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| One of the two basic philosophies underlying adaptive control is
that the transfer function of the plant must be first determined and then
the values of an adjustable controller varied for optimizing a given
index of performance. The process of identifying the plant characteris-
tics is popularly known as Identification Problem and constitutes a
major problem in the realization of an adaptive system of this type.

The other philosophy is that a complete knowledge of the plant
is not necessary for the optimum adjustments of the parameter of control.
The system is caused to measure its own performance against d‘figure of
merit and drives its performance towards optimum. This approach is
becoming popular because of the many difficulties associated with the
identification problem and a number of "hill climbing" techniques.have
been proposed based on this philosophy.

In this thesis, three such techniques (steepest descent, conju-
gate gradients and parallel tangents) have been analysed with a view to
determine the most efficient and quickest way to determine the parameters

of a controller for optimum performance.
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CHAPTER 1

INTRODUCTION

The essential feature of everyautomatic control system is feed-
back. Application of fecedback techniques has enabled man to construct a
large variety of automatic control devices by which he can control
physical phenomena in a desired fashion. These systems, however, have
shown a most significant limitation: They perform a particular task
under desired or anticipated operating conditions; should the operating
conditions change, they show/restricted compatability. As a matter of
fact, when the parameters of the devices to be controlled are invariant,
and when the operating characteristics of the controller elements can be
expected to be unchanging, even feedback may be unnecessary . The feed-
back is usefﬁl because it enables a specified level of automatic control
performance to be maintained despite small changes in the controlled
parameters, but when such changes become iarge the performahce of the
system deteriorates. |

The last decadg has been noticeable in the field of automatic

control system for the development of the concept of adaptive control

or control in which the system is capable of modifying its own para-
meters so as to remain efficient despite the changes in the environments.
Adaptation to unpredictable conditions is in fact one of the basic
requirements of a control system. This problem has certainly long been

1



recognised, but until recently not enough work was carried out in this
direction. The growing interest in the field of adaptive control is
evident from the numerous papers published in the last few years [1],
2], [3], [4], [s], [6], [7], [8]. Current interest in the adéptability
of a control system is the result of progress being made in space,
nuclear and other complex industrial technologies, where an attempt has
been made to overcome the limitations of conventional design philosophy
and meet the higher performance reguirements.

There are two basic approaches underlying adaptive control. One
is that the transfer function of the plant must be first determined and
then the values of the parameters of an adjustable controller can be
obtained for optimizing a given index of performance or figure of merit.
The process of determining the characteristics of the plant is called
"plant identification' and constitutes a major problem in the realization
of an adaptive system of this type.

The other philosophy is that a complete knowledge of the plant
to be controlled is not necessary for the optimum adjustments of the
parameters of the control. The system is caused to measure its own
performange against a figure of merit and drives its performance towards
'optimum. A number of'hill-climbing techniques' based on this philosophy
have been proposed [9], [10]. This approach is becoming popular [11],
[12] because of the many difficulties associated with the identification
problem.

In this thesis, a very important aspect of adaptive control
without identification is investigated. This is: how quickly can the

variable parameters of the controller be adjusted in order to optimize



the performance of the system. Some of the optimizing techniques pro-
posed in the past few years have been analyzed in the preseht work with
a view to find thc most efficient and quickest way to determine the
parameters of a controller for optimum performance. The optimization
calculations in this work have been carried out on an IBM-7040 computer

using WATFOR and IBM compilers.



CHAPTER 2

THE CONCEPT OF ADAPTIVE CONTROL

2.1 INTRODUCTION:

With the progress being made in space, nuclecar, and other
industrial technologies, there is a growing need for automatic control
systems which are capable of changing their own parameters in order to
remain efficient in spite of large changes in their environments.
Adaptive control has been viewed as the instrumentation realization of a
prime characteristic of the numan being in a control task. This has led
to a good deal of work during the past few years on adaptive control
systems.

In the literature on adaptive control systems one finds that
different research groups havé used their own terms and definitions,
many of them overlap each other, A gcnerél scheme of classification of
‘adaptive control systems has been proposed.by Sinha [}3], which clarifies

the confusion created by the different overlapping definitions.

2.2 DEFINITION OF ADAPTIVE CONTROL:

Control systems can be divided into two main classes: adaptive
and non-adaptive. Adaptive control systems may be defined as those
which are capable of modifying their own parameters with changes in
environments in ;uch a manner that their performance is optimized on the
basis of a proscribed criterion. Non-adaptive systems do not have this

facility. 4



The changes in the environments of a control system can be
either in the statistical properties of the input or in the plant dyna-
mics, or both. Whenever such changes take place they hust be identified
and the corresponding compensatory adjustments made in the controller
forvthe optimum operation.

Figure (1) shows the block diagram of an adaptive control system.
All adaptive control systems perform some of the following operations
measurement, identification, determination of optimum control strategy

and modification of the controller.

2.3 IDENTIFICATION PROBLEM:

Most control systems/ consist of two sub-systems: plant and
controller. The plant is considered to be the mechanism to be controlled
and has little design freedom in most cases. The controller is that
part of the system which is designed with a view toward making the
entire system work properly. Evidently the success with which a given
plant can be controlled in a desired fashion depends on how accurately
its dynamic characteristics are known. The basic control system in its
simplest form is shown in Figure (2). Knowing the plant transfer
function, any desired input-output relationship can in principle be
obtained by designing a.controller with transfer function Gc(s) E—%Ejn
Gc(s) represents the desired transfer function. This approach fagls in
almost all the cases, becuase
(i) Gp(s) is varying during the course of normal operation.

(ii) Gp(s) is not accurately known in advance of design.

(iii) Gp(s) is non-minimum-phase.
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To overcome these difficulties, the concept of feedback was
introduced. This is shown in Figure (3). Such an arrangement can over-
come the problems mentioned above only if the overall transmission is
independent of Gp(s).

The overali transfer function is now:
Gc(s) Gp(s)

1+ Gc(s) Gp(s) H(s)

For overall transmission to be independent of Gp(s), we should have:

Gc(s) Gp(s) H(s)| >> 1

This condition reduces the oyerall transfer function to = 1 .
/ H(s)

Unfortunately this condition cannot be fulfilled over a wide range of
frequencies due to considerations of stabilify and unavoidable random
noise. 1In either case, if the plant to be controlled is quite large, or
if the control system is to reach optimum performance, it is desirable
that the design of the controller be based upon as much knowledge of the
process dynamics as poésible.

The identification problem, i.e., the processvof characterising
the plant dynamics is a major problem in adaptive control systems. A lot
of work has been done during the recent years and a detailed account is

presented in reference [4].

2.4 DIFFICULTY OF IDENTIFICATION:

The general identification problem involves the use of measured

data for the determination of certain unknown parameters. The study of
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identification in effect demands an answer to such questions as:

(1) What ways are available for characterising the process dynamics?

(ii) What signals (if permissible) are allowed to determine such
characteristics?

(iii) How should,data from such excitations be processed to obtain the
desired characteristics of process dynamics?

(iv) What accuracy can be anticipated?

Unfortunately, the present state of the art of engineering analysis and
design can not answer these questions compietely, although considerable
research work has been done in this fiéld.

The process to be identified may, in general, be non-linear and
time varying with multiple i;puts and outputs. The difficulty of
identification depends mainly upon whether the process is linear or non-
linear; it is usual to assume that the given process is linear
in this regard the designer cannot help; given a process he has no
other choice but to assume the process to be linear and then establish
the nature of non-linearities. It is also assumed that the process is
time invariant. Accordingly, success in identification depends upon how
correct these assumptions made at the outset are. A single input and a
single output is another common assumption. It can be said that research
‘efforts in this area have been made on a restrictive basis because of
the amount of the work involved in identification.

From a practical point of view, any identification should meet

the following requirements:

(1) identification should be made in the presence of normal operating
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signals and noise disturbances,

(ii) any test performed on the process must not unduly distrub the

normal operation.

~$hese conditions, in effect, do not allow a direct application of an
external signal or removal of the plant during the test. Another consi-
deration which demands attention is that identification must be made
quickly if it is to have any use in the adaptive control system. By
their very nature, adaptive systems demand quick solution of the identi-
fication problem and it is seldom possiBle to allow long time intervals

merely for the process dynamics to be identified.

2.5 ADAPTIVE CONTROL WITHOUT IDENTIFICATION:

Because of the numerous difficulties mentioned above, another
approach [11], [12] has become popular during the recent years. This
approach does not demand the identification of plant dynamics and the
system can be made‘adaptive on the principle of performance measure,
wherein the need for controller adjustment is detected through a measure-
ment of the system performance. A very good example of an adaptive
system without identification is a pilot flying an airplane. The pilot
is constantly identifying the plane's bchaviour without doing so in terms
of coefficients of a differential equation or transfer function. What the
pilot senses is simply the current performance of his plane élong with
its current sensitivity to the control action to adjust the current
performance to the desired performance. Because the human pilot is an

excellent adaptive system (within his limitations and speed), the
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research efforts havé beenidirected to lie along lines characterising

his operation. This gives rise to three basic constituents of the

adaptive principle:

(i) The definition of an optimum condition of operation or a figure
of merit.

(ii) The comparison of the actual pérformance with the desired
performance.

(iii) The adjustment of the system in order to drive the actual

performance towards the desired performance.

The firsﬁ.quantity is the designer's decision, and the remaining two are
automatic operations to be accomplished‘by the system.

This approach aiso overcomes the many imperfections of the
conventional design philosophy. Present conventional procedures for
automatic control systems are, in the language of a"psychologist;
completely structured. That is the system can only cope with problems
foreseen and allowed for by the designer. Also, it is almost essential
to have the controlled variable directly available for measurement and
manipulation in order to have the desired control. In adaptive control
systems, the designer provides the system with a means of continuously
monitoring its own performance in relation to a given figure of merit
and a means of adjusting the variable parameters so as to reach the
desired optimum, rather than ofganisihg the system to meet anticipated

inputs and parameter variations.

2.6 THE FIGURE OF MERIT OR PERFORMANCE CRITERION:

Perhaps the most important aspect of the overall performance of
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adaptive control is the figure4of merit against which a system measures
its performance. This choice is made by the designer and consequently
the final response of the system ¢an.be no better than the criterion. The
performance of a system is generally a function of stability, sensiti-
vity, accuracy and transient response, etc. The exact specifications
’arc'dictated by the required system performance. Certain characteristics
are more important in some systems than the other. Transient response
is by far the most important attribute of all the physical systems and
designers of such systems are oftéﬂ faced " with the problem of optimizing
the transient behaviour. Various criteria have been put forward in the
past decade but unfortunately most of them are either impractical,
incomplete or designed to solve a very specific problem. Transient®
response characteristics are usually defined on the basis of a step
input. Graham and LathrOp [14] have developed several performance cri- -
teria for optimizing the transient response. These criteria resolve the
-conflict that exisfsvbetween rise time, peak overshoot and settling time.
Of the different criteria discussed in[}4j, integral of time-multiplied
absolute-value of error J:Ieltdt (ITAE) and integral of time multiplied -
o

square of error Joezt dt (ITSE) appear to be most suitable. ITAE has been
extensively used and yields good results because of its selectivity and
ease of mechanisation on an analog computer. ITSE appeérs to be equally
reliable, though it has not been employed as much as iTAE.

While ITAE and ITSE are fairly reasonable performance criteria
on any objective and operational basis, they require considerable compu-
tation. Also it is to be noted that these performance criteria appear

to be insensitive over a wide variety of applications--nevertheless it
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is not always so. In any given system there is always the possibility
of improving its performance by the measurcment of performance criterion
and systematic adjustment of thé adjustablevparameters.

Use of integral criterion as a figure of merit in adaptive
systems has another important drawback. The performance criteria like
ITAE or ITSE can affect the stability of the system. This follows from
fhe fact that in real system it would not be possible to measure the

I
performance ITSE ( Joez t dt) because this requires integration over an
infinite interval of time. A recal measurement would be a truncated form
of ITSE where the upper limit of the integral would be T. T is taken to
be reasonably large--about four to five times the largest time constant
present in the system. Also), almost all the optimization techniques
require the determination of partial derivatives of the performance
criterion with respect to adjustable parameters. The adjustment of the
controller parameters depends on the partial derivatives and therefore
there is a definite time lag of T units in the adjustment for each
variable parameter (since partial derivatives can only be determined
if the value of performance criterion is known). This can cause some
instability if the plant parameters have changed in the mean time. ‘This

will be dealt with in more detail in Chapter 3.

2.7 RESPONSE SURFACE:
The problem of maintaining the system response at an optimum is
one of adjusting a set of controller parameters. If there are more than

one parameter to be adjusted as is the usual case, the problem of
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optimization becomes n dimensional. Each of the paramcters tb be
adjusted may be thought of as defining a dimension in an n-fold
optimizing space. Contours of épnstant performance criterion or

figure of merit exist in this space. Such a presentation for two
dimensional case is shown in Figure (4). A point which represents

the settinngf the adjustable parameters is to be moved across these
contours towards the optimum, which-is the minimum value of figure of
merit. The nature of the responsé surface plays an important part in
the method employed to obtain the optimum. A particular method may not
work properly if the response surface is not regular. Therefore, it is
not wrong to say that half the battle is won if a proper figure of merit
is chosen which gives a regular response surface. Ideally the best
figure of merit is one which gives the instantaneous value of the per-
formance measure rather than the present integral criterion, but we are
not aware of such a criterion at present.

The response surface can have more than one minimum and fhe
method of optimization may lead to a local minimum which is not the true
minimum. There is no definite solution to this pfoblem at the present
stage. The optimum obtained in a particular case depends very much on
the starting point. The problem of finding the true minimum if tﬁe
response surface is not unimodal is being studied by the people working
in the field of adaptive control and is not undertaken in the present

work.



' FIGURE 4:

X

Response surface showing constant FM contours

1 and X, are the adjustable parameters
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CHAPTER 3

OPTIMIZATION TECHNIQUES

3.1 INTRODUCTION:

A problem which arises in many ways is to find the maximum or
minimum value of a function. The most obvious application in control
engineering is in adjusting the parameters of a feedback system so as to
minimize some measure of performance of the system: this is the problem
of optimizing. Optimization occupiés an important place in the practical
world of engineering, trade ?nd even commerce.

The optimization proBlem can arise on a piant which is not as
yet built, where the design of the plant and the controller can be
varied easily to suit the desired control. This problem can equally
well arise on a plant which is built and already in operation. It is
this'class of problems that we are mainly concerned with, where the
design of fhe piant cannot be changed and access is only to the
controller parameters, which can be adjusted to make the system work in

an optimum fashion.

3.2 REVIEW OF CLASSICAL METHODS FOR OPTIMIZATION:
Until World War 2, the only mathematical methods for handling
the optimization problem were classical differential and variational

calculus. These include the well known theory of maxima and minima and
17
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calculus of variations.

The theory of maxima and minima is concerned with the problem of
finding the values of each of the independent variables X1s Xppmmmen- s Xp
at which some specified function of the n-variables F(xl, Xppmmmmmmmen , X))
reaches either a maximum or a minimum (extremum). This problem may be
interpreted geometrically as the problem of finding a point in an
n-dimensional space at which the desifed function has an extremum. This
geometrical interpretation is quite helpful in understanding the problem,
particularly when there are only two independent variables. A
representation of such a problem is shown in Figure (4). The independent
variables are X5 and X, while the dependent variable F(xl, xz) is
represented by the contour lines.

A detailed treatment is given by Leitman [15]; only the limita-
tions of this approach will be pointed out here. In its:simplest form
it is valid only if there are no constraints or, if there are, these can be
eliminated by substitution into the optimizing equation.

The calculus of variations is concerned with optimization
problem under more general conditions than those considered in the
theory of maxima and minima. This method is employed when the optimum
value of a function F is determined, not by selecting proper values for
a series of variables, but rather by finding fhe proper form of a
function which yields the optimum value of F.

The three fundamental problems in the calculus of variations are
the Lagrange, Mayer and Bolza problems. It is easily possible to trans-
form a problem of one type into either of the other two, and many optimum

control problems can be formulated as one of these three fundamental
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problems. ’Quite a few books on control theory treat these problems in
detail [15], [16], [17], [18].

‘ Finding the optimum of a function by the calculus of variations
generally leads to a two-point boundary value problem. Analytical
solutions for such problems are only possible in special cases. The
resulting Euler-Lagrange differenfial equations are usually non-linear
and numerical methods are applied to obtain the approximate solution.

The difficulty in solving cases with the constraints
makes the calculus of variations approach less attractive in finding the
optimum, but it is still employed in applied aerodynamics and flight
mechanics. Two analytical techniques have been developed during recent
years for solving problems posed in terms of calculus of variations.
One of these is Bellman's Dynamic Programming [19] and the other is

Pontryagin's Maximum Principle [20]. Their application to control pro-

blems can be found in almost all advanced texts on control theory.

3.3 LINEAR PROGRAMMING:

We have examined the classical methods for optimization and seen
their limitations. An alternative épproach, and one developed rather
recently, is to use a numerical iterative method. This has been most
successful in the case of linear systems, whefe it is called Lineér
Programming. |

A problem in linear programming consists of the’determinatidn'of
a set of parameter values (a program),_subject to given linear constraints,
and having the property of being optimal in the sense that a given linear

value function has the extremum value. The linear programming is
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applicable to well defined, linear processes and to processes which are

essentially static in nature.

3.4 HILL CLIMBING:

In adaptive control systems where identification is not conveni-
ent or desirable, we resort to techniques which optimize some suitable
function of the system such as a performance criterion. Hill climbing
techniques, as they are popularly known, are in general applicable to
any function where a number of variables can be adjusted to give it a
maximum or minimum value. Figure (4) can be interpreted as representing
a hill with the largest value of the figure of merit corresponding to
the hill top. These arguments also apply to the bottom of a valley.

The simplest way which suggests itself for solving a hill
climbing problem is to varyAeach parameter in turn. For example, if we
are seeking a minimum of F(xl, xz), we might vary Xy, as shown in
Figure (5) until no further improvement is obtained. Then we vary X,
along bc until the minimum on this line is obtained. Again we vary X1s
and in this way we reach the minimum along the path abcde. When there
are more than two paramcters to be adjusted, a minor modification in the
method described is used. Instead of varying the parameters as described

in the order X1s Xpysmmmmy X5 Xy Xoyooo-, WE evaluate every aF/axi and

P
choose to vary that X5 which gives the largest derivative. This method
is also used in Southwell's relaxation method.

The example in Figure (5) is ideal because the contours are

nearly circular. It may be pointed out here that almost any hill

climbing method will work properly when the contours are roughly
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FIGURE 5: Basic hill climbing on circular contours
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circular, and there is not much difference in efficiency between most
methods in these circumstances. A ﬁore probable response surface is
shown in Figure (6).

The contours are elliptical and the minimum is located at 'm'.
The procedure described above leads to the path abcdefgh.o...... , and

evidently the progress is slow.

3.5 METHOD OF STEEPEST DESCENT OR GRADIENT METHOD :

A better method to find the minimum than that mentioned above is
the method of steepest descent or gradient method. The basic concept is
quite simple and dates back to Cauchy. If the function to be optimized
is known, we can, in two dimensional geometric terms, simply follow the
direction of the steepest slope until the minimum is reached. To follow
this direction, we tend to move normal to the contour lines. What is
~ done mathematically is that the partial derivatives of the function
F(xl, x2) are first found. Then the direction of the steepest descent
(which is the direction defined by the gradient vector of F) is found by
computing the unit vector U with‘components

u, = 2 ¢

i ax. .
i i

(-?f-—) Yoo e, (3.1)

3x.
i

Ho~MN

1

This vector U is normal to the local contour surface. laving determined
the direction of stcepest descent at an arbitrary starting point, a step
of some length e is taken. The direction of the steepest descent is

again worked out and another step of length e is taken and so on. If e

is small and constant,a continuous path of steepest descent joining the



FIGURE 6:

Basic hill climbing on elliptical contours
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starting point to the minimum point, results. This procedure has obvious
limitations and a discrete version of steepest descent is resorted to in
practical cases. In such cases like adaptive control systems, the
function to be optimized is not known analytically and the value of this
function cannot be determined immediately after a parameter change has
been made. The discrete version of steepest descent is best illustrated
by consideriﬁg an example. vThe function to be optimized is taken as

ITSE, then:

T
2 .
F(xl, xz) = J . e (xl, x2) t dt veeeeas(3.2)
To find the value of F at any instant we have to evaluate the integral
fromt = 0o to t =T. The p%rtial derivatives of F cannot be determined
analytically, so they are obtained numerically as follows: First x, is

1
varied by an amount dx1 and aF/ax1 is estimated from:

SF F(x1 + dxl, xz) - F(xl, xz)

1 dx1 ceenee(3.3)

The other derivative is estimated in the same way. Evidently each
partial derivative requires the same length of time T to evaluate,
because the value of F(x1 + dxl, x2) is not known immediately after the
éhange in parameter Xy is made. After the estimation of partial deri-
vatives, the direction of steepest descent or gradient is found by (3.1).
Steps are then taken from an initial point in the direction of
gradient, assuming that gradient does not change, until the lowest point

on this line is found. The direction of the gradient is again computed

and steps are taken from this point in the new direction. This results
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in a discrete approximation of steepest descent as shown in Figure (7).
It can be scen from Figure (7) that progress is made by successive steps
in two directions. These directions .are fixed by the choice of starting
point "a" and may not bear any relation to the direction of any ridges
present in the response surface. If the starting point happens to be on
the side of the ridge, the method may not progress well. It may be
pointed out here that in case of two parameters, the method just
described is essentially equivalent to the method of varying each para-
meter in turn. When there are more than two parameters, successive
directions of steepest descent are normal to each other, but n successive
directions are not necessarily mutually orthogonal. Thus, when there
" are more than two parameters, the method is not equivalent to the
method of varying one parameter at a time.

Thus far, we have not included constraints. The presence of
constraints is a difficult complication. The inclusion of constraints
is treated in detail in reference [17]. There are many modifications to
thg method of steepest descent; the two most commonly employed are due
to Booth [21] and Rosenbrock [22]. These modifications usually give
some improvement but difficulties still persist.

The method of gradients is usually employed in most optimization
?roblems. As pointed out before, this requires knowledge of partial
derivatives which are impractical for analytical determination. They are
more commonly determined by the use of equation (3.3). This numerical
‘evaluation is not as simple as it might appear.

The choice of dx1 in equation (3.3) must be a compromise

between two conflicting requirements. If dx1 is too large, equation



FIGURE 7:

Continuous and discrete steepest descent paths
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(3.3) will not give a correct estimate of the partial derivative; on
the other hand if it is too small, the derivative will be almost zero.
The magnitude of dx1 taken depends on the ingenuity of the designer,
however, it is usual to take it as 1% of the parameter in most
applications [7].

Narendra and Streeter [}2] have suggested an alternative
approach for calculating the partial derivatives using correlation
techniques, when the unidentified plant is subject to a random input.
This technique shows promise, but enough work has not been done yet
employing it.

It has been practically demonstrated that some optimization techni-
ques, which are otherwise ,good, may not work as efficiently as a
particular method for a particular problem. Even with hill climbing
techniques, some modifications work better than others. This is because
oflthe fact that most modifications have been found by emperical ekperi—
ment, and theoretical guidance on the fundamental problem is lacking,
apart from one or two elementary results [1?]. There has been no
general method which will work reliably in the majority of circumstanées.

Most of the work in optimization has been done on a theoretical
basis, optimizing functions which are seldom encountered in practice.
In adaptive control systems, we optimize functions like ITSE and ITAE,
etc., but very little work has been déne in this area. The next two
Chapters are devoted to the investigation of two recently developed
methods, namely: |
(i) Method of conjugate gradients.

(ii) Method of parallel tangents.
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It is claimed that these methods are more or less general for most
applications. These are applied to optimize ITSE criterion in an
adaptive system and to a highly realistic theoretical function. In

both the cases, the optimization is carried out in two dimensions.



CHAPTER 4

METHOD OF CONJUGATE GRADIENTS

4.1 INTRODUCTION:

The problem of finding an optimum of the performance criterion F
constitutes a major problem in the design of adaptive control systems.
Where the plant identification is not convenient, the function F is an
observable response depending on variables X5 Xos cmens X under the
control of the designer. As mentioned in Chapter 3, the derivatives in
such cases are determined numerically andviterative methods are employed

/

in which one starts with a frial solution and obtains successive improve-
ments..—. . In the past few years several promising minimization
techniques have been developed. Important among these are Fletcher and
Reeves,{?s] adaptation of the conjugate gradient method of Hestenes and
Stiefel [?4] and the parallel tangent method of Buehler, Shah and
Kempthorne [?5].

The method of conjugate gradients is based on an elegant n-step

iterative procedure for solving a set of linear equations:
Ax = K Ceesreaneans 4.1)

where A is an n x n symmetric positive definite matrix of coefficients,
X is an n x 1 vector of unknowns and K is an n x 1 vector of constants.
Starting from a trial solution, an algorithm is applied to give succes-

sive approximations to the solution and, if the computations are carried
29
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out with complete accuracy, a solution is obtained (where it exists)
after m iterations where m < n (the order of the system).

The method of conjugate gradients is a special case of the
method of conjugate directions. A complete treatment of the method of
conjugate graéients is given by Hestenes and Stiefel and by Beckman[26].
A brief account is given here.

It is assumed that a solution vector '"h'" of the system Ax = K
exists. Let us suppose that a set of n "A-conjugate', or "A-orthogonal”
vectors P;» i=0,1, ____, n -1, is available. This makes the inner
product <A P;» pj> = 0 where i # j. If A is positive definite, then
<A P;j» P3>> 0. In this case, since the p; are necessarily independent
and span the n-dimensional space, the solgtion vector h can be written
as:

h = CoPo * S1Pp * ------- +cC

The solution is readily known if c; are known. c; can be

determined as:

<Ah, p;> = <K, P> = ¢ <Api, p;>
<K, pi>
which gives . T T
Pi» Pj
<K, p > <K, p,>
and > Yo T Tl
hs — P * — ¥ ecm——————
<Apys Py <APy» Py
K, p >
________ . n-1 p
_ n-1
“AP-1? Pn-t”
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In the method of conjugate gradients a particular set of "A conjugate"
vectors p. is developed and a solution found in terms of these. The same
arguments apply to the minimization of a positive definite quadratic
function of n variables in n steps. The method of conjugate gradients

is a modification of the classical method of steepest descent which tells
us that starting from a point x, on the surface of an ellipsoid F(x) =
constant in n-dimensional space, the greatest instantaneous reduction in
F(xo) is achieved by travelling from X, in the direction of the

gradient. In the method of conjugate gradients further improvement is

introduced by generating directions Pys Ppr---=- , such that Pi. is a

1
linear combination of 8541 (gradient vector) and Py>» Pys-=----s P; SO
that the A-orthogonality condition <Api, pji =0 fori #j is

satisfied.

4,2 GENERAL ALGORITHM OF CONJUGATE GRADIENT METHOD:
The above treatment leads to the following algorithm. Let X, be
an arbitrary starting point to the solution. Then the following

formulas define the fundamental conjugate gradient iterative procedure.

X, = arbitrary —
g, = g(xo), g represents the gradient.
Po = "84
je1 = position of the minimum of F(x) on the
line through" Xy in the direction of P, :> (4.2)
gi+1 = g(xi+1)
g2
Bi = 545+1
g%

Pie1 = “8541 * B3Py | _J
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It has been claimed [23] that this procedure locates the minimum of a
positive definite quadratic function of n variables in at most n
iterations (apart from rounding off errors etc.). For other functions
like performance criterion of control system etc., which may not be
quadratic and linear, this procedure is iterative rather than n step.
It is clear from the procedure (4.2) that setting Bi = 0 results in the
method of steepest descent. In applying the procedure (4.2) to general
functions, the following points demand consideration.
i) The Choice of Starting Point X,

For quadratic functions any choice of starting point is in
principle equally satisfactory. But is is not true for general
functions. For practical purposes, that starting point would be -

considered best which leads to the minimum as quickly as possible.

(ii) The Line Search:

Starting from X5 the approximation x. , is obtained by

i+l
travelling a certain distance along the vector Py The distance
travelled is such as to minimize the function F(x). To find the best
point on this line, different fits have been put forwards. Buehler, Shah
and Kempthorne [?7] have used quadratic interpolatioﬁ whereas Fletcher
and Reeves suggest cubic fit. We have tried linear interpolation for

simplicity. There is no doubt to the fact that better results and lesser

iterations are obtained using quadratic or cubic interpolation.

(iii) The Convergence Criterion:
The iterations should stop if any of'gi is zero, because at

the minimum all g should vanish. This, however, does not happen
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because of round off errors. The more appropriate criterion is that
iterations should stop when there is no considerable reduction in the
value of the function. The convergence criterion depends on the choice
of the designer and in particular cases it may well be possible to use
some less stringent criterion. |

These points are treated in detail by Fletcher and Reeves [23].

4.3 METHOD OF CONJUGATE GRADIENT APPLIED TO BEALE'S FUNCTION:
In order to investigate the performance of the method of
conjugate gradients in case of general functions, a two dimensional

example given by:

M
=

/
F(xl, xz) =
. i

[~
L]

i
¢, - xl(l - X, )

(cl, Cys c3) (1.5, 2.25,.2.625)

is selected. This function is non-quadratic and non-linear and was
selected by Beale [27] as a particularly awkward one. It has a minimum
of zero at (xl, x2) = (3, 0.5). Some contours ére shown in Figure (8)
The choice of scales in Figure (9)is suitable for graphical representa-
tion and yields better results since steepest descent, and its modifi-
cations like conjugate gradients are scale dependent. It has been
observed that better performance reéults when the choice of scales is

such that change in one variable is of the same order as that in the

other.
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FIGURE 9: Contours of Beale's Function

The choice of scales shown here is used in numerical example.




36

Four starting points are tried with choice of scales as in
Figure (9). For each starting point, the method of steepest descent is
also applied in addition to conjugate gradient method. The results are
.shown in Tables4 .1-8.The calculations were carrie'd out on an IBM 7040
using WATFOR compiler which is limited in the memory to half that of an
IBM compiler but is ten times faster than the IBM compiler. Typical
running time for 30 iterations was 40 to 60 seconds.
The computational details are similar to those employed by
Buehler, Shah and Kempthorne[26¢] and are given below:
First iteration from any starting point xo(xl, xz) is achieved by
travelling in the direction Py along a line with a prescribed slope mys
where P, = -m,- This line search involves the following steps:
Find F(xo)

Change Xy byAAx1 (the choice of Ax1 is usually small and

Ax1 IO-K where K = 4, 5, or 6. In the present case study K = 4) and

sz 'mAx1

Find F here and check A¢<o
Proceed along this line successively doubling the step size until A¢>o0.
Estimate the minimum point on this line by a linear interpolation to the

last two F-values.
From X4 this process is repeated until g; approach zero or not much

reduction is obtained in the value of F, but the line searches are made
2

in the directions Pise1 = M4 = BiP; where B, ="i+1 . For steepest
2

m.
1

descent the method is identical to the one above with Bi = o. The slopes
aP/ax2
3F7ax1

in this case study were determined analytically as m, =
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The flow chart and some = computer programs are given in Appendix

4.4 METHOD OF CONJUGATE GRADIENTS APPLIED TO A)EONTROL SYSTEM:

' To further study the behaviour of the méthod of conjugate
gradients on practical functions, a system suggested by Gibson E@is tried.
The system is shown in Figure (10). The performance criterion or figure
of merit (FM) is ITSE. This performancevcr{terion has the desirable
features of realibility and selectivity like ITAE and has been recom-
mended for use by.Gibson. This system has fairly nice response surface
with closed constant FM contours in the stable region of wy and Wy
Like Beale's function it is a two-dimensional problem. The performance
criterion ;TSE has a minimum/ of 0.01870 at (Ql,wz) = (0.36, 17.0).

The whole system was first tried using the MIMIC programming [29]
language on IBM 7040. MIMIC is a programming system written for a
digital computer which, from the standpoint bf the user, seems to make
the sequential machine function 1iké an analogue computer. This pro-
gramming system has a very desirable feature of eliminating time and
amplitude scaling. Moreover, MIMIC has the provision for carrying out
hybrid calculations. It_Was found after careful consideration that
MIMIC processor was not working properly. The same trouble was
encountered by Hinchley [30].

The system was then solved on IBM 7040 using IBM compiler.
WATFOR compiler could not be used because of memory considerations.- The
_ computationél procedure is similar to the one used in Beale's function

with two differences:
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(1) The function F(wl, wz) is obtained by the use of a subroutine.
The overall transfer function is solved by breaking the sixth
order differential equation of .the system into six first order
simultaneous differcntial equations and then applying the Runge-
Kutta method of solving these.

(ii) Partial derivatives are calculated numerically by the local
examination of the response surface using equation (3.3). The
numerical evaluation of the partial derivatives demands careful
consideration and their evaluation is carried out on the factors
discusséd in Chapter 3.

Four starting points are tried in this case, also, two with the
method of steepest descent ;pplied in addition to the method of
conjugate gradient. The results are shown in Tab1e5,4.9-16. From the
results it caﬁ be seen that the method of steepest descent requires a
large number of iterations both in the case of Beale's function and
‘Gibson's system. The rate of convergence is slow and tbe number of
iterations required in a particular case depénds very much on the start-
ing point. The method of conjugate gradients secms to require more
iterations in some cases than the steepest descent, and it can be seen

that no marked improvement is obtained with this method. This is

further illustrated graphically in Chapter 6 by Figures (13-21).



METHOD OF STEEPEST DESCENT

(Starting Point X, = 5.0, x

TABLE 4.1

BEALE'S FUNCTION

?gggiilggs ! X2 Fxp, x5)
1 5.0 0.2 18.20472
2 3.36170 0.66020 0.30613
3 3.46400 0.58040 0.03054
4 3.43850 0.59108 0.01968
5 3.41299 0.59090 0.01861
6 3.41149 0.58618 0.01777
7 3.38599 0.58656 - 0.01689
8 3.38550 0.58084 - 0.01601
9 3.36640 0.02543 0.01535

10 3.36489 0.57790 0.01412
11 3.33939 0.57807 0.01379
12 3.13472 0.53822 0.00373
13 3.14102 0.53315 0.00273
14 3.12832 0.53280 0.00248
15 3.12800 - 0.52936 0.00220
16 3.11852 0.53027 0.00212
17 3.11782 0.52774 0.00195
18 3.10512 0.52792 0.00181
19 3.10662 0.52470 0.00163
20 3.10032 0.52526 0.00150
21 3.09402 0.52081 0.00134
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(Starting Point x, = 2.0, x

TABLE 4.2

STEEPEST DESCENT

BEALE'S FUNCTION

1

NUMBER OF
ITERATIONS ! X2 F(xp, x5)
1 2.0 0.2 0.52978
2 2.40950° 0.18977 0.26361
3 2.30720 0.24416 0.18940
4 2.51189 0.27235 0.13998
5 2.46080 0.30120 0.10194
6 2.87030 0.48218 0.00825
7 2.89580 0.47478 0.00201
8 2.90850 0.47326 0.00169
9 2.90840 0.47670 0.00149
10 2.91789 0.47640 0.00131
11 2.91859 0.47938 0.00116
12 2.92809 0.47907 0.00103
13 2.92760 0.48154 0.00091
14 2.93389 0.48150 0.00081
15 2.93618 0.48444 0.00070
16 2.94250 10.48384 0.00061
17 2.94359 0.48626 0.00055
18 2.94989 0.48567 0.00048
19 2.94960 0.48730 0.00042
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TABLE 4.3

STEEPEST DESCENT

BEALE'S FUNCTION

(Starting (Poin‘t X = 5.0, X, = 0.8)
?2%5?&1855 Xy X) Fxps x,)
1 5.0 0.8 0.48672
2 5.02550 0.74299 0.15853
3 5.01280 0.75840 0.13844
4 5.01330. 0.75428 0.13593
5 4.98780 0.75505 0.13516
6 4.98710 0.75245 0.13434
7 4.98080 0.75319 0.13406
8 4.97770 0.75139 0.13383
9 4.97460 0.75228 0.13358
10 4.95550 0.74863 0.13301
11 4.95240 0.75048 0.13219
12 4.91410 0.75095 - 0.13102
13 4.91380 0.74817 0.12979
14 3.68510 0.65302 0.06874
15 3.71060 0.62739 0.04243
16 3.69790 0.63203 10.03966
17 3.49320 0.61177 0.02949
18 3.50270 0.60061 0.02444
19 3.49000 0.60202 0.02367
20 3.47090 0.59295 0.02256
21 3.45820 0.59598 0.02121
22 3.04870 0.48861 0.01314
23 3.01040 0.50295 0.000020
24 3.01059 0.50262 0.000018
25 3.00950 0.50261 0.000016
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TABLE 4.4
STEEPEST DESCENT
BEALE'S FUNCTION
(Starting Point x, = 2.0, x, = 0.8)
TV
?gﬁgislg;s X W’ Fxp, X,)
1 2.0 0.8 6.27010
2 2.61430 0.27643 0.18479
3 2.46080 ° 0.32702 0.08973
4 2.56310 0.33272 0.06951
5 2.55040 0.36922 0.05525
6 2.62701 0.36813 0.04266
7 2.63010 0.39900 0.03420
8 2.68123 0.39630 0.02642
9 2.73240 / 0.43999 - 0.01878
10 2.78350 0.43136 0.01131
11 2.78340 0.44542 0.00991
12 2.80896 0.44289 0.00788
13 2.82806 0.45887 0.00615
14 2.85356 0.45531 0.00475
15 2.85246 0.46115 0.00412
16 2.87156 0.46113 0.00359
17 2.87006 0.46695 0.00315
18 2.88276 - 0.46620 0.00272
19 2.88906 0.47380 0.00236
20 2.90176 0.47194 0.00187
21 2.90486 0.47612 0.00162
22 2.91436 0.47553 0.00141
23 2.91586 0.47870 0.00124
24 2.92536 0.47835 0.00110
25 2.92506 0.48168 0.00099




TABLE 4.5
CONJUGATE GRADIENTS
BEALE'S FUNCTION

(Starting Point X

= 20, x, = 0.2)
'NUMBER OF '
ITERATIONS Xy . X Fx;, %))
1 2.0 0.2 0.52978
2 2.40950 0.18977 0.26361
3 2.39680 0.34030 0.12780
4 2.55030 0.32672 0.07468
5 2.54999 0.37574 0.05625
6 2.65230 0.36994 0.04226
7 2.65080 0.40011 0.02942
8 2.70189 0.40040 0.02408
9 2.70284 0.41762 0.01999
10 2.75394 0.41700 0.01677
11 2.75384 0.43544 0.01303
12 2.77934 - 0.43373 0.01074
13 2.77784 0.44002 - 0.01020
14 2.80334 0.43976 0.00870
15 2.80589 0.44981 0.00760
16 2.83139 0.44826 0.00638
17 2.83138 0.46100 0.00614
18 2.85688 0.45685 0.00442
19 2.85693 0.46252 0.00385
20 2.87603 0.46235 0.00337
21 2.87560 0.46744 0.00287
22 2.88778 0.46740 0.00252
23 2.88873 0.47153 0.00225
24 2.90143 6.47110 0.00197



45

TABLE 4.6
CONJUGATE GRADIENTS
BEALE'S FUNCTION
{Starting Point x1’= 5.0, X, = 0.8)
NUMBER OF .
ITERATIONS X1 X2 F(xp, %))
1 5.0 0.8 0.48672
2 5.02550 0.74298 0.15853
3 5.01920 0.75478 0.13628
4 4.71210 0.74328 0.12736
5 4.71199 0.72824 0.12090
6 4.70569 0.73517 0.11657
7 4.70800 0.73475 0.11655
8 4.70569 0.73312 0.11631
9 4.69299 0.73448 0.11582
10 4.69329 0.73197 0.11519
11 4.68699 0.73314 0.11512
12 4.68769 0.73288. 0.11511
13 4.68299 0.73102 0.11486
14 4.58069 0.72883 0.11023
15 4.58100 0.72355 0.10780
16 4.57470 0.72469 0.10743
17 4.57540 0.72424 0.10740
18 4.56270 0.72087 0.10687
19 . 4.56580 0.72233 0.10675
20 4.56110 0.72356 0.10647
21 4.56180 0.72323 0.10645




TABLE 4.7
CONJUGATE GRADIENTS
BEALE'S FUNCTION
(Starting Point x1‘= 5.0, x, = 0.2)

NUMBER OF ,

ITERATIONS x . X2 F(xps x5)
1 5.0 0.2 18.20472
2 1.72330 0.29204 1.42454
3 2.54240 0.28219 0.13321
4 2.44009 0.31363 0.10074
5 2.54239 0.31439 0.08689
6 2.59349 0.38750 0.04321
7 2.69579 0.38698 0.03234
8 2.68309 0.40522 0.02374
9 2.72140 0.40565 0.02162

10 2.72610 0.42823 0.01677
11 2.77720 0.42785 0.01253
12 2.77650 0.43780 0.01038
13 2.80200 0.43794 0.00922
14 2.80072 0.44726 0.00800
15 2.82622 0.44718 0.00666
16 2.82602 0.45398 0.00591
17 2.85152 0.45394 0.00507
18 2.85132 0.46093 0.00419
19 2.87042 0.46091 0.00362
20 2.86787 0.46377 0.00329
21 2.88057 0.46399 0.00308
22 2.88127 0.46827 0.00259
23 2.89397 0.46837 0.00237
24 2.89427 0.47356 0.00203
25 2.91977 0.47346 0.00167
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(Starting Point x

TABLE 4.8
CONJUGATE GRADIENTS

BEALE'S FUNCTION

1'= 2.0, x, = 0.8)
?gggiilggs X1 ) Fxp, %))
1 2.0 0.8 6.27010
2 2.61430 0.27643 0.18470
3 2.51199 0.32318 0.07918
4 2.49930 0.33008 0.07739
5 2.90880 0.43752 0.03055
6 3.31830 0.56714 0.01179
7 3.30560 0.57016 0.01123
8 3.30590 0.56724 0.01087.
9 3.26760 0.56567 0.00992
10 3.26750 0.55864 0.00865
11 3.25480 0.55967 0.00818
12 3.25550 0.55634 0.00796
13 3.24398 0.55709 0.00750
14 3.24260 0.55443 0.00728
15 3.21710 0.55446 0.00683
16 3.21836 0.54966 0.00605
17 3.19286 0.54909 0.00557
18 3.19413 0.54451 0.00490
19 3.17503 0.54431 0.00451
20 3.17566 0.54003 0.00409
21 3.16296 0.54078 0.00382
22 3.16265 0.53712 0.00372
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TABLE

4.9

STEEPEST DESCENT
GIBSON'S SYSTEM

(Starting Point w; = 0.41, wy = 11.0)
NUMBER OF
ITERATIONS 1 “2 Flug, vy)
1 0.41 11.0 - 0.025100
2 0.30770 11.11272 0.020940
3 0.32040 11.16241 0.020816
4 0.31410 11.21918 0.020763
5 0.33200 11.49548 0.020579
6 0.32050 '11.53123 0.020436
7 0.31420 11.64940 0.020370
8 0.32700 11.70720 0.020290
9 0.32060 11.73768 0.020250
10 0.31110 12.97310 0.019804
11 0.33660 12.97902 0.019450
12 0.33030 13.01110 0.019420
13 0.32400 13.27087 0.019379
14 0.33670 . 13.28418 0.019300
15 0.33360 13.29429 0.019290
16 0.33209 / 13.30840 0.019287
17 0.35760 14.93219 0.018938
18 0.34489 14.94100 0.018840
19 0.34560 14.93831 0.018840
TABLE 4.10
STEEPEST DESCENT
(Starting Point 9 = 0.41, wy = 20.0)
NOMBER OF
ITERATIONS wy ) Flup, wy)
1 0.41 20.0000 0.019695
2 0.37169 20.00380 0.018940
3 0.37639 19.99561 0.018920
4 0.37230 19.99545 0.018918
5 0.37609 19.99512 0.018913
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TABLE 4,11
STEEPEST DESCENT
GIBSON'S SYSTEM

(Starting point wy; = 0.31, w
NUMBER OF F(on . w.)
ITERATIONS w1 wy 1’ %2
1 0.31 20.0 © 0.026307
2 0.38670 19.97714 0.019008
3 0.37399 19.97600 0.018933
4 0.37710 19.94619 0.018928
5 0.37560 19.94452 0.018917
6 0.37549 19.94426 0.018916
/ TABLE 4.12
STEEPEST DESCENT
GIBSON'S SYSTEM
(Starting Point w; = 0.31,.(»2
NUMBER OF ' y )
ITERATIONS ©1 o) Wys Wy
1 0.31 10.0 0.022460
2 0.29089 10.51047 0.022039
3 0.31639 10.54910 0.021587
4 0.30369 10.68751 0.021475
5 0.31639 10.74097 0.021320
6 0.30369 10.91876 0.021211
7 0.31640 10.95692 0.021047
8 0.30370 11.26434 0.020880
9 0.32280 11.29986 0.020675
10 0.31650 11.34355 0.020625
11 0.34200 12.08583 0.020165
12 0.32289 12.12183 0.019951
13 0.34840 12.98325 0.019617
14 0.32930 13.00912 0.019423
15 0.33880 13.14385 0.019380
16 0.33249 13.15878 0.019342
17 0.33569 13.20049 0.019341




TABLE 4.13
CONJUGATE GRADIENT
GIBSON'S SYSTEM

(Starting Point w, = 0.31, ®
NUMBLR OF Fe )
ITERATIONS Wy ) wys @y
1 0.31 10.0 0.022460
2 0.29089 10.51047 0.022039
3 0.31200 10.54847 0.021588
4 0.30370 10.68290 0.021476
5 0.31640 10.73879 0.021323
6 0.30370 10.91204 0.021219
7 0.31640 10.94989 0.021056
8 0.30370 11.23972 0.020901
9 0.32279 11.27576 0.020701
10 0.31330 11.34033 0.020650
11 0.32599 11.42836 0.020560
12 0.31650 11.47411 0.020500
13 0.32920 11.64916 0.020368
14 0.31970 11.68465 0.020300
15 0.37079 14.21058 0.019560
16 0.34530 14.,22722 0.018997
17 0.34060 14.23486 0.018989

TABLE 4.14
CONJUGATE GRADIENTS
GIBSON'S SYSTEM

(Starting Point w, = 0.31, w
NUMBER OF y )
ITERATIONS wy @ wis @2
1 0.31 20,0 0.026307
2 0.38670 19.97715 0.019008
3 0.37400 19.97590 0.018923
4 0.37710 19.94620 0.018910
5 0.37560 19.94450 0.018909




TABLE 4.15
CONJUGATE GRADIENTS
GIBSON'S SYSTEM

(Starting Point w, = 0.41, wy = 20.0)
NUMBER OF Flo. . ©.)
ITERATIONS “1 ' ) 1’ ¥2
1 0.41 20.0 0.019695
2 0.37169 20.00380 0.018940
3 0.37640 19.99561 0.018922
4 0.37630 19.99545 0.018921
| TABLE 4.16
CONJUGATE GRADIENTS
GIBSON'S SYSTEM
(Starting Point w) = 0.41, w, = 11.0

" NUMBER OF ‘ F( )
ITERATIONS | W Wys Wy
1 0.41 11.0 0.025100
) 0.30769 11.11272 0.020940
3 0.32040 ©11.16238 0.020816
4 0.31410 11.21831 0.020763
5 0.33200 : 11.48106 0.020595
6 0.32050 11.51627 0.020450
7 0.31420 11.62939 0.020386
8 0.32690 11.68780 0.020311
9 0.32060 11.71774 0.020270
10 0.31110 12.54191 0.019921
11 0.33020 12.55330 0.019665
12 0.32709 12.57107 0.019650
13 0.32080 12.91814 0.019550
14 0.33499 ‘ 12.93340 0.019450

15 0.33040 12.94685

0.019449
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CHAPTER 5

METHOD OF PARALLEL TANGENTS

The method of parallel tangents or '"'PARTAN" as it is called, is
another recently developed iterative method for finding the minimum of a
function of several variables.

The master strategy of PARTAN is based on certain global
properties of ellipsoids. It works like the method of steepest descent
and it is possible to make it invariant to changes in the scalec of
measurements. For criterion/functions with concentric ellipsoidai
contours, PARTAN will find tﬁe optimum exactly after a fixed, small
number of iterations. DBut even when the contours are not precisley

* elliptical, the technique has desirable features,

5.1  BASIC RESULTS:

| A two-dimensional example is considered for simplicity. Suppose
F(xl, xz) has elliptical contours and PO and P2 are any two points in
the X; - Xy plane. From P2 progress is made in the direction parallel
to the tangent to the contour at P0 until an extremum of F is found.
Then the tangents at Py and Pg will be parallel, and the centre of the
system will be found at P4, the extremal point on the line through Po
and P,. This approach was first suggested by Finkel[25].. Minima are

determined on two parallel lines.
52
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For elliptical contours these minima occur at mid points of the
chords and the theorem of parallel chords asserts that thesc minima are
collinear with the centre of the ellipse. The approach can be extended

2n-4

extremum of F is found at P

to n-dimensions in which P and P2n-1 have parallel tangents and the
2n’ .

Let F now denote a function of n-variables and suppose that we
are seeking a minimum. Starting from Po, let Pl, P2, P3, ....... denote

the successive approximations, and let L be the hyperplane tangent to

the contour of F at Pi.

5.2 PARTAN ALGORITHMS:
(i) Steepest Descent Partan:
From any point Po proceed along a polygonal line, Po P2 P3
P4, ------- , for which PK is at the minimum of F on the extended line
-joining it with the preceding point. At even numbered points proceed in
the direction of steepest descent (gradient descent). At odd numbered
points, P2K+1 proceed in the direction determined by the line joining
Pok-2 and Poke1” Steepest descent partan is in fact an n-dimensional
generalization of the two dimensional procedure of two steepest descents

followed by an acceleration step. This approach was suggested by

Forsyth and Motzkin and is shown in Figure (11).

(ii) General Partan:
From any point PO progress is made along a polygonal line

Po_ P2 P3. P4 ------ , for which PK is at the minimum of F on the

extended line joining it with the preceding point. The direction of

'



FIGURE 11: Steepest Descent Partan

'SD dentoes the steepest descent path
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Po P, is arbitrary; PZPS is any direction parallel to LI thereafter,

for K

i
ot
-
(2]
-

..... , n-1, P2K+2 is collinear with P and P

2K-2 2k+1* and

for K =2, 3, __._, n-1, P2K P2K+1 is parallel to Tys Tos mmmms Top oo

The procedure is represented in Figure (12).

(iii) Scale Invarient Partan:

This is a special case of the general Partan described above.

In this case the arbitrary directions are resolved as follows: At Po
only X, is changed; at PZ’ X, and x

X, are changed and so on.

1 9 are,ch?nged; at P4, X1s X, and

An elaborate account of the method of parallel tangents is also
given by Wilde [9?]. Buehler, Shah and Kempthorne [25] have developed
certain theorems aboutvtheir/method and it has been shown by them that

if F is quadratic, the minimum is reached at P, or sooner, n being the

2n
number of dimensions. In non-quadratic or non-ideal cases, sufficient

" progress may not have been made at or before P2n' One possible remedy is
an iterated partan, in which iterations are started again with P2n
retermed as Po‘ Another obvious option in the case of steepest descent

partan is continued partan, in which one simply continues the alterna-

ting steepest descent and acceleration steps.

5.3 METHOD OF PARALLEL TANGENTS APPLIED TO BEALE'S FUNCTION:

Here again four starting points are tried with the same choice
of scale as in the case of conjugate gradients. It has been seen and
also demonstrated by Buehler, Shah and Kempthorne that the method of
parallel tangents works quite satisfactorily in a particularly awkward

situation with choice of scales as shown in Figure (8 ).
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llﬂo, T,

ARBITRARY

FIGURE 12: Continued Partan

™ denotes the tangent plane at point Pi
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The calculations on an IBM 7040 using WATFOR compiler do not
require very large running time. Line search beginning at any point

(xl, xz) and proceeding in a direction with prescribed slope m was

-4
2). 1 by Ax1 = 10 ° and

1 Find ¢ here and check A¢<o. Proceed along this line

accomplished as follows: Find F(xl, X Change x
change X, by max
successively doubling the step size until A¢>o. Minimum point is esti-
mated on this line by a linear interpolation rather than quadratic fit.
This process is repeated until there is no appriciéble change in the
value of F or some other criterion is satisfied.

The step length Ax, is to be properly chosen as the line search
depends on it. There is‘no set rule governing its choice, the best Ax1
is one for which minimum is located in not many steps.

The slopes arc determined from a mathematical cxﬁression. For
| 3F/3x, 1. .
5¥7§§I . m, = - —— since lines

o
Po P2 and P2 P3 are respectively tangent and the normal at PZ, and

X2, 3%, 0

iterated steepest descent partan, m, =

therefore perpendicular. m, = where second subscript
X - X
71, 3 1, 0
denotes the point reached. '
m, = -
4 my
me = mg
, %2, 67 %2, 4
M6 = X - X
1, 1, 4
m, = - L
7" 6
m
Mg = Mg
X2, 97 %, 7
Mg = X - X and so on
1,9 " "1,77 ¢ y
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Continued Partan steps are the same up to PS where me is
X2, 5 " %2, 2

changed to ~ .
1,5 " %1, 2
P
6 5
m
Xy 7 7 %,
M7 = X - X
1, 7 %1,
m, = - Lo
8 7
m
n . 22,9772, 6
9" b - X
1, 9 1, 6 . . « and so on,

For iterated scale invariant Partan:

BF/ax2
Myy Mgy Mg equal =———— at P
8F/ax1

o Pas Py

Mz, M, Mg are the same as in iterated steepest

descent Partan.

5.4 METHOD OF PARALLEL TANGENTS APPLIED TO A CONTROL SYSTEM

The different options of method of parallel tangents are applied
to find the optimum value of the performance criterion ITSE in Gibson's
System, shown in Figure (10). The method of parallel tangents usually
requires large amounts of stored information for iterative calculations
and therefore, it was solved on IBM-7040 computer utilizing IBM compiler
rather than WATFOR. The computational procedurés are exactly similar to

those described in 5.3 except that the value of function F(wl, wz) is
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obtaincd by the use.of the same subroutine as used in the case of the
method of conjugate gradients. Also, partial derivatives are calculated
numerically rather than analytically,oﬁ the same line as discussed in
4.4,

The results of Beale's Function and Gibson's Function are shown
in Tables 5.1-24. It can be seen that the Iterated Steepest Descent
option of the Partan requires very few iterations to reach the optimum
in most cases. The continued option also gives comparable results in
some cases. These two variants of Partan show marked reduction in the
number of iterations as compared to the methods of steepest descent and
conjugate gradients. The performance of Scale Invariant Paftan is,
however, poorer than the other two in most cases. The overall comparison

of different methods will be made graphically in Chapter 6.



TABLE 5.1
ITERATED STEEPEST DESCENT PARTAN
BEALE'S FUNCTION

(Starting Point x, = 5.0, x, = 0.2)

1 2

" NUMBER OF N " re )
ITERATIONS 1 2 X0 X
1 5.0 0.2 18.20472

2 3.36170 0.66100 0.30613

3 4.18080 0.68935 0.07830

4 4.16810 0.69011 © 0.07790

5 2.93939 0.48443 0.00063

6 2.94409 0.48414 0.00059

7 2.94479 0.48416 0.00057

/
TABLE 5.2
ITERATED STEEPEST DESCENT PARTAN
BEALE'S FUNCTION
(Starting Point x1 = 5.0, x2 = 0.8)

NUMBER OF . . N F(x., x.)
ITERATIONS 1 2 X1» %2

1 5.0 0.8 0.48672

2 5.00255 0.74298 0.15210

3 4.34720 0.71367 0.09902°

4 3.03648 0.54035 0.02546

5 3.04159 0.50171 0.00197

6 2.95968 0.49087 0.00029

7 2. 0.00028

95905 0.49047
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TABLE 5.3
ITERATED STEEPEST DESCENT PARTAN
BEALE'S FUNCTION
(Starting Point x, = 2.0, x, = 0.8)

1 2
NUMBER OF
ITERATIONS S} ) Fxp, %))
1 2.0 0.8 6.27010
2 2.81910 0.10187 0.18480
3 2.40960 0.27402 0.13282
4 2.42223 0.27239 0.13227
5 2.47340 0.27637" 0.12672
6 2.43510 0.28129 0.12220
7 2.48620 0.28484 0.11700
8 2.44790 0.29035 0.11248
9 2.49899 0.29390 0.10695
10 2.50529 0.29435 0.10691
/
TABLE 5.4
" ITERATED STEEPEST DESCENT PARTAN
BEALE'S FUNCTION
(Starting Point X, = 2.0, X, = 0.2)
RKUMBER OF "
ITERATIONS 1 X2 Flxps xp)
1 . 2.0 0.2 0.52978
2 2.40949 0.18977 0.26361
3 2.30719 0.24416 0.18940
4 2.51190 0.27235 0.13998
5 2.46080 0.30120 0.10194
6 2.87030 0.48218 0.00825
7 2.89580 0.47478 0.00201
8 2.90850 0.47325 0.00169
9 2.90840 0.47670 0.00149
10 2.91790 0.47640 0.00131
11 2.91860 0.47940 0.00116
12 2.92809 0.47907 0.00103
13 2.92760 0.48154 0.00091
14 2.93389 0.48150 0.00081
15 2.93620 0.48444 0.00071
16 2.94250 0.48384 0.00061
17 2.94360 , 0.48626 0.00060




(Starting Point x

TABLE

5.5

CONTINUED PARTAN

BEALE'S FUNCTION

0.8)

1 2
NUMBER OF
ITERATIONS X Xy Flxy, x5)
1 2.0 0.8 6.27010
2 2.61430 0.27643 0.18480
3 2.40960 0.27402 0.13282
4 2.42230 0.27240 0.13228
5 2.47340 0.27637 0.12672
6 2.45430 0.27636 0.12596
7 2.45400 0.35582 0.09718
8 3.06830 0.51750 0.00072
9 3.06680 0.51755 0.00071
/
TABLE 5.6
CONTINUED PARTAN
BEALE'S FUNCTION
(Starting Point X, = 2.0, x 0.2)
NUMBER OF P . y )
ITERATIONS 1 2 X1 X5
1 2.0 0.2 0.52978
2 2.40950 0.18977 0.26360
3 3.22860 0.51790 0.03991
4 3.02389 0.51260 0.00118
5 3.03660 0.50770 0.00024
6 3.02389 0.50706 0.00012
7 3.02699 0.50645 0.00011
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TABLE 5.7
CONTINUED PARTAN
BEALE'S FUNCTION

(Starting Point X = 5.0, X, = 0.8)
NUMBER OF ‘
ITERATIONS X Xy Flxy, X))
1 5.0 0.8 0.48672
2 5.02550 0.74298 0.15853
3 4.71840 0.74161 0.12342
4 4.75670 0.74241 0.12300
5 4.76620 0.73782 0.12030
6 4,71509 0.73772 0.11836
7 4.71580 0.73421 0.11695
8 4.61350 0.73215 : 0.11348
9 4.62620 0.72742 0.11066
10 4.54629 0.72656 - -~ 0.10826
11 4.55260 0.72093 0.10589
12 4.45029 0.71904 0.10164
13 4.45979 0.71389 0.09920
14 ‘ 4,35750 0.71240 0.09636
15 4.36699 / 0.70590 0.09240
TABLE 5.8
CONTINUED PARTAN
BEALE'S FUNCTION
(Starting Point x1 = 5.0, 'xz = 0.2)
NUMBER OF . . F(x.. x.)
ITERATIONS 1 2 1° 72
1 5.0 0.2 18.20472
2 3.36170 0.66020 0.30613
3 4.,18080 0.68935 0.07831.
4 4,16810 0.69011 0.07788
5 2.93940 0.48443 0.00063
6 2.94890 0.48482 0.00055
7 2.94580 0.48557 0.00050




TABLE 5.9
ITERATED SCALE INVARIANT PARTAN
BEALE'S FUNCTION
(Starting Point x, = 5.0, x, = 0.2)

1 2
NUMBER OF N N R
ITERATIONS 1 2 1° %2
1 5.0 0.2 18.20470
2 1.72330 0.20000 1.20762
3 2.13279 0.05421 '0.52529
4 2.20949 0.05811 0.51296
5 2.18399 0.05810 0.51057
6 2.15850 0.05980 0.50816
7 2.17120 0.05938 0.50786
8 2.18389 0.05940 0.50750
9 2.19340 0.05963 0.50733
10 2.18710 0.05967 0.50720
11 2.18080 0.05956 0.50712
12 2.17609 0.05962 0.50708
13 | 2.17919 0.05961 0.50704
/
TABLE 5.10
ITERATED SCALE INVARIANT PARTAN
BEALE'S FUNCTION
(Starting Point x1 = 5.0, X, = 0.8)
NUMBER OF re
ITERATIONS X X2 X1s X5)
1 5.0 0.8 0.48672
2 5.81910 0.80000 0.18318
3 5.85740 0.79828 0.18095
4 5.80629 0.79833 0.18053
5 5.82240 0.79833 0.18051

PROGRESS WAS EXTREMELY SLOW

FROM HERE ON




TABLE

5.11

ITERATED SCALE INVARIANT PARTAN

BEALE'S FUNCTION
(Starting Point x1.= 2.0, x 0.8)
NUMBER OF
ITERATIONS X Xy F(x)» X))
1 2.0 0.8 6.27010
2 5.27670 0.80000 3.13180
3 5.48139 0.77598 0.16594
4 - 5,37910 0.77668 0.15735
5 5.35359 0.77667 0.15708
6 4.94410 0.76080 0.14897
7 5.04640 0.76454 0.14833
8 5.14869 0.76453 0.14468
9 5.15019 0.76448 0.14457
/
10 5.12469 0.76449 0.14449
11  5.13099 0.76449 0.14447
TABLE 5.12
ITERATED SCALE INVARIANT PARTAN
BEALE'S FUNCTION
(Starting Point X = 2.0, x, = 0.2)
NUMBER OF R e )
ITERATIONS X X2 X0 %2
1 2.0 0.2 0.52978
2 2.40950 0.20000 0.24194
3 2.38400 0.30215 0.12788
4 3.20310 0.52005 0.02520
5 3.10080 0.52005 0.00186
6 3.08810 0.52333 0.00126
7 3.08960 0.52328 0.00125
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TABLE 5.13
ITERATED STEEPEST DESCENT PARTAN

GIBSON'S SYSTEM

(Starting Point w; = 0.31, wy = 10.0)
NUMBER OF ; > )
ITERATIONS | W Wys ¥y
1 0.31 10.00 0.022460
2 0.29089 10.51047 0.022040
3 0.36760 17.68500 0.018744
4 © 0.36290 17.68680 0.018733
5 0.36280 : 17.01969 0.018720
6 0.35970 17.02081 0.018712
7 0.35968 17.02082 ~ 0.018710

/
TABLE 5.14
ITERATED STEEPEST DESCENT PARTAN
GIBSON'S SYSTEM

(Starting Point w; = 0.41, w, = 20.0)
NUMBER OF : Fe o)
ITERATIONS | | Wy ¥
1 0.41 20.0 ’ 0.019695
2 0.37170 © 20.00380 0.018940
3 0.37160 17.48280 0.018787
4 0.37170 17.81358 0.018770
5 0.36540 17.81840 0.018740
6 0.36530 17.49109 0.018730
7 0.36050 17.24380 . 0.018717
8 0.36099 ° - 16.99185 0.018712




TABLE ~ 5.15
ITERATED STEEPEST DESCENT PARTAN
GIBSON'S SYSTEM

S

(Starting Point w; = 0.41, wy = 11.0)
NUMBER OF . F( )
ITERATIONS w1 ) : wys Wy
1 0.41 11.0 ' 0.025100
2 0.30769 11.11289 0.020940
3 0.30879 13.60482 0.019886
4 0.30909 13.21873 0.019862
5 0.33460. 13.26826 0.019301
6 0.33299 14.78621 0.018984
7 . 0.34570 14.77852~ 0.018866
8 0.34599 16.01601 0.018774
9 0.35224 : 15.77618 0.018745
10 0.35235 16.24918 0.018724
11 0.35234 16.24920 '0,018723

/
TABLE 5.16
ITERATED STEEPEST DESCENT PARTAN
GIBSON'S SYSTEM

(Starting Point w; = 0.31, wy = 20.0)
NUMBER OF F( )
ITERATIONS -~ wy Wy : Wys Wy
1 0.31 20.0 0.026307
2 0.38670 , 19.97715 0.019010
3 0.38660 19.13796 0.019000
4 0.38510 19.98199 0.018985
5 0.37240 19.92556 0.018924
.6 0.37550 18.18123 0.018822
7 0.36599 18.18377 0.018760
8 0.36589 17.24587 0.018735
9 0.35959 17.24911 0.018718
10 0.35949 16.76195 : 0.018714

A Y



TABLE  5.17
CONTINUED PARTAN
GIBSON'S SYSTEM

(Starting Point wy = 0.41, wy = 11.0)

NUMBER OF : o )
ITERATIONS Wy ) 1’ %2
1 0.41 11.0 0.025100

2 0.30769 11.11275 0.020940

3 0.32039 11.16241 0.020816

4 0.31409. 11.21918 0.020762

5 0.33199 _ 11.49548 0.020579

6 0.32049 11.53123 0.020436

7 0.31420 " 11.64940 0.020369

8 0.32689 . 11.70720 0.020293

9 0.32059 11.73768 0.020253

10 0.31109 12.97309 0.019805

11 0.33660 12.97902 0.019450

12 0.33030 12.99631 0.019426

13 0.32400 13.27087 0.019379

14 0.33669 13.28418 0.019300

15 0.33599 13.29429 0.019290

16 0.33209 : 13.30840 0.019280

17 . 0.35760 14.93219 0.018938

18 0.35730 14.93267 0.018932

TABLE '5.18
CONTINUED PARTAN
GIBSON'S SYSTEM
(Starting Point w; = 0.41, w, = 20.0)

NUMBER OF y )
ITERATIONS “1 W Wy @y
1 0.41 20.0 0.019695

2 0.37170 20.00380 0.018940

3 0.37639 19.99561 0.018922

4 0.37629 19.99545 0.018921




TABLE 5. 19
CONTINUED PARTAN
GIBSON'S SYSTEM

(Starting Point wy- = 0.31, W, = 20.0)

NUMBER OF | "~ )
ITERATIONS Wy Wy Wy Wy
1 0.31 20.0 0.026307

2 0.38670 19.97715 0.019008

3 0.37399 19.97590 0.018923

4 0.37710 19.94620 0.018913

5 0.37560 19.94450 0.018911

TABLE 5.20
CONTINUED PARTAN
GIBSON'S SYSTEM
(Starting Point w, = 0.31, w, = 10.0)

NUMBER OF > )
ITERATIONS “1 ) Wys Y
1 0.31 10.0 0.022460

2 0.29089 10.51047 0.022040

3 0.31640 10.54909 0.021587

4 0.30370 10.68752 0.021475

5 0.31639 10.74097 0.021320

6 0.30370 10.91876 0.021211

7 0.31640 10.95692 0.021047

8 0.30369 11.26435 0.020880

9 0.32279 11.29986 0.020675

10 0.31650 11.34355 0.020625

11 0.34199 12.08583 0.020165

12 0.32289 12.12182 0.019951

13 0.34839 12.98325 0.019617
14 0.32929 13.00912 0.019423

15 0.33879 13.14385 0.019380

16 0.33249 13.15878 0.019340

17 0.33569 13.23326 0.019319

18 0.33599 13.24582 0.019311
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TABLE 5.21
ITERATED SCALE INVARIANT PARTAN
GIBSON'S SYSTEM

(Starting Point w = 0.31, w, = 10.0)

NUMBER OF | , R )

ITERATIONS RS Wy ~ wys Wy
1 0.31 | 10.0 0.022460

2 0.30929 10.00000 0.022451

3 0.29660 11.18796 0.021170

4 0.29630 12.51777 0.020655

5 1 0.33460 12.51777 0.019713

6 0.32829 12.51777 0.019684

7 0.32199 . 13.87104 0.019311

8 0.32194 14 .40805 0.019300

9 0.34745 14.40805 0.018960

10 0.34734 16.54398 0.018786

11 0.34725 16.12352 0.018776

12 0.35355 16.12352 0.018724

13 0.35350 16.64369 0.018723

' /
TABLE 5 22
ITERATED SCALE INVARIANT PARTAN
GIBSON'S SYSTEM
(Starting Point w, = 0.31, w, = 20.0)

NUMBER OF s )

ITERATIONS “1 ) Wys Yo

1 0.31 20.0 0.026307

2 0.38669 20.00000 0.019009

3 0.38529 19.98033 0.018987

4 0.37579 19.98033 0.018920

5 0.37569 18.14513 0.018825

6 0.36619. 18.14513 0.018757

7 0.36570 . 17.26473 0.018733

8 0.36099 17.26473 0.018717

9 0.36109 17.26473 0.018716




TABLE 5.23
ITERATED SCALE INVARIANT PARTAN
GIBSON'!S SYSTEM

(Starting Point w; = 0.41, w, = 20.0)

NUMBER OF F (o )
ITERATIONS | , ) 1° Y2
1 0.41 20.0 0.019695
2 0.37170 20.00000 0.018940
3 - 0.37170 “17.48247 0.018790
4 0.37189 17.81199 0.018780
5 0.36560 17.81199 0.018739
6 0.36410 17.81199 . 0.018738
/
TABLE 5.24
ITERATED SCALE INVARIANT PARTAN
GIBSON'S SYSTEM
(Starting Point w; = 0.41, w, = 11.0)
NUMBER OF F( )
ITERATIONS “1 ) Wyps @y
1 0.41 11.0 0.025100
2 0.30769 11.00000 0.021057
3 0.30659 13.49565 0.020009
4 0.30689 13.13361 0.019978
5 0.33239 13.13361 0.019360
6 0.32829 14.51513 0.019102
7 0.32819 14,51513 0.019100

71



CHAPTER 6

CONCLUSION

Implementation of an adaptive control in situations where plant
identification is either inconvenient or undesirable, has two important
aspects. One is the figure of merit or performance by which the system
measures its performance with a view to optimize it. The other is: of
different methods available for adjusting the parameters of a controller
to affect this performance optimization, which is the method that adjusts

these parameters most quickly and efficiently. 1In the past few years,
Sl / ,

several minimizatibn techniques have been developed but very little work
has been done to find a method which works satisfactorily in most cases.
In this thesis three optimizing techniques, namely:

(1) Method’of Steepest Descent

(ii) Method of Conjugate Gradients

(iii) Method of Parallel Tangents and its Variants

have becn examined. The last two hethods are quite recent and have been
claimed to work in most cases. These methods are applied to optimize
Beale's function and ITSE performance criterion in a control system.

Beale's function represents a response surface, most likely to be
encountered in practical situations. The comparison of different methods is
shown in Figures (13-21)l‘ It can Be seen that the Steepest Descent variant
of the parallel tangents works better than any in both the cases beginning
with-different starting points. Continued Partan also shows good

performance in most cases. 72
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It has been claimed that the method of conjugate gradients
locates the minimum of a linear positive definite quadratic function of
n variables in (n) steps and the method of parallel tangents finds the
optimum in (2n-1) steps. The functionsto be optimized in practice
rarely mcet the ideal requirements of being linear and quadratic. Both
the functions optimized in this thesis are highly non-quadratic and it
can be seen that the minimum is not reached in (n) or (2n-1) steps.

From the results obtained in this thesis, it can be seen that whereas the
Steepest Descent variant of the method of parallel tangents works fairly
well in case of two-parameter optimization, the progress in the method

of conjugate gradients is very slow. Surprisingly the method of

steepest descent seems to work better in some cases than the method of
conjugate gradients although the latter is a modification of the former.
Fletcher and Reeves [23] have reported similar experience with the

method of conjugate gradients applied to a non-quadratic function. To
overcome the slow convergence of the method in non-ideal cases, they
reverted to the steepest descent direction in place of conjugate direction
whenever the progress was sldw. They attributed this fo the fact that
the successive conjugate directions were so nearly parallel that the
points x; were scarcely separated. Lasdon [3ﬂ has formulated different
theorems on the method of conjugate gradients and has reported success
with positive definite quadratic functions, but at the present very
little experience is available with non-quadratic functions. On the
basis of the presenf work, however, the method of conjugate gradients

did not work well.
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The optimization calculations in the present work have 5ecn
carried out on an IBMy7040.computér. In case of Beale's function,
computations were done using a WATFOR compiler developed by the
University of Waterloo Computing Centre. The typical running time was
one to two seconds for each iteration as against onc minute per iteration
by Shah et al [27] for.the same function and same starting points.
Gibson's System required the solution of a sixth order differential
equation and integration of the resulting error function to form the
integral performance criterion (ITSE). The digital computer was
employed to obtain the approximate numerical solution of the system
differential ecquation using the fourth order Runge-Kutta method [?Q].
The integration was also done numerically and was required several times
for a single iteration and thus involves the inherent inaccuracy present
in the numerical integration and large computer time: Faster and more
accurate results could have been obtained by using a hybrid computer.
| From the results obtained in this work the method of parallel
tangents seems to work quite well in the case of practical response
surface with two variable parameters. Although this method finds the
optimum in less number of iterations, it requires large amounts of’
stored information and hence a larger computer. From the practical point
of view e.g. in space applications and flight control etc., where the
weight is one of the main considerations, the method of steepest descent
scems attractive because of least stored information requirements, but
unfortunately it réquires large numbers of iterations to reach the
optimum, Thus in practical applications, the choice of optimization

technique is a compromise betwecen many conflicting requirements.
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Moreover, the method of stecpest descent can also be implemcnted with the
help of a small analogue computer, which scems to be the answer for spacc
applications.

Some areas of further work are indicated by this study. It would
be interesting to investigate the performance of thec method of parallel
tangents in the optimization of more than two-paramecter cases. The scale
invariant option may be developed and investigated further for better
results., The method of conjugate gradients may be applied to more non-

ideal functions before generalizing anything on its performance in

such cases.
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APPENDIX I

Flow Chart for the Mcthod'of Parallel Tangents

( START ’

NK =1
—O
J=1
/
Write
X1 %2
\
Calculate In the: case of Gibson's
F(NK,J)=F(x1,x2) System F(NK,J) is obtained
by the use of Subroutine
DEQSET
aF/ax2
m(NK) =—r7o%—
L =1
{ ’
J=J+1
®
X, + LDx
1 1
X, * mLDx1
[‘

Calculate
F(NK,J):F(xl+Dx1,x2+mLDx




Change
sign of
Dxl
Y
J = J+l
A
Calculate
F(NK,J)=F(x1*Dx1,x2+mLDx2)
N
Write
/ X1 %2
- F(NK,J)
f(NK,J) <F YES @

Subroutine
for Linear Interpolation

Write
nterpolat

L} 1
S EL)
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F(NK,J)=F(xiE x5)

\

Write
F(NK,J)

NK = NK + 1
/ Y.
Choosing of m(NK) For continued and Scale
“corresponding to NK Invariant Partan the
m(2) = -1.0/m(1) m's differ.

NO
®
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APPENDIX I1

Elow Chart for the Mcthod of Conjugate Gradients and

Steepest Descent

( START >

NK =1

®

In the case of Gibson's System
Calculate F(NK,J) is obtained by the
alcula . A
FNK,J) =F (x,,X,) use of Subroutine DEQSET

IF79X;

1

o c— pp— —

bm(NK)gam(NK) -———(:::)

amz(NK)
am” (NK-1)

Beta(NK) =

\
bm(NK)=am(NK)+Becta (NK) x am(NK-1)




J = J+1

92

Yy

X, + LDx1
x2 +bmLDxXx

1

A

®

Calculate

F(NK,J)=F(x1,pxl,x2+meDx2)

Is

(NK,J) <F(N
J-1)

L 2L

J = J+1

Change
sign of —————(:::)
Dx1

YES, ——_‘\®

Calculate
F(NK,J)=F(x1+Dx1,x2+mLDx2)



http:1,x2+ml.Dx

©,

Subroutine
for:linear:Interpolation

]

Write

\Interpolatgd
1 '

x' s xt,

J = J+1

Y

F(NK,J)=F(x], x",)

NO
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$J08B WATFOR 003508 IQLEEM 060 010

$I18J08B NODECK '

$IBFTC

C METHOD OF CONJUGATE GRADIENTS APPLIED TO 'BEALEsS FUNCTION?

DIMENSION C(3)’U(3)$F(20)9DF(2940)9XS(2’40920’9X‘2’40920)
DIMENSION AM(40)sDPHI(20)9sBM(40) +BETA(40)
READ (591) (C(I)sI=193)
1 FORMAT (3F10.4)
DX=0,0001
NK=1
READ (591) (XS(MsNKs1l)sM=142)
19 WRITE (692) XS(1sNKsl)eXS(2sNKsel)
2 FORMAT (1HO95X9sF15e895X9F1548)
J=1
DO 3 M=1+2
3 X(MsNKsJ)=XS(MsNKsJ)
Ul =Cl1)=X{1oNKsJ)*¥(140=X{29NKsJ))
U(2)=Cl2)=X{1oNKesJ) % (1e0-X(2sNKsJ)®X(2sNKsJ))
U(3)1=Cl3)=X(1eNKsJ)*¥(1e0-X(2sNKosJ)I®X(2sNKoJ)I%X(29NKsJ))
WRITE (694) U(1)sU(2)9sU(3)
4 FORMAT (1HOs5X9sF1548B35X9F154895X9F1548)
FON=U(11*U(1)+U(2)*%U(2)+U(3)%U(3)
WRITE (69+5) F(U) ‘
5 FORMAT (1HOs40XsF15,.8)
DF{1sNK)=2=2.0%(U(1)%(]1,0~ X(29NK9J))+U(2)*(1.0 X(Z’NK!J)*X(Z’NK’J)’
1+U(3) % {1 40=X(2oNKsJIXX(29NKsJ)*X(2sNKsJ))) |
DF{2sNK)=240%{UC1I%¥X{1aNKoJI+U(2)%2,0%X(19NKsJ)%X(2eNKsJ)
1+U(3) %3, 0%X(1sNKs JI*X(2eNKsJ)XX(29NKsJ))
WRITE (696) (DF(I1eNK)sI=192)
6 FORMAT (1HO91Xs+2F15.8)
AM{INK)I=DF (29sNK)/DF (1 sNK)
WRITE (697) AM(NK)
7 FORMAT (1HO»10XsF20,9)
IF (NKeEQel) BMINK)=AM{NK)
IF (NKe.EQel) GO TO 17
BETA(NK)"(AM(NK)*AM(NK))/(AM(NK‘I)*AM(NK-I,)
WRITE (6+18) BETA(NK)
18 FORMAT (1HOs20XsF20.9)
BMINK)=AM(NK)+BETA(NK)*AM(NK=~1)
WRITE (6s7) BM(NK)
17 FACTR=1.0
, J=J+1 _ .
L=1 '
1C=J
X{1sNKeoJ)=XS(1sNKs»1)+FACTR*FLOAT(L)*DX
X(2sNKoJ)=XS(29NKs1)+FACTR¥FLOAT(L)I*BM(NK)*#DX*¥0401
Ull1)=Cl1)=X(1sNKoJ)*¥(140=X(23NKsJ))
U(2)=Cl21=XT1aNKsJ)*(1e0=X(29NKsJ)%X(2sNKsJ))
U(3)=Cl3)=X{19NKoJ)*¥(140=X(2sNKsJI*¥X{(2sNKsJI%X(2sNKsJ))
F(I)=U(1)#U(1)4+U(2)%U(2)1+U(3)%U(3)
IF ({F(U)=F(JU=1))eGT40e0) FACTR=-1,0



11

21

12

20

16

$ENTRY
le5

IF ({F(J)=F(J=1))elLTe0s0) FACTR=1,0
X(1sNKsJ)=XS(1sNKs1)+FACTR*¥FLOAT(L)*DX
X{29sNK9J)=XS{2sNKs1)+FACTR*¥FLOAT(L)*BM(NK)*DX*0401
WRITE (6+8) (X(MsNKsJ)sM=192)s1C

FORMAT (1HO95XsF15e895XsF15e8915)
UC1)=C(1)=X{1sNKsJ)*¥(1,0=X{2sNKsJ))
Ul2)=Cl2)=X{1sNKsJ)*(140=-X(2sNKsJI*X(29NKsJ))
U(3)=C(3)=X{19NKsJI*(140=X(29NKsJ)*¥X{2sNKsJI¥X(29NK9J))
FIO=U(1)*U(1)+U(2)%U(2)+U(3)%U(3)

WRITE (695) F(J)

DPHI(JUY=F(J)=F(J=1)

IF (DPHI(J)eGT4040) GO TO 9

L=2%#L

J=J+1

IC=1C+1

X({1sNKsJ)=X{1sNKsJ=1)+FACTR*¥FLOAT (L) *DX
X{2sNKsJ)=X{2sNKsJ=1)+FACTR*¥FLOATI(L)*BM(NK)*DX*0,01
GO TO 15

IF (1CsGEe3) GO TO 11
IF (ICeEQe2) GO TO 12
J=Jd+1

NK=NK+1 /
DX=0,0001. '

XC1oNKsJ)Y=(X{1oNK=19J=1)+X{1sNK=1sJ=2)1/2, 0
X(2sNKoJ)=(X{29yNK~19sJ=- 1)+X(29NK—19J’2))/20
U(1)=Cl1)=X{1oNKsJ)%(140=X(2sNKsJ))
U(2)=C(2)=X(1oNKsJ)*#(140=-X(2sNKsJ)*X(2sNKsJ))
U(3)=C(3)=X{1sNKsJ)#(140=X{2sNKsJ)I%X(2sNKsJI*¥X(2sNKsJ))
FID=U1Y*U(1)4+U(2)#U(2)4+U(3)I%U(3)

IF (FUU)eLTeF(JU~2)) GO TO 20

X{1sNKsJ)=X(1oNK=10J-2)
X{2sNKsJ)=X(2sNK=19J-2)
GO TO 20 o '
J=J+1 :
NK=NK+1
DX=0,00001
X{1sNKsJ)=X{1sNK=1sJ-2)
X{2sNKoJ)=X{2sNK=~19J~2)
IF (NKeEQe40) GO TO 16
I1C=1
XS{1sNKes1)=X({1sNKsJ)
XS{29NK91)=X(2eNKsJ) '
J=1-
GO TO 19
STOP
END

2625 2625
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540 062
$IBSYS

The method of Stcepest Descent is obtained by simply putting

BETA = 0.0 in this program.
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APPENDIX IV

WATFOR 003508 IQLEEM 060 010

METHOD OF PARALLEL TANGENTS APPLIED TO 'BEALE'S FUNCTION !
ITERATED STEEPEST DESCENT PARTAN

DIMENSION C(3),U(3)’F(30)9DF(2930)’XS(2020’30)’X(2020030)
DIMENSION AM{20)sDPHI(30)

READ (591) (C(I)eI=1+3)

FORMAT (3F1044)

DX=0,0001

NK=1

READ (591) (XS(MsNKsl)sM=1,+2)

WRITE (692) XS{1aNK9s1)sXS{2sNKs1)

FORMAT (1HO9s5X9F156895X9F15.8)

J=1

DO 3 M=142

X{MsNKsJ)=XS(MsNKs J)
UG1)=Cl1Y¥=X{1sNKsJ)*{1640=X(29NKsJ))
U(2)=C(2)=X{1sNKsJ)¥(1,0=X{2sNKsJ)%X(2sNKsJ))
U(3)=C(3)=X{1sNKsJ)*(]1,0~ X(29NK,J)*X(2’NK9J)*X(29NK’J))
WRITE (6s4) UlL)sU(2)sU(3)

FORMAT (1HOs5X9F15e895X9F15e895X9F15e8)
FOU)=UCLY*U(1)+U(2)#U(2)4+U(3)%U(3)

WRITE (64+5) F())

FORMAT (1HOs40XsF15,.8)
DF{1sNK)==2e0#(U(1)%#(140=X{2eNKsJ))+U(2)%#(1e0-X{2sNKsJ)%X{2sNKsJ})
14+U(3)# (1 ,0=-X(2sNKsJ)*¥X{2sNKosJ)I*X(29NKsJ)}))
DF(29NK)=240%(UT1)%X{TaNKsJI+U{2)%2,0%X(1sNKsJ)*¥X{29NKsJ)
1+U(3)*3, O*X(19NK’J)*X(29NK9J)*X(ZQNKQJ))
WRITE (696) (DF(IsNK)sI=192)
FORMAT (1HO»1X9+2F1548)
AMINK)I=DF(29NK) /DF (1 sNK)
WRITE (6+7) AM(NK)
FORMAT (1HO»10X9F2049)
FACTR=140
J=J+1
L=1

1C=J ,
X(1sNKoJ)=XS(1sNKs1)+FACTR*¥FLOAT(L)*DX '
X(2sNKoJ)1=XS(2sNK91)+FACTRX*¥FLOAT(L)*AM{NK)*DX%0,1
U(1)=C{1)1=X{1sNKsJ)*(1,0=-X(2¢NKsJ)) _
U(2)=Cl2)1=X{1sNKsJ)*(1,0=X{2sNKsJ)%X{2sNKsJ))
Ul3)=Cl3)=XTT1sNKsJ)H({140=X{2sNKsJI%¥X{2sNKsJ)*X(2sNKsJ))
FIJ)y=U(1y*U(1)+U(2y*%¥U(21+U(3)%U(3)

IF ((F(J)=F{J=1))eGT40,0) FACTR==1,0

IF ((F(J)=F(J=1))elLTo0e0) FACTR=140
X{1sNKsJ)1=XS{1sNK»1)+FACTR*FLOAT(L)*DX
X(23sNKeJ)y=XS(29NK921)+FACTR*#FLOAT(L)*AM{(NK)*DX%0 41
WRITE (698) (X{MsNKesJYsM=142)sIC
FORMAT (1HO»5X3F15e835X3sF1548915)
Ul1)=Cl1)=X{1sNKsJ)*(1,0=X(29NKsJ))
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U2)=C(2)=X(1aNKsJ)%(140=X(2sNKsJ)%X(2sNKsJ))

U(3)=C(3)=X{T1sNKsJ)#{1,0=-X{2sNKsJI%X(29NKsJ)I%X(2sNKsJ))

F(J)=U(11#U(1)+U(2)#U(2)+U(3)%U(3)

WRITE (695) F(J)

DPHI(U)=F(J)=F(J=1) ,

IF (DPHI(J)eGTa040) GO TO 9

L=2%L

J=J+1
I1C=1C+1
X(1sNKsJ)=X{1sNKsJ=1)+FACTR*FLOAT (L) *DX
X{29NKsJ)1=X{29NKsJ=1)1+FACTR*FLOAT(L)*AM(NK) *DX*0,s1

GO TO 15

IF

(ICeGES3)

IF (1CeEQe2)
J=J+1 ‘
NK=NK+1
DX=0,0001
X{1sNKosJ)=(X{1sNK=19J=1)4+X{1sNK=1sJ=2))/240
X(2sNKoJ)=({X(2sNK=19J=1)14+X(29NK=19J=2))/240
Ul1)=Cl1)=X({1oNKeJ)*¥(1,0=X(29sNKsJ))
U(2)1=Cl2)1=X{1sNKsJ)#(1,0=X(2sNKsJ)¥X{2sNKsJ})
U(3)=C{3)=X{1sNKsJI*(1e0=X(2sNKsJ)XX(2sNKsJ)%X{2sNKs»J))
FlJUy=U(1)y#U(1)+U(2)%U(2)+U(3)%U(3)

IF (F{U)eLTeF(J=2)) GO TO 19

X{1oNKoJ)y=X{1sNK=19J=~2)

X(2sNKsJ)=X(29sNK=19J-2)

GO TO 19
J=Jd+1
NK=NK+1
DX=0,00001
X{1sNKsJ)=X(19NK=19J-2)
X(2sNKesJ)=X{2sNK=19J-2)
IC=1

IF
IF
IF
IF
IF
IF
IF
IF
1F
iF
IF
IF
IF
IF
IF
IF
IF

(NKeEQe2)
(NKeEQe3)
(NKeEQe4)
(NKeEQe5)
(NKeEQeb6)
{NKeEQeT7)
(NKeEQe8)
(NKeEQe9)
(NKeEQ.10)
(NKeEQe1ll)
(NKeEQe12)
(NKeEQel1l3)
(NKeEQel4)
(NKeEQe1l15)
(NKeEQe16)
(NKeEQe17)
(NKeEQe18)

GO TO 11
GO TO 12

AM(2)==1,0/7AM(1)
AM({3) = ((X(2939J)=X(29191))1/7(X{193sJ)=X{1s191})))
AM(4)==1.0/AM(3)
AM(5)=AM(3)
AMIE)=((X(2969J)1=X{29491))/7(X(1969J)=X{1s491)))
AM{T7)=~1.0/7AM(6)
AM(8)=AM(6)
AMI9)=({X(2999J)=X(23691))1/(X(1999J)=X(19691)))
AM{10)==1,0/AM(9)
AM(11)=AM(9)
AMU12)=((X(29129J)=X{2910911)/7(X(11290J)=-X(1910s11}))
AM(13)==1,0/AM(12)
AM(14)=AM{12)
AMU15)1=({X(29159J)=X{2912901))/7(X{19159J)=X(191291)))
AM(16)==140/AM(15)
AM(17)=AM(15)
GO T0 16

XS{1sNKs1)=X{1sNKsJ)
XS{2sNK21)=X(2sNKsJ)
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WRITE (692) XS(1sNKs1)sXS({2sNKs1)
J=1 :

X(1sNKsJ)=XS(1sNKsl)
X{2sNK 9 J)=XS(29sNKs1)

GO TO 17
16 STOP
END
SENTRY
15 2425 24625
2.0 0e2
$IBSYS

Continued and iterated scale invariant partan programs were

made on a similar basis.
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260

110

130
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FITS
ADAPTIVE CONTROL WITHOUT IDENTIFICATION
METHOD OF CONJUGATE GRADIENTS
PLANT PARAMETERS FIXED—-ADJUSTABLE CONTROLLER WITH TWO DEGREE
OF FREEDOM
DIMENSION WS(2+50915)sWI(2950915)sDK(2)sA(6)sYI(T)
DIMENSION DF(2515)35(45159100)9YSOLN(79100)sDPHI(15)sF(7+15)
DIMENSION AM(50)sBETA(50)sBM(50)
EXTERNAL DEQSET
COMMON A
DW=0.0001
NK=1
READ (591 (WS(}’NK’I)QIzl’Z)
FORMAT (2F1044)
READ (541) (DK(I)slI=192)
WRITE (698) WS{1sNKs1)sWS{2sNKsl)
FORMAT (1HO»5X9F154895X9F1568)
J=1
DO 110 M=1s2
WI(MsNKsJ)=WS(MsNK> J)
DO 120 N=1+3
Al1)=8e554+WI{(2sNKsJ)
Al2)=404446+8¢55%WI(23NKsJ)
A(3)=2204,48+404 ,46%¥WT{(29NKsJ)
Al4)Y=24604220648%¥WI(2eNKeJ)+Q9000%WI(2eNKesJ)/WI(19NKsJ)
Al(5)=924,0%WI(29NKsJ)+720e O*WI(29NK’J)/WI(19NK'J)
A(6)Y=T20,0%WI(2sNKsJ)
WRITE (692) (A(I)sI=146)
FORMAT (1Xs6El12e57)
THE &TH ORDER CONTROL SYSTEM 1S REPRESENTED BY A SET OF FIVE
SIMULTANEQUS FIRST ORDER DIFFERTIAL EQUATIONS AND THE SOLUTION IS
OBTAINED BY USING A SUBROUTINE
INITIAL CONDITIONS
YI(1)=0.,0
YI{2)=040
YI(3)=04,0
YI(4)=0,0
YI{(5)=0,0
YI(6)=900,0¥WI(2sNKsJ)/WI(1sNKsJ)
YI(T7)=900,0%(WI(2oNKoJ)/WI(1sNKsJ))*(WI(1sNKsJ)=WI(2sNKsJ)~Te75)
CALL RUNGE(DEQSETs79100+040249Y1sYSOLN)
DO 130 KK=1+100
SINsJsKK)=YSOLN(19KK)*(140=YSOLN(29KK) ) #(1e0=YSOLN(29KK))
F(NsJ}=0,0
DELT=0.024
DO 140 KK=1999
MM=KK+1
FINsJI=F(NsJI+SINosJIsKK)*DELTH+0e5%#DELT*(SINsJsMM)=S(NsJsKK))
EVALUATION OF PARTIAL DERIVATIVES BY THE LOCAL EXAMINATION OF

MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY
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THE RESPONSE SURFACE
IF (NeGE«.2) GO TO 210
WI(1sNKsJ)=WI(1eNKeJ)+DK(1)
GO TO 120
210 WI(1aNKeJ)=WS(1sNKs1)
IF (NeGE«3) GO TO 220
WI(2sNKsJ)=WI(2sNKsJI+DK(2)
GO TO 120
220 WI(2sNKsJI=WS(29NKs1)
DO 150 NN=2:3
M=NN-1
DF(MeJ)=(F(NNsJ)=F(1sJ))/DK(M)
150 CONTINUE
AMINK)I=DF(29J)/DF(1sJ)
120 CONTINUE
WRITE (693) F(leJ)sF(2sJ)sF(3sJ)
3 FORMAT (1HO95X9F15e835XsF154895X3F1548)
WRITE (694) (DF(MaJ)eM=142)
4 FORMAT (1HO91X92F15.8)
WRITE (6+5) AM(NK)
5 FORMAT (1HO+10XsF20,9)
IF (NKeEQel) BMINK)=AMINK)
IF {(NKeEQel) GO TO 270
BETA(NK)=AMINK)*AM(NK)/AM(NK=1)*AM(NK=1)
WRITE (6+6) BETA(NK)
6 FORMAT (1HOs15X9F20.9)
BM{NK)=AM(NK)}+BETA{(NK)*AM(NK=1)
WRITE (6+5) BM(NK)
270 Fl4e1)1=F(1e1)
FACTR=140
J=Jd+1
N=4
L=1
1C=1 .
WIC1aNKsJI=WS(19NKel)+FACTR*¥FLOAT(L )*DW
WI(2sNKoJ)=WS{2sNKs1)+FACTR*BM({NK)*#FLOAT(L ) *DW*50,0
Al1)=8.55+WI{(2sNKsJ)
A(21=404,46+8B455%WI(29NK s J)
A(3)=220,48440446%WI(29NKsJ)
Al4Y=24404220.48#WI(2sNKoJ)4+900,0%WI(2sNKsJI/WI(1oNKsJ)
Al(5)=2024 0%WI{2eNKsJ)+T7200%WI(2sNKoJI/WI(1sNKeJ) -
A(6)Y=T20,0%WI(2sNKsJ)
SOLUTION OF SYSTEM DIFFERENTIAL EQUATION 1S OBTAINED AS BEFORE
INITIAL CONDITIONS
YI(1)=040
YI(2)=0.0
YI(3)=04,0
YI1(4)=040
YI{5)=0.0
YI(6)=900,0%¥WI(29NKsJ)/WI(1sNKs )
YI(7)=900,0%#(WI(2sNKsJ)/WI(1sNKsJ))IR(WI(1sNKsJ)=WI(2sNKsJ)=T6e75)
CALL RUNGE(DEQSET 9791009040249 YIsYSOLN)


http:CN.GE.31
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DO 160 KK=1+100 ,

160 S(INsJosKKI=YSOLN(19KK)I#(1,0-YSOLN(2sKK))*¥(140-YSOLN(2+KK))
FI{NsJ)}=0,0
DELT=04,024
DO 170 KK=1999
LL=KK+1

170 FINsJ)=F({NsJ)+S(INsJsKK)*DELT+05*¥DELT*(S{NesJsLL)=SINsJsKK)}
IF ((FlasJ)=Flb4eJ=1))eGTe0e0) FACTR==140
IF ((F(49J)=Fl49J=1))4lLTa0s40) FACTR=140
WI{1aNKsJ)=WS{1sNKes1)+FACTR*FLOAT(L)*DW
WI(2sNKsJ)=WS(2sNKs1)4+FACTR¥BMINK)*FLOAT(L)Y*¥DW*50,0

240 WRITE (697) (WI(MaNKsJ)sM=192)91IC

7 FORMAT (1HO95X9F156895X9F1548515)

A(1)=8+55+WI{(2sNKsJ)
Al2)1=2404,46+8.55%WI (29sNKs J)
A(3)=220448+404,46%WI(29NKsJ)
Al4)=2440+220448%¥WI(29NK9sJ)4+900,0%WI(2sNKsJ)/WI(1sNKsJ)
AlB)=924 0¥WT (2 9NKsJ)4+T20 6 OXWI(2sNKsJ)/WI(19NKsJ)
A(B6)=T20,0%WI(2sNKsJ)
SOLUTION OF SYSTEM DIFFERENTIAL EQUATION IS OBTAINED AS BEFORE
INITIAL CONDITIONS
YI(1)=0.0
YI(2)=0.0 /
YI(3)=0.0 '
YI(4)=04,0
YI(5)=0.0
YI(6)=000,0%WI(2sNKsJ)/WI{1sNKsJ)
YI(T7)1=900,0%(WI{2sNKsJ)/WI(1sNKsJ))*(WT{1sNKsJ)=WI(29NKsJ)=Te75)
CALL RUNGE(DEQSET»7910090024+YIsYSOLN)
DO 180 KK=1+100

180 S(NsJsKKI=YSOLN(19KK)*(1eO0=YSOLN(29KK) )} %(160=~YSOLN(29sKK))
F{NesJ)=0,0
DELT=0,024
DO 190 KK=1999
LL=KK+1

190 F(N’J)—F(N’J)+S(NOJ’KK)*DELT+0c5*DELT*(S(NoJoLL)—S(N’J’KK))
WRITE (6+9) FiNsJ)

9 FORMAT (1HO940XsF1l5.8)

DPHI(J)=F (49 J)=F(49J-1)
IF (DPHI(J)eGT40,0) GO TO 230
J=Jd+1
L=2%L
IC=1C+1
WICIaNKeJI=WI(19NKsJ=1)4+FACTR*FLOAT (L) *DW
WI(2sNKsJ)=WI(2sNKsJ=1)4+FACTR*BM(NK)*FLOAT(L)*DW%504,0
GO TO 240

230 J=J+1
NK=NK+1
DW=0,0001
WI(IoNKsUI={WTI(1sNK~19J=1)+WI(19NK=19J=2))/2.0
WI(29NK2J)=(WI{29NK=1sJ=1)+WI(2sNK=19J=2))/2,0
Al{1)=8¢55+WI{2sNKsJ)
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A(2)=6064,46+8455%WI(29NKsJ)

A(3)=220448+404e46%WI(29NKsJ)
AC4)=24e0+220e48%#WI(2sNKsJ)+90040%WI(2sNKsJ)/WI (1sNKsJ)
A(S5)=92440%XWI(2sNKsJ)+T7206O%XWI(29NKsJ) /WI(1sNKsJ)
A(6)=T720,0%WI (2 9sNKsJ) , :

SOLUTION OF SYSTEM DIFFERENTIAL EQUATION IS OBTAINED AS BEFORE
INITIAL CONDITIONS

YI(1)=0.0
YI(2)=0.0
YI{3)=0.0
YI(4)=0.0
YI1(5)=04,0

YI(6)=900,0%¥WI(2sNKesJ)/WI(1sNKsJ)
YI(7)=000,0%(WI{(2sNKsJ)/WI(1sNKsJ))¥(WI(1eNKsJ)=WI(29NKeJ)=Te75)
CALL RUNGE(DEQSET979100+904,0249Y1sYSOLN)
DO 300 KK=1,100
300 S(NesJsKK)=YSOLN{(1sKK)I*¥(1,0-YSOLN(2sKK))*(1e0=YSOLN(29KK))
F(N’J)=0.0
DELT=0.,024
DO 310 KK=1999
MM=KK+1
310 FINsJ)=F(NsJI+SINsJsKKI*¥DELT+05*DELT*(S(NsJsMM)=S{NsJsKK))
IF (Fl49J)eLTeF(4sJ=-2)) GO TO 400
WIC1aNKsJ)=WI(1eNK=19»J=2)
WI{2sNKsJ)=WI(29NK=1sJ-2)
DW=0,00001
400 1F (NK.EQe30) GO TO 250
IC=1 v
WS{IsNKe1I=WI(1sNKeJ)
WS(2sNKs1)=WI{2sNKsJ)

GO TO 260
250 CALL EXIT
END

$IBFTC QRUNGE

NONOANNNONOND

SUBROUTINE RUNGE(DEQSETsNDEQsNVALsHsYIsYSOLN)

RUNGE~KUTTA SOLUTION TO A SYSTEM OF SIMULTANEOUS 1ST-ORDER DIFF-EQNS.
NDEQs THE NUMBER OF EQUATIONSs MUST NOT EXCEED 10 »
NVALs THE NUMBER OF POINTS AT WHICH SOLUTION IS DESIREDs INCLUDES XOe.
H IS THE STEP LENGTH FOR THE INDEPENDENT VARIABLE.
Y1 IS THE ARRAY OF INITIAL VALUES OF THE FUNCTIONS.
YSOLNs DIMENSIONED (NDEQsNVAL)s» CONTAINS THE SOLUTIONS IN THE ORDER

" IN WHICH THE DEPENDENT VARIABLES ARE DEFINED IN SUBRTN-*DEQSET?

DIMENSION YI(7)sYSOLN(7s100)9A(6)
DIMENSION YY(10)s YDOT(10)s YDEL(10)
COMMON A
DO 1 I=1sNDEQ

1 YSOLN(Is1) = YI(I)
DO 2 J=2sNVAL
DO 3 I=1sNDEQ

3 YY(I) = YSOLN(IsJ=-1)
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CALL DEQSET(YDOTsYY)
DO 4 I=1sNDEQ
4 YDEL(I) = YDOT(I)
DO 5 KTIMES=1s2
DO 6 I=1sNDEQ ,
6 YY(I) = YSOLN(IsJ=1) + YDOT(I)*H/2
CALL DEQSET(YDOTsYY)
DO 7 I=1sNDEQ
7 YDEL(I) = YDEL(I) 4 2.%YDOT(I)
5 CONTINUE :
DO 8 1I=1sNDEQ
8 YY(I) = YSOLN(IsJ=1) 4+ YDOT(1)*H
CALL DEQSET(YDOTsYY)
DO 9 I=1sNDEQ
YSOLN(TIsJ) = YSOLN(IsJ=-1) + (YDEL(IV+YDOT(I))*H/6e
CONTINUE
RETURN
END
$IBFTC FUNC1
SUBROUTINE DEQSET(YDOTsYY)
DIMENSION YY(T7)sYDOT(T7)sA(6)

N O

COMMON A

c . EQUATION FOR THE INDEPENDENT VARIABLEs INITIALLY ZERO
YDOT(1)=1.0 ’

C SYSTEM EQUATIONS

YDOT(2)=YY(3)

YDOT(3)=YY(4)

YDOT(4)=YY(5)

YDOT(5)=YY(6)

YDOT(6)=YY(T) A
YDOT(7)=A(6)1=A(6)%¥YY(2)=A(5)%YY(3)=A(4)%*YY(4)~A(3)%YY(5)~
1A(2)#YY(6)1-A(1)%YY(T)

RETURN
END
SENTRY
0.31 20,0
0.0033 O.18
$IBSYS

The steepest descent program is obtained by putting

BETA = 0.0
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$J0B 003508 IQLEEM 060 010
$18J0B
SIBFTC FITS
ADAPTIVE CONTROL WITHOUT IDENTIFICATION
METHOD OF PARALLEL TANGENTS (PARTAN)
ITERATED STEEPEST DESCENT PARTAN
PLANT PARAMETERS FIXED-ADJUSTABLE CONTROLLER WITH TWO DEGREE
OF FREEDOM
DIMENSION WS(2920920)sWI(2+20920)9DK(2)9A(6)sYI(T)YsAM(20)
DIMENSION DF(2920)9S(49189100)sYSOLN(T79100)sDPHI(20)9F(7+20)
EXTERNAL DEQSET
COMMON A
WRITE (6+700)
700 FORMAT (10Xs32HITERATED STEEPEST DESCENT PARTAN//)
DW=0,0001
NK=1
READ (591) (WS{IsNKsl)sI=1s2)
1 FORMAT (2F10e4)
READ (5s1) (DK(I)slI=1+2)
260 WRITE (698) WS{1sNKs1)sWS(29sNKs1)
8 FORMAT (1HO9s5X9F154895X9F1548)
J=1
DO 110 M=1s2 /
110 WI(MaNKsJI=WS(MsNKsJ)
DO 120 N=1s3
A(1)1=8e55+WI{2sNKsJ)
A(2)=40444648¢55%¥WI(29NKs J)
Al3)=220448+404 46%¥WI(2sNKs J)
A(4)=2440+220448%WI(2aNKsJ)+90040%¥WI(29NKsJ)/WI(19NKsJ)
Al5)=9244 0*¥WI(29NKsJ)+T2040%WI(29NKoJI/WI{1sNKsJ)"
Al6)1=T720,0%¥WI{2sNKosJ)
WRITE (642) (A{I)sI=146)
2 FORMAT (1X+6E1l2e45/)
THE &5TH ORDER CONTROL SYSTEM IS REPRESENTED BY A SET OF FIVE
SIMULTANEOUS FIRST ORDER DIFFERTIAL EQUATIONS AND THE SOLUTION IS
OBTAINED BY USING A SUBROUTINE
INITIAL CONDITIONS
YI(1)=0.0
YI1(2)=0,0
YI(3)=0.0
YI{4)=0,0
YI(5)=OOO
Y1(6)=90040%WI(2eNKsJ)/WI(1eNKsJ)
YI{7)=900 . O#{WI(2sNKsJ)/WI{1sNKesJ))H(WI(LoNKesJ)I=WI{(2eNKsJ)=T475)
CALL RUNGE(DEQSET»79100+040249Y1sYSOLN)
DO 130 KK=1»100
130 S{NsJsKK)=YSOLN(19KK)I*{140-YSOLN(2sKK) ) #(140~-YSOLN(2sKK))
F(N+J1)=0.0
DELT=04,024
DO 140 KK=1999
MM=KK+1

aNaNaRa e

(aXaNaRe
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FINsJ)=F{NsJI+SINsJsKK)*DELT+0e5*DELT* (S(NsJsMM)=S(NsJsKK))

IF (NKeGE«2) GO TO 270

EVALUATION OF PARTIAL DERIVATIVES BY THE LOCAL EXAMINATION OF
THE RESPONSE SURFACE

THE PARTIAL DERIVATIVES IN THE METHOD OF PARTAN ARE DETERMINED
ONLY AT THE STARTING POINT AND SLOPE CALCULATED

IF (NeGE«2) GO TO 210

WICLoNKsJ)=WI(1eNKsJ)I+DK(1)

GO TO 120

WIC1sNKsJ)=WS(19NKsJ)

IF (NeGE.3) GO TO 220

WI(29NKsJI=WI(2sNKsJ)+DK(2)

GO TO 120

WI(2aNKsJ)=WS{2sNKsJ)

DO 150 NN=2+3

M=NN=1

DF{MeJ)=(FINNsJ)=F{19J))/DKI(M)

CONTINUE

AMINK)=DF{29J)/DF(19J)

CONTINUE .

WRITE (6s4) (DF(MsJ)sM=142)

FORMAT (1HO91X92F15.8)

WRITE (6+3) F(1,J)oF;29J)oF(3oJ)

FORMAT (1HO95X3sF15e¢895X9F154835X3F1548)

WRITE (6s5) AM{NK)

FORMAT (1HOs10XsF20.9)

Fladsl)=F(1lsel)

FACTR=14.0

J=d+1

N=4

L=1

I1C=1

WIC1aNKsJ)=WS({1sNKs1)+FACTR*FLOAT(L )*DW
WI(29NKsJ)=WS{2sNKs1)+FACTR*AMINK)*#FLOAT(L)*DW*50,0
A{1)=84s55+WI{(2sNKsJ)

Al2)=40644,46+8655%¥WI(2sNKsJ)

Al3)=220,48+404 ,46%WI (2sNKsJ)
AlL)=264404220,48%WI(29NKsJ)+900,0#WI(2sNKs J)/WI(loNK’J)
A(5)=924,0¥WI{29NKsJ)+T7200%¥WI(2sNKsJI/WI(19NKsJ)
A{6)=T20,0%WI1(2sNKsJ)

SOLUTION OF SYSTEM DIFFERENTIAL EQUATION IS OBTAINED AS BEFORE
INITIAL CONDITIONS

YI(1)=040

YI1(2)=04,0

YI(3)=0,0

YI{4)=0.0

YI(5)=0,0

YI(6)1=900,0%WI(2sNKsJ)/WI(1sNKsJ)

YI(T7)=90040%(WI(2sNKsJ)/WI(1sNKsJ)I*(WI(19NKsJ)=WI(2sNKsJ)=Te75)

CALL RUNGE(DEQSET»79100+040249sY1sYSOLN)
DO 160 KK=1+100
SINsJsKK)=YSOLN(19KK)*#(140~YSOLN(29KK) )#(1,0-YSOLN(2sKK))
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190
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F(NsJ)}=0,0

DELT=0,024

DO 170 KK=1999

LL=KK+1

F(NsJ)=F(NsJ)Y+S(NsJsKK)*¥DELT4+O0, 5*DELT*(S(NoJcLL)-S(N’JoKK))
IF ((F(4sJ)=Fl49J=1)1aGTa0.0) FACTR==1,40

IF ((Fl4sJ)=F(49J=1)),LTe040) FACTR=140
WI(1sNKsJ)=WS(1sNKs1)+FACTR*#FLOAT(L)*DW
WI(2sNKoJ)=WS(29NKs1)+FACTR¥AMINK)#FLOAT(L)*DW*50,0
WRITE (697) (WI(MeNKsJ)sM=192)sIC

FORMAT (1HO 95X sF154895X9F15e8915)

Al1)=8e¢55+WI(29NKsJ)

Al2)=404446+8455%WI{2sNKsJ)

A(3)=220,484+404 ,46%WI(29NKsJ)
AlL)=24,04220.48%¥WI(2eNKsJI)+G00,0%WI{29NKsJ)/WI(1sNKsJ)
AlB) =024 40¥WTI (29NKsJ)+T200%WI{29NKsJI/WI(19sNKsJ)
A(6)=T20,0%WI(2eNKsJ)

SOLUTION OF SYSTEM DIFFERENTIAL EQUATION IS OBTAINED AS BEFORE
INITIAL CONDITIONS
YI(1)=0.0
Y1(2)=0.0
YI1(3)=04,0
YI{4)=04,0
YI{5)=04,0
YI(6)=9000%WI(29eNKsJ)/WI(1sNKsJ)
YI(7)2900,0%(WI(2sNKsJ)/WI(T1oNKesJ))*(WI(1sNKsJ)=WI(23NKsJ)=T7e75)
CALL RUNGE(DEQSET979100904024sYIsYSOLN)

DO 180 KK=15100
SINsJsKK)=YSOLN(1sKKI#*(140~YSOLN{2sKK))1*#(1,0-YSOLN(29KK))
F(Ns»J)=0.0

DELT=04024

DO 190 KK=1»99

LL=KK+1
FINsJI=FINsJ)+SINsJsKKI*¥DELTH+0S5*DELTH(S(NsJsLL)=S(NsJsKKI})
WRITE (649) F(NsJ)

FORMAT (1HOs40XsF15.8)

DPHI(J)=F (49 J)=F{49sJ-1)

IF (DPHI(J)eGT6e04,0) GO TO 230

J=Jd+1

L=2%L

IC=1C+1

WICLsNKoJ)=WI(19NKsJ=1)4FACTR*FLOAT(L)#DW
WI(2sNKsJ)=WI(2sNKsJ=1)+FACTR*AM(NK)*FLOAT(L)*DW*50,0

GO TO 240

J=J+1

NK=NK+1

DW=0,0001

WI(1oNKoJ)=(WI(1aNK~19sJ=1)+WI(19NK=13sJ=2})/2,0
WI(29NKaJ)={WI(2sNK=19J-1)+WI(29NK=19J=2))/24,0
Al1)=8e55+WI(29NKs J)

A(2)=404,46+8455*WI(29NKsJ)

A(3)=2220,48+40446%WI(29sNKsJ)

/
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A(4)=24.O+220048*WI(ZQNKQJ)+9OOQO*WI(ZQNK’J)/WI(IONK’J)
A(5)=924,0%WI(2sNKsJ)+T720s0%WI(2sNKsJ)/WIIL1sNKsJ)
AlLB)=T20,0%WI(2sNKsJ)
C INITIAL CONDITIONS
YI1(1)=0,.,0
Y1(2)=0,0
Y1(3)=0e0
YI(4)=0,0
YI1(5)=04,0
YI(6)=900s0%#WI(2sNKsJ)/WI(1oNKsJ)
Y1(7)1=900, 0*(WI(29NK9J)/WI(10NK9J))*(WI(19NK9J)~WI(ZONKOJ) ~7e75)
CALL RUNGE(DEQSET9791009060249Y135YSOLN)
DO 300 KK=1»100
300 S(NsJsKK)=YSOLN(1sKK)*(]1,0~ YSOLN(Z!KK))*(I.O-YSOLN(ZoKK))
F{NsJ)=0,0
DELT=0.,024
DO 310 KK=1+99
MM=KK+1
310 F(N» J)‘F(N,J)+S(N9J’KK)*DELT+O B5HDELT*{S(NyJsMM)=S{NsJsKK))
IF (F(4eJ)elLTeF({49J-2)) GO TO hOO
WI(1oNKesJI=WI(1oNK=1sJ-2)
WI{2sNKsJ)I=WI(29NK=19sJ=-2)
400 1C=1 ' ;
IF {NKeEQe2) AM(2)==14,0/AM(1)
IF (NKeEQe3) AMI{3)=((WI(2539J)~WI(2s191))/(WI(193sJ)=WI(19191)))
IF (NKeEQe&4) AM{4)==1,0/AM(3)
IF (NKeEQe5) AM(5)=AM(3)
IF (NK+EQeb) AM(6)=((WI(2;69J)—WI(294’1))/(WI(1’69J)-WI(1’491)))
IF (NKeEQe7) AM(T7)==1,0/AM(6)
IF (NKeEQe8) AMI(B)=AM(6)
IF (NKeEQe9) AMI9)=(({WI(2+99J)=WI(2s791))/(WI(199eJ)-WI(1s791)))
IF (NKeEQe10) AM(10)==1.0/AM(9)
IF (NKeEQell) AM(11)=AM(9)
IF (NKeEQel2) AM{12)=({WI(29129J)=WI(291091))/(WI(1s129J)-WI(1s10
1+.1)))
IF (NK.EQel3) AM(13)==1,0/7AM(12)
IF (NKeEQels) AM(14)=AM{12)
IF (NKeEQe1l5) AM(IS)“((WI(29159J)-WI(2'13’1))/(WI(1’159J)-WI(1913
1-1)))
IF (NKeEQel6) AM(16)==1,0/AM(15)
IF (NKeEQel7) AM(17)=AM(15)
IF (NKeEQe18) GO TO 250
WS{1sNKs1)=WI{1sNKsJ)
WS{2sNK»1)=WI(2eNKsJ)

GO TO 260
250 CALL EXIT
END

$IBFTC QRUNGE
SUBROUTINE RUNGE(DEQSETsNDEQsNVALsHsYIsYSOLN)
C
C RUNGE=-KUTTA SOLUTION TO A SYSTEM OF SIMULTANEOUS 1ST-ORDER DIFF=EQNSs
C NDEQs THE NUMBER OF EQUATIONSs MUST NOT EXCEED 10 |
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NVALs THE NUMBER OF POINTS AT WHICH SOLUTION IS DESIREDs INCLUDES XO.

H IS THE STEP LENGTH FOR THE INDEPENDENT VARIABLE.

YI IS THE ARRAY OF INITIAL VALUES OF THE FUNCTIONS.

YSOLNs DIMENSIONED (NDEQsNVAL3)s CONTAINS THE SOLUTIONS IN THE ORDER
IN WHICH THE DEPENDENT VARIABLES ARE DEFINED IN SUBRTN-'DEQSET!

NN NOON

DIMENSION YI(7)sYSOLN(75100)sA(6)
DIMENSION YY(10)s YDOT(10)s YDEL(10)
COMMON A
DO 1 I=1sNDEQ
1 YSOLN(Is1l) = YI(I)
DO 2 JU=2sNVAL
DO 3 1I=1sNDEQ
3 YY(I) = YSOLN(IsJ=1)
CALL DEQSET(YDOTsYY)
DO 4 I=1sNDEQ
4 YDEL(I) = YDOTI(I)
DO 5 KTIMES=1s2
DO 6 I=1sNDEQ
6 YY(I) = YSOLN(IsJ=1) + YDOT(I)%*H/2,
CALL DEQSET(YDOTsYY)
DO 7 I=1sNDEQ '

7 YDEL{I) = YDEL(I) + 2%YDOT(I)
5 CONTINUE
DO 8 1=1sNDEQ
8 YY(I) = YSOLN(IsJ=1) 4+ YDOT(I)*H
CALL DEQSET(YDOTsYY)
2 CONTINUE

DO 9 I=1sNDEQ
9 YSOLN(IsJ) = YSOUN(TsJ=1) + (YDEL(IN+YDOT(1))*H/6.
RETURN
END
$IBFTC FUNC1
SUBROUTINE DEQSET(YDOTsYY)
DIMENSION YY(7)sYDOT(7)sA(6)

- COMMON A
C EQUATION FOR THE INDEPENDENT VARIABLEs INITIALLY ZERO
YDOT(1)=140 '
C SYSTEM EQUATIONS

YDOT(2)=YY(3)
YDOT(3)=YY(4)
YDOT (4)=YY(5)
YDOT(5)=YY(6)
YDOT(6)=YY(T)
YDOT(T7)=A(6)=AL6)¥YY(2)=A(S)*YY(3)=A(4)*YY(4)=A(3)*YY(5)~
1A(2)#YY(6)=AL1)¥YY(T)
RETURN
END
$IBSYS
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Continucd and scale invariant partan programs are slightly
different to one given here. The difference lies in the different

value of slopes taken in each case.
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