 Peri-Urban 2 122 21.1 

HAUS 0.84** 2,229 Transportation 0 165 28.9 

LOGNES 0.83** 20,782 Urban 1 134 19.3 

ELYS 0.83** 3,072 Transportation 3 174 35.4 

CERGY 0.83** 30,790 Urban 0 126 20.1 

RN2 0.82** 5,496 Transportation 3 220 35.6 

RN6 0.8** 43,046 Transportation 0 245 26.6 

AUT 0.8** 7,316 Transportation 6 423 43.2 

RUR.O 0.79** 49,491 Rural 1 101 18.5 

RUR.SE 0.76** 60,163 Rural 0 105 16.8 

RUR.NO 0.74** 42,115 Rural 0 95 13.9 

RUR_S 0.73** 55,823 Rural 1 107 17.3 

A1 0.7** 7,236 Transportation 7 282 49.4 

PA04C N/A 0 Urban 2 154 23.7 

p < 0.01 **     
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The one-season and one-year periods of interests’ statistical evaluations identified 

that the adjustment method did not always significantly reduce the mean, in some cases 

additional error was introduced. Results for the one-season period of interest are found in 

Table 3.3, and the one-year results are presented in Table 3.4. 

Table 3.2 Error results from the computer simulation for the 

one-week period of interest. The classical error when 

estimating the long-term mean from the unadjusted incomplete 

dataset, and the reduction in classical error from the adjustment 

method is included in parenthesis. All reductions were 

statistically significant (p < .05). 

S
am

p
le

 C
o
u
n
t 

 Sample Length 

 1 2 4 8 16 32 

1 
24.76 

(7.77) 

24.22 

(8.21) 

23.29 

(8.93) 

21.14 

(8.54) 

18.64 

(8.02) 

15.25 

(6.07) 

2 
18.76 

(5.36) 

18.29 

(5.7) 

17.28 

(5.92) 

15.3 

(5.15) 

12.55 

(3.84) 
 

4 
15.9 

(4.72) 

15.19 

(4.72) 

13.83 

(4.28) 

11.68 

(3.07) 
  

8 
16.63 

(5.95) 

15.14 

(5.53) 

12.65 

(3.92) 
   

16 
17.45 

(7.24) 

14.61 

(5.78) 
    

32 
15.69 

(6.54) 
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Table 3.3  Error results from the computer simulation for the one-season period of 

interest. The classical error for estimating the long-term mean from the unadjusted 

incomplete dataset is presented, and the reduction in classical error from the adjustment 

method is included in parenthesis. Cells with grey backgrounds are not statistically 

significantly different, and cells with black backgrounds are when the adjustment method 

significantly increased the error. 

S
am

p
le

 C
o

u
n

t 

Sample Length 

 1 2 4 8 16 32 64 128 256 512 

1 
66 

(17) 

64 

(18) 

63 

(20) 

60 

(20) 

55 

(19) 

51 

(17) 

45 

(12) 

37 

(6) 

31 

(2) 
21 

(-4) 

2 
50 

(10) 

49 

(11) 

47 

(11) 

44 

(10) 

41 

(9) 

38 

(6) 

32 

(2) 
26 

(-2) 

19 

(-6) 
 

4 
39 

(5) 

39 

(5) 

37 

(5) 

35 

(5) 

32 

(2) 

28* 

(0) 
23 

(-4) 

17 

(-6) 
  

8 
38 

(6) 

37 

(6) 

36 

(5) 

32 

(3) 

27* 

(0) 
23 

(-3) 

16 

(-6) 
   

16 
42 

(11) 

40 

(9) 

36 

(7) 

31 

(2) 
25 

(-1) 

17 

(-5) 
    

32 
44 

(13) 

39 

(9) 

33 

(4) 

27* 

(0) 
17 

(-5) 
     

64 
41 

(11) 

34 

(5) 

27* 

(1) 
18 

(-5) 
      

128 
34 

(5) 

28 

(1) 
18 

(-5) 
       

256 
28 

(1) 
18 

(-5) 
        

512 
18 

(-5) 
         

 p > 0.05* 
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Table 3.4 Error results from the computer simulation for the one-year period of interest. The 

classical error for estimating the long-term mean from the unadjusted incomplete dataset is 

presented, and the reduction in classical error from the adjustment method is included in 

parenthesis. Cells with grey backgrounds are not statistically significantly different, and cells 

with black backgrounds are when the adjustment method significantly increased the error. 

S
am

p
le

 C
o

u
n

t 

 Sample Length 

 1 2 4 8 16 32 64 128 256 512 1024 2048 

1 
333 

(61) 

332 

(67) 

340 

(71) 

311 

(70) 

309 

(74) 

285 

(63) 

270 

(50) 

235 

(31) 

210 

(24) 

160* 

(-5) 

124* 

(-5) 

87 

(-7) 

2 
260 

(32) 

255 

(33) 

252 

(38) 

251 

(40) 

229 

(32) 

214 

(26) 

196 

(15) 

170* 

(-2) 

136 

(-15) 

96 

(-22) 

69 

(-17)  

4 
215 

(31) 

210 

(33) 

211 

(36) 

203 

(35) 

193 

(29) 

175 

(21) 

154 

(10) 

121* 

(-6) 

92 

(-23) 

55 

(-24)   

8 
243 

(104) 

235 

(103) 

228 

(101) 

230 

(99) 

216 

(91) 

179 

(76) 

150 

(49) 

111* 

(5) 

62 

(-18)    

16 
306 

(191) 

289 

(175) 

269 

(162) 

273 

(154) 

218 

(127) 

179 

(89) 

136 

(26) 

67 

(-13)     

32 
303 

(196) 

296 

(192) 

286 

(163) 

225 

(134) 

202 

(104) 

151 

(34) 

67 

(-12)      

64 
314 

(206) 

298 

(173) 

231 

(138) 

201 

(103) 

154 

(38) 

70 

(-9)       

128 
306 

(183) 

235 

(139) 

196 

(92) 

159 

(38) 

71 

(4)        

256 
230 

(135) 

192 

(85) 

161 

(38) 

73 

(5)         

512 
194 

(86) 

160 

(38) 

70* 

(2)          

1024 
159 

(36) 

69* 

(-1)           

2048 
69* 

(-2)            

p > 0.05* 

 

3.4 Discussion 

A city’s diverse urban structure and local meteorology create spatially varying air 

pollution concentrations, which is one causal factor for different levels of ambient air 

pollution exposure across the population. Another factor is a person’s movement 

throughout the city in a day. This issue of spatial variability has been known for a while, 

and that research concluded that a single monitor cannot represent an entire city (Goldstein 
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& Landovitz 1977a; Goldstein & Landovitz 1977b). Currently, many monitoring locations 

are established in a city to capture the variability of air pollution exposure. The air pollution 

data obtained from the Paris, France, monitoring network were spatially variable with 

yearly-mean concentrations ranging from 14 µg/m3 to 50 µg/m3, which allowed us an 

effective study of the adjustment method. We feel these results are generalizable because 

of the similarity in concentration to many of areas, such as Greece (Sfetsos & 

Vlachogiannis 2010; Grivas & Chaloulakou 2006), Italy (Badaloni et al., 2013), Germany 

(Liu et al., 2013), in general Western Europe (Vienneau et al., 2013), Canada (Brook et al., 

1997) and the United States (Samet et al., 2000). 

The Paris, France monitors were, for the most part, temporally correlated, satisfying 

the main requirement of the adjustment method. Four primary land use types exist in this 

monitoring network, which included rural, peri-urban, urban, and transportation; rural 

monitors were significantly lower in their correlation with the Paris Centre monitor. 

Transportation related pollution does not affect these areas significantly compared to urban 

areas, because of the low population and traffic density in rural regions. Our removal of 

these locations aligns to the thought that in epidemiological studies rural and urban areas 

should be assessed independently because of differing air pollution concentrations and 

respiratory health and exposure factors (Pedersen et al., 2013). 

Recently, mobile monitoring technologies have been used to study the variability 

of air pollution in a city (Kanaroglou et al., 2013; Larson et al., 2009). The incomplete 

datasets that are observed with mobile monitoring may introduce classical error; data 

adjustment methods have been applied with the purpose to reduce classical error (Larson 



Ph.D. Thesis – M. Adams; McMaster University – School of Geography and Earth Sciences 

58 

 

et al., 2009; Adams et al., 2012; Kanaroglou et al., 2013; Hoek et al., 2002). We identify in 

our research that many different sampling parameters affect the amount of error for 

incomplete datasets, which include the number of samples obtained, and the length of the 

samples. Every simulation indicated that incomplete time-series datasets exhibit classical 

error, which occurred when either the unadjusted or adjusted observations were used to 

estimate the long-term mean concentration. When we compare a particular combination of 

sample count and sample length across all three periods of interest, the amount of error is 

positively correlated with the length of the period of interest, for example, an incomplete 

observation of two samples of two continuous hours resulted in 18 percent, 49 percent, and 

255 percent average error for the unadjusted data for one-week, one-season, and one-year 

periods of interest respectively. The increased variability in meteorology that occurs with 

a longer period of interest is the probable cause for the increase in classical error; our 

findings are in agreement with the rationale of controlling for seasonality when modelling 

air pollution (Chen et al., 2010; Pandey et al., 2014).  

The total number of sampling hours consists of the sample count multiplied by the 

sample length. When we examine all the combinations of sample count and sample length 

that are a multiple of a particular total number of sampling hours, within a particular period 

of interest, we find that the least error occurs when the sample count and length are in the 

middle of the range of values tested.  If we examine all the combinations that consist of 

thirty-two total sampling hours for the one-week period of interest, the lowest error occurs 

with four samples of eight hours each, the second lowest error occurs with eight samples 

of four hours each, and the highest error occurs with thirty-two samples of one hour each. 
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This result has an implication for the design of monitoring programs that collect incomplete 

time-series data samples, which is that monitoring should occur with a balance between the 

number of observations and the length of each observation. Neither the adjusted or 

unadjusted data deviate from this finding. 

When considering the use of an adjustment method, the total sampling time is 

important. If the total number of hours is a small portion of the period of interest, we find 

the adjustment method beneficial; however, as the portion sampled increases towards one-

third of the period of interest, the utility of the adjustment method diminishes and the 

adjustment method may increase the classical error. Based on our findings the research that 

has incorporated an adjustment method would have benefitted (Larson et al., 2009; Adams 

et al., 2012; Kanaroglou et al., 2013; Hoek et al., 2002). 

3.5 Conclusions 

It is apparent from our results that the optimal method for minimized classical error is 

to obtain the entire time-series with a fixed-location monitor. We understand this is not 

always possible and incomplete datasets may be the only option, to reduce classical error 

with these circumstances, we suggest the following guidelines: 

(A)  The total monitoring time should be equally divided by the number of samples and 

the sample length.  

(B) When less than one-quarter of all possible observations are obtained, it is likely 

useful to employ an adjustment method.  

(C) When possible, an evaluation similar to this study should be conducted on more 

than two monitors’ historical data to provide an estimate of the classical error. 
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(D)  If no data from historic monitoring are available, locate adjustment stations in the 

different primary land uses, e.g. urban and rural. 

The classical error will not be eliminated by following our guidelines; however, it 

should be reduced. Our findings indicate that researchers who are using incomplete datasets 

have challenging decisions for sampling design that extend beyond the choice of locations 

for mobile monitoring.  

3.6 References 

Adams, M. D., De Luca, P. F., Corr, D., & Kanaroglou, P. S. (2012). Mobile Air 

Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005–

2010. Social Indicators Research, 108(2), 351–364. doi:10.1007/s11205-012-

0061-5 

Airparif (2013). Air quality assessment network in the Paris Region. Accessed April 2013 

from: http://www.airparif.asso.fr/_pdf/publications/bilan-2012-anglais.pdf 

Armstrong, BG 1998. Effect of measurement error on epidemiological studies of 

environmental and occupational exposures. Occupational and environmental 

medicine, 55(10), 651–6. 

Badaloni, C., Ranucci, A., Cesaroni, G., Zanini, G., Vienneau, D., Al-Aidrous, F., De 

Hoogh, K., Magnani, C., & Forastiere, F. (2013). Air pollution and childhood 

leukaemia: a nationwide case-control study in Italy. Occupational and 

Environmental Medicine, 70(12), 876–83.  

Brook, J., Dann, T., & Burnett, R. (1997). The relationship among TSP, PM10, PM2.5, 

and inorganic constituents of atmospheric particulate matter at multiple Canadian 

locations. Journal of the Air & Waste Management, 47, 2–19. 

Chen, L., Bai, Z., Kong, S., Han, B., You, Y., Ding, X., Du, S., & Lie, A. (2010). A land 

use regression for predicting NO2 and PM10 concentrations in different seasons 

in Tianjin region, China. Journal of Environmental Sciences, 22(9), 1364–1373.  



Ph.D. Thesis – M. Adams; McMaster University – School of Geography and Earth Sciences 

61 

 

Delmelle, E. M. (2014). Spatial Sampling. In M. M. Fischer & P. Nijkamp (Eds.), 

Handbook of Regional Science (pp. 1385–1399). Berlin, Heidelberg: Springer 

Berlin Heidelberg.  

Ghosh, J. K. C. , Heck, J. E. , Cockburn, M., Su, J., Jerrett, M., & Ritz, B. (2013). 

Prenatal exposure to traffic-related air pollution and risk of early childhood 

cancers. American Journal of Epidemiology, 178(8), pp.1233–9.  

Goldstein, I., & Landovitz, L. (1977a). Analysis of air pollution patterns in New York 

City—I. Can one station represent the large metropolitan area? Atmospheric 

Environment, 11(1), 47–52. doi:10.1016/0004-6981(77)90205-0 

Goldstein, I., & Landovitz, L. (1977b). Analysis of air pollution patterns in New York 

City—II. Can one aerometric station represent the area surrounding it? 

Atmospheric Environment, 11(1), 53–57. doi:10.1016/0004-6981(77)90206-2 

Griffith, D. (2005). Effective geographic sample size in the presence of spatial 

autocorrelation. Annals of the Association of American Geographers, 95(4), 740–

760.  

Grivas, G., & Chaloulakou, A. (2006). Artificial neural network models for prediction of 

PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospheric 

Environment, 40(7), 1216–1229.  

Heid, I. M., Küchenhoff, H., Miles, J., Kreienbrock, L., & Wichmann, H.E. (2004). Two 

dimensions of measurement error: classical and Berkson error in residential radon 

exposure assessment. Journal of Exposure Analysis and Environmental 

Epidemiology, 14(5), 365–77. 

Hoek, G., Krishnan, R. M., Beelan, R., Peters, A., Ostro, B., Brunekreef, B., & Kaufman, 

J. D. (2013). Long-term air pollution exposure and cardio- respiratory mortality: a 

review. Environmental Health, 12(1), 43. 

Hoek, G., Meliefste, K., Cyrys, J., Lewné, M., Bellander, T., Brauer, M., Fischer, P., 

Gehring, U., Heinrich, J., van Vliet, P., & Brunekreef, B. (2002). Spatial 

variability of fine particle concentrations in three European areas. Atmospheric 

Environment, 36(25), 4077–4088. 



Ph.D. Thesis – M. Adams; McMaster University – School of Geography and Earth Sciences 

62 

 

Hutter, H. P., Haluza, D., Piegler, K., Hohenblum, P., Fröhlich, M., Scharf, S., Uhl, M., 

Damberger, B., Tappler, P., Kundi, M., Wallner, P., & Moshammer, H. (2013). 

Semivolatile compounds in schools and their influence on cognitive performance 

of children. International Journal of Occupational Medicine and Environmental 

Health, 26(4).  

Jerrett, M., Arain, A., Kanaroglou, P., Beckerman, B., Potoglou, D., Sahsuvaroglu, T., 

Morrison, J., & Giovis, C. (2005). A review and evaluation of intraurban air 

pollution exposure models. Journal of Exposure Analysis and Environmental 

Epidemiology, 15(2), 185–204. 

Kanaroglou, P., Jerrett, M., Morrison, J., Beckerman, B., Arain, M. A., Gilbert, N. L., & 

Brook, J. R. (2005). Establishing an air pollution monitoring network for intra-

urban population exposure assessment: A location-allocation approach. 

Atmospheric Environment, 39(13), 2399–2409. 

Kanaroglou, P. S., Adams, M. D., De Luca, P. F., Corr, D., & Sohel, N. (2013). 

Estimation of sulfur dioxide air pollution concentrations with a spatial 

autoregressive model. Atmospheric Environment, 79, 421–427. 

doi:10.1016/j.atmosenv.2013.07.014 

Kumar, N. (2009). An Optimal Spatial Sampling Design for Intra-Urban Population 

Exposure Assessment. Atmospheric Environment, 43(5), 1153.  

Larson, T., Henderson, S.B., & Brauer, M. (2009). Mobile monitoring of particle light 

absorption coefficient in an urban area as a basis for land use regression. 

Environmental Science & Technology, 43(13), 4672–8. 

Liu, C., Flexeder, C., Fuertes, E., Cyrys, J., Bauer, C-P., Koletzko, S., Hoffmann, B., von 

Berg, A., & Heinrich, J. (2013). Effects of air pollution on exhaled nitric oxide in 

children: Results from the GINIplus and LISAplus studies. International Journal 

of Hygiene and Environmental Health. DOI: 10.1016/j.ijheh.2013.09.006 

  



Ph.D. Thesis – M. Adams; McMaster University – School of Geography and Earth Sciences 

63 

 

Padula, A. M., Mortimer, K., Hubbard, A., Lurmann, F., Jerrett, M., & Tager, I. B. 

(2012). Exposure to traffic-related air pollution during pregnancy and term low 

birth weight: estimation of causal associations in a semiparametric model. 

American Journal of Epidemiology, 176(9), 815–24.  

Pandey, B., Agrawal, M., & Singh, S. (2014). Assessment of air pollution around coal 

mining area: Emphasizing on spatial distributions, seasonal variations and heavy 

metals, using cluster and principal component analysis. Atmospheric Pollution 

Research, 5. 

Pedersen, M., Siroux, V., Pin, I., Charles, M. A., Forhan, A., Hulin, A., Galineau, J., 

Lepeule, J., Giorgis-Allemand, L., Sunyer, J., Annesi-Maesano, I., & Slama, R. 

(2013). Does consideration of larger study areas yield more accurate estimates of 

air pollution health effects? An illustration of the bias-variance trade-off in air 

pollution epidemiology. Environment International, 60, 23–30. 

R Core Team (2013). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-

project.org/. 

Reggente, M., Mondini, A., Ferri, G., & Mazzolai, B. (2010). The dustbot system: Using 

mobile robots to monitor pollution in pedestrian area. Proc. of NOSE, 23, 273–

278. doi:10.3303/CET1023046 

Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., & Zeger, S. L. (2000). Fine 

particulate air pollution and mortality in 20 US cities, 1987–1994. New England 

Journal of Medicine, 343(24), 1742–1749.  

Sfetsos, A., & Vlachogiannis, D. (2010). A new approach to discovering the causal 

relationship between meteorological patterns and PM10 exceedances. 

Atmospheric Research, 98(2-4), 500–511.  

Vienneau, D., de Hoogh, K., Bechle, M. J., Beelen, R., van Donkelaar, A., Martin, R., 

Millet, D., Hoek, G., & Marshall, J. D. (2013). Western European land use 

regression incorporating satellite- and ground-based measurements of NO2 and 

PM10. Environmental Science & Technology. 47, 13555−13564. 

http://www.r-project.org/
http://www.r-project.org/


Ph.D. Thesis – M. Adams; McMaster University – School of Geography and Earth Sciences 

64 

 

Wallner, P., Kundi, M., Moshammer, H., Piegler, K., Hohenblum, P., Scharf, S., Fröhlich, 

M., Damberger, B., Tappler, P., & Hutter, H-P. (2012). Indoor air in schools and 

lung function of Austrian school children. Journal of Environmental Monitoring, 

14(7), 1976–1982.  

 

 

 

 

 

  



Ph.D. Thesis – M. Adams; McMaster University – School of Geography and Earth Sciences 

65 

 

Chapter 4: Development of real-time air pollution models with neural 

networks in a land use regression framework: Combining mobile and 

stationary air pollution monitoring to better understand the spatial 

variation of air pollution. 

4.1 Introduction 

The City of Hamilton, Ontario, Canada is located at the western tip of Lake Ontario, 

which is a body of water that bridges Canada and the United States of America. Hamilton’s 

economic prosperity relied on its steel industry, which began in the early 20th century. 

Access to Lake Ontario benefitted the industry from low-cost transportation and the use of 

water as the cooling medium. World War II brought an economic boom to Hamilton’s steel 

sector; however, the jolt to the economy resulted in air, water and soil contamination. 

During steel production air pollution is a result of the processing of steel that begins with 

creation of pig iron, which consists of iron ore, coke (residue after the distillation of 

bituminous coal), and limestone. This processing releases criteria air contaminants 

including Nitrogen Oxides, Carbon Monoxide, Sulphur Dioxide, Particulate Matter, and 

Volatile Organic Compounds, which are monitored in Canada under the National Pollutant 

Release Inventory. Currently, Hamilton has a population of 520,000 people, with a 

diversified economy and reduced reliance on the steel industry. Air pollution issues are still 

prevalent in Hamilton but are now due to a diverse set of sources (Adams et al., 2012).  

Nations around the world have established that it is necessary to inform citizens 

about the risks of air pollution in their region. The main tool that is used to provide this 

information is an index of air quality, which at the most basic definition translates a cocktail 

of air pollutants onto a scale that can be interpreted by the public. These air quality indexes 
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(AQI) vary in their approach for translating pollutant concentrations onto the scale. The 

scales are determined by regional policies (Plaia and Ruggieri, 2010). Canada, has 

developed and adopted an Air Quality Health Index (AQHI), which is an 11-point scale 

that is a non-linear combination of particulate matter 2.5 microns or smaller in aerodynamic 

diameter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) (Steib et al., 2008). AQHI values 

in Canada are presented to the public through the national and local news outlets and allow 

citizens to make informed decisions about their activity level for the day based on their 

personal health risk. Users in the high-risk category, such as the elderly, may rely on this 

information to plan their activity for the day. The information the public is presented with 

is single representative values for the entire city where they reside. Unfortunately, these 

representative values do not account for any spatial variation that may occur within the city.  

Urban centres, particularly in North America, have developed with sprawled 

patterns requiring significant computing, they have isolated pockets of industry and 

commercial activity, and sometimes are characterized by highly variable meteorological 

conditions. All of these factors drive space-time variation in urban air pollution (Johnson 

et al., 2010; Tang et al., 2013). Modellers expend significant effort in designing techniques 

for the identification of these factors. Geographic Information System (GIS) tools play a 

prominent role in enhancing efforts in space-time modelling (Briggs, 2006). Data for the 

modelling is commonly provided through a network of monitoring instruments that are 

installed within the region and record concentrations over a time interval that is defined by 

the operator. Optimal location theory can be applied when locating the instruments to 

ensure spatial variability is observed (Ainslie et al., 2009). Epidemiological studies identify 
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that space-time variation must be accounted for to elicit accurate estimates (Ozkaynak et 

al., 2013). It is undeniable that space-time variation will be a focus for the continued 

understanding of air pollution exposure.  

In this paper, we present a model for predicting in real-time spatially resolved air 

quality health index maps. The technique applies neural network models for the spatial 

prediction of air pollutants across Hamilton, Ontario, Canada. The prediction of air quality 

across space is based on a number of data including mobile and stationary air pollution 

monitoring data, meteorological data, land use characteristics, and traffic information. 

These models can improve the health risk information that is provided to the general public 

in a region.  

4.2 Methods 

4.2.1 Study Area 

Hamilton, Ontario, Canada, situated at the western tip of Lake Ontario (43.3oN, 

79.9oW) is Canada’s 9th and Ontario’s 3rd largest city with a population of 520,000 

(Statistics Canada 2012). Between the census years of 2006 and 2011 Hamilton’s 

population increased by 3%. The city is divided into an upper and lower city by a 90-meter 

escarpment. Hamilton has traditionally been an industrial city, focused on steel production. 

Air pollution concerns have led to multiple air pollution studies in Hamilton (Adams et al., 

2012; Jerrett et al., 2001; Kanaroglou et al., 2013; Wallace and Kanaroglou, 2008; Wallace 

et al., 2009). Two air quality monitoring networks operate in Hamilton. The first has four 

monitors near and within Hamilton and is operated by the provincial ministry of the 

environment; the second network has 14 monitors and is operated in partnership with the 
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local industries, focusing on the northern portion of the city. In Figure 4.1, we present a 

map of industrial lands within Hamilton along with the fixed monitors of the provincial 

network, which record the pollutants used in the AQHI. Hamilton was chosen for this study 

due to the variation identified across the city by mobile air pollution monitoring (Adams et 

al., 2012). 

 

Figure 4.1 Hamilton stationary monitor locations and industrial land use. 

4.3 Modelling 

Air pollution health risk is typically presented to the public as individual values for 

a city or region, excluding any spatial variation. In Figure 4.2, we present two air quality 

health index maps for Alberta and British Columbia in Canada, both of which present air 

quality health risk at single geographical points. This approach provides a general overview 

of the air pollution, but it can be more informative if the spatial variation within the cities 

became available. The challenge for many locations is the limited number of monitoring 
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sites that renders spatial interpolation inappropriate. For example, Hamilton has four 

monitoring stations that could be used to determine the AQHI.  

 

Figure 4.2 Air Quality Health Index Maps for Alberta, Canada (Left) and British 

Columbia, Canada (Right) 

Mobile air pollution monitoring technologies allow for a greater spatial coverage of 

a city compared to traditional fixed stations. Their limitation is that the monitoring data do 

not provide a continuous time-series of observations. These discontinuous time-series data 

can become useful with the use of appropriate modelling techniques.  

In this paper, we propose the use of artificial neural network models (neural 

networks) in a land use regression framework to predict the spatial variation in AQHI for 

Hamilton that could be updated in real-time. Land use regression is a spatial interpolation 

modelling technique that makes use of land-use characteristics around air pollution 

observations. These characteristics may include types and amounts of land use within a 

buffer of the monitoring locations, information about roads and road use, and 

meteorological information (Johnson et al., 2010). Typically the dependent variable in such 
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models consists of observations that represent long-term average concentrations at several 

locals within the study area. However, this approach would limit our observations in 

Hamilton to the four stationary monitors. We have extended this approach with neural 

networks to utilize the mobile monitoring data as the dependent variable and predict these 

values with values from co-occurring stationary monitoring for air pollution and 

meteorology, land use characteristics, congestion, road types and amounts. We can use this 

model to predict air pollution concentrations for any location in real-time, with data 

connections to the stationary monitors in the area. Our modelling process is presented in 

Figure 4.3. 

Neural networks are mathematical models that mimic biological neural networks, 

and can be used for modelling complex relationships. In our research, we have applied 

neural networks as an approach to generalize the linear regression model in an attempt to 

capture non-linear relationships. We found that the use of linear regression models with our 

data demonstrated poor performance. For a general discussion on artificial neural networks 

and their design, please refer to Venables & Ripley (2002). 
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Figure 4.3 Air Pollution Modelling Structure 
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Neural networks have been demonstrated as an effective method to forecast air 

pollution concentrations (Barrón-Adame et al., 2012; Solaiman et al., 2009). We specified 

two neural network models, one each for PM2.5 and NO2. A neural network model is often 

described as a black box method, which requires an appropriate technique to ensure the 

model is not over-fit to the data set. Over-fit models are known to exhibit inferior 

predictability when used with data that deviate from the data used to train the models. The 

allowable complexity in the modeled relationships determines the degree of over-fitting. 

The most common approach to ensure the model generalizes well to data that was not used 

during fitting (trained on), is to reserve a portion of the data set for validation purposes; we 

will refer to these as testing data.  

A feedforward neural network was applied, which does not cycle data in the model 

like recurrent neural networks, so there is no memory of the previous state of the network. 

Recurrent neural networks are beneficial for forecasting. We selected the feedforward 

approach because we lacked a continuous series of mobile air pollution data at every 

location over time. The network chosen is a multi-layer perceptron network, which consists 

of multiple layers of computational units (neurons). Each of the neurons in a layer has a 

directed connection to each of the neurons of the adjacent layers. Our network is composed 

of three layers. First is the input layer; each independent variable in the model is represented 

in this layer as a neuron.  Second is the hidden layer, which maps the input values to the 

output layer using weights and logistic functions. The output layer is the dependent 

variable. The structure of the neural network model is presented in Figure 4.4. 



Ph.D. Thesis – M. Adams; McMaster University – School of Geography and Earth Sciences 

73 

 

 

Figure 4.4 Multi-layer perceptron neural network framework. The input layer can be 

considered the independent data, the output layer is the dependent variable, with the 

hidden layer functioning to model the relationship between the two. 

Our model consisted of 78 input neurons, one for each independent variable; one 

output layer neuron (dependent value); and we varied the number of hidden neurons during 

training from 5 up to 25. The activation function in the hidden layer was a logistic function.  

All statistical modelling was conducted in R: A language and environment for 

statistical computing (R Core Team, 2014). The neural network models were fit with 

“Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS”, which is 

a port of the Stuttgart Neural Network Simulator to R (Bergmeir and Benitez, 2012). We 

fit the model with back propagation, which is a supervised learning technique that fits the 

network by iterating through the data and propagating the errors back to the inputs, 
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adjusting the network with the objective of minimizing these errors. During fitting we 

varied the number of hidden layer neurons from 5 to 25, this process utilized the ‘caret’ 

package for R (Kuhn, 2013) and produced a number of potential models for both PM2.5 and 

NO2. To prevent overtraining of the model the maximum training iterations were limited 

to 2,000.  The optimal models were selected based on the minimum RMSE. 

The data consisted of 7,047 and 7,060 observations for PM2.5 and NO2, respectively. 

Twenty percent of the data were retained as testing data to be applied following all fitting 

processes. These data were only used after the model with the lowest RMSE was selected, 

ensuring the model’s prediction ability was based on data it had not seen during the 

supervised training. The coefficient of determination between the testing values predicted 

by the model and their actual values are used to determine the model’s predictive ability.  

4.4 Dependent Variable 

Mobile air pollution sampling campaigns were conducted between 2005 and 2013. 

During the campaigns, air pollution concentrations were recorded to data loggers 

simultaneously with GPS coordinates. Air pollution concentrations were reported by the 

instrumentation as 2-minute rolling averages, derived from one-second observations. We 

purged this data to only retain the first record of every 60-second period to reduce redundant 

observations. With this mobile collection, we recorded data for both particulate matter 2.5 

microns or smaller in aerodynamic diameter (PM2.5) and nitrogen dioxide (NO2). PM2.5 

concentrations were obtained with a Grimm laser optical scanner model 1.1.07 monitor 

with an operation range of 0-6,500 µg/m3 and a precision of 1 µg/m3. NO2 concentrations 

were obtained with a Thermo Scientific Model 42i chemiluminescence monitor, with an 
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operating range of 0 – 1,000 ppb and a precision of 0.4 ppb. The monitors were housed 

within a modified van with an air intake extended up through the roof of the vehicle, 

protected with a rain shield. The air intake is 3 m above ground and pointed in the direction 

of travel. All instruments were properly calibrated prior to mobile monitoring campaigns; 

a full description of mobile monitoring techniques can be found in Wallace et al. (2009). 

This data will be further referred to as the dependent variable. We present the location of 

mobile monitoring campaigns in Figure 4.5. 

 

Figure 4.5 Mobile monitoring locations within the study area. 
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4.5 Independent Variables 

The independent variables were selected for this study based on the predictor 

variables in past land use regression models (Hoek et al., 2008; Ryan and LeMasters, 2007). 

Unlike linear regression models, leaving an independent variable that provides no 

predictive ability in a neural network will not reduce the effectiveness of the model. This 

is because independent variables with no effect on the outcome are given negligible weights 

in the model.  

To identify the ideal set of candidate variables we required both time-series and 

spatially varying data. Our set of predictor variables were diverse and included land use 

information, transportation-related characteristics, air pollution and meteorology; the 

independent variables are presented in Table 4.1. For predictors focused on the spatial 

component, we borrowed from indicators commonly used in land use regression air 

pollution studies. For the time-series component, we obtained data at stationary monitors 

for meteorology and air pollution concentrations. 

Five of the predictor attributes were obtained by a separate regional wind model. 

Wind direction and speed data were obtained for the study area and surrounding region 

from Environment Canada’s National Climate Data and Information Archive (Environment 

Canada, 2012), and the Hamilton Air Monitoring network. Wind measurements were 

recorded with North being 0°. We obtained hourly wind data from 29 monitoring stations; 

on average 18 monitors had available data during monitoring campaigns. Wind data were 

separated into Umet (U) and Vmet (V) components and then each component was interpolated 

with kriging. The U component was calculated as U = -S * sin(D * (π / 180)), and the V 
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component with V = -S * cos(D * (π / 180)), where S was speed and D was the direction 

between 1 and 360 degrees. After interpolation wind direction was determined as: D = 

atan2(-U,-V) * 180 / π. Wind data were coded to four directions: 0 to 89 degrees (NE), 90 

to 179 degrees (SE), 180 to 269 degrees (NW), and 270 to 359 degrees (SW).  The wind 

model is programmed in R: A language and environment for statistical computing (R Core 

Team, 2014). The interpolation applied the automated kriging approach implemented in the 

“automap” package for R (Hiemstra et al. 2008). 

Vehicle emissions generate significant volumes of particulate matter and other 

pollutants. Land-use regression models typically retain a traffic congestion variable as a 

predictor (Hoek et al. 2008). Some common measures include (1) traffic volume, (2) traffic 

intensity, and (3) traffic within buffer distances. We utilized data from INRIX, a Seattle-

based vendor, which provides observed speeds recorded by GPS-enabled vehicles and 

stationary traffic sensors. The data is represented as annual averages every 15 minutes for 

all road links in the study area for 2011. We aggregate the data on each road link by the 

hour and compute congestion severity as a variable in our model similar to Texas 

Transportation Institutes Travel Time Index and INRIX’s Travel Time Tax.  Congestion is 

calculated by dividing average hourly travel time by free-flow travel time. This index 

reflects the extra time it takes to traverse a road segment compared to free-flow for each 

hour of the day.  Using GIS software, we apply a 300 m buffer to the road network and 

intersect the maximum value of congestion severity to a 100 m grid.  The 300-meter buffer 

is chosen because air pollution levels tend to disperse from the roadways to ambient 

background concentrations over a distance of about 300 meters (Pratt et al., 2013). 
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The local and regional background air pollution monitors are operated by the 

Ontario Ministry of the Environment, and we obtained their hourly averaged data for the 

study period from their historic database. The regional background monitor was chosen for 

this study area on their advice. The elevation was obtained from a 10 m DEM, and the land 

use and roadway data were from DMTI Spatial Inc, a commercial GIS data provider.   

4.6 Results 

4.6.1 Mobile and Stationary Monitoring Comparison 

The data obtained by mobile collection for PM2.5 and NO2 both had distributions 

shifted to the right when compared to the stationary monitoring data, which is presented in 

Figure 4.6. The mobile air pollution monitoring data were collected in a range of areas 

within the city, including on-road measurements. The stationary monitoring units are 

located to reduce the direct emissions from vehicles, which is achieved by their location in 

parks or open areas. Both the Hamilton Mountain and Hamilton Downtown monitors are 

located in parks. This variation in the collection sites suggests that this approach of 

combining datasets can provide additional information within the model from the mobile 

data than simply relying on the stationary monitoring units. 
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Table 4.1 Description of model predictor variables. 

Predictor Variable Description 
X- Coordinate X coordinate from the universal transverse Mercator coordinate system 

Y- Coordinate Y coordinate from the universal transverse Mercator coordinate system 

Congestion Congestion index within 300 meters. 

Elevation Elevation at monitored location (mobile) 

Wind Speed Wind Speed from regional wind model. 

 

Industrial Land Use 

Binary indicators: Value of 1, if the mobile observation was located on 

the land use. 

Commercial/Government 

Land Use 

Parks or Open Area Land 

Use 

Residential Land Use 

  

  

Minor Roads (Streets) 
The amount of each road type within circular buffers of 25, 100, 400 and 

1600 meters. 

 

Major Roads (Arterials) 

Highway (Freeway and 

Expressways) 

  

  

Residential 

The amount of each land use within circular buffers of 50, 100, 200 and 

400 meters. 

Commercial 

Parks and Recreation 

Resource and Industrial 

Government and 

Institutional 

Open Area 

  

  

North East Winds 

Binary indicator: Value of 1 if the wind direction was from that direction 

during collection. 

North West Winds 

South West Winds 

South East Winds 

  

  

Background Pollution 

Monitoring 

A monitor southwest of Hamilton, Ontario measuring PM2.5, NO2, NO, 

NOX, & O3. Suitable for the measurement of air pollution from the USA 

due to westerlies. 

  

Local Air Pollution 

Monitors 

Four air pollution monitors located in Hamilton and Burlington, Ontario 

monitoring PM2.5 (4), NO2 (2), NO (1), NOX (1), CO (1), SO2 (1) & O3 

(4). The number monitoring each pollutant are in brackets. 
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Figure 4.6 PM2.5 and NO2 histograms for mobile and stationary monitoring data. Stationary 

data from the downtown Hamilton monitor. 

The PM2.5 mobile data had a Pearson’s r coefficient of 0.36 to the PM2.5 stationary 

data collected in downtown Hamilton. The NO2 mobile data was similar in the strength of 

the correlation to the stationary downtown Hamilton data with a Pearson’s r coefficient of 

0.33.  Comparing both the PM2.5 and NO2 mobile data with the stationary monitoring data 

representing background concentrations from the United States (The Chatham Ontario 

Monitors), the correlation was much stronger for PM2.5 than NO2 at 0.40 and 0.12, 

respectively.  
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4.6.2 Model Fit 

The models were both fit using a boot-strapping approach that varied the number 

of hidden layer neurons, which produced a number of potential models. The optimal 

number of hidden neurons was chosen based on the model that minimized the RMSE for 

the prediction of data that were set aside for each training event. We selected a model with 

eleven hidden neurons for the PM2.5 model and a model with seven hidden neurons for 

NO2.  

Linear regression models allow the modeller to understand the relationship between 

each independent variable and the dependent variable, particularly for the variable’s effect 

and strength by analyzing the standardized coefficients. The weights in a neural network 

model, which map the data to the hidden layer neurons, are partially analogous to the 

coefficients in a regression model. To identify the relative importance of each independent 

variable in the model we have applied a method described by Garson (1991) and then later 

in detail by Goh (1995) to determine the relative importance of each independent variable 

in the models. The technique generalizes all weights for each variable to each hidden 

neuron, which totals 858 and 546 weighted-connections for the PM2.5 and NO2 models 

respectively, into a value that describes the relationship to the response variable. We 

utilized the implementation of Garson’s method that is in the “NeuralNetTools” package 

for R (Beck, 2015).  The relative weight results are presented in Figure 4.7.  

Pearson’s r correlation coefficient was calculated between the two sets of relative 

weights values from both models for the independent variables, which was r = 0.31. The 

natural logarithms of the values were used to approximate normal distributions. A high 
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correlation coefficient would indicate the same variables have high relative importance in 

both models. A lower value indicates that the variables in one model are not important 

variables in the other model. 

 
Figure 4.7 Model variables’ relative weights. Relative weights of the highest twenty 

variables for each of the two models. The relative weights for Nitrogen Dioxide are graphed 

to the left of centre, and the relative weights of the PM2.5 model are graphed to the right of 

centre. All weight values are non-negative. If no bar appears on a side, this indicates the 

variable was not one of the highest twenty variables in the model. 

The particulate matter model performed better than the nitrogen dioxide model for 

predicting the testing data that had been withheld during model training, which is analogous 

to predicting future events. The PM2.5 model performed well for predicting unseen 

conditions with a Pearson’s r of 0.88, a coefficient of determination of 0.78, and an RMSE 
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of 3.5 µg/m3. The NO2
 model performed well, but was not as strong in its predictive ability 

to unseen conditions as the PM2.5 model with a Pearson’s r of 0.59, a coefficient of 

determination of 0.34, and a RMSE of 10 ppb. The model validation fits are presented 

visually in Figure 4.8, which includes plots of the predicted values and the actual values of 

the testing data that was unseen during the model fitting procedure. 

 

Figure 4.8 Model validation data plots. Plots of the actual values and those estimated from 

the model for the testing datasets for both PM2.5 and NO2.  

4.7 Discussion 

Air quality (health) indices are an important tool, providing citizens with the 

knowledge of air pollution risk in their region, which is particularly important for 

vulnerable populations (Chen et al., 2013). However, the current methods of disseminating 

real-time air pollution information are limited, which typically includes point values on a 
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map. These maps are valuable, but can be significantly improved upon by presenting the 

spatial variation of air pollution in the region.  

In our research, we produced two neural network models. Both pollutants that were 

modelled are included in Canada’s air quality health index (Steib et al., 2008). Applying a 

neural network based land use regression approach, we were able to demonstrate effective 

fits to the mobile air pollution data for the purposes of prediction of additional events. A 

direct comparison to other researchers’ models is challenging because our study employed 

a unique collection method compared to past land use regression studies (Hoek et al., 2008; 

Ryan and LeMasters, 2007). As well, we are unique in that our model is focused on 

modelling the individual events as opposed to long-term averages, which leads to a larger 

information content in the data set and a larger variation that must be explained by the 

model. Models of PM2.5 for long-term averages across similarly sized study areas typically 

have similar or poorer model fits with land use regression mapping approaches for long-

term averages compared to what we obtained in this research (Hoek et al., 2008).  When 

modelling long-term average concentrations, it should be expected that the R2 should be 

higher because it has averaged out a lot of the unique information in the dataset. We argue 

that because of the high information content, which is due to our data collection methods 

that the NO2
 model is still of sufficient fit to provide valuable air pollution estimates. 

PM2.5 is a pollutant known to be controlled by local conditions and long-range 

transport of particulate matter (Wang et al., 2015). NO2 is highly linked to vehicular 

sources, which is often identified in land use regression studies (Briggs et al., 2000; D. J. 

Briggs et al., 1997; Gilbert et al., 2005; Stedman et al., 1997). This difference in process 
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scales leads to the improved fit in the PM2.5 model compared to the NO2 model because 

background conditions are easier to incorporate into a model. Ross et al. (2007) modeled 

PM2.5 using a land use regression approach and identified that county emissions played a 

role in their model. Regional air pollution patterns for PM2.5 were drivers in our model, 

which was identified by the Chatham stationary variable ranked high in importance. The 

NO2 was driven by vehicle emissions, which is noted with the high importance of the 

highway variables.  

Seventy-eight variables were generated for inclusion in the neural network models 

and of the top twenty most important variables for each of the models fourteen variables 

were the same. This indicates that similar critical land use characteristics are affecting both 

pollutants throughout Hamilton, Ontario. The sum of the relative weights of the five most 

important variables for the NO2 model was 0.853. The particulate matter model has a much 

reduced relative importance of the top five variables with their relative importance 

summing to 0.306. These two values can be multiplied by their model’s respective R2 to 

demonstrate that the top five variables of the models accounted for the explanation of 29% 

and 23% of the modeled variation for NO2
 and PM2.5 respectively.  

Examining Figure 4.8, we find that the NO2 model has a reduced ability to predict 

the extreme events in the data set, particularly the values of 40 ppb and above. Our sampling 

approach of including on-road measurements in locations across the city resulted in 

elevated concentrations due to traffic congestion. These highly localized events are 

challenging to model because they are unique and not very generalizable, which is similar 
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to the events that are monitored in vehicle chase air pollution monitoring studies 

(Westerdahl et al., 2005).  

Our model is capable of estimating real-time air pollution across Hamilton; 

however, its utility is not limited to modelling future pollution concentrations. Many land 

use regression models are developed to assign air pollution exposure in epidemiological 

studies. It has been noted that exposure modelling should incorporate human time-activity 

patterns, which cannot be incorporated into many current models (Baxter et al., 2013b).  

Because our models predict on an hourly basis, with time-activity patterns, we could assign 

the correct hourly exposure to individuals in the study population. 

We recognize that the structures of cities are always evolving. For example, land 

uses changes occur because of development, transportation networks grow and shrink, and 

the emissions from vehicles on these networks vary over time. The lifespan of the model 

has not been evaluated in this work, but we do identify that as we move forward in time 

without additional updates to this model it will eventually be of little utility. To maximize 

the models’ lifespans we suggest for prediction locations to use the most recent land use 

data, the mobile monitoring campaigns should continue, and the model should be 

continually recalibrated with additional information. We applied data from 2005 through 

2013, which produced a model fit with eight years of monitoring. We have yet to explore 

if this period is optimal for the model, or if the period could be lengthened with additional 

data or should be reduced to account for any non-stationary processes that are occurring.   
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4.8 Conclusion 

Air pollution is a concern in Ontario particularly during elevated episodes that tend 

to occur within the summer months. This research provides the foundation for the 

development of a spatially resolved AQHI for Hamilton, Ontario, Canada. The models are 

well fit with the provided predictor data and can model air pollution concentrations in real-

time when real-time connections are established to the stationary monitoring units in the 

region.  

This technique of applying neural network models in a land use regression 

framework is an extension of land use regression modelling but allows for complex non-

linear relationships that may be present in the data. The neural network approach has 

allowed for the complex space-time relationships of air pollution to be captured 

sufficiently, and our findings may suggest that neural networks will serve as an improved 

modelling approach for modelling with land use regression. Neural network models are 

often considered deficient because of the  potential “black-box” issues, but with the 

utilization of the techniques described by Garson (1991) and Goh (1995) for identifying the 

relative weights of the input variables, this issue is partially overcome.  
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Chapter 5: Are children living in lower socioeconomic status 

neighbourhoods exposed to higher doses of particulate matter air 

pollution during their trip to school, at home or at school?  

5.1 Introduction 

Air pollution is associated with many negative health effects in children that include 

reduced lung function (Brunekreef et al., 1997; Gauderman, 2000; Wallner et al., 2012), 

lung development (Gauderman et al., 2004), cognitive performance (Hutter et al., 2013; 

Suglia et al., 2008) and function (Freire et al., 2010). See Wong et al. (2003) for a meta-

analysis of children’s’ health benefits that can be attributed to reduced air pollution 

exposure. A large body of research also indicates a relationship between air pollution and 

asthma induced hospital admissions (Wong et al., 2003).  

Most research examining the effects of air pollution on health are observational 

studies that use ambient air pollution concentrations as the exposure metric (Heck et al., 

2013; Jerrett et al., 2007; Moridi et al., 2013; Urman et al., 2013). Air pollution exposure 

during travel is variable and can be affected by many factors, for example, ambient air 

pollution exposure can change because of transportation mode choice (Panis et al., 2010; 

Zuurbier et al., 2010), and inside of a vehicle air pollution concentrations may be greater 

(Gulliver and Briggs, 2004) or less than (Briggs et al., 2008) the surrounding ambient 

conditions. Recent research suggests that exposure analysis should include activity patterns 

when estimating exposure to improve the estimation of the effect (Baxter et al., 2013a; 

Buonanno et al., 2013).  

Ambient conditions are a suitable exposure metric if the population has the same 

activity levels; however, changing the exposure metric to dose instead of ambient 
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conditions allows for a more refined exposure metric. The dose exposure is largely based 

on the volume of air consumed and the ambient conditions, which can account for changes 

in respiration rate due to changes in activity level. As a person increases their intake of air, 

they will have increased potential exposure to pollution. This is particularly important when 

comparing air pollution exposure between active transportation modes, because when a 

person engages in strenuous activity their respiration rate increases to obtain more oxygen, 

which results in higher doses of air pollution as they inhale a higher amount of total air.  

In the Greater Toronto and Hamilton Area (GTHA) more than half of the car trips 

taking students to school are single purpose trips (Metrolinx, 2010), which could be avoided 

with students using active transportation. Many programs have been developed to 

encourage students to use active transportation to travel to school in both the GTHA and 

most of North America. These programs have been developed to increase children’s 

activity to reduce obesity.  These programs as timely  in the GTHA, as one-quarter of 

parents, who drove their children to school and were surveyed agreed that the distance was 

suitable for walking (Metrolinx, 2010). While the push to return students active modes of 

transportation has potential benefits; it is common for parents to have concerns for their 

children to walk to school due to potential traffic incidents and stranger danger. 

Lower income families have fewer options for housing compared to higher incomes 

households because of financial burdens. It has been demonstrated that low-cost housing 

may be located in the less desirable regions, for example this housing may be located in the 

area of higher than average air pollution concentrations (Harrison and Rubinfeld, 1978; 

Nelson, 1978; Smith and Huang, 1993; Zheng et al., 2014). The social justice literature has 
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looked at this issue to determine if an effect is occurring where people of low-income 

households are exposed to higher levels of air pollution. This particular issue in Hamilton, 

Ontario, Canada was first identified as having an effect where low-income households were 

exposed to greater air pollution concentrations than higher income residents with exposure 

data from 1984 – 94 (Jerrett et al., 2001). A subsequent analysis in the city identified that 

higher early mortality was occurring in areas Hamilton with lower socioeconomic 

conditions (Jerrett et al., 2004). The relationship between socioeconomic status and 

environmental pollutants is a complex relationship when examined across different regions, 

in a Spanish study examining the exposure to environmental pollutants during childbirth 

there was no clear evidence of lower socioeconomic groups demonstrating a higher 

exposure (Vrijheid et al., 2012). 

In our paper, we determine if students living in lower-income or higher density 

neighbourhoods of Hamilton, Ontario, Canada are faced with higher air pollution 

exposures, calculated as the dose during their trip to and from school if they utilize active 

transportation. This non-discretionary trip occurs twice daily for students between 

September and June (inclusive). We compare the results of two modes of active 

transportation, walking and cycling to identify if either mode results in a lower dose of air 

pollution. Household and school ambient concentrations are compared; as well if students 

from lower-income neighbourhoods have higher ambient school or home concentrations.  
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5.2 Methods 

5.2.1 Study Area 

Hamilton, Ontario, Canada, is an area with a long history of research on air pollution  

(Adams et al., 2012; Arain et al., 2007, 2009; Buzzelli et al., 2003; Jerrett et al., 2004, 2001; 

Kanaroglou et al., 2013; Sahsuvaroglu et al., 2006; Wallace and Kanaroglou, 2009, 2008; 

Wallace et al., 2009). With a population of about 520,000 (Statistics Canada, 2012), the 

city is diverse in land use with a major industrial complex along the city’s northern edge, a 

downtown core, subdivision surrounding the core and rural regions at the extremities. Two 

inter-city freeways pass through the city, one along the north end of the city and one along 

the western side of the city. Two intra-city freeways complete the freeway network, with 

one freeway in the city’s southern region and another in the west. The city is separated by 

an escarpment, which is a significant factor in accessibility as active transportation is 

limited to long and steep staircases. The escarpment is also responsible for variable air 

pollution conditions; for example elevated concentrations often occur in the lower city due 

to temperature inversions that are avoided in the upper city (Wallace et al., 2010). Hamilton 

has significant spatial variation in socio-economic factors, with detrimental health 

outcomes (Patrick F. DeLuca et al., 2012). The study area is presented in with the 2011 

population density included in Figure 5.1. 
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Figure 5.1 Hamilton, Ontario with 2011 population density 

 

5.2.2 Home and School Shortest Path Analysis 

The routes to school were provided by Bennet and Yiannakoulias (2015). We 

provide an overview of their shortest path analysis in this paper. It has been suggested that 

the routes children take between their home and school is determined by the shortest path 
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(Cooper et al., 2010; Hill, 1984); however, there are some contradictory findings that 

indicate that children may not take the shortest path to school and that the built environment 

can affect the route choice (Buliung et al., 2013). For our analysis, we utilized routes to 

schools that are based on the shortest path. We accept any potential conflicts until a better 

understanding of Hamilton’s students’ routes is defined. The seventy-three primary schools 

(destinations) involved in the study were part of the Hamilton Wentworth District School 

Board, where 80% of children reside within the catchment area of their primary school 

(Hamilton Wentworth District School Board, 2011). During route generation all potential 

routes ensured students were taking routes to the school within the catchment area. Some 

students will travel to a school outside of their catchment area because either a parent or 

the school board chooses to send that student to a different school. In the region, active 

transportation is only likely for students living within 1.6 km of their school, beyond this 

distance students are provided transportation by the school board. School catchment 

boundaries were obtained from the Hamilton Wentworth District School Board (Hamilton 

Wentworth District School Board, 2012).  

Origins were defined using a parcel land database that identified the lot of each 

house in the city (City of Hamilton, 2010). Parcels were randomly selected within each 

dissemination area based on the number of children (Statistics Canada, 2008).  For 

example, if 150 school aged children were identified as living within a dissemination area, 

150 houses were selected as origins. 

The routes between the origins (land parcels) and the destinations (primary schools 

in the Hamilton Wentworth District School Board) were derived along a pedestrian 
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network, which included additional route options from the standard vehicular network; 

particularly, green-pathways that include parks, schoolyards, walking trails and other 

corridors. The base network included all the road links in the study area (City of Hamilton, 

2010), which was supplemented with green-pathway data (City of Hamilton, 2005) and 

manual edits using on-screen digitizing of short-cuts and unmarked pedestrian 

infrastructure with satellite imagery (Google Inc., 2013). Road links that prohibit walking 

were removed, which included expressways and major highways. 

5.2.3 Air Pollution Model 

Particulate matter 2.5 microns (PM2.5) concentrations were measured with mobile 

air pollution monitoring campaigns using a roving scan approach, see Wallace et al., (2009) 

for a detailed description of the technique. In general, the roving scan approach uses a van 

with air pollution monitoring units mounted inside, and an air intake mounted on top of the 

vehicle pointing in the direction of travel. The vehicle moves throughout the city to collect 

air pollution concentrations in a number of different locations. Data collection occurred 

between 2005 and 2013 covering the city with a high-spatial resolution, scans were 

conducted along expressways, major and minor roads, in the downtown core and the 

surround suburbs, and the city’s rural regions. Previous analysis of these data for SO2 

concentrations that were co-collected with the PM2.5 data demonstrated spatial variation in 

Hamilton (Kanaroglou et al., 2013). In the SO2 study, data were used in a land use 

regression model to predict the air pollution concentrations across Hamilton. Land use 

regression, models air pollution concentrations using information on surrounding land use 

as independent variables, which may include land use types, population densities, amount 
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of nearby road, and surrounding traffic density with a regression model. These models may 

be used to estimate exposure for long or short term analyses (Dons et al., 2014). We are 

modelling short-term exposures with the use of artificial neural network models instead of 

linear regression models for additional modelling flexibility. A multilayer perception feed-

forward neural network model, which is a fully connected model, was trained with the back 

propagation learning function. Model processing was done in R (R Core Team, 2014), and 

the neural network models were fit using the Stuttgart Neural Network Simulator ported to 

R (Bergmeir and Benitez, 2012). A detailed description of an early version of the model is 

available in Adams et al. (2013). 

Our predictor data included: (1) Land use data, calculated as the area of each land 

use within circular buffers of 50, 100, 200, and 400 meters centered on the location of air 

pollution monitoring. The land use classes included residential land, commercial, parks and 

recreation, resource and industrial, open area, and government and institutional. (2) Using 

a set of local wind monitors situated in Hamilton we coded a set of dummy variables for 

the four quadrants of direction. (3) A set of indicator variables for each of the land use types 

were included, a value of one if the monitoring occurred in that land use type, zero 

otherwise. (4) The x and y coordinate values from the Universal Transverse Mercator 

coordinate system. (5) The total length of each freeways and highways, major roads, and 

minor roads within 25, 50, 100, 200, 400, 800, and 1600 meter buffers. (6) Air pollution 

concentrations at the time of mobile monitoring observed at five different pollution 

monitors operated by the Ontario Ministry of Environment, presented in Table 5.1. 
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Table 5.1 Pollutants measured at stationary monitors. 

Monitor (ID) PM2.5 O3 NO NO2 NOX SO2 CO 

Burlington Y Y  Y    

Chatham Y Y Y Y Y   

Hamilton Mountain  Y Y      

Hamilton West  Y Y      

Hamilton Downtown Y Y Y Y Y Y Y 

 

The validation of the model was determined by withholding 15% of the data, which 

was the most recently collected 15% of the data. This approach should reduce the 

correlation in the training and validation datasets and help confirm a stationary process. 

These data were predicted with the model, and the R2 was calculated to estimate prediction 

ability, R2 = 0.78. The model was applied to predict the air pollution concentrations at 

locations across the children’s routes during every day of the school year in 2013.  

5.2.4 Dose Exposure 

In this work, we calculate the exposure for two modes of active transportation, 

which includes walking and cycling. The exposure metric is the total dose of air pollution 

that the child is exposed to during their trips to and from school. Air pollution dose is largely 

dependent on the ambient concentration and the inhalation rate of the person, which is often 

measured by the number of litres of air per minute and known as the minute ventilation rate 

(MVR).  

We derived minute ventilation rates from the literature based on metabolic 

equivalent of task (MET) for both cycling and walking, which is a measure of the energy 

cost of physical activity and is strongly associated with ventilation rates. The EPA’s Child-

Specific Exposure Factors Handbook (United States Environmental Protection Agency, 
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2008) provides minute ventilation rates based on MET. To obtain these values we applied 

the following steps: 

1. Determine the MET for both activates, cycling and walking.  

a. Arvidsson et al. (2007) included a review of children’s activities and the 

associated MET values, along with their own the determination of MET 

values for many activities. We use the rate of 12 km/hr for the cycling speed 

and 4 km/hr for walking speeds, which have corresponding MET rates of 

5.9 and 3.3 respectively in children (Arvidsson et al., 2007).  

2. Translate the MET values to MVR from the EPA’s Child-Specific Exposure Factors 

Handbook, which provides percentile data of MVR for different ranges of METs 

values. Both of the actives fell within the same range of MET values, which was 3 

to 6. To obtain these values we: 

a. Determined the percentile of each of our MET values between 3 and 6.  

b. Utilized the percentile of the MET values along with the MVR data to 

extract the MVR value at the matching percentile provided by the EPA. For 

example, walking with walking have a percentile value of 0.1, we determine 

what the MVR value was at the 0.1 percentile to use as the MVR rate. 

The MVR rates and associated velocities applied are included in Table 5.2. 
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Table 5.2  MET and MVR rates for both modes with velocity. 

Activity METs 
MVR 

 (m3 / minute) 

Velocity 

(m/min) 

Cycling 12 km/hr 5.9 0.035 200 

Walk 4 km/hr 3.3 0.017 66 

5.2.5  Exposure Assignment 

The ambient air pollution concentrations along the routes to school vary as the 

student travels, which can be caused by many factors including their distance from major 

roads and changing land use conditions. The route data to and from schools consisted of a 

set nodes connected with links (lines). Nodes were placed during route assignment when 

direction changed and the lines indicated the distance travelled between nodes, an example 

is presented in Figure 5.2 panel A. Our air pollution model is designed to predict 

concentrations at individual locations, e.g. an x-y location and not along a line.  

To assign air pollution concentrations along the routes, we split the route into 

sections. When the distance between the start and end nodes of a section was less than 10 

meters, it was kept intact and assigned a section number based on the id of its start node. If 

the distance was greater than 10 meters from the start to end node of a potential section, we 

added additional nodes every 10 meters until there were less than 10 meters to the end node. 

This process is exemplified in Figure 5.2 panel B. Sections were assigned the air pollution 

concentration calculated from the model at section’s start node. The dose calculation for 

routes is presented in equation 3. 

 
𝐷𝑟𝑚 =  ∑

𝑆𝑖

𝑉𝑚
∗ 𝑀𝑉𝑅𝑚 ∗ 𝐶𝑖

𝑛

𝑖=1

 
(3)  
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 Where, Drm is the dose for route r of mode m in micrograms, m is either walking 

or cycling, Si is the length of the section of path counted from i =1 to the number of sections 

in meters, Vm is the velocity of mode m in meters per second, MVR is the minute ventilation 

rate of mode m in meters cubed per minute, and Ci is the air pollution concentration 

assigned to Si in micrograms per meter cubed. 

 

Figure 5.2 An example of a route to school and additional nodes.  (A) Route to school 

example. (B) An example of additional nodes placed at ten-meter intervals along a route 

for air pollution concentration estimates. 

5.2.6 Statistical Analysis 

In our analysis, descriptive statistics were used to describe pollution concentrations 

and doses, and socioeconomic status variables. The dose exposure data were not 

transformed because they approximated normal distributions. In our analysis, we randomly 

selected 250 routes from the set of generated routes to assign air pollution exposure. These 

were one-way routes from the home to the school for the morning estimates and then from 

school to home for the afternoon journey. For the starting location of each route (the child’s 
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home), we extracted the neighbourhoods’ median and mean income from the 2011 National 

Household Survey conducted by Statistics Canada. Data were available at the 

Dissemination Area level of geography, which are regions consisting of 400 – 700 people 

(Statistics Canada, 2015). Univariate and multivariate linear regression models were 

applied to determine if lower SES conditions were related to higher doses during the trips 

to or from school or the ambient conditions at home or school. Following an analysis of the 

total population, we stratified the population into two groups based on the mean income of 

their neighbourhoods. The two groups were composed of: 1) students with mean incomes 

less than the 20th percentile, and 2) students with mean incomes higher than the 80th 

percentile. These two groups were compared based on their distances travelled, household 

and school exposures, and dose exposures with t-tests. All statistical analysis was 

conducted in R (R Core Team, 2014)  

5.3 Results 

The morning average ambient air pollution concentrations at the students’ 

households ranged between 10.4 and 27.1 µg/m3 with a mean of 15.7 µg/m3. The afternoon 

demonstrated a larger variation with a range of 9.3 – 31.2 µg/m3 with a similar mean of 

15.6 µg/m3. We applied a paired student’s t-test to determine if there was a significant 

difference between the households’ ambient conditions in the morning or the afternoon, the 

test indicated no significant difference, t = 1.1, df = 249, p = 0.27. These household ambient 

conditions are presented spatially across Hamilton in Figure 5.3 panel A for the morning 

and panel B for the afternoon.  
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Ambient conditions for students’ schools during the morning ranged from 13.3 – 

27.6 and from 11.8 – 32.3 µg/m3 during the afternoon with a morning mean of 18.3 µg/m3 

and an afternoon mean of 19.3 µg/m3. A paired student’s t-test indicated a significant 

difference between the two sets of the morning and afternoon school ambient air pollution 

concentrations (t = -8.8, df = 249, p < 0.001). These values are presented spatially across 

Hamilton in Figure 5.3 panel C for the morning and panel D for the afternoon. 

The mean household income varied between $15,220 (Canadian Dollars) and 

$80,920 with a household average income of $37,340. These values are presented spatially 

across Hamilton in Figure 5.3 panel E. The median household income varied between 

$6,699 and $60,630 with an average of $30,830. These values are presented spatially across 

Hamilton in Figure 5.3 panel F. 

We compared the ambient concentrations of students’ households and their 

respective schools’ with a paired t-test. Both the morning and afternoon school 

concentrations were significant higher (p < 0.001) than the household concentrations. 

The population density of student household locations varied between 62 and 

34,450 people per square kilometer, with a mean of 4,068 people per square kilometer in 

the City of Hamilton. The population density is presented in Figure 5.1. 
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Figure 5.3 Students’ morning home air pollution ambient conditions (A), afternoon 

home air pollution ambient conditions (B), morning school air pollution ambient 

conditions (C), afternoon school air pollution ambient conditions (D), household mean 

income (E), and median household income (F). 
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Air pollution doses for cycling to school varied in the mornings between 0.085 and 

5.67 µg with a mean dose of 2.17 µg. The afternoon doses’ distribution was significantly 

different than the morning doses’ distribution, identified with a paired t-test (t = -2.3667, 

df = 247, p-value = 0.018), the mean of the afternoon doses was higher at 2.19 µg with a 

range of 0.097 to 5.61 µg.  

For walking trips between home and school, doses ranged in the mornings between 

0.126 and 8.327 µg with a mean dose of 3.19 µg. The afternoon doses’ distribution was 

significantly different than the morning doses’ distribution identified with a paired t-test (t 

= -2.3667, df = 247, p-value = 0.018), the mean of the afternoon doses was 3.23 µg with a 

range of 0.14 to 8.26 µg.  

Linear regression models were applied to determine if a relationship occurred 

between the morning and afternoon dose exposure of PM2.5 on the trips to and from school 

and the socioeconomic conditions of the students’ neighbourhoods. First, we fit univariate 

regressions of cycling dose exposure, walking dose exposure, school exposure and 

household exposure for both the morning and afternoon value with each socioeconomic 

indicator as independent variables. The results of the morning are presented in Table 5.3 

and the afternoon are presented in Table 5.4.  

Multivariate linear regression models were fit with the independent variables that 

demonstrated a significant relationship to either cycling exposure or walking exposure, 

which were the exposure outcomes with multiple significant univariate models. The four 

multivariate models that were combinations of population density and route distance to 

predict morning cycling exposure, morning walking exposure, afternoon cycling exposure, 
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and afternoon walking exposure did not perform any better than the univariate model fit 

only with route distance. The R2 value was the same as the univariate model for route 

distance, and the population density predictor was insignificant in all models (p > 0.05).  

Table 5.3 Univariate linear regression results for morning trips. 

Dependent Independent Adj. R2 p Coefficient 

Cycling Exposure 
Median Income 

($10,000s) 
0.003 

0.16 -0.1043 

Cycling Exposure Mean Income ($10,000s) 0 0.87 -0.1061 

Cycling Exposure Population Density 0.4 0.001 -0.26026 

Cycling Exposure 
Route Distance  

(Natural Logarithm) 
0.95 <0.001 2.746e-03 

     

Walking Exposure 
Median Income 

($10,000s) 
0.003 

0.16 -0.1534 

Walking Exposure Mean Income ($10,000s) 0 0.87 -0.1561 

Walking Exposure Population Density 0.4 0.001 -0.3831 

Walking Exposure 
Route Distance  

(Natural Logarithm) 
0.95 <0.001 4.042e-03 

     

Household Pollution 
Median Income 

($10,000s) 
0.01 

0.10 -0.2078 

Household 

Pollution 
Mean Income ($10,000s) 0.02 

0.03 -0.2430 

Household Pollution Population Density 0.002 0.23 -0.1698 

     

School Pollution 
Median Income 

($10,000s) 
0 

0.39 -0.2488 

School Pollution Mean Income ($10,000s) 0 0.87 -0.0402 

School Pollution Population Density 0 0.56 0.1832 
Models significant at p < 0.05 are bolded. 
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Table 5.4 Univariate linear regression results for afternoon trips. 

Dependent Independent Adj. R2 p Coefficient 

Cycling Exposure 
Median Income 

($10,000s) 
0.01 

0.08 -0.1320 

Cycling Exposure Mean Income ($10,000s) 0 0.53 -0.0405 

Cycling Exposure Population Density 0.03 0.01 -0.2257 

Cycling Exposure 
Route Distance  

(Natural Logarithm) 
0.91 < 0.01 2.691e-03 

     

Walking Exposure 
Median Income 

($10,000s) 
0.001 

0.07 -0.1942 

Walking Exposure Mean Income ($10,000s) 0 0.53 -0.0597 

Walking Exposure Population Density 0.03 0.01 -0.3321 

Walking Exposure 
Route Distance  

(Natural Logarithm) 
0.91 < 0.01 3.961e-03 

     

Household Pollution 
Median Income 

($10,000s) 
0.007 

0.09 -0.2849 

Household Pollution Mean Income ($10,000s) 0.02 0.01 -0.3821 

Household Pollution Population Density 0 0.75 -0.06065 

     

School Pollution 
Median Income 

($10,000s) 
0 

0.25 -0.4542 

School Pollution Mean Income ($10,000s) 0 0.59 -0.1833 

School Pollution Population Density 0 0.42 0.3491 
Models significant at p < 0.05 are bolded. 

 

We stratified the population into two groups, the first group includes those students 

with mean incomes in the 20th and lower percentile and the second group with mean 

incomes of the 80th and higher percentile. The mean values for the distances travelled to 

school; and the morning and afternoon school, household, walking dose and cycling doses 

are presented in Table 5.5. 
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Table 5.5 Comparison of students’ trips between the highest and lowest 20% of students 

based on their neighbourhood incomes. 

 
 

Group Mean 

Values 
t-test 

 Time 20th 80th t statistic p value 

Distance - 739.2 795.4 -0.717 0.48 

School Pollution 
Morning 18.7 19.1 -0.407 0.68 

Afternoon 20.6 20.4 0.121 0.90 

Home Pollution 
Morning 16.2 15.4 2.043 0.04 

Afternoon 16.8 15.4 2.747 0.007 

Walking Dose 
Morning 3.27 3.26 0.022 0.98 

Afternoon 3.43 3.27 0.464 0.64 

Cycling Dose 
Morning 2.22 2.21 0.022 0.98 

Afternoon 2.34 2.22 0.464 0.64 

t-tests significant at p < 0.05 are bolded. 

 

5.4 Discussion  

In Hamilton,  it was identified that lower income residents were exposed to greater 

air pollution concentrations than higher income residents with exposure data from 1984 – 

94 (Jerrett et al., 2001). This conclusion is very logical, as it is known that lower value 

housing, which people having lower incomes can afford, occur in the less desirable portions 

of a city that can include areas with higher air pollution conditions (Harrison and Rubinfeld, 

1978). Our analysis was only concerned with the hours during which students travel to and 

from school; however, when we regressed both school air pollution concentrations against 

both the median or mean household income no relationship existed. Regressing the same 

independent variables against household air pollution during both the morning and 

afternoon periods, we find that the 2% of the variation in the data set can be accounted for 

by the variation in income; however, this is not an indication of a causal factor between 

low-income and an increase in ambient air pollution concentrations. This indicates that 
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Hamilton’s lowest income students/families are not being exposed to any greater 

concentrations during the two periods we studied at their schools, but they are slightly more 

exposed to air pollution concentrations at their household. This effect we identified is likely 

attenuated because we only have mean and median household incomes at the dissemination 

area level of geography from Statistics Canada. These areas are generally small but 

comprise of 400 – 700 people. Individual level income data may elicit a greater effect. 

We were interested in examining the air pollution dose that is inhaled during the 

trip to school and during the trip back to home when students used active transportation. In 

the Toronto and Hamilton region, these active trips account for 38% and 41% percent of 

students travelling to and from school respectively. During the trip to school, cycling 

accounts for only 2.6% of the active mode trips and for the trip home from school cycling 

only accounts for 2.5% of the active mode trips (Metrolinx, 2010). Our results indicate that 

no significant difference in PM2.5 dose occurs between students who are travelling either to 

or from school when their homes are in lower income neighbours of Hamilton when 

compared with the remaining population. A significant relationship does exist between air 

pollution doses inhaled during the trip to school and the density of the housing where the 

student resides. This effect of density on the dose can only explain four percent in the 

variation of morning cycling and walking trips and three percent of the variation in air 

pollution dose for afternoon walking and cycling trips. The primary agent for the resulting 

air pollution dose during a trip to or from school in Hamilton is simply the length of the 

trip, which during the morning accounts for 95% of the variation in both cycling and 

walking morning trips and 91% of the variation in afternoon cycling and walking trips.  
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Interestingly, we find in Hamilton that when we compare the students’ household 

morning and afternoon ambient air pollution concentrations, no difference in the air 

pollution concentrations occurs. However, the schools that the students are attending have 

a slightly significantly higher concentrations during the afternoon than in the morning. This 

increase is only one microgram per metered cubed of air, which would account for small 

differences in health outcomes.  We do make note that the test applied, the paired t-test is 

sensitive to small variations due to a high statistical power. Along a similar line, the dose 

for both walking and cycling to school was significantly different when compared to the 

dose during the afternoon. The difference between the means was 0.02 µg. We view this 

difference as having no true effect on health outcomes and that the dose of air pollution 

inhaled does not vary for students in Hamilton between their morning and afternoon trips.  

When we stratified the population into the highest and lowest household income 

groups we found that no significant difference occurred between their air pollution dose 

exposures for either cycling or walking; however, the lower income groups’ routes are only 

93% of the distance to school of the higher income groups’ routes. Though this distance is 

not statistically significantly longer it does indicate, since the higher incomes groups’ dose 

exposure is lower for walking and cycling in both the morning and afternoon, that the 

lower-income students are walking shorter distances with higher ambient air pollution 

conditions.  

Traditional analysis of air pollution exposure relies solely on monitoring units that 

are permanently fixed, often few in number (Ryan and LeMasters, 2007), and may have 

not been located for exposure analysis  or  to capture the variation in air pollution across 
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the spatial extent of the city (Adams et al., 2012).  Our research presents a modern approach 

to exposure analysis that includes both time-activity patterns and models capable of 

estimating finely resolved air pollution concentrations, which is being called for by the 

epidemiological literature (Baxter et al., 2013a; Buonanno et al., 2013). 

5.5 Conclusion 

Air pollution exposure during the morning and afternoon trips between home and 

school are not environmentally unjust when considering income as a socioeconomic 

indicator in Hamilton, Ontario during our study period. As well, only a minor effect is 

demonstrated with lower income households, having higher air pollution ambient 

concentrations during the hours when students are travelling between home and school. A 

comparative analysis of historic data would lend insight into the potential drivers of these 

results, which is not possible due to significant monitoring changes over time. However, 

we postulate that the reason students from lower-income households are not affected by 

higher air pollution concentrations in Hamilton is the gentrification of many 

neighbourhoods has been occurring in Hamilton, similar to the land use changes in the 

nearby City of Toronto (Skaburskis, 2012), a reduced industrial sector, and land use change.  

We conclude that the doses of air pollution in Hamilton during active transportation 

to school is primarily controlled by the route length. When students arrive at their school, 

they are exposed to higher ambient air pollution concentrations than they were at home. 

Our results indicate that students who ride their bikes to school when they engage in active 

transportation are having reduced doses of air pollution during their journey. 
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The primary policy implication from this work is that programs that encourage 

active transportation should focus on encouraging cycling as the active mode to school.  
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Chapter 6: Conclusions 

6.1 Introduction 

Many nations have worked to limit releases of air contaminants because of the 

implications for human health (Kampa and Castanas, 2008). However, these reductions or 

limitations have yet to eliminate this global health issue (Evans et al., 2013; van Donkelaar 

et al., 2010). Recently a briefing in the BMJ (British Medical Journal) named air pollution 

the public health problem that won’t go away (Hawkes, 2015). Currently, many countries 

such as China, are facing, what can only be termed, extreme air pollution events (Tie and 

Cao, 2009). With all of the current issues, air pollution is still considered a global human 

health hazard that warrants continued research. 

The intention of this thesis was to explore and provide value to the field of air 

pollution modelling, specifically to incorporate mobile air pollution monitoring data into 

air pollution models. As well, improve upon the techniques that are applied to assign air 

pollution exposure. The need to refine exposure assignment was identified in the 

epidemiological literature, which calls for new modelling approaches to reduce exposure 

misclassification. The ability to identify health effects is attenuated with exposure 

misclassification. Epidemiologists note that new models should incorporate human activity 

patterns for the assignment of air pollution exposure, utilize spatially variable input 

datasets, and continually refine the spatial precision (Ozkaynak et al., 2013).  The 

assignment of air pollution exposure is a fundamental step in air pollution epidemiological 

research. It is, therefore, necessary to determine the relationship between contaminant 

concentrations and negative health outcomes.  
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We explored the utility of mobile air pollution monitoring units in this work, which 

are becoming an accepted research tool in the literature (Bukowiecki et al., 2002; 

Lightowlers et al., 2008; Qi and Shimamoto, 2012; Wallace et al., 2009; Xu et al., 2007). 

In this work, mobile monitoring has been utilized in a similar way to traditional stationary 

monitoring units, with the main difference of the units being able to be relocated within the 

study area. It is prudent to mention that mobile monitoring units have other purposes, which 

includes measuring in-situ emissions during car chase and mobile emissions studies 

(Westerdahl et al., 2005).  

We have presented research that can lead to the implementation of improved risk 

awareness systems of air pollution containments. The provision of such a system will not 

necessarily result in a change in people’s behavior, but how they perceive the risk will be 

the driver for behavioral change. In Hamilton, individuals perceived risk of air pollution 

varies considerably, which is partially attributable to their location in the city but also their 

socio-demographics (Simone et al. 2012). It is suggested that as an individual’s risk 

exposure is increased, their perceived risk lowers over time. In many cities, the air pollution 

risk that is presented to individuals may not relate to their personal risk exposure because 

of the location of monitoring units relative to their own. This dissconnect may lead to 

reduced perceived risk over time. By localizing risk information, it may be possible to 

reduce the attenuation of perceived risk that is due to incorrect risk warnings. 

6.2 Contribution to the Air Pollution Literature 

The primary contribution to the literature of this thesis is the demonstration of a 

model that is able to combine both mobile and stationary air pollution data to model the 
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spatial variation in a city that can be used to assign air pollution exposure to specific human 

activities, such as the trip to work or school (as was demonstrated in this thesis).  

6.2.1 Supplementing Stationary Monitoring Units with Mobile Units 

 Mobile data collection allows for air pollutant concentrations to be obtained with a 

larger spatial coverage and higher density than is possible with stationary 

monitors because of the ability to relocate a single unit.  

 Mobile monitoring coupled with stationary monitoring can provide a more 

detailed spatial distribution of air quality, which can be used to identify changes in 

the air shed that may have been missed solely with stationary monitoring units. 

This was demonstrated for Hamilton, Ontario, which has a monitoring network 

clustered around the historic industrial region. 

 Seasonal fluctuations that occur in the mobile air pollution datasets, because of 

their discontinuous time-series, can be reduced with the use of a centrally located 

stationary monitoring unit. This allows for various regions in the city to be 

monitored with a single mobile unit. 

6.2.2 Calculating long-term exposure with discontinuous mobile time-series data 

Researchers can design the collection of mobile air pollution monitoring data to 

minimize error in calculating the long-term exposure.  

 To reduce the error in a long-term estimate, mobile monitoring campaigns should 

balance the number of visits to a site with the length of monitoring during each visit. 
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Maximizing either the number of visits to a site or the length of a visit results in 

greater error than a balance of the two.  

 If the monitoring campaign collects less than twenty-five percent of all possible 

observations at a single location, adjusting the data based on a central monitor can 

improve the long-term mean estimate. 

 The classical error in estimating the long-term mean concentration can be estimated 

a prior if a few stationary monitoring units are present. This estimate can be used 

to help identify the need for further funding or to determine how many sites can be 

visited.  

 Fixed location monitoring units that are the basis for adjustment of mobile time-

series data should be situated in the same land use as the mobile units to ensure 

similar temporal variations. 

Classical error will occur when estimating long-term concentrations with 

discontinuous time-series data; however, our findings provide valuable methods to both 

estimate a prior and minimize this error. 

6.2.3 Modelling locally and temporally variable air pollution concentrations with mobile 

monitoring units. 

In leveraging a number of new technologies and techniques a model capable of 

estimating the spatial distribution of PM2.5 and NO2 was developed. This model has a lot 

of flexibility in that it uses the information content from a number of different datasets: 

a. Discontinuous time-series mobile air pollution monitoring data with a high 

spatial coverage. 
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b. Continuous time series stationary air pollution monitoring data. We 

leveraged monitors located in the city to obtain local temporal variations 

and background monitors to capture the temporal variations from long-

distance transport. 

c. Land use information, many studies have been able to equate land use 

information as predictors of ambient air pollution variation (Dons et al., 

2014; Jerrett et al., 2005; Ryan and LeMasters, 2007). This is because 

many activities on specific land uses are air pollution generators, for 

example, vehicles on transportation networks and the operations in the 

industrial sector.  

d. Meteorological data to control for variations in the wind patterns that 

affect the dispersion strength and direction of air contaminants. 

e. Congestion data to identify areas susceptible to vehicular emissions during 

peak traffic hours. 

This flexibility in data types was harnessed with neural network models predicting 

spatial fields of air pollution using a land use regression framework. We found that using 

neural network models as opposed to linear regression models improved modelling 

accuracy, likely due to the additional flexibility in the relationships between the predictor 

and outcome variables. 

 

6.2.4 Activity Based Exposure Analysis 
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The PM2.5 model developed in chapter four was applied to determine exposure in 

an activity-based analysis of active transportation trips for students between home and 

school. The air pollution model avoided the concerns with assigning air pollution 

concentrations from a central location or a sparse network (Ozkaynak et al., 2013). This 

assessment identified the following results: 

 Air pollution dose exposure is not related to household income during the morning 

and afternoon trips between home and school in Hamilton, Ontario, during our 

study period.  

 A minor effect is demonstrated with lower income households exposed to higher 

ambient air pollution concentrations during the hours when students are travelling 

between home and school. Their shorter route length offsets the total dose 

compared to higher income households. 

 The dose of air pollution exposure is controlled primarily by the length of the 

route to school in Hamilton.  

 Students arriving at their schools are exposed to higher ambient air pollution 

concentrations than they were at home.  

 Students who ride their bikes to school when they engage in active transportation 

are exposed to reduced doses of air pollution during their journey.  
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6.3 Recommendations for Future Research 

Two primary recommendations for future research are: 

1. This research is solely concerned with the modelling of outdoor air pollutants; 

however, it is necessary to continue to refine the methods for assigning indoor 

exposure (Allen et al., 2012). A complete exposure model should be able to assign 

exposure incorporating variations in outdoor concentrations, indoor infiltration of 

contaminants, and indoor concentrations of air pollutants in buildings, vehicles 

and other structures.  

2. The research contained within this thesis is limited to a selection of the criteria air 

contaminants. Many other air contaminants are present at elevated levels that can 

affect human health. It will be necessary to identify, if the techniques presented 

are transferable to pollutants with different source profiles, such as volatile 

organic compounds and toxic metals. 
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