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PREFACE 

"Those who have handled sciences have been 

either men of experiment or men of dogmas. The men 

of experiment are like the ant; they only collect 

and use: the reasoners resemble spiders, who make 

cobwebs out of their own substance. But the bee 

takes a middle course, it gathers its materi~l from 

the flowers of the garden and of the field, .but 

transforms and digests it by a power of its own. 

Not unlike this is the true business of philosophy; 

for it neither relies solely or chiefly on the powers 

of the mind, nor does it take the matter which it 

gathers from natural history and mechanical experiments 

and lay it up in the memory as a whole, as it finds 

it; but lays it up in the understanding altered and 

digested." 

Francis Bacon 

Aphorism XCV, Novum Organum, 1620 
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CHAPTER I 


INTRODUCTION 


One of the great difficulties of the Bardeen­

Cooper-Schrieffer {BCS 57) approach to superconductivity 

by the pairing hypothesis was to understand why two 

electrons, which would repel each other in vacuo, .are 

correlated in their motion in a superconducting solid. 

Cooper provided the first clue by showing that a 

pair of electrons excluded from low momentum states by a 

quiescent fermi sea are unstable against pair formation 

if there is the slightest trace of attraction between 

them. The clue to what might cause an attraction, as it 

turned out, had been given by Frohlich {F 50) who suggested 

that overscreening of the electronic charges by the charge 

density oscillations associated with lattice vibrations 

could lead to an effective attraction between pairs of 

electrons. 

Now, there is a large body of experimental evidence 

supporting the pairing hypothesis. This is discussed in 

standard texts {S 64, R 65). The most dramatic is the 

phenomenon of two-particle or Josephson tunnelling for 

which the quantitative agreement with the pairing theory is 

1 




2 

more precise than our knowledge of the fundamental constants 

e and n . {L 67) • 

Measurements of the one particle tunnelling curren~ 

across a metal-insulator-superconductor have been used to 

confirm the mechanism of pairing in simple metals {SSW 63); 

and the remaining question concerns the universality of 

Frohlich's mechanism. Many alternative mechanisms have 

been proposed, but few experiments have been made to test 

these proposals. In what follows, we give a generalized 

theory of screening in which the botal charge_density 

oscillations screen pair interactions. The coordinates 

for charge density oscillations need not be purely thos~ 

for lattice vibrations, and we suggest that one particle 

tunnelling experiments might be used to examine the 

mechanism of screening. We do not propose to challenge 

the pairing hypothesis: we use it, and regard tunnelling 

as a probe of the low frequency dielectric properties of a 

metal. 

Before arguing a new approach to the pairing 

mechanism, it is helpful to examine the published litera­

ture on other mechanisms, with a view to deciding which 

provides the most serious challenge to the universality of 

the Frohlich mechanism. 



CHAPTER II 

EXPERIMENTAL APPROACHES TO SCREENING MECHANISMS 

The case against the universality of Frohlich's. 

mechanism is supported by an ipse dixit: " ..•.The situa­

tion in metals with incomplete inner shells is radically 

different. These sh~lls can not be treated as polarizable 

centres .••• " (f 66). He is reviewing the scattering of 

conduction electrons in metals, and has invoked shell 

closure theorems (CS 35) ~o justify absorbing the scatter­

ing of conduction electrons from closed shells of core 

electrons into the electron-phonon scattering. 

In transition metals, there is a group of .one­

electron states which does not fit into the core-valence 

scheme. The tight-binding picture of these states breaks 

down because core states on different sites overlap. On 

the other hand, 
_} 
the modified plane wave calculations (D 66, 

Hu 67) break down because the self-consistent crystalline 

potential is strong enough to bind an electron in the 

vicinity of a single site. The ·open shell effects for such 

bound states allow small perturbations to excite an electron 

to a nearby bound state, a process which amounts to deforma­

tion of the ~harge cloud associated with a nuclear site. 

The influence of 'transition electrons' on the 

physical properties of metals is discussed in any magnetism 

3 
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text. Briefly, there is an approach to magnetic proper­

ties based on the assumption that transition metals con­

tain well-localized transition electrons; and a second 

approach is based on the assumption that transition 

electrons form an electron fluid with f ermi surface 

obtained from a modified plane wave calculation. Both 

approaches are limited in scope, but recent work by 

Hubbard (Hu 63) shows signs of reconciling the two 

approaches, putting atomic correlations in thefluid .• 

Eventually, we shall att~pt to describe the 

effects of deformation processes hinted at by Frohlich 

in Hubbard's terms, but some experimental evidence must 

support such a venture. The evidence is of three types: 

(i) observation of the isotope effect on transition 

_temperatures; 

(ii) observation of the relation between transition 

temperature and the density of one-particle states at the 

Fi!rmi surface; 

(iii) measurement of the one electron tunnelling current 

for a metal-insulator-superconductor junction. 

First, BCS theory predicts that the transition 

temperature, T , should depend on the average isotopicc 

mass M according to 

2.1. 

Nambu's strong coupling theory with a rigid ion approxima­
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tion also suggests an a close to 0.5 (S 64). Experi­

mentally a varies between zero and one half; the system 

of variation is discussed by Garland (Ga 63). His 

theoreticai explanation for afl/2 is an elaboration of 

Frohlich's mechanism: phonons are allowed to scatter 

electrons between a conduction electron fluid and a 

transition electron fluid. A similar approach was also 

made by Kondo (K 62). Two criticisms of their approaches 

are possible: the first, that the electron fluid picture 

6f transition electrons is of questionable validity; the 

second, that decreases in a can be produced directly by 

accounting for processes which do not involve nuclear 

motion. Indeed, we shall argue that transition electron 

polarization effects, whether produced by phonon or 

coulomb scattering, are most likely to give afl/2. 

The second set of experimental data is given by 

Coles (C 64). He notes that the electronic specific heat 

and the BCS estimate of Tc for an electron fluid increase 

monotonically with the density of one-electron states at 
__; 

f..
the fermi surface. He shows that in a transition metal 

series, these two quantities are very poorly correlated 

towards the end of the series: the electron fluid model 

does not fit T occurrence data. c 

The third and most germane piece of evidence was 

obtained by Clark (Cl 67)and Wyatt (Wy 65). Both workers 

used the theory of the frequency dependence of the super­
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conducting gap as developed by Schrieffer, Scalapino 

and Wilkins (SSW 63). Besides the structure which could 

be traced to rigid ion phonons, Clark working on thallium 

and Wyatt working on tantalum noticed structure at fre­

quencies where the simple theory predicted none. In 

thallium (incomplete p-shell), structure in ~(w) is most 

marked around nw ~ 100 meV, nw ~ 50 mev and nw ~ 10 mev. 

The lowest frequency structure does not disagree with the 

simple theory; the highest frequency structure has been 

identified with vibrational and rotational f~equencies of 

interstitial impurity molecules; the structure at inter­

mediate frequencies has not yet been identified, but may 

be a manifestation of polarisation of the p-shell. In 

tantalum (incomplete d-shell), the usual phonon structure 

is observed, but between two frequencies at which phonon· 

structure occurs there is structure which may originate 

in the normal mode frequencies of d-shell polarisation 

effects. 

We late~ estimate that this structure should occur 

at frequencies of the order of fine structure splitting 

for an incomplete shell, which is in agreement with the 

fact that the thallium structure occurs at higher fre­

quencies than the tantalum structure. More experimental 

evidence of the Clark-Wyatt type for transition metal and 

rare earth superconductors would greatly illuminate the 

detailed nature of the screening mechanism in these per­

plexing metals. 



CHAPTER III 


RECENT THEORIES OF THE SCREENING MECHANISM 


Mechanisms for screening the coulomb repulsion 

between pairs of electrons in a metal have attracted 

attention for two main reasons. The one is concerned 

with whether or not termi liquids are normal or super­

· fluid at very low temperatures; the other con9erns the 

search for high temperature metallic superconductors. 

Kohn and Luttinger (KL 65, Lu 66) have examined 

a mechanism which bears on the question of superfluidity 

of He-3, nuclear matter and metallic conduction.electrons. 

The objections to their mechanism argued below refer only 

to the case of electrons. The physical process involved 

in the Kohn-Luttinger approximation is screening of two­

particle interactions by collective particle density 

effects. In their approximation, there is a discontinu­

ity in the derivative of screened potential with respect 

to momentum transfer, q. The same type of screening 

discontinuity is thought to be responsible for the 

Friedel oscillations of charge density around a screened 

impurity in a metal (LV 59). The discontinuity also plays 

a key r6le i~ the theory of the Kohn effect observed in 

7 
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X 

the phonon dispersion curves of some metals (WK 62) . 

Using aR electron fluid picture with fermi surface 

adjusted to resemble that found by modified plane wave 

calculations, Luttinger has investigated what shape of 

fermi surface gives the highest superconducting transi­

tion temperature without phonon effects. His greatest 

estimate is at least an order of magnitude below observed 

values of T in typical superconductors not showing ac . 

perfect isotope effect, a~l/2. Also, the theory· seems to 

favour pairing in high angular m?mentum states, and the 

main body of experimental evidence for the pairing theory 

is based on the assumption of singlet s-pairing (S 64). 

The question of the possible existence of high 

temperature metallic superconductors was raised by 

Geleikman (G 65, 66). He is concerned with a two-fluid 

model of the electrons in which the repulsion between 

pairs of electrons in one fluid is screened by charge 

density oscillations of the other fluid. Geleikman's 

first attempt to estimate the effect of transition elec­

tron polarisation on the two-conduction electron vertex 

neglected the direct coulomb repulsion between conduction 

electrons. As might be expected, he overestimated the 

pairing effect, obtaining T~300°K in contrast to the 

greatest empirical value ~18°K (niobium-tin). 

In his second approach to the two-fluid model, 

he used model wavefunctions to estimate matrix elements 
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of the coulomb repulsion between conduction and transi­

tion electrons. For conduction electrons he used plane 

waves, for transition electrons,tight-binding wavefunc­

tions made· up of spherically averaged atomic d-states. 

His theory of the two-particle vertex is an approximation 

to two-band, random-phase-approximation screening. An 

attempt was made to apply Geleikman's method to niobium, 

with the following results: 

{i) the electronic density of states for the conduction ~ 

electrons and transition electrons is required to avoid 

instabilities against depletion of one band at the 

expense of the other; 

{ii) when the tight-binding approach is used to estimate 

the transition density of states, the atomic a-functions 

for Nb extend.to the fifth ring of neighbours ~n the 

b.c.c. lattice -- Geleikman's no overlap approximation is 

quite unjustified. 

An attempt to patch up the tight-binding picture 

by an LCAO approach, mixing d-functions from rings of 

neighbouring
_/ 

sites into the central d-function,rapidly 

became a sterile exercise in machine computation, much too 

lengthy to be completed in view of the questionable 

physical assumptions inherent in the two-fluid model. 

However; the investigation of overlap effects in the one-

particle LCAO theory of Lowdin (Lo 58) suggested a way of 

solving overlap problems in the theory of the atomic 

representation developed in Chapter V. The strongest 

http:extend.to
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conclusion to be drawn from Geleikman's approach seems 

to be qualitative: that electronic polarizatiort processes 

are likely to enhance pairing. 

The mechanism of screening by polarization of 

impurities is supported by the experiment of Clark (op. 

cit. Chapter II). Occurrence data for alloy superconduc­

tors also show (M 65) that the addition of non-metallic 

interstitials to some alloys increases Tc. Three broad 

classes of impurity processes can be considered:· 

(i) excitation of vibrations of a rigid ion impurity; 

(ii) excitation of rotational or vibrational modes of a 

multinuclear impurity molecule; 

(iii) deformation of incomplete shells of electrons centred 

at an impurity site~ 

The first class of process can be quickly absorbed 

into the rigid ion Frohlich mechanism by replacing the 

pure crystal phonon propagators by those for the impure 

crystal and changing the electron-phonon coupling constants 

a little. Some work on these lines has been performed by 
( 

Appel (A 67). Less obviously, the same approach could be 

used for the second class of process: Ludwig has shown how 

arbitrary molecular modes affect the phonon density of 

states in imperfect crystals (L 64). 

The third class of process involves both pair 

forming and pair breaking mechanisms. The former mechanism 

is an electric transition of the impurity centre, which 
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couples it to the charge density of the pure crystal 

electrons; the latter mechanism is a magnetic transition 

of the impurity centre, which couples it to the pure 

crystal electronic spin density. The balance between 

these two mechanisms is an important aspect of the theory 

of type II superconductors, outside the scope of this 

thesis. 

.· 




CHAPTER IV 

THE THEORY OF DIELECTRIC RESPONSE 

The notation of Baym and Kadanoff (BK 62) is 

convenient for describing a theory of screening first 

sketched by Martin and Schwinger (MS 59) • The following 

list of definitions is sufficient to establish units and 

~onventions of sign and phase: 

the Hamiltonian for electrons, 

J<-2 2+
H - f'd 

3 
x 'l' (~) ( - ~m v + UBG (~) ) 'l' (~) 

4.la; 

average over the grand canonical ensemble, 

Tracefe-S(H-µN)A]
<A> - 4.lb;" 

Tracefe-S(H-µN)] 

Heisenberg field operators on Pock space H of Appendix 2, 

i " 
efl(H-µN)tl

'l' (1) 

4.lc; 

the compact notation for integration and spin sum, 

12 
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f fCI,2,3, ... ,n.,p, ... > gCI,2,3, ... ,n.,q, ... > 

f(x1 t 1 , .•. ,x t ,x t ••• )g(x t 1 , ••• ,x t ,x t •.• )
n n p p 1 n n q q 

where x refers to position and spin (x,cr) 4.ld; 

the one-particle propagator, 

4.le; 

the n-particle propagator for n~2, 

1 n 
Gn(l,2, •.. ,n; l',2', .. ~,n') = {i) <T[W(l)W(2) ... W(n) 

w+ {l') ... w+ (n')] > 4.lf. 

2 
In the Hamiltonian, V(l,2) = is theo(tl-t2). 1~:-~2 I· 

coulomb repulsion between electrons, UBG is the background 

potential of charged nuclei. In the grand canonical 

average S is (kT)-l, the inverse of Boltzmann's constant 

times absolute temperature; and µ is the chemical potential . 
.· 

In the propagators, T[ ] is the time ordering operation. 

The equations of motion for the propagators are 

fl a ri2 2 
i at - 2m vl - µ + uBG<~1>l 81Cl,l') = o(l-1')


1 


4.2a, 
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n 
= L: [(-l)m+lo(l-m')G (2,3, .•. ,n; l',2',

1m=2 n­

•.. (m-1) ', (m+l) ', ... ,n')] 

4.2b, 

where the limit n+o+ is intended and the notation 

4.2c 

is used as an abbreviation for the limit. 

For a grand canonical ensemble, 4.2 is an infinite 

chain to which three broad classes of approximation pro­

cedure have been applied: 

(i) perturbation theory; 

(ii) truncation procedures; 

(iii) use of generating functionals. 

The first method, based on an interaction repre­

sentation and Wick's theorem is described in standard texts 

(AGD 63). The second method, subject of a review article 

by Zubarev (Z 60), involves stopp~ng the chain 4.2 after 

n links. The (n+l)-particle propagator occurring in the 

nth link of 4.2 is assumed to be factorizable as a product 

of propagators with particle number ~n. Whatever factor­

ization is assumed, the first n links of 4.2 define every 

propagator with particle number ~n as a functional of one 

of these, say G1 . The weakness of this method is that the 

functional form of propagators depends on the factoriza­

tion of Gn+l" 
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The third approach to 4.2 borrows much from the 

second·approach, but is based on Schwinger's principle 

of stationary action (Sch 51) using a variation defined 

by the addition of fictitious potential 

u = Ju(n~n;)~+(n')~(n) to the Hamiltonian 4.1. Following 

Kato, Kaboyashi and Namiki (KKN 61), and Blomberg {B 66) 

the action functional L, 

L[u] = -

rn=l 
00 

n! 
1 Gn(I,~, ... ,n; I 1 ,~ 1 , ••• n')u(I,I 1 )u(~,~·> 

••• ucn,n'> 
A 

Trace[e-B{H-µN)Te-BU]= 4.3, 
Tracefe-B(H-µN)] 

subject to oL = 0 is defined. Clearly knowledge of L 

would give all the propagators by functional derivation. 

T~is generating property of L is shared with g~nerating 

functional G defined by 

1 oL 
G(l,l'; u) :: L ou(l,l') 4. 4. 

Functional G has two other congenial properties: 

lim G(l, l' ; u) = G (1,l') 4.5;u-+o 1
 

112

I~ a 2 - µ + UBG(~l)] G{l,l'; u)vl1 .. at1 2m 

= o(l-1') - Ju(l,~)G{~,l'; u)­

- l Jv(l,~)G2 {1,~; l',~+~ u) 4.6a. 

In 4.6, G2 {u) is. the two-particle propagator in the 
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presence of U; and therefore this equation can be taken 

as the ~quation of motion of G1 in the presence of U. 

If some truncation of the Zubarev type is performed on 

the chain of which 4.6 is the first link, G2 (u} can be 

expressed as some functional of G. Obviously many 

functionals G2 IG] can be obtained -­ there are lots of 

possible truncations but Kadanoff and Baym (KB 61, 

B 63) have shown how to impose constraints on the choice 

of functional. They have found a class of approximations 

which are called conserving and have the properties: 

(i} the rates of absorption of momentum, angular momen­

tum and energy, obtained by integrating the appropriate 

density_in the perturbed system, are equal to the rates 

of loss computed directly from the probe potential U; 
.. 

(ii) in the special case of U an electromagnetic poten­

tial, the response of the syste~ to U, in linear approxi­

mation, is gauge-invariant. 

By defining a self-energy functional I such that 

4.6a can be written 

.· 

= ac1,1•> - Jrc1,2>GC2,1•> 4.6b, 

the Baym-Kadanoff constraints imply the existence of a 

closed functional ~[G,V] such that 

o~ 
I(l,l'; u} = oG(l,l'; u} 4 • 7 • 



17 

Similar closed functionals ~ have been obtained within 

the framework of the perturbation theory (AGD 63) where 

~ is related to the Helmholtz free energy F. 

The theory of screening follows from a change 

of variable in 4.6. The motivation for the change 

springs from an examination of the Hartree self-energy, 

0 (1, l' ) 4.8,i 

equal to the potential at point 1 arising from coulomb 

interactions with the average ch~rge density· of the 

system in the presence of U. The potential difference, 

1:H(u) - };H(o), is the change in the above coulomb poten­

tial as U is switched on. If the potential U is taken 

to be local and instantaneous, 

u ( n, n' ) = o (n, n ' ) u ( n) 4.9, 

then the average potential change produced by U at point n 

is 

w(n) ~ u(n) + rH(n,n; u) - 1:H(n,n; o) 4.10. 

The inverse permittivity associated with longitu­

dinal potential w is 

ow(n)K ( , ) = lim n,n - u-+o OU (n I) = o(n,n') + ifV(n,2)<Tlp(2}p(n')]> 

4.11, 

containing the propagator <Tfp(2)p(n)]> for charge 
,..... 

density fluctuations. The screening of potential V by 

such fluctuation~ is conveniently described by the 
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screened two-electron potential, 

V (n,n') = J V(n,2) K(2,n')
8 

=.V(n,n') + i Jvcn,2) <T[p(2)p(3)J>_vC3,n') 4.12. 

By a change of variables, (u, V)+(w, Vs), equation 

of motion 4.6a can be taken to define all propagators as 

functionals of Vs and G • As in the theory without change1 

of variable, the functionals depend upon some details of a 

truncation procedure. Before imposing conservation con­

straints of the Baym-Kadanoff type, 4.6 is reduced to a 

system of integral equations derived in Appendix 1. 

With the definitions 

M{n,n'; w) = *- Jv (n, 2) G ( n, 3 ; w) /\. ( 3 , n ' ; 2) 4.13a 
l. s 

for the modified self energy, the triple vertex defined ~y 
-1 

A( I m) -= - oG (n,n'; w)n n,n ; 4.13b 
oW{m) 

and the polarisation part 

+ 
, ) - . oG ( n , n ; w)Q (n,n ; w = l. ow(n') = iJAc2,2•; n)G(n 1 ,2)G(2 1 ,n') 

4.13c, 

the equation of motion 4.6 becomes 

f[ ¥a!l - ~vi -v+EH(l,l; O) + UBG(l)+w(l)]O (l,2)G(2,1• ;wJ 

. - o ( 1, 1 ' ) - JM (1, 2) G ( 2, 1 ' ; w) 4.14. 

Self-energy M. defined in 4.13 is~an implicit functional of 

G(w) and Vs because Q is a functional of Vs. The asymptotic 

relation between r and M in Appendix 1 restricts M to a 

functional which is asymptotically equal to a ~-derivable r. 
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The following rules tell what form M must have. 

Starting from a functional ~[G,V] of the Baym~ 

Kadanoff type: 

(i) define ' {G,V] by shrinking any parts of ~ connected 
0 

to the remainder by only two V-convolutions to a-functions; 

(ii) if ~[G,V] is of order n in G and ' [G,V] is of order
0 

-1 
m in G, define '[G,V] = (n) (m) ' [ G, V] ;

0 

(iii) if M(n,n'; w) = o'[G,V] then the limitI 

oG {n,n I; w) V=V 
s 

E(n,n'; o) = +EH(n,n'; o) + lim M(n,n'; w) is a ~-derivable
w+o 

function. 

The Hartree terms of the form 

4.15 


can be shown to vanish identically by an argument which 

extends one recorded by Abrikosov et al~ (AGD 60). The 

hinge of the argument is the construction of an electric 

field ~(l) associated with the average charge density by 

div1 ~ (1) 0: < p ( 1) > 4.16. 

Then 4.15 can be written 

'Ho: Jdl d2 div1 ~(l) V (1,2)<p(2)>
5 

= Jdl d2 <p(l)>Vs(l,2) div 2 E(2) 4.17. 

The left-hand side of 4.17 can be transformed to give 

'Ho: Jdl d2 ldiv1 (~(1) V (1,2)<p(2)>)
5 

- E ( l) • grad V ( 1 , 2) <p ( 2) > ] 4.18,
1 5 
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whose first term vanishes by writing it as a surface 

integral over a surface far outside the region where 

<p> is not zero. The second term in 4.18 is the nega­

tive of the corresponding term from the right-hand side 

of 4.17: 

~H ~ fa1 d2 ~(l) .grad1 Vs(l;2)<p(2)> 

= Ja1 d2 E(l) .grad1 Vs(2,l)<p(2)>; 

~H vanishes if graa1vs(l,2) = -grad1Vs(2,l). The proof 

that this last pondition is satisfied uses three relations, 

T[p(n)p(n')] = T[p(n')p(n)] 4.19a, 

V(n,n') = V(n',n) 4.19b, 

and grad1 V(l,n) = -graa1 V(n,l) 4.19c. 

Then, 

grad1Vs(2,l) = graa1v(2,l) + fan dnr V(2,n')<T[p(n')p(n)]> 

graa v(n,l)1

= -graa1v{l,2) - Jan dn' grad1V(l,n) 

<T[p(n)p(n')]>V(n',2) 



CHAPTER V 


THE ATOMIC PICTURE 


An atomic picture for the theory of correlation in 

narrow energy bands has been presented by Hubbard (Hu 62) . 

If a is the unit of length for interatomic distances in a 

crystal, A the atomic number, the transformation (a, A) + 

3(Aa, A A) is referred to as adiabatic scaling by A• We wish to 

argue that as A increases, the adiabatically scaled crystal 

resembles more and more a set of regularly-spaced, weakly-

interacting ioris in various states of charge. ·This convic­

tion suggests a choice of basis for the configuration 

space H (Appendix 2): a kinematical postulate. The postu­

late is expressed in the form of an asymptotic condition: 

in the limit A+oo of adiabatic scaling, the basis· functiops 

In, o> of H converge to the n-electron eigenstates of a 
n 

system of n interacting electrons centred on a reference 

ion in the coulomb potential of all the other bare ions. 

Usually a bare ion is a nucleus: however, perhaps when 

dealing with transition electrons, the label."bare ion" may 

refer to a nucleus surrounded by filled shells of tightly 

bound electrons which partly neutralize the nuclear charge. 

The coordinates of the reference ion depend on the choice of 

zero site for generation of a point lattice by application 

of the space group operators. The standard choice puts the 
I 

reference ion on the zero site. 

As A varies in the interval l~A< 00 , the magnitude of 

the coulomb potential from the "bare" ions not on the refer­

21 
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ence site changes, but the symmetry of this "crystal field" 

does not change. By labelling the bases of H in crystal
n 

field multiplets, the variation of A changes the spacing of 

multiplet-eigenvalues on the energy axis and changes the 

radial parts of n-particle wavefunctions, but the degeneracy 

and angular transformation properties of each multiplet 

stay constant. The aim of what follows is to exploit the 

invariance (with respect to choice of zero site for the 

lattice) of n-electrop eigenstates of a crystal in order to 

construct these.eigenstates from the states ce~tred on a 

reference ion. The possibility of such a construction is 

anticipated in Davydov's (Da 62) theory of molecular 

crystals, and the 'multiplicity waves' of Vonsovskii and 

Svirskii (VS 65) may be discussed as an example ~f such 

·crystalline eigenstates. The ma thematical problems which . 

arise have been examined by Lowdin et al. (Lo 58) for the 

special case H1 , and the chapter leans heavily on these 

earlier investigations. 

Suppressing the scaling parameter A, the notation 

ln,Q) = In, hI'p) for the image jn(~hrp) of an n-particle 

· f t · ,f.hrp · · · tbasis unc ion ~ is convenien , 

5 .1 I 

where r denotes a crystal field multipl~t, p is a state in 

the multiplet subspace and h is the set of additional quantum 

numbers of the state. 
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The state Cals> In, hI'p) defined by 

_ -1 -1 . I
{x1 ,x 2 ,.:.,x~ (as) n, hfp)=(a (x1-s),a (x 2-s), ... n,hfp)I I I 

5.2 

has two interpretations: interpreted passively, it is the 

vector In, hrp) in a new basis centred on site Cals)O; 

interpreted actively, it is a new vector obtained by moving 

the origin of In, hfp). The expansion 

h'I''p'
(ajs)jn, hrp) = Lh'f'p' chrp In, h'r'p') 5.3 

has coefficients 

h'f 'p'
chrp - cn,h'r'p' I <als> ln,hrp> 

3= Jd nx(n,h'f'p' Ix> (a-1 Cx-s) ln,hrp) 5.4 

which also have two interpretations: interpreted passively, 

they are overlap integrals between atomic states on differ­

ent sites; interpreted actively, they are the matrix ele­

ments of space group operators in the atomic basis. 

In the limit A~00 , the coefficients 5.4 for Cals>i<elo> 

are expected to vanish, but for any finite A the overlap 

integrals do not vanish -- i.e. the states centred on differ~ 

ent atomic sites are not orthogonal. The calculation of 

overlap integrals is a formidable task: for every H , and a 
n 

truncation of the atomic basis after m states, in a crystal
n 

having N~1020 atoms there are Nm overlap integrals each 
n 

involving a slowly converging expansion of wavefunctions for 

one atom about the centre of another. Drastic approximations 

are called for and, in order to see features of the theory 
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that are independent of an approx~mation, general properties 

of overlap integrals must be exploited. 

The active interpretation supplies the following 

useful property of overlap integrals: because the crystal 

Hamiltonian commutes with all the space group operators (ajs), 

it is possible to find a constant set of transformations of 

the atomic basis which simultaneously diagonalizes the over­

lap matrix and the Hamiltonian matrix. The construction of 

such a constant set .is particularly simple for symmorphic 

space groups. 

The 	crystal momentum transformation, 


1 ~ ik•R
In, 	khrp> - Nun e n (£jRn) jn, hfp) 

= ek jn,hfp) 


1 -ik I •R

(n,k'h'f 'p' I = N En' e n' ( n I h Ir Ip I I ( £ I -Rn I ) 

= ( n I h I r Ip I I ek I 	 s.sa, 

where ek is the idempotent for the k-irreducible representa­

tion of the group of lattice translations , leads to the 

following representation of space group operators: 

(ajR >In, khfp) = Nl r eik·Rn (£1aR +R )Calo> In, hfp)m n - n m . 


-ik•R I I
= e m eak(a o) n, hfp) 

-ik•R= e m L I ff (a) In, akhfp 1 ) 5.6a. 
p £ pp 1 

The 	orthogonality property of idempotents, 

e · e = 6 e · 	 5.7,
k+q k q,o k 

shows that the overlap integrals are diagonal in k, 
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(n, k+q h'f'p' In, khfp) = o (n, h'f 'p' !ek!n, hfp) • q,o 


.Also, the reduction of 5.6a diagonalizes the overlap matrix 


exactly because r in 5.6a is reduced according to the 


irreducible representations D. of the point group P(k) of

J . 


the group of the wave-vector k; and using Schur's Lemma 


together with the fact that ek commutes with P(k), on a 


reduced subspace £ln,khD.A) , A=l,2, .. d.] the operator ek 

J J 


is a constant multiple of the unit operator, 


ek In, khD. A) = S. h (k) In, khD. A) , A=l, 2, ... d. 5.8a,
J J J J 

where the vectors are linear combinations of In, hfp) , 

p = 1,2, .•• dr obtained by the projection operator method of 

Appendix 4. All the eigenvalues s.h{k) of 5.8a are real 
J 


because the transformed overlap matrix is hermitian, 


· ( n, h'f'p' I (ekln, hfp ))* = ( (n, .hrplek) In, h'f'p') 

= transpose (n' h Ir Ip I Iek In' hfp) . 

-1/2 
The vectors (S .h{k)) In, khD .A) constitute an 

J J 


orthonormal basis for Hn because 


or 

5.9a. 

And this new basis has the property that the representation 

of the space group carried by the set {jn, akhD.A), A=l,2, ... 
J 
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d.,jakE star of k],i.e. the induced representation from an 
J 

irreducible allowable representation of the group of the 

wave-vector k, is irreducible. Therefore, the Hamiltonian 

for the crystal is a multiple of the unit operator on the 

subspace spanned by the above set of vectors: 

,... h 

HIn, akhD . A) = E . ( k) In, akhD . A) 5.10. 


J J J 

Following Lowdin (Lo 58), one can consider the 

matrix elements of the crystal Hamiltonian in the new basis 

as the matrix elements of a 'pseudo-harniltonian' 

H' (k) ~ (e~)-1/2 H(ek)-1/2 

= 5.lla 

in the (non orthonormal} basis derived from the atomic basis 

by crystal momentum transformation. 

The argument proceeding from 5.5a to 5.9a can be 

reproduced, mutatis mutandis, for asymrnorphic space groups. 

Complications originate from the overlap of states centred 

on different atoms in the same unit cell. The unit cell of 

the point lattice (p.l.) is described by the ·zero vector 0, 

arid z-1 imprimitive vectors (EjT)O. A state jn, hfp) 

centred on the zero site can be translated to (EIT) In, hfp) 

centred on another site in the unit cell. For convenience, 

the original state on the zero site is denoted 

In, hfp) =.CE.IO) In, hfp) in the modified crystal momentum 

transformation, Tk' defined by 
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1 ik•R +T I IJn, khfp) - NZ I e n (e: Rn+T) n, hfp) 
p.l. 

1 ik. T I I= ek z Ie (e: T} n, hfp} = Tk In, hfp) 5. Sb, 
T 

The action of space group transformations on these 

crystal momentum eigenstates is clearly 

= -ik•R -ik•ve m e a 1 iak•T I IeakzITe (e: T) (a O) In, hfp) 

5. 6b, 

which shows· that the set r!n, akhfp) , p=l,2, .·.. ,drjae: star· 

of k] carry a (reducible} representation of the space group. 

The reduction of this representation is performed by first 

reducing the allowable representation of L (k) (Appendix 3)1 

.carried by [jn, khfp), p=l,2, ...dr].according to the 

irreducible representations D. of the point group P(k) of 
J 

the wave-vector k contained in r (Appendix 4). 

The overlap matrix after such a reduction is diagonal 

ink (5.7); and because the transformation operator 

1 ik ·T I .Tk= z IT e (e: T)ek commutes with P(k) on a, subspace .· 

generated by [jn~hD.~ , A=l,2, ...d.) the operator is a 
. J J 

multiple of the unit operator: 

5.8b. 

Thus, the orthogonal basis for Hn which simultane­

ously diagonalizes the crystal aamiltonian and the overlap 

matrix is obtained as in the case of symmorphic space groups, 
1 

(n, k'h'D. 1 A1 I (S.~ (k'))-112 (S.h(k))-1/ 2 1n,khD.A)
J . J J J 

5.9b. 
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In the orthonormal basis, the Hamiltonian is diagonal (5.10) 

and the ~atrix elements of such a crystal Hamiltonian in the 

k-subspace of the orthonormal basis 5.9 may be considered to 

be the matrix elements of a pseudo-Hamiltonian between the 

un-normalized crystal momentum eigenstates 5.5 of the same 

k: 

HI (k) 

H 
= 5.llb. 

In the limit of large adiabatic scaling, the eigen­

values S in 5.8 are fixed by the asymptotic condition: 

lim 
A.-+oo 

1 ik•R +-r 
= e n 0 cSl:nl:TNz - -r,o n,o 

1 
= independent of h, j k 5.12.Nz I 

Therefore, the pseudo-Hamiltonian 5.11 in the crystal 

momentum basis 5.5 is ill-defined, since Nz is allowed to 

become thermodynamically large. For finite A., H' (k) shows 'dis­

hpersion' ink-space, when Sj(k) varies with k, of an unusual type. 

The r~duction of multiplet [jn, hfp) , p=l,2, .•. ,dr] 

by the method of Appendix 4 yields a new basis [jn, hfp) 

p=l,2, ... ,dr] for the multiplet which has the property that 

the matrices f (a) , for as P(k) are block diagonal sums of 
. pp 

D. (a) matrices. If a is not a member of P(k), then the 
J 
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block diagonal form for the r matrix no longer holds. On 

the r multiplet, the crystal momentum operator 5.5 is a 

block diagonal sum of multiples of the identity operator 

on the Dj subspaces of r: 

= s h Ck> In, k.hrp>p 

= s.h(k) if ln,khfp) e::[ ln,khD.µ) , µ=1,2, ... d.]
J J J 

5.13. 

The transformation properties of the Sp are: 

h 1 "'"' · iak • (R +-r) - I I I ­S (ak) p = Nz LL e n (n, hrp (e:: Rn+T) n, hfp) 
TIT 

1 ik• (R +-r) "' = Nz LL e n ,L " - p ,p
IlT 

(n, hfp" I (a Jo) In, hfp) 

5.14. 


In order to perform the summations over the p.l. to 

evaluate S , it is convenient to arrange lattice points in 
.P 

rings about the zero point, indexing the rings ln=0,1,2, ..• 

outwards. For the mth ring, a representative point R +-r m m 

is chosen and a function 

1 
Pm 

if 

5.15 


0 if a(Rm+Tm) is not a lattice point 
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with Pm equal to the number of distinct elements aEP(o) 

for ·Which a(Rm+Tm) = Rm+Tm. Using definition 5.15 and 

property 5.14, a compact expression for Sh(k)p can be 

written: 

1 ik•a(R +T )Sh(k) = (a) e m m p NZ Af a~P{o) T m 

(n 1 hrpJ (EjaRm+aTm) jn, hfp) 

-11 ia k•(R+T)= e m mNz frl .Ep' a~P(o) Tm(a) 

In, hfp') 

= N~ fr\ .Ep' z;m(fk)pp' (n, hfp' I (EIRm+Tm) In, hfp') 

5 ..16. 

For every ring of neighbours, only one translation 

operator needs to be considered; and the structure factor 

matrix 

= .E 
aEP(o) 

5.17 

is clearly independent of the scaling parameter A because 

the k space scales adiabatically with the reciprocal para­

meter l/A. The matrix elements of the translation operator, 

however, depe~d on .A, though the asymptotic condition 

requires that only negative powers of .A appear in any power 

series expansion of such a matrix element. Before suggesting 
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approximation procedures for evaluating matrix elements in 

5.16, one further general feature of the atomic picture 

can be studied: the effect of zeros of s.h(k) on the 
J 

transformation. 5.9. 

Because Tk is idempotent, its eigenvalues may be 

identically zero. The zeros lead to singularities in 

5.9, which can be avoided by adding a small positive number 

n and understanding 5.9 as a limit: 

lim+(n, k'h'D. 'A.' I (S~.•• (k') + n)-l/2 cs.h(k)+n) 1 / 2 1n, khD.A.)
n-+o J J J J 

5.9c. 

The operator expansion A2.17 takes the form 

0 = lim I:I:n+o+ 
nkhrp n'k'h'f 'p' 

2
(n' ,k 1 h 1 r 1 p' I (Tk 1 +n)-1/ 

lv>(v'I 

lim 

= n+o+ I:vv' 


5.18 

where v=n, khrp is an abbreviation and the operators Xvv' 

differ· from the basic operators of type A2.15 by scalar 

terms. To av9id confusion with correctly normalized basic 

operators, the X's above are called d-rnons--a term intro­

duced by Anderson (An 62) to describe correlated electronic 
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modes in transition metals. 

As a function of A 

S.h{k)
J . 

= S {A)v = 1 
Nz 

n 
i 

c1 -
A 

v 
{i) g.

1 5.19 

where Av (i) is a root of order gi of Sv(A) = 0. The 

troublesonelimits in 5.18 can be cast into the form of 

complex integrals in the A-plane by continuing 5.19. The 

result is 

lim -1, 1 lim -1 1
(S CU +n) v) A=· 2'"" f dz (sv(z)+n) lv>zn-+o+ v 7T1 n+o+ z-A 

c 
5. 20. 

where c is a contour surrounding the point AI and no other 

singularities of the integrand. For finite n, c is taken 

to be a circle of vanishingly small radius about A. If A 

- coincides with a solution of Sv(A)=O, the limit n+o+ of the 

integral diverges. However, by permuting the order of 

integrating around c and following the n-limit, the left-

hand side of 5.20 is well defined in Hn. For if A coincides 

with A(i), a zero of order gi for Sv, 

Sv+l (z) = av-l (z) {z-A {i)) +gi, 

lim 1 1 1
(Sv(A)+n>- lv>A = f dz av (z) Iv) zn+o+ 27Ti {z-A)gi+l 

c 

1 lim a gi 
= [av(z) jv)z) 5.21;g. ! z+A.

1 1 azgi 

and the transformation 5.·9 is well-defined at the· zero of S 

if the limit 5.21 belongs to Hn for some n. The key result 
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of this section may be stated as a Theorem: the limit on 

the right-hand side of 5.21 is a real scalar multiple of 

the vector lv)A. The essence of the proof is contained 

in the simplest case, g.=l,
1 

1 . dav (z)1S - (A) I ) = im [-~- 5.22.v v A z+A dz 

clearly, the reality of Sv(A) for real A implies that 

a (z) and a '(z) are also real for real values of z. The v v 

second term on the right-hand side of 5.22 is not obviously 

well-defined, but by defining lv) to be a solution of the 
2 

equation 

n 112 2 z 3Ae2 
E - v. - E (t; x 1 s 1 , ... ,x s Iv)2m n n zJj=l n,T lx.-z R -zTI n 


2 

J 

1 e ..fl d+ LI lvl = (t; x 1 s 1 , ... ,x s Iv) 5.23,2 2 I at n n zi,j lx.-x ·I 
1 J 

where A is the ionic charge, the ket !!~ d~lv) 2 may be 

understood to be a solution of the equation 

n 2..n2 2 
+ 1 ~· e( L - - v E2m j 2 '-' 

j=l n,T jx.-A R -ATI i,j lx.-x ·IJ n 1 J 

= 
n 
L 

j=l 
(­ E 

n,T 

d 
dA 

) 5.24. 

The inh~mogeneous term on the right of 5.24 consists of a 

space group scalar acting on !v)A, and by Schur's Lem.~a is 
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a complex multiple of jv)A. Because for real A the 

operator is a real function, then the right-hand side of 

5.24 is a real multiple of lv)A. The Green's function 

for the homogeneous equation of 5.24 is the same as that 

for 5.23 in the limit z+A. Therefore, the solution of 

5.24 can be written 

= Iv> a 1 (v), where a 1 is a real number 

5.25. 

To complete the proof for all g., induction on the 
l. 

order of differentiation in 5.21 is required: 

implies that 

.. 
an+llim 
azn+l [av (z) rv) z] = 13n+l (v) Iv) A, 13 Is real scalars.z+A 

The induction is proved by a slight generalization of the 

proof 5.22 to 5.25, 

In order that the vector 5.21 be well-defined in 

Hn' it is only required to show that the scalar of 5.25a 1 

(and generalizations, 13, of it) are bounded. Actlrig on a 

vector Iv> E Hn' the operator derivative with respect to A 

of the one-particle potential of the ions can be written 

-Ae2 2 A3 
n 

:r = +Ae E 
i=ln,T 

5.26. n 
1r r 

i=l ~,T I x j +A Ru+ AT I 
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For each i in the sum 5.26, a Taylor series about x.=o can 
1 

be devel.oped_: 

(Rn+T )·0.Rn+A T+X)2 3Ae :\ 3 r [ . - - ------] = 
g, T . I :\Rn+:\ T+x I 3 

>-l.:\Rn+AT+xl 

The first term of this series is proportional to the Madelung 

constant, M • The higher order terms involve 'generalized
0 

Madelung constants', 

1 


IRn+Tlp+l ' 

(R +T)]J (R +T)]J ... (R +T)
g 1 . g . 2 . ~ ]Jq1 


p+l r 

a ~,T IRn+Tlp+q+l 

which are of order zero in the lattice distance a, and 

converge to a value which depends only on the Bravais class 

of the lattice. 

The following atomic integrals, 

converge because Iv> vanishes outside a finite volume. 

Hence, the expression for a1 (v), 
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5.27 

is finite for ·any finite number of terms. The fact that 

all the terms in 5.27 are finite does not prove that the 

series converges. However, 5.27 does stow that Tkal (v) jv) 

is the null vector of space H so long as Iv) is confined 

to a finite volume. By similar arguments TkSn(v) Iv> is the 

null vector of space. H. 

One cannot be absolutely certain that .the only 

zeros of S are isolated and of finite order at the thermo­

dynamic limit. However, for large finite N, truncation of 

5.16 with polynomial approximations for the overlap matrix 

elements yields an approximation for S in the fo~m of a 

·finite polynomial in ascending powers of 1//... The. zeros. 

of such a.polynomial are, of course, isolated and of finite 

order in the complex A-plane. 

If the a's and S's have the form 5.27, cancellation 

is possible in 5.18: 

In I hD . ;u I s~o 
J 

5.28. 
In, O), S=O 

Thus, the matrix elements coupling 0 to the d-mons X are 

ionic matrix elements. By analyzing the time development 

of d-mons, a picture of the kinematics .of electrons in 

solids very similar to Hubbard's (Hu 62) is obtained with­
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out making strong dynamical assumptions about the Hamil­

tonian H. 

The equal-time commutation relations for d-mons 

are 

[x x J = o s x + n o s x 5.29,vv'' µµ' n v'µ µ vµ' p µ'v v µv'
p 

where n = ±1. Whatever the value of A, the Heisenberg
p 

operators for d-mons are given by 

i 
-.l<. (E -E I) t 
'll v v = e xvv' 

and they obey the unequal time commutation relations 

5.30. 

The energies Ev appearing in 5.30 are those for the ion in 

a crystal field appropriate to the A which appears in H. 

The average of unequal time commutation relations with 

respect to any statistical operator p commuting with H is 

a function only of the time difference t 1-t2 : 

<[X ,(t ), X ,(t )J > - r <<J>lp[Xµµ'<t1), xvv'<t2>Jn !<P>µµ 1 . vv 2 n P 
. p ¢e:H p 

5.31; 

and in the atomic basis 
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< [X I (tl) ' . µµ 

5.32. 

This last result is needed to fix the Green's functions 


of Chapter VI • 


The matrix elements p = (n, hD.\lpln, hD.A) are 

v J J 

ionic averages. The k-dependence of 5.32 comes entirely 

from the eigenvalues .s. 

The location of zeros of Sv is of some. importance. 

One can distinguish two types. The first can be located 

by symmetry alone and is called 'true'. Such zeros arise 

when all the matrix elements (n, hD.pl (E!R +T ) jn, hD.p) 
, J ~ m J 

in the series 5.16 vanish. The second type of z~ro is 

·called 'accidental' and arises when the series of ·non-zero 

terms 5.16 converges to zero instead of unity. 

When evaluating matrix elements 

(n, hD.pj (EjR +T) jn, hD.p), several orientations of co-
J m m J 


ordinate axes may be used. Under a change of axes by 


rotation-inversion a£ P(~), the ket (E!R +T) jn, hD.p)m m J 


transforms as D ® D., the tensor product of irreducible 

v J 

representation Dj with the (reducible) vector representa­

tion made up of 3x3 matrices which describe operation a in 

a Cartesian coordinate system. The reduction of D @ D. 
V- J 


according to '[D. , ] , irreducible representations of the 

J 

point group P(k) gives 
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n @ n. ~ © r. , cj '(;;'\ . n. , 5.33. 
V J J V'e/J J 

The bra (n, hD.pl transforms under change of axes as D.*, 
. J J 

the representation conjugate to D .. Clearly, the condi­
J 

tion that (n, hD.pl (EjR +L ) jn, hD.p) vanishes identically
J m m J

'* ­for all m is cJ~. = O. This condition is independent
V\.31 J 

of A and, therefore, true zeros are not isolated in the 

112complex A-plane. However, s- is still defined on the 

domain of S (=l) : it may be extended beyond this .domain 

-1/2by letting Tk S be the zero operator, so that ~.28 is 

valid. The accidental zeros of S are isolated, and can 

be treated by the method 5.20 to 5.27. They depend on 

what atoms occupy the Bravais lattice sites, and what 

approximation is used to build the correlated atomic 

states. Their relevance is to b.e compared with that of 

accidental degeneracies: they are neglected, knowing that 

if they arise the operator expansion 5.18 loses a few terms. 

The true zeros can be located by symmetry, and are 

therefore independent of the type of atom on the lattice 

site provided that a change of atom does not lead to a 

different Bravais Lattice. 
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CHAPTER VI 

DIELECTRIC RESPONSE IN THE ATOMIC PICTURE 

The inverse permittivity and screened potential 

of 4.17 and 4.18 contain the Green's function for the 

charge density 

6.1, 

where the 8-functions, defined by 

8+ (T) - 1 if T~O, 0 otherwise 
6.2 

e (T) - 1 if H::O, 0 otherwise, 

can be represented as integrals in the complex plane: 

1 
21Ti f + 

c-
d z -iZTe ( 1 

~-.- ­
Z+1E 

1 
~~ 
z-iE 

6.3 

where E is a positive infinitesimal, C+ is the real z-axis 

- to +oo closed by the semicircle at infinity in the lower 

z-plane, C is the real z-axis -oo to +oo closed by the semi­

circle at infinity in the upper z-plane. 

The statistical averaging, <,>, over a grand 

canonical ensemble at temperature T = ~S , chemical poten­

tial µ and with grand potential Q(S,µ) admits the following 

boundary condition on correlation functions: 

40 
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i i 
1 B(H N) -ntH KtH 

---.-~~ Trie- -µ e p{x )e p(x )J
- Q{B,µ) 1 2 

6.4 

where Tr denotes the trace operation in H, and its value 

is not altered by cyclic permutation of operator factors 

of its argument. 

Equation 6.1 may be continued to the complex 

T-plane by extending the definition of time ordering to 

complex times. For this purpose the notation 

>D (x1 , x2; '[) - <p(x ,T)p{x )>1 2
6.5<D (x1 , x,,; T) - <p(x2)p(xl,-r)>... 

is convenient. The definitions 

(1)D {x1 ,x2 ; T) if Re-r~O 

{2)D (x1 ,x2 ; '[) if Re-r<O 

D (l} {x . x • ..,..) D
< 

(x1 ,x2 ; '[) if lm-r~l' 2' • ­
>

D (x1 ,x2 ; 
'[ ) if lm-r<O 

<D {x1 ,x2 ; '[) if lm-r~O 

>D (x1 ,x2 ; 
'[) if lm-r<O 

6.6, 

which are contrived by continuing 8+{-r) to the lower 

T-plane .and 8~(-r) to the upper -r-plane in 6.1 and 6.3, yield 

a periodic boundary condition for D when 6.4 is invoked: 
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6.7. 


Therefore, in the complex time interval [(ReT, 0) , 

(ReT, nB)],_ D can bef.ourier analysed according to 

• 21TV
-1·-.-"[

D(x1 ,x2 ; T) = rv e 1nB D(x1 ,x2 ; wv) 6.8 

where v runs over the integers and wv 21TV The inverse- inB . 
transformation 

= __!_ J(Re-r, 
1113 

(ReT, O) 
6.9 

obviously depends on ReT. Nevertheless, the analytic con­

tinuation of D from the real T-axis such that 6.7 is valid 
>
< can be made with the aid of the P'ourier transforms of D : 

D~(w)" r:dT eiWT D~(T) 6.10. 

From 6.6 

6.lla, 

and also 

6.llb. 

The periodic boundary condition 6.7, therefore, is equiva­

lent to 

·6.12, 
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which may be written in terms of a spectral density A: 

A(x
1
,x ;•w):: f+_: dT e iWT<[p(x ,T), p(x )]_> 6.13a;

2 w 

1 2

D<(w)· = f(w) A(w) 6.13b; 

6.13c; 

f (w) _ (enwS_l)-1 , the Bose statistical factor, 

6.13d. 

In 6.9, 

(ReT ,nf3) 
1 iW T

dT e . \)= flS J 
(ReT ,O) -oo 

1 

= nSi 


6.14. 

The integral operator which appears in 6.14, 

+oo dW 1

f 6.15I(a) = 2;r a-w • 
-oo 

can be continued to the complex a-plane as follows: 

(i) for aE lower half plane, 

[ 1. + -i o(a-w) ] • 6.16a;
a-1E-W 2 

(ii) for aE upper half plane, 
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1 i- 2 o(a-w) ]• 6.16b.[ a+ie:-w 

Such continuations allow 6.14 to be written 

t 1 lim f+oo dwD (x1 ,x2 ;wv>= ~ + ~TIP1 E+O _ 2 'IT 
00 

A(w )ei(wv-w)ReTA(w) 
\) 'f+ ---211~8- 1 \) >0w -ie:-w 

\) 

6.17a 

A(W )ei(wv-w)ReTA(w) \) 
if v<o

W +ie:-W 
\) 

6.17b. 

The case v=o can be considered directly by inspection 

of 6.9. The result is 

f 
+oo 

-oo 

aw 
2n 

6.17c. 

Returning to 6.8, it is clear that this equation 

defines an analytic continuation of D(T) compatible with 

6.6 and 6.7 and given explicitly by 

6.18 

if the spectral density A(w) is known in a form which allows 

analytic continuation in the complex w-plane. The foregoing 

method cari be gen'eralized to all types of double-time 

temperature Green's functions: the case 



45 

G1 (1,l') = i <T(~(l)~+(l'))> treated, e.g., by Baym and 

Mermin (BM 61) has a boundary condition different from 

6.7 but their method has been adapted to D here with few 

changes. 

Taking p(x) = p (x) + p. (x) 6.19,e i 

where pe(x) = ~+(x)~(x) is the charge density for electrons 

and pi(x) the charge displacement operator for nuclei, the 

spectral density is 

+ < [ p Cx1 , T) , p. Cx 2 )] >+< [ p . Cx1 , T) , p Cx ) ] >]e i - i e 2 ­

6.20. 

The first term under the integral is the spectral density, 

Ae' for electrons; the second term is the spectral density, 

Ai for bare nuclear vibrations; the last two terms are 

spectral densities of electron-nuclear correlations. The 

latter cannot be ignored: they are the correlations 

responsible for the success of the rigid-ion approximation 

in non-transition metals. 

Before examining the electron-nuclear interactions, 

it is helpful to see how the spectral density Ae is in­

fluenced by the atomicity of the solid. Without using the 

crystal momentum eigenstates, the atomic operator expansion 
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for Ae takes the form 

-SE -$ N 
where F1 Cx1 ,x2 )= e _cp µ cp<cplpCx ) Iv> <vlpCx ) l4i> 6.21.1 2

Besides being real, A satisfies the reflection e 

principle 

6.22. 

The frequencies appearing in 6.21 are transition frequencies 

for many particle states for which Fis large-~f.e., 

Nv=Ncp~NzA from the fact that the number of electrons must 

on average neutralize the background charge. Unfortunately 

the behaviour of these atomic states under A-scaling is 

difficult to predict. The states la) with particle number 

N ~A, on the other hand, change very little under A-scaling:
a 

they are tightly localized for A>>l, and extend a little as 

A~l. The energy levels for these states are the same as 

those for an atom in a strong crystal field, and the spacing 

between levels is sensitive to shell closure effects. Using 

atomic· spectroscopy as a guide, the energy difference 
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+ 1 1between closed shells is about SeV !in Hg , P S =6.67eV].1 -
0 

An open shell configuration has energy differences as low 

as O.OleV, O.leV being typical [in Ni+ there are 26 terms 

8 1of the 3d 4s4p configuration between 3.2 and 4.6 eV above 

lowest term of 3d 84sns]. The general trend for energy 

differences between terms in an open shell configuration 

is that as t increases from p to d to f the term differ­

ences decrease. 

The term differences for states having rvNzA 

electrons can be related to the term differences for rvA­

electron states of the same Hamiltonian. Let la ) and1 

la 2 ) be states which have N rvN rvA and 
al a2 

A 

Hlal) = Ea la1)
l 

"' 
Hla2) = Ea la2)


2 


x - la1 ><a2 1
al,a2 

A 

[HI x ] = (E -E ) x 6.23. 
al,a2 - al a2 al,a2 

If Iv) is a state having N rvNZA, the action of X on v a 1 ,a2 
Iv> is defined by 

_ A"'fd 3x ••• d 3XN1 
al 

6.24a 
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A 
A 

(x1 , ••• , xN Iv ' )(X11•••1 XN , ..• , 
V I VI 

6.24b, 

where A is the antisymmetrizer. Using 6.23 and 6.24, if 

H: Iv) = E) v) , 
6.25, 

which tells us that X Iv> is an eigenstate, and its 
al,a2 

eigenvalue differs from that of Iv> by an ionic term 

difference. 

The next difficult question to arise is: what 

ionic term differences occur with greatest weight in the 

term differences for ~NzA electron states? Some arguments 

of Hubbard's serve as a guide. By s<?aling interatomic 

distances by A', but not increasing the nuclear charge 

A'-scaling -- the electronic states of the neutral crystal 

are expected to become those for a weakly interacting 

assembly of regularly spaced ions whose average charge is 

zero. 

The lowest energy states of such an assembly are 

composed of ions whose net charge deviates only a little 

from zero. For an ion wit~ large negative charge can lose 

electrons from high energy orbitals to orbitals of lower 

energy on neighbouring ions; and an ion with large positive 

charge has low energy orbitals which can be populated by 

electrons from neighbours. The energetics favouring 
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charge equalization processes is enhanced by shell 

closure: a closed shell ion with more than A electrons 

does not easily gain an electron against the shell 

closure gap· in.the level density, nor does a ·closed shell 

ion with less than A electrons yield up an electron 

since the energy level density for a transition to an 

orbital in a higher shell on a neighbouring atom shows a 

shell closure gap. Therefore, the configurations of ions 

in the large A' assem~ly are predominantly those with 

electron numbers lying between the two closed shell 

numbers which bracket A. 

In the event of A's coinciding with a closed shell 

number, the variation of numbers of electrons on different 

ions is expected to be very small indeed. Such a situa­

_tion is one to which the tight binding approximation might. 

be applied to most of the electronic levels. 

The state of the large A' assembly is a tensor 

product of ionic states on different sites. When the 

product is A'-scaled to the physical crystal, the tensor 

factors will be of the form la ), la2 ), etc.,.and these1

are the configurations for which contraction 6.2la does 

not vanish. If ja ) violates the bracketting condition2

on electron number, its 'strength' as factor in an ~NzA­

electron state is likely to be small. 

The. nuclear spectral density Ai,. the dynamical 

structure factor for inelastic neutron scattering experi­
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ments, presents few new problems. The remaining difficulty 

is the qssessment of the importance of nuclear-electron 

correlations, the effects which are responsible for the 

success of the rigid ion approximation in simple metals. 

The main concern is to discover what these correlations do 

to the propagation frequencies for the total charge density 

at wave-vector k, Tk p(x) Tk . 

The nuclear part of this charge density propagates 

at one of the bare phonon frequencies w (k) . The electron­
o ­

ic part propagates atd-mon frequencies. As a crude 

approximation, only one of the phonon frequencies, and only 

the lowest d-mon frequency are considered, together with a 

term representing phonon-d-mon coupling: 

CJ.) (k) WO (k) I A (k) •••= 

CµITkp (x)Tklv>x CµITkp (x)Tklv>x _ e _ µv _ e µv 

E -E µ vwhere w = is an atomic transition frequency. The µv n 
eigenfrequencies and eigenvectors of this truncated dynamical 

equation are 

1 w (k) ±= - [Cw (k) +w ) ± /cw (k) -w ) 2 + ·41 A. (_k) 12 
2 o - µv o - µv 

where +
.A(k) w -w­

+ 0 v -= 6.26. 
k ( (w -w±) 2+.A2) 1/2 

0 
McMASTER UNIVERSITY LIBRARY 
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+ 2!>-1 2 
A simple metal has w >>w (k}, w "vW + ~--'-~-'--~ 

µv o - o (w 
0 

-wµv> ' 
u+ "vl -- the +mode is a renormalized phonon in which the 

nuclear motion is appreciable. However, if w "vw (k),
µ\I 0 ­

nuclear and electronic motion is mixed. The mixing of 

these motions can be seen to quench the isotope effect, 

which for a simple BCS model has an exponent 

a ln w 
Ci. = 6.27,a ln M 

where w is an average frequency for the propagation of 

charge density. Only the nuclear coordinates depend on the 

-1/2isotopic mass M, w ~ M • Therefore, in the presence of 
0 

mode mixing 

1 a ln w+ a ln w 1 
Ci. = 2 ( o ln M + a ln M = 2 

l a ln w+w- a ln WO. 1 a ln w+w­
= -2 r! ] 6.2S,= 2 a ln M 2a ln WO a ln WO 

-· where WO, w are averages over k of the bare phonon,w+' -
predominantly phonon, and predominantly d-mon modes, 

[ 1 a - Jrespectively; and ln w+w- is the quenching factor,2 ~ ln ­a W
0 

Q. The expression for Qin the two-frequency·model 6.26 is 

2w w v1 0 11 6.29,Q = 2 

which shows how the isotope effect is influenced by the 

appearance of low frequency electronic transitions: for w
µ\I 

very large (a simple metal) Q"vl,. whereas if w "vW . ' Q is
µ\I 0 

less than one and may even be negative. Certainly quenching 
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is in accord with experiment, but a negative isotope effect 

has not ~een ~eported. Nor is it clear than when. strong 

coupling effects and more than one d-mon frequency are in­

cluded the negative Q survives. 



CHAPTER VII 

PROPAGATORS IN A SUPERCONDUCTOR 

The theory of conserving approximations with 

screening can be developed in terms of the transpose of 

the exact one-particle propagator, 

= -G (1,l') 7.;L.1 

Nambu (N 60) noticed that these two equivalent 

forms could be put together in terms of two-component ... 
field operators: 

'l'(x,t,cr) = '!'(x) 
7.2a; 

7.2b. 

The one particle propagator for this field is the 2x2 
,• 

matrix 

53 
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= [Gl(l,l')crcr' Fl(l,l')cr,-cr l 
F2(1,l') , -Gl(l',l)a,-a -a,-a 

7.3a. 

If the statistical operator commutes with the number 

operator at the thermodynamic limit, the off-diagonal 

elements of 7.3a vanish. However, the equation of motion 

for g in a ~-derivable approximation admits solutions in1 

which the F's are non-zero. Two remarks greatly simplify 

the presentation of conserving approximations for g1 . 

First, the two component field is associated with a 

representation of the electronic charge by the matrix 

3e [l, OJ = e ~ 
0,-1 

Secondly, the F's are related by the synunetry relation 

F1 (1,l') = F 2 (1,l') * a,-a -a,a 

which follows from the relation between the matrix elements 

of the field operator~ and its adjoint~+. Then the 

equation of motion for g1 takes the form 

2 
C~ a! - ~m v12 + uBG<~1> - µJ gl(l,l') = ~ o(l-1') 

~ Je J3 V(l,~)e J3 <T[~+(2)~(2} ~(l)~+(l')]> 
7.3b, 

where the appearance of the electric charge appears expli­

citly in the pair.potential. A solution of 7.3b in the 
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form 

is conserving if the self energy functional ~[~,Vs] is 

~-derivable in the following sense. Given a ~-derivable 

approximation for the one-component case, 

M(n,n') = o~ 1oGl (n,n I) 

the corresponding ~(n,n') is obtained from M by replacing 

each vertex e bye i 3 and each propagator G1 by ~ . The1 
simplest approximation for Mis therefore 

7.4 . 

.·Nambu's equation (S 64) is derived from this apprmdmatio:q. 

The appearance of finite off-diagonal elements F 

can be related to pairing by considering a model Hamiltonian, 

HM, in which pairing terms appear explicitly: 

7.5, 

where n(~1 ,~2 ) is a pairing amplitude, antisymmetric in 

(~1 ,~2 >. The equation of.motion for the field op~rators 

under the action of Hamiltonian HM is 
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= [HM' \!'(y,-r)]_ 

7.6, 

and since HM is not diagonal for the two-component field 

operator \!', its associated Green'~ function is not 

diagonal. 

The tunnelling experiments cited by Schrieffer 

(S 64) which reveal so dramatically the role of phonons 

in establishing the superconducting state of simple metals 

may be used to search for d-mon effects in trarisition 

metals. The interpretation of such experiments depends on 

the fact that the single-particle tunnelling current across 

a metal-insulator-superconductor junction is proportional 

the spec t ra d "t f or a t f requency w eV ,1 ens1 y G = ~ where V
11 

is the potential difference for the junction. The source 

of phonon effects in the G (w) spectrum is the spectral11 

density for Vs in approximation 7.4. Since d-mon effects 

also appear in the spectral density for Vs' their effect 

on tunnelling should be very similar to that of phonons. 

It is by no means clear that approximation 7.4 is 

accurate: higher order approximations for ~may contribute 

additional spectral effects observable in tunnelling. 
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However, the strong correlation between experimental 

tunnelling data and inelastic scattering data for simple 

metals serves to suggest that the additional spectral 

effects are small. Theoretically, the correctioris to 7.4 

involve making a vertex correction 

M(l,l'} = ~ Jv (l,2}G(l,2 1 }A(2,2 1 ; l'}
1 s 

before changing to the two-component field. For a simple 

model of a metal Migdal (M 58} has shown that corrections 

to A are of order electron mass 7 nuclear mass. 

The experimental evidence cited in Chapter III 

for charge density propagation at other than phonon fre­

quencies does not establish unambiguously that d-mon 

effects are present in tantalum and thallium. First, 

impurity effects have not been precluded strictly; secondly, 

vertex corrections for a complicated metal need not 

strictly comply with Migdal's model. More detailed obser­

vations are needed; and those observations which would 

bear most heavily on the question of whether d-mon effects 

are important are outlined in the conclusion. .· 

Nothing has been said about the coupling of charge 

density modes to Bloch electron states. It is difficult 

to make a rigourous analysis of such coupling, but two 

facts suggest that the coupling to mixed phonon-d-mon modes 

is not very different from electron-phonon coupling in 

simple metals. The first is that electron-phonon coupling 

does not vary by more than an order of magnitude in differ­
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ent simple metals with different rigid ion cores: hence, 

a deformable core 'intermediate' between two closed shell 

'rigid' cores is expected to have electron-mixed-mode 

coupling similar to the rigid cores whose electron numbers 

bracket the number of electrons on the deformable core. 

Secondly, the plasma model of a metal described, for 

example, by Pines (P 63) has electron-plasmon coupling 
w 11 2~ g •( __£ ) where g is the average electron-ion 

ep wD ep 

matrix element, w is. the plasmon frequency and wD is a
0 

Debye frequency.for ionic vibrations. If the o-mon fre­

quencies are taken to be 'plasmons with atomic correla­

tions incorporated', and w = w is only a few times o µv 

greater than w0 , then the electron-d-mon coupling does not 

differ by more than an order of magnitude from typical 

·electron-ion coupling terms. 



CHAPTER VIII 


CONCLUSIONS 


In one sense at least, d-mon effects have already 

been observed in the spin-spin correlation function of a 

ferromagnet both above and below the curie temperature by 

inelastic neutron scattering (for example, Lowde et al. 

(Lo67)). The atomic interpretation of this ty~e of data 

is coupling of a spin-carrying ~-independent d-mon to a 

~-dependent phonon. However, the d-mons with which we 

are concerned here do not carry spin. 

The quenching of the isotope effect, and the 

·tunnelling data for tantalum and thallium have natural 

explanations in the theory of plasma-like d-mons in the 

spectral form for Vs, but the following extra experimental 

information would be very helpful. 

First, careful monitoring of impurity content in 

tunnelling experiments on different samples of tantalum 

and thallium. Secondly, corresponding experiments on 

rare earth superconductors: the unfilled £-shell should 

admit d-mon propagation at even lower frequencies than 

transition metals. 

Unfortunately transition metals.are usualiy con­

59 
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taminated with chemically similar metals in the same 

transition group. It is therefore possible that even 

sample-independent tunnelling structure may result from 

localized vibrational modes in the phonon density of 

states for an impure metal with light, chemically similar 

impurities which persist through all stages of purifica­

tion. 

Fortunately transition metals are often type II 

superconductors which admit magnetic fields into the bulk 

of the metal •. Tunnelling into a transition metal in the 

presence of a magnetic field should reveal whether observed 

frequencies come from impurities or from d-mons. The 

nuclear vibrations of impurities change very little in a 

magnetic field. On the other hand, the electronic multip­

lets with electron-number ~A are ·split approximately as an 

atomic multiplet is split in the. Zeeman effect. Because 

the magnetic field in a superconductor is highly inhomogen­

eous, electronic multiplets on different atomic sites are 

split into different Zeeman levels. Therefore, the 

oscillator strength of a d-mon is distributed over one 

range of frequencies around the ionic transition frequency 

of an unmagnetized ion: such a spreading of oscillator 

strengths should be observable at high flux densities if 

the oscillator frequencies for charge density fluctuations 

contain ·an ap~reciable d-mon contribution. The predomin­

antly d-mon frequencies should be smeared by a magnetic 
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field . 

.Besides tunnelling, there may be other experi­

ments which would yield information on the spectral 

density associated with the inverse permittivity. The 

passage of charged particles through metals, and the 

microwave optical properties of transition metals might 

bear examination in the atomic picture. 

.· 




APPENDIX 1 

CONSISTENT APPROXIMATIONS IN THE THEORY OF SCREENING 

The equation of motion 4.6 can be written in the 

form 

1
JG0- c1,2)G(2,1 1 

; u)=o(l-1') - Ju (l,2)G(2,1 1 
) - JE(l,2)G(2,1 1 

) 

G -1(1,2) ::: [ ~ (;) h2 . 2 where o i at - 2m \i'l
1 

and E is a functional of G and V •••• Al .1. 

By defining the inverse of the generating functional as 

1JG- (1,2)G(°2,l'):: o(l-1'), 

the following expression for the self-energy functional is 

obtained: 

G-l(l,2) = G -l(l,2) + E(l,2) + u(l,2) ••.•Al. 2 • 
0 

Following Kadanoff and Baym (KB 61) '·the linear response 

function L is defined by .· 

1 , Z') · ___ lim oG(l,l'; u)
L (1 , 2 ; , u+o ou(2,2') 

and by using the generating property of the functional G, 

62 
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lim 	 I 

G (1, 1 ; u)I I 	 Iu+o ou (2,2 ·) ou (3,3 ) ... ou (n,n ) 

I I I I 

= Gn(2,3, ... n,l; 2 ,3 , ... n ,1 ), 

I I 	 I I 

L can be written L(l,2; 1 ,2 ) = G (1,2; 1 ,2 )2 

I I 

- G1 (1 1 1 )G1 (2,2) • . . . Al. 3. 

Kadanoff and Baym showed that an approximation G	 =G 2 [G1 J2
\ ' ' 	 ' ' is conserving if! G2 (1,2; 1 ,2 ) = G2 (2,l; 2 ,1 ) . By 

virtue of Al.3, this condition may be taken as a symmetry 

requirement on L, 

L(l,2; 1 ' ,2 ' ) = L(2,l; 2 ' ,1 ' ) . . . . Al. 4. 

The equation of motion for L follows from 

- _,
orc1,1 ' > or c:,:_: >· oG(3,3 )· 

. . . . Al. 5.I = 	 I 

oU ( 2, 2 ) oG(3,3 ) OU ( 2, 2 )J 
Substituting Al.2 on the left-hand side of Al.5, and the 

definition of L on the right-hand side, 

_1 I 

L(3,2; 3 ,2 ) . 

1 J 1 	 1I 	 I I INow using oG- (1,1 )= - G- (l,2)oG(2,2 )G- (2 	,1 ) 

. . . . Al. 6, 

I I 1 	 I I -1 I If
-o(l-2)o(l -2_)+ G- (l,~)L(3,2; 3 ,2 )G (3 ,1) 

L(J,2; 3 
I 

,2 
I 

), 
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or more compactly 


f L - l ( 1 , ~ ; 1 ' ,"3 '> L (3, 2 ; 3 ' , 2 ' ) " J { G- l ( 1 , 3) G- l (3 ' , 1 ' ) 


I 


OL(l,l ) } - _1 I I I 

__, L(3,2; 3 ,2) = 0(1-2)0(1 -2 > • . • • Al. 7. 

oG(3,3 ) 

-1Clearly L satisfies the symmetry requirement Al.4 if L 

does, which allows Al.4 to be expressed in the form 

I I 

arc1,1 > oE(3,3 > 
I = I 

oG(3,3 ) oG(l;l ) 

anirrotationality condition which implies the existence of 

a closed functional ~[G] such that 

. ' o~ [G]l:(l,l ) = I .- • • . Al. 8. · · 
oG(l,l ) 

As a check on the method, we note that Abrikosov, Gor'kov 

and Dzyaloshinski (AGD 63) have been able to prove the Ward-

Pitaevski identities starting from a constraint of the form 

Al.8. 

For a theory with screening, we consider the case 
I I 

u (1,1 ) = u (l)o(l-1 ) and define 

w (1) - u (1) + l:H(l,l; u ) - l:H(l,l; O) 

I 

I ow(l )
K(l,l ) ..•• Al. 9- OU (1) 

I 

I ow(l )
v (1,1 >= I v (1, 2)s ou (2) 
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Under this change of variable, the equation of motion for 

G becomes 

I I 

= 8(1-1) - w(l)G(l,l) 

v ( 1 I 2) 8W (3) 8 G(l,l 
I 

) •..•Al .10. 
8u (2) 8w (3) 

By defining 

1 1 1

G~l(l,1 ; w) - G~1 (1,1 ) - w(l)8(l,l ) 

•.•.Al .11, 
1 8M(l,2; w) _ Jv c1, 3) 8 c1, 2 >
I s 8w (3) 

Al.10 can be written in the form 

.. 
-J M(l,~; w)G(~,1' . • ...Al .12. 

Comparing with the definition of G-1 , 

-1
G

0 
( 1,2; w) + ~H(l,2; O) + M(l,2; w) = 

-1
G (1,2; w) ...•Al.13; 

and because limu w = 0, the limits of Al.13 and Al.2 are-+o 

equal, 
I I I 

L(l,l ; O) = LH(l,l ; 0) + M(l,l ; 0) •...Al.14. 

The introduction of quantities A and Q allows Al.10 to be 

written as a system of equations: 
I 

I 8G-l(l,l i w)A(l,l; 2) = ­
8w (2) 

....Al.15. 
I oG(l,l+)

Q(l,l ) = i I 

8w(l ) 
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First, M defined in Al.11 is written 

M(l,2) 

= Jv (1,3)A(l,4; 3)G(4,2) • • . . Al. l 6a. 
5 

Secondly, Al.6 gives the relation between Q and A from Al.15, 

I 

Q{l,l ) 

I I _ 1 

= · G(l,2)A(2,2 ; 1 )G(2. ,l) • . . • Al .16b.
f 

Finally, Vs can be written, using Al.9, as 

•.•. Al.16c. 

The system Al.16 contains three equations and four unkown. · 

functionals of G, clearly a situation calling for a further 

constraint. The method of approximation which we use begins 

by regarding Vs as a fixed function. 

we then ask what constraints on M[G]V fixed give 
s 

a ~-derivable approximation to r via Al.14. 

The question can be answered quite simply through the inter­

mediary of a quasi-linear response function i, 

I 
I I oG(l,l ; w)L (1, 2; 1 2 >::: • . . . Al .17 I 

OW ( 2 I 2 ) 

related to L by the equation 

I I f I - I - I OW (JI J I )
J:.(1,2; 1. ,2 ) = o...,(1,3; 1 ,3 ) I , or using Al.9, 

OU ( 2 I 2 ) 
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, , J · , _, orHc~,3'>I 

L(l,2; 1 ,2 = J'..(1,2; 1 ,2 ) + J-.(1,3; 1 ,3 ) - _, 
&G c4, 4 > 

- _ 1 I 

L(4,2; 4 ,2 ) • 

By introducing the inverse J,-1 , the relation between J.., 

and L becomes 

orHc1,1 
I 

> _, , 
__ , } L(3,2; 3 ,2 ) 

oG(3,3 ) 

I 

= 0(1-2)0(1 -2 Al .18. 

Recalling thct an approximation is conserving if L obeys the 

symmetry constraint Al.4, a sufficient condition for a con­

serving approximation is clearly 

t -l I I f -1 I I 
~ (1,3; 1 ,3 ) = ~ (3,1; 3 ,1 ) • • . • Al .19. 

To establish an equation of motion fort._, definition Al.17 

is written 

- I I 

G(3 ,1 ); 

and with the aid of Al.11 and Al.13, 

J:.(1,2; 1 
I I 

,2 ) 
I 

= G(l,2)G(l 

I 

-­ G(l,2)G(l 

I 

,2 

I 

,2 

) 

) 

+ 

+ 

JG(l,3) 

JG(l,3) 

- _,
oM(3,3 ) 

I 

ow(2,2 ) 

- _,
oM(3,3 ) 

oG(4,4') 

-' G(3 

_, 
G(3 

I 

,1 

I 

,1 

) 

) 

J, (4,2; 
I I 

4 ,2 ) . 
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1By performing convolutions with G- , the equation of motion 

for ~ becomes 

where 

I I 

0(1-2)0(1 -2 > 

I 
1 1 1L-1 c1,3; 1 ,3 ) _ G-1 c1,3)G-1 c1' ,3 )- oMCl,l,> 

oG (3, 3 ) 
V const 

8 

Al. 20. 

The symmetry requirement Al.19 is satisfied if 

I I 

oM-(1, i > = oM(3,3 ) , an irrotationality conditionI I 

oG(3,3 ) oG(l,l )vs vs 

implying the existence of a closed functional ~[G,V ] such s 

that 
I . o~

M(l,l ) = I Al.21. 
oG(l,l ) 

Because the variational derivative above is linear, the 

asymptotic relation Al.14 can be written formally as 

lim o 
Al. 22 ~· 

uf,w+o oG(l,l 

The relation between Al.22 and the expansion of 

free energy in perturbation theory can be understood in the 

language of skeleton diagrams (No 62). The rules must take 

account of th~ possibility of double counting the Hartree 

contribution ~H to the total. We therefore remove the Hartree 

term from an expansion of the free energy before skeletizing: 
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(i) shrink the subdiagrams, which can be disconnected 

from a given.diagram by cutting a fermion line in two 

places, to a.point; 

(ii) shrink the subdiagrams, which can be disconnected 

from a given diagram by cutting an interactiori line in two 

places, to a point; 

(iii) remove the Hartree term from F-F = Ldiag[G (o), V];
0 1 

(iv) sum over the contracted (skeleton) diagrams, 

replacing each G (o) by a G, and each V by a Vs.1 

A more complete description of the effect of this prescrip­

tion on the Hartree term is given in Chapter IV. 



APPENDIX 2 


SECOND QUANTIZED O~ERATORS 


Second quantization of the Schrodinger field was 

first described by Fock (F32 ); modern accounts are given 

by Berezin (Be 66), Schweber (Sc 61) and Kastler (Ka 61, 

Chapter 3). Following the treatment of the latter author, 

we devote this appendix to a desc~iption of configuration 

space H and the field operators ~+, ~ whic~ act upon it. 

The purpose is twofold: (i) to introduce notation and 

terminology free from ambiguity; (ii) to distinguish 

between kinematical and dynamical aspects of second-

quantized fields. 

Symbols n and a denote respectively the three-

dimensional Euclidean space associated with the volume of 

the crystal and the two dimensional Hilbert space spanned 

by s = ± 1/2 spin wavefunctions of an electron. The z 

n-tuples of (x,s)E(nxa) are denoted C~1 s 1 ,~2 s 2 , .... ,~nsn)£ 

(nxa)xn and by assumption the 0-tuple is the field K of 

complex numbers. The infinitely differentiable functions 

fn: (nxa) 
xn 

+ K for any fixed n form a vector space, Hn' 

with the following definitions: 

.(i) addition of elements, (f +g ) (x s
1 

,.... ,x s ) _ 
n n - 1 -n n 

f (x1s 1 , ... ,x s ) + g (x1 s 1 , ... ,x s ) ; n - -n n . n - -n n 
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(ii) scalar multiplication by AEK, (Af) (x
1

s
1

, ... ,x s ):: 
n - -n n 

Afn(x1 s 1 , ... ,xnsn); 

(iii) the zero function On has value 0£K for all values 

of its arguments; 

(iv) the inner product (f ,g) =rs s s Jd
3

x 1d
3

x 2 ••• 
3 n n 1 2· .. n 

d x f (x1 s 1 , ... ,x s )g(x1 s
1

, ... ,x s ). n n - -n n - -n n 

• • • • A2 .1. 

The space Hn carries a representation of the permu­

tation group of n objects, S , representing TIES according to . n .n 
" 
7r · fn (xl sl '~2s2' • • • '~nsn) ::fn (xrr (1) srr (1) '~rr (2) sTI (2), •.• , 

x ( ) s ( ) ) . . . . A2 • 2. -TI n 7r n 

Denoting the sig~ature of TI by x(rr), the idempotent An' 

- 4 L7r£S x(rr)TI n. n . A2 •. 3, 

can be represented on Hn' and has eigenvalue +l or o. (The 

former only when fn is antisymmetric in all pairs of its n 

arguments.) 

The configuration space H of Pock is the direct 

00 

sum of all Hn's, H = ©n=o Hn' defined as follows: elements 

of H are sequences whose members are non-zero at only a 

finite number of places, f = (f , fl, •.. , f , .•• ) , f €. H o n n n 

• . . • A2. 4a 

addition and scalar multiplication are defined as in Hn' 

component by component; the zero sequence is the sequence 

of zero functions (o,o1 ,o2 .•. ); and the inner product is 

00 

(f ,g) :: f
0
* g

0 
+ rn=l (fn,gn} A2.4b. 
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Space Hn can be embedded in H by the mapping jn' 

jn: Hn+H, jn (fn) = (o,o1 ,o2 , •.• ,On-l'f.n,On+l' ..• ) •••• A2.5 

and we can define an antisymmetrizer A such that 

A2.6. 

Anticipating that n-particle wavefunctions should belong to 

Rn' we introduce a number operator N by 

Nf = (O,f1 ,2f2 ,3f3 , ... ,nfn' ... ) 
•••. A2. 7 

where ~ is a function expressible as a power series. 

Using the distribution o(~-~ 
I ), the operator-valued 

distributions P and C are defined on H by 

A2. Sa 

A2 .Sb 

where the product distribution P and the contraction distri­

bution C are defined to be 

_ o o(x-x1 ) f (x 2s 2 , ••• ,x +ls +l) A2. 9a 
ss - - n - -n nl .. 

C:H +H 1 , C(xs)f (x1 s 1 , ... ,x s)n n- - n - -n n 

• . • . A2. 9b · 

The product and contraction are.bona fide operators on H 

only after 'smoothing' with a test function g(~s)e:H1 : 
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A2.10a 

- J 3 .C(g)=i:: d x g(xs)C(xs), C(g)f Cx1 s 1 , •.. ,x s)s - - n- -nn 

.... A2.10b 

The following commutation relations between 
,.. 
A, P, C, and ~(N) can easily be verified: 

,.. "' 
~(N)A - A ~(N) = 0 A2.lla 

~(N)P(~s)- P(xs)~(N+l) = 0 A2.llb 

~(N+l)C(xs) - C(~s)~(N) = 0 A2.llc 

From definitions A2.7 and A2.9, for fs j (H )
n n 

A ,.·,,.. I I ,_ A I I ,. -t t\ 

(n+l)A C(xs)AA P(~ s )Af + n AP(~ s )AA C(xs)Af. 

I I\ 

= ·o , o (x-x ) A 
SS - ­

which can readily be extended to the whole of H, 
A "'2 I I "" -\ I I 11.2 t.. 
A C(~s)A P(~ s )A(N+l) +AP(~ s )A C{~s)A (N) 

I I I\, 

= o , o {x -x ) A. 
SS - ­

This last operator equality on H takes the form of the 

canonical anticommutation relations 

I I I r·
[ljJ{x,s), ij/(x s ) ] + = o , o (x-x )A A2.12a

SS - ­

I I I I 

[ljJ+ {xs) , ij/(x s ) ] + = [1/J(~s),ijJ{x s ) ] + = 0 

..... A2.12b 

on H if the field operators 1/J , 1jJ 
+ are defined by 
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112~(xs) - A C(xs)~ N = (N+l) 112~ C(xs)~ ·A2.13a 

A2.13b 

The definition A2.13 is not the only way of obtaining 

relations A2.12 on a vector space. Indeed, A2.12 may be 

represented on spaces not isomorphic to H. The relevance 

of these representations inequivalent to A2.13 on H is 

debatable, and we explicitly avoid saying more than that H 

and A2.13 define a particular representation of A2.12. 

The construction of Fock space was contrived with 

the aim of describing systems containing an indefinite 

number of particles. A correspondence principle relating 

quantum-mechanical operators to second-quantized ·operators 

on H was devised in such a way that the second-quantized 

hamiltonian H acting on jn(Hn)C H coincides with the quantum­

mechanical hamiltonian operator Hq.m for a definite number of 

particles n. The correspondence principle for the limit 

n+oo H is summarized by:q.m .· 
.) f h . 1 N+oo ( )(l or eac one-partic e operator Li=l F1 ~isi 

3
in Hq.m' put a term Lsfd x ~+(~s)F1 (~s)~(xs) in H; 

N+oo N+oo 
(ii) for any n-particle operators Lil=lLi 2~i1 ··· 

N+oo 
L. -1.· -1.· F (x. s. , ... ,x. s.) of H put

i rl _ 1 ...ri n -1 1 -1 i q.mn n ••• 1 1 1 n n 

F Cx1 s 1 , ... ,x .s ) ~ (x s ) ... ~ (x1 s ) in H. n - -n n -n n - 1 
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It is usually supposed that practically all the 

dynamical features of a system may be obtained from a 

truncated H~miltonian with no operators for n~3. For 

example, the truncated Hamiltonian for a system of electrons 

neutralized by a background potential UBG is 

11 

l· J3J3'+ + '' '' + 2 rss' d x d x 1jJ (~s)l/J {~ s )V(~s,~ s ).1ji(~ s )l/J(~s) 

A2.14 ., 

The use of a truncated Hamiltonian, whether classical, 

quantum-mechanical or second-quantized, to estimate the time 

evolution of states is a dynamical postulate. In solid 

state physics, the usual way of handling a Hamiltonian such 

as A2.14 is through the single~particle picture: the ele­

ments f 1 sH1 , over which ~+;l/J are tested, are solutions of 

the Schrodinger equation for a single particle moving in the 

Potential UBG" Single-particle dynamics can be described 

on any Fock space H, and does not depend on the choice of 

basis for H , n>l. 
n . 

Kinematical postulates refer to the limiting behav­

iour of bases {f(p)} 
00 

for spaces H. An example of such 
n p=l n 

a postulate is the asymptotic condition of Lehmann Symanzik 

and Zimmermann (LSZ 55) used in relativistic quantum field 

theory and described, for example, in a simple-minded way 

by Bjorken and Drell (BD 65). In Chapter V we introduce 
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an asymptotic condition: that in the finite of large 

atomic separation f (p) are linear combinations of n-particle
n 

states of ions in a vanishingly small crystal field. 

The introduction of bases {f(p)}CH allows any
n n 

operator defined on H to be expanded in terms of a set {X} 

of basic operators defined by 

xnp,nq = lm,p) (n,ql • • . • A2 .15 

which act on elements of H according to 

x_.mp,nq t' = ,-m,q·>"'t.. Jd3x1 ..
d3x f (p) * ( x 1 .. x s )

1 s
sls2 •. sn . n n - -n ·n 

I 

f (x1 s 1 , .. ,x s) • • . • A2 .16 n - -n n 

The expansion of an operator 0" defined on H takes the form 

o= l: l: Imp) (mpjojnq) (nql=r (mplolnq)XUP,nq •••• A2.17 mp nq mp,nq 

The expansion can also be performed for an operator-valued 

+distribution such as ~ : 

•••• A2.18 

r r (n+l) 1/ 2 o +l(mplA o ,o(x-x 
1

) lnq)XUp,nq
mp nq m,n ss - ­

Whenever the number operator N commutes with the Hamiltonian, 

any vector of j (H )C: H, an eigenfunction of N, is a linear n n 

combination of eigenfunctions of H also in N. Thus the 

operator expansion A2.18 has the simplified form 

A2.19. 
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A common way to obtain bases for H n~2, when a basisn' 
[f (p)] for Hl is known is to use tensor products:1 

f (pl x P2) f (pl x P2) (x s 
I l' ~2s2)2 E H2' 2 -1 

( ) ( ) .
fnpl x •.• x Pn E Hn' f P1 x ... x Pn (xlsl, ... ,x s)

n - -n n 

A2. 20. 

The action of An on tensors in Hn is 

• • • • A2. 21 


(l/J+ (f (p)) f (pl x •.. x pn)) (xs, x s x s )
1 1 • • • I1 n - 1 -n n 

1= /n+l n{n-l) ! det[f{p) {xs)f{pl) {x s ) .. f<pn) (x s )
{n+l) ! n! 1 - 1 -1 1 1 -n n 

= /n+l A f(p x P1 x ... x Pn)(~s, 5 )
n+l ~1 81 1 ••• 1 ~n n 

• • • • A2. 22 • 
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The kinematical postulate leading to a self-consistent field 

theory of the Hartree-Fock type involves choosing a one-

particle ba_sis parametrized by an additional 'potential' 

added to the one-particle potential of the Hamiltonian. 

Then, for n~2, variation principles in space of tensor 

products, for example o(p1 x x .• x Pn!H!q1 x .• x qn)p 2 

= o o ... o where o denotes variation of the 
plql p2q2 pnqn 

additional 'potential', give tensor product bases for Hn 

whose elements are approximate eigenstates of H. There are 

many different approximation schemes of this type, variously 

emphasizing symmetry principles in the choice of linear 

combinations of tensors (Slater determinants) or machine 

facilities. In Chapter V, the general theory of the atomic 

picture common. to all approximation schemes is. ::;tudied; ai:id 

for such a purpose exact n-particle eigenstates of H are 

postulated. Exact eigenstates lead to an even simpler form 

of A2.19, 

g = tn(IQ(n,Q!~jn,Q)XnQ,nQ) •••• A2.23 

where the capital Q labelling the state is a reminder that 

f~ contains the exact n-body correlation effects. 



APPENDIX 3 


REPRESENTATIONS OF CRYSTALLOGRAPHIC SPACE GROUPS 


Crystallographic space groups are of infinite 

order but because they possess finitely generated invar­

iant abelian subgroups, their representation theory is 

straightforward. 

The method of construction of represen~ations 

relies on Frobenius' induction (Lo 59) from a one-dimen­

sional representation of J, invariant abelian subgroup of 

lattice translations. These one-dimensional representa­

tions take the form 

ik•R • ·•• A3 .1,~ e n 

where k is ~ three vector defined modul a reciprocal 

lattice vector. 

The process of induction is described by Lomont 

(Lo 59) and in two collections of lecture notes: 

G. 	 W. Mackey, The Theory of Group Representations, Univ. 

of Chicago, 1955; 

A. 	 J. Coleman, Induced Representations with Applications 

to the Symmetric and Full Linear Groups, Uppsala 

Univ., 1963. 

The 	process provides a route to the collection of all 
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irreducible representations of a crystallographic space 

group; and what follows is a sketch of the main features 

of the route. 

Given a representation of j, bk' the representa­

tion defined by 

•••A3. 2 

for some Calt> £ G, the space group, is said to be 


G-conjugate to bk. The collection of unitarily inequiva­


lent representations in a G-conjugacy class is called the 


star of bk' a typical member of the class. 


The subgroup GkcG for which ~a-lk ~ ~k is called 

-the group of the wave-vector k, where "''=' denotes unitary 

equivalence. From A3.2, Gk::)J for all k; and therefore 

any irreducible representation o~ Gk' when restricted to], 

is a representation of J. An irreducible representation 

of Gk with dimension rn which under restriction gives the 

m-fold direct sum of ~k is called allowable. The process 

of induction onto G from each irreducible allowable 

representation of Gk yields an irreducible representation 

of G; and, moreover, inducing from only one Gk in every 

star yields every irreducible representation of G only 

-once. --Therefore, to display all irreducible .representations 

of G, it is sufficient to construct irreducible allowable 

representations of Gk. 

The point group of the wave-vector ~, Pk' is the 


collection of rotations (proper or improper) a for which 
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~k and ~a-lk are inequivalent. Its order is the order of 

the ~ta~ of ~· The irreducible allowable repres~ntations, 

ri, of Gk correspond one-to-one to irreducible representa­

tions, rD , -of Pk. The correspondence is given by 

ri[(ajv(a)+R )]
- n 

= ik·Re n 
-1i (k-a k) •V.(a)

e - - - ••• A3. 3 I 

where (ajv(a) + Rn) e: Gk and v(a) is a fraction of a 

primitive translation. 



APPENDIX 4 

REDUC~ION OF SOME REDUCIBLE REPRESENTATIONS 

In the theory of the atomic picture, it is 

necessary to reduce the irreducible represent~tion r of 

the crystallographic point group, P , to a form which,
0 

when restricted to Pk. (see Appendix 3) for some k, is a 

block diagonal sum of irreducible representations of Pk. 

Using the characters of r and the irreducible 

characters of Pk' it is easy 'to see what irreducible 

representations of Pk appear in the direct sum, and how 

many times each appears (Lo 59) . The projection .operator 

·method described by Lemont tells how· to perform the 

decomposition by choosing suitable linear combinations 

of states in the r multiplet. What follows is a descrip­

tion of how to make this choice. 

Given that irreducible representation Di of Pk 

appears m. times in r, the matrices D = r. m. D., a block 
1 1 1 1 

diagonal sum form a reducible representation of Pk 

unitarily equivalent to the restriction of r to Pk. The 

following operator 

1x = r f (a) D*(a) ••••A4 .1 
ae:Pk 

82 
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1where D*(a) = D(a- ) and gk is the order of Pk takes a 
--' 

state in the r multiplet to a linear combination of 

states in the multiplet, is unitary, and performs the 

required reduction. To verify this assertion, 'the 

identity 

f(f3) X = X D(f3) ••••A4. 2 

1is used to show that x- f (f3) x = x-1x D(S) = D (S). 

The proof of identity A4.2 is 

= X D(f3). 



An 62. 

AGD 63. 

A 67. 


BM 61. 


BK 62. 

··B 63. 

BD 65. 

B 66. 

Be 66. 

cs 35. 

c 64. 

Cl 67. 

REFERENCES 

P. 	W. Anderson, Concepts in Solids, Benjamin, 

N.Y., 1962. 

Abrikosov, 	Gor'kov and Dzyaloshinsky, Methods 

of Quantum Field Theory in Statistical 

Physics, Prentice Hall, N.Y.; 1963. 

J. Appel,_P.. R. 156, 421, 1967. 

G. 	 Baym and N. D. Mermin, J. Math. Phys. ~' 232, 

1961. 

G. 	 Baym and L. P. Kadanoff, Quantum Statistical 

Mechanics, Benjamin, N.Y., 1962 .. 

G. Baym, P. R. 127, 1391, "1962. 

J. 	D. Bjerken and S. D. Drell, Relativistic 

Quantum Fields, McGraw-Hill, N.Y., 1965. 

C. 	 Blomberg, Thesis, Royal Institute of 

Technology, Stockholm, 1966. 

F. 	A. Berezin, The Method of Second Quantization, 

Academic, N.Y., 1966. 

E. 	u. Condon and G. H. Shortley, The Theory of 

Atomic SEectra, Cambridge, 1935, (p. 18 2) • 

B. R. 	 Coles, Rev. Mod. Phys., ~' 139, 1964. 

T. D. 	 Clark, Phys. Letters 24A, 459, 1967. 

84 




85 

D 62. 

D 66. 

F 32. 

F 50. 

F 66. 

Ga 63. 

G 65. 

G 66. 

Hu 63. 

Hu 67. 

Ka 61. 

KB 61. 

KKN 61. 

K 63. 

KL 65 .. 

A. 	 S. Davydov, Theory of Molecular Excitons, 

McGraw-Hill, N.Y., 1962. 

R. 	A. Deegan, Thesis, McMaster University, 

Hamilton, Ontario, 1966. 

V. A. 	 Fock, Zeits. fur Phys. 75, 662, 1932. 


H. Frohlich, P. R. 	 ?_J_, 845, 1950. 


H. 	 Frohlich, Perspectives in Modern Physics, 

editor R. Marshak, Interscience, N.Y., 1966. 

J. Garland, P. R. Letters 11, 111, 1963. 


B. 	T. Geleikman, Soviet.Physics JETP 21, 796, 


1965. 


B. 	 T. Geleikman, Soviet Physics Us_pekhi ~' 142, 


1966. 


J. 	Hubbard, Proc. Roy. Soc. (London) A276, 238, 


1963; A277, 237, 1964; .A281, 401, 1964; 


A283, 542, 1965. 


J. Hubbard, Internal report at UKAE, Harwell, 

1967; 	 to appear in Proc. Roy. Soc. (London). 
... ... 

D. 	 Kastler, Introduction a l'Electrodynamique 

Quantique, Dunod, Paris, 1961. .· 

L. P. 	Kadanoff and G. Baym, P. R. 124, 287, 1961. 


Kato, 	Kaboyashi and Namiki, Pro.g. Theor. Phys. 

Supplement, Kyoto, 1961. 

J. Kondo~ Prog. Theor. Phys., Kyoto, 29, 1, 1963. 

w. 	 Kohn and J. M. Luttinger, P. R. ·Letters, 15, 


5~4, 1965. 




86 

LSZ SS. H. Lehmann, K. Symanzik and W. Zimmermann, 

Nuovo Cim. 1, 1425, 1955. 

Lo S8. P. o. Lowdin, Adv. in Phys. ~' 1, 1956. 

Lo 59. J. S. Lomont, Applications of Finite Grou2s 1 

Academic, N.Y., 1959. 

LV S9. J. S. Langer and S. H. Vosko, J. Phys. Chem. 

Sol. 12, 196, 1959. 

L 64. W. Ludwig, Ergeb. d. Exakt. Naturwissen., 35, 

1, 1964. 

Lu 66. J.M. Luttinger, P. R., 150, 202, 1966. 

L 67. D. N. Langenberg et al., P. R., 150, 186, 1966. 

M S8. A. B. Migdal, Soviet Physics JETP, 2, 996, 

1958. 

MS S9. P. Martin and J. Schwinger, P. R., 115, 1342, 

19S9. 

M 65. B. T. Matthias et al., Physics, ~' 293, 1966. 

N 60. Y. Nambu, P. R., 117, 648, 1960. 

No 62. P. Nozieres, Interacting Fermi Systems, 

Benjamin, N.Y., 1962. 

p 63. D. Pines, Elementary Excitations in Solids, 

·Benjamin, N.Y., 1963. 

R 65. G. Rickayzen, Theory of Superconductivity, 

Interscience, N.Y., 196S. 

Sch 51. J. Schwinger, P. R. ~' 914, 1951; P. R. 91, 

713, 1953. 

Sc 61. s. S. Schweber, Relativistic Quantum Field 

Theory, Harper, N.Y.~ 1961. 



87 

SSW 63. J. R. Schrieffer, D. J. Scalapino, J. w. 

Wilkins, P. R. Letters, 10, 336, 1963. 

s 64. J. R. Schrieffer, SuEerconductivity, Benjamin, 

J'LY., 1964. 

vs 65. S. Vonsovskii and S. Svirskii, Soviet Physics 

JETP, 20, 914, 1965. 

WK 62. E. J. Woll, Jr., and W. Kohn, P.R., 126, 1693, 

1962. 

Wy 65. A. F. G. Wyatt, P. R. Letters, 13, 1960, 1965. 

z 60. D. N. Zubarev, Soviet Physics Uspekhi, ~' 320, 

1960. 

Lo 67 R. D. Lowde and c. G. Windsor, to appear in 

Phys. Letters,1968. 


	Structure Bookmarks



