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Using a Q-spoiled Nd-glass laser, an experimental investigation 

of frequency doubling in Niso4.6 H o was carried out. The frequency
2

doubling was observed to occur at a phase matching angle of 56° ± 1°. 

Experimentally, it is shown that the fundamental frequency at 

X =1.06 µm is an 0-ray while the doubled frequency at A = .53µm is 

an E-ray. Since the amplitude for electric dipole frequency doubling · 

in NiS04,6 H o is zero, these observations are unusual. The observa
2

tions are attributed to magnetic dipole and/or electric quadrupole 

frequency doubling. Evidence to support this view comes from the 

magnitude of the effect and from its azimuthal dependence. The elec

tric quadrupole type frequency doubling is consistent with the data 

only if the susceptibility coefficients satisfy the relation 

QXEE = t (~E
1212 ri111 

ii 



ACKNOWLEDGEMENTS 

The author is especially grateful to Professor R.G. Summers-

Gill for his helpful advice and criticism during the course of the 

work and in the preparation of this thesis. 

An additional expression of gratitude is due to Dr. H.E. Petch 

for his loan of the KDP and ADP crystals used in some of the experi

ments. 

I have also profited from several discussions with 

Dr. C.K. Campbell and Mr. K.o. Hill. 

I am indebted to the National Research Council of Canada and 
' 

the Province of Ontario for their support through fellowships. 

And finally, this work would not have been possible without 

the continuous support in the form of grants from the Defence Research 

Board. 

iii 



TABLE OF CONTENTS 


I 	 INTIDDUCTION 1 

II THEORY 5 
(2-1) The Nonlinear Susceptibilities 5 
(2-2) A Microscopic Theory of the Nonlinear Susceptibilities 12 
(2-3) Wave Propagation in Nonlinear Media 15 
(2-4) The Time Averaged Free Energy 30 
(2-5) The Azimuthal Dependence of Frequency Doubling in 

Crystals 41 

III 	 EXPERIMENTAL APPARATUS AND PROCEDURE 46 
(3-1) Introduction 46 
(3-2) Construction and Operation of the Q-spoiled Laser 47 
(3-3) The Frequency Doubling Apparatus 57 
(3-4) Sample Preparation 62 
(3-5) Procedure 63 

IV EXPERIMEN'rAL RESULTS 66 
(4-1) Operating Characteristics of the Q-spoiled Laser 66 
(4-2) Frequency Doubling in KDP and ADP 71 
(4-3) Frequency Doubling in Nickel Sulphate Hexahydrate 73 
(4-4) The Phase Matching Angle in Nickel Sulphate Hexahydrate 76 
(4-5) Azimuthal Dependence of Frequency Doubling in 

NiS0 .6 H o and Calcite 824 2
(4-6) Frequency Doubling Dependence on Path Length in 

NiS04• 6 H o 87
2

(4-7) 	The Relative Magnitude of the Frequency Doubling in 
Niso4.6 H o, Calcite and KDP 91

2

v 	 DISCUSSION OF RESULTS 94 
(5-1) The Rotating Prism Q-spoiled Laser 94 
(5-2) Frequency Doubling in NiS0~.6 H2o 97 
(5-3) Frequency Doubling in Calcite 107 

VI 	 CONCLUSIONS 112 

APPENDIX 	 117 

REFF.....RENCES 	 140 

iv 



Table 


I 


II 


III 


IV 


v 


VI 


VII 


VIII 


A-I 


A-II 

A-III 

A-IV 

A-V 

A-VI 

A-VII 

A-VIII 

A-IX 

A-X 

LIST OF TABLES 

Page 

Frequency Doubling Dependence of Path Length in 

Niso4.6 H

2
o 88 


Relative Second Harmonic Intensity Produced in KDP, 

Calcite, and NiS04.6 H 0 92


2


Relevant Constants for Frequency Doubling Amplitude 

Calculations 101 


The Frequency Doubling Susceptibilities in Niso4.6 H o 103 

2
 

Effective Currents for Frequency Doubling in 

Niso4.6 H

2
o with 00-E Phase Matching 105 


The Frequency Doubling Susceptibilities in Calcite 108 


Effective Currents for Frequency Doubling in Calcite 

With 00-E Phase Matching 109 


Effective Currents for Frequency Doubling in Calcite 

With OE-E Phase Matching 111 


The Quantity e2i o. 124
OkJ 


The Quantity e2i nj ok o;.. 125 


The Quantity e2i oj 11to 126 

. "k 


The Quantity € 1 
J e2i nj og, 0 127 


m 
p EE

The Quantity~= 128
e2i oj Ok xijk 

Q_;(EEThe Quantity~= e2i nj ok ofl 129
ijk.e!. 

The Quantity f = ho Po/ E. HJ.k 130
e2i 0 j -le /'- 1 

i jk M..yEEThe Quantity~= e2 . n. € on o /\. nk 131 

i J ;I(., m m~ 

The Quantity e2i(oj elk+ e1 j ok) 132 


The Quantity e2i n/ok e1 £ + e1k of ) 133 


v 




LIST OF TABLES continued 

Page 


A-XI 134 


135 


A-XIV The Quantity p= e i 137
2


A-XV The Quantity p= e 138
21 


A-XVI 139 


vi 




LIST OF FIGURES 

Page 

FIGURE 

1 Frequency Doubling in an Infinite Nonlinear Platelet 17 

2 Velocity Matching in a Negative Uniaxial Crystal 23 

3 Photograph of Top Half of Elliptical Reflector 53 

4 Schematic Diagrai~ of Bottom Half of Laser Head 54 

5 Photograph of Goniometer Mechanism 58 

6 Schematic Diagram of Frequency Doubling Apparatus 61 

7 Laser Output vs. Time for Different Rotor Speeds 68 

8 Laser Output vs. Time for Different Excitation Energies 69 

9 Phase Matching Curve in KDP 72 

10 Phase Matching Curve in Niso4.6 H
2
o 75 

11 Dependence of S.H. Intensity on Orientation of Glan Prism 
in (a) the laser beam and (b) the S.H. beam 77 

12 The Measurement of the Phase Matching Angle 79 

13 Refractive Index of Niso4.6 H o as a Function of e 81
2

14 Azimuthal Dependence of Frequency Doubling in Niso4.6 H o 84
2

15 	 Azimuthal Depence of Frequency Doubling in Calcite 86 

16 	 Frequency Doubling Dependence on Path Length in 
NiS04.6 tt 0 902

17 The Switching Speed of a Q-spoiled Laser 95 

vii 



••• 

CHAPTER I 

INTRODUCTION 

The physical phenomena that occur when light interacts with 

matter have always been of great interest to physicists. This in

terest has been stimulated further by the development of the laser 

as a high power coherent source of optical radiation. In particular, 

a new field of phenomena "nonlinear optics" has been created. The 

work reported in this thesis will be concerned with some of the 

experiments in this new field. 

It is well known that when a light beam propagates through 

a medium, a polarization is induced. For conventional optical fields, 

the amplitude of the induced polarization varies linearly with the 

applied field. This is to be expected
t 

since the fields in the atom 

are so large, that the externally applied field is only a small per

turbation on the much larger local fields. The situation has changed 

with the availability of high power optical fields in laser light beams. 

With a laser light source, the observation of nonlinear effects is 

possible. The question may now be asked as to what sort of phenomena 

nonlinear effects might produce. Some of the qualitative features can 

be illustrated by making a scalar power series expansion of the induced 

polarization in terms of the electric field 

a ~3 + (1-1)3"' 

1 
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where ~ is the customary linear polarizability and a2 and a are the
3 

coefficients of the nonlinear terms. If it is assumed that a plane 

wave with electric field E=E cosuit is propagating through the medium,
0 

the induced polarization is given by 

P = a1E coswt + !a 2 ~ (l+cos2wt) + .!af~ (3coswt + cos3wt) + ••• (1-2)
0 2 4 

The first term, an induced polarization at the frequency of the applied 

field, will radiate an electromagnetic wave at the fundamental frequency. 

It is this term which is responsible for a medium having a refractive 

index different from unity. The first nonlinear term produces a d.c. 

polarization and one at twice the frequency of the applied field. The 

zero frequency term will induce a voltage across the crystal, so this 

nonlinear effect is called optical rectification. On the other hand, the 

induced polarization at twice the frequency will radiate an electro

magnetic wave at twice the frequency of the applied field. Therefore, 

this nonlinear process is called frequency doubling or second harmonic 

generation (S.H.G.). In a similar manner, the next nonlinear term will 

produce frequency tripling or third harmonic generation (T.H.G.) and 

also will give rise to an intensity dependence of the refractive index. 

Perhaps the most striking characteristic of nonlinear phenomena 

is the production of light at frequencies different from that of the 

applied field. The first successful observation of a nonlinear effect 

was performed by Franken et al. (1). In that experiment, the light 

from a ruby laser (.6943 µm) was focused on a quartz platelet. The 

transmitted light was analysed with a spectrograph and a minute amount 
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of doubled light at .3472 µm was detected. The doubled frequency light 

was attributed to radiation from an electric dipole polarization at the 

doubled frequency which was induced by the laser light. This initial 

experiment was rapidly followed by others (2,3,4) in which enhanced 

frequency doubling and mixing were observed. 

Besides frequency doubling, other nonlinear effects have been 

observed. The optical rectification of light has been reported by 

Bass et al. (5). Third harmonic generation, electric field induced 

frequency doubling and electric quadrupole frequency doubling were 

first observed by Terhune~· (6). The latter two effects are of 

interest since they are small compared to electric dipole frequency 

doubling. Their observation was possible in calcite because the co

efficients for electric dipole frequency doubling are zero in a crystal 

with a centre of symmetry. Since a surface has no centre of symmetry, 

it is possible to observe frequency doubling on reflection. This ef

fect was first observed by Ducuingand Bloembergen (7). In that 

experiment, doubled frequency light was detected in the laser beam 

reflected from the surface of a gallium arsenide (GaAs) crystal. The 

last nonlinear effect that will be mentioned is the intensity dependent 

refractive index. The effect is due to an induced polarization pro

portional to three electric fields and has been observed by Maker 

~· (8) in liquids. 

The investigation reported in this thesis was motivated by the 

discovery of a different null condition on electric dipole frequency 

doubling. The amplitude for electric dipole frequency doubling can be zero 

for uniaxial negative crystals belonging to the point groups (422) and 
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(622). In the hope of observing some new nonlinear effects, an 

investigation of the frequency doubling in nickel sulphate hexahydrate 

(Niso4.6H o) was undertaken. This crystal is uniaxial negative and2

belongs to the point group 422. 



CHAPTER II 

THEORY 

(2-1) The Nonlinear Susceptibilities 

In the preceding section, a scalar expansion of the induced 

polarization was used to illustrate nonlinear phenomena. For a crystal, 

such an expansion is not correct. It is well known, that there is a 

tensor relation between the induced polarization and the electric field. 

Furthermore, the effects of dispersion were neglected in the expansion. 

A more realistic series expansion of the ith component of the induced 

polarization is 

+ ••• (2-1) 

where 

p~j(w) is the linear ~lectric susceptibility, 

5 
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p;;{~Co= w-w) is the coefficient for optical rectification, 

P.EE( )A· "k 2w=w+w is the coefficient for electric dipole
l.J 

doubling, 

P EVE 
Aijk (2w) is the coefficient for electric quadrupole fre

quency doubling, 

P. EEEX. "k (2 c..u) is the coefficient for electric field inducedl.J 	 . 


frequency doubling, 


P. EEEand 	 X. 'k ( 3 w) is the coefficient for frequency tripling.
l.J 

The summation convention on repeated indices is implied. A complete 

expansion can also contain terms which are proportional to the magnetic 

field. In addition, there can be analogous series expansions of the 

induced magnetization and electric quadrupole polarization. It should 

be noted, that the coefficients for optical rectification and electric 

dipole frequency doubling are no longer related as they were in the 

scalar series expansion. In this way dispersive effects can be included 

in the expansion. 

The number of independent coefficients in the susceptibility 

tensor is restricted by the crystal symmetry. This can be expressed in 

the principle that the susceptibility tensors must be invariant under 

all symmetry operations of the crystal point groups. Let A =A«P be a 

symmetry operator belonging to the point group of the crystal where A 
t 

is an orthogonal transformation, i.e. the inverse of A is equal to the 

transpose of A. Let the primed symbols represent the new quantities 
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after transformation, so that 

p' = A . P. 
a. a.i 1 

.,.,.I 

l!ii3 = Al3j Ej. 

Thus E E ••• Epi = xijk ••• J, j k ! 

p/ E / E'becomes = 
, 

13 
E;a. xa.13y ..., ••• h 

I 
and Aai pi = Xc:r.13y •••$ Aj3j Ayk ••• A~(Ej~ ••• E4 

= A • X. 'k /1 E .E. • • • E11 
(J.l. 1J ••• ..{. J k ~ • 

~ 

Therefore Xa.13y• •• s = Aai xijk ••• .e Ajl3 AkY ••• A' & 

= Aa.i Al3j A Yk ••• Af,Jl. xijk •'••./, • 

If the tensor is to be invariant under the symmetry operation A then 

= A • AA. A k ••• A t:.R. x ..k ,, (2-2) 
a.1 ~J y 0 1J ···~ • 

There will be as many equations (2-2) as there are symmetry operators 

belonging to the point group of the crystal. Equation (2-2) is valid 

only for polar tensors. Axial tensors can also occur in the expansion 

(2-1) when magnetic effects are included. For axial tensors the 

transformation equation becomes 

(2-3)• 
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The negative sign must be taken with symmetry operators wh.tch transform 

from a right handed coordinate system to a left handed system or vice 

versa. The plus sign is chosen for those symmetry operations in which 

the handedness of the coordinate system does not chan.ge. 

As a relevant example, consider the case of electric dipole 

frequency doubling. In this case equation (2-2) becomes 

• 

For a crystal with a centre of symmetry, the inversion operator 

A = - bmn belongs to the point group. Therefore 
' 

P_..EE P_..EE
;x... .k(2w) = - ;c ...k(2w) = o

1J 1J 

This is the important null condition on the coefficients for electric 

dipole frequency doubling in crystals with a centre of symmetry. For 

crystals with no centre of symmetry, crystal symmetry will require 

some, but not all, of the components of a tensor to be zero. 

The susceptibility tensors may also possess intrinsic symmetry 

depending on the nature of the physical process they describe. This 

additional symmetry will reduce the number of independent coefficients 

even further. In the case of electric dipole frequency doubling, 

P.(2w) =P~k(2w) E.(w) E (w) the fields E.(w) and E (w) are 
1 1J J -k ' J -k 


E EE 

indistinguishable. Hence the tensor ;xijk(2Gu) is symmetric in its 

last two indices, and 
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= 


On the other hand, in the case of sum or difference frequency genera

tion, 

the fields are distinguishable. 


are not required to be symmetric in the last two indices. 


All crystals can be classified into 32 different point groups. 

The form of the susceptibility tensors can be determined for each using 

relations (2-2) and (2-3). Fortunately in the case of electric dipole 

frequency doubling, the symmetry restrictions on the coefficients are 

exactly the sa~e as those for the piezoelectric coefficients. Hence 

P. EEthe form of the electric dipole tensor ")( . . k(2GrJ) is the same as that
l.J 

of the piezoelectric tensor and can be found in most books on piezo

electricity (9). There is ho':Vever no relation between the magnitude 
' t 

of the frequency doubling coefficients ~d the magnitude of the piezo

electric coefficients. Out of the 32 point groups only 21 are piezo

electric, i.e. no centre of symmetry and therefore suitable for fre

quency doubling. 

P EESince the frequency doubling coefficients /(ijk(2GtJ) are 

symmetric in their last two indices some authors have used the con
' 

tracted tensor notation that is used in piezoelectricity. In this 

notation a single index..O which can take on the values 1 to 6 re
' ' 

places the last two indices j and k where, 
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P, = 1 2 3 4 5 6 

2,2 3, 3 2,3 1,3 1,2 
3,2 3,1 2,1 

The most general frequency doubling tensor, corresponding to a 

triclinic crystal belonging to the point group 1, is given below in 

the contracted tensor notation 

p 
X11 x12 x13 x14 x15 x16x 

p = x21 .x22 X23 ~4 X25 x26y 

p X31 X32 x33 X34 X35 X3Gz 

E2 
x 

E2 
y 

E2 
z 

2E E 
y z 

2E E x z 

2E E x y 

There are 18 independent coefficients. This nu.~ber will be reduced 

for point groups of higher symmetry. In the case of the other nonlinear 

susceptibility tensors the effect of crystal symmetry can be found, for 

both polar and axial tensors up to 4th order, in a review article by 

Birss (10). The effect of any intrinsic symmetry that the physics may 

require can be added. 

Up to this point, nothing has been said about the magnitude of 

the nonlinear susceptibility coefficients. Rough order-of-magnitude 

values can be obtained theoretically. Using perturbation theory, 

Franken and \'lard (11) have shown that the ratio of the electric dipole 

frequency doubling susceptibility to the linear susceptibility is of 
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the order of the inverse atomic fields. They estimate the magnitude of 

the frequency doubling coefficient to be l0-7esu. In a measurement of 

the absolute magnitude of the nonlinear susceptibility, the experimenter 

encounters several difficulties which will be elaborated on in a later 

chapter. The most reliable value for the frequency doubling coefficient 

has been obtained by Ashkin et al. (12) using a gas laser. They measured 

a value of 3 x 10-9esu for the ~ ( 2 ~) coefficient in potassium di
312 

hydrogen phosphate (KDP). ·For the present the best exper-lmental procedure 

is to measure the magnitude of the other nonlinear susceptibilities re

lative to that of KDP. If the electric fields are measured in stat-

volts per cm, the expected values of the susceptibilities in (2-1) are: 

For comparison the values of the sus
' 

ceptibilities in rationalized m.k.s. units are; 

P_x~j(w) "'10-11 P EE ( ),...., 10-22 

1 ' Xijk o • 


P'Y~kE (2w=o+w+w) "'lo-32 
and

-"l.J ' 
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(2-2) A MicroscoEic TheQ!':r of the Nonlinear Susceptibilities 

In the first sub-section, a phenomenological. description of the 

nonlinear susceptibilities was given. It is desirable to be able to 

calculate the nonlinear susceptibilities from first principles. The 

problem is similar to that of calculating the linear electric sus

ceptibilities from a microscopic theory. This was first accomplished 

using the classical Lorentz-Drude model, in which the medium was con

sidered to be an assemblage of harmonic oscillators. An extension to 

include nonlinear effects may be made (13) by generalizing to the case 

of anharmonic oscillators. Although this simple model has its limita

tions, it yields almost as much insight into the nature of nonlinear 

phenomena as does a more rigorous quantum mechanical calculation. 

The equation of motion of an anharmonically bound electron 

driven by an oscillating electric field E=E costut is 
0 

x + w 2x + nx2 =_eEo coswt. (2-4) 
o m 

where x is the displacement of the electron, co is its resonant fre
0 

quency in the harmonic limit, a is a coefficient specifying the degree 

of nonlinearity, and e and m are the charge and mass of the electron 

respectively. If the nonlinearity is small it can be treated as a per

turbation and solutions to (2-4) in the form of a Fourier series can 

be found by successive approximations. Assume a solution of the form 

x = ~ coswt + x cos2wt
2 
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Substituting this into (2-4) and equating coefficients of the same 

frequency, one can show that 

eE 1 
= ___£

'1. m lv 2_ f.AJ2 
0 

e2E2and a. 0 1 
=x2 - 2 2 2 2 2 2 2 

m ( w -4w ) ( w - w )
0 0 

If the medium has N oscillators per cubic centimeter, the induced 

polarizations are 

P(w) = E (2-5)2 2 0m( w - w )
0 

and P(2w) = P .EE E2 
)C(2 w) o· 

An inspection of (2-5) shows the familiar increase in the linear sus

ceptibility near an absorption band. There is an analogous increase in 

the second harmonic susceptibility when either the fundamental or the 

second harmonic is close to an absorption band. The infinite resonance 

can be made more realistic by introducing a damping term f'x in the 

equation of motion (2-4). The same model can also be used to calculate 

the other nonlinear susceptibilities in an analogous manner. 

A more rigorous calculation of the nonlinear susceptibilities 

can be obtained from quantum mechanics. Extensive calculations using 

time dependent perturbation theory (11, 14, 15) and the equation of 

motion of the density matrix (16, 17, 18) have been carried out by 

many authors. For comparison with the susceptibilities in (2-5) the 
' 

linear and electric dipole frequency doubling coefficients as determined 
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from perturbation theory (15) will be quoted here. As before with 
' 

an applied field E(t)=E cosuit the susceptibilities are defined in terms 
0 

of the field amplitude as 

= ~ .. (GO)E .(W) 
J.J OJ 

and P. (2w) = E .(w)
J. OJ 

where 1 +<r.> lU +(.I.)
J ng [ ng 

and 

= - e! {r:. <ri> (<r.7
4h l nm gn . J mn 

<r.> <rk> B J 
mn J mg ng mn 

where 

l 1 
= +<w -2tJH w - c.u) "(~ +2wHGc.J +w5 ng mg· ng mg 

1 1B mn = Cw -wHw +w) + Cw +w)( w -w)mg ng mg ng 

These susceptibilities only apply to an isolated atomic system. The 

su.~mations are extended over the electronic excited states n,m of the 

atom where 11 w is the energy of the nth state above the ground state ng 

and < r. ')' is the matrix element of the i th component of the position
J. gn 

operator r between the ground state g and the excited state n. The 

frequency doubling susceptibility contains the product of three matrix 

elements. Each prodt.1.ct vanishes identically for an atomic system 

that is invariant under inversion symmetry. Hence the symmetry require

ments on this coefficient come naturally out of the theory. 

http:prodt.1.ct
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The linear susceptibility has been extended to dense media by 

Lorentz (19) to give the familiar expression for cubic crystals. 

E(Go)+2 ( )N= a'ij w3 

where N is the number of atoms per unit volume. Using a similar sort 

of analysis Armstrong et al. (14) have also extended the frequency 

doubling coefficient to dense media 

xijk(2w) = 

where £(w) and e(2w) are the dielectric constants at the fundamental 

and second harmonic frequencies respectively. 

(2-3) Wave Propaga~!on in Nonlinear Media 

In this section, it will be assumed that a macroscopic nonlinear 

polarization exists and its effect on a wave propagating in a nonlinear 

medium will be determined. In particular, it will be assumed that a 

-c ) - i(k_ .r-t<Jt)plane wave E w = E e --i at the frequency w propagating through
0 

~c ) - i(2k_.r-2(.c)t)A a nonlinear medium will induce a polarization~ 2 w = )(:EE e --i 
0 0 

at the doubled frequency. The problem will be to determine the intensity 

of the doubled frequency light that is produced. Firstly, it should be 

noted that the polarization at the doubled frequency propagates through 

the medium with the same phase velocity as the wave at the fundamental 

frequency. Since most materials have dispersion at optical frequencies, 

the electromagnetic wave radiated by the nonlinear polarization will 

propagate through the medium at a different phase velocity. The doubled 

frequency light will soon be out of phase with the polarization that is 

generating it. There will be destructive interference and the intensity 
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will be limited. If the indices of refraction of the fundamental and 

the doubled frequencies should happen to be the same, the doubled fre

quency intensity could be large. The importance of conserving electro

magnetic mom.entum in the frequency doubling process will be illustrated 

in the following calculations. 

A practical problem, as far as experimental nonlinear optics is 

concerned, is to determine the.amount of doubled frequency radiation 

produced in a platelet of thickness £ • The simplified calculation 

given here follows that given by Naiman et al. (20). It will be assumed 

that the light is incident normally at z=o on the surface of an infinite 

slab of nonlinear material. The geometry for the calculations and the 

relevant quantities are shown in Figure 1. The effect of absorption at 

both the fundamental and the doubled frequency has been included in a linear 

fashion by allowing the refractive indices to be complex. All the quan

tities listed in Figure l are values in the medium. The effect of boun

daries has been treated in detail by Bloembergen and Pershan (21) and 

will be neglected here. The depletion of the fundamental frequency wave 

through its conversion into doubled frequency will also be neglected. 

This is a good approximation experimentally, since the conversion 

efficiencies are usually low. 

The starting point for the calculation is Maxwell's equations 

in which the induced polarization P(w) =~ :E E ei( 2~ .r-2wt)
0 0 

is treated as a source term for doubled frequency light 



Figure 1 

Frequency Doubling in an Infinite Nonlinear Platelet 

All the waves are propagating in the direction of the 

z-axis. The quantities n( w) and n(2 w) are the complex re

fractive indices, ~ and k the wave numbers, and "l and a22 

the amplitude absorption coefficients at the frequencies wand 2w 

respectively. 
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E(W)__,... 


E(2W)_,... 


P(2W)->


n(W) :i:n1+i s1 

Incident Plane n(2W)=n2+i s2 
~~~W~a~v~e~~~~~~~~--=-~~~~~~~~ 

z=O z=i, 
wk =- n

I C I 
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v•i3(2w) = o 

(2-6) 
VxE(2w) .. --1 £. B(2w)

c c)t 

1 )_ (J
vx:BC2 w) = £ (2W) E(2w) + !!.!! P(2w) • 

c ~t c ~ 

These equations can be combined to form an inhomogeneous wave equation 

for the electric field at the doubled frequency 

-16 !!(J.)2 x""' 2·k. v2 E(2w) + i_~ £, (2w) E(2w) = !..I- :EE e 1 ---i•r2 0 0 •c2 c 

For the geometry chosen all the waves are propagating in the z direction, 

and the equation reduces to 

2 ,,,,,... - - 2ik. zd 2E(2 w) + k E(2 w) X :E E e ---i. 
0 0dz2 2 

2w wwhere k = 7 (n2 + i s ) and~= c (~ + i s ). Taking the scalar2 2 1 

product of the equation with e , a unit vector in the direction or E(2C<J),
2 

one obtains 

d2 E(2 ) + k 2 E(2w) = _16'7Tw2 "VE 2 e2i~ z (2-7)2 w 2 2 /\.0
dz c 

where x = (e2 • x : elel) and el is a unit vector in the direction in 

which E(Gu) is polarized. The solution of (2-?) which satisfies the 

boundary condition E(2w)=o at z=o is 

E(2w) = - 16 'Tw2 XEo2 

c2(k22_4~2) 
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or 

(2~+k2) i 2 1 zE(2w) =  e sin z 

where ~ = 11i + i s1 and ?2 = n2 + i s2•1 

The intensity of the doubled frequency at z =i can be found 

from the magnitude of Poynting's vector 

2 c n
2

S(2 w) = 87f" IE(2W) I 
2 - 2~(s +s )j,

cn2 21 21 Isin~ <11-?2Li I2 c l 2=87f 6 4 Tf /( E e 
0 • 

17/ - 712 
/ 2 

Since 

and 

the intensity reduces to 

12 sin
2 ~(11_-n2).Q + sinh 

2 ~Cs1-s2)Q -~Cs1+s2)£ s(2w)=8vc n XE e
2 I 

2 
2 2 2 

o [<11i.+n2) +(sl+s2) J [<11i-n2) +(sl-s2)~ 

(2-8). 

In the limit of negligible absorption (s1 , s ,...,o), the amount of doubled2 

frequency produced in a transparent platelet becomes 

(2-9). 
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The doubled frequency intensity is seen to have an oscillatory 

behaviour as a function of crystal thickness. This arises because the 

doubled frequency radiation gets out of phase with the polarization that 

is generating it if 11. ~ n2• The effect has been observed by Maker 

et al. (3). From equation (2-9) it is possible to define a coherence 

length which is a measure of the distance that the doubled frequency 

radiation must propagate before it will be out of phase by 'If with the 

polarization that is generating it. In one coherence length, the amount 

of second harmonic output will vary from zero to its maximum value. 

w 11 7T f!, >. >. 
Hence - (n..-n2) ..t:. h = -2 or h = 4( ) For crystals

c J. co co 11_-n2 
= 4.tm • 

with typical .dispersion in the visible J! h varies from ~ to 20\. co 

Of particular interest is the case when 11.=n2=n, which corres

ponds to the conservation of electromagnetic moment~~ in the frequency 

doubling process, i.e. k2 = 211_. This is a special case of the more 

general momentum condition k(W) + k'(o.J) =k(2a>) for waves that are 

not colinear. In the special case the fundamental and doubled fre
' 

quencies propagate through the crystal with the same phase velocity and 

equation (2-9) reduces to 

2 
2 (2-10)S(2(..<)) = 2 77" IXE j •0 n c 

The oscillatory behaviour has disappeared and the intensity of the doubled 

frequency is seen to grow as the square of the crystal thickness. Ex

pression (2-10) can only represent the initial growth in the doubled 

frequency power, since it is not valid to neglect the decrease in the 

strength of the fundamental when a large amount of doubled frequency is 

produced. 



21 

The formula for the a.mount of doubled frequency produced in an 

absorbing crystal at phase matching is of interest for the work reported 

in this thesis. For 11.=n2=n equation (2-8) reduces to 

-2 f3d (s +s )£
c 1 2 •S(2W) e 

[4n2+("i+s2)2] [•1-•2] 2 

In terms of the amplitude absorption coefficients, a = ~s1 and
1 

a = 2!!! s the expression becomes
2 c 2• 

-YP,,
S( 2W) =A e (2-lla) 

and 

al (2-llb)A = •nc 

It can be seen that there is an optimQ~ thickness for which the maximum 

amount of doubled frequency will be emitted from the platelet. This 

optimum thickness occurs when 

yielding the condition 

tanh = tl (2-12)y • 
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The above expressions have shown the significant increase in 

doubled frequency intensity that can be obtained when the indices of 

refraction at the fundamental and second harmonic frequencies are the 

same. Since all materials have dispersion at optical frequencies
' 

phase velocity matching is usually not possible. Nevertheless, there 

is a method of phase matching in some anisotropic materials, which 

makes use of optical birefringence to overcome the dispersion that is 

present in the material. The case of a uniaxial negative crystal will 

be discussed. However, this phase matching technique can also be applied 

to uniaxial positive and biaxial crystals. In uniaxial negative crystals, 

light can propagate in two modes, one as 0-ray and the other as an E-ray 

and each mode has a different phase velocity or refractive index. The 

0-ray index is isotropic, but the E-ray index is not. In Figure 2 the 

solid lines represent the index surfaces at the funda~ental frequency 

while the dashed lines are the index surfaces at the doubled frequency. 

The latter are outside the corresponding ones for the lower frequency 

since the crystal has been assumed to have normal dispersion. The 0

ray surfaces are spheres. A wave will propagate in 0-ray mode if it is 

polarized perpendicular to a principal plane i.e. a plane containing
t 

the optic axis and the direction of propagation. On the other hand, the 

E-ray surfaces are ellipsoids of revolution, and a wave will propagate 

in this mode if it is polarized in a principal plane. If the dispersion 

is not too large, the 0-ray sphere for the fundamental frequency will 

intersect the E-ray ellipsoid of revolution for the doubled frequency. 

This is shovm in Figure 2. Hence an 0-ray wave at the fundamental 

frequency propagating in the direction of the intersection will have the 



Figure 2 

Velocity Matching in a Negative Uniaxial Crystal 

The solid lines are the index surfaces at the fundamental 

frequency while the dashed lines are the index surfaces at the 

doubled frequency. The 0-ray surfaces are spheres and therefore 

isotropic whereas the E-ray surfaces are ellipsoids of revolution. 

The refractive index, ne(e), of the E-ray is a function of the 

angle e between the optic axis and the direction of propagation. 

For clarity, both the birefringence and the dispersion have been 

exaggerated in the diagram. 
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same refractive index as an E-ray at the doubled frequency propagating 

in the same direction. The two waves are said to be phase matched. It 

should be noted that the phase matching directions form a cone of half 

angle e about the optic axis which is given bym 

l 1 
(1\0)2 (n2o)2 

sin e = • (2-13)
m 1 1 


(n2e)2 (n2o)2 


Phase matching so that two 0-rays at the funda~ental frequency 

produce an E-ray at the doubled frequency is not the only type of phase 

matching that is possible in a uniaxial negative crystal. An 0-ray and 

an E-ray at the fundamental frequency can also combine to produce a phase-

matched E-ray at the doubled frequency. For colinear waves, the conserva

k etion of.momentum condition requires that ~o + ~e = or2 

(2-14) 


where 

.n e(e) sin·kl02 + (~.2 - ~02) 2 6ri 
1 

n2e(~) sin e 
and 

=[~ + (7- \~ 2J-i 
n2 n2 n2 

Equation (2-1~) is not easily solved for e since it is of the 4thm• 
degree in sin2 ~ • When necessary in this thesis, the t~~ types of phase

m 

matching will be distinguished by denoting the first as 00-E and the 
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second as OE-E. The former is possible in uniaxial negative crystals 

for which n
2

e ~ 11.0 while OE-E type phase matching has the more res

trictive requirement n e ~ f (11.e + 11.0 
).

2 

The expressions (2-10) and (2-11) cannot be applieddirectly 

to interpret experiments in doubled frequency production in uniaxial 

crystals at phase matching. In the experimental situation, it is neces

sary to use a diverging pencil of rays for frequency doubling rather 

than the plane wave of infinite cross section assumed in the derivation. 

At phase matching not all the rays in the pencil can be truly along the 

phase matching direction. The problem is to determine how much second 

harmonic is produced by a ray close to phase matching. For the case of 

00-E phase matching, as the propagation direction approaches ~ = em, 

the difference 11.o - n2e (e) becomes very small resulting in the co

herence length becoming very large. Expanding n e(e) about ~m the
2

difference is 

[Jn2e(e)
0 

- n 
e (e) = ~ 2 d e J & 

e = em 

where $ .,, e - e is the deviation of the ray from phase matching. After 
m 

substituting this expression in (2-9) the second harmonic intensity for a 
' 

ray close to phase matching becomes 

w2f, 2 sin. 2f 
S(2 UJ) = 271,XE0212 

0 n c y2
1 

dn e(e)
w 2 $£
where f' £: = f3 .e ~ and c d fJ 

e = e m 
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1T sin 2A= T m • 

This expression is the same as (2-20) except for the presence of a factor 

. 2 }t 
s~ 2 which is a measure of the efficiency with which a ray close to 

phase matching will generate doubled frequency. 

For the case of a bundle of rays with a finite divergence, the 
. 2 )!-_ 

function 6~ 2 must be averaged over all directions in the bundle. 

The averaging has been done by Kleinman (22) who has shown that for a 
' 

pencil of uniformly distributed rays with the central ray along a phase 

matching direction and the extremum rays diverging at an angle b 

from it, the average is 

f" (l -

0 

Hence the intensity of second harmonic produced by the pencil is 

w 2 1} 
n c 

The function F(~eb) is a measure of the relative efficiency with which 

doubled frequency is generated by a pencil of rays with divergence 211 

compared to what would have prevailed i·f there had been no divergence. 

Depending on the value of ~R~, two limiting cases can be distinguished. 

For a thin crystal or a very nearly parallel beam, r>ib << 2, the func

tion has the value 

(@ib) 2 
= 1 - + •••12 
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In this case most of the rays in the pencil generate doubled frequency 

with maximum efficiency. For a thick crystal or widely diverging beam, 

+ ••• • 

Here most of the rays in the pencil are not very effective in producing 

doubled frequency. In fact, the second harmonic intensity increases only 

as ,f, instead of .£ 2. 

The above considerations have also been extended to absorbing 

crystals (23). Substituting the expansion for n 0 

1 

(2-8), the second harmonic intensity for a ray close to phase matching 

is 

where the constants A, Y and £ were defined previously in (2-llb). 

sin2 13.e b + sinh 2§ .R.The average value of for a pencil of diverging rays 
p2 fi2 + $ 2 

is 

. 2 Cl tJ r + si'nh 2~ /1sin .., £ ~ §. ...c. db • 
0 

As before, there are two limiting case~, a nearly parallel beam and a 

widely diverging bea.~. However, the average also depends on absorption. 

If a. ~ 2a
2 

, then § ~ o and 1 

+ ••• ] 
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for a nearly parallel beam. Neglecting all but the first term, the 

second harmonic intensity is S(2w) = A£2 e_yf,. On the other hand, 

for a widely diverging beam it can be seen that the intensity is pro
' 

portional to £e-y£. If § >>o, then for a nearly parallel beam, 

2 
F(Li ~ ) = sinh §It ~~( 1 )+ J

'.5 § 2 [ l-~ ~2e2-. 12 ••• 
· .5 sinh j fl 

and to first order the second harmonic intensity ia the same as that given 

for a ray in equation (2-11). While for a widely diverging beam 
t 

the 

intensity becomes 

S(2W) =A 
 • 

In the preceding calculations, the intensities have been those 

inside the platelet, while the ones that are measured are outside the 

crystal. A correction for losses due to Fresnel reflections at the sur

faces is necessary. For a crystal platelet in air and phase matching 

direction normal to the surface the appropriate correction factor is 
t 

R = 64n3 (22). The final expressions as they will be used later 
t '(n+1) 6 

for the amount of doubled frequency that is emitted from a transparent 

and an absorbing platelet of thickness .£ are written in (2-15c) and 

(2-15b) respectively: 

(2-15a) 

S(2 w) (2-15b) 
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where S(w) a.."ld S(2w) are now the intensities of the fundamental and 

second harmonic frequencies outside the platelet. In (2-15b) the 

effects of absorption and beam divergence have been lumped together in 

the quantity K given by 

K = e_y_f .F( /,,!l) 
(2-15c) 

[1 +6~~:2]l 
for 

The process of phase matching in a uniaxial crystal is easily 

measured by monitoring the amount of doubled frequency produced as the 

angle e between the optic axis and the beam direction is passed through 

the phase matching angle. The observed variation in second harmonic as 

a function of the angle 8 is denoted as the phase matching curve. Since 

for a ray close to phase matching the second harmonic intensity varies 

sin2 }" 
as 

f 2 where y = fJi &=r ! the phase matching curve fort a 
t:'coh 

parallel beam has a finite width due to the increase in coherence length 

close to phase matching. Once the coherence length of the ray is greater 

than the thickness of the crystal, it will produce doubled frequency with 

almost maximum effectiveness. Hence only an infin:itely thick crystal will 

have an infinitely narrow phase matching curve. For a crystal of thick

ness J!, , the full width at half maximum of the phase matching curYe is 

w= 2.~14 . If the beam has a divergence 2~ there are two limiting• 
cases; one where ~ <..<. W and the width of the curve will be nearly the 

same as that for a parallel beam, and the other where ~ >> W and the width 

of the curve will be essentially equal to ~. For an absorbing crystal, 



and a parallel beam, the width of the phase matching curve can be found 

by solving the transcendental equation 

i 
2 pRw

s n 2 = 

Unlike a transparent crystal, the width approaches a constant value 

2~! (for g> o) with increasing thickness. In other respects, the 

width of the phase matching curve is similar to that for a transparent 

crystal. 

(2-4) The Time Averaged Free Energl 

The object of this section is to demonstrate the existence of a 

time averaged thermodynamic function, the free energy, from which the 

various nonlinearities can be derived. This function can also be used 

to describe the usual electro- and magneto-optic effects. In addition, 

new symmetry relations among the various linear and nonlinear suscepti

bilities can be illustrated. 

It will prove useful in this section to adopt the convention of 

writing the fields as 

= 2Re [ E(w) eiG<Jt] • 

With the fields defined in this manner, the amplitude is one-half the 

usual amplitude. This has no effect on the linear susceptibilities but 

increases the nonlinear susceptibility p)t~k by a factor of 2. Other 

susceptibilities will be increased by additional factors of 2, one for 

each additional field. 
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Again one starts with Maxwell's equations for macroscopic media 
' 

v. e= 4 71 f , v· f;3 =o 

V'x ~=_! -~ 83 , \lx d3 =..11l a+ .l ~ ~ 
Y· C c t C (/ C ~ 0 

where f=-V·f>+ VP:~ 

9= t t gs + c V x m ~ }t V· ~ 

pis the electric dipole moment per unit volume, mis the magnetic 
-


dipole moment per unit volume, and gz_is the electric quadrupole moment 

per unit volume. These equations can be combined in the customary 

way (24) to form the conservation of energy equation 

()2£
where ) t = (2-16) 

The first term V;.8 represents the rate at which energy is flowing out 

1 JI- aJJt 1 e .asof a unit volume element. The next two terms, 477 rt+ 47T <; ~ t' 

represent the rate at which the energy density in the electromagnetic 

field is changing and the last, ~' is the rate.at which work per unit 

volume is being done on the medium by the external fields. 
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For the present, the discussion will be limited to the elec~ic 

dipole term for which the material energy density is ~ ~=e(t) • Jf ~ t). 

Assume the fields can be Fourier analyzed into n interacting waves. Then 

f'<t) = 2Re ~ P <cv.u,t) eiWyt =~ [P<wu,t) eiW.ut +P*(Gq,,t) e-itcJJ.ltJ 
ll=l J,=l 

where the amplitudes E( lq,,, t) and P (Wu, t) are slowly varying functions 

of t. The rate of change of the material energy density is given by 

+ 	high frequency terms. 


1
Taking a time average over an interval T long compared to £U; but 

short compared to the time for the amplitudes E( ~. t) and 	 P ( ~' t) to 

change appreciably, the high frequency terms will drop out 	and the time 

average rate of change of material energy density is 

2Re ~ [ E* ( W. t) • d p ( Wv t) + iW E* ( W t) • P ( W t)]
Pt dt p Ut Pt 

ll=l 

For a nondissipative media the time average work done on the medium is 
t 

zero after the fields have reached a steady state value (i.e. 

d P (wi.- t) = o). Thusd t 

(d n 
2Re ~ iU>J.IE* ( wJI) • P ( wJI) = o. (2-17)~ut ) steady • ll=l 

state 
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This equation is just a statement that the total power flow is a con

stant, even though it may redistribute itself among the various fre

quencies. When the fields are initiall.y turned on, work must be done on 

or by the medium to establish the steady state value of the polarization. 

In the nonsteady state, the field at frequency U'vis slowly 

changing in time, so it is not strictly monochromatic until it reaches 

its steady state value. However, the polarization P (GV"",t) can still 

be taken as a function of the field amplitude E( c.u»,t) if the dispersion 

is low, In the case of a linear polarization the requirement is 
. ' 

dt (W) € [ :1 
~ w << ai see Bloembergen (16)j. With this restriction and the 

assumption that equation (2-17) holds even in the nonsteady state, the 

time average rate of change of material energy density in the nonsteady 

state becomes 

(~ut ) 
nonsteady 
state 

The function p represents the average energy required to polarize the 

medium. It would seem physically reasonable to argue that this average 

energy ~ should only depend on the final state of the medium and not on 

the path by which the final state was reached. This requires ~ to be 

a perfect differential, i.e. 

d p= 2R e ~ 'E• ( u.,41 , t) P ( w.,,, , t) • 

.Y=l 




Define a new function 

F = q - 2Re L: 
n 

];• ( w.u, t) P ( w...,, t). 
)/ =l 

The second term is the energy density of the polarization in the field. 

Hence the function F is associated with the work done by the generators 

in order to establish the fields in the presence of the medium and can 

be identified with the Helmhotz free energy. Its total differential is 

n 

dF = -2Re Z P (~9 t) dE* (~ t)
9 

l>=l 

Returning to the more general case with magnetic and electric 

quadrupole polarizations, the total differential of F is 

dF = -2Re ~ [ P ( wJ.1, t) d F;•( "-'..11, t) + M( (.().u, t)dR•( Gc.1.v, t) 

Jl=l 


(2-18) 


Hence 

JFp ( 'q,, t) = - -------
~ E* C"'.v, t) 


)F
RC wjl. t) = - (2-19) 

~ ii• ( (A)JI , t) 

Q( w"'' t) = - ~F 

c} vE*( wJJ, t) 

and there does exist a time average free energy F from which the moments 

P M and Qcan be derived. Pershan (25) has given evidence that the
' ' 
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time averaged free energy probably exists under conditions more 

general than have been proven here. 

In general. the function F will depend on the amplitudes E, 

E• R R• V :E and VE*. As with the polarization, the procedure now 
t t ' ' 

is to expand the free energy F in terms of these quantities. Each term 

in the expansion must be independent of time, so that the sum of the 

frequencies associated with the starred amplitudes must be equal to the 

sum of the frequencies associated with the unstarred amplitudes. Thus 
' 

for example, XE*(2w)E(w )E(w) is an allowed term but XE(2 w)E*(w)E(w) 

is not. 

From the various terms in the expansion of the free energy, the 

different linear and nonlinear effects can be described. For example, 

linear effects are derived from a free energy F = -2Re [.A:':E*(U1)E(l.V ~ 

while optical activity can be obtained from either F = -2Re [;r: 
E•(w) Vi:(w)] or F = -2Re [.%:E*(w)H(w)]. An account of the 

various effects which follow from the different terms in the expansion 

of the free energy can be found in an article by Pershan (26) • In 

this thesis, the interest will be in only those terms which will produce 

frequency doubling, i.e. those terms containing three fields. 

When non-zero. the dominant term for frequency doubling is the 

electric dipole. It can be derived from a free energy proportional to 

three electric fields, i.e. F = -2Re [X':E*(2"-1)E(<.u)E("'7)] • _ For the 

present, ·let the three fields have different frequencies w3. w 2• 

Then 
t 

F = - [xijk<w,. w 2• lu l)Ei*(t<.>3)E/ "-'2)~(Wl) 

+ x:j k(tu3• W 2 , W 1)Ei(w3)Ej•(w2)~•(W1)] • 
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Using equation (2-19) the induced polarizations at these frequencies 

are 

Pershan (26) has shown that for a lossless nonmagnetic material the 

susceptibilities /rijk("'1 ,t<..>2,(...() ) are real. By definition the induced
3 1

polarizations at the three frequencies are 

Pi<w3) -= ;:t°ijk(Gv3,Gt>2,Gc!l)Ej(Gc>2)I){.<"-'1) 

~Pj( c.v2) ~jik(tiJ2,Gv3,"-'1)Ei("'13)~•(4Jl) 

Pk(Wl) -= _xkij(V.11,w3. W2)Ei ( W3)Ek•(wl). 

A comparison of these with the three previous equations shows that 

These are the permutation symmetry relations first derived by Armstrong 

et al. (14) from perturbation theory. They state that equivalent sus

ceptibilities can be formed by permuting the indices provided that the 

frequencies associated with each are also interchanged. For example, 

ifw1 = -CP, (.()2 =w, then w = o and ):'ijk(o,t.<.J, -w) = 3 
/t'jik(CU, o, -(c)); the susceptibilities that describe optical rectifi

cation are related to those of the electro-optic effect. 

Reverting to frequency doubling Cw
1
=w =w, and w =2W),

2 3
for a lossless nonmagnetic material 
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Using equation (2-19) 

P.(2w) = 
l. 

P EE 
= ..Xijk(2w,w,w) E1 C2w)E\/CW) 

= P/(~k<2w,w ,w) E. (2w)E. •Cw).
l.J l. J 

As shown in section (2-1) the susceptibility p.X~k(2w w1"1) is sym1 
metric in its last two indices and must satisfy the requirements of 

crystal symmetry. In addition, permutation symmetry relates the sus

ceptibilities for frequency doubling with those for difference-frequency 

mixing of a wave at frequency 2 w with one at w • 

The permutation symmetry relations are a generalization of 

Kleinman's symmetry condition (27), 

in which the indices may be permuted without regard to frequencies. 

This condition is valid if the origin of the frequency doubling is a 

dispersionless mechanism in which the susceptibilities do not depend on 

frequency. Hence, 

= ;:t'kij~(UJ)Ei*(2'4J)Ej(GV) resulting in the above relations. 

In the case of second harmonic generation, this additional symmetry re

duces the number of independent coefficients from 18 to 10 in the most 

general case of a triclinic crystal. Experimentally, the validity of the 



symmetry condition has been tested in many dffferent materials (28,29,30), 

and within the limits of experimental error it has been satisfied in 

every one. These results are significant in that they indicate a high 

frequency electronic mechanism as the origin of the frequency doubling. 

Electric quadrupole frequency doubling will be considered next. 

It is derivable from 

p EVE \
F = -2Re [ X ..k 11(2w w w)E.*(2w)E.(W)okE11 (w)

1J ~ t ' 1 J 4 

(2-20) 

Note that there are two different susceptibilities because there are 

two kinds of.products E*(2w)E(w) V E(w) and E(W)E(W) VE*(2tcJ). 

For a lossless nonmagnetic material the susceptibilities are real. They 

are also symmetric in the last two indices; 

P EVE P EVE
Y.jkn(2ww w) = "V .. 11 ,_(2tu w w) and 
/"1 ~ ' ' /'-'1J~ ' ' 

part is accounted for by magnetic dipole effects which will be discussed 

later. Permutation symmetry requires ~.l:i( w,")2~) 
P ErE P EVE 

and :,X-ijke.(2'-')<iw) = .X:jik!(Gi2w;w). 

Using equation (2-19) again and the free energy in (2-20) the 
t 

induced moments at the doubled frequency are 



39 

With these the induced source current J at the doubled frequency 

is 

Pershan (26) has shown that the source current derived from the free 

energy F in (2-20) and the free energy F' = F + V·G where V·G 

= Jk [ Y k .. n (2 Go w w) E •{2w) E.{w) E,e{w)J are the same. It 
.l.J.t.. • • 1 J 

is possible, therefore, with no loss in generality to set one of the 
·p EVE 

tensors, say xijkQ,{2w,w,w), equal to zero. Quadrupole effects 

are now derivable from 

and 

(2-21) 

The last type of frequency doubling that will be considered in 

detail is the magnetic dipole. It can be equivalent in magnitude to the 

electric quadrupole. The induced moments at the doubled frequency are 

obtained from 

(2-22) 
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Like the electric quadrupole effects, there are two different sus

ceptibilities in the free energy since there are two kinds of products. 

P.EH MEEHowever X ..k and Xk.. are third order axial tensors which are 
' 1J J1 

pure imaginary in a lossless nonmagnetic material. Also permutation
' 

symmetry requires 

M EE ( )
xkji w ,w, 2(.).J = M'XEE

.ki(w w 2W) andJ • • 

p EH 
xijk(2w,w ,w) 

The induced moments are 

P. (2 w) = 
1 

(2-23) 

and the frequency doubling source current is 

J(2w) = dP~~lA.') + cVxM(2w). 

Unlike electric dipole frequency doubling, both magnetic dipole and 

electric quadrupole frequency doubling are possible in a crystal with 

a centre of symmetry. 

There are other terms in the free energy which can produce 

frequency doubling such as F = XE HVE, or XEVEVE, etc., but they 

all contain higher powers of VE and H so the effects they describe 

will be smaller than. those that have been listed here. 
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(2-5) The Azimuthal Dependence of Frequency Doubling in Crystals 

A simple frequency doubling experiment that can be performed in 

uniaxial crystals, is to measure the amount of second harmonic at phase 

matching as the crystal is rotated about the optic axis. The dependence 

of the frequency doubling on the azimuthal angle ~ may cast light on 

the type of nonlinearity that is involved since different tensors may 

lead to different functional terms. 

The object of this section is to show how the magnitude of the 

frequency doubling depends on the angle ft. In particular, the azi

muthal dependence of the electric dipole frequency doubling in a uni

axial negative crystal will be determined. In the following, the 

applied fields are assumed to be plane waves propagating through the 

crystal in the phase matched direction nwhere 

sin 6 cos <f 
-n = sin~ sin</J • 

cos e 

The optic axis has been taken in the z axis direction. The angle ~ 

is measured from the optic axis to the direction of propagation, while 

¢ is the angle between the crystallographic x axis and the principal 

plane. The 0-ray fields will be written 



42 

where 

cos e cos~sin¢ 

- ho =cosrj cos e sin¢0 = 
0 - sin e 

anQ. the E-ray as 

' 

where 
- cos(e + a. ) cos¢ sin¢1 

- he- cos(e + a ) sinp cos cf>== •el 1
 

sin(e + a ) 
 01 

The quantity a1 is the angle between the direction of Poynting' s 

-evector for the E-ray and its wave normal k • It appears in e
1 

because the electric field is not necessarily perpendicular to the wave 

normal in a crystalline medium. The magnitude of a can be obtained
1 

f'rom 

tan e 

•tan a. = 
1 

2tan e 

In general, the total fields in the crystal are superpositions of the 

J 


E- and 0-ray fields. Therefore 

E/w) = oj Eoei(ko .r -wt) + 
elj 

(-e - ) 
Eeei k .r -wt 

with an analogous expression for H.(cv). As this field propagates 

through the medium, an electric dipole polarization, 



is induced where 

2 (-e - )e 2i k .r -Wt e+ elj elk E • 

For 00-E phase matching only the first term in Ej(C.V) ~(ll>) need be 

considered. On the other hand, the second term may lead to OE-E type 

phase matching. The last term is never effective in uniaxial negative 

crystals, but would lead to EE-0 phase matching in a suitable positive 

crystal. An OE-0 type phase matching is also possible in positive 

crystals. Only 00-E phase matching in uniaxial negative crystals 

will be considered in the following, but the azimuthal dependence in 

the other cases can be obtained in a similar manner. 

The induced polarization 

- ~ f>
will produce a soiirce current, J = d t = -2iw P(2w) 

t 
at the doubled 

frequency. Not all the current is effective in producing doubled 

frequency, but only that component in the direction e2 of the E-ray 

electric field at the doubled frequency where 

- cos ( 8 + "2) cos¢] 
= - cos (~ + a ) sin¢2[ 

sin (B + a. )2
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and u is given by
2 

tan A~ - ::::) 
•tax a. = 2 2 

0 
n2 2

1 + tan e
2 e 

~ 

The angles u and a 2 are not necessarily the same because of dispersion.1 

The effective source current is 

= = 


2 
. ,,,..,.0 2 ~ 2i (k0 .r -wt)= - i.,.., f..i '±' e 

where the azimuthal dependence is contained in the quantity if= e21 

Since the amplitude of the second harmonic is propor

tional to the magnitude of Jeff• the intensity of the second harmonic 

will be proportional to p2• · In general pconsists of the sum of 

27 terms each one being the product of the third order polar tensor 

p?(~k and the quantity e2i oj ok. Particularizing to the case of 

KDP which has only three nonzero coefficients, P?(~3 9 
PX~3 , and 

PX EE 
the sum becomes312 

P'YEE . ( ) . 2 ¢= - /\-312 sin e + a.2 sin 

where ~ is the 00-E phase matching angle. The second harmonic intensity 

in KDP should have a sin2 2<Jb dependence with the maximum doubled 

frequency being produced at the azimuthal angle <Jf = 45°. This rod
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muthal dependence has been observed by Ma.~er et al. (3). 

In the Appendix, the azimuthal dependence of the electric dipole, 

magnetic dipole and electric quadrupole frequency doubling is calculated 
' 

for both 00-E and OE-E type phase matching. The functional dependences 

for the point groups of the tetragonal trigonal and hexagonal crystal
' 

systems are given. The results, however, are only applicable to 

uniaxial negative crystals. 



CHAPTER III 


EXPERIMENTAL APPARATUS AND PROCEDURE 

(3-1) Introduct:h2!!_ 

The objective of experiments in frequency doubling is to detect 

the low intensity doubled frequency that is generated when a powerful 

monochromatic light beam is transmitted through a nonlinear crystal. 

The source of highly intense light is usually provided by a Q-spoiled 

laser. The principle of this device is described in the literature 

After the laser light passes through the nonlinear crystal, 

the light beam contains both the laser frequency and its second harmonic. 

This doubled frequency can be separated from its fundamental by two dif

ferent means. In the first method the light is focused on the slit of 
t 

a prism spectrograph, and the second harmonic light is refracted out of 

the laser light and focused on a slit in front of a detector. A grating 

can be used instead of a prism, but care must be taken to use orders which 

do not overlap at the fundamental and doubled frequencies. In the 

second method the light beam is passed through a filter which trans
' 

mits only the doubled frequency. In both cases a photomultiplier is 

used to detect the intensity of the second harmonic. By inserting a 

beam splitter into the path of the laser beam in front of the'nonlinear 

crystal, the intensity of the fundamental frequency used to generate the 

second harmonic can be measured, or at least monitored. The follovtlng 

46 
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sections give a detailed description of the experimental apparatus and 

procedures which were used in this investigation. 

(3-2) Construction and Operation of the Q-spoiled Laser 

The principles of operation of a Q-spoiled laser were first 

proposed by Hellworth (31). He suggested that an ordinary laser can 

be made to emit a short burst of highly intense light if the losses in 

the laser cavity are controlled so that they are high during the pump

ing period until a high inversion is obtained, at which point the losses 

are switched to a low value. When a laser is operated in this mode it 

is called Q-spoiling, since the quality factor of the cavity is kept at 

a low value i.e. spoiled until at an appropriate moment the cavity Q
' ' 

is switched to a high value. 

In this work, it was decided to accomplish the Q-switching with 

a rotating prism. A Kerr cell was considered, but not adopted because 

operation in the infrared was desired. Hence a Beckman & Whitley 

(Technical Operations Inc.) model 402 rotating prism laser Q-spoiler 

was purchased. The prism angles are 90°, 45°, and 45°. Such a prism 

has the property that, after two total internal reflections, light rays 

are deviated through 180° regardless of the angle of incidence. When 

the prism is substituted in place of one of the reflectors of the laser 

cavity and aligned so that its roof edge is parallel to the other 

reflector, a new laser cavity is formed. Since light rays are now 

reflected twice through the crystal in one pass through the laser cavity, 

the cavity length is approximately twice the distance between the re

flector and the prism. Due to the reflection properties of the roof 

prism, the alignment of the hypotenuse face with the other cavity re
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flector is not critical. In the Beckman & Whitley Q-spoiler, the prism 

is mounted on a shaft with the hypotenuse face parallel to the shaft 

and the roof edge perpendicular to the shaft. It is designed to be 

driven by compressed air. With the aid of a regulator valve, the air 

2 pressure supplied to the Q-spoiler could be varied from 0 to 70 lb/in

and hence the rotational speed of the prism could be controlled from 

0 to 1500 revolutions per sec (rps). At the top of the Q-spoiler a 

magnetic pick-up coil is mounted, which produces a sinusodal signal whose 

frequency is equal to the rotational rate of the prism. By feeding this 

signal to a frequency counter, the rotational speed of the prism can be 

measured. During a typical ex'J)eriment when the prism was operating at a 

rotational speed of approximately 450 rps, the actual rotational rate 

could drift by as much as 30 rps over a period of 20 minutes. However, 

by making appropriate adjustments in the air pressure when necessary• 
the rotor speed could be held to within 5 rps of a mean value. 

Since the optimum time during the pumping period when the prism 

should be aligned is less than 100µ.s in duration it is necessary to• 
synchronize the operation of the flashtube with the rotating prism. This 

was accomplished by constructing a rotor-flashtube synchronizing unit. 

The sinusodal output from the Q-spoiler is converted into a train of 

short duration pulses using a multivibrator. The interval between the 

pulses corresponds to the period of revolution of the prism and each 

pulse has a definite phase relationship with respect to the instant of 

prism alignment. This phase can be controlled by adjusting the 

pick-up coil on top of the Q-spoiler. It was set so that alignment 
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occurred about 3QOµs after each multivibrator pulse. After a switch on 

the synchronizing unit is closed, the first multivibrator pulse triggers 

a thyratron which in turn triggers the power supply which operates the 

flashtube. The triggering of the flashtube occurs almost instantaneously 

with the multivibrator pulse. Since the light output from the flashtube 

takes about 200µ.s to reach a maximum the rotor comes into alignment at 
' 

the appropriate time. 

The Q-spoiled laser that was constructed could be operated with 

either a ruby laser crystal or a neodymium (Nd) doped laser crystal. 

The output of the ruby laser occurs at .6943µm while that of the Nd 

laser is at l.06µm. In general because of·the longer wavelength
' ' 

velocity matching in frequency doubling experiments with a Nd laser is 

possible in more nonlinear crystals than with a ruby laser. The reason 

is that dispersion between 1.06µm and .53µm is usually less than that 

between .6943µ.m and .3472}.~m and hence the nonlinear crystal does not 

require as much birefringence. Since the nonlinear crystal should be 

transparent at both the fundamental and doubled frequency, this factor 

must also be considered in choosing the type of laser that is used. 

The ruby crystals (cr3+:A1
2
o 

3
) were purchased from Adolf Meller 

Co. They are cylindrical rods 0.25 inches in diameter and 2.0 inches 

long with the ends ground flat to A/4 (sodium light) and parallel to 

within ~6 seconds of arc. The crystals were grown from a melt that had 

a doping of o.oL~% chromium oxide (Cr o ) by weight in aluminium oxide
2 3

Two types of Nd laser crystals, a neodymium doped calcium 

tungstate (Nd3+:Cawo ) and a neodymium doped glass were purchased•4 • 
Like the ruby crystal the Nd3+: Cawo4 crystal was purchased from Adolf 

' 
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Meller Co. It has a doping of 5% neodymium oxide (Nd ) by weight in2o
3

Cawo and the other specifications are the same as quoted above. The4 

Nd-glass laser crystals were purchased from F.astman Kodak Co. and are 

of the type ND-11. They are not crystals in ~he real sense but rather 
' 

a 1 to 3% doping of neodymium oxide in a silicate optical glass. For 

Q-spoiling experiments, this type of crystal is to be preferred over the 

type ND-10 (also manufactured by Eastman Kodak Co.) which is a doped 

barium crown glass. The reason is that the life time of the metastable 

level in Nd3+ is longer in ND-11 ("-'360µs) than in ND-10 ("v50µs). 

Hence with a given optical pumping system, a greater inversion can be 

obtained with ND-11. The Nd-glass crystals purchased for this work 

were 0.25 inches in diameter by 3.0 inches long with the ends flat to 

A/10 and parallel to within ±6 seconds of arc. Since these crystals 

were to be used exclusively in a Q-spoiled laser, they were purchased 

with antireflection coatings on each end. 

If a Nd-glass laser crystal is exposed directly to the light 

from the flashtube, the crystal will darken after a large number of 

flashes and its threshold for oscillation increases. Eastman Kodakt 

calls this darkening "solarization" and attributes it to ultra-violet 

in the pump light. It was found that the life of a crystal before the 

onset of solarization could be extended from 50 to well over 500 flashes 

by surrounding the glass crystal with an ultra-violet filter •. In these 

experiments an amber glass filter code 3555 manufactured by Corning Glass 

Works was used. 

t 	That company now claims to have eliminated the problem of solarization 
in its newer Nd-glass laser crystals. 

MILLS MEMORIAC CIBRAR1 
UrUA~Tt'D ttMll/l:'ftN'l'U 
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To optically pump the laser crystal, an elliptical laser head 

was constructed. The purpose of an optical pumping system is to convert 

as efficiently as possible the light from the flashtube into excited 

atoms in the crystal. How effectively this is accomplished depends on 

the degree of light concentration on the crystal and absorption of 

this light in the crystal. The elliptical cylinder type reflector 

that was constructed has the property that light emitted from a linear 

flashtube situated along one focus of the ellipse is imaged on a laser 

crystal at the other focus. For a flashtube of finite diameter, the 

magnification of its image at the laser crystal is least when the foci 

are closest together. Hence the greatest efficiency for concentrating 

light on the crystal is obtained when the eccentricity of the ellipse 

is as small as is practical. It is also advantageous to use a crystal 

which is at least as large in diameter as the flashtube. Within a 

limited area, this pumping system is capable of a one to one trans

formation of the pumping light density from the flashtube to the laser 

crystal. Unfortunateiy, since most of the transmitted light is refrac

ted on passing through the crystal, it is lost and only the light ab

sorbed in a single pass through the crystal is useful for atomic excita

tion. Nevertheless, the constructed elliptical laser head was found to 

be four times more effective than a previously built cylindrical laser 

head using a helical flashtube as a pump source. An even more efficient 

optical pumping geometry has been proposed and built by Roess (34). 

His reflector is an ellipsoid of revolution with the axis of the linear 

flashtube mounted along the axis of theellipsoid between the surface of 

the reflector and the nearest focus. The crystal is similarly mounted 
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between the reflector wall and the other focus. Although the source 

no longer forms an actual image in the laser crystal, this reflector 

design still has the high efficiency of light concentration of the 

elliptical cylinder reflector with the added benefit of increased light 

absorption due to the possibility of multiple reflection of the pump 

light many times through the laser crystal. 

The fabrication of the elliptical laser head was accomplished 

by following some of the techniques of Hronik ~· (35). Elliptical 

forms were cut by boring vertically through 0.5 inch thick aluminium 

plates with the axis of rotation of the circular milling cutter slanted 

at an angle of 22 degrees to the vertical. Each form so cut is in the 

shape of one half of an ellipse divided along the line connecting its 

foci. The length of the major axis is determined by the diameter of 

the milling cutter (4 inches), and the length of the minor axis depends 

also on the angle at which the milling cutter is set. Six elliptical 

forms were cut in one operation and drilled with holes in which aligning 

pins could be inserted. Three of the forms were then assembled with 

appropriate spacers to make each half of an elliptical cylinder rib cage 

3.5 inches long. The reflecting surface of the laser head was formed by 

pressing .020 inch thick polished aluminium sheet into the form and 

fastening it with epoxy. With the addition of flat polished aluminium 

end plates, the reflector was completed. A photograph of the top half 

of the laser head is shown in Figure 3 and Figure 4 is a schematic dia
' 

gram of the bottom half. The semi-major axis is 1.98 inches and the 

semi-minor axis 1.83 inches, giving an eccentricity of o.4 and a dis-
r 

tance between foci of 1.5 inches. This method of construction has the 

I 



Figure 3. 

Photograph of Top Half of Elliptical Reflector 





Figure 4. 

Schematic Diagram of Bottom Half of Laser Head 
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advantage that the reflecting surface can be polished while it is flat. 

Furthermore, the completed laser head separates into two halves, allow

ing ready access to the flashtube and the crystal. With the top half 

of the reflector off, it is easy to align the bottom half so that the 

flashtube and the crystal are along the foci of the ellipse. This is 

done by confirming that the image of the crystal in the reflector is 

located at the flashtube. 

The laser crystal is excited by an Edgerton, Germeshausen, & 

Grier FX42 linear xenon flashtube. As is shown in Figure4, the flashtube 

is mounted on the bottom half of the laser head, Provision was made to 

pass air from a blower over the flashtube to cool it. The laser crystal 

is held at the other focus by supports which are independent of the re

flector. Both the elliptical reflector and the crystal holder are 

fastened to a thick metal plate and attached to a lathe bed. 

A commercial power supply and capacitor bank purchased from 

GNB Inc. were used to provide the stored energy and the pulse for initia

ting the flashtube. The flashtube can be fired manually or with an 

external trigger. In either case, a 20 kilovolt pulse from the power 

supply applied to the flashtube ionizes the xenon gas and the stored 

energy in the capacitor bank discharges through the flashtube. A 100 

millihenry inductance is connected in series to limit the discharge 

current and hence extend the life of the flashtube. The light pulse is 

about 0.5 millisec. in duration with the peak output occurring 0.2 milli

sec. after the flashtube is initiated. The rated maximum energy that 

can be discharged through the flashtube is 600 joules. When the laser 

is operated in the Q-spoiled mode the external trigger pulse for the 
' 

power supply is supplied by the rotor-flashtube synchronizing unit. 
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The construction of the Q-spoiled laser was completed with the 

addition of the output reflector to the laser cavity. In initial experi

ments, a partially transmitting silver coating was evaporated on one end 

of the laser crystal. However, it was found that this deteriorated quite 

rapidly. In fact, when the laser was operated in the Q-spoiled mode, 

more than half of the silvering could be lost in a single flash. The 

difficulty ~as eliminated by using a resonant reflector manufactured by 

Lear Siegler Inc. These reflectors, constructed of plane parallel sapphire 

platelets, operate on the principle that there is a reflected wave from 

any index of refraction discontinuity. Furthermore the reflectivity• 
from a transparent platelet can be high for those wavelengths called , . 
the resonant wavelengths, for which the reflected light from the first 

surface adds in amplitude with that from the second surface. The reflec

tivity at normal incidence for a platelet 0£ refractive index n in air 

at the resonant wavelength is R = (i ~ :~) [see for example Born and 

Wolf (24)]. Since sapphire has an index of refraction of 1.76, a 

single platelet will have a reflectivity of 25%. In this work a two 

plate resonant reflector was used. It has a reflectivity of 67%. 

The separation and thickness of the platelets are such that the spacing 

between the resonant wavelengths is about 0.10 nm. Since the fluore

scence linewidth of Nd in glass is about 60 nm there are many resonant 
' 

wavelengths withir. the linewidth for which the reflectivity is high and 

laser oscillation is possible. When the resonant reflector was used 

with the Q-spoiled laser, no noticeable deterioration in its optical 

quality was observed even after hundreds of flashes. 
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(3-3) The Freguency Doubling Apparatus 

After the highly intense light pulse is generated by the laser, 

it traverses a low pass filter to eliminate stray pump light, particularly 

that light in the vicinity of half the laser wavelength. In this work 
' 

a red glass plate was used. It has a transmission of 33% at A = l.06µm 

and less than 10-5 at A = 0.53µm. 

Next the laser light is incident on the crystal whose nonlinear 
' 

properties are to be studied. To effect velocity matching it is neces
' 

sary to adjust the orientation of the crystal with respect to the laser 

beam. A photograph of the mechanism of a two circle goniometer construe

ted for this purpose is shovm in Figure 5. It was designed so that the 

movement for each circle of rotation is through a full 360 degrees. 

However, for one circle of rotation, as can be seen in the photograph, 

not all angles are useful due to obstructions in the light path. With 

the aid of a dial and vernier, angles on this circle of rotation could 

be set and read to within ±6 minutes of arc. The other circle of rota

tion, at 90° to the first, is driven by a system of worms and anti-

backlash gears. The gear ratio was chosen to be 1:360 so that a full 

revolution of the input shaft rotates the crystal by one degree. The 

backlash in the gear train is approximately 3 minutes of arc. For 

reasons explained in the next chapter, the goniometer was designed so 

that the nonlinear crystal could be immersed in oil. This was accom

plished by mounting the goniometer in a metal container which acted 

both as a light shield and as an oil reservoir. Quartz windows allowed 

the entry and exit of the light beam. 



Figure 5 


Photograph of Goniometer Mechanism 
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After the beam has passed through the nonlinear crystal, it will 

contain a small amount of second harmonic and the very intense laser 

light. As was outlined in the introduction, there are two methods for 

effecting the separation. Although a medium Hilger quartz spectrograph 

was used initially a system of filters has the advantage that it is 
' 

much easier to align the optical components. Furthermore. a greater 

sensitivity was obtained. A 5 cm length of saturated copper sulphate 

solution attenuates the laser light by about 18 orders of magnitude 

but yet has a 20% transmission at the doubled frequency. This filter 

is followed by two Baird Atomic interference filters. Each has a trans

mission of 50% at 0.53µm and a bandwidth (full width at half maximum) 

of 10 nm. The second harmonic was detected by a lP-21 photomultiplier. 

To keep the transient response.within acceptable limits and yield ade

quate gain, a 1000 ohm load was used. The output signal was fed by co

axial cable to the lower beam of a dual beam Tektronix 555 oscilloscope. 

In ini.tial experiments, the signal displayed on the upper beam 

was proportional to the laser power. This was achieved by inserting 

a beam splitter in front of the low pass filter to reflect some of the 

laser light to a 925 phototube. Unfortunately, there is not a one

to-one correspondence between laser output and second harmonic output 

(36, 37). The fluctuations have been attributed by Ducuingand 

Bloembergen (38) to the multimode nature and the less than 100% 

spatial coherence of solid state lasers. They showed that a more 

meaningful monitor could be obtained by comparing against the second 

harmonic intensity generated in a standard crystal. Under these condi

tions, changes in the spatial coherence of the laser beam from one 
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pulse to the next will cause corresponding variations in the two second 

harmonic signals, and their ratio will be constant provided the geometry 

of the experimental arrangement is equivalent for both the monitor and 

the "unknown" nonlinear crystal. The adoption of this scheme required 

the construction of a second goniometer and another identical system of 

filters and detector for monitoring the second harmonic in a standard 

crystal. In most experiments, it was the output from this monitor 

that was displayed on the upper beam of the oscilloscope. The other 

signal however was still available when required.
• t 

Figure 6 is a schematic diagram of the whole frequency doubling 

apparatus. As shown, a Glan prism could be mounted after the low pass 

filter to polarize the laser beam and another in front of the copper 

sulphate filter analyzed the polarization of the second harmonic. 

Since the apparatus was designed for use with a ruby laser as well as a 

Nd laser, it was necessary to avoid Nicol prisms which fail to operate 

at rv o.35µm because of the Canada balsam cement. In any case. Nicol 

prisms are more easily damaged at high power than Glan prisms since the 

latter use only an air gap betwe~n the calcite sections. 

Also shown in Figure 6 is a phototube monitoring the laser for 

the purpose of providing a signal to trigger the oscilloscope. This is 

necessary since the interval between flashtube triggering and the evolu

tion of the laser pulse may vary from flash to flash by as much as 20 

microseconds due to small variations in rotor speed. Another complica

tion arises because of interference when the 20 kilovolt initiating 

pulse is applied to the flashtube. The stray pick-up of this surge was 

sufficient to immediately trigger the oscilloscope long before the time 



Figure 6 

Schematic Dia~ram of Freguency Doubling Apparat2~ 

The symbols in the diagram have the follovang 

meanings: , 

LPF = Low Pass Filter 

c = Cuso4 Filter 

IF = Interference Filter 

c = Glan Prism 

PM = Photomultiplier 

VA LB = Vertical Amplifier Lower Beam 

VA UB = Vertical Amplifier Upper Beam 

RF = Resonant Reflector 
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of interest. Since shielding posed a difficult problem another solu

tion was sought using the features of the oscilloscope. The mode 

"time base B trigge:rable once for each A delayed trigger" is ideal for 

this purpose. When the switch on the rotor-flashtube synchronization 

unit is closed, the power supply triggers the flashtube and at the same 

time provides a synchronization pulse to start time base A of the oscil

loscope. After a fixed delay, usually adjusted to 200µs, time base B 

is made "ready" i.e. triggerable. Since by this time the interference 

from the flashtube initiating pulse has passed, it poses no problem, and 

the actual oscilloscope sv1eep of both the upper and lower beam (time 

base B) is triggered by a pulse from the phototube. The signals 

displayed on the oscilloscope face were recorded photographically 

with a Dumont polaroid oscilloscope camera using ASA 10,000 polaroid 

film. 

Sample Preparation 

In this work samples of potassium dihydrogen phosphate
t 

(KH Po4),_ ammonium dihydrogen phosphate (NH4H Po4), calcite (Caco ),2 2 3
and nickel sulphate hexahydrate (Niso4.6 H 0) were used as nonlinear

2

crystals. Initial experiments were carried out with crystals of 

KDP, ADP, and Niso4.6 H2o grown from water solutions. Later e:>..-peri

rnents Us€d higher quality KDP and ADP crystals grown at HcHaster 

University and a large NiSo4• 6 H
2
o crystal purchased from Semi-

Elements Inc. The calcite crystals were made available through the 

Physics Department at Md-1aster University. 
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In most experiments. it was necessary to cut the crystals into 

the form of platelets with surface normals approximately in the phase 

matching direction. Fortunately all the crystals used are uniaxial.• 
Hence the direction of the optic axis can be determined from symmetry. 

The KDP and ADP crystals are tetragonal, belonging to the point group 

42m while NiS04.6 H
2
o, also tetragonal, belongs to the point group 422. 

For these crystals the direction of the optic axis is in the direction 

of the four-fold axis. On the other hand the calcite crystals are 
' 

trigonal belonging to the point group 3in and the optic axis is in the 
' 

direction of the three-fold axis. The orientation of the other crystal

lographic directions were determined from the crystal habit as found 

in Winchell's book (39). 

The platelet was formed by first cutting a surface on the crystal 

which made an angle of (90-e ) degrees with the optic axis where em 
m ' 

is the angle between a phase matching direction and the optic axis. This 

surface was ground with successively finer grades of grinding powder 

and then polished to obtain a "window glass" finish. The normal to the 

surface was usually within two degrees of a phase matching direction. 

A second surface was cut parallel to the first. By a similar process 

of grinding and polishing the required platelet was completed. 

(3-5) Procedure 

In frequency doubling experiments the initial step was to set• 
up the Q-spoiled laser to operate in a single pulse mode with a reprodu

cible pulse height. The various component.s of the frequency doubling 

apparatus were then filigncd along the path of the laser beam. This 

was achieved by inserting a piece of black paper into the laser beam and 
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locating the exact position of the light path by the burn spot left on 

the paper. With no nonlinear crystal in the goniometer the frequency
' 

doubling apparatus was made light tight. This was confirmed by the 

presence of no output signal from the second harmonic detector when the 

Q-spoiled laser ~as operated. With the nonlinear crystal mounted in 

the goniometer, the crystal orientation was varied until an output signal 

was observed. Since the signal occurred in time coincidence with the 

laser pulse, it was either doubled frequency or laser light. The latter 

choice was eliminated by removing the crystal and observing the dis

appearance of the signal. Hence the presence of the nonlinear crystal
' 

was required to produce the signal. There was the remote possibility that 

with the crystal in position, light from the laser was being scattered 

into the second ha~nonic detector. This possibility was also eliminated 

by replacing the nonlinear crystal with a "linear" sample and observing 

no signal output for any orientation of the sample. 

After this preliminary procedure, the apparatus was ready for use. 

Usually the first experiment performed was to measure the amount of 
' 

doubled frequency as the crystal was rotated through phase matching. 

In.a typical experiment the pulse heights of the monitor and the 
' 

second harmonic signal were recorded for 6 to 12 flashes at each angular 

position. For a monitor signal directly proportional to the laser 

power, the ratio of the second harmonic signal to the square of the 

monitor signal was determined. The average value of this ratio and its 

r.m.s. deviation were computed from the measurer:ients taken at each cry

stal orientation. The.se ratios were plotted on a graph as a function of 

the crystal angular position to form a phase matching curve. The r.m.s. 
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deviation at the peak of the curve varied from 30% to 40%.. The actual 

fluctuations in the ratio could be as high as a factor of 4. When a 

standard nonlinear crystal was used as a monitor a similar averaging
' 

procedure was used, except the ratio taken was the second harmonic 

signal to the monitor signal. With this arrangement the r.m.s. devia
' 

tions decreased to 10%. This error represents the reproducibility of 

the results and not the true error. There may be systematic effects 

depending on laser beam divergence, lack of 100% coherence, and the 

surface and optical quality of the nonlinear crystal. 

The details of the other experiments will be given together
' 

with their results, in the next chapter. 



CHA.Pl'ER IV 

EXPERIMENTAL RESULTS 

(4-1) Operating Characteristics of the Q-sEoiled Laser 

When a Nd3+:cawo4 Q-spoiled laser was first operated, it was 

immediately observed that the laser output consisted of several pulses 

instead of a single pulse as was expected. The pulses were 30 to 100 ns 

wide with a separation of O.l to 0.3µs. Since a high power output is 

required for frequency doubling experiments, it was not desirable to 

have the Q-spoiled laser operate in this multipulse fashion with the 

output energy divided among several individual pulses. An investiga

tion of the multipulse phenomena was therefore undertaken. 

From the beginning it was realized that these multipulses did• 
not have their origin in the relaxation oscillations that are found in 

an ordinary laser output. Near threshold in this crystal the spikes
' 

in the relaxation.oscillations were 0.5µs ~~de and regularly spaced at 

intervals from 10 to 20j.is. It was also found that the output charac

teristics of the rotating prism Q-spoiler depended on many parameters. 

In particular, two of the more interesting ones are the rotational speed 

of the prism and the energy of excitation applied to the flashtube. The 

following qualitative results were found for Nd3+:cawo4 Q-spoiled laser. 

They are typical of rotating Q-spoiled lasers (4o) but, of course, the 

particular numbers vary with the quaJ.ity and the size of the crystal the 
' 

efficiency of the flashtube-to-crystal coupling etc •• 

66 
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Figure 7 shows oscilloscope traces of the Q-spoiled laser output 

at a constant excitation energy and different rotational speeds. The 

number of multipulses is seen to decrease with increasing rotor speed 

until single pulse operation is reached. This change is accompanied 

by a decreased multipulse spacing and a pulse width narrowing. With 

still greater rotor speed, the height of the single pulse grows. The 

peak power changes by a factor of 6 while the pulse width decreases from 

100 ns to 3-0 ns for the range of rotors speeds covered in the figure. 

The complementary experiment, rotor speed constant whil~ the excitation 

is varied was also carried out. The results are shown in Figure 8. 
' 

At low excitation the laser output consists of a single pulse. Increas

ing the excitation produces additional pulses. The peak power actually 

decreases with increasing excitation for the case shown in Figure 8. 

In addition to the rotor speed and flashtube excitation para

meters just described, the Q-spoiled laser output also varied with the 

rotor-flashtube synchronization the vertical position of the prism roof 
' 

edge, the reflectivity of the output reflector, and the cavity length. 

After the publication of results on Q-spoiling with a rotating prism 

(40,41) while this work was in progress, the investigation was not 

pursued to its conclusion. 

Since most of the frequency doubling experiments were carried 

out using a Q-spoiled Nd-glass laser, a summary of its operating and 

output characteristics will be given. A noticeable difference between 

the Nd~glass Q-spoiled laser and the Nd3+:Ca\'J04 was the lower rotation

al speeds at which single pulse operation was possible. Furthermore 
' 

because of its larger size a greater energy output was also available. 



Figure 7 

Laser Output v.s. Time for Different Rotor Speeds 

The figure consists of a series of oscilloscope traces 

of the laser output for different rotational speeds (the numbers are 

revolutions/~econd). In each case the flashtube input energy 

was kept constant at 190 joules. 
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Figure 8 

!:.e§er Output v.s. Time fo~~ Different Excitation Ener111€ls 

The figure consists of a series of oscilloscope traces 

sho\'ling the laser output for different flashtube excitation 

energies (in joules). In each case the prism rotational 

rate was kept constant at 830 rps. 
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Using a TR6 energy meter (Control Data Corp.) an energy of 0.3 joules 

was measured in single pulse operation. Since the pulse width at half· 

2maximum was about 30 ns and the spot size was 0.5 cm a peak power of 
' 

20 megawatts/cm2 was obtained. This is to be compared with the 1 mega

watt/cm2 obtained from the doped Cawo4• 

For the experiments in frequency doubling. it is necessary to 

know the polarization and the divergence of the laser beam.. Although an 

unpolarized output was expected from Nd-glass, it is not quite so ob

vious that the prism in the cavity cannot have an effect. Experimental

ly, the laser light emitted from the Nd-gla.ss Q-spoiler was found to be 

unpolarized. However, after extensive use, this ceased to be the case 

and the le.ser beam became 90% polarized parallel to the roof edge indi

eating that the laser cavity favoured oscillation in this plane. It 

was observed that the glass near the roof edge of the prism had become 

damaged. Since rotation of neither the laser crystal nor the resonant 

reflector caused any change in the plane of polarization. it is apparent 

that the prism was the determining factor. It was possible to insert a 

glass plate into the laser cavity at an appropriate angle so that the 

losses for light pola.rized parallel to the roof edge were increased 

relative to the losses for light polarized perpendicular to the roof 

edge. When this nas done an unpolarized output \7as again obtained. 
' 

The divergence of the laser was measured by observing. the 

far field pattern using a 1000 mm lens. The full width at half rnaxir;mm 

gave a value of somewl:.at less than 1/4 degree ( .0030 ± .0007 radians) 

for the divergence. 

http:somewl:.at
http:Nd-gla.ss
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(4-2) Frequency Doubling .l_n KDl::_~nd ADP 

Using a ruby laser frequency doubling was first observed in 
' 

KDP by Giordmaine (2) and Maker et al. (3) and in ADP by Savage and 

Mill er ( 42). Also frequency doubling using a Nd3+:cawo laser was
4 

observed in both these crystals by Miller and Savage (36)$ At that 

wavelength, the measured values for the phase matching angles are re

ported to be 40.3° ± 1.0° and 41.9° ± 1.0° in KDP and ADP respectively. 

For the purpose of testing the frequency doubling apparatus
' 

that was constructed frequency doubling from the infrared (t.. = l.06µm)
' 

to the green (A. =0.5},.i.m) was observed in both KDP and ADP. The crystal 

platelets for the experiment were cut as described in section (3-4). A 

typical phase matching curve for KDP using a Nd3+:cawo4 laser is shown 

in Figure 9. The ordinate in arbitrary units is the intensity of the 
' ' 

second harmonic divided by the square of the intensity of the laser 
' 

while the abscissa is the angle e in degrees with respect to an arbi

trary reference. It was confirmed that it is only the 0-ray component 

of the fundamental that is involved in the doubling process and that the 

second harmonic is an E-ray. 

Since the induced polarization in KDP is: 

P (2w) == 2 PXEE E (w) E (w) 
x 123 y z 

and the E (w) component of an 0-ray is zero only P ( 2UJ) and hence the z ' z • 
PX:EE 

coefficient of the nonlinear susceptibility, contributes to the
312 



:E'igure 9 

Phase M~qhing Curve in KDP 

The angle O, between the optic axis and the la.ser beam 

direction is measured with respect to an arbitrary referenceo• 
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production of doubled frequency lighto Thus the induced nonlinear 

polarization should be a maximum when E (w) = E (w) i.e. at an azi
x y ' 

muthal angle ¢ = Lr5°. This has been observed by Maker et al. ( 3) and 

it v1as also confirmed in this studye 

(4-3) Frequency_ D5>Ubling in Nicko~ Sul.Eho.te H~xah;ydrat~ 

From the beginning, it \'Ias realized that frequency doubling in 

crystals belonging to the point group 1+22 presented an unusual situation. 

The symmetry restrictions on the components of the third order tensor 

P EE
xijk are such that only one coefficient is nonzero. The induced 

polarizations are: 

P (2w) = 2 PXEE E ( w) E (w) 
x 123 y z 

p (2w) ·- 2 P,.yEE E (W) E (w) 
y /~123 x z 

P (2w) = o. z 

To phase match in a uniaxial negative crystal, like Niso4.6 H o, the
2

fundamental frequency must be polarized as an 0-ray and the second 

harmonic an E--ray. Since E (w) = o for an 0-ray there can be no 
z ' 

induced polarization at the second harmonic frequency. Of course 
' 

there could still be a non-phased matched contribution from the 

electric dipole term. In addition the above consideration does not 
' 

apply to higher order nonlinear effects. 

Since the material absorbc ntrongly in the red it is impos• 

sible to use a ruby laser in a search for frequency doubling in Niso4.6 H o.2

There is however a transmission band in the ~reen and one in the infra~ 
• ' t.> 

red so that a neody~iura laser is ideally suited for the purpose. 

http:Sul.Eho.te
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It was first necessary to determine whether it is actually 

possible to phase match at L06 and 0.53µm in NiS04• 6 R o. This
2

would follow from equation ( 2-13) if the indices of refraction l\0, 
o e n , and n were known. The only data to be found in the literature

2 2 

are those measured by Topse a.nd Christiansen in 1874 ( 1+3). The 

values reported are given below: 

Wavelength Indices of Refractionin µm 

/;. 0 
n 

e n 

.656 1.5078 1.4844 

.589 1.5109 1.4873 

.486 1.5173 1.4930 

.439 1.5228 

By interpolation, the required values at A =o.53µm are 

Extra.polating into 

the infrared, the index of refraction for the 0-ray at A. = 1.06]..~m was 

estimated to be 1\o = 1050. This suggested that phase matching would 

occur, the direction being 50° to the optic axis. Accordingly a 
' 

crystal platelet of Ni_so4e 6 H o was cut and polished. following the
2

techniques described in section ( 3-4) with a surface normal to thB.t 
' 

direction. 'rhe experiment was initially performed using a focused 

laser beam but subsequently the lenses vwre removed since there Has
' . ' 

adequate signal using the "parallel" beam of the laser directly. A 

typical phase matching curve is sho·:m in Figure 10. The large fluctuu~ 

tions at the peak were the result of the lack of one-to-one corrt~s~ 

pondence between the second harmonic and laser outputs. 



Figure 10 

The relative second harmonic is the ratio in arb:Hrary 

units of the doubled frequency det0ctor signai output to the 

square of the laser monitor signal output. The ane;l e 6, bc

tv1een the optic axis and the laser beam direction is measured 
' 

with respect to an arbitrary reference. 
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The polarization of that component. of fundamental frequency 

which is the doubled frequency source v1as determined. This was a.c

complished by inserting a Glan prism into an unpola:d zed laser beam, 

and measuring the second harmonic output as the plane of polarization 

of the beam is varied. The result of plotting the magnitude of the 

relative second hm·monic against the angle Jf', measured between the 

plane of polarization of the le.ser beam and a principal plane in the 

crystal, is shown in part (a) of Figure 11. If only the 0-ray compo

nent of the fundamente.l is effective, the second harmonic should be 

proportional to sin4 'ft while an ~ray component would be indicated by
9 

4
a cos p dependence. The solid line is proportional to sin

4y. Al

though the data appear to vary faster than sin~ it is clear that an 

O~ray is responsible for the doubling. The discrepancy between theory 

and experiment probably arises due to a slight misalignment of the Glau 

prism. 

Tho polarization of the second harmonic was determined in an 

analogous fashion by inserting a Glan prism into the doubled frequency 

beGJ.m. The results are plotted in part (b) of Figure 11. The solid 

line shows cos2 JI' dependence to be expected of an E~ray. Thus the 

above experiments in NiS0 • 6 H o indic:ate that 0-ray at the fund~.mcnt4 2

al frequency generates an E-ray at the second harmonic frequency. 

(4-4) 

was accomplished by mcasurine the aneular diameter of the phase match

ine; cone. For t:his pu:rpose, a crystal of NiS01 o6 H o was cut in the 
} 2

shape of a right parallelepiped. By using the fact that the optic 



Figure 11 

~Eenc!.oncs._of SoH • ..Jntens:i,_~ Orientation of Gl.an Prism in (_tl 

the Laser Bea.m and (b) the S.H. Be~ 

The second harmonic intensity was measured c,s the plane of 

polarization of (a) the laser beam and (b) the second harmonic beam 

was varied with a Glan p:dsm. In both (a) and (b) 'f is the angle 

between a principal plane in the crystal and the polarizing direc~ 

tion of the Glan prism. The solid ct1rve in (a) is sin4ft indicating 

an 0-ray fundamental frequency while in (b) it is coif indicating 

an E-ray second harmonico 
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axis is normal to the (001) cleavage plane it was possible to cut the 
' 

crystal with the optic axis parallel to the base of the parallelepiped. 

A cross-section parallel to this base is shov:n in Figure 12. A provi

sional value of 51+ degrees for the phase matching angle, determined in 

a.n earlier experiment was c;i.ssumed in the construction of the parallele
' 

piped. The crystal was then moi.mted in the goniometer so that it could 

be rotated about an axis perpendicular to the o.ptfo axis. As indicated 

in Figure 12 there are two direc-tions through the crystal for \'lhich 
' 

phase matching can be obtained and the angle betv;een them is 29 • . m 

Hence from a.n expe:dmente.l measurement of the change in crystal orien
' 

tation betriecn these two directions, the phase matching angle can be 

determined. 

Because the phase matching directions ai·e not necessarily normal 

to the surfaces of the parallepiped there is a slight complication.
' 

The second harmonic detector has a relatively wide aperture and thus 

refraction of the beam on leaving the crystal is of no concern. However, 

there will be an error due to refraction of the le.ser beam at the front 

surface of the crystal. 'rltls can be minimized by immersing the crystal 

in an inocx matching liquid. From Figure 12 it can be seen that the 

measured angle is given by ?t - 26 + (j3'-p) + (o:'-ct) where a. B
Texp - m ' ' 

a'• and p' are indicated in the figure. Since Snell's law :Ls valid in 

a birefringent meclium if th(~ wave norme_l d:i.rections are considered and 

since o:. ex.' j3and13' e.re small it follows that 
' ' 



Figure J.2 

A schematic diagre.m sho1;;ing the principle by means 

of which e was measured. The directions shown in the crystal
m 

are those of the wave normal, not the rays. If the angles a. 
' 

13 a' and 13' were zero 0 "" t '/£ • The corrections to 
' ' m l exp 

.allow for refraction are explained in the text. The inset at the 

top shows the a.ctu&l experimental arrangement in which the cry

stal is rotated while the incident laser beam remains fixed in 

the laboratory. 
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where 11.0 and n e.re the refractive indices at A = l .06µm for the 


0-ray and the liquid respcctivelyo In this work bcmzyl alcohol 

' 


Cc6H CH 0H) v:as used for the immersion b~th in the goniometer. It is
5 2


transparent both in the green and the infrared, and has indices of 


refraction n = 1.517 and 1.576 at A. ::: l.06µm and 0.531un respectively. 


Only the former is of importance here. Since ~ and ~ are less than 


5 degrees and (1 - ~~17 ) ""'-'OoOl, the error due to an imperfectly 


cut crystal was negligible. From the experimentally measured angle

t 

'texp"' 113° ~ 2° 
9 

a phci.se matching angle of em = 56.6Q ± lo0° was 

determined. The uncertainty arises because of the finite width of the 

phase matching cur-ve. 

As pointed out above, only a rough value of the index of re

fraction of the 0-ray at :\ = l.,06v.m could be obtained from previous 


do.ta. It is now possible to calculate a precise value 

' 


1\0 =1.1+97 1: 00001 based on equation (2-13) and the measured phase

9 

matching angle. It should be noted, that 1\e cannot be determined in 


this way. Based 011 extrapolation of Topse and Christiansen's values, 


the best estimate is 11.e~ 1.470 This is indicated in Figure 13 


where the indices of refraction of NiS04.6 H o for the laser and the

2


doubled frequency are plotted as a function of the angle e between the 


wave nox-mal and the optic axis. If n were greeter than lo~·83 it should
1

e 

be possible to obtain OE..E type phase matching. A search for.frequency 

doubling wlth OE~E phase matching was carried out in one degree 

intervuls. No augmented frequency doubling other than that o.t 8 ::;: 56.5° 

was observed indicating that 1\e is very probably less than l.Lt83. 



Figure 13 

Refractive Index of Niso4.6 H2o as a function of e 

The angle A is measured from the optic axis to the wave 

normal direction. Since the refractive indices of an 0-ray, 

1\0 and n2°, are independent of o, they are represented by 

straight lines in this graph. The refractive index of the 

E-ray, n e(e), is the solid curve from n ° to n
2

e. Phase2 2 

matching occurs at the intersection of this curve with the 

straight linen.. 0 i.e. ate = 56.5° • Sine e 1\e is not 
.L ' m 

known, the refractive index 1\e(e) is drawn in the diagram 

as a dashed curve. 
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(4-5) Azimuthal Dependence of Frequency Doubling in NiS04.6 H
2
o 

""'"'·~~-

and Calcite 

As mentioned in section (2-5) it is useful to determine the 
9 

azimuthal dependence of the frequency doubline;e What is required is 

a measure of the a11ount of second harmonic produced as the crystal 

orientation is altered so that the azimuthal angle<} for the direction 

of light propagation changes. Of course it is vital that the ex:peri
' 

ment be performed in such a way that any variation in the second bar

monic output can be attributed to a variation in¢ and note. There

fore great care is necessary to ensure that the crystal is rotated 
' 

about its optic axis. This was accomplished by cutting a platelet so 

that the normal to the surface of the crystal was in the direction of 

the optic axis. The platelet \'1as then mounted on the goniometer so 

that the optic axis was aligned along one of the axes of rotation. 

The other axis of rotation was used to adjust the orientation of the 

crystal for phase matching. With this geometry, phase matching will 

occur when the laser light is obliquely incident on the crystal plate

let. However since the crystal is rotated about the optic axis the 
9 ' 

angle of incidence and e v:ill remain the same. Also the effective• 
thickness of the crystal will be constant. Fortunately in the case 

' 
of NiS04.6 H

2
o, the crystals cleave in a plane perpendicular to the 

optic axis so that the required platelets \'!ere easily formed. A 

platelet of suitable thickness was mounted on the goniometer and 

aligned with the aid of an autocollima.tor. By observing the image of 

the cross-h::>,irs reflected by the crystal platelet it v1as possible to 
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obtain the necessary coincidence of the rods of rotation and the optic 

axis to v.d.thin a few minutes of arc. There is however one further 
9 • 

problem. Since the index of refraction of Niso4.6 H o is 1.497 for2

the 0-ro.y at f.. = l.06µm the critical angle is 42°. Hence there is• 
no angle of incidence in air which will allow the laser light to pa.ss 

through the crystal at the ph9$0 matching angle of 56.5°. The difficulty 

was overcome by immersing the c rystci.l in benzyl alcohol. This also 

essentially eliminated reflection at the surfaces. The residual loss 

is a constant since the angles of incidence with the front and back 

surfaces are independent of tj . The results obtained for the a.zi

muthal dependence of the frequency doubling are shown in Figure 14. 

Measurements were first taken at 20° intervals from fl;"' -45° up to 

¢ :::135°. Intermediate points were obtained by rotating backwards 

from¢= 125° top"' -35°. At each angle, phase matching was checked, 

and the average over 12 flashes v1as determined. Within the errors• the 

results are independent of ¢. In order to assess the possibility of 

a weak angular variation the data were Fourier analysed. The results 

are 

s<¢) = (1.032 ± 0.012) + (0 .. 003 ± 0.018) cos 2¢- (0.011 :!: 0.016) sin 2 pl 

(OoOll i 0.017) cos 4¢+ (OoOOl ± 0.017) sin 4¢ 
(0.010 ± 0 .. 018) cos 6¢- (0.002 ~~ 0.017) sin 6¢ 

(0.012 ± Oc017) cos 8¢+ (0.003 ± 0.017) sin 8¢:. 
Except for the constant term which is the solid line dra\'m on the gro.ph 

in Figure 11+ the other amplitudes arc all consistent with being zero. 
' 



Figure 14 

The Azimuthal Dependence of the Frequency Doubling in NiS04.6 H
2
o 

The ane;le ~ i.s measured between the x -crystallographic axis 

and a principal plane containing the laser bec.m. The solid line 

drawn on the graph is the constant term in a Fourier analysis of 

the data. 



84 

~L

J 


1 

t 

I{) 
(j) 

I{) 
I'

-(/) 
I{) LU 
lf) w 

0:: 
(.!) 
w 

LO Cl 
r<>

\Si,. 

I{) 

LO 
I 

LO 
'tj

1 

C\l co (.0 v C\J 0. 0. . . . . 
0 0 0 0 

~INOU~CJ\1H ONOJ3S 3/\1.l'V'lJ~ 



• • 

85 

A similar experiment was carried out in calcite, since the re= 

sul ts of such an experim1mt have not bc~en reported previously. Unlike 

NiS04.6 H o calcite does not cleave in a plane perpendicular to its
2

optic axis. It was therefore necessary to grind_ and polish a platelet 

with the 3 fold axis normal to its surface. To confirm that tho grind

ing had been properly carried out, the resulting platelet was observed 

under a polarizing micro.scope. The optic a.xis was found to differ 

from the platelet normal by one degree but this was considered to be 
' 

adequate alignment for the experiment. As mentioned previously• fre

quency doubling in calcite has been observed by Terhune (6) and is of 

the 00-E type. Since the critical angle for the 0-ray in calcite is 

37.,5° at A. "' l.06irn1 and the phase matching angle is 18Ql 0
, the azi

muthal dependence for calcite was measured with the crystal in air. 

This necessitated w:;ing an angle of incidence of 30.7° with an accom

panying 9% reflection loss in the laser intensity. Since the bire

fringencc of calcite is lc~rge the full width at half maximum of the• 
phase matching curve \"Jai:.1 only 12 minutes of arc. Hence great care had 

to be taken du:rini; the measurements to ensure that phase matching \'las 

maintained. This necessitated re-measuring the portion of the phase 

matching curve near its peak at each angle f. The measurements Tiere 

taken in alternate order as for NiS04.6 H
2
o, bu'c in this case the entire 

range 0 :::5 360° was scanned. The resulting azimuthal de

pendence is shom1 :i.n Figure 15. Although the data are somewhat er

ratic a sin3)i dcpcmdence is clearly visible. In a Fourier analysis 

of the data, the only statistically significant terms arc 



Figure 15 

Azimuthal D~~:.!2£.ndence oJ'..1.'Fs9.nenc;yJ2oub;bing in Ca.lei te 

The angle ¢ is measured between the x- crystallogra.pl"i..ic 

axis and a principal plane containing the laser beam. ·The solid 

curve is S( ¢ ) = o.71 + 0*24 sin 3</; • It was obtained from a 

Fourier analysis of the data.• 
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S( <j) = (O. 71 ± 0.01) + (0.24 ± O.Ol) sin 3¢., 
Pershan (26) has predicted th'lt the azimuthal dependence should be of 

the form 

2 2 2
(A+B sin 3¢ )2 = (A +iB ) + 2AB sin 3</J - ]-B cos 6¢ 

where for a lossless nonmagnetic material A and B are real constants. 

By fitting the first h10 terms in this expression to s«:j ) , the values 

A = o.843 ± o.ooi+ and B = 0.14 ± 0.01 were determined. Hence the ratio 

of the constant term to the amplitude of the sin 3¢ term is ~ = 6.0;to.4. 

Although the cos 6¢ term we.s not observed, its absence is understand

ablets1.ncc the above values of A and B predict a value of only 0.01 for 

the coefficient of the cos 6<;) term which nould be lost in the experi
' 

mental error. An estimate of the min:i.mum detectable amplitude for the 

cos 6¢ term is about 0.05. Hence the experimental data are consistent 

with real values for A and B but does not exclude the possibility of a 
' 

phase difference as la.rge as 60° between complex values for A and B. 

(lta-6) Frequency Doubling Dependence on Path Length In NiSo4.6 H2o 

Since nickel sulphate hexahydrate absorbs somewhat at both·the 

laser and second harmonic frequencies, it is interesting to observe how 

the intensity of the second harmonic varies \'Iith crystal thicknesso 

Platelets of vnrious thickness were formed by cleaving sections per

pendicular to the optic axis. The smallest thickness that could be ob

tained vias 0.020 cm. Each crystal in succession was mounted. on the 
' 

goniometer and immersed in benzyl alcohol. The relative intensities of 

doubled frequency at the peak of the phase matching curve are recorded 

in Table I. The effective path length traversed by the bewn in the 
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Table I 


Frequency fuubling Dependence on Path Length in Niso4.6H2':_ 


Platelet 

Thickness 

d (cm) 

Effective 

Path Length 

£ (cm) 

Relative 

Second 

Harmonic 

1031 2.37 ,5.8 .::.: 3.0 

1.08 1.96 17 .: 3 

0.985 1.79 32 .:!:. 6 

Oo8J8 1.52 74 .:!:. 9 

0.571 1.17 109 .:!:. 12 

0.338 0.612 L9o .: 45 

0.165 0.299 870 ! 70 

0.107 0.193 1080 ! 70 

0.063 0.115 1160 ! 70 

o.OLJ 0.078 1080 .::. 60 

0.030 0.055 800 .: 20 

0.024 o.oLL 6}-iO .:!:. 15 

0.020 0.037 675 ! 35 
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crystal is given by 2 = d sec e where e = 56. 5° and d is the thick-m m 

ness of the cleaved plateleto The data of Table I are plotted on a 

logarithmic scale in Figure 16. 

In section (2-3) a theory of second harmonic generation in 

absorbing crystals was presented. For a nearly parallel beam; the 

intensity of the second harmonic should have the form 

-Yf. 2 .\. /J( )S 2 W = A e sinh s x. (2-lla)

g2 
where 2 is the effective crystal thickness and Y and § are given by 

y (2-llb) 

ThB amplitude absorption coefficients of the 0-ray at Y = L06v,m 

and the E-ray at Y = Oo 53v.m a:re denoted by a and C'4 respectively.1 2 
-1Using a spectrophotometer it was found that a1 = 13.5 ± 0.,5 cm • 

' 
Since Niso4• 6 H o is a uniaxial crystal, the absorption coefficient of

2

the E-ray is anisotropic. In the phase matching direction it was 
' 

found that a :: 1.15 ± .05 cm 
-1 Therefore, from (2-llb)

2 ' 
Y = 28.2 ± 1.0 cm-l and ~ "' 12.9 ± Oo5 cm-l With these values and 

the aid of equation (2-12) the optimum thickness for maximum doubled 
' 

frequency output was calculated to be 0,.12 ± 0.05 cm. In Figure 16 it 
' 

can be seen that the data peak at essentially this value. The solid 

curve is a plot of expression (2-lla.) with the values. for Y and ~ 

given above. The curve v;h:i.ch was normalized to fit at the maximum is• 
in good agreement with the data. 

http:v;h:i.ch


Figure 16 

Frequency Doubling Dependence on Path Length in Niso4.6 H2o 

The solid curve, S(2w) =i e-y£ sinh~ f-. is the 

theoretical expression for the second harmonic intensity emitted 

from an absorbing crystal. The values of Y and g in 

0 -1 -1Niso4e 6 H2o are 2u.2 cm and 12.9 cm respectively, and the 

curve has been normalized to fit the data at the maximum. 
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( l+-7) 

NiS01 .6 H
2

0 Calcite and KDP 
t ' ' 

It is very difficult to make an absolute measurement of the 

magnitude of a frequency doubling coefficient since this j_nvolves 

absolute calibration of the detectors, a knowledge of the intensity 

distribution in the beam cross section and the multimode structure of 

the bea.m etc. Since these proble:ns have been overcome byAshkin et al. 

(12) using a gas laser, an absolute measure of the amplitude for fre

quency doubling in NiS01•.. 6 H
2
o can be obtained by a direct comparison 

of this material v:i th others. There are still some uncerta.inties due 

to beam divergence, crystal inhomogeneity, and la.ck of 100% coherence, 

but the difficulties are much fewer. 

In order to compare the magnitude of the frequency doubling in 

Niso4.6 H2o with that in calcite and KDP, crystal platelets of each 

were cut as outlined in section (3-4) so that phase matching could be 

obtained at normal incidence. In the case of calcite the phase match

ing angle for frequency doubling using a Nd-glass laser was calculated 

from refractive index data (44) to be 18.1°. The intensity produced in 

each platelet at pha[;e matching was measured relative to the signal S m 

from a detector monitoring the sccorLd harmonic produced in a NiS04• 6 H o
2

crystaL The results are shown in Table II. A direct comparison of 

doubled frequency intensity produced in each crystal can be o'Qtained 

by eliminating the monitor signal. Then 
' 

6 
= (/+.4 * 1.0) x 10 



Table II 

Relative Second .lia.rm.onic Intensity Produced in KDP, Calcite, and NiSOL.6f120 

i 

1 

2 

.... 
:> 

Material 

KDP 

Calcite 
. 

NiSOL .6!120 

Thickness 

(cm) 

0..19 

0.28 

0.28 

em 
(degrees) 

40<>.3 

18.J 

56 .. 5 

¢ 

(degrees) 

45 

0 

45 

-Si 

s 
m 

6 i 

(.303 + o.B) x io 

le2L ,::: 0.06 

Oo75 !. 0 .. 03 

f\) '° 
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and 

= 

The corrections that must be made in order to obtain the magnitudes of 

the nonlinear susceptibilities arc discussed in the next chaptero 

Since calcite has a large birefringence it is also possible 

to observe OE-E type phase matching ate= 25.3°. Using the same 

platelet, the intensity of the second hannonic at that angle was 

measured to be 

= 0 .. 023 ± 0.003 

Hence in calcite the relative magnitude of the 00-E second harmonic 

generation to the OE-E nonlinearity is 

54 :t 7 



CHAPTER V 

DISCUSSION OF RESUL'rs 

(5-1) The Rotating Pri3F:_I Q-sp2iled Las'!rr_ 

The appearance of multipulsing was explainetl qualitatively by 

Benson and Mirarchi (4o) and Daly and Sims (l+i) in terms of the rotating 

prism being a slow Q-s~itch. Whether a particular Q-spoilinG device is 

slow or fast depends on the relative values of two parameters. the 

switching time t and the photon build up time t • The latter which s p ' 
depends on the length of the laser cavity is defined as the time it 

takes for the photon flux to build up from its fluorescence value to 

its peak value. For a typical laser t ~ 200 ns. On the other hand 
p' ' 

the switching time is the time which elapses as the threshold for laser 

oscillation changes from a high initial value to its minimum value. An 

estimate of this quantity can be obtained by measuring the threshold 

for laser action as a function or· the angular alignment of an adjust

able stationary reflector. For a rotor speed of 500 rps a typical• 
value of t 

S' 
for a Nd 

~+ 
!Cawo4 Q-spoiled laser, is rv 1400 ns. Since 

t >> t this is the case of slow Q-switching.
s P' 


The phenomenon of the rnultipulsing can but be explained in 


terms of some diagrams. The case of slow Q-switching is shown in part 

(a) of Figure 17. The dashed line repa•esents the sloVJ change in 

threshold for laser oscillation from a high initial value to its mini

94 



Figure 17 

The Switching Spee~L.2J a Q~s:eoJled Laser 

Part (a) is the case of slow Q-switching, and Part (b) is 

that for fast Q~switching. In the upper half of the figure, the 

dashed lines represent the change in threshold for laser oscillation 

as the rotating miri·or a.pproachas alignment whereas the solid lines 
' 

represent the population inversion. In the bottom half a schematic 

plot of the light output from the Q-spoiled laser i.s drawn for each 

case. 

http:Spee~L.2J
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mum value v1hile the solid line shows the population inversion which 

has a high initial value due to optical pumping. When the population 

inve1•sion exceeds the threshold value, the light pulse will begin to 

evolve. The evolution of the light pu-lse causes a rapid decrease in 

the number of excited atoms. When the population .inversion falls below 

the threshold value, the pulse begins to diminish. Since t >> t s p• 

it is possible for more than one light pulse to evolve before minimum 

threshold is reached. In the lower part of the diagram a schematic 

plot of the light output is shown. 

In a similar manner, part (b) of Figure 17 illustrates the case 

t r.J t • The light output is now a single pu..lse containing virtually
s p 

all the energy stor€'d in the population inversion. In terms of the 

parameters t and t the observed dependence of the multipvlses on 
' s P' 

rotation£Ll. speed of the prism and flashtube excitation are understand

able qualitatively. 

The rote-ting prism Q~switch is different from other Q=spoilers 

since the threshold for laser oscillation near alignment varies from a 

maximum value to a minimum value and then returns to a maximum value 

again. This is to be compared nith a Kerr cell Q switch in v1hich the0 

threshold is reduced and remains at a low value. Since the threshold 

for laser oscill<J.tion remains low only for a short time there is an• 
optimum switching time ~ tP' for which maximum single pulse powert5
is obtained. For t < t single pulse operation occurs but the peaks p• . • 

power is reduced since the losses are increasing before the pulse has 

fully evolved. Such an effect was not observed in this study, · :. th a 

but it has since been seen by Hill (L}5) 

with a Nd~glass Q-spoilcd laser. 
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Since the sv1i tching time depends not only on the rotor speed 

but also on the laser beam divergence and hence on the optical quality 

of the laser crystal that factor must be· considered in choosing a 
t 

laser crystal for Q-spoiling. In general, neodymium doped Ca\'104 is of 

lower optical quality than Nd"... glass. Hence for a given rotor speed and 

flashtube excitation, t is shorter in a Nd-glass Q-spoiled laser than 
5 

in a Na
~+ :cano4 one, so that single pulse operation is much more easily 

obtained in the former than in the latter. 

(5-2) 

In the experiments on frequency doubling in NiS04.6 H
2
o, one 

might question whether the photomultiplier output was really due to 

green light generated by frequency doubling. Since the output signal 

diss.ppeared when the crystal was removed the phenomenon is definitely
' 

a characteristic of the c rystale The wavelength of the doubled frequency 

was not actually measured, but the interference filters used had a pass 

band of about 10 nm at 530 nm. If some process other than frequency 

doubling is involved, that process must explain the following facts. 

Firstly, the output signal is only observed for e = 56.5° and arbitrary 

rl. and as shown in Figure 10 it has a strong denendence on 9 about'I'' • • 

e = 56.5°. Secondly, as indicated in Figure 11, the green light pro~ 

duced is polarized as an E-ray and only the 0-ray component of the 
' 

laser light is usefu.l in generating the green lie;ht. 
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Since the laser emits more than one frequency of light, sum 

frequency generation is a possibility. As described in section (2-1) 

the susceptibiJ.ities, 
P EE
X:ijk(w

1 
+W) for optical summing are not sym

metric in j and k. Hence for a crystal with lt22 symmetry
' 

the induced 

polarizations at w
1 

+ w
2 

are 

P EEP~EE 
P/ Wl+ UJ2) = ~ 23 Ex(wl) Fz (Gu2) -X123 Ez( Wl) Ex(W2) 

P. EE [ - E (CU ) E (w )] .Pz(Wl+W2) "" J)12 Ex(Wl) E/W2 ) y 1 x 2 

For two 0-rays with electric fields 

sin</;~ .(~ - )=(~., ) _ ,/..... i k2.r -W2t 
1!i ....,2 - - cos?, J!,2e~ 0 

at frequencies Gu and u; respectively, the polarizations P/GU +G0 )
1 2 1 2

and P/w +w ) are zero since both Ez(w ) and Ez(w ) are zero.
1 2 1 2

P z (w + c.v ) is also zero because for a parallel beam,
1 2

E ( W. ) E ( w )
x 1 y 2 

Hence the possibility of electric dipole optical summing can be rejectEid. 

If the index of refraction of the 0-ray at. /, = 1.06µ.m were known 
' ' 

it would be possible using (2-13) to calculate the phase matching angle 

em and compare it with the experimentally measured value, lim .; 56. 6 :!; 1.0 

degrees. Unfortunately, no data for 11_0 
is available, so such con

firmation is impossible. Nevertheless, it appecn·s quite safe to conclude 

that frequency doubling v:as indeed ob::.;ervcd. 
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As shO\'!n in section ( 4-3); frequency doubling in Niso4• 6 n o by
2

an 0-ray cannot be attributed to radiation from an induced electric 

dipole moment. It is not a surface effect either. Doubled frequency 

produced at the boundary of a crystal \1ould not have the dependence on 

path length shown in Figure 16. It is logical therefore to attribute' . 
this doubled frequency to one or more higher order terms, as was done in 

the case of calcite by Terhune~· (6). Evidence to support this 

view can be found in the measurements on the relative magnitudes of the 

frequency doubling in KDP, calcite, and Niso4.6 H2o. In ch!;l.pter II 

equations (2-15a) and (2-l5b) Bive the second harmonic intensity S(2w)' . 
to be expected in transparent and absorbing platelets respectively. 

0The ratio of intensities in two nonlinear materials i and J is there
' ' 

fore 

3 2 2 
s. R, F(B. Q..n)
l. l. l. l. 

Fr13. fl .fl)s. = R. (~) (:~) (~)
J J J J 

where the subscripts i,j =1,2,3 denote KDP, calcite, and NiS04.6 H
2
o 

respectively, and the quantities Ai are the amplitudes for frequency 

doubling in each case. For absorbing crystals 

F( 13 • £ . fl) ;J; K = ( 2-15c)
l. l. 

where the quantity K includes both the effects of absorption and beam 

divergence. The values of the constants in the above equations for the 

crystals used in the relative intensity ~easurements are listed in 

Table III. In th;e case of NiS011 • 6 H
2
o the formula for a nearly parallel 
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beam 

K = 

was used in evaluating K. The justification is that the full width at 

half maximum of the phase matching curve, which can be seen in Figure 

10 to be 1.0 t 0.2 degrees, is greater than the beam divergence. Further

more as was shown in section (2-4), for sinhS £ >> 1 and a nearly
' 2g

parallel beam the width of the phase matching curve approaches W= ~ 
9 

For the platelet under consideration, sinh!£ = 18~3 and W = 1.1 ~~ .05 

degrees which is in good agreement with the observed value. Using the 

experimental intensity ratios from section (4-7) and the constants in 

Table III the amplitude ratios are 
' 

and ~ = 4.o Jc l.O. 
A2 

P"']!:E 
0In the case of KDP ( 22), A = .A: sin rim sin 2 ¢ where om = 40. ?

1 312 
Pv",EA 7r

and 'r = 4 . Sine e Ashkin et al. (12) have measured ,;{°3~2 to have the 

value (3.0 ± 1.0) x 10-9 esu, the absolute values of the amplitudes for 

frequency doubling in calcite and NiS04• 6 H o are
2

esu 

and (6 + 3) x io-12 esu. 

MILLS MEMORIAL LIBRARY 
McMASTER UNIVERSITY 
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Table III 

Relevant Constants for Frequency Doubling Amplitude Calculations 

i 1 2 3 

- ~ 

KDP Calcite NiS0
4 

• 6 H
2
o 

n. 
1 

1.495 1.6434 1.497 

64 n. 3 
R. 1 = 

(n.+1) 6l. 

1 

.883 .833 .885 

Q. (cm)
l. 

.19 .28 .28 

2ll(radians) .003 +. .0007 .003 ± .0007 .003 ± .0007 

1\(cm-1) 2430 6950 1290 

1\Qill 0.7 ~ 0.2 2.9 * 0.7 0.5 ± 0.1 

F(~ .~ .ll)
l. l. 

.95 t .03 0.5 1: 0.2 K=0.014±0.002 
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The value of A compares favourably with the value of io-12 estimated
2 

from the results of Terhune~· (6). It can be seen that the ampli

tude for frequency doubling in NiS04e6 H o is considerably smaller than
2

in KDP. This indicates that higher order terms are responsible. 

The question of which higher order terms can produce frequency 

doubling when the amplitude for electric dipole frequency doubling is 

zero has been considered in section (2-L1-). There it was shown that 

both magnetic dipole and electric quadrupole frequency doubling is pos

sible. The free energy for the magnetic dipole effects resulted in the 

induced moments 

P EHP.(W) E.(w) E (w)
J. ?(ijk J le 

MXEE E (W) E (w)
mRk m 'R.. 

t 'b'l't' P'\/EH d M,yEE . . fwhere the suscep 1. 1. 1. ies /\. . 'k an /\. ek are pure ima.gJ.nary or a
l.J m ~ 

lossless nonmagnetic material. On the other hand. the· quadrupole effects 

resulted in the induced moment 

n . ( 2 w) = Q EE ( ) ( )"{,iJ Xijk£. Ek w E..e,. W 

where QX~~kQ. is real for a lossless nonmagnetic substa.nce. In Table IV 

P EE PtVEHthe nonzero coefficients for the susceptibilities '\/ A
/\- ijk• ijk• 

M..yEE and Q..,_,,EE l' t ed f taJ . wi'th 422 t ry./"' mQk• /"' ijk£ are is or a crys sym:ne 

As mentioned previously in section (2-5) a measurement 0£ the• 
azimuthal dependi:rnce may ma.ke it possible to distinguish among the 

various high order terms. Also in that section it was shown how the• 
azimuthal depenc1.cmce for electric dipole frequency doubling can be deter



103 

Table IV 


'I'he Frequency Doubling Susceptibilities in NiSOL .6n2o 

1 

Px.EE 
"k "' (ijk)

J..J 

l\:jk 
J.. 

l 
2 
3 

~jk 
l. 

1 
2 
3 

11 22 33 23 32 13 31 12 21. 

0 
0 
0 

0 
0 
0 

0 
0 
0 

123 
0 
0 

123 
0 
0 

0 
-123 

0 

0 
. -123 

0 

0 
0 
0 

0 
0 
0 

PtyFli =( ..k)
/\- . "k 1.J1.J 

11 22 

0 
0 
0 

0 
0 
0 

33 

0 
0 
0 

23 

123 
0 
0 

~2 

132 
0 
0 

13 31 

00 
-132-123 

0 0 

12 21 

0 0 
0 0 

312 -321 

M'\I F:'.E w ( .a1~)
/\- 'n k r.J..U\. , ml

lk 11 22 1223 21 
m 

32 13 3133 

l 0 0 0 0 0 0 0 0 
2 

1J2 
0 0 0 0 0 0 0 0-·132 
0 0 0 0 0 0 0 132 -1323 

QXEE .. ,n . . ,,n = (:i.Jkr-)
l.Jt\.~ 

11 22 23 32 1213 2133 31~kl 
11 1111 1122 01133 0 0 0 0 0 
22 1122 1111 0 01133 0 0 0 0 

3311 0 033 3311 0 0 03333 0 
023 0 0 01313 01313 0 0 
032 0 0 01313 01313 0 0 
013 0 0 0 0 01.313 01313 
031 0 0 0 0 0 01313 1313 

12 0 0 0 0 0 0 12120 1212 
21 0 0 0 0 0 00 12121212 __,______,-
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mined. These calculations have been extended to electric quadrupole 

and magnetic dipole frequency doubling in the Appendix. The azimuthal 


dependences for these effects with 00-E phase matching are listed in 


Table V. It can be seen that only two terms, Q/(~~k and p/C~~k are 


effective in NiS04.6 H o. Since the second harmonic intensity is

2

proportional to Jeri• and hence p2 
, the frequency doubling intensity 

0f or a Q-vEE t erm . propor~iona1 t QA+ B co· P,- 4rl.) 2 "'hl." .../'- . 'k,, l. s . 0 r 1"'" i"t -ls 
J.J -~ 

2 P EHproportional to D for a '\/. 'k term. In general the effective cur
.A iJ ' 

rent amplitudes for the two effects should be added together to form the 

total current for frequency doubling. Thus 

P EH = + . Jeff 

'D 
= -2 W [ (~o + 2k0 A)+2KB cos 4fJ . 

The experimental data plotted in Figure 14 and Fourier analysed in 

. section (l+-5) indicated that the frequency doubling in Ni&~\. 6 H o was
2


essentially independent of the angle <j; • The maximum value of 


I ZBk.0 Ipermitted by the data is O.l. These results suggest

iJ?. + 2k0 A 
zo 


that the observed frequency doubling in NiS04.6 H
2
o is a magnetic di


pole effect due to an induced polarization P1(2w) =PX~~l E.(w)

J.J \. J 


J\(W). The electric quadrupole process is also consistent with the 


data for the special case that B = o which is equivalent to the 
' 


relation 


:'.l -l- (QXEE _ QXEE ) •~ 1111 1122 
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Table V 


Effective Currents for Frequency Doubling in NiS04$6 H2o 


With 00-E Phase Matchi~ 

Susceptibility pJeff 

0 0~ ijk 

A+B cos 4¢- 4wk0 TP~EE 
ijkf 

PXEH . w D- 2i zo Tl ijk 

}:x.E'E 
0 0mRk 

2 ·c-o - )T = Eo 0 21 k • r - wt 

. ( , ) QyEE . ( ) Q~.EE BA =sin o~2 cos e ~3311 - sine cos e + a2 71122 

1 · [Q EE Q EE Q EE J
B =4 sin 6 cos(e + "2) X1111 - /(1122 - 2 X'1212 

I'>. PXEH - p EHC = sin(e + a ) cos v sin e cos(9 + a. ) X2 312 2 123 
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There is of course no basic reason why this relation among the suscep= 

tibility coefficients should hold but one cannot exclude such a for• 
tuitous 	condition. 

It is interesting to not.e that no non-phase n:atched electric 

px· ~Edipole frequency doubling due to the susceptibility l 
23 

was observed 

in NiS0 o6 H 0Q It is possible therefore to put an upper limit on the 
4 2

p EE 
value of :x12y Consider the case of an E-ray·at the fundamental 

frequency producing an 0-ray at the doubled frequency. For non-phase 

matching the second harmonic intensity in an absorbing crystal is given• 
by equation (2-8). If it were possible to phase match, then the inten

sity would be given by equation (2-11). Taking the ratio of the two 

expressions it can be sho'<Jll that 

( e + o)2 k2(1\ e _ n e)211. n2 	 2 , 
l + sinh2 !, 1?. 

for the Niso4• 6 H
2

o platelet used in the relative magnitude experiments 

reported in section (4-?)o In the calculation it was assumed that• 
0 

- =.o4 and anisotropy in the absorption coefficients was neg-n2 

lected. The minimQ~ non-phased matched radiation that would have been 

detected is 

= 

where s1 is the intensity of the second harmonic generated in the KDP 

platelet used in section (4-7). 

S(l\e I n
2
°) and a calculation similar to those for the relative ampli~· 

tudes in section ( 4-7), it can be estimated that 1;x ~~3 in Niso4• 6 H2o 
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1 P EE .is less than the value of X 1n KDP. The result is not too
25 213 

surprising since Kleinman's symmetry condition (27) requires PX~~3 
to be zero in lossless. dispersionless mate.rials belonging to the 422 

p BE
point group. Unfortunately, the effectiveness of X

123 
for frequency 

doubling is reduced so much by absorption and non-phase matching that a 

sensitive check of Kleinman's symmetry condition is not possible in 

( 5-3) Frequency Doubling in Calcite 

Although frequency doubling in calcite has been observed by 

others (6), the results reported in section (4-5) are apparently the 

first on the azimuthal dependence. In the initial work on calcite• 
the frequency doubling was attributed to an electric quadrupole effect, 

' 2 
and it was on this basis that Pershan (26) calculated an (A+B sin 3¢) 

dependence for the frequency doubling. Later however magnetic dipole 

effects were also indicated as a possible source for the frequency 

doubling (25). The relevant tensor elements for frequency doubling are 

listed in Table vr, and the azimuthal dependences for each are calcula-. 

ted in the Appendix following the approach given in section (2-5). A 

summary of the results is given in Table VII. Since both ~j ::: 

Q;yEE P'V EH
/'-. ·.• ,,EkEn and P. ::: Ej ~ give the sa~e functional form for 

1JK1:, • .JV 1 /ijk 

the azimuthal dependence, there is no way, from the experimental data 

to determine which process is involved. One can conclude. however ' 
M E"'that 1'1., = X: ~. E En cannot solely be responsible for the frequency

K mxK m ¥.. 

2
doubling in calcite since in that case it should show a (G sin 3f )
azimuthal dependence. 
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Table VI 

The Frequency fuubling Susceptibi.lities in Calcite 

p EE x ijk = ( 0 ) 

p '"\/ El.'Ik;\. .,. (ijk)
1J 

~jk 11 22 33 23 32 13 31 12 21 
1 

l 111 ...111 0 123 1.32 0 0 0 0 
2 0 0 0 0 0 -123 -132 -ill -111 
3 0 0 0 0 0 0 0 312 -312 

M EE 

, xm.9.k (mlk)
DI 

11f\:2k 
m 

1111 
02 
03 

22 33 23 32 13 31 12 21 

-111 
0 
0 

0 
0 
0 

0 
0 
0 

132 
0 
0 

0 
0 
0 

0 
-132 

0 

0 
-111 
132 

0 
-111 
-132 

Q EE 
13x . •1.11 (ijk£)

J.Jl:U'. 

T 11 T 12 2122 23 3132 1333~(Q 
J.J 

11 
 0 0 0 01111 1122 1123 11231133 

0 022 0 
33 

1122 1111 -1123 0-11231133 
0 000 0 03311 3311 3333 

,00 00023 2311 -2311 13131.313 
0 0 00 0 

13 
2311 -2311 1313131332 

2311 
31 

0 0 0 2Jll00 1313 1313 
2311 

12 
0 0 23ll0 0 0 1313 1313 

1212 
21 

0 0 0 0 0 1J~2J 1123 1212' 
1212 12120 0 1123 11230 0 0 

c1212) .,, i [c1111)-c1122)] 
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Table VII 


Effective Currents f2.E. Frequency Doubling in Calcit~ 


With 00-E Phas~ Matching 


Susceptibility Jeff p 

Prt.,EE 
ijk 0 0 

QXEE 
ijldl - 4wk0 Tf A + B sin 3{; 

PX.EH 
ijk - 2i ~Tiz D + F sin 3rf 

MXEE 
m2k 2i c k 0 T ~ G sin 3/6 

2 c-o - )T = Eo e2i k • r -Wt 

Q EE ( ) Q-vEEA = sin(e -i- a ) cos El ,X - sin e cos 8 + a. /\
2 3311 2 1122 

B = cos(2e + u, ) QX~112

. P. EH 'P EH 
D = sin(e + a ) cos e X - sin e cos(e + ~2 ) ;::r

2 312 123 

P,y EHF = - cos ( e + " 2
) cos e ""'lll 

M EE 
G = cos a.2 ~111 
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The observation of weaker frequency doubling in calcite with 

OE-E phase matching relative to that obtained with 00-E indicates that 

the amplitude for second h!lrmonic generation has decreased with OZ-E 

phase matching. However this fact does not allow a separation of the 
' 

electric quadrupole and magnetic dipole effects in calcite. A sum= 

mary of the effective currents with OE=E phase matching as calculated 
9 

in the Appendix, is given in Table VIII. The 9ame azimuthal dependence 

is to be expected regardless of the origin of the effect. Hence a 

measurement of the azimuthal dependence with OE-E phase matching in 

calcite is not particularly interesting. 
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Table VIII 


Effective Currents for Frequency Doubling in Calcite 


With OE-E Phase Matching 


Susceptibility Jeff f 
P EE 

0 0xijk 

QjtEE -2 w (k0 +ke)T j A cos 3<jijk.e 

PXEH B cos 3 gJ-2i ~Tlijk z . 

MX'EE i c(k0 +k0 )T p D cos 3<)mQ.k 

. ( ) . Q.vEEA 2 ( )= cos El + ~2 sin e + al sin e 11-1123 

., . Q EE - 2 cos(28 + a ) coo (e + u )2 1 ~2311 

B"' cos(e + c..2 ) [ 1 + sin(e + a.1 )]sin El Px:~l 



CHAPTER VI 

CONCLUSIONS 

The theory of slow Q~s1£1itching (40 41) was used to explain the 
' 

appearance of multipulsing in a rotating prism Q-spoiled laser. The 

results indicate that the prime consideration in choosing a crystal for 

this type of Q-switch is maximum optical homogeneity and hence short

est switching time. This should be compared with the usual criterion 

of lowest threshold for laser oscillation in judging the worth of a 

laser crystal. The agreement between the experimental results and the 

theory of slow Q-switching was qualitative in nature but a more quanti- · 
' 

tative comparison would be desirable. Since the experimental results 

depend strongly on optical quality there is little hope that such a• 
comparison can be made using a Nd3+ :cawo Q-spoiled laser. The situa

4 
tion is different for a Nd-glass Q-spoiled laser in which optical im~ 

perfections are essentially non-existent. Such a quantitative investi

gation is now being carried out by Hill (45). Information on the effects 

of the life time of the laser transition's terminal level can be ob

tained. 

The study of frequency doubling in Niso4.6 H o has indicated
2

that the source of doubled frequency is an induced polarization 

PXEHP. = E H althoueh the possibility of a contribution in whole 
1. 	 ijk j -lt' ' 


. t f Q_ - Q..yEE E "' 
or J.n par , rom 'i.j- /'"ijke' K ""'t cannot be completely excluded. 
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Three separate experimental observations support this conclusion. 

Firstly since the doubled frequency is an E-ray, whose source at the 

fundamental frequency is an 0-ray. the frequency doubling is not electric 

dipole. Secondly the amplitude for frequency doubling is 1000 times 
t 

smaller than in KDP while it is only 4 times greater than in calcite. 

Thus a nonlinear effect of higher order than electric dipole is implied. 

Fina.lly the frequency doubling was found to be independent of the azi
' 

P EH
muthal v.ngle ¢ suggesting Pi = X. 'k E. H as the doubled frequency

l.J ~ J k 

source. 	 As mention~d previously, the azimuthal dependence does not 

P EH
permit an absolutely unambiguous separation of the effects of X ijk 

and ~~~k.e in Niso4.6 H
2
o since the ¢dependence due to the le.tter 

can be reduced to a constant by setting the coefficient B of the. ' 
cos 1+¢ term equal to zero. Since the fortuHous condition 	B = o, 

or ~~~12 ~ i (Q~~ll - ~~22), is highly improbable, it would be 

of interest to reduce the maximum value of B permitted by the 	experi

mental data. In this work, B was shown to be at least 10 times smaller 

than the constant term. An improved upper limit should be possible if 

the 10 to 15% rms deviations in the data could be reduced to the 4;6 un

certainty obtained in frequency doubling experiments with identical 

geometries for both monitor and sarnple crystal ( 21). The desired re

sults might be obtained by using two cleaved platelets of NiS04.6 H2o, 

one as a monitor and the other as the sample crystal for the azimuthal 

dependence measurements. For the greatest signal str~ngth the path 

length through the crystals should be 0.12 cm the thickness for 
' 

optimum doubled frequency production. 
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The results presented in this work have not indicated any micro

scopic origin for the frequency doubling in Niso4.6 n
2
o. Some experi

ments with this purpose will now be proposed. Since nickel is a magnetic 

atom it would be interesting to see if the presence of the nickel ion 
' 

is a requirement for the observed phenomena. A study of the magnitude 

and the azimuthal dependence of the frequency doubling in the isomorphs 

NiSeo4.6 H o, ZnSeo4.6 H o and Coso4.6 H o might show the effects of
2 2 2

atomic substitution on the susceptibilities. Further information on 

the mechanism of the frequency doubling process in Niso4.6 H2o could be 

obtained from a measurement of the dispersion in the nonlinear suscepti

bility. If it does not vary much with frequency a high frequency source 
' 9 

for the susceptibility is indicated. Unfortunately the presence of ab
' 

sorption makes dispersion experiments in NiS04.6 H o difficult. However 
2 ' 

one possibility is to use as a source the high intensity radiation at 

o.53µm obtained from an efficient second harmonic generator such as KDP 

or lithium meta niobate and Nd-glass laser. The frequency doubling in 

Niso4.6 H 0 would then be from the green into the ultraviolet. By
2

extrapolating Topse and Christiansen's refractive index data type 00-E 
' 

phase matching appears to be still possible at these frequencies. 

The absence of non-phase m~tched radiation due to P;c~~3 provi

ded a check on Kleinman' s symmetry condition (27), PX ~3 = o, in 

NiSo4.6 H
2
o. A violation of the condition would have indica~ed a low 

frequency mech.;inism for the electric dipole doubling. However• since 

it is estimated that P?CEE is 1/25 or less ·.than 
p
X

EE 
in KDP

123 123 ' 
the test is not very sensitive. If OE-E phase matching were permitted, 

a more sensitive test would be possible since the amplitude for electric 
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dipole frequency doubling is no longer zero as with 00-E phase matching. 

However a search for OE-E phase matching was unsuccessful probably due 
' ' 

to the lack of sufficient birefringence. 

Another extension of the experiments in NiS04• 6 H
2
o would be to 

apply a magnetic field and look for magnetic field-induced second har

monic generation. The effect has not yet been observed. Since the sus

ceptibility for this effect is a 4th order axial tensor, its value is 

zero in centrosymmetric crystals. Hence it is only observable in those 

crystals for which symmetry conditions also allow electric dipole ·fre

quency doubling. The latter would probably overwhelm any magnetic field-

induced frequency doubling. As has been shown this would not be the 
' 

case for the noncentrosymmetric crystals like Niso4.6 H o which have
2

422 symmetry. This experiment wou.1.d be the magnetic analog of the 

experiment on electric field-induced doubling in calcite (6). 

The measurements on the azimuthal dependence in calcite showed 

that the data are consistent with an (A + B sin 3 <j )2 
variation, al

though the presence of the cos 6)6 term was not observed. The results , 

however do not allow a distinction to be made between the electric 
' 

quadrupole and magnetic dipole effects. An attempt to observe the 

(D cos 3 <J )2 azimuthal dependence with OE-E phase matching was not 

carried out since it v1ould not permit a separation of the two effects 

either. 

The work in this thesis has demonstrated the possible use of the 

azimuthal dependence for distinguishing between the higher order terms 

in frequency doubling. The method is limited in its application but 
' 

is not restricted ju.st to crystals with 422 symmetry. For example the 
' 
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negative uniaxial crystals with 4/mmm symmetry and 00-E phase matching 

have the same functional form for the azimuthal dependence of the 

electric quadrupole and magnetic dipole effects as do the 422 type cry

stals. However. if OE-E type phase matching is allowed, only quadru

pole effects would be possible. In 4mm type uniaxial negative crystals
' 

electric dipole frequency doubling can occur with 00-3 phase matching
' 

but only electric quadrupole doubling is possible with OE-E phase match

ing. In addition there is the possibility of measuring the ratio 
' 

between electric dipole and electric quadrupole effects in the ~ 

crystal to see if they have the same mechanism for the frequency doubling 

process. A study of the tables given in the Appendix and the calcula
' 

ti.on of a similar set for positive uniaxial crystals, will indicate the 

symmetries in which the azimuthal dependence can be used to separate the 

higher order nonlinear effects. 



APPE~'DIX 

THE AZIMUTHAL DEPENDENCE OF FRE:<?U-ENCY DOUBLING IN CRYSTALS 

The purpose of this Appendix is to present the calculations of 

the azimuthal dependence for electric dipole, magnetic dipole, and 

electric quadrupole frequency doubling in the three uniaxial crystal 

classes - tetragonal trigonal and hexagonal. The calculations have' . 
been carried out for both 00-E and OE-E type phase matching in uniaxial 

negative crystals. 

It will be assumed that the applied fields are plane waves pro

pagating through the crystal in the phase matched direction n where 

sin A cos</> 

- sin 8 sin¢ 

cos e 

n = 

The optic axis has been taken in the z-axis direction. The angle 13 is 

measured from the optic axis to the direction of propagation, while </> 

is the angle between the crystallographic x axis and the principal plane. 

The 0-ray fields will be written as 

E0 - .,,.g i(k0 .r -wt)(Go) = o .i!. e and H0 (w) 

where 

sin¢ cos A cos/; 

- ho0 = cos ~ sin¢cosf; = 

0 - sin e 

117 
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0 0 z0and E0 = z H where is the impeda.nce of the medium. 

Similarly the E-ray is given by
' 

where 
= 

and 

[- cos( 0'"i) cos </i sin¢ 

-
el = - cos(~~«2 ) sin¢ -eh = cos¢ • 

sin( 0+o1
1 

) 0 

The quantity a is the angle between the direction of Poynting' s vector
1 

-efor the E-ray and its wave normal k • Its value can be found from 

02) 

tan e~ - ~.2 


11itan a = •1 2 
0 

11i 2
1 + tan e2 e 

11i 

As the fields propagate through the medium they induce a source 
' 

current at the doubled frequency. Not all of the source current is ef

fective in second harmonic generation but only the component along the 
' 

direction of the electric vector for the E-ray at the doubled frequency. 

It is given by 
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where 

- - ~ (-J(2w) = + c v x 11(2(.JJ) - 0 t V'. Q) 

and 

- cos <e + (),2) cos¢ 

- = - cos Ce + "2) sin¢e2 

sin( q + a. )
2 

As for a..1 , there is an analogous expression for o;.2, 

2 

L. 
0 

) tan 8~  11.e2 
tan a- = 2 2 

0 

11. 2l + tan e2 e 
~ 

2The second harmonic intensity will be proportional to Jeff (2GV). The 

problem now is to evaluate Jeff for each of the induced moments. 

For the case of 00-E phase matching
t 

2i(k0 .r -wt)
e 

Hence the effective current is 

http:11(2(.JJ
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where the quantity p contains the azimuthal dependence and is given by 

p= e i ojok 1Jc ~k· On the other hand. for OE-E type phase matching,2

E(/··)K(W)=( + )EoEe i[(k0 +ke).r-2wt]
j vv k ojelk . e1 jok e . 

ana the effective current is given by 

2W t] 

= e2.J :: d e
2

. ( d. Q•. )Jeff - ~t J. J l.J 

d 
= - ~t e2i dj (Q,X~kf Ek E_e)• 

For 00-E type phase matching, 

o ~O2p 2ic-ok ,r - -Wt)
J eff = - 4w k !!. e 

and for OE-E phase matching 

o e) "'e ,,,..o A:: ei [<k 0 + ke) .r - 2wt]
Jeff= -2l.A.J( k + k u ~ ::f. 

where 
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PXEH( )c pi = ijk Ej ~· 

For 00-E phase matching 

2i(k0 .r -wt)
e 

0 z 

Hence the effective current is 

. UJ ,.,.o 
2 J:. 2i(k0 .r -wt)= - 2l. -

0 J:' e.!!A 
z 

where 

For OE-E phase matching 

Ej ~ = (oj ~e Eo He+ elj ~o Ee Ho) ei [Ck
0 

+ ke).r - 2wt] 

o.hke 
= _J_!L +

[ e z 

At phase matching z e = z o and the effective current is 

. w = - 2]. 
0 z 

where 

P-vEH 
•"""i jk 
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The induced current is 

€ ijk \ Mc ( \7x M).= 
1. 

= c c,lj k 

+ l for cyclic permutations of i j k 

ijl~ - 1 for anticyclic permutations :f' i, j,kwhere 6 '" 
{ 

o for two or more i j k equal.
' ' 

Hence the effective current is 

ijk= c e2i € 

For 00-E phase matching this reduces to 

= 

where 

M,yEE 
/\-m2..k 

and for OE-E phase matching 

= 

where 

The summations implied in ~ have been evaluated in the crystal 

classes tetragonal trigonal and hexagonal for each of the 8 expres
• ' ' ' 

sions derived above. This was accomplished with the aid of a review 

article by Birss (10) in which the crystal symmetry restrictions on the 
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coefficients of both polar and axial tensors are listed. The results 

are presented in the following order. First in Table A-I A-II A-III' . . 
and A-IV the quantities e2i oj ok• e2i nj ok o..e, , e2i oj ~ 

0 
and 

€ij~.n. on o for 00-E type phase matching are listed. These are 
... 1. J JC.. m . 

followed by Tables A-V A-VI A--VII A-VIII giving the sums. . ' 


ijk MfaEE
e • n . € o o,, n • In an analogous fashion the next set of
2l. J m .x.. m~1{ ' 

tables contains the results of the calculations for OE-E phase matching. 

Thus the quantities e2i (oj elk+ e1 j ok)• e2i nj (ok e1e +elk~), 

( h e h 0 ) d ~ ijk(o,n e + ) l'e2i oj -K + e1 j -K , an e2i nj ~ JC. lm om e1e are isted 

in Tables A-IX, A-X, A-XI and A-XII respectively, while the sums 

p= e2i (o j 

e2i(oj ~e + 


are given in Tables A-XIII A-XIV A-XV and A-XVI. 




Table A-I: The Quantity e2j_ojok 

~ ll 22 33 23 .32 13 31 12 21 

l 2-c2s c -C2c3 0 0 0 C2sc2 

2 -C2s3 I -c2sc 2 0 0 0 2
02:8 c 

3 S2s 
2 s2c 2 

0 0 0 -sl"\sc.::: 

s2= sin (Q +ot 2), "" cos (9 + oc2), s "" sin¢, ca cos ¢c2 

..... 
[\) 
.+'" 



Table A-II: The Quantity e2injoko.l 

~ 11 22 33 23 32 13 31 12 
. 

11 
2 2 L 0 

3
-C2Ss c -C2Sc 0 0 C2Ssc 

22 4 2 2 
0 

3
-C2Ss -Ca_Ss c 0 0 C2.Ss c 

33 S2Cs
2 . 2 

52cc 0 0 0 -S2Csc 

23 3 2. 
0 

2 
-c2cs -c2csc 0 0 c2cs c 

32 S Ss3 s2ssc 
2 

0 0 
2 

2 0 -s2ss c 

13 
2 3 2 

-c2cs c -c2cc 0 0 0 c2csc 

31 
2. 

S sc3 2 
s2ss c 2 0 0 0 -s2ssc 

. 3 3 0 
2 2 

12 -c2ss c -Ca_Ssc 0 0 C2Ss c 

21 3 3 0 
2 2 

-c2ss c -c2ssc 0 0 C2.Ss c 

21 

s, = sin (9 + o< ) , C = cos (e + °'2 ) , S = sin 9, C = cos 9, s = sin ¢, c = cos ¢
2 2 2 


I-' 
N 
\JI 



Table A-III: The Quantity e o ho 
2i j k 

~ 11 22 33 23 32 13 31 12 21 

1 -c2csc 
2 c2csc 

2 
0 -C2Sc 

2 
0 c2ssc 0 

2 
-C2Cs c C2Cc

3 

2 
2 

-c2cs c 
2 

c2cs c 0 -c2ssc 0 c2ss 
2 

0 -c2cs 3 c2csc 
2 

3 s2csc -s2csc 0 S2.Sc 0 -s2ss 0 s2cs 
2 2 

-s2cc ! 

j 

s = sin (e +O( ), c = cos (9 +O( ), s = sin e, c = cos e, s = sin ¢, c = cos ¢ 
2 2 2 2 

..... 
N 
0\ 



. "k 
Table A-IV: The Quantity e 

1 
J 92injoQ.om 

11 ..~ 
31 -s cos°'2 

2 
2 S C COS°"2 

03 

22 

2 
-sc cos'l'2 

3 
c cosot!2 

0 

33 

0 

0 

0 

23 32 

0 

0 

0 

13 

0 

0 

31 12 21 

2 
s c cos0(2 

2 
-sc cos~ 

0 0 

s. • sin ¢, c = cos ¢ 

I-' 
I'\.) 
-....J 

http:92injoQ.om
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Table A-V 


. /f P-vEE

The Quantity Y! ... e2 .o .ok A· .k 

. J. J l.J 

Cryatal Class Point Group ~ 
4 
-4 -A cos 

A 

2¢ + B sin 2¢ 

4/rn 0 

Tetragonal 422 0 

4mm 
-42m 

A 

B sin 2¢ 

L/m.rnm 0 

Trigonal 

3 
-
3 

32 

A + D cos .3¢ + E sin .3¢ 

0 

D cos 31' 

3m 
~ 

Jm. 

A+ E sl.n 3¢ 

0 

6 
-= 
6 D cos 

A 

3¢ + E sin 3¢ 

6/m 0 

Hexagonal 622 0 

6rnm 
... 
6m2 

A 

D cos 3/1 

6/m:.n..-n .0 

A m (3ll)S2, B = - (312)s2, D = (lll)C2, E = - (222)C2 

52 ° sin (@ +t>( 2) , "" cos ( e +0<2 ) , X~~k "" (ijk)c2 
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Table A-VI 

Crystal Class Point Gn:>up 

L, 4, 
L/m 

Tetragonal 
422, 1;2m, 

Lm.111, L/IT.lJ'illn 

-3, 3, 
Trigonal 

32, 3m, 

-3m 

6, 6, 
6/m 

Hexagonal 
622, 6mm, 

6m2, 6/mmm 

p 

A + B cos 4¢ + D sin L¢ 

A + B cos 4¢ 

E + F cos 3¢ + G sin 3¢ 

E + G sin 3¢ 

E 

E 

A =S2C(3311) - c2s(ll22) - B 


B = ~2s ((llll) - (1122) - 2(1212)] 


D = ic2s ~1112) + (1211)] 


E = s2c(3311) - C2S(ll22) 


F = (1311) cos (29 +o<.. )

2

G = (2311) cos (29 + 0< )_
2

a sin (9 +o< ), c = cos (9 + e><~), s = sin 9 , c = cos 9 ,s2 2 2 

~fk.Q. c (ijk~) 
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Table A-VII 

~ B OP-yF,dThe Quantity '±' e21ojhk "°'ijk 

Point GroupCrystal Class p 
4, '};, 

A 
4/m 

Tetragonal 
422, .4mm, 

A 
'42m, L/mmm 

3, 3 A + B cos 3~ + D sin 3¢ 

32, 3m,Trigonal 
A + D sin 30 

3m 

6, 6, 
A 

6/m 
Hexagonal 

622, 6nm1, 
A 

6m2, 6/rmnm 

A = s2C(312) - C2S(l23) 

B = -c2c( 222) 

D = -c2C(lll) 

p EH 

Xijk = (ijk) 


s2: = sin (8 + 0(2), c2 ... cos (e + °' 2) 




131 

Table A-VIII 

. /h ijk M EE 
The Quantity ':t' a e2in/~ o,eom Xmtk 

Crystal Class Point Group gj 

Tetragonal 

L, Ii 

L/m 

422, .J.imm, 

t2m, L/mmm 

0 

0 

3, -3 A cos 3~ + B sin 3¢ 

Trigonal 32, Jm, 

Jm 
B sin J,0 

6, 6 
0 

Hexagonal 
6/m 

622, 6mrn, 

6m2, 6/nunm 
0 

A a (222) cos°'2 

B = (lll) coso<
2 

MX!lk = (m!k) 



Table A-IX: The Quantity e2i(oj;,k + e1 jok) 

~ 11 22 33 23 32 13 31 12 21 

1 c2c1E_ c -C2C1!c 0 C25i_c 
2 

-0281SC -c2c1C.£ 

a c2.c1 s! -C2C ss1 0 c25i_sc 
2 -c2s.i_s -C2C1S.£ 

3 -SzC1! S2C1!! 0 -s25ic S2.Sls S2C1.£ 

= sin (9 .... cx.2), 5:t_ = sin (9 .... 0(1 ), ! =- sin 2~, s : sin )b,s2 


C2 = cos (9 ..,.0<2), C1= cos (9 +o<1 ), c = cos 2¢, c ""'cos ¢ 


........ 

\JJ 
I\) 
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Table A-X: The Quantity e2inj(ok6:i.t + elkot) 

s 
2 

IS Sin (9 +0(
2

), sl ... sin (9 + 0(1)' s = sin e, s = sin 2¢, s = sin¢ 


c2 .,. cos ( 9 + ()(2)' c • cos (9 + 0< ), c = cos 9, .£ = cos 2¢, c = cos ¢. 


~i 
ll 22 33 23 32 13 31 12 2l 

, 

11 c2c1s!c2 -c2c1 s!c2 0 c2.s
1 

sc3 -c
2

s
1 

Ssc2 2 -c2c1Sc £ 

22 c 2c1s!s2 2-c C Sss
21- 0 2c

2
s
1

ss c -c2slss3 2 -c2c1ss £ 

33 -s2c1c! s 2c1c! 0 -s
2

s
1
cc s

2
s
1
cs s 2c1C£ 

23 C
2
c

1
0!!_S -c

2
c
1

C!!_S 0 c
2

s
1
csc 2 -c C Csc-c s cs

2 1 2 1 -

32 -s2.c1s!s s2c
1

s,!!s 0 -s S Ssc 2 s2c
1

Ss_£2 1 
. s s ss

2 1 

13 c2c1c~c -c 2c1c~c 0 c
2

s
1
cc2. -c

2
s
1
csc -c2c

1
Cc_£ 

31 -s
2
c

1
s!!_c s 2c

1
s2,c 0 2 s s ssc · 

2 1 s 2c1Sc.£I -s s sc
2 1 

12 c2c
1

S!!_SC -c c s!sc
2 1

0 c Ssc2 
2

s
1 

2-c s Ss c
2 1 -c2c1ssc£ 

21 c2c;i..SE_sc -c
2

c
1

S2_SC 0 c Ssc2 
2

s
1 

2-c ss c
2

s
1 -c C CSC.£2 1 

1 1
 .... 
\>I "" 



Table A-XI: The Quantity e i (ojh~ + e1jh~)2

~ 11 22 33 23 32 13 31 12 21 

1 

2 

3 

c
2
c
1

cc3 

-c s2c
2 

c
2
c 
1 

csc2 

-c s3 
2 

· -s c cc2 
2 1 

+ S s2 
2 

2c
2
c
1
cs c 

-c c3 
2 

c 
2 
c 
1 

cs3 

-C '°C2
2'"' 

-s c cs2 
2 1 

+ s c2 
2 

c
2
s
1

sc 

c
2
s 
1 

ss 

-s s s 
2 1 

-c
2
s
1
csc 

-c s, cs2 
2 1 

SS Cs 
2 1 

-c
2
c

1
Ssc 

-c c ss2 
2 1 

s
2
c 
1 
ss 

-c s cc2 
2 1 

-c
2
s
1

Csc 

S S Cc 
21 

-c2c
1

sc2 

-c
2
c

1
ssc 

SC Sc 
2 1 

c
2
c
1
csc2 

+ c
2

sc2 

c 
2 
c 

1 
cs2c 

+ C s2c
2 

-s C Csc 
2 1 

-S SC 
2 

Sa = sin .(e + cx ), s • sin (e + cx ), s = sin e, s = sin ¢2 1 1
c = cos (9 +o< ), c =cos (e +cx ), c = cos e, c = cos¢.

2 2 1 1 

..... 
~ 
+
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Table A-Xll: The Quantity e2i nj 6 J ( o.Q. 6:tm + 6:1.e.om) 

[X 2112311322 322311 33 

l C
1

E_s cos0(
2 

-C SS
1

COSOt'
2 

0 s
1

sc cos2 -s
1

s 2 cos~ -c
1

S.£ cos°2 

2 -c sc
1

coso<
2 Cl!!C COS °'2 0 -S C2 

1 
COSO<

2 
s
1

sc cos~ ClC.£ COsOc'2 
I 

0000 00 

s =sin(9+o<), s=sin2¢, s = sin¢,
1 l 

c
1 

= cos (e ~· ~), c = cos 2¢, c = cos ¢. 

!-' 
\>I 
\J1 
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Crystal Class Point Group g? 

Tetragonal 

4 

Ii 
4/m 

422 

4mm. 

42m 

4/mmm 

A 

(A + B) cos 2¢ + D sin 2% 

0 

A 

0 

(A + B) cos 2fJ 

0 

Trigonal 

3 

3 

32 

3m 

Jm 

A + E sin 3¢ + F cos 3¢ 

0 

A+ E sin 3¢ 

F cos 3¢ 

0 

Hexagonal 

6 
-
6 

6/m 

622 

6mm 
-
6m2 

6/mmm 

A 

E sin 3¢ + F cos 3J!1 

0 

A 

0 

E sin 3¢ 

0 

A • 2(123)c s , B 0 2(312)s c , D a -2 [ s c (3ll) + c s (113)] ,
2 1 2 1 2 1 2 1 

E = 2(lll)c s , F = 2(222)c s , p/(:Jk a (ijk),
2 1 2 1

52.,. sin (e +cx2-), c2 = cos (Q + ~), sl .. sin (9 + O<J_), cl= cos (0 +<><:i_) 
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Crystal Class Point Group ~ 

Tetragonal 

J.J, i;, 

L/m 

422, Lmm, 

42m, L/mnmt 

A + B sin 4¢ + D cos 

, 

B sin L¢ 

4¢ 

3, 3 E + F sin 3¢ + G cos 3/!5 

Trigonal 32, 

Jm 

Jm, 
G cos 3¢ 

He..v.:agonal 

6, 6 

6/m 

622, 6:m.m, 

6m2, 6/mnrm 

E 

0 

A= 2S
1

(1323) cos (29 + o<2) + c2c1s [(1211) - (1112)] 

B a ~2c1S [ (1111) - (1122) -2(1212)] 

n • -c2c1
s [ (1211) + (1112)] 

Ea 2S (1323) cos (29 + 0<2) + 2C C S(l211)1 2 1
F • 2C (1311) cos (29 +cx2) - 2c2s S(1Ll3)1 1
G ... 2C s s(ll23) - 2C1(2311) cos (20 +0<2)

2 1

s .,, sin (9 + c< ), c .., cos (9 + 0< ), s r: sin (9 + o< ), c ... cos (e +cs_>,
2 2 2 2 1 1 1 

Q_x:~~1 n ° (ijki)
l.JKX. 
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Table A-XV 

The Quantity p"" e2i (ojh~ + 9i_jh~)PX~k 

Crystal Class Point Group p 

Tetragonal 

4, 4, 
4/m 

422, 4mm, 

42m, 4/mmm 

A 

0 

3, 3 A + B sin 3¢ + D cos 3¢ 

Trigonal 32, 3m, 
-
3m 

D cos 3¢ 

Hexagonal 

6, 6, 

6/m 

622, 6m.m, 

6m2, 6/lfiliml 

A 

0 

A 111 s2 [<1-c1c)(3n) - 818(333) J - o2 [81o(ll3) + c1s(131)] 

B = -Ca{l + c
1

o)(222) 

DB 02{1 + 010)(111) 

p~k 11'1 (ijk) 

s2 = sin (0 + <Xa), s
1 

• sin (e + 0<
1 

), s • sin 9 

02 = cos (e +0(2), cl = cos {9 + 0(1), c a cos 0 
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Crystal Class Point Group ~ 

Tetragonal 

l.i, "ii, 
L/m 

L22, ~mm, 

42m, l.i/m.mm 

A 

0 

3, 3 A + B cos 3¢ + D sin 3¢ 

Trigonal 32, Jm, 

3m 
B cos 3¢ 

Hexagonal 

6, 6, 

6/m 

622, 6rr.m, 
-
6m2, 6/mrrJn 

A 

0 

A = - s [ (131) + (311)] cos 0( 21 

B a - 2C (111) coso<
1 2 

D = - 2C (222) cos 0<
1 2 

MJ{!;~k = (mik) 

8:i. = sin (9 + °1), cl = cos (9 +°2 
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