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SCOPE AND CONTENTS1 In this thesis we study extensive 

subcategories of various categories of Hausdorff spaces and 

continuous maps, and of Hausdorff uniform spaces and uni­

formly continuous maps, In particular, we obtain new methods 

to construct extensive subcategories which can be applied to 

many categories and give us an inclusive relationship between 

reflective subcategories of Haus and coreflective subcatego­

ries of Top. We consider perfect onto projectivity in those 

categories. The relationships between n-compact spaces and 

topologically complete spaces are discussed. 

ii. 
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INTRODUCTION 

Our study has its origins in one of the most important 

aspects of general topology, extensions with the universal 

mapping property [8] • 

The main importance of extensions is that, if a space 

has an extension with nice properties, these properties can 

to some extent be brought to bear on the study of the original 

space, or they might lead to replace the original space by its 

extension. In this connection, it is also very important to 

know whether a given continuous map in the original space has 

a continuous extension to the extension of the space. 

" The well known examples are the Stone-Cech compactifi-

cations, realcompactifications, maximal zero-dimensional com­

pactifications, and completions. 

In this direction, we have a very essential tool, 

namely categories which provide a convenient conceptual lang­

uage, based on the notions of category, reflections. 

Using this tool, there have been many efforts made to 

construct new reflective subcategories in various categories 

of topological (or uniform) spaces and (uniformly, respecti­

vely) continuous maps [15, 19, 2), 24, 30, 38, 44, 45, 48] , 

and find out nice properties in those categories [l, 2, 3, 5, 

vi. 
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27, 29, 33, 46, 48]. Comprehensive results and bibliography 

of papers in this field can be found in [25, 2?}. 

In this work, our basic categories are the category 

Haus of Hausdorff spaces and continuous maps and the category 

HUnif of Hausdorff uniform spaces and uniformly continuous 

maps. 

Our main objective is a systematic study of extensive 

subcategories of various subcategories of Haus or HUnif. 

One of the main reasons to take extensive subcategories 

rather than (epi-) reflective subcategories has been already 

mentioned. It is known that for every epi-reflective subcate­

gory t... of Haus, -there exists an epi-reflective subcategory 

Rt- of Haus such that 'I>- is extensive in R;6. and for any X 

in Haus the ~-reflection of X has a factorization through 

the Rt.- -reflection of X and I>- -reflection of the RAA. -reflection 

space of X, Furthermore, R~-reflections can be easily cha­

racterized (see Section 3 in Chap. O). Hence every epi-ref­

lective subcategory of Haus can be completely determined by 

a certain extensive subcategory in a subcategory of Haus. 

This is another essential reason, in view of categorical 

topology, why our main objective is extensive subcategories. 

The contents of our work divide into four parts. 

The first, comprising Chapter O, presents together 

basic definitions and theorems which will pave the way for 

the further development of the present thesis. 
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In particular, we list the definitions of z-ultrafilters, 

simple and strict extensions, &_-compact spaces and reflective 
v 

subcategories. Also included are discussions of Stone-Cech 

compactifications, realcompactifications and ft.-compactifi­

cations, and finally some properties of reflective subcate­

gories. 

The second part is composed of Chapter I and Chapter II. 

In Chapter I, we first consider some properties of 

extensive subcategories. We observe that every reflective 

subcategory containing an extensive subcategory in a category 

is also extensive in the category and that every extensive 

subcategory is left-fitting with respect to perfect morphisms 

in the category. Consequently, the left-fitting property is 

strongly connected to extensiveness. 

H. Herrlich has introduced the limit-operators (26] to obtain 

coreflective subcategories of the category Top of topological 

spaces and continuous maps. Moreover, he has established a 

one-one correspondence between idempotent limit-operators and 

coreflective subcategories of Top. Using limit-operators, we 

establish a method to construct new extensive subcategories 

from well known extensive subcategories in various subcate­

gories of Haus or HUnif. The new extensive subcategory is 

constructed as follows, Let J be an idempotent limit­

operator on an extensive subcategory t_ of a subcategory .A­
of Haus or HUnif. Let ~J. be the subcategory of fo determined 
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by those members of A which are 1-closed in their t,.._ _ 

reflection spaces. It is shown that l1 is also extensive in 

.A , if A- is hereditary. Hence for any epi-reflective sub­

category of ~. we can associate a reflective subcategory 

of Haus containing it with each coreflecti~e subcategory of 

Top, for there is a hereditary subcategory of Haus, in which 

it is extensive. Consequently, we establish a useful inter­

relation between coreflective subcategories of Top and epi• 

reflective subcategories of Haus. Finally, for any reflective 

subcategory containing an extensive subcategory in a certain 

category, we can find a semi-limit-operator on the extensive 

subcategory which generates the reflective subcategory and an 

idempotent limit-operator on the extensive subcategory which 

gener~tes a reflective subcategory containing the reflective 

subcategory. This gives another method to construct new exten­

sive subcategories from well known reflective subcategories. 

In Chapter II, we apply the results of Chapter I to 

various categories. Using trace filters, we can easily cha­

racterize new extensive subcategories and comprehend the 

interrelations between those categories, 

The third part, Chapter III, is devoted to perfect 

onto projectivity in various categories determined by our 

setting, which is in some sense complementary to B. Bana­

schewski' s inclusive contribution in this field [5]. It is 

shown that in every full subcategory of Haus determined by 
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the objects of an extensive subcategory of the category Haus* 

of Hausdorff spaces and continuous semi-open maps, perfect 

onto projectivity is properly behaved, Secondly, we generalize 

the concept of almost realcompactness [16] to almost n­

compactness for any infinite cardinal number n. In the cate­

gory of almost n-cotnpact spaces and continuous maps, perfect 

onto projectivity is also properly behaved. Finally we consi­

der the category of pseudo-compact spaces and continuous maps 

which is neither productive nor closed hereditary. It is shown 

that perfect onto projectivity in this category is again 

properly behaved using the space of convergent maximal open 

filters. 

Finally, in Chapter IV, we deal with the category of 

topologically complete spaces and continuous maps. We intro­

duce the concept of n-total boundedness. We show that every . 

complete regular space which admits an admissiblen-to~ally 

bounded complete uniform structure, · is n-compact •. It is shown 

that the categories of topologically n-totally bounded complete 

Hausdorff spaces and continuous maps coincide with the cate.:. 

gory of realcompact spaces and continuous maps for the car­
) 

dinal number n with .S 1 ~ n ~ m, ~here m is the first measur­

able cardinal number. It is noted .that those categories are 
L 

coincident bu~ the categories of n~totally bounded complete 

uniform spaces and uniformly continlfous maps are different 
' l 

for the different cardinal numbers n. It is also shown that 
t n 

/'. 
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a topologically complete completely regular space is real­

compact if and only if every locally finite open covering of 

the space has a nonmeasurable subcovering. 



CHAPTER 0 


PRELIMINARIES 


This chapter is a collection of the basic definitions 

and results which will be needed in the ensuing chapters. 

Section 1: Completely regular spaces. 

1.1 Definit}on A topological space X is said to be 

completely regular provided that it is a Hausdorff space such 

that, whenever F is a closed subset of X and x is a point in 

its complement, there exists a continuous real-valued map f 

such that f(x) = 1 and f(F) = {o}. 

1.2 Notation For a topological space X, we denote 

the set of all continuous real-valued maps by C(X) and the 

set of all bounded continuous real-valued maps by C*(X). 

It is obvious that C(X) under the functional opera­

tions is a commutative ring with unit 1 and C*(X) is a sub-

ring of C(X). 

1.3 Theorem For every toplogical space X, there 

exists a completely regular space Y and a continuous map f of 

1. 
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X onto Y, such that the map g~ gf is an isomorphism of C(Y) 

onto C(X). 

Remark: The space Y in the above theorem is known as 
the complete regularization of the space X. 

1.4 Definition A subset Z of a topological space X 

is said to be a zero-set in X if Z = f- 1 (o) for some f E C(X). 

In this case, Z is also said to be the zero~set of f · and we 

denote it by Z(f), and the set of all zero-sets in X by Z(X). 

A subset C of X is said to be · a cozero-set in X if it 

is the complement of a zero-set Z(f) for some f € C(X). We 

denote it by coz(f). 

1. 5 Theorem For a Hausdorff space x,. the following 

are equivalent: 

1) X is completely regular. 

2) Z(X) is a base for the closed sets in x. 
J) X is uniformizable. 

4) X is homeomorphic with a subspace of a product space 

of the copies .of real line. 

It is well · known that Z(X) is a lattice with respect 

to the set union and intersection. · 

1.6 Definition For a space x, a proper filter in 

the lattice Z(X) is said to be a z-filter on x. 
:::: '( 

By a z-ultrafilter on X i9 meant a maximal z-filter, 
l 
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i.e., one not contained in any other z-filter. 

A z-filter is said to be fixed if it has a cluster 

point. Otherwise, it is said to be free. 

It is well known that for an ideal I in C(X), 

Z(I) = { Z ( f) I f € I} is a z-filter in X and for a z-filter 

;; on X, z-1 ("f) = { f I Z(f) € ;;- J is an ideal in C(X). 

Moreover, if I is maximal, then Z(I) is a z-ultra~ 

filter on X and if U is a z-ultrafilter, then z-1 ( U) is a 

maximal ideal in C(X) [17). 

Hence, one can define that an ideal I in C(X) is 

fixed (f~ee . ) according to the z-filter Z(I) being fix~d (free, 

·respectively) • 

1.7 Theorem For a completely regular space X, the 

following are equivalent: 

1) X is compact. 

2) Every z-filter on X is fixed, Le. every ideal in C(X) 

is fixed, 

·J) . Every z-ultrafilter on x· is. fixed, i.e. every maximal 

ideal in C(X) is fixed, 

1.8 Definition Let X be a completely regular space. 

A maximal ideal Min C(X) (C*(X)) is said to be real if the 
----n­

~· 

quotient field C(X)/M (C*(X)/M, r~·spectively) is i~omorphic
i 

with . R , In this case, Z(M) is also said to be re~l. 

'Otherwise, it is said to b~ hyper-real, ; 

l. 

1 
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1.9 Definition A completely regular space is said 

to be realcompact if every real maximal ideal is fixed, i.e. 

every real z-ultrafilter is fixed. 

1,10 Definition Let x:J be a non-empty family of 

subsets of a set X, and let n be an infinite cardinal number. 

,xJ is said to have the n-intersection property if every 

fewer than n members of ;J has a non-empty intersection. 

1,11 Theorem The following are equivalent for any 

maximal ideal M in C(X). 

1) M is real. 

2) Z(M) is closed under countable intersections. 

3) Z(M) has the ~1-intersection property. 

Section 2: Extensions. 

2 .1 Definition Let X and X' be spaces and f: X~ X' 

a map, The pair (X', f) is said to be an ·extension space of 

X if f is a homeomorphism of X with the dense subspace f(X) 

of x•. In particular, (X', f) is an extension space of X such 

that X c X' and f maps X identically, then the reference to 

f will be omitted and x• will itself be called an extension 

space of X. 

Remark: It is known that without loss of generality, 

one may always restrict onself to extension spaces of a space 
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·x which contain X as a dense subspace. 

Let (X', f) be an extension space of the space X. 

And let [) and JJ' be the topologies of X and x• respective­

ly. Then, each point u e X' determines the proper filter 

T(u) = f- 1 ( .J.) • (u)) = tf- 1 (v) IV€ 0-' (u)} in the lattice 

0 , called the trace filter of u cm X; where J)' (u) is the 

filter of open neighborhoods of u. 

The family (T(u))u ~ X' will be called the filter 

trace of the extension space on x. If x• ::> X ·then the filter 

trace of x• on X extends the family (J.:r(x))x t X of neigh­

borhood filters of X to a family of filters in{) with larger 

indexing set since T(x) = D (x) for x E x. 

Consider any family (T(u))u Ex• of filters in JJ'" 

which extends the family of neighborhood filters of the space 

X, i. e, X• 2 X and T ( x) =D ( x) for each x e X. 

Then, there exist two natural topologies on the set X' such 

· that the .resulting spaces are extensions of X ~hose filter 

trace on Xis just the given family (T(u))u Ex•· 
The first of these spaces, called the strict extension of X 

with filter trace ( T ( u)) u E X, , has its topology [) i gene­

rated by the sets V* = ~u l V t T(u) l, V € U ; in the second 

space, with topology £) 0, here referred to as the simple 

extension of X with filter trace (T(u))u € x·~ eac~ u ex• 

has as its basic neighborhoods the sets Vu {u}, Ve T(u) [4), 
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2,2 Definition An extension space Y of a space X 

is said to be a compactification (realcompactification) of X 

if Y is compact (realcompact, respectively), 

2.3 Definition A subspace S of a space X is said to 

be C-embedded in X if every map in C(S) can be extended to a 

map in C(X). 

Likewise. we say that S is C*-embedded in X if every 

map in C*(S) can be extended to a map in C*(X). 

2,4 Theorem [9,17,49] Every completely regular space 

X has a compactification pX, with the following equivalent 

properties. 

1) Every continuous map f of X into any compact space Y 

has a continuous extension f of ~X into Y, 

2) Every map f in C*(X) has an extension to a map f~ in 

C(~ X). 

3) Any two disjoint zero-sets in 'X have disjoint closures 

in ~ X, 

4) For any two zero-sets z1 and z2 in X, 

~X (Z1(\ 22) = r~Xzl (I rpx22' 

5) Distinct z-ultrafilters ori X have distinct limits in 

f3 x. 
Furthermore, px is unique, in the following sense: 

if a compactification T of X satisfies any one of the listed 

conditions, then there exists a homeomorphism of ~ X onto T 



that leaves X pointwise fixed. 

....,,,

· Remark: The space ~x is known as the Stone-Cech 

compactification of x. According to the theorem, it is 

characterized as that compactification of X in which X is 

C*-embedded. 

2.5 Theorem [17,32) Every completely regular space 

X has a realcompactification tr X, contained in ~ X, with 

the following equivalent properties, 

1) Every continuous map f of X into any realcompact 

space Y has a continuous extension f of 1f X into Y. 

2) Every map f in C(X) has an extension to a map f1Y in 

C(trX). 

3) If a countable family of zero-sets in X has empty 

intersection, then their closures in 7J X have empty inter­

section. 

4) For any countable family of zero-sets Zn in X, 

rtrX fd Zn = 0 r11Xzn. 

5) Every point of U-X is the limit of a unique z-ultra­

filter on· X1 and it is a real z-ultrafilter. 

Furthermore, the space 1.1 X. is unique·, in the following 

sense: if a realcompactification T of X satisfies any one of 

the listed conditions, then there exists a homeomorphism of 

1.rX onto T that leaves X pointwise fixed. 

Remark: The space trX is called the Hewitt real­
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compactification of X. By the theorem, it is characterized 

as that realcompactification in .which X is ·C-embedded. 

Section 3: S. -compact spaces. 

Every space in this section is assumed to be Haus­

dorff. 

3. 1 Definition [23] Let ~ be a class of spaces. 

A space X is said to be Et_ -compact if X is homeomorphic 

with a closed subsp~ce of a product space of a subfamily of 
-· 

We denote the class of all ~-compact spaces by K~ • 

A space X is said to be ~-regular if X is homeo­

morphic with a subspace of a product space of a subfamily of 

~ • We denote the class of all ~-regular spaces by R~ • 

3. 2 Definition Two classes ~ and ~ 
I 

are said to 

be equivalent
1:6

each r. other if K '&.. =K ~ • 
----/\ 

A class C... of spaces is said to be simple, if Ei. 

is equivalent to a single element ciass {Y}, In this case, 

-S. is also called Y-simple, 

3,3 Theorem Lett:. be a class of spaces. 


1) Every closed subspace of an &. -compact space is 


again ~-compact, i.e. K~ is closed-hereditary, 

2) Every subspace of an ~-regular space is again 

& -regular, i.e. R~ is hereditary, 



3) Every product space of ~ -compact ( ~-regular) spaces 

is again 'Cc_ -compact (~-regular, respectively), i.e. KE._ 

and RSt. are productive. Conversely, if a product space of 

non-empty spaces is s_ -compact ( t:_-regui'ar), then each factor 

space is also S. -compact (~-regular, respectively). 

J,4 Corollary An arbitrary intersection of s...~ 

compact subspaces of a given space is E._-compact. 

).5 Corollar:t; Let f be a continuous map of an s_­

compact space into a space Y. Then the total preimage of 

each &.-compact subset of Y under f is b._ .. compact, 

3. 6 Corollary Let (Xd L -E I be a family of non­

empty spaces, Then the sum space Ext.. is .~-compact if and 

only if each X<.. is ~-compact and I is s_-compact with 

respect to the discrete topology. · 

J.7 Theorem (23] For a space X (not necessarily 

Hausdorff), there exists a pair ( ~t.X, ~~) such that . f3s..X is 

·E.t._-·compact and ~Ct. is a continuous map of X onto the dense 

subset fs_(X) of f>s_x with the following property: 

for any ~ -compact space Y and any continuous map f: X ~. Y, 

there is a continuous map f: ~E...X ·---+ Y with f ~ = f. 

In particular, if x is a -regular, then ( ~~x. PEJ 
is an Ks_ -compactification, i.e. ( f~X, r~) is an extension 

space of X such that p~x is l::_-compact. 
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3.8 Theorem [23] For a space X (not necessarily 

Hausdorff), there exists a pair ( rAre_X, o(t) such that ~X is 

. 	a_ -regular and o(f.. is a continuous map of X onto o<t..,X with 

the following property: 

for any ~ -regUlar space Y and any continuous map fa X -:> Y, 

there exists a continuous map fa o(Ec.X~Y with f c(t.. = f. 

Section 4: Categories. 

4.1 Definition Let A be. a small category and I:: a 

category. Then a funtor Da A~!:. will be called a diagram 

in t::; over A · • A lower bound of the diagram D is a pair 

(L, gA)' where Lis an object oft and (g.A.: L~DA)A-e4 

is a family of morphisms in t such that for any morphism 

fa A~A· in A , (Df)gA = gA, • 

A lower bound (L, gA) of D is said to be a limit of 

D if for any lower bound (L•, g.A.) of D, there exists a unique 

morphism f: L'--?L int such that gAf = g.A. · for each At: A 

4,2 Definition If every diagram in~ over .A- has 

a limit, then ~ is said to be A-complete or to have A ­
limits. If J:: is A -complete for every small category A , 
then ~ is said to be complete. 

Dually, one can define an upper bound of a diagram, 

colimits, and cocompleteriess; 



11. 

4.3 Theorem Let~ be a category. Then the following 

are equivalent: 

1) e is complete. 

2) '(; has products and pullbacks. 

3) t::', has products and equalizers. 

4) ~ has products and inverse images. 

4.4 Definition Let A- and£.., be categories. An 

ad junction from ~ to A is a triple (F, G, S' ) , where F and 

G are functors 
F 

~~<--->A, 
G 

while SP is a map which assigns to each pair of . 0bjects BE cl... , . 

A E: A a bijection 

~ = .PB,A: A (FB,A)-->~(B,GA) which is natural in 

B and A. 

In this case, the functor F is said to be a left 

adjoint for G, while G is called a right adjoint for F. 

4.5 Theorem Let (F,G, ~)be an adjunction from t;._ 

to 	A . Then 

1) G preserves limits. 

2) F preserves colimits. 

3) There exist a natural transformation 12 :· l.t..~ GF 

and a natural transformation E. : FG ~ 1A. 

4.6 Definition Let .A.' be a subcategory of a 
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category A and A an object of A . An A·~reflectio-n · of A 

is an object R(A) of .!'\' together with a morphism rA: A---7-R(A) 

such that for every object A 1 ·of A' and every morphism 

f: 	A~ A' there exists a unique morphism f: R(A)~ A' in 

A • with frA = f. 

If every object of A has a reflection in A•, then 


~· is said to be a reflective subcategory of .A-. 


Dually, ene can define a coreflective subcategory of 

a category. 

Remark: In the above definition, R becomes a func­

·tor from A to A' , and R is a left adjoint for the inclusion 

functor I 1 A ' ~ A • In this case, R is called the reflector 

of A in A•. 

On the other hand, 	 A'_\..Aif the inclusion functor I: A~ 

has a left adjoint R, then A-• becomes a reflective sub­

category of A and R becomes a reflector of A in ~·. 

4.? Definition Let A-' be a reflective subcategory 

of A . If for every object A t A , the reflection map 

rA 1 A~ R(A) is an epimorphism, A' is said to be an epi­

reflective subcategory of A . 

4.8 Theorem Let .A• be a full reflective subcate­

gory of A . If a diagram in A ' has a limit in A , then 

it has a limit in .A.•. 
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4.9 Theorem Let ,,A · be a full subcategory of Top 

(Haus), where Top (~) is the category of all topological 

spaces (all Hausdorff spaces, respectively) and continuous 

maps. Then the following are equivalent. 

l} A is epi-reflective in Top (Haus). 

2) .A is productive and hereditary (closed hereditary). 

3) A is productive and for every X .e A , Y -E Top 

{ Y 6 Haus ) , f e C { X, Y) , A c Y and AE A implies f- 1 (A) €. A • 
4) A is productive and for every X G Top (X c Haus), 

AL ~ X, A,_, EA implies f'.Ac, € A. 

Proof of:--' the theorem can be found in (251 • 

In what follows, every {epi-) reflective subcategory . 

of a category is assumed to be full and reple~e. 



CHAPTER I 

EXTENSIVE SUBCATEGORIES 

Section 1: Extensive subcategories. 

The following definition is due to B. Banasohewski L5l 

for the case of the category ~· 

1.1 Definition Let A be a subcategory of the 

category Haus {or HUnif) of Hausdorff (uniform, respectively) 

·spaces and {uniformly, respectively) continuous maps. 

A subcategory ~ of A is said to be an extensive subcategory 

of .A if it is a reflective subcategory such that the reflec­

tion maps rx' X~rX with respect to~ are dense embeddings 

for each X E- A . 

Examples: 1) The category of compact spaces and 

continuous maps is extensive in the category of completely 

regular spaces and continuous maps via the Stone-Cech com_... 

pactifications. 

2) The category 0f zero-dimensiona.l .eotnpact· .spaces ~d 

continuous maps is extensive in the category of zero­

dimensional spaces and continuous maps via the maximal zero­

dimensional compactifications [l] • 

14. 
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J) The category of complete Hausdorff uniform spaces and 

uniformly continuous maps is extensive in the category HUnif. 

1.2 Theorem Let -/,._ be an extensive subcategory of 

A . Then every reflective subcategory of A containing i... 
is also extensive in ~ • 

Proof: Let C be a reflective subcategory of A 

containing I>- , For any X E. .A , let r~ 1 X---7 r h.. X and 

rt ' X~ rt: X be reflections of X with respect to .t;.. and 

~ , respectively, Since ~ is contained in ~ , the:t'e exists 

a unique morphism r~ I r~ X~ ri.>. X With the following COmm­

utative diagrams X't­

~I ;.:x 
r 4 X 

Sinc.e ri.u is an embedding, r~ is also an embedding. 

It is easy to show that rt. is a .~-reflection of 

rt:X• Indeed, for any Y €-~and for any f: r~X~Y in A 
there is a unique fa rt.. X~ Y such that the outer triangle 

in the following diagram eommutesa 

~ r°'> 

f:~r/:x 
y 

Then, fr4 =f and the .unfqueness of f follows from 

that rt:; is a reflection. Since /,._ f. is extensive .in A • r.G.. . 
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is also a dense embedding. For;' any non-empty open set U of 

rt:.. X, there is an open set V of r~X -with rtv (U) = V (\ r,-c.Jr.cX), 

Since r~ is dense, there is an x € X with r~(x) e V. It is 

obvious that r~ (x) E tJ. Hence rt: is dense. 

l.J Definition Let .A- be a subcategory of Haus. A 

subcategory ~of .A- is said to be left-fitting with respect 

to perfect morphism~ if X belongs to ~ whenever f: X~ Y is 

a perfect morphism in A and Y belongs to "1..., • 

li4 Lemma Let x f >Y 

hl kl 
Z g ") P be a commutative diagram 

in ~. 

1) Suppose h be dense and k be an embedding. 

Then g(Z - h(X)) ~ P - k(Y) if f is perfect. Furthermore, 

if h is an embedding, then the diagram is a pullback. 

2) Suppose Z be compact and h be an embedding. 

Then f is perfect if g(Z - h(X)) ~ P - k(Y). 

Proof: Regarding l), suppose z be an element of Z 

with g(z) = k(y) for some yE Y. Since his dense, there is 

an ultrafilter 71 on X containing h- 1 (£)(z)), where cl)(z) 

is the neighborhood filter of z on z. Using the commutativity 

of the diagram and k being an embedding, f(2l) converges to 

y. Since f is perfect, there exists a limit point x of 1.J_ 

http:r,-c.Jr.cX
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such that f (x) = y. Hence, h ('(l) converges to h (x) and z 


simultaneously,. so that h(x) = z. 


For the second part, suppose us U~Z and v: U~Y 


be continuous maps with gu = kv. It is easy to show that u(U) C 

h(X). Indeed, suppose u(p) ¢ h(X) for some p t; U, Then, · 

gu(p) ·= kv(p) E k(Y) which is a contradiction to g(Z - h(X)) 

C:. P - k(Y). Let u: U~ X be a map defined by hu(p) = u(p) 


for each p -€;: . u. Since h is an embedding, u is continuous. 


Since kfu = ghu = gu = kv and k is an embedding, fu = v. 


The uniqueness of u follows from h being an embedding. 


Regarding 2), suppose ll be an ultrafilter on X and 

y be a limit point of f CU ) • Since Z is compact, there is a 

limit point of h(U), say z and then g{z) = g(lim h( U)) = 

lim gh(U) = lim kf('U) = k(y) e k(Y). Since g- 1 (k(Y)) C h(X), 

there is an element x E X with h(x) = z. Since h is an embe­

dding, x is a limit point of Zl. • Hence f is perfect. 

1.5 Theorem Every extensive subcategory of a cate­


gory A- is left-fitting with respect to perfect morphisms. 


Proof: Let t.., be an extensive subcategory of A- . 
Suppose f: X--:) Y be a perfect morphism in A and Y -E: t.._ • 

. Then we have the following commutative diagrams 

rxI __ f 

r_..:1 

rX rf ) rY , where rx and ry are reflec­
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tion maps of X and Y respectively. Since Y belongs to ~ , . 

ry is a homeomorphism. By Lemma 1.4, rx is onto, i.e. a homeo­

morphism. Hence X belongs to t_ • 

It is well known(?] that a Hausdorff space is compact 

if and only if the map on the space into the singleton space 

is perfect. Hence we have the following: 

1.6 Theorem Let A- be a subcategory of Haus or HUnif 

such that it contains a singleton space S and HomA-(X, S) I ¢i 

for each X E J1,- • Then any extensive subcategory of ,4 con­

tains all compact spaces belonging to A , whenever it contains 

a singleton space. 

Section 2: Limit operators and extensive subcategories. 

2.1 Definition Let A be a subcategory of Top or 

the category Unif of uniform spaces and uniformly continuous 

maps. An operator .£ which associates with every pair (X, A), 

where X is an object of Jr and A is a subset of X, a subset 

ixA of X is said to be a limit-operator on A if J. satis­

fies the following three conditions~ 

1) If A is a subset of X, then A C JXA C rXA' where 

rx denotes the closure operator on x. 
2) If A and Bare subsets of X then lx(A UB) = 

r U Cx xA -'xB. 
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J) If f: X~Y is a morphism in J\.and A is a subset of 

x then f( .QxA) c Jyf (A). 

A limit-operator !J. on A is said to be idempotent 

if ~ satisfies the following: 

4) If A is a subset of X then £X( 2-xA) = fxA· 

H. Herrlich has defined (idempotent) limit-operators on 

Top first (26). 

It is obvious that an idempotent limit-operator Q 
gives rise to a closure operator ix on every object X of ~ 

and that every morphism f: X-----4Y in A is also continuous 

with respect to the new topologies generated by JX and Jy• 

2.2 Definition Let f be a limit-operator on ,4. 
A 	subset A of an object X of ~ is said to be ~ -closed if 

XXA = A, 

Remark: For any limit-operator ion A, the family of 

all j_ -closed subsets of X E A forms the family of all closed 

subsets of X with respect to some topology on x. 
For any limit-operator 1 on A., there is an associated 

idempotent limit-operator £ on A which is defined as follows: 

_2xA = n { B ( A <;;. B <;;. X , f. XB = BJ for X t .,4 . 
-

Then it is obvious that JX is exactly the closure operator 

of the space X with the family of j_ -closed subsets of X as 

the family of closed subsets, 
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In what follows, every subcategory of a category is 

assumed to be replete and full. And an extension space of a 

space is also assumed to be a space of which the space is a 

dense subspace. 

2.3 Definition Let ,A, be a subcategory of Haus. 

Then A is said to be hereditary if for any X E .4 , all 

natural embeddings of subspaces into X are morphisms in A- . 

Let ~ be an extensive subcategory of a category ;Ct 

of Hausdorff spaces and continuous maps. For an idempotent 

limit-operator £ on ~ , let ~i_ be the subcategory deter­

mined by those objects of A which are }-closed in their i.. ­
reflection spaces. 

2. 4 Theorem If A-' is hereditary, then ;t..R. is also 

an extensive subcategory of ~ • 

Proof: For every X E A , let rx: X~ rX be the 

~ -reflection of X such that X is a dense subspace of rX and 

rx is the natural embedding. Let r~X be the subspace of rX 

with JrXX as underlying set. 

Since A is hereditary, ri.X belongs to .4- . It is easy 

to show that r_eX belongs to ;J,,f. • Indeed, let ri• X -~r_eX and 

j: rf X---7 rX be the natural embeddings respectively. We wish 

to show that j is the ~-reflection of rfl X. Because, for any 

Y in £'- , and for any f: rJ._X--7 Y in .4-, there is a unique 
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-
f: rX--7Y in~ such that the outer triangle in the diagram 

Q.rx . 

fr;~--~>r/x 
y 

-commutes, Hence, fj = f and the uniqueness of f follow from 

that r§ and j are dense embeddings, Since rfl.. X is j_ -closed in 

its ~-reflection space rX, rSl X belongs to &.g_ • 

Now, we can conclude that r~: X~r~X is the ~£­

reflection, For any Y in ~i. , and for any morphism f: X---7' Y, 

there exists a unique f: rX~rY in t.._ such that the diagram 

rQ. 
x 

x--~>r.,ex 

f1 
) rY Y . r JLY 

commutes. Since f(r,.e_X) = f( ,.erXX) C P.ryf(X) C QrYY = Y, 

fj: rfX~Y is a well-defined continuous map, Let fQ = fj. 

Then it is obvious that f1ri = f, Noting that r~ is a dense 

embedding, fl is unique, This completes the proof. 

By Propositions and Theorem 1 in [26], every coreflec­

tive subcategory t. of the category Top generates an idem­

potent limit-operator j_ (~ ) on Top and for every topologi­

cal space X, ~(t )X is precisely the closure operator on 

the 1:; - co reflection space of X. Hence the following is im­
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mediate from Theorem 2,4 for the same categories .A and ~ as 

above• 

2, 5 Corollary For any coreflective subcategory ~ 

of Top, let if..~ be the subcategory of .4 determined by those 

members of A which are closed in the t::, -coreflection spaces 

of their t._ -reflection spaces. Then i0.::: is also an extensive 

subcategory of A . 

Remark: For any pair of coreflective subcategories 

t:/ and K ' of Top, ~K ~ ;b,~, if J::;' J r:;· • In parti­

cular, for any coreflective subcategory '!::, of Top, ~ is 

contained in ~ J::::, , for ~ = £..Top. 

Proof: For any X E A , let ct : ct"( rt...X)----7-- rLX and 

ct:;': c,t,(r~X) ~ r;t..X be coreflections of the ~-reflection 

space r/,..,X of X with respect to ~ and ~ ' respectively. 

Since t:; is contained in t;;•, the map f: c~(r4,X)~c,e1(r~X) 

defined by x ~ x is continuous. Suppose X belongs to ~/:::,, • 

Then Xis closed in c~,(rJ;.;X). Hence Xis also closed in 

cl(,. ( r,;<:.,X), i.e. X belongs to ~ t:::. 

The full subcategory of HUnif determined by complete 

Hausdorff uniform spaces will be denoted by C. . 

For any idempotent limit-operator fl. on G_ , let C. i.. 
be the subcategory determined by the Hausdorff uniform spaces 

which are 1!_ -closed in their completions. 
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2.6 Theorem The subcategory Ci of HUnif is also 

extensive in HUnif. 

Proof: For a Hausdorff uniform space X, let cX be 

its completion and ex: X~cX the natural embedding. And let 

c2 X be the subspace of cX with lcxX as underlying set. 

By the uniqueness of the completion of a uniform space, cX 

is isomorphic with c(c1X). Since ci.X is i-closed in cX, c_eX 
Q

belongs to G £ • Now, let ex: X~ c..e_X be the natural embedding 

of X into c_eX. For any Y in Cfl. ·, and any uniformly continuous 

map f: X----? Y, there is a unique uniformly continuous map 

f: cX---t cY such that fcx = cyf, where cy: Y~ cY is the 

natural embedding of Y into its completion. Since f is a 

morphism in C , f (cQ X) = f ( f_ cXX) <;; *'cYf (X) c QcYY = Y. 

Thus flciX: cQX~Y is well defined and uniformly continuous. 

Moreover, let f~ = flcQX, then f~cX = f. Finally the unique­

ness of f 2 follows from that ex is a dense embedding. 

2.7 Corollary For every idempotent limit-operator R. 

on <:_ , the category <:::1 is productive and closed hereditary. 

2.8 Definition A Hausdorff space X is said to be 

Hausdorff closed if for every homeomorphism f of X onto a 

subspace of a Hausdorff space X•, f(X) is closed in X'. 

2.9 Definition If X and Y are spaces, then a map 

f: X~ Y is said to be semi-open if the image under f of 
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each non-empty open set of X has non-empty interior in Y. 

Remark: Since the composition of semi- open maps is 

semi-open and every identity map on a space is semi- open, we 

can consider the category of Hausdorff spaces and continuous 

semi-open maps. We will denote it by Haus*. 

H, Herrlich and G. E. Strecker have shown [3~ that 

the subcategory -aL* of Haus* determined by all Hausdorff 

closed spaces is epi-reflective in Haus* via the Katetov 

extensions [34). 

2 .10 Lemma [30] Let Z and Y be spaces and f: Z ~ Y 

be a map. If Xis dense in Zand if flX: X-~Y is semi- open 

then f is semi-open. 

Proof: For any non-empty open set U in Z, Un Xis 

again non-empty open in X, for X is dense in z. Since f\X is 

semi-open, f(U n X) has non-empty interior in Y, so that so 

does f(U), 

The following corollary was proved by B. Banaschewski 

first [3). However, we will give here another proof , 

2.11 Corollary Let X be a Hausdorff space and l e t Y 
v

be a subspace of the Katetov extension XX of X. If Y contains 

X, then xx and KY are homeomorphic. 

Proof: It is enough to show that the natural embed­
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ding j: Y-4 xx of Y into xx is a reflection of Y in 7Jl*, 

By the above lemma, j belongs to Haus*. Let i: X~ Y be the 

natural embedding of X into Y, Since X is open in Y, i also 

belongs to Haus*, For any Z in OZ.* and for any f: Y~ Z in 

Haus*, there is a unique morphism f: )( X~ Z in VL * such that 

the outer triangle in the diagram 

_ _....j_~) J<X 

-
commutes. Since X is dense in Y, fj = f, The uniqueness of f 

follows from that j is a dense embedding. 

Remark: The category Haus* is not hereditary, for 

the natural embedding of IF< into a=! is not a morphism in Haus*. 

Hence we cannot apply Theorem 2.4 for the categories Haus* 

and CJ[_*. 

For any idempotent limit-operator j_ on 7X *, let ()l*
fl 

be the subcategory of Haus* determined by those members of 

Haus* which are 1 -closed in their Katetov extensions. 

2,12 Theorem The subcategory [Jl.Jl* of Haus* is 

also extensive in Haus*. 

Proof: For any Hausdorff space X, let 'KX: X---7 XX 

be the reflection of X in DL*, i.e. XX is the Katetov ex­"' 
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tension of X and ·xx is the natural embedding. Let X1X be the 

subspace of -XX with .2XXX as underlying set and xi : X-__, J~X 

the natural embedding of X into ~X. By Corollary 2.11, KX 

= K ~~x. Being f?.. -closed in XX, hence in >< X,eX, kix belongs 

to Ol..Q*. By Lemma 2 .10, X;_ is a morphism in Haus*. For any Y 

in '[JL_e* and for any f: X-4 Y in Haus*, there is a morphism 

f: x. X--4 J< Y such that X yf = f j Xi , . where j is the natural 

embedding of X_Q X into xx. Since f is a morphism in 'Dl*, 
f ( K_e X) = r ( 2 xxx) ~ 2xyf (x) <;; {j_"KYY = Y. Let fl. = f j. Then 

f,e_ is a well defined continuous map on l<_i x into y and ~ ><_Q = f, 

Thus, f_pbelongs to 'Ol.J by Lemma 2,10. Finally, the uniqueness 

of fQfollows from that X~ is a dense embedding. This completes 

the proof. 

2.13 Definition A subset of a space is said to be 

_regular-closed if it is the same as the closure of its inte­

rior. 

2.14 Proposition Every epi-reflective subcategory 

of Haus* is productive and regular-closed hereditary, i.e. 

each regular-closed subspace of an object of the subcategory 

is also its object. 

Proof of the proposition c~ be found in [30]. 

2 .15 Corollary For any iP.empotent limit-operator 2. ~ 

the category 7Jl}* is productive and regular-closed heredita ry. 
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Remark: D. Harris has considered (19] the category 

pHaus of all Hausdorff spaces and p-maps, where by a p-map 

is meant a continuous map such that the inverse image of a 

p-cover of the codomain is a p-cover of the domain, while 

a p-cover of a space is an open covering such that the union 

of some finite subfamily is dense. Then he has shown that 

the full subcategory of pHaus determined by all Hausdorff 

closed spaces is also extensive in pHaus via the Katetov 

extensions and that pHaus is the largest subcategory of Haus 

in which the full subcategory of Hausdorff closed spaces is 

extensive via the Katetov extensions. Instead of Haus*, if 

we consider the category pHaus, Corollary 2.11 and Lemma 2,10 

are still true. Hence it is easy to show Theorem 2.12 for 

the category pHaus. 

Section J: Limit operators. 

In Section 2, we have shown that for any idempotent 

limit-operator i on any extensive subcategory ;t._ of some 

suitable category .A , '1/J.1 is extensive in ,A and contains ;l.. 

In this section, it will be shown that for any reflec­

tive subcategory t;,_ of a certain category A containing an 

extensive subcategory Ir of A-- , there is a limit-operator 

associated to ~ • And it will give another method to construct 

new extensive subcategories from a well· known extensive 

subcategory. 
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J.l Definit1on Let A be a subcategory of Top or 

HUnif. An operator _,£ which associates with every pair (X, A), 

where X is an object of .A and A is a subset of X, a subset 

iXA of X is said to be a semi-limit-operator on ,A.. if J!_ 

satisfies the conditions 1) and J) in Definition 2.1, namely 

i) if A is a subset of X, then A <;: j xA S f XA' and 

ii) if f: X~ Y is a morphism in J1.. and A is a subset of 

x then f( 2..XA) C flyf(A). 

iii ) i f A <;;;:. B c. x, t h en ixA <;;; ix_B. 

Remark: For any semi-limit-operator .Q on A , there is 

an associated idempotent limit-operator f.. on A. 

Proof: For any X €: A , let Ix be the closure operator 

on X with respect to a topology with J;_(X) = {Al .~xA =A} as 

a subbase for closed sets. Since \XA S. _.P.X ( r xA) C r X ( \..., xA) 

= \..,XA' A~ J.XIXA = rXA t J,t(X). Hence A~ .flxA C. rxA• 

Since lx is the closure operator, f x(A U B) = llxA U J- xB 

and .ex< QxA) = l xA· For any morphism f: x~ Y inA and for 

any F E .sJ7,.e.(Y)' f (Qxf- 1 (F)) c Qyf(f- 1 (F)) £. 2 yF = F, so that 

~Q xf- 1 (F) c f- 1 (F), i.e. f- 1 (F) t. xft<x). Hence f is continuous 

with respect to the new topologies generated by ff X and f y• 

Thus for any As;. X, f( lxA) c Jyf (A). 

Remark: For any semi-limit -operator j_ on Top, let 

1 be the associated idempotent limit-operator with J. . 
Let ::, ( Q ) = { X E: Top \ ~Q ( X) S: "f( X) } and ·~ ( i ) = { X -E Top I 

~ A I QxA = A} ~ Y(x)} , where ~ (X) is the family of closed 
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sets of X. Then C (Q) = t .( Q ), 

Hence every semi-limit-operator ~ on Top generates 

a coreflective subcategory of Top, 

Proof: It is obvious that ~ ( 12) = t:., ( t2 ) • Since 

/::_; ( Q) is a coreflective subcategory of Top [JO) , J.. gene­

rates the coreflective subcategory 1:!.,_( 1 ) = :::;,·( Q ) • 

J.2 Theorem Let A- be a subcategory of Haus or HUnif 

and ~ be an extensive subcategory of 4 . 
Suppose A be hereditary and & be a reflective subcategory 

of A- containing ~ • Then we have the following: 

1) There exists a semi-limit-operator J. on~ such that 

G_ is precisely the subcategory of A determined by the class 

{x E: _A I j_ rXX = X}, where rx: X--4 rX is a 4 -reflection 

of X for each X E A . 
2) There exists an idempotent limit-operator P on ~ 

such that ~~ :J $ . . 

Proof: By Theorem 1.2, c._ is also extensive in A- . 
For any X E A, let ex: X--;} eX be an &_-reflection of x. 

Regarding 1), Let A be a subset of an ob ject X of ~. 

Since A- is hereditary, the subspace A of X belongs to ,4 . 

For the natural embedding jA: A-4 X, there is a unique mor­

phism f A: eA ·~ X in ·Ee_ such that the diagram A e A > eA 

jAl ~/( 
x 
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commutes, fo:r X ·E ~ <; s_ • 

We define J.XA byfA(eA). We wish to show that the operator _Q_ 

defined as above is a semi-limit-operator on ~ • 

Firstly, A= jA(A) = fAeA(A) <;; fA(eA) = XxA, i.e. 

At;; XxA· And 12.,xA = fA(eA) = fA( reA(eA(A))) ~ lxfA(eA(A)) 

= r Xj A (A) = f1 XA, i. e • ~ XA c. rXA. 

Secondly, for any morphism h: X--7 Y in IA , we have 

the following diagram 

hlAA h(A) 

hx ~~~~~~~~~~~~-- y , in which the 

outer rectangle and the upper trapezoid commute, where jh(A)' 

eh(A) and fh(A) can be understood such as jA' eA and f A' and 

h is the unique morphism determined by eA and eh(A)(hlA). 

Since fh(A)heA = fh(A)eh(A)(hlA) = jh(A)(hlA) = hjA = hfAeA' 
-

fh(A)h = hfA' for eA is the reflection map. 

Hence h( i.XA) = h(fA (eA)) = fh(A)h(eA) ~ fh(A) (eh(A)) = 
Qyh(A), i.e. h(_,Q XA) C iyh(A). Obviously.£ satisfies iii ). 

Let ~1 = {x EA l Jl.rXX = x}. Now, we wish to show 

that i.J- .i. = ~ • For any X E ~ , we have the following 

commutative diagram: 
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ex = lx 
x ) ex 

jx = = jxrxj/; 
rX 

Hence, .R.rxX = fx(eX) = jx(X) = x, i.e. x E ~1... 

Conversely, suppose X does not belong to ~ • Since Sz_ is ex­

tensive in A , ex is not onto. By the proof of 

Theorem 1.2, the morphism fx: eX~rX defined by ex and rx 

is a t._ -reflection of eX, so that fx is a dense embedding. 

Hence , ¢ 'I f X ( e X - e X ( X) ) £ f X ( eX) - f X ( e X ( X) ) = ~r XX - X. 

This completes the proof. 

Regarding 2), let 2. be the associated idempotent 

limit-operator with Q in l). · Then it is obvious that 2Ca is 

contained in <Xf.. I. 

Remark: 1) For the semi-limit-operator i_ on ~ 

defined in the above theorem, and for any X E ~ , xf.t(X) 

is precisely the · family of subsets of X which belong to &___ 

as subspaces of X. 

2) Lj_ may contain ~ properly. 

Proof: Using the same argument of the proof of 

Theorem J.2, one can easily prove 1). We omit th(l! proof of 1). 

Regarding 2), let .4 be the category of completely 

regular spaces and continuous maps, i,._,the subcategory of A 

determined by compact spaces and C the subcategory of ~ 
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determined by realcompact spaces. 

s. Mrowka has shown (43] that there is a completely 

regular space M which can be represented as the union of two 

closed subsets - each of which is realcompact in its relative 

topology - and which, however, is not realcompact. 

Hence, by Remark~), the space M E <t1 - E._ • 



CHAPTER II 

n-COMPACTLIKE SPACES AND SEQUENTIALLY CLOSED SPACES 

In this chapter, we will apply the results of Chap, I 

to some subcategories of Haus and HUnif, 

Section 1: n-compact spaces. 

1.1 Definition Let n be an infinite cardinal number, 

and let X be a topological spa~e. A subset of X is said to be 

a Gn-set if it is an intersection of fewer than n open subsets 

of x. 

It is clear that the Gn-sets of a topological space 

(X,..C) form a basis . for a topology on X. We denote the new 

topology by r,(}n. 

Since the inverse image of a Gn-set under a continu­

ous map is also a Gn-set, the closure operator rn on X 

with respect to .[)n gives rise to an idempotent limit­

operator on Top. 

A subset of X is said to be n-closed if it is closed 

with respect to Dn. Finally, by the n-closure of a subset 

A of X is meant r A. n 

The following definition is due to H. Herrlich ~4J. 

33, 
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1.2 Definition A completely regular space X is said 

to be n-compact if every z-ultrafilter with the n-intersection 

property on X is fixed. 

Remark: A completely regular space is ~0-compact 
if and only if it is compact. Also, a completely regular 

space is ~1 -compact if and only if it is realcompact. 

It is known (24) that the category of n-compact spaces 

is epi-reflective in the category of completely regular spaces 

and continuous maps. For any completely regular space X, we 

denote the reflection of X by ~n: X--4 ~nx. 

1.3 Notation For a completely regular space X, the 

family of all unions of fewer than n cozero sets of ~ X, which 

contain X, will be denoted by cozn(X). 

1.4 Lemma The n-closure of a completely regular 

space X in ~ X is the intersection of the members of cozn (X). 

Proof: Suppose p ~ (\cozn(X). Then there is a member 

S of cozn (X) such that p ~ s. Let S = L~ I ( pX - ZL), where 

each ZL is a zero-set of f3 X and I I I < n. Since each ZL is 

a Gs-set, 0Z~ is a Gn-set containing p and disjoint from x. 
Hence p does not belong to the n-closure of X in pX. 

Conversely, assume that p does not belong to the n­

closure of X in ~ X. Then there exists a Gn-set G containing 

p which is disjoint from X. Let G =Q1G~, where each G~ 



35. 

is open in f X and f I I < n. Since the zero-set neighborhoods 

form the fundamental system of neighborhoods, there exists 

a zero-set neighborhood ZL. of p in ~ X with Z L. S GL- for each 

L .e I. Hence p ~ Y< ~X - z,J € cozn(X). 

Noting that every cozero-set of ~X is <i' -compact, 

each member of cozn(X) is the union of fewer than n compact 

subsets of ~X. Hence each member of cozn(X) is n-compact as 

subspace of ~X. Moreover, the intersection of n-compact sub­

spaces is again n-compact (24) • Thus we have the following: 

1.5 Corollary The n-closure of a completely regular 

space X in ~ X is n-compact. 

The following lemma is due to M. Husek DJ]. 

1.6 Lemma For every infinite cardinal number n, the 

class of n-compact spaces is Pn-simple, where 

1) P~0 = I , where I is the unit interval [o, l], 

2) if n is not a limit cardinal number and n = t+, then 

Pn = rt - {Pl' where p is a point of yt' 

J) if n is a limit cardinal number and n then°I~ O' 

p = tTnPt+.n 

Proof of the lemma can be found in (33), 

1.7 Theorem For a completely regular space X, 


~ X is precisely the n-closure of X in Bx • 
. n l 

Proof: Since the ~ 0-closure of X in pX is ~ X it­
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self, we may assume that n is greater than ~ 0 • Let Y be the 

n-closure of X in ~X. By Corollary 1.5 and Theorem 4.J in 

[23), it is enough to show that Y is a Pn-extendable exten­

sion of x. In Lemma 1.6, let p = (1), i.e. all coordinates 

are 1. Let n be a limit cardinal number. For any continuous 

map f on X into P , let f be the canonical extension of f to n 

r x into tYn 1t. Suppose there be a q E y such that f (q) ~ p n• 

Let :n::t. and J[t be the L-th projection. of It onto I and the 

t-th projection of 1r I.t onto It respectively. Sincet< n 

f(q) ~ Pn' there exists t such that ""J\f(q) = (1). Consider 

G~ = (~L Ktf)- 1 (11 - l/m, l]) for each natural number m and 

L < t. Since G = (\ G~ is a G -set containing q, G meets
'-•m n 

X, say x E G n X. Then ~f (x) = (1), hence f (x) E Pn' which 

is a contradiction. Hence !lY is the desired extension off 

to Y. 

By the same argument, one can easily prove that Y is 

a Pn-extendable extension of X for an isolated cardinal number 

n. 

Noting that a completely regular space X is n-compact 

if and only if ~nx·is homeomorphic with X and every member 

of cozn (X) is a a-'n-compact subset of ~ X, i.e. a subset 

which is the union of fewer than n compact subsets of ~ X, 

we have the following: 

1.8 Corollary For a completely regular space X, 

the following are equivalent: 
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1) X is n-coropact, 

2) X is n-closed in px, and 

J) X is the intersection of a'n-compact subsets of ~ X. 

1.9 Theorem Ann-closed subspace of an n-compact 

space is again n-coropact. 

Proof: Let Y be an n-closed subspace of an n-compact 

space X. Being n-compact, X is n-closed in ~ X, and hence Y 

is n-closed in ~ X. Let 't be the natural embedding of Y into 

x. We denote the canonical extension of ""C to ~ y into ~x 
by ""C • Since ·-r: ( ~ y - Y) c rx - z (Y) = rx - Y, -c-1(Y) 

is contained in Y, It is obvious that Y = l: -l (Y) and the 

inverse image of an n-closed subset under a continuous map is 

also n-closed, Hence Y is n-closed in ~ Y, so that Y is n­

coropact, 

1.10 Proposition Let Y be an extension space of a 

space x. Then X is n-closed in Y if and only if every point 

of Y belongs to X, whenever its trace filter has the n-

intersection property. 

Proof: Suppose that X be n-closed in Y. Take y .f: Y 

whose trace filter has the n-intersection property. For any 

family (Gt,) l. t: I of open neighborhoods of y with II l < n, 

GL n X t T(y) for each Le I, where T(y) denotes the trace 

filter of y. Hence 0 GL.. n x I cP , i.e. Y €. r x = x. n 
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Conversely, take y ..::::- f"nX. For any subfamily (G,)L~I 

of T(y) with lrJ < n, there exists an open neighborhood Vt,, 

of y for each L­ ~ I such that V1..,. n X = GL• Since (\ VL is 

a G -set,n n VL
L 

n x I cp , i.e. n G 
~ 

I q, • Hence T(y) has 

then-intersection property. Thus YE X. 

1.11 Definition A filter ~ on a completely regular 

space X is said to be completely regular, if there is a base 

~of ~ consisting of open sets such that for any A E ~. 

there are a B of: 83 contained in A and a continuous map f on x 

into [o, l] having the value O on B and the value 1 on <t:A. 

A completely regular filter 'j1" is said to be maximal 

if it is not contained in any other completely regular filter, 

V' 

Since the Stone-Cech compactification ~X of a com.. 

pletely regular space X is given by the strict extension of X 

with all maximal completely regular filters on X as the filter 

trace [4, 71, the following is the immediate consequence of 

Proposition 1.10, 

1.12 Proposition A completely regular space X is 

n-compact if and only if every maximal completely regular 

filter with the n-intersection property is convergent. 
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Section 2i Zero-dimensional spaces. 

2.1 Definition A Hausdorff space is said to be zero­

dimensional if it has a basis consisting of sets which are 

both open and closed. 

The category of zero-dimensional spaces and continuous 

maps will be denoted by Zero. 

2.2 Definition A filter on a space is said to be 

open closed if it has a basis consisting of sets which are 

both open and closed. An open closed filter is said to be max­

imal if it is not contained in any other open closed filter. 

It is known that the subcategory &of Zero deter­

mined by all zero-dimensional compact spaces is extensive in 

Zero (lJ. The reflection of a zero-dimensional space X is 

given by the maximal zero-dimensional compactification ~X of 

X, i.e. the strict extension of X with all maximal open closed 

filters on X as the filter trace (1, 4) • 

2.3 Definition Let rt be an infinite cardinal number. 

A zero-dimensional space X is said to be zero-dimensionally 

n-compact if every maximal open closed filter with the n­

intersection property on X is convergent. 

Remark: A zero-dimensional space is zero-dimensionally 

r~ 0 (,~ 1 )-compact if and only if it is compact (rN-compact, 
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respectively) [23]. 

Combining Proposition 1.10 and the fact that the maxi­

mal zero-dimensional compactification ~X of a zero-dimensional 

space X is the strict extension of X with all maximal open 

closed filters on X as the filter trace, we have the following 

immediately. 

2.4 Lemma A zero-dimensional space X is zero-dimen­

sionally n-compact if and only if X is n-closed in 5 X. 

Since every n-closed subspace of a compact space is 

n-compact, we have the followings 

2.5 Corollary Every zero-dimensionally n-compact 

space is also n-compact. 

For any infinite cardinal number n, the subcategory 

of Zero determined by all zero-dimensionally n-compact 

spaces will be denoted by a&n. It is noted that ~~0 is 

the category of all zero-dimensional compact spaces, while 

the category ~~' is a proper subcategory of all zero­

dimens ional realcompact (= ~. -compact) spaces (46). 

Combining Lemma 2.4 and the fact that the category 

Zero is hereditary, we have the following by Theorem 2.4 in 

Chap, I. 

2. 6 Theorem The subcategory a& n of Zero is exten­
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sive in ~. 

2.7 Corollary The category of all zero-dimensionally 

n-compact spaces and continuous maps is productive and closed 

hereditary. 

2.8 Corollary Let X be a zero-dimensional space and 

f: X--t Y be a perfect map. Then X. is zero-dimensionally 

n-compact if ? is zero-dimensionally n-compact. 

Proof: It is immediate from Theorem 1.5 in Chap. I. 

2.9 Corollary Every n-closed subspace of a zero-

dimensionally n-compact space is again zero-dimensionally ·n­

compact. 

Proof: By the same argument of the proof of Theorem 

1.9, one can easily prove the corollary. We omit the proof, 

It is well known [7, 23) that the sum space of a 

family (XL)LtI of Hausdorff spaces is homeomorphic to a closed 

subspace of IX lTXi..., where I is endowed with the discrete ,_ 

topology. Hence we have the following by Corollary 2.7. 

2.10 Corollary Let (XL)LE-I be a family of non­

empty zero-dimensionally n-compact spaces. If I is zero­

dimensionally n-compact with respect to the discrete topo­

logy, then the sum space 2: XL of (X d is also zero-dimensio­

nally n-compact. 
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2.11 Definition A space X is said to be strongly 

zero-dimensional if it is completely regular and px is 

totally disconnected. 

It is obvious [~ that every strongly zero-dimensional 

space is zero-dimensional. But there is a zero-dimensional 

space which is not strongly zero-dimensional (17, 46) • 

2.12 Corollary For a strongly zero-dimensional space 

X, X is n-compact if and only if it is zero-dimensionally n-

compact. 

Proof: X is n-compact if and only if X is n-closed 

in ~X = 5x by the assumption if and only if Xis zero­

dimensionally n-compact. 

2.13 Theorem For every infinite cardinal number n, 

the class of zero-dimensionally n-oompact spaces is D -simple,
n 

where 

1) D~ = D, where D is the two point space with the 

discrete topology, 

+2) if n is not a limit cardinal number and n = t , then 

Dn 
- t- D - { p~' where p is a point of Dt, 

3) if n is a limit cardinal number and n f ~ 0 , then · 

D n = If 
t< n Dt+. 

Proof: Using the same argument of the proof of Lemma 

1.6 by replacing the unit interval by D, one can easily prove 

the theorem. We omit the proof. 
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Section J: n-complete spaces and n-Hausdorff closed spaces. 

The following definition is due to M. Hu~ek [33] • 

3.1 Definition Let n be an infinite cardinal number. 

A Hausdorff uniform space X is said to be n-complete if every 

Cauchy filter with the n-intersection property on X is conver­

gent. 

3.2 Definition The minimal ~laments (by the inclu­

sion relation) of the set of all Cauchy filters on a uniform 

space X are called minimal Cauchy filters on X. 

Recall [7] that for a Hausdorff uniform space, its 

completion cX is given as follows: 

its underlying set is the set of all minimal Cauchy 

filters on X and its uniform structure is generated by 

{v IV: symmetric entourage on x}, where -V is the set of all 

pairs ( ~ , '1) of minimal Cauchy filters such that there is a 

set M in ·5 ('\ "L which is a V-small set. 

In what follows, we identify each point of X with 

its neighborhood filter, so that Xis a subspace of ex, 

Using the fact that each minimal Cauchy filter 3 
is generated by {v(F) I V: symmetric entourage on X, F -E: ~} 

it is easy to show that the trace filter of ~ --e: cX on X 

generates ~ itself. Moreover, for any Cauchy filter 'l , 
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there is a unique minimal Cauchy filter which is coarser than 

~ • Hence by Proposition 1.10, we have the following: 

J,J Lemma A Hausdorff uniform space X is n-complete 

if and only if it is n-closed in ex. 

The category of n-complete spaces and uniformly con­

tinuous maps will be denoted by Gn. 

The following theorem is immediate from Theorem 2.6 

in Chap, I and Lemma J.J. 

J.4 Theorem The category ~n is extensive in HUnif, 

J.5 Corollary The category t:n is productive and 

closed hereditary. 

J,6 Proposition Every n-closed subspace of an n­

complete space is again n-complete. 

Proof: Since every uniformly continuous map is also 

continuous, we can easily prove the proposition by the same 

argument in the proof of Theorem 1.9. 

It is well known (7, 17] that for every completely 

regular space X, ~ X is homeomorphic with the completion cX 

of X with the uniform structure generated by the set C*(X) of 

all bounded continuous real-valued maps on X, Hence we have 

the following: 
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J.7 Theorem A completely regular space X is n-compact 

if and only if it is n-complete with respect to the uniform 

structure on X generated by C*(X). 

Proof: X is n-compact if and only if it is n-closed 

in ~ X if and only if it is n-complete with respect to the 

uniform structure on X generated by C*(X). 

Examples: For any infinite cardinal number n, there 

is an n-compact space which is not t-compact fort (n, namely 

Pn in Lemma 1.6. Thus there is an n-complete uniform space 

which is not t-complete, i.e. ~ C ~ for t <n, 

It is also well known that for every zero-dimensional 

space X, .5 X is homeomorphic with the completion cX of X with 

the uniform structure generated by C(X, D), where Dis the 

two point space with the discrete topology and C(X, D) is the 

set of all continuous maps on X into D. Hence we have the 

following: 

J,8 Theorem A zero-dimensional space X is zero­

dimensionally n-compact if and only if it is n-complete with 

respect to the uniform structure on X generated by C(X, D), 

J.9 Definition A filter on a space is said to be 

open if it has a base consisting of open sets. And an open 

filter is said to be maximal open if it is not contained in 

any other open filter. 
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3.10 Definition Let n be an irfinite cardinal number. 

A Hausdorff space X is said to be n-Hausdorff closed if every 

maximal open filter with the n-intersection property on X is 

convergent. 

It is noted that a Hausdorff space is Hausdorff closed 

if and only if it is ~ 0-Hausdorff closed. 

Since the Katetov extension xx of a Hausdorff space 

X is the simple extension space with all non-convergent maxi­

mal open filters on X together with all open neighborhood 

filters on X as the filter trace, we have the following by 

Proposition 1.10, 

J.11 Lemma A Hausdorff space X is n-Hausdorff closed 

if and only if X is n-closed in Xx. 

The subcategory of ~* determined by all n-Hausdorff 

closed spaces will be denoted by m.. ~. 

3 .12 Theorem The category {)(_ ;t is extensive in Haus~-. · 

Proof: It is immediate from Theorem 2.12 in Chap. I 

and Lemma 3.11. 

J .13 Corollary The category VL ~ is productive 

and regular closed hereditary, 



Section 4: Sequentially closed space~. 

S, P. Franklin has shown (12, 13, 14] that the cate­

gory ..0w of sequential spaces and continuous maps is coref­
o 

lective in Top. Also, H. Herrlich has shown ~6} that the 

category 0o1. of r:A-sequential spaces and continuous maps for 

any regular ordinal OC.. is coreflective in Top, 

We will investigate some properties of the associated 

reflective subcategories in various subcategories of Haus and 

HUnif with xf cX. • 

4. 1 Definition Let r:J.. be a regular ordinal, A net 

is said to be an o< .sequence if its domain is the well­

ordered index-set <::/.... i.e. the set of all ordinals less than ~ • 

It is noted that lU0-sequences are exactly usual 

sequences. 

4,2 Definition A subset U of a topological space X 

is ~-sequentially open if each ~-sequence in X converging 

to a point in U is eventually in U, A topGlogical space X 

is said to be ~-sequential if each ~-sequentially open 

subset of X is open, 

It is again noted that l00-sequential spaces are 

exactly sequential spaces, 

For a subset A of a topological space X, we define 
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i~A by ix .e X \ there is an ~-sequence in A converging to x] . 
Then it is easy to show that the operator JC( defined as above 

is a limit-operator on Top. Moreover, it is known ~~ that 

_Q~ is not idempotent and that the category xf~ generates the 

associated idempotent limit-operator with J<'A.. 

4. J Definition A filter ~ on a set X is said to 

be an \J.. -filter for a regular ordinal o( if it has a base 

(BA)A <rJ.. such that B>. s; Bf for f ~.A <rt.. 

It is noted that w0-filters on a set are exactly 

filters with countable bases. 

4.4 Definition A filter on a set X is said to be 

an rf.. -Frechet filter for a regular ordinal ~ if it is · gene­

rated by the tails of an ~-sequence on X. 

,
It is obvious that w0-Frechet filters are exactly 

Frechet filters. 

4. 5 Proposition Every rA. -filter on a set X is the 

intersection of the ~ -Fr~chet filters containing it. 

Proof: Let Y be an o{.-filter on X and (B,>.h. < ~ 

a base of '"f such that B>. c; Bf for .µ ~ A < o\ • Let a~ 

be any element of B>.. for each A <. o<. ; then it is clear that 

~ is coarser than the ~ -Frechet filter generated by the 

tails of the ~ -sequence (a A ) >. < o< • 



Hence the intersection ~ of the rl... -Frechet filters which are 

finer than '¥ exists and is finer than 'f ; if ~ is strictly 

finer than 9" then there exists a set M E }J such that 

BA n ([_. M °I cp for each A <. o( ; if b.A -E B>.. n ([:M, the o(-Frechet 

filter generated by the tails of the o(.-sequence (b;,, )>-. <~ 

is finer than ~ and does not contain M. This contradicts the 

definition of ~ • 

4.6 Proposition Let Y be an extension space of a 

space X. The following are equivalent for the limit-operator 

1«: 

1) i~x = x. 
/

2) For any y € Y, if there is an 0( -Frechet filter on X 

containing its trace filter T(y), then y E- X. 

3) For any y €: Y, if there is an cX -filter containing 

its trace filter T(y), then y EX. 

Proof: 1) =} 2). Let 'tt" be an o<. ;..Frechet filter con­

taining T (y) and let (x >. ) A<~ be an cl... -sequence in X which 

generates ~. By the definition of the trace filter, it is 

obvious that the ~-sequence (xA ) converges to y. Hence y 

belongs to J~x = x, 
2)::::)3). It follows immediately from Proposition 4.5. 

\j.. 

J)=>l). For any y E: ~yX, there is an 0( -sequence 

(xA ).A<o( in X converging to y. It is easy to show that T(y) 
. /

is contained in the ~ -Frechet filter generated by the tails 

of (x A ) • Hence y -E. X. 
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4.7 Definition A completely regular space X is 

said to be ~ - o<. -sequentially closed if every maximal comp­

letely regular filter on X converges, whenever it is con­

tained in an [)\ -filter. 

v 
Recall that the Stone-Cech compactification ~X of 

a completely regular space X is the strict extension space 

of X with all maximal completely regular filters on X as the 
Od.. flrx_·

filter trace and that fi~xX = X if and only if X is ..A 

closed in rx, where i~ is the associated idempotent limit­

operator with }.~.Hence the following is immediate from 

Theorem 2.4 in Chap. I and Proposition 4.6. 

4.8 Theorem The category Comp_Q°" of ~- cA.-sequenti­

ally closed spaces and continuous maps is extensive in the 

category of completely regular spaces and continuous maps. 

4.9 Corollary The category Comp!°' is productive 

and closed-hereditary. 

4.10 Definition A zero-dimensional space X is said 

to be ~ - d..-sequentially closed if every maximal open closed 

filter on X converges, whenever it is contained in an d... ­

filter. 

The category of ~ - d.. -sequentially closed spaces and 

continuous maps will be denoted by i]itX. • 

By the same argument of Theorem 4.8, we have the 
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following: 

4 .11 Theorem The category DfY).~ is extensive in the 

category Zero. 

4.12 Corollary The category ~Q~ is productive and 

closed hereditary. 

4.13 Definition A Hausdorff uniform space X is said 

to be c- r:J,.-sequentially closed if every Cauchy filter on X is 

convergent, whenever it is contained in an ~-filter. 

We will denote the category of c- ~-sequentially closed 

spaces and uniformly continuous maps by ~ 1.oc. • 

Using the same argument of Lemma 3.3 and the fact that 

for any Hausdorff uniform space X, J~XX = X if and only if 

X is _Q_<;'-closed in cX, we have the following by Theorem 2. 6 

in Chap. I and Proposition 4.6. 

4.14 Theorem The category ~_ris extensive in the 

category HUnif. 

4.15 Corollary The category Ci~· is productive and 

closed hereditary. 

4.16 Definition A Hausdorff space X is said to be 

x - d. -sequentially closed if every maximal open filter on X 

is convergent, whenever it is contained in an ti... -filter. 
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The categol:'y of X - o( -sequentially closed spaces and 

continuous semi-open maps will be denoted by '1"r'f * U(..,, }?..~ • 

By the same argument of Lemma J,11 and the fact that 

for any Hausdorff space X, ..R~XX = X if and only if X is )<X_ 

closed in ·x X, the following is immediate from Theorem 2.12 

in Chap, I and Proposition 4,6, 

4.17 Theorem The category fJl. * is extensive inJ_f( 

the category Hausi~-· 
4.18 Corollary The category is productiveDLJ.:_ 

and regular-closed hereditary. 

The following definition is due to P. Alexandroff 

and P. Urysohn (0) , 

4.19 Definition Let ~~be an infinite cardinal 

number, A Hausdorff space X is said to be ~~ - ~ 0 compact if 

every open covering l1 of X with \U t ~ ~()(. , has a finite 

subcovering. 

It is noted that ~ -~ 0 compact spaces are precisely0
countably compact spaces. 

Remark: A Hausdorff ·space X is ~o<. - ~ 0 compact if 

and only if every filter with a base whose cardinal number is 

not greater than ~ has a cluster point, for the condition 

is the dual statement of the definition. 
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4.20 Theorem Let D( be a regular ordinal and 

let $.. be the cardinal number of o( • Then every $ - ~O compact 

space is x - O( ... sequentially closed• and every completely regu­

lar (zero-dimensional, Hausdorff uniform) ~ -$, 0 compact 

space is ~ ( 5 , c, respectively)-()( -sequentially closed. 

Proof: Let X be an~ - ~O compact space and U a 

maximal open filter on X contained in an D( -filter :r- . 
Since ~ has a base (B >-. ) )\ < o< , ~ has a cluster point x. 

Hence the join of 11 and iJ(x) exists, where el)(x) is the 

neighborhood filter of x. Hence U v ol)(x) = 'U by the 

maximality of ·ll_ • Thus 1J.. is convergent. 

Regarding the second part, let X be an S. - $. 0 compact 

completely regular (zero-dimensional, Hausdorff uniform) space 

and (}_ a maximal completely regular (maximal open closed, 

Cauchy, respectively) filter on X contained in an cl.. -filter 

~ • Then ~~ has a cluster point x. Combining the fact that 

Li. V~(x) exists and the fact that every neighborhood filter 

in a completely regular (zero-dimensional, uniform) space is 

a maximal completely regular (maximal open closed, minimal 

Cauchy, respectively) filter, we have 7~l 2 DCx), for 

ll_ VJ)(x) =~:J(x) = U ( ?i_ VJJ(x) =0(x) = cU, tl J\iJ(x) 

''( ) · 9 I=J~_) x <;. u... ' respectively). 

4.21 Definition A completely regular space is said 

to be pseudo-compact if every continuous real-valued map on 

the space is bounded. 
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Remark: It is well known (17] that every countably 

compact space is pseudo-compact. However, there is a pseudo­

compact space, namely I~ lC1)} which is not f -W 0­

sequentially closed. 

Since every ultrafilter on a discrete spac~ is con­

vergent, whenever it is a Frechet filter, we have the 

following: 

4. 22 Theorem Every discrete space is X ( ~ , S , c )­

LD 0-sequentially closed. 

Example: The smallest ordinal of a cardinal number 

~>-is denoted by W.A, Let >.. be a nonlimi t ordinal > o. 

Let W ( W ;.) be the space of all ordinals less than WA. endowed 

by the interval topology. Then it is well known (17) that 

no subset of W( W.A) of cardinal number < ~>-. is cofinal, that 

every bounded subset of W( GV~) is relatively compact and that 

0 W( Lu)\) = SW( W>J = W( lV,A + 1). Hence for any regular ordi­

nal OZ <W). , W ( w>-.) E Comp icX. (~f.cJ.). But for any regular 

ordinal ;X ~ WA. , W ( WJ\ ) ~ Comp .Qo{ ( ~ .f"). 



CHAPTER III 

PROJECTIVE COVERS AND EXTENSIVE SUBCATEGORIES 

Section 1: Extremally disconnected spaces. 

1. 1 Definition Let X be a category and (9 a class 

of morphisms in )\ • 

An object P of X is said to be &=>-projective if for 

any morphism g: P~B in X and for any f: A-7B in ~, 

there exists a morphism h: P~A in X such that g = fh, 

A morphism f in ~ is said to be essential if f g E ~ 

implies g f:. 8°J • We denote the class of all essential 

morphisms in X by ~*. 

A morphism f: A----?B in ')( is said to be a 8'-projective 

cover of B if A is 5J -projective and f € &:>*. 

The 	 following definition is due to B, Banaschewski [5]. 

1.2 Definition Let I<. be a category and ~ a class 

of morphisms in X • 

The&~ -projectivity is said to behave properly if 

the following three conditions are fulfilled: 

1) 	 The following are equivalent for an object P: 


i) P is 6> -projective. 
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ii) Any morphism f i A--4P in 5-1 has a right inverse. 

iii) Any morphism f: A~P in g:, * is an isomorphism. 

2) Any object in ·x has an essentially unique t?­
projective cover. 

J) The following are equivalent for a morphism f: B~A 

in &=' 

i) f is a f? -projective cover. 

ii) f is an essential morphism and, for any g, if fg 

is an essential morphism then g is an isomorphism. 

iii) B is P-projective, and if f = hg with morphisms 

g and h in ~ where h has ~-projective domain then g is an 

isomorphism. 

l,J Definition A topological space is said to be 

extremally disconnected if every open set has open closure. 

It is well known (5, 40, 50) that the extremally 

disconnected spaces become 8=>-projective objects in various 

categories of topological spaces and some specified classes 

~ of morphisms in them. 

1,4 Definition Let L be a lattice with o. 
A pseudo-complement of an element a € L is an element b E L 

such that for all x € L, a/\ x = 0 is equivalent to that 

x ~ b. A lattice L with 0 is said to be pseudo-complemented 

if every element of L has a pseudo-complement. We denote 

the pseudo-complement of a by a* for a ~ L, 
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Example: It is known that the lattice of open subsets 

of a topological space is pseudo-complemented, where for any 

open set U, !<CU is a pseudo-complement of U in the lattice, 

while ]: denotes the interior operator on the space. 

1.5 Definition A distributive pseudo-complemented 

lattice is said to be a Stone-lattice if a* Va** = e for each 

element a and the unit e in the lattice. 

1.6 Lemma A topological space (X,J.J) is extremally 

disconnected if and only if the lattice ~is a Stone-lattice. 

Proof: Suppose that X be extremally disconnected, 

For any open set U E 0, U* v U** = :rrc.u U ](CICU = 
JI<C.U U lL.1t<CU = X, for ru = ~ltCU and I.r U =ru. Hence the 

lattice iJ is a Stone-lattice. 

Conversely, for any open set U, we have U* V U** = 

ICU U IC! CU = X. Hence <CI.CU c l <C.l <CU, i.e. l'.C JtC.U = ][ r U. 

Consequently, ru = Yr U. This completes the proof. 

The following lemma is due to G, Gratzer and E. T, 

Schmidt, 

1.7 Lemma A distributive pseudo-complemented lattice 

L is a Stone-lattice if and only if every prime filter in L 

is contained in at most one maximal filter, 

Proof of lemma can be found in (18] • 
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Every prime open filter is contained in at least one 

maximal open filter by Zorn's Lemma. Hence we have the 

following: 

1,8 Theorem A topological space is extremally disco­

nnected if and only if every prime open filter is contained 

in exactly one maximal open filter. 

Proof: The theorem is an immediate consequence of 

the above two lemmas. 

We wish to introduce the maximal open filter space of 

a topological space which will be used in our subsequent deve­

lopment. 

Let X be any Hausdorff spac~, D = its topology, and 

_(}_ = il(x) the set of all maximal open filters on (X,LJ). 

Then for any V -ED, put SLV ={~Iv -E ~ t:.-12..}; it is 

obvious that Dun 52-v =SL u n V' and the sets S)_v form 

the basis of a topology onS2 • The space thus given, again 

denoted by _Q_ , is Hausdorff, for U n V = cf:> implies that 

S'.L u n ~2V = <P • It is well known that the space S2_ (X) is 

compact and extremally disconnected. 

Now,- let ll. = i\..(X) be the subspace of .J.L given 

by all convergent ~ E. _Q_ , i.e. all 3 E. SL such that ~ 

contains a neighborhood filter of a for some a EX. Since 

i'.J(x), x -EX, is contained in some ~ € _r}_ by Zorn's 

Lemma one sees that l\. is dense in S2. ; thus 1\ is also 



59. 


extremally disconnected, 

An obvious map from A to X is ~ ~ lim ~, which 

will be denoted by lim, or limx if reference to the space is 

required. It follows from what was just said that lim is an 

onto map, 

1.9 Definition Let X and Y be topological spaces, 

and let f: X~Y be a map. Then f is said to be compact if 

the inverse images of points are compact. 

An onto map g: X~ Y is said to be minimal if for 

any closed subset Ac X, f(A) = Y implies A = X. 

1.10 Theorem The map lim: ./\.. (X) ~X is compact, 

closed, and minimal onto, And it is continuous if and only 

if X is regular. 

Proofs of ·the theorem can be found in l5, 50]. 
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Section 2: 	 Perfect onto projectivity 

in extensive subcategories. 

In what follows, the class of morphisms to play the 

role of ~ in Definition 1.1 and 1. 2 will always consist of 

perfect onto morphisms. 

It is known (5) that in a subcategory !( of Haus, 

perfect onto projectivity is properly behaved if ?\ is closed 

hereditary and productive, or 7< is a full subcategory of Haus 

which is left-fitting with respect to essential perfect onto 

maps, or /( consists of all objects and all perfect maps from 

a category ~which satisfies one of the above conditions. 

Since any extensive subcategory of the category of 

completely regular spaces (zero-dimensional spaces) and 

continuous maps is productive and closed hereditary, the 

perfect onto projectivity in such a category is properly 

behaved. 

However, an extensive subcategory of Haus* need not 

be closed hereditary. 

2.1 Lemma 	 Every minimal closed map is semi-open. 

Proof: Let f: X~Y be such a map, and let U be a 

non-empty open set of X. Since f is minimal closed, G:::f(CU) 

is non-empty open and f(U) contains Cf(CU). Hence f(U) has 

non-empty interior. 
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2,2 Corollary Every extensive subcategory of the 

category H~us* is left-fitting with respect to essential 

perfect onto maps in Haus. 

Proof: It is known [5J that the essential perfect 

onto maps in Haus are exactly the minimal ones. Hence by Lemma 

2.1, every essential perfect onto map in Haus is a morphism 

in the category ~*· Thus the corollary is immediate from 

Theorem 1.5 in Chap. I. 

2.3 Theorem Let ~* be an extensive subcategory 

of Haus* and let l. be the full subcategory of Haus with the 

same objects of ~*. 

Then perfect onto projectives in Z... are precisely the 

extremally disconnected spaces belonging to 0C... and the perfect 

onto projectivity in t.. is properly behaved. 

And the same holds for the subcategory of t._ with the 

same objects, but only the perfect maps from ~ • 

Proof: It is immediate from Proposition 3, Coro­

llary J of Proposition 4 in (5] and Corollary 2.2. 

2.4 Corollary In the subcategories of Haus deter_ 

mined by the following classes of spaces together with either 

all their continuous maps, or all their perfect maps, the 

perfect onto projectives are precisely the extremally dis­

connected spaces belonging to them and the perfect onto 
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projectivity is properly behaved: 

1) Hausdorff closed spaces. 

2) Spaces which are 1-closed in their Kat¥tov extensions 

for a limit-operator .R. on U *. 
More specifically, the following are given: 

2.) n-Hausdorff closed spaces for each infinite cardinal 
l 

number n. 

2 .. ) x - d.. -sequentially closed spaces for each regular
11 

ordinal o( • 

Section J: Almost n-compact.spaces. 

J.l Definition Let n be an infinite cardinal number. 

A Hausdorff space X is said to be almost n-compact*if every 

maximal open filter is convergent, whenever the closures of 

its members have the n-intersection property. 

Remark: z. Frolik has defined the almost realcompact 

spaces as the almost ~ 1-compact spaces [16] , 

A Hausdorff space is almost t:S 0-compact if and only 

if it is Hausdorff closed, 

J.2 Definition Let 'l be a collection of open cover­

ings of a space x. An 'Z.-Cauchy family is a filter subbase ~ 

of open subsets of X such that for every ?J.. in 'Z , there exist 
*Almost n-compactness has independently been defined by R.N. 
Bhaumik and D.N. Mirsa, Czech. Math. J. 21(96), 625-632(1971). 
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an A in U and a B in ~ with B ~ A. 

The collection 'l is said to be complete if every Y[­

Cauchy family has at least one cluster point. 

Remark: A uniform space X is complete if and only if 

the family of all uniform open coverings is complete in the 

sense of the above definition. 

3. 3 Theorem Let X be a Hausdorff space and let 72n 

be the family of fewer than n open coverings, Then X is almost 

n-compact if and only if T/,n is complete. 

Proof of this is essentially contained in the proof 

of Theorem 1 in (16] • 

Remark: We note that a maximal open filter ~L is 1n­

Cauchy if and only if { ru l U E /Tl} has the n-intersection 

property. 

J.4 Theorem Let X be a completely regular space 

and let Yn be the family of fewer than n co zero set cover­

ings of x. Then X is n-compact if and only if 6n is complete. 

Proof: (~). Let Lt_ be a f"n-Cauchy family in X. 

Suppose that ~u has no cluster point. Since "LL is a filter 

subbase on f x, 'Uhas a cluster point in rX, say p. Then it 

is obvious that p ~ X. Since X is n-compact, X is n-closed in 

~ x. Hence there is a family {Ut. j l '"= I of open neighborhoods 
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of p in ~ x such that n UL ('\ x = <P and lI I <n. Noting that 
L 

the zero-set neighborhoods of p form a fundamental system of 

neighborhoods of p, there exists a family { Z L} L e- I of zero ... 

sets of ~ X such that p ~ _:[ ZL <;: ZL <; Ut for all L- -t: I. Thus, 

( (' ZL) l\X = <f:> , Since y S<Zt ('\ X) = X and Sc<zc n X) is 

a co zero-set in X for every L -E I, { Cx(Z l n X)} L €: I €: G'n. 

There exist au E ~u and an L ~I with u c <Sc<ZL n X), which 

implies that U does not meet Zt. n X, Hence U n ZL = clJ, which 

is a contradiction to that p belongs to the closure of U in ~ x. 

(~). Let ~be a z-ultrafilter on X with the n-inter­

section property. Consider °U ·= {u } U: open and U ":::> Z for 

some Z ~ ~} , Show that ()_ meets every member of '6"n. Indeed, 

suppose that there is an~ -E: tn such that each member of 7.l does 

not belong to U . Then for every Z -t ;; and every A E _)J , 

Z n CA "I ¢, Noting that ~ is a z-ultrafilter and CA is a 

zero-set for each A E}:} , <CA t ~ for all A €: JJ . But 

n CA = cp and I~ I < n, which is a contradiction to the n­

intersection property of j:" • Hence °lJ.. is O'n-Cauchy, so that 

'il has a cluster point. By the complete regularity of X, we 

have Qz = Du.. ru I 4> . This completes the proof. 

3,5 Corollary Every n-compact space is almost n-

compact, 

Proof: Since 'Zn - ~ 'f"n for any completely regular 

space, every 'ln-Cauchy family is also 4'n-Cauchy. Hence 
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every 7Zn-Cauchy family has a cluster point. 

3.6 Lemma Let Gv~ be the first ordinal of cardinal · 

number ,-4. Let W( Wo<+ 1 ) be the space of ordinals less thanlJ'\J( • 

l0~+ endowed with the interval topology. Then every family1 

of fewer than$~+ 1 closed and cofinal subsets of W(UJ~ + 1 ) 

has a non-empty intersection, 

Proof: Let (F~)L -EI be such a family, Choose a re­

lation < which well-orders I. Define an ordered set L: as 

follows: its underlying set is I x IN and its order relation 

--( is given by: ( L, k) ~ ( 6', m) iff k < m or L- ~ 6' , if k 

= m, Then by the induction, we can construct a subset {.AL, k1 

for ( L, k) ~ I x IN , of W(LJ./x. + 1 ) such that .Al ,k -f: FL- and 

( l , k) ~ ( ~ , m) implies A l,k ~ Ac}-,m' Indeed, let beL0 

the first element of I. Then take any element Al t FL ,o, 0 0 

Suppose that we have a subset [.AL ,k I ( L , k) o( ( 6'" , m)} with 

the above properties for some ( ~ , m) in I x lN • 

Noting that the cardinal number of the set is less than s:'.o( + 1 , 

it is bounded in W(lo.k + 1 ). Let <t" ,r,m = sup f.:\,k I ( L , k) "( 

( <f, m)}, Since Fd" is cofinal, there exists an element AJ--,m 

of F\, such that A\_ ~ ~ • Again noting that the cardinal 
" <r•m <l-•m 

number of the set [AL ,k \ ( L , k) f: Ix \N} is less than~ o( + 1 , 

it is bounded in W(W~ + 1 ), so that sup {A kl exists. We 
l 'K L. ' 

denote it by Z: • Furthermore, we can show that for each l t I, 

-c = SffiP ~A L,m· It is clear that -C ~ sMp A L ,m· For each 
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( }- , k) E I x IN , A~, k ~ AL ,k+1 ~ sMp A l , m, so that -c. ~ 

sMp AL ,m' Now we can conclude that 1: belongs to 0 Ft. 

Because for any ct-" <T , there exists an m t Nsuch that 

6'-1 < A 
L ,m ~ T , so that [ 6'"" + 1, L] n FL t 4>. Therefore' 

-c: & FL, for it is closed, 

J. 7 Corollary The space W(Wo<.. + 1) is almost $a( +2­

compact but not almost ~°' +1-compact, 

Proof: It is known [24] that the space W{W~ + 1) is 

~ r;,.· +2-compact, Hence it is almost ~<:I.. +2-compact by Corollary 

3, 5. Now let us show that the space is not almost d!. o( +l­

compact, Let U be a maximal open filter containing { T (O"' + 1) \ 

6"<uJex + 1}, where T ( <Y ) = { ov l ~ ~ l: <w c{ +i~· Then it is clear 

that -U is not convergent. By Lemma J.6, iPU\ U f='ll~ has 

the ~~+1-intersection property, for every member of a non­

convergent maximal open filter is cofinal. 

Z, Frolik has shown ~6] that every intersection of 
~<;-U~ 

almost realcompact subspaces of ii'<Space is also almost real-

compact and every closed subspace of an almost n-compact 

regular space is again almost realcompact, 

With the simple modifications of his proof, we have 

the following: 

J,8 Lemma Every intersection of almost n-compact 
~ 

subspaces of a space is also almost n-compact, 
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And every closed subspace of an almost n-compact regular 

space is also almost n-compact. 

3,9 Theorem Let n be a limit cardinal number. Then 

there exists an almost n-compact space which is not almost 

t-compact for every infinite cardinal number t ( n. 

Proof: Let n =~)'and I the set of all isolated infi­

nite cardinal numbers less than n. And let X =tot..~1W( Wc1-_ + 1 ) 

with the product topology. It is known [24) that X is n-compact. 

Hence it is almost n-compact. Suppose that X is almost S.~­

compact for some ~~ < n. Since X i~ regular, the closed sub­

space of X which is homeomorphic with the space W(UJ<i. + 1 ) is 

also almost ~~-compact, which is a contradiction to ·Corollary 

3.7. This completes the proof. 

3.10 Theorem The full subcategory of Haus* deter~ 

mined by all almost n-compact spaces is extensive in Haus*. 

Remark: During the preparation of this thesis, it has 

happened that C-T. Liu and G, E. Strecker have shown that the 

subcategory of Haus* determined by almost realcompact spaces 

is extensive in Haus* [38] • Their proof goes almost same as 

ours. However, for the completeness, we will give here the 

proof of the theorem. 

/'V 

Proof of Theorem: Let X b~ a Hausdorff space and X 

the set of all non-convergent maximal open filters on x. 
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We define rnX = X U {7a{:- x\ {rXu \ U .JC ·m} has the n-intersec­

tion property} with the relative topology of 'XX. 

It is clear that r X is a Hausdorff extension of X and X is n · 

open in r X. Let r : X ~ r X be the natural embedding of X 
n n n 

into r X. Then it is obvious that r is a morphism in Haus*,
n n ........ 


We wish first to show that r X is almost n-compact. Let 7/_n n 
be the collection of all fewer than n open coverings of r X. 

- n 
By Theorem 3.3, it is enough to show that 'Z is complete,

n 

Suppose that there is a 'I.. -Cauchy filter subbase '51·on r X 
n n 

which has no cluster point. Consider G = {F n x l F E~}. 

Clearly, ~ is an open filter subbase on x. Moreover, ~ is 

an '?. -Cauchy filter subbase on X, where 'l is the collection 
n n 

of all fewer than n open coverings of X. Indeed, take a member 

ll = {A l, } L .f: I of 'I. n. Define AL = A " U 17a €:: r n X I A L € Fl J . 
Noting that A~ is the largest open set in r X whose intersec­

n 

tion with X is At., and every /rC t r X - X is . '7_ -Cauchy, we n · n 
can conclude that if. = {At l t.-E: I} belongs to 'fl . Since 9" 

n ,..,. 
is 'Z -Cauchy, there are an F E 1'" and an L -t I with F C AL-. 

n ....., 
Hence F ("\ X C AL-{\ X = AL• Let 'lf[ be a maximal open filter 

containing ~ • Then '1Tl is also 'lln-Cauchy; therefore, 

·t \ XA \ A -E '7ft} has the n-intersection property, and 'Tl[ does 

not converge, because ~ IXG = <P • Thus /{[_ is an element of 

r X. Moreover '?ff.. is a cluster point of S , for (U U {")!C1) n F 
n 


:J u n (F n X) I ct> for all u -E. ''}([and F € 11 ' which is a 


contradiction. Hence r X is almost n-compact.n 
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For any almost n-compact space Y and for any continuous semi­

open map f: X~ Y, we wish to find an extension of f to rnX. 

For each x € X , 1et f ( r n ( x ) ) = f ( x ) • If ITC E r n X - X , 1et 

'Z(lf[ = fn: f (U) I U 6 1ItS . Since f is semi-open, ¢> *LL 1rc ; for 

U and V in ·7([ , ][ f (U) ("'\ ][f (V) 2 ][f (U ("\ V), which belongs to 

·u 1l'l. Thus, "U1rc is an open filter base on Y. Moreover, ·u1rc 

generates a maximal open filter on Y, Let/[. be an open fi _l ter 

generated by "-U1rc. Take an open set Vin Y such that V meets 

every member of 1c • Clearly V meets lif (U) for all U E: l(l . 

Therefore f-l (V) n U f. cp for all U -E '1J[[ • By the maximality 

of 1([, we have f- 1 (V)E/tl, so that v=>1I.f(f- 1 (V))E 'll1«_; 

hence V ~ 1[ . We denote the collection of all fewer than n 

open coverings of Y by Yf •. We will show that /[ is also 
n 

~~-Cauchy. Consider a member U= (A 1JL.e.r of 'L~· Clearly, 

f- 1 ( 1J) = {r- 1 (A lJ Sc .f: It 'Zn. Since /TL is 'Zn-Cauchy' there 

are a U ~ -7rr. and an L -€ I with U ~, f- 1 (At,.), so that If (U) 

c. f(U) Cf(f- 1 (At,))C. AL. Since Y is almost n-compact, 1'[ 

converges to a unique point p rr ~ Y by the maximality of /T .
1

We 1et f ( 7{[ ) = p'?rt ; f : r n X ---j- Y is we11 defined. X being .open 
-

in r X, f is continuous at each po~nt of X. Take 1fftr - X,n . n 

and take an open neighborhood U of f (/R) = Pvin:.. 

Since Tl converges to P"ln:, U t 'fC , Hence f- 1 (U) t 7(( 


r- 1 (u) U {'lrC~ is an open neighborhpod of ~-rl, and f(f- 1 (u)l.J{W~) 

- -

c U; therefore f is continuous at /f[ • Since frn = f, f is 
-

semi-open, i.e. a 
:

morphism in Haus~. And the uniqueness of f 
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follows from the fact that rn is dense. 

J.11 Corollary The category_of almost n-compact 

spaces and continuous semi-open maps is productive and regular 

closed hereditary. 

J.12 Theorem In the category of almost n-compact 

spaces and continuous maps or the category of almost n-compact 

spaces and perfect maps, the perfect onto projectives are 

precisely extremally disconnected almost n-compact spaces and 

the perfect onto projectivity is properly behaved. 

Proof: It is immediate from Theorem 2.3 and 3.10. · 

J.13 Lemma Every dense embedding of a Hausdorff 

space X into an almost n-compact space Y can be continuously 

extended to r x. 
n 

Proof: Let j: X~Y be the dense embedding. Without 

loss of generality, we may assume that j(x) = x for each x t x. 
For each x E: X, let f(x) = x. If 7fl t: r X - X, let '/tC 

1

= 
n 

{ U \ U: open in Y and U (\ X f: iTr}. It is obvious that /fl' is an 

open filter on Y. Moreover it is a maximal open filter. 

Let '{n and 1[ ~ be the collections of all fewer than n open 

coverings of X and Y respectively. Suppose (A,)LkI -E: ·7~. 

Clearly (AL n X \ f:- I -E Y[n. Since '?[ is °7,n-Cauchy, there is a 

V E 'XC and there is an L €: I such that V c At- n X, so that 

AL n X belongs to /TC • Hence AL E- 7rr'. Thus jT[,' is 'If '-Cauchy.
n 
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Since Y is almost n-compact, irL' converges to a unique point 

p rr.. -E: Y by the maximality of 'lrC' • We let f (7rl) = p'11t ; hence 

f: rnX~ Y is well defined. The continuity of f follows from 

the exactly same argument in Theorem 3.10. 

Remark: We note that a dense embedding need not be 

semi-open. For example, f: (Q,~ \R. defined by the natural 

embedding is not semi-open, but a dense embedding. 

3.14 Corollary Every continuous map f on a comp­

letely regular space X into an n-compact space Y can be con­

tinuously extended to rnX. 

Proof: It is immediate from the commutative diagram 

, where ~n is determined 

by Pn' Lemma 3.13 and Corollary J.5, and f is determined by 

f and f3n• 

3.15 Theorem For a completely regular space X, 

~ n § rnX = ~ nX, where SY is the complete regularization of 

a space Y. 

Proof: Let ~ : r X~ Sr X be the reflection mapn n 
of r X in the category of completely regular spaces.

n 

It is easy to show that Srn is the embedding of X into frnX• 
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Indeed, for any x, y in X and x ~ y, there is an ft C*(X) 

such that f(x) I f(y), Hence there is a continuous map on 

r X into i";Rf(X), which is an extension off by Corolla~y 3,14.
n 

Therefore, S(r (x)) I s>(r (y)). Clearly, .,S'r is continuous. n n n 
Take a zero-set Z in x. Let g be a continuous map on X into 

the unit interval with Z(g) = z. Then there is a continuous 

map g on r X into the unit interval with g \X = g. Also there 
n n 	 n 

-is a unique continuous map g on Sr X into the unit interval 
n 

with g ~ = gn. It is obvious that Z(g) n 9 rn(X) =.f rn(Z). 

Without loss of generality, we may assume that ~r (x) = x 
n 

for all x -E x. Combining the above corollary and the unique­

ness of ~ X, we can conclude that B gr X = RnX.· n 	 rn n r 

Since the almost n-compactness is not closed heredi­

tary, we can not apply the same argument as Corollary 2.10 

in Chap 	 II to the case of almost n-compact spaces. 

However, we have the following: 

J,16 Theorem Let (Xl)L~I be a family of non-empty 

almost n-compact spaces. If I is almost n-compact with respect 

to the discrete topology, then the sum space 2: X~ of (X~) 

is also almost n-compact, 

Proof: Let X = Li Xt.. and °ff[ a maximal open filter on 

x such that tr u \ u -E ")[(~ has the n-intersection property. 

We define Iu = i <.. t: I \ u n x t... I ¢>Jfor each u -t iIT • Then it 

is obvious that :F = { Iu l U E. IITS is an ultrafilter with the 
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n-intersection property, Hence "f has a cluster point r • 

Let ~ = { U \ U ~ iCC and U f; X6'} • Then it is easy to show 

that 0&- is a maximal open filter on Xr such that { rX G \ G -t ~ S 
0 

has the n-intersection property. Hence ~ has a cluster point 

in Xcr; 7rt also has a cluster point in x. 

For a Hausdorff closed (= almost ~ 0-compact) space 

X, f..~(X) = f2(X) is compact, hence almost ~0-compact. 
For any almost n-compact regular space X, limz ..L\.(X)~ X is 

essential perfect onto, so that A{X) is also almost n-compact 

by Corollary 2.2 and Theorem 3,10. 

3.17 Theorem If a Hausdorff space X is almost n­

compact then .L\(X) is also almost n-compact. 

Proof: Let 'l and ?z ' be the collections of all 
n n 

fewer than n open coverings of X and ACX) respectively. 

Then A(X) is precisely the set of all 'l -Cauchy maximal 
n 

open filters on X, for X is almost n-compact. 

Suppose that there is an rz_ '-Cauchy family ;:; which 
n 

has no cluster point. Since lim is minimal closed, 7L = 

{ tC lim ( <L F) \ F t: ·~J is an open filter subbase on X. Suppose 

that ·u has a cluster point a. Then there is a maximal open 

filter )T(, containing .(J(a) and 'U • 

We wish to show that /TC is a cluster point of 'Y , 
which is a contradiction, Indeed, suppose that .?]7C ~ rl\.(X)F 

for some F .f:. f9. Thus there is an open set V in X such that 
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7IT € i\..V =D..V (\ J\(X) and f>.. V n F = ~. Since V -E: "T([ • 

Vn <Clim(tC F) 'I ¢, say b €: vn<Clim(<L F). There exists a 

maximal open filter 7C on X which converges to b. Hence 1r E 

A so that IL ~ F; lim~l = b -E lim(<CF), which is a cont...v, 
radiction, Thus, (j_ has no cluster point. 

Let '17[ be a ·maximal open filter on X containing "LL • 

Since X is almost n-compact and 're has no cluster point, there 

is· a subfamily (U 1.,) L..f: I of }fl such that E:'r rxu = ¢ and 

II I < n. Since Y C l'xU L = x, we have that iA Cf'XU'-Lt 1 

is a member of >[ .:i. y being '>'(~-Cauchy•. there are an F E ~ 

and an L -€: I with F <; Acr: u • 
X L 

From this, we can conclude that Clim (<CF) (\ UL, = cp • 
Indeed, suppose that <Clim(q:..F) nuL- -1- cp, Take an element c 

of Clim (CF) n UL, Then there exists a maximal open filter 

'/t on X which converges to c. By the same argument as above, 

'TL -E: F; therefore d/L t. AQ:. r. u , i.e. <I: fXYL -t I[ • x I.­

But UL -€'TC and Ut.., n '1:rxu = cp ' which is a contradiction. 

Since UL and Clim( CF) are members of /l[, we have a 

contradiction. This completes the proof. 



75. 


Section 4: Category of pseudo-compact spaces. 

Every category which we have considered so far in 

this chapter is either productive or closed hereditary. 

In this section; it will be shown that in the category 

of pseudo-compact spaces and continuous maps which is neither 

productive nor closed hereditary, the perfect onto projecti­

vity is still properly behaved. 

It is known [~ that a completely regular space X is 

pseudo-compact if and only if every cou~table open covering 

of X has a finite subfamily whose union is dense in X. 

Moreover, it is equivalent to that every countable open filter 

base on X has a cluster point. 

4.1 Definition Let n be an infinite cardinal number. 

The full subcategory o.f Haus determined by the . spaces with 

the following property will be denoted by Wn: 

Every open filter base on the space whose cardinal 

number is not greater than n (we will call it simply n-open 

filter base) has at least one cluster point. 

4.2 Lemma Let X be a Hausdorff s~ace. X belongs to 

1un if and only if every open covering U of X with lU\ ~ n 

has a finite subfamily whose union is dense in X. 

Proof: It is the dual statement of the definition. 

4. J Theorem If a Hausdorff space .)} belongs to w n, 
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so does A(X). 

Proof: Let 31 be an n-open filter base on f \.( X) and ~ == · 

{tr::lim (CU) I U E 'y} • Since lim is minimal closed, <;j. is also 

an n-open filter base on x. Since X belongs to i..c~n, CJ= has a 

cluster point say x. Then there exists a maximal open filter 

"'/l[ which converges to x and contains G. , We wish to show 

that ')([ is a cluster point of ~ , Suppose that there is an 

open set V in X such that /TL-€= Av and AV n U = ¢ for some 

u ~ ~. Since enc E Av' v E TIT ; v r\ <Clim (a: u) ., cp • Let y 

be an element of v (\ <Clim (<Cu)' and let ere be a maximal open 

filter which converges to y. Thus 'Jl -E Av, so that "TL ~ U. 

Hence y = lim 1[ E lim (<CU), which is a contradiction. 

4.4 Definition An open subset U of a topological 

space X is said to be regular if U is the interior of its 

closure; equivalent~y, U is regular if U is the interior of 

a closed subset. 

A topological space X is said to be semi-regular if 

the regular open sets of X form a base of the topology on X. 

In this case, the topology is also said to be semi-regular. 

Remark: It is known (~ that the regular open sets 

of a topological space (X,J)) form a base of a topology on X. 

The topology generated by the regular open sets with respect 

to U will be denoted by J.:'.J*. Then it is obvious that D ~~ 

is coarser than iJ and is semi-regular. The topology JJ-::· is 
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said to be the semi-regular topology associated with tJ . 

4. 5 Le·mma Let (X, .U) be a Hausdorff space, and let 

i)• be a topology on X with J:J 2 D' 2 c0-~. Then (X, U ) 

belongs to "wn if and only if (X, J..)•) belongs to iu--n. 

Proof: It is easy to show that ~n is closed under 

continuous images. Hence, if (X,c()) belongs to 'U.,Yn' so does 

(X, D•). Conversely, let ~ be an n-open filter base on (X, J.)). 

Let CJ- = {lLru \ U t- :F}. It is obvious that ~ is also an n­

open filter base on (X,£'.j•), Since (x,J]•) belongs to ~' 

~ has a cluster point, say x. It is easy to show that x is 

also a cluster point of 31 • 

Let X be a Hausdorff space, and .L)(X) be its topology, 

We define .L\..' (X) as follows: 

its underlying set is the same as that of 1\(X) and 

its topology is generated by that of A(X) together with 

limx1 <D<x)) (51 • 

4.6 Lemma For any X E ~n' the map f\..' (X)~X 

given by limx is a perfect onto projective cover in ~n• 

Proof: By Proposition 9 in (5), it is enough to show 

that ./\_•(X) belongs to '1,Un for any X~~. By Proposition 8 

and Lemma 11 in (5], .i\.(X) and A• (X)* are homeomorphic, 

where A' (X)~- is the space with the asso·ciated semi-regular 

topology of that of ..L\.•(X), Since X belongs to 1,J-'n' so does 
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A(X); thus .J\.• (X) * also belongs to ~n• By Lemma 4.5, 

-~· (X) belongs to it)n I . 

4.7 Theorem For any X c CW-n, x is perfect onto pro­

jective if and only if it is extremally disconnected, 

In Ll.J'n' the perfect onto projectivity is properly 

behaved, 

Proof: The first part is immediate from Proposition 

9 in (5] and Lemma 4.6. 

The second part follows because perfect onto maps 

are closed under the composition, for perfect onto maps f and 

g, gf = f implies g is an identity, and every object of lU-n 
has a perfect onto projective cover, 

Remark: For almost n-cornpact spaces, it is not 

difficult to show the corresponding property to Lemma 4,5, 

Hence one can also prove by Theorem 3,17 and the same argu_ 

ment as the above theorem that the perfect onto projectivity 

in the category of almost n-compact spaces and continuous 

maps is properly behaved, 

The category of pseudo-compact spaces and continuous 

maps will be denoted by PComp. Since a completely regular 

space is pseudo-compact if and only if it belongs to Ul~0 , 

and every completely regular space is regular, the following 

theorem is the immediate consequence of Lemma 4,6 and Theorem 
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4. 7. 


4.8 Theorem 1) A completely regular space X is 

pseudo-compact if and only if A(X) is pseudo-compact. 

2) For any X t PComp, X is perfect onto projective if and 

only if it is extremally disconnected, 

3) For any X t PComp, the map ..L\.(X)--4X given by limx 

is a perfect onto projective cover of X in PComp, 

4) The perfect onto projectivity in PComp is properly 

behaved, 



CHAPTER IV 


TOPOLOGICALLY COMPLETE SPACES 


Section 1: n-totally bounded complete spaces. 

L 1 Definition Let (X, U ) be a uniform space, and 

let n be an infinite cardinal number. x is said to be !!::. 

totally bounded if for each entourage V in "U there exists
' 

a subset A of X such that X = x'Y. A V(x) and IA\ < n. 

Remark: A uniform space is ~0-totally bounded if 

and only if it is totally bounded. 

1. 2 Proposition Let X be a set, let (Y;.. )>. -E L be a 

family of uniform spaces, and for each A~ L, let fA be a 

map on X onto YA • .Let X carry the coarsest uniform structure 

for which the fA are uniformly continuous. Then X is n­

totally bounded if and only if Y>-. is n-totally bounded for 

each A -€: L, 

Proof: Trivial. 

l.J Corollary A product space of n-totally bounded 

uniform spaces is again n-totally bounded. 

1.4 Proposition Every subspace of an n-totally 

80, 
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bounded uniform space is again n-totally bounded. 

Proof: Trivial. 

The following theorem is the well known Shirota's 

theorem ~7, 47], but we give here the proof of the theorem 

in the language of entourages, , 

1.5 Theorem A completely regular space is realcom~ 

pact if and only if it admits a complete ~1-totally bounded 

uniform structure. 

Proof: Since every realcompact space is homeomorphic 

with a closed subspace of a product space of copies of real 

line and the real line IR is ~ 1-totally bounded complete 

with respect to the usual uniform structure of \R , every 

realcompact space admits a complete ~ 1-totally bounded 

uniform structure. 

Conversely, let ()_ be an admissible complete ~ 1­

totally bounded uniform structure on a completely regular 

space X. Since X is completely regular, X can be considered 

to be a subspace of the product space IRC(X) under the map 

x ~J (f(x))ft-C(X)' Suppose X .is not realcompact. Then there 

is an element p in the closure of X in iRC(X) but not in X, 

Let ~ be the trace filter on X of the neighborhood filter 

of pin IR.C(X). Since !i is not co~vergent in X, it is not 

Cauchy. Hence there is an entourag~ U in LL such that for 
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each F G ~ , (F x F) n ([: U 'I <J> • Let d be a uniformly conti­

nuous pseudo-metric on X such that vd,£ = {(x,y) \ d(x.y)< s} 

is contained in U. Since Vd, ~ is an entourage in U , there 

exists a sequence (ak) such that X = ~ vd,~4 (ak)' For each 

k, vd,sh-Cak) does not belong to-;; • Let fk be a map on X 

into \R defined by x ~ ( (3 -6{ d(x,ak)) /\1) Vo. Then it is 

obvious that fk is continuous and has the value 1 on vd,~3 (ak) 
and the value 0 on X - Vd, ~ (ak). For each F -E ~ , 

F n C.Vd,<Ct2. (ak) ~ cp, Hence there is x E F with fk(x) = O, 

and therefore the fk-th coordinate of p must be o. From this 

it follows that CVd,~ (ak)€ ~ for each k. As above, we can 

find a continuous map hk on X into \R which has the value 1 

on vd,'54.(ak) and the value O on cvd,Fla(ak) for each k, 

Consider the map h - '5f (hk /\. 1h_ ) • Then h € C(X) ~ Since 

{ V d,£;4. (ak)} k is a covering of X, there is a k for x -t X such 

that hk(x) = 1, hence h(x) > 0 for each x -E: X, Since X is 

C-embedded in iRC(X), h has a continuous extension h to IRC(X). 

Since h ) O, h(p) 'Io. But no finite union of vd,o/ (ak)'s
3 

belongs to ):t , because <CVd,~3 (ak) -E: j1 • Thus h has arbi­

trarily small values on each member of ~ and so h(p) = o, 
which is a contradiction. 

1.6 Lemma For any infinite cardinal number n, let 

P be the space Pn in Lemma 1.6 in Chap. II, Then every comp­

letely regular space X is homeomorphic with a subspace of 

PC(X,P) such that each continuous map on X into P can be 
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· 	 C(X P)continuously extended to P ' 

Proof t It follows immediately from that the class of 

completely regular spaces is I-regular and that P has a sub­

space which is homeomorphic with I . 

1.7 Theorem If a completely regular space has an 

admissible n-totally bounded complete uniform structure, then 

it is n-compact. 

Proof: Let X be a compietely regular space and "U 

an admissible n-totally bounded complete uniform structure on 

X. 	 We may assume that in Lemma 1.6 in Chap. I and Lemma 1.6, 

. t .s } + 1f t ( }P 	= J - 1 ( oo ) provide d n = t {P = t < n (J - 1 ( oo ) ) pro ­

vided n is a limit cardinal number), where J = [o,0c] with the 

usual topology. Then X can be considered to be a subspace of 

PC(X,P) such that each continuous map on X into P can be 

continuously extended to PC(X,P), where P depends on the car­

dinal number n. 

Let q be in the closure of X but not in X and let ~ 

be the trace filter on X of the neighborhood filter of q in 

PC(X,P). Since ji is not convergent in X, it is not Cauchy. 

Thus there is an entourage U in tl • such that for each F in 

'~ , (F X F) n <CU -I ¢. Let d be a uniformly continuous pseudo­

metric on X such that vd,S is contained in u. Since vd,o/4 

is an entourage in Cl , there exists a subset A of X such 

uthat X = x~A vd,t/4 (x) and fAI < n. For each x t A, vd,~h...(x) 
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does not belong to ~ , for it is a U-small set. For each x 

€ A, we can find a continuous map fx on X into [o, l] which 

has the value 1 on Vd, t; (x) and the value O on X - Vd,tr;i. (x).
3 

Case 1. n = t +• We may assume that 1A1 = t and 

P. = JA - {Coo)~ • Thus there is a continuous map f on X into P 

such that J(xf = fx' where Jtx is the x-th projection of P, 

for each x t A. Each F. in -~ meets the complement of vd,o/~x) 

and so there is ye F with fx(y) = o. Therefore the f-th 

coordinate of q must be (O'). From this it follows that 

X - Vd ~ (x) E -:;: for each x ~ A. Similarly, we can find a 
, .3 

continuous map hx on X into [0,1] which has the value 1 on 

V d,4-' (x) and the value O on X ~ Vd,~13 (x) for each x ~ A. 
4 

Thus there exists a continuous map h on X into P such that 

Xxh = hx for each x E A. Let h be a continuous extension of 

h to PC(X,P). Then his the h-th projection of PC(X,P) onto 

P. Hence h(q) = (0), because X - vd,~3 (x) t ·F for each x. 


Let g be a map on X into P defined by: 


the x-th coordinate of g(y) = foo if h (y) = O, 


G.;hx (y) \r otherwise. 

Since ~ Vd, ~14 (x) l x € A} is a covering of X, there is for 

each y 6 X an x ~ A such that hx(y) = 1. Thus g is well 

defined on x. And it is easy to show that g is continuous. 

Hence g has a continuous extension g to PC(X,P). For each x 

-E A, and for each M > O, there is a neighborhood V of q in 

PC ( X · P) such that JSch (V) is contained in [ O, l/M [ , for 
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Yxh(q) = o. Hence :Jtxg(Vn X) is contained in ]M, co). 


From this, it follows that "Stxg(q) =00 for each x -t A. Thus 


g(q) does not belong to P, which is a contradiction. 


Case 2. Let n be a limit cardinal number. And let 

lA\ = t < n. Then there exists a continuous map ft on X into 

. p :t = JA {«'° )t such that Jtxft = fx for each x :E: A, wheret 

Jl x is the x- th projection of Pt+ • 

Define a continuous map f on X into P such that j(mf = (0) for 

m I t and 1t:tf = ft' where 'JCm is the m-th projection of P, 

By the same argument as Case 1., :rrt Jt:,f(q) = (0), where JCf 

is the f-th projection of PC(X,P). From this, it follows that 

X - Vd, €~ (x) € Y for each x -€. A. Again we can find a conti­

nuous map hx on X into [0,1] which has the value 1 on vd,~4-(x) 

and the value 0 on X - vd,~ (x) for each x t A. Thus there 


exists a continuous map h on X into P such that Jt JLth = h
x x 
for each x. Leth be a continuous extension of h to PC(X,P). 

Then ~ is the h-th projection of PC(X,P) onto P. 

Hence 7Cth(q) = (0), for X - vd,£-6 (x) ~ Y- for each x €: A. 


Let g be a map on X into P defined by: 


Jfx rtg(y) = loo if hx(y) = O, 


l/hx(y) if otherwise, and 


Rmg(y) = (0) for m I t. 


By the same argument as Case l,, g is well defined and conti­

nuous on X. Let g be a continuous extension of g to PC(X,P). 

By the same argument as Case 1., Xtg(q) does not belong to 



86. 


Pt+• which is a contradiction, 

This completes the proof. 

Remark: It is well known [7] that every admissible 

uniform structure on a pseudo-compact space is totally 

bounded. Thus, if ·a pseudo-compact space has an admissible 

complete uniform structure, then it is compact. 

For n > $ 1, there is an n-compact space which is 

pseudo-compact but not compact, namely space in Lemma 1.6 in 

Chap. II, For those spaces, there is no admissible complete 

uniform structure, so that the converse of Theorem 1.7 need 

not be true, 

Section 2: Cat~gory of n-totally bounded complete spaces. 

2,1 Definition A completely regular space is said 

to be topologically n-totally bounded complete if it has an 

admissible n-totally bounded complete uniform structure. 

In what follows, a topologically n-totally bounded 

complete space will be called simply n-totally bounded comp­

lete, 

It is well known that the product space of topolo­

gically complete s~aces is again topologically complete and 

a closed subspace pf a topologically complete space is also 
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topologically complete, Combining these facts with Proposition 

1,2 and 1.4, we have the following: 

2.2 Theorem The category of ·n-totally bounded comp­

lete completely regular spaces and continuous maps is complete. 

2.3 Lemma Let X be a set and let n be an infinite 

cardinal number, For an ultrafilter U on X, the following 

are equivalent: 

1) "U is a Cauchy filter with respect to the uniform st­

ructure cPn geherated by fewer than n partitions of x. 
2) U is closed under the t-intersections for every car­

dinal number t less than n. 

3) U has the n-intersection property. 

Proof: 1) ~ 2). Suppose tijat u is a subfamily of 

~u whose intersecion does not belong to U and llY\ < n. 

Then there is a partition l Au} UE'tY U { B} of X such that 

Au~ CU for all U e lY and B ~ n {j. Since U is Cauchy 

with respect to v, there is a V € '-U such that V C A for- ~n' - U 

some u -E:u or v ~ B. Thus Cu or nu belongs to U , 
which is a contradiction. 

2 ) -~ J). Since ¢ ~ ~u, tqis is trivial. 

J)==>l). Suppose tJ. is not Cauchy, Then there is a 

V = ~I Ai_ x AL- in p n such that { At,J is a partition of X, 

I I I < n and Ac., t U for all {., -€:- I, Hence ((At, EU and 

L~ C Ai., = <f:> , which is a contradiption, 
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Remark: Since every covering of a set has a refine­

ment which is a partition and has the same cardinal number, 

a discrete s·pace X is n-totally bounded complete if and only 

if the uniform structure generated by fewer than n partitions 

of X is n-totally bounded complete. 

2,4 Proposition A discrete space is n~totally boun­

ded complete if and only if it is n-compact, 

Proof: A discrete space X is n-totally bounded com­

plete if and only if every Cauchy ultrafilter with respect to 

8J . is convergent if and only if every ultrafilter with the n 

n-intersection property is fixed if and only if the space X 

is n-compact. 

2.5 Definition A {o,l}~valued measure or simply 

measure on a set X is a countably additive set map defined 

on the family of all subsets of X into {0,1}. 

A measure fl on X is said to be n-additive for an 

infinite cardinal number n if f- <:i: 1At) = 0 whenever {,AL~ l E: 1 
is a family of disjoint subsets of measure zero, with fl\ = n. 

Remark: For an ultrafilter U on a set X, let .Xu 
be its characteristic map defined on the set of all subsets 

of x. Then the correspondence tf..· ~ Xu is one-one from the 

set of all ultrafilters on X onto the set of all nonzero, 

finitely additive, f0,1}-valued set maps defined on X ~?]. 
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2.6 Lemma For an ultrafilter 'U. on a set X, the 

finitely additive measure Xu defined by ~21 is n-additive 

if and only if u_ is closed under the n-intersection. 

Proof: Since in the above definition of n-additive 

measures, we may drop the requirement that the subsets be 

disjoint, the map Xu is n-additive if and only if 'Xu(Ai) = O 

(Lt I and t I\= n) implies _A'l.l( l( A<-) = 0, 

But this is simply the dual of the statement that tl is closed 

under n-intersection. 

Remark: By the above lemma, every measure can be 

defined by the characteristic map of an ultrafilter with the 

countable intersection property. 

2.7 Definition A cardinal number n is said to be 

measurable if a set X of cardinal number n admits a measure 

J-1- such that f'-(X) = 1, and f ({x}) = O for every x t. X. 

Otherwise, it is said to be nonmeasurable. 

2.8 Lemma Each measure is n-additive for every 

nonmeasurable cardinal number n, 

Proof of the lemma can be found in [17] • 

2,9 Proposition Let X be a discrete space and let 

m be the first measurable number. Let n be a cardinal number 

such that .~ 1 ~ n ~ m. Then the following are equivalent: 
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1) X is n-totally bounded complete. 

2) X is n-compact. 

J) X is realcompact. 

Proof: It is enough to show that 2) implies J). 

Suppose that there is a free ultrafilter on X with the coun­

table intersection property. By Lemma 2.8, the measure 

defined by the ultrafilter is n-additive for n < m. Hence the 

ultrafilter is . closed under the n-intersection. Thus the 

ultrafilter is fixed, which is a contradiction. 

If X is m-compact, then there exists a subfamily 

(U t..) L € of the ultrafilter with Q1 Uv = ¢ and \I\ < m.1 

Then the measure defined by the ultrafilter is lrl-additive, 

hence the ultrafilter is closed under III-intersection, 

which is a contradiction. 

The following definition is due to H. Herrlich (24] • 

2.10 Definition The compaqtness degree k(X) of a 

completely regular space X is the smallest cardinal number n 

such that X is n-compact. 

2.11 Corollary If X is a discrete space of car­

+dinal number m, then k(X) = m • 

2.12 Lemma A complete sp~ce is realcompact if and 

only if every closed discrete subs~ace is realcompact, 
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Proof of the lemma can be found in [17] • 

2,lJ Theorem Let n be a cardinal number such that 


1~ ~ n ~ m. A completely regular space is n-totally bounded
1 
complete if and only if it is realconipact. 

Proof: Let X be an n-totally bounded complete space, 

Suppose Xis not realcompact. Then by· Lemma 2.12, there exists 

a closed discrete subspace F of X which is not realcompact. 

Since F is a closed subspace, it admits an admissible n­

totally bounded complete uniform structure. Hence F is real­

compact, which is a contradiction. 

Conversely, realcompact space admits an ~ 1-totally 
bounded complete uniform structure. 

The other proof: By Theorem 1.7, every n-totally 

bounded complete space is n-compact. Hence every closed sub­

space of X is also n-compact. Thus every closed discrete sub~ 

space of X is realcompact by Proposition 2.9. Hence X is 

realcompact by Lemma 2.12. 
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Section J: A characterization of realcompact spaces. 

J,l Definition A family ~ of subsets of a topolo­

gical space is said to be locally finite (discrete) if each 

point of the space has a neighborhood which intersects only 

finitely many members (at most one member, respectively) of 

yj . 

J.2 Theorem Let X be a completely regular space and 

nan infinite cardinal number. If every locally finite open 

covering of X has a fewer than n subcovering, then every 

admissible uniform structure on X is n-totally bounded. 

Proof: Suppose there is an admissible uniform 

structure U on X which is not n-totally bounded. 

Let 0( be the first ordinal whose cardinal number is n. 

Then there exist an open symmetric entourage V in. ~ and a 

net (xA )A<:i)( on X such that \v(x>.. A>-.<rJ. is a discrete fami­

ly. Indeed, there exists an entourage U in U such that for 

any subset A of X with \A\ < n, U(A) IX. Take x0 E X. 

Suppose that for T: < o\ , we have ~ x~ ~>.< -c in X such that 

x µ ~ }zjl. U(x )\ ) for any f-' < 'L • Since \ { X,>.} ).. < 1:: \ ( n, 

>.~~U(x.A) IX. Take an element Xz: of <C.~U(x>.)• Hence by 

the induction, we have a net { x>-~.>.<oc: such that for any 

p < d.. , x fl' ~ }ifU (x .A ) • Take a symmetrtc open entourage V 

in U with v3 c U. Then t t is easy to show that ~ V(x >- )} >.. <. ci 

is discrete. Indeed, for any x in X, take the neighborhood 
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2W(x) of x, where W is an entourage in VU and w ~ v. Suppose 

that W ( 	x ) meets V ( x ;... ) and V ( x "t: ) for >--. <. -r: < d... • 

2Since w c;;;. V and v3 S U, it is clear that (x-c ,x A) -e. U, so 

that x -c .f:' U(x .>-.. ) which is a contradiction. 

For each A <.. <:A. , take an open neighborhood N(x >- ) of 

xA such that f"'N(x_x) is contained in V(xA.). Since ~V(x>.. )~ . 
. 	 )~,~ 

is discrete ' s 0 is t \-, N ( x A ) L~ <o( ' s 0 that u r N ( x ).. ) is 
>..<..~ /' 

closed. Hence it is clear that V(x .:>.. ) for all .>-. < \X together 

with <[. ~o<. rN(x .A) form a locally finite open covering of X. 

Since {V(x,,.._ )}A<.Q(. is the pairwise disjoint family, the open 

covering has no proper subcovering. This completes the proof. 

3,3 Corollary A completely regular space is pseudo­

compact if and only if every locally finite open covering of 

the space has a finite subcovering. 

Proof: It follows immediately from that a completely 

regular space is pseudo-compact if and only if every locally 

finite open covering of the space is finite [7] and Theorem 

3.2. 

Combining the fact that every totally bounded complete 

space is compact and the fact that every admissible uniform 

structure on a pseudo-compact space is totally bounded [71 , 

the following is immediate: 

3.4 Corollary A topologically complete complete l y 
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regular space is compact if and only if every locally finite 

open covering of the space has a finite subcovering. 

3.5 Corollary A topologically complete completely 

regular space is n-compact if every locally finite open 

covering .of the space has a fewer than n subcovering. 

Proof: Let {)_ be an admissible complete uniform 

structure on such a space. By Theorem 3,2, it is n-totally 

bounded complete, so that the space is n-compact by Theorem 

1. 7. 

3,6 Theorem A topologically complete completely 

regular space is realcompact if and only if every locally 

finite open covering of the space has a non-measurable sub-

covering. 

Proof: (¢==), Let m be the first measurable cardinal 

number. By Theorem 3.2, the space is m-totally bounded comp­

lete, Hence it is realcompact by Theorem 2.13, 

(==>). Let X be a realcompact -space. Suppose that 

there is a locally finite open covering U = (UL) L -t 1 of X 

which has no non-measurable subcovering. Then we can const­

ruct a closed discrete subspace of X whose cardinal number 

is measurable. Let o<. be the first ordinal whose cardinal 

number is m. Let x0 be any element of X, For any <:. <. o.. , 

suppose that we have a net {xA}A(~ such that {xA~A<Z is a 
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discrete family. Since u is locally finite, there is a neigh­

borhood V>. of XA such that V>.. meets only finitely many 

members of 'LL • Let v-
t: = {u l u E: u and Un v;A I <P for some 

,, <. t. } • Since \Vr \ < m, u~ I x. Let x -c be any element 

of <C U ~ • Then {x>- ~ ~ ~ z:. is also discrete. Indeed, let U'--z:: 

be a member of U which contains X-c: • Then Ut..1: (\ V.>- = ¢ for 

all >.. <.. L. , so that every element of ~x>}~cc. has a neighbor­

hood which contains at most one element of l Xx.~..x ~ z • 

If x -t\- ~xA}>. <<:, then CC ~1: f x..A} is an open neighborhood of x 

which contains at most one element of fx~\~~~· Hence by the 

induction, we have a net {x~~~<~ which is a discrete family, 

Thus, {x~\A<~ is a closed discrete subspace of X whose cardi­

nal number is measurable, which is a contradiction, 

J.7 Corollary For~ topologically complete comple­

tely regular space, every closed .disc.rete subspace has non­

measurable cardinal number if and only if every locally finite 

open covering of the space has a non-measurable subcovering. 

Proof: It follows immediately from that both condi­

tions are equivalent to that the space is realcompact. 
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