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INTRODUCTION 

The de Haas-van Alphen effect is an oscillatory 


variation of the magnetic susceptibility periodic in 1/H 


which is observed in metals at low temperatures when the 


magnetic field is varied. 


It was first observed in 1930 by W. J. de Haas 

1and P. M. van Alphen in the course of measurements on 

the magnetic susceptibility of bismuth single crystals. 

It has since been observed in many metals and semi-metals 

and the effect has provided one of the most powerful tools 

for the experimental determination of the topology of 

Fermi surfaces. Landau in a paper on the theory of dia­

magnetism of metals 2 , also published in 1930, predicted 

the oscillatory field variation of susceptibility before 

he knew of de Haas and van Alphen's experiments but 

believed that in practice field inhomogene ities would 

render the effect unobservable because of phase cancel­

lations between the oscillations coming from regions of 

the crystal at slightly different fields. Peierls 3 

. laid the foundation of the theory of the effect by showing 

that the magnetization of a free electron gas should 

oscillate as the field is varied because of the quantization 

1 
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of the .free electron orbits .in a magnetic field. 

A most important theoretical advance was made 

by Onsager4 in 1952 who showed that the period of the 

oscillations is inversely proportional to the extreme area 

of cross section of the Fermi surface by planes normal to 

the field. 

Lifshitz and Kosevich5 have developed a comprehen­

sive theory which embraces Onsager's main result and pro­

vides a comprehens ive formula to.describe the eff ect. It 

frequently happens that there are several extr emal areas 

of cross section of Fermi surface pe r pendicular to a 

particular field direction. This occurs especially in the 

polyva lent me tals where there are s mall isolated pieces of 

Fermi surface symmetrica lly distributed in recipr ocal 

space arising f r om pock ets of holes at the corne rs of 

incompletely filled Brillouin zones and from small pockets 

of electrons overlapping across Brillouin zone faces. 

Thus the de Haas-·van Alphen oscilla tions are quite compli..:. 

cated in some materials at some field orientations, because 

the observed oscillation is really a superposition of 

severa l oscillations differing in frequency, amplitude and 

phase. Therefore it become s a major problem to analyz2 

t.~e various component oscillations. 

One way of analy zing a comp l ex waveform is to 
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resort to a Fourier transformation. A digital program 

to compute the Fourier transform of de Haas-van Alphen 

effect data has been developed. An account will be. given 

of the development of this program, and of its properties 

and applications. 

The first chapter of this thesis will be a con­

sideration of the properties of conduction electrons in 

a magnetic field, with an outline of the theory of the de 

Haas-van Alphen effect. The rather complicated analytical 

expression of Lifshitz and Kosevich will be reduced to a 

simpler approximate form. 

In the second chapter the simplified approximate 

formula will be considered, and it will be shown that the 

Fourier spectrum of the de Haas-.van Alphen effect data will · 

exhibit peaks at, or very near, the frequencies of the 

component oscillations in the data. The questions of re­

solving power, displacement of the Fourier spectrum peaks 

under some conditions, noise, sidebands and the suppresion 

of sidebands will be discussed. 

In Chapter three the digital program is described, 

a description of the mathematical procedures used in computing 

the Fourier spectrum of the data is given, together with an 

account of some precautions that are taken to prevent 

serious. errors from occurring at especially sensitive points 

in the calculation. 



4 

Chapter IV is an account of numerical experiments 

that were performed, in which the program analyses ideal 

synthetic data of known analytic form, thus validating the 

program. 

In Chapter Va brief account is given of the 

application of the program to real data. It has been used 

in the analysis of data from mercury .and ytterbium crystals. 



CHAPTER I 

THE INFLUENCE OF A STEADY MAGNETIC FIELD ON THE 

CONDUCTION ELECTRONS IN A CRYSTAL 


Using the single electron approximation the Schrodinger 

equation of the system is 

( 1) 

where A is the magnetic vector potential. If there is a 

unifonn field Hin the z direction then A= (O,Hx,O) in 

the Landau gauge. A does not have the translational symmetry 

of the lattice and Bloch's theorem does not apply in the 

presence of a magnetic field. 

To understand the motion in .k space consider the 

semi-classical equation of motion. 

• 	 e
k=cnVxH. 	 (2} 

This 	means that the change in the vector k is 

(i) 	 normal to the direction oE H 

(ii) 	normal to V which is itself normal to the equi­

potentials of constant energy ink space. 

(iii)~ moves along a curve of constant energy because 

electrons cannot pick up energy from a static magnetic 

field. 

Eath 	electron is to be imag ined moving along a curve 

5 
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of constant energy in a plane normal to H. If the electron 

is not scattered it makes a circuit in the period 

2'1T cl1 dk = I (3)
WH eH 

f vl 
whe re V is the component of v in the plane normal to H 

J_ 

at the point k, and wH is, called the cyclotron frequency. 

This frequency may be wri tten as :H where mH* is called 

mHC * 
the cyclotron mass. A geometrical definition of rnH 

-- 1 ~ can be given using the relationship V - K dk where dkl 
.L . 1 

is an increment of kin the plane of the orbit normal to 

the equipotential curve: 

f dk.fi2 
= _4: dk = (4)

21T ds 

where :A: is the area enclosed by the orbit in t~e plane 

normal to H. 

Another useful orbit parameter is the phase variable 

w ch k dk 
¢ defined by¢ - (5)

H eH J vl . 
¢ increases at a constant rate, ¢ = 

¢ = 211" for a complete circuit. 

The details of the electron's motion in~ space 

can be deduce d from equa tion (2). The general solution of 

this equation is 

k = ~h {r + f(t)~} x H + b, (6) 

where bis an arbitrary consta n t vector and f(t) is an 

arbitrary function of the time. If vectors are e xpres sed in 
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terms of components parallel to H and perpendicular to H, 

equation (6) becomes 

e.J..:kH k = {rH + r + f(t)H} x H + b + bI cK j_ H.1 ..1 

+ k e r x H + + bkH = bHctil. .L J_ 

Therefore 

k e 
(7)=chrJ_xH+bJ.

L 

Equation (7) establishes Onsager's theorem that the pro­

jection of the electron's orbit in real space on to a plane 

perpendicular to His geometrically similar to the k space 

orbit but is rotated through; radians around Hand is 

scaled by a factor c~/eH. 

The electron orbit in real space is a helix with 

its axis parallel to H. The helix may be complex in form 

and even when it is a closed curve forming a stationary 

orbit in r space it will not necessarily be a plane curve, 

it may be a buckled irregular ring, or it may be tilted 

with respect to H. The net displacement of the electron 

after it has completed a revolution about the helix axis is 

called the pitch of the helix. 

The deduction of a formula for the pitch of the helix. 

Consider an electron going around its orbit ink 

space. Setting up the phase variable¢ as in eq~ation (5), 
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¢==constant, and¢ increases by 2rr 

around the orbit. 

eH eH (2rr) 
n!>" ::= w t ::= --*- t ::= tH 

mH c 1i2c ( a~ ae: 

a~dt ::= 1l2 c (~ 
1 d ¢21reH 

. e eNow k == -V x H == (v'ke:) x H - d1 ­ cl12 

therefore the electron velocity around the orbit is 

eH a e: 
::=vk where k lies in the plane of the orbit and-vcli2 akv 

is normal to the orbit at any point. Thus the distance 

dS travelled by the electron when the phase variable 

increases by d¢ is given by 

__ eH ae: x 1,(2c 1
d 8 == VK dt - - -- ~1 d¢(~~ 21reHcli 2 akv 

== 1 <aA)dnl (8)21r ak 'f-' 
v 

If the magnetic field His in the z direction, the elec­

tron orbit ink space will lie in a plane k perpendicularzo 

to the z axis. 

On the orbit considered imagine the¢ variable in.,.. 

creasing from Oto 21r, Through all the equipotential 

surfaces in the plane k 20 draw curves orthogonal to them 

which are given coordinates which coincide with the value 

of the phase variable¢ on the orbit unde r consideration. 

Any point in the plane k can now be specified by the zo 

coordinate s {Jt,0} where.A: is the cross sectional area of 
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the equipotential curve on which the point lies. The 

coordinate¢ coincides with the phase variable on the special 

orbit under consideration but does not necessarily do so 

on the other equipotential curves in the plane. 

Produce the equipotential curves in the plane kzo in the 

z direction forming a set of cylinders. By construction thes e 

cylinders coincide with the true equipotentials only in the 

plane k but not necessarily so elsewhere. We now have an 
zo 


orthogonal coordinate system (.A: ,¢,k) to describe any point_
z 


in ~ space. Another coordinate system (A,¢,k) can be set 
z 


up where k ,¢ are defined as before, but A is the true area 

z 


of the cross section in the plane k of the equipotential
z 


on which the point under cons ideration lies. By construction 


A coincides with A in the plane k . zo 


The pitch of the real space helix for the orbit under 


consideration is given by 


1 

l 
dE
Pitch= dt-K (akz) A ,¢ 

1 ?i2c · ( alt)f (~) d¢= .fl 2TieH dE kakz A ,¢ 0 

-He aA; dE 
= d¢ ( 9)(8€) k2TieH (akz) Jl; ,¢

0 f 
where (~~ k relates to the special orbit being consider ed. 

0 

But 

so that ds + (~ ) d!25 
3¢ .A: k 

I Z 
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but 

therefor e (10) 

In the pla ne k 20 ( ~ 
as 

is independent of¢, substituting 

from equa tion (10) in equation (9). 

fie ca~ ca~)Pitch= - 2TTeH f (!ft) d¢ . 
as ko o.P( ko z s,¢ 

Pitch= - -nc f (0Jt) d¢ ( 11)
2neH ok . n< z s,y., 

But .:Pc =.:f({A,k ,¢}z 

therefore 

dfc = c8~ dA + c8A) dk
aA k n< ak z 

,y., z " n<z i''>rY-' 

However 

A==A{s,k ,¢}z 

giving 

aA = call) · { (aA) ds + CaA ) dk 
aA kz,0 as kz,0 akz s,¢ z 

+ ( 8A) a¢ } +. c~Ak> o.k + (~~ d¢ 
0¢ s k oz A,¢ z A,k

' z z 

Therefore 

· aA, 
( a l r = cats caA ) + c~ kA > 

.... z 
-1 

s ,¢ aA k n< ak n< o A~z,y., z s,y., z ,y., 

d¢. 

but A is really a f unction of sand k alone with¢ as an 
. z 

ignorable coor d inate. In the plane k A = A so that zo 
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·ca.A> 
c)A kz ,0 = 1. 

0 
Therefore 

= (~) ,ak z £ 

so that 

-tic caA> 1Pitch = f [(~) + d¢ ,- 2neH 3k z £ 3kz A,¢ 

-11.c ( 3A ) 1.'ic (~A)Pitch = d~ .
eH ak 2neH z £ f ak A,0z 

To prove the last integral to be zero consider 

the orbit of Area A in plane k + dk which has the same zo z 
area as the orbit under consideration . In the diagram 

the dotted curve represents the orbit 

in the plane k +dk, the full curve 
zo z 

represents the special orbit being 

I 
I 

\ 

considered. The two curves are equal 
,' 

in area. 

ProJ'ecting the dotted curve on to the plane k and consi­zo 
dering a short section of both curves along an arc d¢. 

Let QR be c e ntred on the A + a.A cylinder , PQRS is a 


rectangle if d0 is small ~nough; dk 2 is asstimed a~bitrarily s mall. 
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·The area of the rectangle equa ls PQ x PS. 

PQ dk z 

1 oA
PS = 2 'TT (8k) d¢ 

\) 

using equation (8). Therefore area of rectangle= 

cSk a.ft 
(cSA) (ak) dk z z ¢,A 

1 dk dr1. cal+)
= 27f z YJ dk z A,¢ 

The difference in area of the two orbits is equal to 

f (!ft) . ,d¢ 
z A,¢ 

but the two areas are equal by definition. Theref ore 

This means that equation (12) reduces to 

-ti . aA 
Pitch = - e~ (~) 

z £ 

and the necessary and sufficient condition for an orbit to 

be stationary in real space is that in k space it be an 

extremum of area for the particular orientation o f the 

magnetic field. But these extremum orbits on the Fermi 

surface turn out to _be e xactly thos e which produce the most 

significant contr ibution to the de Haas-van Alph e n effect . 

.. 
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The theorem which has been proved shows that these orbits 

are also stationar y in real space. 

Magnetic Quantization 

The projection of the electronic motion on to a 

plane perpendicular to H forms a closed curve and the Bohr-

Sommerfeld phase integral formula can be applied: 

f p • dr = (n+y)h (13) 
J_ -i­

where n is an integer and y is a constant which has been 

added ton to make the theory physically more reasonable. 

For example the Bohr-Sommerfeld theory predicts the harmonic 

oscillator energy levels to be E = nnw, whereas in fact . n 

En= (n + })nw. Roth6 and R. G. Chambers6 have shown that 

y is. a 1ways 1 · fiel. sand Roth 7 has shown h2 in weak d tat 

when is a function of energy, y is of the formw8 

Y = ~ + Y1 IHI + · · · 

Substituting into equation (13) using the relationship 

n = 1ik + ~ A , 
£.. - c ­

where A= H(O,x,O) in the Landau gauge. 

Resolving vectors perpendicular to H, 

A = p = -nk + ~A 
-1_ ~' -1.. -.1.. c-

Therefore 

p • dr = f (fik + - A) • dr 
-..L -_1_ --1. c J.f e 
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but from Onsager's theorem 

The arbitrary constant b can be neglected because it 
J_ 

integrates out to give zero. 

Substituting into the phase integral 

•dr ·= H xr + e A)•dr = (n+y)hf n f (- 11~ 
£..l.. -..L en - -1- c -1­

which can be transformed to give 

e _ e f H • (r x dr ) + - Jv x A· dA = (n+y)hc - -J_ -j_ c r 

where A is the area of the projection of the real space
r 

orbit on to a plane perpendicular to H. Thus we obtain the 

result 

e HA = (n+y)h . c r 

Therefore the possible values ofq. are given by 

ch 1A r = (n+y) (e) H, n = 0,1,2, .... 

A physically more fundamental result follows from 

the flux enclosed by an orbiting electron helix is quantized 

in units of (~c). Using equation (7), Onsager's theorem,!=\ K 

the cross sectional area of the orbit ink space is given by 

. eH 2AAK = <en) r· 
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Therefore 

A _· eH 
K- 2TI (n+y) cli . 

The description of the electron energy levels in 

a magnetic field requires the following construction ink 

space. Choose a value of n, on each plane of section of the 

Fermi surface normal to the magnetic field draw the energy 

contour of area An. Join these contours into a continuous 

tube with constant area of cross section, draw simi lar 

tubes for other values of n. By rigorously solvfng the 

Schrodinger equation in the magnetic field it can be shown 

that the degeneracy of these Landau levels is the same as 

would occur if all the allowed points in the usual Bloch 

scheme condensed on to the nearest tube. By the correspondence 

principle the energy difference between successive Landau 

levels should be 1'iwH. In the free electron case it has 

been shown rigorously that E(n+y,kz) = (n+y)~wH + f(kz). 

A rigorous proof in the general case has never been given. 

Physical consequences of the magnetic quantization 

As the magnetic field_gradually increases the tubes 

of magnetic quantization expand and .one by one t~ey break 

through the Fermi surface with a frequency that is propor­

tional to 1/H, consequently any physical parameter of the 

system should possess a component periodic in 1/H. The 

oscillations in the magnetic susceptibility const{tute the 

de Haas-van Alphen effects, a similar oscillation in the 
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electrical conductivity is called the de Haas-Shubnikov 

effect. 

To understand how the de Haas-van Alphen effect 

arises it is customary to consider the thermodynamic free 

energy. For a Fermi-Dirac assembly this is given by 

F = Nl'; - kTL tn( l + exp(l';-Ei)/kT) (14) 
i 

where the summation is over all possible states, l'; is the 

Fermi potential. It is clear that as the Landau levels 

expand the most significant variations in F · arise from the 

regions near the extremal orbits ink space for which 
dfik 
~ = o. As the Landau levels break through the Fermi sur­

z 
face near an extremal orbit F should have an oscillatory 

variation whose amplitude is determineq in some way by the 

curvature of the Fermi surface around the extremal area. 

It has been shown by Lifshitz and Kosevich that for 

a general shape of Fermi surface the oscillatory part of 

F can be given by the rather complicated expression * 
'ITID 

sdiA rr, HCos(~- ±-)Cos(~--)3/2 11 -~ 

H3 2 
00 (-l)s eH o 4 rn0F = 2kT(~) I~ I 1 l ( 15)

ch o S=l 5 3/2 Sinh(2'IT2~k(T+Tn)) 
WH 

The above expression gives the oscillations in F arising 

f . 1 t 1 f h" hA --A ..1._l k' 2" rom a particu ar ex rema area or w ic ,-, 0 - 2 z f-1 0 
11 

it is seen that the oscillations are periodic in 1/H with a 

period P = Sc~F) and an amplitude partly governe d by the 
Q II l 

curvature term Ip\ 1-"2 If there are several e x t rema l areas 
IO 
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then each one will contribute a . term like equation (15) to 

the resultant variation in F which will therefore be a 

superposition of oscillations of differing frequencies 

periodic in 1/H. The± signs apply in equation (15) accor­

ding to whether.t=\ represents a maximum (-) or a minimum (+). 

Another factor determining the amplitude of the 

oscillations is the temperature. If the temperature is 

0°K and the Fermi surface is perfectly sharp and we suppose 

that the field is such that I:; lies halfway between t wo 

Landau levels, then the number of states below t h e Fermi 

level will be the same as if there wer e no magneti c levels, 

but the total energy of the electron gas will be less than 

in the absence of a magnetic field by about }-nwH per 

electron at the Fermi level. As H increases these electrons 

will be drawn up to the Fermi level so their free energy 

increases to a maximum, but when a magnetic level passes 

through the Fermi level it begins to empty and the energy 

drops again reaching a minimum whe n the Fermi l evel lies 

halfway between two quantized levels again. If the Fermi 

surface is not infinitely sharp and is thermally broadened 

because of the temperature of the elect ron g as, then at 

T°K the energy width of the Fermi surface is approxima tely kT. 

If the temperature is such that several magne tic levels are 

contained in this narrow region o f width kT the variation 
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of the electron gas energy will be much smoother than at o°K 

and if kT >> -nwH no oscillations will be observed at all. 

This essentially is why the de Haas-van Alphen effect is 

a low temperature phenomenon and why the amplitude of the 

oscillations decreases with increasing temperature. 

The last cosine factor in equation (15) comes from 

the doubling of the energy levels on account of the magnetic 

moment of the ele'ctron spin. Electrons of opposite spin 

condense on to different sets of Landau levels and the 

oscillations arising from . the two sets of levels may differ 

in phase, it is even possible for no oscillations to be ob­

served at all because of interference between the sets of 
'JTmH * 

levels. The form Cos(--), where m is the free electron mo o 

mass was first ~iven by Dingle8 This factor is often 

nearly unity because~ is usually much less than m. 
0 

The amplitude of the oscillations is reduced if 

account is taken of a possible broadening of the line-width 

of the energy levels due to collisions or other causes. 

Dingle9 showed that on certain simplifying assumptions the 

effect of the broadening that would correspond to a collision 

possible to obtain either M, the magne tization= IB; or C 

time Tis as if the temperature Tis replaced by (T+TD) in 

the sinh term of equation (15) where TD= 
h 

2TI2kT ,TD is 

called the Dingle temperature. From e quation (15) it is 

clF 
-

clFthe couple about any a xis= aijj , wher e~ is an angle spe ci ­
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fying rotation in a plane normal to the axis. In the 

differentiations the main contributions come only from differen­
d1A 

Otation of the cosine term because eH >> 1. Thus the 

simplified expressions for Mand C will differ from (15) 

only by
scnAo 

a change from Cos to Sin and 
sen a.Ao . 

an extra factor 

EH 2 
for Mand (- eH ~) in C. 

It is important to note that if a torque magnetometer 

is used in observations of the de Haas -van Alphen effect, zero 

torque ooserved because for the particular orientation 

chosen O, the torque method has a blind spot. For 

this reason the torque magnetometer would not be very use­

ful in experiments on the alkali metals where the Fermi 

surfaces are very nearly spherical. 
2 . 

eH . h(27T kTs)Because tfwH = 1'1(--*- ), the terms sin h 
m c WH 2 * 

can be written as H (sinh (SA) where>.. - 27T ffiH c 
H - -iie-- (kT) 

If~ is substantially greater than unity we can approximate 

. . :\ :\
s1.nh (H) - exp (8 ) and taking only the first term in equation (15) 

F z 2kT (~) 3/ 2 IA",-\ e-~ Cos (cl'iAo .±. 'IT)
2Tich o eH 4 

In this approximation the de Haas-van Alphen oscillations 

1 2ne are a periodic function in H with a period P = 
cttAo 

and an amplitude that increases with increasing field be­

cause of the exponential factor. If P can be determined, 

then the extremal area of cross section ·of the Fermi surface 

is obtained directly. At higher fields and lower temperatures 
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the high order terms in equation (15) corresponding to s = 2,3, 

4, etc. cannot be neglected. Consequently the oscillations 

become richer in higher frequency harmonics. Another 

factor contributing to the existence of higher harmonics 

is a skewness introduced into the oscillations due to the 

fact that the true field seen by the electrons is B not 

H. This causes the cosine waves to be steeper on one side 

than on the other. Consequently the general form of the 

oscillation to be analyzed is 

~. w. 
. l l 

C = 	L Ai exp(-~)sin(rr- + ai) (16) 
i 

Actual experimental data are often too complicated 

to be analyzed easily, particularly when there are many 

terms in equation (16). 



CHAPTER II 

DATA ANALYSIS BY FOURIER TRANSFORM 

Equation (16) can be written 

Y =LA.
i 1 

exp(-\.x)sin(w.x+a.),
1 1 1 

where 

x 
1 

= if• (17) 

If a Fourier transformation of the data is carried out 

for a range of v:alues of w, the amplitude function A(w) 

of the Fourier transform should show peaks in the neigh­

bourhood of the frequencies w.. In this way the frequency
1 

spectrum of the data would be obtained and the problem of 

analyzing the data would be resolved. 

However, there are a number of complicating factors 

that raise a variety of questions. Any experimental record 

is of finite length, this truncation introduces a broadening 

of the amplitude peaks in the Fourier transform and intro­

duces sidebands around the main peaks. This brings in the 

question of resolving power and the problem of separating 

true peaks from sidebands. Another factor is the existence 

of the exponential terms exp(-A.X) which would also be 
1 

expected to have a broadening effect on the peaks, much as 

the spectrum of a damped harmonic oscillator gives a Lorent­

zian line shape. The exponential terms ·might also be sus­

pecte d of causing the amplitude peaks to shift by a small 

21 
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amount from t he frequencies w. that are rea lly of interest. 
l 

The distorti ons of the sinusoidal wave form by the truncation 

and the exponential factors might be e xpected to introduce 

artificial ha!-monics of the frequencies w.• 
l 

It can be shown that peak shifting due to the e xponen­

tial factors is entirely neg ligible and that spurious harmon ics 

are not produced. Peak shifting by s mall amounts does occur 

due to over l a p b e t ween neighbouring peaks or due to over lap 

between a pe ak ~nd the sidebands of a neighbouring peak. 

The accuracy with which the amplitude s A. in equation (17)
l 

are reproduce d is also gov erned by the degree o f overlap 

between neighbour ing peaks, when it is substantial there is 

considerable distortion of the amplitu de s. 

It has been found that Fouri~r transformation i s an 

excellent method for a nalyzing the fr eque ncies w.. It does 
l 

not provide a good method for determining the e xpon en tial 

growth factors A.• The question of t h e amplitude s is 
l 

comp licate d by the pres e n ce of the e xponential terms since 

the height of a peak in the Fourier transform is controlled 

by both the amp litude facto r s A. and the A.. In numerical 
l l 

experiment s wit h all the \.=0 it has be ~n found t h at 
l 

amplitudes are reproduced to an accuracy of about 10% in 

the case of isola ted peaks but amplitudes are e x t r emely 

sertsitive io overlap and no physica l signifi c a nce - should b e 

attribu t e d to t he h e i gh t s o f peaks that are close to o the r peaks . 
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The accur.acy .of the analysis can be improved by taking a 

larger number of oscillations, the width of the peaks is 

reduced, but a limit is set by the amount of time it takes 

a computer to do the calculation. An excellent way to 

reduce overlap between different peaks and their respective 

sidebands is to suppress the sidebands. One way of doing 

this is to impose a 'cosine window' on to the data. 

Another problem is the question of noise in the data. 

If it is a random fluctuation superimposed on to the de Haas­

van Alphen oscillations, it is not too serious provided its 

amplitude is not too large. Fourier transformation is an 

excellent way of smoothing out this type of noise. Also 

the method of least squares curve fitting adopted in the 

program that has been developed eliminates a great deal of 

this noise. 

A f~r more serious type of noise is that arising from 

the uncertainty involved in the instrumental measurement 

of the magnetic field strength H. In a typical experiment the 

magnetic field is increasing steadily with time and its 

strength is measured at regular intervals of time. The true 

values of the field are in a perfect monotonic s equence. If 

the instrumental errors are such that the recorded values of 

the magnetic field are not in a monotonic sequence, then . 

the numbers generated by the program are meaningless. If order 

reversal occurs for about one point in ten it probably does 
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not matter too much, but if it happens more often it can ruin 

the data so far as the program is concerned. It is essential 

to take steps to prevent this noise from being too severe. 

It is possible to introduce an operation into the program 

which smooths out this noise, but there are limits as to how 

far this can be taken. 

Mathematical properties of the Fourier transform 

An arbitrary function of x, that satisfies certain 

conditions that in practically all cases of physical interest 

are fulfilled, can be represented by the expression 

f (x) = 1 LF(w)ejwx dw
2rr 

where 

F (w) = Lf(x)e-jwx dx . 

The function F(w) is called the Fourier transform of the 

function f(x). T0e relationship can be expressed 

f (x) ~ F (w) 

F(w) is a complex function of wand can be split up into 

its real and imaginary parts 

F(w) = R(w) + jX(w) 

where 

R(w) = f(x)Coswxdx X(w) = - f (x)Sinwxdx . r: r:
00 00 



2 

25 


F(w) can .also be written as 

F(w) = A(w) exp(j0(w}). 

The function A(w) is called the Fourier spectrum of f(xl, 

A (w) the energy spectrum and 0(w) the phase angle. 

2 2 !:z
A(w) = [(R(w)) + (X(w)) ] 

¢(w) = arctan(~X (w}/R( w)). 

Some simple properties of the Fourier transform are expressed 

by the following theorems . 

Linearity. If F1 (w) and F2 (w) are the transforms of 

the functions f 1 (x) and f 2 (x) respectively and a 1 ,a2 are 

two arbitrary constants then 

the extension to finite sums is obvious. 

Displacement. If the function f(x) is ·shifted by a 

constant x, then its Fourier spectrum remains the same but 
0 

a linear term (-xow) is added to its phase angle, 

f (x-x ) HF (w) e -jxow = A (w) ej 10 (w) -xow] 
0 

Frequency shifting. With w a real constant the 

0 

0 

Fourier transform of ejwox f(x) is obtained by shifting F( w) 

by w 

ejwox f (x) ~> F (w-w ) 
0 

This theorem can be used to derive the Fourier transform 

A (w)ej¢c(w) of a modulated signal f(x) Cos(w x) in termsC . 0 

of the Fourier integra l of its envelope f(x), 
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f(w-w )+F(w+w) 
f(x) Cosw x ~ 0 0 = A {w)ej0c(w) (18)

0 2 c 

similarly 
F'(w-w )-F(w+w) 

f (x) Sinw x H o o = A (w)ej¢s( w} . (19)
0 2. s 

J 

A typical term of equation (17) is of the form f(x) 

sin(w x+a), where f(x) is an envelope function which is zero 
0 

outside the limits < x < and it is assumed that thex 1 x 2 

exponential growth function as well as the fini te length 

of the data is incorporated into f(x). 

Let ·f(x)Sin(w x+a ) ~ ¢ (w) ,
0 

where 

f(x) ~F(w) = A(w) e xp(j¢(w)). 

Using equations {18) and (19) 

= F(w-w) exp(j a ) - F(w+w) exp(-j a ) ¢(w) 
o 2. .0 2. 

J J 

¢*(w)= F*(w-w) exp(~j a ) - F*(w+w) e xp (ja ) 
o (-2].) o (-2.). J 

. Thus 

* -2.a * 2.a 
-F(w+w )F (w-w )e J - F (w+w )F(w-w )e J . }.

0 0 0 0 

Let ¢ (w) have an amplitude function c( w) so that 

¢(w) = C(w) ejiµ( w) 

Therefore 

2C (w) = 14{!A(w-w ) 12 + !A(w+w ) 12 
0 0 

-2R (A(w-w ) A( w+w ) exp[j{¢(w+w) - ¢(w_:w ) - 2a.)l)}. (20)
e o o o o 
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If the envelope function is such that its Fourier 

spectrum A(w) has a high narrow peak centred on w= O, with 

a peak width narrow compared with w the modulating
0 

frequency, then the Fourier spectrum C( w) of the modulated 

envelope function will have peaks centre d almost exactly at 

w=w and w=-w , because 
0 0 


. 2 1 2 2
Ic ( wO + 6 w ) I = 4{ IA ( 6 w ) I + IA ( 2 w O + 6 w) I 

-2A(6w) A(2w +6w)Cos(0(2w +6w) - 0(6w)-2 )} (21)
0 0 Cl 

If A(2w) is negligibly small compared with A(o), then 
0 

C(w +6w) will have a maximum almost exactly at 6w=O , that 
0 

is at w=w . The negative frequency has no significance,
0 

the Fourier spectrum of any real function is symmetrical 

about w=-0 . The conclusion follows that provided the envelope 

function has a Fourier spectrum A(w ) which is a high narrow 

peak centred on w= O, then the modulated function ha~ a 

Fourier spectrum C(w) which is effectively A(w) but with 

its peak centred on w=w . The width and shape of C(w) are 
0 

almost exactly the same as for A(w). 

The previous statements do not apply if A(2w0 ) is not 

small compared with A(o), in which case the peak of the 

Fourier spectrum will not be centred at w • The Fourier 
0 

spectra of the envelope functions that are to be expecte~ 

in this particular application of Fourier analysis will always 

b e simp l e p eaks centred at the origin , so if A (2 w ) is not 
0 
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small compared with A(o) it means that w is s mall compared
0 

with the intrinsic width of the peak in A(w). This implies 

that there are very few oscillations in the e xperimental 

data in the field range through which the experiment was 

carried out. If this is the case it is impossible in 

principle by any method to determine the frequency accurately . 

If the _experimental conditions are such that the 

uncertainty in determining a fraction of an oscillation is 

equal to one oscillation, then to determine a frequ ency 

to an accuracy of 1 part inn at least n oscillations are 

required. This i s true in general irrespective of whatever 

method of measurement is adopted. This theorem is reflected 

in the Fourier transform method, if there are n oscillations 

of frequency in a particular exp·erimental record, then .w0 

0 

w 
half the 'pe ak width'::: w0 This can be written /J. w ::: . n__£. 

" /J.w is practically the same for all the component frequencies 

in the data and_ is governed mainly by the length of the 

experimental record, being inverse ly proportional to the 

length of the record. The minimum frequency difference for 

two frequencies to be unambiguously resolved is when the 

difference of frequencies is approximately equa l to /J.w . 
0 

Let there be oscillations of frequency in the recordn 1 w1 

and of frequency w2 . If these freq uencies are at then 2 

limit o f clea r resolution by the Fourier tra ns f orm method, 
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.wl w2 
= 6 w and n 2 = (6 w ), conseque ntly n 1-n 2 ~ · 1. 

0 0 

This impli e s that the limit of clear r e solution coin­

cides with the condition of there being just on e beat between 

the two frequencies in the range of the expe riment concerned. 

The point to be emphasized is that the limits of precision 

of the Fourier transform method are as good as as any 

other conceivable me thod. If the Fourier t r ans form is unable 

to clearly resolve two frequencies in the data, no other 

method will be any more successful. 

Non Line arity of the Fourier spectrum 

Fourier transformation is a linear operation, but 

when the amplitude function is calcula ted this line arity is 

destroyed. If there is a set of .functions of x: 

f 1 (x) , f 2 (x) , f (x), whose Fourier transforms are• • • I n 

F 1 (w), F 2 (w), ... ' F (w), respectively, then the Fourier 
n 

transform of the sum of these functions is the sum of the 

Fourier transforms of the functions. Let 

£ 1 {x) + f 2 {x) + ... + fn (x) ~> A(w)ei0( w) 

i¢. (w) 
Using the notation F . (w) = A.(w)e J it follows that 

J J 
i0. (w)

A(w)ei¢(w) = I: A.(w)e J 
Jj 

and -i0. (w)
A(, -i0(u>)w,e = E A. (w) e J 

Ji 
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therefore 

A(w) 2 == Z:: [A. (w)] 2 + 2 l Aj(w)Ak( w)Cos(0j( w)-0k(w)) 

j J j,k 


j<k 


so that the amplitude functions do not combine( 22 ) linearly. 

If in the Fourier transform each of the A. (w) is a narrow 
1 

peak centred on w. and all the peaks are well isolated so 
1 

that mixing terms between the various peaks are very small, 

then to a very good approximation A(w.) = A. (w. ). However 
1 1 1 

there may be so .many peaks that the mixing between them 

is substantial, in this case spurious peaks could occur 

although they are usually easy to detect because t heir 

characteristic line width is usually wrong. In any case 

if two peaks occur close together there is interf.erence 

between them, not just simple superposition. 

If . there are two frequencies in the data that 
i¢1 ( w ) 

individually possess Fourier transforms A1 (w)e and 
i¢2 (w) , 

A2 (w)e then following equation (22), 

2 2 . 2 
A (w) = A1 (w) + A2 (w) + 2A1 (w) A2 (w) Cos (01 (w) -cp 2 ( w)) 

so 

Obviously if the frequencies .are to be resolved accurately 

A1 (w) and A2 (w) must not be large simultaneously. It has 

been found in m1.ttlerical experiments that when peaks are at 

a separation which is of the same order of magnitude as 

their intrinsic line width, they are subject to shifting and 
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distortion. -This sets a limit to the resolving power of the 

method. 

Characteristics of the amplitude peaks 

The characteristics of the ~ npli tude peaks are 

largely determined by the nature of the envelope functions. 

Ideally the Fourier spectrum of an envelope function should 

possess a high narrow peak centred on w= O. The simplest 

function to consider is a rectangular window, it is also 

a good approximation to the shape _of the envelope functions 

that are often obtained in practise. 

The rectangular window 

This function can be defined by f(x)=l in the 

range < x < x 2 ; f(x) = 0 outside this range. Letx 1 

x 2-x1 = b. Then 

2 -jwxl 
Sin (wb)2e . w e 

. 2 (wb)sin ­
.2.2 = b 

(~b) 2 
2 so that 

jsin(w~-) I 
A (w) = b 

(wb)
2 

A(u>) which is in fact the characteristic amplitude function 

for single slit diffraction is illustrated in Figure (II,1). 

There is a central peak of height b · centred at w= O. This 
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peak is of intrinsic width 6w = b47T . The successive side­

· b 1 
bands whose amplitudes decrease approximately as (-)- are 

TI n 

spaced out at intervals of 8w = b2TI 
It is possible to 

distinguish true peaks from sidebands in this case because 

they are twice as wide. The presence of sidebands is usually 

a nuisance. The amplitude of the first sideband is approxi­

mately 30% of the amplitude of the main peak. However some­

times their presence can be of advantage when there is much 

noise in the data. Free peaks are surrounded by a character~s­

tic array of sidebands which identifies them. If the de 

Haas-van Alphen data is of the form f(x)Sin(w x), where 
0 

f(x) is a rectangular window function and w is a modulating
0 

frequency, the peak will be shifted tow= w and. the sidebands 
0 

will be displaced with it. 

If there are n oscillations in the experimental data 
. 27T 

corresponding to the frequency w , then w = (b-) n, but the 
0 0 

width of a sideband is (~TI) and one half the width of the 

central peak is also (~TI). The general result follows that 

if there are n oscillations in the experimental data corres­

ponding to a component frequency w , there will be (n-1)
0 

sidebands between the central peak and the origin. The re­

solving power can be identified by: 


Resolving power= (Frequency of main peak)/(~ width of peak). 


It follows that resolving power equals n. 
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The truncated exponential envelope function 

A more general type of envelope function is of the 

form y =e 
-AX 

truncated betwee n x=x1 and x=x 2 . In this case 

x 2 -AX -J· wx
F(w) = J e e dx, 

xl 

-(A+jw)x -(A+,w)b
F(w) = 1 e 1 (e J -1).(A+jw) 

where b == (x 2-x ., ) . 
. i 

jF(w)j2 

- 2Axl -2Ab -Ab 
e . (e -2e Coswb+l) 

-2Ax2 4 	 1 -Abes· h2 Ab+ 8 . 2 wb)e e in inIF (w) J = 2 2 

Ignoring the constant 	terms A2 (w) varies as 

( . h2 Al: + S. 2 wb) sin in2 2 
P(w) = 

(A 2 + w2) 

P(w) is a function that oscillates between two bounding 

functions 01 (w) and ¢2 (w) where 
S . h2 Abin. 2 

¢1(w) = 
O. 2+w2) 

and S . h2 Abin, + _ 12 

(A2+w2) 

Refer to Figure (II,2) for illustration . P(w) oscillates 

between the bounding functions with frequency tw = ~TT • 



35 

In this case P(w) has no zeros, hence A(w) has no zeros, 

unlike the case of the rectangular window function which 

corresponds to\= O. At w = 0, P(w) is on the lower 

bounding function and at w= ± 5
7T it is i n tangential contact 

with the upper bounding function and it is necessary to 

prove that the highest point of P(w) is at the origin. 

P(w) varies as 

(Sinh2 \b + 8 . 2 wb) 2 J_n -2 
= 

( ( \b) 2 + (~b) 2 ) 

2 


Now f 1 (0) > f 2 (0), but f 1 1 (w) =; Sin~b and f 2 1 (w) = ;(wb ). 

7TTherefore f 1 1 (w) ~ f 2 1 (w) in the interva l O ~ w ~ b, so 

that P(w) decreases steadily in this interval. 

To surnmarize, the t runcated exponential function has 

the peak of its Fourier spectrum A(w) at the origin as re­

quired, there are no zeros in A(w), the 'effective linewidth' 

1is dominated by the bounding functions when A is2 2 
(\ +w ) 

large and is independe nt of b. As the uncertainty principle 

indicates, for large\ the 'effective linewidth' is greater 

than the value ~7T which is obtained when \=0. The sidebands 

which are prominent in the case of the rectangular window 

function also occur in the more general case manifest~ng 

themselves as the oscillations between the two bounding 

functions. 
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Suppression of sidebands 

If the data y. (x.) is multiplied by a cosine 
1 1 

function such that 

Y·~Y· Cos(TI (x-x))
1 1 (x 2-x1 ) 

where and 	 are the limits of truncation and x =x 1 x 2 

then provided the exponential growth factors are not very strong 

the envelope function is approximately a cosine window. The 

cosine window differs from the rectangular window in that 

the width of the central main peak is increased by 50% but 

the amplitudes of successive sidebands decrease approximately 

1 
as~ rather than as! in the case of the rectangular window. 

n 
n 

The cosine window · envelope function 

If the envelope function is defined by 

x +x 
F(x) = Cos{TI(x - 1 2 2 )/b} where b = x 2-x1 , 

then 
xl+x2 .TI 	 -JWXF(w) b (x - )e dx.2 

It follows quite 	readily that 

2TI 2 wb
4 Cos 2b2 

IF(w) 12 = 2TI(- - w2)2 
b2 

so that 

A(w) = 
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7f 2rrThe zeros of .A(w) occur when = b + n(b). However the 

zero at~= 5 is absorbed into the main peak ce ntr ed at 

w=O, because when w = 5 numerator and d e nominator are 

simultaneously zero. Figure (II,3) illustrates A( w) in 

this case. 

The 'Gaussian Window ' envelope function . 

An envelope function which ideally would h a ve no 

sidebands at all would be a function of the form 
(x1+x 2 ) 2 

f( x) = exp {-a (x - ) }2 

where a is sufficiently large so ·that 

2
(x2-xl) 

exp {-a 4 } << 1 

This follows from the relation 

-ax2 H /rr e -w2/4a 
e a 

However in practise when a is so large tha t the above 

condition holds, the amplitude peaks are inconv e n iently 

broad. If a is chosen so that exp{- i (x2-x1 ) 2 } =} 
a significant reduction of sidebands is achiev ed with a 

reasonable line-width. 

However no final conclusions can be drawn as to 

the best window function to i mpose on the data . The 

cosine window function is probably s u f ficient in most 

cases, in any case total suppression of sidebands is n6t 

always desirable becaus e they can assist in the ide ntification 

of the main peaks. 



CHAPTER III 

DEVELOPMENT OF THE DIGITAL PROGRAM 

In the development of any digital program it is 

important to ensure that the time taken to carry out the 

required computations should not be so excessive as to be 

uneconomical. This is especially true of programs intended 

to compute Fourier transforms where numerous sines and co­

sines have to be calculated. 

Typical data consists of a set of points (X. ,Y . ) 
l l 

distributed along a curve y = f(x). A simple way to com­

pute the Fourier transform of the data is for the program 

to join successive points by straight line segments so that 

the smooth curve y=f(x) is approximated by a series of 

trapezoidal sections. It is very simple to calculate a 

formula for the Fourier 

transform of a s~ries of 

trapezoidal sections and 

a program based on this 

principle could certain­

ly be developed, but it 

would take too much time 

to carry out the compu­

tab.ons when the number of data points is large. One of the 

most time consuming operations the comp uter has to perform 

38 
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is to ca~culate sines and cosines. If the number of data 

points is N1 and the number of frequencies is N2 then the 

number of sines and cosines that need to be calculated is 

equal to N1 x N2 . It is essential to devise a method 

whereby the effective number of data points is reduced 

before the Fourier transform is calculated. 

Another disadvantage of the trapezoidal method is 

that unless the data points are very close together the 

series of straight line segments _is not a very good approxi­

mation to the smooth curve y = f(x). It is also a dis­

advantage that the trapezoidal method does not have the 

capacity to smooth out noise at an early stage in the 

computation. 

Point reduction by polyriomial aics 

If it is possible to approximate the data by a 

series of polynomial arcs, the effective number of data 

points can be much reduced. For example, if there are on 

average eight points along each arc, then the effective 

number of data points is reduced by a factor of eight 

because it is only necessary to calculate the sine and 

cosine at the end points of each arc. In the program 

that has been developed the data is replaced by a series 

of parabolic arcs that are ca.lculated by a least squares 

procedure. In principle the method could be e x t e nded to 

compute polynomial arcs of any order, clearly a cubic 
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polynomial arc can approximate a longer stretch of data 

than a parabolic arc and thus effect a move efficient 

point reduction. However, it takes more time to calculate 

higher order polynomials, for this reason the present pro­

gram is restricted to calculating parabolic arcs. 

Clearly a parabolic arc is a closer approximation 

to the true curve passing through a set of data points 

than a series of straight line segments can be. To some 

extent a parabolic arc that is computed by a least squares 

procedure will tend to ignore the noise fluctua tions thus 

smoothing the data to some extent. 

Procedure for calculating the polynomial arcs 

An -efficient way to -calculate the nth order poly­

nomial that gives the best least squares fit to a series ·of 

data points is to make use of a system of orthogonal 

Chebyshev polynomials. Suppose there is a series of N 

consecutive data points 

(xl,yl) '(x2,y2)' 

Let the sequence of polynomials 

00 (x) , ~\ (x) , ' 0n{x) 

where 0k(x) is of order k, be an orthogonal system of func­

tions with respect to the system of points xl ,x2 ... , xN. 

This means . that 

N 
I 0 (x.) 0 (x.) = [95i_1 (x) ¢ (x) ] = 0 

µ 1 \) l \)
i=l 

for µ f. v . 
/ 
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Any nth.order polynomial can be uniquely specified by the 

expression 

The deviation 6 of this polynomial from the act ual data 

points can be expressed by 

N 
2 

~ = E (y. - ¢(x.))
l li=l 

-C rl. (x.)) 2 (23)ny.,n 1 _ ' 

N
36 = E 2 (y. -C ¢ (x. ) -c1¢ 1 (x.) - . . . -C 95 (x. ) ) 
3c. i=l 1 o o 1 1 n n 1

J 

x (- ¢.(x.)) • 
J l 

Because of the condition of orthogonality this reduces to 

36 
3c. 

J 

_ 
-

2 
N 
E 

i=l 
{-v . 

-1 
¢ . ( x. )

J l 
+ c . 

J 
2(¢ . ( x. ) ) } . 

J l 

But if 6 is at a minimum 36 
3c. = 0 I j = 0,1, 2 I • • • I Il 

J 
therefore 

N 

c. 
J 

= 
E 

i=l 
N 
E 

i=l 

y. ¢. (x.)
l J l 

2[¢ . ( x. ) ] 
J l 

j = O, 1, 2, •.. n. 

Thus once the orthogonal polynomials h a ve b e en 

generated it is very easy to calculate the coe fficients C. 
J 

appropriate to that polynomial which has the l e ast squares 

deviation from the actua l data points. 
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N 
c. = I Y· ¢. (x.)

J . . l . . J ..l [y ¢. (x) Ji=l J .= (24)
N [¢ . ( x) . ¢ . ( x) J2
I I¢. (x.) 1 J J 

J li=l 

The set of polynomials can be generated as follows. 

We put ¢ 0 (x)=l. We can regard ¢ 1 (x) as a linear combination 

of x and¢ (x), so that: 
0 

= x + b¢ (x),
0 

where bis chosen so that 

but this implies 

N 
I l • (x+b) = 0 , 

i=l 

·thus 
N 

b = - I x = - x 
i=l 

N 

Therefore 

- [x]= x-x = x ­
N 

Now put 

2¢ 2 ( X) = X + b 1 ¢ 1 ( X) + b 0 ¢ Q ( X) I 

since ¢2 is orthogonal to both ¢1 (x) and ¢0 (x) it follows 

that 

[x2¢1 (x) J 


b = 
 -~­
0 [ (x-x) J 

so 

2 [x 2 (x-x)J _ Jx 2 J = x - 2 (x-x) N 
[ (x-x) J 
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Proceeding in this way it can be shown that 

m 
[x ¢m-l (x)] [xm]

¢ (x) = x 
m 

[¢ ( ) 0 ( ) ] ¢ 1 ( x) - • • • - Nm m-1 x m-1 x m-

thOne virtue of this method is that if the best m order 

polynomial has been determined and it is desired to calculate 

the best (m+l)th order polynomial. It is only necessary to 

calculate ¢m+l(x) and Cm+l" The other functions ¢k(x), 

k = 0,1, ... , m and the coefficients C , c1 , ... , C remain o m 

the same. Using equations (23) and (24) the amount by 

which the closest nth order polynomial to the data points 

deviates from these points is given by 6min' where 

N 

ti . = r y. 2 C 2 [¢ (x) • ¢ (x) ]
min i 0 0 0i=l 

- c - 2 [0 <x) •0 ( x) J • ( 25)
n n n 

We see that 6. decreases steadily as the order of themin 

polynomial increases. 

Basic form of the program 

The main principle behind all forms of the program 

is that the program takes the first three data points and 

calculates the best parabola that passes through these three 

points. The closeness of fit of this parabola to the 

actual data points is referred to in the program as CLOSE, 

in fact CLOSE is equal to 6 . of equation (25).min 
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If CLOSE is less than a certain number called DELTA, the 

best parabolas for four points, five points and so on are 

calculated until it is found that CLOSE is bigger than DELTA. 

The last parabola for which CLOSE was less than or equal to DEI,TA 

is selected. If this parabola extends over m data points 

the first of which has an x coordinate called X(lMIN) and 

the last one an x coordinate called X(lMAX), then if the 

2equation of this parabola is given by w(x) = Ax +Bx+ C, 

the integrals X (IMAX) 

CN (w) = 1 w(x) Cos(wx)dx 

X (HUN) 
and X (IMAX) 

SN (w) = J . w(x) Sin(wx)dx, 

X (IMIN) 

are calculated for all the different frequency values w, 

for which it is desired to calculate the Fourier transform. 

These arrays CN(w) and SN(w) are then stored and 

the program calculates the next parabolic arc which satisfies 

the criterion of close enough fit. The last point of the 

first arc has the same x coordinate as the first point of 

the second arc, but these two end points are not necessarily 

coincident. The values CN(w) and SN( uJ ) are calculated fo:c 

this second parabola and the values added to the old values. 

Proceeding in this manner the program works its way through 

the data arid eventually the integrated values of the arrays 

CN(w) and SN(w) are found for the entire rang e of the data 
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in the experiment. Once the program reaches the last point 

in the data the quantities AFT(w) are calculated for all 

the different frequency values 

AFT(w) = {CN(w) 2 + SN(w) 2}~. 

These quantities AFT(w) are the amplitudes of the Fourier 

transform of the data for the fr equency values w. In 

this way the Fourier spectrum of the data is calculated. 

It is a fact that there is always one parabola that 

passes exactly through three points and it may be that on 

average in a particula r experiment each parabolic arc extends 

over seven data points . If this is expected to happen it can 

save time if the program always tries to fit a parabola to 

six points at its first attempt and then goes on to seven 

points if the six point parabola is a good fit, but goes 

back to five points if it is not. In this manner the pro­

gram eventually finds the correct number of points to which 

it can approximate a parabolic arc of the desired closeness 

of fit. The later forms of the program always have an in­

built capacity to begin with more than three points at a 

first attempt if it is thought expedient. 

Early forms of the prog ram 

The two functions Tl(X,A) and T2(X,B,C) are defined 

as statement functions at the beginning of the program. 

x2Where Tl(X,A) = X-A, T2(X,B,C) = - BX - c. Tl(X,A) and 

T2(X,B,C) are the ·orthogonal Chebyshev polynomials ¢1 (x) 
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and ¢ 2 (xY re~pectively. The coefficients A,B,C are ctilcu­

lated separately each time the program is finding the 

closest parabola to a given set of data points. 

If the set of points is called (X(l) ,Y(l)), 

(X(2) ,Y(2)), ... (X(N) ,Y(N)), the procedure is as follows. 

A set of quantities P,Q,R are first calculated where 

N N N 
p = I x (k) ' Q = I X(k) 2 , R = I X(k) 3 . 

k=l k=l k=l 

From these numbers the coefficients A,B,C are calculated 

thus converting the functions Tl(X,A) and T2(X,B,C) into 

the Chebyshev polynomials ¢1 (x) and ¢2 (x) for this par­

ticular set of points. These coefficients are given by 

A= P/N, B = (R-AxQ)/(Q-NxA2), C = i - AxB. Nex t the 

coefficients c0 ,c1 , are calculated using equation (24).c2 

To do this intermediate quantities PlSUM and P2SUM are 
N N 

calculated, where PlSUM = I Tl(X(k) , A) 2 , P2SUM= I T2(X,B,C) 2 . 
k=l k=l 

C0 , c1 , are th.en given byc2 
N N 
I Y(k) I Y (k) xTl (X (k) ,A) 

- k=l k=lc = 
0 N PlSUM 

N 
I Y (k) T2 (X (k) ,B ,C) 

..... k=l 
C2 = P2SUM 

The parabola has now been calculated, its closeness of fit 

is given by equa tion (25) 
I 
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N 
CLOSE = · I: Y(k) 2 - C 2 x N - C 2 x PlSUM - c 2 x P2SUM. (26)2

k=l O 1 

If this is a parabola for which the program is going to 

calculate the CN (w) and the SN ( w) arrays, it is first 

converted to the form A1x2+B 1X+C 1 
I where 

Al - x -1 - - x ­= c2, Bl -- c 1 - c2 B, c = c - A - x C,cl c20 

and then the necessary computations to calculate the CN(w) 

and SN(w) for this particula r parabolic arc are carried out. 

It was found that the prog r a m worked very well in 

this form when it was used to calcula te the Fourier transform 

of synthetic data, but some s mall modifications were found 

to be required when it was used for real data. 

Some late r modifications of the prog ram 

When the program was used to ana lyze some real 

de Haas-van Alphen d a ta it was found that it was not calcu ­

lating the parabolas prope rly. The average number of data 

points on each parabolic arc should be controlled by the 

closenes s of fit parameter DELTA. When DELTA is small 

the number of points should be less than when DELTA is 

large. The quantity CLOSE is always greater tha n or equal 

to zero if the calculations are carried out without err ors. 

It was discovered that the number of points on each para­

bolic arc was alway s larger than e xpecte d a n d seemed to be 

very insensitive to the value of DELTA. CLOSE was also found 

to be frequently negative. The reason for these errors was 

that there were too many significant figures in the magnetic 
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field variables. In a typical experiment there may be a 

thousand field measureme nts taken in a range from 50,000 

gauss to 55000 gauss.This me ans that the magnetic field 

H needs 5 significant figures to describe it adequately. 

But in the program X - ~' therefore the X values also 

have to be specified to 5 significant figures. Now the 

quantity Bis calculated using the formula 

B = (R - AxQ)/(Q - NA2), 

Rand (AxQ) are very nea rly equal _to one another and if the 

field variables nee d five significant figures to differen­

tiate them from each other it can happen that Rand (AxQ ) 

differ only in the tenth significant figure or worse. But 

the computer c a n only wor k to an accuracy of eight or nine 

significant figures so it follows that very seriou s errors 

in the calculation may result. The denominator (Q-NxA2 ) 

could also be in error for the same reason. Once Bis 

calcula t ed incorrectly practically all subsequent quantities 

calculated will be erroneous. 

This problem was overcome in the following way. If 

there is a set of points with X coordinates X(l), X(2) , ... , 

X(N) to which the program is attempti ng to fit a parabolic 

arc, it is possible to reduce the number of significant 

figures by moving the origin of X tempo r arily to X(l), so 

t)lat the new X coordina t e s ivill be o, X(2)-X(l), ... ,X(N) -X (l). 
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The program will now calculate the parabola 

It is then a simple matter to shift the origin back again 

and express the parabola in the correct form 
2 IIII 11 

Y = A X + B X + C 

When .this modification was built into the program it 

usually worked properly even when there were many field values 

measured over a small range of field. 

To ensure that CLOSE could not be negative,it was 

not calculated using equation (26) but was instead calculated 

in an equivalent positive definite form 

N 
C11CLOSE= E (Y(k) - [A 11 X(k) 2 + B11 X(k) + ]) 

2 . 
k=l 



CHAPTER IV 

TESTING PROGRAM USING ARTIFICIAL DATA 

The program was tested by making it generate 

artificial data of known analytic form and then calculating 

the Fourier transform of this data. In a particular example 

it was made to generate the function. 

F(x) = 3 Sin(200x + 0.21) + 3.2 Sin(390x + 0.45) 

+ 3.1 Sin(400x + 0.77) + 0 .-2 Sin(460x + 0.61) 

+ 1.9 Sin(540x + 0.70) + 2.4 Sin(610x - 0.35) 

+ 2.8 Sin(615x + 0.38) + 3 Sin(740x + 0.09) 

+ 3.2 Sin(820x + 0.32) 

The values of x ranged from 0.003 to 0.600 increasing 

in steps of 0.001. 

Figure (IV,l) is a graph of this function, Figures 

(IV,2), (IV,3) ar,id (IV,4) show the Fourier spectrum A(ui) 

plotted as a function of w for various frequency ranges. 

"The upper graph in each case refers to a rectangular 

window function, the middle graph to a cosine window function 

and the lower graph to a strong Gaussian window function 

where F(x) has been multiplied by EXP(-(x-x) 2/0.04),x is the 

mid-point of the range of x. These graphs illustrate the 

very great reduction in the amplitudes of the sidebands 

-50­
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achieved by using a cosine or a Gaussian window function. 

It is seen tha t in all case s the component frequen­

cies have been analysed with the except ion of t he frequency 

at w =460 which does not show up with a rectangular window 

because it has a very low amplitude a nd the side bands from 

neighbouring peaks are too large. However this frequency 

shows up when the cosine and Gaussian window functions are 

used. The peaks at w = 390 and w = 400 have b een resolved 

but they are so close to one another that peak displacement 

has occurred toge ther with amplitude distortion. The two 

frequencies at w = 600 and w = 615 have not b een resolved 

and have merge d into a single p e ak about t wice a s broa d a s 

an ordinary pea k. 

The rela tive amplitudes A of the various _peaks 

together with their frequencies w are tabulate d in Ta ble 

(IV,1), the columns in the Table refer to the absolute 

values of A and was they occur in F(x) and to t h e values 

of A and w obtained using the differe nt window f u nctions. 

In each case the amplitude of the peak n e ar w = 200 has 

been taken to be unity. 

With all three window functions the peaks at 

w = 390 and w = 400 h a v e b een di splaced to w = 387 

and w = 403 respectively, this is a typical case of peak 

displaceme nt. The errors in the relativ e ampl i t ud e s are 

s een to b e large fo r p eaks with close neighb ours . However 
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the relative amplitudes for well isolated peak s are always 

close to the true values d e viating from them by t wo or 

three percent. 
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TABLE (IV, 1 ) 

Tabulated values of frequencies (u and relative amplitudes 
A of the Fourier transform. 

Absolute values Rectangular window 

A 

1. 000 

1.125 

1.091 

[Unresolved] 

0.655 

[merges with peak 

0.725 

0.942 

1. 022 

Cosine window 

w A 

200 1. 000 

387 0.850 

403 0.815 

457 0.058 

540 0.629 

at w = 615 

615 0.729 

740 0.994 

820 1.061 

w A 

200 1. 000 

390 1.066 

400 1. 033 

460 0.066 

540 0.633 

610 0.800 

615 0.933 

740 1. 000 

820 1.066 

w 

200 

387 

403 

539 

615 

740 

820 

Gaussian 

w 

200 

387 

403 

460 

540 

615 

740 

820 

window 

A 

1. 000 

0.802 

0.752 

0.049 

0.634 

0.732 

0.990 

1.049 



CHAPTER V 

APPLICATION OF THE PROGRAM TO REAL DATA 

The program has been used to analyse data obtained 

using a mercury crystal. The Fermi surface of mercury has 

been discussed by Dixon10 ; some of the nome nclature of the 

latter will be used. 

Figures (V,l), (V,2), (V,3) all relate to experi­

mental orientations with the magnetic field within a few 

degrees of the trigonal-bisectrix plane. In each case the 

upper graph is a photograph of the experimental data with the 

lower graph a photograph of the computer output. 

Figure (V,l) shows some well defined B oscillations, 

by a simple hand analysis it can be seen that the number of 

oscillations in the field range between 1.322 Tesla and 3.250 

Tesla is almost exactly 34 corresponding to a dominant frequency 

of 477 (radians)TESLA. The Fourier analysis agrees very well 

with the simple hand analysis, revealing this strong dominant 

frequency together with the first and second harmonic. There 

are no other significant components in this particular experi­

mental trace. 

Figure (V,2) shows some well defined T oscillations 

together with a very low frequency superimpos e d upon them, the 

low frequency is probably a ·s oscillation. In this case there 

58 
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are 63 T oscillations in the field range from 4.470 Tesla 

to 5.185 Tesla corresponding to a frequency of 12800 (radians) 

TESLA agreeing with the Fourier analysis. 

There are approximately 3 B oscillations in this 

field range corresponding to a frequency of 600 (radians)TESLA, 

the group of peaks appearing in the Fourier analysis in the 

frequency range below 100 (radians)TESLA is partly due to the 

S oscillations, however the Fourier analysis is always unreliable 

at extremely low frequencies. 

It is obvious that there must be some higher frequency 

components in the original data but to resolve them by simple 

hand analysis would be impossible. The Fourier transform shows 

a group of frequencies near 22500 (radians)TESLA, these are 

probably due to a orbits. The reason fo~ there being a group · 

of these peaks is probably that the orientation is not exactly 

in a symmetry plane and two pieces of the Fermi surface are not 

exactly degenerate. · 

Figure (V,3) is an example of an extremely bad 

e xperimental run where there was a great deal of noise in the 

signal, there seems to be a highly distorted dominant frequency 

in the record with approximately 37 oscillations in the field 

range from 5.060 Tesla up to 5.360 Tesla corresponding to a 

frequency of 20,800 (radians)TESLA. A sharp peak very close 

to this frequency shows up clearly in the Fourier analysis, this 
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peak is probably due to an a orbit. The higher frequency 

peaks are unidentified, the one near 41,000 (radians)TESLA 

is probably a first harmonic. 

It sometimes happens that when real data is being 

analysed the oscillations that are to be studied are super­

imposed upon a much larger slowly varying background. When 

this happens the background can be effectively removed by making 

the program calculate the best parabolic fit to the entire set 

of data points and then subtracting off this parabola. It 

is sometimes necessary to have the data treated in this way 

before being processed by the main Fourier analysis program. 
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