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PREFACE 

Chapter I of this thesis introduces the definition of point 

processes in general and, in particular; Poisson processes. The 

Poisson processes is covered extensively with a test for randomness, 

various estimates for the expected rate of occurrence and techniques 

developed to deal with more than one process. 

In the second chapter a process generated by superimposing 

periodic sequences of events is considered. Methods of determining 

the number of sources and the assigning of each event to its proper 

source are also investigated. The asymptotic properties of the pooled 

processes are also shown. 

Non-periodic processes are considered in chapter III with 

particular emphasis given to the renewal process and the pooled outputs 

of renewal.processes. 

Graphical methods are outlined in chapter IV and the logarithmic 

transformation is considered. 

In chapter V the correlation function is defined and the 

intensity function for any point process is estimated. The properties 

of the intensity function for the Poisson process are developed in 

some detail. 

Spectral analysis of point processes is considered in 

chapter VI. Stationary processes are µsed to illustrate the properties 
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of the spectral distribution function. 

Various estimates of the spectral density function are 

introduced and some rules for proceeding to estimate the spectrum 

from an observed sample function are considered. 
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CHAPTER I 


Point Processes and Poisson Processes 


1.1 Introduction 

Many stochastic processes have to deal with events which occur 

haphazardly in space or time. For example, there are many problems in 

physics and biology where we have to deal with particles or individuals 

distributed over an "infinity" of states. The events themselves may 

be electrical pulses in nerve fibers (the study of which motivated 

this work), fission in bacteria or in the nucleus, customers arriving 

at a queueing point, etc. The requirements for such a process are a 

continuum, space or time, which may or may not be one-dimensional, and 

a series of events which can be regarded as points in this continuum. 

Often each event will have some numerical quantity attached to it, 

which quantity, however, we shall ignore. We are primarily interested 

in the patterns or non-patterns exhibited by the points in the 

continuum. Such stochastic processes are called point processes. 

One of the most important of the point processes is the so

called Poisson process. This process arises naturally in the study of 

queues, in the study of radioactive decay and in many other physical 

situations. In this chapter, we shall provide a detailed study of the 

methods used to analyze Poisson processes. 
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1.2 Stochastic Processes and the Poisson Process 

Definition L2.l A stochastic process is defined as a collection 

(ensemble, family) { X( t), t E T} · of random variahles, where t is a 

porameter running over a suitable index set T. 

For our purposes, we shall consider a stochastic process 

completely specified once we prescribe: 

(1) the state space, i.e., the space in which the possible 

values of each X(t) lie, 

(2) the index set T, 

(3) the family of joint distributions for any arbitrary finite 

set of possible values t (r=l,2, ••• , n) of the parameter t. 
r 

Definition 1.2.2 Let T = [o, <><> ). 

Let X(t) = number of specified events occurring during the 

time period from 0 to t. 

Then (x(t), t ET} is said to be a point process. 

It shall he convenient at some time to take in definition 1.2.2, 

T = (-o0,o0). This enables us to study past history, if we so desire. 

In either case, we shall call the family [ X( t), t C: TJ a point 

process. It should be pointed out that there are other ways of 

specifying a point process and we shall do so, when it is convenient. 

Definition 1.2.3 Let {x(t), t ET} be a point process. Further~ 
suppose the family { X ( t) , t E T} satisfies the following requirements: 

(1) X(O) = 0 

(2) Let < t 1 ••• < tn. Then:t 0 

X(t1 ) - X(t ), X(t ) - X(t ), ••• ,X(tn) - X(tn-l) are mutually0 2 1
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independent 	random variables. 

(3) The random var:iable X(t + t) - X(t ) depends only on t
0 0 

and not on t
0

, or on the value of X(t ).
0 

(4) The 	probab:ility of at least one event happening in a time 

period 	of duration h is 

Pr[event in time hJ =Ah+ o(h), h -7 O, A 7 O. 
J 

(5) The 	probability of 2 or more events happening in time h 

is 	o(h). 

Then [ X( t), t e T} is said to be a Poisson process. 

Let Pn(t) =Pr [ X(t) = n], n = 0,1,2 ••• 

Then, it can be shown [ Parzen ('.2.q)J that 

p (t) = (At)n exn(-At) 
n n! 

i.e., P (t) 	has the Poisson distribution with parameter At. 
n 

An equivalent interpretation of the Poisson process is one in 

which the n events are assumed to be uniformly and independently 

distributed between 0 and t and that the probability of two or more 

events occurring in the same interval of very short duration is 

negligible. Such a series of events is said to be a random series of 

events and At is the mean number of 

occurrences 	in time t. 

Another way of specifying a point process is to find the 

distribution of the intervals between events. More specifically, 

let [ X( t), t E T] be a Poisson process. Let Y be a random variable, 

the values of which are the lengths of the intervals between successive 

events in this process. 
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Now, sjnce [ X( t), t 6 T] is a Poisson process, we know that 

P (y) = exp(-/ly) is the probability of no events occurrine; in a time
0 

interval of length y or P (y) is the probability that the tjme
0 

interval between events exceeds y. If f(y) is the probability density 

function of the random variable Y, then 

.,,::J 

j f(y' )dy' = exp (-/1.y ). 
y 

Thus, f(y) = A exp (-/1.y), which is the exponential density function. 


Thus, we have proved the followine; Theorem: 


Theorem l. 2 .1 Let [ X(t), t €. T} be a Poisson Process. Let Y be 


the random variable, the values of which are the lengths of intervals 


between successive events. Then the time intervals between events are 


independently distributed with the exponential density function, i.e., 


f(y) =A exp (-/1.y) • 

All statistical questions involving Poisson processes involve 

inferences about "-· Inferences about fl., of course, can be made from 

either of the characterizing distributions. In the next sections, we 

shall describe some of the procedures involved in making these 

inferences. 

1.3 A Test for Randomness 

Perhaps the first thing one would like to know about a point 

process is whether it is a Poisson process or not, i.e., are the events 

in the time interval [o,t] uniformly and independently distributed. 

We shall assume that the process is homogeneous, i.e., that the average 

rate of occurrence per unit of time is independent of the time. 
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Let x be a random variable with a 

function F(x) = Pr(X <; x). Let x1,x2,. 

ordered so that x1 ~ x2 . < x • 
- n 

Dl?!finition 1. ?. l Let 

F (x) = 0 if x < x1n 

k;F (x) = n if xk ~ x n 

F (x) = 1 if x -.< ~-I\.• 
n n 

F (x) is called the empirical distribution 
n 

Definition 1.3.2 Let D 
n 

continuous distribution 

.,X be a sample of size n 
n 

< ~+l 

function of the sample. 

It has been shown (6) that 

o4 

lim Pr[n <z/ ] = 1 - 2 L (-l)j exp (-2//) . 
n nn-7--<> 

j=l 

Birnbaum (6) has calulated the probability distribution of D for 
n 

small values of n. These tables can be used to test for the randomness 

of a time series. If the series is random then, the nt observations 

should be independently and uniformly distributed over the observation 

period [o,T] • In that case, we have that nF(t) =~,;.and nFn(t) = nt. 

Therefore, nD = n max /F (t) - F(t)/ 
n o-<t<T n 

I nt }= ma.x nt - T . 
O<t<T 

We then compare the value of nD with the appropriate values in the 
n 

tables for the.chosen significance level. We reject the hypothesis 

of randomness if.this value of nD is larger than the value in the 
n 

table. 
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1.4 Point Estim~tion of the Parameter A. in the Poisson Process 

Once we have determined that the series is random with 

constant parameter A, we can then proceed to the important question 

of estimn.tinG f... There are two methods for estim'.lting 'A, both of 

which are well known. For the sake of completeness, we list these 

methods very briefly. 

·"' nt .(A) Maximum Likelihood Estimator. This estimator A. =~ 1s 

derived irt the standard way and has all the properties of Maximum 

Likelihood Estimators. 

(B) Suppose the Poisson process is observed until k events 

have occurred. Let X~,x2 , ••• , Xk be the random variables 

representinG the interval lengths between events. Then, the likelihood 

function is 

k K 

= (!)y 	 2: ~ 
1 . 

i=l 

k J...xi
Then, =  y-+7 

zxi 
Thus, the maximum likelihood estimate of Y is -k- and has 

variance 2k . 
y 

1.5 Confidence Intervals for I\ 

If one observes a Poisson process for a predetermined 

observation time t, then the number of occurrences nt can be used to 

form point estimates and confidence intervals for A., using the fact 

that nt is Poisson with mean A.t. On the other hand, if the observation 

of the Poisson process is continued until a fixed number of events m 
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h~ve been counted then the amount~Tm~of observation time required can 

be Ul'led to form confidence intervals for A.. Since T has the gamma
l'!'l 

X2distribution with p3rameters m c.nd A., 21'.T has the dj stribution 
m 

with ?m degrees of freedom. Let C and D be such values that, if Z has 

ax 2 distribution with 2m degrees of freedom, then Pr (Z < C) = 

Pr (Z / D) = a/ • Then 1 - a =Pr (C ~ 21'. Tm~ D) = Pr ( 2~ ~ 1'. ~ 2~ ).
2 

Consequently [C!2Tm' D/2TmJ is a confidence interval for A. wi~h m 

confidence coefficient 1-a. 

1.6 Approximate Confidence Interval for ~ 

If t and n are large, so that the number of intervals between 

events is large, then we can derive approximate confidence intervals 

from the large sample theory of maximum likelihood estimators. 

Let x ,x2 , ••• , Xk be random variables representing the1 

interval lengths from a series generated by a Poisson process with 

1parameter "-· Let Y =~ . 
Then L(x1 ,x2 , ••• , xk) 

Now 

dlnL k I xi 
oY = y + 

y2 

/\ I xi 
and y = k 

It has been shown in Mood <:;.~ that the maximum likelihood estimator 
A 

Y is, for large samples, approximately normally distributed with mean 

1Y and variance 
k 0- 2 

µ 
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where 

= - E [J--=- (ln 1.: exn(- ~) )lCY 
lL 

2 
d 2 y - y lj 

= - E [er-~ - 2 x r-3~ 
-2 = y " 

Then 

({' - Y) Jk 
w = y 

= (YA - 1) Jk" 
is approximately normally distributed with mean 0 and variance 1. 

Therefore Pr [- z!.:. ~ (YA - 1) Jk ~ z~ J= 1-a. 

2 2 

where z is that point of the N(O,l) distribution such that 
Cf. 

2 o-0 


2 

a.) --1 exp(- 3!_ )dZ = - 4

J2n 2 2z 
ex 
2 

By convertine the above inequalities,we obtain for a 1 - a. 

confidence interval for A. 
- za Jk + k z a Jk + k 

2 2 
[ ]. 

1.7 Estimatinp.; A. with Prescribed Precision 

We shall now obtain an estimate A.' of A. such that lA1 - A l 
is within bounds independent of t and n, i.e., of the observation time 

and the number of events observed. The procedure is as follows: 

(1) Observe the process until n events are observed. Let the 

observation time be T • n 

(2) Choose a 7 0 and E7 O. 
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a.l'2 
(3) Let C = -

2n 

(4) Perform the experiment for an additional 2c1T units of time 
n 

during which,saY;n events are observed. 

(5) Let A1 = 2CT n. 
n 

' 

Theorem 1. 7 .1 Let A1 be the estimate of A obtained from the above 

procedure. Then 

Pr(/ A' - A / ~ €. ) ~ 1 - a.. 

Proof: 

E(A') = 2C E(T n)n • 

f(T p) = f( T ) f(n ) T ) where 
n n n 

f(T ) = l 
n yn r(n) 

and f(n f T )n 
n:: 

,,.a°" ..• E(T n) = ) z. T n f(T ) f(n )T )dT
n n n n n

0 
n=O 

""' 
= T f(T ) E<n / T )dTs 
 n n n n 

0 

= E [ Tn(E(n /Tn))J 

A = l2c .. 

Also 
oO e>O 

T 2 E(T n)2 f(T ) n )dT= 
-2 f(n ) T 

n ) n n z n n 
0 n=O 

2 2 
= E [ Tn E(n ) Tn)]. 
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2• Var ( T n) = E [.T E(n2 j T ) J 
n n n 

2 
- E CT E(n / T )n n 

= E[T 2 var(n / T )] + E[T 2 E2 (n IT )]
n n n n 

2 
- E [ T E<n / T )]

n n 
2 = E [ Tn Var(n J Tn)J 

= 
n
l2c • 

/..Hence E(/.. 1 
) = 2C C ='A

2
2and Var('A') = 4C Var(T n) = 2nC • 

n 

By Tchebycheff's Inequality 

Pr ( [ 'A ' - A. l ~ f ) ~ 1 - Var ( "-
1 

) = 1 - a. • 
[2 

Therefore, given the prescribed precision of the estimate [ and the 

prescribed probability a, we can always find an unbiased estimator"-' 

within the required bounds. 

1.8 The Sequential Probability Ratio Test for Poisson Processes 

In this section we shall develop a sequential probability 

ratio test for testing 

To use Wald's sequential test, we must first determine 

L 
m 

We can determine Lm by considering m samples of size t ,t
2 

, • ' t1	 m m 
where 	J:. t. = t. This gives 

i=l J. "-1 n 
L = exp(-'A t + A. t)(z-) •m 1 0 Ao 
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"1 
Therefore, 1n Lm = -t(A.1-t..0 ) + n ln "o 
Hence, by Wald's approximation, we have 

1-~ Al A 
1n ~ ( 	 -t(A. -A. ) + n ln (;--) <ln -t:- ")1_,., 

a. 	 1 0 1\.0 .... 

where 	 a =Pr (rejecting H0 given H0 is true) and 

~ = Pr (accepting H given H is true)0 1 

are specified in advance. 

The above inequality yields 

As long as n at time t remains between these bounds we keep on 

sampling. As soon as n exceeds the upper bound we accept H1 and if 

n is less than the lower bound, we accept H •0

1:.2 The Comparison of Two Poisson Processes 

Method I. In direct Poisson sampling in which the number of events 

occurring in a fixed time is recorded, we have 

"'"" e-A.t (A.t)r
Pr (no. of events ~ n) = z =Pr < 2~X~< t)r! r=n 

1and Pr (no. of events 2:- n+l) = Pr (2r .x2
2n+2 < t) • 

If we wish to make an approximation to Pr (no. of events > n) in which 

the number of events is treated as a continuous random variable, it 

seems reasonable to take 

1 -y2
Pr (no. of events / n) ~Pr ('25: A 2n+l < t) 

i.e., we calculate probabilities as if 

2A.t is distributed as X"~n+l • 
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Thus, if we sample two populations with rates of occurrence 

tl(n2 + t)"-1 
t Cn + th2 1 2 

is distributed approximately as the F distribution with (2n1 + 1, 

2n2 + 1) degrees of freedom. Thus, we may test the hypothesis that 
t 1 (n2 + t) 

Al = A2 by referring F = t (nl + t) to the F tables with (2n1 + 1, 
2 

2n2 + 1) degreesof freedom. Also, a (l00-2a)% confidence interval for 
Al 
~ may be obtained from 

2 

t2(nl + t) Al t)n1 + t) 
tl(n2 + f) F_ < A2 

< t 1Cn2 + t) F 
+ 

where F and F are the lower and upper a% points of F with 
+ 

(2n
1 

+ 1, 2n2 + l) degrees of freedom. 

This test may be expected to be accurate for large samples. 

For small samples, the accuracy was investigated by D. R. Cox (/ /). 

The general conclusions are that,except when the population means are 

very small, the approximate F test gives probability of errors of the 

first kind sufficiently accurately for all practical purposes. For 

samples of the same size, the test may be considered satisfactory at 

the 5% level if the true mean exceeds one and satisfactory at the 1% 

level if the true mean exceeds two. 

Method 2. Suppose we observe two Poisson processes with rates of 

occurrence t.. and t.. simultaneously in the time interval (O,T). Then,
1 2 

the probability that any event observed is from the first process is 
Al 

just = .,--..;;.;...
Al + A2 

1 
= 
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= l 
l 
+ 'ft 

To test H0 : n = n0 (i.e., A2 = n0A1 ), we consider the corresponding 

test 

The probability that of then events observed,k of these came from 

the first process is 

Suppose samples are obtained from two Poisson processes and 

k is the number of events observed from the first process. The 
• A k

maximum likelihood estimator ofjJISjJ = /n' where n is the total 

number of events occurring. Let K be the random variable that counts 

the number of occurrences of the first process. Then, we can determine 

0 a number le}) such that Pr(k ~ l(f) - 1 ) j) ~ / and a number2 

µ <p 
..I\ 

) such that 

,,.. I 
..I\ a.Pr( k J µ (? ) + 1 f ) ~ I 2 • 

Since Pr(AB) ~ Pr(A) + Pr(B), 

we have that 

Pr(k ~ l(f) - 1 and k J µCf) + l}} ) ~ a. 

and hence 
A 

PrClCp) ~ 
,A 

Pr(l(f)Hence 
n 

The confidence interval for_p is computed as follows. We observe the 

number of events k from the first process in the first n occurrences 
I\ 

of the two processes. We form the estimate jJ and find the numbers 
A ,I\ 

l(.f ) and µ(_p ) from the appropriate Tables of Binomial Probabilities 

~ k 
n 

- a. • 

- a. • 
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or Tables of the Incomplete Gamma Function for the confidence 

coefficient a. Dividing by n, gives the appropriate 100(1-a.)% 

confidence interval for .f' . 

1.:1:Q Comparisons in Terms of Differences in Expected 

Rates of Occurrence 

Rather than make inferences about Al and A for two independent,2 


Poisson processes, sometimes it is advantageous to make inferences 


about A =A - A • In this section, we suppose that the two processes2 1


are observed simultaneously and that we can identify the sources. 


Let T be the waiting time until the mth event has been 

m 

observed from the two processes occurring simultaneously. Let ~ 7 O, 
2 

17 7 0 be two fixed, arbitrary constants. Let d = ~ • Perform 

additional observations on each process for 2d~ units of time. Let 
m 

n and n be the respective number of events observed for the two
1 2 


processes during this time period. 


Theorem 1.10.l 

such that 

Proof: By a similar procedure as in (1.7), we can show that 

A. 
E(T n.) = E(T E(n. ) T ) ) = d\ i = 1,2

mi m i m 2

and Var(T n.) = E(T 2 Var(ni J T ) ) 
m 1 m m 

m A· 
= (Al+ ~2)2d'i = 1,2 • 
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Therefore, 

E(i:J. 1 
) = 2d(E(Tmn2) - E(Tmn )) 

"2 -
1

"1 = 2d 2d = f:J. 

2and Var(6 1 )._ 	4d [ Var(Tmn ) + Var(Tmn )]2	 1

m4 2= d 2d = 2md • 

Hence, applying Tchebycheff's inequality 

2
Pr ( J f:J.' - i:J. / ~ '( ) J l - m~ = l - ~ • 

1 
1.11 	 Comparison of Three or More Poisson Processes 

Let Ti be the waiting time for n events to occur from the
1 

ith process after an event has been observed from the ith process. 

Then 21..T. 	 has approximately the _:x-2 distribution with 2n. degrees of 
l. l. 	 l. 

freedom. The problem of 	comparing the /.. is equivalent to the problem
l. 

of comparing variances of k normal processes on the basis of sample 

variances. 

M. 	 s. Bartlett (5) has shown that, for k samples from k 

'f 2 2independent 	normal populations, J. si is the usual estimate of 0-i , 

then 

is distributed approximately as /C 2 with k-1 degrees of freedom; f. 
k 	 J. 

is the degrees of freedom associated with s. 2 and N = Z: f .• Tables 
1J. 	 • 1

J.= 

at the .Ol and .05 level of significance for M are available in 

Thompson and Merrington (30. If we now substitute T. for s. 2 and 2n
l. l. 1 

for f.,we can calculate 	M fork Poisson processes and test the 
J. 

hypothesis 	that Al = t-2 = , • • • , =f-k. 



CHAPTER II 

Superposition of Several Strictly Periodic Sequences of Events 

2.1 Introduction 

Suppose there are a number of sources at each of which events 

occur from time to time. Suppose the outputs are pooled so as to 

give one combined output. Such outputs occur for example, in the 

study of threshold activity at motor-nerve endings and in the study 

of neural nets. We assume that the events on any one source occur at 

exactly regular intervals,so that the times of occurrence are e., 26.,
l. l. 

. th . d f th . th If N . d. t• • 	 • where e . is e perio o e i source. perio ic even s 
1 

are 	superimposed, where N may be unknown, we would like to: 

(1) 	differentiate the pooled series from a completely 

random series, 

(2) 	determine the fundamental periods, 

(3) 	determine N (the number of individual sources). 

2.2 	 Weyl's Theorem and Its Application to Pooled Outputs 

We assume that the numbers e. are all positive.
1 

Definition 2.2.1 A set of numbers e1 , e2 , ••• , eN are mutually 

irrational if there exists no set of integers ni' not all zero, such 
N 

that ~l 	n.e. = o.
1= 1 	 1 

If { ei} is mutually irrational, then{:~},~ I j,is also 
J 

16 
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mutually irrational. We suppose that the sources are so numbered so 

that eN is the smallest of the ei. 

The simplest form of Weyl's Theorem states that if a. is 

irrational and if { x] denotes the fractional part of x, then the 

sequence ( { na.] ) (n = 1, 2, ~ •• ) is uniformly distributed over 

(O,l). More precisely, if I~ is any interval of length Zin (O,l) 

and if pm(I,Q) is the proportion of {e}, {2e~, ••• , {me] .•• 
falling in Ii, then lim pm(IQ) = ~. 

m7-o 
To reformulate, the above result in terms of sources, consider 

any two sources, say the first two. 

Associate with the rth event on the first source a quantity 

x equal to the time between that event and the immediately preceding
r 

event on the second source (see Fig. 2.2.1). 

Figure 2.2.1 

1st source 

2nd source . 
Ix ' • r-1:< } 

X· 
r 

Then xr • e2 {re:l }. It follows from Weyl's theorem, that since:~ 
is irrational, the sequence (xr) is uniformly distributed over (o,e2). 

The generalized form of Weyl's Theorem states that if a.1 , 

a.
2 

, ••• , a.k are irrational numbers, themselves mutually irrational, 

then 	the sequences 

( { na. ] ) , ( { na.21 ) , . . . , ( { na.k1 ) , n = 1,2, • • •1
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are independently,uniformly distributed over (O,l). More precisely, if 

I is any portion of the volume v of the k-dimensional unit cube and if v 

p (I ) is the proportion of the m k-plets { u } , . . • { CLk1 ; . . •m v 1 ' 
{ nnl} . • . , { nnkS in I ,then lim p (I ) = v. v 	 m v' 	 m7A

th 	 .thWe define for the r event on the 1 source a set of (N-1) 

(1) (i-1) (i+l) Nquantities, x , ••• 	 , x analogous to x' x ' x ' • • •r r r r 	 r 
(1)

above. 	 Forexample, x is the interval between the rth event on the 
r 

ith source and immediately preceding event on the 1th source. Then 

the generalized form of Weyl's theorem shows that the sequences 

N(x(l)), ••• , (x(i-1)), (x(i+l)),. • • , ( x ) are independently,
r r r r 

uniformly distributed over (o,e ), ••• , <o,eN).1

2.3 	 Frequency Distribution of Intervals Between Successive Events 

Let q.(y) be the frequency function of the length of intervals. 
1 

ending with an event from source i. The interval is between (y,y + ~y) 

if one source, say the jth, has its x-value between (y,y + ~y) and if 

all the other sources have their x-values greater than y. The frequency 
-rr; ek-y

of the first event is ~ and of the second is If • since the 
J kl i,j 9

k 
x values are independent 

q. (y) = L_ 1 
1 j,ii ej 

When i = N there is a point concentration at y = eN given by 

N-1 e -e 
TT k N 

QN = k=l 9k • 

If i ,i 	N,there is no point frequency. 

The overall frequency distribution is defined by a frequency 

function q(y) and. by a point frequency Q obtained by taking a weighted 
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average of the q.(y). In a long tim~ the number of events from theJ. 

ith source is proportional toe~, so that 
J. 

q(y) 

1 1 Tr e
k 

-yy_
N e. e.J. jti J. kc;'.i 2 ,j= ;:_ N 

ek 
') ( 0 ~ y 5: eN) ; 

i=l 1z 

. 1 8.J.= l. 

N-1 e -e 
l TT k N 

6
N k=l 9k

Q =-----
z:N 1 

i=l 8i 


We wish the above forms more suitable for computational 


purposes. To do this~introduce the symmetric functions 

() (N) 
1 = el+ • . • + SN 


0 (N) z:_
= e. e.2 J.l J.2• i1/i2.
• 

0- (N) 
= > e. x • . • x e. s J.l is 

. il / i2' • . . ' 7 i s 
• 


U (N) 

N = e x . • • x eN •1 N-1 

N 7T Cek-eN) 
1 k=lThen q(y) = z '£_ 7T <ek-y) and Q = 0-(N) 0- (N)i=l j,ii kfi,jN-1 N-1 

The distribution consists of a discrete frequency Q at the 

smallest period SN and a continuous frequency curve between 0 and eN 

defined by a polynomial of degree N-2. When N is small, the above 
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distributions are easily computed numerically. When N is large we 

shall give the asymptotic distribution. It must be pointed out that 

if the periods are close togethe~ even for small N, the amount of 

computation required is fairly large. 

The mean of the distribution is easily obtained, since in a 

very long time T~there are asymptotically T/0. events from the ith 
N J. 

1 source and hence,asymptotically;T 	2: 
9 

events altogether. Therefore, 
i=l i 

[N ]-1
E(y) = ~ e~ • 

J.=1 J. 

2.4 Asymptotic Properties 

In this section we shall show that~under certain conditions on 

the ei)the distribution of intervals between successive events tends 

to the exponential distribution as N tends to infinity. 

N 
Let Let Z = y ~ 'J.i . The frequency function r(Z) of 

i=l 
Z is then 

r(Z) 

N 
sine e dz = dy Z: A .. 

. 1 J.J.= 

, 7T <1 _ z Xk) y:. X. 
L 	 LJ, J. J 

:. r( Z) = _.if....J.._·_k._f.-i.L,w..j_____e____ 
•(z JC )2 

e 
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N ( _z..._X-'""i)Let p (Z) = 7T 1 
i=l r:x e 

As is easily verified, 

d2 p (Z)r(Z) = •2dZ

r:xiNow let µ = N 

Z'Xis 
11 ' = s = 2, 3, • •s N • 

Then ln? (Z) = ~ ln(l - z Xi) 
i=l ZXe 

z2 lt2' z3 µ3' . . . = - z - 2 Nµ2 - T N2µ3 

We now assume ·tha~ as N tends to infinity, the Y::. have both an 
J.. 

upper bound and a non-zero lower bound. This assumption implies that 
µ' 

as N-7 <>(), --::! is bounded for each s. s 
µ 

Letting N tend to infinity above, and under our assumption, 

we obtain that 

p (Z) rv e-Z and 

2 
r(Z) = d p 2(Z) /V e-Z • 

dZ 

We can differentiate because _fJ(Z) for all finite N, and the limit 

-Z 
e ' are integral functions. 

The continuous frequency curve r(Z) has range 0 ~ Z ~ ~ Z: )(.
/'N 1 

We shall also assume that the smallest period eN is large compared with 
N 

the mean interval, i.e., lim ..l '1: ·-x. =""°. Under this assumption, 
N -7oa X: N i=l i 
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the point frequency Q tends to zero. Thus, the continuous frequency 

curve r(Z) accounts asymptotically for all the frequency. 

We shall now prove the following. 

Theorem 2.4.1 If t is small compared with all the periods e., then 
1 

the number of events observed in time t is a Poisson random variable 

with mean t( T. X.).
1 

Proof: Consider first a single source. A time interval t .<( 6. will 
1 

include either no event or one event,and the proportion of intervals 

including one event is t/e .• Thus, the generating function of the 
1 

frequencies is 

G(s) = (1 - t;e.) + st;e. = 1 - (l-s)t xi • 
.1 1 

Since the sources are independent~the generating function for the pooled 

output is 
N 

G (s) = TT (l - (1-s)t :X.)
p 1i=l 

N 
:. 1n G (s) = L ln(l - (1-s)t :X-.) • 

p i=l 1 

If we assume t.Xi is small for all i, 

N 
ln G (s) /"v ~-t X. (1-s)

p 1i=l . 

:. G (s) rv-- exp-( t(l-s) Z X.) • 
p 1 

But the above is the generating function for the Poisson distribution 

The above results are special cases of the following intuitively 

obvious principle. Suppose there are a number of sources and we are 
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interested in some property of the pooled output depending only on its 

behaviour over times small compared with the individual recurrence 

times. Then, the result is indistinguishable from that of a random 

series, no matter what the form of the individual outputs. 

~ The Variance Time Curve and Methods of Determining the Sources 

Several practical problems now can be answered. In particular, 

we first would like to determine whether the series is indeed a pooled 

series of periodic sources rather than a random series. The pooled 

output is distinguished from a random series by its behaviour over 

lengths of time comparable with the individual periods e.. The most 
1 

convenient way of expressing this behaviour is by means of a variance-

time curve, V(t). 

Definition 2.5.1 The variance-time curve V(t) associated with a 

point process is defined as the variance of the number of events 

occurring in a time t, considered as a function of t. 

For a random series V(t) =At where f is the mean interval 

between successive events. 

To find V(t) for a pooled output of periodic sources first 

consider a single source. Let Xit =ni + ~i where ni is an integer 

and 0 ~ ~i < 1, i.e., ~i = {Xit} • An interval of length t contains 

either n. or n.+l events from this source and the limiting frequency
1 1 

of intervals containing ni+l events is ~i. The variance of this 

two point distribution is ~.(l - ~.). Since the different sources are 
l. 1 

independent then for N sources 

V( t) = ~ ~i (1 - ~i). 
1=1 
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Now if t is very small compared with ei~then 

13. Cl - 13.) !'"'\_., 13. = t X. 
1 1 1 1 

so that V(t) l"'v t ZJCi = tA where f is the mean interval between 

successive events. Further, 13. (1 - 13.) < t A. so that 
1 1 1 

V( t) ..( tA • 

Fort large compared withe.,
J. 

13.<1 - 13.) <:< tX. 
1 1 1 

and V( t) <.< tA • 


As t increases\13· takes each value between 0 and 1 equally often, 

. 1 

1(Weyl's theorem) giving 13i(l - 131 ) an average value of 6. Thus for 

1large t, V(t) oscillates about an average of 6N. 

In summary, we have th.at V( t) is tangential at t=O to the 

straight line y=At representing a random series with the same number 

of events per unit time. V(t) falls below the line as soon as t is 

comparable with an appreciable number of periods e1 , and finally V(t) 

1oscillates about 6N as soon as t is large enough. 

We can now answer the problems posed in the introduction. By 

constructing the variance-time curve, we can decide whether the series 

is random or a pooled output of periodic sources and at the same time 

we obtain an estimate of N, the number of sources. Obviously, any method 

based on frequency distribution of intervals will only distinguish 

between random and pooled periodic series if N is relatively small~ 

because the frequency curve is exponential when N is large. 

We now proceed to estimate the variance-time curve from the 

data, since the actual variance-time curve is practically always 

unknown. We can, of course, divide the observed series into units of 
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time t and estimate the variance in the usual way. Another method 

given by Cox (£) provides more economy in observation. First, divide 

the series into intervals of length 1: so that only a small number of 

events occur in each interval. Next count the number of events 

occurring in each interval deriving a discrete time series 

x2, . • . t xm where x. is the number of events in (i-1) ?:- ~ tx l' 1 

< i c-. Add the X's together in blocks of r, giving 

S r = xl + X2 + . . • + xr1 


S r 

2 = x2 + X3 + • . • + X r+l 

• 

Sr =X +X + • • • + x •m-r+l m-r+l m-r+2 m 

rThe S 's are the number of events occurring in intervals of length 

r '(-so that an estimate of V(rC-) may be formed from the corrected sums 

of squares of the Sr' s. Let M = rn-r+l. Then, we let 

/\ [ J M3M ""'°" r - r 2V(r'(-)= 2 2 .t:-.. (Si - Si)
3M - 3Mr + r -1 1=1 

where Si.r = 1 £ S. (r) • 
M . l ::r..1= 

The factor in front of the sums of squares has been so chosen so that 

if the series is random, i.e., X. are independent Poisson random 
1 

"' variables with mean A. 1:', then E(V(r'C-')) = V(r '1"') = r~A.. We do the 
A 

above for various values of rand plot V(rC-) against rl". 

Now, if it is determined that N is small and the series 

available for analysis is long, it is possible in principle to determine 

the e. exactly and to assign each event to its appropriate source. To 
1 

do this, we first form the frequency distribution of the intervals 
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between successive events. This will be bounded by a point ccncentra

tion of frequency whose position will denote the smallest period eN. 

Nex~ find an interval of length eN and from it build up the output of 

ththe N source by repeatedly adding and subtracting eN. Delete this 

set of events and analyze the remaining series to find the next 

smallest period and so on. This method ceases to become practical as 

soon as the point frequency becomes very small. 

Several practical problems arise in the determination of 

sources of pooled periodic outputs. First of all,if the sources are 

close together, the point frequency will be too small to be of any 

value unless the series is observed for a very long time. Secondly, 

if the periods of the sources are close together, the distribution of 

intervals tends very rapidly to the exponential form as N increases. 

Therefore, the methods advocated are useful if the number of sources is 

relatively small, and if the periods of the sources are relatively far 

apart. 

It must also be pointed out that these results lean very 

heavily on Weyl's theorem which demands that the periods be mutually 

irrational. In actual practice, the e. cannot be mutually irrational 
1 

and even if they were, they could not so be determined. However, we 

may either regard them as being close approximations to irrationals or 

argue that since the lowest common multiple of the 9. is extremely
1 

large, the.results derived on the assumption of mutual irrationality 

are likely to be extremely good approximations to the behaviour for 

rationale .• 
1 



CHAPTER III 


SuperEosition of non-periodic Erocesses 


2..:..1 Renewal Processes 

In the previous chapter, we considered a pooled series of 

strictly periodic sources. We shall now consider the case where the 

intervals between successive events have a probability distribu

tion and the random variables associated with different sources are 

independent. For the sake of illustration,we consider the case of a 

single source. The process thus formed is called a renewal process 

and has been extensively studied. 

Let the intervals between successive events be denoted by a 

sequence x We assume the X are independent, identically distri
n n 

buted random variables all with an absolutely continuous distribution 

thfunction F(x) and a frequency function f(x). The n event occurs at 

time Z =X + • • • + X and if f (x) is the frequency function of Z ,
n 1 n n n 

oL> 

then h(x) = :Z.::. f (x) is the total density of events at x. 
n=l n 

Now we fix a time t and define a delay time Y(t) to be measured 

from t back to the immediately preceding event. Th.e frequency function 

g(y;t) of Y(t) is called the delay function at t. Since the total 

density of events at xis h(x), and the chance that the interval 

between events exceeds y is 1-F(y) = F (y), we have that g(y;t) = 
c 

h(t-y) F (y).
c 

27 
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It has been shown that under certain weak conditions on f(x), 

the total density of events at x, h(x) has the property 

1h(t) = 
11 

Therefore, under these conditions we have that 

F (y)
lim g(y,t) = _c__ 
t~oD µ 

2.:£ Probability Distribution and Variance of the Number 

of Events in Intervals of Given Len~th 

Before giving a rigorous proof, we shall discuss heuristically 

the result that if V(t) is the variance of the number of events in 
2 

time t, then V( t) /"'-' C t as t -7 o0 where C is the coefficient of µ 

variation of the parent distribution (F(x)) andµ =E(X ). The result 
n 

followtheuristically from two equations in sequential analysis. If 

Z = X + x + ••• + X is the cumulative sum when sampling stops
n 1 2 n 


2
after n events, then E(Z ) =E(n)µ and E(Z - nµ) =E(n)o-2 where 
n n 

2o- is the variance of each of the X.• Now Z, in this case, is the 
i n 

time up to the nth renewal. If sampling is stopped after a long time 

t, Z rv' t, where n is the number of events occurring in time t. 
n 

Therefore 
2

2 o- tE(n) r-- ! and E(t - nµ) rv 
µ µ 

2also var(n) = 1 ·E(np. - t)2 
)l. 

i.e., V(t) =var (n) rv -
c2 

t 
µ 
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In our case we are interested in the equilibrium behaviour of 

the process, i.e., we are interested in the number of events in intervals 

a long way from the origin. 

Let pku(t) = Pr[k events occur in (u,u + tJ. 

In particular, pk0 

( t) = Pr [ k events occur in (o, t)]. 

t 

Now pku(t) = ) g(y;u) p~_1 (t-y)dy. 
0 

If we assume that lim g(y;t) exists (it can be shown that under weak 
t -7> c-0 

conditions, the limit actually exists, Cox and Smith (13)) then g(y;u) 

for sufficiently large u is bounded for (O ~ y.5 t); also 0:;::. p~_1(t) ~ 1. 

Therefore, by the theorem of bounded convergence, we have 

t t 
lim f g(y;u) p~_1Ct-y)dy = r g(y) p~-1ct-y)dyj 

u ~<><'.) 0 0 

where we write g(y) = lim g(y;u). 
u-) oO 

Let pk(t) = lim pku(t). 
u-70<) 

Then pk(t) is called the equilibrium distribution of the number of 
__ 1 - F(y) __ Fc(y)

events. It was shown in Cox and Smith (13) that g(y) - .. 
µ µ 

Theorem 2.2.1 The variance of the equilibrium distribution 
22 3µ2 - 2µµ2c tV(t) r"v-+ 

µ 6µ4 

t
1Proof: pk(t) = - s [1 - F(y)J p~_1(t-y)dy.µ 

0 

Let z = t-y. 

1 0 

Then pk(t) = - - ) [ 1 - F( t-z)J p~_1Cz)dzµ 
t 

t
1 s= [ p~-1(z) - F(t-z) p~_1 Cz)_J dz.µ 

0 
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t t z 
But f pk

0 
(z)dz = s dz s f(z-v) p~_1(v)dv 

0 0 0 

t 
= ) F(t-z) p~_1(z)dz 

0 

Let M~(t) 

By substitution, we obtain 

By differentiating M9(t) with respect to e and setting e equal to zero, 

we obtain tha~ when the appropriate quantities exist, 

o:> t 
2 m

2
(t) = Z: k pk(t) =ti + ~ ) m

1
°(z)dz • 

k=O µ µ o 

Therefore 
. t 

wherev ( t) =1 J r (z) dz 
µ 0 

--2z 
µ 

Now the Laplace transform of l(! (z); 
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since 
c>{J 

mlo(t) = ::£ k Pko(t) 
k=O 

= 

o6 

z: k 
t 

) f ( t-u) P~-l ( u)du 
k=l 0 

= 
t 

f f 
0 

Ct-u) 
oO 0z: k pk-1(u)du 
k=l 

t °'° 
= f f (t-u) I (k + l) pk

0 
(u)du 

0 k=O 

t 
= J -f ( t-u) m

1
°Cu)du 

0 

t 
+ f f (t-u)du 

0 

then 
-

- 0m
1 

(s) = -f <s ) ; 
1 
°<s ) +l 

s 
f (s) 

-
and 

- 0 m 
1 

(s) = 
f 

s(l -

(s) 

f (s)) 
0 

Let µ, µ
2 

, u
3 

••• be the moments of f(x) about zero and let C be the 

coefficient of variation 

c2 = 


Expanding 'f (s) and after some tedious algebra, as s-:;.. o we 

obtain 

~ (s) 

This suggests that as t -7 C><.> , 

t 
V ( t ) = l S 'e (z) dz 

µ 0 

Proof of this is long and difficult (given in / 3). 
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The above equation shows the behavior of V(t) for large t. For 

small t, we have 

1 
t 2z] dzV(t) = - 5 [ 1 + 2m °(z) - µµ 1

0 

t 
t 

:;:: -
µ 

+ 2 ) [ m1° ( z) - ~ ] dz • 
0 

t 
If we assume that ) f(x)dx = O(tl3),f3 ;> o as t -7 o, then 

0 

V(t) = i + o(t).
µ 

Thus near t = o the variance timecurve behaves like that of a completely 

random series. 

If f(x) is given explicitly,we can obtain more precise results. 

For example, if f(x) is )(2 with 2V degrees of freedom, then c2 =~and 

v ( t ) /'V ..l. + le 1 - .1..) as t ~ °" . 
Vµ 6 v2 

hl Pooled Outputs of Renewal Processes 

Suppose that N sources are pooled to form a pooled process. 

We shall assume that the outputs of the individual sources are of the 

type considered previously, are independent~and have the same absolutely 

continuous parent distribution F(x). As before, we shall only be 

interested in equilibrium behaviour a long time after the start of the 

process. 

First, we compute the frequency distribution of the interval 

between successive events in the pooled output. For each source, we 

define the delay random variable Y., where Y. is the time from a fixed 
1 l. 

epoch back to the immediately preceding event on the ith source. If Y 

is the corresponding random variable for the pooled output, then 
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Since the N sources are independent, 

Pr [ Y ~ y] = [ 
y 

o0

f g(x)dxJN 
= [f

y 

The delay function for the pooled outputs is 


ca · N-1 

dPr[Y? y] ~ NFc(y) [ J Fc(X) dxJ 


dy µ y µ 


and the frequency function of the interval between successive events 

oO ( dx]N-lJ.f (y) = _.i..[p (y) [ S Fe x) 
p . dy c y µ 

For example, if f(y) =e-Y, then fp(y) =Ne-Ny, expressing the 

obvious fact that if separate outputs are completely random so is the 

pooled output. If the parent distributions are rectangular over (O,l), 

then 

2f (y) = (2N-l) (1-y/N- • 
p 

The equilibrium distribution for the number of events in an 

interval of length t may be found by convoluting the distributions for 

individual sources. Hence, the equilibrium variance of the number of 

events in an interval is 

V ( t) = NV ( t) • 
p 

2NC t 2 -1 µThere fore V ( t) ,,,...._, - = C tA. as t ...--'J>=e. where A = - is the mean 
p µ N 

interval between events on the pooled output. Also V ( t) rv tA. 
p 

as 

t-'7 O. To estimate N, further assumptions on f(x) are required. For 

4
example, if f(x) is 'X2 , then the intercept of Vp(t) is ~(l - c ) and 

N can thus be estimated. 



CHAPl'ER IV 

General Methods of Analyzing Point Processes 

4.1 Introduction 

In the last two chapters, we have considered special cases of 

point processes, namely the Poisson and superposition of independent 

processes. In this chapter, we will consider some methods of analyzing 

point processes generally, mostly without considering an underlying 

model for the process. Unfortunately, the problem as stated is too 

general and we shall have to consider models less general than the one 

suggested. In most cases, the problems arising are computational in 

nature. 

4.2 Graphical Methods of Analysis 

In most practical cases, the statistician is faced with a 

short record of a point process, i.e., he observes the process for a 

fixed period of time T. Suppose that in this time period T, n events 

have occurred at times t 1 , t 2 , • , t in that order. Let X = n j, j+k 

- t. with t = o. For the sake of convenience, we shall fix atj+k 0J 

time period ?: and let n. (() be the number of events in the time 
l. 

interval [Ci-l)C-, ic]. The main graphical methods are the following: 

(1) Time Tis divided into equal intervals 'C and n.(-C-) is plotted
l. 

against i. If the rate of occurrence is constant, this graph should 
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approximate a straight line. However, if there are large variations 

in the rate of occurrence the restriction to a fixed ?:- is inconvenient. 

(2) A random-walk diagram can be plotted for the total number of events 

up to a time t as a function oft, i.e., N(t) is plotted versus t. From 

this graph, the average rates of occurrence over any period can be read 

off. The disadvantages of this method are the difficulty of detecting 

sampling fluctuations in the cumulative diagram and the awkward shape 

of the curv~ making it very difficult to plot extensive data concisely. 

-1(3) Plot N(t) - a t against t, when a is a suitable constant 

approximately equal to the mean interval between events. A suitable 

choice of "a" can make the computations simpler. If required, the 

value of n can be marked at suitable points along the graph. This 

procedure will smooth the curve, making it easier to plot extensive 

data. From it, one should be able to read off local rates of 

occurrence. There is also the possibility of plotting (t - b-1n) 

against n for a suitable choice of b, but this procedure is, on the 

whole, less useful. However, in preliminary analyses, one should 

never discount any procedure, a priori, unless one has a fairly good 

idea of what the underlying mechanism of the process is. 

(4) The intervals X ,k; Xk; 2k , • • • can be plotted against the 
0 

serial number of the interval or against the time at the mid-point 

of the interval. This method adjusts ('to the rate of.occurrence. 

If it is required to examine the relation between the rate of occurrence 

and some smoothly varying external variable, the abscissa can be taken 

as the average of the external variable over the interval. 



(5) A histogram can be formed for the interval between successive 

events and a scatter diagram obtained for successive intervals. Then 

a distribution for the interval between successive events can be 

fitted, if desirable or necessary. It is sometimes useful to consider 

intervals between every pair of events or between every other event. 

~ Transformations 

We often have problems in which the rate of occurrence A is 

not constant but is the product either of unknown parameters or of 

known constants with unknown parameters. This may occur in the 

following ways: 

(1) The interval of observation is not constant, e.g., in observing 

the number of stops in machines it is usually not practical to arrange 

that the observed running time is the same for all machines. 

(2) It may be intuitively reasonable or suggested by inspection of 

results that, say in a two-way arrangemen~ row and column effects are 

multiplicative, i.e., the A appropriate to each observation is a 

product of a row constant and a column constant. 

If it is possible to obtain intervals between successive sets 

of k events so that A is approximately a constant on each interval, 

the logarithmic transformation can be applied and causes no difficulty. 

However, if we work with numbers of events in fixed time intervals 

there is more difficulty. There i~ however, one case for which we can 

obtain a transformation having desired properties. 

Suppose we make an analysis of transformed observations where 

we are only going to use "unweighted" linear combinations, i.e., all 

our estimates will be based on linear combinations of the transformed 
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variables (observations) with coefficients not depending on the 

observations. If our linear estimates are to be unbiased, and if we 

wish to find linear unbiased estimates of their sampling variance, we 

must try to find, corresponding to the Poisson variate n, a transformed 

value z and an estimated variance v so that n n 


E(z ) = lnA and 

n 

Var(z ) =E(v ).n n 

It is impossible to satisfy these exactly for all A. For large n, 

n 1 
we have that Zn!""'-- ln T and v ~- so that we try

n n 

n + ex; 1 z = ln and v = n T n n + 13 

where ex; and 13 are to be determined. 

If e = A.T and Lin = n - e, we have 

(n + a.)A.
z = ln n e 

- e + a. 
= lnA. + ln e + n 

e 

( 6n a)- lnA +lnl+-+e e 
2 3 

+ (~ + 6n) le~ + t.n) + 1(~ + t.n) = ln.A - + • . . •e e 2 e 8 3 e e 

Now E(t.n) = o, since E(n) = A.T = e and E(t.n)2 = Var(n) = e. 

If we assume that An and a are small compared to e, then, 

e 1E(z ) = lnA +~ - - + O(-)
n e 282 e2 

= lnA. +~ - .1_ + O( .1_) 
e 20 92 

1 
- "2" = lnA +a + o(..1.) •e 92 

Therefore we take a =t and we have 

E(z ) = L~A. + o(..1.) • 
n 62 



With this value of a, we then have 

that Var(z ) = -
1 + ...1_ + O(..l_) 


n e 2e2 e3 

while 
 E(_l._) = 1 + 1-@ + o(..l.)

n+l3 e 62 63 

so that we choose 13 = i in 	order that 

Var(z ) =E(v ) • 
n n 

Thus, we have arrived at the transformation 

n4 	 - 1z = ln - with v - --:-; • n T 	 n n+t 

Since the above was arrived by a series expansion in ~' we can 

reasonably expect that E(z ) = lnA. and V(z ) = E(v ) should be satisfied 
n 	 n n 

to say e ."'-' 5. Computations made for various values of 9 = 1,2,3,4,5 

suggest that the above is indeed the case. 



CHAPTER V 


Correlation Analysis of Point Processes 


5.1 The Correlation Function 

One of the most developed techniques in the theory of 

stochastic processes is correlation analysis. For any stochastic 

process { X( t), t E T} , we define the correlation function 

R(t,s) = E[X(t), X(s)]. 

It should be. pointed out that other terminology is often encountered 

in the literature. The function R(t,s) or else the centered function 

R(t,s) - m(t) m(s), where m(t) =E[X(t)], is sometimes called the 

covariance function and the term correlation function or autocorrelation 

function is reserved for a stationary covariance. In the stationary 

case, the normalized and centred correlation function is known as the 

"correlation" function. In spite of all the confusion of terminology, 

we shall denote the correlation function as above. 

There are several historical reasons for correlation analysis 

even though it should be emphasized that the mean value and the 

correlation function do not specify the stochastic process {X(t), t ~ T} 
uniquely. First of all, the primary interest and the most highly 

developed theory is that of Gaussian or normal processes. For normal 

stochastic processes, the mean value and the correlation function 

39 
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completely specify the process, i.e., they completely determine all the 

distribution functions. Therefore, in principle, correlation theory 

can answer any question pertaining to normal random functions. Even 

for non-normal processes, the second order moments, i.e., correlation 

function, tell us something about the process. For example, if the 

process is stationary R(t,s) is a function of ls-tl. The behaviour 

of this function gives us some idea of the relationship of the process 

at time instants Js-tl units apart. In the ordinary cases of random 

variables, we are mostly interested in the first and second moments of 

these variables. Similarly, in the study of stochastic processes 

(families of random variables), first and second moments are of equal 

importance. 

~ Properties of the Correlation Function for Stationary Processes 

If {X(t), t E T} is a stationary process then the correlation 

function is a function of the parameter difference. We can thus write 

the correlation function as R('C-) = E[X(t+C-) X(t)]. The following 

properties of R(C-) can be noted: 

(1) R(t-) = R(-("). R("C) is an even function of {: • 

(2) R(l'-) is continuous everywhere if it is continuous at C' = o. 

In applications of probability theory, one ordinarily deals 

with phenomena that repeat themselves many times. Hence, as the mean 

value of a random variable X(t), we can take a large number of realiza

tions x(l)(t), x( 2)(t), ~ •• , X(n)(t) and compute the arithmetic 
1 n . 

mean - L xJ(t). Similarly, for the correlation function R(t,s) we 
n j=l ( .) . ( .) 

can take the mean value of X J (t) X J (s) for every pair of values 
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of t and s. However, in practice, observation of a stochastic process 

and subsequent processing of data can be very complicated and therefore 

it is very desirable to get along with as few realizations as possible. 

The possibility of calculating these characteristics of a stationary 

stochastic process from a single realization is a consequence of the 

so-called ergodic theorem applicable to most stationary random functions 

encountered in practice. According to the ergodic theorem, the mathe

matical expectation of both X(t) and X(t+C-) X(t), obtained by averaging 

over the space .of outcomes can be replaced by averaging over T. More 

precisely, if [x(t), t E T} is a stationary stochastic process 

satisfying certain general conditions to be indicated below, then the 

following limiting (in the mean square) relations hold: 

N 
1( 1) E(X(t)J = m = lim N+l L X(t) in the discrete 

N ..::,o<J t=O parameter·case 

T
1= lim X(t)dt in the continuous
T f 

T -7= 0 parameter case. 

N 
(2) R({'-) = E[X(t+?-) X(t)] = lim 1 z::: X(t+c) X(t)N+l

N~oa t=O 
in the discrete 
parameter case 

T 

= lim 1 X( t+('} X( t)dt
T ~ T_,,,ob 0 

in the continuous 
parameter case. 

The above relations suggest that for sufficiently large N (or T), 
N 1 N 

we can approximate.m and R('C) by N~l I:_ X(t) and N+
1 
~ X ( t +() X ( t) , 

t=O t=O 
where X(t) is a single realization of the process. 

In order to make use of the formulas for the continuous 

parameter case, we replace the integrals by their approximating sums, 
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0 

noting that 

T N
T 

;::5 X(t)dt lim 2 X(k ft)N 
0 N--7oO k::::l 

T N 
) X( t+(-) X( t)dt ;:: lim 

T X(kT +-C-) X(kT)~ N N NN-"lo0 k=l 

Hence, m and R('[-) can 	be calculated approximately using the formulas 

N N 
m r..- ~ L X(M); R(?") ,.,..-... ~ Z: X(M+?} X(M), 

k=l k=l 

where ~ is a small time interval and N is so chosen so as to make N~ = T 

sufficiently large. In practice, 6 should be chosen in such a way that 

the realization X(t) does not change appreciably during time intervals 

of length 6, while N should be such so that a further increase in the 

number of terms has only a slight influence on the value of the average 

being calculated. The above formulae, for most realizations, represent a 

formidable computational task. This task has been greatly simplified 

by using computers, some of which have been specifically designed to 

perform such calculations. 

We now discuss the conditions that must be imposed on the 

stochastic process { X( t), t E T} for the ergodic theorem stated above 

to hold. Let 

2B('t-) = E[(X(t+C--) - m)(X(t) - m)) = R(-C-) - m • 

B(-C-) is the centred correlation function and differs from the correlation 

coefficient of X(t+C-) and X(t) by a factor B(O). It was shown by 

Slutski (35) that (1) holds, if and only if, 

T 
(a) 	 lim 1 ) B(?-)d ?-= 0 andTT-7oa 0 

N
1(b) 	 lim N+l J: B('C) = 0 respectively • 

N -70<:> ?:-;:;; 0 



For (2) to hold, the function 

== E[X (t + f' + C-) X ( t +CJ - R ( ( ) J [ X ( t + ?-) X ( t ) - R( ?" ) J 
0 0 0 0 

must satisfy condition (a) or (b). 

In practice, the functions B(C'") and B (?-) usually approach
1 

0 as (: ~o6. In this case, the above conditions are met. It should 

be noted, that B1(1') involves fourth-order moments of X(t) and hence, 

the conditions for the validity of the ergodic theorem cannot be 

expressed in terms of the correlation function. 

2.:..2 Correlation Analysis of Point Processes 

There are, generally speaking, two ways in which one can 

describe a stationary point process. We can consider the sequence of 

intervals (X1 , x2 , ••• ) between successive events or we may divide 

the time axis into a large number of narrow intervals of width 6t and 

count the number of events in each interval. The two specifications 

are equivalent, but lead of course to different correlation functions. 

First, let us consider the sequence of intervals (X1 , x2 , ••• ). 

In order that the sequence should be stationary, we suppose that an 

event occurs at t == O. Let m = E(X.) and u 2 = Var(X. ). If we 
x l. x l. 

consider the sequence as a stationary real-valued process, we can 

define 

We can also consider a variance function ~x(?:) = 

Var(X + x2 + ••• + X~), specifying the variance of the time
1 

interval from an arbitrary event to the 'lth successive event. 
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We have that 

lf 
 ( (.'-) = Var(X + x + + Xz)
x 1 2 

'L 'l-1 j 
= L_ Var(X.) + 2 ~ B (i)~ 

i=l 1 j=l i=l x 

'l-1 
=LB (o) + 2 l-. x j=l 

The functions ( /) (C-) and B (('-) 	 are mutually equivalent. For someTx x 


purposes, it is convenient to define the index of dispersion 


c Cr)
x 

Let us now consider, formally\the process 6N(t) = N(t+6t) - N(t) 

[the number of events in (t,t + ilt)J. Suppose the mean rate of occurrence 

is A, so that Pr[one event in (t,t + At)] = AAt + o(At) for all t. We 

are here assuming that multiple occurrences do not arise. We define 

the covariance density for t-'7 o of the point process by the equation 

Cov [ilN(t+t), 6N(t5] 

or alternatively 

Cov[ N(t+Lit) - N(t), N(t+'f+Lit) 	 - N(t+-C-)]
y ('l) = lim 

n At-7' o u~t) 2 

The second order properties of this process in continuous time can also 

be defined by the intensity function 

Pr [event in ( t+(; t+'f+ilt) I event at t]I (C-) = lim 
n 	 ilt6t-7 o 

Now E[AN(t+?") AN(t)] 	 ""PrfoN(t) = AN(t+t) = 1] 

= AAt Pr[AN(t+'C-) = l \ t.N(t) = l]. 

= AI (c)(Lit) 2 • 
n 
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Since E [flN( t )] = A.flt, we have that Y Ct) = A. [I ('/.'-) - A.] • For all 
n n 

practical purposes then, we can estimate either the covariance density 

or the intensity function. 

Now for a Poisson process 

A.lit + o(l'lt)I (['-) = lim 
n flt

flt-'7 0 

= A.)since the no. of events 

in (t+c, t+1'"+6t) is independent of the number of events at t. 

For 1-< o, we can define Y ('t) = Y C-'t), but for <:- =o it is 
n n 

important to note that 

E[flN(t) LlN(t)] = E[flN(t)J 2 = EfPN(t)]. 

It is convenient to add to Y (1") previously defined the term A.o('L"),
n 

where o('C') is the Dirac delta function. We define thus the complete 

covariance density 

Y c ('t) = A.o('Z") + Y ('L).
n n 

5.4 Estimation of the Intensity Function 

Suppose the process is observed over an interval [O,T] 

starting from an arbitrary time. Let N(t) be the sample counting 

function having N(O) = 0 and jumping by one at each event. Let n be 

the total number events observed. 

Let (-be some grouping interval. For a formal study of 

limiting properties, ·we should allow 1- to tend to zero as T ~ oa • 

However, we shall regard 1:: as fixed and estimate the grouped intensities. 

I (x)dx r = O, 1, ••• 
n 

In practice it's usually advisable to examine a number of values of C-. 
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We shall base the estimate of I g(r ~ + -t?-) on the total number 
n 

of pairs of events, S , separated by an interval between r '?'- and r'l'- + ,.L'" • 
r 

In principle, we take the ~n(n-1) positive intervals between all 

possible ordered pairs of events and form them into histograms with 

groups of width'f-. Formally, we can write 

T-r r'C+ 'C

s = J f · dN(u) dN( u+x) 

r u=O 
 x=rt

T-r?--C- rtt"t T-r"C T-u 
= s f dN(u) dN(u+x) + s s dN(u) dIH u+x) 

u=O x=r ?- u=T-r?--C- x;:;r'C-

Since E[d.N(u)J =A.du and 

E[dN( u) dN( ~+x)J = A. I (x) du dx 
n 

the expectation of the first double integral is 

T-r-C-C- r'H-?,.,.
/... ) du ) I (x)dx = A. '1- (T-ro-'1'1 I g( r?+i '?') • 

n 	 n u=o x=r?

{'- .
When T -r, ~is small, as is always the case in practice, the second 

integral is only a small correction term and can be approximated by 

assuming I (x) to be constant over the relevant range and equal to 
n 

I g(reti-1-). Then the expectation of the second integral is 
n 


T-r--c- T-u 

A. 	 ) 5 I 

n
(x) du dx 

u=T-rl'-"C x-r?

T-rc-- '1'
5 -2

u=T-r\'-1'

Hence with this approximation 

E(S ) = A.'t(T-r~-t~) I g(r'l+t~)r 	 n 
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Since E(¥) = At we are led to define 

A 	 S T 
m ( r c-++·c) =___r ___ 

g n1'(T-rr-.'.'.t)
2 

The effective length of tne series decreases with increasing r, thus 

Tproviding a qualitative reason for the factor 	---
\T-rr-
2 

Since the total number of pairs of intervals is fn(n-1), we 

have that T 
>f"-1 

S = in(n-1) • 
r~ 

r=O 

To avoid unpleasant end effects, we assume that l" is so chosen so as 

T
to make ;;:: an integer. Thus, we have c 

/\ Cr~"-) n"C'CT-r1---i1") 1 ( )m < • " ,-	 = -zn n-1 g T 
r=o 

:r:-1 	 ?-' 
T 	

T-rr--z 
., where w ;:;--or (~ r T 

r=o 

r=o 
and 

rp

:f:-1 /\ 
w m Crl'+t~) 

and r g _ n.=1 • 2 'l 	 n-1 n AL 	 - 2'C' T = T ,,,..,_, T - A 
r=o L. w r 

/' 

where A is the estimator of A. The last equation implies that if the 

sample function is fluctuating about an average independent of r, that 
A 

average must be nearly A. 
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5.5 Properties of the Intensity Function for the Poisson Process 

For the Poisson process, we can consider the n events to be 

independently and uniformly distributedover the interval [o,~]. Let 

• , U be independently, 	rectangularly distributed over 
n 

Let 

v(r) = 1 ifij 

= 0 otherwise. 

Then, we have that 

v(r)s = "L r ij 

We can obtain th~ mean and variance of S from the conditional 
r 

mean of V~~) given U.. If 2r't+ "'t < T, then we have E[v~~) / 0 ~ u1 < rZJ=l.J J. 
('- .
-T, since it is easily verified that if 0::: U. = u. < r C-, then 

J. J. 

r '('- + ui ~ Uj < r'C- + 1-+ ui and the result follows from independence of 

u. and u .• Similarly, we obtain 
J. J 

u. - r?:"(' J.E[v~~)/ re~ u. = u. " r ?- +C-J =-+ 
J. J. 	 T T 

2-ZE [ v~~) / r("+C- < U.< T - re- --r] =-..... J. 	 T 

'(:'-- ui-rcE[V~~)[ T - re 	 - =-+-c- ~ ui = ui < T r~J T T 

Now, the unconditional mean of V~~) can be obtained by 
. 	 J.J 

integrating with respect to the uniform distribution of U., i.e.,
l. 



49 

r'C" r~'t 

r 'C • l du + f lc.l + l!::.E.1)duJ T T r'l T T T 

T-r~-~ 1: T-r~2 
+ S T • ~ du + f (~ + u-;'l:") • ~ du 

r-c+'C- T-r'C-1' 

1: 1 
- • - du+ T T 

2([T - r1 -?JAr..d E[v~~)J = 
T2 

Thus, E(S ) c :L E(V~~))
r J.Jj 7 i 

'"t-T - r'C- - 
= 2:_ 2't( 2) 

T2j / i 

'(:
T - r?- - n(n-ll 2)= 2 'f(

2 T2 

n(n-1) "(: (T -rr - "('
-)
2 = 

T2 

Finally E [" ~ (r'l:' + t-c- )]
g 

E(S )T 
=--.;;...r__ 

n-cCT-rl'-f) 

n - 1 = -----T 

Since V~~) is a (O,l) random variable 
J.J 

r· ( 2] ( ) 2 't[T - r ~ - ::( ]1 2E V.~) =E[v.~J=------l :i.J . iJ T2 

Conditionally on U., the random variables V~~) and V~rl) (j f 1) are 
J. l.J .... 

independent, since uj and ul are independent. 
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Therefore, E [v~~) v~~) j ui = ui] 

= E [ v~~) Jui ~ ui] E [ v~~) ) ui = uiJ· 
These can be computed directly for the various values of U. from the 

1 

formulae above. By integrating out U. with respect to its uniform 
1 

distribution, we obtain 

/r)J
il 

. 	 (r) (r)
Now, if i, j, 1, k are different, then V. . and Vlk are independent.

l.J 2 
2Hence, E(s ) = E [ L v~~)J 

r j '::>" i l.J 

2 
=h(n-1) E[<v~~»]

J..J 

+ n(n-l)(n-2) E[v~~) V~~)]
J.J J. 2 

+ ~(n-1) (n-2Hn-3) [ E(V~~))J . 
Upon substitution from above, we obtain,after a great deal of tedious 

algebra, 

2 2Var(S ) = E(S ) - [E(S )]
r r r 

n(n-1) (-(T - r(' - .2 (') 	 _-:S
2=-----T------ + n(n-1H2rn + 3n + 3) ·~;2 

4 
1 2 '7:- n(n-1)(4n-6)(r + ~) 	 -z; • 

T 

Finall~ we obtain 

T2 Var(Sr) 
=---------2 	 2 • 2 

n ~ ( T - rt' - f't") 

For many purposes, an adequate approximation to the above is 

n - 1 
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Thus, we can take as a test of the hypothesis that the series is Poisson-s 

the variable 

!•/\ ]2· -, n-1s - 1 m (r(-+ ·z-'t) - --
~ - p: T 
L- -Var [ ril' (r -c- + -l ?- ) "J 

r = o g 

which would be, to a first approximation, distributed as-;! with s 

degrees of freedom and perform the usual test. We mention that as 

n ~ c.xJ, the S are asymptotically normal. This follows from a result 
r 

of Hoeffding (/6). 



CHAPTER VI 

Spectral Analysis of Point Process 

6.1 Introduction 

Previously we have discussed correlation analysis and the 

estimation of the intensity function for point processes. Generally 

speaking, correlation analysis is useful in determining departures 

from the Poisson or purely random series and in the study of superimposed 

processes~ The correlation function is a natural one for considering 

the evolution of processes in time. When the practical effect of the 

process is more conveniently measured separately for the different 

harmonic components, it is then more natural to use spectral analysis. 

For the sake of completeness 5we shall give a brief intuitive 

discussion of spectral analysis for stationary processes. The specifi

cation to point processes will then be made. 

6.2 Stationary Processes 

In the context of harmonic analysis, it is convenient and gives 

some extra generality, to allow complex valued processes. This enables 

us to deal directly, for example, with A.C. signals. Let X(l)' X( 2 )' 

Y(l)' Y( 2 ) be real valued random variables. 

Let 	 x =x(l) + i x( 2 ) 


y = y(l) + i y(2)• 
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We then 	define 

E ( X) = 	E [X ( l )1 + i E[X ( )J2 

E(Y) = E[Y(l)l + i E(\ 2)]. 

If we suppose E(X) = E(Y) = O, we can then define the covariance of X 

and Y by Cov(X,Y) = E(X,Y) where Ydenotes the complex conjugate of Y. 

Then Var(X) = E(X,X) =E[xf1) + xf2)7 is real and positive. The 

physical justification for these definitions is that,if x(l) + i x(2) 

represents an A.C. signal, then Var(X) is proportional to the mean 

power generated. 

Now, if X =X(l) + i X( 2 ) and Y = Y(l) + i Y( 2 )' then 

Cov(X,Y) =E[X(l) y(l) + x(2) y(2)1 + i E[x(2) y(l) - x(l) y(2)J' 


so that Cov(X,Y) = 0 does not imply that the components are separately un

correlated. We shall say that if Cov(X,Y) = O,then X and Y are 


orthogonal random variables. 


Generally speaking, 

Var(X .+ Y) = Var(X) + Var(Y) + Cov(X, Y) + Cov(Y ,X) 

so that if Cov(X,Y) = Cov(Y,X) = 0 

then Var(X + Y) =Var(X) + Var(Y). 

iurt
We now 	 consider, for a fixed W, processes of the type Re 

· t · t · d R iwn (( - oA < t < """' ) in con inuous ime an e n = . . . ' -1,0,1, ••• ) 

in discrete timeiwhere Risa complex-valued random variable. In 

continuous time ur can be any real number, but in the discrete case, 

there is no loss of generality in taking -n ~()J< n, since for all n 

i(W-+ 2kn)n iuri
and integral k, e = e 

iu·nWe now examine the conditions under which Re represents a 

second-order (weakly) stationary process. Obviously E(ReiiVn) is 



independent of n if and only if E(R) = 0 and we shall assume this. 

The above is independent of n and a stationary correlation function 

exists provided E(R R) < = . 
k 

R. t:jw-inIt can be easily shown that z: represents a stationary 
i=l J.. 

process, if and only if,E(R.) = 0 and Cov(R. ,R.) = o for j I i. The 
J.. J.. J 

correlation function of the sum is then 

k 
L. E(R. R.).
i=l J.. l. 

Thus the variance of R. can be regarded as determining the contribution 
J.. 

of the component at frequency W . to the total variance of the process.
J. 

Suppose we formally let k -7' o0 in the above sum. In discrete 

time, we take a set of UJ .'s covering the interval [-n,n). In 
J 

continuous time we cover, in the limit, the whole real axis. The 

limiting form of the sum is obtained by considering 

iwn x = e dS(w) in discrete time (n = ••• , -1,0,l, ••• )
Jn 

o<J5 iwt or X(t) = e dS(w) (-oo < t <o.-a) 
-<>f;J 

where S(w) is now a stochastic process defined over [-n,n) in discrete 

time and over (-<:><9 , 00 ) in the continuous case. At points of dis

continuity, we take (by convention) S(w) to be continuous on the right. 

For example, if lif. 1 s are to be equally spaced over [-n,n)
J n 

with W. = jt.. vY, we can consider X = eicun dS(w) to be the limitsJ n 

as t.. w...:;. o of 
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rr./t::,v.: 

where2= 
Jt 

j = - t::,UJ 

dS(w) • 

Now the requirements for R. so that the sum above defines a stationary
J 

process is that E(R.) = o and Cov(Rj ,R ) = o, j j. 1. Thus,
1J 

w 
E [{

2as(w)] = o and E t2 £4 = 0~ dS(w) dS(f,v)] 
3 

(l<! < W .("W < W)
1 2 3 4 . 

We call S(w) a process with orthogonal increments. For Ur < ~' we
1 

have 

2Var[ S(W )] = Var [ 1l dS(w) + [ dS{<u)]
2 

1 

w2 ]+ Var [ J dS(w) • 
(All 

Thus, Var [ S(w)] is a non-decreasing real valued function of lU , 

say G(w). G(w) will be continuous on the right. This function 

completely specifies the second order properties of S(w) and 

Var(Xn) =Var[_~ dS(w)] = G(rt) in discrete time, and Var[X(t)] = G(_,) 

in continuous time, where we have taken G(-n-o) = o and G(-.x:>) = o. If 

we define F(w) = a;41~, it has the mathematical properties of a distribu
x 

tion function defined over [-n,n) or (-"",<><>). We call F(w) the 

spectral distribution function. Now F(w ) is the proportion of the 
0 

total variance of the process contributed by the harmonic components 



lu ~ Ll'o. In other words, the spectral distribution function specifies 

how the t~tal variance of [ Xn J or [ X( t )] is sub-divided amone the 

orthogonal components makin~ up the representations of these processes. 

Thus, we may consider processes having the structure 
TC • • oiJ 

Xn = J e1 :.m dS(u:) or X(t) = 5 eiwt dS(w) 
~ -~ 

with s(w) having orthogonal increments. The second-order properties 

of S(w) are specified by a function G(0), which is the total variance 

'-- 2O of the process and by the spectral distribution function 
x 

F(W) = G(w) • 
er 2 

x 

We summarize the properties of processes defined by the above 

equations. 

(1) Ef dS(w)J = o 

(2) Cov [ dS(wl), dS(w2 )J = E ( dS(Lu
1

) dS(w
2

)] = o J w l -1" w
2 

(3)Var[dS(w)J =E[jdS(01)/ 2J =dG(w). 

In discrete time, Var [X] = G(n:), i.e., 
n 

Var ( X ) 
n 

= E [ X 
n 

X J 
n 

eiUj_n dS(lU
1

) l e-i u2n dS( w 
2 

)J 
-1t 

= 
TC 

f dG(w) 
-TC 

since pairs lU1 I l<l
2 

contribute zero to the expectation. 

We can obtain the autocorrelation function 

= J
1t 

eiwh dG(w) 
-n: 
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since only contributions where W = w need be considered. Thus
1 2 

the function G(lu) or F(l-V), the spectral distribution function, has two 

interpretntions. It gives the probabilistic properties of the components 

in a Fourier analysis of the process itself. It also gives directly the 

components in a Fourier analysis of the autocorrelation function. 

Suppose F(cu) is a discrete distribution. Then, there is a 

finite or denumerable set of values w 
1

, w , • • • at which F(w) has
2 

positive increments f
1 

, f 2 , • • • with Z f i = 1. Then we can write 

X = Z eit-L.Jn R. where 
n J 


E(R.) =~; Var(R.) = f. 0-
2 and Cov(R.,R ) = o 1 f j.


1J J J x J 1

Such a process has a discrete spectrum. We have also 

2 iW·h0- R(h) = e J f. and x J 

...!.L = 1 
a 

~2aer 2 h=-a x 

~he limit being zero when l<J. is replaced by a value of U/ not in the 
J 

set u\' w 2' • • Note that the f. 's can not be determined from a 
J 

single realization no matter how long. All we can determine, from 

analysis of a single realization,are the values R1 , R2, ••• 

Suppose F(w) is absolutely continuous with a spectral density 

function f(w). Then we have 

2 
n iwh0- R(h) = s e f(w)dw • 

x 
-n 

f(tv) 1 °"' -iwhTherefore =-2n z:: e R(h) or 
0- 2 h=-<>O 

x 
ob 

a- 2 R(h) = s e 
iwh f(w)d w and 

x 
-e-0 

http:eit-L.Jn


i.e., the correlation function and spectral density function are 

Fourier transform pairs. 

6.3 Snectral Analysis of Point ProcAsses 

For point processes, there are several ways to proceed if one 

wants to analyze the process by means of the spectrum. Generally 

speakinf,,we have available both N(T), the number of events in an 

interval T, the sequence of intervals X1 , x2 , ••• , Xn between events. 

First 	of all, we shall consider the sequence of intervals 

, X • These can be thought of as a stochastic process
n 

in discrete time and can be handled by standard methods, of which we 

give a summary. First, we estimate the correlation function R(h) by 

means of the sample correlation function 

n-lhl
1 z:n-/hl t==l 

The Ch are computed after removing the trend in the sample due to the 

mean, i.e., we assume E(Xt) == O. 

We then estimate the spectral density by means of the periodo

gram 

/). ((}J.) == 2 L
n-1 

(1 - ill)chcosw.h. 
n 1 h=-Cn-1) n 1 

It is well known (Jenkins ( /7)) that the periodogram J!. (c..v) provides an 
n 

estimate of the spectral density f(w), but since 

Var Cc? (w) J '::::- [2 c7- f(w)] 2 it follows 
n 
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that the estimate is not even consistent. 

Bartlett ( }.._ ) suggested estimates of the following form 

~lfs((A)) = 1i;-l [ l + 2 L Cl - ;)rscosws J 
s=l 

. cs 
where r =c~ 	are the sample estimates of the normalized autocorrelas 
...c-ions. This estimate, which uses the first m ( n autocorrelations i 

is known as the truncated and smoothed periodogram, and is the most 

commonly used today. 

Grenander and Rosenblatt,p.58(7)suggested a general class of 

estimates of the form 

n-1 	 ]
= n-l [ 1 + 2 	 LA. (w)r cosws 

s=l s s 

or equivalently 

Sn fl Cx) µ Cx)dx
n w 

0 

where the weighting functions A.s(w) and µw(x) are chosen so as to make 

the estimates 	consistent. 

In actual practice, these estimates will be used in cases 

where the true spectrum is initially at most roughly known,and the 

departure from this supposedly true spectrum is the problem of interest. 

'rhe choice of suitable weight functions is not a critical step and the 

~ain problem is to choose a suitable value for the number of correlation 

coefficients to be estimates, say :t. Now, providing the true spectrum 

is relatively smooth over the bandwidth d for which we want to resolve 

points of the 	spectrum, then we should chose :t so that :t / ~n • The 

various weighting functions commonly used and some of their properties 



are summarized in the tRble below. 

Spectral Weirht Functions 

A. 
s 

2\. ..<- c ~ w ~ {)sin sf TC
(1) Daniell ~(/s) ~ n) 

O~otherwise 2fJ s £/ 

(2) Bartlett 1 - /~{ °!(/s/ ~ l:) 
2:i: 
3n0 "l(Jsl 7 -'.t) 

..l. [sin ( ::r++.) w 21:(3) Tukcy 
Lm sin1- lV 4n 

n; ]
+i [sin[( :t4 )lb+'! 

sint(w+.!!.)
i 

+ sinC~~+i)(tu-J:)]7) 
sim-(tu-J: ) j 

2 
3:(4) Parzen I 6s , 

1 1< ~ 
2n- 1:2(1-ii2L) s .... 2 

3::" 

2(1 _- J~/) 3~~ < ]s J ~ :t" 

0 1 )s}7=t 

n = total no. of observations 

~=effective lag, i.e., no. of 

correiations computed. 



It is a well-known fact in sp~ctral rinalyr:;is thnt there i.s n 

sort of indeterminacy between resolvability and statistical reliability 

ns measured by the variance of the estimator. From the above calculated 

values of the variances of the estimators (approximate), we see that 

increasing the value of l increases the variance but also cnnblcs us 

to resolve more clearly between power at different freqw:mces. On the 

other hand, decreasing the value of l decreases the variance but 

decreases the resolvability. The attempt at choosing the various 

weight functions then is an attempt to suitably balance resolvability 

and statistical reliability for a given class of theoretical estimates. 

6.4 	 Estimating the Spectral Density for a Counting Process 

The complete covariance density for a counting process 1 f:'.N( t)., 

was 	defined in section 5.3 as 

:ye('[') = A.a C- + Y ( 73 where 
n 	 n 

Cov [N(t+f:'.t)-N(t), N(t+c+t'\t)-N(t+C-)]
y ('t) = lim 

n f:'.t-7 0 	 (6t) 2 

We can then define a complete spectral density function as the Fourier 

transform of 

1g(w) = 2n; 

( '":\.. ) -iw'i+l Y c e ac-.2n n 

then we have 

-i l,i) ?A. A.
g(w) = +  - A] e d'C:'.2n 2n 
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It is comrenient to define a spectral density for non-ne~ntive (,,I.) 

by 


;\ ;\ -i w?
,, (w) = 2g(lU) =-+- e d 'C. 
~'+ 1~ n 

Since we Are considering only real stationary processes• 

I ('[-) =I (- C-) and I (?.-) -7 A. as (- -7.o<::>. A very useful alternative 
n n n 

form for g+(w) is then 

e/c.u) = ~ r1 .+ I~ (iw) + r:(-i w )] 

.. 
where I (s) is the ordinary (one-sided) Laplace transform of I (?).

n n 

In turn, Yn ( t) is obtained from g+(w) by the usual inversion form'ula 

for Fourier transforms. 

We can thus write 

o4J 

;\ [ ob 
g+(w) = n 1 + ) e i tw In( t ) dt + r 

0 0 

which is the most useful form for our present purposes. 

We now define 

to1(w) ) eitw dN(t)=-Ht 
0 Jn:t: t=o 

n . T <»1 ei s= L_ 
s=l~ 

, T are the times in t at which an event occurs. 
n o 

:. Ht (w) = --1 rLn cos(T w) + i 
o Jn:to s=l s 

We can thus define for the process { tiN( t)} the periodogram 

J (~) = H (w) H (w) where 
t t t 

0 0 0 

the bar denotes complex conjugation. 



Thus 

1 ~ \...n iW(T -Tk)() t (w) = -- L Le s 
0 

I~t 
0 s=l k=l 

n-1 n-s
1 -iw(T + --T -)Je s ,J ,1= ~[t + t ~ r 

0 0 s=l j=l • 

If we de fine 

n-1 n-1 
I ( t) = 1 r: z: o(t.+.-t.-t)

n n J. J J.i=l j=l 

as an estimator of In(t) where o(t) is the Dirac delta function,and 

recalling that the Fourier transform of a Dirac delta function is 

oO 

1 1'wt 1 iwa 
2n; s o(a-t )e dt =- e ' 2n; 

- oi) 

we have that 
oO oO 

eitUiin(t)dt +J"t (w) = tn n; [ 1 + S 5 e-it(,'/ In(t)dt]. 
0 0 0 0 

S . n
ince t is an estimator of A., we see that d t (w) is indeed an 

0 0 

estimator of g+(w). 

/l (w) =~ (w) has sampling properties similar to the periodod t + 
0 

gram for intervals between events. There are a number of differences, 

however, that make estimation of g+(w) more difficult than they were 

for the spectrum of intervals. 

(1) The spectral density g+(w) is not a periodic function and 

hence neither is its estimator 'i+Cw). The problem arises then over 

what values of w to estimate g/w). 

(2) The lack of periodicity arises because the covariance 

density, in the time domain, is a function in continuous time. Thus, 
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2

if we require to smooth the estimates by some weight function, we can 

no longer perform the integrations as simply as before. 

The function g+(w) is actually a "power spectrum" analogous to 

o- F(w) in the case of intervals. It is convenient to estimate the 

g+(w) 1 
normalized spectrum y ' (y = ~) rather than the power spectrum. This 

can be done quite simply by normalizing the time scale by multiplyine 

by the estimate t of Y. We then obtain 
0 

,...., n n
.l... [g+(w') = rm L E exp i r~·to ~ (Ts-Tk) t }]

s=l k=l 0 

= ·n;n 
1 z; 

n 

2n:p
The spectrum is computed at the points W 

p 
' =--n • 
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