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Preface 

.It has become clear in the past five or six years that the categories 

of algebras arising from triples are a natural generalization of the 

equational classes of Birkhoff-type universal algebra. From their discovery 

about ten years ago (by Godement), triples have been studied mainly with 

a view to their homological applications. In fact, as far as I know, the 

only paper to appear up to this time which concerns itself with the detailed 

universal algebra of triple algebras is the doctoral dissertation o.f 

E. Manes. 

This thesis is an attempt to give a reasonably complete intro

duction to the study of triple algebras, together with an analysis of 

algebras which arise from triples in the category of sets. The material 

in ·chapters O, 1, 2 represents a collection of results from various papers 

appearing in the literature. The material in §3.1 and §3.2 can be found 

in a more general setting in Manes' dissertation, but the approach used 

here (through congruences as in classical universal algebra) is, as far 

as I know, original. The tripleableness theorem in §3.2 has been around 

for some time but the only proofs appearing in the literature are somewhat 

incomplete, and are readable only for avid category-theorists. Therefore 

I have included a complete, relatively clear proof most of which was 

learned from J. Beck, and the rest of which follows from the material on 

congruences in §3.1. Finally a short appendix has been included to give 

an idea of the notion of rank of a triple and its importance with respect 

to classical universal algebra. For reasons of space and time it was not 

ii 



feasible to make a detailed study of this within the text of the thesis. 

Finally I should like to emphasize that in Chapter 3, the techniques 

of classical universal algebra are employed wherever possible. In certain 

places (for example in the construction of colimits) more elegant purely 

category theoretical arguments are ignored, but as pointed out above, this 

paper is meant to be in the spirit of universal algebra rather than pure 

category theory. 
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Chapter 0 BASIC THEORY OF ADJOINT FUNCTORS 

§0.1 Preliminary Comments 

0.1.l The reader is expected to have a grasp of the calculus of functors 

and natural transformations ("Godements cinq r~gles", etc.). Beyond this 

only elementary category theory is required, for example the basic theory 

of types of morphisms, limits and colimits. In particular none of the 

theory of additive categories will be needed. The above knowledge is in 

probably its most accessible form in Mitchell [10], and we will refer the 

reader to this book for any unexplained concepts. 

0.1. 2 We will now lay down some notational conventions with the inevit

able 	warning that such rules are made to be broken. 

(1) Upper case script letters for categories: A.' (8 etc.'-:K 
(2) The letters K, L, X, Y, z for objects of categories. 

(3) Lower case Roman letters for morphisms: f, g, h etc. 

(4) Upper case Roman letters for functors (except for K, L, X, 

Y, Z): F, G, T etc. 

(5) Lower case Greek letters for natural transformations: n, µ 
F 

etc. If we have .A 'ta functors, then by saying F~G 
G 

is a 	natural transformation, we mean 4> is a family of maps 
«j>X 

(4>X)K~A.. , FX~>GX satisfying the usual requirement. 

(6) 	 For the value of the functor F at the object X (resp. morphism 

f) we write FX (resp. Ff) rather than F(X). Similarly we 

indicate composition of arrows by concatenation except where 

this is confusing, in which c:lse we use the composition 
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"circle" e.g. we write fh but 4troµ rather than 4trµ. · 
f 

(7) The set of all morphisms X---+Y in Jl is denoted A(X,Y). 

(8) We use the symbols lT and J.L for product and coproduct, 

respectively. 

§0.2 Adjoint Functors 

0.2.1 The notion of an adjoint situation is fundamental to the study of 

triples. Indeed the latter may be regarded as the investigation of the 

algebraic content of adjoint pairs. For this reason we will give a cursory 

review of the relevant concepts. 

u 
Given a pair of functors A:..."',_.......~~ we say that F is left adjoint to U 

F 
(U 	 is right adjoint to F) iff there is a natural equivalence 

(F-,-)~-~---~~~(-,U-). We note that the two functors involved here 

have domain~ xJt and range S (category of sets) and that they are contra-

variant in the first variable and covariant in the second. We write 

X : F--1 U (.A.,~) to describe this situation (following Eilenberg-Moore 

[3)). 

An entirely equivalent formulation of adjointness arises from considering 

(in the above situation) pairs of natural transformation (n,£) where 

idle» n ~UF and FU s >i<l-'l. , satisfying £F o Fn = idp, U£ o nu = idu. 

Such pairs are in one-one correspondence with natural equivalences 

described above. Specifically, given it define (n,£) by nX = ~(X,FX)(idFX) 
_, 

and £1 = lC(U1,1) ·. (idUL). On the other hand, given (n,£) define 

(FX,1) ~(X,l) "' (X,UL) by l!(X,F) (f) = Uf o nX. One then checks that 
_, 

the 	inverse to ¥?.(X,1) is given by >t(X,1) (g) = £1 o Fg. It is then 
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an easy exercise in the calculus of natural transformations to check that 

the above passages effect a bijection of the proper type. We write 

(F, U, n, e:,A.,~) or F--IU (n ,e:) when making reference to an adjoint

ness given in this second way. n and e: are called the front and back 

adjunctions, respectively, of the adjointness. We observe that this 

second formulation lends itself more readily to computations than the 

first, and our subsequent considerations will generally take this line 

of approach. 

0.2.2 The notion of conjugate transformations will also be needed. 

Given adjoint situations \t,: F-\U (A,~) and ~·: F 1--I U' (A.,~) 

and natural transformations F'--4F, u--1..iru 1 we say cj> is conjugate 

to ip, written qi -t ljJ, if the following diagram commutes: 

{F-,-) ~ (- 'U-) 

(~.-) 1 
~ 

1 {-, ip) 

{F'-,-) ~ 
I 

JI>. {-,u'-) 

This means, of course that for any X £ ')J!) and L ~Jl and for any FX~L 

in A, ijJL o '\t(X,L)(f) = )f. 1 (X,L)(f o cj>X) 

If we have \t.,... (n ,e:) and ~ - {n', e: ') it is straightforward to verify that 

<fl-\ l/i if f the following two diagrams commute: 

n 
id 

n' 1 
UF 

l~F 
F'U 

F'~ l 
~u ~ FU 

l· 
U'F' U'F F'U id 

U' ¢ e; I 
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Every transformation F' $ ~F or U~U' has a unique conjugate. 

Given <j>, put tJ! = U~U'F'U U'tU•U'FU~U' 

given tjJ, put <j> = F'~F'UF F'l/JF~F'U'F~F. 

For example, suppose we are given <j> and wish to construct tjJ. For such a 

tJ! we must have tJ! = U1£ 1 0 n'U'o tJ! = U'E' 0 U'F'tJi 0 n'U = U'E 0 U'<j>U 0 n'U 

(since <j>-41/J). This shows uniqueness of tjJ, given <j>. Next we show <j>_. t/J 

with l/J given by the above formula. tjJF o n = U1 £F o U'tUF o n~UF o n = 

U1EF 0 U'<j>UF 0 U'F'n 0 n' = U'EF 0 U'Fn 0 U'<j> 0 n = U'<j> 0 n. Further

£ 1more, o F'tJ! = £ 1 o F'U'E o F'U'tU o F'n 1 U = Eo E 1 FU o F'UtU o F'n'U = 

E o <j>U o e:'F'U o F'n'U = e: c- <j>U. The proof that <j> exists and is uniquely 

determined by tJ! is entirely analogous. 

The reader can easily check that the above correspondences are functorial. 

That is, if F" p' ,F' P >F and t-\1/J, cp'....,. tJi' then H'--\ l/J'tJ!. Moreover 

the formulas for computing conjugates show idF --\ idu• From this it 

follows that for <j>-\1/J, t is an equivalence iff l/J is an equivalence. For 

example if tJi is given and has inverse t/J:-' then the conjugate of t/J is 

<j> = e:'F o F'tJ!F o F'n and the conjugate of f 1 is 
~ 

t = e:F' o F l/J 
-1 

Y' o Fn'. 

Since functorial correspondences preserve isomorphisms we must have ~ = <f>':"'·.• 

0.2.3 Another fact about adjoint situations is the fundamental existence 

theorem of P. Freyd. This theorem (usually called the "Adjoint Functor 

Theorem") gives a partial answer to the question of when a given functor 

has a left adjoint. We recall a basic property of adjoint functors if 

F --t U then F preserves all existing colimits and U preserves all existing 

limits. 
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Definition: Let .A.~1< be a functor. Then a set of objects 

(Ai)i 6 I of is said to be a solution set for K ~ :S< relative to U if for 

each A E..ll and map K f ) UA there is an index i 0 t: I and maps ~-...::j"---_..> UA. 
1Q 

and A. a ~A with f == Ua o j.io 

Theorem (P. Freyd): Let A.~'1< be a functor withA. complete 

and locally small. Then U has a left adjoint iff it preserves limits and 

every object of 1( has a solution set relative to U. 

Proof: See Mitchell [10], pages 124-126. 

0.2.4 Finally we say a subcategory '.Y~ S: 1< is a reflective subcategory 

iff the inclusion functor -;K'---J->?< has a left adjoint R, say R-t J 

(!, e:). In this situation e: is pointwise epi and ~' is a full sub

category iff e: is natural equivalence. (In a general adjoint situation 

F--\ U (11, e:) U is faithful iff e: is pointwise epi and U is full and faith

ful iff e: is an equivalence). 

Equivalently (modulo a suitably powerful axiom of choice) :><.' is a reflect

ive subcategory of 1( iff for each X ~ '< we have an object RX E. X' and a 

"reflection" map X__j~ RX such that for any X f t Y with Y t: "'.K.', 

f' 
there is a unique RX ~Y in 'l<,.1 with f == ~ o ~ X. 

lf a diagram in -:K.' has 

a colimit in :){, then following this colimit by its reflection in ~· 

gives the colimit of the diagram in K'. 



Chapter I TRIPLES 

§1.1 Triples and their Algebras 

T
1.1.1 A triple in a category ~ is a 3-list T = (T, n, µ) where J{~ '1< 

is a functor and n,µ are natural transformations id~--T)~~~T, TT 

satisfying i10Tn=µonT = idT and µoTµ = µoµT. That is, the following 
m 

diagrams compute: 

µT 

TT---...,T 

n,µ are called the unit and multiplication respectively of the triple T 

and the above axioms are referred to as the unitary and associative axioms. 

Cotriples are defined dually. 

The history of and motivation for the notion of triple can be found in 

Beck [l], or in the introduction of [11]. 

1.1.2 Of principal interest to us is the category X of algebras arising 

from a triple T in"J\. The objects of '1<.T are pairs (X,~) where X ~:K. 

and ,s: TX--~~x is a map in X satisfying the following unitary and assoc

iative laws: 

6 
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.e is called the operation of 	the algebra (X,$ ). 

For objects (X,.S) and (Y,~) 	 in":K.T the hom set XT ((X,~ ), (Y,~)) consists 

of all maps f ~ '.'.K(X,Y) satisfying the following homomorphism rule: 

Tf 
TX---..TY 

corrrrnutes.~l f 1~ 
X tY 

In general, when considering such a map f as a morphism in :I< T (a 

"T-homomorphism") we will write it as [f] for emphasis. It is easy to 

verify that the composition law [g][f] = [gf] makes 'KT into a category, 

which we call the category of T-algebras. The following proposition 

more or less justifies the terminology "algebra". 

1.1.3 Proposition: In the above described situation the following 

facts obtain: 

(1) 	 For each X c: 'J( , (TX, pX) is a T-algebra. Furthermore this 

fassignment together with X---'P'>Y ~(TX, pX) [Tf) ~(TY,pY) 

defines a functor F!: 1<. >"J<.'T' 

(2) For each X t':k , FTX is the T-algebra freely generated by 

X in the following sense: 

(a) if we have a monomorphism (Y, O [ f] >(TX, µX) and a 

factorization Y f ) TX then f (and hence [f]) is an

gI7 
isomorphism. That is, if we think of X~TX as the embedding 

of generators then this fact may be interpreted as "X generates 
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f 
(b) For any T-algebra (Y,~) and any map x~~---.)Y there 

[f] 
is a unique T-homomorphism (TX,µX)~~.....,.>(Y,~) with fnX = f. 

This is the familiar extension property of free algebras in the 

classical universal algebra sense. 

uT 


(3) We have a built-in functor 1<..T__.....,.'X defined by 

UT(X,S) = X and uT[f] = f. Moreover F1 --C UT via (n
1 

,e:T) where 

nT = n and e:T(X,.9) = [~]: (TX,µX)----1>(X,.S). 

Proof: (1) That (TX,µX) is a T-algebra is expressed by the original triple 

axioms. That Tf is a homomorphism is simply the naturality of µ. That FT 

is functorial is a consequence of the functorialness of T. 

(2) (a) We will show f is split epi. In the presence of the fact 

that f is mono, this ensures f is an isomorphism. By consulting the axiom 

which is required for a map to be a homomorphism, one can immediately see 
. T 
U reflects isomorphisms, so [f] will be an isomorphism. In our situation f 

has a right inverse, namely ~ o Tg, for f o ~ o Tg = µX o Tf o Tg ~ µX o TnX = 

idTX• 

(b) We claim f = ~ o Tf is the unique extension. f 	 is a homo

-morphism since f o µX = ~ o Tf o µX = ~ o µY o TTf = 	~ o T~ o TTf = ~o Tf. 

Also f o nX = ~ o Tf o nX = ~ o nY o f = f. f is the 	only possible extension 
[g] 

since given (TX,µX)---•>(Y,0 with g o nX = f, we must have g = g o µX o TnX = 

~ o Tg o TnX = ~ o Tf = f. 

(3) 	 That 9 is a T-homomorphism from (TX,µX) to (x,e) is a consequence 

~/ T Tof the associative law for algebra structures. For each X £.n, Ce:rF o F )X = 
. nT 


e:T(TX,µX) 0 [TnX] = [µX] 0 [TnX] = [idTX] = id T • For each (X, .S ) ~ 'J-<.. T, 

T T F X 


(U e:T 0 nTU ) (X, .s) = .s 0 nX = idx = id This verifies the adjoint-

UT (X,.S ) 


ness assertion. 


§1.2 Triples as Invariants of Adiointness 

1.2.1 Consider an adjointness (F,U,n,e:,A,1<.). Then this adjoint



9 

ness generates a triple in X, namely T = (T,n,µ) where T = UF, n is 

the front adjunction of the adjointness, ~nd µ = U e: F. That this is in

deed a triple is a consequence of the two properties of the front and back 

adjunction as given in 0.2.1. 

In the above situation we have a canonical functor A 4> •'X7 given by 

4>X = (UX,Ue:X), 4>f = [Uf]. Ue:X is a T-operation since Ue:X o nUX = 

(Ue:. nU)X = idux and Ue:X 0 T(Ue:X) = Ue:X 0 UFUe:X = U(e: 0 FUe:)X = U(e: 0 e:FU)X 

f= Ue:X o Ue:FUX = Ue:X o µUX. Furthermore if X---Y in .A.. then 


(UX,Ue:X)~-(,,_U_f_]~(UY,Ue:Y) since Uf o Ue:X = U(f o e:X) = U(e:Y o FUf) = 


Ue:Y o UFUf = Ue:Y o TUf. 


It is also clear that we have 4> o F = F~ and U!' o 4> = U. 


Since we will find categories 'XT particularly appealing objects, it is 

natural to inquire about the properties of the functor 4> above. Before 

we can do this conveniently we require some additional machinery. 

1.2.2 Definitions: For a category~ we define a new category AD(':K) 

as follows: The objects of AD('l{) will be adjoint situations (F, U,~ , 

t:, A , 7< ) • The morphisms between two such will be the functors C 

commuting with the right adjoints in the following way: 
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It is clear that functorial composition makes AD('J<.) into a (large) 

category. 

We also define a category Trip (1{.) where objects are triples in :J<. 

For T = (T , n , l.I ) and 'T = (T , n , l.I ) a morphism T qi >'t" 
1 1 1 1 2 2 2 2 1 2 

will be a natural transfonnation T qi T satisfying the following
1 2 

laws: 

unitary law: 

multiplicative law: 
commutes, where 

<f><P = T qi o qiT = qiT o T qi 
2 1 2 1 

Composing two such as natural transformations again gives a triple map 

(quite trivial with the observation that for T--qi-~T lJJ T , one has 
1 2 3 

(lJJ o qi)(lJJ o ~) = lJJW o ~~). This is, indeed, the composition we use for 

Trip ('}<.). 

1.2.3 We have seen (1.2.1) how objects of AD(X) give rise to objects 

of Trip (j{). We will now extend this to a contravariant functor 

AD(~) R )Trip (:K), the "structure" functor of functorial semantics 

(Lawvere [5], Linton [6], [7]). 

We accomplish this in the following way: Suppose we have (F.,U.,n.,e.,
1 1 1 1 

.A.i,'J{) i = 1,2 objects of AD(l{). We will refer to them by their right 

adjoints U.• Now suppose we have an AD(:J{) morphism U 
c 

}U • Say
1 1 2 

Ui generatesTi = (Ti,n ,ii ). Define a system of maps U F K yK .+U F/,
1 1 2 2 1
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for each Ke'j{_ , by rK = U £ CF K o U2F211 1K {we have 
2 2 1U F n K U £ CF K 

U F K -2._1_!._> (U F U F K = U F U CF K) 2 2 1> U F K) 
2 2 2 2 1 1 2 2 2 1 1 1 

Proposition: The system of maps ( lK) defined above constitutes 

a triple map T X •T • If we put R(C) =y then R becomes a contra
2 1 

variant functor. 

Proof: {a) Naturality of ~ : This is immediate since y = U £ CF o u·F n 
2 2 1 2 2 1 

the composition of two natural transformations. 

(b) Unitary law: 'to n = U e: CF o U F n o n 
2 2 2 1 2 2 1 2 

= u f; CF 0 n u F 0 11 = (U £ 0 n u )CF 0 n = (idu )CF 0 n = 11 
2 2 1 2 l 1 1 2 2 2 2 1 1 2 l 1 1 

{c) Multiplicative law: Consult the diagram on the following 

page. 

(d) Functorialness of R: If we have a third adjointness U and 
3 

D 
a map u---~~u with corresponding o = U £ DF o U F 11 we must show 

2 3 33 2 332 

This is a straightforward but complex naturality calculation: 


u £ CF 0 u F n 0 u £ DF 0 u F 11 = u £ CF 0 u £ DF u F 0 u F u DF n 0 u F n 

2 2 1 2 2 1 3 3 2 3 3 2 2 2 1 3 3 2 1 1 3 3 3 2 1 3 3 2 

= u £ DCF 0 u F u DE CF 0 u F n u F 0 u F n 
3 3 1 3 3 3 2 1 3 3 2 1 1 3 3 1 

= u £ DCF 0 u F (U £ 0 n u )CF 0 u F n = u £ DCF 0 u F n 
3 3 1 3 3 2 2 2 2 1 3 3 1 3 3 1 3 3 1 

1. 2.4 The structure functor R above roughly speaking assigns to an 

adjointness its algebraic structure. We will now define a semantics 

M
functor Trip(~)~~~AD(:K..) which interprets a triple as its category 

of algebras. 



Diagram for Proposition 1.2.3 

T y yT
2 1 

U F U F n U e: CF U.F 
UFUF 22111 )UFUFUF ---- ·) 2 2 1 1 L~u F u F 

2 2 2 2 2 2 2 2 1 1 1 1 1 1 

U e: F I U e: F U F II III U e: F 
~22 2 2 2 1 l 1 1 1 

(= U Ce: F ) 
2 1 1 

J, 
~__:~~~~~...--~~~~~~~~--?-U FU F U FU F 

2 2 2 2 1 1 1 1 

U F n U e: CF 
2 2 1 2 2 1 

I commutes by naturality of e: 
2 


II commutes by naturality of e:
 
2 


III commutes since e: 2C o F2U1e: 1 = e: C o F U Ce: = Ce: 1 o e: 2CF U (by naturality)

2 2 2 1 1 1 


Since in IV we have U2F2U1e: 1F1 o U2F2n1U1F1 = id, the large "triangle" on the right connnutes, 


hence the outer diagram commutes 
.... 
I'.) 

U e: CF 
2 2 r 
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~ ~ T .Specifically, for a tripleT put MT= (F., U., T1.r' £'t',1' ,'l<.). For a 

4' .u ~ M~ tt}itriple map T t-'T in Trip (.n.) put 1< ---4'""'"" by M<f> (X,.&) = 
1 2 

(X, .&. <j>X), M<j> [f) = [f). 

Proposition A: M is a contravariant functor. 

~ 
Proof: If (X,~ ) e;"J{'" then ~ ocp X is a T -structure on X, for 

1 


~ o -<f>X o n = ~ o n = 
 idx 
1 2 

.S o <j>X o T ( .8 o 4> X) = -& 0 T~ o T <f>X o <f>T X = .9 0 µ x o T <fix o 4rr x 
1 2 2 1 2 2 l 

= ..S o cpx o µ x • 
1 

Also if (X,$) [f] ~(Y,f;) in l<.T~ then f is a homomorphism from 

Mcp(X, .& ) to M<f>(Y, f;), since f o -8 o <j>X = f; o T f o cf>X = f; o cf>Y o T f. 
2 l 

Thus we have M~ is a morphism in AD(?<). It is quite clear that Mis 

functorial (contravariantly of course). 

Mcp is called semantical interpretation of cp • Because of the "Hom" 

nature of M<f> on structures we write sometimes Mcf> = ')(.4'>. 

Before exploring the connection between M and R we need to extend our 

concept of adjointness to contravariant functors. Suppose A.;<; 
R 

~ ~ 
cpM 

are contravariant functors. Then we say R -4 M ( <f> , £) for idA )MR, 
£ 

idh--~)RH iff <f> M o M£ = id , £R o R<f> = id • We call <f> the front 
'IOJ M R 

adjunction and £ the back adjunction. 

The motivation for the above definition is simply that according to this 

we have R --l M (n,£) R* --\ M* (n,£*) (covariant functors) using 

the notation of Mitchell [10) page 50. Th~t is, if Rand M are considered 

as having codomain and domain )?, 0 P respectively, R is left adjoint to M 

as in §0.2. It is clear that the remarks of §0.2 can (and will) be 
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interpreted anew in the situation of contravariant adjoint functors. 

R 
Proposition B: With respect to the situation AD('l{)~ •Trip(:K.) 

M 
the following facts obtain: 

(1) ID-I = idTrip(".K) 

(2) The maps ~ defined in 1.2.1 constitute a natural transform
~ 


ation~ idAD('X. ) ___.,MR 


id 

-
(3) i and idTrip('K)-~~~RM are front and back adjunctions 

for an adjointness of contravariant functors R---t M. 

Proof: 	 (1) Take a triple T = (T, n, µ) in 'l<. • Then RMT is the triple 

T T T T T T T Tgenerated by (F ,U ,n ,ET,1(. ,':K). But this is (U F ,n ,u ETF ).1 

We have UTFT = T 

nT = n 

U1 ETFT(K) = uTET(TK,llK) ·~ uT[µK) = µK 

all of these facts follow from Proposition 1.1. 3. 

Given a map T
1
__j_..,r2 in Trip('X.), put y =RM~. Then from 0.4.3, 

= <PK 

This shows RM is the identity on morphisms as well as objects. 

(2) Let us have (F.,U.,n.,t:.,.A. ,1() i = 1,2 objects of AD(l{) and 
l.l.l.l. i 

c
A.1---~.A. 2 a map between them in AD(1{). To show~ is natural we must 

establish the commutativity of the following diagram: 
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Let X ~A. 1 • Then ~2C X = (U2C X, U2c2CX) = (U1X,U2c2CX). On the other 

hand MR(C) o ~ 1X = (U1X, U1c 1X o R(C)U1X). Now these two algebras are 

equal since 

For a morphism f in.A 1 , MR(C) o <P f = HR(C) [U f] = [U1f]
1 1 

4> 0 c f 
2 

(3) Since the back adjunction is the identity the laws expressing 

the adjointness take the simple form 

°iM = id , Ri = id 
M R 

To establish the first take any triple T in 'l<. Then 

~Mr: M'I" --t MRMT = MT 

i.e. If> 
'J'..T '1(-y; 

~ = iMTUT\ /UT 
'l<.. 
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41 (X, .S ) 
T = (U (X,.S ) , 

T
U e:T (X, .S )) 

= (X,.S ) 

4>[£] = [UT[f)] = [£]. 

Hence 41 qed. 

To establish the second identity, take (F,U,n,e:,.A.,'<.) in AD(:J<), generating 

a triple T = (T,n,)l)· 

R(4>) 
Then we have and T T 

yK 
Putting R(<j>) = y we have, for each K E. -:K , TK----+TK defined by 

yK = UTe:r4>FK 0 UTFTnK 

:r= u .e:r(UFK,U~FK) 0 TnK 


= Ue:FK o TnK 


= \.IK o TnK 


This completes the proof of the proposition. fi:J 

Corollary: The following facts hold: 

(1) M is a dual isomorphism onto the full subcategory generated by 

the images of objects of Trip(':X) under M. 

(2) 	 Suppose (F,U,n,e:,A.,'J<) ~ AD(j{), generating T = (T,n,i1). Let 
C H 

H be any triple and .A, )o"l{ any map in AD(;K). Then there is a unique 

functor D, a map in AD('X.) making the following d·iagram commute: 
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A-----'KT 

D 

Namely take 	D = MR(C). 

Proof: (1) 	 M is 1-1 on objects since it has a left inverse. 

M is full and faithful since the back ajunction is an 

isomorphism. 

(2) 	 This merely expresses the fact that Alg('l<.) is a reflective 

subcategory of AD('j{) with reflections 4> (because of the 

adjointness and the fact that M may be viewed as the inclusion 

of Alg ('.K ) ) • 

Two remarks are in order. First, the semantics functor R is full. Prop

osition B above shows that R is full when restricted to Alg('J() but the 

more general assertion seems to require a highly technical proof, which 

will be omitted here. The second remark is that what we have done here 

is by no means the whole story on structure-semantics. The study of 

these concepts was initiated by Lawvere [5] and generalized by Linton [7]. 

Their approach was through algebraic "theories" (see Linton [6]) which 

are equivalent to triples but whose theory of structure-semantics lends 

itself more readily to generalization. We will ignore this notion of 

algebraic "theories" since we find the machinery of triples more efficient 

than (if not quite as intuitive as) that of "theories". For a full (but 

sketchy) account of the relationship between "theories" and triples see 
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Linton [7]. For the somewhat messy details of the crux of this relation

ship see Davis [2]. 

§1.3 Tri.pleability 

1.3.1 The functors ~ discussed in the above sections are called (for 

now obvious reasons) the semantical comparison functors. 

Given a functor .lt--u ... 'j(. with a left adjoint and semantical comparison 

functor ~ we say that U is 

(1) of descent type if ~ is full and faithful~ 

(2) tripleable or of. effective descent type (E.D. T.) if ~ is 

an equivalence 

(3) precisely tripleable if ~ is an isomorphism. 

The fact that U enjoys any of the above properties is independent of the 

choice of left adjoint and ajunctions. Moreover if U' =U (naturally 

equiv.) then U' has (1) or (2) iff Uhas (1) or (2) respectively. This 

is an inunediate corollary of the following proposition. (Observe that 

if U is precisely tripleable then U' is E.D.T. but not necessarily precisely 

tripleable). 

Proposition: Let (F,U,n,e:,A,"J<.) and (F',U',n',e:',.ll.:'X) be 

objects of AD(?{) with F'__!__..F, u--!..+u• conjugate natural equivalences. 

If we denote the triples generated by the adjointnesses by T, 'T' respect
-!

9ively, with semantical comparison functors ~, ~· then UF w )U 1 F 1 is 

a triple isomorphism and the following diagram conunutes up to natural 

equivalence. 
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If U = U' and $ = idU then the natural equivalence is the identity trans


formation and the diagram commutes absolutely. 


Proof: tli<P-l satisfies the unitary law: $<1>-l o n = U'<f>-l o $F o n 


= U'cJ>-l o U'<P on' (since <P--t $) = n'. 


Multiplicative law: consult the diagram on page 20. 

. -1 
Commutativity of the diagram: On objects M($cj> ) o 4>' X = 

(U'X,U'£'X o ljJcj>-lU'X). Define a natural equivalence 4J~M($<P-l) o ~' 
ax 

by (UX,UEX)---~><u'x,u' EX o i:i<t>-1u'x), ax = [l/JX]. First we must check 

that each et.X is a homomorphism: 

U1 £ 1 X o $<ji-lU'X o T(et.X) 	 = (U' £' o $cj>-lU' o UFl/l)X 


= (U'£' o $F'U' o U<ji-lU' o UFiJi)X 


= ($ o U£' o Ucj>-lU' o UFljJ)X 


= (ljJ 0 U(£' o F'$ o <f>-lU))X 


= (I/I o U(e: o <fiU o <P-lU))X 


= $X o U£X 


T 
also each et.X is an isomorphism (it being clear that the functors U 

preserve and reflect isomorphisms). 

Thus to complete the proof we need only check that et. is natural: Suppose 

we have X f )Y in .It. Then we must establish commutativity of 



UF'------~-----------:::-;------------=~ 

Illustration that *<l>-1 is multiplicative 

UFl/J~ -~ 1/1<1> -1u'F' 

I UFUcj>-'l UF*F' 11 Ucj> -1u'F' $F'U'F' I 

UFUF UFUF' UFU 1 F' UF'U'F' U'F'U'F' 


I / II 
UF'*F' 

/ WF'UF' 
• 

U' cj>UF' 
Ue:F 

U<!>UF' 
U'e:'F'IIIVI IV 

l 

*FUF' 


• 
v 

·--~-__;_ 

UF UeF' VII 

Ucj>-1 *F' 

The breakdown of the diagram should be attacked in the order in which the squares are numbered. 


All squares but III connnute by naturality: III connnutes by one of the laws expressing <1>-l!Ji (see 0.2.2). 


"' 
0 
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ax 

(UX,UcX) --------.... (U'X,U'e:'X 0 ljlcfl-1u 1x) 

[Uf)1 1[U'f] 

(UY,Ue:Y)~~~~~--~~--.cu'Y,U'e:~Y 0 ljlt-iu'Y) 
aY 

But this is just naturality of ljl. 

(Note that for U = U' and ·ljl = idu we have aX = id(UX,Ue:X); the fact 

1that U'c'X o $t- U'X = UcX is a consequence of the proof that aX is a 

homomorphism.) e 

1. 3.2 Before proceeding further with general concepts we will give 

examples of tripleable functors. 

Example 1: The "canonical" example is that of theunderlying set functor 

of a primitive class of universal algebras of some type (with possibly 

infinitary operations -- see Slominsky [12]). Such functors are in fact 

precisely tripleable. This will follow immediately from a tripleableness 

theorem we will prove later. However, assuming an elementary knowledge of 

this kind of algebra, as in Slominsky [12], we can indicate how the inverse 

of the semantical comparison functor is constructed: Namely let (X,~) be 

an element of S where T is generated by the standard adjointness of an 

equational class of type f). = (a ) • Let F be the corresponding operation
t; t;<a ~ 

on FX, and define operations fc on X by fc(Cxn)n<a )="5°(Fc((x) )). This 
~ ~ t; ~ n n<a~ 

gives an algebra (X,(ft;)t;<a) of the proper type which one then shows, using 

the properties of e , is a homomorphic image of (FX,(F~)t;<a) and hence is 

in the original primitive class. Finally one proves ~(X,(ft;)t;<a) = (X,~ ). 

The extension of this construction to an inverse for ~ is then straight

forward to carry out. 
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u
Example 2: The following are several functors .Jl --11)$ which are triple-

able, but which do not fall into the class of examples given above. 

(a) 	 .A. is the category of compact T2 topological spaces, U 

the usual underlying set functor. 

(b) 	 Jl is the category of complete atomic boolean algebras 

and complete boolean homomorphisms, U is the usual under

lying set functor. 

(c) 	 .A. the category of compact left (or right) unitary R 

modules with R a discrete ring with unit, and morphisms 

are continuous module homomorphisms. U takes such a module 

to the underlying set of its abelian group. 

(d) 	 .It. the category of compact universal algebras from some 

specified equational class (e.g. compact groups, lattices, 

etc.) and U the obvious underlying set functor. Note: I 

know of no result which states that such functors are never 

of.the type considered in Example 1, but it seems to be true 

in many non-trivial cases (i.e. when IL. contains algebras with 

more than 1 element). I know of no counterexample to such a 

conjecture. 

Remark: We will indicate in the appendix how one can determine whether or 

not a tripleable functor falls into the class of examples given by Example 1 

above. (a) of Example 2 will be established later. Proofs of (b) and (c) 

are indicated in the appendix. (d) is true in a more general setting, 

namely that of "compact T-algebras" for triples T in sets. To give an 

adequate discussion of this (which we will not attempt) one requires the 

notion of tensor product of triples and related machinery. We refer the 

reader to Manes [9] for details. 
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u ,...,
Example 3: .A.--___.)"" is tripleable where.A. is the category whose 

objects are all pairs (A,B) where A is an algebra of some primitive 

class 1s> and I} is a topology on the underlying set of A which is compatible 

with the algebra operations. Morphisms in A are continuous algebra 

homomorphisms. U is the obvious functor to ~ , the category of top

ological spaces and continuous maps. Jlis called the category of topological 

"f-algebras. One observes that the free topological \?-algebra on a space 

(X, f)) is obtained by forming the free ~ -algebra FX and endowing this 

with the finest topology on FX which is compatible with the operations of 

FX and whose restriction to X is coarser than~ • Once this is noted, 

one can mimic the proof sketched for Example 1, inserting the word 

"continuous" in the appropriate places. 

Example 4: Inclusion of full reflective subcategories are tripleable. 

Proof: Suppose we have "J<.' J ~~ such an inclusion with left adjoint 

{which we know exists) R. By comments made in 0.2.1+ we can see there is no 

loss of generality in assuming the back adjunction is the identity. Let 

p be the front adjunction: 

4> 

~~~~~------~Y-,T 

For X E:.f'j(.' we have ~X = (X,idx). 


For f: X~ Y in 'J<.' , M = f. 


It is clear 4> is full, faithful and 1-1 on objects. 


Now take (Y, -6 ) E. '"S{T. Then RY~Y in 'l<... 
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pY 
Then -8 o pY = id 

y 
and we have 

By uniqueness of reflection-induced maps, we must have 

-1 
pY o.& = id ~ pY = ..&. Then we have the commutative diagram 

RY 

}l(pY) =idRY 

RY RY

lidRY 

which shows (Y, ~ ) .J.£.!.l(RY, idRY) is an 

isomorphism, i.e. (Y,~) is isomorphic in 

~ to ~RY. 

Y-----~RY 

pY 

This shows ~ is representative and hence an equivalence. D 

Evidently a replete (closed under isomorphic images) full reflective 

subcategory inclusion is precisely tripleable. 

Remark: Recalling 1.2.4, Proposition B, we note the appealing fact that 

for any category "J< , the dual of Trip ("}\) is itself tripleable over AD (:J<). 

This set of examples is intended only to give an idea of what triple

ableness might entail. In general it is safe to say that most functors 

which are in some sense forgetting an algebraic type of structure (loosely 

speaking) are tripleable. A notable counterexample to this rough general

ization is the underlying set functor for complete Boolean algebras. This 

functor does not even have a left adjoint (Gaifman [4]) and hence has no 

chance to be tripleable. To express the algebraicity of this category one 

needs to generalize even further to the notion of equationally definable 

class as exposed in Linton [6]. 
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We will close off this chapter by mentioning a counterexample to two 

U U'
obvious conjectures. Namely suppose one has functors A~if>~ ) e 

F 1F 
with F -i U, F' -I U'. Then it is well-known that one has 

FF' --t u'u. Now three statements can be made: 

(1) In general U and U' tripleable ~ U'U tripleable. 

(2) U'U tripleable ~ U' tripleable. 

(3) If U' is faithful, U'U tripleable ~ U tripleable• 

Re (1): .A. = Torsion free abelian groups 

)3 = Abelian groups 


~ = Sets 


U = obvious inclusion 


U' = obvious underlying set functor 

U is tripleable since it is the inclusion of a reflective sub

category. 

U' is tripleable since it is the underlying set functor of an 

equational class of universal algebras. However U'U is not 

tripleable. We will not give a proof here, but we remark that 

it can be shown that if an additive category is tripleable over 

sets via some functor it must be abelian. But the category of 

torsion free groups is additive and not abelian. 

Re (2): A = compact T2 spaces 

'b'3 = all topological spaces 

e = sets 

u = inclusion 

U' = usual forgetful functor. 
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U is tripleable since it is the inclusion of a reflective sub

category. U'U is tripleable as we have remarked above, and will 

prove later. However U' is not tripleable since the triple it 

generates (with left adjoint forming the discrete space on a 

set) is the identity triple (all components are the relevant 

identities; such a triple exists in any category) and the 

semantical comparison functor is essentially U', evidently not 

an equivalence of categories. 

Re (3): This will be a simple corollary of Beck's tripleableness 

theorem, given in 2.2.3. 
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Chapter 2 BASIC CONSTRUCTION PRINCIPLES IN 'X 

§2.1 Limits in 1<.T 

2.1.1 Limits and certain kinds of colimits ·can be computed in 1<T 

from knowledge of construction of the same kind of thing in ".l<. We 

will now elucidate this, working throughout this chapter with a fixed 

but otherwise arbitrary category :Kand triple Tin 'l{. 

U D 
Definition: Let ,A; >1<. be a functor and 6--->A a 

diagram (i.e. !:!. a small category, D. a functor). Suppose limit UD exists. 
1T 0 

Then we say U creates the limit of D if for any model (K---~~UDo I cS 6 8) 
$5 

of limit UD, with projections 11' 0 , there is a family (A----.Do I o E: ti) 

with the following two properties: 

(1) Uljl = 11' all o ~ !:!. (entailing UA = K) and the family
0 0 

(ijio I o E::. t:,.) is the only one in A with this property. 

(2) The family (ijJo I o 6 8) is model for limit D. 

In the obvious way we also define "U creates the colimit of D". We say U 

creates isomorphisms if U creates limits of diagrams over the one point 

scheme i.e. for any A £ .Jl and isomorphism X--f-~ UA in :K there is 

a map A'·--g-..~A in .A. such that Ug = f, g is unique with respect to this 

property and also g is an isomorphism. 

A weaker notion than creates is also useful. Namely in the above situation 

we say that U effectively constructs the limit of D if for any model 

(K 1Tp >UDo I o ~ 6) .of limit UD there is a family (A~Do I o ~ 6) 

with the following two properties: 

27 

http:A----.Do
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(1) The family (U¢o I o E 6) is a limit for UD. 

(2) The family ($0 I o E 6) is a limit for D. 

Similarly "U effectively constructs colimits" may be formulated. It is 

quite clear that this is a weaker notion than that of creation of 

constructions. 

Ci) The underlying set functor for topological spaces effectively 

constructs limits and colimits but does not create them (the 

uniqueness condition fails, for example there are in general many top

ologies on the cartesian product of the underlying sets of a family 

of spaces which make the projections continuous). 

(2) The underlying set functor for compact T
2 

spaces creates 

limits (e.g. there is only one compact T2 topology on the cartesian 

product of the underlying sets of a family of compact T2 spaces making 

the projections continuous). 

UT 
Proposition: 'S<T---'X creates limits of arbitrary diagrams. 

Proof: First of all we treat the case of an empty diagram. It is actually 

quite obvious that U.,. creates a singleton in .,.C from 1 ~ 1l For there is 

0exactly one map Tl.--~~)l which must be an algebra map making (l,o) into 

a singleton in j{T, simply because every square with 1 in its terminus 

must conunute. 

Let 6--D--·?<.,T be a non-empty diagram. Then 
1T 0 

suppose (X--~) X
0 

o ~ 6) is a limit for UTD. Let a: o-----;.o' be any 

map in 6 say Da = [f ] ~ Then we have 
a 
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r:~ 

v, 

TX , -----~ 
0 

~o' 

$ooTito 
Since this diagram commutes, (TX~~~~~x0 I o ~ 6) is a compatible 

family for uTn, hence there is a unique ~ : TX ?X with ir o .9 = 
0 


~o o Tn all o. Hence to complete the proof we must show .9 is an
0 
['IT 0] 

algebra structure and that (X, .S) (X , ~0 ) is a limit for D.
0 

(The defining equation for ~say that the maps ir will automatically
0 

be homomorphisms). 

We simply make use of the fact that the projections n are "jointly
0 

monomorphic" in X i.e. n f = 'IT g all o ---~ f = g.
0 0 

'IT o .$ o µX = .S o Tir o µX = .t) o µX o TT1T = $ 0 o T .S o TTir
0 0 0 0 0 0 0 0 

Also n o ~ o nX = .S o Tn o nX = .S o nX o 'IT = n for all o
0 0 0 0 0 0 0 

~ ..8 o nX = id • x 
Hence ~ is an algebra structure. 

[ 1Jio 1 
Finally suppose (Y, ~) ~ (X , S ) is a compatible family. Then there

0 0
f

is a unique Y ~X in 'J{ with n f = ip all o £ 6. Claim f is a homo
0 0 

morphism. But n o f o ~ - $ o E; = -8 0 o T1Ji = .e 0 o Tn0 o Tf
0 0 0 


= n o .So Tf. Hence f o ~ =.So Tf and f is a homomorphism IJj 

0 
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§2.2 Contractible Coequalizers 

2.2.1 We now define a concept (originally introduced by Jon Beck) which 

is fundamental to the study of triples. 

f 
Definition: Let X~~-•4y be maps in a category 'l<.. Then the 

g 
pair (f,g) is said to be contractible, with contraction d if d: Y~X 

and fd = idy, gdf = gdg. For .,A.----U-)1{ and A==h=::s~B, (h, k) is said to 
k 

be U-contractible if (Uh, Uk) is contractible in ')\. 

It is not simply contractible pairs which concern us, but coequalizers 

of such pairs. 

f h 
Proposition: For X---Y.---,.z in a category 'J{, the follow-

g 
ing are equivalent: 

(1) 	 (f,g) is contractible and h = coequ(f,g). 

do d1 


(2) hf = hg and 3 z Y- )X with hd 0 = idz' fd 1 = id ' y 

Proof: (1) ~(2) Suppose (f,g) is contractible with contraction d1• 

Then since gd 1f = gd 1g 3 unique d0: Z~Y with d0h = gd 1 (since h is 

coequ(f,g)) 

Now hd 0h = dgd 1 = hfd1 = h ::=>hd0 = idz (since his epi). 

(2) :::::> (1) Claim d1 is 	a contraction for (f,g). fd 1 = idy by 

hypothesis and gd 1g = d0hg = d0hf = gd 1f. Claim h = coequ(f,g). 
1 f h 

Suppose we = tg X g :~/dohave Y---•W with H 

w 
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Then id
0
h = tgd 1 = tfd 1 = t. 


Moreover, id is unique with this property since ah = l =!) ahd = td
0 0 0 


~a= td • g

0 

2.2.2 This last characterization shows that any functor preserves co-

equalizers of contractible pairs. This is important because of the follow

ing result. 

D . 
Proposition: Let A ----1> ry.,T be a diagram such that colimit 

uTn exists and such that T and T2 preserve this colimit. Then u'T 

creates the colimit of D. 

Proof: First of all suppose A is empty. Then the hypothesis is that 

'J{ has a cosingleton 0 and T0, T20 are also cosingletons. Then there 
y 

is exactly one map T0 ) 0 and 
n~ µ¢ 


(/J ~T0 T20 ~T0
Tyl ly commute since all'\y
0 T0 ~(/J 

y 

objects in the diagram are cosingletons. Then (0,y) t; ri!' and is a co-
f 

singleton in 'J<.T because V (X,.& ) the unique map 0---~~x in 1< is 

forced to be a homomorphism since T0 is a cosingleton. Next suppose 
u

fl+ 0 and put Do= (X ,.S ) for o G. A. Let (X-i:_ __...o,__~~x) be a model 
0 0 u oE. A 

for colimit uTn. 

We require TX ~ >X with -6.Tu = u • .9, all o ~A. Since (Tu)
o o o ooE:.A 

are the injections of a colimit, .S is uniquely determined if it exists. 

But it does exist in view of the fact that (u . ~ 0 ) is clearly a compat
0 

ible family for the diagram TUTD: 
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That ~ is a T-operation follows from the following two diagrams: 

nX T2u 
X . o ) TX T2X 0 T2X 

1 
I o 

6 ""--:e~~--16 ll
I 

u 

0 c.--~---... 
X . 

Tu 

0 
TX 

µXo I 
t 

Te
0 

Tu
0 

T~ 
µX 

TX 
nX 

~:r 19 
uo 

x x 

2.e o nX o = ~ o Tu o nX .e 0 T~ o T. u0 = .e o T ( .S o Tu )uo 0 0 0 

= uo 0 nX = -6 o Tu o T-0so o 
0 0 0 

= all cS E. !::. = o T .& 0uo u cS 0 .so 

~ ~o nX = id = uo 0 .scS o µX
0x 

= .a 0 Tu o pX
0 0 

= .s 0 µX o T.2u
0 

all cS E. !::. 

~ ~ o T,9 = .5 0 µX 

[UC) 
Now we have a family ((X ,.S 0 )---~)(X,.$ )) € !::. in X.; all that

0 0[Vo) 
remains is to show that if ((X

0
, .& 

0
) (Y, 0) is a compatible 

family for D, the map X f ~y induced in 1<. is actually a homomorphism: 

Consider. the following: 
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Tu0
TX0!""---~..TX ---~TY 

? 

X
f

0----_..•X----~ 

we have t,; o Tf o Tu = t,; o Tv = v0 o ~ = f o u o .5 = f o.e o Tu
0 0 0 0 0 0 

since this holds for all cS E t:., we have t,;Tf = f.9 • (I 

Corollary 1: uT creates coequalizers of U""-contractible pairs. 
[µXJ [.S] 

Corollary 2: In~ consider (.f-X,µTX) \_(TX,µX) (X,-8 ) 
[T~] 

Then [ ,e] is the coequalizer created by UT from the contractible co-

equalizer diagram T2x 
µX 

TX ..S X in 'Jt. 
~~ 

nTX nx 

Proof: (1) The hypothesis says that for we have a diagram D on the 

scheme =====)~,· and that uT'n is contractible and has a coequalizer. 

By the characterization of Proposition A, any functor (in particular T 

and T~) will preserve this coequalizer and hence the proposition above 

applies. 

(2) We have only to check that the described diagram in 1{ is in 

fact a contractible coequalizer. But µX o nTX = idTX and ..So nX = idX. 

Further, T .S o nTX = nX o -3 by naturality of n. a 
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2.2.3 The motivation for the study of contractible coequalizers is 

embodied in Corollary 2 above. For suppose we have an adjointness 

(F, U, n, E,.A., 'K) with generated triple T and semantical comparis.on functor 

4>. Further suppose we are attempting to construct an inverse to 4>. Take 

an arbitrary (X,.S )~"J{-r and consider the following: 

In A 'lfT
_I.,..n....~....... 

4> 
EFX 4>-t [,&] [UEX] [.SJ

1 
(X,-8) CJ:) (UFUFX,UEFUX)---~(UFX,UEX)----+(X,.S)FUFX===~FX ----- -- + 4>

F~ [UF.S] 

u 

In 'l{. 

UEFX 
UFUFX -+ UFX S • X Note: (EFX,F~ ) is 

~'-J U-contractible. 
nUFX nX 

If 4>_, exists we will have 4>-1 [-$] = coequ(EFX,F.S ). Hence it makes sense 

to insist that U create coequalizers in this kind of situation. We will 


now state two theorems regarding tripleability (due essentially to Jon Beck). 


Since we will not require them in this paper, no proof will be given, 


although the crux of the method of proof has been outlined immediately 


above. 


u 
Theorem: Let .Jl------>'l<. be a functor having a left adjoint. 

The following are equivalent. 

(1) U is precisely tripleable. 

(2) U is tripleable and creates isomorphisms. 

http:comparis.on
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(3) U creates coequalizers of U-contractible pairs. 

u
Theorem: Let A---+ "J<.. be a functor having a left adjoint. 

The following are equivalent. 

(1) U is tripleable. 

(2) U reflects isomorphisms and effectively constructs coequal

izers of U-contractible pairs. 

(3) .1l has and U preserves and reflects coequalizers of those 

pairs (f,g) for which (Uf ,Ug) is contractible and has a coequalizer. 

For detailed proofs see Manes [9] or Davis [2]. For a breakdown of the 

effect of various operating parts of the conditions see Linton [8]. 

§2.3 Subalgebras and Epimorphisms in 'Jt'T' 

2.3.1 If (X,,&) ~'KT, a subalgebra of (X,.S ) is any monomorphism 
[i] 

(Xp -8 1)--~~(X, ,&). Observe that [i] is a monomorphism iff i is a 

monomorphism in 1{ [ljr reflects monos since it is faithful, and preserves 

them since, being a right adjoint, it preserves limits. Recall that in 

any category, µ is mono # id ..(, ;j µ is a pullback]. 

i 
Proposition A: Let (X,9 ) ~ 'l<..1 and X 1 --~)-X a monomorphism 

in 1(. Then X1 has a T-structure making i a homomorphism (i.e. X1 "is" 
~h 

a subalgebra) iff we have TX1 ~X1 with i -81 = .S Ti. Moreover ~ 1 

is uniquely determined. 

Proof: Clearly $ 1 is uniquely determined since i is a monomorphism. 

Suppose we do have i .S 1 = ~Ti. Then i 91nX1 = $ TinX1 = S nXi = i 

==+ .e 1nX1 = idx • Similarly i .s 1µXl = ..a TiµXl = .s µXT'Z. i 
. 1 

= ~T.9 Tt.i = .eTiT.S 1 = i.5 1T-91 ~ ,S1µX 1 = .S1T.81• 
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The above theorem does not hold in general for epimorphisms but it does 

hold for split epimorphisms (those having a right inverse, i.e., 

retractions). 

T p
Proposition B: Let (X,"' ) ~ ~ and x--....>Y a retraction in 

1<.. Then there is a T-structure on Y making p into a homomorphism iff 

3 E;;: TY~Y with f;Tp = p.9. s is uniquely determined by this. 

2
Proof: We make use only of the fact that Tp and T p are again split epi. 

Then since Tp is epi E;; is uniquely determined. If we do have E;; Tp = p 9 , 

then E;;nYp = sTpnX = p .9 nX = p ~ nY = idy since p epi. Also 

E;;Tf;T
2

p = E;;TpT ..9 = p~ T.& = p .9 µX = sTpµX = E;;µYT 
2 

p ~ E;;TE;; = E;;µY since 

T2 p is epi. ti 

If ~is locally small and has intersections, 'X.T will have intersections 

by 2. 2.1. Then for (X,.9') <:; 'KT and x --i--.)X a monomorphism in X, one 
1

can define the subalgebra generated by x1 to be (\{(A, E;;) ~ 'j<. T: (A, 0 is 

a subalgebra of (X, .9 ) and i factors through the injection of A}. With 

reasonable hypotheses on 1< , one can recapture many classical theorems 

about subalgebra generation. Some of these we will consider where 1< = S 

(the category of sets) in the next chapter. For a fairly general analysis 

(where ~is a "regular" category and T is a "regular" triple) consult 

Manes [9]. 



Chapter 3 TRIPLES IN THE CATEGORY OF SETS 

§3.1 Constructions in ST. 

3.1.1 In this paragraph we will be concerned with construction of limits 

and colimits in categories s"f where S is of course the category of sets 

and mappings. Construction of limits is totally settled by §2.1. To 

deal with colimits we will introduce the notion of a congruence and proceed 

in a manner entirely analogous to that of classical universal algebra. 

We will work with a fixed tripleT in S. 

3.1. 2 Regarding limits in ST we recall that Uf creates them, which 

implies first of all that sT' is complete, and that we have canonical 

models for limits, since S has. In particular this means that for any two 
[f] 

:r. Imaps (X, _.e >---~(Y, lJ in S , {x ~ X f (x) = g (x)} has a unique algebra 
[S] 


structure making its inclusion into X an algebra homomorphism, and this 


subalgebra of (X, .S ) is in fact the equalizer in $'f of ( [f], [g]). In the 

same way, given a family (X., ~ .) . E I of algebras in sT there is a unique
l. l. l. 

"T-structure on ,.,.v., the cartesian product in S, making the projections
i ~ I"i 


into homomorphisms. With this structure ~I )(i becomes a model for 


iT :-rQ From the fact that UT creates intersections we seei E. I (Xi' vi) in S • 

that for (X,~ ) ~ S'T and A~ X the subalgebra generated by A exists and 

its underlying set can be taken to be (\{X' c:;; X ~ X' has a structure 

making it a subalgebra of (X,~) and A~ X'}. This is of course familiar 

in the context of universal algebra. A less familiar example is the case 


of compact T2 spaces (which will later be shown to be of the form 

uT 

ST +S). Here subalgebra generation consists of forming the topological 

37 
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closure. Later we will give an explicit construction for subalgebra 

generation. 

3.1.3 In classical universal algebra congruences are usually defined 

to be equivalence relations satisfying certain substitution laws with 

re~pect to the operations. It is well known that in this setting 

congruences may also be described as equivalence relations which are 

"subalgebras of the product" in the obvious sense. This latter approach 

works admirably well in the study of categories sT. 

Definition: Let (X,.&) E. ST. A congruence relation on (X,.9) 

is an equivalence relation RS: Xx X such that R is the underlying set 

of a subalgebra of (X, :S) x (X, ~) (in the sense that the inclusion 

r 
R~~~~~x x Xis to be a homomorphism). 

Since the intersection of subalgebras (resp. equivalence relations) 


is again a subalgebra (resp. equivalence relation) intersections of 


congruences are congruences, i.e. the congruences on an algebra form 


a closure system and hence a complete lattice. 


We will now establish the fundamental classical results about congruences. 


Proposition A: Let R Ci: X x X be a congruence on (X,-8) E.. St". 
Then there is a unique T-structure !/R on X/R such that the canonical 

"R 
map X--~~~)X/R is a homomorphism. In fact [vR] is the coequalizer in 

[lf1rl 
sT of the U1"-contractible pair (R, .S'>----•(X,~ ). (lf 1,ir2 are the 

[lf2r] 
projections of (X,.S) x (X, -9-) and r is the inclusion R-->X x X). 

Proof: Since R is a congruence (in particular a subalgebra of the 
[r] [ir1] 

product) we have a diagram (R, .S') >(X,9) x (X,.9) (X,~) 
[1T2] 

By Corollary 1 of 2.2.2 we need only exhibit d
0

, d such that
1 
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n1r n2r 
R X •X/R is a contractible coequalizer diagram. 

~~ 
d1 do 

Take d any section of v , i.e. any map with v do = idX/ • Define <l 1
R R R 

by d 1 (x) = (x,d 0v (x)). Then we clearly have v d0 =id I , n1rd 1 =id , 
R R X R X 

n2rd 1 = d
0

v • By Proposition A of 2.2.2 we do in fact have a contractible 
R 

coequalizer diagram. C'J 

[f] 
Lemma A: Let (X, .$ ) . (Y, 0 be a diagram in S . 

[g]~
(Z, r;) f 

X"--*Y 
with f onto. Suppose we have a factorization s·\,/ h in S. 

Then h is a homomorphism. 

Proof: M;Tf = hf-3 = g..S = r;Tg = r,;ThTf ~ ht; = r;Th since f onto 

~ f split epi ~ Tf split epi ~ Tf onto. [1l 

(f] 

Proposition B: Let (X,.8) ~(Y,t;) in s"f'. Let R be the 


kernel relation of f, i.e. R = {(x,x') s Xx X f(x) = f(x')}. Let 
VR i 

X '+-X/ - )Y be the canonical splitting of f in S. Then R .is a 
R 

congruence, i is a monomorphism in if, f(X) C: Y admits a subalgebra 
[i] 

structure t;' so that (X/ , a; )--~~~)(f(X),t;') is an isomorphism, and 
[vR] R [i]R 

(X,~ )--->(X/R, S/R) HY,t;) is the categorical image factor

ization of [f] in ST. 

Proof: The inclusion of R in X x X is the equalizer in S of 
f1r1 

Xx X iY. Since u"1" creates this equalizer (see 1.1.2), R admits 
f1f 

a subalgeEra structure and hence is a congruence. By the previous 

i
lemma i is a homomorphism since vR is onto. Now X/R~~~+~f(X) is 1-1 
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Ti 
onto ==> TX/R ---~)Tf(X) is 1-1 onto and we can transport the 

structure e/R to f (X) by E;' = i ~/RTf"' • Then denoting the inclusion 
j 

f(X) )Y we have jE;' Ti = ji ~/RTi_, Ti = i 5/R = E;Ti = E;TjTi :'> jE;' 

= E;Tj =:> (f(X),E;') is a subalgebra of (Y,~). Clearly 
[i] 

(X/R, $/R)~~---(f(X),~ 1 ) is an isomorphism. Now finally if 
[h] [k] 

(X,.S)--~--~>(Z,s)-~-~(Y,~) is a factorization of [f] through a 
R, 

monomorphism [k], at the level of sets we have X/ R--~> Z with kt = i 

and iv. = h. By the lemma again R, is a homomorphism and this shows we 
-R 

have an image factorization of [f]. U3 

Corollary (Explicit subalgebra generation): Let (X,,e) ~ $1" 

and X' C: X. Then the underlying set of the subalgebra generated by X' 
Ti 

~ is the set theoretic image of TX'----tTX--""-~X where X' i )X 

is the inclusion map. 
(.9Ti] 

Proof: We have a homomorphism FTX' ---~~(X, ,e ) (which is the free 
i 

extension of the inclusion X'~~--~X). By the proposition the set 

theoretical image Y of this map carries a subalgebra structure, say ~. 

First of all X'S: Y: Consider Ti 
TX' TX 

nX' 1 nX ( .s 

X' x 
i 

Then V x E. X' we have x = i(x) = .S nXi(x) = .STinX' (x) E. Y. 

k j 
Next let (Z,o) be any subalgebra of (X,.S) with X'S Z c; X with inclusion 

maps k,j as shown. Claim Y «: Z. 
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Consider Tk Tj 
TXTX' T2 

CJ 

jk 
x z x 

Take any y ~ Y. Then y = .e Ti(x') some x' E. TX' 

= -5 TjTk(x') 

= j CJ Tk(x') E. j (Z) = z. a 

Example: In the category of groups the algebra structure associated with 

a group G is the extension of the identity F( le I)~G where lei is the 
e:e:l n

underlying set of G, i.e • .5 Takes strings x • • • x e:i = ±1 and
1 n 

"multiplies" them in G. Then the above corollary gives the basic fact 

that for X'S. !cl, the subgroup of G generated by X' is obtained by 
e:l e:n 

"multiplying" all strings x x of elements of X' (i.e. all
1 n 

elements of TX' are multiplied by the action of -8 restricted to TX'). 

Next we establish the familiar "isomorphism theorems" of universal 

algebra. First we need a lemma. 

[f] 
Lemma B: Let (X,~)-----+~(Y,E,;) be a map in sT and suppose 

Y' C:: Y carries a subalgebra structure ~'. Then r 1 (Y') (the set-theoretic 

inverse image) carries a structure making it a subalgebra of (X,$ ). 

Proof: It is sufficient by Proposition A of 2.3.1 to show we have a 

factorization 

where i is the inclusion. 
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Equivalently Irn(.9oTi) C:: f_, (Y') 

or Im(f o .S o Ti) =. Y' • 

Let j be the inclusion of Y' in Y. We have the following diagram in 

which all squares commute: 

Tf 
Tf·'.(Y') -----------------.:ii.· 

TX---~-----+TY 

t;'l 
Tf 

lf < 
x y 

f 
C' (Y' )------------------~Y' 

f is the restriction of f to f~ (Y'). 

Then f ,.e Ti = f;TfTi = f;TjTf = j ~' Tf. 

Hence Im(f .& Ti) = Im(j t; 'Tf) S Imj = Y'. g 

Proposition C (First Isomorphism Theorem): Let (X,~) ~ sT and 

suppose X' S: X carries a subalgebra structure .S'. Then for any congruence 

Ron (X,.S ), the restriction of R to X', say R', is a congruence on the 

subalgebra (X', -5'). Then we have a monomorphism i': X' IR, --+XIR by 

i'[x]R' = [x]R. i is a homomorphism and the following diagram commutes 
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(i] 

(i is the inclusion X' S. X) 


Proof: R' is clearly an equivalence relation. Consider the map 

[i] x [i] 

(x ',a') x (X', 0 ') (X °') (X ) R'. th i-.J ...., ------ , v x , "'4 • . is e nverse 

image of R under this map and since R is a subalgebra of (X, ~ ) x (X, .S ) , 

by Lemma B, R' is a subalgebra of (X 1 
, ..S 1 

) x (X 1 
, .$ 1

), therefore a 

congruence. The commutativity of the diagram is by definition of 1 
• I 

' 

and the latter is a homomorphism by Lemma A. [! 

Proposition D (Second isomorphism theorem): Let (X,~) E.. sT 

and R a congruence on (x,.e). Then the sublattice of congruences on 

(X,$ ) which contain R is isomorphic to the lattice of congruences of 

the quotient algebra (X/R' '-0/R). Namely to a congruence ~1 on (X,.$), 

1jl ~ R, we associate a congruence ljl/R on (X/R' !?>/R) defined by [x]R $/R [y]R 

iff x ljJ y. Then we have the following commutative diagram: 

[ \lR] 
(X, .S ) (X/R, $3/R) 

[ \l ] 
1/1/R 

(X/1/1' ~I 
1/1 
) )(X/R, ~ 

[ \l1/1] 

[j] 	 1/1/R 

with 	[j] an isomorphism defined by j ( [x]l/I) = [[xJR]ljJ
/R 
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Proof: 

It is a basic set theoretical fact that we can establish an order 

preserving bijection of the set of equivalence relations on X which contain 

R, and the set of equivalence relations on X/R by assigning, to~<::: Xx X, 

-1
(vR x vR) (~) =~/Rand tor: X/R x X/R, (vR x vR) (E). Proposition B 

and Lemma B ensure that this correspondence effects an order preserving 

bijection of the congruences on (X,.9) which contain Rand the congruences 

on (X/R, la/R). The commutativity of the diagram is by definition of j; 

j is 1-1, onto by basic set theoretical considerations; j is a homomorphism 

by Lemma A. D 

3.1.4 We can now construct coequalizers and coproducts (and hence all 

colimits). 
[ f] 

First of all suppose we have (X, .S )---(Y,O in sT. Put C, = {Q congruences 
[g] 

on (Y,~)IQ ~ {(f(x),g(x))!x ~ X}}. Observe e ~ 0 since the congruence 
[vR] 

y x y E. e . Put R = "c. . Then we claim (Y' 0 (YI R' uR) is 
[h] 

coeq([f],[g]). But if (Y,F;:)--~)(Z,l;;) with [h][f] = [h)[g] then clearly 

the kernel relation of his inC:. which means R ~ Ker(h) and hence we have a 
v 

unique factorization Y ~~ k at the level of sets. 

Since vR is onto h is actually a homomorphism, showing that [vR] has the 

required universality property. Since R 2 {(f(x),g(x»lx ~ X}, clearly 

Now to form the coproduct of a family (Xi,~i)i £ 1 in sT we recall the 

construction familiar from universal algebra. Namely if (Ai)i ~ 1 is a 

family of aigebras of an equational class .fl , one forms the disjoint union 
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of the underlying sets \>Ai, then 	the free algebra in A on this set, i.e. 

F(UAi;.A.). Then one factors out 	the smallest congruence R with the 


"R 

property that Ai ) F(UAi;.A.) F(UAi;.A.yR is a homomorphism for 

/ all i E. I. 

T
We will follow this procedure in constructing coproducts in S • Namely 

denote the disjoint sum of the Xi by llxi with injections ui. Then 

we have the embeddings of the underlying set of the given algebras by 
nXi T T 

Xi ~ UTFT:x;i U F ui ~ UTFTJ.1xi. Let·Y! be the set of all congruences Q 

T T T on F .lJ.Xi with the property that "R o U F ui o nXi is a homomorphism 

from (Xi,~ i) to (T .UXi , µllXi ) for all i ~ I • e is not empty since 
lq /Q 


T.LlXi x T.!J.Xi (the congruence identifying everything) is in it. Put 


R = (\ C:. Claim first that R (. e_ • 


If not, for some 	 i ~I the following diagram does 112! commute: 

2
TnXi T u TvR 

T2X ____i_....,.T 2ilX ------T(TllXi/R)TXi----~ 
i 	 I i 

t 

I µ.UX 
t i 

nXi Tui I "R 
Xi---~-11>TXi---~---,..Tl.1Xi-~~~~~~•T.U.Xi 

. /R 

But this contradicts the fact that "Q o Tui o nXi is a homomorphism. 

http:F(UAi;.A.yR
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["i] 
Thus we have homomorphism (Xi, .$i) )- FT.UXi , vi = v o Tui o nXi.

YR R 
Claim the [vi] form a coproduct scheme in s1 • Suppose we have maps 

[cl> ] 

(Xi, .9i) _ _...i_.)> (Y, E;) • Then at the level of sets we have a unique 
T [Tcj>] T [f;]

cl>xi----~> y with cj>ui = cj> • Then we have maps F :.U Xi '> F Y )(Y, f;) 

in s1 . Let the kernel relation of [F;].[Tcj>] be Q. Consider the following 

diagram: 

We claim that Q E. (. • Observing that i is a monomorphism, i vQTui nXi 9 i = 
~ 

F;T¢>Tu1• nXi .9 i = F;Tcj>. nX . .Si = F;nY<P . .S. = <Pi.S. and 
. 1 1 1 1 1 

. 2 2 2 2 
~TiTvQT uiTnXi = F;TF;T ~ T uiTnXi = F;TF;T cj>iTni 

2
Hence vqTu.nX. ~. = µll.Xi TvQT u TnX. ~ vQTuinXJ.. is a homomorphism]. ]. ]. /Q i ]. 


~ Q ~ C:.. ~ R S. Q. Hence we have a factorization v = ijN • Since v

Q R R 

is onto $ is a homomorphism and [iw] has the property that [iw] o [ ~i] = <Pi 

all i ~ I. Moreover [iw] is unique for having this property. Suppose we 

had [w] (T.UXi ,µJ.1.Xi )~(Y,~) with this property. Then cj> = 
/R /R i 

wvRTu.nX = wvRn.U.Xiui all i ~ !;similarly i$vRTuinXi = i$vRnlLXiui = cj>i
1 i 

all i "- I. Since ui are injections of a coproduct in S, wvRn.U.X = 
[wvR] i 

iljlvRn.U x • But then we have FT.U.Xi------_.,.>- (Y .;) homomorphisms agreeing
1 [ itjlVR] 

on the generators (see Proposition 1. .3. 2) and hence wvR = i$vR. Since v 
R 

is onto, w = i~. fl 

http:wvRTu.nX
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§3.2 A Tripleableness Theorem 

3.2.1 We are now in a position to prove a very useful tripleableness 

theorem for the category S. This theorem was originally proved in a 

restricted form by Lawvere [S], then generalized by Linton [6]. The 

Lawvere-Linton theorems were proved in the context of algebraic theories 

but as we have noted before theories are in a sense equivalent to triples 

and theorems can be translated. 

u
Theorem: Let ./l--~-.s be a functor having a left adjoint. Then 

U is tripleablc iff the following three conditions hold: 

Ll: .A. has coequalizers and kernel pairs. 
f 

L2: A map A--~>B in A is a coequalizer # Uf is onto. 
f 

L3: For a pair of maps A==:::::l\t,BR in A , (Uf, Ug) a kernel pair 
g 

~ (f ,g) a kernel pair. 

Remark: In the notation of the theorem statement, the pair of 
f 

a pullback. 

One can easily establish the following for categories with kernel pairs 

and coequalizers: 

(1) If a pair of maps is a kernel pair, it is the kernel pair of 

its coequalizer. 

(2) If a map is a coequalizer, it is the coequalizer of its 

(3) 

kernel pair. 
f 

X___.,.,.y, maps in S, 
g 

by x~(f(x),g(x)) 

are a kernel pair ~ the map X---..Y x 

is 1-1 and has an equivalence relation 

Y 

as image. 
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If one interprets kernel pairs as being embedding of kernel relations of 

maps, i.e. "congruences", then L3 is simply saying that congruences are 

"equivalence relations which are subalgebras of the product", loosely 

speaking. Following the proof of the theorem we will give an example 

where Ll, L2 hold but L3 fails, which will elucidate this somewhat • 

. 
Proof of the theorem: (-:::!!>) Supposing U is tripleable, the semantical 

comparison functor is an equivalence of categories and it is clearly
T . 

sufficient to show Ll, L2, L3 hold for the functors sT U >S· 

Ll Categories ST do have coequalizers: a construction was given 

in 3.1.4. Kernel pairs follow from 3.1.2. 
[f]

L2 Suppose (X, ~ )----'l(wY, 0 is a coequalizer, say of 
[h]

(Z,w) [k] 'S:(X, ~) • Then by 1.1.4 we can construct a coequalizer 
[vR] 

of these maps as a quotient (X, ~) ">(X/R, .9/R). By the universality 

properties we have an isomorphism [q] with [q][vR] = [f]. But then q is 

1-1, onto and vR is onto ":::::> f is onto. On the other hand if [f] is onto 

we have with R = Ker f and [i] an isomorphism. 

But [vR] is coequ([ n r], [ n r]) as in Proposition A of 3.1.3. ~ [f] is
1 2

also ·coequalizer of this pair. 
[f] T 

L3 Suppose we have (X, ~ >===l~;(Y, 0 in S with (f, g) a kernel 
[g] y 

pair in s. That means the image of X ,y x Y by x ~(f(x),g(x)) is 

T 
an equivalence relation, say R. But in S we have the "same" map 

(y] 
(X, S )----+(Y, 0 x (Y ,~). 
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Its set theoretical image is R and by Proposition B of 1.1.3, R must then 

carry a subalgebra structure and hence is a congruence. Thus we have 

[f] T 
(X, 9) (Y,E;) commutes in s . 

[g) l 	 I[vR] 
'ii . 

(Y' F;) (Y/R, F;/R) 

[vR] 


Now when we apply UT to this diagram it is easy to see we get a pullback. 

Since UT creates limits, in particular it reflects them, showing ([f],[g]) 

is the kernel pair of [vR]. 

(<=:) 
(The following proof is one given by J. Beck in an invited lecture at 

McMaster University in the spring of 1969. It has its roots in theorems 

by Linton, Lawvere and Freyd). This proof will make use of the fact, 

proved above, that uT has properties Ll, L2, L3, and also of the fact that 

T
4>F = F • 

1. 4> is faithful: Now U is faithful since the back adjunction E 

is pointwise epi by L2 (UE is split epi with section nU, hence E must be 

a coequalizer and therefore epi). Since UT4> = U, 4> must also be faithful. 

2. 	 4> is full: First note that 4> is full on Hom sets of the form 

.A.(FX,A) for we have the following bijective correspondences: 

(FX,A) = (X,UA) = (X,UT4>A) = (FTX,4>A) = {4>FX,4>A) by 

f .._...Uf.nX 	~Uf.nX ~UEA 0 T{Uf.nX) ~ Uf = 4>f 
II 

Uf 
[f] 

Now we look 	at an arbitrary Hom set .A.(A,B). Take any 4>A )4>B 
kl 

and put A' ~FUA = kernel pair of EA. Then EA is a coequalizer 
k2 
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~ £A= coequ(k ,k ). Apply IP to this obtaining1 2

[f] 

Since ¢ is bijective on (FUA,B) we have a unique h: FUA----+B with 

<Ph = [f ]1!>£A. Then ¢ faithful =. hk
1 

= hk2 ~ ~ ! A Y >B with 

y£A = h. But then <Py<P£A = <Ph = [f]IP£A =!> <Py = f since IP£A is onto 

(actually a coequalizer since UTIP£A = U£A which is onto). Thus IP is 

full. 

3. IP is representative: This is the most technical part of the 

proof and will be split into several steps for readability. The diagram 

on the following page is what the argument centres around and the proof 

will consist of constructing the diagram and then collapsing it (by 

proving certain maps are isomorphisms) in an intelligent way. 

[ l;;] 
Take any (X, .e) E. ST we must find A E; A. and an isomorphism (X, .S )---> 4>A. 

(1) Construct [p1], [p J to be the kernel pair of [.S] and [t ], [t ]2 1 2

the kernel pair of [o). Since IP is full and faithful there are unique 

fi, g with 1Pf1 = [p1o] and ¢gi = [t1T].1 

(2) Put q = coequ(f ,f ) and q' = coequ{g ,g ). Put (k ,k2) =kernel
1 2 1 2 1

pair of q. Then since qf = qf 3 ! FR r )K with k
1

r = f •
1 2 1

Now since UT¢ = U and since u,uT satisfy L2, L3 we have the following 

observations: (1Pk ,9k ) = ker pair <Pq and ¢q = coequ(<Pk ,1Pk ).
1 2 1 2

(3) [l;;] is uniquely determined by [l;;] [-9] = ¢q since [8] = coequ([p1o],[p o]) 

(because [cr] is epi) and ¢q(p o] = <Pq9f = ¢q1Pf = 1Pq[p2o]. Similarly1 1 2 

2



Diagram to Show ¢ is Representative 

[t] [t1l [o] [pl] [.\Y] 
(TW,µW) ;> (W,t) -------') (TR,µR) (R,o) ------..:~ (TX,µX) (X,;!i)) 

[t2] [p2] 

[ i.p] 

.¢Q~ 
¢q' 

At ¢e 

\\! 

¢K 

¢f1 

¢k1 

[ l;] 

¢gl 
------~¢X

¢FW ¢gz 
¢f2 ¢q 

Vt ..... 
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we have a unique t,; with [ t,;] [a] = 4'q'. We have a unique [ v1] with 

4iki[~] = [pi] since ~q[p1 ][a] = ~q[p2 ][a] =:> ~q[p1 ] = ~q[p2 ] and 

(~k1 ,~k2 ) is the kernel pair of ~q. Observe that [~][o] = ~r since 

~ki[~] [a] = [pi][a] = ~fi = ~k1~r. Finally e arises, uniquely deter

mined by eq' = r since ~r~g1 = [~][a][t1 ][•] = [~][o][t2 ][•] = ~r~g2 
~ rg1 = rg

2
, but q' = coequ(g1 ,g2). It follows that ~e o [E,;] = [~] 

since they agree when preceeded by the epimorphism [a]. 

(4) We now proceed to collapse the diagram. First [~] is a monomorphism. 

If for example [$][a] = [$][8] then ~ki[~][a] = ~ki[$][8] ~ [pi][a] = 

[pi][S] ~ [a]= [8] since ([p1],[p2]) is a kernel pair. 

(5) [E,;] is an isomorphism. t,; is onto since t,;a = Uq' and the latter is 

onto. t,; is mono, hence 1-1, since [$] is (~e[E,;] = [~]). Hence t,; is iso 

in S =-'> [E;] iso in ST. 

(6) e is an isomorphism. Since [~] is iso and [~] is mono, ~e is mono. 

But ~ , being faithful reflects monos ~ e mono. Also because [E;] is 

iso and ([p ],[p2]) is a kernel pair of [-t\ ], (~k1~e, ~k2 ~e) is a kernel
1

pair of[~]. But this means e is split epi since (k1e, k2e) is a kernel 

pair of q", say 9> q"kl = q"k2 (e is mono) ="> :\ e: K~Q with 

kiee = ki. But O<l'k2) kernel pair ~ ee = id. Then e being split epi 

and mono is iso. 

(7) [~] is an isomorphism: This is now trivial since [$] is iso because 

[e], [~] are which means the kernel pairs (~k1 ,~k2 ) and ([p1],[p2J) are 

isomorphic, which in turn means their coequalizers must be isomorphic by 

the induced map [~]. I 

Corolla.EX. (to the arguments above): If U satisfies Ll and L2, U 

is of descent type (i.e. ~is full and faithful). [J 

http:Corolla.EX
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Remark: Linton [8] has made a detailed study of this theorem, 

extracting the categorical essence of the above arguments, and has shown. 

that if one restricts the coequalizers required in Ll (to those of certain 

special U-contractible pairs) and if one replaces "onto" in L2 by "epi" 

then the theorem holds as stated for S any category with coequalizers and 

kernel pairs, in which every epi splits (i.e. is a retraction). 

Often when working in S we are interested in 	the case in which functors 

n U
""",_.,....--">S are precisely tripleable. The following general lemma is of 

use in this respect. 

u
Lemma: let .A.,....,....•>J< be a functor with a left adjoint. The 

following are equivalent: 

(1) U is precisely tripleable. 

(2) U is tripleable and creates isomorphisms. 

Proof: 

1
(1) 	~ (2). Clearly U must be tripleable and since u cf> = U, if cf> is 

T 
an isomorphism 	U creates isomorphisms since U does. 

(2) 	~ (1). t is 1-1 on objects. For if i!vA = i!vB, since ~ is full and faith- . 

f ~ 
ful 3 ! . iso A--->B with H = id cf> A. Then Uf = iduB but B--~B is the unique 

isom_~rphism created from iduB in A~ B =A and f = idA. 

[ z;]
T 

To show cf> is onto, take any (X, .& ) E. ':K. and 	isomorphism cf>A--~> (X, .S ) • 
z; f 

Then, in 'l<, UA----.X is iso ~ there is exactly one map A--~~A' 
T 

in.A. with Uf = z; and f is an isomorphism. :::=) cf>A--cf>_f_.,.) cf>A' is iso in ':K. , 

Tbut cf>f = [ z;] and since U creates isomorphisms we must have cf>A' = (X, $ ) • [I 

3.2.2 Examples. 


Compact Tz Spaces: Let Jl denote the category of compact T
2 

spaces and 
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continuous maps and U the usual underlying set functor, then U is precisely 
F 


tripleable. First of all Uhas a left adjoint, namely s~~~>Jt given by 


FX = Stone Cech 	compactification ex of X made discrete and Ff = usual 


f nY Ff

extension of X----4Y ~SY to continuous SX ~SY. It is clear U 

creates isomorphisms • .A, inherits completeness and cocompleteness from 

'Jop, of which it is a reflective subcategory (limits are computed as in 

'lop, colimits are computed in 1op, then followed by the Stone-Cech 

compactification). Hence Ll is satisfied. 12 holds since the epimorphisms 

in .A. are precisely the onto maps (by a simple "pasting over closed sub

spaces" argument). Hence coequalizers are onto. Onto maps are coequalizers 

since they are quotient maps and the arguments of Proposition A of 3.1.3 
f 

can be used almost verbatim. Regarding 13, Suppose x==~Y in A with 

g 


Uf,Ug a kernel pair. Then the map X~Y x Y by x ~(f(x),g(x)) in Jl 


is an injection onto an equivalence relation R, which then must be closed 


f

in Y x Y. This 	means Y/R is compact T • Then x -'> y is

2

g !vR1
y > Y/R

"R 
h 

a pullback in.A.. For suppose we have Z ~y with "Rk = "Rk. Then in 
k 

S the above diagram is a pullback and we have a unique z--!:...+x with fex = h, 

gex = k. But then ex is automatically continuous since fa is really (up 
ex 1Tl 

to isomorphisms in Jt) Z---+X Ci: Y x Y---~Y and similarly gex = 1T ex. 
2 

But 1T ex = h and 1T ex = k are continuous, hence a must be (since the product
1 2 

of topological spaces is an initial structure). 

Stone Spaces: Let SS be the category of Stone spaces (compact and 0-dimensional). 

Then SS is a full reflective subcategory of .It. The reflection consists 
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of factoring by the component relation (i.e. identifying exactly those 

elements which are in the same component). Let SS U >S be the usual 

underlying set functor. Then this still has the Stone-C~ch compact

ification functor described above as left adjoint, ~the Stone-Cech 

compactification of a discrete space is always 0-dimensional. Thus the 

triple generated by this adjointness is again the S-triple and U here has 

no chance of being tripleable. We will show explicitly that L3 fails (one 

can easily see that 11, 12 hold and that as a result U is of descent 

type). 

For let X be any non-trivial (i.e. card X > 2) connected space and !xi 
x 

the underlying set of X made discrete. Now consider the map B(IXI) e: ~X 

the back adjunction (extension of the identity !xl-~•tX). Let this have 

kernel relation R. Then R as a subspace of s<lxl) x s<lxD is 0-dimensional 
f 

and we have R s<lx!), the projections. Now (Uf,Ug) is a kernel pair 
g 

in S but the claim is that (f ,g) is not a kernel pair in SS. For if 

(f,g) is a kernel pair it is the kernel pair of its coequalizer. Coeq(f,g) 

in SS is obtained by taking the component reflection of coeq(f,g) in.A,. 
e:x 

But coeq(f,g) in.A.. is B(!xl)---~x and the reflection of X in SS is 1, 

the one point space in SS, since X is connected. Thus if (f,g) is a kernel 

pair in SS, the following is a pullback: 

f 

R B( lxl) 


g l
B( Ix I)----~l 

h 
But this is not the case. For example define 1--..ts (Ix I) so that 

k 
h(o) = x ~ !xi s s<lxl) and k(o) = x ~ Ix!~ s<lxl) where x :;. x2 •

1 2 1 
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Then the pair (x,x2) f R so (h,k) cannot factor through (f,g). fl 

Note that in this example ~ is, up to categorical isomorphism, the 

inclusion of SS S Jl . 

Universal Algebra: Equational classes of universal algebras (of possibly 

infinitary type), equipped with their usual underlying set functors are 

precisely tripleable. Ll, L2 present no problems, and as pointed out 

before, L3 simply says that "the equivalence relations which can be factored 

out of algebras are precisely those which are subalgebras of the product". 

With this in mind L3 can be established in the same way as was done for 

compact T spaces above. 
2 

§3.3 The Triple-theoretic Birkhoff Theorem 

3.3.1 The classical theorem of Birkhoff in universal algebra says that 

the class of algebras of a given type which satisfy a specified set of 

equations is closed under HSP (homomorphic images, subalgebras and products) 

and that conversely if a class of algebras of a given type is closed 

under HSP, it consists of precisely those algebras satisfying some set 

of equations. We can recapture this theorem in the context of triples 

provided we interpret "equations" as "triples" and "adding equations" as 

"exhibiting a new triple and a pointwise onto triple map from the original 

triple". The precise formulation of the theorem will perhaps clarify this 

suggested interpretation. 

3.3.2. We require the following lemma, whose proof consists solely 

of tedious naturality calculations and will be omitted. 
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Lenuna A: Suppose we have adjoint situations (F ,u ,n ,e ,:lt,?<)
1 1 1 1

and (F2 ,u2 ,n 2 ,e 2 ,~,Jl.). Then we can "compose" these adjointness to 

obtain (F2Fpu1u2 ,u
1
n2F

1 
o nl'e2 o F2e1u2 , l6,1<). Denoting the triples 

generated by T, S, lI respectively we have the following commutative 

diagram: 

where <f> = u1n2Fl' a triple map T-~II, and U is defined by U(A,9) = 

(U1A,U1.$ o u1u2F2e1A), U[f] = [U1f]. fl 

Note: in a certain sense u is acting on triples S in.A. "pulling them down" 1 

into triples U in 'J{. This actually extends to a functor (for fixed u ,
1 

F etc.) Trip(.Jt)--.-+Trip(:J(), or more generally a contravariant functor 

AD(Jl)-----•~--=>i~AD('l\). Certain amusing results can be proved about these 

functors but we shall forego this as it has no bearing on the task at hand. 

Lenuna B: For a triple T = (T, n, µ) in S and a full subcategory 

'e cc ST, the following are equivalent: 

1 
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(1} ~ is closed under {all models of} products and subobj ects •. 

{2} ~is replete (i.e. closed under isomorphisms} and reflective 

with pointwise onto reflections. 

Proof: 

(1) :::::;> (2). l.? is replete simply because it is closed under all models 

of unary products, also 1?> will be closed under products and equalizers, 

T
hence will be complete since S is, and the assumption says that the 

J 
inclusion functor~ >sT preserves limits. By the theorem of 0.2.4 

we need only verify the solution set condition to establish the existence 

of a left adjoint for J. Given any (X,.S ), let '- ={ (X/R, ~/R) IR a congruence 

on (X,~} and (X/R, ~/R} '-:.'8 }. <:. is then a set and we claim it is a 

solution set for {X,Ja }, relative to J. For any (Y,0 c;.l3 and 
[f] 

(X,.S} ){Y,~} in ST we have that f(X} carries a structure ~' making 

it a subalgebra of (Y,~). Denoting the kernel relation of [f] by R, we 

have (X/R, ~/R) = (f(X},E;') and hence G, ~ (X/R, .S/R). But [f] factors 

through [vR] as in Proposition B of 3.1. 3. We have 

showing e. is a solution set, and J has a left adjoint R. We have reflection 
[p] 

maps (X,~ )---+R(X,.S). There must be onto, since the image of [p] will 

also have the reflector property and hence the inclusion of the image of 

[p], by uniqueness of reflection induced maps, must be an isomorphism. 
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(2) ~ (1). ~,being replete and reflective, is closed under all limits. 

We need only check that~ is closed under subobjects. Take (X,~ ) E. '& 
[i] 

and (X', -3')--~)(X,..5) a subalgebra. Then we have 

[p] 

(X', .& I) 


with [j] induced by the reflection (p]. Since [i] is 1-1, [p] must be 

1-1. But [p] by hypothesis is onto ~ [p) is an isomorphism. Since (B 

is replete, (X',..S') ~~. fl 

Before presenting the main theorem we give some convenient terminology. 

If T is a triple in S' and T~T' a map in Trip(S) then we say T' is 

a quotient triple of T with quotient map ¢ if ¢ is pointwise onto. A 

subcategory "6: s1 is HSP if it is closed under products, subobjects 

and homomorphic images. 

Theorem: For a triple T in S, there is essentially a 1-1 

correspondence between full HSP subcategories of s1 and quotient triples 

<1> 
T--~>T'. Specifically, if 13: ST is a full HSP subcategory then the 

restriction of UT toa?> is precisely tripleable and the resulting triple 

<1>
is a quotient of T. Conversely, given a quotient t~--.•T', the semantical 

T' Tinterpretation S --+S is an embedding onto a full HSP subcategory. More

over, if we start with ~, pass to the quotient triple and then take the 

semantical interpretation we have a commutative diagram: 
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J 
~----~ST 

with ~ an isomorphism.\T/S~ 
s 

4> 
On the other hand starting with a quotient T-~-.•T' and applying the 

constructions above, we will arrive back at a diagram 

T----~T' 

1· with a an isomorphism. 


T" 


(the reason for the somewhat unappealing intrusion of a is that when 


T T' Tgenerating a triple from the restriction of U to the image of S --~-.)S , 

we must make a choice of left adjoint, which is of course only determined 

up to natural equivalence). 

Proof: Suppose e S. S'l' is closed under HSP. Then by Lemma B al)ove, 

is a reflective subcategory of s1 , with reflections [p(X,.9)] which are 

pointwise onto. Denoting the inclusion of l& by J, then J has a left adjoint 

R and hence UTJ has left adjoint RFT. This adjointness generates a triple 
UTpFT

T' and by Lemma A above we have a triple map T-----~ T' which is 

pointwise onto since p is. It is clear that UTJ creates isomorphisms 

T 
so to show that U J is tripleable we need only verify conditions Ll, L2, 

13 of the theorem of 1.2.1. Now~ has coequalizers and kernel pairs since 

it is a reflective subcategory of sT which has them. Coequalizers of 

maps in l3 are obtained by constructing the coequalizer in ST, which is onto, 
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and following this by the reflection which is onto. Hence coequalizers 

in 'B are onto. On the other hand an onto map is the coequalizer of its 

kernel pair in ST, but this kernel pair by construction arises from a 

subobject of a product, hence is in~ and thus an onto map of 'B is a 

coequalizer in '6 . Finally if a pair of maps ( [ f] , [ g]) in '6 is such 

that (f,g) is a kernel pair, then ([f],[g]) is the kernel pair of its 

coequalizer in ST, but this coequalizer, being onto, is already in~ • 

Thus ( [ f], [g]) is a kernel pair in l?> . From this we conclude that U
T

J 

is precisely tripleable. 

~ 	 s<f> 
'I' 	 T' T

Now suppose T )T' is a quotient in Trip(S). Then S S 

is an embedding of a full subcategory. For S <I> (X, S ) = S 4> (Y, O ~ X = Y 

and <f>X = E;<t>Y ~ .S = E; since <!>X is onto. iience s<f> is 1-1 on objects. 
[f] 

Also S 4> is faithful. To show S <I> is full, take S <I> (X, .S ) )' S <I> (Y, 0 

:::, 	f.S <f>X = E;<f>YTf = E;T'f<!>X ~ f.S = E;T'f (since <j>X is onto)-==t f is 


T' 

a homomorphism from (X,Ja ) to (Y, 0 in 	S • Let (Xi, .Si<!>Xi) i E. be a 

1 
family of objects from the image of s<f>. Then form the product 

TI (Xl.. , .9 l..) in s 
T' 

• This product is 	(TIX.,~ ) where Tr. e = .9 T' Tr 
i -.r i i i i 

for each i. Then S 411-cxi, .Si) = (TIXi' .c3.<f>1TX1) and Trf~)cj>1TXi = 

,a T' '1T1<f>1TX = .Sicf>X T ir • Hence the 	projections are homomorphisms from
1 1 1 1

S ~(X., .S.) to s <fi(x. , .9.). But this uniquely determines S ~ (X., .Si) as
l. l. l. l. l. 

the product in sT of the S <f>cxi, ~i). This shows the image of S <I> is closed 
[i] 

under products. Now let (X', .e') )(X, .S<f>X) be a subalgebra of S<f>(X,!3 ). 

We claim -&' factors through <!>X'. We have: 
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Ti 

TX' TX 


cj>X 

~ \· 	 lT'i 

T'X' T'X 


l~i 
X' 	 x 

Take x
1 

,x
2 

E. TX' and suppose cj>X' (x1) = cj>X' (x2). Then ~· (x1 ) = -S
1

(x
2

) 

because <f>X'(x ) = <f>X'{x ) ~ ~T 1 i<f>X'(x1 ) = .&T'i<!>X'(x2 )~.9<f>XTi(x1 ) = 
1 2

t I 0' I 	 I
.S cj>XT~(x2 ) d) i .S (x1) = i .S (x2) d> .-v (x

1
) =..S(x

2
). Hence ..S does factor 

1 
through <!>X', say~· = ..S"<!>X'. But then i..S"cpX' = i.& = -9T'i<l>X' ~ 

:T'i .& " = ..& T 1 i, which is sufficient for (X', .S ") to be in S • But then 

(X', .& ') = S <l>(x', -8 ") and the image of S <I> is closed under subobjects. 
[f] 

Suppose (X, -S<t>X) e;. image s<I> and (X,.Scj>X)--~>(Y,E;) an onto map in ST. 

We 	 have 

Tf 

+x Tlx~+Y/TY 
T'f I 

:r----f-~T'Y 

X~~~~~~~----_.Y 

Claim ~ factors through cj>Y. Since f is onto we can choose a section 
d 

Y X with f d = idy. Then Td, T' d are sections for Tf, T' f respect

ively. Take y1 ,y2 e 	 TY with cj>Y{y ) = <f>Y(y ). Then ~(yl) = ~TfTd{yl) = 
1 2


f.S<t>XTd(yl) = f.ST'd<f>Y(yl) = f.ST'd<f>Y(y2) = f.ScpXTd(y2) = ~TfTd(y2) = Hy2). 
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Hence E; factors through cj>Y, say E; 	 = E;'cj>Y and E;'T'fcj>X = f.Scj>X:::) ~'T'f = 

f .8. Since f is onto this is sufficient to guarantee that (Y ,t; 1 
) E. sT'. 

[f] (f] 
Clearly (X,.Scj>X)--~>(Y,t;) is the·image under s<fl of (X,.8)--+>(Y,E;') 

showing that the image of s4> is closed under homomorphic images. 

Now suppose we start with 'f>, generate a quotient T--+•T' and then 

consider the semantical interpretation of cj>. 

As above, say R --t J with adj unctions (p ,a) (recall a will be a natural 

equivalence). Then the triple T' explicitly is (UTJRFT, UTpFT o n, 

UTJ(o o Re:TJ)RFT). The adjunctions of RFT--\ uTJ are (UTpFT o n, 

a o Re::TJ). Thens Hx,.s) = s<l>cx, uTJ(a o Re::rJ)(X,.S )) 

1= (X, UTJ(o o Re::TJ) (X,,S) o U pFl'X) 

But UTJ(o o Re:TJ) (X,.S) o UTpF!X 	= UTJ(o(X,-' ) o R[_,,.]) o UTpFTX 

= uT (Ja (X, .S ) o JR [ -9 ] o pFT X) 

= UT(Jo(X,~) o p(X,.S) o [.&]) 

T = U ((Joo pJ)(X,.S) o [.S]) 

= .9 . 

Hence sci>~ = J on objects. Clearly this is also the case for morphisms. 

Now finally suppose we start with a quotient T--~l'T 1 then take the 
sci> 1'> 

semantical interpretation sT' ----4)ST and construct the quotient T--......);T" 

arising from the image l3 of sc!>. Then we have a commutative diagram: 
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T' K $ T" 
S --~+ ~ ---•S 

s4> = JK, the factorization through the image. Now since $K is an iso

morphism, when we apply the structure functor to the above we get 

\I 
a 

T' T" 
with a an isomorphism. D 

T 

3.3.3 Examples. 

(1) If one knew that for any given type, the category of all universal 

algebras of that type were tripleable, this proposition would show that 

all primitive classes are already tripleable (since they are HSP sub

categories of categories of all algebras of their type). 

(2) By analogy with universal algebra we call a category ST equationally 

complete if it has no non-trivial HSP subcategories (i.e. no HSP proper 

subcategories containing algebras with more than 1 point). It is easy to 

check that the category of compact T spaces is equationally complete.
2 ' 

For if an HSP subcategory contains a non-trivial compact space, it contains 

the two element discrete spaces, hence all closed subspaces of all products 

of two element spaces. But this is already all Stone spaces, and every 

compact T2 space is the homomorphic image of a Stone space (for exampie 

look at the back adjunction of the adjointness). 



Appendix 

Categories tripleable over sets are more general than primitive 

classes of universal algebras, even if infinitary operations are admitted. 

Definition: Let T = (T,n,µ) be a triple in sets. Then the rank 

of T is the least regular cardinal a with the following property: For 
i 

any set X and x ~TX there is a subset X' .._c__.,.•X with card(X') < a and 

x ~image (Ti). If such a cardinal does not exist, we say T has no rank. 

The underlying set functor of a primitive class of algebras of a 

type with dimension a (as in Slominski [12)) is tripleable, as we have 

seen, and one can prove this triple has rank a. Conversely every triple 

of rank a is isomorphic to a triple obtained in this way. These results, 

unpublished, appear to be due to Linton. The mathematical tools required 

to prove them can be found in Manes [9] and Linton [6], [7]. 

As examples, the triple describing compact T2 spaces has no rank. 

The triple describing the category of complete atomic Boolean algebras 

(the dual of the category of sets) has no rank. The triple describing 

the category of B*-algebras (the dual of the category of compact T2 

spaces), with underlying set functor "taking the unit ball", is triple-

able with rank -x. 1 . The latter two examples are consequences of the 

following theorem which is for the most part a corollary of the triple

ableness theorem of §3.2. 

Theorem: Let A be a category with cokernel pairs and equalizers 

65 
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in which every monomorphism is an equalizer. Suppose A.. has an injective 

cogenerator q together with all powers of q. Then Jt,
0 P is tripleable 

f 
over sets via the functor A.0 P(q,-) iff for all A---.,B in A., 

g 
( (f,q), (g,q)) a kernel pair ~ (f ,g) a cokernel pair. The triple 

arising is isomorphic to T = (T,n,µ) where: 

f
TX = ,A.(qX ,q), Tf = .A,(q ,q) 

nX: x--~>•.Q.(qx ,q) by x ~ ir 
x 

x 
JJX: A.(q ft.(q ,q) ,q)-~>Jl(qx,q) by µX = }t(jX,q) 

where by ir jX = a.. 
a. 

(All triples T in sets have the above form for a suitable cogenerator 

q e. (s1 ) 0 P, which in the general case need not be injective. One can take 

q the dual object of FT(l).) 

The rank of the above triple is the smallest regular cardinal a. 

with the following property: 

x i 
For any set X and map q 

f 
)q there is a subset x'c >X 

x qi X'with card (X') < a. such that f factors through the projection q q 

The example of complete atomic Boolean algebras is obtained by 

taking .ft= sets and q = 2 (a two-element set). The example of B*-algebras 

is obtained by taking Jt= compact T2 spaces and q =the unit ball of 

the complex plane. One can also show, using this theorem, that for a 

ring R with unit, the category of compact unitary right R-modules (the 

dual of the category of all unitary left R-modules, by Pontrjagin dual

ity) is tripleable, with usual underlying set functor. In this case 

one takes Jl = category of unitary left R-modules and q = Ab(R,C) where 
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C is the mul~iplicative group of complex numbers of norm 1, and 

Ab(R,C) is the group of abelian group homomorphisms from R (as an 

abelian group) to C, with its natural left R-module structure. One 

can show that for non-trivial rings R, such triples never have a rank 

(c.f. 1.3.2, example 2(d)). 
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