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INTRODUCTION

The de Haas-van Alphen effect is an oscillatory
variation of the magnetic susceptibility periodic in 1/H
which is observed in metals at low temperatures when the
magnetic field is varied.

It was first observed in 1930 by W. J. de Haas
and P. M. van Alphenl in the éourse of measurements on
the magnetic susceptibility of bismuth single crystals.

It has since been observed in many metals and semi-metals
and the effect has pfovided one of the most powerful tools
for the experimental determination of the topology of

. Fermi surfaces. Landau in a paper on the theory of dia-
magnetism of metalsz, also published in 1930, predicted
the oscillatory field variation of susceptibility before
he knew of de Haas and van Alphen's experiments but
believed that in practice field inhomogeneities would
render the effect unobservable because of phase cancel-
lations between the oscillations coming from regions of
the crystal at slightly different fields. Peierls3

laid the foundation of the theory of the effect by showing
that the magnetization of a free electron gas should

oscillate as the field is varied because of the gquantization



of the free electron orbits in a magnetic field.

A most important theoretical advance was made
by Onsager4 in 1952 who showed that the period of the
oscillations is inversely proportional to the extreme area
of cross section of the Fermi surface by planes normal to
the field.

Lifshitz and Kosevich5 have developed a comprehen-
sive theory which embraces Onsager's main result and pro-
Vides a comprehensive formula to.describe thg effect. It
frequently happens that there are several extremal areas
of cross section of Fermi surface perpendicular to a
particular field direction. This occurs especially in the
polyvalent metals where there are small isolated pieces of
Fermi surface symmetrically distributed in reciprocal
space arising from pockets of holes at the corners of
incompletely filled Brillouin zones and from small pockets
of electrons overlapping across Brillouin zone faces.

Thus the de Haas-van Alphen oscillations are quite compli-
cated in some materials at some field orientations, because
the observed oscillation is really a superposition of
several oscillations differing in frequency, amplitude and
phase. Therefore it becomes a major problem to analyze

the various component oscillations.

One way of analyzing a complex waveform is to



.3
resort to a Fourier transformation. A digital>p:Qgram
to compute the Fourier transform of de Haas-van Alphen
effect data has been developed. An account will be given
of the development of this program, and of its properties
and applications.

The first chapter of this thesis will be a con-
sideration of the properties of conduction electrons in
a magnetic field, with an outliné of the theory)éf the de
Haas-van Alphen effect. The rather complicated aqalytical
expression of Lifshitz and Kosevich will be reduced to a
simpler approximate form.

In the second chapter the simplified approximate
formula will be considered, and it will be shown that the
Fourier spectrum of.the de Haas-van Alphen’effect-data will -
exhibit peaks at, or very near, the frequencies of the
component oscillations in the déta. The questions of re-
solving power, displacement of the Fourier spectrum peaks
under some conditions, noise, sidebandsrénd the suppresion
of sidebands will be discussed.

In Chapter three the digital program is described,
a description of the mathematical procedures used in computing
the Fourier spectrum of the data is given, together with an
account of some precautions that are taken to prevent
serious errors from occurring at especially sensitiye points

in the calculation.



. Chapter IV is an account of numerical experiments
that were performed, in which the program analyses ideal
synthetic data of known analytic form, thus validating the
program.

In Chapter V a brief account is given of the
application of the program to real data. It has been used

in the analysis of data from mercury and ytterbium crystals.



CHAPTER I
THE INFLUENCE OF A STEADY MAGNETIC FIELD ON THE
CONDUCTION ELECTRONS IN A CRYSTAL

Using the single electron approximation the Schroédinger

equation of the system is

1 # e .2 .

5= (V-SSR + V@] ¥(x) = ev(x) (1)
where A is the magnetic vector potential. If there is a
uniform field H in the z direction then A = (0,Hx,0) in

the Landau gauge. A doés not have the translational symmetry
of the lattice and Bloch's theorem does not apply in the
presence of a magnetic field.
To understand the motion in k space consider the
semi-classical equation of motion.
B e
k=5 VxH. (2)
This means that the change in the vector k is
(i) .normal to the direction of H
(ii) normal to V which is itself normal to the equi-
potentials of constant energy in k space.
(iii) k moves along a curve of constant energy because
electrons cannot pick up energy from a static magnetic

field.

Each electron is to be imagined moving along a curve

5



of constant energy in a plane normal to H. If the electron

is not scattered it makes a circuit in the period

C2m ch dk
—_— = === 7. 7 (3)
U)H eH V_L

where VL is the component of V in the plane normal to H

at the point k, and w_ is called the cyclotron frequency.

H

*
This frequency may be written as f where My is called
m_.C %
the cyclotron mass. A geometrical & definition of Mgy
can be given usi ng the relationship V = l ag where dk
~ 1 A dk 1

is an increment of k in the plane of the orbit normal to

the equipotential curve:

2 dk 2
* A 1 _ h® &
My = 27 % de dk 2T d¢e (4)

wheref% is the area enclosed by the orbit in the plane
normal to H.

Another useful orbit parameter is the phase variable
k

. _ w cH (= dk
@ defined by @ = H of 7 . (5)
—I- Al
@ increases at a constant rate, g = w_ and

H

@ = 2w for a complete circuit.
The details of the electron's motion in r space
can be deduced from equation (2). The general solution of

this equation is
e
k= {z+ £(0)H} x B + b, (6)

where b is an arbitrary constant vector and f(t) is an

arbitrary function of the time. If vectors are expressed in



terms of components parallel to H and perpendicular to H,

equation (6) becomes

X
o
<+
o
+
o

H

—_e “
k +ki—_0?1—{f_fi+'rL+f(t)E} by R By

e .

Therefore

r XxH4+Db . (7)
10 =

Equation (7) establishes Onsager's theorem that the pro-
jection of‘the electron's orbit in real space on to a plané
perpendicular to H is geometrically similar to the k space
orbit but is rotated through-% radians around H and is
scaled by a factor cli/eH.

The electron orbit in real space is a helix with
its axis parallel to H. The helix may be complex in form
and even Qhen it is a closed curve forming a stationary
orbit in r space it will not necessarily be a plane curve,
it may be a buckled irregular ring, or it may be tilted
with respect to’g; The net displacement of the electron
after it has completed a revolution about the helix axis is

called the pitch of the helix.

The deduction of a formula for the pitch of the helix.

Consider an electron going around its orbit in k

space. Setting up the phase variable ¢ as in equation (5),



@ = constant, and @ increases by 27 T‘ku
around the orbit.
g=ut=S2t-= eBiin) | ¢ N ¢
m. C 2 .9
H A C(g‘g

_ w2 0 1

at = 1% 3 2 ag
. - .

Now k== VXxXH=— (Ve) xH ,
therefore the electron velocity around the orbit is
vV, = L AL where k_ lies in the plane of the orbit and
k cﬁz Bkv =V . .
is normal to the orbit at any point. Thus the distance |

ds travelled by the electron when the phase variable

increases by d@ is given by e

S K cﬁz akv é 2meH
1 af
dS = §E~(§E;)d¢ . | (8)

If the magnetic field H is in the z direction, the elec-
tron orbit in k space will lie in a plane k.o perpendicular
to the z axis.

On the orbit considered imagine the @ variable in-
creasing from 0 to Zﬁ. Through all the equipotential
surfaces in the plane kéo draw curves orthogonal to them
which are gi&en coordinates which coincide with the value
of the phase variable @ on the orbit under consideration.
Any point in the plane k,, can now be specified by the

coordinates Lﬂ;¢} wherej% is the cross sectional area of



the equipotential curve on which the point lies. The
coordinate @ coincides with the phase variable on the special
orbit under consideration but does not necessarily do so
on the other equipotential curves in the plane.

Produce the equipotential curves in the plane kZO in the
z direction forming a set of cylinders. By construction these
cylinders coincide with the true equipotentials only in the
plane kzo but not necessarily so elsewhere. We now have an
orthogonal coordinate system (f%,¢,kz) to describe any point
in k space. 2Another coordinate system (A,¢,kz) can be set
up where kz,¢ are defined as before, but A is the true area
of the cross section in the plane kz of the equipotential
~on which the point under consideration lies. By construction
JCE. coincides with A in the plane kZO

The pitch of the real space helix for the orbit under

consideration is given by

1

ﬁ"%(

1 JdE

K‘}(ak)
z

- e 34
2meH '9¢ ko

€
3k, A8 O

Pitch

ﬁzc'(gg
j¥,¢ 2meH Q¢ ko

~

ag

o€
G h,p & (9)

where (%é%k relates to the special orbit being considered.
o

But . e = e{f ,x,,0}
so that de = (3%) af + (28 dk + (35 ag
A k2,0 k) A, T2 0
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but - ' ‘Q:.Dc{e,kz,;é} ’

therefore (8

L
Bsz%lﬁ

€ s
= = (53) (557) ; (10)
R kz,d ok, e,d
In the plane kzo (%é% is independent of @, substituting

from equation (10) in equation (9).

. fic de PA
Pitch = - — (= (=% () ag .
~2wweH Q3¢ ke a;@ko Bkz e,0
. __ Ac LPAR
Pitch = - Sro % (Bkz)'e : ag | (11)
But F =:P({A,kz,¢}
therefore ‘
aft = (g—%) an + (g—i—q-) dk_ + (%ﬁ) ag
k ,9 Z = g A,k
z' A,Q "z
However
A = A{e,kz,¢}
giving
aA = Ly ae + &) &
A"y, 4 LOE 4 %, . g
+ (32) ag } + (%ﬁ—oc—) dk_ + (g’gi ag
ek, z A,@ A,kz
Therefore
'<gf*_> = &3 [ S (‘%{&
"z e,9 kz,d z €, z A,

but A is really a function of e and kz_alone with @# as an

ignorable coordinate. In the plane kzo £ = A so that



11

@4
QA kzo’¢ = 1.
Therefore
z e,0 Z € z A,
so that
. Xc 9A P
Pitch = - —— () + (55) 1 ag ,
2meH % Bkz = akz A,
. _ _“c ,3A _ _hc 25t
Pitch = - o (SE—Z—)E ol ( ) ag .

3k A,0

To prové the last integral to be zero éonsider
the orbit of Area A in plane kZO + dkz which has the same
area as the orbit under consideration. In the diagram
the dotted curve represents the orbit
in the plane kzo +dkz, the fu;l curye
represents the special orbit being

considered. The two curves are equal

in area.
Projecting the dotted curve on to the plane kZo and consi-

dering a short section of both curves along an arc dg.

A

dé

Let QR be centred on the¢F¥ + afk cylinder, PQRS is a

rectangle if d¢ is small enouch, dk,, is assumed arbitrarily small. .
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‘'The area of the rectangle equals PQ x PS.

ok 2 i
() 62 = ( ;%>(§§q) ak,, .

A,
g GJ%
PS = 7o ) a¢

PO

using equation (8). Therefore area of rectangle =

1 f%
7 Gk (Sj%)(ak )

ak_ ap (3}¥) i

%2 2,9
The difference in area of the two orbits is equal to

1 (@) % af% i .

2T Bkz A,

dk,,
@A

=1
T o

but the two areas are equal by definition. Therefore

% BJ} ag = o .

Bkz Ad

This means that equation (12) reduces to

_4c (BA )

Pitch = eH B—}Z—
Z €

and the necessary‘and sufficient condition for an orbit to
be stationary in real spéce is that in k space it be an
extremum of area for the particular orientation of the
magnetic field. But these extremum orbits on the Fermi
sufface turn out to be exactly those which produce the most

significant contribution to the de Haas-van Alphen effect.
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The theorem which has been proved shows that these orbits
are also stationary in real space.

Magnetic Quantization

The projection of the electronic motion on to a
plane perpendicular to H forms a closed curve and the Bohr-

Sommerfeld phase integral formula can be applied:

= d = (n+y)h (13)
% P_L rl n+y

where n is an integer and y is a constant which has been
added to n to make the theory physically more reasonable.
For example the Bohr-Sommerfeld theory predicts the harmonic

oscillator energy levels to be En = nhiw, whereas in fact

6 6
En = (n + %}ﬁw. Roth and R. G. Chambers have shown that
. . : 7 '
Yy is always %-1n weak fields and Roth has shown that
when Wy is a function of energy, y is of the form

Substituting into equation (13) using the relationship

p=fk + SR,
where A = H(0,x,0) in the Landau gauge.
Resolving vectors perpendicular to H,

eA'

Q]

‘A =A, p =4k +
o TR i T e

Therefore

————
o]
(o1
=
1l
=
~
+
Qjo
1=

dr - ,
L
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but ffom Onsager's theorem

. |
k =S-r xH+b .
= ch= = =

The arbitrary constant b' can be neglected because it
integrates out to give zero.

Substituting into the phase integral

fie e
p *dr = (- =— H xr 4+ = A)+.dr = (n+v)h
(§ g A % ch = = c= "= !

which can be transformed to give

-SG9 H (r xdr) + S |[VvXaA. dA = (n+y)h
c = =y e — r
where Ar is the area of the projection of the real space
orbit on to a plane perpendicular to H. Thus we obtain the
result

e o
- —c- H Ar = (n+Y)h .

Therefore the possible values ofﬁqr are given by
h, 1
A.= @& 5z ,n=0,1,2,.... .
A physically more fundamental result follows from
o " ch
HA =(n+y) (29,
the flux enclosed by an orbiting electron helix is quantized

in units of (%E). Using equation (7), Onsager's theorem,Fq .
the cross sectional area cof the orbit in k space is given by

-

el
A= AL
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Therefore
QK# 2 (n+y) S .

The description of the electron energy levels in
a magnetic field requires the following construction in k
space. Choose a value of n, on each plane of section of the
Fermi surface normal to the magnetic field draw the energy
contour of areaf:in. Join these contours into a continuous
tube with constant area of cross section, draw similar
tubes for other values of n. By rigorously solving the
Schrodinger equation in the magnetic field it can be shown
that the degeneracy of these Landau levels is the same as
would occui if all the allowed points in the usual Bloch
scheme condensed on to the nearest tube. By the correspondence
'principle the energy difference between successive Landau
levels should be'ﬁwH. In the free electron case it has
been shown rigorously that e(n+y,kz) = (n+y)ﬁwH + f(kz).

A rigorous proof in the general case has never been given.

Physical consequences of the magnetic quantization

As the magnetic field _gradually increases the tubes
of magnetic guantization expand and .one by one they break
through the Fermi surface with a frequency that is propor-
tional to 1/H, consequently any physical parameter of the
system should possess a component periodic in 1/H. The
oscillations in the magnetic suSceptibiiity constitute the

de Haas-van Alphen effects, a similar oscillation in the
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electrical conductivity is called the de Haas-Shubnikov
effect.

To understand how the de Haas-van Alphen effect
arises it is customary to consider the thermodynamic free

energy. For a Fermi-Dirac assembly this is given by

F = Ng - kTZ n(l + exp(g-ei) /kT) (14)
i
where the summation is over all possible states, 7 is the
Fermi potential. It is clear that as the Landau levels
expand the most significant variations in F arise from the
regions near the extremal orbits in k space for which

BF& _

face near an extremal orbit F should have an oscillatory

0. As the Landau levels break through the Fermi sur-

variation whose amplitude is determined in some way by the‘
curvature of the Fermi surface around the extremal area.

It has been shown by Lifshitz and Kosevich that for
a general shape of Fermi surface the oscillatory part of

F can be given by the rather complicated expression *

o scﬁ Tr s
F = 2kT () Al = 3 373 . (15)
c o ¢=1 S Sinh(zﬂ sk(T+TD))

th

The above expression gives the oscillations in F arising
from a particular extremal area for whlchfq ﬁq /q

it is seen that the oscillations are periodic in l/H with a

period P = —=—-— and an amplitude partly governed by the
O 1

curvature term IF%OI_Z. If there are several extremal areas
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then each one will contribute a term like equation (15) to
the resultant variation in F which will therefore be a
superposition of oscillations of differing frequencies
periodic in 1/E. The % signs apply in equation (15) accor-
ding to whetherfq represents a maximum (-) or a minimum (+).
Another factor determining the amplitude of the
oscillations is the temperature. If the temperature is
0°K and the Fermi surface is perfectly sharp and we suppose
that the field is such that r lies halfway between two
Landau levels, then the number of states below the Fermi
level will be the same as if there were no magnetic levels,
but the total energy of the electron gas will be less than
»in the absence of a magnetic field by about %~ﬁwH per
electron at the Fermi level. As H increases these electrons
will be drawn up to the Fermi level so their free energy
increases to a maximum, but when a magnetic level passes
through the Fermi'level it begins to empty and the energy
drops again reaching a minimum when the Fermi level lies
halfway between two quantized levels again. If the Fermi
surface is not infinitely sharp and is thermally broadened
because of the temperature of the electron gas, then at
7K thé energy width of the Fermi surface is approximately KkT.
If the temperature is such that several magnetic levels are

contained in this narrow region of width kT the variation
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of the electron gas energy will be much smoother than at 0°k
and if kT >> ﬁwH no oscillations will be observed at all.
This essentially is why the de Haas-van Alphen effect is

a low temperature phenomenon and why the amplitude of the
oscillations decreases with increasing temperature.

The last cosine factor in equation (15) comes from
the doubling of the energy levels on account of the magnetic
moment of the electron spin. Electrons of opposite spin
condense on to different sets of Landau levels and the
oscillations arising from the two sets of levels may differ
in phase, it is even possible for no oscillations to be ob-
served at all because of interference between the sets of

b
levels. The form Cos(

), where m_ is the free electron
mo ; o
mass was first given by Dingles. This factor is often
nearly unity because m, is usually much less than M-

The amplitude of the oscillations is reduced if
account is taken of a possible broadening of the line-width
of the energy levels due to collisions or other causes.
Dingle9 showed that on certain simplifying assumptions the

effect of the broadening that would correspond to a collision

time T is as if the temperature T is replaced by (T+TD) in

the sinh term of equation (15) where T =‘¥¥B¥—-,T is

D ogp? 0
called the Dingle temperature. From equation (15) it is
possible to obtain either M, the magnetization = —'%g # OF:C

the couple about any axis = - %% , where Y is an angle speci-
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fying rotation in a plane normal to the axis. In the

differentiations the main contributions come only from differen-
ch A
eH

simplified expressions for M and C will differ from (15)

tation of the cosine term because >> 1. Thus the

only by a change from Cos to Sin and an extra factor

schi A
-——fig- for M and (- EEE ——~9) in C.

2 eH oY
It is important to note that if a torque magnetometer

EH

is used in observations of the de Haas-van Alphen effect, zero

torque m;g be observed because for the particular orientation
3 .
chosen — = = 0, the torque method has a blind spot. For

oy

this reason the torque magnetometer would not be very use-
ful in experiments on the alkali metals where the Fermi

surfaces are very nearly spherical.
Because ﬁwH = H( eE ), the terms sinh/(

ch

2ﬂ2kTs)
EEEE
sz M
can be written as LER. 8
he
A

If T is substantially greater than unity we can approximate

(kT) .

(sinh(%i) where )\ =

sinh(%) = exp(%) and taking only the first term in equation (15)
A
-5 -z ch
N e’ ,3/2 "% H o, m
For T (g VIRl e T cos(roa

In this approximation the de Haas-van Alphen oscillations
. . e L. . 2me
are a periodic function in #z with a period P = —f/—bs—
H chpgo
and an amplitude that increases with increasing field be-
cause of the exponential factor. If P can be determined,

then the extremal area of cross section-of the Fermi surface

is obtained directly. At higher fields and lower temperatures



20

-

the high order terms in equation (15) corresponding to s = 2,3,
4, etc. cannot be neglected. Consequently the oscillations
become richer in higher frequency harmonics. Another

factor contributing to the existence of higher harmonics

is a skewness introduced into the oscillations due to the

fact that the true field seen by the electrons is B not

H. This causes the cosine waves to be steeper on one side
than on the other. Consequently the general form of the

oscillation to be analyzed is

A w.
_ (=LY sin (L
C = i Ai exp ( i )Sln(H + ai) . (16)

Actual experimental data are often too complicated
to be analyzed easily, particularly when there are many

terms in equation (16).



CHAPTER ITXT
DATA ANALYSIS BY FOURIER TRANSFORM

Equation (16) can be written

Y = i Ai exp(—xix)81n(wix+ai),
where

%= 1%1‘ (17)

If a Fourier transformation of the data is carried out

for a range of values of w, the amplitude function A (w)
of the Fourier transform should show peaks in the neigh-
bourhood of the frequencies W - In this way the frequency
spectrum of the data would be obtained and the problem of
analyzing the data would be resolved.

However, there are a number of complicating factors
that raise a variety of questions. Any experimental record
is of finite length, this truncation introduces a broadening
of the amplitude éeaks in the Fourier transform and intro-
duces sidebands around the main peaks. This brings in the
question of resolving power and the problem of separating
true peaks from sidebaﬁds. Another factor is the existence
of the exponential terms exp(—AiX) which would also be
expected to have a broadening effect on the peaks, much as
the spectrum of a damped harmonic oscillator gives a Lorent-
zian line shape. The exponential terms might also be sus-

pected of causing the amplitude peaks to shift by a small

21
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amount from.the frequencies Ch that are really of interest.
The distortions of the sinusoidal wave form by the truncation
and the exponernitial factors might be expected to introduce
artificial harmonics of the frequencies ws -

It can be shown that peak shifting due to the exponen-
tial factors is entirely negligible and that spurious harmonics
are not produced. Peak shifting by small amounts does occur
due to overlap between neighbouring peaks or due to overlap
between a peak and the sidebands of a neighbouring péak.

The accuracy with which the amplitudes Ai in equation (17)
are reproduced is also governed by the degree of overlap
between neighbouring peaks, when it'is substantial there is
considerable distortion of the amplitudes.

| It has been found that Fourier transformation is an
excellent method for analyzing the frequencies W It does
not provide a good method for determining the exponential
growth factors Ail The question of the amplitudes is
complicated by the presence of the exponential terms since
the height of a peak in the Fourier transform is controlled
by both the amplitude factors Ai and the Ai. In numerical
experiments with all the_li=0 it has been found that
amplitudes are reproduced to an acéuracy of about 10% in
the case of isolated peaks but amplitudes are extremely
sensitive to overlap and no physical significance  should be

attributed to the heights of peaks that are close to other peaks.
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The accuracy of the analysis can be improved by taking a
larger number of oscillations, the width of the peaks is
reduced, but a limit is set by the amount of time it takes
a computer to do the calculation. An excellent way to
reduce overlap between different peaks and their respective
sidebands is to suppress the sidebands. One way of doing
this is to impose a 'cosine window' on to the data.

Another problem is the question of noise in the data.
If it is a random fluctuation superimposed on to the de Haas-
van Alphen oscillations, it is not too serious provided its
amplitude is not too large. Fourier transformation is an
excellent way of smoothing out this type of noise. Also
the method of least squares curve fitting adopted in the
program that has been developed elimihates a great deal of
this noise.

A far more serious type of noise is that arising from
the uncertainty involved in the instrumental measurement
of the magnetic field strength H. In a typical experiment the
magnetic field is increasing steadily with time and its
strength is measured at regular intervals of time. The true
values of the field are in a perfect monotonic sequence. If
the instrumental errors are such that the recorded values of
the magnetic field are not in a monotonic sequence, then
the numbers generated by the program are meaningless. -If order

reversal occurs for about one point in ten it probably does
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not matter too much, but if it happens more often it can ruin
the data so far as the program is concerned. It is essential
to take steps to prevent this noise from being too severe.

It is possible to introduce an operation into the program
which smooths out this noise, but there are limits as to how
far this can be taken.

Mathematical properties of the Fourier transform

An arbitrary function of x, that satisfies certain
conditions that in practically all cases of physical interest

are fulfilled, can be represented by the expression

(oo}

1
2T

Bt} = F () eJ ¥

- 0O

dw

where

F(w) f(x)e“ij dx

The functibn F(w) is called the Fourier transform of the

function f(x). The relationship can be expressed

f(x) < F(w) .
F(w) is a complex function of w and can be split up into
its real and imaginary parts
F(w) = R(w) + jX(w) ,

where

I

R(w) = f(x)Coswxdx , X(w) - [ f (x) Sinwxdx.

- 00
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F(w) can .also be written as
F(w) = A(w) exp(jg(w)).
The function A(w) is called the Fourier spectrum of £ (x), -

Az(w) the energy spectrum and @(w) the phase angle.

L

12 &+ xn?1

A(w) = [(R(w)
F(w) = arctan(~X(w)/R(w)).
Some simple properties of the Fourier transform are expressed
by the following theorems.
Linearity. If Fl(w) and Fz(w) are the transforms of
the functions fl(x) and f‘(x) respectively and ajra, are
two arbitrary constants then
alfl(x) + a2f2(xf > alFl(w) + a2F2(w),

the extension to finite sums is obvious.

Displacement. If the function f(x) is shifted by a

constant X then its Fourier spectrum remains the same but
a linear term (-xow) is added to its phase angle.
-jxow j [ (w) ~xow]

f(x-xo) > F(w) e = A(w) e

Frequency shifting. With w, @ real constant the

Fourier transform of el“o® f(x) is obtained by shifting F(w)

by Wy -
elPo* f(x) é—}F(w—wO) .
This theorem can be used to derive the Fourier transform

, Ac(w)ejgc(w) of a modulated signal f(x) Cos(wox) in terms

of the Fourier integral of its envelope f(x),
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f(w-wo)+F(w+wo)
2

I

£(x) Cosu_x ¢> A (e (18

similarly
F(w-w_ )-F(wt+tw )
o o

23

A typical term of equation (17) is of the form f(x)

i

f(x) Sinwéx < As(m)ejgs(w) . (19)

sin(wox+a), where f(x) is an envelope function which is zero

outside the limits Xq < x < x2

exponential growth function as well as the finite length

and it is assumed that the

of the data is incorporated into f(x).
Let ‘ ’f(x)Sin(wox+a) <> d(w) ,

where
f(x) «e>F(w) = A(w) exp(jd(w)).

Using equations (18) and (19).

_ ~exp(ja) _ exp(-joa) -
d(w) = F(w—wo) — F(w+wo) —5 ’
J J
()= F (w-w ) EXp(=ja) _ exp (jo)
? (w)=F (w wo) =2 F (wt+w ) =2
J J
Thus :
I@(w)[z = % {[F(w—wo)]2 + |F(w+wo)]2
* -2.0 * 2.0
—F(w+wO)F (w-wo)e J - F (w+wo)F(m—wo)e J }.

Let ¢(w) have an amplitude function c(w) so that

o) = Cw) eIV
Therefore
clw) 2 = %{lA(w—wo)|2 + |A(w+wo)]2

—zRe(A(w-wO)A(w+wo) exp [3 (Bluto) - Blu-w ) = 201}, (20)
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1f the envelope function is such that its Fourier
spectrum A(w) has a high narrow peak centred on w=0, with
a peak width narrow compared with Wy the modulating
frequency, then the Fourier spectrum C(w) of the modulated
envelope function will have peaks centred almost exactly at

w=w_ and w=-w_, because
o e}

lC(wo+Aw)[2 = %{IA(AM)!Z + ]A(2wo+Aw)|2
-2A (Aw) A(2w0+Aw)Cos(¢(2wo+Aw) i ¢(Aw)—2a)} . (21)

If A(2wo) is negligibly small compared with A(o), then
C(wo+Aw) will have a maximum almost exactly at Aw=0, that

is at W= - The negative frequency has no significance,

the Fourier spectrum of any real function is symmetrical
about w=0. The conclusion follows that provided the envelope'
function has a Fourier spectrum A(w) which is a high narrow
peak centred on w=0, then the modulated function has a
Fourier spectrum C(w) which is effectively A(w) but with

its peak centred on w=w . The width and shape of C(w) are
almost exactly the same as for A(w).

The previous statements do not apply if A(2wo) is not
small compared with A(o), in which case the peak of the
Fourier spectrum will not be centred at W, . The Fourier
spectra of fhe envelope functions that are to be expected
in this particular application of Fourier analysis will always

be simple peaks centred at the origin, so if A(Zwo) is not
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small compared with A(o) it means that W is small compared
with the intrinsic width of the peak in A(w). This implies
that there are very few oscillations in the experimental
data in the field range through which the experiment was
carried out. If this is the case it is impossible in
principle by any method to determine the freguency accurately.
If the experimental conditions are such that the
uncertainty in determining a fraction of an oscillation is
equal to one oscillation, then to determine a frequency
to an accuracy of 1 part in n at least n oscillations are
required. This i s true in general irrespective of whatever
method of measurement is adopted. This theorem is reflected
in the Fourier transform method, if there are n oscillations

of frequency Wy in a particular experimental record, then .

w
half the 'peak width'z wo . This can be written Aw = 59 .

Awo is practically the ;ﬁﬁe for all the component frequencies
in the data and is governed mainly by the length of the
experimental record, being inversely proportional to the
length of the record. The minimum frequency difference for
two frequencies to be unambiguously resolved is when ?he
difference of frequencies is approximately equal to Awo

Let there be n, oscillations of frequency Wy in the record

1

and n, of frequency Wy

limit of clear resolution by the Fourier transform method,

If these frequencies are at the

w, - wz & Awo
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w w

- : _ 2
but n; = KG; and n, = (Awo)' consequently n

-n,, e 1.

1
This implies that the limit of clear resolution coin-

cides with the condition of there being just one beat between

the two frequencies in the range of the experiment concerned.

The point to be emphasized is that the limits of precision

of the Fourier transform method are as good as as any

other conceivable method. If the Fourier transform is unable

to clearly resolve two frequencies in the data, no other

method will be any more successful.

Non Linearity of the Fourier spectrum

Fourier transformation is a linear operation, but
when the amplitude function is calculated this linearity is
destroyed. If there is a set of functions of x:

fl(x), f2(x), “eoy fn(x), whose.Fourier transforms are
Fl(w), Fz(w), .es g Fn(w), respectively, then the Fourier
transform of the sum of these functions is the sum of the

Fourier transforms of the functions. Let

£1(x) + £,(x) + ...+ £ (x) > A (0)elP (@
ig. (w)
Using the notation Fj(w) = Aj(w)e J s Eollois that
i ig. (w)
A(w)el¢(w) =2 A, (we J
:  J
J
and .
A(w)e—ig(w) 184 w)

=z A, (we J "
i J
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therefore

2 2
A(w) =z [Aj(w)] + 2 _Zk Aj(w)Ak(w)Cos(ﬁj(w)—¢k(w))

j Jr
e i<k

(22)

so that the amplitude functions do not combine linearly.
If in the Fourier transform each of the Ai(w) is a narrow
peak centred on Wy and all the peaks are well isolated so
that mixing terms between the various peaks are very small,
then to a very good approximation A(wi) = Ai(wi). However
there may be so.many peaks that the mixing between them

is substantial, in this case spurious peaks could occur
although they are usually easy to detect because their
characteristic line width is usually wrong. In any case

if two peaks occur close together there is interference
-between them, not just simple superposition.

If there are two frequencies in the data that

.« mxix . i¢l(w)
individually possess Fourier transforms Al(w)e and

Az(w)e then following equation (22),

2% (w) = Alz(w)‘ + A22(w) + 22, (0) A, (w) Cos (F, (w) =9, (w) )
SO

|2, (@) -2, (@) | ¢ Alw) < [2;(w) + A (w)] .
Obviouély if the frequencies .are to be resolved accurately
Al(w) and Az(w) must not be large simultaneously. It has
been found in numerical experiments that when peaks are at
a separatioﬁ which is of the same order.of magnitﬁde as

their intrinsic line width, they are subject to shifting and
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distortion. This sets a limit to the resolving power of the

method.

Characteristics of the amplitude peaks

The characteriétics of the amplitude peaks are
largely determined by the nature of the envelope functions.
Ideally the Fourier spectrum of an envelope function should
possess a high narrow peak centred on w=0. The simplest
function to consider is a rectangular window, it is also
a good approximation to the shape of the envelope functions
that are often obtained in practise.

The rectangular window

This function can be defined by f(x)=1 in the

range X; < x < X3 f(x) = 0 outside this range. Let
x2—xl = b. Then
X . b
2 -jux, 97
F(w) = I e 1%y = % e 1 e Sin(%g),
X1
sinz(-‘g—’?)
(4by 2
so that ib
|sin(=;) |
BT T
2

A(w) which is in fact the characteristic amplitude function
for single slit diffraction is illustrated in Figure (II,1).

There is a central peak of height b centred at w=0. This
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peak is of intrinsic width Aw = gﬂ . The successive side-
bands whose amplitudes decrease approximately as (%)% are
spaced out at intervals of dw =.§E~. It is possible to

distinguish true peaks from sidebands in this case because

they are twice as wide. The presence of sidebands is usually

a nuisance. The amplitude of the first sideband is approxi-
mately 30% of the amplitude of the main peak. However some-
times their presence can be of advantage when there is much
noise in the data. Free peaks are surrounded by a characteris-
tic array of sidebands which identifies them. If the de
Haas-van Alphen data is of the form f(x)Sin(wox), where

f(x) is a rectangular window function and Wy is a modulating
frequency, the peak will be shifted to w = Wy and. the sidebands
will be displaced with it. ’

If there are n oscillations in the experimental data
corresponding to the frequency Wor then W, = (%ﬂdn, but the
width of a sideband is (") and one half the width of the
central peak is also (%E). The general result follows that
if there are n oscillations in the experimental data corres-
ponding to a component frequency W there will be (n-1)
sidebands beiween the central peak and the origin. The re-
solving power can be identified by;

Resolving power = (Frequency of main peak) /(% width of peak).

It follows that resolving power equals n.
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The truncated exponential envelope function

A more general type of envelope function is of the
In this case

form y =e ¥ truncated between X=x, and x=x2Q
*2 —Ax‘ -jwx
F(w) = e e dx ,
=3
- (A+jw) x AL LW
o 1 1 -("+3 )b _
F(w) +30) e (e 1).
where b = (xz—xl).
-2Ax
[F(w)|2 = 21 o o WA L e W
(A7+w™)
-2Ax _
2 e Y -
[F(w)]© = 2 :~§——§ e (CoshAb-Cosuwb) ,
(A" +w™)
-2Ax : e
IF %= —2— e ! e™P(sinn® 2B 4+ sin® £B)
(A 7+07)
Ignoring the constant terms Az(w) varies as
(sinh2 An + Sin2 99) .
= . 2
(A" + w™)

P(w) is a function that oscillates between two bounding

functions ¢1(w) and ¢2(w) where
Sinh2 &%

¢ (w) = ———==
1 (K2+w2)
Sinh2 %E + 1

G,(w) =
2V (A2+w2)

and

for illustration. P(w) oscillates

(I1,2)
21

Refer to Figure
b

between the bounding functiomns with frequency Aw =



35

In this case P(w) has no zeros, hence A(w) has no zeros,
unlike the case of the rectangular window function which
corresponds to A = 0. At w = 0, P(w) is on the lower
bounding function and at w= % % it is in tangential contact
with the upper bounding function and it is necessary to
prove that the highest point of P(w) is at the origin.

P(w) varies as

. 2 b .2 wb
(Sinh ) + Sln. —35 3 fl(w)
T o (w)
(B2 4 (40 2) 2
2
Now £.(0) > £.(0), but £.'(w) = 2 Sinwb and £.'(w) = 2(ub)
1 2 (0) s 1 7 2 5 :

Therefore fl'(w) & f2'(w) in the interval 0 £ w < SO

=
that P(w) decreases steadily in this interval.

To summarize; the truncated eXponential function has
the peak of its Fourier spectrum A(w) at the origin as re-
quired, there are no zeros in A(Q), the 'effective‘linewidth'T

is dominated by the bounding functions -—334—-when A is

(A +w2)

large and is independent of b. As the uncertainty principlé
indicates, for large X the 'effective linewidth' is greater
than the wvalue %E which is obtained when A=0. The sidebands
which are prominent in the case of the rectangular window
function also occur in the more general case manifesting

themselves as the oscillations between the two bounding

- functions.
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Suppression of sidebands

If the data yi(xi) is multiplied by a cosine

function such that

(x-X%)
Y:— Y. Cos(m =) ,
i i ‘xz xl)
_ (xl+x2)
where Xq and X, are the limits of truncation and x = e )

then provided the exponential growth factors are not very strong
the envelope function is approximately a cosine window. The
cosine window differs from the rectangular window in that

the width of the central main peak is increased by 50% but

the amplitudes of successive sidebands decrease approximately

as ij rather than as % in the case of the rectangular window.
n

The cosine window  envelope function

If the envelope function is defined by

X, +x

F(x) = Cos{m(x - . 2)/b} where b = x,-x.,
- 2 2 71
then x2
i X1+X2 -Jwx
Flw) = Cos 5 (x - 5 e JWX g5
%1

It follows quite readily that

2
i 2 wb
5 4 -b—Q-COS T
IF(w)I = G
T 2.2
(—5 - w)
b
o) that
(%E)ICOS %9|
A(w) = 5
m 2
(-—2— - 4]
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The zeros of A(w) occur when - g + n(%l). However the

zero at w = is absorbed into the main peak centred at

o2

w=0, because when w = % numerator and denominator are
simultaneously zero.. Figure (II,3) illustrates A(w) in
this case.

The 'Gaussian Window' envelope function.

An envelope function which ideally would have no

sidebands at all would be a function of the form
, (xl+x2) 5
f( x) = exp {-a (x - B e | S

where a is sufficiently large so that
| 2
(x,-%4)

exp {-a e } << 1

This follows from the relation
' ~ 2
e ™ -w” /4o .
o TOX Qa»/a e | |
However in practise when o is so large that the above

condition holds, the amplitude peaks are inconveniently

o, 29 o X
7 Xpmx) 7k 2 g

a significant reduction of sidebands is achieved with a

broad. If o is chosen so that exp{- (x
reasonable line-width.

However no final conclusions can be drawn as to
the best window function to impose on the data. The
cosine window function is probably sufficient in most
cases, in any case total suppression of sidebands is not
always desirable because they can assist in the identification

of the main peaks.



CHAPTER III

DEVELOPMENT OF THE DIGITAL PROGRAM

In the development of any digital program it is
important to ensure that the time taken to carry out the
required computations should not be so excessive as to be
uneconomical. This is especially true of programs intended
to compute Fourier transforms where numerous sines and co-
sines have to be calculated.

Typicai data consists of a set of poiﬁts (Xi’Yi)
distributed along a curve y = f(x). A simple way to com-
pute the Fourier transform of the data is for the program
to join successive points by straight line segments so that
- the smooth curve y=f(x) is approximated by a series of
trapezoidal sections. It is very simple to calculéte a
formula for the Fourier
transform of a series of “j
trapezoidal sections and
a program based on this

principle could certain-

hg

ly be developed, but it
would take too much time
to carry out the compu-
tations when the number of data points.is large. One of the

most time consuming operations the computer has to perform

38
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is to calculate sines and cosines. If the number of data

1 and the number of frequencies is N2 then the

number of sines and cosines that need to be calculated is

points is N

equal to Nl X N2. It is essential to devise a method
whereby the effective number of data points is reduced
before the Fourier transform is calculated.

Another disadvantage of the trapezoidal method is
that unless the data points are very close together the
series of straight line segments is not a very good approxi-
mation to the smooth curve y = f(x). It is also a dis-
advantage that the trapezoidal method does not have the
capacity to smooth out noise at an early stage in the

computation.

Point reduction by polynomial arcs

If it is possible to approximate the data by a
series of polynomial arcs, the effective number of data
points can be much reduced. For example, if there are on
average eighf points along each arc, then the effective
nunber of data points is reduced by a factor of eight
because it is only necessary to calculate the sinhe and
cosine at the end points of each arc. In the program
that has been developed the data is replaced by a series
of parabolic arcs that are calculated by a least squares
procedure. In principle the method could be extended to

compute polynomial arcs of any order, clearly a cubic
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polynomial arc can approximate a longer stretch of data
than a parabolic arc and thus effect a move efficient
point reduction. However, it takes more time to calculate
higher order polynomials, for this reason the present pro-
gram is restricted to calculating parabolic arcs.

Clearly a parabolic arc is a closer approximation
to the true curve passing through a set of data points
than a series of straight line segments can be. To some
extent a parabolic arc that is computed by a least squares
procedure will tend to ignore the noise fluctuations thus
smoothing the data to some extent.

Procedure for calculating the polynomial arcs

" An efficient way to calculate the nth order poly-

" nomial that gives the best least squares fit to a series of
data points is to make use of a system of orthogonal
Chebyshev polynomials. Suppose there is a series of N

consecutive data points

(Xl 'yl) ’ (X2 rYz) ;e g (XN'YN)

Let the sequence of polynomials

¢O(X), RN I ¢n(X) p

where ¢k(x) is of order k, be an orthogonal system of func-

tions with respect to the system of points Xy rXyewoXyoe

This means. that

N
iil ¢p(xi) ¢V(xi) = [¢u(x) ¢v(X)]= 0

for u #£v .



Any nth‘order
expression

g(x) = ¢,

The deviation

points can be

N
A= T (y

Because of th

(s3]

A

C.
J

But if A is a

Q)|

therefore

Thus
generated it

appropriate t
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polynomial can be uniquely specified by the

g(x) + Ci@,(x) + ...+ c g (x) .

A of this polynomial from the actual data

expressed by

A =
i

™=

2
) (yi - ¢(xi)) ,

' 2
3 = CPo(x) - Cif (x)- ... -chn(xi)) , (23)

2(yi—Co¢o(xi)—Cl¢l(xi)~ e —Cn¢n(xi))

X (— ¢j(Xi))
e condition of orthogonality this reduces to
N 2
= 2 .—Z— {"Yi ¢j (Xi) + Cj (¢j (Xi)) }-
i=1
.. oA )
t a minimum Yo 0, j=0,1, 2, ..., n
J
N
iﬁl vy ¢j(xi)
== N 2 ’ j = 0, l, 2, eeose Ile
z [¢.(xi)]
i=1  J

once the orthogonal polynomials have been

is very easy to calculate the coefficients Cj

o that polynomial which has the least squares

deviation from the actual data points.
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i 9305y g0

i=1

(24)

MZ ™2

2
[¢j(xi)]

i=1

The set of polynomials can be generated as follows.
We put ¢O(x)=l. We can regard ¢l(x) as a linear combination
of x and ¢O(x), so that:
¢l(x) = x + b¢o(x),
where b is chosen so that

g, (x) -8, (x)] = 0,

but this implies

N B
r 1l-(x+b) =0,
i=1
‘thus
N C—
b=-2% x=-X
i=1
N
Therefore
= _ Ix]
¢l(x) X-X = X N
Now put

g,(x) = x° + by @ (x) + b g (x) ,

since¢2 is orthogonal to both ¢l(x) and ¢o(x) it follows

that 5 ,
R o sl i
b= = — g By T T
[(x-x) 7]
SO :
2]
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Proceeding in this way it can be shown that

m
x g (x)] 5 ol A
I m-1 _ _ I[x7]
¢m(x) =X [Qm—l(x) ¢m—1(x)] ¢m_l(x) b 5

One virtue of this method is that if the best mth order
polynomial has been determined and it is desired to calculate
the best (m+l)th order polynomial. It is only necessary to

calculate ¢m+l(x) and 6m The other functions ¢k(x),

+1°
k =0,1, ..., m and the coefficients 50, él' oie o g Em remain
the same. Using equations (23) and (24) the amount by

which the closest nth order polynomial to the data points

deviates from these points is given by Amin’ where
L % 2
Ain = iil y;" - Cg [¢O(X)-¢o(x)] - Cy [¢l(X)-¢l(x)]
- - ¢ g (x)-F (0] (25)
PR - . 2, . o5

We see that Aminvdecreases steadily as the order of the
polynomial increases.

Basic form of the program

The main principle behind all forms of the program
is that the program takes the first three data points and
calculates the best parabola that passes through these three
points. The closeness of fit of this parabola to the
actual data points is referred to in the program as CLOSE,

in fact CLOSE is equal to Amin of equation (25).
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If CLOSE is less than a certain number called DELTA, the

best parabolas for four points, five points and so on are
calculated until it is found that CLOSE is bigger than DELTA.

The last parabola for which CLOSE was less than or equal to DELTA
is selected. If this parabola extends over m data points

the first of which has an x coordinate called X(1MIN) and

the last one an x coordinate called X (1IMAX), then if the

equation of this parabola is given by U(x) = Ax? + Bx + C,

the integrals

r X (IMAX)
CN(w) = Y (x) Cos (wx)dx
/X (IMIN) ’
and r X (IMAX)
SN(w) = | ¥ (x) Sin(wx)dx,

/X (IMIN)

‘are calculated for all the different frequency values w,

for which it is desired to calculate the Fourier transform.
These arrays CN(w) and SN(w) are then stored and

the program calculates the next parabolic arc which satisfies

the criterion of close enough fit. The laét point of the

first arc has the same x coordinate as the first point of

the second arc, but these two end points are not necessarily

coincident. The values CN(w) and SN(w) are calculated for

this second parabola and the values added to the old values.

Proceeding in this manner the program works its way through

the data and eventually the integrated values of the arrays

CN(w) and SN(w) are found for the entire range of the data
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in the experiment. Once the program reaches the last point
in the data the guantities AFT(w) are calculated for all

the different frequency values

AFT(0) = {CN(w)? + SN(w)z}%
These quantities AFT(w) are the amplitudes of the Fourier
transform of the data for the frequency values w. 1In
this way the Fourier spectrum of the data is calculated.

It is a fact that there is always one parabola that
passes exactly through three points and it may bé that on
average in a particular experiment each parabolic arc extends
over seven data points. If this is expected to happen it can
save time if the program always tries to fit a parabola to
six points at its first attempt and then goes on to seven
peints if the éix point parabola is a‘good fit; but gbes'
back to five points if it is not. In this manner the pro-
gram eventually finds the correct number of points to which
it can approximaté a parabolic arc of the desired cloéeness
of fit. The later forms of the program always have an in-
built capacity to begin with more than three points at a
first attempt if it is thought expedient.

Early forms of the program

The two functions T1(X,A) and T2 (X,B,C) are defined
as statement functions at the beginning of the program.
Where T1(X,A) = X-A, T2(X,B,C) = x% - BX - C. T1(X,A) and

T2(X,B,C) are the ‘orthogonal Chebyshev polynomials ¢l(x)
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and ¢2(xf respectively. The coefficients A,B,C are calcu-
lated separately each time the program is finding the
closest parabola to a given set of data points.

If the set of points is called (X(1),Y(1)),
(x(2),Y(2)), ... (X(N),Y(N)), the procedure is as follows.

A set of quantities P,Q,R are first calculated where

N N 5 N
P= I X((k),Q= ¢ X(k)“ R= %

2EYS -,
k=1 k=1 k .

1
From these numbers the coefficients A,B,C are calculated
thus converting the functions T1(X,A) and T2(X,B,C) into
the Chebyshev polynomials Ql(x) and ¢2(x) for this par-

ticular set of points. These coefficients are given by

Q

A=P/N, B = (R-AXQ)/(Q-Nxa%), C = & - AxB.  Next the

~

coefficients Co,é C, are calculated using equation (24).

1" 72
- To do this intermediate quantities P1SUM and P2SUM are
N N

calculated, where P1SUM = I Tl(X(k),A)z, P2SUM= % T2(X,B,C)2 .
ad ~ ~ N k=l k:l
Co' Cl’ C2 are then given by

N N ,

I Y(k) I Y(k)xT1(X(k),Aa)

o = k=1 o = k=1
o N 1 P1SUM !

N
L Y(k) T2(X(k),B,C)

2. P2S0M
The parabola has now been calculated, its closeness of fit

is given by equation (25)
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N 2 ~
CLOSE =" Y(k)™ - Co
k=1

If this is a parabola for which the pfogram is going to

2 2

- P1ISUM - C

X _v~
N.o= %y 2

X P2SUM. (26)

calculate the CN(w) and the SN(w) arrays, it is first

converted to the form A1X2+BlX+Cl , Where
1 = % - o4 R - S - "
AT = C2, Bl = Cl C2 x B, C7 = Co Cl X A C2 x C,

and then the necessary computations to calculate the CN(w)

and SN(w) for this particular parabolic arc are carried out.
It was found that the program worked very well in

this form when it was used to calculate the Fourier transform

of synthetic data, but some small modifications were found

to be required when it was used for real data.

Some later modifications of the program

When the program was used to apalyze some real
de Haas-van Aléhen data it was found that it Waé not calcﬁ;
lating the parabolas properly. The average number of data
points on each parabolic arc should be controlled by the
closeness of fit parameter DELTA. When DELTA is small
the number of points should be less than when DELTA is
large. The quantity CLOSE is always greater than or equal
to zero if the calculations are carried out without errors.
It was discovered that the number of points on each para-
bolic arc was always larger than expected and seemed to be
very insensitive to the value of DELTA. CLOSE was also found
to/be frequently negative. The reason for thése errors was

that there were too many significant figures in the magnetic
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field variables. In a typical experiment there may be a
thousand field measurements taken in a range from 50,000
gauss to 55000 gauss.This means that the magnetic field
H needs 5 significant figures to describe it adequately.
But in the program X = %7 therefore the X values also
have to be specified to 5 significant figures. ©Now the
quantity B is calculated using the formula

B= (R - ax0)/(Q - Na%),
R and (AxXQ) are very nearly equal to one another and if the
field variables need five significant figures to differen-
tiate them from each other it can happen that R and (AxQ)
differ only in the tenth significant figure or worse. But
the computer can only work to an accuracy of eight or nine
significant figures so it follows that very'serioué errors
in the calculation may result. The denominator (Q—NXAZ)
could also be in error for the same reason. Once B is
calculated incorréctly practically all subsequent quantities
calculated will be erroneous.

This problem was overcome in the following way. If
there is a set of points with X coordinates XE1) , B2y pana’s
X(N) to which the program is attempting to fit a parabolic
arc, it is possible to reduce the number of significant
figures by moving the origin of X temporarily to X (1), so

that the new X coordinates will be 0, X(2)-X(1), ...,X(N)-X(1).
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The program will now calculate the parabola

v = atx-x(1))? + Bl(x-x(1)) + cl.

It is then a simple matter to shift the origin back again

and express the parabola in the correct form

" 2 " "
Y=A X +BX+C .

When this modification was built into the program it

usually worked properly even when there were many field values

measured over a small range of field.

To ensure that CLOSE could not be negative,it was

not calculated using equation (26) but was instead calculated

in an equivalent positive definite form

N n 2 " " 2
CLOSE = ¢ (Y(k) - [A X(k)® + B X(k) + C 1)~“.
=1



CHAPTER IV

TESTING PROGRAM USING ARTIFICIAL DATA

The program was tested by making it generate

artificial data of known analytic form and then calculating

the Fourier transform of this data. 1In a particular example

it was made to generate the function.

F(x)

-

-+

+

+

= 3 Sin(200x + 0.21) + 3.2 Sin(390x + 0.45)

3.1 Sin(400x
1.9 Sin(540x%
2.8 Sin(615x

3.2 Sin(820x

+

-

-+

+

The values of x ranged

in steps of 0.001.

(Iv,2),

0.77) + 0.2 Sin(460x + 0.61)
0.70) + 2.4 Sin(610x - 0.35)
0.38) + 3 Sin(740x + 0.09)
0.32) .

from 0.003 to 0.600 increasing

Figure (IV,1) is a graph of this function, Figures

(IV,3) and (IV,4) show the Fourier spectrum A (w)

plotted as a function of w for various frequency ranges.

The upper graph in each case refers to a rectangular

window function, the middle graph to a cosine window function

and the lower graph to a strong Gaussian window function

where F(x) has been multiplied by EXP(—(X—§)2/0.04),§ is the

mid-point of the range of x. These graphs illustrate the

very great reduction in the amplitudes of the sidebands

i

o Sl

McMASTER UNIVERSITY LIBRARY]
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achieved by using a cosine or a Gaussian window function.

'it is seen that in all cases the component frequen-
cies have been analysed with the exception of the frequency
at w =460 which does not show up with a rectangular window
because it has a very low amplitude and the sidebands from
neighbouring peaks are too large. However this frequency
shows up when the cosine and Gaussian window functions are
used. The peaks at w = 390 and w = 400 have been resolved
but they are so close to one another that peak displacement
has occurred together with amplitﬁde distortion. The two
frequencies at w = 600 and w = 615 have not been resolved
and have merged into a single peak about twice as broad as
an ordinary peak.

The relative amplitudes A of the various peaks
together with their frequencies w are tabulatéd in Table
(Iv,1), the columns in the Table refer to the absolute
values of A and w as they occur in F(x) and to the values
of A and w obtained using the different window functions.
In each case the amplitude of the peak near w = 200 has
been taken to be unity.

With all three window functions the peaks at
w = 390 and w = 400 have been displaced to w = 387
and w = 403 reépectively, this is a typical case of peak
displacement. The errors in the relative amplitudes are

seen to be large for peaks with close neighbours. However
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the relative amplitudes for well isolated peaks are always
close to the true values deviating from them by two or

three percent.
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Tabulated values of frequencies w and relative amplitudes

Absolute values

A of the Fourier transform.

Rectangular window

Cosine window

Gaussian window

w

200
390

400

460

540
610
615
740

820

A w A w
1.000 | 200 1.000 | 200
1.066 | 387 1.125 | 387
1.033 | 403 1.091 | 403
0.066 [Unresolved] 457
0.633 | 539 0.655 | 540
0.800 [merges with peak at w
0.933 | 615 0.725 \615
1.000 | 740 0.942 | 740 .
1.066 | 820 1.022 | 820

A | u i
1.000 | 200 1.000
0.850 | 387 0.802
0.815 | 403 0.752
0.058 | 460 0.049
0.629 | 540 0.634
615 ]
0.729 | 615 0.732

10.994 (740 . 0.990
1.061 | 820 1.049




CHAPTER V

APPLICATION OF THE PROGRAM TO REAL DATA

The program has been used to analyse data obtained
using a mercury crystal, The Fermi surface of mercury has
been discussed by Dixonlo; some of the nomenclature of the
latter will be used. |

Figures (v,1), (v,2), (V,3) all relate to experi-
mental orientétions with the magnetic field within a few
degrees of the trigonal—biséctrix plane. In each case the
upper graph is a photograph of the experimental data with the
lower graph a photograph of the computer output.

Figure (V,1) shows some well defined B oscillations,.
by a simple hand analysis it can be seen that the number of
oscillations in the field range between 1.322 Tesla and 3.250
Tesla is almost exactly 34 corresponding to a dominant frequency
of 477 (radians)TESLA. The Fourier analysis agrees very well
with the simple hand analysis, revéaling this strong dominant
frequency together with the first and second harmonic. There
are no other significant components in this particular experi-
mental trace.

Figure (V,2) shows some well defined 1 oscillations
together with a very low frequency superimposed upon them, the

low frequency is probably a ‘8 oscillation. In this case there

58
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are 63 T oscillations in the field range from 4.470 Tesla
to 5.185 Tesla corresponding to a frequency of 12800 (radians)
TESLA agreeing>with the Fourier analysis.

There are approximately 3 B oscillations in this
field range corresponding to a frequency of 600 (radians)TESLA,
the group of peaks appearing in the Fourier analysis in the
frequency range below 100 (radians)TESLA is partly due to the
B oscillations, however the Fourier analysis is always unreliable
at extremely low frequencies.

It is obvious that there must be séme higher frequency
components in the original data but to resolve them by simple
hand analysis would be impossible. The Eourier transform shows
a group of frequencies near 22500 (radians)TESLA, these are
probably due to o orbits. The reason for there being a group
of these peaks is probably that the orientation is not exactly
in a symmetry plane and two pieces of the Fermi surface are not
exactly degenerate.’

Figure (V,3) is an example of an extremely bad
experimental run where there was a great deal of noise in the
signal, there seems to be a highly distorted dominant frequency
in the record with approximately 37 oscillations in the field
range from 5.060 Tesla up to 5.360 Tesla corresponding to a
frequency of 20,800 (radians)TESLA. A sharp peak very close

to this frequency shows up clearly in the Fourier analysis, this
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.

peak is probably due to an o orbit. The highér frequency
peaks are unidentified, the one near 41,000 (radians)TESLA
is probably a first harmonic.

It sometimes happens that when real data is being
‘analysed the oscillations that are to be studied are super-
imposed upon a much larger slowly varying background. When
this happens the background can be effectively removed by making
the program calculate the best parabolic fit to the entire set
of data points and then subtracting‘off this parabola. It
is sometimes necessary to have the data treated in this way

before being processed by the main Fourier analysis program.
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Fig. (v.2)
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