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Chapter I 

Introduction 

In this thesis we are concerned with the existence of a 

particular kind of Steiner quadruple systems. The origins of the 

problem go back as far as 1852 when J. Steiner (12] posed a problem 

equivalent to the construction of systems S(k, k+l, v); on the 

other hand, E. H. Moore (7] seerr~ to be the first to define in 1896 

the systems S(t, k, v) (see Def. 3 below) although the notion of 

a Steiner system can be trc:tced back to be found stated implicitly by 

Kirkman in 1847 [6]. 

Let us start with necessary definitions: 

Definition 1: A tactical configuration C[k,f,, A., v] is 

a collection of k-subsets of a v-set such that each (-subset of the 

v-set is contained in exactly A sets of the tactical configuration. 

Here v, k, e, A. are positive integers, and e ,:5 k ,:5 v. 

A necessary condition for the existence of a tactical 

configuration C(k, t,., A., v] is known to be 

k-h)(1) A. (v-h) I = integer, h = O, 1, ••• , J-1(.t-h . e-h 

(see, e.g. [5]). The problem of determining the values of k,..l 

and A. for which this condition is also sufficient, is not yet 

solved completely. 

1 
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Another combinatorial configurations, balanced incomplete 

block designs (briefly BIBD's) became widely known primarily because 

of their use in statistics. 

Definition 2: A BIBD is an arrangement of v distinct 

objects into b blocks such that each block contains exactly k 

distinct objects, each object occurs in exactly r different blocks, 

and every pair of distinct objects occurs together in exactly A 

blocks. 

Here it is required 3 ~ k ~ v in order to eliminate some 

trivial designs. Counting in two different ways the total number of 

occurences of elements, and the number of occurences of all pairs 

containing a fixed element, respectively, we get the well-known 

necessary conditions for the existence of a BIBD (see, e.g., (3]) 

(2) v.r = b.k 

(3) A(v-1) =r(k-1) 

Comparing definitions 1 and 2, we see that BIBD's are tactical 

configurations with _,.t = 2. On the other hand, if we take tactical 

configurations with A = 1 we get the kind of configurations we are 

going to be primarily interested in: 

Definition 3: A Steiner system S(t, k, v) is a collection 

of k-subsets of a v-set such that each t-subset of the v-set is a 

subset of exactly one k-subset of the system. 

A Steiner system on a v-set is said to be of order v. Here, 

of course, 2 < t < k =< v. Steiner systems S(2, 3, v) are called 
= 



3 

Steiner triple systems, Steiner systems S(3, 4, v) are called Steiner 

quadruple systems, generally Steiner systems S(k-1, k, v) are called 

Steiner k-tuple systems. Obviously, every Steiner system with t = 2 

is a BIBD with A. = 1, and conversely; moreover, every Steiner system 

with t > 2 is a BIBD with A. > 1 (since every tactical configuration 

C[k, ~' A., v] is also a tactical configuration C[k, s, A., v] for 

every 2 ~ s < .l) but the converse is not true in general (e.g., 

from the 4 non-isomorphic BIBD (8, 11~, 7, 4, 3), only one is a Steiner 

quadruple system of order 8; see [8]). 

Steiner triple systems are the "smallest" non-trivial Steiner 

systems (and, of course, smallest non-trivial BIBD's, too). It was 

proved by Kirkman [6] in 1847, and subsequently by many other authors, 

that the conditions (1) which in this case read 

(4) v =l or 3 (mod 6) 

are not only necessary but also sufficient for the existence of Steiner 

triple systems. 

Similarly, it was proved by Hanani [4], although more than a 

century later, that the necessary conditions for the existence of 

Steiner quadruple systems 

(5) v =2 or 4 (mod 6) 

are also sufficient; the proof by recursive method is rather involved 

(see our remarks in Chapter 2). Hanani in one of his more recent 

papers [5] proved that condition (1) is sufficient also for k = 4, ~ = 3 

and every A. Actually, he proved the following theorem: 
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The necessary and suffici~nt condition for the existence of 

a tactical configuration C[4, 3, A, v] is 

AV "S 0 (mod 2) 

(6) 	 A(v-l)(v-2) =0 (mod 3) 

Av(v-l)(v-2) =0 (mod 8) 

In the next we shall be interested mostly in cyclic systems. 

Definition 4: A Steiner system S(t, k, v) is said to be 

cyclic if its automorphism group contains the cyclic group of order v. 

Here by an automorphism group we understand the permutation 

group acting on elements of the Steiner system as letters; therefore, 

if S is cyclic there exists an automorphism (permutation) consisting 

of a single cycle of length v. 

The necessary and sufficient condition for the existence of 

cyclic Steiner triple systems is known to be 

(?) 	 v - l or 3 (mod 6), v I 9 

(the proof was given by Peltesohn [9]; see also Rosa [11]). However, 

the question about necessary and sufficient conditions for the 

existence of cyclic Steiner quadruple systems appears far from 

being settled; only few results about the existence or non-existence 

of cyclic Steiner quadruple systems are available (see Guregova-Rosa [2], 

Fitting [l]). Our thesis is intended to be a contribution in this 

direction. 

In Chapter II, some general, mostly known results about 
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Steiner quadruple systems are discussed. For instance, the construction 

is shown how to obtain a Steiner quadruple system of order 2n from a 

one of order n, with an illustrating example. 

Chapter III is devoted solely to cyclic Steiner quadruple 

systems and contains the main result we have obtained. So called 

S-cyclic Steiner quadruple systems are defined there, and with the 

aid of a CDC 6400 computer it is shown that there is exactly one 

S-cyclic Steiner quadruple system of order 20. It is perhaps worth 

remarking even at this stage that the only known cyclic Steiner 

quadruple systems (i.e. the ones of orders 10, 20, 26, 34, 50) are 

all S-cyclic. 



f:hapter II 

Steiner guadruple systews 

Acc?rding to Definition 3, a Steiner qua<'lruple system of 

order v is a collection of 4-subsets (called quadruples) of a 

v-set such that each 3-subset (or triple) of the v-set is a subset 

of exactly one quadruple. Hanani [4] proved the following fundamental 

theorem concerning the existence of Steiner quadruple systems: 

Theorem: The necessary and sufficient condition for the 

existence of a Steiner quadruple system of order v is 

(OO) v =2 or 4 (mod 6). 

The proof of necessity is quite easy: The number of quadruples 

v(v-lHv-2)in a S(3, 4, v) equals which must obviously24 

be an integer. On the other hand, the number of quadruples containing 

a fixed element and containing a fixed pair of elements, respectively, 

(v-lHv-2) v-2and respectively, which againequals 6 2 

must be integers. The necessity of (OO) follows. 

The proof of sufficiency, as it is given in [4], is complicated 

enough: it uses recursive constructions which necessitate separate 

dealing with the following cases (which cover evidently all the 

possibilities): 

(1) v =4 or 8 (mod 12) 

(2) v =4 or 10 (mod 18) 

6 
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(3) v -= 34 (mod ~6) 

(4) v = 26 (mod 36) 

(5) v =2 or 10 (mod 24) 

(6) =14 or 38 (mod 72)v 

In addition, for the cases v = 14 and v = 38 separate direct 

constructions were required. 

We shall not reproduce here the whole recursive proof. 

Instead, we shall discuss a construction for obtaining an S(3, 4, 2v) 

from an S(3, 4, v). This construction is included in Hanani's proof 

and covers essentially the case (l); however, it was known for a 

long time (see, e.g., [l]). In addition, we shall discuss another, 

new construction for obtaining an S(3, 4, 2v) from an S(3, 4, v) 

described in [ll;.]. Since we shall be concerned with SQS of order 20 

and since it is well~known that the Steiner quadruple system of 

order 10 is unique, it is clear why we consider these constructions 

relevant. 

Let s• and St I be two SQS of the same order v constructed 

on two disjoint sets X' and X' I and let tfJ I and (/3" be their
' 

respective sets of quadruples. Let f be any bijection from X' to 

x'' and consider the set x =x• u X'' ' Ix I =2v. Let denotetBo 
the collection of all 4-subsets of X of the form {x•, y', f(x'), f(y')} 

where x' , y' c .X ' , x ' ~ y' • 

Construction 1: [l, 7, 14]. For every quadruple 

B' = {x', y', z•, t•} c tB•, let 
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BB' = ffx'' y', f(z'), f(t•)J [ f(x'), f(y f)' z' t ·J ' ' 

fx'' f(y')' f( z f)' t'J ' {f(x'), y'' z'' f( t f) J' 

fx'' f(y'), z', f(t')}, ff(x'), y'' f(z•), t' }} . 

Then the set of quadruples 

B= B' u !B" u Bo u <U B
B')B'c B' 

is easily checked to form a Steiner quadruple system of order 2v on 

the set X containing two disjoint subsystems of order v, namely 

the ones on X' and on X'' • 

Construction 2: [14]. For every quadruple B' = [x', y', z', t'} c dJ' 
let 

mB, = {frcx•), y'' z' t•} fx'' f(y')' z' t•j' ' ' ' 

{x', y', f(z'), t'} [x'' y'' z', f( t') ~ 
' ' 

and for every quadruple B'' = fx' '' yt It z f ' t' f J c di'''' 
let 

13 * [f f-l(x")' y' f' z", t" ) ' [ X' It f-l(y"), z' fB" -- ' t"} • 

[x"' y"' f-1(z''), t'' } ' rx"' y' f' z'' r-1(t") ]J .
' 

Then the set of quadruples 

1r = Bo u cU {j]*) u cU li1 * ) 
B'c I]' B' B''cl/3 11 Br r 

is easily checked to form a Steiner quadruple system of order 2v on 

the set X. 
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Example 1: Take the unique SQS of order 10 in the form 

fi, i+l, i+3, i+41, fi, i+l, i+2, i+6 J' fi, i+2, i+4, i+7)' 

i =o, 1, ••• , 9, 

where integers are taken modulo 10 (see [2]), and apply to it 

Construction 1, and also Construction 2 to obtain two SQS of order 

20; we denote those systems by SF(20) and SD(20), respectively. 

Let our 20 elements be O, 1, ••• , 9, o, 1, ••• , 9. 

The system SF(20), i.e. the SQS obtained by Construction 1, 

will consist of the following quadruples: 

fi, i+l, i+3, i+4} ' fi, i+l, i+2, i+6}' (i, i+2, i+4, i+7 J ' 

fr, i+1, i+3, i+4 J, fI, i+1, i+2, i-r6}, (i, i+2, i+4, i+7}, 

~i, i+l, i+3, i+4 J ' fi, i+l, i+3, i+4 J, fi, i+l, i+3, i+4 ~' 

~i, i+l, i+3, i+4 J ' ff, i+l, i+3, i+4} t fi, i+l, i+3, i+4}' 

fi, i+l, i+2, i+6}, fi, i+l, i+2, i+6 J, p:, i+l, i+2, i+6}' 

fi, i+l, i+2, i+6 j , ~i, i+l, i+2, i+6}, (i, i+l, i+2, i+6 J' 

fi, i+2, i+4, i+7 J' fi, i+2, i+4, i+7 l, f~~' i+2, i+4, i+7 ] ' 

fi, i.+'2, i+4, i+7}, fi, i+2, i+4, i+7}, fi, i+2, i+4, i+7]' 

li, j, i, j ) i, j = 0, 1, ••• , 9, i /. j; the numbers in \ 

quadruples are reduced modulo 10• 



10 

The system s (20), i.e. the SQS obtained by Construction 2,0

will consist of the following quadruples: 

li' i +1, i + 3 ' i + 4 } ' ( i' i + 1, i +3, i + 4 J ' fi' i + 1, i+3, i +4 J ' 

l i, i+l, i+3, i+4 J' li, i+l, i+2, i+6 J' ~i, i+l, i+2, i+6}, 

l i, i+l, i+2, i+6}' fi, i+l, i+2, i+6}, fi, i+2, i+4, i+7 J, 
l i, i+2, i+4, i+7} ' { i, i+2, i+4, i+7}' l i, i+2, i+4, i+7 J, 

l I, i+l, i+3, i+4}, [ i, i+l, i+3, i+4 J, fi, i+l, i+3, i+4 ] , 

l i, i+l, i+3, i+4J' fi, i+l, i+2, i+6 J, ~i, i+l, i+2, i+6 J, 

fi, i+l, i+2, i+6 J, fi, i+l, i+2, i+6 J' li, i+2, i+4, i+7 J, 

\i, i+2, i+l+, i+7 }, li, i+2, i+4, i+7 J' li, i+2, i+4, i+7 }, 

{ i, j, i, j } , i, j = 0, 1, ••• , 9, i I- j; the numbers 

in quadruples are reduced modulo 10. 

It is shown in [14] that a.ny two SQS of order 2v, one 

obtained by Construction 1 a.nd the other by Construction 2, are 

necessarily non-isomorphic. Consequently, SF(20) and s (20) are0

non-isomorphic. 

Denote by Q(v) the number of non-isomorphic SQS of 

order v. The following values or bounds are known for the function 

Q(v) (cf. [14]): 

2 4 8 10 14 16 20 22 26 28 32 

1 1 1 1 4 ~2 ~1 ~20 
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Let us state for the sake. of completeness that, apart from 

the described constructions, there is a well-known "product rule" for 

obtaining an S(3, 4, mn) from an S(3, 4, m) and an S(3, 4, n). 

Also Rokowska [10] has described several constructions which in some 

cases (notably v = 22) have led to quadruple systems non-isomorphic 

to those obtained by Hanani in [4]. However, thes-e constructions 

altogether leave us far from what have been attained for Steiner 

triple systems (comprehensive results on embedding, extension etc.). 

Although the question of the existence of Steiner quadruple 

systems was settled by Hanani in [4] it seems desirable to have a 

direct or, at least a simpler proof than the one given by Hanani. ·-.... 

It is thought that one possible way of trying to get such a proof 

would be attempting to construct cyclic SQS, although from what we 

already know about cyclic Steiner quadruple systerr~, it can be taken 

for granted that the problem is of substantially higher level of 

complexity than the one about constructing cyclic Steiner triple 

systems. 

' 




Cyclic Steiner quadruple systems 

According to the Definition 4, a Steiner quadruple system 

S(3, 4, v) is cyclic if its automorphism group contains a permutation 

consisting of a single cycle of length v. From now on we assume that 

the elements of SQS are the numbers o, 1, 2, ... ' v-1, and since 

we shall be concerned only with the question of the existence of 

cyclic SQS, we may assume without loss of generality the cyclic 

automorphism to be the permutation 

C = (O l 2 ••• v-1). 

Under these assumptions we can say that a Steiner quadruple system S 

is cyclic if it satisfies the condition· 

(•) (i, j, k, rn) c S ~ (i+l, j+l, k+l, m+l) c s, 

where the numbers are taken modulo v. 

To an arbitrary quadruple Ci1 , i 2 , i 3, i 4), i < i 2 < i < i4'1 3 
of a cyclic SQS of order v on elements o, 1, 2, ••• , v-1 we may 

uniquely assign an associated quadruple (briefly a-quadruple) 

Q = [a1, a2 , a
3

, a 4J where 

(0) ak = min ( I ik+1 - ik f , v - \ ik+ 1 - ik \ ) , k = 1, 2, 3, 4 , i 5 - . i 1• 

The set of all different quadruples (two quadruples are regarded as 

different if they differ in at least one element) with the same 

12 
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a-quadruple Q is said to be a cyclic set with the a-quadruple Q 

and is denoted by M(Q); the cyclic set M(Q) is actually an orbit 

of quadruples (with a-quadruple Q) under the action of the cyclic 

group C genera.ted by c. The number of elements of the cyclic
v 

set M(Q) (= the length of the orbit of quadruples) is said to be 

the period of the a-quadruple Q and is denoted by P(Q). Obviously 

P(Q) must be a divisor of v. Two a-quadruples are regarded as equal 

if they differ only by a cyclic permutation of their elements; other­

wise they are different. 

It follows trivially from (*) that a cyclic SQS either 

contains simultaneously all the P(Q) quadruples or contains no 

quadruple from the cyclic set M(Q). 

Let us turn now to graph-theoretical interpretation. The 

word graph here will mean an undirected graph without loops, with 

multiple edges allowed. Denote by the symbol < n, k > the graph 

with n vertices in which any two distinct vertices are joined by 

exactly k edges. By an s;..vertex-clique we shall mean a subgraph 

with s vertices in which any two distinct vertices are joined by 

precisely one edge (i.e. it is the graph < s, 1 >). 

By a decompostion of a graph G into subgraphs G
1 

, ••• , Gr 

we always mean an edge-disjoint decomposition, i.e. every edge of G 

belongs to exactly one of the subgraphs G1 , ••• , Gr and the union of 

all subgraphs G1 , ••• ,Gr is G. A cyclic decomposition of a graph 

G with v vertices into subgraphs G1 , ••• , Gr is a decomposition 

of G such that for every i there is an index j (i, j c f1, ••• , r]) 

such that C(G.) = G where c is a permutation of vertices of G 
l. j 

consisting of a single cycle of length v. 
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It is easy to see that th-: problem of finding an SQS of 

order v (a cyclic SQS of order v, respectively) is equivalent 

to the problem of finding a decomposition (a cyclic decomposition, 

v-2respectively) K = ~K1 , ••• ,Kr 1 of the graph < v, ~ > into 

4-vertex-cliques such that each triangle with the vertices from 

v-2< v, ~ > -occurs in exactly one clique of the decomposition K 

(here r =v(v-1). (v-2)/24). Here the elements of the SQS 

v-2correspond obviously to the vertices of the graph < v, ~ >, the 

quadruples of the SQS correspond to the 4-vertex-cliques K. • 
l 

In the next we shall use both combinatorial as well as graph-

theoretical interpretation and terminology. Consider an arbitrary 

4-vertex-clique K. The lengths of the edges of the clique K which 

lie on its "circumference" correspond to the elements of the 

corresponding a-quadruple (see Fig. 1). From the numbers ~ + a2 , 

a2 + a
3

, a + a4 , a4 + a1 , the two least numbers give the lengths
3 

of the "diagonals" of the clique. Denote these numbers by b , b • Consequently,
1 2 

0 0 

2o 

0 

0 
0 v-1 

o 

o v-3 

v-2 

Figure 1 
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the six numbers a1 , a2 , a , a4, b1 , b give us the lengths of the
3 2 

edges of the given clique K. Denote now by a. (K), s = 1, 2, ... , 2 1 v,s 

the number of occurrences of an edf,e of the length s in the clique 

K. Obviously we must have 

l -v 

L 
2 


er. (K) = 6. 

s 

s=l 

Further, each clique K contains 4 triangles: without loss of 

generality we may assume them to be the triangles with the length 

of edges (in the shown order) 

Defining now ex. (Q) analogously to ex. (K), we can formulate some 
s s 

necessary conditions_ for the existence of a cyclic SQS of order v: 

Proposition_l: For any cyclic Steiner quadruple system 

S of order v, 

v-2 	 v[ a (Q)P(Q)/v = ' s = 1, 2, ... ' - l;s 2 2 

Q 


v-2 -1a (Q) !192_ = -vl. 	 s v =T ' s 2 

Q 


where the sum is extended over all different a-quadruples Q which 

correspond to the cyclic sets occuring in s. 

Proof: Follows easily from graph-theoretical interpretation. 
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Let S be a cyclic SQS containing the 

cyclic set M(Q) and let be one of the triples (**) 

corresponding to the a-quadruple Q. Let Q
1 

, Q2 , ••• , Qt be all the 

remaining a-quadruples to which the same triple m m corresponds2m
1 3 

(together with some other three triples). Then 

(i) 	 If two of the numbers 

then S does not contain any cyclic set M(Q.)'
l. 

i = l, 	2, ••• , t. 

(ii) 	 If all three numbers are mutually differentll\' m2, m3 

then s contains at most one cyclic set M(Q.)'
l. 

i c ( l, 2, ... ' t} • 

Assume first that two of the numbers are 

equal; let, without loss of generality, say, ~ = m2 • Let, say, 

i 1 , i 2 , i be the elements of S whose cyclic differences defined
3 

by (O) are given by the numbers m1 , m2 , my If S contains a cyclic 

set M(Qi) for any i c (1, 2, ••• , t} then the triple of elements 

i 1 , i 2 , i3 must belong to two different quadruples of S which is a 

contradiction with the definition of a Steiner quadruple system. 

Assume now that all three numbers 1\' m2 , m are mutually different.
3 

Let, say, i 1 , i 2 , i be the elements of S whose cyclic differences
3 

defined by (O) are given by the numbers 1\' m2, m (in this order),
3 . 

and let i be such that the cyclic differences of the elements4 

i 1 , i 2 , are the numbers 111.' m3, m (in this order). It is cleari 4 2 

now that if S contains more than one cyclic set M(Q.) then either 
l. 

the triple i
1

, i 2 , i or the triple i 
1

, i 2 , i must belong to two
3 	 4 

different quadruples of S which is again a contradiction. 
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Prqeosition 3: 

T = "1.m
3

, T
3

, correspond to an a-quadruple Q and let P(Q) = v.2 2m T4 
Then no cyclic SQS of order v contains the cyclic set M(Q). 

Proof: Again, if any cyclic SQS would contain such 

a cyclic set M(Q), there would exist a triple of elements occuring in 

two different quadruples (which would this time belong to the same 

cyclic set) - a contradiction. 

Notice that the condition P(Q) = v cannot be omitted here; 

without it the Proposition 3 would be false. 

Let the four triples 

T' = n n n 2 1 2 3' 

and 

correspond to a-quadruples Q' and Q'', respectively. Then no 

Steiner quadruple system of order v contains simultaneously the 

cyclic sets M(Q') and M(Q''). 

Proof: One proceeds similarly as in the proof of (ii) in 

Proposition 2. 

The necessary conditions contained in Proposition 1 - 4 

were used by Guregova and Rosa [2] to investigate the existence of 

cyclic SQS up to the order 16. The Table 1 gives a survey of the 

known results orl the existence of cyclic Steiner Quadruple systems. 
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Table l 

v Existence of a cyclic Solution Reference 
Solution 

4 yes trivial (1,2,3,4) 


8 no [2] 


10 yes (i,i+l,i+3,i+4)' [2] 

(i,i+l,1+2,i+6)' 

(i,i+2,i+4,i+7), where 

i=O,l, ••• , 9, addition 

taken modulo 10 


14 no [2] 


16 no [2] 


20 ? 


22 ? 


26 yes [l] '[2] 


28 ? 


32 ? 


34 yes [l] '[15] 


38,40, ? 

44,46 


50 yes [15] 


The first order for which the existence of a cyclic SQS 

is undecided is v = 20. We shall fill in this gap by showing the 

existence of a cyclic quadruple syste~ of order 20. In fact, we shall 

prove a little more than that but first we have to introduce two 

definitions: 

symmetric if at least one of the following two conditions is satisfied: 

Definition 2.4= 
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(i) the length of the diagonals are equal (i.e. b = b )1 2

andor(ii) either a = and1 a2 

a2 = a3. 

Defini tion 2.-..£: A cyclic SQS of order v is called 

S-cyclic if all the a-quadruples corresponding to the cyclic sets 

occuring in it are symmetric. 

Now we are able to formulate our 

Ma.in result:. There exists exactly one S-cyclic Steiner 

quadruple system of order 20. 

The procedure we use to derive the main result is essentially 

the one used by Guregova-Rosa in [2]; however, due to the comparatively 

large order v = 20 and, consequently, large number of a-quadruples, 

we restricted ourselves to symmetric quadruples, i.e. we were looking 

only for S-cyclic quadruple systems of order 20. This restriction 

may prove not to be so severe as it may appear at first since all the 

known cyclic SQS (see Table 1) are in fact S-cyclic; in other words 

there is not a single cyclic Steiner quadruple system known (of any 

order) which is not S-cyclic. 

We start with the list of all possible a-quadruples corresponding 

to all possible quadruples on the elements O, 1, 2, ••• , 19. This 

list is given in Table 2 and the total number of a-quadruples in it 

is 145. The a-quadruples (17), (86), (125) and (142) have period 10 

and the a-quadruple (145) has period 5; all the other a-quadruples 

have period 20. 
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Tab.Le 2 

Associated 
No. Triangles Quadruples 

1 l 1 2 l l 2 1 2 3 l 3 2 [l 1 l 3] 

2 1 1 2 1 2 3 1 3 4 2 2 4 [l 1 2 4] 

3 1 2 3 l 3 2 l 3 4 l 4 3 [l 2 1 4] 

4 l 1 2 1 3 4 1 4 5 2 3 5 [1' 1 3 5] 

5 l 3 4 l 4 3 l 4 5 1 5 4 [l 3 l 5] 

6 1 1 2 l 4 5 l 5 6 2 4 6 [l l 4 6] 

7 1 4 5 1 5 4 1 5 6 1 6 5 [l 4 l 6] 

8 l l 2 1 5 6 1 6 ? 2 5 7 [l l 5 7] 

9 l 5 6 1 6 5 l 6 7 1 7 6 [l 5 1 7] 

10 1 l 2 1 6 7 1 7 8 2 6 8 [l 1 6 8] 

11 1 6 7 l 7 6 1 7 8 l 8 ? [l 6 1 8] 

12 1 1 2 1 7 8 1 8 9 2 ? 9 [l 1 7 9] 

13 1 7 8 l 8 ? l 8 9 1 9 8 [l 7 1 9] 

14 1 l 2 1 8 9 1 9 10 2 8 10 [l l 8 10] 

15 l 8 9 1 9 8 1 9 10 l 10 9 [l 8 1 10] 

16 l 1 2 1 9 10 1 lQ 9 2 9 9 [l l 9 9] 

1? 1 9 10 1 9 10 1 10 9 l 10 9 [l 9 1 9] 

18 1 2 3. l 4 5 2 2 4 2 5 3 .(1 2 2 5] 

19 1 2 3 l 3 2 2 3 5 2 5 3 [l 2 5 2] 

20 1 2 3 1 5 6 2 3 5 3 3 6 [l 2 3 6] 
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Associated 
No. Triangles Quadruples 

21 1 2 3 1 4 3 2 6 4 3 3 6 (1 2 6 3] 

22 l 3 4 l 5 6 2 5 3 2 6 4 (1 3 2 6] 

23 1 2 3 1 6 7 2 4 6 3 4 7 (1 2 4 7] 

24 1 2 3 l 5 4 2 7 5 3 7 4 (1 2 7 4] 

25 1 4 5 1 6 7 2 6 4 2 7 5 (1 4 2 7] 

26 l 2 3 1 7 8 2 5 7 3 5 8 (1 2 5 8] 

27 1 2 3 1 6 5 2 8 6 3 8 5 (1 2 8 5] 

28 1 5 6 1 7 8 2 7 5 2 8 6 (1 5 2 8] 

29 l 2 3 l 8 9 2 6 8 3 6 9 (1 2 6 9] 

30 l 2 3 l 7 6 2 9 7 3 9 6 (1 2 9 6] 

31 1 6 7 l 8 9 2 8 6 2 9 7 (1 6 2 9] 

32 l 2 3 1 9 10 2 7 9 3 7 10 [l 2 7 10] 

33 1 2 3 1 8 7 2 10 8 3 10 7 (1 2 10 7] 

34 1 7 8 1 9 10 2 9 7 2 10 8 (1 ? 2 10] 

35 1 2 3 1 10 9 2 8 10 3 8 9 (1 2 8 9] 

36 l 2 3 1 9 8 2 9 9 3 9 8 (1 2 9 8] 

37 1 8 9 1 10 9 2 9 9 2 10 8 [l 8 2 9] 

38 1 3 4 1 6 7 3 3 6 3? 4 (1 3 3 7] 

39 1 3 4 l 4 3 3 4 ? 3 7 4 (1 3 7 3] 

4o l 3 4 l ? 8 3 4 7 4 4 8 (1 3 4 8] 

41 l 3 4. 1 5 4 3 8 5 4 4 8 .[l 3 8 4) 

42 1 4 5 l 7 8 3 7 4 3 8 5 [l 4 3 8] 

43 l 3 4 l 8 9 3 5 8 4 5 9 [l 3 5 9] 

44 1 3 4 1 6 5 3 9 6 4 9 5 [l 3 9 5] 

45 1 5 6 1 8 9 3 8 5 3 9 6 [l 5 3 9] 
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Associated 
No. Triangles Quadruples 

46 1 3 4 1 9 10 3 6 9 4 6 10 [l 3 6 10] 

47 1 3 4 1 7 6 3 10 7 4 10 6 [l 3 10 6] 

48 l 6 7 1 9 10 3 9 6 3 10 7 [l 6 3 10] 

49 l 3 4 1 10 9 3 7 10 4 7 9 [l 3 7 9] 

50 l 3 4 l 8 7 3 9 8 4 9 7 [l 3 9 7] 

51 1 7 8 l 10 9 3 9 8 3 10 7 [l 7 3 9] 

52 1 3 4 1 9 8 3 8 9 4 8 8 [l 3. 8 8] 

53 1 8 9 1 9 8 3 8 9 3 9 8 (1 8 3 8] 

54 1 4 5 1 8 9 4 4 8 4 9 5 (1 4 4 9] 

55 1 4 5 1 5 4 4 5 9 4 9 5 (1 4 9 4] 

56 l 4 5 l 9 10 4 5 9 5 5 10 [l 4 5 10] 

57 1 4 5 1 6 5 4 10 6 5 5 10 [l 4 10 5] 

58 1 5 6 l 9 10 4 9 5 4 10 6 (1 5 4 10] 

59 1 4 5 1 10 9 4 6 10 5 6 9 [l 4 6 9] 

60 1 4 5 l 7 6 4 9 7 5 9 6 [l 4 9 6] 

61 1 6 7 1 10 9 4 9 7 4 10 6 [l 6 4 9] 

62 l 4 5 1 9 8 4 7 9 5 7 8 [l 4 7 8] 

63 1 4 5 l 8 7 4 8 8 5 8 7 [l 4 8 7] 

64 1 7 8 1 9 8 4 8 8 4 9 7 [l 7 4 8] 

65 1 5 6 1 10 9 5 5 10 5 9 6 [l 5 5 9] 

66 1 5 6 1 6 5 5 6 9 5 9 6 [l 5 9 5] 

67 1 5 6 l 9 8 5 6 9 6 6 8 [l 5 6 8] 

68 l 5 6 l 7 6 5 8 7 6 6 8 (1 5 8 6] 

69 l 6 7 1 9 8 5 8 7 5 9 6 [l 6 5 8] 

70 1 5 6 l 8 7 5 7 8 6 7 7 (1 5 7 7] 
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Associated 
No. Triangles Quadruples 

71 1 7 8 1 8 7 5 7 8 5 8 7 (1 7 5 7] 

72 1 6 7 1 8 7 6 7 7 6 6 8 (1 6 6 7] 

73 1 6 7 1 7 6 6 7 7 6 7 7 [l 6 7 6] 

74 2 2 4 2 2 4 2 4 6 2 6 4 [2 2 2 6] 

75 2 2 4 2 3 5 2 5 7 3 7 4 (2 2 3 7] 

76 2 3 5 2 5 3 2 5 7 2 7 5 (2 3 2 7] 

77 2 2 4 2 4 6 2 6 8 4 4 8 [2 2 4 8] 

78 2 4 6 2 6 4 2 6 8 2 8 6 [2 4 2 8] 

79 2 2 4 2 5 7 2 7 9 4 5 9 [2 2 5 9] 

80 2 5 7 2 7 5 2 7 9 2 9 7 [2 5 2 9] 

81 2 2 4 2 6 8 2 8 10 4 6 10 [2 2 6 10] 

82 2 6 8 2 8 6 2 8 10 2 10 8 [2 6 2 10] 

83 2 2 4 2 7 9 2 9 9 4 7 9 [2 2 7 9] 

84 2 7 9 2 9 7 2 9 9 2 9 9 [2 7 2 9] 

85 2 2 4 2 8 10 2 10 8 4 8 8 [2 2 8 8] 

86 2 8 10 2 8 10 2 10 8 2 10 8 (2 8 2 8] 

87 2 3 5 2 6 8 3 3 6 3 8 5 [2 3 3 8] 

88 2 3 5 2 5 3 3 5 8 3 8 5 (2 3 8 3] 

89 2 3 5 2 7 9 3 4 7 4 9 5 (2 3 4 9] 

90 2 3 5 2 6 4 3 9 6 4 5 9 (2 3 9 4] 

91 2 4 6 2 7 9 3 7 4 3 9 6 (2 4 3 9] 

92 2 3 5 2 8 10 3 5 8 . 5 5 10 (2 3 5 10] 

93 2 3 5 2 7 5 3 10 7 5 5 10 [2'3 10 5] 

94 2 5 7 2 8 10 3 8 5 3 .10 7 [2 5 3 10] 

95 2 3 5 2 9 9 3 6 9 5 6 9 [2 3 6 9] 
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Associated 
. No. Triangles Quadruples 

96 2 3 5 2 8 6 3 9 8 5 9 6 [2 3 9 6] 

97 2 6 8 2 9 9 3 9 6 3 9 8 [2 6 3 9] 

98 2 3 5 2 10 8 3 7 10 5 7 8 [2 3 7 8] 

99 2 3 5 2 9 7 3 8 9 5 8 7 [2 3 8 7] 

100 2 7 9 2 10 8 3 8 9 3 10 7 [2 7 3 8] 

101 2 4 6 2 8 10 4 4 8 4 10 6 (2 4 4 10] 

102 2 4 6 2 6 4 4 6 10 4 10 6 (2 4 10 4] 

103 2 4 6 2 9 9 4 5 9 5 9 6 [2 4 5 9] 

104 2 4 6 2 7 5 4 9 7 5 6 9 (2 4 9 5] 

105 2 5 7 2 9 9 4 9 5 4 9 7 [2 5 4 9] 

lo6 2 4 6 2 10 8 4 6 10 6 6 8 [2 4 6 8] 

107 2 4 6 2 8 6 4 8 8 6 6 8 [2 4 8 6] 

108 2 6 8 2 10 8 4 8 8 4 10 6 [2 6 4 8] 

109 2 4 6 2 9 7 4 7 9 6 7 7 [2 4 7 7] 

110 2 7 9 2 9 7 4 7 9 4 9 7 [2 7 4 7] 

111 2 5 7 2 10 8 5 5 10 5 8 7 [2 5 5 8] 

112 2 5 7 2 7 5 5 7 8 5 8 7 [2 5 8 5] 

113 2 5 7 2 9 7 5 6 9 6 7 7 [2 5 6 7] 

114 2 5 7 2 8 6 5 7 8 6 7 7 [2 5 7 6] 

115 2 6 8 2 9 7 5 7 8 5 9 6 [2 6 5 7] 

116 2 6 8 2 8 6 6 6 8 6 6 8 [2 6 6 6] 

11? 3 3 6 3 3 6 3 6 9 3 9 6 [3 3 3 9] 

118 3 3 6 3 4 7 3 7 10 4 10 6 (3 3 4 10] 

119 3 4 7 3 7 4 3 7 10 3 10 7 [3 4 3 10] 

120 3 3 6 3 5 8 3 8 9 5 9 6 [3 3 5 9] 
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Associated 
, No. Triangles Quadruples 

-121 3 5 8 3 8 5 3 8 9 3 9 8 [3 5 3 9] 

122 3 3 6 3 6 9 3 9 8 6 6 8 [3 3 6 8] 

123 3 6 9 3 9 6 3 8 9 3 9 8 [3 6 3 8]. 

124 3 3 6 3 7 10 3 10 7 6 7 7 [3 3 7 7] 

125 3 7 10 3 7 10 3 10 7 3 10 7 [3 7 3 7] 

126 3 4 7 3 8 9 4 4 8 4 9 7 [3 4 4 9] 

127 3 4 7 3 7 4 4 7 9 4 9 7 [3 4 9 4] 

128 3 4 7 3 9 8 4 5 9 5 8 7 [3 4 5 8] 

129 3 4 7 3 8 5 4 8 8 5 7 8 [3 4 8 5] 

130 3 5 8 3 9 8 4 8 8 4 9 5 [3 5 4 8] 

131 3 4 7 3 10 7 4 6 10 6 7 7 [3 4 6 7] 

132 3 4 7 3 9 6 4 7 9 6 7 7 [3 4 7 6] 

133 3 6 9 3 10 7 4 7 9 4 10 6 [3 6 4 7] 

134 3 5 8 3 10 7 5 7 8 5 5 10 [3 5 5 7] 

135 3 5 8 3 8 5 5 7 8 5 8 7 [3 5 7 5] 

136 3 5 8 3 9 6 5 6 9 6 6 8 [3 5 6 6] 

137 3 6 9 3 9 6 5 6 9 5 9 6 [3 6 5 6] 

138 4 .4 8 4 4 8 4 8 8 4 8 8 [4 4 4 8] 

139 4 4 8 4 5 9 4 9 7 5 7 8 [4 4 5 7] 

140 4 5 9 4 9 5 4 7 9 4 9 7 [4 5 4 7] 

141 4 4 8 4 6 10 4 10 6 6 6 8 [4 4 6 6] 

142 4 6 10 4 6 10 4 10 6 4 10 6 [4 6 4 6] 

143 4 5 9 4 10 6 5 5 10 5 6 9 [4 5 5 6] 

144 4 5 9 4 9 5 5 6 9 5 9 6 [4 5 6 5] 

145 5 5 10 5 5 10 5 5 10 5 5 10 [5 5 5 5] 
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Since a Steiner quadruple system of order 20 contains 285 

quadruples, three cases can occur: 

(i) 	 the cyclic SQS consists of 12 cyclic sets with a-quadruples 

of period 20, 4 cyclic sets with a-quadruples of period 10 

and one cyclic set with a-quadruple of period 5; 

(ii) 	 the cyclic SQS consists of 13 cyclic sets with a-quadruples 

of period 20, 2 cyclic sets with a-quadruples of period 10 

and one cyclic set with a-quadruples of period 5; 

(iii) 	 the cyclic SQS consists of 14 cyclic sets with a-quadruples 

of period 20 and one cyclic set with a-quadruple of period 5. 

In all three cases the cyclic SQS must contain a cyclic set 

with a-quadruple of period 5, and since there is only one such cyclic 

set available (namely the one with the a-quadruple (145) from Table 2), 

the cyclic sets with the following a-quadruples cannot occur by 

Proposition 2 in any cyclic SQS of order 20 (and therefore these 

a-quadruples may be removed from the list in Table 2): 

(56), (57), (65), (92), (93), (111), (134), (143). 

According to Proposition 3, the following a-quadruples may be 

also removed from the list: (1), (73), (74), (84), (116), (117), (138). 

Unfortunately this leaves us still with too large a number 

of a-quadruples, therefore at this point we select from them only the 

symmetric ones. Thus from now on we operate with the reduced list of 

a-quadruples containing the following symmetric a-quadruples (with 

numbers from Table 2): 

(3)' (5)' (7)' (9)' (11)' (13)' (15)' (16)' (19)' (39)' (53), (55)' 

(#) (66)' (71), (76), (78)' (80)' (82), (85), (88), (102), (110)' (112)' 

(119), (121), (123), (124), (127), (135), (137), (140), (141), (144). 



27 

For the a-quadruples from (=If), using the Proposition 2 and 4 

a so-called system of prohibitions Z = Z(Q) was formed, i.e., for 

any given a-quadruple Q the a-quadruples Q1 , Q2 , ••• , Qt are 

found such that the cyclic sets with any of the a-quadruple Qi' 

i c \ 1, 2, ••• , t} cannot occur in a cyclic SQS of order 20 

simultaneously with the cyclic set with the a-quadruple Q. 

For the further computations we used the CDC 6400 computer. 

The following three cases have to be dealt with separately: 

Case 1. We have to find all possible combinations of 12 

a-quadruples from (:/:/:) satisfying the system of prohibitions Z 

and giving (by Proposition 1) in the sum of numbers ex. (Q) the 
s 

vector s
1 

(see Table 3). 

Case 2. We have to find all possible combinations of 13 

a-quadruples from (:f/:) satisfying the system of prohibitions Z and 

giving (by Proposition 1) in the sum of numbers ex. (Q) one of the s 

vectors s to s (see Table 3).2 7 

Case 3. We have to find all possible combinations of 14 

a-quadruples satisfying the system of prohibitions Z such that the 

sum of the numbers cx.s(Q) will give the vector s8 (see Table 3). 
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Table 3 

s 

sl 

s2 

s3 

S4 

s5 

s6 

s7 

SB 

1 2 3 4 5 6 7 8 9 10 

8 8 8 8 8 8 8 8 8 0 

8 9 8 9 8 9 8 9 8 2 

8 9 9 8 8 8 9 9 9 2 

9 8 8 9 8 9 8 8 9 2 

9 8 9 8 8 8 9 8 9 2 

9 9 8 8 8 8 8 9 9 2 

8 8 9 9 8 9 9 8 8 2 

9 9 9 9 8 9 9 9 9 4 

The computer was required to find all such combinations in all 

of the three above cases. Let us remark that if such a combination 

of a-quadruples is found it does not produce automatically a cyclic 

Steiner quadruple system; in other words, even if all necessary 

conditions given by Propositions 1-4 are satisfied they are in general 

not sufficient for the existence of a cyclic SQS (cf. [2]); however 

they are sufficient if we deal only with symmetric a-quadruples.. In 

our case, the procedure used was the usual back-track procedure (see, 

e.g., [13]); the corresponding program for case 3 in FORTRAN 4 is 

given in Appendix 1. 

The running time (for all three cases together) was 846.093 

seconds. For cases l and 2, there was no output, and for the case 3 

there exists exactly one combination of 14 a-quadruples from (:f/:.) 

satisfying all the above requirements. In accordance with what we 
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said in the previous paragraph, we obtained the following S-cyclic 

Steiner quadruple system of order 20 (denote it by SC (20)): 

(i,i+l,i+3,i+4), (i,i+l,i+2,i+ll), (i,i+l,i+5,i+l6), (i,i+2,i+6,i+8), 

(i,i+2,i+4,i+l2), (i,i+3,i+6,i+l3), (i,i+3,i+9,i+l4), (i,i+l,i+6,i+7), 

(i, i+l, i+9, i+12)' (i, i+l, i+8, i+l3)' (i, i+2,i+7' i+9)' (i,i+2, i+5, i+l7)' 

(i,i+3,i+7,i+l6), (i,i+4,i+8,i+l4), (i,i+5,i+lO,i+l5), where 

i = O, l, 2, •••• , 19 and the numbers in quadruples are 

taken mod 20. 

As it was mentioned in Chapter 2, there are two non-isomorphic 

Steiner quadruple systems of order 20 known so far [14]: SF(20) and 

SD(20). It is conjectured that Sc(20) is not isomorphic to any of 

those two systems but we were not able yet to establish this with 

certainty. On the other hand, the cyclic system SC(20) contains 

subsystems of order 10 (one on the even numbers and the other on the 

odd ones) similarly as SF(20) does. 

It is hoped that further investigation of the structure of the 

cyclic SQS of order 20 will prove useful for the task of finding 

a simpler (direct) proof of the existence of Steiner quadruple systems 

of every admissible order v. 

2 
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APPENDIX l 

Computer Program for Case 3 

Dimension JA(33, 10), JB(33, 3), IA(l4), IS(lO) 

Read (5, 24) ((JA(I, J), J = 1, 10), I= 1, 33) 

24 Format (7011) 

Read (5, 25) ((JB(I, J), J = 1, 3), I = 1, 33) 

25 Format (312) 

Read (5, 28) (IS(I), I = 1, 10) 

28 Format (1011) 

M = O 

I= l 

K = l 
410 IA(I) = K 

I= I+ 1 

IF(I.EQ.15) Go To l~Ol 

403 K = K + l 

IF(K.EQ.34) Go To 402 

KK = I - 1 

DO lOKL = 1, KK 

DO 10 J =1, 3 

KB = IA(KL) 

IF(K.EQ.JB(KB,J)) Go To 403 

10 Continue 

Go To 410 
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401 IX> 11 II =1, 10 

ISUM = 0 

DO 12 JJ = 1, 14 

IAJ = IA(JJ) 
. 

12 !SUM = !SUM + JA(IAJ, II) 

IF (ISUM. NE. IS(II)) Go To 404 

11 Continue 

M=M+l 

Write (6, 26) (IA(L), L = 1, 14) 

26 Format (1416) 

404 I = 14 

Go to 403 . 

402 I =I - 1 

IF (I.EQ.l) Go To 409 

K =IA(I) 

Go To 4o3 

409 IF (M.NE.O) Go To 408 

Write (6, 27) 

27 Format (lHl, *NO Combination Available*) 

408 Stop 

F.nd 
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