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INTRODUCTION

Our study has its origins in one of the most important
aspects of general topology, extensions with the universal
mapping property [8].

The main importance of extensions is that, if a space
has an extension with nice properties, these properties can
to some extent be brought to bear on the study of the original
space, or they might lead to replace the original space by its
extension, In this connection, it is also very important to
know whether a given continuous map in the original space has
a continuous extension to the extension of the space.

The well known examples are the Stone-éech compactifi-
cations, realcompactifications, maximal zero-dimensional com-
pactifications, and completions,

In this direction, we have a very essential tool,
namely categories which provide a convenient conceptual lang-
uage, based on the notions of category, reflections.

Using this tool, there have been many efforts made to
construct new reflective subcategories in various categories
of topological (or uniform) spaces and (uniformly, respecti-
vely) continuous maps [15, 19, 23, 24, 30, 38, 44, 45, 48] .

and find out nice properties in those categories [l, 2 35 5

vi.
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27, 29, 33, 46, 48], Comprehensive results and bibliography
of papers in this field can be found in [25, 27].

In this work, our basic categories are the category
Haus of Hausdorff spaces and continuous maps and the category
HUnif of Hausdorff uniform spaces and uniformly continuous
maps.,

Our main objective is a systematic study of extensive

subcategories of various subcategories of Haus or HUnif,.

One of the main reasons to take extensive subcategories
rather than (epi-) reflective subcategories has been already
mentioned., It is known that for every epi-reflective subcate-
gory & of Haus, there exists an epi-reflective subcategory
RZ- of Haus such that - is extensive in RXA. and for any X
in Haus the X -reflection of X has a factorization through
the RA -reflection of X and {.-reflection of the Ri -reflection
space of X, Furthermore, RJ -reflections can be easily cha-
racterized (see Section 3 in Chap. 0). Hence every epi-ref-
lective subcategory of Haus can be completely determined by
a certain extensive'subcategory in a subcategory of Haus.

This is another essential reason, in view of categorical
topology, why our main objective is extensive subcategories.

The contents of our work divide into four parts,

The first, comprising Chapter 0, presents together
basic definitions and theorems which will pave the way for

the further development of the present thesis,
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In particular, we list the definitions of z-ultrafilters,
simple and strict extensions, & -compact spaces and reflective
subcategories. Also included are discussions of Stone-Cech
compactifications, realcompactifications and &-compactifi-
cations, and finally some properties of reflective subcate-
gories,

The second part is composed of Chapter I and Chapter II.

In Chapter I, we first consider some properties of
extensive subcategories. We observe that every reflective
subcategory containing an extensive subcategory in a category
is also extensive in the category and that every extensive
subcategory is left-fitting with respect to perfect morphisms
in the category. Consequently, the left-fitting property is
strongly connected to extensiveness.
H. Herrlich has introduced the limit-operators [26] to obtain
coreflective subcategories of the category Top of topological
spaces and continuous maps. Moreover, he has established a
one-one correspondence between idempotent limit-operators and
coreflective subcategories of Top. Using limit-operators, we
establish a method to construct new extensive subcategories
from well known extensive subcategories in various subcate-
gories of Haus or HUnif, The new extensive subcategory is
constructed as follows, Let A ve an idempotent limit-
operator on an extensive subcategory . of a subcategory _ﬁL

of Haus or HUnif, Let ﬁy be the subcategory of‘ﬁb determined
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by those members of A which are {-closed in their & -
reflection spaces, It is shown that &y is also extensive in
A , if A is hereditary. Hence for any epi-reflective sub-
category of Haus, we can associate a reflective subcategory
of Haus containing it with each coreflective subcategory of
Top, for there is a hereditary subcategory of Haus, in which
it is extensive. Consequently, we establish a useful inter-
relation between coreflective subcategories of Top and epi-
reflective subcategories of Haus. Finally, for any reflective
subcategory containing an extensive subcategory in a certain
category, we can find a semi-limit-operator on the extensive
‘subcategory which generates the reflective subcategory and an
idempotent limit-operator on the extensive subcategory which
generates a reflective subcategory containing the reflective
subcategory, This gives another method to construct new exten-
sive subcategories from well known reflective subcategories.

In Chapter II, we apply the results of Chapter I to
various categories. Using trace filters, we can easily cha-
racterize new extensive subcategories‘and comprehend the
interrelations between those categories,

The third part, Chapter III, is devoted to perfect
onto projectivity in various categories determined by our
setting, which is in some sense complementary to B. Bana-
schewski's inclusive contribution in this field [5]. It is

shown that in every full subcategory of Haus determined by



the objects of an extensive subcategory of the category Haus¥
of Hausdorff spaces and continuous semi-open maps, perfect
onto projectivity is properly behaved. Secondly, we generalize
the coricept of almost realcompactness [16] to almost n-
compactness for any infinite cardinal number n. In the cate-
gory of almost n-compact spaces and continuous maps, perfect
onto projectivity is also properly behaved. Finally we consi-
der the category of pseudo-compact spaces and continuous maps
which is neither productive nor closed hereditary. It is shown
that perfect onto projectivity in this category is again
properly behaved using the space of convergent maximal open
filters.

Finally, in Chapter IV, we deal with the category of
topologically complete spaces and continuous maps. We intro-
duce the concept of n-total boundedness. We show that every.
complete regular space which admits an admissible n-totally
bounded complete uniform structure, is n-compact, It is shown
that the categories of topologically n-totally bounded complete
Hausdorff spaces and continuous maps coincide witﬁ the cate-
gory of realcompact spéces and continuous maps for ﬁhe car-
dinal number n with 5%_$ n ¢ m, where m is the first measur-
able cardinal number, It is hoted ;hat those categories are
coincident but the categories of nitotally bounded complete
uniform spaces and uniformly continuous maps are diffgrent

1

for the different cardinal numbers n, It is also shown that

t
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a topologically complete completely regular space is real-
compact if and only if every locally finite open covering of

the space has a nonmeasurable subcovering.,



CHAPTER O

PRELIMINARIES

This chapter is a collection of the basic definitions

and results which will be needed in the ensuing chapters.

Section 1l: Completely regular spaces,

1.1 Definition A topological space X is said to be

completely regular provided that it is a Hausdorff space such

that, whenever F is a closed subset of X and x is a point in
its complement, there exists a continuous real-valued map f

such that f£(x) = 1 and £(F) = {0}.

1.2 Notation For a topological space X, we denote
the set of all continuous real-valued maps by C(X) and the

set of all bounded continuous real-valued maps by C*(X).

It is obvious that C(X) under the functional opera-
tions is a commutative ring with unit 1 and C*¥(X) is a sub-

ring of C(X).

1.3 Theorem For every toplogical space X, there

exists a completely regular space Y and a continuous map f of
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X onto Y, such that the map gww gf is an isomorphism of C(Y)
onto C(X).

Remark: The space Y in the above theorem is known as

the complete regularization of the space X.

1.4 Definition A subset Z of a topological space X

is said to be a zero-set in X if Z = f'l(O) for some f € C(X),
In this case, Z is also said to be the zero-set of f and we
denote it by Z(f), and the set of all zero-sets in X by Z(X).

A subset C of X is said to be a cozero-set in X if it

is the complement of a zero-set Z(f) for some f € C(X)., We

denote it by coz(f).

1.5 Theorem For a Hausdorff space X, the following
are.equivalent:
1) X is completely regular.
2) Z(X) is a base for the closed sets in X,
3) X is uniformizable.
L) X is homeomorphic with a subspace of a product space

of the copies of real line.

It is well known that Z(X) is a lattice with respect

to the set union and intersection.

1,6 Definition For a space X, a proper filter in

the lattice Z(X) is said to be a z-filter on X,

<

By a z-ultrafilter on X is meant a maximal z-filter,
L



i.e., one not contained in any other z-filter.
A z-filter is said to be fixed if it has a cluster

point, Otherwise, it is said to be free.

It is well known that for an ideal I in C(X),
2(I) ={2(f) If € I} is a z-filter in X and for a z-filter
¥ on X, Z'l(?f) ={f |Z(f) € ¥ 1 4is an ideal in C(X).
Moreover, if I is maximal, then Z(I) is a z-ultra-
filter on X and if U is a z-ultrafilter, then Z°T(U) is a
maximal ideal in C(X) [17].
Hence, one can define that an ideal I in C(X) is
fixed (free) according to the z-filter Z(I) being fixed (free,

respectively).

1.7 Theorem For a completely regular space X, the
following are equivalent:
1) X is compact,
2) Every z-filter on X is fixed, i.e. every ideal in C(X)
is fixed, ‘ |
3) Every z-ultrafilter on X is fixed, i.e. every maximal

ideal in C(X) is fixed.

1.8 Definition Let X be a completely regular space.

A maximal ideal M in C(X) (C*(X)) is said to be real if the
quotient field C(X)/M (C*(X)/M, réspectively) is i%omorphic
with R . In this case, Z(M) is also said to be real,

Otherwise, it is said to be hyper-real,.
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1.9 Definition A completely regular space is said

to be realcompact if every real maximal ideal is fixed, i.e.

every real z-ultrafilter is fixed.

1,10 Definition Let xj be a non-empty family of

subsets of a set X, and let n be an infinite cardinal number.

Af is said to have the n-intersection property if every

fewer than n members of xJ has a non-empty intersection.

1.11 Theorem The following are equivalent for any
maximal ideal M in C(X).
1) M is real.
2) Z(M) is closed under countable intersections.,

3) Z(M) has the Rﬂl-intersection property.

- Section 2: Extensions.

2,1 Definition Let X and X' be spaces and f: X— X'

a map. The pair (X', f) is said to be an extension space of

X if f is a homeomofphism of X with the dense subspace f(X)
of X', In particular, (X', f) is an extension space of X such
that X € X' and f maps X identically, then the reference to
f will be omitted and X' will itself be called an extension

space of X,

Remark: It is known that without loss of generality,

one may always restrict onself to extension spaces of a space



‘X which contain X as a dense subspace,

Let (X', f) be an extension space of the space X.
And let {J and {J' be the topologies of X and X' respective-
ly. Then, each point u € X' determines the proper filter
T{u) = f-l(ij"(u)) = {f"l(V) | ve S*(u)} in the lattice
1Y , called the trace filter of u on X, where J[J'(u) is the

filter of open neighborhoods of u,

The family (T(u)) will be called the filter

u e X'
trace of the extension space on X, If X' 2 X then the filter

trace of X' on X extends the family (JJ(x)) of neigh-

x € X
borhood filters of X to a family of filters in {7) with larger

indexing set since T(x) = 4J(x) for x e X.

Consider any family (T(u))

U € X of filters in IJ

which extends the family of neighborhood filters of the space
X, i,e, X' 2 X and T(x) =)0 (x) for each x € X.

Then, there exist two natural topologies on the set X' such

- that the resulting spaces are extensions of X whose filter
trace on X is just the given family (T(u))

ueX'’
The first of these spaces, called the strict extension of X

with filter trace (T(u)) g+ has its topology {ji gene-

u €
rated by the sets V¥ = ju |V < T(u)}, ve/J ; in the second

space, with topology JJ &, here referred to as the simple
0 simp-_.¢€

u €
has as its basic neighborhoods the sets V U {u}, V € T(u) [4].

extension of X with filter trace (T(u)) g+ each u e X'
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2.2 Definition An extension space Y of a space X

is said to be a compactification (realcompactification) of X

if Y is compact (realcompact, respectively).

2.3 Definition A subspace S of a space X is said to

be C-embedded in X if every map in C(S) can be extended to a
map in C(X).

Likewise, we say that S is C*-embedded in X if every

map in C*(S) can be extended to a map in C¥*(X).

2.4 Theorem [9,17,49] Every completely regular space
X has a compactification f;x, with the following equivalent
properties,
1) Every continuous map f of X into any compact space Y
has a continuous extension f of px into : 4
2) Every map f in C*(X) has an extension to a map *  in
c(px).
3) Any two disjoint zero-sets in X have disjoint closures
in BX,
4) For any two zero-sets Z1 and 22 in X,
r@x(z1“ z,) = l'plen rﬁxzz.
5) Distinct z-ultrafilters on X have distinct limits in
g X.
Furthermore, ﬁ:x is unique, in the following sense:
if a compactification T of X satisfies any one of the listed

conditions, then there exists a homeomorphism of ﬁ X onto T



that leaves X pointwise fixed.

Remark: The space pXﬁis known as the Stone-Cech
compactification of X, According to the theorem, it is
characterized as that compactification of X in which X is

C*-embedded.

2.5 Theorem [17,32] Every completely regular space
X has a realcompactification U X, contained in pX, with
the following equivalent properties,

1) Every continuous map f of X into any realcompact
space Y has a continuous extension f of UX into Y,

2) Every map f in C(X) has an extension to a map £ in
c(vX).

3) If a countable family of zero-sets in X has empty
intersection, then their closures in U X have empty inter-
section,

L) For any countable family of zero-sets z, in X,

Tox @2 = R Muxln

5) Every point of U X is the limit of a unique z-ultra-
filter on X, and it is a real z-ultrafilter.

Furthermore, the space U X is unique, in the following
sense: if a realcompactification T of X satisfies any one of
the listed conditions, then there exists a homeomorphism of

U X onto T that leaves X pointwise fixed.,

Remark: The space UX is called the Hewitt real-
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compactification of X, By the theorem, it is characterized

as that realcompactification in which X is C-embedded,

Section 3: Ei.-compact spaces,

Every space in this section is assumed to be Haus-

dorff,.

3.1 Definition [23] Let ¥a. be a class of spaces,

A space X is said to be &. -compact if X is homeomorphic

with a closed subspace of a product space of a subfamily of
€., We denote the class of all E.~-compact spaces by K ¥, .

A space X is said to be &. -regular if X is homeo-

morphic with a subspace of a product space of a subfamily of

T, We denote the class of all Ta -regular spaces by R&. .

3.2 Definition Two classes T and & are said to

: To ; . | '
be equlvalent/\each other if K& =K&. .
A class ¥, of spaces is said to be simple, if E.
is equivalent to a single element class_{Y}. In this case,

Ze is also called Y-simple,

3.3 Theorem Let € be a class of spaces.
1) Every closed subspace of an ¥, -compact space is
again & -compact, i.e. K& is closed-hereditary,
2) Every subspace of an &, -regular space is again

% -regular, i.e. R¥,_ is hereditary.
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3) Every product space of &. -compact ( & -regular) spaces
is again %¥. -compact ( . -regular, respectively), i.e. K&E_
and R¢. are productive. Conversely, if a product space of
non-empty spaces is & -compact ( & -regular), then each factor

space is also & -compact ( & -regular, réspectively).

3.4 Corollary An arbitrary intersection of % -

compact subspaces of a given space is &_-compact.

3.5 Corollary Let f be a continuous map of an %, -
compact space into a space Y. Then the total breimage of

each £ -compact subset of Y under f is %, -compact,

3,6 Corollary Let (XL)L~e [ be a family of non-
empty spaces, Then the sum space X, is ¥, -compact if and
only if each X, is % -compact and I is ¥, -compact with

respect to the discrete topology.

3.7 Theorem [23] For a space X (not necessarily
Hausdorff), there exists a pair ( f X, ?Q) such that . g.X is
&, -compact and ﬁfkis_a continuous map of X onto the dense
subset ﬁaﬁx) of X with the following property:
for any T, -compact space Y and any continuous map f: X — Y,
there is a continuous map f: PE._X — Y with T B = 1, |

In particular, if X is ¥ -regular, then (ﬁax, P&)
is an KE_-compactification, i.e. ( Be. X, ﬁa) is an extension

space of X such that pax is %_-compact.
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3.8 Theorem [23] For a space X (not necessarily
Hausdorff), there exists a pair ( da}, &g) such that ogX is
& -regular and g is a continuous map of X onto AzX with
the following property:
for any & -regular space Y and any continuous map f: X — Y,

there exists a continuous map £ o(ax——>Y with f di..= 4

Section 4: Categories,

4,1 Definition Let A be a small category and L a

category. Then a funtor D: A——> L will be called a diagram

in IZ over A . A lower bound of the diagram D is a pair

(L, g,), where L is an object of L and (g,: I‘—_>DA)A€:A.
is a family of morphisms in LU such that for any morphism
f1 A—>A' in A, (Df)g, = g,,.

A lower bound (L, g,) of D is said to be a limit of
D if for any lower bound (L', gA) of D, there exists a unique

morphism f: L'—>L in T such that gAf = _gA‘for each A € A "

4,2 Definition If every diagram in L over A has

a limit, then £ is said to be A -complete or to have A -

limits., If & is A -complete for every small category A ,

then L is said to be complete,

Dually, one can define an upper bound of a diagram,

colimits, and cocompleteness.




1l

4,3 Theorem Let & be a category. Then the followihg
are equivalent:
1) £~ 1is complete,
2) 1 has products and pullbacks,
3) XK has products and equalizers,
L)

has products and inverse images.,

4,4 Definition Let A and & be categories. An

adjunction from X. to /$ is a triple (F,G.S’),-where F and

G are functors
F

U 2 A
. G

while @ is a map which assigns to each pair of objects Be€ £ v

A € /A( a bijection

P = '9B R A (FB,A) —> X.(B,GA) which is natural in
9
B and A.

In this case, the functor F is said to be a left

adjoint for G, while G is called a right adjoint for F.

4,5 Theorem Let (F,G, $) be an adjunction from B
to A . Then
1) G preserves limits,
2) F preserves colimits,

3) There exist a natural transformation 7] : 16:——9 GF

and a natural transformation ¥ : FG—> lA,'

4,6 Definition Let A ' be a subcategory of a
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category A and A an object of A . An /&'-reflection of A

is an object R(A) of A ' together with a morphism r,: A—> R(A)
such that for every object A' of A' and every morphism

f: A—> A' there exists a unique morphism f: R(A)—> A' in

A ' with frA = f,

If every object of A has a reflection in A', then

A ' is said to be a reflective subcategory of A

Dually, one can define a coreflective subcategory of

a category.

Remark: In the above definition, R becomes a func-
tor from A to A', and R is a left adjoint for the inclusion
functor I: A '———é,A». In this case, R is called the reflector
of A in A",

On the other hand, if the inclusion functor I: A —3 A
has a left adjoint R, then A4 ' becomes a reflective sub-

category of A and R becomes a reflector of A in A°'.

4,7 Definition Let A4 ' be a reflective subcategory

of A . If for every object A € ,4», the reflection map
r,+ A—> R(A) is an epimorphism, A' is said to be an epi-
reflective subcategory of A

4,8 Theorem Let _4' be a full reflective subcate-
gory of A . If a diagram in A' has a limit in /4 » then

it has a limit in A",
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4,9 Theorem Let A be a full subcategory of Top

(Haus), where Top (Haus) is the category of all topological
spaces (all Hausdorff spaces, respectively) and continuous
maps. Then the following are equivalent,

1) A 1is epi-reflective in Top (Haus).

2) A is productive and hereditary (closed hereditary).

3) A is productive and for every X € A , Y € Top
(Y € Haus), £ € C(X,¥), A S Y and A€ A implies £-1(a) € A .

4) A is productive and for every X ¢ Top (X € Haus),
A_ S X, A_ € A implies NaA, € A,

Proof of the theorem can be found in [25]., -

In what follows, every (epi-) reflective subcategory

of a category is assumed to be full and replete.



CHAPTER I

EXTENSIVE SUBCATEGORIES

Section 1l: Extensive subcategories,

The following definition is due to B, Banaschewski [5]

for the case of the category Haus.

1,1 Definition Let A be a subcategory of the

category Haus (or HUnif) of Hausdorff (uniform, respectively)
spaces and (uniformly, respectively) continuous maps.

A subcategory & of A is said to be an extensive subcategory

of A if it is a reflective subcategory such that the reflec-
tion maps ryt X—> rX with respect to X. are dense embeddings
for each X ¢ A .

Examples: 1) The category of compact spaces and
continuous maps is extensive in the category of completely
regular spaces and continuous maps via the Stone-Cech COma
pactifications,

2) The category of zero-dimensional compact spaces and
continuous méps is extensive in the category of zero-
dimensional spaces and continuous maps via the maximal zero-

dimensional compactifications [1].

14,
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3) The category of complete Hausdorff uniform spaces and

uniformly continuous maps is extensive in the category HUnif,

1.2 Theorem Let & be an extensive subcategory of
A . Then every reflective subcategory of A containing -4

is also extensive in A "

Proof: Let & be a reflective subcategory of A
containing & . For any X € A, let ry X—> r, X and

B, ¢ =3 rs X be reflections of X with respect to 4 and

<
X , respectively. Since #Z is contained in f , there exists
a unique morphism }A ' T X——>rx)~X with the following comm-

L) . r
utative diagram: X b'; r,sX

%l /f.a
rxyx
Since r, is an embedding, r, 1is also an embedding.
It is easy to show that f‘ is a & -reflection of
¥ & Indeed, for any Y € &, and for any f: 1y X5 ¥ in A,
there is a unique f: r&x—->Y such that the outer triangie

in the following diagraﬁ commutes:

r T
x—% er—-—grb‘x

frx\fl / T
: 4 "
Then, ff, = f and the unfqueness of f follows from

that rz is a reflection., Since A fis extensive in A § I"x,

1
i 3



16,

is also a dense embedding. For any non-empty open set U of
r. X, there is an open set V of r&JX'with EXL(U) = v,»\iéﬂpdx).
Since er is dense, there is an x € X with rxx(x) €V, It is

obvious that rxj(X) € U, Hence L is dense.

1.3 Definition Let A be a subcategory of Haus. A

subcategéry G of A is said to be left-fitting with respect

to perfect morphisms if X belongs to f. whenever f: X—> Y is
a perfect morphism in X* and Y belongs to O .

1.4 Lemma Let X 5 4 5

Y
| o
z-ii-yp be a commutative diagram
in Haus.

1) Suppose h be dense and k be an embedding.
Then g(Z - h(X)) € P - k(Y) if f is perfect., Furthermore,
if h is an embedding, then the diagram is a pullback,

2) Suppose Z be compact and h be an embedding.

Then f is perfect if g(Z2 - h(X)) & P - k(Y).

Proof: Regarding 1), suppose z be an element of Z
with g(z) = k(y) for some y € Y, Since h is dense, there is
an ultrafilter Y on X containing h'l(xj(z)), where JJ(z)
is the neighborhood filter of z on Z. Using the commutativity
of the diagram and k being an embedding, f(2U ) converges to

Y. Since f is perfect, there exists a limit point x of U
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such that f(x) = y. Hence, h(?/) converges to h(x) and z
simultaneously, so that h(x) = z,.
For the second part, suppose us: U—>2Z and v: U—>Y
be continuous maps with gu = kv, It is easy to show that u(U) C
h(X). Indeed, suppose u(p) & h(X) for some p € U, Then,
gu(p) = kv(p) € k(Y) which is a contradiction to g(2 - h(X))
C P - k(Y)., Let ut U—> X be a map defined by hu(p) = u(p)
for each p < U, Since h is an embedding, u is continuous.,
Since kfll = ghu = gu = kv and k is an embedding, fu = v.
The uniqueness of u follows from h being an embedding.
Regarding 2), suppose { be an ultrafilter on X and
y be a limit point of f£(% ). Since 2 is compact, there is a
limit point of h(2.), say z and then g(z) = g(lim h(%)) =
lim gh(2L) = lim kf(U) = k(y) € k(Y). Since g 1(k(Y)) < h(x),
there is an element x € X with h(x) = z. Since h is an embe-

dding, x is a limit point of Z( . Hence f is perfect,

1.5 Theorem Every extensive subcategory of a cate-

gory x% is left-fitting with respect to perfect morphisms.

Proof: Let & be an extensive subcategory of 4 .
Suppose f: X—> Y be a perfect morphism in .KL and Y € XA .

Then we have the following commutative diagram:

L —=tyy

o

rX-—Ei;)rY » Where ry and ry are reflec-
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tion maps of X and Y respectively. Since Y belongs to Xi g -
ry is a homeomorphism. By Lemma 1.4, ry is onto, i.e. a homeo-

morphism, Hence X belongs to & .

It is well known[7] that a Hausdorff space is compact
if and only if the map on the space into the singleton space

is perfect. Hence we have the following:

1.6 Theorem Let /% be a subcategory of Haus or HUnif
such that it contains a singleton space S and Homxx(x, S) # (ﬁ
for each X e;pL. Then any extensive subcategory of ;$ con-
tains all compact spaces belonging to A , whenever it contains

a singleton space,

Section 2: Limit operators and extensive subcategories.

2.1 Definition Let /% be a subcategory of Top or

the category Unif of uniform spaces and uniformly continuous
maps. An operator /e which associates with every pair (X, A),
where X is an object of /@ and A is a subset of X, a subset

QXA of X is said to be a limit-operator on A ir ,@ satis-

fies the following three conditions;
1) If A is a subset of X, then A QE_fXA - ka, where

[ﬁx denotes the closure operator on X,

2) If A and B are subsets of X then IX(A Usg) =
: U
(oY LB,
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3) If f: X—>Y is a morphism in 4 and A is a subset of
% then £( £,4) € fr(n).
A limit-operator { on A is said to be idempotent
if Q satisfies the following:
4) If A is a subset of X then fx(,ﬂxA) = '[XA'

H., Herrlich has defined (idempotent) limit-operators on

Top first [26].

It is obvious that an idempotent limit-operator Q
gives rise to a closure operator EX on every object X of A
and that every morphism f: X——Y in A is also continuous

with respect to the new topologies generated by jX and IY'

2,2 Definition Let f be a limit-operator on /$ .

A subset A of an object X of /i is said to be { -closed if

J?XA 2 b

Remark: For any limit-operator f on 4, the family of
all ‘ﬂ -closed subsets of X 6,4 forms the family of all closed
subsets of X with respect to some topology on X,

For any limit-operator { on A , there is an associated
idempotent limit-operator E. on A which is defined as follows:

fXA= 1Bl acB ek, JZXB=B} for X € & .
Then it is obvious that EX is exactly the closure operator

of the space X with the family of _ﬁ ~-closed subsets of X as

the family of closed subsets.
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In what follows, every subcategory of a category is
assumed to be replete and full. And an extension space of a
space is also assumed to be a space of which the space is a

dense subspace,

2,3 Definition Let A ve a subcategory of Haus.

Then }i is said to be hereditary if for any X € A , all

natural embeddings of subspaces into X are morphisms in ;i .

Let & be an extensive subcategory of a category A
of Hausdorff spaces and contiriuous maps. For an idempotent
limit-operator A on A, let dii be the subcategory deter-
mined by those objects of A which are [-closed in their # -

reflection spaces,

2.4 Theorem If A is hereditary, then Riﬁ is also

an extensive subcategory of A .

Proof: For every X € lL, let Iyt X—> rX be the
xi -reflection of X such fhat X is a dense subspace of rX and
ry is the natural embedding. Let paxlbe the subspace of fX
with J;XX as underlying set, ‘

Since A is hereditary, r,X belongs to A . It is easy
to show that ryX belongs to x;ﬁ . Indeed, let r%: X—>r,X and
iz ;QX———>rX be the natural embeddings respectively. We wish
to show that j is the & -reflection of ?ZX' Because, for any

Y in & y and for any f: ?ﬁx——?-Y in ﬁi, there is a unique
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f: rXX—>Y in Z_ such that the outer triangle in the diagram
! j
X > 1, X > rX

2
2
frx #l T
Y

commutes, Hence, fj = f and the uniqueness of f follow from

that r§ and j are dense embeddings. Since rg X is [ -closed in

its & -reflection space rX, rgX belongs to & .
Now, we can conclude that r§= x--;;zx is the xﬁz-
reflection, For any Y in d;f y and for any morphism f: X—> Y,

there exists a unique f: rX—>rY in xi such that the diagram

X J—é-rX
f f

i e rIX'__—_—_9rY

commutes. Since f(ryX) = £f( L 4X) < QrYf(X) c grYY =Y,

fj: ;2X~——>Y is a well-defined continuous map. Let Iy = T
Then it is obvious that ﬁzrﬁ = f, Noting that rﬁ is a dense

embedding, fﬁ is unique. This completes the proof.

By Propositions and Theorem 1 in [26], every coreflec-
tive subcategory L of the category Top generates an idem-
potent limit-operator L&) on Top and for every topologi-
cal space X, ,ﬁ(ti)x is precisely the closure operator on

the L -coreflection space of X. Hence the following is im-
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mediate from Theorem 2.4 for the same categories 4 and 4 as

above.

2.5 Corollary For any coreflective subcategory O
of Top, let ‘XHZ be the subcategory of X$ determined by those
members of A& which are closed in the K =-coreflection spaces
of their xi -reflection spaces. Then diﬁf is also an extensive

subcategory of /4 .

Remark: For any pair of coreflective subcategories
L and ' of Top, o("l,:x =2 &y, if ' 2 £ . In parti-
cular, for any coreflective subcategory [ of 222. O is

contained in ﬁz s Tor L = %\m.

Proof: For any X € A, let Cp t Qt(qaxy—+>rz} and

c QCKSOX)——>I'X be coreflections of the % -reflection

& A

space ?ﬁx of X with respect to L and & ' respectively.
Since £ is contained in £/', the map f: gt(gﬁx)———>%tjrix)
defined by X m» X is continuous. Suppose X belongs to X%t..

Then X is closed in %t,(gaf). Hence X is also closed in

QQ(gcx),i.e. X belongs to Zlﬁj.

The full subcategory of HUnif determined by complete

Hausdorff uniform spaces will be denoted by CL.

For any idempotent limit-operator L on (& , let C;i
be the subcategory determined by the Hausdorff uniform spaces

which are,ﬁ -closed in their completions.
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2.6 Theorem The subcategory CZE of HUnif is also

extensive in HUnif,

Proof: For a Hausdorff uniform space X, let cX be
its completion and Cy? X—>cX the natural embedding., And let
cyX be the subspace of cX with _Ecxx as underlying set.
By the uniqueness of the completion of a uniform space, cX
is isomorphic with c(cpX). Since cyX is f-closed in cX, cpX
belongs to Gy . Now, let ci: X—>cpX be the natural embedding
of X into cyX, For any Y in CZE » and any uniformly continuous
map f: X—>Y, there is a unique uniformly continuous map
f: ¢X —> cY such that fcx = c¢yf, where cy: Y—>cY is the
natural embedding of Y into its completion., Since f is a
morphism in G , f(cg)() = f(ﬁcXX) < QCYf(X) = QCYY = Y,
Thus TIQQX: c;X—>Y is well defined and uniformly continuous.
Moreover, let fg = flcyX, then fpey = f. Finally the unique-

ness of f; follows from that Cx is a dense embedding.

2.7 Corollary For every idempotent limit-operator b4

on & , the category CZK is productive and closed hereditary.

2.8 Definition A Hausdorff space X is said to be

Hausdorff closed if for every homeomorphism f of X onto a

subspace of a Hausdorff space X', f(X) is closed in X'.

2.9 Definition If X and Y are spaces, then a map

f: X—>Y is said to be semi-open if the image under f of
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each non-empty open set of X has non-empty interior in Y,

Remark: Since the composition of semi-open maps is
semi-open and every identity map on a space is semi-open, we
can consider the category of Hausdorff spaces and continuous

semi-open maps, We will denote it by Haus¥*,

H. Herrlich and G, E, Strecker have shown [30] that
the Subcategory Tt* of Haus* determined by all Hausdorff
closed spaces is epi-reflective in Haus¥* via the Katétov

extensions [34].

2,10 Lemma [30] Let Z and Y be spaces and f: 2 —Y
be a map., If X is dense in Z and if f|X: X—>Y is semi-open

then f is semi-open.

Proof: For any non-empty open set U in Z, U X is
again non-empty open in X, for X is dense in Z. Since flX is
semi-open, f(U M X) has non-empty interior in Y, so that so

does f(U).

The following corollary was proved by B. Banaschewski

first [3]. However, we will give here another proof.

2,11 Corollary ILet X be a Hausdorff space and let Y
be a subspace of the Katetov extension XX of X. If Y contains

X, then XX and XY are homeomorphic,

Proof: It is enough to show that the natural embed-
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ding j: Y— xX of Y into XX is a reflection of Y in OL%,

By the above lemma, j belongs to Haus*., Let i: X—> Y be the
natural embedding of X into Y. Since X is open in Y, i also
belongs to Haus*, For any 2 in Ol* and for any f: Y—> 2 in
Haus*, there is a unique morphism f: XX—> Z in O * such that

the outer triangle in the diagram

X —> Y J > KX

fi £ T

0N

commutes, Since X is dense in Y, Ej = f, The uniqueness of f

follows from that j is a dense embedding.

Remark: The category Haus* is not hereditary, for
the natural embedding of R into € is not a morphism in Haus*,
Hence we cannot apply Theorem 2.4 for the categories Haus*

and (Or¥.

For any idempotent limit-operator,ﬂ on O*, let U@f
be the subcategory of Haus* determined by those members of

Haus* which are.Q.-closed in their Katétov extensions.

2,12 Theorem The subcategory ZZE* of Haus¥* is

also extensive in Haus¥*,

Proof: For any Hausdorff space X, let sz X=—F &KX

be the reflection of X in Ol *, i.e. XX is the Katétov ex-
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tension of X and Xy is the natural embedding. Let XX be the
subspace of XX with 'QXXX as underlying set and X;: X— XX
the natural embedding of X into K(X. By Corollary 2.11, XX
= X XX, Being £ -closed in XX, hence in X XpX, XyX belongs
to Cgf. By Lemma 2,10, Xy is a morphism in Haus*, For any Y
in Ziﬁf and for any f: X—>Y in Haus*, there is a morphism

f: XX—>KY such that KYf = 'f-‘j g s ‘where J is the natural
embedding of Xp X into X X, Since T is a morphism in (7%,
£(xpX) = (L, ,0) € L F(X) € {yY = Y, Let £, = Fj, Then

f; is a well defined continuous map on X, X into Y and @?&2= f.
Thus, fbbelongs to ‘E by Lemma 2,10, Finally, the uniqueness
of f; follows from that %& is a dense embedding. This completes

the proof.

2,13 Definition A subset of a space is said to be

regular-closed if it is the same as the closure of its inte-

rioer,

2.14 Proposition Every epi-reflective subcategory

of Haus* is productive and regular-closed hereditary, i.e.
each regular-closed subspace of an object of the subcategory

is also its object.
Proof of the proposition can be found in [30].

2,15 Corollary For any idempotent limit-operator ﬁ,

the category 7¢,* is productive and regular-closed hereditary.

£
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Remark: D, Harris has considered [19] the category
pHaus of all Hausdorff spaces and p-maps, where by a p-map
is meant a continuous map such that the ihverse image of a
p-cover of the codomain is a p-cover of the domain, while
a p-cover of a space 1s an open covering such that the union
of some finite subfamily is dense. Then he has shown that
the full subcategory of pHaus determined by all Hausdorff
closed spaces is also extensive in pHaus via the Katétov

extensions and that pHaus is the largest subcategory of Haus

~in which the full subcategory of Hausdorff closed spaces is
extensive via the Katétov extensions. Instead of Haus®*, if

we consider the category pHaus, Corollary 2,11 and Lemma 2,10
are still true. Hence it is easy to show Theorem 2.12 for

the category pHaus.,

Section 3: Limit operators.

In Section 2, we have shown that for any idempotent
limit-operator 4 on any extensive subcategory & of some
suitable category A ,éﬁﬁ is extensive in A and contains Xl.

In this section, it will be shown that for any reflec-
tive subcategory & of a certain categoryJA-containing an
extensive subcategory o of A y there is a limit-operator
associated to &. . And it will give another method to construct
new extensive subcategories from a well known extensive

subcategory.
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3.1 Definition Let /4( be a subcategory of Top or

HUnif, An operator ﬂ which associates with every pair (X, A),
where X is an object of & and A is a subset of X, a subset

’QXA of X is said to be a semi-limit-operator on Ar if A

satisfies the conditions 1) and 3) in Definition 2.1, namely
i) if A is a subset of X, then A € [ A S T'XA, and
ii) if f: X—>Y is a morphism in ,A, and A is a subset of

X then f( £ A < Qf(A)
1ii) 1fACBCX then JZA c LB.

Remark: For any semi-limit-operator { on A , there is

" an assoclated idempotent limit-operator L on A'

Proof: For any X € A, let IX be the closure operator
on X with respect to a topology with JX(X) = {AIQ A = A} as
a subbase for closed sets. Since TyA € ’QX(PXA) C Ty (TyA)
= Tya, AC L, T A= [ya € (X)), Hence A © A © (A,
Since EX is the closure operator, :Q-X(A UB) = EXA o ’EXB
and PX( EXA) = EXA. For any morphism f: X—>Y in 4 and for
any F € s(v), t,e t(F) € L e(e71(F)) € 4yF = F, so that
_fxf‘l(F) < f'l(F), i,e. f"l(F) € JA}(X). Hence f is continuous

with respect to the new topologies generated by 'Q_X and ﬁy.
Thus for any A & X, f( JZXA) c EYf(A).

Remark: For any semi-limit-operator { on Top, let
,_L— be the associated idempotent limit-operator with )e
Let £ (/4 '{XeTop‘J&z(X) ’F(X)} and £ (L) =]X€ Top|
§al 2y = A} S %(x){, where %(X) is the family of closed
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sets of X, Then L (£) = £ (£).
Hence every semi-limit-operator JZ on Top generates

a coreflective subcategory of Top.

Proof: It is obvious that A~ (£) = & ({). Since
L () is a coreflective subcategory of Top [30], { gene-
rates the coreflective subcategory ‘_ﬁ«(ﬂ) = £(4).

3,2 Theorem Let ,A, be a subcategory of Haus or HUnif

and f. be an extensive subcategory of A» .
Suppose A ve heredit_ary and & be a reflective subcategory
of 4 containing d~ « Then we have the following:

1) There exists a semi-limit-operator A on 0("}, such that
€. is precisely the subcategory of A determined by the class
{X e A | ’QrXX = X}, where ry: X—>rX is a & -reflection
of X for each X € A.

2) There exists an idempotent limit-operator ¢ on £

such that o&F =2 Ce .

Proof: By Theorem 1.2, & is also extensive in A4 .

For any X € /4/, let eyt X—> eX be an &, -reflection of X,

X
Regarding 1), Let A be a subset of an object X of ..

Since A is hereditary, the subspace A of X belongs to J< .
For the natural embedding jA: A—> X, there is a unique mor-

. . < . e
phism fA. eA—> X in &, such that the diagram A A &k

/

Ty

e

Ja

X
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commutes, for X € &L & T .
We define XXA by fA(eA). We wish to show that the operator Y.
defined as above is a semi-limit-operator on L .
Firstly, A = j,(A) = f,e,(A) S £,(e4) = Kohs iuns
AC dyn, ana Lya = £,(eh) = £,(T (e, (8))) S [yf, (e, (a))
= T3,(a) = Tua, i.e. A4 € Mya,
Secondly, for any morphism h: X—> Y in O y We have

the following diagram

®x eh(/
. Y h )
Ja eA ———=-——->eh(A) Ine)
i £y Th(a)
A4
X h > Y , in which the

outer rectangle and the upper trapezoid commute, where jh(A)'
eh(A) and fh(A) can be understood such as jA’ ep and fA' and
h is the unique morphism determined by e, and eh(A)(hlA)‘
Since fh(A)BeA = fh(A)eh(A)(hlA) = jh(A)(hIA) = hj, = hf,e,,
fh(A)i = th, for e, is the reflection map.

Hence h( JZXA) = h(f,(eA)) = )'ﬁ(eA) c fh(A)(eh(A)) =

| Thia

th(A). 1.8, h(JZXA) < IYh(A), Obviously { satisfies iii).
Let i;z = {X E,A ‘ ,erx = X}. Now, we wish to show

that Xgﬁ = & . For any X € & » we have the following

commutative diagram:
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e
x—%* X ox
. rd
5= ) /fx = iy
rX .

Hence, Jfrxx = fx(eX) = jx(X) = X, i.e. X € cxif i
Conversely, suppose X does not belong to & . Since &, is ex-
tensive in,&', ex is not onto, By the proof of
Theorem 1,2, the morphism fxz eX—>rX defined by ey and ry
is a 2& -reflection of eX, so that fX is a dense embedding.
Hence, & # fy(eX - ey (X)) S fy(eX) - fyley(x)) = £ x - X,
This completes the proof.

Regarding 2), let;,E be the associated idempoteht

limit-operator with ¢ in 1), Then it is obvious that T, is

contained in o‘ﬁz.

Remark: 1) For the semi-limit-operator ,ﬁ on
defined in the above theorem, and for any X € A. , )Xl(x)
is precisely the family of subsets of X which belong to &
as subspaces of X,

2) 5&2‘ may contain 2_ properly.

Proof: Using the same argument of the proof of

Theorem 3.2, one can easily prove 1), We omit the proof of 1).
Regarding 2), 1let A4 be the category of completely
regular spaces and continuous maps, X. the subcategory of A

determined by compact spaces and E the subcategory of A
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determined by realcompact spaces.

S. Mrbéwka has shown [43] that there is a completely
regular space M which can be represented as the union of two
closed subsets - each of which is realcompact in its relative
topology - and which, however, is not realcompact.

Hence, by Remark 1), the space M € diz - F .



CHAPTER II

n-COMPACTLIKE SPACES AND SEQUENTIALLY CLOSED SPACES

In this chapter, we will apply the results of Chap, I

to some subcategories of Haus and HUnif.

Section 1: n-compact spaces.,

1.1 Definition Let n be an infinite cardinal number,

and let X be a topological space. A subset of X is said to be
a Gn-set if it is an intersection of fewer than n open subsets

of X,

It is clear that the Gn-sets of a topological space
(X,) form a basis. for a topology on X, We denote the new
topology by kjh.

Since the inverse image of a Gn-set under a continu-
ous map is also a Gn-set, the closure operator ‘ﬁn on X
with respect to ijh gives rise to an idempotent limit-
operator on Top.

A subset of X is said to be n-closed if it is closed
with respect to rﬁjh. Finally, by the n-closure of a subset

A of X is meant FnA.

The following definition is due to H. Herrlich [24].

33.
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1.2 Definition A completely regular space X is said
to be n-compact if every z-ultrafilter with the n-intersection

property on X is fixed,

Remark: A completely regular space is Rﬁo-compact
if and only if it is compact. Also, a completely regular

Py

space 1is i*l-compact if and only if it is realcompact.

It is known [24] that the category of n-compact spaces
is epi-reflective in the category of completely regular spaces
and continuous maps. For any completely regular space X, we

denote the reflection of X by Pna X— ﬁnX.

1.3 Notation For a completely regular space X, the
family of all unions of fewer than n cozero sets of €3X. which

contain X, will be denoted by cozn(X).

1.4 Lemma The n-closure of a completely regular

space X in X is the intersection of the members of coz_(X).
n

Proof: Suppose p & r\cozn(x). Then there is a member
S of cozn(X) such that p-QrS. Iet 8 = é?gl( BX - Z.), where
each Z_ is a zero-set of X and |Il < n, Since each Z_ is
a Gg-set, C}ZL is a G -set containing p and disjoint from X.
Hence p does not belong to the n-closure of X in f3X.
Conversely, assume that p does not belong to the n-

closure of X in F3X. Then there exists a anset G containing

p which is disjoint from X, Let G = Ae! y Where each G
te 1L ¢
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is open in {3X and |I] < n, Since the zero-set neighborhoods
form the fundamental system of neighborhoods, there exists

a zero-set neighborhood Z  of p in {3X with Z S G  for each
( €I, Hence p é% LL)( ﬁX - Z.) € cozn(X).

Noting that every cozero-set of (3X is o’ -compact,
each member of cozn(X) is the union of fewer than n compact
~ subsets of ﬁX. Hence each member of cozn(X) is n-compact as
subspace of ﬁX. Moreover, thé intersection of n-compact sub-

spades is again n-compact [24] ., Thus we have the following:

1.5 'Corollary The n-closure of a completely regular

space X in €3X is n-compact.

The following lemma is due to M. Husek [33].
1.6 Lemma For every infinite cardinal number n, the
class of n-compact spaces is Pn-simple, where
1) Py, = I, where I is the unit interval [0, 1],

2) if n is not a 1limit cardinal number and n = t+, then

J
1}

It - {p}, where p is a point of It,
3) if n is a limit cardinal number and n # X j, then

o N
Pn t< nPt+'

Proof of the lemma can be found in [33].

1.7 Theorem For a completely regular space X,

@nx is precisely the n-closure of X in (3X.

Proof: Since the ﬁio-closure of X in t3X is tSX i
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self, we may assume that n is greater than :io. Let Y be the
n-closure of X in @X. By Corollary 1.5 and Theorem 4,3 in
(23], it is enough to show that Y is a P_-extendable exten-
sion of X, In Lemma 1.6, let p = (1), i.e. all coordinates
are 1, Let n be a limit cardinal number. For any continuous

map f on X into Pn’ let E be the canonical extension of f to

T

t<n

Let w_ and Ty be the (-th projection of ]ﬁ onto J and the

t-th projection of tzfn I¢ onto TV respectively. Since

f(q) € P, there exists t such that m%f(q) = (1), Consider

fX into I°, Suppose there be a q € Y such that f(q)-§.Pn.

GT = (ILH%E)'l(]l - 1/m, 1J) for each natural number m and
t < t, Since G = M G? is a G_-set containing q, G meets
X, say x € G N X, Then-m%f(x) = (1), hence f(x) € P which
is a contradiction., Hence EIY is the desired extension of f
to Y,
By the same argument, one can easily prove that Y is

a Pn-extendable extension of X for an isolated cardinal number

n,

Noting that a completely regular space X is n-compact
if and only if FnX‘is homeomorphic with X and every member
of coz (X) is a ¢’ -compact subset of QSX, i.e. a subset
which is the union of fewer than n compact subsets of FSX,

we have the following:

1.8 Corollary For a completely regular space X,

the following are equivalent:
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1) X is n-compact,
2) X is n-closed in @X, and

3) X is the intersection of 0}rcompact subsets of p}L

1.9 Theorem An n-closed subspace of an n-compact

space is again n-compact.

Proof: Let Y be an n-closed subspace of an n-compact
space X, Being n-compact,‘X is n-closed in f3X, and hence Y
is n-closed in @X; Let T be the natural embedding of Y into
X. We denote the canonical extension of T to @ Y into P){
by T . Since ‘—C_(§Y - ¥) & PX - %(.Y) = ?X - ¥, z-1(y)
Z-1(Y) and the

is contained in Y, It is obvious that Y
inverse image of an n-closed subset under a continuous map is
also n-closed. Hence Y is n-closed in GSY, so that ¥ is n-

compact,

1,10 Proposition Let Y be an extension space of a

space X, Then X is n-closed in Y if and only if every point
of Y belongs to X, whenever its trace filter has the n-

intersection property.

Proof: Suppose that X be n-closed in Y, Take y € Y
whose trace filter has the n-intersection property. For any
family (GL)LG:I of open neighborhoods of y with |I| < n,
G, N X € T(y) for each L € I, where T(y) denotes the trace
filter of y. Hence () G_ M X # P, i.e. ¥y € X =X,
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Conversely, take y é.l*nX. For any subfamily (GL)L€=I
of T(y) with |I] < n, there exists an open neighborhood V.
of y for each t € I such that Vp, n\ X = G_. Since C) vV, is
a G -set, OVL N X # Cb , i.e. OG # 43 . Hence T(y) has

the n-intersection property. Thus y € X.

1.11 Definition A filter 3 on a completely regular

space X is said to be completely regular, if there is a base

5 of 4" consisting of open sets such that for any A € B,

there are a B € & contained in A and a continuous map f on X

into [0, 1] having the value 0 on B and the value 1 on CA.
A completely regular filter % is said to be maximal

if it is not contained in any other completely regular filter,

Since the Stone-éech compactification @X of a com.
pletely regular space X is given by the strict extension of X
with all maximal completely regular filters on X as the filter
trace [4, 7], the following is the immediate consequence of

Proposition 1,10,

1.12 Proposition A completely regular space X is

n-compact if and only if every maximal completely regular

filter with the n-intersection property is convergent,
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Section 2: Zero-dimensional spaces.

2.1 Definition A Hausdorff space is said to be zero-

dimensional if it has a basis consisting of sets which are

both open and closed.

The category of zero-dimensional spaces and continuous

maps will be denoted by Zero.

2.2 Definition A filter on a space is said to be

open closed if it has a basis consisting of sets which are

both open and closed, An open closed filter is said to be max-

imal if it is not contained in any other open closed filter,

It is known that the subcategory fD_of Zero deter-
mined by all zero-dimensional compact spaces is extensive in
Zero [1] . The reflection of a zero-dimensional space X is
given by the maximal zero-dimensional compactification §X of
X, i,e., the strict extension of X with all maximal open closed

filters on X as the filter trace [1, 4].

2,3 Definition Let n be an infinite cardinal number,

A zero-dimensional space X is said to be zero-dimensionally

n-compact if every maximal open closed filter with the n-

intersection property on X is convergent.

Remark: A zero-dimensional space is zero-dimensionally

rxo(}ﬁl)-compact if and only if it is compact (IN -compact,
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respectively) [23].

Combining Proposition 1.10 and the fact that the maxi-
mal zero-dimensional compactification $ X of a zero-dimensional
space X is the strict extension of X with all maximal open
closed filters on X as the filter trace, we have the following

immediately.

2,4 Lemma A zero-dimensional space X is zero-dimen-

sionally n-compact if and only if X is n-closed in §X.

Since every n-closed subspace of a compact space is

n-compact, we have the following:

2.5 Corollary Every zero-dimensionally n-compact

space 1s also n-compact.

For any infinite cardinal number n, the subcategory
of Zero determined by all zero-dimensionally n-compact
spaces will be denoted by o&n. It is noted that o&ﬂfo is
the category of all zero-dimensional compact spaces, while
the category “QSS is a proper subcategory of all zero-

dimensional realcompact (= N, -compact) spaces [46],

Combining Lemma 2.4 and the fact that the category
Zero is hereditary, we have the following by Theorem 2.4 in

Chap, I.

2,6 Theorem The subcategory (erof Zero is exten-
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sive in Zero.

2,7 Corollary The category of all zero-dimensionally
n-compact spaces and continuous maps is productive and closed

hereditary.

2,8 Corollary Let X be a zero-dimensional space and
f: X—>5 Y be a perfect map. Then X is zero-dimensionally

n-compact if Y is zero-dimensionally n-compact.

Proof: It is immediate from Theorem 1,5 in Chap. I.

2.9 Corollary Every n-closed subspace of a zero-
dimensionally n-compact space is again zero-dimensionally n-

compact,

Proof: By the same argument of the proof of Theorem

1.9, one can easily prove the corollary. We omit the proof.

It is well known [7, 23] that the sum space of a
family (X_)_eT of Hausdorff spaces is homeomorphic to a closed
subspace of I X T X., where I is endowed with the discrete
L

topology. Hence we have the following by Corollary 2.7.

2.10 Corollary Let (X_). et be a family of non-
empty zero-dimensionally n-compact spaces, If I is zero-
dimensionally n-compact with respect to the discrete topo-
logy, then the sum space 2_ X, of (X.) is also zero-dimensio-

nally n-compact,
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2,11 Definition A space X is said to be strongly

zero-dimensional if it is completely regular and ﬁX is

totally disconnected.

It is obvious [7] that every strongly zero-dimensional
space is zero-dimensional. But there is a zero-dimensional

space which is not strongly zero-dimensional [17, 46].

2,12 Corollary For a strongly zero-dimensional space
X, X is n-compact if and only if it is zero-dimensionally n-

compact,

Proof: X is n-compact if and only if X is n-closed
in @X = § X by the assumption if and only if X is zero-

dimensionally n-compact,

2,13 Theorem For every infinite cardinal number n,
the class of zero-dimensionally n-compact spaces is Dn-simple,
where

1) Dg, = D, where D is the two point space with the
discrete topology,

2) if n is not a limit cardinal number and n = t+, then
Dn = p¥ . {pf, where p is a point of Dt,

3) if n is a limit cardinal number and n # kfo, then

|
Dn T t<n Dt+.

Proof: Using the same argument of the proof of Lemma
1.6 by replacing the unit interval by D, one can easily prove

the theorem., We omit the proof,
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Section 3: n-complete spaces and n-Hausdorff closed spaces.

The following definition is due to M. HuSek [33].

3.1 Definition Let n be an infinite cardinal number.

A Hausdorff uniform space X is said to be n-complete if every

Cauchy filter with the n-intersection property on X is conver-

gent.

3.2 Definition The minimal elements (by the inclu-

sion relation) of the set of all Cauchy filters on a uniform

space X are called minimal Cauchy filters on X,

Recall [7?] that for a Hausdorff uniform space, its
completion ¢X is given as follows:

its underlying set is the set of all minimal Cauchy
filters on X and its uniform structure is generated by
{V | v symmetric entourage on X}, where ;'is the set of all
pairs (§,” ) of minimal Cauchy filters such that there is a

set M in 3 N " which is a V-small set.

In what follows, we identify each point of X with

its neighborhood filter, so that X is a subspace of cX.

Using the fact that each minimal Cauchy filter 3%
is generated by {V(F) | v: symmetric entourage on X, F € E}',
it is easy to show that the trace filter of §,<& cX on X

generates & itself., Moreover, for any Cauchy filter Zl ’
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there is a unique minimal Cauchy filter which is coarser than

7] ., Hence by Proposition 1,10, we have the following:

3.3 Lemma A Hausdorff uniform space X is n-complete

if and only if it is n-closed in cX.

The category of n-complete spaces and uniformly con-

tinuous maps will be denoted by C;n'

The following theorem is immediate from Theorem 2.6

in Chap., I and Lemma 3.3.
3.4 Theorem The category Cln is extensive in HUnif,.

3.5 Corollary The category C;n is productive and

closed hereditary.

3.6 Proposition Every n-closed subspace of an n-

complete space is again n-complete,

Proof: Since every uniformly continuous map is also
continuous, we can easily prove the proposition by the same

argument in the proof of Theorem 1.9.

It is well known [7, 17] that for every completely
regular space X, f?X is homeomorphic with the completion cX
of X with the uniform structure generated by the set C*(X) of
all bounded continuous real-valued maps on X, Hence we have

the following:
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3.7 Theorem A completely regular space X is n-compact
if and only if it is n-complete with respect to the uniform

structure on X generated by C¥*(X).

Proof: X is n-compact if and only if it is n-closed
in €3X if and only if it is n-complete with respect to the

uniform structure on X generated by C¥*(X).

Examples: For any infinite cardinal number n, there
is an n-compact space which is not t-compact for t < n, namely
Pn in Lemma 1.6, Thus there is an n-complete uniform space
which is not t-complete, i.e. <:t C C%n for t ¢ n,

It is also well known that for every zero-dimensional
space X, §X is homeomorphic with the completion cX of X with
the uniform structure generated by C(X, D), where D is the
two point space with the discrete topology and C(X, D) is the
set of all continuous maps on X into D. Hence we have the

following:

3.8 Theorem A zero-dimensional space X is zero-
dimensionally n-compact if and only if it is n-complete with

respect to the uniform structure on X generated by C(X, D).

3.9 Definition A filter on a space is said to be

open if it has a base consisting of open sets, And an open

filter is said to be maximal open if it is not contained in

any other open filter,
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3,10 Definition Let n be an infinite cardinal number.

A Hausdorff space X is said to be n-Hausdorff closed if every

maximal open filter with the n-intersection property on X is

convergent,

It is noted that a Hausdorff space is Hausdorff closed

if and only if it is QRO-Hausdorff closed.

Since the Kat&tov extension xX of a Hausdorff space
X is the simple extension space with all non-convergent maxi-
mal open filters on X together with all open neighborhood
filters on X as the filter trace, we have the following by

Proposition 1.10,

3.11 Lemma A Hausdorff space X is n-Hausdorff closed

if and only if X is n-closed in XX,

The subcategory of Haus* determined by all n-Hausdorff

closed spaces will be denoted by UL;.
3.12 Theorem The category O K is extensive in Haus¥*,

Proof: It is immediate from Theorem 2,12 in Chap, I

and Lemma 3.11,

3.13 Corollary The category Zﬂ,; is productive

and regular closed hereditary.
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Section 4: Sequentially closed spaces.

S, P, Franklin has shown [12, 13, 14] that the cate-
gory )Ju%of sequential spaces and continuous maps is coref-
lective in 232; Also, H, Herrlich has shown [26] that the
category KL of K -sequential spaces and continuous maps for
any regular ordinal K is coreflective in Top.

We will investigate some properties of the associated
reflective subcategories in various subcategories of Haus and

HUnif with )<§70( .

4,1 Definition Let A& be a regular ordinal, A net

is said to be an & -sequence if its domain is the well-

ordered index-set & i.e., the set of all ordinals less than & .

It is noted that (Uo-sequences are exactly usual

sequences,

4,2 Definition A subset U of a topological space X

is o -sequentially open if each X -sequence in X converging

to a point in U is eventually in U, A topelogical space X

is said to be K -sequential if each -sequentially open

subset of X is open.

It is again noted that CUO-sequential spaces are

exactly sequential spaces,

For a subset A of a topological space X, we define
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oL
ﬂXA by {x € X | there is an { -sequence in A converging to x}.
o
Then it 1s easy to show that the operator ,Q defined as above
is a limit-operator on Top. Moreover, it is known [26] that
QO(

«
associated idempotent limit-operator with ,Q .

is not idempotent and that the category )&K generates the

4,3 Definition A filter % on a set X is said to

be an ® -filter for a regular ordinal ®« if it has a base

(Ba)a ¢y Such that B, < B/_k for MHA KX .

It is noted that Ooo-filters on a set are exactly

filters with countable bases,

4,4 Definition A filter on a set X is said to be

an o-Fréchet filter for a regular ordinal « if it is gene-

rated by the tails of an o{ -sequence on X.

It is obvious that loo-Fréchet filters are exactly

Fréchet filters.

L,5 Proposition Every o -filter on a set X is the

intersection of the & -Fréchet filters containing it.

Proof: Let 3 be an & -filter on X and (By)x <

a base of 5 such that B, < B# for w AKX o Let ay
be any element of B, for each A (& ; then it is clear that
%% is coarser than the X -Fréchet filter generated by the

tails of the & -sequence (a, ), ¢ -
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Hence the intersection ,5 of the & -Fréchet filters which are
finer than ¥ exists and is finer than % ; if % is strictly
finer than % then there exists a set M € ,9 such that

Bx MCM # P for each A< ; if b, € Bx M €M, the «-Frechet
filter generated by the tails of the o-sequence (b, )A<id

is finer than %4 and does not contain M. This contradicts the

definition of )S &

4,6 Proposition Let Y be an extension space of a

space X. The following are equivalent for the limit-operator
2

1) Lyx = &,

2) For any y € Y, if there is an & -Fréchet filter on X
containing its trace filter T(y), then y € X.

3) For any y € Y, if there is an ® -filter containing

its trace filter T(y), then y € X.

Proof: 1)=b2), Let 4 be an -Fréchet filter con-
taining T(y) and let (x, ))\<d\ be an o -sequence in X which
generates %4 , By the definition of the trace filter, it is
obvious that the ¢ -sequence (x,\ ) converges to y. Hence y
belongs to QéX = X,

2)=3). It follows immediately from Proposition 4.5.

3)=1). For any y e JZO.;X, there is an X -sequence
(x5 ))\<o( in X converging to y. It is easy to show that T(y)
is contained in the o -Fréchet filter generated by the tails

of (x)\). Hence y <€ X.
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4,7 Definition A completely regular space X is

said to be 5 - K -sequentially closed if every maximal comp-

letely regular filter on X converges, whenever it is con-

tained in an K -filter.

Recall that the Stone-éech compactification {EX of
a completely regular space X is the strict extension space
of X with all maximal completely regular filters on X as the
filter trace and that jﬁéxx = X if and only if X is ,ET-
closed in @X, where {* is the associated idempotent 1imit-
operator with ,ﬁd. Hence the following is immediate from

Theorem 2,4 in Chap. I and Proposition 4,6,

4,8 Theorem The category Comp . of B- A -sequenti-

¢

ally closed spaces and continuous maps is extensive in the

category of completely regular spaces and continuous maps.

4,9 Coroliary The category Compﬂs is productive

and closed-hereditary.

4,10 Definition A zero-dimensional space X is said

to be & - o -sequentially closed if every maximal open closed

filter on X converges, whenever it is contained in an « -

filter.

The category of § - o -=sequentially closed spaces and

continuous maps will be denoted by (gﬂ .

By the same argument of Theorem 4.8, we have the
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following:

4,11 Theorem The category06bw is extensive in the

category Zero,

4,12 Corollary The category M&Q“ is productive and

closed hereditary.

4,13 Definition A Hausdorff uniform space X is said

to be c- K -sequentially closed if every Cauchy filter on X is

convergent, whenever it is contained in an o -filter.

We will denote the category of c- A -sequentially closed

spaces and uniformly continuous maps by CZXN.

Using the same argument of Lemma 3.3 and the fact that
for any Hausdorff uniform space X, X;XX = X if and only if

o
X is L -closed in cX, we have the following by Theorem 2.6

in Chap. I and Proposition 4.6,

4,14 Theorem The category Ciixis extensive in the

category HUnif,

4,15 Corollary The category (ij is productive and

closed hereditary.

4,16 Definition A Hausdorff space X is said to be

X - ol -sequentially closed if every maximal open filter on X

is convergent, whenever it is contained in an X -filter,
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The category of X - & -sequentially closed spaces and

continuous semi-open maps will be denoted by Zlﬂi.

By the same argument of Lemma 3.1l and the fact that

- o

for any Hausdorff space X, fixx = X if and only if X is X -
closed in X X, the following is immediate from Theorem 2,12

in Chap. I and Proposition 4,6,

4,17 Theorem The category ‘Dﬁ; is extensive in

- the category Haus*,

4,18 Corollary The category 'E%; is productive

and regular-closed hereditary.

The following definition is due to P, Alexandroff

and P, Urysohn [0] .

4,19 Definition Let ;ﬁx'be an infinite cardinal

number, A Hausdorff space X is said to be ‘§«'~ﬁo compact if

every open covering U of X with |U| < :&d.' has a finite

subcovering.

It is noted that S-O-Sio compact spaces are precisely

countably compact spaces.

Remark: A Hausdorff space X is 5%(‘;ﬁo compact if
and only if every filter with a base whose cardinal number is
not greater than S;k has a cluster point, for the condition

is the dual statement of the definition.
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4,20 Theorem Let X be a regular ordinal and
let X be the cardinal number of &, Then every R - &b compact
space is X - K -sequentially closed, and every completely regu-
lar (zero-dimensional, Hausdorff uniform) ¥ -530 compact

space is @ (5, c, respectively)- o -sequentially closed.

Proof: Let X be an & - S‘O compact space and U a
maximal open filter on X contained in an &« -filter % .,

Since % has a base (B )x ¢ « + % has a cluster point x.
Hence the join of % and J4J(x) exists, where JJ(x) is the
neighborhood filter of x., Hence WU N JdJ(x) = 2 by the
maximality of 2/ . Thus 2/ is convergent.

Regarding the second part, let X be an ¥ - &, compact
completely regular (zero-dimensional, Hausdorff uniform) space
and 7/ a maximal completely regular (maximal open closed,
Cauchy, respectively) filter on X contained in an K -filter
% , Then %% has a cluster point x. Combining the fact that
U VY dZ(x) exists and the fact that every neighborhood filter
in a completely regular (zero-dimensional, uniform) space is
a maximal completely regular (maximal open closed, minimal
Cauchy, respectively) filter, we have U 2 JJ(x), for
U NVO(x) =4T0x) =Y ( YU VIx) =T& =U , UATE)
={J(x) < U , respectively).

4,21 Definition A completely regular space is said

to be pseudo-compact if every continuous real-valued map on

the space is bounded.
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Remark: It is well known [17] that every countably
compact space is pseudo-compact, However, there is a pseudo-
N
compact space, namely X - {(l)} which is not g-wo-

sequentially closed.

Since every ultrafilter on a discrete space is con-
vergent, whenever it is a Fréchet filter, we have the

following:

4,22 Theorem Every discrete space is X ( p.g g Bl
U)O-sequentially closed,

. Example: The smallest ordinal of a cardinal number

X, is denoted by W.. Let X be a nonlimit ordinal > O.
Let W(W,) be the space of all ordinals less than W) endowed
by the interval topology. Then it is well known [l?] that
no subset of W(W,) of cardinal number <5§A is cofinal, that
every bounded subset of W( W,) is relatively compact and that
Bw(wy) = SW(wy) = W(Wy + 1), Hence for any regular ordi-
nal X <W, , W(wy) € Comp o« (xﬂia). But for any regular

ordinal > Wy » W(Wy) & Comp_ﬂo(( °®,Q°()‘



CHAPTER III

PROJECTIVE COVERS AND EXTENSIVE SUBCATEGORIES

Section 1l: Extremally disconnected spaces.

1.1 Definition Let X be a category and [§ a class

of morphisms in X .

An object P of X is said to be & -projective if for

any morvhism g: P—>B in X and for any f: A—>3B in &9,
there exists a morphism h: P—3>A in X such that g = fh.

A morphism f in § is said to be essential if fg € §
implies g € 89 . We denote the class of all essential
morphisms in X by §>*.

A morphism f: A—>B in K 1is said to be a &-projective

cover of B if A is f -projective and f € *,
The following definition is due to B, Banaschewski [5].

1.2 Definition Let K be a category and 83 a class

of morphisms in XK .

The &’—projectivity is said to behave properly if

the following three conditions are fulfilled:
1) The following are equivalent for an object P:

i) P is  -projective.

55,
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ii) Any morphism f: A——P in § has a right inverse,
1ii) Any morphism f: A—P in £ * is an isomorphism.
2) Any object in X has an essentially unique &D-
projective cover.
3) The following are equivalent for a morphism f: B—> A
in 6’:
i) f is a § -projective cover.
ii) f is an essential morphism and, for any g, if fg
is an essential morphism then g is an isomorphism.
iii) B is § -projective, and if f = hg with morphisms
g and h in & where h has & -projective domain then g is an

isomorphism,

1.3 Definition A topological space is said to be

extremally disconnected if every open set has open closure.

It is well known [5, 40, 50] that the extremally
disconnected spaces become 83-projective objects in various
categories of topological spaces and some specified classes

@3 of morphisms in themn,

1.4 Definition Let L be a lattice with 0.

A pseudo-complement of an element a € L is an element b € L

such that for all x € L, a A x = 0 is equivalent to that

x £ b, A lattice L with 0 is said to be pseudo-complemented

if every element of L has a pseudo-complement. We denote

the pseudo-complement of a by a¥ for a € L,
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Example: It is known that the lattice of open subsets
of a topological space is pseudo-complemented, where for any
open set U, ICU is a pseudo-complement of U in the lattice,

while [ denotes the interior operator on the space.

1.5 Definition A distributive pseudo-complemented

lattice is said to be a Stone-lattice if a*Va** = ¢ for each

element a and the unit e in the lattice.

1.6 Lemma A topological space (X,{)) is extremally

disconnected if and only if the lattice J is a Stone-lattice.

Proof: Suppose that X be extremally disconnected.
For any open set U € {J, U*¥ V y** = Tcy U ICICU =
ICU Y CICU = X, for MU =CICU and IIMU =I"U, Hence the
lattice 4 is a Stone-lattice,

Conversely, for any open set U, we have U* V U¥¥ =
Tcu Y ICICU = X, Hence CICU < ICICU, i,e. CICU = I U,
Consequently, "U = I[" U, This completes the proof.

The following lemma is due to G. Gratzer and E, T,

Schmidt,

1.7 Lemma A distributive pseudo-complemented lattice
L is a Stone-lattice if and only if every prime filter in L

is contained in at most one maximal filter.

Proof of lemma can be found in [18].
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Every prime open filter is contained in at least one
maximal open filter by Zorn's Lemma. Hence we have the

following:

1.8 Theorem A topological space is extremally disco-
nnected if and only if every prime open filter is contained

in exactly one maximal open filter.

Proof: The theorem is an immediate consequence of

the above two lemmas.

We wish to introduce the maximal open filter space of
a topological space which will be used in our subsequent deve-
lopment,

Let X be any Hausdorff spacé, 425= its topology, and
L3 =.£jl(X) the set of all maximal open filters on (X,3).
Then for any V € J_), putﬂv ={3|vesxg é—D-} ; it is
obvious that QUm QV = QU A v and the sets ‘Q‘V form
the basis of a topology on {2 . The space thus given, again
denoted by {2 , is Hausdorff, for UMV = ¢ implies that
lClU-r\-fzv = ¢, It is well known that the space (2 (X) is
compact and extremally disconnected,

Now, let /) = /\(X) be the subspace of {2 given
by all convergent ¥ < X, i.e. all ¥ € L) such that %
contains a neighborhood filter of a for some a € X, Since
{7(x), x € X, is contained in some € ¢ () by Zorn's

Lemma one sees that /\ is dense in L2 ; thus /\ is also
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extremally disconnected.,

An obvious map from /\ to X is ¥ ~> 1lim%, which
will be denoted by lim, or limX if reference to the space is
required, It follows from what was just said that lim is an

onto map.

1.9 Definition Let X and Y be topological spaces,

and let f: X——>Y be a map. Then f is said to be compact if
the inverse images of points are compact.
An onto map g: X—> Y is said to be minimal if for

any closed subset A X, f(A) = Y implies A = X,

1.10 Theorem The map lim: /\ (X)—X is compact,
closed, and minimal onto, And it is continuous if and only

if X is regular,

Proofs of the theorem can be found in [5, 50].
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Section 2: Perfect onto projectivity

in extensive subcategories,

In what follows, the class of morphisms to play the
role of @D in Definition 1.1 and 1.2 will always consist of

perfect onto morphisms,

It is known [5] that in a subcategory X of Haus,
perfect onto projectivity is properly behaved if XK 1is closed
hereditary and productive, or K is a full subcategory of Haus
which is left-fitting with respect to essential perfect onto
maps, or X consists of all objects and all perfect maps from

a category &ﬁ which satisfies one of the above conditions.

Since any extensive subcategory of the category of
completely regular spaces (zero-dimensional spaces) and
continuous maps is productive and closed hereditary, the
perfect onto projectivity in such a category is properly
behaved,

However, an extensive subcategory of Haus* need not

be closed hereditary.
2.1 Lemma Every minimal closed map is semi-open.

Proof: Let f: X——>Y be such a map, and let U be a
non-empty open set of X, Since f is minimal closed, Cf(CU)
is non-empty open and f(U) contains Cf(CU), Hence f(U) has

non-empty interior.
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2.2 Corollary Every extensive subcategory of the
category Haus* is left-fitting with respect to essential

perfect onto maps in Haus.

Proof: It is known [5] that the essential perfect
onto maps in Haus are exactly the minimal ones., Hence by Lemma
2.1, every essential perfect onto map in Haus is a morphism
in the category Haus*. Thus the corollary is immediate from

Theorem 1.5 in Chap. I.

2,3 Theorem Let J.¥ be an extensive subcategory
of Haus* and let & be the full subcategory of Haus with the
same objects of i *.

Then perfect onto projectives in J,. are precisely the
extremally disconnected spaces belonging to & and the perfect
onto projectivity in & is properly behaved,

And the same holds for the subcategory of J. with the

same objects, but only the perfect maps from b A

Proof: It is immediate from Proposition 3, Coro-

llary 3 of Proposition 4 in (5] and Corollary 2.2.

2.4 Corollary In the subcategories of Haus deter-
mined by the following classes of spaces together with either
all their continuous maps, or all their perfect maps, the
perfect onto projectives are precisely the extremally dis-

connected spaces belonging to them and the perfect onto
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projectivity is properly behaved:
1) Hausdorff closed spaces.
2) Spaces which are { —closed in their Kat&tov extensions
for a limit-operator { on OL*.
More specifically, the following are given:
2i) n-Hausdorff closed spaces for each infinite cardinal

number n.,

2..) x - -sequentially closed spaces for each regular

ii
ordinal « ,

Section 3: Almost n-compact. spaces.

3,1 Definition Let n be an infinite cardinal number.

A Hausdorff space X is said to be almost n-compact®if every

maximal open filter is convergent, whenever the closures of

its members have the n-intersection property.

Remark: Z, Frolik has defined the almost realcompact
spaces as the almost cﬁl-compact spaces [l@ .

A Hausdorff space is almost sﬁo-compact if and only

if it is Hausdorff closed.

3.2 Definition Let 72 be a collection of open cover-

ings of a space X. An 7Z-Cauchy family is a filter subbase xg

of open subsets of X such that for every % in 7/ , there exist

#AIlmost n-compactness has independently been defined by R.N,
Bhaumik and D.N. Mirsa, Czech, Math, J, 21(96), 625-632(1971).
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an A in % and a B in ;5 with B € A,
The collection 7L is said to be complete if every 77 -

Cauchy family has at least one cluster point.

Remark: A uniform space X is complete if and only if
the family of all uniform open coverings is complete in the

sense of the above definition.

3.3 Theorem Let X be a Hausdorff space and let 72n
be the family of fewer than n open coverings, Then X is almost

n-compact if and only if ‘Qn is complete.

Proof of this is essentially contained in the proof

of Theorem 1 in [16],

Remark: We note that a maximal open filter % is ?%-
Cauchy if and only if {f‘U | U €-7R} has the n-intersection

property.

3.4 Theorem Let X be a completely regular space
and let Y; be the family of fewer than n cozero set cover-

ings of X. Then X is n-compact if and only if T; is complete,

Proof: (=»). Let U ve a Y%-Cauchy family in X.
Suppose that 2L has no cluster point, Since 7( is a filter
subbase on {3X, 2 has a cluster point in f3X, say p. Then it
is obvious that p € X. Since X is n-compact, X is n-closed in

ﬁx. Hence there is a family {Ubf(‘e I of open neighborhoods
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of p in (3)( such that (L\UL N X = 42 and |I| <{n. Noting that
the zero-set neighborhoods of p form a fundamental system of
neighborhoods of p, there exists a family {ZL} LeT of zero-
sets of (X such that p € 2, < 2, < U, for all ¢ € I, Thus,
(Mz,)"Xx=¢ , Since La C (2o X) = X and (2 N X) is
a cozero-set in X for every ¢ € I, {Q:X(ZL 2y o 1.8 P
There exist a U € U and an (€I with U & & (2, N X), which
implies that U does not meet Z, M X, Hence UM 2 = ¢>, which
is a contradiction to that p belongs to the closure of U in f3X.
(&), Let & ve a z-ultrafilter on X with the n-inter-

section property. Consider U = {U] U: open and U 2 2 for
some Z € % {, Show that 7/ meets every member of v« Indeed,
suppose that there is an Y G:Y% such that each member of U does
not belong to U . Then for every Z € % and every A é&A} ’
Z CA # &, Noting that 5% is a z-ultrafilter and CA is a
zero-set for each A €N , CA € % for all A €. ., But

(\CA = ¢> and || < n, which is a contradiction to the n-
intersection property of % . Hence U is an-Cauchy, so that
2. has a cluster point., By the complete regularity of X, we

have Q)Z = é;}LPU # CF . This completes the proof.

3.5 Corollary Every n-compact space is almost n-

compact.,

Proof: Since 72 2 th for any completely regular

n

space, every 72n-Cauchy family is also de-Cauchy. Hence
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every 7'Zn-Cauchy family has a cluster point.

3,6 Lemma Let CL)O( be the first ordinal of cardinal
number ;‘Siv(. Let W(Wxy4 1) be the space of ordinals less than
a&-ﬁ- 1 endowed with the interval topology. Then every family
of fewer than :(530( + 1 closed and cofinal subsets of W(LL)OL + l)

has a non-empty intersection,

Proof: Let (F ) ¢ 1 Pbe such a family. Choose a re-
lation < which well-orders I, Define an ordered set 2, as
follows: its underlying set is I X N and its order relation
< is given by: (L, kX)X (), m) iff k<mor ¢ < y , if k

= m, Then by the induction, we can construct a subset {AL k}
’

for (¢, k) € I XN, of W(4} 4 1) such that A € F,_ and

L,k

(L, k) X (&, m) implies )\L.k <A Indeed, let LO be

Fom?
the first element of I. Then take any element A €F .

1'010 LO
Suppose that we have a subset D‘L . (L, k)< (), m)} with

9

the above properties for some (Y, m) in I XN ,
Noting that the cardinal number of the set is less than .Sfo(+ 10
it is bounded in W(4) 4 7). Let @/hm = sup{)\L'kl( Ly k)
L&, m)}. Since F, is cofinal, there exists an element A

¥ FyM

of Fk such that )\},m >/ &

number of the set P‘L,k‘ (L, X) e Ix N} is less than:ﬁx_l_ 1

yom' Again noting that the cardinal

1

- . . w 3

it is bounded in W(% L ), so that :?1:1}2 {AL,k} exists, We
denote it by T . Furthermore, we can show that for each ( < I,

T = Spp ?xL’ . It is clear that T 2> syp A (,m For each

m
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g <
(y, k) € IxN, Ahk\ AL,k+lSs}ﬁp)\L,m’ so that ¥ <
Sup )\L m Now we can conclude that T belongs to IL\FL.
1

Because for any o ( T , there exists an m € N such that
67 < J\L’m$ T, so that [&+ 1, T3 \F_ # ¢. Therefore,
< e F,, for it is closed.

3.7 Corollary The space W(W, _ l) is almost:ﬁ& +o-

compact but not almost dﬁx +1.compact.

Proof: It is known [24] that the space W(W)y , ;) is
AN ok +2-compact. Hence it is almost N'o( +2-compac't by Corollary
3.5. Now let us show that the space is not almost ‘ﬁc(+1‘
compact, Let U be a maximal open filter containing e{T(ov+ 1)
o<W o Y, where T(¢’) = { o | ©KT <“)0(+1z- Then it is clear
that 7( is not convergent., By Lemma 3.6, {I“U) U €U} has

the :id+1-intersection property, for every member of a non-

convergent maximal open filter is cofinal,

Z. Frolik has shown [L6] that every intersection of
REGULAR

almost realcompact subspaces of €Y§5ace is also almost real-
compact and every closed subspace of an almost n-compact
regular space is again almost realcompact.

With the simple modifications of his proof, we have
the following:

3.8 Lemma Every intersection of almost n-compact

E&GuUL,
subspaces of a space is also almost n-compact,
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And every closed subspace of an almost n-compact regular

space is also almost n-compact.,

3.9 Theorem Let n be a limit cardinal number. Then
there exists an almost n-compact space which is not almost

t-compact for every infinite cardinal number t { n.

Proof: Let n =% and I the set of all suolabed infi-
nite cardinal numbers less than n., And let X =$QEiW(a&\+ 1)
with the product topology. It is known [24] that X is n-compact.
Hence it is almost n-compact. Suppose that X is almost S&-
compact for some && < n, Since X is regular, the closed sub-
space of X which is homeomorphic with the space W(&) 4 ;) is
also almost S%fcompact, which is a contradiction to Corollary

3.7. This completes the proof.

3,10 Theorem The full subcategory of Haus* deter-

mined by all almost n-compact spaces is extensive in Haus*¥*,

Remark: During the preparation of this thesis, it has
happened that C-T, Liu and G, E. Strecker have shown that the
subcategory of Haus* determined by almost realcompact spaces
is extensive in Haus* [38] . Their proof goes almost same as
ours, However, for the completeness, we will give here the

proof of the theorem.

Proof of Theorem: Let X be a Hausdorff space and X

the set of all non-convergent maximal open filters on X,
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We define r X = X U {ﬂze‘il{rkU\ U €T} has the n-intersec-
tion property} with the relative topology of KX,
It is clear that rnX is a Hausdorff extension of X and X is
open in rnX. Let ro X-—;-rnx be the natural embedding of X
into r X. Then it is obvious that r is a morphism in Haus¥*.
We wish first to show that rnX is almost n-compact. Let 77n
be the collection of all fewer than n open coverings of rnX.
By Theorem 3.3, it is enough to show that 5?n is complete,
Suppose that there is a 7En-Cauchy filter subbase 3 on rnx
which has no cluster point, Consider G =4F NX|F €5,
Clearly, (G is an open filter subbase on X, Moreover, G is
an 'Qn—Cauchy filter subbase on X, where 72n is the collection
of all fewer than n open coverings of X, Indeed, take a member
U ={at g of % . Define Ay = A, Y {mle r X | A €},
Noting that'KL is the largest open set in rnX whose intersec-
tion with X is A, and every Tt € r X - X is C;-Cauchy, we
can conclude that iz = {KLI t€ I} belongs to ;?n‘ Since %
is ﬁn-Cauchy, there are an F € 5 and an (€ I with F _CL—’A'L.
Hence F X S A A X = A(. Let?be a maximal open filter
containing ¢ . Then ‘7 is also Qn-Cauchy; therefore,
-{VXA] A€ Wl} has the n-intersection property, and 7l does
not converge, because ggirkG = ¢>. Thus 9}{ is an element of
r X. Moreover N is a cluster point of % , for (UMVI{NMG) NF
2UN(FNX) #for all U€ N[ and F €T , which is a

contradiction., Hence rnX is almost n-compact.
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For any almost n-compéct space Y and for any continuous semi-
open map f: X—>Y, we wish to find an extension of f to rnX.
For each x € X, let f(rn(x)) = f(x), If N € r X - X, let
'Z{-,,[ = {If(U)| U € J)’((% . Since f is semi-open, ¢ Jf ‘le; for
Uand V in 7C , T£(U)N If(V) 2 I[£(U N V), which belongs to
u?fc. Thus, Usr is an open filter base on Y, Moreover, Ui
generates a maximal open filter on Y, Let7C be an open filter
generated by "217rc. Take an open set V in Y s.uch that V meets
every member of 7U . Clearly V meets If(U) for all U € 7T,
Therefore f'l(V) N U # ¢ for all U € AL . By the maximality
of A , we have £~1(V) € M , so that V2 T£(£~2(V)) € Uy
hence V € 7J{L . We denote the collection of all fewer than n
open coverings of Y by "21{1 We will show that 90 is also
’l}-Cauchy. Consider a member U'= (A g of 7. Clearly,
f"l(U') = {f’l(AL)}‘L.@Ie 72n' Since T is ’Zn-Cauchy. there
are a U € Nland an ( € I with U & f'l(Al,). so that [f(U)

c f(u) c f(f’l(AL)) € A,. Since Y is almost n-compact, 7T

converges to a unique point € Y by the maximality of 9T .

Py
We let £(IT) = Do 5 T T e X is well defined. X being open

in r X, f is continuous at each point of X. Take /e r, - X,

and take an open neighborhood U of f(7) = Dy *

Since 7( converges to Porr U €70 . Hence f'l(U) € T ;
L) Y {"l((} is an open neighborhood of 91 , and E‘(f"l(U)UWCS)

© U; therefore f is continuous at 777 . Since Ern = f, f is

semi-open, i.e. a morphism in Haus*., And the uniqueness of f
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follows from the fact that r, is dense,

3.11 Corollary The cétegory_of almost n-compact
spaces and continuous semi-open maps is productive and regular

closed hereditary.

3.12 Theorem In the category of almost n-compact
spaces and continuous maps or the category of almost n-compact
spaces and perfect maps, the perfect onto projectives are
precisely extremally disconnected almost n-compact spaces and

the perfect onto projectivity is properly behaved.
Proof: It is immediate from Theorem 2.3 and 3.10.

3.13 Lemma Every dense embedding of a Hausdorff
space X into an almost n-compact space Y can be continuously

extended to rnX.

Proof: Let j: X—>Y be the dense embedding. Without
loss of generality, we may assume that j(x) = x for each x € X,
For each x € X, let f(x) = x, If M er X - X, let =
1U | U: open in Y and U N X e‘ﬂ?}. It is obvious that U is an
open filter on Y, Moreover it is a maximal open filter,
Let QA and 7(5 be the collections of all fewer than n open
coverings of X and Y respectively. Suppose (AL)Lékl-e ’25,
Clearly (AL X)LE:I‘G‘Yn. Since M 1is anCauchy, there is a
V € M and there is an L € I such that VS A, X, so that

A_ A X belongs to NC ., Hence A e, Thus m' is 7[1:1-Cauchy.
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. . ! . .
Since Y is almost n-compact, 7L converges to a unique poilnt

p. € Y by the maximality of M . We let (M) =p hence

mm g}
f: rpX—>Y is well defined. The continuity of f follows from

the exactly same argument in Theorem 3,10,

Remark: We note that a dense embedding need not be
semi-open., For example, f:  —> R defined by the natural

embedding is not semi-open, but a dense embedding.

3.14 Corollary Every continuous map f on a comp-
letely regular space X into an n-compact space Y can be con-

tinuously extended to rnX.

Proof: It is immediate from the commutative diagram

X ————f—__)Y

rnl n TE
B

r X —25 B X » where 5 is determined

by pnf Lemma 3.13 and Corollary 3.5, and f is determined by
f and @n.

3.15 Theorem For a completely regular space X,
€r X = X, where SY is the complete regularization of
n n n

a space Y,

Proof: Let §: r X—> Sr X be the reflection map
of rnX in the category of completely regular spaces,

It is easy to show that §r, is the embedding of X into §r X.
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Indeed, for any x, ¥y in X and x # y, there is an f € C¥(X)
such that f(x) # f(y). Hence there is a continuous map on

rnX into [zf(X), which is an extension of f by Corollary 3.1l4,
Therefore, \9(rn(x)) # \9(rn(y)). Clearly, §>rn is continuous,
Take a zero-set Z in X, Let g be a continuous map on X into
the unit interval with Z(g) = Z. Then there is a continuous
map g on rnX into the unit interval with gnlx = g. Also there
is a unique continuous map g on 3>rnX into the unit interval
with g8 = g, It is obvious that ACINaR: rn(X) = B rn(Z).
Without loss of generality, we may assume that jDrn(x) = X
for all x € X, Combining the above corollary and the unique-

ness of ﬁnX, we can conclude that an rX= pX

Since the almost n-compactness is not closed heredi-
tary, we can not apply the same argument as Corollary 2,10
in Chap II to the case of almost n-compact spaces,

However, we have the following:

3.16 Theorem Let (Xt)LeI be a family of non-empty
almost n-compact spaces. If I is almost n-compact with respect
to the discrete topology, then the sum space X X, of (X.)

is also almost n-compact.

Proof: Let X = 2 X, and 7 a maximal open filter on
X such that {T‘U\ U e‘ﬂI} has the n-intersection property.
We define Ij = et UN X, # CP}for each U<€l{ . Then it
is obvious that ¥ = ‘{IUl U-E?K} is an ultrafilter with the
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n-intersection property. Hence % has a cluster point ¥ o
Let G ={UlU<eT and U E X&}. Then it is easy to show
that & is a maximal open filter on X, such that {rkXG\ ceGs
has the n-intersection property. Hence & has a cluster point

in X&;‘WL also has a cluster point in X.

For a Hausdorff closed (= almost iﬁo-compact) space
X, AX) = {2(X) is compact, hence almost ﬁfo-compact.
For any almost n-compact regular space X, lim: lk(x)——e-x is
essential perfect onto, so that A(X) is also almost n-compact

by Corollary 2.2 and Theorem 3,10,

3.17 Theorem If a Hausdorff space X is almost n-

compact then A (X) is also almost n-compact.

Proof: Let ?Zn and ?2;1 be the collections of all
fewer than n open coverings of X and A(X) respectively.
Then {\M(X) is precisely the set of all 7Zn-Cauchy maximal
open filters on X, for X is almost n-compact,

Suppose that there is an 7Z£fCauchy family % which
has no cluster point., Since lim is minimal closed, U =
{dllim(G:F)\ F e‘?} is an open filter subbase on X, Suppose
that U has a cluster point a. Then there is a maximal open
filter 7 containing {J)(a) and U .

We wish to show that Il is a cluster point of % ,
which is a contradiction., Indeed, suppose that 7 & FA(X)F

for some F € %, Thus there is an open set V in X such that
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e AV =..QV('\A(X) and AV NF = ¢, since V€ T,
VN Clim(C F) # 43, say b€ VNC1lim(C F), There exists a
maximal open filter /U on X which converges to b, Hence 9 €
AV, so that 7L & F; 1im7l = b € 1im(CF), which is a cont-
radiction, Thus, 7( has no cluster point,

Let Mve a maximal open filter on X containing U .
Since X is almost n-compact and 9T has no cluster point, there
is'a subfamily (UL) e 1 of T such that QI VXU = ¢ and |
|I1 < n, Since JC T,U_ = X, we have that iACFXUL}Lt'I

is a member of YZ 131. ? being 721:1-Cauchy, there are an F € &

and an ¢ € I with F & Agpy .
X

From this, we can conclude that Clim(CF) N U_= O,
Indeed, suppose that Clim(CF) N\U,L # ¢. Take an element c
of Clim(CF)MN U_., Then there exists a maximal open filter
7 on X which converges to ¢, By the same argument as above,

L € F; therefore 9 € ACF}'(UL' ice. CFXUL €L,

But U €7 and U, N CTU = ¢, which is a contradiction,
Since Ucand Clim(CF) are members of ), we have a

contradiction., This completes the proof.
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Section 4: Category of pseudo-compact spaces,

Every category which we have considered so far in
this chapter is either productive or closed hereditary.

In this section, it will be shown that in the category
of pseudo-compact spaces and continuous maps which is neither
productive nor closed hereditary, the perfect onto projecti-

vity is still properly behaved,

It is known (7] that a completely regular space X is
pseudd-compact if and only if every countable open covering
of X has a finite subfamily whose union is dense in X,
Moreover, it is equivalent to that every countable open filter

base on X has a cluster point,

4,1 Definition Let n be an infinite cardinal number.

The full subcategory of Haus determined b& the spaces with
the following property will be denoted by kanz

Every open filter base on the space whose cardinal
number is not greater than n (we will call it simply n-open

filter base) has at least one cluster point.

4,2 Lemma Let X be a Hausdorff space. X belongs to
QU% if and only if every open covering U of X with Ul € n

has a finite subfamily whose union is dense in X,
Proof: It is the dual statement of the definition.

4.3 Theorem If a Hausdorff space X belongs to 7Lrh,
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so does A\(X).

Proof: Let % be an n-open filter base on A(X) and & =
{C€1im(CcU)! U € F} . Since lim is minimal closed, & is also
an n-open filter base on X, Since X belongs to QJ;} & has a
cluster point say x. Then there exists a maximal open filter
M which converges to x and contains (G . We wish to show
that W is a cluster point of % ., Suppose that there is an
open set V in X such that N € AV and AV NU = for sbme
U € %, Since I € AV, Vell; VA Clim(CU) # &, Let y
be an element of V(N Clim(C€U), and let 9 be a maximal open
filter which converges to y. Thus 9 <€ f&v. so that 10 & U,

Hence y = 1im 9 € 1im(CU), which is a contradiction.

4,4 Definition An open subset U of a topological

space X is said to be regular if U is the interior of its
closure; equivalently, U is regular if U is the interior of
a closed subset,

A topological space X is said to be semi-regular if

the regular open sets of X form a base of the topology on X,

In this case, the topology is also said to be semi-regular.

Remark: It is known (7] that the regular open sets
of a topological space (X,l)) form a base of a topology on X.
The topology generated by the regular open sets with respect
to 4J will be denoted by J7*. Then it is obvious that J7J*

is coarser than &j—and is semi-regular. The topology ch* is
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said to be the semi-regular topology associated with 0.

4,5 Lemma Let (X,dJ) be a Hausdorff space, and let
43" be a topology on X with JJ 203 2 9%, Then (X, &)

belongs to °Ufn if and only if (X, &J') belongs to wn.

Proof: It is easy to show that QJ/n is closed under
continuous images. Hence, if (X,4)) belongs to “w/n, so does
(X,4'). Conversely, let 3 be an n-open filter base on (X,iJ).
Let &G = “UIPU | U € ?}. It is obvious that &G is also an n-
open filter base on (X,d3'). Since (X,dJ') belongs to. 70:1,

&G has a cluster point, say x. It is easy to show that x is

also a cluster point of %,

Let X be a Hausdorff space, and 4J(X) be its topology.
We define /\'(X) as follows:

its underlying set is the same as that of /\(X) and
its topology is generated by that of A(X) together with
1imy T (WJ(X)) (5]

4,6 Lemma For any X € ‘w/n' the map A'(X)—> X

given by limX is a perfect onto projective cover in '7,0“1,1.

Proof: By Proposition 9 in [5], it is enough to show
that /\'(X) belongs to W, for any X 6'7/0;1. By Proposition 8
and Lemma 11 in (5], /\(X) and A'(X)¥ are homeomorphic,
where /\'(X)¥* is the space with the associated semi-regular

topology of that of A'(X)., Since X belongs to OZU‘“n, so does
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A (X); thus A'(X)* also belongs to 7&*5. By Lemma 4.5,
A (X) belongs to 1J}f

4,7 Theorem For any X é‘hfh, X is perfect onto pro-
jective if and only if it is extremally disconnected.
In ﬂfh, the perfect onto projectivity is properly

behaved.

Proof: The first part is immediate from Proposition
9 in [5] and Lemma 4,6,

The second part follows because perfect onto maps
are closed under the composition, for perfect onto maps f and
g, gf = £ implies g is an identity, and every object of 2031

has a perfect onto projective cover,

Remark: For almost n-compact spaces, it is not
difficult to show the corresponding property to Lemma 4,5,
Hence one can also prove by Theorem 3.17 and the same argu-
ment as the above theorem that the perfect onto projectivity
in the category of almost n-compact spaces and continuous

maps is properly behaved.

The category of pseudo-compact spaces and continuous

maps will be denoted by PComp. Since a completely regular

space 1s pseudo-compact if and only if it belongs to 1&39,
and every completely regular space is regular, the following

theorem is the immediate consequence of Lemma 4,6 and Theorem
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4,8 Theorem 1) A completely regular space X is
pseudo-compact if and only if A(X) is pseudo-compact.
2) For any X € PComp, X is perfect onto projective if and
only if it is extremally disconnected.
3) For any X € PComp, the map A(X)—> X given by limy

is a perfect onto projective cover of X in PComp,

L) The perfect onto projectivity in PComp is properly

behaved,



CHAPTER IV

TOPOLOGICALLY COMPLETE SPACES

Section 1l: n-totally bounded complete spaces.

1,1 Definition Let (X,? ) be a uniform space, and

let n be an infinite cardinal number, X is said to be n-

totally bounded if for each entourage V in U , there exists

a subset A of X such that X = xLé)A V(x) and Al < n,

Remark: A uniform space is kfo-totally bounded if

and only if it is totally bounded.

1.2 Proposition Let X be a set,let (Y)\)A e 1, Pe a

family of uniform spaces, and for each A € L, let f5 Dbe a
map on X onto Y, . Let X carry the coarsest uniform structure
for which the f, are uniformly continuous. Then X is n-
totally bounded if and only if Ys\ is n-totally bounded for
each )\ € L,

Proof: Trivial.

1.3 Corollary A product space of n-totally bounded

uniform spaces is again n-totally bounded.

1.4 Proposition Every subspace of an n-totally

80,
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bounded uniform space is again n-totally boundedf
Proof: Trivial.

The following theorem is the well known Shirota's
theorem (17, 47], but we give here the proof of the theorem

in the language of entourages..

1.5 Theorem A completely regular space is realcom-
pact if and only if it admits a complete Sl-totally bounded

uniform structure.

Proof: Since every realcompact space is homeomorphic
with a closed subspace of a product space of copies of real
line and the real line [R is cil-totally bounded complete
with respect to the usual uniform structure of R y every
realcompact space admits a complete Aﬁl-totally bounded
uniform structure.

Conversely, let 7/ be an admissible complete Sfl-
totally bounded uniform structure on a completely regular
space X, Since X is completely regulaf, X can be considered

IRC (X)

to be a subspace of the product space under the map

X D (f(X))f<§C(X)' Suppose X is not realcompact. Then there
RE(X)

is an element p in the closure of X in but not in X,

Let % be the trace filter on X of the neighborhood filter
RE)

of p in . Since % is not convergent in X, it is not

Cauchy. Hence there is an entourage U in 7{ such that for
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each F €% , (Fx F) €U # ¢ . Let d be a uniformly conti-
nuous pseudo-metric on X such that Vg ¢ = L (x,y) \d(x.y)<.8f
1
is contained in U, Since Vd % is an entourage in 2 , there
’
; - U

exists a sequence (ak) such that X = 5 Vd,%;(ak)' For each
k, Vd,%i(ak) does not belong to 4 ., Let f) be a map on X
into R defined by x wv ((3 -6é_d(x,ak)),\l)\’0. Then it is
obvious that f, is continuous and has the value 1 on V (a,)

k d' %/3 k
and the value O on X - V4 ¢ (ay ). For each F<€ LI
F G:Vd,ﬁz(ak) #’¢>. Hence there is x € F with fk(x) = 0,
and therefore the fk-th coordinate of p must be 0, From this
it follows that €V, %(ak)e}\— for each k. As above, we can

’
find a continuous map hk on X into R which has the value 1
on Vd,ﬁg(ak) and the value 0 on GZVd’sg(ak) for each k.
Consider the map h = % (h A Y% ). Then h € C(X). Since
{Vd,%z(ak)} . 1s a covering of X, there is a k for x € X such
that hk(x) = 1, hence h(x) > 0 for each x € X, Since X is
C-embedded in ;RF(X), h has a continuous extension h to IRP(X).
Since h > 0, h(p) # 0., But no finite union of V (a,)'s
d,%% 'k
belongs to & , because CVy %,(ak)-e‘ﬁq . Thus h has arbi-
73

trarily small values on each member of % and so n(p) = 0,

which is a contradiction.

1,6 Lemma For any infinite cardinal number n, let
P be the space Pn in Lemma 1,6 in Chap. II. Then every comp-
letely regular space X is homeomorphic with a subspace of

PC(X’P) such that each continuous map on X into P can be
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continuously extended to PC(X’P)

Proof: It follows immediately from that the class of
completely regular spaces is J-regular and that P has a sub-

space which is homeomorphic with T .

1.7 Theorem If a completely regular space has an
admissible n-totally bounded complete uniform structure, then

it is n-compact,

Proof: Let X be a completely regular space and U
an admissible n-totally bounded complete uniform structure on
X. We may assume that in Lemma 1,6 in Chap., I and Lemma 1.6,

P =J%_ {(o0)} provided n = t¥ (P = £I§n_(Jt - {()}) pro-

vided n is a limit cardinal number), where J = Eo,ﬁm with the

usual topology. Then X can be considered to be a subspace of

PC(X’P> such that each continuous map on X into P can be

C(X'P), where P depends on the car-

continuously extended to P
dinal number n,

Let g be in the closure of X but not in X and let %H
be the trace filter on X of the neighborhood filter of q in
PC(X’P). Since &% is not convergent in X, it is not Cauchy.
Thus there is an entourage U in 9( , such that for each F in
A, (FX F)NCU # ¢>. Let d be a uniformly continuous pseudo-

metric on X such that V

4,5 is contained in U, Since Vd £

1 ?

is an entourage in 7{ , there exists a subset A of X such
that X = ;ZfA Vd’%@(x) and |A|l € n, For each x € A, Vd,QL(X)
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does not belong to & , for it is a U-small set. For each x
€ A, we can find a continuous map fx on X into Eo,l] which

has the value 1 on V, ¢ (x) and the value O on X - V, . (x).
d, 3 dyyl

]

Case 1, n = t*. We may assume that |A] = t and
P = JA -{(00)}. Thus there is a continuous map f on X into P

such that _f = fx, where I, is the x-th projection of P,

%
for each x € A, Each F in ¥ meets the complement of Vd'%éx)
and so there is y € F with f _(y) = 0. Therefore the f-th
coordinate of g must be (0), From this it follows that

; - Vd,%3(X) € % for each x € A, Similarly, we can find a
continuous map h, on X into [0,1] which has the value 1 on
Vd,&a(X) and the value 0 on X - Vd’%g(x) for each x < A,
Thus there exists a continuous map h on X into P such that
ﬁxh = hX for each x € A, Let h be a continuous extension of

c(X,P) C(X,P)

h to P . Then h is the h-th projection of P onto

P, Hence h(q) = (0), because X - V (x) € % for each x.

d,7s
Let g be a map on X into P defined by:
the x-th coordinate of g(y) =[o0 if hx(y) = 0,

/hx(y) if otherwise,
Since {Vd’%q(x) | x € A} is a covering of X, there is for
each y € X an X ¢ A such that hX(y) = 1, Thus g is well
defined on X, And it is easy to show that g is continuous,

C(X,P)

Hence g has a continuous extension g to P . For each x

€ A, and for each M > 0, there is a neighborhood V of q in

pC(X.P) such that dah(V) is contained in Lo, 1/ML, for
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'ﬂ%ﬁ(q) = 0, Hence X g(VM X) is contained in M, oo].
From this, it follows that ﬁ&é(q) = 00 for each x € A, Thus
g(q) does not belong to P, which is a contradiction.

Case 2, Let n be a limit cardinal number., And let
[Al =t < n. Then there exists a continuous map f, on X into
B = e {(e0 )} such that * f, = f, for each x € A, where
W is the x-th projection of P+,
Define a continuous map f on X into P such that ﬁmf = (0) for
m # t and ﬂ%f = fi, where T is the m-th projection of P,
By the same argument as Case 1., ﬂf'xf(q) = (0), where T

C(X+P)  From this, it follows that

is the f-th projection of P
X < Vd,%g(X)‘e % for each x € A, Again we can find a conti-
nuous map hX on X into [O,iﬂ which has the value 1 on Vd,%i(X)
and the value 0 on X - Vd,%g(X) for each x € A, Thus there
exists a continuous map h on X into P such that ni:nth = hx

for each x. Let'ﬂ be a continuous extension of h to PC(X’P).

¢(X,P) onto P,

Then h is the h-th projection of P
Hence 7T n(g) = (0), for X - V ¢, (x) € ¥ for each x € A,

L 4,7
Let g be a map on X into P defined by:
T ifg(y) = (oo if hx(y) = 0,

l/hx(y) if otherwise, and

T g(y) = (0) for m # t.
By the same argument as Case 1., g is well defined and conti-
nuous on X. Let g be a continuous extension of g to PC(X’P)'

By the same argument as Case 1., ﬁ%é(q) does not belong to
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Pt*’ which is a contradiction,

This completes the proof.

Remark: It is well known [7] that every admissible
uniform structure on a pseudo-compact space is totally
bounded. Thus, if a pséudo-compact space has an admissible
complete uniform structure, then it is compact.

For n > Sl' there is an n-compact space which is
pseudo-compact but not compact, namely space in Lemma 1.6 in
Chap, II, For those spaces, there is no admissible complete
uniform structure, so that the converse of Theorem 1.7 need

not be true,

Section 2: Category of n-totally bounded complete spaces.

2.1 Definition A completely regular space is said

to be topologically n-totally bounded complete if it has an

admissible n-totally bounded complete uniform structure.

In what follows, a topologically n-totally bounded
complete space will be called simply n-totally bounded comp-
lete,

It is well known that the product space of topolo-
gically complete spaces is again topologically complete and

a closed subspace of a topologically complete space is also
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topologically complete. Combining these facts with Proposition

1,2 and 1.4, we have the following:

2,2 Theorem The category of n~totally bounded comp-

lete completely regular spaces and continuous maps is complete,

2,3 Lemma Let X be a set and let n be an infinite
cardinal number, For an ultrafilter 1L on X, the following
are equivalent:

1) U is a Cauchy filter with respect to the uniform st-
ructure(?k generated by fewer than n partitions of X,

2) U is closed under the t-intersections for every car-
dinal number t less than n,

3) U has the n-intersection property.

Proof: 1)=>2)., Suppose that U is a subfamily of
U whose intersecion does not belong to U and (U} < n.
Then there is a partition {AU}Ueﬂy’LJ QB} of X such that
Ay € CU for all U € U and B € N1’. Since Y is Cauchy
with respect to 87n, there is a V € ‘U such that V C Ay for
some U €U or V< B, Thus CU or NV belongs to U ,
which is a contradiction,

2)=>3). Since ¢ €U, this is trivial,

3)=>1). Suppose U is not Cauchy. Then there is a
\Y =|5:I A_X A_ in @>n such that {Abfis a partition of X,
II1 < n and A_ € U for all L € I, Hence CA, € U and

™ CA_ = ¢>, which is a contradiction,
Lel
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Remark: Since every covering of a set has a refine-
ment which is a partition and has the same cardinal number,
a discrete space X is n-totally bounded complete if and only
if the uniform structure generated by fewer than n partitions

of X is n-totally bounded complete.

2,4 Proposition A discrete space is n-totally boun-

ded complete if and only if it is n-compact.

Proof: A discrete space X is n-totally bounded com-

plete if and only if every Cauchy ultrafilter with respect to

§

n-intersection property is fixed if and only if the space X

- is convergent if and only if every ultrafilter with the

is n-compact,

2,5 Definition A {0,1}-valued measure or simply

measure on a set X is a countably additive set map defined
on the family of all subsets of X into {O,l}.

A measure }L on X is said to be n-additive for an

infinite cardinal number n if /L(téIAL) = 0 whenever {ALELEI

is a family of disjoint subsets of measure zero, with [I| = n,

Remark: For an ultrafilter 2 on a set X, let K¢
be its characteristic map defined on the set of all subsets
of X. Then the correspondence U k> %QL is one-one from the
set of all ultrafilters on X onto the set of all nonzero,

finitely additive, {O,l}-valued set maps defined on X D?].
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2.6 Lemma For an ultrafilter 2 on a set X, the
finitely additive measure Xy defined by U is n-additive

if and only if U is closed under the n-intersection,

Proof: Since in the above definition of n-additive
measures, we may drop the requirement that the subsets be
disjoint, the map Xy is n-additive if and only if Xy, (Ac¢) = 0
(LeI and |Il=n) implies X ( E)AL) = 0,

But this is simply the dual of the statement that U is closed

under n-intersection,

Remark: By the above lemma, every measure can be
defined by the characteristic map of an ultrafilter with the

countable intersection property.

2,7 Definition A cardinal number n is said to be

measurable if a set X of cardinal number n admits a measure

M such that M(X) =1, and M ({x}) = 0 for every x € X,

Otherwise, it is saild to be nonmeasurable,

2.8 Lemma Each measure is n-additive for every

nonmeasurable cardinal number n,
Proof of the lemma can be found in[lﬂ .

2,9 Proposition Let X be a discrete space and let

m be the first measurable number. Let n be a cardinal number

such that ﬁ§1 < n < m. Then the following are equivalent:
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1) X is n-totally bounded complete.
2) X is n-compact.

3) X is realcompact.

Proof: It is enough to show that 2) implies 3).
Suppose that there is abfree ultrafilter on X with the coun-
table intersection property. By Lemma 2,8, the measure
defined by the ultrafilter is n-additive for n <{ m. Hence the
ultrafilter is. closed under the n-intersection., Thus the
ultrafilter is fixed, which is a contradiction.

If X is m-compact, then there exists a subfamily
fQ. v, = ¢ and |1\ < n.
Then the measure defined by the ultrafilter is |I|-additive,

(Ug) ¢ 1 of the ultrafilter with
hence the ultrafilter is closed under |[I|-intersection,
which is a contradiction.

The following definition is due to H. Herrlich [24].

2,10 Definition The compactness degree k(X) of a

completely regular space X is the smallest cardinal number n

such that X is n-compact.

2,11 Corollary If X is a discrete space of car-

dinal number m, then k(X) = nt,

2,12 Lemma A complete space is realcompact if and

only if every closed discrete subspace is realcompact.,
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Proof of the lemma can be found in [17].

2,13 Theorem Let n be a cardinal number such that
>§1 < ng m, A completely regular space is n-totally bounded
complete if and.only if it is realcompact.

Proof: Let X be an n-totally bounded complete space,
Suppose X is not realcompact. Then by Lemma 2,12, there exists
a closed discrete subspace F of X which is not realcompact.
Since F is a closed subspace, it admits an admissible n-
totally bounded complete uniform structure. Hence F is real-
compact, which is a contradiction.

Conversely, realcompact space admits an Sil-totally
bounded complete uniform structure.

The other proof: 'By Theorem 1.7, every n-totally

bounded complete space is n-compact. Hence every closed sub-
space of X is also n-compact. Thus every closed discrete sub-
space of X is realcompact by Proposition 2,.,9. Hence X is

realcompact by Lemma 2,12,



92.

Section 3: A characterization of realcompact spaces,

3.1 Definition A family 3 of subsets of a topolo-

gical space is said to be locally finite (discrete) if each

point of the space has a neighborhood which intersects only

finitely many members (at most one member, respectively) of

o

3.2 Theorem Let X be a completely regular space and
n an infinite cardinal number, If every locally finite open
covering of X has a fewer than n subcovering, then every

admissible uniform strucfure on X is n-totally bounded.

Proof: Suppose there is an admissible uniform
structure 2( on X which is not n-totally bounded.
Let A be the first ordinal whose cardinal number is n,
Then there exist an open symmetric entourage V in {{ and a
net (x Ja¢y on X such that \V(x)\)§x<d is a discrete fami-
ly. Indeed, there exists an entourage U in {{ such that for
€ X,

0
Suppose that for T <&« , we have {xA}A<t in X such that

any subset A of X with lAl < n, U(A) # X. Take x

X € h—:’uU(x)\) for any g <<T . Since [{x\}, (! < n,

~2U(x, ) # X. Take an element x, of G:;ZiU(x‘X). Hence by

the induction, we have a net {XA3A<N such that for any
[y be Q:}sz(x)\). Take a symmetric open entourage V
in W with V2 € U, Then it is easy to show that {V(x)\)})\<0<

is discrete., Indeed, for any x in X, take the neighborhood
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2

W(x) of x, where W is an entourage in U and W € V, Suppose

that W(x) meets V(x)\) and V(x< ) for X < < o .

2¢ V and V2 ¢ U, it is clear that (x- ,x .)€ U, so

Since W
that x+ € U(x ) which is a contradiction.

For each X < & , take an open neighborhood N(x, ) of
x, such that T"N(x , ) is contained in V(x)\). Since %V(XA %Aix
is discrete, so is {\“N(x)\ )]]/\(0(, so that S«PN(X)J is
closed, Hence it is clear that V(x, ) for all X < x together
with G:izij’N(x)‘) form a locally finite open covering of X.
Since {V(x)\)}x<$ is the pairwise disjoint family, the open

covering has no proper subcovering., This completes the proof,

3.3 Corollary A completely regular space is pseudo-
compact if and only if every locally finite open covering of

the space has a finite subcovering.

Proof: It follows immediately from that a completely
regular space is pseudo-compact if and only if every locally
finite open covering of the space is finite [7] and Theorem

3.2,

Combining the fact that every totally bounded complete
space 1s compact and the fact that every admissible uniform
structure on a pseudo-compact space is totally bounded [7],

the following is immediate:

3.4 Corollary A topologically complete completely
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regular space is compact'if and only if every locally finite

open covering of the space has a finite subcovering.

3.5 Corollary A topologically complete completely
regular space is n-compact if every locally finite open

covering of the space has a fewer than n subcovering.

Proof: Let 2{ be an admissible complete uniform
structure on such a space. By Theorem 3.2, it is n-totally
bounded complete, so that the space is n-compact by Theorem

1.7.

3.6 Theorem A topologically complete completely
regular space is realcompact if and only if every locally
finite open covering of the space has a non-measurable sub-

covering.,

Proof: (é&). Let m be the first measurable cardinal
number, By Theorem 3.2, the space is m-totally bounded comp-
lete, Hence it is realcompact by Theorem 2,13,

(=>). Let X be a realcompact space., Suppose that
there is a locally finite open covering U = (UL)Le-I of X
which has no non-measurable subcovering. Then we can const-
ruct a closed discrete subspace of X whose cardinal number
is méasurable. Let  be the first ordinal whose cardinal
number is m. Let x, be any element of X. For any < < o>

suppose that we have a net {xk}A<t such that {xAkX<Z is a
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discrete fémily. Since U is locally finite, there is a neigh-
borhood V, of x, such that V, meets only finitely many
members of U . Let U ={UulUueU and UNV, #& for some
N < t.} . Since |U;| < my, UUr # X, Let x, be any element
of €U Vs . Then {x,},¢c is also discrete., Indeed, let U,
be a member of U{ which contains x¢ . Then U, NV, = ¢ for
all x < T , so that every element of {x,}, (r has a neighbor-
hood which contains at most one element of { x,%, (. .

If x & ix)\_})«,#, then (E)%()t{ X} 1s an open neighborhood of x
which contains at most one element of fokAstﬂ Hence by the
induction, we have a net ixx§%<u\ which is a discrete family.
Thus, ix%kx<x is a closed discretg subspace of X whose cardi-

nal number is measurable, which is a contradiction,

3.7 Corollary For a topologically complete comple-
tely regular space, every closed discrete subspace has non-
measurable cardinal number if and only if every locally finite

open covering of the space has a non-measurable subcovering.

Proof: It follows immediately from that both condi-

tions are equivalent to that the space is realcompact,
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