
ON THE FEASIBILITY OF ADAPTIVE CONTROL 

WITHOUT IDENTIFICATION 

I 



ON THE FEASIBILITY OF ADAPTIVE CONTROL 

WITHOUT IDENTIFICATION 

by 

MUHAMMAD JAVED IQLEEM, B.Sc., B.Sc. (Elect. Eng.) 

A Thesis 

Submitted to the Faculty of Graduate Studies 

in Partial Fulfilment of the Requirements 

for the Degree 

Master of Engineering 

McMaster University 

February 1967 



MASTER OF ENGINEERING McMASTER UNIVERSITY 

(Electrical Engineering) Hamilton, Ontario 

TITLE: On the Feasibility of Adaptive Control Without Identification 

AUTHOR: Muhammad Javed Iqleem B.Sc. (Panjab University-Pakistan) 

B.Sc. Electrical Eng. (West Pakistan University of Engineering 

and Technology-Pakistan) 

SUPERVISOR: Dr. N. K. Sinha 

NUMBER OF PAGES: vii, 110 

SCOPE AND CONTENTS:-

One of the two basic philosophies underlying adaptive control is 

that the transfer function of the plant must be first determined and then 

the values of an adjustable controller varied for optimizing a given 

index of performance. The process of identifying the plant charactcris-

tics is .popularly known as Identification Problem and constitutes a 

major problem in the realization of an adaptive system of this type. 

The other philosophy is that a complete knowledge of the plant 

is not necessary for the optimum adjustments of the parameter of control. 

The system is caused to measure its own performance against a figure of 

merit and drives its performance towards optimum. This approach is 

becoming popular because of the many difficulties associated with the 

identification problem and a number of "hill climbing" techniques have 

been proposed based on this philosophy. 

In this thesis, three such techniques (steepest descent, conju-

gate gradients and parallel tangents) have been analysed with a view to 

determine the most efficient and quickest way to determine the parameters 

of a controller for optimum performance. 
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CHAPTER 1 

INTRODUCTION 

The essential feature of everyautomatic control system is feed-

back. Application of feedback techniques has enabled man to construct a 

large variety of automatic control devices by which he can control 

physical phenomena in a desired fashion. These systems, however, have 

shown a most significant limitation: They perform a particular task 

under desired or anticipated operating conditions; should the operating 

conditions change, they show restricted compatability. As a matter of 
I 

fact, when the parameters of the devices to be controlled are invariant, 

and when the operating characteristics of the controller elements can be 

expected to be unchanging, even feedback may be unnecessary. The feed-

back is useful because it enables a specified level of automatic control 

performance to be maintained despite small changes in the controlled 

parameters, but when such changes become large the performance of the 

system deteriorates. 

The last decade has been noticeable in the field of automatic 

control system for the development of the concept of adaptive control _____ 

or control in which the system is capable of modifying its own para-

meters so as to remain efficient despite the changes in the environments. 

Adaptation to unpredictable conditions is in fact one of the basic 

requirements of a control system. This problem has certainly long been 

1 
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recognised, but until recently not enough work was carried out in this 

direction. The growing interest in the field of adaptive control is 

evident from the numerous papers published in the last few years [l], 

[2], [3], [4], [s], [6], [7], [s]. Current interest in the adaptability 

of a control system is the result of progress being made in space, 

nuclear and other complex industrial technologies, where an attempt has 

been made to overcome the limitations of conventional design philosophy 

and meet the higher performance requirements. 

There are two basic approaches underlying adaptive control. One 

is that the transfer function of the plant must be first determined and 

then the values of the parameters of an adjustable controller can be 

obtained for optimizing a gi~en index of performance or fi~ure of merit. 

The process of determining the characteristics of the plant is called 

"plant identification" and constitutes a major problem in the realization 

of an adaptive system of this type. 

The other philosophy is that a complete knowledge of the plant 

to be controlled is not necessary for the optimum adjustments of the 

parameters of the control. The system is caused to measure its own 

performance against a figure of merit and drives its performance towards 

optimum. A number of"hill-climbing techniques" based on this philosophy 

have been proposed [9], [16]. This approach is becoming popular [11], 

[12] because of the many difficulties associated with ·the identification 

problem:. 

In this thesis, a very important aspect of adaptive control 

without identification is investigated. This is: how quickly can the 

variable parameters of the controller be adjusted in order to optimize 
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the performance of the system. Some of the optimizing techniques pro­

posed in the past few years have been analyzed in the present work with 

a view to find the most efficient and quickest way to determine the 

parameters of a controller for optimum performance. The optimization 

calculations in this work have been carried out on an IBM-7040 computer 

using \\IATFOR and IBM compilers. 

I 



CHAPTER 2 

THE CONCEPT OF ADAPTIVE CONTROL 

2.1 INTRODUCTION: 

With the progress being made in space, nuclear, and other 

industrial technologies, there is a growing need for automatic control 

systems which are capable of changing their own parameters in order to 

remain efficient in spite of large changes in their environments. 

Adaptive control has been viewed as the instrumentation realization of a 

prime characteristic of the human being in a control task. This has led 
I 

to a good deal of work during the past few years on adap~ivc control 

systems. 

In the literature on adaptive control systems one finds that 

different research groups have used their own terms and definitions, 

many of them overlap each other. A general scheme of classification of 

adaptive control systems has been proposed by Sinha D3J, which clarifies 

the confusion created by the different overlapping definitions. 

2.2 DEFINITION OF ADAPTIVE CONTROL: 

Control systems can be divided into two main classes: adaptive 

and non-adaptive. Adaptive control systems may be defined as those 

which are capable of modifying their own parameters with changes in 

environments in such a manner that their performance is optimized on the 

basis of a proscribed criterion. Non-adaptive systems do not have this 

facility. 4 
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The changes in the environments of a control system can be 

either in the statistical properties of the input or in the plant dyna-

mies, or both. Whenever such changes take place they must be identified 

and the corresponding compensatory adjustments made in the controller 

for the optimum operation. 

Figure (1) shows the block diagram of an adaptive control system. 

All adaptive control systems perform some of the following operations~ 

measurement, identification, determination of optimum control strategy 

and modification of the controller. 

2.3 IDENTIFICATION PROBLEM: 

Most control systems; consist of two sub-systems: plant and 

controller. The plant is considered to be the mechanism to be controlled 

and has little design freedom in most cases. The controller is that 

part of the system which is designed with a view toward making the 

entire system work properly. Evidently the success with which a given 

plant can be controlled in a desired fashion depends on how accurately 

its dynamic characteristics are known. The basic control system in its 

simplest form is shown in Figure (2) . Knowing the plant transfer 

function, any desired input-output relationship can in principle be 

obtained by designing a controller with transfer 

G (s) represents the desired transfer function. c 

almost all the cases, becuase 

1 
function Gc(s) G (s)· 

p 
This approach fails in 

(i) G (s) p is varying during the course of normal operation. 

(ii) G (s) p is not accurately known in advance of design. 

(iii) Gp(s) is non-minimum-phase. 
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To overcome these difficulties, the concept of feedback was 

introduced. This is shown in Figure (3). Such an arrangement can over-

come the problems mentioned above only if the overall transmission is 

independent of G (s). 
p 

The overall transfer function is now: 

G (s) G (s) c p 

1 + G (s) G (s) H(s) 
c p 

For overall transmission to be independent of G (s), we should have: 
p 

Gc(s) Gp(s) H(s) I >> 1 

This condition reduces the overall transfer function to ~ 
I 

1 

ll(s) 

Unfortunately this condition cannot.be fulfilled over a wide range of 

frequencies due to considerations of stability and unavoidable random 

8 

noise. In either case, if the plant to be controlled is quite large, or 

if the control system is to reach optimum performance, it is desirable 

that the design of the controller be based upon as much knowledge of the 

process dynamics as possible. 

The identification problem, i.e., the process of characterising 

the plant dynamics is a major problem in adaptive control systems. A lot 

of work has been done during the recent years and a detailed account is 

presented in reference (4]. 

2.4 DIFFICULTY OF IDENTIFICATION: 

The general identification problem involves the use of measured 

data for the determination of certain unknown parameters. The study of 

http:cannot.be
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identification in effect demands an answer to such questions as: 

(i) What ways are available for characterising the process dynamics? 

(ii) What signals (if permissible) are allowed to determine such 

characteristics? 

(iii) How should data from such excitations be processed to obtain the 

desired characteristics of process dynamics? 

(iv) What accuracy can be anticipated? 

Unfortunately, the present state of the art of engineering analysis and 

design can not answer these questions completely, although considerable 

research work has been done in this field. 

The process to be identified may, in general, be non-linear and 
I 

time varying with multiple inputs and outputs. The difficulty of 

identification depends mainly upon whether the process is linear or non-

linear; it is usual to assume that the given process is linear. ________ _ 

in this regard the designer cannot help; given a process he has no 

other choice but to assume the process to be linear and then establish 

the nature of non-linearities. It is also assumed that the process is 

time invariant. Accordingly, success in identification depends upon how 

correct these assumptions made at the outset are. A single input and a 

single output is another common assumption. It can be said that research 

efforts in this area have been made on a restrictive basis because of 

the amount of the work involved in identification. 

From a practical point of view, any identification should meet 

the following requirements: 

(i) identification should be made in the presence of normal operating 



signals and noise disturbances, 

(ii) any test performed on the process must not unduly distrub the 

normal operation. 

11 

·These conditions, in effect, do not allow a direct application of an 

external signal or removal of the plant during the test. Another consi­

deration which demands attention is that identification must be made 

quickly if it is to have any use in the adaptive control system. By 

their very nature, adaptive systems demand quick solution of the identi­

fication problem and it is seldom possible to allow long time intervals 

merely for the process dynamics to be identified. 

2.5 ADAPTIVE CONTROL WITHOUT IDENTIFICATION: 

Because of the numerous difficulties mentioned above, another 

approach [11], [12] has become popular during the recent years. This 

approach does not demand the identification of plant dynamics and the 

system can be made adaptive on the principle of performance measure, 

wherein the need for controller adjustment is detected through a measur~­

ment of the system performance. A very good example of an adaptive 

system without identification is a .pilot flying an airplane. The pilot 

is constantly identifying the plane's behaviour without doing so in terms 

of coefficients of a differential equation or transfer function. What the 

pilot senses is simply the current performance of his plane along with 

its current sensitivity to the control action to adjust the current 

performance to the desired performance. Because the human pilot is an 

excellent adaptive system (within his limitations and speed), the 
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research efforts have been directed to lie along lines characterising 

his operation. This gives rise to three basic constituents of the 

adaptive principle: 

(i) The definition of an optimum condition of operation or a figure 

of merit. 

(ii) The comparison of the actual performance with the desired 

performance. 

(iii) The adjustment of the system in order to drive the actual 

performance towards the desired performance. 

The first quantity is the designer's decision, and the remaining two are 

automatic operations to be accomplished by the system. 
I 

This approach also overcomes the many imperfections of the 

conventional design philosophy. Present conventional procedures for 

automatic control systems are, in the language of a-psychologist, 

completely structured. That is the system can only cope with problems 

foreseen and allowed for by the designer. Also, it is almost essential 

to have the controlled variable directly available for measurement and 

manipulation in order to have the desired control. In adaptive control 

systems, the designer provides the system· with a means of continuously 

monitoring its own performance in relation to a given figure of merit 

and a means of adjusting the variable parameters so as to reach the 

desired optimum, rather than organising the system to meet anticipated 

inputs and parameter variations. 

2.6 THE FIGURE OF MERIT OR PERFORMANCE CRITERION: 

Perhaps the most important aspect of the overall performance of 
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adaptive control is the figure of merit against which a system measures 

its performance. This choice is made by the designer and consequently 

the final response of the system can be no better than the criterion. The 

performance of a system is generally a function of stability, sensiti-

vity, accuracy and transient response, etc. The exact specifications 

arc dictated by the required system performance. Certain characteristics 

are more important in some systems than the other. Transient response 

is by far the most important attribute of all the physical systems and 

designers of such systems are oftert faced with the problem of optimizing 

the transient behaviour. Various criteria have been put forward in the 

past decade but unfortunately most of· them are either impractical, 

incomplete or designed to solve a very specific problem. Transient' 

response characteristics are usually defined on the basis of a step 

input. Graham and Lathrop [14] have developed several performance cri- -

teria for optimizing the transient response. These criteria resolve the 

·conflict that exists between rise time, peak overshoot and settling time. 

Of the different criteria discussed in[l4], integral of time-multiplied 

absolute-value of error Jmleltdt (ITAE) and integral of time multiplied 

J
m 0 

square of error 
0

e2t dt(ITSE)appear to be most suitable. ITAE has been 

extensively used and yields good results because of its selectivity and 

ease of mechanisation on an analog computer. ITSE appears to be equally 

reliable, though it has not been employed as much as ITAE. 

While ITAE and ITSc are fairly reasonable performance criteria 

on any objective and operational basis, they require considerable compu-

tation. Also it is to be noted that these performance criteria appear 

to be insensitive over a wide variety of applications--nevertheless it 
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is not always so. In any given system there is always the possibility 

of improving its performance by the measurement of performance criterion 

and systematic adjustment of the adjustable parameters. 

Use of integral criterion as a figure of merit in adaptive 

systems has another important drawback. The performance criteria like 

ITAE or ITSE can affect the stability of the system. This follows from 

the fact that in real system it would not be possible to measure the 

performance ITSE ( J:e2 t dt) because this requires integration over an 

infinite interval of time. A real measurement would be a truncated form 

of ITSE where the upper limit of the integral would be T. Tis taken to 

be reasonably large--about four to five times the largest time constant 

present in the system. Also~ almost all the optimization techniqu_es 

require the determination of partial derivatives of the performance 

criterion with respect to adjustable parameters. The adjustment of the 

controller parameters depends on the partial derivatives and therefore 

there is a definite time lag of T units in the adjustment for each 

variable parameter (since partial derivatives can only be determined 

if the value of performance criterion is known). This can cause some 

instability if the plant parameters have changed in the mean time. This 

will be dealt with in more detail in Chapter 3. 

2.7 RESPONSE SURFACE: 

The problem of maintaining the system response at an optimum is 

one of adjusting a set of controller parameters. If there are more than 

one parameter to be adjusted as is the usual case, the problem of 



optimization becomes n dimensional. Each of the parameters to be 

adjusted may be thought of as defining a dimension in an n-fold 

optimizing space. Contours of constant performance criterion or 

figure of merit exist in this space. Such a presentation for two 

dimensional case is shown in Figure (4). A point which represents 

15 

the setting of the adjustable parameters is to be moved across these 

contours towards the optimum, which is the minimum value of figure of 

merit. The nature of the response surface plays an important part in 

the method employed to obtain the optimum. A particular method may not 

work properly if the response surface is not regular. Therefore, it is 

not wrong to say that half the battle is won if a proper figure of merit 

is chosen which gives a regular response surface. Ideally the ~est 

figure of merit i~ one which gives the instantaneous value of the per­

formance measure rather than the present integral criterion, but we are 

not aware of such a criterion at present. 

The response surface can have more than one minimum and the 

method of optimization may lead to a local minimum which is not the true 

minimum. There is no definite solution to this problem at the present 

stage. The optimum obtained in a particular case depends very much on 

the starting point. The problem of finding the true minimum if the 

response surface is not unimodal is being studied by the people working 

in the field of adaptive control and is not undertaken in the present 

work. 
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FIGURE 4: Response surface showing constant FM contours 

x1 and x2 are the adjustable parameters 

16 



CHAPTER 3 

OPTIMIZATION TECHNIQUES 

3.1 INTRODUCTION: 

A problem which arises in many ways is to find the maximum or 

minimum value of a function. The most obvious application in control 

engineering is in adjusting the parameters of a feedback system so as to 

minimize some measure of performance of the system: this is the problem 

of optimizing. Optimization occupies an important place in the practical 

world of engineering, trade and even commerce. 
I 

The optimization problem can arise on a plant which is not as 

yet built, where the design of the plant and the controller can be 

varied easily to suit the desired control. This problem can equally 

well arise on a plant which is built and already in operation. It is 

this class of problems that we are mainly concerned with, where the 

design of the plant cannot be changed and access is only to the 

controller parameters, which can be adjusted to make the system work in 

an optimum fashion. 

3.2 REVIEW OF CLASSICAL METHODS FOR OPTIMIZATION: 

Until World War 2, the only mathematical methods for handling 

the optimization problem were classical differential and variational 

calculus. These include the well known theory of maxima and minima and 
17 
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calculus of variations. 

The theory of maxima and minima is concerned with the problem of 

finding the values of each of the independent variables x1, x2,------, xn 

at which some specified function of then-variables F(x1 , x2, ________ , xn) 

reaches either a maximum or a minimum (extremum). This problem may be 

interpreted geometrically as the problem of finding a point in an 

n-dimensional space at which the desired function has an extremum. This 

geometrical interpretation is quite helpful in understanding the problem, 

particularly when there are only two independent variables. A 

representation of such a problem is shown in Figure (4). The independent 

variables are x1 and x2 while the dependent variable F(x1, x2) is 

represented by the contour lines. 

A detailed treatment is given by Leitman [15]; only the limita­

tions of this approach will be pointed out here. In its simplest form 

it is valid only if there are no constraints or, if there are, these can be 

eliminated by substitution into the optimizing equation. 

The calculus of variations is concerned with optimization 

problem under more general conditions than those considered in the 

theory of maxima and minima. This method is employed when the optimum 

value of a function F is determined, not by selecting proper values for 

a series of variables, but rather by finding the proper form of a 

function which yields the optimum value of F. 

The three fundamental problems in the calculus of variations are 

the Lagrange, Mayer and Bolza problems. It is easily possible to trans­

form a problem of one type into either of the other two, and many optimum 

control problems can be formulated as one of these three fundamental 
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problems. Quite a few books on control theory treat these problems in 

detail [15], [16], [17], [18]. 

Finding th.e optimum of a function by the calculus of variations 

generally leads to a two-point boundary value problem. Analytical 

solutions for such problems are o~ly possible in special cases. The 

resulting Euler-Lagrange differential equations are usually non-linear 

and numerical methods are applied to obtain the approximate solution. 

The difficulty in solving cases with the constraints 

makes the calculus of variations approach less attractive in finding the 

optimum, but it is still employed in applied aerodynamics and flight 

mechanics. Two analytical techniques have been developed during recent 

years for solving problems posed in terms of calculus of variations. 

One of these is Bellman's Dynamic Programming [19] and the other is 

Pontryagin' s Maximum Principle [20}. Their application to control pro-

blems can be found in almost all advanced texts on control theory. 

3. 3 LINEAR PROGRAMMING: 

We have examined the classical methods for optimization and seen 
. 

their limitations. An alternative approach, and one developed rather 

recently, is to use a numerical iterative method. This has been most 

successful in the case of linear systems, where it is called Linear 

Programming. 

A problem in linear programming consists of the· determination of 

a set of parameter values (a program), subject to given linear constraints, 

and having the property of being optimal in the sense that a given linear 

value function has the extremum value. The linear programming is 
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applicable to well defined, linear processes and to processes which are 

essentially static in nature. 

3.4 HILL CLIMBING: 

In adaptive control systems where identification is not conveni-

ent or desirable, we resort to techniques which optimize some suitable 

function of the system such as a performance criterion. Hill climbing 

techniques, as they are popularly known, are in general applicable to 

any function where a number of variables can be adjusted to give it a 

maximum or minimum value. Figure (4) can be interpreted as representing 

a hill with the largest value of the figure of merit corresponding to 

the hill top. These arguments also apply to the bottom of a valley. 

The simplest way which suggests itself for solving a hill 

climbing problem is to vary each parameter in turn. For example, if we 

are seeking a minimum of F(x1, x2), we might vary x1, as shown in 

Figure (5) until no further improvement is obtained. Then we vary x2 

along be until the minimum on this line is obtained. Again we vary x1, 

and in this way we reach the minimum along the path ~bcde. When there 

are more than two parameters to be adjusted, a minor modification in the 

method described is used. Instead of varying the parameters as described 

in the order x
1

, x
2

, ____ , xp, x
1

, x
2

, ____ , we evaluate every 

choose to vary that x. which gives the largest derivative. 
]. . 

is also used in Southwell's relaxation method. 

a F/ax. and 
]. 

This method 

The example in Figure (5) is ideal because the contours are 

nearly circular. It may be pointed out here that almost any hill 

climbing method will work properly when the contours are roughly 
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FIGURE 5: Basic hill climbing on circular contours 
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circular, and there is not much difference in efficiency between most 

methods in these circumstances. A more probable response surface is 

shown in Figure (6). 

The contours are elliptical and the minimum is located at "m". 

The procedure described above leads to the path abcdefgh _______ , and 

evidently the progress is slow. 

3.5 METHOD OF STEEPEST DESCENT OR GRADIENT METHOD: 

A better method to find the minimum than that mentioned above is 

the method of steepest descent or gradient method. The basic concept is 

quite simple and dates back to Cauchy. If the function to be optimized 

is known, we can, in two dim.cnsional geometric terms, simply follow the 

direction of the steepest slope until the minimum is reached. To follow 

this direction, we tend to move normal to the contour lines. What is 

done mathematically is that the partial derivatives of the function 

F(x1, x2) are first found. Then the direction of the steepest descent 

(which is the direction defined by the gradient vector of F) is found by 

computing the unit vector U with components 

u. = 
1 

aF 
ax. 

1 

••••.••• (3.1) 

This vector U is normal to the local contour surface. llaving determined 

the direction of steepest descent at an arbitrary starting point, a step 

of some length e is taken. The direction of the steepest descent is 

again worked out and another step of length e is taken and so on. If e 

is small and constant,a continuous path of steepest descent joining the 
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FIGURE 6: Basic hill climbing on elliptical contours 
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starting point to the minimum point, results. This procedure has obvious 

limitations and a discrete version of steepest descent is resorted to in 

practical cases. In such cases like adaptive control systems, the 

function to be optimized is not known analytically and the value of this 

function cannot be determined immediately after a parameter change has 

been made. The discrete version of steepest descent is best illustrated 

by considering an example. The function to be optimized is taken as 

ITSE, then: 

•••••.• ( 3. 2) 

To find the value of F at any instant we have to evaluate the integral 

from t = o to t = T. The partial derivatives of F cannot be determined 

analytically, so they are obtained numerically as follows: First x1 is 

varied by an amount dx1 and aF/ax1 is estimated from: 

aF F(x 1 + dx 1, x2) - F(x1, x2) 

ail 
= 

........ (3.3) 

The other derivative is estimated in the same way. Evidently each 

partial derivative requires the same length of time T to evaluate, 

because the value of F(x1 + dx 1, x2) is not known immediately after the 

change in parameter x1 is made. After the estimation of partial deri­

vatives, the direction of steepest descent or gradient is found by (3.1). 

Steps are then taken from an initial point in the direction of 

gradient, assuming that gradient does not change, until the lowest point 

on this line is found. The direction of the gradient is again computed 

and steps are taken from this point in the. new direction. This results 
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in a discrete approximation of steepest descent as shown in Figure (7). 

It can be seen from Figure (7) that progress is made by successive steps 

in two directions. These directions arc fixed by the choice of starting 

point "a" and may not bear any relation to the direction of any ridges 

present in the response surface. If the starting point happens to be on 

the side of the ridge, the method maiy not progress well. It may be 

pointed out here that in case of two parameters, the method just 

described is essentially equivalent to the method of varying each para­

meter in turn. When there are more than two parameters, successive 

directions of steepest descent are normal to each other, but n successive 

directions are not necessarily mutually orthogonal. Thus, when there 

are more than two parameters;, the method is not equivalent to the 

method of varying one parameter at a time. 

Thus far, we have not included constraints. The presence of 

constraints is a difficult complication. The inclusion of constraints 

is treated in detail in reference [17]. There are many modifications to 

the method of steepest descent; the two most commonly employed are due 

to Booth [21] and Rosenbrock [22]. These modifications usually give 

some improvement but difficulties still persist. 

The method of gradients is usually employed in most optimization 

problems. As pointed out befor~ this requires knowledge of partial 

derivatives which are impractical for analytical determination. They are 

more commonly determined by the use of equation (3.3). This numerical 

evaluation is not as simple as it might appear. 

The choice of dx 1 in equation '(3.3) must be a compromise 

between two conflicting requirements. If dx 1 is too large, equation 



26 

1 

FIGURE 7: Continuous and discrete steepest descent paths 



(3.3) will not give a correct estimate of ihe partial derivative; on 

the other hand if it is too small, the derivative will be almost zero. 

The magnitude of dx 1 taken depends on the ingenuity of the designer, 

however, it is usual to take it as 1% of the parameter in most 

applications [7]. 

Narendra and Streeter [12] have suggested an alternative 

approach for calculating the partial derivatives using correlation 

techniques, when the unidentified plant is subject to a random input. 

This technique shows promise, but enough work has not been done yet 

employing it. 

27 

It has been practically demonstrated that some optimization techni-

ques, which are otherwise ,good, may not work as efficiently as a 

particular method for a particular problem. Even with hill climbing 

techniques, some modifications work better than others. This is because 

of the fact that most modifications have been found by emperical experi­

ment, and theoretical guidance on the fundamental problem is lacking, 

apart from one or two elementary results [19]. There has been no 

general method which will work reliably in the majority of circumstances. 

Most of the work in optimization has been done on a theoretical 

basis, optimizing functions which are seldom encountered in practice. 

In adaptive control systems, we optimize functions like ITSE and ITAE, 

etc., but very little work has been done in this area. The next two 

Chapters are devoted to the investigation of two recently developed 

methods, namely: 

(i) Method of conjugate gradients. 

(ii) Method of parallel tangents. 



It is claimed that these methods arc more or less general for most 

applications. These are applied to optimize ITSE criterion in an 

adaptive system and to a highly realistic theoretical function. In 

both the cases, the optimization is carried out in two dimensions. 

28 



CHAPTER 4 

METHOD OF CONJUGATE GRADIENTS 

4.1 INTRODUCTION: 

The problem of finding an optimum of the performance criterion F 

constitutes a major problem in the design of adaptive control systems. 

Where the plant identification is not convenient, the function F is an 

observable response depending on variables x1, x2, ____ , xn under the 

control of the designer. As mentioned in Chapter 3, the derivatives in 

such cases are determined numerically and iterative methods ar~ employed 
I 

in which one starts with a trial solution and obtains successive improve-

ments.~------------- In the past few years several promising minimization 

techniques have been developed. Important among these are Fletcher and 

Reeves '[_23] adaptation of the conjugate gradient method of Hestenes and 

Stiefel [24] and the parallel tangent method of Buehler, Shah and 

Kempthorne [25} . 

The method of conjugate gradients is based on an elegant n-step 

iterative procedure for solving a set of linear equations: 

Ax = K ••.•..•.•... (4.1) 

where A is an n x n symmetric positive definite matrix of coefficients, 

x is an n x 1 vector of unknowns and K is an n x 1 vector of constants. 

Starting from a trial solution, an algorithm is applied to give succes-

sive approximations to the solution and, if the computations are carried 
29 
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out with complete accuracy, a solution is obtained (where it exists) 

after m iterations where m < n (the order of the system). 

The method of conjugate gradients is a special case of the 

method of conjugate directions. A complete treatment of the method of 

conjugate gradients is given by Hestenes and Stiefel and by Beckman [26]. 

A brief account is given here. 

It is assumed that a solution vector "h" of the system Ax = K 

exists. Let us suppose that a set of n "A-conjugate", or "A-orthogonal" 

vectors p., i = O, 1, ____ , n - 1, is available. This makes the inner 
1 

product <A p., p.> = 0 where i F j. If A is positive definite, then 
1 J 

<A p., p.>> 0. In this case, since the p. are necessarily independent 
1 1 1 

and span the n-dimensional space, the solution vector h can be written 
/ 

as: 

h = copo + clpl + ------- + c 1 P 1 n- n-

The solution is readily known if ci are known. ci can be 

determined as: 

which gives 

and 

<Ah, p.> = <K, p.> = c. <Ap., p.> 
1 1 1 1 1 

c. = 
1 

<K, p > 
0 

h = -----
<Ap , p > 

0 0 

-------- + 

<K, p.> 
1 

<Ap., p. > 
l. l. 

+ 

<K, p l> n-

<Ap l' p l> n- n-

+ 
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In the method of conjugate gradients a particular set of '~ conjugate'' 

vectors p. is developed and a solution found in terms of these. The same 
l 

arguments apply to the minimization of a positive definite quadratic 

function of n variables in n steps. The method of conjugate gradients 

is a modification of the classical method of steepest descent which tells 

us that starting from a point x on the surface of an ellipsoid F(x) = 
0 

constant in n-dimensional space, the greatest instantaneous reduction in 

F(x
0

) is achieved by travelling from x
0 

in the direction of the 

gradient. In the method of conjugate gradients further improvement is 

introduced by generating directions p
0

, p1, _____ , such that Pi+l is a 

linear combination of -gi+l · (gradient vector) and p
0

, p1, _____ , pi so 

that the A-orthogonality con.dition <Api' pj> = 0 for i f: j is 

satisfied. 

4.2 GENERAL ALGORITHM OF CONJUGATE GRADIENT METHOD: 

The above treatment leads to the following algorithm. Let x
0 

be 

an arbitrary starting point to the solution. Then the following 

formulas define the fundamental conjugate gradient iterative procedure. 

x = arbitrary 
0 

go = g(xo), g represents the gradient. 

Po = -go 

xi+l = position of the minimum of F(x) on the 

line through x. in the direction of p. l l 
(4. 2) 

gi+l = g (x. 1) l+ 
2 

B. = gpl l 
gf 

Pi+l = -gi+l + B.p. l l 
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It has been claimed [23J that this procedure locates the minimum of a 

positive definite quadratic function of n variables in at most n 

iterations (apart from rounding off errors etc.). For other functions 

like performance criterion of control system etc., which may not be 

quadratic and linear, this procedure is iterative rather than n step. 

It is clear from the procedure (4.2) that setting B. = 0 results in the 
1 

method of steepest descent. In applying the procedure (4.2) to general 

functions, the following points demand consideration. 

(i) The Choice of Starting Point x : 
0 

For quadratic functions any choice of starting point is in 

principle equally satisfactory. But is is not true for general 

functions. For practical purposes, that starting point would be 

considered best which leads to the minimum as quickly as possible. 

(ii) The Line Search: 

Starting from x., the approximation x. 1 is obtained by 
. 1 1+ 

travelling a certain distance along the vector p.. The distance 
1 

travelled is such as to minimize the function F(x). To find the best 

point on this line, different fits have been put forwards. Buehler, Shah 

and Kempthorne [27] have used quadratic interpolation whereas Fletcher 

and Reeves suggest cubic fit. We have tried linear interpolation for 

simplicity. There is no doubt to the fact that better results and lesser 

iterations are obtained using quadratic or cubic interpolation. 

(iii) The Convergence Criterion: 

The iterations should stop if any of g. is zero, because at 
1 

the minimum all g. should vanish. This, however, does not happen 
1 
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because of round off errors. The more appropriate criterion is that 

iterations should stop when there is no considerable reduction in the 

value of the function. The convergence criterion depends on the choice 

of the designer and in particular cases it may well be possible to use 

some less stringent criterion. 

These points are treated in detail by Fletcher and Reeves [23]. 

4.3 METHOD OF CONJUGATE GRADIENT APPLIED TO BEALE'S FUNCTION: 

In order to investigate the performance of the method of 

conjugate gradients in case of general functions, a two dimensional 

example given by: 

I 3 2 F(x1 , ~) = r u. 
i=l 1 

x
1

(1 
i u. = c. - X2 ) 1 1 

(c1 , c2, c3) = (1.5, 2.25, 2.625) 

is selected. This function is non-quadratic and non-linear and was 

selected by Beale [27] as a particularly awkward one. It has a minimum 

of zero at (x1, x2) = (3, 0.5). Some contours are shown in Figure (8) 

The choice· of scales in Figure (9)is suitable for graphical representa-

tion and yields better results since steepest descent, and its modifi-

cations like conjugate gradients are scale dependent. It has been 

observed that better performance results when the choice of scales is 

such that change in one variable is of the same order as that in the 

other. 
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FIGURE 9: Contours of Beale's Function 

The choice of scales shown here is used in numerical example. 



Four starting points are tried with choice of scales as in 

Figure (9). For each starting point, the method of steepest descent is 

also applied in addition to conjugate gradient method. The results are 

shown in Tables4.l-8.The calculations were carried out on an IBM 7040 

using WATFOR compiler which is limited in the memory to half that of an 

IBM compiler but is ten times faster than the IBM compiler.. Typical 

running time for 30 iterations was 40 to 60 seconds. 

The computational details are similar to those employed by 

Buehler, Shah and Kempthorne [26] and are given below: 

First iteration from any starting point x
0
'(x1 , x2) is achieved by 

travelling in the direction p
0 

along a line with a prescribed slope m
0

, 

where p = -m • This line s_,earch involves the following steps: 
0 - 0 

Find F(x ) 
0 

Change x1 by_6x1 (the choice of 6x1 is usually small and 

36 

6x1 = 10-K where K = 4, 5, or 6. In the present case study K = 4) and 

6x2 = in6x1 

Find F here and check 6~<o 

Proceed along this line successively doubling the step size until 6~>o. 

Estimate the minimum point on this line by a linear interpolation to the 

last two F-values. 

From x1 this process is repeated until gi approach zero or not much 

reduction is obtained in the value of F, but the line searches are made 
2 

in the directions p. 1 = -m. 1 = e.p. 
1+ 1+ 1 1 

where m • 1 F e. = 1+ • or steepest 
1 --z-

m. 
! 

descent the method is identical to the one above with ei = o. The slopes 

in this case study were determined analytically as '1. = 3P/3x2 
1 aF/ax1 
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The flow chart and some computer programs are gi,ven in Appendix 

4.4 METHOD OF CONJUGATE GRADIENTS APPLIED TO A CONTROL SYSTEM: 
) 

To further study the behaviour of the method of conjugate 

gradients on practical functions, a system suggested by Gibson g~is tried. 

The system is shown in Figure (10).The performance criterion or figure 

of merit (FM) is ITSE. This performance criterion has the desirable 

features of realibility and selectivity like ITAE and has been recom-

mended for use by Gibson. This system has fairly nice response surface 

with closed constant FM contours in the stable region of w1 and w2. 

Like Beale's function it is a two-dimensional problem. The performance 

criterion ~TSE has a minimum1of 0.01870 at (w1,w2) = (0.36, 17.0). 

The whole system was first tried using the MIMIC programming [29] 

language on IBM 7040. MIMIC is a programming system written for a 

digital computer which, from the standpoint of the user, seems to make 

the sequential machine function like an analogue computer. This pro-

gramming system has a very desirable feature_of eliminating time and 

amplitude scaling. Moreover, MIMIC has the provision for carrying out 

hybrid calculations. It was found after careful consideration that 

MIMIC processor was not working properly. The same trouble was 

encountered by Hinchley [30]. 

The system was then solved on IBM 7040 using IBM compiler. 

WATFOR compiler could not be used because of memory considerations.- The 

computational procedure is similar to the one used in Beale's function 

with two differences: 
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(i) The function F(w1, w2) is obtained by the use of a subroutine. 

The overall transfer function is solved by breaking the sixth 

order differential equation of -the system into six first order 

simultaneous differential equations and then applying the Runge-

Kutta method of solving these. 

(ii) Partial derivatives are calculated numerically by the local 

examination of the response surface using equation (3.3). The 

numerical evaluation of the partial derivatives demands careful 

consideration and their evaluation is carried out on the factors 

discussed in Chapter 3. 

Four starting points are tried in this case, also, two with the 
I 

method of steepest descent applied in addition to the method of 

conjugate gradient. The results are shown in Tables.4,9-16. From the 

results it can be seen that the method of steepest descent requires a 

large number of iterations both in the case of Beale's function and 

Gibson's system. The rate of convergence is slow and the number of 

iterations required in a particular case depends very much on the start-

ing point. The method of conjugate gradients seems to require more 

iterations in some cases than the steepest descent, and it can be seen 

that no marked improvement is obtained with this method. This is 

further illustrated graphically in Chapter 6 by Figures (13-21). 
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TABLE 4 .1 

METHOD OF STEEPEST DESCENT 

BEALE'S FUNCTION 

(Starting Point x1 = 5.0, x2 = 0.2) 

NUMBER OF F(x1 , x2) ITERATIONS xl x2 

1 5.0 0.2 18.20472 

2 3.36170 0.66020 0.30613 

3 3.46400 0.58040 0.03054 

4 3.43850 0.59108 0.01968 

5 3.41299 0.59090 0.01861 

6 3.41149 0.58618 0.01777 

7 3.38599 0.58656 0.01689 

8 3.38550 0.58084 0.01601 

9 3.36640 0.02543 0.01535 

10 3.36489 0.57790 0.01412 

11 3.33939 0.57807 0.01379 

12 3 .13472 0.53822 0.00373 

13 3.14102 0.53315 0.00273 

14 3.12832 0.53280 0.00248 

15 3.12800 0.52936 0.00220 

16 3 .11852 0.53027 0.00212 

17 3.11782 0.52774 0.00195 

18 3.10512 0.52792 0.00181 

19 3.10662 0.52470 0.00163 

20 3.10032 0.52526 0.00150 

21 3.09402 0.52081 0.00134 
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TABLE 4.2 

STEEPEST DESCENT 

BEALE'S FUNCTION 

(Starting Point xI = 2.0, x2 = 0.2) 

NUMBER OF 
F(xI, x2) ITERATIONS XI x2 

I 2.0 0.2 0.52978 

2 2 .40950' O.I8977 0.2636I 

3 2 .30720 0.244I6 0. I8940 

4 2. 51189 0.27235 O.I3998 

5 2.46080 0.30I20 O.IOI94 

6 2.87030 0.482I8 0.00825 

7 2.89580 0.47478 0.0020I 

8 2.90850 0.47326 O.OOI69 

9 2.90840 0.47670 O.OOI49 

10 2.9I789 0.47640 O.OOI3I 

11 2.9I859 0.47938 0. 00116 

I2 2. 92809 0.47907 0.00103 

13 2.92760 0.48I54 0.0009I 

14 2.93389 0.48150 0.00081 

15 2.93618 0.48444 0.00070 

I6 2.94250 0.48384 0.00061 

17 2.94359 0.48626 0.00055 

18 2.94989 0.48567 0.00048 

19 2.94960 0.48730 0.00042 
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TABLE 4.3 

STEEPEST DESCENT 

BEALE'S FUNCTION 

(Starting ,Point x1 = 5.0, x2 = 0.8) 

NUMBER OF 
ITERATIONS xl x2 F(x1, x2) 

1 5.0 0.8 0.48672 

2 5.02550 0.74299 0.15853 

3 5.01280 0.75840 0.13844 

4 5.01330. 0:75428 0.13593 

5 4.98780 0.75505 0 .13516 

6 4.98710 0.75245 0 .13434 

7 4.98080 0.75319 0.13406 

8 4 .97770 0.75139 0 .13383 

9 4.97460 0.75228 0.13358 

10 4.95550 0.74863 0.13301 

11 4.95240 0.75048 0.13219 

12 4.91410 0.75095 0.13102 

13 4.91380 0.74817 0.12979 

14 3,68510 0.65302 0.06874 

15 3.71060 0.62739 0.04243 

16 3.69790 0.63203 0.03966 

17 3.49320 0.61177 0.02949 

18 3.50270 0.60061 0.02444 

19 3.49000 0.60202 0.02367 

20 3.47090 0.59295 0.02256 

21 3.45820 0.59598 0.02121 

22 3.04870 0.48861 0.01314 

23 3.01040 0.50295 0.000020 

24 3.01059 0.50262 0.000018 

25 3.00950 0.50261 0.000016 
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TABLE 4.4 

STEEPEST DESCENT 

BEALE'S FUNCTION 

(Starting Point x1 = 2.0, x2 = 0.8) 

NUMBER OF F(x
1

, x2) ITERATIONS xl x2 

1 2.0 0.8 6.27010 

2 2.61430 0.27643 0.18479 

3 2.46080 ().32702 0.08973 

4 2.56310 0.33272 0.06951 

5 2.55040 0.36922 0.05525 

6 2.62701 0.36813 0.04266 

7 2.63010 0.39900 0.03420 

8 2.68123 0.39630 0.02642 

9 2.73240 0.43999 0.01878 

10 2.78350 0.43136 0 .01131 
11 . 2.78340 0.44542 0.00991 

12 2.80896 0.44289 0.00788 

13 2.82806 0.45887 0.00615 

14 2.85356 0.45531 0.00475 

15 2.85246 0 .46115 0.00412 

16 2.87156 0.46113 0.00359 

17 2.87006 0.46695 0.00315 

18 2.88276 . 0.46620 0.00272 

19 2.88906 0.47380 0.00236 

20 2.90176 OA7194 0.00187 

21 2.90486 0.47612 0.00162 

22 2.91436 0.47553 0.00141 

23 2.91586 0.47870 0.00124 

24 2.92536 0.47835 0 .00110 

25 2.92506 0.48168 0.00099 
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TABLE 4.5 

CONJUGATE GRADIENTS 

BEALE'S FUNCTION 

(Starting Point x1 = 2.0, x2 = 0.2) 

NUMBER OF F(x 1 , x2) ITERATIONS xl x2 

1 2.0 0.2 0.52978 

2 2 .40950 0 .18977 0.26361 

3 2.39680 .0.34030 0.12780 

4 2.55030 0.32672 0.07468 

5 2.54999 0.37574 0.05625 

6 2.65230 0.36994 0.04226 

7 2.65080 0.40011 0.02942 

8 2.70189 0.40040 0.02408 

9 2.70284 0.41762 0.01999 

10 2.75394 0.41700 0.01677 

11 2.75384 0.43544 0 .01303 

12 ' 2. 77934 0.43373 0.01074 

13 2. 77784 0.44002 0.01020 

14 2.80334 0.43976 0.00870 

15 2.80589 0.44981 0.00760 

16 2.83139 0.44826 0.00638 

17 2.83138 0.46100 0.00614 

18 2.85688 0.45685 0.00442 

19 2.85693 0.46252 0.00385 

20 2.87603 0.46235 0.00337 

21 2 .8756·0 0.46744 0.00287 

22 2 .88778 0.46740 0.00252 

23 2.88873 0.47153 0.00225 

24 2.90143 0.47110 0.00197 
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TABLE 4.6 

CONJUGATE GRADIENTS 

BEALE'S FUNCTION 

(Starting Point x1 = 5.0, x2 = 0.8) 

NUMBER OF 
F(x1, x2) ITERATIONS xl x2 

1 5.0 0.8 0 .48672 

2 5.02550 0.74298 0.15853 

3 5.01920 ' 0.75478 0.13628 

4 4. 71210 0.74328 0.12736 

5 4. 71199 0.72824 0.12090 

6 4.70569 0.73517 0 .11657 

7 4.70800 0.73475 0 .11655 

8 4.70569 0.73312 0.11631 

9 4.69299 0.73448 0.11582 

10 4.69329 0.73197 0 .11519 

11 4.68699 0.73314 0 .11512 

12 4.68769 0.73288 0 .11511 

13 4.68299 0.73102 0 .11486 

14 4.58069 0.72883 0.11023 

15 4.58100 0.72355 0.10780 

16 4.57470 0.72469 0.10743 

17 4.57540 0.72424 0.10740 

18 4.56270 0. 72087 0.10687 

19 4.56580 0. 72233 0.10675 

20 4. 56110 0.72356 0.10647 

21 4.56180 0.72323 0.10645 
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TABLE 4.7 

CON.JUGATE GRADIENTS 

BEALE'S FUNCTION 

(Starting Point x1 = 5.0, x2 = 0.2) 

5.0 

1. 72330 

2.54240 

2.44009 

2.54239 

2.59349 

2.69579 

2.68309 

2. 72140 

2. 72610 

2. 77720 

2. 77650 

2.80200 

2. 80072 

2.82622 

2.82602 

2.85152 

2.85132 

2 .8 704 2 

2.86787 

2.88057 

2.88127 

2.89397 

2.89427 

2.91977 

0.2 

0.29204 

0.28219 

0.31363 

0.31439 

0.38750 

0.38698 

0.40522 

0.40565 

0.42823 

0.42785 

0.43780 

0.43794 

0.44726 

0.44718 

0.45398 

0.45394 

0.46093 

0.46091 

0.46377 

0.46399 

0.46827 

0.46837 

0.47356 

0.47346 

18.20472 

1.42454 

0.13321 

0 .10074 

0.08689 

0.04321 

0.03234 

0.02374 

0.02162 

0.01677 

0.01253 

0.01038 

0.00922 

0.00800 

0.00666 

0. 00591 

0 .. 00507 

0.00419 

0.00362 

0.00329 

0.00308 

0.00259 

0.00237 

0.00203 

0.00167 
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TABLE 4.8 

CONJUGATE GRADIENTS 

BEALE'S FUNCTION 

(Starting Point x1 = 2.0, x2 = 0.8) 

NUMBER OF 
, x2 F(x1, x2) ITERATIONS xl 

1 2.0 0.8 6. 27010 

2 2.61430 0.27643 0.18470 

3 2.51199 0.32318 0.07918 

4 2.49930 0.33008 0.07739 

s 2.90880 0.43752 0.03055 

6 3.31830 0. 56714 0.01179 

7 3.30560 0.57016 0.01123 

8 3.30590 0.56724 0.01087. 

9 3.26760 0.56567 0.00992 

10 3.26750 0.55864 0.00865 

11 3.25480 0.55967 0:00818 

12 3.25550 0.55634 0.00796 

13 3.24398 0.55709 0.00750 

14 3.24260 0.55443 0.00728 

15 3.21710 0.55446 0.00683 
' 

16 3.21836 0.54966 0.00605 

17 3.19286 0.54909 0.00557 

18 3.19413 0.54451 0.00490 

19 3.17503 0.54431 0.00451 

20 3.17566 0.54003 0.00409 

21 3.16296 0.54078 0.00382 

22 3.16265 0.53712 0.00372 



NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

.18 
19 

Nm!BER OF 
ITERATIONS 

1 
2 
3 
4 
5 

TABLE 4.9 

STEEPEST DESCENT 

GIBSON'S SYSTEM 

(Starting Point w1 = 0.41, w2 = 11.0) 

wl w2 F(w1, w2) 

0.41 11.0 0.025100 
0. 30770 11.11272 0.020940 
0.32040 11:16241 0.020816 
0.31410 11.21918 0.020763 
0.33200 11.49548 0.020579 
0.32050 '11.53123 0.020436 
0.31420 11.64940 0.020370 
0.32700 11. 70720 0.020290 
0.32060 11. 73768 0.020250 
0.31110 12.97310 0.019804 
0.33660 12.97902 0.019450 
0.33030 13.01110 0.019420 
0 .32400 13.27087 0.019379 
0.33670 13.28418 0.019300 
0.33360 13.29429 0.019290 
0.33209 I 13.30840 0.019287 
0.35760 14.93219 0.018938 
0.34489 14.94100 0.018840 
0.34560 14.93831 0.018840 

TABLE 4.10 . 
STEEPEST DESCENT 

(Starting Point "'i = 0.41, w2 = 20 .0) 

wl w2 F(w1, w2) 

0.41 20.0000 0.019695 
0.37169 20.00380 0.018940 
0.37639 19.99561 0.018920 
0.37230 19.99545 0.018918 
0.37609 19.99512 0.018913 
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NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
5 
6 

NUMBER OF ! 
ITERATIONS 

1 
2 
3 
4 
5 . 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

TABLE 4.11 

STEEPEST DESCENT 

GIBSON'S SYSTEM 

(Starting point w1 = 0.31, w2 = 20.0) 

wl 

0.31 
0.38670 
0.37399 
0.37710 
0.37560 
0.37549 

W2 

20.0 
19.97714 
19.97600 
19.94619 
19.94452. 
19.94426 

1 TABLE 4 .12 

STEEPEST PESCENT 

GIBSON'S SYSTEM 

(Starting Point w1 = 0.31, w2 = 10.0) 

I 
wl w2 

0.31 10.0 
0.29089 10.51047 
0.31639 10.54910 
0.30369 10.68751 
0.31639 10.74097 
0.30369 10.91876 
0.31640 10.95692 
0.30370 11. 26434 
0.32280 11. 29986 
0.31650 n .34355 
0.34200 12.08583 
0.32289 12.12183 
0.34840 12.98325 
0.32930 13.00912 
0.33880 13.14385 
0.33249 13.15878 
0.33569 13.20049 
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F(w1, w2) 

0.026307 
0.019008 
0.018933 
0.018928 
0.018917 
0.018916 

F(w1, w2) 

0.022460 
0.022039 
0.021587 
0.021475 
0.021320 
0.021211 
0.021047 
0.020880 
0.020675 
0.020625 
0.020165 
0.019951 
0.019617 
0.019423 
0.019380 
0.019342 
0.019341 



NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
5 

TABLE 4.13 

CON.JUGATE GRADIENT 

GIBSON'S SYSTEM 

(Starting Point w1 = 0.31, w2 = 10.0) 

wl 

0.31 
0.29089 
0.31200 
0.30370 
0.31640 
0.30370 
0.31640 
0.30370 
0.32279 
0.31330 
0.32599 
0.31650 
0.32920 
0.31970 
0.37079 
0.34530 
0.34060 

W2 

10.0 
10.51047 
10.54847 
10.68290 
10.73879 
10.91204 
10.94989 
11. 23972 
11. 27576 
11. 34033 
11.42836 
11.47411 
11.64916 
11.68465 

I 
14.21058 
14.22722 
14.23486 

TABLE 4 .14 

CONJUGATE GRADIENTS 

GIBSON'S SYSTEM 

.. 

F(w1, w2) 

0.022460 
0.022039 
0.021588 
0.021476 
0.021323 
0.021219 
0.021056 
0.020901 
0.020701 
0 .. 020650 
0.020560 
0.020500 
0.020368 
0.020300 
0.019560 
0.018997 
0.018989 

(Starting Point w1 = 0.31, w2 = 20.0) 

wl w2 F(w1, w2) 

0.31 20.0 0.026307 
0.38670 19.97715 0, OH>008 
0.37400 19.97590 0.018923 
0.37710 19.94620 0.018910 
0.37560 19.94450 0.018909 

so 



NUMBER OF 
ITERATIONS 

1 
2 
3 
4 

NUMBER OF 
ITERATIONS 

1 
. 2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

TABLE 4.15 

CONJUGATE GRADIENTS 

GIBSON 'S SYSTEM 

(Starting Point w1 = 0.41, w2 = 20.0) 

wl W2 

0.41 20.0 
0.37169 20.00380 
0.37640 19.99561 
0.37630 19.99545 

TABLE 4 .16 
I 

CONJUGATE GRADIENTS 

GIBSON'S SYSTEM 

(Starting Point w1 = 0.41, w2 = 11.0 

wl W2 

0.41 11.0 
0.30769 11.11272 
0.32040 11.16238 
0.31410 11.21831 
0.33200 11.48106 
0.32050 11.51627 
0.31420 11.62939 
0.32690 11.68780 
0.32060 11.71774 
0.31110 12.54191 
0.33020 12.55330 
0.32709 12.57107 
0.32080 12.91814 
0.33499 12.93340 
0.33040 12.94685 
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F(w1, w2) 

0.019695 
0.018940 
0.018922 
0.018921 

F(wp w2) 

0.025100 
0.020940 
0.020816 
0.020763 
0.020595 
0.020450 
0.020386 
0.020311 
0. 020270 
0.019921 
0.019665 
0.019650 
0.019550 
0.019450 
0.019449 



CHAPTER 5 

METHOD OF PARALLEL TANGENTS 

The method of parallel tangents or "PARTAN" as it is called, is 

another recently developed iterative method for finding the minimum of a 

function of several variables. 

The master strategy of PARTAN is based on certain global 

properties of ellipsoids. It works like the method of steepest descent 

and it is possible to make it invariant to changes in the scale of 

measurements. For criterion functions with concentric ellipsoidal 
.1 

contours, PARTAN will find the optimum exactly after a fixed, small 

number of iterations. But even when the contours are not precisley 

elliptical, the technique has desirable features. 

5.1 BASIC RESULTS: 

A two-dimensional example is considered for simplicity. Suppose 

F(x1, x2) has elliptical contours and P
0 

and P2 are any two points in 

the x1 - x2 plane. From P2 progress is made in the direction parallel 

to the tangent to the contour at P until an extremum of F is found. 
0 

Then the tangents at P
0 

and P3 will be parallel, and the centre of the 

system will be found at P4, the extremal point on the line through P
0 

and P 3 . This approach was first suggested by Finkel [2sJ .. Minima are 

determined on two parallel lines. 
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For elliptical contours these minima occur at mid points of the 

chords and the theorem of parallel chords asserts that these minima arc 

collinear with the centre of the ellipse. The approach can be extended 

to n-dimensions in which P2n_4 and P2n-l have parallel tangents and the 

extremum of F is found at P2n. 

Let F now denote a function of n-variables and suppose that we 
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are seeking a minimum. s:arting from P
0

, let P
1

, P
2

, P
3

, _______ denote 

the successive approximations, and let n. be the hyperplane tangent to 
1 

the contour of F at P .• 
l 

5. 2 PART AN ALGORITHMS: 

(i) Steepest Descent Partan~ 

From any point P
0 

proceed along a polygonal line, P
0 

P2 P3 

P
4

, _______ , for which PK is at the minimum of F on the extended line 

·joining it with the preceding point. At even numbered points proceed in 

the direction of steepest descent (gradient descent). At odd numbered 

points, P2K+l proceed in the direction determined by the line joining 

PZK-Z and PZK+l' Steepest descent partan is in fact an n-dimensional · 

generalization of the two dimensional procedure of two steepest descents 

followed by an acceleration step. This approach was suggested by 

Forsyth and Motzkin and is shown in Figure (11). 

(ii) General Partan: 

From any point P progress is made along a polygonal line 
0 

P
0 

P2 P3 . P4------, for which' PK is at the minimum of F on the 

extended line joining it with the preceding point. The direction of 



p 

......... ...... 

SD 

... .... 

------------- ----u----

... ........ ... 

FIGURE 11: Steepest Descent Partan 

SD dentoes the steepest descent path 
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SS 

P
0 

P2 is arbitrary; P2P3 is any direction parallel to n
0

; thereafter, 

for K = 1, 2, -----· n-1, P2K+ 2 is collinear with P2K-Z and P2K+l' and 

for K = 2, 3, ____ , n-1, P2K P2K+l is parallel to n
0

, n2, ____ , n2K_ 2 • 

The procedure is represented in Figure (12). 

(iii) Scale Invarient Partan: 

This is a special case of the general Partan described above. 

In this case the arbitrary directions are resolved as follows: At P 
0 

only x1 is changed; at P2, x1 and x2 are changed; at P4 , x1, x2 and 

x3 are changed and so on. 

An elaborate account of the method of parallel tangents is also 

given by Wilde [9]. Buehler, Shah and Kempthorne [25] have developed 

certain theorems about their1 method and it has been shown by them that 

if F is quadratic, the minimum is reached at P2n or sooner, n being the 

number of dimensions. In non-quadratic or non-ideal cases, sufficient 

progress may not have been made at or before r 2n. One possible remedy is 

an iterated partan, in which iterations are started again with P2n 

reterrned as P . Another obvious option in the case of steepest descent 
0 

partan is continued partan, in which one simply continues the al terna·-

ting steepest descent and acceleration steps. 

5.3 METHOD OF PARALLEL TANGENTS APPLIED TO BEALE'S FUNCTION: 

Here again four starting points are tried with the same choice 

of scale as in the case of conjugate gradients. It has been seen and 

also demonstrated by Buehler, Shah and Kempthorne that the method of 

parallel tangents works quite satisfactorily in a particularly awkward 

situation with choice of scales as shown in Figure (8 ). 



p 
0 

ARBITRARY 
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-------------u---------v 

FIGURE 12: Continued Partan 

w. denotes the tangent plane at point P. 
1 1 



The calculations on an IBM 7040 using WATFOR compiler do not 

require very large running time. Line search beginning at any point 

(x1, x2) and proceeding in a direction with prescribed slope m was 

accomplished as follows: -4 Change x1 by 6x1 = 10 and 
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change x2 by m6x 1. Find$ here and check 6$<0. Proceed along this line 

successively doubling the step size until 6~>o. Minimum point is esti-

mated on this line by a linear interpolation rather than quadratic fit. 

This process is repeated until there is no appriciable change in the 

value of F or some other criterion is satisfied. 

The step length 6x
1 

is to be properly chosen as. the line search 

depends on it. There is no set rule governing its choice, the best 6x1 

is one for which minimum is 1located in not many steps. 

The slopes are determined from 

iterated steepest descent partan, m 
0 = 

a mathematical 
ap/ax2 
aF/ax1 

expression. 

1 . - since 
m 

0 

P0 P2 and P2 P3 arc respectively tangent and the normal at P2, and 

For 

lines 

therefore perpendicular. 
x2, 3 - x2, O 

m3 = xl, 
3 

_ xl, 
0 

where second subscript 

denotes the point reached. 

1 
m4 = -

m3 

ms .,.. m3 

X2 6- x2 4 
m6 = ' ' 

xl 6 - x 4 
' 

1, 

1 
m7 = -6 

m 

ms = m6 

x2 9- x2, 7 
m9 -. , 

xl 9 - x 7 / . . and so on. , 1, 



Continued Partan steps are the same up to P5 where m5 is 

x2, 5 - x2, 2 
changed to 

xl, 5 - x 1, 2 

1 
m6 = - 5 m 

x2 7 
m7 = ' 

xl 7 
' 

1 
ms= - 7 

m 

- x 2, 4 
- x 1, 4 

For iterated scale invariant Partan: 

equal 

. • • and so on. 

at P
0

; P4 , P7 

m3, m6 , m9 are the same as in iterated steepest 

descent Partan. 

5.4 METHOD OF PARALLEL TANGENTS APPLIED TO A CONTROL SYSTEM 
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The different options of method of parallel tangents are applied 

to find the optimum value of the performance criterion !TSE in Gibson's 

System, shown in Figure (10). The method of parallel tangents usually 

requires large amounts of stored information for iterative calculations 

and therefore, it was solved on IBM-7040 computer utilizing IBM compiler 

rather than WATFOR. The computational procedures are exactly similar to 

those described in 5.3 except that the value of function F(w1, w2) is 
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obtained by the use of the same subroutine as used in the case of the 

method of conjugate gradients. Also, partial derivatives are calculated 

numerically rather than analytically on the same line as discussed in 

4.4. 

The results of Beale's Function and Gibson's Function are shown 

in Tables 5.1-24. It can be seen that the Iterated Steepest Descent 

option of the Partan requires very few iterations to reach the optimum 

in most cases. The continued option also gives comparable results in 

some cases. These two variants of Partan show marked reduction in the 

number of iterations as compared to the methods of steepest descent and 

conjugate gradients. The performance of Scale Invariant Partan is, 

however, poorer than the ot~er two in most cases. The overall comparison 

of different methods will be made graphically in Chapter 6 • 

• 
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TABLE 5.1 

ITERATED STEEPEST DESCENT PARTAN 

BEALE'S FUNCTION 

(Starting Point x1 ~ 5.0, x2 = 0.2) 

NUMBER OF F(x
1

, x
2

) ITERATIONS xl x2 

1 5.0 0.2 18.20472 

2 3.36170 0.66100 0.30613 

3 4.18080 0.68935 0.07830 

4 4.16810 0.69011 0 .07790 

5 2.93939 0.48443 0.00063 

6 2.94409 0.48414 0.00059 

7 2.94479 0.48416 0.00057 

I 

TABLE 5.2 

ITERATED STEEPEST DESCENT PARTAN 

BEALE'S FUNCTION 

(Starting Point x1 = 5.0, x2 = 0.8) 

NUMBER OF F(x1 , x2) ITERATIONS xl x2 

1 5.0 0.8 0.48672 

2 5.00255 0.74298 0.15210 

3 4 .34720 0.71367 0.09902· 

4 3.03648 0.54035 0.02546 

5 3.04159 0.50171 0.00197 

6 2.95968 0.49087 0.00029 

7 2.95905 0.49047 0.00028 



NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

NUMBER OF 
ITERATIONS 

1 ' 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

TAl3LE 5.3 

ITERATED STEEPEST DESCENT PARTAN 

BEALE'S FUNCTION 

(Starting Point x1 = 2.0, x2 = 0.8) 

xl x2 

2.0 0.8 
2.81910 0 .10187 
2.40960 0.27402 
2.42223 o. 27239 
2.47340 0.27637. 
2.43510 0.28129 
2.48620 0.28484 
.2.44790 0.29035 
2.49899 0.29390 
2.50529 0.29435 

TABLE 5.4 

ITERATED STEEPEST DESCENT PARTAN 

BEALE'S FUNCTION 

F(x1, x2) 

6. 27010 
0.18480 
0.13282 
0.13227 
0.12672 
0.12220 
0 .11700 
0.11248 
0 .10695 
0.10691 

(Starting Point x1 = 2.0, x2 = 0.2) 

Xl X2 F(x1 , x2) 

2.0 0.2 0.52978 
2.40949 ' 0 .18977 0.26361 
2. 30719 0.24416 0 .18940 
2 .51190 0. 27235 0.13998 
2.46080 0.30120 0 .10194 
2.87030 0.48218 0.00825 
2.89580 0.47478 0.00201 
2.90850 0.47325 0.00169 
2.90840 0.47670 0.00149 
2.91790 0.47640 0.00131 
2.91860 0.47940 0.00116 
2.92809 0.47907 0.00103 
2. 92760 0.48154 0.00091 
2.93389 0.48150 0.00081 
2.93620 0.48444 0.00071 
2.94250 0.48384 0.00061 
2.94360 0.48626 0.00060 
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TABLE 5.5 

CONTINUED PART AN 

BEALE'S FUNCTION 

(Starting Point x1_ = 2. 0, x2 = 0.8) 

NUMBER OF 
F(x1, x2) ITERATIONS xl x2 

1 2.0 0.8 6.27010 

2 2.61430 0.27643 0.18480 

3 2.40960 0.27402 0.13282 

4 2.42230 0. 27240 0.13228 

5 2.47340 0.27637 0.12672 

6 2.45430 0.27636 0.12596 

7 2.45400 0.35582 0.09718 

8 3.06830 0.51750 0.00072 

9 3.06680 0.51755 0.00071 

TABLE 5.6 

CONTINUED PARTAN 

BEALE'S FUNCTION 

(Starting Point x1 = 2.0, x2 = 0.2) 

NUMBER OF 
F(x1, x2) ITERATIONS xl x2 

1 2.0 0.2 0.52978 

2 2.40950 0 .18977 0.26360 

3 3.22860 0.51790 0.03991 

4 3.02389 0.51260 0. 00118 

5 3.03660 0.50770 0.00024 

6 3.02389 0.50706 0.00012 

7 3.02699 0.50645 0.00011 



NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
5 
6 
7 

TABLE 5.7 

CONTINUED PARTAN 

BEALE'S FUNCTION 

(Starting Point x1 = 5.0, x2 = 0.8) 

xl x2 

5.0 0.8 
5.02550 0.74298 
4.71840 0.74161 
4.75670 0. 74241 
4.76620 0.73782 
4.71509 0. 73772 
4.71580 0.73421 
4.61350 0.73215 
4.62620 0.72742 
4.54629 0.72656 
4.55260 0.72093 
4.45029 o. 71904 
4.45979 0. 71389 
4.35750 0.71240 
4.36699 0.70590 

TABLE 5 .8 

CONTINUED PARTAN 

BEALE'S FUNCTION 

(Starting Point x1 = 5.0, x2 = 0.2) 

xl x2 

5.0 0.2 
3.36170 0.66020 
4 .18080 0.68935 
4.16810 0.69011 
2.93940 0.48443 
2.94890 0.48482 
2;94530 0.48557 

F(x
1

, x2) 

0.48672 
0.15853 
0.12342 
0.12300 
0.12030 
0.11836 
0.11695 
0 .11348 
0 .11066 
0.10826 
0 .10589 
0 .10164 
0.09920 
0.09636 
0.09240 

F (x1 , x2) 

18.20472 
0.30613 
0.07831. 
0 .07788 
0.00063 
0.00055 
0.00050 
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NU~IBER OF 
ITERATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
s 

TABLE 5 .9 · 

ITERATED SCALE INVARIANT PARTAN 

BEALE'S FUNCTION 

(Starting Point x1 = 5.0, x2 = 0.2) 

xl X2 

5.0 0.2 
1. 72330 0.20000 
2.13279 0.05421 
2.20949 0.05811 
2.18399 0.05810 
2.15850 0.05980 
2.17120 0.05938 
2.18389 0.05940 
2.19340 0.05963 
2 .18710 0.05967 
2.18080 0.05956 
2.17609 0.05962 
2.17919 0.05961 

TABLE 5.10 

ITERATED SCALE INVARIANT PARTAN 

BEALE'S FUNCTION 

F(x
1

, x2) 

18.20470 
1. 20762 
0.52529 
0.51296 
0.51057 
0.50816 
0.50786 
0.50750 
0.50733 
0 .50720 
0.50712 
0.50708 
0.50704 

(Starting Point x1 = 5.0, x2 = 0.8) 

xl X2 F(x1, x2) 

5.0 0.8 0.48672 
5.81910 0.80000 0.18318 
5.85740 0.79828 0 .18095 
5.80629 0.79833 0.18053 
5.82240 0.79833 0.18051 

PROGRESS WAS EXTREMELY SLOW 

FROM HERE ON 

64 



NUMBER OF 
ITERATIONS 

l 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

NUMBER OF 
ITERATIONS 

1 

2 

3 

4 

5 

6 

7 

TABLE 5.11 

ITERATED SCALE INVARIANT PARTAN 

BEALE'S FUNCTION 

(Starting Point x1 = 2.0, x2 = 0.8) 

xl x2 F(x1 , x2) 

2.0 0.8 6.27010 

5.27670 0.80000 3 .13180 

5 .48139 0.77598 0.16594 

5.37910 0. 77668 0.15735 

5.35359 0. 77667 0.15708 

4.94410 0.76080 0.14897 

5. 04640 0.76454 0.14833 

5.14869 0.76453 0.14468 

5.15019 0.76448 0.14457 

5.12469 
I 

0.76449 0.14449 

5.13099 0.76449 0.14447 

TABLE 5 .12 

ITERATED SCALE INVARIANT PARTAN 

BEALE'S FUNCTION 

(Starting Point x1 = 2.0, x2 = 0.2) 

xl 

2.0 

2.40950 

2.38400 

3.20310 

3.10080 

3.08810 

3.08960 

x2 

0.2 

0.20000 

0.30215 

0.52005 

0.52005 

0.52333 

0.52328 

0.52978 

0.24194 

0.12788 

0.02520 

0.00186 

0.00126 

0.00125 
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NUMBER OF 
ITERATIONS 

1 

2 

3 

4 

5 

6 

7 

NUMBER OF 
ITERATIONS 

1 

2 

3 

4 

5 

6 

7 

8 

TABLE 5 · l3 

ITERATED STEEPEST DESCENT PARTAN 

GIBSON'S SYSTEM 

(Starting Point w1 = 0.31, w2 = 10.0) 

wl w2 F(w1 , w2) 

0.31 10.00 0.022460 

0.29089 10.51047 0.022040 

0.36760 17.68500 0.018744 

0.36290 l"1. 68680 0.018733 

0.36280 17 .Of969 0.018720 

0.35970 17.02081 0.018712 

0.35968 17.02082 0.018710 

TABLE 5.14 

ITERATED STEEPEST DESCENT PARTAN 

GIBSON'S SYSTEM 

(Starting Point w1 = 0.41, w2 = 20.0) 

wl 

0.41 

0.37170 

0.37160 

0.37170 

0.36540 

0.36530 

0.360~0 

0.36099. 

wl 

20.0 

20.00380 

17.48280 

17.81358 

.17.81840 

17.49109 

17.24380 

16.99185 

0.019695 

0.018940 

0.018787 

0.018770 

0.018740 

0.018730 

0.018717 

0.018712 
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NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

TABLE 5.15 

ITERATED STEEPEST DESCENT PARTAN 

GIBSON'S SYSTEM 
' 

(Starting Point w1 = 0.41, w2 = 11.0) 

wl w2 

0.41 11.0 
0.30769 11.11289 
0.30879 13.60482 
0.30909 13.21873 
0.33460. 13.26826 
0.33299 14.78621 
0.34570 14. 77852-.. 
0.34599 16.01601 
0.35224 15.77618 
0.35235 16.24918 
0.35234 16.24920 

TABLE 5 .16 

ITERATED STEEPEST DESCENT PARTAN 

GIBSON'S SYSTEM 

F(w1, w2) 

0.025100 
0.020940 
0.019886 
0.019862 
0.019301 
0.018984 
0.018866 
0.018774 
0.018745 
0.018724 
0~018723 

(Starting Point w1 = 0.31, w2 = 20.0) 

WI w2 F(w1 , w2) 

0.31 20.0 0.026307 
0.38670 19.97715 0.019010 
0.38660 19.13796 0.019000 
0.38510 19.98199 0.018985 
0.37240 19.92556 0.018924 
0.37550 18.18123 0.018822 
0.36599 18.18377 0.018760 
0.36589 17.24587 0.018735 
0.35959 17 .24911 0 .018718 
0.35949 16.76195 0 .018714 

' 
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NUMBER OF I 
I 

ITERATIONS, 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

NUMBER OF 
ITERATIONS 

1 
2. 
3 
4 

TABLE 5.17 

CONTINUED PARTAN 

GI BSO~ 'S SYS THI 

(Starting Point w1 = 0.41, w2 = 11.0) 

wl W2 F (w1 , w2) 

0.41 11.0 0.025100 
0.30769 11.11275 0.020940 
0.32039 11.16241 0.020816 
0.31409, 11.21918 0.020762 
0.33199 11.49548 0.020579 
0.32049 11.53123 0.020436 
0.31420 11.64940 0.020369 
0.32689 I 11. 70720 0.020293 
0.32059 11. 73768 0.020253 
0.31109 12.97309 0.019805 
0.33660 12.97902 0.019450 
0.33030 12.99631 0.019426 
0.32400 13.27087 0.019379 
0.33669 13.28418 0.019300 
0.33599 I 13.29429 0.019290 
0.33209 13.30840 0.019280 
0.35760 14.93219 0.018938 
0.35730 14.93267 0.018932 

TABLE ·5.18 

CONTINUED PART AN 

GIBSON 'S SYSTEM 

CS.tarting Point w1 = 0.41, w2 = 20.0) 

wl W2 F(w1 , w2) 

0.41 20.0 0.019695 
0.37170 20.00380 0.018940 
0.37639 19.99561 0.018922 
0.376,29 19.99545 0.018921 
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NUM13En OF ! 

ITERATIONS 

1 
2 
3 
4 
5 

NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14' 
15 
16 
17 
18 

-

(Starting 

wl 

0.31 
0.38670 
0.37399 
0.37710 
0.37560 

TABLE 5. 19 

CONTINUED PARTAN 

GIBSOl'j'S SYSTEM 

Point w1 = 0.31, w2 

w2 

20.0 
19.97715 
19.97590 
19.94620 
19.94450 

TABLE 5.20 

CONTINUED PARTAN 

GIBSON'S SYSTEM 

= 20.0) 

(Starting Point w1 = 0.31, w2 = 10.0) 

wl w2 

0.31 10.0 
0.29089 10.51047 
0.31640 10.54909 
0.30370 10.68752 
0.31639 10.74097 
0.30370 10.91876 
0.31640 10.95692 
0.30369 11.26435 
0.32279 11.29986 
0.31650 11. 34355 
0.34199 12.08583 
0.32289 12.1'2182 
0.34839 12.98325 
0.32929 13.00912 
0.33879 13.14385 
0.33249 13.15878 
0.33569 13.23326 
0.33599 13.24582 
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F(111 1 , w2) 

0.026307 
0.019008 
0.018923 
0.018913 
0. 018911 

F(w1 , w2) 

0.022460 
0.022040 
0.021587 
0.021475 
0.021320 
0. 021211 
0.021047 
0.020880 
0.020675 
0.020625 
0.020165 
0 .1)19951 
0.01.9617 
0.019423 
0.019380 
0.019340 
0.019319 
0.019311 



NUMBER OF : 
ITERATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

NUMBER OF 
ITERATIONS 

1 
2 
3 
4 
5 
6 
7 
8 
9 

TABLE 5.21 

ITERATED SCALE INVARIANT PARTAN 

GIBSON'S SYSTEM 

(Starting Point w1 = 0.31, w2 = 10.0) 

wl w2 

0.31 10.0 
0.30929 10.00000 
0.29660 11.18796 
0.29630 12.51777 
0.33460 12.51777 
0.32829 12.51777 
0.32199 13.87104 
0.32194 14.40805 
0.34745 14.40805 
0.34734 16.54398 ., 

0.34725 16.12352 
0.35355 16.12352 
0.35350 16.64369 

TABLE 5.22 

ITERATED SCALE INVARIANT PARTAN 

GIBSON'S SYSTEM 

F(w 1 , w2) 

0.022460 
0.022451 
0.021170 
0.020655 
0. 019713 
0.019684 
0. 019311 
0.019300 
0.018960 
0.018786 
0. 018776 
0.018724 
0.018723 

(Starting Point w1 = 0.31, w2 = 20.0) 

wl w2 F(w1, w2) 

0.31 20.0 0.026307 
0.38669 20.00000 0.019009 
0.38529 19.98033 0.018987 
0.37579 19.98033 0.018920 
0.37569 18.14513 0.018825 
0.36619. 18.14513 0.018757 
0.36570, 17.26473 0.018733 
0.36099 17.26473 ' 0.018717 
0.36109 17.26473 0.018716 
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TABLE 5.23 

ITERATED SCALE INVARIANT PARTAN 

GIBSON.' S SYSTEM 

(Starting Point w1 ~ 0~41, w2 = 20.0) 

NUMBER OF F(w1, w2) ITERATIONS wl W2 

1 0.41 20.0 0.019695 

2 0.37170 20.00000 0.018940 

3 ·0.37170 17.48247 0.018790 

4 0. 37189 17 .81199 0.018780 

5 0.36560 17.81199 0.018739 

6 0.36410 17 .81199 0.018738 

TABLE 5.24 

ITERATED SCALE INVARIANT PART AN 

GIBSON'S SYSTEM 

(Starting Point w1 = 0.41, w2 = 11.0) 

NUMBER OF 
F(w1, w2) ITERATIONS wl w2 

1 0.41 11.0 0.025100 

2 0.30769 11.00000 0.021057 

3 0.30659 13.49565 0.020009 
-4 0.30689 13.13361 0.019978 

5 0.33239 13.13361 0.019360 

6 0.32829 14.51513 0.019102 

T 0.32819 14.51513 0.019100 



CHAPTER 6 

CONCLUSION 

Implementation of an adaptive control in situations where plant 

identification is either inconvenient or undesirable, has two important 

aspects. One is the figure of merit or performance by which the system 

measures its performance with a view to optimize it. The other is: of 

different methods available for adjusting the parameters of a controller 

to affect this performance optimization, which is the method that adjusts 

these parameters most quickly and efficiently. In the past few years, 
I 

several minimization techniques have been developed but very little work 

has been done to find a method which works satisfactorily in most cases. 

In this thesis three optimizing techniques, namely: 

(i) Method of Steepest Descent 

(ii) Method of Conjugate Gradients 

(iii) Method of Parallel Tangents and its Variants 

have been examined. The last two methods are quite recent and have been 

claimed to work in most cases. These methods are applied to optimize 

Beale's function and !TSE performance criterion in a control system. 

Beale's function represents a response surface, most likely to be 

encountered in practical situations. The comparison of different methods is 

shown in Figures (13-21). It can be seen that the Steepest Descent variant 

of the parallel tangents works better than any in both the cases beginning 

with,different starting points. Continued Partan also shows good 

performance in most cases.· 
72 



73 

It has been claimed that the method of conjugate gradients 

locates the minimum of a linear positive definite quadratic function of 

n variables in (n) steps and the method of parallel tangents finds the 

optimum in (2n-l) steps. The functionsto be optimized in practice 

rarely meet the ideal requirements of being linear and quadratic. Both 

the functions optimized in this thesis are highly non-quadratic and it 

can be seen that the minimum is not reached in (n) or (2n-l) steps. 

From the results obtained in this thesis, it can be seen that whereas the 

Steepest Descent variant of the method of parallel tangents works fairly 

well in case of two-parameter optimization, the progress in the method 

of conjugate gradients is very slow. Surprisingly the method of 

steepest descent seems to work better in some cases than the method of 

conjugate gradients although the latter is a modification of the former. 

Fletcher and Reeves [23] have reported similar experience with the 

me.thod of conjugate gradients applied to a non-quadratic function. To 

overcome the slow convergence of the metl1od in non-ideal cases, they 

reverted to the steepest descent direction in place of conjugate direction 

whenever the progress was slow. They attributed this to the fact that 

the successive conjugate directions were so nearly parallel that the 

points xi were scarcely separated. Lasdon [3~ has formulated different 

theorems on the method of conjugate gradients and has reported success 

with positive definite quadratic functions, but at the present very 

little experience is available with non-quadratic functions. On the 

basis of the present wprk, however, the method of conjugate gradients 

did not work well. 
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The optimization calculations in the present work have been 

carried out on an IBM~7040 comput~r. In case of Beale's function, 

computations were done using a WATFOR compiler developed by the 

University of Waterloo Computing Centre. The typical running time was 

one to two seconds for each iteration as against one minute per iteration 

by Shah et al [27] for. the same function and same starting points. 

Gibson's System required the solution of a sixth order differential 

equation and integration of the resulting error function to form the 

integral performance criterion (ITSE). The digital computer was 

employed to obtain the approximate numerical solution of the system 

differential equation using the fourth order Runge-Kutta method [26] • 

The integration was also done numerically and was required several times 

for a single iteration and thus involves the inherent inaccuracy present 

in the numerical integration and large computer time. Faster and more 

accurate results could have been obtaned by using a hybrid computer. 

From the results obtained in this work the method of parallel 

tangents seems to work quite well in the case of practical response 

surface with two variable parameters. Although this method finds the 

optimum in less number of iterations, it requires large amounts of 

stored information and hence a larger comput~r. From the practical point 

of view e.g. in space applications and flight control etc., where the 

weight is one of the main considerations, the method of steepest descen~ 

seems attractive because of least stored information requirements, but 

unfoTtunately it requires large numbers of iterations to reach the 

optimum. Thus in pra~tical applications, the choice of optimization 

technique is a compromise between many conflicting requirements. 
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Moreover, the method of steepest descent can also he implemented with the 

help of a small analogue computer~ which seems to be the answer for space 

applications. 

Some areas of further work are indicated by this study. It would 

be interesting to investigate the performance of the method of parallel 

tangents in the optimization of more than two-parameter cases. The scale 

invariant option may be developed and investigated further for better 

results. The method of conjugate gradients may be applied to more non­

ideal functions before generalizing anything on its performance in 

such cases. 

I 
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APPENDIX I 

Flow Chart for the Method 1 of Parallel Tangents 

START 

Calculate 
F(NK,J)=F(x 1 ,x 2) 

J = 

In the case of Gibson's 
System P(NK,J) is obtained 
by the use of Subroutine 

DE OS ET . 

+mLDx~ 



NO 

Calculate 
(NK,J)=F(x1+ox1,x2+mLDx 2) 

Write 

YES 

Subroutine 
for Linear Interpolation 

Write 
ntcrpolat 

I I 
xl • x2 

J : J + 1 

Change 
sign of 

nx 1 
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STOP YES 

NK = NK + 1 

Choosing of m(NK) 

corresponding to NK 

m(2) = -1.0/m(l) 

m(l7) = m(l5) 

YES 

STOP 

NO 
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For continued and Scale 

Invariant Partan the 

m's differ. 
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APPENDIX II 

Flow Chart for the Method of Conjugate Gradients and 

Steepcs,t Oe~cent, 

START 

NK = 1 

J = 1 

Write 

Calculate 
F(NK,.J)=F(x ,x) 

In the case of Gibson's System 
F(NK,J) is obtained by the 

Beta(NK) 

·, X2 
am(NK)= ----­

·ClF/Clx 

YES 

use of Subroutine DEQSET 

>----1 bm (NK) .,;am (l~K) 

NO 

am
2 

(NK) = _ __:..--<.----

am2 (NK-1) 

bm(NK)=am(NK)+Bcta (NK) x am(NK-1) 



Calculate 
F(NK,J)=F(x1,ox 1,x2+bmLDx2) 

L = 2L 

J = .J+l 

Calculate 
F(NK,J)=F(x1+ox 1,x2+ml.Dx 2) 

Write 

YES 

Change 
sign of 

Dx
1 

92 

http:1,x2+ml.Dx


STOP 

Subroutine 
or::· linear. Interpolation i 

\\'rite 
Interpolat 

I I x l' x 2 

J = J+l 

NK = NK'+l 

c STOP ) 

NO 
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$JOB 
$IBJOB 
$IBFTC 

WAT FOR 

APPENDIX III 

003508 IQLEEM 
NODE CK 
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060 

C METHOD OF CONJUGATE GRADIENTS APPLIED TO •BEALEtS FUNCTION• 
DIMENSION C(3)tU(3)•F<20)tDF<2t40ltXS<2•40t20ltX(2t40t20) 
DIMENSION AM<40ltDPHI<20)tBM<40ltBETA(40) 
READ <5•1> <C<I>•I=lt3l 

1 FORMAT <3F10.4) 
DX=0.0001 
NK=l 
READ <5•1> CXS<M•NKtll•M=lt2l 

19 WRITE (6,2) XSCltNKtlltXSC2tNKtl) 
2 FORMAT (1H0t5XtFl5•8t5XtFl5•8) 

J=l 
DO 3 M=lt2 

3 XCMtNKtJ)=XS<MtNKtJ) 
U(ll=C<l>-X<l•NKtJl*<l.O-XC2tNKtJl) 
U<2l=C(2>-X<ltNKtJl*<l.O-X(2•NKtJl*XC2tNKtJ)) 
U<3l=C<3>-X<l1NKtJl*<l.O-XC2tNKtJl*XC2tNKtJl*XC2tNKtJ)) 
WRITE (6,4) U(l)tU(2ltUC3l 

4 FORMAT <1H0t5XtFl5•8•5XtFl5•8•5XtFl5e8) 
F(Jl=U<ll*U(ll+U(2)*U(2l+U<3l*UC3) 
WRITE (6,5) FCJ> . 

5 FORMAT (lH0t40XtF15.8) 
DF<l•NKl=-2•0*(U(ll*<l.O-X<2•NKtJ))+U<2>*<1.0-X<2tNKtJl*X(2tNKtJ)) 

l+U(3l*<l.O-XC2tNKtJl*XC2tNKtJl*XC2tNKtJlll 
DF<2•NKl=2•0*(U(ll*X<l•NK•Jl+U<2l*2eO*X<ltNKtJl*X<2•NKtJ) 

l+U(3l*3•0*X(ltNKtJl*X(2tNKtJl*XC2tNKtJ)) 
WRITE (6,6) <DFCltNKltI=l•2> 

6 FORMAT (1H0tlXt2Fl5.8} 
AM<NKl=DFC2tNKllDF(ltNK) 
WRITE C6t7) AMCNKl 

7 FORMAT (lH0t!OXtF20.9) 
IF (NK.EQ.1) BM<NKl=AMCNKl 
IF <NK.EQ.1) GO TO 17 
BETA(NKl=<AM(NKl*AMCNK>>l<AM<NK-ll*AM(NK-1)) 
WRITE (6,18) BETA<NKl 

18 FORMAT (1H0t20XtF20.9) 
BM<NK)=AM(NK)+BETA<NK)*AM(NK-1) 
WRITE (6,7) BMCNKl 

17 FACTR=l.O 
J=J+l 
L=l 
IC=J 
X<ltNKtJl=XSCltNKtll+FACTR*FLOAT<L>*DX 
X<2tNKtJ)=XSC2tNKtll+FACTR*FLOAT<Ll*BMCNKl*DX*Oe01 
U(ll=C(l)-XCltNKtJ)*<l.O-XC2tNKtJ)) 
UC2l=C<2>-X<l•NKtJ)*(l.O-XC2tNKtJl*XC2,NKtJ)) 
UC3l=C<3>-X<l•NKtJ)*<l.O-X<2•NKtJl*X<2tNKtJl*XC2tNKtJ)) 
F(Jl=U<ll*U<ll+U<2l*UC2l+U(3l*UC3l 
IF ((F(J)-FCJ-llleGT.OeO) FACTR=-leO 



IF ((F(J)-F(J-1)).LT.o.o) FACTR=l.O 
XCltNKtJl=XSCltNKtl)+FACTR*FLOATCL>*DX 
X(2tNKtJ)=XS(2tNKtll+FACTR*FLOATCL)*BM(NK>*DX*Oe01 

15 WRITE C6t8) (XCMtNKtJ)tM=lt2ltIC 
8 FORMAT (1H0t5XtFl5e8t5XtF15e8tl5) 

UCll=CCl)-XCltNKtJ)*Cl.0-XC2tNKtJ)) 
UC2l=C<2>-X<ltNKtJ)*<l.O-XC2tNKtJl*X<2tNKtJ)) 
UC3)=CC3)-XCltNK•Jl*<le0-XC2tNK•J>*XC2tNKtJ)*XC2tNKtJ)J 
FCJ)=U(l)*U(l)+U(2)*U<2>+UC3)*U(3) 
WRITE C6t5l f(J) 
DPHICJ)=F(J)-f(J-1) 
IF CDPHICJ).GT.O.O) GO TO 9 
L=2*L 
J=J+l 
IC=IC+l 
XCltNKtJ)=XCltNKtJ-ll+FACTR*FLOAT(L)*DX 
X<2•NKtJ)=X<2tNK•J-l>+FACTR*FLOATCL>*BMCNK)*DX*OeOl 
GO TO 15 

9 IF CIC.GE.3) GO TO 11 
IF CIC.EQ.2) GO TO 12 

11 J=J+l 
NK=NK+l 
DX=0.0001. 
XCltNK•Jl=CXCltNK-l•J-ll+XCltNK-l•J-2))/2.0 
XC2tNKtJ)=CXC2tNK-l•J-l>+X(2,NK-l•J-2))/2e0 
U(l>=C<l>-XCltNKtJ)*Cl.O-XC2tNKtJ)) 
UC2>=CC2l-X<l•NKtJ)*Cl.O-XC2tNKtJ>*X<2tNKtJ)) 
U<3>=C<3)-XCltNK•J>*<l.O-X(2•NKtJ)*X<2•NKtJ)*X(2tNKtJ)) 
F(J)=UCll*UCl)+U(2l*U(2)+U(3l*U(3) 
IF CF(J).LTeFCJ-2)) GO TO 20 

21 X<l•NKtJ)=XCltNK-l•J-2) 
XC2tNKtJl=XC2tNK-l•J-2) 
GO TO 20 

12 J=J+l 
NK=NK+l 
DX=0.00001 
XCltNKtJ)=XCltNK-l•J-2) 
XC2•NK•Jl=X<2tNK-l•J-2) 

20 IF CNK.EQ.40) GO TO 16 
IC=l 
XSCltNKtl)=XCltNK•J> 
XSC2tNK•l)=X<2•NKtJl 
J=l . 
GO TO 19 

16 STOP 
END 

$ENTRY 
1.5 2.25 2.625 
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5.0 0.2 

$IBSYS 

The method of Steepest Descent is obtained by simply putting 

BETA = 0.0 in this program. 
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APPENDIX IV 

$JOB WATFOR 003508 IQLEEM 060 010 
$IBJOB NODECK 
$JBFTC 
C METHOD OF PARALLEL TANGENTS APPLIED TO •BEALE'S FUNCTION • 
C ITERATED STEEPEST DESCENT PARTAN 

DIMENSION C(3),U(3)tF(30)tDF(2t30)tXS<2•20t30>tX(2t20t30) 
DIMENSION AM(20)tDPHI<30) 
READ <5•1> <C<Iltl=lt3l 

1 FORMAT <3Fl0.4) 
DX=0.0001 
NK=l 
READ (5tl) <XS<MtNKtlltM=lt2l 
WRITE (6,2) XS<ltNKtl)tXS<2tNKtll 

2 FORMAT (1H0t5XtF15.8t5XtF15.8) 
J=l 
DO 3 M=lt2 

3 X(MtNKtJ)=XS(MtNKtJ) 
17 U(l)=C<l>-X(l,NKtJ)*(l.O-X(2tNKtJ)) 

U<2>=C(2)-X(ltNKtJ>*<l.O-X<2•NKtJl*X(2,NKtJl) 
U(3)=C<3>-X<l•NKtJ)*<l.O-X<2•NKtJl•X<2tNKtJl*X<2•NKtJl) 
WRITE (6,4) U(lltU<2ltU(3) 

4 FORMAT <lH0t5XtFl5•8t5XtFl5•8t5XtF15.8) 
F(Jl=U<l>*U(l)+U(2)*U<2l+U{3l*U(3) 
WRITE (6t5l F(J) 

5 FORMAT (lH0t40XtF15.8) 
DF<l•NK>=-2·0*(U(l)*(l.O-X<2•NKtJ))+U<2>•<1.o-x<2•NKtJ)*X<2•NK•J)) 

l+U<3>*<1.0-X(2tNKtJ>*X(2tNKtJl*X(2tNKtJ))} 
DF<2tNK>=2•0*(U(ll*X<l•NKtJl+U<2l*2•0*X<ltNKtJ)*X<2tNKtJ) 

l+U<3l*3.0*X<ltNKtJ)*X<2tNKtJl*X<2•NKtJ)) 
WRITE <6t6) (OF<l•NKltI•lt2l 

6 FORMAT (lH0tlXt2Fl5.8) 
AM<NKl=DF<2tNK)/DF<ltNKl 

18 WRITE (6,7f AM(NKl 
7 FORMAT (1H0tlOX,F20.9) 

FACTR=leO 
J=J+l 
L=l 
IC=J 
X(ltNKtJ)=XS(ltNKtl)+FACTR*FLOAT<L>*DX 
X(2tNKtJ)=XS<2tNKtll+FACTR*FLOAT<Ll*AM<NK)*DX*O•l 
U(l)=C<l>-X<ltNKtJ)*<l.0-X(2tNKtJ)) 
U(2)=C<2>-X<l•NKtJ)*(le0-X(2tNKtJ)*X<2tNKtJ)) 
U(3)=C(3)-X<l•NKtJl*<l.0-X(2tNKtJl*X(2,NKtJl*X(2tNKtJl) 
F(J)=U<l>*U(l)+U<2>*U<2>+U(3)*U(3) 
IF ((F(J)-f(J-1)).GT.o.o) FACTR=-1.0 
IF ((f(J)-F(J-1)).LT.o.o> FACTR=l.O 
X(ltNKtJ)=XS(ltNKtl>+FACTR*FLOAT(Ll*DX 
X<2tNKtJ)=XS<2tNKtl>+FACTR*FLOAT<Ll*AM(NK>*DX*Oel 

15 WRITE <6t8) <X<MtNKtJ)tM=lt2ltlC 
8 FORMAT (1H0t5XtFl5e8t5XtFl5e8tl5) 

U(lJ=C(l)-X(ltNKtJl*<l.O-X<2tNKtJ)) 



U(2)=C<2>-X<ltNKtJl*(l.O-X<2•NKtJ)*X(2,NKtJ)) 
U<3l=C<3>-X<ltNK•Jl*<l.O-X<2•NK•J>*X(2,NK•J>*X(2,NK•J)) 
F(Jl=U(ll*U(l)+U(2)*U(2)+U(3)*U<3> 
WRITE (6,5) F(J) 
DPHICJ)=F<Jl-F<J-1) 
IF <DPHI<Jl.GT.0.0) GO TO 9 
L=2*l 
J=J+l 
IC=IC+l 

X<l•NKtJ)=X<l,NK•J-l>+FACTR*FLOAT(Ll*DX 
Xf2tNK,J>=X<2tNKtJ-ll+FACTR*FLOAT<L>*AM<NK)*DX*Oel 
GO TO 15 

9 IF (IC.GE.3) GO TO 11 
IF <IC.EQ.2) GO TO 12 

11 J=J+l 
NK=NK+l 
DX=0.0001 
X<ltNKtJJ=(XfltNK-l•J-ll+X(ltNK-l•J-2))/2e0 
X(2tNK•J)=(X(2,NK-ltJ-l)+XC2tNK-ltJ-2))/2.0 
U(l)=C<ll-X(ltNKtJ)*<l.O-XC2tNK•Jl) 
U(2l=C<2>-X<l•NK•J>*<l.O-X(2tNKtJl*XC2tNKtJ)) 
U<3>=C<3>-X(l,NKtJ)*fl.O-X<2tNK•J>*X<2•NK•J>*XC2tNK•J)) 
F<J>=U(l)*U<l>+U<2>*~(2)+U<3l*U(3) 
IF <F<J>.LT.FCJ-2)) GO TO 19 
X<l•NKtJ)=XCltNK-ltJ-2) 
X<2•NKtJ)=Xf 2tNK-l•J-2) 
GO TO 19 

12 J=J+l 
NK=NK+l 
DX=0.00001 
X(l,NKtJ)=X<l•NK-l•J-2) 
Xf 2,NK•Jl=Xf 2,NK-l•J-2) 

19 IC=l 
IF (NK.EQ.2) AM(2)=-1.0/AM(l) 

98 

IF <NK.EQ.3) AM(3l= <<X<2•3•J>-X<2•ltl))/CXClt3tJ)-X(ltltl))) 
IF (NK.EQ.4) AMC4l=-1.0/AM(3l 
IF (NK.EQ.5) AMC5l=AM(3) 
IF (NK.EQ.6) AM(6)=((X(2,6•J>-X<2•4•1))/CX<lt6•J)-X(l,4tl))) 
IF CNK.EQ.7) AM(7)=-1.0/AM(6) 
IF CNK.EQ.8) AM(8)=AM(6) 
IF (NK.EQ.9) AM(9l=<<XC2t9tJ>-X<2•6•1))/(X(l•9•J>-X<l•6•1))) 
IF (NK.E0.10) AM<lO>=-l.O/AM(9) 
IF CNK.EQelll AM<lll=AM(9) 
IF <NK.EQ.12) AM<l2>=<<XC2tl2•J)-X(2tl0tl))/CXCltl2tJ)-XCltl0tl))) 
IF (NK.EQ.13) AMC13>=-l.O/AM(l2) 
IF <NK.E0.14) AM(14l=AMC12) 
IF CNK.E0.15) AM<l5l=<<X<2tl5•J>-X<2•12•l)l/(X(l,15tJ)-X(ltl2tl>>) 
IF (NKeEOel6) AM(l6>=-le0/AMC15) 
IF <NKeE0.17) AM(17l=AM(l5) 
IF <NK.EQ.18) GO TO 16 
XSCltNK•l)=X<ltNKtJ) 
XSC2tNKtl)=XC2tNKtJ) 

http:NK.EQ.18
http:NKeE0.17
http:CNK.E0.15
http:NK.E0.14
http:NK.EQ.13
http:NK.EQ.12
http:NK.E0.10


WRITE (6,2) XSCltNK,lltXS(2tNK,l) 
J=l 
X(l,NKtJ)=XSCltNKtl) 
X(2,NK,J>=XSC2,NK,l) 
GO TO 17 

16 STOP 
END 

$ENTRY 
1.s 2.2s 2.625 
2.0 0.2 

$IBSYS 

Continued and iterated scale invariant partan programs were 

made on a similar basis. 
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APPENDIX v 100 

$JOB 003508 IQLEEM 060 010 
$lBJOB 
$IBFTC FITS 
C ADAPTIVE CONTROL WI~HOUT IDENTIFICATION 
C METHOD OF CONJUGATE GRADIENTS 
C PLANT PARAMETERS FIXED-ADJUSTABLE CONTROLLER WITH TWO DEGREE 
C OF FREEDOM 

DIMENSION WS<2•50tl5>tWI<2t50•15ltDK(2)tA(6)tYI<7> 
DIMENSION DF<2•15>tS<4•15•100>tYSOLN<7tlOO>tDPHl(15)tF(7tl5) 
DIMENSION AM(50ltBETA(50ltBM(50) . 
EXTERNAL DEQSET 
COMMON A 
DW=0.0001 
NK=l 
READ (5tll (WS(ltNKtlltl=lt2l 

1 FORMAT (2F10.4) 
READ (5tl) <DK(Iltl=lt2l 

260 WRITE C6t8) WS(ltNKtl)tWS(2tNKtl) 
8 FORMAT (1H0t5Xtfl5e8t5Xtfl5e8) 

J=l 
DO 110 M=l•2 

110 WJ(MtNKtJl=WSCMtNKtJl 
DO 120 N=lt3 

I 

All)=8.55+Wl(2tNKtJl 
A(2l=404.46+8.55*WIC2tNKtJ) 
A(3)=220.48+404.46*WI<2tNKtJ) 
A<4>=24e0+220e48*Wl(2tNKtJ)+900.0*WI<2tNKtJl/WI<ltNKtJ) 
A(5)=924.0*WI<2tNKtJ)+720eO*WIC2tNKtJ)/WICltNKtJ) 
A(6)=720.0*WIC2tNKtJ) 
WRITE <6•2> (A(l)tI=lt6) 

2 FORMAT <1Xt6El2.5/) 
C THE 5TH ORDER CONTROL SYSTEM IS REPRESENTED BY A SET OF FIVE 
C SIMULTANEOUS FIRST ORDER DIFFERTIAL EQUATIONS AND THE SOLUTION IS 
C OBTAINED BY USING A SUBROUTINE 
C INITIAL CONDITIONS 

YI<I>=O.O 
YI(2)=0e0 
YI(3)=0.0 
YI(4)=0.0 
YI(5)=0e0 
YI(6)=900.0*WI<2tNKtJl/WilltNKtJ) 
YI(7)=900.0*<WI(2tNKtJ)/Wl(ltNKtJ))*(WJ(ltNKtJl-WI(2tNKtJ)-7•75l 
CALL RUNGECDEOSETt7tlOOtOe024tYitYSOLN) 
DO 130 KK=l•lOO 

130 S<N•J•KK)=YSOLN<ltKKl*<t.O-YSOLN<2tKK>l*<l.O-YSOLN<2tKKJl 
F<N•J)=O.O 
DELT=0.024 
DO 140 KK=lt99 
MM=KK+l 

140 F<N•J>=F<N•J)+S(NtJtKK>*DELT+Oe5*DELT*<S<N•JtMMl-S<NtJtKK)) 
C EVALUATION OF PARTIAL DERIVATIVES BY THE LOCAL EXAMINATION OF. 

MILLS MEMORIAL LIBRARY 
McMASTER UNIVERSITY 



C THE RESPONSE SURFACE 
IF CN.GE.2> GO TO 210 
WICltNKtJ)=WI<ltNKtJ)+DK(l) 
GO TO 120 

210 WI(l,NK•J)=WS<ltNKtl) 
IF CN.GE.31 GO TO 220 
WIC2tNKtJ)=WI<2tNKtJl+DK(2) 
GO TO 120 

220 WI(2,NKtJ)=WS<2tNKtl) 
DO 150 NN=2t3 
M=NN-1 
DFCM,Jl=(F(NNtJ)-FCltJ))/DK<M> 

150 CONTINUE 
AM(NKl=DF<2tJ)/DF<ltJ) 

120 CONTINUE 
WRITE (6,3) FCltJ)tFC2tJ)tFC3tJ) 

3 FORMAT (lHOt5XtFl5e8t5XtFl5e8t5XtFl5e8) 
WRITE C6t4l CDFCMtJltM=lt2) 

4 FORMAT ClHOtlXt2Fl5.8) 
WRITE C6t5l AM<NKl 

5 FORMAT ClH0tl0XtF20.9) 
IF <NK.EQ.1) BMCNKl=AMCNK> 
IF !NK.EQ.1) GO TO 270 
BETA(NK)=AMCNK>*AM(NK)/AM(NK-l)*AM<NK-1) 
WRITE (6,6) BETA<NK> 

6 FORMAT <1HOtl5XtF20.9) 
BMCNKl=AMCNK)+BETACNKl*AM(NK-ll 
WRITE (6t5) BM<NKl 

270 FC4tll=FCltl) 
FACTR=leO 
J=J+l 
N=4 
L=l 
IC=l 
WICltNKtJ)=WSCltNKtll+FACTR*FLOAT<Ll*DW 
WIC2tNKtJ)=WSC2tNKtll+FACTR*BM<NKl*FLOAT<L)*DW*50eO 
AC1>=8.55+WIC2tNKtJl 
AC2l=404.46+8.55*WI<2tNKtJ) 
A(3l=220.48+404.46*WIC2tNKtJl 
AC4)=24.0+220.48*WIC2tNKtJl+900.0*WI<2tNKtJl/WI(ltNKtJ) 
A(5l=924.0*WIC2tNKtJl+720eO*WIC2tNKtJl/WICltNKtJ) 
A(6)=720.0*WIC2tNKtJ) 

101 

C SOLUTION OF SYSTEM DIFFERENTIAL EQUATION IS OBTAINED AS BEFORE 
C INITIAL CONDITIONS 

YI(l)=O.O 
YI(2)=0.0 
YI(3)=0e0 
YIC4>=0e0 
YI<S>=O.O 
YI<6l=900eO*WIC2tNKtJ)/WICltNKtJ) 
YI<7>=900.0*(WIC2tNKtJ)/WI(ltNKtJl)*(WI<l•NKtJl•WI<2•NKtJl-7e75l 
CALL RUNGE<DEQSETt7tl00tOe024tYitYSOLN) 

http:CN.GE.31
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DO 160 KK=l,100 
160 S(N,J,KKl=YSOLN<ltKK>*<l.O-YSOLN<2tKK>l*<l.O-YSOLN(2tKK)) 

F(N,J)=O.O 
DELT=0.024 
DO 170 KK=lt99 
LL=KK+l 

170 F(N,Jl=F<NtJ)+S<NtJ,KK>*OELT+0.5*DELT*(S(NtJtLL)-S(NtJtKK)) 
IF ((F(4,j)-F(4,J-1>>.GT.o.o> FACTR=-1.0 
IF ((F(4,J)-F(4,J-1>>.LT.O.O) FACTR=leO 
WI(l,NKtJ)=WS(l,NK,l>+FACTR*FLOAT(L)*DW 
WI!2tNKtJl=WS<2tNKtll+FACTR*BM<NKl*FLOAT(L)*DW*50eO 

240 WRITE (6t7) IWI <MtNKtJ) tM=l •2l tIC 
7 FORMAT (lH0t5XtFl5e8t5XtF15e8tl5l 

Alll=8.55+WI<2tNKtJl 
A<2l=404.46+8.55*Wl(2,NKtJ) 
A(3)=220.48+404.46*Wl(2tNKtJl 
A<4>=24.0+220.48*WI(2tNKtJl+900.0*WI(2,NKtJl/WI(ltNKtJ) 
A(5l=924.0*WI!2tNKtJl+720.0*Wl(2,NKtJ)/WI<ltNKtJ) 
A(6)=720.0*WIC2tNKtJ) 

C SOLUTION OF SYSTEM DIFFERENTIAL EQUATION IS OBTAINED AS BEFORE 
C INITIAL CONDITIONS 

YI<l>=O.O 
YI<2>=0e0 
YI(3)=0.0 
YI<4>=0.0 
YI(5)=0.0 
YI<6>=900.0*WIC2tNKtJl/WI!ltNKtJ) 
YI<7>=900.0*(WI<2tNKtJ)/WI(ltNKtJll*<Wt(ltNKtJl-WI(2tNKtJ>-7e75J 
CALL RUNGECDEQSETt7tlOQ,0.024tYitYSOLN> 
DO 180 KK=ltlOO 

180 S<NtJtKKl=YSOLN<ltKK>*<l.O-YSOLNC2tKK))*Cl.O-YSOLNC2tKK>> 
FCNtJ)=O.O 
DELT=0.024 
DO 190 KK=lt99 
LL=KK+l 

190 F<N•Jl=F!NtJ)+S!NtJtKKJ*DELT+Oe5*DELT*CS(NtJtLL>-S<NtJtKK)) 
WRITE (6,9) F<NtJ) 

9 FORMAT <1H0t40XtF15.8) 
DPHI(J)=FC4tJ)-FC4tJ-1) 
IF !DPHICJleGT.O.O) GO TO 230 
J=J+l 
L=2*L 
I°C=IC+l 
WICl,NKtJ)=WI<ltNK•J-l)+FACTR*FLOAT(L)*DW 
WIC2tNKtJl=WI(2tNKtJ-l)+FACTR*BM(NK>*FLOATCL)*DW*50.0 
GO TO 240 

230 J=J+l 
NK=NK+l 
DW=0.0001 
WI<ltNK,J)=CWJ<ltNK-ltJ-l)+WI<ltNK-ltJ-2))/2.0 
WI<2tNKtJl=(WIC2tNK-ltJ-l)+WIC2tNK-ltJ-2))/2.0 
A<1>=8e55+WI(2tNKtJ> 



A(2)=404.46+8.55*WI(2tNKtJ) 
A<3>=220.48+404.46*Wl(2tNKtJ) 
A(4)=24e0+220.48*Wl(2tNK•Jl+900eO*WI(2tNK•J)/WI(ltNKtJ) 
A( 5)=924.0*WI ( 2tNKtJ)+720•0*Wr<2tNKtJ) /WI ( 1 tNKtJ) 
A<6>=720.0*WI(2tNKtJ) 
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c SOLUTION OF SYSTEM DIFFERENTIAL EQUATION rs OBTAINED AS BEFORE 
C INITIAL CONDITIONS 

YI<U=O.O 
YJ(2)=0.0 
YIC3)=0e0 
YJ(4)=0.0 
YIC5)=0.0 
YI<6l=900.0*WI(2tNKtJ)/WI<ltNKtJ) 
YI(7)=900.0*(WJ<2•NKtJ)/Wi(ltNKtJ))*(WJ(ltNKtJl-WI(2tNKtJl-7e75) 
CALL RUNGE<DEQSETt7tl00tOe024•YitYSOLN) 
DO 300 KK=ltlOO 

300 S<N•J•KK>=YSOLN<l•KKl*<l.O-YSOLN<2•KK)l*<l.O-YSOLN<2•KK>> 
FCNtJ)=O.O 
DELT=0.024 
DO 310 KK=lt99 
MM=KK+l 

310 F<NtJ)=F<N•J)+S<N•JtKKl*DELT+0.5*DELT*(S(NtJtMM>-S<N•JtKK)) 
IF (FC4tJ)eLT.F(4,J-2)) GO TO 400 
WI<l•NKtJ)=WJ(ltNK-l~J-2) 
Wl(2tNK•J)=WIC2tNK-l•J-2) 
DW=0.00001 

400 IF CNK.EQ.30) GO TO 250 
IC=l 
WS(ltNK•l>=WICltNK•Jl 
WSC2tNKtl)=WI<2tNKtJ) 
GO TO 260 

250 CALL EXIT 
END 

$IBFTC QRUNGE 
SUBROUTINE RUNGE<DEQSETtNOEQ•NVALtHtYitYSOLN) 

c 
C RUNGE-KUTTA SOLUTION TO A SYSTEM OF SIMULTANEOUS !ST-ORDER DIFF-EQNS. 
C NDEO• THE NUMBER OF EQUATIONS• MUST NOT EXCEED 10 
C NVAL• THE NUMBER OF POINTS AT WHICH SOLUTION IS DESIRED• INCLUDES XO. 
C H IS THE STEP LENGTH FOR THE INDEPENDENT VARIABLE. 
C YI IS THE ARRAY OF INITIAL VALUES OF THE FUNCTIONS. 
C YSOLN• DIMENSIONED (NDEOtNVAL>• CONTAINS THE SOLUTIONS IN THE ORDER 
C IN WHICH THE DEPENDENT VARIABLES ARE DEFINED IN SUBRTN-•OEQSET• 
c 

DIMENSION YIC7)tYSOLNC7tl00)tAC6) 
DIMENSION YY<lO)t YDOT<lO)t YOEL(l0) 
COMMON A 
DO 1 I=l•NDEQ 

1 YSOLNCltll = YI(I) 
DO 2 J=2tNVAL 
DO 3 I=l•NDEQ 

3 YYCI) = YSOLNCitJ-1) 

http:CNK.EQ.30


CALL DEQSET<YDOTtYY) 
DO 4 I=ltNDEQ 

4 YDEL<I> = YDOT(I) 
DO 5 KTIMES=lt2 
DO 6 I=ltNDEQ 

6 YY<I> = YSOLN<ItJ-1) + YDOT<I>*H/2e 
CALL DEQSET<YDOTtYY) 
DO 7 I=ltNDEQ 

7 YDELII> = YDELCI> + 2e*YDOT(I) 
5 CONTINUE 

DO 8 I=ltNDEQ 
8 YY<I> = YSOLNCitJ-1) + YDOT<I>*H 

CALL DEQSET<YDOTtYY> 
DO 9 I=ltNDEQ 

9 YSOLN(J,J) = YSOLN<I,J-1) + (YDEL<Il+YDOT<I>>*H/6e 
2 CONTINUE 

RETURN 
END 

$IBFTC FUNCl 
SUBROUTINE DEQSET<YDOTtYY) 
DIMENSION YYC7>tYOOT<7>tAl6) 
COMMON A 

C EQUATION FOR THE IND~PENDENT VARIABLE• INITIALLY ZERO 
YDOT<ll=l.O 

C SYSTEM EQUATIONS 
YDOTC2>=YYl3) 
YDOT(3)=YY(4) 
YDOT(4)=YY(5) 
YDOTC5)=YY(6) 
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YDOTC6)=YYC7) 
YDOT<7>=A(6)-A(6)*YY<2>-A<5l*YY(3)-A(4)*YY<4>-A<3l*YY(5)-

1A<2>*YY(6)-A(l)*YY17) 
RETURN 
END 

$ENTRY 
0.31 20.0 
0.0033 0.18 

$IBSYS 

The steepest descent program is obtained by putting 

BETA = 0.0 
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APPENDIX VI 

$JOB 003508 IQLEEM 060 010 
$IBJOB 
$IBFTC FITS 
C ADAPTIVE CONTROL WITHOUT IDENTIFICATION 
C METHOD OF PARALLEL TANGENTS <PARTAN) 
C ITERATED STEEPEST DESCENT PARTAN 
C PLANT PARAMETERS FIXED-ADJUSTABLE CONTROLLER WITH TWO DEGREE 
C OF FREEDOM 

DIMENSION wsc2,20,20),WI<2,20,20J,DK(2),A(6),YI(7)•AM(20) 
DIMENSION DF<2,20>,S(4,l8tl00),ySOLN(7,100),DPHI(20ltF(7t20) 
EXTERNAL DEQSET 
COMMON A 
WRITE (6,700) 

700 FORMAT <1ox,32HITERATED STEEPEST DESCENT PARTAN//) 
DW=0.0001 
NK=l 
READ C5tl) CWS<I,NK,1),I=lt2) 

1 FORMAT <2Fl0.4) 
READ (5,1) <DK<IltI=l,2> 

260 WRITE (6,8) WS(l,NK,l),WS<2•NK•ll 
8 FORMAT (lH0,5X,Fl5e8,5XtFl5e8) 

J=l 
DO 110 M=l,2 

110 WI<M,NK,J)=WS<M,NK,Jl 
DO 120 N=lt3 
AC1)=8.55+WIC2,NKtJ) 
AC2l=404.46+8.55*Wl(2,NK•J) 
AC3l=220.48+404.46*Wl(2,NK,Jl 
AC4)=24.0+220.48*WIC2tNKtJ)+900eO*WIC2tNKtJl/WI<ltNKtJ) 
AC5l=924eO*WI<2•NK•Jl+720eO*WI<2•NK,Jl/WIC1,NK,J)' 
AC6l=720eO*WIC2,NK,J> 
WRITE C6t2> CACil,I=l,6) 

2 FORMAT C1Xt6El2e5/) 
C THE 5TH ORDER CONTROL SYSTEM IS REPRESENTED BY A SET OF FIVE 
C SIMULTANEOUS FIRST ORDER DIFFERTIAL EQUATIONS AND THE SOLUTION IS 
C OBTAINED BY USING A SUBROUTINE 
C INITIAL CONDITIONS 

YICll=OeO 
YI<2>=0.0 
YIC3l=Oe0 
YI(4)=0e0 
Yl(5)=0.0 
YIC6>=900.0*WI(2,NK,JJ/WI<l•NKtJ) 
YJC7)=900,0*CWI<2,NKtJJ/WI(l,NK,Jll*(WJ(l,NKtJl-WIC2tNKtJl-7e75) 
CALL RUNGE<DEQSETt7tl00tOe024•YitYSOLNl 
DO 130 KK=l tlOO 

130 SCN,J,KK>=YSOLNCltKKl*CleO-YSOLNC2tKKll*(l.O-YSOLNC2tKK)) 
FCNtJ)=O.O 
DELT=0.024 
DO 140 KK=lt99 
MM=KK+l 
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140 F(N,J)=F<NtJ)+S<NtJtKK>*DELT+0.5*DELT*(S(NtJ,MMl-S<NtJtKK)) 
IF <NK.GE.2) GO TO 270 

C EVALUATION OF PARTIAL DERIVATIVES BY THE LOCAL EXAMINATION OF 
C THE RESPONSE SURFACE 
C THE PARTIAL DERIVATIVES IN THE METHOD OF PARTAN ARE DETERMINED 
C ONLY AT THE STARTING POINT AND SLOPE CALCULATED 

IF (N.GE.2) GO TO 210 
WICltNK•J>=WI<l,NK•J>+DK(l) 
GO TO 120 

210 WICltNKtJ)=WS(l,NKtJ) 
IF CN.GE.3) GO TO 220 
WIC2tNKtJ)=WI<2tNK,J)+0K(2) 
GO TO 120 

220 WI<2tNKtJ)=WSC2tNKtJ) 
DO 150 NN=2t3 
M=NN-1 
DF(M,J>=<F<NNtJl-F<ltJ))/DK(M) 

150 CONTINUE 
AM<NK>=DF<2•J)/DFCltJ) 

120 CONTINUE 
WRITE (6,4) CDF<MtJ>•M=lt2) 

4 FORMAT ClH0,1Xt2Fl5.8) 
270 WRITE (6,3) F<ltJltFC2tJ)tFC3tJ) 

I 

3 FORMAT <1HOt5XtFl5e8t5XtFl5e8t5XtFl5e8) 
WRITE (6t5) AMCNK) 

5 FORMAT (lH0tl0XtF20.9) 
F<4•l>=F<l•l> 
FACTR=leO 
J=J+l 
N=4 
L=l 
IC=l 
WICltNK•J)=WS<l•NKtl)+FACTR*FLOAT<L)*DW 
WI<2•NKtJ>=WS<2•NK•l>+FACTR*AMCNK>*FLOAT<LJ*DW*50eO 
AC1)=8.55+WI(2,NK•J> 
A(2)=404.46+8.55*WIC2tNKtJ) 
A(3)=220.48+404.46*Wl!2tNKtJ) 
A(4)=24.0+220.48*WIC2tNKtJ)+900.0*WI(2tNK•J)/Wt<ltNKtJ) 
A(5)=924.0*WIC2tNKtJ)+720•0*WIC2tNKtJ)/WI<l•NKtJ) 
AC6)=720.0*WIC2tNKtJ) 

C SOLUTION OF SYSTEM DIFFERENTIAL EQUATION IS OBTAINED AS BEFORE 
C INITIAL CONDITIONS 

YICl>=O.O 
YIC2)=0.0 
YIC3>=0.0 
YI(4)=0.0 
YIC5)=0.0 
YIC6>=900.0*WI<2tNKtJ)/WICltNKtJ) 
YIC7)=900.0*CWI<2•NK•J)/WICltNKtJll*<WI(ltNKtJl-WJ(2•NKtJ)-7e75) 
CALL RUNGE<DEQSETt7tl00t0•024tYitYSOLNl 
DO 160 KK=ltlOO 

160 SCNtJtKK)=YSOLN(ltKK>*<l.O-YSOLNC2tKK>>*Cle0-YSOLNC2tKK>> 



F<N,J)=O.O 
DELT=0.024 
DO 11'0 KK=lt99 
LL=KK+l 
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170 F<N,J>=F<N•J)+S<NtJ,KK>*DELT+0.5*DELT*CSCNtJtLL>-SCNtJtKK>> 
IF ((F(4,J)-F(4,J-1>>.GT.o.o> FACTR=-1.0 
IF ((F(4,J>-F<4•J-ll>.LT.O.Ol FACTR=leO 
WI<l•NKtJ)=WS(l,NKtll+FACTR*FLOAT(Ll*DW 
WI<2•NKtJ)=WSC2tNK•l)+FACTR*AM<NKl*FLOAT(L)*DW*50eO 

240 WRITE (6,7) (WI !MtNKtJ) tM=lt2hIC 
7 FORMAT <1H0t5XtFl5e8t5XtFl5e8,I5l 

A(l)=8e55+WI(2,NK,J} 
A(2)=404.46+8.55*WI(2,NK,J) 
A(3)=220.48+404.46*WI(2tNKtJ) 
A(4)=24.0+220.48*WI<2tNK,J)+900.0*WI(2tNK•Jl/WI<ltNKtJ) 
A(5)=924.0*WI(2,NKtJl+720eO*WI<2•NKtJ)/WI(ltNKtJ) 
A(6)=720.0*WI(2,NK,J) 

C SOLUTION OF SYSTEM DIFFERENTIAL EQUATION IS OBTAINED AS BEFORE 
C INITIAL CONDITIONS 

YI<U=O.O 
YI(2)=0.0 
YI(3l=O.O 
YI(4)=0.0 
YI(5)=0.0 
YI<6>=900.0*WI<2,NK,Jl/WI<l,NK,Jl 
YI<7l=900.0*<WI<2•NK,J)/WI<l•NKtJl>*<WICltNKtJl-WIC2tNKtJl-7e75) 
CALL RUNGE<DEQSETt7tl-00t0.024,YitYSOLN> 
DO 180 KK=l•lOO 

180 S<N,J•KK)=YSOLN<ltKK>*Cl.O-YSOLN<2•KKl)*(l.O-YSOLN<2•KKl) 
F(N,J>=O.O 
DELT=0.024 
DO 190 KK=lt99 
LL=KK+l 

190 F(N,J>=F<N,J>+S<N•J•KKl*DELT+0.5*DELT*CSCNtJtLLl-SCNtJtKK)J 
WRITE (6,9) F<N•J) 

9 FORMAT (1H0t40X,F15.8) 
DPHI<Jl=F(4,J)-F(4tJ-l) 
IF <DPHICJl.GT.OeOl GO TO 230 
J=J+l 
L=2*L 
IC=IC+l 
WI<l•NK•Jl=WICltNKtJ-ll+FACTR*FLOAT(Ll*DW 
WI<2,NK,Jl=WI<2•NK,J-ll+FACTR*AM(NKl*FLOAT<L>*DW*50eO 
GO TO 240 

230 J=J+l 
NK=NK+l 
DW=0.0001 
WI<l•NK•J>=(WI<l•NK-l•J-l)+WICltNK-ltJ-2Jl/2.0 
WI<2•NK,J>=<WI<2tNK-ltJ-ll+WIC2tNK-ltJ-2)J/2e0 
A(1)=8.55+WIC2tNKtJl 
A<2>=404.46+8.55*WIC2;NKtJ) 
A(3)=220.48+404.46*WIC2tNKtJ) 

http:F(4,J>-F<4�J-ll>.LT.O.Ol


A(4)=24.0+220.48*WI<2•NKtJ)+900.0*WI<2•NKtJl/WICltNK•J) 
A(5l=924.0*WIC2tNKtJl+720eO*WI<2•NKtJ)/WI(ltNKtJ) 
A(6l=720.0*WIC2,NKtJl 
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C INITIAL CONDITIONS 
YI<l>=O.O 
YI(2)=0e0 
Yl(3)=0a0 
Yl(4)=0.0 
YI<5>=0.0 
YI<6>=900eO*WI(2tNKtJl/WI(ltNK•J> 
YI(7l=900.0*<WIC2tNKtJ)/WIC1tNKtJll*CWI(ltNKtJl-WIC2tNKtJ)-7•75) 
CALL RUNGE<DEQSETt7t100tOe024tYitYSOLNl 
DO 300 KK=ltlOO 

300 S(NtJtKKl=YSOLNCltKK>*<l.O-YSOLN(2tKK))*<1.0-YSOLNC2tKK)l 
F<NtJ)=O.O 
DELT=0.024 
DO 310 KK=lt99 
MM=KK+l 

310 FCNtJ)=F<N•Jl+SCNtJtKKl*DELT+0.5*DELT*<S(N,JtMMl-S(NtJtKKl) 
IF (F(4,J>.LT.F<4,J-2ll GO TO 400 
WI<l•NKtJ)=WI<ltNK-ltJ-2) 
WI<2•NKtJ)=WIC2tNK-l•J-2) 

400 IC=l 
IF (NK.EQ.2) AMC2l=-l.0/AMCll 
IF (NK.EQ.3l AMC3l=(CWI<2•3•Jl-WI<2•1•1))/(WI<1•3•J>-WICltltl))) 
IF (NK.EQ.4) AMC4)=-l.O/AM(3) 
IF <NK.EQ.5) AM(5l=AMl3) 
IF <NK.EOa6l AMC6l=<<WI<2•6tJl-WI<2•4•1))/CWI<1•6•J>-WI<l•4•1>>> 
IF (NK.EQ.7) AM<7>=-le0/AM<6> 
IF <NK.EQ.8) AM(8)=AM(6) 
IF (NK.EQ.9) AMC9l=<<WI<2•9•J>-WI<2•7•1))/CWJ<1•9•J>-WIC1t7tl))l 
IF <NK.EQ.10) AM<l0>~-1.0/AM(9) 
IF (NK.EQ.11) AMClll=AM(9) 
IF CNK.EQ.12> AM(12>=C<WJ<2•12•J>-WIC2tl0tl)l/CWIC1•12•J>-WICltl0 

1 ' 1 ) ) ) 
IF (NK.E0.13) AM<l3>=-1.0/AM<12) 
IF INK.EQ.14) AMC14l=AMC12l 
IF CNK.EQ.15> AM<l5l=CCWI<2•15•J>-WIC2tl3tl))/(Wl(ltl5tJ)-WICltl3 

1 ' 1 ) ) ) 
IF CNK.EQ.16) AM(l6l=-l.O/AMC15) 
IF <NK.EQ.17) AMC17>=AMC15) 
IF <NK.EQ.18) GO TO 250 
WSCltNK•l>=WICltNKtJ) 
WSC2tNK•l)=WIC2tNKtJ) 
GO TO 260 

250 CALL EXIT 
END 

$IBFTC QRUNGE 
SUBROUTINE RUNGE<DEQSET•NDEQtNVALtHtYitYSOLN> 

c 
C RUNGE-KUTTA SOLUTION TO A SYSTEM OF SIMULTANEOUS lST-ORDER DIFF-EQNS. 
C NDEQ• THE NUMBER OF EQUATIONS• MUST NOT EXCEED 10 

http:NK.EQ.18
http:NK.EQ.17
http:CNK.EQ.16
http:CNK.EQ.15
http:INK.EQ.14
http:NK.E0.13
http:CNK.EQ.12
http:NK.EQ.11
http:NK.EQ.10
http:NK.EQ.3l
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C NVAL• THE NUMBER OF POINTS AT WHICH SOLUTION IS DESIRED• INCLUDES XO. 
C H IS THE STEP LENGTH FOR T~E INDEPENDENT VARIABLE. 
C YI IS THE ARRAY OF INITIAL VALUES OF THE FUNCTIONS• 
C YSOLN• DIMENSIONED (NDEOtNVAL)t CONTAINS THE SOLUTIONS IN THE ORDER 
C IN WHICH THE DEPENDENT VARIABLES ARE DEFINED IN SUBRTN-•OEQSET• 
c 

DIMENSION YI(7)tYSOLN<7•100)tA(6) 
DIMENSION YY<lOlt YDOT<lO)t YDEL(l0) 
COMMON A 
DO 1 I=ltNDEQ 

1 YSOLN<Itl) = YI<I> 
DO 2 J=2tNVAL 
DO 3 I=ltNDEQ 

3 YY(l) = YSOLN<I•J-1) 
CALL DEQSET<YDOTtYY) 
DO 4 I=ltNDEQ 

4 YDEL(I) = YDOT<I> 
DO 5 KTIMES=lt2 
DO 6 I=ltNDEQ 

6 YY(J) = YSOLN<I•J-1) + YDOT<I>*H/2e 
CALL DEQSET<YDOTtYY> 
DO 7 I=ltNDEQ . 

7 YDEL<Il = YDEL<Il + 2•*YDOT(l) 
5 CONTINUE 

DO 8 I=ltNDEQ 
8 YY<I> = YSOLN(I,J-1) + YDOT(l)*H 

CALL DEQSET<YDOTtYY) 
2 CONTINUE 

DO 9 I=ltNDEQ 
9 YSOLN<ItJl = YSOLN(I,J-1) + CYDEL<I>+YDOT<t>>*H/6e 

RETURN 
END 

$lBFTC FUNCl 
SUBROUTINE DEQSET<YDOTtYY> 
DIMENSION YY(7ltYOOTC7ltA<6> 
COMMON A 

C EQUATION FOR THE INDEPENDENT VARIABLE• INITIALLY ZERO 
YDOT<l>=leO 

C SYSTEM EQUATIONS 
YDOT(2)=YY(3) 
YDOT(3)=YY<4) 
YDOT(4)=YY(5) 
YDOT<5>=YY(6) 
YDOT(6l=YY<7) 
YDOT<7>=A(6)-A(6)*YY<2>-A<5>*YYC3l-A(4)*YYC4l-A(3)*YY(5}-

1AC2l*YYC6)-A(l )*YY<7> 
RETURN 
END 

$lBSYS 



Continued and scale invariant partan programs arc slightly 

different to one given here. The difference lies in the different 

value of slopes taken in each case. 

I 
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