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Using a Q-spoiled Nd-glass laser an experimental investigation
of frequency doubling in NiSOu.6 HZO was carried out, The frequency
doubling was observed to occur at a phase matching angle of 56° F 1°,
Experimentally it is shown that the fundamental frequency at
A =1,06 um is an O-ray while the doubled frequency at A = ,S5%um is
an E—ray, Since the amplitude for electric dipole frequency doubling 
in NiSO#,6 HZO is zero, these observations are unusual. The observa-
tions are attributed to magnetic dipole and/or electric quadrupole
frequency doubling, Evidence to support this view comes from the
magnitude of the effect and fromﬁits azimuthal dependence. The elec-
tric gquadrupole type frequency doubling is consistent with the data

only if the susceptibility coefficients satisfy the relation

Qxfglz =1 (Q/Kffn - ffzz)
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CHAPTER I

INTRODUCTION

The physical phenomena that occur when light interacts with
matter have always been of great interest to physicists. This in-
terest has been stimulated further by the development of the laser
as a high power coherent source of optical radiation., In particular,

a new field of phenomena "nonlinear optics" has been created. The
work reported in this thesis will be concerned with some of the
experiments in this new field.

It is well known that when a light beam propagates through
a medium a polarization is induced. For conventional optical fields,
the amplitude of the induced polarization varies linearly with the
applied field. This is to be expected, since the fields in the atom
are so large that the externally applied field is only a small per-
turbation on the much larger local fields. The situation has changed
with the availability of high power optical fields in laser light beams,
With a laser light source, the observation of nonlinear effects is
possible. The question may now be asked as to what sort of phehbmena
nonlinear effects might produce. Some of the qualitative features can
be illustrated by making a scalar power series expansion of the induced

polarization in terms of the electric field

P = alE + a2E2 + aBE3 B (1-1)



where a is the customary linear polarizability and ay and a3 are the
coefficients of the nonlinear terms. If it is assumed that a plane
wave with electric field E=E° coswt is propagating through the medium,

the induced polarization is given by

P=aE coswt + B (1+cos2 wt) + ag.‘} (3coswt + cos3wt) + ... (1-2)
10 2 o T o

a
2

The first term an induced polarization at the frequency of the applied
field, will radiate an électromagnetic wave at the fundamental frequency.
It is this term which is responsible for a medium having a refractive
index different from unity. The first nonlinear term produces a d.c.
polarization and one at twice the frequehcy of the applied field. The
zero frequency term will induce a voltage across the crystal, so this
nonlinear effect is called optical rectification. On the other hand 6 the
induced polarization at twice the frequency will radiate an electro-
magnetic wave at twice the frequency of the applied field. Therefore,
this nonlinear process is called frequency doubling or second harmonic
generation (S,H.G.). 1In a similar manner  the next nonlinear term will
produce frequency tripling or third harmonic generation (T.H.G,) and
also will give rise to an intensity dependence of the refractive index,

Perhaps the most striking characteristic of nonlinear phenomena
is the production of light at frequencies different from that of the
applied field., The first successful observation éf a nonlinear effect
was performed by Franken et al. (1. In that experiment the light
from a ruby laser (.6943 um) was focused on a quartz platelet. The

transmitted light was analysed with a spectrograph and a minute amount



of doubled light at .3472 um was detected. The doubled frequency light
was attributed to radiation from an electric dipole polarization at the
doubled frequency which was induced by the laser light., This initial
experiment was rapidly followed by others (2 3, 4) in which enhanced
frequency doubling and mixing were observed.

Besides frequency doubling 6 other nonlinear effects have been
observed. The optical rectification of light has been reported by
Bass et al. (5). Third harmonic generation 6 electric field induced
frequency doubling and electric quadrupocle frequency doubling were
first observed by Terhune et al., (6). The latter two effects are of
interest since they are small compared to electric dipole frequency
doubling, Tﬁeir observation was possible in calcite because the co-
efficients for electric dipole frequency doubling are zero in a crystal
with a centre of symmetry. Since a surface has no centre of symmetry,
it is possible'to observe freguency doubling on reflection, This ef-
fect was first observed by Ducuingand Bloembergen (7). In that
experiment  doubled frequency light was detected in the laser beam
reflected from the surface of a gallium arsenide (GaAs) crystal. The
last nonlinear effect that will be mentioned is the intensity dependent
refractive index. The effect is due to an induced polarization pro-
portional to three electric fields and has been observed by Maker
et al. (8) in liquids.,

The investigation reported in this thesis was motivated by the
discovery of a different null condition on electric dipole frequency
doubling. The amplitude for electric dipole frequency doubling can be zero

for uniaxial negative crystals belonging to the point groups (422) and



(622), In the hope of observing some new nonlinear effects, an
investigation of the frequency doubling in nickel sulphate hexahydrate
(NiSOh.GHZO) was undertaken, This crystal is uniaxial negative and

belongs to the point group h22.



CHAPTER II

THEORY

(2-1) The Nonlinear Susceptibilities

In the preceding section a scalar expansion of the induced
polarization was used to illustrate nonlinear phenomena, For a crystal,
such an expansion is not correct., It is well known that there is a -
tensor relation between the induced polarization and the electric field.
Furthermore, the effects of dispersion were neglected in the expansion.
A more realistic series expansion of the ith component of the induced

polarization is

P, = Pxfj(w) Ej(w) A S (o =w-w) E (w) Ek(w)

j

+ P (2w=w+w) E (w) Ek(“’) +

1;|k (2w=w+w) E (w)V (a))

JkQ

+ A peg(2w=orwtw) B(0) B (w) E(w)

P _EEE

X; % Gw=wtwtw) Ea'(w) E (w) Eg(w)

L (2"1)
where

%Xﬁj(OU) is the linear electric susceptibility,



gX??(o=cu-60) is the coefficient for optical rectification
$ ) . .

%X.. (2w=w+w) is the coefficient for electric dipole
ijk

doubling,

P _EVE

)adk (2w) is the coefficient for electric quadrupole fre-

quency doubling,

%Xf?ﬁ (2w) 1is the coefficient for electric field induced
frequency doﬁbling,
B _EEE R - s
and Xijk (3w) is the coefficient for frequency tripling,

The summatiog convention on repeated indices is implied. A complete
expansion can also contain terms which are proportional to the magnetic
field, In addition  there can be analogous series expansions of the
induced magnetization and electric quadrupole polarization. It should
be noted, that the coefficients for optical rectification and electric
dipole frequency doubling are no longer related as they were in the
scalar series expansion. In this way dispersive effects can be included
in the expansion,

The number of independent coefficients in the susceptibility
tensor is restricted by the crystal symmetry. This can be expressed in
the principle that the susceptibility tensors must be invariant under
all ;ymmetry operations of the crystal point>groups. Let A = A“B be a
symmetry operator belonging to the point group of the crystal, where A

is an orthogonal transformation, i.e. the inverse of A is equal to the

transpose of A, Let the primed symbols represent the new quantities



after transformation  so that

P = A_.P

o ai i
/
B = A . E .
N B3 3
Thus p, = X, EE...B
B i iJk ..-.'- jk 2
b = X ' E ... B
econes @ - aBY oocs B Y LI N 8
P X’ A, A ,E E
and Aai i = aBY 'ous Aﬁj Yk XX 54 jEk as e z

= Ay Xige o0 BB e Bg

/

A, X

Therefore X o «.-g ai Figk ... Pgp Ry oo Mes

= Aug By Ay oo Bse Xijk el "

If the tensor is to be invariant under the symmetry operation A then

X“BY o-os = A&i Aﬂj AYK cee AS‘e Xijk ...z (2"2)

There will be as many equations (2-2) as there are symmetry operators

belonging to the point group of the crystal. Equation (2-2) is valid

only for polar tensors. Axial tensors can also occur in the expansion
(2-1) when magnetic effects are included, For axial tensors the

transformation equation becomes

Xugy +++ R VR Y U Aée)(ijk g+ (@3



The negative sign must be taken with symmetry operators which transform
from a right handed coordinate system to a left handed system or vice
versa. The plus sign is chosen for those symmetry operations in which
the handedness of the coordinate system does not change.

As a relevant example, consider the case of electric dipole
frequency doubling. In this case equation (2-2) becomes

P ' P
Ky (290 = Aoy gy Ay Ny @w)

For a crystal with a centre of symmetry, the inversion operator

A=~ Smn belongs to the point group. Therefore,

LB P EE P
Ty (20) = (-6, (<630 (-8,0 K[ e = - T (2e) =

This is the important null condition on the coefficients for electric
dipole frequency doubling in crystals with a centre of symmetry, For
crystals with no centre of symmetry crystal symmetry will require
some  but not all of the components of a tenéor to be zero.

The susceptibility tensors may also possess intrinsic symmetry.
depending on the nature of the physical process they déscribe. This
additional symmetry will reduce the number of independent coefficients

even further., In the case of electric dipole frequency doubling,

P,(2w) = X7 (2w) Ej(w) F(w), the fields E(w) and F(w) are

\ indistinguishable., Hence the tensor ;x (2(0) is symmetric in its

last two indices, and



B EE

P EE
X; jl2w) =

(2w Xikj(Zw).

On the other hand, in the case of sum or difference frequency genera-

tion,
P_EE \
Plwg=wtw) = _xnijk( Wym Wt w,) Lj(wl) B (w,),

the fields are distinguishable. Hence the tensors I}f?k( Wq= W, & wa)
are not required to be symmetric ip‘the last two indices.

All crystals can be classified into 32 different point groups.
The form of the suéceptibility tensors can be determined for each using
relations (2-2) and (2-3)., Fortunately in the case of electric dipole
frequency doﬁbling, the symmetry restrictions on the coefficients are
exactly the same as those for the plezoelectiric coefficients. Hence
the form of the electric dipole tensor EX??k(Zau) is the same as that
of the piezoelectric tensor and can be found in most books on piezo-
electricity (9. Thereis, however' no relation hetween the magnitude
of the frequency doubling coefficients gﬁd the magnitude of the piezo-
electric coefficients, Out of the 32 point groups only 21 are piezo=-

electric, i.e. no centre of symmetry and therefore suitable for fre-

quency doubling,

B
Ik

symmetric in their last two indices, some authors have used the con-

Since the frequency doubling coefficients %K? (2w) are
tracted tensor notation that is used in piezoelectricity. In this
notation a single index £ , Wwhich can take on the values 1 to 6 re-

places the last two indices j and k where,
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g = 1 2 3 4 5 6
jk = 11 22 33 23 13 12
3,2 31 21

The most general frequency doubling tensor corresponding to a
triclinic crystal belonging to the point group 1, is given below in

the contracted tensor notation

g2
X
i
-9 T - Y
P X X, X A X5 Xgl EZZ
Pol =% e Koz Ky Xps Kygf 2EE 1.
| ‘ °E E
PZ XBJ- X32 X33 X}L} %35 X36 X 2
- " - 2E E
Xy

There are 18 independent coefficients. This number will be reduced
for point groups‘of higher symmetry. In the case of the other nonlinear
susceptibility tensors the effect of crystal symmetry can be found for
both polar and axial tensors up to 4th order, in a review article by
Birss (10). The effect of any intrinsic symmetry that the physics may
require can be added, |
Up to this point nothing has been said about the magnitude of
the nonlinear susceptibility coefficients. Rough order-of-magnitude
values can be obtained theoretically. Using perturbation theory,
Franken and Ward (11) have shown that the ratio of the electric dipole

frequency doubling susceptibility to the linear susceptibility is of



11

the order of the inverse atomic fields. They estimate the magnitude of
the frequency doubling coefficient to be 10"7esu. In a measurement of
the absolute magnitude of the nonlinear susceptibility the experimenter
encounters several difficulties which will be elaborated on in a later
chapter, The most reliable value for the frequency doubling coefficient
has been obtained by Ashkin et al. (12) using a gas laser. They measured

a value of 3 x 10 9e°u for the ;KEE (2w) coefficient in potassium di-
312

hydrogen phosphate (KDP), - For the present the best experimental procedure
is to measure the magnitude of the other nomlinear susceptibilities re-
lative to that of KDP., If the electric fields are measured in stat-

volts per cm the expected values of the susceptibilities in (2-1) are:

P E =l  BEE o-? B o109
Xij(w) 10 xijk(O) 107, Xijk(zw) 1077,
P EEE . o1om13 =16

Xi 3k (2w =otwt ) ~10 7 xi e (2w)~10~ and

-16

X3 3k (3w )~ 1070, For comparison, the values of the sus-

ceptibilities in rationalized m.k.s. units are;

PxiEj(w) ~107Ht xlak(o)fvlo %(f?k(aw) ~1072%
l}cffg (2weorwsw)~1072 T (2e0) ~207 ana
P (3w)~1o -3,

1jk



(2-2) A Microscopic Theory of the Nonlinear Susceptibilities

In the first sub-section, a phenomenological description of the
nonlinear susceptibilities was given, It is desirable to be able to
calculate the nonlinear susceptibilities from first principles. The
problem is similar to that of caléulating the linear electric sus-
ceptibilities from a microscopic theory. This was first accomplished
using the classical Lorentz-Drude model in which the medium was con-
sidered to be an assemblage of harmonic oscillators. An extension to
include nonlinear effects may be made (13) by generalizing to the case
of anharmonic oscillators. Although this simple model has its limita-
tions,6 it yiglds almost as much insight into the nature of nonlinear
phenomena as does a more rigorous quantum mechanical calculation,

The equation of motion of an anharmonically bound electron

driven by an oscillating electric field E=E° coswt is

X + cuozx + axz = -EEQ coswt. (2-4)

m

where x is the displacement of the electron, Ckz is its resonant fre-
quency in the harmonic linit « is a coefficient specifying the degree
of nonlinearity and e and m are the charge and mass of the electron
respectively., If the nonlinearity is small it can be treated as a per-
turbation and solutions to (2-4) in the form of a Fourier series can

be found by successive approximations. Assume a solution of the form

X = xlcoswt * x2 cos2wt

12



Substituting this into (2-4) and equating coefficients of the same

frequency, one can show that

and

If the medium has N

polarizations are

Plw)

and P(2w)

eEo 1
m w 2_ w2
[o]
2.2
o ek o 1
2 2 2)2
m

(woa-hwz) ( woz- w

oscillators per cubic centimeter the induced

L]

13

2
Ne . PE
550 B X (@)E (2-5)
m( @ _“- ) :
[¢]
Nae 1 g2, PEE 2
2n° (w02_4w2)'(w02_w2)2 o = X(2w)'o

An inspection of (2-5) shows the familiar increase in the linear sus-

ceptibility near an absorption band,

There is an analogous increase in

the second harmonic susceptibility when either the fundamental or the

second harmonic is close to an absorption band., The infinite resonance

can be made more realistic by introducing a demping term lqi in the

equation of motion (2-4)., The same model can also be used to calculate

the other nonlinear susceptibilities in an analogous manner,

A more rigorous calculation of the nonlinear susceptibilities

can be obtained from quantum mechanics.

Extensive calculations using

time dependent perturbation theory (11, 14 15) and the equation of

motion of the density matrix (16, 17  18) have been carried out by

many authors.

For comparison with the susceptibilities in (2-5), the

linear and electric dipole frequency doubling coefficients as determined
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from perturbation theory (15) will be quoted here. As before with
an applied field E(t)wEo coswt the susceptibilities are defined in terms

of the field amplitude as

Py (@) = ey (@)E ()
and .
Pi(Zw) = Bijk(zcu) on(w) Eok(w)
where aij(w) = gh_ }3<ri> <r.> — 1+w * — l-w
n gn J ng ng ng
and
( y e3 .
B. 2W) B = =—— 9§ ¥ <I.> <r.” <r, > *+<r,> Lr,. >
ik ' 4ol (om gn | " mn k mg 3 ng k" um
'Anm + <ri> <r.> <rk> an}
: mn J ng ng
where
A = 1 + 1
nm (wng-Zw)( “ng w) ( wng+2 w)(wmg+ w)
B 1 1l

= +
mn (w g w)( wng+w) ( wmg+ w) ( _“’ng’" w)

These susceptibilities only apply to an isolated atomic system. The
sumnations are extended over the electronic excited states n m of the
atom where-ﬁcyng is the energy of the nth state above the ground state

and <ri7 is the matrix element of the ith component of the position
gn
operator r between the ground state g and the excited state n. The

frequency doubling susceptibility contains the product of three matrix
elements, Each Proch&ct . vanishes identically for an atomic systen
that is invariant under inversion symmetry. Hence the symmetry require-

ments on this coefficient come naturally out of the theory.


http:prodt.1.ct
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The linear susceptibility has been extended to dense media by

Lorentz (19) to give the femiliar expression for cubic crystals.

)(ij(w) = N—g-g-f%-)j-g aij(w)

where N is the number of atoms per unit volume, Using a similar sort
of analysis Armstrong et al. (14) have also extended the frequency

doubling coefficient to dense media

_ E(ew)v2 12T €Cw)s2 T 8, .. (2w)
Xipl2w) = N [“"‘"‘3"‘"’] [ 3 ] 13

where £(w) and € (2w) are the dielectric constants at the fundamental

and second harmonic frequencies respectively.

(2-3) Wave Propagation in Nonlinear Media

In this section, it will be assumed that a macroscopic nonlinear
polarization exists and its effect on a wave propagating in a nonlinear

medium will be determined. In particular it will be assumed that a
ei(kl'r—wt) at the frequency w propagating through

A o OF T
a nonlinear medium will induce a polarization P(2 w) = ){:E%E%el(2k1°r 2wt)

plane vave Hw) = Eo

at the doubled ffequency. The problem will be to determine the intensity
of the doubled frequency light that is produced. Firstly 6 it should be
noted that the polarization at the doubled frequency propagates through
the medium with the same phase velocity as the wave at the fundamentai
frequency. Since most materials have dispersion at 6ptical frequencies,
the electromagnetic wave radiated by the nonlinear polarization will
propagate through the medium at a different phase velocity. The doubled
frequency light will soon be out of phase with the'polarization.thét is

generating it., There will be destructive interference and the intensity
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will be limited. If the indices of refiaction of the fundamental and

the doubled frequencies should happen to be the same, the doubled fre--
quency intensity could be lafge. The importance of conserving electro-
magnetic momentum in the frequency doudbling process will be illustrated
in the following calculations,

A practical problem as far as experimental nonlinear optics is
concerned, is to determine the amount of doubled frequency radiation
produced in a platelet of thickness £ . The simplified calculation
given here follows that given by Naiman et al. (20)., It will be assumed
that the light is incident normally at z=o on the surface of an infinite
slab of nonlinear material. The geometry for the calculations and the
relevant quaﬁtities are shown in Figure 1., The effect of absorption at
both the fundamental and the doubled frequency has been included in a linear
fashion by allowing the refractive indices to be complex, All the quan-
tities listed in Figure 1 are values in the medium. The effect of boun-
daries has been treated in detail by Bloembergen and Pershan (21) and
will be neglected here. The depletion of the fundamental frequency wave
through its conversion into doubled frequency will also be neglected.
This is a good approximation experimentally since the conversion
efficiencies are usually low,

The starting point for the calculation is ﬁaxwell's equations
in which the induced polarization P(w) = j?:ﬁoﬁoei(ZEl';—Z‘”t)

is treated as a source term for doubled frequency light



Figure 1

Frequency Doubling in an Infinite Nonlinear Platelet

All the waves are propagating in the direction of the
z~axis. The quantities n{w) and n(2w) are the complex re-
fractive indices, k1 and k2 the wave numbers, and & and @,

the amplitude absorption coefficients at the frequencies w and 2w

respectively.
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(2-6)
B(2 w)

ar
c

TxB(2 w) Blaw) .

]
O -
ped 2 U
Yl

E(2w) Blow) *

These equations can be combined to form an inhomogeneous wave equation

for the electric field at the doubled frequency

2 - -
“g £ (2w) How) = ~lL— X 155 L2

c C

V2 B(2w) +

For the geometry chosen all the waves are propagating in the z direction,

and the equation reduces to

21k1z

Ex'm
jﬂ

2 2
-9-2— Blow) + k Blew) = - }_é_zz.é@_
dz c

- 2w = X 3
where k, = = (n2 + i 52) and k) = < (n1 + i sl). Taking the scalar

product of the equation with e, a unit vector in the direction of E(2w),

21

one obtains

2

2 )
—-‘15 E2w) + k22 E(2w) = _-1-6—75—“1— X g2 k2 (2-7)
dz c °

where X = (e, « X .elel) and el

which B(w) is polarized. The solution of (2-7) which satisfies the

is a unit vector in the direction in

boundary condition E(2w)=0 at z=o is

2 Ao 2

E(2w)=-167‘d X“o [21}:12 ik,z ]
2,, 2 2 '
(k2 -hkl )
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or | 2k_+k
2 ! 2)
E(2w)=-i87fXEo i( 2 z sin (akl‘ )

2 2
72 - 71
= + i = + R
- where 771 n +is) and 72 n, i 8,
The intensity of the doubled frequency at z = £ can be found

from the magnitude of Poynting's vector

s2aw) = —g%_a— IE(Zw)l

2 2
¢ n, 2 I 2 sin ¢ (7]1 72)“@, - -(s *s, )£
= -?ET' 6 41l :}{ Eo 3 ) > e
72 - 71 ’
Since
2 2 2 2 2
72 - 71 = [(n1+n2) + (sl+s;2) ] [(n.l—n ) + (81-82) ]
and

2
n% (71-7?_)| = sin® & (n-n)f + sinh  Ls -5))L

the intensity reduces to

. 2w sy 2@ o
i 2|2 sin c(nl-nz),e+ sinh c(sl sz)g 2‘6(81"‘82)2
S(2w)=87c n Xz e
2170 1 Jtmpen)2e(s v6)%] [0 -n))%4(s =57
i R 1752 i B 1752
(2"8)-
In the limit of negligible absorption (si' 5, ~o0), the amount of doubled
frequency produced in a transparent platelet becomes
> 2 | sin® %)(nl-nz),a
s(2e) = 8pc n, | XE 5 (2-9).

2y

(n12 - 1,
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The doubled frequency intensity is seen to have an oscillatory
behaviour as a function of crystal thickness. This arises because the
doubled frequency radiation gets out of phase with the polarization that
is generating it if n # nse The effect has been observed by Maker

et al. (3). From equation (2-9) it is possible to define a coherence
length which is a measure of the distance that the doubled frequency
radiation must propagate before it will be out of phase by I with the
polarization that is generating it. In one coherence length the amount

of second harmonic output will vary from zero to its maximum value.

w . T _ A _ A
Hence 5 (nl-nz) laoh = jor éaoh = n(;;:ﬁgy = Tan ° For crystals

with typical dispersion in the visible 0 varies from Sh to 20X,

coh
Of particular interest is the case when n, =n,=n, which corres-
ponds to the conservation of electromagnetic momentum in the frequency
doubling process, i.e. k2 = 2k1.' This is a special case of the more
general momentum condition k(w) + k'(w) = k(2w) for waves that are
not colinear., In the special case, the fundamental and doubled fre-
quencies propagate through the crystal with the same phase velocity and

equation (2-9) reduces to

2 ° w? P2
(2 w) =27TIXE° l =, (2-10)

The oscillatory behaviour has disappeared and the intensity of the doubled
frequency is seen to grow as the square of the crystal thickness, Ex-
pression (2-10) can only represent the initial growth in the doubled
frequency power since it is not valid to neglect the decrease in the
strength of the fundamental when a large amount of doubled frequency is

produced,
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The formula for the amount of doubled frequency produced in an
absorbing crystal at phase matching is of interest for the work reported

in this thesis. For n =n,=n equation (2-8) reduces to

5|2 sinh® a_g (sl—se)«e -2%(sl+sz)£
s(2w) = 81en XEO I s e .
UnPe(s, +s.)%| | 5,~8
172 1 72
In terms of the amplitude absorption coefficlents, oy = %?sl and
) .
az = 2c 52, the expression becomes

. .2
S(2w) = A e -rd 95-‘—;%—-3& (2-11a)

= - ul =
where 5 lal 1a2‘ . Y 2a1 + “2

and

‘ 2
oy 252 |
A2y 2 nc ‘
=3

It can be seen that there is an optimum thickness for which the maximunm -

A=

(2-11b)

amount of doubled frequency will be emitted from the platelet. This

optimum thickness occurs when

(o]

[d s(2w)

a2 }L /.

yielding the condition

tanh &4 = -2-5— . (2-12)
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The above expressions have shown the significant increase in
doubled frequency intensity that can be obtained when the indices of
refraction at the fundamental and second harmonic frequencies are the
same, Since all materials have dispersion at optical frequencies
phase velocity matching is usually not possible. Nevertheless, there
is a method of phase matching in some anisotropic materials, which
makes use of optical birefriﬁgence to overcome the dispersionAthat is
present in the material., The case of a uniaxial negative crystal will
be discussed, However 6 this phase matching technique can also be applied
to uniaxial positive and biaxial crystals. In uniaxial negative crystals,
light can prgpagate in two modes, one as O-ray and the other as an E-ray
and each mode has a different phase velocity or refractive index. The
O-ray index is isotropic, but the E-ray index is not. In Figure 2 the
s0lid lines represent the index surfaces at the fundamental frequency
while the dashed lines are the index surfaces at the doubled frequency.
The latter are outside the corresponding ones for the lower frequency
since the crystal has been assumed to have normal dispersion. The O-
ray surfaces are spheres., A wave will propagate in O-ray mode.if it is
polarized perpendicular to a principal plane, i.e. a plane containing
the optic axis and the direction of propagation., On the other hand  the
E-ray surfaces are ellipsoids of revolution and a wave will propagate
in this mode if it is polarized in a pfincipal plane, If the dispersion
is not too large, the O-ray sphere for the fundamental frequency will
intersect the E-ray ellipsoid of revolution for the doubled frequency.
This is shown in Figure 2, Hence an O-ray wave at the fundamental

frequency propagating in the direction of the intersection will have the



Figure 2

Velocity Matching ih a Negative Uniaxial Crystal

The solid lines are the index surfaces at the fundamental
frequency while the dashed lines are the index surfaces at the
doubled frequency. The O-rayisurfaces are spheres and therefore
isotropic whereas the E-ray surfaces are ellipsoids of revolution,
The refractive index ne(e), of the E-ray is a function of the
angle B between the optic axis and the direction of propagation.
For clarity, both the birefringence and the dispersion have been

exaggerated in the diagram,
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Phase Matching
Direction-




2k

same refractive index as an E-ray at the doubled frequency propagating
in the same direction., The two waves are said to be phase matched, It
should be noted that the phase matching directions form a cone of half

angle em about the optic axis which is given by

sin B, = . (2-13)

6)2 - (n20)2

Phase matching so that two O-rays at the fundamental frequency
produce an E-ray at the doubled frequency is not the only type of phase
matching that is possible in a uniaxial negative crystal. An O-ray and
an E-ray at the fundamental frequency can also combine to produce a phase-

matched E-ray at the doubled frequency. For colinear waves, the conserva-

tion of momentum condition requires that klo + kle = kze or
e o e
n,(g) = % [nl +n (am)] (2-11)
where ‘_%
e 1 1 1 . 2
m (o) [“3’2 * ("—z - —'-z> sin 8}
™ B )
and ‘ -3
e ! 1 1 2
ny () [;“o—z * (n ez " noz) sin 6}
2 2 2 .

Equation (2-14) is not easily solved for 8, since it is of the 4th
degree in sin2 em. When necessary in this thésis' the two types of phase

matching will be distinguished by denoting the first as 00-E and the
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second as OE~E. The former is possible in uniaxial negative crystals
for which nze.$ Iﬁé while OE-E type phase matching has the more res-
trictive requirement n2e <3 (nle + n1°).

The expressions (2-10) and (2-11) cannot be applied directly
to interpret experiments in doubled frequency production in uniaxial
crystals at phase matching. In the experimental situation, it is neces-
sary to use a diverging pencil of rays for frequency doubling rather
than the plane wave of infinite cross section assumed in the derivation.
At phase matching not all the rays in the pencil can be truly along the
phase matching direction. The problem is to determine how much second
harmonic is produced by a ray close to phase matching. For the case of
00-E phase matching as the propagation direction approaches 6 = Gm,

the difference nl0 - n.% (8) becomes very small resulting in the co-

2
herence length becoming very large. Expanding nze(e) about A the

difference is

where 8 = f - em is the deviation of the ray from phase matching. After
substituting this expression in (2-9) the second harmonic intensity for a

ray close to phase matching becomes
2 w2£2 sinz}z
n°c #2

On_%(s)
where }55 -2:— —%ZT S.ﬁ = BQS and

s(2w) = 277 IXEoz l

6 = Gm
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3
B = "7;{‘ n1° '—1—5 - 12 sin 20 .
n.© n°
2 2

This expression is the same as (2-20) except for the presence of a factor
sin2 }/

}92

phase matching will generate doubled frequency.

which is a measure of the efficiency with which a ray close to

For the case of a bundle of rays with a finite divergence  the
function §-i—§—2—2£ must be averaged over all directions in the bundle.
The averaging has been done by Kleinman (22)" who has shown that for a
pencil of uniformly distributed rays with the central ray along a phase

matching direction and the extremum rays diverging at an angle A

from it  the average is

A ¥4
sin® }b b 32 s:'Ln2 gg §
=3/ F(ﬁgA)= oy (1 - “z) 555 as
¥ T . A BLY
Hence the intensity of second harmonic produced by the pencil is
2 29p2
s(2w) = 27r ,)(E 2 l wl® . (8fa)
o nec
The function F(BJA) is a measure of the relative efficiency with which
doubled frequency is generated by a pencil of rays with divergence 2A
compared to what would have prevailed if there had been no divergence.
Depending on the vaiue of B,QA’ two limiting cases can be distinguished.

For a thin crystal or a very nearly parallel beam, phr << 2, the func-

tion has the value -

sas e .

2
F(plr) = 1-1-‘3—%)—- +
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In this case most of the rays in the pencil generate doubled frequency
with maximum efficiency. For a thick crystal or widely diverging beam,

pla>> 2

F(RIA) = B - e o ., .

BZA  p(pfn)?

Here most of the rays in the pencil are not very effective in producing

doubled frequency. In fact, the second harmonic intensity increases only
as ,8 instead of £2.

The above considerations have also been extended to absorbing
crystals (23). Substituting the expansion for nlo - nze(e) into equation
(2-8), the second harmonic intensity for a ray close to phase matching
is
~v£ sin ﬁ£5+ sinh ~ §z

pe8% v ¢

where the constants A ¥y and g were defined previously in (2-11b).

sin2 {325 + sinh Zg,é

S(2w) = A e

for a pencil of divei-ging rays

The average value of

5282"‘ 2
is é
A
5 sin st + sinh 25«6
F(a, §) = 1--=5) as .
g 7'A / A B 82‘*‘ §2

As before, there are two limiting cases, a nearly parallel beam and a
widely diverging beam. However the average also depends on absorption.
If a) & 2a,, then § & o and

12

2
F(A,é)=ﬂ,2[l+-$—2—’£e—§ IV ]
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for a nearly parallel beam., Neglecting all but the first term the

-2

second harmonic intenmsity is S(2w) = A £% &', On the other hand,
for a widely diverging beam it can be seen that the intensity is pro-

) e—‘rﬁ

portional to . If‘§<>>o, then for a nearly parallel beam,

ink 224 (BZA)Z( 1 1 |
F(A‘§)=§E£"§"2"_ [1' " gaez‘sinhzga )+

and to first order the second harmonic intensity is the same as that given

for a ray in equation (2-11). While for a widely diverging beam the

intensity becomes

e”YZ sinh gQ .
BLA

s(2w) = A

In the preceding calculations , the intensities have been those
inside the platelet  while the ones that are measured are outside the
crystal. A correction for losses due to Fresnel reflections at the sur-
faces is necessary. For a crystal platelet in air and phase matching

direction normal to the surface;Athe appropriate correction factor is
6ln>
(n+1

for the amount of doubled frequency that is emitted from a transparent

R =

g €22).  The final expressions, as they will be used later,
)

and an absorbing platelet of thickness.e are written in (2-15¢) and

(2-15b) respectively:

2 |
242
S(2w) = R 128 777 X[ 2(w) “"363' F(alp)  (2-15a)
: c'n
2 2 p2
szw) = ® 128 777 YANED “‘333 K | (2-15b)
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where S(w) and S(2w) are now the intensities of the fundamental and
second harmonic frequencies outside the platelet. In (2-15b) the
effects of absorption and beam divergence have been lumped together in

the quantity K given by

e"Y”e.Fw,A) ~ AR IE N

: +62;;i_,_]ez T

K =

(2-15c)

The process of phase matchiﬁg in a uniaxial crystal is easily
measured by monitoring the amount of doubled frequency produced as the
angle 6 betwéen the optic axis and the beam direction is passed through
the phase matching angle. The observed variation in second harmonic as
a function of the angle 9 is denoted as the phase matching curve. Since
for a ray close to phase matching the second harmonic intensity varies

2

as Sinz where }‘ = 3,25 = g— ée , the phase matching curve for a
coh

parallel beam has a finite width due to the increase in coherence length

close to phase matching., Once the coherence length of the ray is greater
than the thickness of the crystal it will produce doubled frequency with
almost maximum effectiveness. Hence only an infinitely thick crystal will
have an infinitely narrow phase matching curve., For a crystal of thick-
ness E , the full width at half maximum of the phase matching curve is

20?84

W= B . If the beam has a divergence 2A there are two limiting
cases; one where 2A<< W and the width of the curve will be nearly the
same as that for a parallel beam  and the other where 24>>W and the width

of the curve will be essentially equal to 2A. For an absorbing crystal



and a parallel beam, the width of the phase matching curve can be found

by solving the transcendental equation

. 2,2
sinaﬁg'i= % E—y-é- - )sinh 25,@ .
. U%

Unlike a transparent crystal the width approaches a constant value

2%

5 (for g > o) with increasing thickness. In other respects, the

width of the phase matching curve is similar to that for a transparent

crystal.

(2-4) The Time Averaged Free Energy

The object of this section is to.demonstrate the existence of av
time averaged thermodynamic function the free energy from which the
various nonlinearities can be derived. This function can also be used
to describe the usual electro- and magneto-optic effects. In addition,
new symmetry relations among the various linear and nonlinear suscepti-
bilities can be illustrated.

It will prove useful in this section to adopt the convénfion of

writing the fields as

B(w) Jwt 'E'i"(&'-J)e-ia)t

é(t)

ore [ Ba)d@t] .

With the fields defined in this mannér, the amplitude is one-half the
usual amplitude., This has no effect on the linear susceptibilities but
increases the nonlinear susceptibility ?)‘f?k by a factor of 2, Other
susceptibilities will be increased by additional factors of 2, one for

each additional field,



Again  one starts with Maxwell's equations for macroscopic media

> 5 1 08B S8 a7 ( YE
€t 5% VeB-4ZJgs
where /J = - "-7—5_5 *+ Vﬁ.i

dois the electric dipole moment per unit volume, mis the magnetic
dipole moment per unit volume and gis the electric quadrupole moment
per unit volume, These equations can be combined in the cixstomary

way (24) to form the conservation of energy equation

c .0 % A 7 /. 3 3 <] j

PEs ey Py 6098,
Sg.1 7.3, 1 8.3

or "8+7+27.7:% %3;:+K%‘ g -5—%- + L%E =0

where %?% = é'%—iﬁ-t/’;;'%i?-f ‘—7'—.‘:%-; | (2-16)

andg.é=/?7+‘+ﬂ@—andp=g+4ﬂﬁ.

The first term V/g represents the rate at which energy is_ flowing out

of a unit volume element., The next two terms, 1;—-—2/ 59_/?_/ E—-E ‘)g

represent the rate at which the energy density 1n the electromagnetic
Y4

field is changing and the last, -5—9 is the rate at which work per unit

volume is being done on the medium by the external fields.

31
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For the present, the discussion will be llmlted to the electric

ado(t).

dipole term for which the material energy density is S—E é;(t)

Assume the fields can be Fourier analyzed into n interacting waves. Then

o n 3 n K3 . 3

E(t) = 22e 5 Kay,t) =5 [ﬁ(w,,,t) et Wt 4 B, t) e'lw"t]
)’=l V;=1

amany n _ . -.

()O(t) = 2Re I P (a,,t) Tt }: [P(w ) ol 4wt +Drley, t) e :uu,t]
y=1 p=1

where the amplitudes i(cq),t) and P (w,,t) are elowly varying functions

of t. The rate of change of the material energy density is given by

n P
%g'f= e (B ey, 0" Q‘%‘%"ﬂ v ieBa, 0 Flg,)

+ high frequency terms.,

Taking a time average over an interval T long compared to Z%— but
g

short compared to the time for the amplitudes E( ¢y, t) and B (e L, t) to

JJ
change appreciably the high frequency terms will drop out and the time

average rate of change of material energy density is

QU d P(w t)

n
3t = ®e L [E*(wy,t)' 3t * 1w B (e, ) P (w, t)]

For a nondissipative media ~the time average work done on the medium is
zero after the fields have reached a steady state value (i.e.

| M - o). Thus

steady y

state

Ml

i, B (w,)* P (w) = o. (2-17)
1 ,
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This equation is just a statement that the total power flow is a con-
stant, even though it may redistribute itself among the various fre-
quencies. When the fields are initially turned on  work must be done on
or by the medium to establish the steady state value of the polarization,
In the nonsteady state, the field at frequency w,, is slowly
changing in time, so it is not strictly monochromatic until it reaches
its steady state value. However the polarization P (Cqb,t) can still
be taken as a function of the field amplitude E(cq,,t) if the dispersion

is low, In the case of a linear polarization the requirement is

—— Rt asitarens - . w k4 ) .
3 << [see Bloembergen (16)[ With this restriction and the

assumption that equation (2-17) holds even in the nonsteady state, the
time average rate of change of material energy density in the nonsteady

state becones

U d no B(ew, t) .
%) RIS
nonsteady y=l
state

The function éﬁ represents the average energy required to polarize the
medium, It would seem physically reasonable to argue that this average
energy § should only depend on the final state of the medium and not on
the path by which the final state was reached., This requires jr to be

a perfect differential i.e.

n -
d§= 2Re 5 E* (4, ,t) P (g, t).
y=1



Define a new function

n
. -
F=g - 235/231 B (e,,t) P (e, t).

The second term is the energy density of the polarization in the field.
Hence the function F is associated with the work done by the generators
in order to establish the fields in the presence of the medium and can

be identified with the Helmhotz free energy. Its total differential is
n E-d -
dF = -2Re & P (¢y,,t) 4B (e, t)

Returning to the more general case with magnetic and electric

quadrupole polarizations 6 the total differential of F is

n
dF = -2Re & [13 (e, t) B (ay, t) + Haw, t)dH*(cy  t)
r=l
* U, 0 a: (T, 0}] (2-18)
Hence
P( &f”t) = - ____Q.L.._..
0E*(¢ey,,t)
Rle, t) = - —3E (2-19)
(e, t)

OF
OV E(ew,,t)

Qley,,t) = -

and there does exist a time average free energy F from which the moments

P . ﬁ' and Q can be derived. Pershan (25) has given evidence that the

34
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time averaged free energy probably exists under conditions more
general than have been proven here,

In general, the function F will depend on the amplitudes E"
B*, B BE* VE, and VE*. As with the pol&rization, the procedure now
is to expand the free energy F in terms of these quantities., Each te;m
in the expansion must be independent of time, so that the sum of the
frequencies associated with the starred amplitudes must be equal to the
sum of the frequencies associated with the unstarred amplitudes., Thus,
for example, XE*(2w)E(w)E(w) is an allowed term but X E(2 w)E*(w)E(w)
is not.

From‘the various terms in the expénsion of the free energy, the
different linear and nonlinear effects can be described. For example,
linear effects are derived from a free energy F = -2Re [;Y:E‘(aJ)EQL)ﬂ
while optical activity can be obtained from either F = -2Re EQf:

B (w) P Hw)] or F = -2Re [%:E*(w)ﬁ(w )] « An account of the
various effects which follow from the different terms in the expansion
of the free energy can be found in an article by Pershan (26) . 1In

this thesis, the interest will be in only those terms which will produce
frequency doubling, i.e. those terms containing three fields.

When non-zero, the dominant term for frequency doubling is the
electric dipole., It can be derived from a free energy proportional to
three electric fields, i.e. F = -2Re [)(:E‘(ZCU)E(GJ)E(QJ)] . For the
present, let tﬁe three fields have different frequencies &,

3' 21

and CUl' where(u3 =0J2 + wl. Then,

F=-[X.

ik
+ Xi cw W, W )m (cu )E *(W)E *(W, )]

(Coy, @ 5, W B HWIE(w)E, (W)
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Using equation (2-19) the induced polarizations at these frequencies

are

X (W5, 0,,w IE(W)E (W)

Pi( w}) 5

W) = Xy (@ w, w)E (WIE (@)

RUW) = X (W @, W) (WIE(W,).

Pershan (26) has shown that for a lossless nonmagnetic material the
. . . 3 w - (3 3 3
susceptibilities ?(ijk(603,ou2, 1) are real. By definition the induced

polarizations at the three frequencies are

Pilwy) = 2y (0w, ) (W)E (@)
Plaw,) = lek“" wj,w VE; ()7 *(w,)
P(w)) = zki (), 5, W,)E (WE *(W,).

A comparison of these with the three previous equations shows that

Xyl Wy, 000) = Ky (o, Wy ) = X () wy,00,)

These are the permutation symmetry relations first derived by Armstrong
et al, (14) from perturbation theory. They state that equivalent sus-
ceptibilities can be formed by permuting the indices provided that the
frequencies associated with each are also interchanged., For example,

if o) = -, W, =w, then Wy =o0and X (0w, -w) =

Xj oW, o, ~W); the susceptibilities that describe optical rectifi-

cation are related to those of the electro-optic effect.

Reverting to frequency doubling (cul=<92=au, and 093=2C0);

for a lossless nonmagnetic material



3
P e - BTl w,w,0) [Br 2wz w)n (@) + B w)E (g ()]

Using equation (2-19)

P, EE
Pi(Zw) = %ijk(aw,w,w) Ej(w)Ek(w)
P EE (e
Pj(w) = ,’zijk(zw,w,w) E, Qw)E *(w)

P EE .
P (w) = Xijk(zw‘w,w) Ei(zw)}sj (w).

As shown in section (2-1) the susceptibility ézjfgk(Zcq,abab is sym-
metric in its last two indices and must satisfy the requirements of
crystal symmetry, In addition permutation symmetry relates the sus-
ceptibilities for frequency doubling with those for difference-frequency
mixing of a wave at frequency 2w with one atw .

The permutation symmetry relations are a generalization of

Kleinman's symmetry condition (27),

X il w5, @, 0)) = 2’ (@, wow) -inj(ws'wz,co'l),

in which the indices may be permuted without regard to frequencies,
This condition is valid if the origin of the frequency doubling is a
dispersionless mechanism in which the susceptibilities do not depend on

frequency. Hence,

Xy B (Q@W)E, (w)EK(w) 2’ (w)E ;* (2w)E, (@)

* . . )
;{gijEk(UJ)Ei (2w)E (w) resulting in the above relations.

3

In the case of second harmonic generation this additional symmetry re-
duces the number of independent coefficients from 18 to 10 in the most

general case of a triclinic crystal., Experimentally, the validity of the
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symmetry condition has been tested in many different materials (28,29,30)'
and within the limits of experimental error it has been satisfied in
every one., These results are significant in that they indicate a high
frequency electronic mechanism as the origin of the frequency doubling,.
Electric quadrupole frequency doubling will be considered next.

It is derivable from

F = -2Re Pxf;?fg<zw W ,@)E* (2B (W), (@)

+ ka (w,w, 2w)m (w)E (w) d W5 ‘(2w)] (2-20)

Note that there are two different susceptibilities because there are
two kinds of products E*(2w)E(w) V Blw) and B(w)Ew) P E*(2w).
For a lossless nonmagnetic material the susceptibilities are real. They

are also symmetric in the last two indices;

P e, @ @)

P__EVE
X 5 52w @ @) and

1]

Q. EE . . )
xljki(w'w ,2w) ( w, w, 2w), since the antisymmetric

_?,J.k

part is accounted for by magnetic dipole effects which will be discussed
later., Permutation symmetry requires %{l i (e, wa) = Xakl(waw)

and ;5020w @) = X T w2ww).

Using equation (2-19) again and the free energy in (2-20) the

induced moments at the doubled frequency are



P, EVE
P,(20) = X 5k (2w,w,w)Ej(w)3kE£(w)

Q2w = Qx?;ki(w,w,Qw)Eg(w)Ej(w).

With these the induced source current J at the doubled frequency
is

32w = 2 [7y2o -3, q ).

Pershan (26) has shown that the source current derived from the free
energy F in (2-20) and the free energy F' = F + V-G where V.G
= *

[ ¥ e (20,0,0) (20 B(w) 5y()] are the same. Tt
is possible, therefore with no loss in generality to set one of the
tensors, say %b(fng‘ZCO,CU,CU), equal to zero. Quadrupole effects

are now derivable fronm

F = -2Re WX g(w w 200) B(w) B @) V Ej(2w)
and
- Qo EE :
Q. (2w) = xim E, (w) Ej(w) (2-21)

The last type of frequency doubling that will be considered in
detail is the magnetic dipole., It can be equivalent in magnitude to the
electric quadrupole., The induced moments at the doubled frequency are

obtained from

F = -2Re [PXiE?k(Zw,w,w) E*(2w) Ej(w) B (w)

+ M?(ﬁ?i(w,w,aw) E (w) Ej(w) Hi*(zw)] . (2-22)



Like the electric quadrupole effects  there are two different sus-

ceptibilities in the free energy since there are two kinds of producfs.
P, EH M, EE R R .

However, )<ijk and ><kji are third order axial tensors which are

pure imaginary in a lossless nonmagnetic material. Also, permutation

symmetry requires

M. EE _ M, EE '
‘iji(w,w,zw) = Q(jki(w,w.Zw) and
P, EH P EH
)(ijk(z?w,ou,w) = ink(w‘Zw.w).-

The induced moments are

Pi(2w) = X[ Ra,w,w) Blw) B (w)

(2-23)

M, EE
M, (2 w) iji(w,w,zw) E (w) Ej(w)

and the frequency doubling source current is

aw - 2B2@) | ¢ Tx A2,

Unlike electric dipole frequency doubling  both magnetic dipole and
electric quadrupole frequency doubling are possible in a crystal with
a centre of symmetry,

There.are other terms in the free energy which can produce
frequency doubling such as F = XE HVE or XEVEVE etc., 6 but they
all contain higher powers of VE and H so the effgcts they describe

will be smaller than those that have been listed here.



(2-5) The Azimuthal Dependence of Frequency Doubling in Crystals

A simple frequency doubling experiment that can be performed in
uniaxial crystals 6 is to measure the amount of second harmonic at phase
matching as the crystal is rotated about the optic axis. The dependence
of the frequency doubling on the azimuthal angle Qﬂ may cast light on
the type of nonlinearity that is involved since different tensors may
lead to different functional rorms,

The object of this section is to show how the magnitude of the
frequency doubling depends on the angle ;f. In particular the azi-
muthal dependence of the electric dipole frequency doubling in a uni-
axial negative crystal will be determined. In the following, the
applied fields are assumed to be plane waves propagating through the

crystal in the phase matched direction n where

sin # cos;lf

=1
[}

 sin 8 sinyf .

cos 6

The optic axis has been taken in the z axis direction, The angle 9
is measured from the optic axis to the direction of propagation  while
95 is the angle between the crystallographic x axis and the principal

plane, The O-ray fields will be written

- - To o - - - = _
Eo(w) =0 Eo ei(k T O.)t)‘ Eo(w) =.h° Ho ei(k IS o wt)



where
sin¢ cos B cos¢
6 = |-cos¢ B° = Jcos 8 sing
o f ~ sin o

and the E-ray as

-e = e =
i(k".r -wt) 5%(w) = B¢ H® e1(k- T -wt)

ﬁe(w) = 31 E® e

where
- cos(p + oul) cosd sin &
31 = |- cos(g + al) singd 1= |- cos ¢ .
sin(s + cal) | o
The quantity‘al is the angle between the direction of Poynting's
vector for the E-ray and its wave normal k°. It appears in El

because the electric field is not necessarily perpendicular to the wave

normal in a crystalline medium, The magnitude of a, can be obtained

1
from nlo2
l - > tan 8
nle
tan «, = *
1 nl 02
1+ > tanze
e
e}

In general, the total fields in the crystal are superpositions of the

E- and O-ray fields. Therefore

E (w) = o Eoei(l-(°.-!" -(lJt) + e Eeei(ie'; -wt)
J J 1]

with an analogous expression for Hj(w). As this field propagates

through the medium an electric dipole polarization,

P__EE
Pi(Zw) = xijk Ej(w) Ek(w)

b2



is induced where

02 2i(k°.r - wi)
Ej(Cd) E&(CU) = 00, E°C ¢

e i (R° + &%).% - 2wt)
+ (o‘j et elj e

ok) E° B
2 - -
e 2i(k".r - wt)
+ elj elk E e .

For O0-E phase matching only the first term in Ej

considered., On the other hand; the second term may lead to OE-E type

(w) Ek(w) need be

phase matching., The last term is never effective in uniaxial negative
crystals, but would lead to EE-O phase matching in a suitable positive
crystal. An OE-0 type phase matching is also possible in positive
crystals. Only OO-E phase matching in uniaxial negative crystals
will be considered in the following; but the azimuthal dependence in
the other cases can be obtained in a‘similar manner.

The induced polarization
P,(2ew) = T o o w2 ZME.T -Wb)
i xijk j Tk
i . < _JB
will produce a source current,K J = 3%

frequency. Not all the current is effective in producing doubled

-2iw P(2w), at the doubled

frequency, but only that component in the direction e, of the E-ray

2
electric field at the doubled frequency where

- cos (8 + a2) cos¢
e, = - cos (8 + “2) sing

sin (8 * aa)

b3
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and &, is given by

2
2
.no
2
1l- > tan 6
ne
2 .
tax o =
2 noz
1+ 22 tanae

The angles oy and &, are not necessarily the same because of dispersion.

The effective source current is

J e

off J = =2iwe.,, Pi(aw)

2° 2i

iwse? P ot (k°.7 ~wt)

where the azimuthal dependence is contained in the gquantity § = ey
P~ EE : . . s
%ijk Oj O e Since the amplltude -of the second harmonic is propor-

tional to the magnitude of Jeff the intensity of the second harmonic

]
will be proportional to §2. - In general é consists of the sum of
27 terms each one being the product of the third order polar tensor

P~/ EE .
Xijk and the quantity e

54 c:'j O+ Particularizing to the case of
KDP which has only three nonzero coefficients, ng;,, . P'X}SJE.:B , and
P.,.EE

%312 the sum becomes

¢

P, EE P EE P_EE »
2 [ X123 1 % 5 % X213 %22 %1 3 ¢ X312 %23 %1 °2]

P. EE . .
= - ?(312 sin (8 + “2) sin 2¢

where 8 is the O0-E phase matching angle, The second harmonic intensity
in KDP should have a sin2 2525 dependence with the maximum doubled

frequency being produced at the azimuthal angle ¢ = 45°, This axi-
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muthal dependence has been observed by Mager et al. (3).

In the Appendix  the azimuthal dependence of the electric dipolé€,
magnetic dipole  and eiectric quadrupole frequency doubling is calculated
for both 00-E and OE-E type phase matching, The functional dependences
for the point groups of the tetragonal, trigonal and hexagonal crystal
systems are given. The results, however K are only applicable to

uniaxial negative crystals,



CHAPTER III N

EXPERIMENTAL APPARATUS AND PROCEDURE

(3-1) Introduction

The objective of experiments in frequency doubling is to detect
the low intensity doubled frequency that is generated when a powerful
monochromatic light beam is transmitted through a nonlinear crystal.

The source of highly intense light is usually provided by a Q-spoiled
laser. The principle of this device is described in the literature
(31'32'33). " After the laser light passes through the nonlinear crystal,
the light beam contains both the laser frequency and its second harmonic,.
This doubled frequency can be separated from its fundamental by two dif-
ferent means. In the first method  the light is focused on the slif of
a prism spectrograph and the second harmonic light is refracted out of
the laser light and focused on a slit in front of a detector. A grating
can be used instead of a prism  but care must be taken to use orders which
do not overlap at the fundamental and doubled frequencies, In the
second method the light beam is passed through a filter which trans-
mits only the doubled frequency. In both cases a photomultiplier is
used to detect the intensity of the second harmonic. By inserting a
beam splitter into the path of the laser beam in front of the nonlinear
crystal, the intensity of the fundamental frequency used to generate the

second harmonic can be measured, or at least monitored. The following

L6
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sections give a detailed description of the experimental apparatus and

procedures which were used.in this investigation,

(3-2) Construction and Operation of the Q-spoiled Laser

The principles of operation of a Q-spoiled laser were first
proposed by Hellworth (31). He suggested that an ordinary laser can
be made to emit a short burst of highly intense light if the losses in
the laser cavity are controlled so that they are high during the pump-
ing period until a high inversion is obtained, at which point the losses
are switched to a low value, When a laser is operated in this mode it
is called Q-spoiling  since the quality factor of the cavity is kept at
a low value .i.e. spoiled, until at an appropriate moment the cavity Q
is switched to a high value.

In this work it was decided to accomplish the chwitching with
a rotating prism. A Kerr cell was considered but not adopted because
operation in the infrared was desired. Hence a Beckman & Whitley
(Technical Operations Inc.) modei 402 rotating prism laser Q-spoiler
was purchased. The prism angles are 90°, 45°, and 45°, Such a prism
has the property that 6 after two total internal reflections 6 light rays
are deviated through 180° regardless of the angle of incidence. When
the prism is substituted in place of one of the reflectors of the laser
cavity and aligned so that its roof edge is parallel to the other
reflector  a new laser cavity is formed. ‘Since light rays are now:
reflected twice through the crystal in one pass through the laser cavity,
the cavity length is approximétely twice the distance between the re-
flector and the prism. Due to the reflection properties of the roof

prism the alignment of the hypotenuse face with the other cavity re-

-
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flector is not critical. In the Beckman & Whitley Q-spoiler, the prism
is mounted on a shaft with the hypotenuse face parallel to the shaft

and the roof edge perpendicular to the shaft. It is designed to be
driven by compressed air. With the aid of a regulator valve the air
pressure supplied to the Q-spoiler could be varied from O to 70 lb/in2
and hence the rotational speed of the prism could be controlled from

0 to 1500 revolutions per sec (rps). At the top of the Q-spoiler a
magnetic pick-up coil is mounted, which produces a sinusodal signal whose
frequency is equal to the rotational rate of the prism. By feeding this
signal to a frequency counter the rotational spéed of the prism can be
measured., During a typical experiment wﬁen the prism was operating at a
rotational speed of approximately 450 rps, the actual rotational rate
could drift by as much as 30 rps over a period of 20 minutes. However
by making appropriate adjustments in the air pressure when necessary,
the rotor speed could be held to within 5 rps of a mean value,

Since the optimum time during the pumping period when the prism
should be aligned is less than 100us in duration, it is necessary to
synchronize the operation of the flashtube with the rotating prism. This
was accomplished by constructing a rotor-flashtube synchronizing unit.
The sinusodal output ffom the Q-spoiler is converted into a train of
short duration pulses using a multivibrator. The interval between the
pulses corresponds to the period of revolution of the prism and each
pulse has a definite phase relationship with respect to the instant of
prism alignment. This phase can be controlled by adjusting the

pick-up coil on top of the Q-spoiler. It was set so that alignment
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occurred{about 200us after each multivibrator pulse, After a switch on
the synchronizing unit is closed  the first multivibrator pulse triggers
a thyratron which in turn triggers the power supply which operates the
flashtube. The triggering of the flashtube occurs almost instantaneously
with the multivibrator pulse. Since the iight output from the flashtube
takes about 200us to reach a maximum the rotor comes into alignment at
the appropriate time.

The Q-spoiled laser that was constructed could be operated with
either a ruby laser crystal or a neodymium (Nd) doped laser crystal,
The output of the ruby laser occurs at .6943um while that of the Nd
laser is at 1,06um. In general because of the longer wavelength
velocity matéhing in frequency doubling experiments with a Nd laser is
possible in more nonlinear crystals than with a ruby laser., The reason
is that dispersion between 1,06pm and ,53um is usually less than that
between .694%um and ,3472um and hence the nonlinear crystal does not
require as much birefringence. Since the nonlinear crystal should be
transparent at both the fundamental and doubled frequency this factor
must also be considered in choosing the type of laser that is used,

The ruby crystals (Cr3+:A1203) were purchased from Adolereller
Co. They are cylindrical rods 0.25 inches in diameter and 2.0 inches
long with the ends ground flat to A/4 (sodium light) and parallel to
within 46 seconds of arc. The crystals were grown from a melt that had
a doping of 0.,04% chromium oxide (Cr203) by weight in aluminiﬁm oxide
<A1203)° Two types of Nd laser crystals, a neodymium doped calcium

tungstate (Nd3+:CaW04) and a neodymium doped glass, were purchased.

. + .
Like the ruby crystal = the Nd3 :CaVW L crystal was purchased from Adolf
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Meller Co. It has a doping of 5% neodymium oxide (Nd203) by weight in
‘CaWO‘+ and the other specifications are the same as quoted above. The
Nd-glass laser crystals were purchased from Eastman Kodak Co. and are
of the type ND-11l. They are not crystals in the real sense, but rather
a l to 3% doping of neodymium oxide in a silicate optical glass., For
Q-spoiling experiments, this type of crystal is to be preferred over the
type ND-10 (also manufactured by Zastman Kodak Co.) which is a doped
barium crown glass. The reason ic that the life time of the metastable
level in Na>© is longer in ND-11 (~360us) than in ND-10 (~-50us).
Hence with a given optical pumping system, a greater inversion can be
obtained with ND-11. The Nd-glass crystals purchased for this work
were 0,25 inches in diameter by 3.0 inches long with the ends flat to
A/10 and parallel to within #6 seconds of arc., Since these crystals
were to be used exclusively in a Q-spoiled laser they were purchased
with antireflection coatings on each end.

If a Nd-glass laser crystal is exposed directly to the light
from the flashtube the crystal will darken after a large number of
flashes and its threshold for oscillation increases. Eastman Kodakf
calls this darkening "solarization' and attributes it to ultra-violet
in the pump light. It was found that the life of a crystal before the
onset of solarization could be extended from 50 to well over 500 flashes
by surrounding the glass crystal with an ultra-violet filter.. In these
experiments an amber glass filter code 3555 manufactured by Corning Glass

Works was used,

1'That company now claims to have eliminated the problem of solarization
in its newer Nd-glass laser crystals,

MILLS MEMORIALC CIBRARW
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To optically pump the laser crystal, an elliptical laser head
was constructed, The purpose of an optical pumping system is to convert
as efficiently as possible the light from the flashtube into excited
atoms in the crystal. How effectively this is accomplished depends on
the degree of light concentration on the crystal and absorption of
this light in the crystal, The elliptical cylinder type reflector
that was constructed has the property that light emitted from a linear
flashtube situated along one focus of the ellipse is imaged on a laser
crystal at the other focus. For a flashtube of finite diameter  the
magnification of its image at the laser crystal is least when the foci
are closest together. Hence the greatest efficiency for concentrating
light on thercrystal is obtained when the eccentricity of the ellipse
is as small as is practical. It is also advantageous to use a crystal
which is at least as large in diameter as the flashtube, Within a
limited area, this pumping system is capable of a one to one trans-
formation of the pumping light density from the flashtube to the laser
crystal. Unfortunately, K since most of the transmitted light is refrac-
ted on passing through the crystal 6 it is lost and only the light ab-
sorbed in a single pass through the crystal is useful for atomic excita-
tion, Nevertheless, the constructed elliptical laser head was found to
be four times more effective than a previously built cylindrical laser
head using a helical flashtube as a pump source. An even more efficiént
optical pumping geometry has been proposed and built by Roess.(Bk).

His reflector is an ellipsoid of revolution with the a#is of the linear
flashtube mounted along the axis of theellipsoid between the surface of

the reflector and the nearest focus. The crystal is similarly mounted



between the reflector wall and the other f§cus. Although the source
no longer forms an actual image in the laser crystal  this reflector
design still has the high efficiency of light concentration of the
elliptical cylinder reflector with the added benefit of increased light
absorption due to the possibility of multiple reflection of the pump
light many times through the laser crystal,

The fabrication of the elliptical laser head was accomplished
by following some of the techniques of Hronik et al. (35). Elliptical
forms were cut by boring vertically through 0;5 inch thick aluminiﬁm
plates with the axis of rotation of the circular milling cufter slanted
at an angle of 22 degrees to the vertical., BEach form so cut is in the
shape of oneﬁhalf of an ellipse divided along the line connecting its
foci. The length of the major axis is determined by the diameter of
the milling cutter (4 inches) and the length of the minor axis depends
also on the angle at which the milling cutter is set. Six elliptical
forms were cut in one operation and drilled with holes in which aligning
pins could be inserted. Three of the forms were then assembled with
appropriate spaceré to make each half of an elliptical cylinder rib'cage
3.5 inches long. The reflecting surface of the laser head was formed by
pressing .020 inch thick polished aluminium sheet into the form and
fastening it with epoxy. With the addition of flat polished aluminium
end plates  the reflector was completed, A photograph of the top half
of the laser head is shown in Figure 3 and Figure 4 is a schematic dia-
gram of the bottom half, The semi-major axis is 1,98 inches and the
semi-minor axis 1.83 inches, giving an eccentricity of O.4 and a dis-

tance between foci of 1.5 inches. This method of construction has the
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Figure 3.

Photograph of Top Half of Elliptical Reflector







Figure &,

Schematic Disgram of Bottom Half of Laser Head




Rotating Prism

Q-spoiler

T
I
4
I
|

Sk

Crystal Holder Air Outlet
I 35 ]
~«i~Flashtube
AN
Elliptical Laser ~ N\ Trigger
Reflector Crystal - Wire O
Elliptical
Forms
N P
L |
i 1
l |
| |
Resonant i | Air Inlet
L..d
Reflector o
=




55

advantage that the reflecting surface can.be polished while it is flat,
Furthermore the completed laser head separates into two halves, allow-
ing ready access to the flashtube and the crystal, With the top half
of the reflector off it is easy to align the bottom half so that the
flashtube and the crystal are along the foci of the ellipse, This is
done by confirming that the image of the crystal in the reflector is
located at the flashtube,

The laser crystal is excited by an Edgerton Germeshausen &
Grier FX42 linear xenon flashtube, As is shown in Figure 4 the flashtube
is mounted on the bottom half of the laser head., Provision was made to
pass air from a blower over the flashtube to cool it. The laser crystal
is held at tﬁe other focus by supports which are independent of the re-~
flector., Both the elliptical reflector and the crystal holder are
fastened to a thick metal plate and attached to a lathe bed.

A commercial power supply and capacitor bank purchased from
GNB Inc. were used to provide the stored energy and the pulse for initia~-
ting the flashtube., The flashtube can be fired manually or with an
external trigger.. In either case, a 20 kilovolt pulse from the poﬁer
supply applied to the flashtube ionizes the xenon gas and the stored
energy in the capacitor bank discharges through the flashtube, A 100
millihenry inductance is connected in series to limit the discharge
current and hence extend the life of the flashtube, The light pulse is
about 0.5 millisec., in duration with the peak output occurring 0,2 milli-
sec, after the flashtube is initiated., The rated maximum energy that
can be discharged through the flashtube is 600 joules, When the laser
is operated in the Q-spoiled mode, the external trigger pulse for the

power supply is supplied by the rotor-flashtube synchronizing unit.
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The construction of the Q-spoiled laser was completed with the
addition of the output reflector to the laser cavity. In initial experi-
ments, a partially transmitting silver coating was evaporated on one end
of the laser crystal. However it was found that this deteriorated quite
rapidly. In fact when the laser was operated in the Q-spoiled mode,
more than half of the silvering could be lost in a single flash. The
difficulty was eliminated by using a resonant reflector manufactured by
Lear Siegler Inc., These reflectors, constructed of plane parallel sapphire
platelets, operate on the principle that there is a reflected wave from
any index of refraction discentinuity. Furthermore the reflectivity
from a transparen? platelet can be high for those wavelengths called
the resonant wavelengths, for which the reflected light from the first
surface adds in amplitude with that from the second surface., The reflec-

tivity at normal incidence for a platelet og refractive index n in air
2

at the resonant wavelength is R = (%—%—35) [#ee for example Born and
Wolf (2#)]. Since sapphire has an index of refraction of 1.76, a
single platelet will have a reflectivity of 25%. In this work a two
plate resonant reflector was used., It has a reflectivity of 67%.

The separation and thickness of the platelets are such that the spacing
between the resonant wavelengths is about 0,10 nm, Since the fluore-
scence linewidth of Nd in glass is about 60 nm  there are many resonant
wavelengths within the linewidth for which the reflectivity is high and
lager oscillation is possible, When the resonant reflector was used

with the Q-spoiled laser no noticeable deterioration in its optical

quality was observed even after hundreds of flashes,
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(3-3) The Frequency Doubling Apparatus

After the highly intense light pulse is'generated by the laser,
it traverses a low pass filter to eliminate stray pump light particularly
that light in the vicinity of half the laser wavelength. In this work,
a red glass plate was used., It has a transmission of 33%% at A = 1;06um

and less than 1072

at A = 0,53um,

Next  the laser light is incident on the crystal whose nonlinear
properties are to be studied, To effect velocity matching it is neces-
sary to adjust the orientation of the crystal with respect to the laser
bean, A photograph of the mechanism of a two circle goniometer construc-
ted for this“purpose is shown in Figure 5. It was designed so that the
movement for each circle of rotation is through a full 3601degrees.
However for one circle of rotation, as can be seen in the photograph,
not all angles are useful due to obstructions in the light path., With
the aid of a dial and vernier angles on this circle of rotation could
be set and read to within 26 minutes of arc., The other circle of rota-
tion at 90° to the first, is driven by a system of worms and anti-
backlash gears., The gear ratio was chosen to be 1:360 so that a full
revolution of the input shaft rotates the crystal by one degree. The
backlash in the gear tfain is approximately 3 minutes of arc., For
reasons explained in the next chapter the goniometer was designed go
that the nonlinear crystal could be immersed in oil. This was accom-
plished by mounting the goniometer in a metal container which acted
both as a light shield and as an oil reservoir. Quartz windows allowed

the entry and exit of the light beam,



Figure 5

Photograph of Goniometer Mechanism
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After the beam has passed through the nonlinear crystal, it will
contain a small amount of second harmonic and the very intense laser
light. As was outlined in the introduction  there are two methods for
effecting the separation. Although a medium Hilger quartz spectrograph
was used initially  a system of filters has the advantage that it is
much easier to align the optical components. Furthermore,K a greater
sensitivity was obtained. A 5 cm length of saturated copper sulphate
solution attenuates the laser light by about 18 orders of magnitude
but yet has a 20% transmission at the doubled frequency. This filter
is followed by two Baird Atomic interference filters. Each has a transe-
mission ofHSO% at 0.5%m and a bandwidth (full width at half maximum)
of 10 nm. The second harmonic was detected by a 1P-21 photomultiplier,
To keep the transient response within acceptable limits and yield ade~
quate gain, a 1000 ohm load was used. The output signal was fed by co-
axial cable to the lower beam of a dual beam Tektronix 555 oscilloscope.

In initial experiments, the signal displayed on the upper beam
was proportional to the laser power., This was achieved by inserting
a beam splitter in front of the low pass filter to reflect some of the
laser light to a 925 phototube, Unfortunately’ there is not a one-
to-one correspondence between laser output and second harmonic output
(36,37). The fluctuations have been attributed by Ducuingand
Bloembergen (38) to the multimode nature and the less than 100%
spatial coherence of solid state lasers. They showed that amore
meaningful monitor could be obtained by comparing against the second
harmonic intensity generated in a standard crystal. Under these condi-

tionsy changes in the spatial coherence of the laser beam from one
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pulse to the next will cause corresponding variations in the two second
harmonic signals  and their ratio will be constant provided the geometry
of the experimental arrangement is equivalent for both the monitor and
the "unknown' nonlinear crystal. The adoption of this scheme required
the construction of a second goniometer and another identical system of
filters and detector for monitoring the second harmonic in a standard
crystal. In most experiments it was the output from this monitor

that was displayed on the upper beam of the oscilloscope. The other
signal however was still available when required,

Figure 6 is a schematic diagram of the whole frequency doubling
appafatus. As shown a Glan prism coula be mounted after the low pass
filter to polarize the laser beam and ancother in front of the copper
sulphate filter analyzed the polarization of the second harmonic,

Since the apparatus was designed for use with a ruby laser as well as a
Nd laser it was necessary to avoid Nicol prisms which fail to operate
at ~ 0.35um because of the Canada balsam cement, In any case, Nicol
prisms are more easily damaged at high power than Glan prisms since the
latter use only an air gap between the calcite sections,

Also shown in Figure 6 is a phototube monitoring the laser for
the purpose of providing a sigﬁal to trigger the oscilloscope. This is
necessary since the interval between flashtube triggering and the evolu-
tion of the laser pulse may vary from flash to flash by as much as 20
microseconds due to small variations in rotor speed. Another complica-
tion arises because of interference when the 20 kilovolt initiating
pulse is applied to the flashtube. The stray pick-up of this surge was

sufficient to immediately trigger the oscilloscope long before the time



Figure 6

Schematic Diagram of Frequency Doubling Apparatus

The symbols in the diagram have the following
meanings:
LPF = Low Pass Filter

C = CuSOu Filter

IF = Interference Filter
C = Q@lan Prism
PM = Photomultiplier
VA LB = Vertical Amplifier  Lower Beanm

VA UB

Vertical Amplifier Upper Beam

RF = Resonant Reflector
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of interest. Since shielding posed a difficult problem another solu-
tion was sought using the features of the oscilloscope. The mode

"time base B triggerable once for each A delayed trigger" is ideal for
this purpose. When the switch on the rotor-flashtube synchronization
unit is closed, the power supply triggers the flashtube and at the sanme
time provides a synchronization pulse to start time base A of the oscil~
loscope. After a fixed delay, usually adjusted to 200us, time base B
is made "ready" i.e. triggerable, Since by this time the interference
from the flashtube initiating pulse has passed it poses no problem 6 and
the actual oscilloscope sweep of both the upper and lower beam (time
base B) is»triggered by a pulse from the phototube, The signals
displayed on the oscilloscope face were recorded photographically

with a Dumont polarcid oscilloscope camera using ASA 10 000 polaroid

film,

(3-4)  Sample Preparation

In this work,6 samples of potassium dihydrogen phosphate
(KH,PO,), emmonium dihydrogen phosphate (NH,H PO, ), calcite (CaCOy),
and nickel sulphate hexahydrate (NiSOh.6 HZO) were used as nonlinear
crystals. Initial experiments were carried out with crystals of
KDPf ADP_ and Nisoq.6 H20 grown from water solutions, Later exferi—
ments used higher quality XDP and ADP crystals grown at McMaster
* University and a large NiSO,. 6 H20 crystal purchased from Semi-
Elements Inc. The calcite crystals were made available through the

Physics Department at McMaster University,
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In most experiments, it was necessary to cut the crystals into
the form of platelets with surface normals approximately in the phase
matching direction. Fortunately all the crystals used are uniaxial,
Hence the direction of the optic axis can be determined from‘symmetry.
The KDP and ADP crystals are tetragonal, belonging to the point group
Lom while NiSOu.é HZO' also tetragonal K belongs to the point group 422,
For these crystals the direction of the optic dxis is in the direction
of the four-fold axis. On the other hand the calcite crystals are
trigonal 6 belonging to the point group 3m and the optic axis is in the
direction of the three-fold axis. The orientation of the other crystal-
lographic di;ections vere determined froﬁ the crystal habit as found
in Winchell's book (39).

The platelet was formed by first cutting a surface on the crystal
which made an angle of (90wem) degrees with the optic axis, where 6m
is the angle between a phase matching direction and the optic axis. This
surface was ground with successively finer grades of grinding powder
and then polished to obtain av“window glgss" finish, The normal to the
surface was usually within two degrees of a phase matching direction,

A second surface was cut parallel to the first. By a similar process

of grinding and polishing the required platelet was completed,

(3-5)  Procedure

In frequency doubling experiments, the initial step was to set
up the Q-spoiled laser to operate in a single pulse mode with é reprodu-
cible pulse height. The various components of the frequency doubling
apparatus were then aligned along the path of the laser beam, This

was achieved by inserting a piece of black paper into the laser beam and
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Jocating the exact position of the light ﬁath by the burn spot left on
the paper. With no nonlinear crystal in the goniometer the frequency
doubling apparatus was made light tight. This was confirmed by the
presence of no output signal from the second harmonic detector when the
Q-spoiled laser was operated., With the nonlinear crystal mounted in
the goniometer the crystal orientation was varied until an output signal
was observe&. Since the signal occurred in time coincidence with the
lager pulse, it was either doubled frequency or laser light. The latter
choice was eliminated by removing the crystal and observing the dis-
appearance of the signal. Hence the presence of the nonlinear crystal
was required to produce the signal, There was the remote possibility that
with the cryétal in position  light from the laser was being scattered
into the second harmonic detector, This possibility was also eliminated
by replacing the nonlinear crystal with a "linear" sample and observing
" no signal output for any orientation of the sample.

After this preliminary procedure  the apparatus was ready for use.
Usually the first experiment performed was to measure the amount of
doubled frequency.as the crystal was rotatéd through phase matching.
In a typical experiment the pulse heights of the monitor and the
second harmonic signal were recorded for 6 to 12 flashes at each angular
position, For a monitor signal directly proportional to the laser
power the ratio of the second harmonic signal to the square of the
monitor signal w#s determined. The average value of this ratio and its
r.m.s, deviation were computed from the measurements taken at each cry-
stal orientation. These ratios were plotted on a graph as a function of

the crystal angular position to form a phase matching curve. The r.m.s.



deviation at the peak of the curve varied from %0% to 40%.. The actual
fluctuations in the ratio could be as high as a factor of 4. When a
standard nonlinear crystal was used as a monitor a si@ilar averaging
procedure was used, except the ratio taken was the second harmonic
signal to the monitor signal. With this arrangement  the r.m.s. devia-
tions decreased to 10%. This error represents the reproducibility of
the results and not the true error. There may be systematic effects
depending on laser beam divergence, lack of 100% coherence and the
surface and optical quality of the nonlinear crystal.

The details of the other experiments will be given together

with their results, in the next chapter,
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CHAPTER IV

EXPERIMENTAL RESULTS

(4=1) Operating Characteristics of the Q-spoiled lLaser

When a Nd3+:CaWO4 Q-spoiled laser was first operated it was
immediately observed that the laser output consisted of several pulses
instead of a single pulse as was expected. The pulses were 30 to 100 ns
wide with a separation of 0,1 to O.%us. Since a high power output is
required for frequency doubling experiments,K it was not desirable to
have the Q=spoiled laser operate in this multipulse fashion with the
output energy divided among several individual puls es, An investiga-
tion of the multipulse phenomena was therefore undertaken.

From the beginning it was realized that these multipulses aid
not have their origin in the relaxation oscillations that are found in
an ordinary laser output. Near threshold in this crystal 6 the spikes-
in the relaxation .oscillations were O.5us wide and regularly spaced at
intervals from 10 to 20us. It was also found that the output charac-
teristics of the rotating prism Q-spoiler depended on many parameters,
In particular two of the more interesting ones are the rotational speed
of the prism and the energy of excitation applied to the flashtube. The

3+2Cawoq Q-spoiled laser.

following qualitative results were found for Nd
They are typical of rotating Q-spoiled lasers (40) but  of course  the
particular numbers vary with the quality and the size of the crystal the

efficiency of the flashtube-to-crystal coupling, etc.
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Figure 7 shows oscilloscope traces of the Q-spoiled laser cutput
at a constant excitation energy and different rotational speeds. The
number of multipulses is seen to decrease with increasing rotor speed
until single pulse operation is reached. This\change is accompanied
by a decreased multipulse spacing and a pulse width narrowing, With
still greater rotor speed  the height of the single pulse grous. The |
peak power changes by a factor of 6 while the pulse width decreases from
100 ns to 20 ns for the range of rotors speeds covered in the figure.
The complementary experiment rotor speed constant while the excitation
is varied was also carried out., The results are shown in Figure 8.

At low excitation the laser output consists of a single pulse, Increas-
ing the excitation produces additional pulses. The peak power actually
decreases with increasing excitation for the case shown in Figure 8,

In addition to the rotor speed and flashtube excitation para-
meters just described the Q-spoiled laser output also varied with the
rotor-flashtube synchronization, thg vertical position of the prism roof
edge, the reflectivity of the output reflector and the cavity length,
After the publicaéion of results on Q~spoiling with a rotating priém
(40’41) while this'work was in progress, the investigation was not
pursued to its conclusion,

Since most of the frequency doubling experiments were carried
out using a Q-spoiled Nd-glass laser, a summary of its operating and
output characteristics will be given. A noticeable difference between

the Nd-glass Q-spoiled laser and the Nd3+

:CaW04 was the lower rotation-
al speeds at which single pulse operation was possible., Furthermore,

because of its larger size a greater energy output was also available,



Figure 7

Laser Output v.s. Time for Different Rotor Speeds

The figure consists of a series of oscilloscope traces
of the laser output for different rotational speeds (the numbers are
revolutions/second). In each case the flashtube input energy

was kept constant at 190 joules.
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Figure 8

Laser OQutput v.s, Time for Different Excitation Energies
"3

The figure consists of a series of oscilloscope traces
showing the laser output for different flashtube excitation
energies (in joules). In each case the prism rotational

rate was kept constant at 830 rps.
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Using a TR6 energy meter (Control Data Corp.) an energy of 0.3 joules
was measured in single pulse operation. Since the pulse width at half
maximum was about 30 ns and the spot size was 0.5 cmz' a peak power of
20 megawatts/cm2 was obtained, This is to be compared with the 1 mega-
watt/cm2 obtained from the doped CaWOh.

For the experiments in frequency doubling it is necessary to
know the polarization and the divergence of the laser beam, Although an
unpolarized output was expected from Nd-glass K it is not quite So ob=
vious that the prism in the cavity cannot have an effect. Experimental-
ly, the laser light emitted from the Nd-glaess Q-spoiler was found to be
unpolarized.# However,K after extensive use, this ceased to be the case
and the laser beam became 90% polarized parallel to the roof edge indi-
cating that the laser cavity favoured oscillation in this plane. It
was observed that the glass near the roof edge of the prism had becowme
damaged. Since rotation of neither the laser crystal nor the resonant
reflector caused any change in the plane of polarization it is apparent
that the prism was the determining factor. It was possible to insert a
glass plate into éhe laser cavity at an appropriate angle so that éhe
losses for light polarized parallel to the roof edge were increased
relative to the losses for light polarized perpendicular to the roof
edge. When this vas done, an unpolarized output was again obtained,

The divergence of the laser was measured by observing the
far field pattern using a 1000 mim lens. The full width at half maxinum
gave a value of somewhat less than 1/4 degree (.0030 + .C007 radians)

for the divergence,.
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(4=2)  Freguency Doubling in KDP and ADP

Using a ruby laser, frequency doubling was first observed in
KDP by Giordmaine (2) and Maker et al. (3) and in ADP by Savage and
Miller (42). Also frequency doubling using = Nd3+1CaWOq laser was
observed in both these crystals by Miller and Savage (36). At that
wavelength, the measured values for the phase matching angles are re-
ported to be 40,3° + 1,0° and 41.9° 4 1.0° in KDP and ADP respectively.

For the‘purpose of testing the frequency doubling apparatus,
that was constructed  frequency doubling from the infrared (A = 1,06um)
to the green (A = 0.5%um) was observed in both KDP and ADP, The crystal
platelets for the experiment were cut as described in section (3-4), A
typical phasé matching curve for KDP using a Nd3+:CaWOu laser is shown
in Figure 9. The ordinate, in arbitrary units  is the intensity of the
'second harmonic divided by the square of the intensity of the laser,
while the abscissa is the angle o in degrees with respect to an arbi-
trary reference., It was confirmed that it is only the O-ray component
of the fundamental that is involved in the doubling process and that the
second harmonic is an E=ray.

Since the induced polarization in KDP is:

L

P (2w) = 2 Pxﬁ‘; B (w) B (w)

1

2 P’XEE Ex(w) Ez(w>

Py(acu) 213

L]

P (2w)
2

P i
1"\
2 9<312 ux(w) Ey(w),

and the EZ(aJ) component of an O-ray is zero, only PZ(Zcu). and hence the

P~/EE
;(312 coefficient of the nonlinear susceptibility contributes to the



Figure 9

Phase Matching Curve in KDP

The angle g, between the optic axis and the laser beam

direction, is measured with respect to an arbitrary reference.
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production of doubled frequency light. Thus the induced nonlinear
polarization should be a maximum when Ex(aJ) = Ey(OU), i.e. at an azi-
muthal angle 95 = 45°,  This has been observed by Maker et al. (3) and

it was aleso confirmed in this study.

(4=3)  Freguency Doubling in Nickel Sulphate Hexahvdrate

From the beginning, it was realized that frequency doubling in
crystals belonging to the point group 422 presented an unusual situation,
The symmetry restrictions on the components of the third order tensor
P _EE

){ijk are such that only one coefficient is nonzero., The induced

polarizations are:

P __EE
P (2w) =2 Xio3 By (w) E (w)
Py(Zw) = 2 7(123 E (w) E (w)
P (2w) = o.

To phase match in a uniaxial negative crystal like NiSOq.6 HZO' the
fundamental frequency must be polarized as an O-ray and the second
harmonic an E-ray. Since EZ(OJ) = o for an O-ray there can be no
induced polarization at the second harmonic frequency., Of course,
there could still be a non-phased matched contribution from the
electric dipole term, In addition, the above consideration does not
apply to higher order nonlinear effects.
Since the material absorbs strongly in the red, it is impos-
sible to use a ruby laser in a search for frequency doubling in NiSOQ.6 H20.
There is, however a tronsmission band in the green and one in the infra-

red so that a neodymium laser is ides llv suited for the purpose,
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It was first necessary to determine whether it is actually
possible to phase match at 1.06 and 0.5%um in NiSO4.6 HZO' This

would follow from equation (2-12) if the indices of refraction nlo,

nao,‘and n2e were known. The only data to be found in the literature

are those measured by TOpse and Christiansen in 1874 (k2)., The

values reported are given below:

Wa2§l§;gﬁh Indices of Refraction
A n° n®
656 1.5078 1,484k
589 1.5109  1.4873%
486 : 1.5173 1.4920
4329 1.5228 -

By interpolationq the required values at A = 0,5%um are

n2° = 1,5140 % 0004 and nae = 1,4902 + ,0004, Extrapolating into
the infrared, the index of refraction for the O-ray at A = 1.06un vas
estimated to be nl0 = 1.50, This suggested that phase matching would
occur  the direction being 50° to the optic axis. Accordingly a
crystal platelet of Ni504,6 HZO was cut and polished, following the
techniques described in section (3-4) with a surface normal to that
direction, The experiment was initially performed using a focused
laser beam, but  subsequently 6 the lenses were removed since there was
adequate signal using the "parallel' beam of the laser directly., A
typical phase matching curve is shown in Figure 10, The large fluctuo-
tions at the peak were the result of the lack of one-to-one corres-

pondence between the second harmonic and laser outputs,
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Figure 10

Phase Matching Curve in Nisou.6’H20

The relative second harmonic is the ratio in arbitrary
units of the doubled frequency detector signal output to the
square of the laser monitor signal output,. The angle g, bém
tween the optic axis and the laser beam direction, is measured

with respect to an arbitrary reference.
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The polarization of that component of fundamental fregquency
which is the doubled frequency source was determined. This was ac-
complished by inserting a Glan prism into an unpolarized laser beam,
and measuring the second harmonic output as the plane of polarization
of the beam is varied. The result of plotting the magnitude of the
relative second harmonic against the angle{?‘g9 measured between the
plane of polarization of the leser beam and a principal plane in the
crystal, is shown in part (a) of Figure 11. If only the O-ray compo-
nent of the fundamentel is effective, the second harmonic should be
proportional to singfl’ while an E-ray component would be indicated by
a cos“?‘dependence. The solid line is proportionzal to sianz. Al
though the déta appear to vary faster than sin%ﬁﬁ it is clear that an
O-ray is responsible for the doubling,. The discrepancy between theory
and experiment probably arises due to a slight misalignment of the Glan
prism,.

The polarization of the second harmonic was determined in an
analogous fashion by inserting a Glan prism into the doubled frequency
bean, The results are plotted in part (b) of Figure 1l. The solid
line shows 0052}Z dependence to be expected of an E-ray. Thus the

above experiments in NiSOh.6 H,0 indicate that O-ray at the fundament-

2

al frequency generates an E-ray at the second harmonic frequency.

(4=4)  The Phase Matching Ancle in Nickel Sulvhate Hexahydrate

The phase matching angle in NiSOu.é HZO was measured, This

was accomplished by measuring the sngular diameter of the phase match-

ing cone, For this purpose  a crystal of Ni804°6 H?O was cut in the

shape of a right parallelepiped. By using the fact that the optic
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Figure 11

Dependence of S.H., Intensity on Orientation of Glan Prism in (a)

the Laser Beam and (b) the S.H., Beam

The seccond harmonic inteusity was measured as the plane of
polarization of (a) the laser beam and (b) the secoend harmonic beam
was veried with a Glan prism. In both (a) and (b) ?Z is the angle
between a principal plane in the crystal and the polarizing direc-
tion of the Glan prism. The solid curve in (a) is sinkgl indicating
an O-ray fundamentel frequency while in (b) it is 0052;4 indicating

an E-~ray second harmonic,
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axis is normal to the (001) cleavage plane it was possible to cut the
crystal with the optic axis parallel to the base of the parallelepiped.
A cross-section parallel to this base is shown in Figure 12. A provie
sional value of 54 degrees for the phase matching angle determined in
an earlier experiment was assumed in the construction of the parallele=-
piped. The crystal was then mounted in the goniometer so that it could
be rotated about an axis perpendicular to theyqptic axis, As indicated
in Figure 12 there are two directions through the crystal for which
phase matching can be obtained and the angle betveen them is 28m.
Hence, from an experimental measurement of the change in crystal orien-
tation between these two directions, the phase matching angle can be
determined,

Because the phase matching directions are not necessarily normal
to the surfaces of the parallepiped  there is a slight complication.
The second harmonic detector has a relatively wide aperture and thus
refraction of the beam on leaving the crystal is of no corcern. However,
there will be an error due to refraction of the laser beam at the front
surface of the crystal., This can be minimized by immersing the crystal
in an index matching ligquid. From Figure 12 it can be seen that the
neasured angle is given by 3%éxp = 26m + (Bt-p) + (a'-x) vhere «, B,
a' and B' are indicated in the figure. Since Snell's law is valid in
a birefringent medium if the wave normsl directions are considered and

since a o' B and B' are small it follows that

o
!
}éxp = 20, - (l‘m —§-> (e + p)



Figure 12

The Measurement of the Phase Matching Angle

A schematic diagram showing the principle by means
of which Sm was measured. The directions shown in the crystal
are those of the wave normzl  not the rays. If the angles a
B, a" and B' were zero Gm = 3 ;Zexp° The corrections to
.allow for refraction are explained in the text. The inset at the
top shovis the actuasl experimental arrangement in which the cry-
stal is rotated while the incident laser beam remains fixed in

the laboratory.
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where nlo and n are the refractive indices at A = 1.06um’for the
O-ray and the liquid respectively. In this work benzyl alcohol
(C6H5CH20H) vas used for the immersion bath in the goniometer. It is
transparent both in the green and the infrared, and has indices of
refraction n = 1,517 and 1.576 at M = 1,06pm and 0.5%um respectively.
Only the former is of importance here. Siﬁce o and B are less than
5 degrees and <? - %fgi?) ~~ 0,01, the error dus to an imperfectly
cut crystal was negligible. From the experimentally measured angle,

9%xpﬁ 113° & 2°, a phase matching angle of 8, = 56,6° 4 1,0° was
determined., The uncertainty arises because of the finite width of the
phase matching curve,

As pointed out above K only a rough value of the index gf re-
fraction of the O-ray at A = 1,06um could be obtained from previous
data. It is now possible to calculate a precise value,
nlo = 1,497 i‘OoOOl, based on equation (2-13) and the measured phase
matching angle., It should be noted that nle cannot be determined in
this way. Based on extrapolation of T8psc and Christiansen's values,
the best estimate is nle£3 1.47, This is indicated in Figure 13
where the indices of refraction of NiSOu.6 HZO for the laser and the
doubled freguency are blotted as a function of the angle 6 between the
wave normal and the optic axis, If nle were greater than 1.483 it should
be possible to obtain OE-E type phase matching., A search for frequency
doubling with OE=E phase matching was carried out in one degree

intervals. No augmented fregquency doubling other than that at 8 = 56.5°

was observed indicating that nle is very probably less than 1,483,



Figure 13

Refractive Index of NiSOu.6 HZO as a function of 6

The angle 6 is measured from the optic axis to the wave

normal direction. Since the refractive indices of an O-ray,

(o]
2 ¢

straight lines in this graph. The refractive index of the

nlo and n are independent of 6  they are represented by

E-ray, nae(e)' is the solid curve from n.° to n.® Phase

2 2 °
matching occurs at the intersection of this curve with the
straight line © j.e,at o = 56.5°, Since € is not

e m M

known, the refractive index nle(a) is drawn in the diagram

as a dashed curve,
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(k~5)  Azimuthal Dependence of Frequency Doubling in Ni804.6 H20

and Calcite

As mentioned in section (2-5) it is useful to determine the
azimuthal dependence of the frequency doubling. What is required is
a measure of the anount of second harmonic produced as the crystal
orientation is altered so that the azimuthal angle Q; for the direction
of light propagation changes., Of course it is vital that the experi-
ment be performed in such a way that anj variation in the second hare-
monic output can be attributed to a variation in;ﬁ and not 8. There-
fore, great care is necessary to ensure that the crystal is rotated
about its optic axis. This was accomplished by cutting a platelet so
that the ncrmal to the surface of the crystal was in the direction of
the optic axis. The platelet was then mounted on the goniometer so
that the optic axis was aligned along one of the axes of rotation,
The other axis of rotation was used to adjust the orientation of the
crystal for phase matching., With this geometry  phase matching will
occur when thé laser light is dbliquely incident on the crystal plate-
let, However’ since the crystal is rotated about the optic axis 6 the
angle of incidence and 8§ will remain the same., Also, the effective
thickness of the crystal will be constant., Fortunately in the case
of NiSOqﬁ6 H20' the cyystals cleave in a plane perpendicular to the
optic axis =o that the required platelets were easily formed. A
platelet of suitable thickness was mounted on the goniometerland
aligned with the zid of an autocollimator. By observing the image of

the cross~hairs reflected by the crystal platelet it was possible to
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obtain the necessary coincidence of the axis of rotation and the optic
axis to within a few minutes of arc. There is, howe#er' one further
problem., Since the index of refraction of NiS04.6 H20 is 1.497 for

the O-ray at A = 1,06pm_ the critical angle is 42°, Hence there is

no angle of incidence in air which will allow the laser light to pass
through the crystal at the phsse matching angle of 56,5°. The difficulty
was overcome by immersing the crystal in benzyl alcohol. This also
essentially eliminated reflection at the surfaces. The residual loss
is a constant since the angles of incidence with the front and back_
surfaces are independent ofgﬁ . The results obtained for the azi-~
muthal dependence of the freguency doubling are shown in Figure 1k,
Measurements were first taken at'205 intervals frmn;é=,~45° up to

§5 =175°, Intermediate points were obtained by rotating backwards
from¢= 125° to¢= -35°, At each angle phase matching was checked,
and the average over 12 flashes was determined. Within the errors 6 the
results are independent of 95. In order to assess the possibility of

a weak angular variation the data were Fourier analysed. The results

o

are
s(gb’) = (1.032 # 0.012) + (0,003 # 0.018) cos 2¢ - (0,011 4 0.016) sin 2

2

(0.011 4 0,017) cos 4@+ (0.001 4 0.017) sin 4

e,

(0.010 £ 0.018) cos 6@~ (0,002 + 0.017) sin 6

L]
:,

(0,012 4 0.017) cos 8¢+ (0,00% 4 0,017) sin 8.

Except for the constant term which is the solid line drawn on the graph

in Figure 14' the other amplitudes are all consistent with being zerc.



Figure 1k

The Azimuthal Dependence of the Frequency Doubling in NiSOu.6 HZO

The angle 96 is measured between the x -crystallographic axis
and a principal plane containing the laser beam, The solid line
dravn on the graph is the constant term in a Fourier analysis of

the data.
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A pimilar experiment was carried out in calcite, since the re-
sults of such an experiment have not been reported previously. Unlike
NiSOuo6 H20 calcite does not cleave in a plane perpendicular to its
optic axis, If was therefore necessary to grind and‘polish a platelet
with the 3 fold axis normel to its surface. To confirm that the grind-
ing had been properly carried out  the resulting platelet was observed
under a polarizing microscope. The optic axis was found to differ
from the platelet normal by one degree but this was considered to be
adequate alignment for the experiment., As mentioned previously,K fre-
quency doubling in calcite has been observed by Terhune (6) and is of
the 00-E type. Since the critical angle for the O-ray in calcite is
37.5°% at A - 1.06pm and the phase matching angle is 18.1°, the azi-
muthal dependence for calcite was measured with the crystal in air.
This necessitated using an angle of incidence of 20.7° with an accon=
panying 9% reflection loss in the laser intensity. Since the bire-
fringence of celcite is large, the full width at half maximum of the
phase matching curve was only 12 minutes of arc., Hence great care had
to be taken during the measurements to ensure that‘phase matching was
maintained. This necessitated re-measuring the portion of the phase
matching curve near its peak at each angle }5. The measurements were
taken in alternate order as for Ni804.6 HZO' but in this case the entire
range, 0 £ }b/ = 360"' vas scanned, The resulting azimuthal de-
pendence is showvn in Figure 15, Although the data are some&hat er-
ratic a sin};ﬂ dependence is clearly vieible. In a Fourier analysis

of the data  the only statistically significant terms are



Figure 15

Azimuthal Dependence of Frecuency Doubling in Celcite

The angle g§ is measured between the x-=crystallographic
axis and a principal plane containing the laser beam, ~ The solid
curve is S(¢) = 0,71 + 0.2k sin 3¢ . It was obtained from a

Fourier analysis of the data.
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S(P) = (0.71 £ 0.01) * (0.2 & 0,01) sin 3¢.
Pershan (26) has predicted that the azimuthal dependence should be of
the form |
(a%B sin 3¢)° = (a%+$B%) + 24B sin 34 - 182 cos 645
where for a lossless nonmagnetic material A and B are real constants.
By fitting the first two terms in this expression to S(QS), the values
A = 0,843 4 0,004 and B = 0,1k & 0.01 were determined. Hence the ratio
of the constant term to the amplitude of the sin 355 term is % = 6,040, k4,
Although the cos 655 term wes not observed, its absence is understand-
able since the above values of A and B predict a value of only 0.0l for
the coefficient of the cos 695 term  which would be lost in the experi-
mental error; An estimate of the minimum detectable amplitude for the
cos 6¢ term is about 0,05, Hence the experimental data are consistent

with real values for A and B, but does not exclude the possibility of a

phase difference as large as 60° between complex values for A and B.

(4=6) Frequency Doubling Dependence on Path Length In NiSOh.6 .0

Since nickel guvlphate hexahydrate absorbs somewhat at both -the
laser and second harmonic frequencies, it is iﬁteresting to observe how
the intensity of the second harmonic varies with crystal thickness,
Platelets of various thickness were formed by cleaving sections per-
pendicular to the optic axis., The smallest thickness that could be ob~
tained was 0,020 cm., Each crystal in succession was mounted on the
goniometer end immersed in benzyl alcohol. The relative intensities of
doubled frequency at the peak of the phase matching curve are recorded

in Table I. The effective path length traversed by the beam in the



Table I

Frequency Doubling Dependence on Path Length in Nisg, .6H,0

| Pty S
Platelet Effective Relative
Thickness Path Length Second
d (cm) f (em) Harmonie
1.31 237 5.8 £ 3.0
1.08 1.96 1713
0.985 1.79 3216
0,838 1.52 LL9
0.571 1.17 109 * 12
0.338 0.612 190 X L5
0.165 0,259 8701 ()
0.107 0.193 10380 X 70
0.053 0.115 1160 X 70
0.043 0.078 1080 % 60
0.030 0.055 800 X 20
0.02 0.0kl 640 X 15
0.037 675 1.35

0,020
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crystal is given by,g==d sec‘em where em = 5695° and 4 is the thick—
ness of the cleaved platelet. The data of Table I are plotted on a
logarithmic scale in Figure 16,

In section (2-3) a theory of second harmonic generation in
absorbing crystals was presented, For a nearly parallel beam; the

intensity of the second harmonic should have the form

s(2w) = A ~T4 sinh &2 (2-11a)
>
3

vhere E is the effective crystal thickness and Y and é are given by

Y = 2o, %o g =

1 2 1

o, - %@Zl ) (2-11b)

The smplitude absorption coefficients of the O-ray at v = 1,06un
and the E-ray at v = 0.5%um are denoted by al and mz respectively,
1

Using a spectrophotometer it was found that o, = 13,5 + 0.5 em ~.

1
Since N1804,6 HZO is a uniaxial crystal  the absorption coefficient of
the E-ray is anisotropic. In the phase matching direction it was
found that «, = 1.15 + .05 mel. Therefore from (2-11v),

Y = 28,2 £ 1.0 e~ and & = 12,9 # 0.5 omT.  With these values and
the aid of equation (2—12), the optimum thickness for maximum doubled
frequency output was calculated to be 0.12 % 0,05 ¢cm, In Figure 16, it
can be seen that the data peak at essentially this value, The solid
curve is a plot of expression (2-1la) with the values for Y and é

given above, The curve which wes normalized to fit at the maximum is

in good agreement with the data.
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Figure 16

Frequency Doubling Dependence on Path Length in NiSOu.6 H20

The solid curve, S(2w) = A e-Y’e sinhg ,Zv is the

(42208

theoretical expression for the second harmonic intensity emitted
from an absorbing crystal. The values of v and g in
NiSO,.6 H,0 are 28,2 ort and 12,9 on™t respectively, and the

curve has been normelized to fit the data at the maximum,
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(4=7)  The Relative Magnitude of the Frequency Doubling in

NiSOh.6 H2O’ Calcite, and KDP

It is very difficult to make an absolute measurement of the
magnitude of a frequency doubling coefficient since this involves
absolute calibration of the deteétors’ a kuowledge of the intensity
distribution in the beam cross section and the multimode structure of
the beam etc. Since these problems have been overcome byAshkin et al.
(12) using a gas laser an absolute measure of the amplitude for fre-
quency doubling in NiSOQQG HZO can be obtained by a direct comparison
of this material with others. There are still some uncertainties due
to beam divergence, crystal inhomogeneity and lack of 100% coherence,
but the difficulties are much fewer.

In order to cowpare the magnitude of the freguency doubling in
NiSOM.6 HZO with that in calcite and KDP | crystal platelets of each
were cut as outlined in section (3-4) so that phase matching could be

obtained at normsl incidence. In the case of calcite the phase match-

ing angle for frequency doubling using a Nd-glass laser was calculated
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from refractive index data (44) to be 18.1°. The intensity produced in

each platelet at phase matching was measured relative to the signal Sm
from a detector monitoring the second harmonic produced in a NiSOh.6 H
crystal. The results are shown in Table II, A direct comparison of
doubled freguency intensity produced in each crystal can be obtained

by eliminating the monitor signal, Then,

s

gi = (2.7 4 0.7) x 106
P

S

gl = (b4 4 1.0) x 100

0



Table II

Relative Second Harmonic Intensity Produced in KDP, Calcite, and NiSOh.:’:HZO

i Material Thickness e, [ S5
(em) (degrees) (degrees) E;l
1 KDp 0.19 40,3 h5 (3.3 % 0.8) % 106
2 Calcite 0.28 18.3 0 1.2 + 0,06
3 NiéOh.ézizO 0.28 56+5 L5 0,75 X 0.03

26



and S
s = (1065 "f’ O.lO)
3

The corrections that must be made in order to obtain the magnitudes of
the nonlinear susceptibilities arce discussed in the nexf chapter.
Since calcite has a large birefringence it is also possible
to observe OE-E type phase matching at 6 = 25,3°, Using the same
platelet  the intensity of the second harmonic at that angle was
measured to be
S

ER
m

= 0,023 4+ 0,003

Hence in calcite the relative magnitude of the 00-E second harmonic
generation to the OE-E nonlinearity is

S
2 = sk 7

Sy
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CHAPTER V

DISCUSSION OF RESULTS

(5-1) The Rotating Prism Q-spoiled Laser

The appearance of multipulsing was explained qualitatively by
Benson and Mirarchi (40) and Daly and Sims (41) in terms of the rotating
prism being a élow Q=switch. Whether a particular Q-speiling device is
slow or fast depends on the relative values of two parameters, the
switching time tsAand the photon build up time tp. The latter  which
depends on the lexgith of the laser cavity is defined as the time it
takes for the photon flux to bulld up from its fluvorescence value to
its péak value, For a typical laser, tp?: 200 ns, On the other hand,
the switching time is the time which elapses as the threshold for laéer
oscillation changes from a high initial value to its minimum value. An
estimate of this quantity can be obtained by measuring the threshold
for laser action as a function of the angular alignment of an adjust-
able stationary reflector. For a rotor speed of 500 rps, a typical
value of ts’ for a Nd}+:CaW 4 Q-spoiled laser is ~ 1400 ns. Since
ts>> tp° this is the case of slow Q-switching.

The phenomenon of the multipulsing can but be explained in
terms of some diagrams. The case of slow Q-switching is shown in part
(a) of Figure 17, The dashed line represents the slow change in

threshold for laser oscillation from a high initial value to its mini-

ok



Figure 17

The Switching Speed of a Q-spoiled Laser

Part (a) is the case of slow Q-switching and Part (b) is
that for fast Quswitching. In the upper half of the figure the
dashed linesrepresent the change in threshold for laser oscillation
as the rotating mirror epproaches alignment whereas the solid lines
represent the population inversion. In the bottom half a schematic
plot of the light output from the Q-spoiled laser is drawn for each

cage,
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m@m value while the solid line shows the population inversion which
has & high initial value due to optical pumping. When the population
inversion exceeds the threshold value the light pulse will begin to
evolve, The evolution of the light pulse causes a rapid decrease in
the number of excited atoms. When the population imersion falls below
the threshold value, the pulse begins to diminish. Since ts>>>tp°

it is possible for more than one light pulse to evolve before minimum
threshold is reached, In the lower part of the diagram a schematic

plot of the light output is shown.
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In a similar manner part (b) of Figure 17 illustrates the case

tsfv'tp. The light output is now a single pulse containing virtually
all the energy stored in the population inversion. In terms of the
paraneters, ts and tp* the observed dependence of the multipulses on
rotationzl speed of the prism and flashtube excitation are understand-
able qualitatively.

The rotating prism Q-switch is different %rcm other Q-spoilers
since the threshold for laser oscillation near alignment varies from a
maximum value to a minimum value and then returns to a meximum value
again, This is to be comparcd with a Kerr cell Qeswitch in which the
threshold is reduced and remasins at a low value. Since the threshold
for laser oscillation remains low only for a short time there is an

optimum switching time tsﬁs tpv for which maximum single pulse power

is obtained, TFor ts‘< tp. single puvlse operation occurs,6 but the peak

power is reduced since the leosses are increasing before the pulse has

fully evolved., Such an effect was not observed in this study «ith a
2 e m A . ‘ . . .

Na .Canou Q-spoiled laser but it has since been seen by Hill (L5)

with a Nd-glass Q-spoiled lasecr,
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Since the switching time depends not only on the rotor speed
but also on the laser beam divergence and hencé on the optical quality
of the laser crystal that factor must be-considered in choosing a
lager crystal for Q-spoiling. In general neodymium doped Cawoq‘is of
lower optical quality than Nd-glass. Hence for a given rotor speed and
flashtube excitation, ts is shorter in a Nd-glass Q-spoiled laser than
in a Nd3+:CaW04 one  so that single pulse operation is much more easily

obtained in the former than in the latter,

(5-2)  Frequency Doubling in NiSOL},6 H,0

In the experiments on frequency doubling in Nisoq,é Hzo, one
might questién whether the photomultiplier output was really due to
green light generated by frequency doubling. Since the output signal
diszppeared when the crystal was removed, the phenomenon is definitely
a characteristic of the crystal. The wavelength of the doubled frequen
was not actually measured, but the interferénee filters used had a pass
band of about 10 nm at 530 nm. If some process other than frequency
doubling is involved that process must explain the following facts.
Firetly K the output sigral is only observed for 6 = 56.5° and arbitrary
¢' and as shown in Figure 10, it has a strong dependence on 8 about
8 = 56.5% Secondly as indicated in Figure 11, the green light.prOo
duced is polarized as an E-ray and only the O-ray component of the |

laser light is useful in generating the green light.

Yy
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Since the laser emits more than one frequency of light sum

frequency generation is a possibility. As described in section (2-1)

1

metric in j and k. Hence for a crystal with 422 symmetry the induced

the susceptibilities PXfm (w * ) for optical summing are not sym-

polarizations at wl ws-w? are

P ')
P (w s TXT 8 (w)B (w) v Xy 5, (W) T (W)
EE
P (¢ = ); r(w)x(cu>-.)(123m(w>acw>
P, EE

APZ(wlﬁ’wz) = 7(312 [Ex(wl) Ey(wz) - Ey(wl) Ex<cu2)]

For two O=-rays with electric fields

sin¢ L= = s:i.n¢ o
E(wl) =~ cos¢ E el(l’l‘r "wlf') E(w . ccs;& 7 1(k2.r mwat)
)

L

at frequencies W, and (W, respectively, the polarizations Px( W, * 002)
+ Sy i o w 4 °
and Py(w1 W,) are zero since both E (W) and E ( W,) are zero

Pz(wl"*“ CU2) is also zero because for a parallel beam,
Ex(cul) Ey(wa) = Ey( wl) Ex(wa)’
Hence the possibility of electric dipole optical summing can be rejected,
If the index of refraction of the O-ray at A = 1.06um were known,
it would be possible using (2-13) to calculate the phase matching angle
f,, and compare it with the experimentally measu?ed value, A = 56,6 ¢ 1,0
degrees, Unfortunately K no data for nl is available =o such con-

firmation is impossidble. Neverthele:‘-ss‘ it appears quite safe to conclude

that freguency doubling vas indeed observed,
Y (o]
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As shovm in section (4-3) - frequenéy doubling in Ni504,6 H,0 by
an O=ray cannot be attributed to radiation from an induced electric
dipole moment. It is not a surface effect either., Doubled frequency
produced at the boundary of a crystal would not have the dependence on
path length shown in Figure 16. It is logical therefore to attribute
this doubled frequency to one or more higher order terms, as was done in
the case of calcite by Terhune et al. (6). Evidence to support this
view can be found in the measurements on the relative magnitudes of the
frequency doubling in KDP  calcite and NiSOhoé HZO. In chapter II
equations (2-15a) and (2-15b) give the second harmonic intensity S(2w),
to be expected in transparent and absorbing platelets respectively.

The ratio ofkintensities in two nonlinear materials, i and j is there-

fore

3, 2 2
ii. i E.i_ ny E}' (é_},\) F(Bi Q.iA)
S. R, \n. 9 Aj F(ej ,e,jAS

J J 1 J

where the subscripts i j = 1 2 3 denote KDP calcite and NiSOu.6 H?O
respectively and the quantities Ai are the amplitudes for freguency

doubling in each case., For absorbing crystals

r(E p)
12

where the quantity K includes both the effects of absorption and beam

F(ﬁiﬁ,izs) T K = (2-15¢)

divergence., The values of the constants in the above eguations for the
crystals used in the relative intensity measurements are listed in

Table III, In the case of NiSOu.6 H20 the formula for a nearly parallel



beam
9
e—Y'a sinh2§ I

g2122

K =

100

i

(BRA)° 1
1- 2 2.
[

1 ) ,
sinh% £

was used in evaluating K., The justification is that the full width at

half maximum of the phase matching curve which can be seen in Figure

10 to be 1.0 + 0.2 degrees, is greater than the beam divergence. Further-

more as was shown in section (2-4) for sinhgﬁ >> 1 and a nearly

parallel beam the width of the phase matching curve approaches W =

28
B

For the platelet under consideration, sinhge = 18.%3 and W = 1,1 +,05

degrees which is in good agreement with the observed value. Using the

experimental intensity ratios from section (4-7) and the constants in

Table III, the amplitude ratiocs are

A
™
1
A
y
1

and

A
2
A,

In the case of KDP (22) A
and ¢ = % . Since Ashkin et al. (12) have measu

value (3,0 + 1.0) x lOm9 e

"

i

31
s

(7 + &) % lo"g

(3 +1) x 1072

LF,O f:’f 190.

FthE
= sin qm sin 2¢ where 0, = Lo,3°

312

frequency doubling in calcite and NiS04.6 HZO are

A

2.

and A

N

#

(14 4+ 8) x ].O“13 esu

(6 + 3) x 10742

esil,

EE
red %2;12 to have the

the absolute values of the amplitudes for
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Table III

Relevant Constants for Freguency Doubling Amplitude Calculavtions

101

i 1 2 >
KI?P Calcite NiSO,. 6 H,0
n, 1,495 1.6434 1,497
64 n.3 .
R, = 2 ¢ .883 .833 .885
(n,+1)
1
Qi(cm) .19 .28 .28
26(radians) .003% ¢ ,0007 | 003 ¢+ ,0007 | ,003 + ,0007
B i( em™ 1) 2420 6950 1290
B.0.0 0.7 4 0.2 2.9 + 0.7 0.5 % 0.1
F(BiQiA) 95 4 .03 0.5 ¢ 0.2 K=0,0144+0,002
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The value of AZ compares favourably with the vaiue of lO—l2 estimated
from the results of Terhune et al. (6). It can be seen that the ampli-
tude for frequency doubling in Nisoqe6 Hao is considerably smaller than
in KDP. This indicates that higher order terms are responsible,

The question of which higher order terms can produce frequency
doubling when the amplitude for electric dipole frequency doubling is
zero has been considered in section (2-4), There it was shown that
both nmagnetic dipole and electric gquadrupole frequency doubling is pos-
sible. The free energy for the magnetic dipole effects resulted in the

induced moments

- P EH
Pi((u) = Xijk Ej(w) Ek(w)

M., EE
= b3 Bl W
Mk(uu) Dcmﬂk m(a)) ;2( )
sy smsps .. PasEH M. ES . N
where the susceptibilities i3k and ;(mek are pure imaginary for a

lossless nonmagnetic material., On the other hand, the guadrupole effects
resulted in the induced moment
. Q./EE
Qij(Zw) = X wE (w) E,(w)

where Q;{EHLQ is real for a lossless nonmagnetic substence., In Table IV

P, EB P~ EH
h > ] S A . s
the nonzero coefficients for the spsceptlbllltle 9{13k' ;(13k’

M, BB Q_EE . ' .
;(nﬁk* and ?{ijkz are listed for a crystal with hk22 symmetrg.

As mentionesd previously in section (2u5). a measurement of the
azimuthal dependence may make it possible to dlstlngulsh among the
varioug high order terms, Also in that section it was shown how the

azimuthal dependence for electric dipole frequency doubling can be deter-



The Freqguency Doubling Susceptibilities in NiSO‘L!.él-iz()

Table IV
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o
L

P., EE .
X = (LK)
skl 11 22 33 23 32 13 31 12 21
i
1 0 0 0 | 123 |123 0 0 0 0
2 0 0 0 0 0 |-123 [|-123 0 0
3 0 0 0 0 0 0 0 0 0
P, HH .
X = (13k)
skl 11 22 33 23 32 13 31 12 21.
i
1 0 0 0 | 123 [132 0 0 0 0
2 0 0 0 0 0 |-123 |-132 0 0
3 0 0 0 0 0 0 o |312 [-322
M, BB
Xgye = (k)
1k| 11 22 33 23 32 13 31 12 21.
hitd
1 0 0 0 0 {132 0 0 0 0
2 0 0 0 0 0 0 [-132 0 0
3 0 0 0 0 0 0 0 |132 [-132
Q- EE s
Xiikﬂ = (ijkD)
K| 11 22 33 23 32 13 31 12 21
iJ »
11 | 1111 | 1122 | 1133 o | o 0 0 0 0
22 | 1122 | 1111 | 1133 0 0 0 0 0 0
33 3311 | 3311 | 3333 0 0 0 0 0 0
23 | o 0 0 | 1313 {1313 0 0 0 0
32 0 0 0 | 1313 |1313 0 0 0 0
13 0 0 0 0 0 | 133 {1313 0 0
31 0 0 0 0 0 | 1313 | 1313 0 0
12 0 0 0 0 0 0 o |1212 | 1212
21 0 0 0 0 0 0 o |1212 | 1212
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mined. These calculations have been extended to electric quadrupole
and magnetic dipole frequency doubling in the Appendix. The azimuthal
dependences for these effects with 00-E phase matching are listed in
Table V. It can be seen that only two terms, Q;(f?k and g)ff?k are
effective in Ni804.6 H20. Since the second harmonic intensity is

fg' and hence §§2’ the frequency doubling intensity‘
for a‘QX?g;ke term is proportional to @. + B cos Lr¢) 2 while it is

proportional to Je

proportional to D2 for a P)(??k term, In general the effective cur-

rent amplitudes for the two effects should be added together to form the

total current for frequency doubling. Thus

_ QEE P_EH
p T Yere v s

L}

-2 w [(%g + 2k°2)+2KB cos 4%:' .

The experimental data plotted in Figure 14 and Fourier analysed in
. section (4=5) indicated that the frequency doubling in Nisoq.6 H0 was

essentially independent of the angle 95. The maximum velue of

2BK°
iD

permittéd by the data is 0,1, These results suggest
oy + 2k°A

that the observed frequency doubling in NiSOu.6 Hao is a magnetic di-

P, EH
xijk E (w)

Hk(cu). The electric quadrupole process is also consistent vith the

pole effect due to an induced polarization Py(2w) =

data for the special case that B = o which is equivalent to the

relation

QyEE 4 (Q4ER Q. ER
X1212 - ( Xllll %1122) ¢



Table V

Effective Currents for Frequency Doublihg in Ni304.6 H20

With 00-E Phase Matching

- gin B cos(s + 0,2)

Sugceptibility Jeff @
P BB
X 5k ° °
Q EB - l+wx°T§ AB cos 4§
ijke
B EH e W é
M EE
Xmﬂk o) o
0 2i(R°.F -wt)
T=E e ¢
s ) - Qa BB el KR
A = sm(ema) cos § )(3311 sin 8 cos( + a,) Q11122 B
1 . - : QA EE - Q+EB - QA EE
B =3 sin 6 cos(o + “2) [ Xllll 7<1122 2 X1212:|
. " P.EH P. EH
= + s
C = sin(n az) cos 6 X X123

A2
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There is, of course, no basic reason why this relation among the suscep-
tibility coefficients should hold but one cannot exclude such a for-
tvitous condition,

It is interesting to note that no non~phase matched electric
dipole frequency doubling due to the susceptibility P?(§23 was observed
in NiSOu°6 HZOo It is possible therefore to put an upper limit on the
value of %ngBO Consider the case of an E-ray at the fundamental
frequency producing an O-ray at the doubled frequency, For non-phase
matching  the second harmonic intensity in an absorbing crystal is given
by equation (2-8), If it were possible to phase match then the inten-
sity would be given by equation (2-11). 'Taking the ratio of the two
expressions it can be shown that
0)2 kz(nle -'n e)2

e _ 0 _ e
$(n,” = n,” =n) o1 (n,~ + n, 5
I

, _ sinn® 84 b
S(x:'le # n2°) _ nzon 1+ sinhzgﬁ I3

5 ~ 5x10

for the NiSO“.6 HZO platelet used in the relative magnitude experiments

reported in section (4=7). In the calculation it was assumed that

nle - n2° = ,O4 and anisotropy in the absorption coefficients was neg-

lected., The minimum non-phased matched radiation that would have been

detected is

S(nle # n2°)

Sl‘

= 1077

where Sl is the intensity of the second harmonic generated in the KDP

0 L

platelet used in section (4-7), Using S(nle =n, = n) = 5 x 10

S(nle # n2°) and a calculation similar to those for the relative ampli-

. . . ) P . BUEE | .
tudes in section (4«7), it can be estimated that ;2:123 in Nlcou.6 Hao
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is less than %g the value of P>C§f3 in KDP. The result is not too

. . . < . P, EB
surprising since Kleinman's symmetry condition (27) requires ~X

123

to be zero in lossless  dispersionless materials belonging to the 422
point group. Unfortunately the effectiveness of PQ(f§3 for frequency
doubling is reduced so much by absorption and non-phase matching that a
sensitive check of Kleinman's symmetry condition is not pessible in

Nisoli’e 6 HZOO

(5-3)  Freguency Doubling in Calcite

Although frequency doubling in calcite has been observed by
others (6) the results reported in section (4-5) are apparently the
first on the azimuthal dependence., In the initial work on calcite"
the frequency doubling was attributed to an electric quadrupole effect,
and it was on this basis that Pershan (26) calculated an (A+B sin 355)2
dependence for the frequency doubling., Later however mégnetic dipéle
effects were also indicated as a possible source for the frequency
doubling (25), The relevant tensor elements for frequenc& doubling are
listed in Table VI, and the azimuthal dependences for each are calcula-
ted in the Appendix following the approach given in section (2-5). A
summary of the results is given in Table VII, Since both Qij =
Q7(f?kQEk§z and P, = %xff?k E; H, give the same functional form for
the azimuthal dependence there is no way, from the experimental data
to determiﬁe which process is involved. One can conclude, hogever,
that Mk = MJ{??R EmE£ cannot solely be responsible for the frequency

doubling in calcite since in that case it should show a (G sin 3}5)2

azimuthal dependence.



Table VI

The Frequency Doubling Susceptibilities in Calcite

P _EE

X i "~ (0)
P:XjEH ;.k
1k = (ijk)
skl 11 22 33 23 32 13 31 12 21
i
1 121 | =111 o | 123 | 132 0 0 0 0
2 0 0 0 0 0 |-123 {-132 |-111 (-111
3 0 0 0 0 0 0 o | 312 |-;12
MXH: .
. mllik = (mlk)
ox | 11 22 33 23 32 13 3 12 21
m
1 121 | =111 0 o | 132 0 0 0 o
2 0 o 0 0 0 o [-132 |-111 [-111
3 0 0 0 0 0 0 o | 132 |-132
Q B ' .
Xi;jk;ﬂ (15kL)
@ | 11 22 33 23 32 13 31 12 21
ij
11 |1113| 1122 | 1133 1123 | 1123 0 0 0 0
22 {1122 1111 | 1133 -1123 |-1123 0 0 0 0
33 3311 3311 | 3333 0 0 0 0 0 C
23 | 2311| 2311 o | 13131 1313 0 o 0 0
32 {2311 -2311 o | 1313|1313 o© 0 0 0
13 0 0 0 0 o | 1313 133 2312 | 2511
31 0 0 0 0 0o | 1313 | 1313 | 2311 | 2311
12 0 0 0 0 o | 1123 | 1123 | 1222 | 1212
21 0 0 0 0 o | 1123 | 1123 | 1212 | 1212
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Table VII

Effective Currents for Freguency Doubling in Calcite

With 00-E Phase Matching

Susceptibility off @
P
‘Xi;\lf ° °
Qo EE - o % N .
%13k beok® T A+ B sin 3¢
, ) .
7(.131{ - 2i ZOT% D+ F sin 3¢
Mas BE . o .
xm’ﬁk 2i c k T§ G sin B/d
2 s/ =
g0 2k ~wt)
e
. Q EE  _ . Qn BB
sin(e + a,) cos 8 XBBll sin 6 cos(g + az) X120
5 Ry BE
cos(2p + o) XZ}ll
sin(p + a,) cos B X - sin § cos(h + o, ) P}(FH
312 123

- cos(s + “‘2) cos 8 xlll

M
cos o, X 111
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The observation of weaker frequency doubling in calcite with
OE-E phase matching relative to that obtained with 00—E indicates that
the amplitude for second harmonic generation has decreased with OE-E
phase matching., However this fact does not allow a separation of the
electric quadrupole and magnetic dipole effects in calcite, A sum=
mary of the effective currents with OE-E phase matching, as calculated
in the Appendix  is given in Table VIII. The same azimuthal dependence
is to be expected regardless of the origin of the effect. Hence a
measurement of the azimuthal dependence with OE-E phase matching in

calcite is not particularly interesting.



Table VIII

Effective Currents for Freguency Doubling in Calcite

Viith O~ Phase Matching

Susceptibility Jorr §

Po FE 0 ' °
ijk

Q;{fg?kz | -2w(k°+ke>T§ A cos 3¢

P iEglk 24 ._Z‘?:’.a, T_%" B cos 3¢f

M erElc i c(k®+k®)T § D cos 3¢

. ro.=€y =
°5° e21 (k°+k7 ) er ~wt)

. . Q. EE
2 cos(p + ma) sin(e + Oél) sin A 1123
BB

- 5 : Q
2 cos(2n *» “2) cos (g + “1) 752311

EH

. s . B
cos(g + 0'2) [lf sin(e * al)] sin 8 ‘Xlll

. M., EE
-2 cos(p + o,) cos oy, "X
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CHAPTER VI
CONCLUSIONS

The theory of slow Q-switching (40 4l) was used to explain the
appearance of multipulsing in a rotating prism Q-spoiled laser. The
results indicate that the prime consideration in choosing a crystal for
this type of Q-switch is maximum optical homogeneity and hence short-
est switching time, ‘This should be compared with the usual criterion
of lowest threshold for laser oscillation in judging the worth of a
laser crystal. The agreement between the experimental results and the
theory of slow Q-switching was qualitative in nature but a more quanti-’
tative comparison would be desirable, Since the experimental resulis
depend strongiy on optical quality,  there is little hope that such a
comparison can.be made using a Nd3+:CaW04 Q-spoiled laser. The situa-
tion is different for a Nd-glass Q-spoiled laser in which optical im-
perfections are essentially non-existent, Such a quantitative investi-
gation is now being carried out by Hill (45). Information.on'the effects‘
of the life time of the laser transition's terminal level can be ob-
tained,

The study of frequency doﬁbling in NiSOA.6 HzO has indicated
that the source of doubled frequency is an induced polarization
P, = P?Cf?k E; H, although the possibility of a contribution, i whole
or in part fronm Qij= Q;(fgkejmk Ek cannot be completely excluded,
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Three separate experimental observations support this conclusion.

Firstly since the doubled frequency is an Ekraj, whose source at the
fundamental frequency is an O-ray 6 the frequency doubling is not electiric
dipole., Secondly the amplitude for frequency doubling is 1000 times
smaller than in KDP while it is only U4 times greater than in calcite.
Thus a nonlinear effect of higher order than electric dipole is implied,
Finally, the frequency doublirg was found to be independent of the azi-
muthal angle 95 suggesting P; = le,]l' EJ H as the doubled frequency

source, As mentioned previously, the azimuthal dependence does not

H
Jk

Q 14 5 o duc .
and ;(ijkﬁ 311L1304.6 HZO since the ﬂédependenco due to the 1att§r

pernit an absolutely unambiguous separation of the effects of QCE;

can be reduced to a constant by setiing the coefficient B, of the

cos l+¢ term equal to zero. Since the fortuitous condition B = o,
or Y EE 3 (WXEE ;K is highl‘ improbable, it would be
1212 © 1111~ X1122) LENLY P ’

of interest to reduce the maximum value of B permitted by the experi-
mental data. In this work, B was shown to be at least 10 times smaller
than the constant term. An improved upper linit should be possible if
the 10 to 15% rms deviations in the data could be reduced to the 4% un-
certainty obtained in frequency doubling experiments with identical
geometries for both monitor and sample crystal (21). The desired re-
sults might be obtained by using two cleaved platelets of NiSO“.6 HZO?
one as a monitor and the other aé the sample crystal for the azimuthal
dependence measurements, For the greatést signal strength the path
length through the crystals should be 0,12 cm  the thickness for

0ptimum doubled frequency production,
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The results presented in this work have not indicated any micro-
scopic origin for the frequency doubling in Ni804.6 HZO' Some experi=~
ments with this purpose will now be proposed. Since nickel is a magnetic
atom, it would be interesting to see if the presence of the nickel ion
is a requirement for the observed phenomena. A study of the magnitude
and the azimuthal dependence of the frequency doubling in the isomorphs
NiSeOu.6 HaO, ZnSeOh.6 H20 and C0504.6 HZO might show the effects of
atomic substitution on fhe susceptibilities. Further information on
the mechanism of the frequency doubling process in Nisoqeé HZO could be
obtained from a measurement of the dispersion in the nonlinear suscepti-~
bility. If it does not vary much with fréquency9 a high frequency source
for the susceptibility is indicated. Unfortunately the bresence of ab-
sorption makes dispersion experiments in NiSOQf6 HZO_difficult. Hovever
one possibility is to use as a source the high intensity radiation at
0.5%um obtained from an efficient second harmonic generator such as KDP.
or lithium meta niobate and Nd-glass laser. The frequency doubling in
NiSOA.6 H20 would then be from the green into the ultraviolet. By
- extrapolating Topse and Christiansen's refractive index data type 00-E
phase matching appears to be still possible at these frequencies.

The absence ofvnonwphase matched radiation due to ?ﬁff§3 provi-
ded a check on Kleinman's symmetry condition (27), %2ff§3 = o, in
NiSOh.6 H20. A violation of the condition would have indicated a low

frequency mechanism for the electric dipole doubling. However since

A . . Po,EE . P, EE |
it is estimated that 9(123 is  1/25 or less ‘than ;(123 in KDP,
the test is not very sensitive, If OE-E phase matching were permitted,

a more sensitive test would be possible since the amplitude for electric
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dipole frequency doubling is no longer zero as with 00-E phase matching.
However, a search for OE-E phase matching was unsuccessful  probably due
to the lack of sufficient birefringence.

Another extension of the experiments in NiSOu.6 HZO would be to
apply a magnetic field and look for magnetic field-induced second har-
monicAgeneration. The effect has not yet been cobserved, Since the sus-
ceptibility for this effect is a 4th order axial tensor, its value is
zero in centrOSymmetrié crystals. Hence it is only observablé in those
crystals for which symmetry conditions also allow electric dipole fre-
quency doubling, The latter ﬁould probably overwhelm any magnetic field-
induced frequency doubling., As has been éhown' this would not be the
case for the noncentrosymmetric crystals like NiSOu.6 HZO which have
422 symmetry. This experiment would be the magnetic analog of the
experiment on electric field-induced doubling in calcite (6).

The measurements on the azimuthal dependence in calcite showed
‘that the data are consistent with an (A + B sin 3}5 )2 variation al-
though the presence of the cos 6;5 term was not observed., The results,
however, do not allow a distinction to be made between the electric
quadrupole and magnetic dipole effects., An attempt to observe the
(D cos 395 )2 azimuthai dependence with OBE-E phase matching was not
carried out since it would not permit a separation of the two effects
either.

The work in this thesis has demonstrated the possitle use of the
azimuthal dependence for distinguishing between the higher order terms
in frequency doubling., The method is limited in its application  but

is not restricted just to crystals with L22 symmetry. For example the
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negative uniaxial crystals with 4/mmm symmetry and OO-E phase matching
have the same functional form for the azimuthal dependence of the
electric quadrupole and magnetic dipole effects as do the 422 type cry-
stals, However if OE-E type phase matching is allowed only guadru-
pole effects would be possible. In Lmm type uniaxial negative crystals’
electric dipole frequency doubling can occur with 00-E phase matching,
but only electric quadrupole doubling is possible with OE-E phase match-
ing. In addition  there is the possibility of measuring the ratio
between electric dipole and electric quadrupole effects in the same
crystal to see if they have the same mechanism for the frequency doubling
process., A‘study of the tables given in the Appendix and the calcula~-
tion of a similar set for positive uniaxial crystals, will indicate the
symmetries in which the azimuthal dependence can be used to separate the

higher order nonlinear effects.



APPENDIX

THS AZIMUTHAL -DEPENDENCE OF FREQUENCY DOUBLING IN CRYSTALS

The purpose of this Appendix is to present the calculations of
the azimuthal dependence for electric dipole magnetic dipole, and
electric guadrupole frequency doubling in the three uniaxial crystal
classes - tetragonal trigonal and hexagénal. .The calculations have
been carried out for both 00-F and OE~E type phase matching in uniaxial
negative crystals,

It will be assumed that the applied fields are plane waves pro-

pagating through the crystal in the phase matched direction n where

sin 8 cos¢
% = |sin e sind|.
cos 6
The optic axis has been taken in the z-axis direction, The angle 8 is
measured from the optic axis to the direction of propagation  while ¢
is the angle between the crystallographic x axis and the principal plane,

The O-ray fields will be written as

Ho.ei(-ﬁoo; -(A)t)

where .
s:i.n¢ cos A cos¢
o = |- cos;ﬁ » h° = |cos 9 sing
o ~ sin #
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and E° = z° H° where z° is the impedance of the medium,
Similarly, the E~-ray is given by

- e - - ” -
Ee(w) - -é Ee el(k . =wt) H.e(w) = he B

1 [}
where
Ee = ze He
and ]
- ,cos(ﬁ-iul) cos @ sin¢
'él = |- cos(eéaa) sing %= |- cos@|
31n(e¢al) o

The quantity oy is the angle between the direction of Poynting's vector

for the E-ray and its wave normal Ee. Its value can be found from

o2
n
Q. - -Lug tan 8
nle
tan al = 5 .
nlo
1l + > tanze
e

!

As the fields propagate through the medium they induce a source
current at the doubled frequency., Not all of the source current is ef-
fective in second harmonic generation but only the component along the
direction of the electric vector for the E-ray at the doubled frequency.
It is given by
cd2w) = e

I pel2w) = ¢ RERERY

2 2
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where
Jew) = ‘)Pa(i“’)- + ¢ VX H(w) - —% (V.9
and
- cos (g8 + 0’2) cos P
32 = - cos (B + aa) sin¢ .

sin(_e + az)

As for os,l’ there is an analogous expression for sy

2

The second harmonic intensity will be proportional to Jeff2(2w). The

problem now is to evaluate Je for each of the induced moments,

ff

P_EE
(a) B (2w) = )(ijk Ej(w) E, ().
For the case of 00-E phase matching,

2

o
Ej(w) Ek(w) = 040 E |

k € .

Hence the effective current is

J = ~2icu B0

Zﬁ L2i(R°F - t)
eff


http:11(2(.JJ
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where the quantity _@. contains the azimuthal dependence and is given by
B, EE :
= E-E hir
é- st ojok %ijk' On the other hand, for O type phase matching,

™o . - -
E:j(w) E}{(w) - (Ojelk + eljok) EO Ee ei [(k + k ).r "' ZOU t]

ana the effective current is given by

;= —Ziw%Eo R [(E" + &9 - 2w t]

where§= eZi(ojelk + ) xl,]k

Since d = -_'—SE'(V'.Q)’
T2 = e e (). Q)
eff 2° ot 2i j 4]
.2

For 00-E type phase matching,

2 e =
- o 0 2i(k°,r -wt)
Jops = ~hwk® B § e

- Q
vhere@- eZl n o OQ xl,]k.e, ,
and for OE~E phase matching v
: o ey =
- - 1,9 ey & 0 1[(k + k)er - 2wt
Jeff" 2wlx® + k) B E%e ]
where

§= €21 75 (o ejp * ey 0p) xlgkﬁ y



P, EH

For OO-E phase matching

- _ o 0 0 2i(k°.r -wt)
bj Hk = oj hk E” H e
2

() [
o E 2i(k°.7 ~wt) .
4 hy 0 ©

Hence the effective current is

/7]
Jeff = -2l =3

ﬁcaé 2i(E°.F ~wt)
i e
Z

where
-~ Py EH
@‘ e 05 B Xipe

For OE-E phase matching

Ej Hk

: To 4 T8y T
o, e 2 B . o n o £ ©) o [(k + 89,7 - 2wt]

(o]

1]

o.h ® e = zey =
=[ ik, 13" ] © 5° ot [(k° + k9.7 - 2wt] .
e o
zZ Z

At phase matching 2 = zo, and the effective current is

. o - - - }
i __UEJ =2 5° @el [(k + k).r - 2wt
A

[
1]

eff

where

ks

e o P ,TH
=ey (oy B+ n ) TXTg .
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M, EE

(a) Mk(Zw) = X o0k E (w) EI(W)'
The induced current is
- Vx M), = 13w
Js c (Vx M)i c € bj .
'+ 1 for cyclic permutations of i j k
where 6ijk - 1 for anticyclic permutations of i j k

o for two or more i j k equal,

Hence the effective current is
- ijk Ma,EE
Jerg = © €33 € 33’ X Ea By,
For 00-F phase matching this reduces to

2i ¢ k°

<y
1

E02§ L2i(EF ~wt)
eff
where

i35k M, EE
o3 %5 €70 000 KXoy

¢

and for OE-E phase matching

ic(x®+x% &

(9
i

O e § ol [(i? + k9.7 ~ zwt]
eff o

¢

The summations implied in ég have been evaluated in the crystal

where

ijk ' M,/ EE
eps By €7 (og ey, * e o)) "Xy

H

classes, tetragonal trigonal 6 and hexagonal for each of the 8 expres-
sions derived above., This was accomplished with the aid of a review

article by Birss (10) in which the crystal symmetry restrictions on the
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coefficients of both polar and axial tensors are listed. The results

are presented in the following order. First in Table A-I A-II A-III
‘s , o .

and A-IV the quantities e, oj O, €54 n % % , €53 °j hk and

6’13l 92 o_ for 00-E type phase matchlng are listed. These are

followed by Tables A=V A-VI A-VII A-VIII giving the sums
P., EE P, EH
f‘ °1 %5 % Xigkr %21 5 % % xigkﬁ' 21 °; b’ X ijx and
ijk . .
e By € °, % ;Kmﬂh In an analogous fashion the next set of

tables contains the results of the calculations for OE-E phase matching,

2i (°j i ¥ ey O)s S By (O e * ey ),

0 ijk
+ e 3 b ), and ®o1 P € (92 - 12) are listed

Thus the quantities e

€5y (oj hk

in Tables A-IX A-X A-XI and A-XII respectively,6 while the sums

e

@2 €21 (°j e " O o) xl;]k' €21 3(°k &0 % ey ¢ ) leKQ’
e o) EH M
210y "+ ey ) Xy and ey Hlogernt cgow Foupe

are given in Tables A-XIIT, A-XIV  A-XV and A=XVI,



Table A~I:

The Quantity e_.o0.0

Jk
)}{ i
N v 11 22 33 23 32 13 31 12
1 -G 2820 -02c3 0 0 02302
2 8% | ~Gpse 0 0 Cps?c
2
3 Sgs Soc 0 0 -Sase

S,= sin (8 +%,), C, = cos (6 +o¢,), s =sin @, c=cos @

h21



Table A~IIt The Quantity eZinjokojl
k2 11 22 33 23 32 13 31 12 21
11 ~025s202 -GZScb 0 0 ' 0 ('.528333
22 —c:25s"4I -0235202 0 0 0 7 G;S?c
33 52032 ézccz 0 | 0 0  -5yCsc
23 | <608 | ~0n8sc” | O | o 0 Cy0s ¢
32 52583 828502 | Q 0 0 -52‘5;20
13 | =Gp0s% | -0,0c° 0 0 | 0 0 08¢
31 ' SZSsac 82893 0 0 0 - --S?_Ssc2
12 | "CZSSBC --Cz.:Ssc:3 ' 0 0 0 028s202
2L —G2533c ‘025803 0 0 0 , 02832c2

S.= sin (8 +°(2), C

2 =cos(e+0(2), S=gsin® C=cos 6 s=sinP, c¢c=cosd

2
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Table A-III: The Quantity e .o h°
2i jk

Jk 11 22 33 23 32 13 31 12 21
2 2 2 2

-CZCsc CZCsc 0 -CoSe 0 CZSsc 0 -Co0s ¢ 02003
2 2

-02032c Czcszc 0 -Cassc 0 CZSS 0 -32(383 C2Csc

0 0 0 C 2 S50

SZCsc -SZCsc SZSc -S?_Ss 82 S =So0c

cos 8, s=sinf, c=cosf

52 = gin (8 +o<2), c

2

= cos (8 +0(2), S=sin®8, C=

92T



X ijk
The Quantity € 8.

Table A~-IV: nso 0,
= 1 22 33 23 32 13 1 12 21
1 -53003«2 -sczcosa(2 0 0 szc cos%,
2 52c cosoh chosrﬁ | 0 0 -sczcosc(z |
3 0 o) 0 0
s=3s8inf, c=cosf

L2t
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Table A-V

. . Py EE
The Quantity _{5 %10 3% Xijk

Crysbal Cless Point Group @
l A
‘l-; -A cos 20 + B sin 2§
L/m 0
Tetragonal L22 0
Lyrm - A
Lo B sin 2
b/ mmm 0
3 A>+Dc053¢+E5in3¢
3 0
Trigonsal 32 D cos 3P
3m A + E sin 3¢
§1n 0
6 A
'E D cos 3¢ + E sin 3§
6/n A 0
Hexagonal 622 0
6mm A
6m2 D cos 30
6/ 0

A= (311)S,, B= - (312)5,, D= (111)0y, E= - (222)0,

P, EE

S, = sin (e +0(2) s Cp = cos (o +O\’2) s Xijk = (ijk)
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Table A-VI

ki . Q
The Quantity (:p ezj_njokoa i3k

E

Crystal Class Point Group @
b, &
? A+ Bcos g + D sin L@
L/m '
Tetragonal —
L22, L2m, '
. A+ Bcos Lf
Yy L/ ramm
3, 3, E+ F cos 3¢ + G sin 3¢
Trigonal
~ 32, 3n,
- E+ G sin 3¢
3n
6, 6,
E
6/m
Hexagonal
622, 6mm,
- E
6m2, 6/mmm

A = 5,6(3311) = ¢,5(1122) ~ B

B = Jo,s[(1111) - (1122) - 2(1212))]
D = 0,5 [(a112) + (121)]

E = 5,06(3311) - C,5(1122)

F

(1311) cos (28 +°§2)
G = (2311) cos (20 + X ,)

52 = sin (@ +°<2), C,= cos (e +°<2), S=sin®, C = cos©,

Wseg = (13k0)
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Table A-VII
oP.  Fi
vThe Quantity gﬁ = eZiojhk Xijk
Orystal Class Point Group §§
L, L,
A
L/m
Tetragonal
: L22, L,
A
T2m, L/mmm
3 3 A + Bcos 3p + D sin 3§
Trigonal 32, 3m,
. A + D sin 3¢
3m
6’ ‘63
A
6/m
Hexagonal
622, 6mm,
- A
6m2, 6/mmm

A = 5,0(312) - C,8(123)
B = ~0,0(222) |

= -0,0(111)
i = (1K)

Sy, = sin (e +<><2), C, = cos (8 +0c2)
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The Quantity § = 8y

Table A-VIII

n.el‘]k

M., EE

3 ©0%m Xm!,k
Crystal Class Point Group 0
| b T
0
L/m
Tetragonal
L22, - Lim, 0
L2m, b/mrm
3 3 A cos 3% + B sin 39
Trigonal 32, 3m,
_ B sin 3§
3m
6, &
0
6/m
Hexagonal
622, 6mn,
_ 0
6m2, &/mmm

A = (222) cosX,

B= (111) cosx

Mg = (o)

2
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Table A-IX: The Quantity 621(°jelk + elj°k)

NIE 1 22 33 23 32 13

1 C,0,8 c 0 c,5 c? &
2018 ¢ | ~Og0ysc 251° 25 8¢

2 C.C -C,Ciss| O c 5,8
2012 2612 251%¢ 25,°

3 ~5,0,8 5,0,8 0 -5,5,¢ 5,58

S, = sin (8 +Xy), & = sin (8 +04), s = sin 2P, s = sinp,

Co = cos (8 +Xy); Cy= cos (8 +04), ¢ = cos 24, c=cosy

%1



Table A-X: The Quantity eZinj(okell + elkoz)

» kL 11 22 33 23 32 13 31 12

1 czclsgc;2 -0,0, 8sc?| 0 6,5, 5¢° -c,,8, 8s¢? -6, Se?e
22 o0 8ss® | -0.0.588%| 0 6,5, 5s°c -G, 857 0,0, 5s°¢
33 |-5,008 |8,00s 0 -5,8,Cc 5,5,0s 5,0,C¢
23 |cpCss |=C0Css | O €,5,Csc | ~,8,0s° -0, Cse
32 |=8,0)8s8 | 5,0,58s 0 ~8,,5, Sse 5,8, 56 5,0, 552
13 |6,0.Csc |=C0.Csc | O ¢,5,0c® ~G,,3,Osc -0,0,Cog
31 [-5,0,58c |8,0,8sc 0 -8,8, 5¢° 5,5,8s¢ 5,0, Sce
12 |C 0 Sssc | =C G Sssc| O 6,5, Ssc? -C,5, 55°c ~6,0, Sscg
21 czcls_gsc -6,C,Sssc| O ¢, 8, Ssc? -G, 8s% -¢,C,Csce
'82 = gin (O +0(2), Sl = sin (0 +O<1), S=sine, s=sin2f, s=sing

¢ = cos 28, c= cos #.

C2 = cos (O +0(2), Cl = cos (e +§(l), C = cos 8,

¢et



Table A-XI: The Quantity e, (o he + eljhg)
Jk 11 22 33 23 32 13 31 12 21

1 C,C,Ce3 0201032 0,8 5¢ | =0,5,Csc | ~C,C, Sse -02510c2 -ozclsc2 CZClCSOZ
-Czsac -¢_c3 + stc2

2 6,0,Csc? | C,C 083 0,5, S5 |08 Ca? =0,0,85% | 0,8 Csc | -GG, Ssc 6,0, 0a%c
-0253 'CQSC + Czszc

3 '--szclcc2 -_5201082 “5,855  [5,8,0s |50, 8 [5,8Cc |50 Se -5,0, Osc
+ 8232 + 82c2 -stc

Sz_ = sin.(® +0<2), S1 = gin (8 +0<1), S=s5in6, s = sinf

C, = cos (e +0(2), c, = cog (e +O(l), C=cos8 c¢=cosf

#ET



I e ijk
Table A-XII: The Quantity eZinj € (erlm + elﬁom)

Im 11 22 33 23 32 13 bl 12 21
1 | Cl_s_s cosot2 -Clgs costx2 0 Slsc cosbé -3152 c:osc(2 -Gls_g coso§
2
- o - s o

2 Glgc COB,O(Z Gl_gc cos A 0 SlG coso(2 Slsc co °§ Glc_g cos S
3 0 0 0 0 0 0
Sl=sin(e+o:<L), s = sin 2§, s = sin g,

C, = cos (8 +04), ¢ =cos2f c=cos Bo
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Table A-XIII

P.EE

The Quantity @ = eZi(o,jelk + eljok) Xijk

136

Crystal Class

Point Group

¢

L

A

k (A + B) cos 24 + D sin 2
L/m 0
Tetragonal 422 A
Lran 0
L2m (4 + B) cos 28
L/ vanm 0
3 A+ Esin 3% + F cos 3%
3 0
Trigénal 32 A+ E sin 3%
3m F cos 3§
3m 0
6 A
6 Esin3¢+FcosB¢r
6/ 0
Hexagonal 622 A
6mm 0
6m2 E sin 3p
6/ mmn 0

= 2 [ B -
h=2(123)08 , B 2(312)8,0,, D= -2 [szcl(sn) " 0251(113)] ,

E= 2(111)C. 8, F = 2(222 PEE & (i3
( )21, 2(2)0281, Xijk (ijk),

82 = sin (@ +0(2), C. = cos (® +0(2), S1 = sin (O +<>i), c

2

1

= cos (8 +o<l)
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Table A-XIV
Q
The Quantity @ 6, 1. (ok gt e OQ) Xlgl&
Crystal Class Point Group @
by L
> A+ Besin U + D cos Lf
L/m
Tetragonal N )
22, lLmm,
- ’ B sin L@
Lem, b/mmn
3, 3 E+ F sin 30 + G cos 38
Trigonal 32, 3m,
_ G cos 3§
3n
6, 6
E
6/nm
Hexagonal
622, Gmm,
- 0
6m2, 6/rmmm

A= 23 (1323) cos (28 + 0(2) + 02 1

B = 30,0,5 [(1111) - (1122) -2(1212)]

2°1
D= -c,0 8 [(1211) + (1112)]

E= 281(1323) cos (20 + °<2) + 2C G S(1211)

[(1211) - (1112)]

Fsﬂ)uﬂl)ms(%+o%) 20,5, 5(1113)

G = 20 S S(1123) 201(2311) cos (20 +(><2)
S, = sin (@ + & ), C, = cos (O +0<2), S

2 1
D Cep = (3K2)

= gin (8 + 03.),

C

1

= cos (O + O&i),



Table A-XV
s = e, o P EH
The Quantity @ -» e?i(ojhk : eljhk) xi,jk ;
Crystal Class Point Group @
L, 1L,
A
L/m
Tetragonal
L22, Lmm, 0
I|2m, b/ mmm
3, 3 A+ Bsin 3% + D cos 30
Trigonal 32, 3m,
_ D cos 3@
3m .
6, 6,
A
6/m
Hexagonal.
- 6]
6m2, 6/mm

A= S, [(1-010)(311) - 315(333)] - C, [810(113) + 018<131)] ,

B= -02(1 + clc)(zza)

D= Gy(L + clc)(lu)

Hoge = (1K)

Sy

2

= sin (8 +9<2),

G, = cos (9 +0G,), ©

1

1

= cos (O +0(1),

S. = sin (® +O(l), S = sin @

C = cos 6
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The Quantity é = eZinj €;jk(oo’elm + a:mom)M

Table A-XVI

EE
mik

Crystal Class

Point Group

¢

h’ )’,’
A
L/m
Tetragonel
L22, Lmm,
- 0
L2m, L/mmm
3 3 A+ Bcos 3% + D sin 3¢
Trigonal - 32, 3m,
- B cos 38
3m
6, 6,
A
6/nm
Hexagonal -
622, 6mm,
- 0
ém2, 6/mmm

bo=- 5 [(131)' + (311)] cos X ,,
Be= - 201(111) cosX
D= - 201(222) cos &
MXffk = (ntk)

Sl = gin (0 + Oi), Cl = cos (8 +o&)

2
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