ON CYCLIC STEINER QUADRUPLE SYSTEMS



ON CYCLIC STEINER QUADRUPLE SYSTEMS

By
R, K, Jain, M,Sc, (Agra)

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Science

McMaster University

(August 1971)



MASTER OF SCIENCE (1971) McMASTER UNIVERSITY

(Mathematics) 3 Hamilton, Ontario,
TITLE: On cyclic Steiner guadruple systems

AUTHOR: . R, K. Jain, M,Sc, (Agra)

SUPERVISOR: Dr., A, Rosa

NUMBER OF PAGES: iii, 32
SCOPE AND CONTENTS:

This thesis is a qontribution to the theory of Steiner
quadruple systems, S~cyclic Sfeiner quadruple systems are defined
and then as a main result it is shown that there exists exactly one

S-cyclic Steiner quadruple system of order 20,

(i)



ACKNOWLEDGEMENTS

The author wishes to express his deep gratitude to Dr, A, Rosa
for his valuable advice and guidance in the preparation of this
thesis,

' The author is also grateful to the McMaster University for

providing financial assistance,

(ii)

et ey
SIS



CHAPTER I

CHAPTER II
CHAPTER III
APPENDIX I

REFERENCES

TABLE -OF CONTENTS

Introduction
Steiner quadruple systems
Cyclic Steiner quadruple systems

Computer Program

(iidi)

Page

12
30
32



Chapter I

Introduction

In this th;sis we are concerned with the existence of a
particular kind of Steiner quadruple systems, The origins of the
problem go back as far as 1852 when J, Steiner [12] posed a problem
equivalent to the construction of systems S(k, k+1, v); on the
other hand, E, H, Moore [7] scems to be the first to define in 1896
the systems S(t, k, v) (see bef. 3 below) although the notion of
a Steiner system can be traced back to be found stated implicitly by
Kirkman in 1847 [6],

Let us start with necessary definitions:

Definition 1: A tactical configuration C[k, £, A, v] is

a collection of k-sﬁbsets of a v-set such that each £-subset of the
v-set is contained in exactly A sets of the tactical configuration,
| Here v, k, é, A are positive integers, and ZS k __<: V.

A necessary condition for the existence of a tactical

configuration Clk, £, A, vl is known to be

( v-h
- (1) A )
vay,

(see¢, e,g. [5]). The problem of determining the values of k,;{

k-h
= integer, h =0, 1, ..., ,e—l
£-n :

and A for which this condition is also sufficient, is not yet

solved completely,



Another combinatorial configurations, balanced incomplete
block designs (briefly BIBD's) became widely known primarily because
of their use in statistics,

Definition 2: A BIBD is an arrangement of v distinct

objects into b blocks such that each block contains exactly k
distinct objects, each object occurs in exactly r different blocks,:
and every pair of distinct objects occurs together in exactly A
blocks,

Here it is required 3 é k g v in order to eliminate some
trivial designs, Counting in two different ways the total number of
" occurences of elements, and the number of occurences of all pairs
containing a fixed element, respectively, we get fhe well-known

necessary conditions for the existence of a BIBD (see, e.g., [3])
(2) v.r = bk
(3) Alv-1) = r(k-1)

Comparing definitions 1 and 2, we see that BIBD's are tactical
configurations with /Ez 2, On the other hand, if we take tactical
configﬁrations with A =1 we get the kind of configurations we are
going to be primarily interested in:

Definition 3: A Steiner system S(t, k, v) is a collection

of k-subsets of a v-set such that each t-subset of the v-set is a
subset of exactly one k-subset of the system.
A Steiner system on a v-set is said to be of order v, Here,

of course, 2 £t <k v, Steiner systems S5(2, 3, v) are called
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Steiner triple systems, Steiner systems S(3, 4, v) are calied Steiner
quadruple systems, generally Steiner systems S(k-1, k, v) are called
Steiner k-tuple systems, Obviously, every Steiner system with t =2
is a BIBD with A = 1, and conversely; moreover, every Steiner system
with t > 2 4is a BIBD with A > 1 (since every tactical configuration
Clk, Z, A, vl is also a tactical configuration C[k, s, A, v] for “
every 2:§ s < A ) but the converse is not true in general (e.g.,
from the 4 non-isomorphic BIBD (8,714, 7, 4, 3), only one is a Steiner
quadruple system of order 8; see [8]),

Steiner triple systems are the "smallest' non-trivial Steiner
systems (and, of course, smallest non~trivial BIBD's, too). It was
proved by Kirkman [6] in 1847, and‘subsequentlyrby many other authors,

that the conditions (1) which in this case read
(4) vE1or 3 (mod 6)

are not only necessary but also sufficient for the existence of Steiner
triple systems,

Similarly, it was proved by Hanani [4], although more than a
century later, that the necessary conditions for the existence of

Steiner quadruple systems
(5) v =2or 4 (mod 6)

are also sufficient; the proof by recursive method is rather involved
(see our remarks in Chapter 2), Hanani in one of his more recent
papers [5] proved that condition (1) is sufficient also for k=4, £ =3

and every A, Actually, he proved the following theorem:



The necessary and sufficient condition for the existence of

a tactical configuration C[4, 3, A, v] is

Av = 0 (mod 2)
(6) Alv-1)(v-2) = 0 (mod 3)

Av(v=1)(v-2) £ 0 (mod 8)

In the next we shall be interested mostly in cyclic systems,

Definition 4: A Steiner system S(t, k, v) is said to be

cyclic if its automorphism group contains the cyclic group of order v,
Here by an automorphism group we understand the permutation
group acting on elements of the Steiner system as letters; therefore,
if S is cyclic there exists an automorphism (permutation) consisting
of a single cycle of length v,
The necessary and sufficient condition for the existence of

cyclic Steiner triple systems is known to be
(?7) vEZ2lor 3 (mod6), v£9

(the proof was given by Peltesohn [9]; see also Rosa [11]), However,

the question about necessary and sufficient conditions for the |
existence of cyclic Steiner quadruple systems appears far from

being settléd; only few results about the existence or non-existence

of c¢yclic Steiner quadruple systems are available (see Guregovié~Rosa [2];
Fitting [1]). éur thesis is intended to be a contribution in this
direction,

In Chapter 1I, some general, mostly known results about



Steiner quadruple systems are discussed, For instance, the construction
is shown how to obtain a Steiner quadruple system of order 2n from a
one of order n, Qith an illustrating example.

Chapter III is devoted solely to cyclic Steiner quadruple
systems and contains the main result we have obtained, So called
S-cyclic Steiner quadruple systems are defined there, and with the
aid of a CDC 6400 computer it is shbwn that there is exactly one
S-cyclic Steiner quadruple system of order 20, It is perhaps worth
remarking even at this stage that the only known cyclic Steiner
quadruple systems (i.e. the ones of orders 10, 20, 26, 34, 50) are

all S-cyclic,



Chapter II

Steiner gquadruple systems

According to Definition 3, a Steiner quadruple system of
order v is a collection of h-subsets (called quadruples) of a
v-set such that each 3-subset (or triple) of the v-set is a subset
of exactly one quadruple, Hanani [4] proved the following fundamental
theorem concerning the existence of Steiner quadruple systems:
Theorem: The necessafy and suificient condition for the

existence of a Steiner quadruple system of order v is
(00) vE2or 4 (mod 6),

The proof of necessity is quite easy: The number of quadruples

in a S(3, 4, v) equals (;)/(;) = Xﬁ!:l%éﬁ:él which must obviously

be an integer. On the other hand, the number of quadruples containing

a fixed element and containing a fixed pair of elements, respectively,

equals (vél)/(g) = S!:l%ﬁx:%l and !ég s respectively, which again

must be integers., The necessity of (00) follows,
The proof of sufficiency, as it is given in [4], is complicated
enough: it uses recursive constructions which necessitate separate

dealing with the following cases (which cover evidently all the

possibilities):
(1) vEh4or8 (md 12)
(2) v =

Z 4 or 10 (mod 18)

6



(3) v = 34 (mod 36)
(4) v = 26 (mod 36)
(5) v = 2 or 10 (mod 24)
(6) v = 14 or 38 (mod 72)

In addition, for the cases v = 14 and v = 38 separate direct
constructions were required,

We shall not reproduce here the whole recursive proof,
Instead, we shall discuss a construction for obtaining an S5(3, 4, 2v)
from an S(3, &, v). This construction is included in Hanani's proof
and covers essentially the case (1); however, it was known for a
long time (see, e.g., [1]). In addition, we shall discuss another,
new construction for obtaining an S(3, 4, 2v) from an S(3, 4, v) -
described in [14],Since we shall be concerned with SQS of order 20
and since it is well-known that the Steiner quadruple system of
order 10 is unique, it is clear why we consider these constructions

relevant,

Let S' and S'' be two SQS of the same ordér v constructed
on two disjoint sets X' and X'', and let @B' and (B'' be their
respective sets of quadruples, Let f be any bijection from X' +to
X*' and consider the set X = X*U X'', |x] = 2v, Iet d%) denote
the collection of all L-subsets of X of the form {x', v, £f(x*), f(y')}

where x', y' ¢ X', x' # y'.

Construction 1: (1, 7, 141, For every quadruple

B! = {x', y's 2', t'} € 43', let



s,

{1, v, 2@, 0}, {26, 20, 2, 0],

fxr, £y, 220, v}, {e(x"), y', 2, £t },

fxt, £y"), 2, £}, {£&xD, ¥, £, v ).

Then the set of quadruples

B=6up" U B, U (U B

B B 0 Bte gl Bl)
is easily checked to form a Steiner quadruple system of order 2v on
the set X containing two disjoint subsystems of order v, namely

the ones on X' and on X'',

Construction 2: [14],  For every quadruple B' = {x', y', z', t‘] € @'

let

5 = {{f(x'), y', z', t'} . {x', £(y'), =z, t'},
{x', y', £(z"), t'} . {x', y', z', f(t')}} .

and for every quadruple B'' = {x", y', z'', t"} € @",
let
Bf?.": {{fﬁl(x"), y'', oz, t"} . {xn’ f"l(yu)’ zt', t"}

{xu’ yn’ f-l(z"), t"} . {X", yn’ Zn’ fﬁl(t")}} R

Then the set of quadruples

B = BOU(U

B'e @0

B:p v MV B \

B"cﬁ" B!

is easily checked to form a Steiner quadruple system of order 2v on

the set X,



Example 1: Take the unique

SQS of order 10 in the form

{i, 141, i+3, i+h}, fi, i+1, 142, i+6 }, {3, i+2, ik, i+7},

i=’o, 1, LR N ] 9’

where integers are taken modulo

10 (see [2]), and apply to it

Construction 1, and also Construction 2 to obtain two SQS of order

20; we denote those systems by SF(2O) and SD(ZO), respectively.,

Let our 20 elements be O, 1, ..., 9, 6, i, cossy 9.

The system SF(ZO), i,e, the SQS obtained by Construction 1,

will consist of the following quadruples:

(i, 141, +3, 2}, {1,

i, 71, 3, 7% 4, {3,

(1, 01, T3, T8}, {4,

{1, 1, T3, 4}, {5,

(i, 111, T2, T6 }, {4,
{i, 31, 1#2, i*6}, {d,
{i, i+2, i+h, 79, {i,
{1, T2, T8, 17}, {1,

{i, 3, 3,37} 4, 3=0,

i+l, i+2, i+6}~, {i, i+2, it+h,

i+7} .

i1, T2, 176 §, {3, 1+2, T°%,
i+1, i+3, i+k J, {3, i+1, i+3,
i+1, 1+3, i+h §, (1, 741, i3,

i1, i+2, 196 §, {1, i1, i+2,
i+1, i+2, i+6 }, {1, i+1, i+2,
172, i+h, 7 §, {1, i+2, ith,
i+2, i+h, i+7}; {1, 1+2, i+t

, ..., 9, i # j3 the numbers

quadruples are reduced modulo 10;

7},

ywoy

i+6 },

™},

i+?];;)

in
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The system $,(20), i.e. the SQS obtained by Construction 2,
will consist of the following quadruples:
i, i+, i+3, i+uf}, {i, i+1, i+3, i+4} . {i, i+1, i+3, i+h-},
{1, i+1, i+3, T8 J, §T, i1, 1+2, 346 }, {1, T1, i+2, i+6 },

(i, 111, T2, @6}, {1, i1, i+2, T+6 §, (1, i+2, 14, 147 ],

{1, T2, i+b, i+7}, {4, @2, TF, 147}, {4, i+2, i+h, 77 ],

- ey e—

I, 1, T3, a4 }, {3, 41, i3, T8 §, {1, 101, T3, 40 §,

{1, 73, 3, T8 }, {5, 73, T2, 1+6 §, {3, T1, i+2, 176 },

i, ix1, T2, 96 }, {1, 11, 172, T+6 }, (1, T2, T8, 147 },

i, B2, i+h, 797 }, {1, i+2, 795, T}, {5, 92, T, 7 },

{is e 1y 3 }‘ , i, 3=0,1, ¢o.y 9, i # j; the numbers

in quadruples are reduced modulo 10,

It is Showﬁ in [14] that any two S5QS of order 2v, one
obtained by Construction 1 and the other by Construction 2, are
necessarily non-isomorphic, Consequently, SF(2O) and SD(2O) 'are
non-isomorphic,

Denote by Q(v) the»number of non-isomorphic SQS of
order v, The following values or bounds are kn;wn for the function

Qlv) (ef, [141):

v ' 2 4 8 10 14 16 20 22 26 28 32

ew| 11 1 1

13V
[® o]
v
N
nv
n
nv
[
nv

20 216



Let us state for the sake of completeness that, apart from
the described constructions, there is a well-known "product rule' for
obtaining an S(3, 4, mn) from an S(3, 4, m) and an S(3, 4, n),
Also Rokowska [10] has described several constructions which in some
cases (notably v = 22) have led to quadruple systems non-isomorphic
to those obtained by Hanani in [4]. However, these constructions
altogether leave us far from what have been attained for Steiner
triple systems (comprehensive results on embedding, extension etc.).

Although the question of the existence of Steiner quadruple
systems was settled by Hanani in [4] it seems desirable to have a
direct or, at least a simpler proof than the one given by Hanani.

It is thought that one possible way of trying to get such a proof
would be attempting to comstruct cyclic SQS, although from what we
already know about cyclic Steiner quadruple systems, it can be taken
for granted that the problem is of substantially higher level of
complexity than the one about constructing cyclic Steiner triple

systems,



Chapter III

Cyclic Steiner gquadruple systems

According to the Definition 4, a Steiner quadruple system
S(3, 4, v) is cyclic if its automorphism group contains a permutation
consisting of a single cycle of length v, From now on we assume that
the elements of SQS are the numbers 0, 1, 2, ..., v=1, and since
we shall be concerned only with the qﬁestion of the existence of
cyclic 5QS,  we may assume without loss of generality the cyclic

automorphism to be the permutation

c=(012,.. v-1),

Under these assumptions we can say that a Steiner quadruple system S

is cyclic if it satisfies the condition '

(*) (i, 3, k, m) € S =9 (i+1, j+1, k+1, ml) € S,

where the numbers are taken modulo v,
s . . . . R . i< g
To an arbitrary quadruple (11, iy iz, 14)’ i <i, < ig <y,
of a cyclic 5SQS of order v on elements O, 1, 2, ..., V-1 we may
uniquely assign an associated quadruple (briefly a-quadruple)

Q= [a

11 221 839 aq] where

(0) a, = min (Ji,g-dd v~ \ik+l -1 Dy x=1,2, 3,4, ig = iy,

The set of all different quadruples (two quadruples are regarded as

different if they differ in at least one element) with the same

12
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a-quadruple Q is said to be a cyclic set with the a-quadruple Q
and is denoted by -M(Q); the cyclic set M(Q) is actually an orbit
of quadruples (with a-gquadruple Q) under the action of the cyclic
group Cv generated by C, The number of elements of the cyclic

set M(Q) (= the length of the orbit of quadruples) is said to be

the period of the a-quadruple Q and is denoted by P(Q), Obviously
P(Q) must be a divisor of v. Two a~quadruples are regarded as equal
if they differ only by a cyclic permutation of their elements; other-
wise they are different,

It follows trivially from (*) that a cyclic SQS either
contains simultaneously all the P(Q) quadruples or contains no
quadruple from the cyclic set M(Q),

Let us turn now to graph-theoretical interpretation, The
word graph here will mean an undirected graph without loops, with
multiple edges allowed, Denote by the symbol < n, k > the graph
with n vertices in which any two distinct vertices are joined by
exactly k edges, By an s-vertex-clique Qe shall mean a subgraph
with s vertices in which any two distinct vertices are joined by
precisely one edge (i,e, it is the graph < s, 1 >),

By a decompostion of a graph G into subgraphs Gl’ veesy Gr
we always mean an edge-disjoint decomposition, i.e., every edge of G
belongs to exactly one of thévsubgraphs Gl’ cosy Gr and the union of

all subgraphs G eeey G is G, A cyclic decomposition of a gravh

1? r

G with v vertices into subgraphs G., ..., Gr is a decomposition

1’
of G such that for every i there is an index j (i, j ¢ {l, cees r} )

such that E(Gi) = Gj where C is a permutation of vertices of G

consisting of a single cycle of length v,
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It is easy to see that th~ problem of finding an SQS of
order v (a cyclic SQS of order v, respectively) is equivalent
to the problem of finding a decomposition (a cyclic decomposition,

respectively) K = {Kl’ eeey K } of the graph < v, 253 > into

Lhevertex-cliques such that each triangle with the vertices from

<v ¥=2 > .occurs in exactly one cligque of the decomposition K
s T o P

(here r = v(v-1), (v-2)/24), Here the elements of the SQS
correspond obviously to the vertices of the graph < v, Zéé >, the
quadruples of the SQS correspond to the 4-vertex-cliques Ki'

In the next we shall use both combinatorial as well as graph-
theoretical interpretation and terminology. Consider an arbitrary
hevertex-clique K., The lengths of the edges of the clique K which
lie on its "circumference" correspond to fhe elements of the
corresponding a-quadruple (see Fig. 1). From the numbers a + a,,

&, + aa, a3 + a,, &, + 2y the two least numbers give the lengths

of the '"diagonals" of the clique, Denote these numbers by bl’bZ' Consequently,

o o v=2

v-1

oo

Figure 1
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the six numbers a4 25, a3, ay b b2 give us the lengths of the

l,

edges of the given clique K, Denote now by aS(K), 8 =1y 2y seey 1

27
the number of occurrences of an edge of the length s in the clique
K. Obviously we must have

1

"2"V

}: o (K) = 6,

s=1

Further, each clique K contains 4 triangles: without loss of
generality we may assume them to be the triangles with the length

of edges (in the shown order)

* %
(**) ajazby, aagby, azab, a8,

Defining now aS(Q) analogously to aS(K), we can formulate some

necessary conditions for the existence of a cyclic 8QS of order  v:

Proposition 1l: For any cyclic Steiner quadruple system

S5 of order v,

Y e @P@mv=%2,5=1,2, ..., -1
Q
P(Q) _ w=2 21
2; aS(Q) v = L 8 = -é- v
Q

where the sum is extended over all different a-quadruples @ which
correspond to the cyclic sets occuring in S,

Proof: Follows easily from graph-theoretical interpretation.
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Proposition 2: Let S Dbe a cyclic 5SQS containing the

cyclic set M(Q) and let my momg be one of the triples (**)
corresponding to the a-quadruple Q, Let Ql’ QZ’ ooy Qt be all the

remaining a-quadruples to which the same triple mlmzm3 corresponds

(together with some other three triples), Then

(i) If two of the numbers m, m,, m, are equal

3

then S does not contain any cyclic set M(Qi),
i= 1, 2’ eney t.

(ii)  If all three numbers Wy My m3 are mutually different

then S contains at most one cyclic set M(Qi)’
ie {1, 2, ..., t} .

Proof: Assume first that two of the numbers m, m,, my are

equal; let, without loss of generality, say, m = m,. Let, say,

il’ 12, 13 be the elements of S whose cyclic differences defined

by (0) are given by the numbers My, My M. If S contains a cyclic

3
set M(Qi) for any i ¢ {}, 2y esey t } then the triple of elements

il’ i2, i3 must belong to two different quadruples of S which is a
contradiction with the definition of a Steiner quadruple system,

Assume now that all three numbers m, Wy, M, are mutually different,

3

let, say, be the elements of S whose cyclic differences

il’ i2, i3

defined by (0) are given by the numbers mys My My (in this order),

and let iq be such that the cyclic differences of the elehents

iys i,, i) are the numbers m, (in this order), It is clear

. mj,-m2
now that if S contains more than one cyclic set M(Qi) then either

the triple or the triple il’ i2, i4 must belong to two

i]_' ]‘.2’ \i3

different quadruples of S which is again a contradiction.
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Proposition 3: Let the .four triples T1 = mlmamB,

= mym,m 3, Tq correSpond‘to an a-quadruple Q and let P(Q) = v,
Then no cyclic SQS of order v contains the cyclic set M(Q).
Proof: Again, if any cyclic SQS would contain such
a cyclic seﬁ M(Q), there would exist a triple of elements occuring in
two different quadruples (which would this time belong to the same
cyclic set) - a contradiction.
Notice that the condition P(Q) = v cannot be omitted here;

without it the Proposition 3 would be false,

Proposition k: Let the four triples
' - 1 - ' '
Tl = mlm2m3, T2 nlnanj, 'I‘3 , Th

and
T" = m1m2m3, T 'Y= n1n3n2, T%', T&'

correspond to a-quadruples Q' and Q'', respectively., Then no
Steiner quadruple system of order v contains simultaneously the
cyciic sets M(Q') and M(Q''),

Proof: One proceeds similarly as in the proo} of (ii) in
Proposition 2,

The necessary conditions contained in Proposition 1 - k&
were used by Guregovd and Rosa [2] to investigate the existence of
cyclic SQS up to the order 16, The Table 1 gives a survey pf the

known results on the existence of cyclic Steiner Quadruple systems,



18

Table 1
v Existence of a cyclic Solution Reference
Solution
b yes trivial (1,2,3,4)
8 no. [2]
10 yes (1,i+1,i+3,i+4), (2]
(i,i+1,1+2,i+6),
(i,i+2,i+4,i+7), where
i=0,1, ..., 9, addition
taken modulo 10
14 no (2]
16 no (2]
20 ?
22 ?
26 yes (11,023
28 ?
32 ?
34 yes [11,015]
38,40, ?
L L6
50  yes [15]

is undecided is v = 20, We shall fill in this
existence of a cyclic quadruple system of order 20,

prove a little more than that but first we have

The first order for which the existence

definitions:

of a cyclic

SQS

gap by showing the
In fact, we shall

to introduce two

Definition 3,1: An a-quadruple [al, 85 834 ah] is called

symmetric if at least one of the following two conditions is satisfied:
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(i) the length of the diagonals are equal (i,e, b, = bZ)

(ii) either a, = 2, and a, = g, or a, =&, and

1 3
a, = a,.

2 3

Definition %,2: - A cyclic 5QS of order v is called

S-cyclic if all the a-quadruples corresponding to the cyclic sets
occuring in it are syvmmetric,

Now we are able to formulate our

Main result: There exists exactly one S-cyclic Steiner
quadruple system of ofder 20,

The procedure we use to derive fhe main result is essentially
the one used by Guregovd-Rosa in [2]; héwever, due to the comparatively
large order v = 20 and, consequently, large number of a-quadruples,
we restricted ourselves to symmetric quadruples, i.,e. we were ldoking
only for S-cyclic quadruple systems of order 20, This restriction
may prove not to be so severe as it may appear at first since all the
known cyciic SQS (see Table 1) are in fact S-cyclici in other words
there is not a single cyclic Steiner quadrﬁple system known (of any
order) which is not S-cyclic,

We start with the list of all possible a—quadfuples corresponding
to all possible quadruples on the elements 0, 1, 2, ,.., 19. This
list is giveh in Table 2 and the total number of a-guadruples in it
is 145, The a-quadruples (17), (86), (125) and (142) have period 10
and the a~quadruple (145) has period 5; all the other a-quadruples

have period 20,



Tab.Le 2

. Associated
No, . Triangles Quadruples
1 112 112 1253 132 ° [1113]
2 112 123 134 224 [1124]
3 123 132 134 143 (1214
4 112 134 145 235 (1135]
5 134 143  1hks 154 [1315]
6 112 145 156 246 [11 4 6]
7 145 154 156 165 [141 6]
8 112 156 167 257 (1157
9 156 165 167 176 (1517]
10 112 167 1738 2638 (116 8]
11 167 176 178 187 (161 8]
12 112 178 1809 279 (1179}
15 178 187 189 198  [17109]
1k 112 189 1910 2 810 (11 810]
15 189 198 1910 1109 (1 81 10]
16 112 1910 1109 299 (11909]
17 1910 1910 1109 1109 (191 9]
18 123" 145 224 253 [1225)]
19 123 132 235 2553 (1252]

20 123 156 235 336 [12 3 6]



Associated
No., Triangles Quadruples
21 123 143 264 336 [1 26 3]
22 134 156 253 264 [1326]
23 123 167 246 347 [1247]
2k 123 154 275 374 - [1274)
25 1'4 5 167 264 275 (1427]
26 123 178 257 358 [1258]
27 123 165 286 385 [1 28 5]
28 156 178 275 286 [1528]
29 123 189 268 369 (1269
30 1253 176 297 396 [1296]
31 167 189 286 297 [1629]
32 1273 1910 279 3710 (12710]
33 123 187 | 2108 310 7 (1210 7]
34 178 1910 297 210 8 (17 2 10]
35 123 1109 2810 389 [12809]
36 123 198 299 398 (1298
37 189 1109 299 2108 [1829]
38 134 167 336 37h (1337]
39 134 143 347 374 (137 3]
Lo 134 178 347 Ly 8 (134 8]
L1 134 154 385 L4 8 (138 4]
42 145 178 374 385 (1438]
L3 134 189 358 Ls9 1 35 9]
Ly 134 165 396 L95 (1395]

45 156 189 385 396 [153 9]
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Associated

No. Triangles Quadruples
L6 134 1910 369 h.6 10 [1 3 6 10]
L7 134 176 310 7 L1106 (1310 6]
48 167 1910 396 3107 (16 3 10]
k9 134 1109 3710 L79 (1379]
50 134 187 398 b o7 (1397
51 178 1109 398 3107 (17 309]
52 134 198 389 488 [(1388]
53 189 198 389 . 398 (183 8]
Sh 145 189 L4 8 bos [1 &4 9]
55 14s 154 ksog 595 (1 4 9 4]
56 145 1910 k59 5510 (14 510]
57 145 165 L1106 55 10 [1 410 5]
58 156 1910 Lgs k106 (154 10]
59 145 11009 4 6 10 569 (146 9]
60 145 176 Loy 596 [1496]
61 167 1109 bLow L4106 (1649]
62 145 198 k79 578 (1478
63 145 187 4L 88 587 (1 487]
64 178 1938 4 88 497 (174 8]
65 156 1109 5510 596 [15509]
66 156 165 569 596 (159 5]
67 156 198 569 '6 68 (156 8]
68 156 176 587 6638 (1 586]
69 167 198 587 596 (16 58]
70 156 187 578 6 ? 7 (is77]



Associated
No. Triangles Quadruples
71 178 187 5738 587 (17571
72 167 187 677 668 (166 7]
73 167 176 677 677 [1676]
74 224 224 246 264 (222 6]
75 224k 235 257 374 [(2237]
76 235 253 257 275 [2327]
77 224 246 268 448 [2 2 b 8
78 246 264 268 ~ 286 [(2428)]
9 224 257 279 459 [22509]
80 257 275 279 297 [25209]
81 224 268 2810 4 6 10 [2 2 6 10]
82 268 286 2810 2108 [2 6 2 10]
83 224 279 299 479 [2279]
84 279 297 299 299 [27209]
85 224 2 810 2108 48 8 [228 8]
86 2810 2810 2108 2108 [2828]
87 235 268 336 385 [2338]
88 235 253 358 385 (238 3]
89 235 279 347 Lgs (23 49]
20 235 264 396 k59 (2394
91 246 279 37h 396 (2 4309]
92 235 2810 358 .5 510 [2 35 10]
93 235 275 310 7 5 5 10 [2°3 10 5]
o 257 2810 385 3107  [253 10]

95 235 299 369 569 {236 9]
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Associated
. No, Triangles Quadruples
96 235 286 398 596 [2396)
97 2638 299 396 398 (2 6 3 9]
98 235 2108 3710 578 (237 8]
29 235 297 389 587 (2387]
100 279 2108 389 310 7 (273 8]
101 246 2 810 L 4 8 Lioe  [24410]
102 246 264 Lelo L1106 [2 410 4]
103 246 299 k59 596 (2 45 9]
104 2 46 v2 75 kg7 569 [2 49 5]
105 257 299 495 b97  [25409]
106 246 210 8 4 6 10 668 (2 46 8]
107 246 286 4 88 6638 (24 8 6]
108 2638 2108 L 88 410 6 (264 8]
109 246 297 479 677 (247 7]
110 279 297 479 k97 [2 74 7]
111 257 2108 5510 587 (2558
112 257 275 ‘578 587 (2 58 5]
113 257 297 569 6 7 7 (2567]
114 257 286 ~ 578 677 (2 57 6]
115 2638 297 578 596 2657
116 268 286 668 6 638 [2 6 6 6]
117 336 336 369 396 [3339]
118 336 347 3.7 10 '4 106 | [33410]
119 347 374 37 10 310 7 (3 4 3 10]
120 336 358 389 596 [(33509]

2k



. No,

'121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

142
143
1hh
145

358
336
369
336
3710
347
347
347
347
358
347
547
3609
358
358
358
3609
N
bk 8
459
b b8
k6 10
459
459
55 10

Triangles
385 389
369 398
396 389
3710 3107
3710 3107
3809 b4 8
374 k79
398 k59
385 488
398 L 88
310 7 L 6 10
396  L79
3107 479
3107 578
385 578
396 569
396 569
L4 8 48 8
k59 b97
495 k79
L 610 L 106
L 610 L 106
L 10 6 5510
495 569

5510 55 10

398
668
398
677
310 7
b9 7
b9 7
587
578
495
677
677
L 310 6
5510
587
668
596
488
578
497
668

4106

569
596
5510

Associated
Quadruples

(35309]
(336 8]

[3638].

(33771
(3737]
(344 9]
[3494]
[3 45 8]
[3 4 8 5]
(354 8]
(346 7]
[3 47 6]
[3647]
[3557]
(3575]
(356 6]
(36 56]
4 4 & 8]
b & 5 7]
b 54 7]
(4 &4 6 6]
(464 6]
{4 556]
(4t 56 5]
(5 55 5]

25
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Since a Steiner quadruple system of order 20 contains 285

quadruples, three cases can occur:

(i) the cyclic SQS consists of 12 cyclic sets with a-quadruples
of period 20, 4 cyclic sets with a-quadruples of period 10
and one cyclic set with a-guadruple of period 53

(ii) the cyclic SQS consists of 13 cyclic sets with a-quadruples
of period 20, 2 cyclic sets with a-quadruples of period 10
and one cyclic set with a-quadruples of period 5§

(iii)  the cyclic SQS consists of 1k cyclic sets with a-quadruples

of period 20 and one cyclic set with a-quadruple of period 5,

In all three cases the cyclic éQS must contain a cyclic set
with a-quadruple of period 5, and since there is only one such cyclic
set available (namely the one with the a-quadruple (145) from Table 2),
the cyclic sets with the following a-quadruples cannot occur by
Proposition 2 in any cyclic SQS of order 20 (and therefore these
.a-quadruples may be removed from the list in Table 2):

(56), (57), (65), (92), (93), (111), (134), (143),

According to Proposition 3, the following a-gquadruples may be
also removed from the list: (1), (?3), (74), (84), (116), (117), (138).
Unfortunately this leaves us still with too large a numﬁer
of a-quadruples, therefore at this point we select from them only the
symmetric ones, Thus from now on we operate with the reduced list of
a-quadruples containing the following symmetric a-quadruples (with

numbers from Table 2):

(33, (5, (7, (9), 1), (13), 15), (16), (19), (39), (53), (55),
(#)  (66), (71), (76), (78), (80), (82), (85), (88), (102), (110), (112),
(119), (121), (123), (124), (127), (135), (137), (1ko), (1b1), (1LL),
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For the a-quadruples from (#), using the Proposition 2 and 4

a so-called system of prohibitions 2 = 2(Q) was formed, i.e., for
any given a-quadruple Q the a~quadruples Ql, Qs eees Qt are
found such that the cyclic sets with any of the a-quadruple Qi’
ic {1, 2y eeey t} cannot occur in a cyclic SQS of order 20
simultaneously with the cyclic set with the a-quadruple Q,

For the further computations we used the CDC 6400 computer,
The following three cases have to be dealt with separately:

Case 1, We have to find all possible combinations of 12
a-quadruples from (#£) satisfying the éystem of prohibitions 2
and giving (by Propbsition 1) in the suﬁ of numbers as(Q) the

vector S1 (see Table 3),

Case 2, We have to find all possible combinations of 13

a-quadruples from (#£) satisfying the system of prohibitions % and

giving (by Proposition 1) in the sum of numbers as(Q) one of the

vectors 82 to S7 (see Table 3),

Case 3, We have to find all possible combinations of 1k
a~guadruples satisfying the system of prohibitions 2Z such that the

sum of the numbers as(Q) will give the vector Sg (see Table 3).
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s 1 2 3 L 5 6 7 8 9 10
Sy 8 8 8 8 8 8 8 8 8 o]
s, 8 9 8 9 8 9 8 9 8 2
53 8 9 9 8 8 8 9 2 9 2
Sy, 9 8 8 9 8 9 8 8 9 2
s5 9 8 9 8 8 8 9 8 9 2
S¢ 9 9 8 8 8 8 8 9 9 2
s7 8 8 9 9. 8 9 9 8 8 2
Sg | 9 9 9 9 8 9 9 9 9 4

The computer was required to find all such combinations in all
of the three above cases, Let us remark that if such a combination
of a~quadruples is found it does not produce automatically a cyclic
Steiner quadruple system; in other words, even if all necessary
conditions given by Propositions 1-4 are satisfied they are in general
not sufficient for the existence of a cyclic SQS (cf, [2]); however
they are sufficient if we deal only with symmetric a-quédruples, In
our case, the procedure used was the usual back-track procedure (see,
€.8., [13]);~the corresponding program for case 3 in FORTRAN L is
given in Appendix 1,

The running time (for all three cases together) was 846,093
seconds, For cases 1 and 2, there was no output, and for the case 3
there exists exactly one combination of 14 a=-guadruples from (iﬁ)

satisfying all the above requirements, In accordance with what we



29

said in the previous paragraph, we obtained the following S-cyclic

Steiner quadruple system of order 20 (denote it by SC (20)):

(i,i+1,i+3,i+h), (i,i+1,i+2,i+11), (4,i+1,i+5,1+16), (i,i+2,i+6,i+8),
(i,i+2,i+k,i+12), (i,i+3,1+6,i+13), (i,i+3,i+9,i+1k), (i,i*1,i+6,i+7),
(1,i+1,i+9,i+12), (i,i+1,i+8,i+13), (i,i+2,i+7,i+9), (i,i+2,i+5,i+17),

(i,i%3,i+7,i+16), (i,i+k,i+8,i+1k), (i,i+5,3+10,i+15), where

i=0,1, 2,  eesy 19 and the numbers in quadruples are

taken mod 20,

As it was mentioned in Chapter 2, there are two non-isomorphic
Steiner quadruple systems of order 20 known so far [14]: SF(2O) and
SD(ZO). It is conjectured that S;(20) is not isomorphic to any of
those two systems but we were not able yet to establish this with
certainty, On the other hand, the cyclic system SC(ZO) contains 2
subsystems of order 10 (one on the even numbers and the other on the
odd ones) similarly as SF(2O) does,

It is hoped that further investigation of the structure of the
cyclic SQS of order 20 will prove useful fof the task of finding
a simpler (direct) proof of the existence of Steiner quadruple systems

of every admissible order v,
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k1o

403
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APPENDIX 1

Computer Program for Case 3

Dimension JA(33, 10), JB(33, 3), IA(14), 1s(10)
Read (5, 24) ((Ja(I, J), d =1, 10), I =1, 33)

Format (7011)

H

Read (5, 25) ((UB(I, J), J =1, 3), I =1, 33)
Format (312)
Read (5, 28)'(15(1), I=1, 10)

Format (10I1)

M=20
I=1
K=1
IA(I) = K
I=I+1

IF(I,EQ.15) Go To 401
K=K+ 1 |
IF(K,EQ,34) Go To k02

KK =1I-1

DO 10KL = 1, KK

D010J =1, 3

KB = IA(KL)
IF(K,EQ,JB(KB,J)) Go To L03
Continue

Go To 410

30



Lol

12

11

26

Lok

ko2

ko9

27
4o8

DO 11 II = 3, 10
ISUM = O

DO 12 JJ = 1, 14
IAJ = IA(JJ)

ISUM = ISUM + JA(IAg, II)

IF (ISUM, NE, IS(II)) Go To 4Ok
Continue

M=M+1

Write (6, 26) (IA(L), L = 1, 14)

Format (1416)

I=14
Go to 403
I=1--1

IF (I,EQ,1) Go To 409

K = IA(T)

Go To 403

IF (M,NE,0) Go To 408

write (6, 27)

Format (1H1, *NO Combination Available*)
Stop

End

31
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