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SCOPE AND CONTENTS:

A rate equation model of a mechaniéally Q-switched Nd+3-in-g1ass
giant pulse laser is presented. The predictions of the model are com-
pared with the experimentally observed behaviour of the device. Good
quantitative agreement is obtained. To account for some of'the observed

features of the Q-switched laser, a non-radiative lifetime for the

4 4
by

into the model. This lifetime is found to be in essential agreement with

Ig/é transition of Nd+3-in-g1ass of 400 nsec. is introduced

'a quantum mechanical estimate of that quantity.

A plane-parallel cavity having either rectangular or circular
geometry with an angular limiting device introduced within it is described
analytically. The results of some calculations on the rectangular cavity
are presented. This problem is of interest in considerations involving

transverse mode sélection in laser resonator design
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ABSTRACT

Of all the Q-switching methods cmployed to operate a laser in
the giant pulsc modec one of the simplest and most regularly used
methods involves a rotating Porro prism. In this Thesis, experimental
results are reported which show good agreement with predictions based
on a rate equation model. The results indicate that it is possible to
design a rotating prism Q-switchéd laser on the basis of those rate
equations, and that the desigﬁ when realized, should perfofm close

to expectations.
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" CHAPTER 1

INTRODUCTION

1.1 Survey of Q-Switching Techniques:

McClung and Hellwarth(l), followed by othcrs(z), developed what
is today known as a Q-spoiled laser. Their experiments were performed
using a ruby laser rod as the active medium and a Kerr cell to control
the regenerative action of resonant fluorescence within the cavity. They
achieved a peak power of 0.6 Megawatts in their early work. Since the
initial break-through in 1962, the field of giant pulse lasers has grown
at a fast pace. This growth has been marked by an increasing quantity of
available Q-switchiﬁg techniques as well as new wave lengths.

During the oscillation period of a laser the induced emission
effectively reduces the lifetime of the metastable upper laser level,
thereby limiting the possible population inversion for a given pump power.
This limitation of the inversion population in turn limits the peak out-
put power of the device. HellQarth(s) pointed out that if one constructs
a laser with external reflectors and inserts a closed shutter in the
optical feedback path, the device will not oscillate and a large over-
population of the upper metastable laser level will result. If the
éhutter is opened when the overpopulation is maximized, positive feedback

will be initiated and an extremely large output spike generated due to

the presence of the large overpopulation.

1.



Q-switching techniques must therefore concern themselves with

“methods of controlling the losses of a laser cavity. Ideally the

control should be fast in order that the losses be a minimum when the

_______giant pulse evolves. Just how fast depends, among. other parameters,-on

the gain of the active material when the overpopulation has been maximized
as well as on the separation between the cavity reflectors. Quantitatively,
prescnt solid state Q-switched lasers need to be switched in about 100

nsec.

(4) (5)

Ultrasonic shutters , Faraday effect shutters , electro optic
shutters such as Kerr cells and Pockel cells(6), blcachable absorberg7’8)
and exploding filteré(g) have been used to advantage as Q-switching

elements. Among the more novel of the Q-switching techniques is that

—————involving specially prepared laser rods which, upon being pumped, Q-switch

themselves(lo’loa).

Among the mechanical methods of Q-switching a laser, perhaps the
cne which enjoys the most popularity makes use of a rotating Porro

(11’12). This thesis is concerned with the operating characteristics

prism
—-of-a Nd+3~doped glass laser, Q-switched by means of a rotating Porro
prism.
We have referred to some of the techniques employed to Q-switch a

laser but the list we have given is by no means exhaustive. Future

developments will most likely continue to enlarge the number of available

T switching techniques.

Finally we should point out that recently a technique has been

developed whereby the multimode nature of a laser is used to advantage to

(13)

obtain high power and very short duration pulses This technique, if

used in conjunction with normal Q-switching methods, can result in the
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availability of a light source of very high power and short duration

pulses. The high power and short duration pulses result if sevcral
ldngitudinél modes are phase-locked so that the amplitudes of each mode
are added in phése at particular periodic times whilst tending to inter-

fere destructively at all other times.

1.2 The Giant Pulse Laser--Some Preliminary Remarks:

A giant pulse laser is a complex device. The factor which gives
it that characteristic is its inherently non-linear and multimode nature.
Coherence effects can influence the performance characteristics of the
device;. for example mode locking techniques depend on mode coherence.

Also the non-uniform gain profiles of lager fluorescence lines introduce
an added degree of complication to any analysis of the operation of giant
pulse lasers. The dynamics of solid state fluorescent lines are not
really well understood. For instance, what processes are involved in
restoring the equilibrium line shape of.an iﬁhomogeneously broadened line’
originating from a transition between jnvertcd levels after a hole has
been burnt in its profile by an intense monochromatic beam? Evidence of
such processes has been found(14) for the 1.06p transition of Nd+3 in
glass, but they have been treated only on a phenomenblogical basis. The
non-uniform excitation and heating of‘the laser medium along the rod
radius during the pumping pulse can only complicate attempts to describe
the device performance analytically(ls). There has, however, been a
recent effort to take into account thé effects of a standing wave
resonator, and the initial conditions of radial variation in gain on giant
pulse laser cnergy release(lé),

To attempt to take into account all the factors that can influence

the operating characteristics of a giant pulse laser would be a truly



4
difficult task. All one can hope for is to arrive at some simplifying

“assumptions which leave the essential influences of the various factors
géverning éiant.pulse evolution within the framework of the modei. This

- __-i§_yhg§w;h§mxa;§”equation mode1(17’18’19) for Q-spoiled laser action
attempts to do. In this thesis such a theory is applied to describe the

observed operating characteristics of a Nd*s doped glass giant pulse

laser.

—- Y3 8cope of This Thesis:

This thesis concerns ifself with two quite separable topics. The
.w,ﬁajor portion of it deals with an-analytical model for a Porro prism
__Q-switched laser. Emphasis is placed on the ability of that model to
successfully prcdict the operating characteristics of the particular Nd*3
Vgiass giant pulse laser which was used to extract the relevant experi-

- - «-mental-daté. The second topic to be cpnsidc;ed is of a theoretical
nature. To be specific, the problem of ‘transverse mode'selecfion in a
planc parallel passive interferometer will be treated. The use of an
angular limiting device within thé interferometer will be shown to result
in mode selectioh.

The work on the bchaviour of the giant pulse laser was undertéken
because of the existence of a gap between theory and experiment. The
properties of many experimental giant pulse lasers have been reported in

the literature. Theorics of giant pulse laser operation have also been

abundant, however, there has been very little visible effort to bring out
-—theoretical calculations and experimental results simultaneously. It is
- hoped that this thesis will serve to partially fill that gap. A 'somewhat
unique method of approach to the problem is used--an approach that makes

the operation of the mechanically Q-switched giant pulse laser



understandable in simple terms.
_The method used to solve the problem of transverse mode selection
in a planc parallel interferometer is presented as an original contribu-
tion. It is hoped that the results of the calculations, which were under-
taken in this context, will be useful in laser cavity design considerations.
A method of increasing the apparent switching speed of the Porro
prism switch will also be considered?®) . Other methods are also

available(ZI).



CHAPTER 2

ANALYTICAL DESCRIPTION OF A ROTATING REFLECTOR

Q-SWITCHED LASER

2.1 Introduction:

This Chapter deals with the analytical description of a simplified
model of a rotating mirror Q-switched laser. Certain concepts pertinent
to an understanding of the operation of the physical device will be intro-
duced. The equations forming the basis for the description of the device
will be shown to be coupled non-linear differential equations. Since it
has not been pbssiﬁle to obtain a closed form solution of these equations,
numerical methods are invoked to deal with them. In particular, such
solutions as will be presented, are based on parameters and initial
conditions which describe the particular laser system used in this thesis.
These solutidns will be useful at a later stage when the feasibility of
describing a physical Q-switched laser system is considered, in terms of

the equations obtained from the simplified model of the system.

2.2 State Transitions In Nd+3:

The energy level scheme of Nd+3 is shown in Figure (2-1) for

(22)

““reference . It is well known that divalent and trivalent rare-earth

“ions contain only 4f electrons in their ground state in addition to the

) +3

basic common xenon shell(23 R o) particdlar, the Nd ~ ground state is

obtained by removing two 6s electrons and one 4f electron from the Nd

ground state, leaving the basic xenon core and three shielded 4f electrons
6



Figure (2-1)

Nd+3 Energy Level Scheme

Width of the levels indicate the total separation
of the Stark components in the Anhydrous Trichlorides
(after G. H. Dieke: in "Advances in Quantum Electronics",

edited by J. R. Singer, Columbia University Press, New

York, 1961)
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8
as the Nd+3 ground state configuration. In the case of the trivalent

ions of the rarc earths, with the exception of Tb+3, all levels below

(22)

50,000 em”? belong to 4f" configurations

4
3727 T1172)

- ; : +3 ;
generally used for obtaining laser action in Nd °, we are concerned with

Thus, in considering the 1.06p transition (4F

a 4f » 4f transition, which in the case pf the free Nd+3 ion, is strictly
parity forbidden. Nd+3 in a crystal matrix can be trcated approximately

in terms of the Russell-Saunders coupling scheme. 1In the LS approximation,
4 4
we note the following violations by the F:(,/2 > Ill/2
+3

Nd © of the strong selection rules applicable to electric dipole transi-

transition of

© tions in the scheme, namely,

AL £ %1
AJ #£0%1
Consideration of the magnetic dipole selection rules shows that
the transition 4F3/2 > 4111/2, although not strictly forbidden in this
instance, nevertheless disobeys the ‘selection ruie AJ = 0 £ 1 applicable
to those transitions. If it were not for this fact, the spontancous
transition probabilities calculated on the basis of electric dipole and
magnetic dipole approximations could very easily turn out to be of the
same order of magnitude. The calculation of the inherently weaker
magnetic dipole tr#nsition probability in the case of the 4F3/2 - 4111/2
transition does not require a mixing of states of opposite parity, as does
the same calculation undertaken in the electric dipole approximation.
This might well be a compensating mechanism which could make the two
transition probabilities roughly equal.
4

. o 4 +3
. The explanation of the observed transition F:,,/2 * I“/2 of Nd
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in glass must concern itself with non-centro-symmetric interactions that

lecad to a mixing of states of opposite parity(241 In general,the non-centro-
symmetric interaction may have as its origin the non-centro symmetric portion of
the microfields due to surrounding ions acting on the ion of interest. Thus, two
states of a configuration nnN which become slightly admixed by a non-symmetric

field with states of the configuration nzh_ln'z' and n'l'4£+1n2N+l

yield
two mixed parity states which’'will become connected by the clectric dipole
operator. For f clectrons the following selection rules apply: In the
case of fN configurations, -the perturbing states may differ only by the
single substitution of n'd or n'g electrons. (That is to say, the con-
figurations obtained by removing a 3d or 4d electron from thc xenon core
and placing it in the 4f subshell, or exciting a 4f electron into any of

the empty n'g or n'd subshells, in the case of Nd+3). Furthermore, the

initial and final states of the transition must be such that:
AS =0 AL <6 AJ< 6
Under these selection rules, the observed transition 4F -+

3/2

4111/2 of Nd*s in glass becomes allowed. However, if the admixture of

states of opposite parity with the states of 4f3 configuration is small,
the transition probability for spontaneous emission will also be small.

This factor could qualitatively explain the observed lifetime of the

4

F level of Nd+3 in glass, which is in the order of hundreds of micro-

3/2

seconds at room temperature.
It is not difficult to see why the admixture of states of

"opposite parity by the crystal field will be small, in the case of rare

earth ions. For ions of the rare earth series the inequality

H1 >> H2 >> H3 holds. Hl is defined here as the residual electrostatic

interaction Hamiltonian given by:
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. ! N e2 N ze2
KL bl B

Hl = T ;—— *
i>j=1 Tij  i=1 i

while H, is the spin-orbit interaction Hamiltonian given by:

Hy =" & lrg) 5S40 &4
i
with B
» h du
E(r) g . 5
2m c'r dr
vr..) th : 3
where - is the effective potential seen by the i electron.

HS is thc electrostatic Hamiltonian due to the influence of the electric

~—field of surrounding atoms at the ion position(zs). Shielding of the 4f
electrons by the averaged electrostatic field of the 5s and S5p electrons
of the basic xenon éonfiguration tends to minimize the effect of an

external electrostatic field on the 4f electrons of the rare earth ions

R+3. It is this shielding that is resﬁonsible for the relative magnitude

am~of-H3.and the sharpness of the energy levels of rare earth ions located

in a crystalline field. Since H3 is small relative to_H1 and HZ’ and

since the admixture of states of opposite parity is assumed to be due

only to the non-centro-symmetric portion of H,, the admixture will be

3 2
small and the LS coupling scheme will be approximately applicable.

N 4 4 y 5k . .

7 .

We note that the F3/2 -+ 111/2 transition being considered
takes place between two deep lying states. Furthermore, the states with

which slight admixture takes place lie at least” 50,000 cm-1 above the

4 4
F3/2 and 111/2

another depends inversely on the energy difference between those states,

states. Since the admixture of a given state with

1
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we again arrive at the conclusion that, in the case being treated, the

admixture of states of opposite parity will be small.
A non-centro-symmetric field will act on an ion that is located in
a site that lacks a centre of inversion symmetry. Thus, considering a
*3 . Ve ' . . : .
Nd © ion to be located in a glass matrix and treating the glass matrix
+ ; 5 g g
-Nd ? system as a solution, there is no apriori reason to believe that a
centre of inversion will exist at the ion position. Hence, it is not
unreasonable to suppose that the mechanism responsible for the
4F oy T 4I transition of Nd+3 in.glass is the odd portion of the
3/2 11/2
crystal field Hamiltonian.
It is interesting to note that the selection rules for mixed
parity states also explain the appearance of some of the absorption
33 . = s ¥ ' ;
bands of Nd 3 in glass which are used in practice for optically pumping
the material. However, a few absorption bands are observed which violate
the AS=0 selection rule. These obscrved bands can be tentatively
explained if it is recalled that spin-orbit interaction ususlly leads to
: : (24)
a breakdown of selection rules on S and L .
It is perhaps worthwhile to indicate at this stage that the

theory of intensities of rare earth crystal and solution spectra in the

visible region of the spectrum is still in a stage of development.

2.3 Formulation of the Rate Equations Governing

Laser Action:

2.3-1 Some Introductory Notions-

We begin by establishing a simple relationship between intensity
and photon density. Consider a stream of photons traveling in an
arbitrary direction in a non-absorbing medium of index of refraction n.

Let us neglect the effects of diffraction, and consider that the photon



12

beam may be characterized spatially by a cross sectional area A. Let

the number of photons per unit volume within the beam with angular
frequency between w and w+Aw be nd(w)dw , where ¢(w) is the photon
density per unit angular frequency range of the beam referred to vacuum.
Each photon within the range w and w+Aw carries encrgy hw. Therefore,
since group velocity of.the photons 1is %3 the power per unit area flowing
through~the surface normal-to the-direction-of propagation of-the beam,

and with perimeter defined by the boundary of the beam, is: .

he §-¢(w)Am

The quantity obtained above is the intensity of the beam due to

- photons within the.angular frequency range w aﬁd w+tAw. If we define a
quantity, I(w), as the intensity per unit angular frequency range, we have
‘the relation:

I(w)Aw = nhw %—¢(N)Aw PR - %

In crossing a boundary, formed by two media whose indices of refraction
differ, which is normal to the direction of propagation of the‘béam,
it is seen that I(w) is constant as a conseduence of continuity. Reflec-
tion at the interface has been neglected‘since one is concerned with
boundaries formed by laser rod end faces and atmospheric air. The laser
rod_end faces are generally dielectric coated to minimize reflections at
an appropriate wave length. It also follows from (2-1) that if ¢1(w) is
the photon dehsity per unit angular frequency range in medium 1 and ¢2(w)
that in medium é then:

¢, (W ¢, (w)

b "
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We have argued that in the case of Nd+3—glass lasers we are
probably concerned with predominantly dipole transitions. It, therefore,
becomes advantageous at this stage to introduce somé quantum mecchanical
results pertinent to such dipole transitions(26).

In general it can be shown that the probabilities of reversc
transitions between any pair of states under the influence of thc same
radiation ficld are equal. In particular, the transition probability for
absorption or stimulated emission of a photon between two stationary
states K and ¢ of energies Ey and ER(EK> Ez) such that |wK£| = |£}L%%j1d
is proportional to I(ng) and hence to ¢(le). In the casc of electric
dipole absorption and induced emission of light-quanta, both transition
probabilities are also proportional to the square of the matrix clement
of the electric dipole moment er of the particle involved.

The spontancous transition probability is proportional to the
square of the matrix element of the dipole moment of the particlec involved
and does not depena on the intensity of the radiation field. The
spontaneous emission probability can be thought of as arising from the
influence of the zero-point energy of the electromagnetic field on the
particle under consideration.

In the case of spontaneous emission, the radiation is distributed
isotropically in angular space--in contrast to induced emission which
maintains to a good approximation the angular distribution of the
perturbing photon beam within the material. |

A measurement of the decay time constant of a dipole transition,-

by observing the fluorescence from the transition, yields a measure of

the dipole spontaneous transition probability if the lifetime of the
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relevant level is not shortened significantly by processes which compete

with dipole de-excitation.

2.3-2 Threshold for Laser Action-

A useful relationship, involving laser material properties and
cavity reflector reflectivity, determining the conditions that must be

met before laser action can commence will now be developed. To do this,

let us consider a material of index of refraction n within which are
located active ions possessing. two non-degenerate stationary states labelled
K and %, having energies EK>and EL(EK > El) respectively. Let level K
and 1¢ve1 %2 have populations NK per unit volume and Nz'per unit volume

_ .. _of host material respcctively. Let the two levels be connected by the
electric dipole operator p=eT. We assume that the material hosting the
;ions is shaped in the form of a circular platelet of area A and thickness
Ax. Further consider a beam of polychromatic photons of this'area,
normally incident on the platelet, which has an intensity I(sz) per unit

TEZ

_._.angular frequency range at w = w The transition probability”for

Ke®
absorption and induced emission in the dipole approximation is(26):
2.2
417e n 2 2
——— Hapd M)y, |
3h2C : Kg Kg

’

where (})KQ is the vector whose cartesian components are the K-£ matrix
elements of x, y, and z. The net number of transitions per unit time per

unit volume that will take place in the platelet, under the influence of

d(NK-Nz)
the photon beam, can be written as S -where: -
d(N,-N_) 2.2
K 22 _  8n"e'n - - BN
dt e 3 I(wKZ) l(r)Kf,l (Z\K Nl)

3Mc
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Now lgt 22 :
b AT
o 3h2c Kg
Then,
d(NK-Ng)
—gt — = - 2, Tl )N -N)

We can now substitute for I(wKz) from (2-1) giving

d(NK'Nz)
el | I - i | -
at LR L) P
Each net transition adds or subtracts one photon to or from the beam.
The change in ¢ experienced by the beam on going through the platelet is
“then given by A$ where:
=N

(NK~h2)

Aw

A¢=aon‘hw Ax

kg ¢ (ogy)

The photons added to or subtracted from the beam will have
angular frequencies in the approximafe range we, * %9-, where Aw is the
" width at half maximum of the emitted or absorbed photon angular frequency
distribution. Therefore by allowing Ax»0 we arrive at the result,

d () N -N,)
dx = oy Tog, ¢(wy,) A A .

—Given—now a host platelet-of-thickness % and assuming, as has
been implicit in the above argument, that the intensity of the incident
beam is low enough not to change the population of the two levels

significantly, we arrive at the folloiwng result by integrating (2-2):
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(N -N)

o _nhw At

(o} Kg Aw .

olugy) = o,(uy,) e ....(2-'3)

where ¢o(le)_is the ihcident photon density per unit frequency range,
evaluated at w =.mK2, while ¢(wK2) is the resultant quantity after one
traverse through the platelet.

To further our argument, let us consider a system consisting of
two circular plane parallel mirrors of the same radius facing one another
and of reflectivity r, and T,. In addition, let the mirrors be

- separated by a distance L* and imagine that the cylindrical rod of
length 2 considered above is placed between, and coaXially with, those
mirrors. From equation (2-3) we know that a beam normal to the
mirrors, (and of radius equal to the radius of the mirrors) characterized
by a photon density per unit angular freQuency, ¢(wK2)’ in frge space,
incident on one end of the rod will emefgc from the other end
characterized by the following photon density per unit angular fre-
quency range:

Kg Aw A

aoﬁhm
¢(wm) e

Upon striking the first mirror of reflectivity T the region of the
beam being considered will in part be transmitted and in part be
__reflected. The reflected portion of the beam will then be characterized
by the photon density:
aon'hw —_— 0

K Aw

¥ The role of L will become clear as the development proceeds.
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After a complecte pass in the cavity, the photon beam will be

characterized by a photon density per unit angular frequency given by:

C(Ng-Ny)
K % .

e ks BB
Ke’T172 B W

The complete pass will take a time T2 where

(Lt oD
T2 e <; c

For the photon beam to sustain itself undiminished the condition

(N,-N.)
KR 20,

2 c Aw e

o_nhw
on

? B

1

must hold.
This yields, upon taking natural logarithms on both sides of
the equality, the following result:

(N.,-N,)
1 . K g
=z T, = nhe, Aw . : B X5

which is independent of the photon density in the cavity.
The above condition is required to be met by the system in
order to just maintain oscillation. It is consequently the condition

at threshold energy for laser action. Since - § ¢n r > 0, we must

159

therefore have NK'NQ > 0. Condition (2-5) on the population inversion,

NK'NQ’ is essentially one of unstable equilibrium, hence energy must be
absorbed by thc‘system from an external source in order that condition
(2-5) can be met. In practice the required energy is provided by an

excitation source (commonly a pulsed xenon flash lamp in the case of
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optically pumped solid state lasers). Threshold is then the energy
required to drive the excitation source, which results in condition

(2-5) being satisfied in the system.

2.3-3 The Rate Equations--The Case of Equal

Laser Level Degeneracies-

The coherent photon build up in a cavity of length L containing
a laser rod of index n and length £, bounded by two mirrors of
reflectivity r, =71,

equation (2-4), written in terms of the photon density per unit angular

= R, obeys the following relation, based on

frequency range:

N, -N
W, T = plags, e °  TF N
Ke? 1 Kg?
where T1 = L—:Eiﬂlllz and Yy = -nR

This relationship results directly from integrating from 0 to T1 the

following differential equation,

» C
e e dt = ¢(le,t)[aoTﬂ'\mK£ —Am i l-Y ] L*(ﬂ-l) I
s ne o (26}

after assuming that the level population is not significantly disturbed
during the portion of the build up that is of interest, namely in one
pass of the photon beam.

It is also inherently assumed that, in the time interval required
: for the photon beam to comnleté one pass, the photon density does not
change appreciably. Thus, we are able, within the limits of the approxi-

mations involved, to attribute to the cavity at a particular instant of
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~ time a uniform flux density. In-actual fact, the photon density will
vary from point to point in the cavity leading, in a more precise formula-
———tion of the prqblem,;to relationships between quantities of interest |
involving partial differential equations. The more precise formulation
would, in the end, involve the solution of coupled non-linear partial
differential equations. Numerical methods for their solution would be-

come extremely cumbersome and time consuming even if undertaken with the

aid of high speed computers. In order to avoid this problem, we concen-

trate our attention.on thé simplified rate euqations which are far more

manageable nuﬁericélly and likely to illustrate, for the.parameters

applicable to the Q-switched laser studied for this work, all the important
“— ~features of the more general formulation. The number of photons in the

cavity per unit angular frequency range is:
$ogs ) L+ (n-1) 2] A

were A is the photon beam arca. This quantity changes through stimula-

ted emission at a rate given by:

(Ng-Np)
Fa [¢(MK£’ t) (L+(n-1)2) A] = ¢ (wyy»t) [aonhwxz s 2] Ac

[~ %

This rate must be balanced by corresponding transitions between levels

K and 2. Therefore, we arrive at the following equality:

N -N (N =N )
Kool - K™=
" AQ = -2¢ (wKSL’ t) aonthQ e o 2] AC

8o

-—

N,-N
The factor of 2 is necessary to take account of the fact that if( KAw!?) AL

changes at a certain rate, the photon flux changes at half that rate.
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We neglect the effects of upper level depopulation by spontaneous emission.
In giant pulse experiments the pump serves to establish a condition of
~~— gain in the laser rod. During the times-involved in—giant pulse transients,
of the order of tenths of a microsecond or less, the gain just before ér
immediately after the giant pulse has evolved will not be disturbed signi-
ficantly by spontaneous emission, which in useful practical cases has
________lifetimes in the order_of hundreds of microseconds.
We now consider the effect of incorporating into the above
equation a lifetime for a terminal laser.lével, 2, which we imagine being
abie to relax to a lower lying 1eve1>by some undeterhiﬁed mechanism.
This latter transition may be radiative or non-radiative but is capable
"of being described by a relaxation time constant 1. It follows immediately

_ that the appropriate relationship is:

(N -N) (N.-N ) .+ N A
g_ ___K___'Q'_ A2l = - 2¢(w 5 t) o n“hw, __I\__L 2l & e L
dt K2 o K#
Aw Aw Thw

.(2-7)

“We can now proceed to obtain the last relationship, forming --
together with the relationships (2-6) and (2-7) which we have just derived--
the complete set of rate equations. To this end we write the equation
governing the population of level &,

d N2A£ N Al (NK'NE)

E[F_}, = - 'rAur + ¢(w ra_t) [0L n‘hwm ST 1] _Ac
.(2-8)

Level 2 is being depopulated by de-excitation to a lower level and by

resonant photon absorpglon transitions to lcvel K. In addition it is

being populated by stimulated transitions from level %. The above equation
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quantitatively expresses these processes.
The rate equation for the photon density (2-6) can be rewritten
in the following form:
d (N -Ny)
H [q)(wKQ’ t)(L+(n'1)f.) A] = ¢((.0K2, t) [(loﬂh(t)l\.2 ——Am—- 9,—'Y] AC
.0 (2-9)
We now make the following substitutions to simplify equations (2-7),

(2-8) and (2-9). We let:

N, -N
. K2 _ L+(n-1)2>
%, - Aw ® = dlugy, t) )
N
9 - B = o_rnhw
. B e
hl - o Kg
T = L+(n-1)2
1 c

We thus arrive at the following equations governing the photon flux, the

population inversion and the laser terminal level population:

g oz B X
. Y

at T . cer.(2-10)
N.
aN o, ez, M : cee(2-11)
I - T T |
1
Ny e M ~ ceel(2-12)
dt = T, T

where T1 is the time per pass for a coherent photon in the cavity

N is the population inversion per unit volume of the laser material
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per unit angular frequency range.

N1 is the population of the terminal level £ per unit volume per
unit angular frequency range.

¢ 1is the coherent photon flux density per unit angular frequency
range referred to the volume of laser material in the cavity.

B may be considered to be a coefficient of amplification.

At this point we wish to summarize some of the noteworthy approxi-
ﬁations involved in deriving equations (2-7), (2-8) and (2-9). The
contribution to the laser output from spontaneous emission has been
neglected. Spontaneous emission is eventually called upon only to
establish the initial value of the photon density in the cavity (see
Section 6.1 ). y has up to this point been assumed to be constant.
The following subsection will introduce a tiﬁe dependence into y. Further,
we have dealt with the case of equal laser level degeneracies -- sub-
section (2.2-5) will consider the effects on the formulation of any such

.degeneracies.

The rate equations (2-7),'(2-8) and (2-9) have been derived by
assuming that the spectral shape of the spontanecous emission line is
rectangular. ¢ in equation (2-9) can-be interpreted as the number of
photons per unit volume of the cévity per unit angular frequency range
averaged over the spectral width of the rectangular spontaneous emission
line. If there are'M cavity modes within the spectral width of the

fluorescent line Aw, then

oAw
M

is the number of photons per unit volume of the cavity per cavity mode.
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For the assumed spectral shape, each cavity mode (on the average) contains
the same number of photons. We thus see that, although no mention of
cavity modes was made in arriving at equations (2-7), (2-8) and (2-9),

the mode structure can nevertheless be accounted for in a first approxi-

mation on the basis of those ratec equations.

2.3-4 Introduction of A Time Dependent Loss

Factor Into the Ratc Equations-

In Q-switching experiments one is concerned with an externally
controlled time-dependent loss factor; thus, in equation (2-10), we allow

Yy to become a factor of time and write:

Yy = v(t)

For the case of interest, namely OQ-switching by employing a rotating
Porro prism as 6ne cavity reflector, the above substitution represents

an approximation. The nature of the approximation is evident if one
recalls that y arose from considerations of cavity reflector reflectivity.
We are assuming therefore that the losses due to reflector misalignment
can be accounted for by attributing a variable reflectivity to plane-
parallel aligned reflectors. The output of the laser, however, is
calculated by taking into account the actual reflectivity of the output
coupling reflector and the photon density in the cavity. The output is
then proportional through the output reflector reflectivity to the photon
density in the caviéy. The minimum value of y is simply -2nR where R is
the output reflector reflectivity. This case corresponds to perfect

alignment of the Porro prism with respect to the output reflecctor.
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¢o-changes at a rate given by:

w

d ¢ ¢ ?,HR T pecwes >t 4 &=
(o] EA 4

due to output coupled into the beam, and changes at a rate given by:

do y(t)¢o

dt T1

1}
]

due to output coupled into the beam and internal losses owing to Porro
prism misalignment. The above assumptions arc essential, if one is to
proceed with the solution of the problem, since an '"exact' formulation

would be most difficult to achieve and even more so to solve.

2.3-5 The Rate Equations for Na*3 in Glass-

The set of rate equations (2-10), (2-11) and (2-12) have been
idealized in more than one respect. Among the idealizations is the
assumption that the two energy levels between which lasing takes place
are of equal degeneracy or multiplicity. This assumption does not
necessarily hold. 1In fact for Nd+3—g1ass lasers it seems unlikely that
it does hold. The net degeneracy of the Nd+3 upper level 4F3/2 is 4,

while the net degeneracy of the terminal level 4 is 12. These two

1172
levels arc split by interaction with the glass matrix. The upper level
splits into two Kramers doublets, each being 2-fold degenerate. The

detailed splitting of the 4I level is not clear. In any event, the

11/2
formulation of the ratc equations must take into account the degeneracies
of the initial and terminal levels involved in the lasing transition.

If the lasing takes place between two levels, each belonging to a

group of closely spaced levels, account must be taken of the fact that



25

‘those closely spaced levels may be thermally connected to cach otker.
Iﬂ the case of Nd+3-glass laser material, it is not unreasonable to

e BSSUme ithat thefmal equilibrium between-the-thermally connected levels
is maintained, from instant to instant, during the period when lasing is
taking place. If we attribute the energy level diagram shown in Figure'
(2-2) to the active ions of the laser material, the laser rate

__equations governing the system can be easily derived and shown to be:

S -] = ¢ nhuy, L - y(0)] Ac
, Aw ‘ Ceese(2-13)
d[N, /8w A 2] N, AL (N,/g,-Nfe,)
2 = ) 252 4%
Sihicaerins: - b OB '“TAw‘“+'¢[gonthl ‘——f:Ka—f————ﬂJ].uAc SRRy 5 2 . %
N 2 . (Ny/gy-N,/g,) i -
u 2-Eg ey ‘
i T ¢ [agnhoy S ] " So e (2515)
D
where
' N, = N, +N, = upper level population
= v V '
Nz l\3 3 I\'4 = lower level population
g, * 8, = g, = upper level degeneracy
B3+ By =8~ lower level degeneracy
_AEl
Nl N2 KT
— = — e = Boltzmann  relation between levels N, and N
g4 g, . 1 2
AE
b 2
N3 , N4 KTo S o
_— = — e = Boltzmann relation between levels NS and N4



Figure (2-2)

The Four Energy Level System Described by the Rate

Eguations‘

The splittings and spectroscopic labels are those

of Nd*s-in-glass.
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In ,the above equations account has been taken of the degeneracies
g of the levels and it has been assumed that the close lying levels are
- instantaneously thermally connected to each other.

Nd+3-g1ass lasers have the energy level diagram represented in
Figure (2-2) and so the rate equations above are applicable to the Na*3

in glass system. The 12-fold degenerate terminal level 4111/2 is split

(27)

—~into two levels, broadly speaking, by the glass matrix The way in

which the degeneracies are distributed among the two levels is not known.
Thus, for Nd+3—g1ass laser material, the relevant degeneracies of the

terminal level . components are not available. It should be pointed

1172
out in this respect that in crystal fields of symmetry lower than cubic,

4I 4
11/2°

It would seem then that the use of the rate

all dééeneracies of the E

)

field are removed(28 .

3/2 that can be removed by the crystal

equations, including the degencracies, is foiled by this state of affairs.
This is not entirely true, and to demonstrate our point we make the

following substitutions into equations (2-13), (2-14) and (2-15):

N N N . ‘

2 4 4 L+(n-1) ¢

N gl = ( — WA S Bk e -
( 5, " 1, )/bw, Ny o= ( 2 Vb @ ¢{- " J

4 2 b fnel) & e et R
b= aoﬁthz T1 - c K1 = .- AE
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and by making use of the relationships following equations (2-13), (2-14)
and (2-15), we arrive at the simplified rate equations applicable to the

laser material whose relevant cnergy levels are shown in Figure (2-2)

namely;

de _ ® BN y(t)

dt T, T, e...(2-16)
N

dN BNL < 1

ad = ° T, [k, + K] + < oo (2-17)

dNy - o BN fl

dt T, 1 T i vasf2=18)

The above rate equations are similar in form to the set (2-10), (2-11)
and (2-12). The only difference lies in the appearance of K1 and K2 to
take account of degeneracies and the thermal coupling between the close

lying levels. Now, for the case of Nd+3-g1ass material we may take:

g, =8, = 2 and AE1 % 110 cm-l. These data, together with the

operating temperature, are sufficient to determine K We can certainly

9
place lower and upper bounds on Kl' To do this we recall that Bz * By = 12,

The separation between the two levels 6riginating from the 41 terminal

11/2

level is AE2 ¥ 300 cm-l. From the above considerations, the smallest
- AE,/KT
: . where e 2 = 0.24
10 + 2 x 0.24 ~ 10.5 o

1 1 | .
2 + 10 x 0.24 ~ 4.4 ° Therefore, a good estimate

. 1 : 1
of Kl is 57— = 0.13. K2 has a value given by T 7 x 059 - 0.314.

possible value of Ky is

and the largest is

The estimates are based on room temperature operation. The approximation

of instantaneous thermal equilibrium among the close lying sublevels is
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valid if the longest reclaxation time of the two sets of closely spaced

sublevels is shorter than about 1 nsec., a valuec much shorter than the

width of the giant pulse encountered both in

theoretical and experimental

observations. An estimate of the appropriate thermal relaxation rates

is made in the Appendix. The calculation shows that the assumption of

instantaneous equilibrium is justified.

2.4 Some Properties of the Q-Switched Laser

Rate Equations:

2.4-1 Normalization of the Rate Equations-

Before entering into a discussion of

the properties of the set of

rate equations (2-16), (2-17), and (2-18), it is convenient to normalize

them. A natural unit for the measurcment of

the time evolution of the

giant pulse is the time per pass of the photon beam in the cavity. It

is also convenient to express ¢, N and N1 in

variables. To do this we define:

t =TT

¢ = e1¢o

N = ezNo
Ny = &3N10

terms of dimensionless

Equations (2-16), (2-17), and (2-18) may thus be reduced to the form:

a1 = % (BextN, - (1))

€
E iy s 2

.

= - QOB Noe1

T.N

110
T




30

d €, € T.N

N
10 _ €152 1Mo
7 B8N, RKy -

Since €15 €55 and €5 are arbitrary we may choose their value at our

discretion. Therefore, let:

2K
2 1 1
1 7 BR(K+K) 2% Bt 3 7 BRR K,)
This yields:
d¢o
T - ¢° (No - v(T) ) eeee(2-19)
dNo s o s 2K1 T1N10
dT 0o K +K; T ve..(2-20)
e L LB - [l 1
T = % : ‘ Vel (2-21)

These equations, in terms of normalized variables, are much simpler in
form than the equations (2-16), (2-17) and (2-18), from which they result.
We note in particular that the factors B and % occuring in equations
(2-16), (2-17) and (2-18), have been absorbed by the transformation and
hence no longer appear in the above resulting equations. Further, the
factors K1 and K2 appeared in equations (2-16), (2-17) and (2-18) as .,
essentially separate entities; However, the transformation used to
arrive at equations (2-19), (2-20) and (2-21) in effect groups the

2K

and K2 into a single term, (———l;) , appearing

1 K1+K2

solely in equation (2-20). Hence, the effects on the solutions of the

degeneracy factors K

2K
above equations, as a result of variations in the factor, <%f:%é> , are
1
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relatively simple to visualize -- much more so than are the effects of
variations in k and kz on the solutions of equat1ons (2 16), (2-17), and

2K
~ (2-18). 1In particular, we note that the term, { -, multiplies the
TN _ K +k2

110 .

_quantity -- a quantity which may be pictured as reinverting the

2K
population, N . Using our estimates of K and Kz, we see that <' K\>

is less than unity. We could arrive at the equations describing laser

—————action-between non-degenerate—energy -levels-simply-by-setting-the factor

<é ‘> equal to unity ;2 equation (2-20) Hence we may presume that the
presence of the term (; =, ) in equation (2-20) slows down the re-inversion
-process which would exist in the non-degenerate case.

The equations, as derived above, are in the form that is used for
their solution via numerical methods. They represent a description of a

+3

~Q-switched Nd ™ in glass laser when appropriate values of K K, and T

1)
are substituted into them.

2.4-2 Behaviour of the Rate Equations Under Limiting

Terminal Level Lifetime Conditions -

Equations (24195; (2-20) and'(2-21) reduce, in two limiting cases,
to what are essentially the equations of Wagner and Lehgye1(17). The first
reduction takes place if we let t1»~. Equation (2-21) becomes redundant and

we are left with:

d¢0
et gl Er—=_fomo-'ﬂT))
dN 3
- i T
We now assume y(T) = constant = - &nR, and define the lifetime of a photon‘
in the cavity as T, where Tl Tl
T, B = = =



We let Fo 1 1 6 y 32
o) b Te
N = }_ ’_rl. n
(o] n T *
P c
TCT'
T B s
T1
and thus obtain:
d n
—d:'?‘—l = (ﬁ -1) ¢
P
dn __2m
"y L n,

The above equations are just those of Wagner and Lengye1(17?The notation is the

~same_as that employed by those authors. We notice that since T is measured

in units of T1 -- the time per pass of a coherent photon in the cavity --
T' is measured in units of s 5 the lifetime of a coherent photon in
: R

the cavity. The second reduction takes place after replacing oo by 2¢o

and allowing t » 0 in equations (2-19), (2-20) and (2-21). Physically,

we know that this implies N10-+0. In fact NlO tends to zero faster than
does tsince, otherwise, by equation (2-21), N,10 would have a finite growth
or decay rate, implying that the terminal level, under limiting lifetime
conditions, is capable of supporting a population, resulting in a contra-
diction. In taking the limit 7 » 0 we first allow N10 + 0, noting that
the factor of -two-in front of the stimulated emission term is now unf%y,
We thus obtain the identical equations given by the case 1 > = after
replacing ¢°'by ?¢O in the equations which result by letting v - 0. In

the latter case, the material no longer has gain when the populations of

the upper and lower levels for laser action are equal, assuming equal upper
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and lower level degeneracies, wherecas in the former, the zecro gain condi-
tion comes when both upper and lower popﬁlations are equal to zero. In

the zero lifetime case, we obtain twice as much energy output as we do in
the infinite lifetime case. In fact, all equivalent quantities of

interest behave identically in both cases, except that the output power

and energy in the case of T = 0 arc twice what they arc for 1t = «», Note
that NO in the former case is related to the upper lcvel population whereas,
in the latter casc, it is related to the difference in populations of the

upper and lower levels.

2.4-3 Some Properties of the Rate Equations of

Wagner and Lengyel-

Certain useful concepts may be obtained by considering the simpli-

fied rate equations, resulting from the above mentioned limiting brocesses,

namely:
d¢o :
'a._r—— = ¢0(NO N Y(T) ) ....(2-22)
dN
e 'w = TN
dT oo oo (2-23)

The quantities NO and ¢O will not change in time if the initial
value of the flux density Qoi is zero. ¢oi in the physical situation
arises from spontaneous emission in the laser rod and can be estimated

(17)

readily . The calculation of ¢oi is garried‘out ih the Appendix.

In the simnlest case y(T) is thought of as a step switch going
from a value y(T<o) > Noi to a value y(T>0) < Noi' An initial value is
allocated to both ¢0 = °oi and No = Noi' In physical cases of interest

¢oi is several orders of magnitude less than the peak value of ¢o = ¢0P’



34

Under thesec conditions No can be considered a constant during the build-
up of ¢o and equation (2-22) can be readily intecgrated to yield a pulse
build-up time. The pulse build-up time can be arbitrarily defined as the
time taken for the pulsg to build up from its initial value ¢oi to one

one-hundredth of its peak value, ¢ Noi does not begin to change signi-

oP’
o)
ficantly until ¢o ~ T%% . For the pulse build-up region we have
immediately:
[NOi - (T >0)] T
% = %i ¢ ' vee.(2-24)

From (2-22) and (2-23) we can obtain the phase plane equation:

de_ N, - ¥(T > 0)
dN 2N
0

which can be integrated readily to yield:

; v(T 5 0) N
8, - 05 = -5 (N-N.)+ —s—— 2n g

o ‘ol 2 Noi  vee.(2-25)

If ¢o = @op we have from equation (2-22) that
NoP = y(T > 0)
Hence neglecting °oi in comparison to ® p in (2-25) we obtain:
T > 0) N
1 V(T oP
bop ™ =7 Wgp.m Nyl # 2 s N;

This last relationship can be used to calculate the build-up time in con-

junction with (2-24). The final value of No = NoF can also be found using

(2-25). It is necessary that Qo = ¢0F be assumed close to zero. Since

¢oi is also small we have immediately:
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NoF | NoF
N -N.=y(T>0) 8n — = N _n —
o . Noi oP  Noj ....(2-26)
The output energy of the pulse is proportional to Noi-NoF' A more

detailed discussion of the coupled pair of differential equations (2-22)

and (2-23) may be found in Wagner and Lengyel's paner(l7). Equation (2-26)

N N
states that the ratio . depends only on the ratio 128 . The energy utili-
|\ N .-
Noi_N oL : P ot
zation factor "N'Tg" also depends only on ﬁg—-, the ratio of the loss
ol 0oi

factor to the initial population inversion.

The set (2-22) and (2-23), assuming a step function switch, is
characterized by a single pulse output. On the other hand, the set (2-19),
(2-20) and (2-21) can exhibit, for ccrtain swifching functions y(T), multi-
pulse outputs. We may say quite generally that the multipulse outputs
result if the switching function y(T) is '"slow". The multipulsing will
be shown to be critically dependent on the relaxation lifetime of the
terminal level for laser action. The sensitivity to multipulsing of the
equations (2-19), (2-20) and (2-21), arising from a finite lifetime of
the terminal level, will be used to advantage in the estimation of the ter-

minal level lifetime of Nd+3 in glass.

- 2.4-4 Qualitative Behaviour of the Solutions

of the Nd+3 in Glass Laser Rate Equations-

Let us consider qualitatively the behaviour of ¢o, No and Noi as
gbverned by equations (2-19), (2-20) and (2-21). From what has been said
before about the switching function y(T) characterizing a laser system
using a Porro prism switch, we can assume that y(T) rises monotonically

on either side of the zero reference time point, which is assumed to be
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located such that Vi ™ y(0). From symmectry arguments, y(T) will be an
even function of time. At a particular negative time T the condition:

No; = v(T)

will hold for all non-trivial cases. For times T > T the pulse begins to
build up. ¢o, however, must reach a certain value beforc it begins to
disturb a lower Noi' It is only during a time interval AT = 2|T7| that

an output pulse can occur. Thus, if ¢o does not build up to a sufficient
amplitude to disturb Noi significantly in this time interval, no pulse as
such will evolve. SQitching can then be thought of as occuring too rapidly
for the inversion NOi that is assumed to be present. By decreasing the
switching speed, and so increasing AT, a point will be reached where 00

is given sufficient time to reach a large enough value to disturb Noi
significantly. In this case a pulse will evolve, but it will do so at a
time where the losses are high and increasing. The pulse will go through
one maximum which will be small in amplitude. A further increcase in AT
allows the pulse to occur at a position in time where the losses are lower
but still characterized by 'a positive time slope. The result is an
increase in single pulse amplitude and energy. Eventually, if AT is
increased to anproximately twice the value necessary just to obtain high
switching speed cut-off, the pulse will evolve when y(T) = Vi ™ v (0)

and the result will be the highest output energy and power content
achievable in the pulse for the given initial inversion Noi’ A further
increase.in AT results in‘a single pulse appearing before the switch has
had the opportunity to decrease the losses to a minimum. The pulse then

reverts to a situation characterized by lower energy and power content.
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The pulse is now occuring at a time when the losscs are decreasing but
relatively high. If the losses are high cnough and ;he lifetime of the
terminal level short enough -- though longer than the giant pulse width --
we have a situation wherec the available energy will not be entirely
released after the initial pulse. Because the losscs arc decreasing and
re-inversion is taking place due to terminal level de-excitation, a time
will come, as AT continues to increase, when a secondary pulse will
appear following the initial pulse. This pulse will carry energy and so
the net output encrgy contained in both pulses will show an increase

over the energy output obtained just prior to double pulse operation.

The value of AT in a Porro prism Q-switched laser system is
controlled by the rotational rate of the prism. For a given excitation
of the laser rod a set value of Noi is established. Upon monitoring the
output energy content of the giant pulse for varying Porro prism rotational
rates and constant laser rod excitation, we expect to observe the
behaviour we have discussed above. This expectation is borne out by

experiment.,

2.5 Determination of the Pobulation Inversion

Necessary to Maintain Laser Action:

The expression derived in Section 2,3-2 for the condition met at
th;eshold by a laser system contains the product of two unknowns: these
are the population differeqce, NK'NL’ and the dipole matrix element for
the K+—»i transition, hidden in the term @, In order to calculate the
inversion necessary to maintain laser action, we must determine the value

of the dipole matrix element in terms of a directly measurable quantity.
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Rearranging the expression for the spontaneous transition probabi-
lity it follows that

2 1
| () | = o )
wh Tr de"w 3 en o0 (2=27)

where Ts is thc spontaneous radiative lifetime of level K, which is

directly measurablc in some cases(ZG)L Also, from equation (2-5) after
substituting in for ag and rearranging terms, we can calculate |(r)m|2
in an alternate fashion to arrive at the expression:
l(f) IZ = - n r.T 3hcAw
K8 "¢ 2w, n(N,-N ) 4n2e2
Ke" VK ...(2-28)

N
The quantity Ké' can be interpreted as the number of atoms or

ions in stationary state K per unit angular frequency range per unit
volume.EK is thought of as varying slightly from atom to atom due to

different environmental conditions acting on each particular atom or ion.
N

i s p ) s i : s 2 "
A similar interpretation mutatis mutandis can be attached to ik With

thesc interprctations, equation (2-28) can be used for calculatiors

relating to a resonant transition exhibiting a relatively wide profile in
angular frequency space, since Aw becomes the spontaneous line width of
the transition.

The application of (2-28) to a Nd*>

in glass laser is particularly
simple since, under normal lasing conditions, as opposed to Q-switched
conditions, level g can be assumed to be essentially empty allowing one

to set Nz ~ 0 in equation (2-28),


http:volume.EK
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: Equations (2-27) and (2-28) provide us with two separatc apporoaches
for the calculation of the magnitude of the matrix element for clectric
dipole transitions. Alternately, if the radiative lifetime is known, and
the reflectivity losses are the main contribution to the losses in the
laser cavity and are also known, an estimate of the number of excited
ions per unit angular frequency range in the ubper state K, at threshold,
may be obtained. This estimate can then be used to ohtain an approximate
valuc of stored energy in the rod as a function.of pump energy, if the
relation between pump energy. and fluorescent output intensity
is first determined experimentally. The stored energy-
estimate can then be used to determine the output energy
in the case pertaining to Q-switched operation of the laser system.
Eliminating |(r)K2|2 by combining expressions (2-27) and (2;28) we obtain

N,
the threshold value of Kg" after setting Nl = 0 -- a condition applicable

to Nd+3 in glass laser material -- namely:
2 2
NK Tr%g "
o = nlryrg) g
THRESHQLD cne eeea(2-29)

The fact that the términal level is assumed to be empty is
responsible for the lack of dependence of the threshold condition on the <
level degeneracies. An interesting point is brought out by equation
(2-29) namely, that the longer the radiative lifetime, the greater the
nﬁmber of atoms that need to be excited into the upper level for laser
action b; the pump source. The reason for this result is that the matrix

element involved in stimulated emission is the same one which arises in

spontaneous emission; therefore, the shorter the spontaneous lifetime the
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larger will be the stimulated emission matrix element. A laser system
can thus afford to lose more coherent photons per second the shorter the
radiative lifetime, while still maintaining oscillation, since coherent
photons will then be created by stimulated emission at a faster rate.
Alternately, with equal losses, the shorter lifetime results in a lower
requirement on the degree of excitation. The pumping requirements, how-
T Tever, will be more stringent—for the-case-of-a-short-spontaneous-lifetime,
since spontaneous emission can then become significant as a .mechanism
for losing excited ions. Thus, given a rump pulse of time half-width Tp,
the optimum spontaneous lifetime would be close to TS 3Tp, approximately.
This condition would allow adequate integration of the pumpvpulse by the
upper 1evei fdr lasér action, without destroying the advantages of a
short radiative lifctime7 It is also evident from equation (2-29) that a
narrow fluorescent line width is desirable. .Doubling the width of the
fluorescent line requires twice as many atoms or ions to maintain the
system at threshold. The fluorescent line becomes in essence a gain
profile as a function of wavelength. Equation (2-29) also indicates that
~ideal —geometry is obtained by having a long laser rod with a small cross-
sectional area. This result will hold as long as diffraction losses are
not overly increased due to the decrease of the cross-sectional area.

The angular frequency dependence indicates that threshold is easier to

achieve at low laser operating frequencies. From a pumping standpoint it
is also desirable‘to operate at low frequencies and between deep lying
levels.

An application of equation (2-29), employing experimentally deter-

mined values of threshold and mirror reflectivity applicable to the laser
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system used fér the work presented in this thesis yiclds a O-spoiled out-
put cnergy prediction in good agrcement with that obtained experimentally.
The output energy calculation, based on equation (2-29), will be
demonstrated at a later stage in this thesis.

The derivation éf equation (2-29) follows similar lines to those

(29)

employed by Yariv and Gordon to calculate the threshold condition

for both Gaussian and Lorentzian line-profiles. Those authors find that
‘ somewhat different inversion requirements are to be met in each case.

For equal line widths, the Gaussian line-pfofilc requires an inversion
which is less by a factor of vm £n 2 than does the Lorentzian line-
profile. Our calculation of the inversion rcouireﬁent to just maintain
oscillation was based on a rectangular line-profile and the result of

the calculation falls between the results for the Gaussian and Lorentzian

line-profiles as obtained by Yariv and Gordon(zg).



CHAPTER 3

MODES IN ANGULAR LIMITED RESONATORS

3.1 Introduction:

In Section 1.3 we indicated that this Thesis would be partly
concerned with the electromagnetic field distribution within a symmetrical
two reflector cavity containing an angular selective device. In this
Chapter the relationship governing the field distribution in such a
cavity will be developed and solutions based on it obtained. In particu-
lar, the case of rectangular and also circular interferometer geometry
will be treated. The problem, though not directly pertinent to the
experimental work leading to this Thesis, is of considerable interesf in
situations where it is desired to discriminate against éompeting trans-
verse modes in a laser systeni. The solution will indicate a means by
which the diffraction losses, for all modes but one, may be increased over
those which would exist in an identical cavity without an angular
selective device within it. The increased losses, for all but one trans-
verse mode, make it more likely that only this unperturbed mode will build
up in such a laser cavity containing an appropriately-adiusted angular
selective device. An idea of the desirability of sihgle transverse mode
oﬁeration of a laser system may be gained by noting that the transverse
modes in a laser beam govern the distribution of energy in the far-field

pattern of the beam. The larger the number of transverse modes forming

42
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the beam, the greater will be the spread of the beam as it travels iﬁ
space. Thus, for example, in long range communications systems using
laser beams for transmitting information, it is desirable to operate in
the single transverse-mode configuration. This will allow more cfficient
concentration of the available energy onto the receiver entrance pupil.
In the field of optical harmonic generation, such single transverse-mode
operation may also be desirable, since in certain cases a well-collimated
beam leads to increased conversion efficiency from fundamental to

(30)

harmonic ‘

3.2 Rectangular and Circular Plane Parallel

Symmetric Resonators with Angular Limiting

Devices - Formulation of the Problem:

3.2-1 Rectangular Plane Parallel Resonators-

Iﬁ order to proceed with the formulation of the problem presented,
namely, when it:is desired to find the steady state field distribution
and the propagation constant of the field within symmetrical cavities
containing an angular limiting device, it is necessary to consider some
rclations obeyed by waves in threé-dimensional space. It is well known(SI)
that waves in three-dimensional space may exist as plane waves, cylindri-
cal waves with the motion ?nd space dependence in planes perpendicular to
the cylinder axis, and in addition more general waves where tﬂe variation
in spacelis neither linear nor planar. All these waves may be built up

by a superposition of plane waves. For simple harmonic waves Y = we“”‘,
with ¥ a solution of the three-dimensional Helmholtz equation,

v o+ Ky = 0
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it can be shown that the most general solution wK(x, y, z) of the
Helmholtz equation can be writtcn(SI):

2w

wK (x, y, 2) = [ dv J sin u du  A(u, v) eiEfz

)
where the spherical angle u is the angle between the pronagation vector
K and the z-axis, and the spherical ahgle v is the angle between the
K - z plane and the x - z plane. A(u, v) is a function to be determined
from the conditions imposed by the particular problem being considered.
Its dimensions are field amplitude per unit solid angle. r is the radius
vector to the observation point and K is the pronagation vector with
magnitude IE} = w/c. The integration is carried out over the surface of
the unit sphere in K-space since the magnitude of K is fixed. The inte-
gration over u may be from 0 to m or it may extend into the complex u
plane. The latter situation takes account of the possibility of the
existence.of evanescent waves which may be necessary for the fitting of
boundary conditions(sz). These waves are of little interest to us because
they only exist close to curfent sources and carry away no energy from
those sources. In what follows we will assume that the integration over
u is from 0 to wm and, by so doing, neglect the presence of evanescent
waves. We will drop the subscript K from ¢, it being implicitly assumed
that we are dealing with field distributions created by single frequency
sources. |

We may expand the term K.r; the result, after expressing r in
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cartesian co-ordinates, is:

Ker = IEI (x sin u cos v + vy sin u sin v + z cos u)
The field distribution then becomes:

27 ™ " ; : .
v(x,y,2) = J ay J sis 1 oi A(u,v)clK(x sinucosv+y sinu sin v+ z cos u)
o

o

where
K| = K ceee(3-1)

Let us consider a well collimated beam traveling along the positive
z-axis. The function A(u, v), for such a beam, is non-zero only close to

u =0, It is assumed to be collimated well enough so that we may set
2
sinu=u and cosu-=1 - %— in equation (3-1) without significantly

affecting the result of the integration. Furthermore, A(u, v) is assumed
to decrease rapidly enough to allow the limits of integration of u to be
replaced by (0, »). It follows that:

2

2w il((xu cos v + yu sin v + z(1- g__) )

v(x,y,z) = J dv J uduA(,v)e
o .

(o]

We now let
X =ucos v, Y = u sin v
Hence:

, T iK(xX + yY + z (1 - e Bamm ) ).
v(x,y,z) =.J J dxdy A(X,Y)e

¢ vun(3~2)

We now consider the field distribution in the x-y plane. In order to do

so let us put z = 0 in equation (3-2) to obtain:



46

Wey.d) . L J J dxdyY A(x, ) eXK(XX + ¥V
- e (3-3)

- 00

The above integral is a two-dimensional Fourier integral rclating the
field distribution on the x-y plane to its angular spectrum A(X, Y).

Inverting equation (3-3) we have for A(X, Y):

2 a (b .
A, v = o J J dxdy 9(x, y, 0) e-iKCKX + y7)
2™ 1% | el (3-)

The limits a and b arise, rather than the usual infinities, because the
field distribution is thought of as being zero outside ghe rectangular
aperture defined by those limits. We may think of the aperture as a
rectangular opening in a completely absorbing screen located in the x-y
plane. The aper.ture is considered to bé illuminated by a well-
collimated beam traveling in the positive z-direction and incident on the
aperture from the negative z-portion of space, The field distribution in
the positive z-portion of space is then given by equation (3-2) where
A(X, Y) is defined by equation (3-4). y(x, y, 0) becomes the field ampli-
- tude on the aperture seen from the positive z-portion of space and is
limited by the aperture boundaries.

If we locate an identical screen parallel to and a distance d
away from the first screen along the positive z-axis, and further position
the second screen symmetrically with respect to the first screen, we

obtain the amplitude of the field at the second aperture as:
X2 + Y2

® oo iKxX + yY +d (1 - =——) )
v(x,y,d) = L L dxdY A(X, Y)e
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for

]
=
A
>
IA

a, and -bgsys<b

The above cquation was obtained under the assumption that all
the plane-wave components propagating through the first aperture are
allowed to contribute to the field amplitude at the second aperture.
However, if we consider that'a device is introduced between the two
screens which strongly attenuates any plane-wave with a propagation

vector whose direction is not contained within the square,

-8 € X g A, - A

we may write for the field amplitude at the second aperture:

2 2
5 oa, KX + yY + d(1« 22X
v(x,y,d) = J dX J dY A(X, Y)e
e
for
-a<Xx«ga, and -bsy<xgb

The above expression simply assumes complete attenuation outside the
square.
Let us assume that we may write:

A(X, Y) = B(X) C(Y)

It follows that:

¥, v, ) = up(x, &) vely, )

where s 1 - x2
A iK(xX +# d ( ) )
by (x,d) = J lax B0 e 2
-A
! " d 1 - Y2
A, iK(yY +d ( —=—) )
Ve (ly,d) = I dy C(X) e e vs0(3-5)

Ly
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Also .from. equation (3-4):

5 a %
B(X) = 71;_ J dx ¥ (x, 0) ¢ KEX)
-a
g -iK(yY)
CY) = 5 J_bdy vely, 0) e i

The manipulations undertaken above allow the separation of the two-
dimensional rectangular aperture problem into two one-dimensional pro-
blgms. It is not difficult to show that. each of the one-dimensional
problems is in fact the formulation.that results from considering the
case of infinite strip apertures of dimensions 2a and 2b respectively,
and an appropriate angle limiting device.

At this point we impose on the field distribution wB(x, d) the

following restriction:

wB(x, d) .= AwB(x, 0) for -ag<xxga sess(3=7)

This implies, if we allow A to be a complex number, as we must, that the
acceptable field distributions are those which propagate from the first
infinite strip aperture, and arrive at the second infinite strip aperture,
to create the same field disfribution present at the first infinite strip,
except for an overall phase shift and some attenuation. A similar argu-
ment and restriction can be applied to considerations of the y-co-ordinate
variations of the field.

. The restriction on the field distribution .introduces the concept

(33)

of cavity transverse modes It can be shown that a cavity, produced

by two plane-parallel infinite and symmetrically-placed strip reflectors,
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has the same effect on a propagating beam's field distribution, as does
an infinite number of geometrically identical apertures cut in absorbing
screens, separated from each other by the distance separating the

reflectors(ss). It follows mutatis mutandis that the same is true for

the cavity containing an angular selective device. Furthermore, condition

(3-7), together with equations (3-5) and (3-6), defines the cavity modes

of an infinite strip cavity containing amangular selective device having
the properties assumed in the derivation of equation (3-5). The property
attributed to the angular selective device of allowipg only those plane-
wave components, whose propagation'vectors have direcitons in the range'

-4, € X €4, to contribute at the second aperture, is a special case of

(34)

optical filtering . This particular type of filtering is of interest

because it results in high losses for those cavity transverse modes having

‘field distributions that have off-axis propagation vector bundles not

falling within the bandpass, - Al < X < 4y, of the filter. In general,
the higher the order of the transverse mode, the more off-axis its propa-

gation vector bundles become.” Hence, by judicious choice of the filter

“bandpass, it is possible to allow only the lowest order mode to propagate

essentially unattenuated by the low pass filter. The filtering action of

the angular selective device leads, then, to transverse mode selection.

It is this property that makes the consideration of cavities containing

angular selective devices worthvhile,
Combining equations (3-5), (3-6) and (3-7) we arrive at the
following equality after dropping from the notation the distance dependence

of the field amplitudes:
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e . L xE
K A1 a TiKX(Kx - x) v d (——))
AY(x) = e J .dX I dx'y(x') e

a
-A1> .

We assume that we can change the order of integration and by so doing

write:
K 1K§ a . ‘
AYp(x) = > © I P(x') B(x, x*) dx* eee.(3-8)
a
where
. dx? ,
Al iK(X(x - x') - 5 ) R . 1 )
K(x, x') = j e dXx
-1

Equation (3-8) is a hémogeneous linear integral equation of the second
~ kind and has the propértieswfherebf{ssn. Non-zero solutions of equation
(3-8) result only for certain complex values of the quantity A. Those
values are the characteristiC'numbers, or eigenvalues,‘of the kernel
K(x, x'). The solution corresponding to a particular eigenvalue is the
eigenfunction associated with that eigenvalue. The eigenfunctions associa-
ted with different eigenvalues are linearly independent.

The expression for the kernel equation (3-9) can be obtained

explicitly by performing the appropriate integration(36). The result is:

iK(x"-x)2

K(x, x') = /2% (c[] - c[e] -1 (sfe] - sl ) re

e .oo-(S‘lO)
where, T
= J m (KdAl + (X' - X) K)

B =/ A - xda 4 xR XK
- 7wKd 1

Q
I
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The functions C(z) and S(z) are defined by:

2 “tz : z t2
SO, T > B /MJ‘MCQS”('_Z—) A 8 =,J,sin (5-) dt
) - R
and will be recognized as the Fresnel integrals.

It can be shown quite simply that the integral equation (3-8) has

____solutions which depend only on two dimensionless parameters. One of

these parameters is the Fresnel number(ss) given by:
a2
N = a—)\-

The other is a dimensionless number, A, given by the expression:

2w dAl2

A =
A

‘which we may call the angular number of the angular selective device.

At this point we estimate the minimum value of &, that results in

low losses for the lowest order propagating mode. Let us call that value

Al;:“ Recalling the diffraction limit of an infinite strip aperture we

can write for the critical angle A, the following expression:

1c

A
A1c R 2a

where we have assumed that the angular width of the lowest-order even mode

of the infinite strip cavity is not significantly different from the dif-
fraction limit of a strip aperture of width 2a. If Ay is made smaller

than . Ve begin to introduce strong attenuation of the lowest order mode.

On the other hand, if A, is made larger than A, we may begin to allow the

1 1c

propagation of higher order modes without attenuating them significantly.
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The critical product of N and A is obtained if A is evaluated
ﬁsing A1 = Alc' The critical product is estimated to be (NA)c X %- which
is independent of the cavity parameters.

If 8, is allowed to tend towards infinity the kernel of the
integral equation (3-8) yields the kernel obtained by Fox and Li, for the

infinite strip cavity, as it should.

3.2-2 Circular Plane Parallel Resonators-

We now cdnsider in less detail the problem of a cavity formed by
two identical‘plang-parallel.circular reflectors placed symmetrically
with respect to each other, with an angular selective device introduced
between them. This case presents a complication. The indefinite integral
required to undertake the step equiValent to that which we took in the
case of the rectangular resonator,to arrive from equation (3-9) to
‘equation (3-10) is not available in closed form. However, we will be,
able to derive the result obtained by Fox énd Li for the circular plane-

parallel cavity as a limiting case. We may write:

2
2w © - iK(xu cos v + yu sin v + z(1 - %—-) )

Y(x,y,z) = J dv I udu A(u,v) e

. ' o .

o

by proceeding as we did previously in considering the case of the

rectangular cavity. We introduce the change of variables;

X T cos ©

r sin 6

: §

and consider the field distribution in the r - ‘® plane and .so obtain:

e iKur cos (v - 0)

¥(r,6,0) = J dv J udu A(u, v) e (3-11)
» &3 !

0
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We write:

nv

A(u, v) = U(u) ¢! with n an integer,

(35),

and we employ the following integral relation for the Bessel functions
| -in G- HKETpc08 (8 - ¢p) - n e
Jn(krlrz) =5- e . e d¢1

Where Jn is the Bessel function of the first kind of integer-order n.

Equation (3-11) then reduces to:

inhg o
R(r,0) = 2mwe J udu U(u) Jn (Kur)
o

Where )
v (£, 6, 0) = R(r, 0) 8(8) and 6(8) = e M°

We are now in a position to solve for U(u) by making use of the Fourier

Bessel formula(37).

S Jn (Sp) dS Jot f(t) Jn(St) dt

oo

f(p) = J

o

We obtain, on applying it to the expression for R(r, 0):

"
=
|7
o

Up) R(r, 0) Jn(Krp)rdr

The upper limit of the integral has been changed to a since R(r) is non-
zero only for r « a. The B variation of the field is independent of z
and is given by 6(8) = e-1n9. It follows that we nced to solve only for

R(r, d) where d is the distance separating the two reflectors. As before,

we assume that an angular selective device is introduced in the cavity
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which attenuates completely those plane wave components whose propagation
vectors K have directions not falling within the range u g A. Therefore:
112
5 (B IRA(E ~5=1 4 .
R(r,d) = K J udu Jn(Kur) e o R(r',0) Jn(Kr'u) rldr!
0
We assume further that we can change the order of integration without

affecting the final result and so obtain:

u2
5 A -iKd —
2 ikKd 2
R(r,d) = K'e R(r',0)r'dr' udan(Kur) Jn(Kr'u) e
o o
We now require that
R(r, d) = AR(r, 0)
We thus obtain:
- a '
AR(r, 0) = K2e*Kd J R(r', 0)K(r',r) r'dr’ v (3-12)
: o
2
where -ikd Y

A
K(r', 1) = J udu Jn(Kur) Jn(Kr'u) e
o

Equation (3-12) is the integral equation governing the allowcd steady state
field distribution on the surface of the reflectors of the circular plane
parallel cavity containing an angular limiting device. If we let A » =
the integral expression for the kernel can be obtained in closed formgss)
The result, in this limiting case, is that equation (3-12) becomes the

Fox and Li result for the circular plane parallel cavity, as it should.

To show this we must use the following expression:
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2 2
ORI R Y ik [ |
du J_(Kur) J_(Kr'u)e 2 e B J X Ty
ou W n n Kd n d

which is not available as an indefinite integral. It yields immediately

on substitution into equation (3-12)

; _n iK 2 2
1[ Kd 2 (I‘H'l)] a Kr'r ;_l(} I:r +r! J
R(r',O)r'dr'Jn q e

AR(r,0) = g- e
o

The above integral equation is the Fox and Li result governing the modes

of the circular plane parallel cavity. The derivation undertaken above

differs considerably from that of those authors.

3.3 Solution of the Integral Equation Governing

the Stcady State Field Distribution in a Cavity

Formed by Two Infinite Strip Reflectors and an

Angular Limiting Device:

The solution of equation (3-8) has been carried out numerically
with the aid of a high-speed digital computer. The solution has been
taken only up to the point necessary to demonstrate the transverse mode
~selecting properties of an angular limiting device introduced within a
cavity. In particulaf, the Fresnel number range (1 < N < 15) has been
covered. The angular numbers used in the calculations were allowed to
vary on either side of the critical product (NA)c for N v 3. Only the
lowest-order even transverse mode field distributions, fogethcr with the
corresponding powecr losses per transit and phase shifts per transit, were
obtained. The solution of equation (3-8) is discussed in this Section.

We intend to consider now some of the properties possessed by the
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integral equatioﬁ (3-8). It is not difficult to see from physical argu-
ments, or from the fact that the kernel being considered is fhe sum of an
odd and an even function of x', that the eigenfunction'solutions are
either odd or even.

It is also not difficult to.show that thé kernel of equation (3-8)
is symmetric:

KX, X V) K. w3y

The eigenfunctions of symmetric kernels have important properties. In
particular, when the kernel is continuous and symmetric the eigenfunctions
are orthogonal to each other over the range (a, b) where a and b are the
limits of integration in the linear homogeneous Fredholm integral

equation of the second kind(sg)'

The orthogonality condition for equation (3-8) can be written:
a : '
J-,a b, (x) ¥ (x) dx =0 m#n

.We have assumed that to each eigenvalue, A, there corresponds one
and only one eigenfunction. Physically, the assumption is not unreasonable.
We also have at our disposal the following theorem: '"Any function which

-can be generated from a continuous function ¢(x) by the operation

a
J K(x, €) ¢(e)de - where K(x, €) is continuous and symmetric
a : ;

so that

b
f(x) = J K(x, €) ¢(e)de

a

for some continuous function ¢ can be represented over (a, b) by a linear
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combination of the eigenfunctions wl, wz, w3—-—— of the homogeneous
Fredholm integral equation of the second kind with K(x, €) as its kcrnel"(sg)
Furthermorc if the kernel is non-separable, hence yiclding an
infinite number of eigenfunctions, thé resultant infinite serics converges
absolutely and uniformly in the interval (a, b)(39). This theorcm is
directly applicable to ecquation (3-8) if we assume that the kernel is non-
sebarable. We make the assumption purely on physical grounds, basing it
on the infinite number of degrces of freedom that the ficld distribution
on the aperture may possess. It follows then that we may expand any
continuous function in the interval (-a, a) in terms of thc eigenfunctions
of the kernel of equation (3-8) which are assumed to form a complete set.
We can define the mode content of a field distribution as the
value of the cocfficient multipl;ing the particular mode of interest in
the series expansion of the field in terms of the eigenfunctions of the
kernel. From physical argumenfs, the magnitudes of the eigenvalues of
equation (3-8) are all less than unity. The largest eigenvalue corres-
ponds to the lowest-order mdde since it will be by definition the mode
with the lowest amplitude at the reflector edges and hence, will be
characterized by the lowest '"spill over' losses. It follows immediately
that any arbitrary field distribution, initiated at the first aperture,
yields a field distribution at the second aperture whose lowest-order
mode content is enhanced relatively to the higher order mode contents.
"It has been implicitly assumed that the field distribution at the first
aperture does, in fact, have lowest-order mode content.

If we now imagine that the field distribution at the second

aperture is transposed to the first aperture and again calculate the



58

effect of this distribution on the sccond aperture we conclude that we
can continue to cnhance the lowest order mode content of the resultant
distribution by repeating the process scveral times. Physically, this
represents the behaviour of the ficld distribution as the electromagnetic
cnergy in the cavity travels back and forth betwecen the two infinite
strip reflectors suffering, in cach pass, the cffécts of the angular
limiting device. In the limit of an infinite number of passes, the only
~mode content that will remain will be the lowest order onc.

The above description is directly applicable to the numecrical
solution of the integral equation (3-8) and the method was first used by
Fox and Li to solve for the lowest-order even and the lowest-order odd
modes of the infinite strip cavity without an angular selective device(ss).
We have used the same method of solution to obtain the lowest-order cven
mode of the infinite strip cavity with an angular limiting device. Any
initial field distribution may be used. However, it is advantageous to
start with an even field distribution since odd-mode contents are then
excluded automatically and hence the solution will converge faster to the
lowest-order even mode.

The orthogonality relation satisfied by the modes can be used to

advanfage in seeking, for instance, the second-lowest-order even mode.
We have not used that relation, but it is worth while sketching the method
to be used for highe; order mode calculations. From an exact mathematical
point of view, given an even field distribution, it is sufficient by means
of the orthogonality relation to erase the lowest-order even mode content

from the given field distribution and then simply proceed with the calcu-

lation by iterating the resulting‘field distribution. However, from a
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numerical method's point of view, we need repeatcdly to erase any lowest-
order even mode content that enters from numerical inexactitude after each
pass of the field distribution. The solution will then converge to the
next lowest-order cven mode because the resultant field distribution will
be the even-field distribution obtained having the lowest losses, with

the restriction that it has no lowest-order even mode content. The argu-
ment can be gxtended to apply to higher and higher even-order mode
solutions; but the calculations become lengthier the higher the order of

the mode desired. The argument applies mutatis mutandis to odd modes

after one has obtained the lowest-ofder odd mode soiution.

Some details of the calculations will now be outlined. The range
(-a, a) of the field distribution was éampled uniformly at 81 points.
The kernel of equation (3-8) was also evaluated at 812 = 6561 points.
Each point on the uniform grid had associated‘witﬁ it the real and the
imaginary portion of the quantity of interest. The larger the numﬁer of
samples within the range, the larger the value of Fresnel number that can
be covered in thé calculations since the magnitude of the Fresnel number
determines the number of periodic fluctuations of the kernel in the range
of integration. The ultimate limitation on fhe sampling frequency is the
storage capacity of the computer since to speed up the numerical calcula-
tion the kernel should only be calculated once at the appropriate points
of iﬁterest and the values obtained stored. The numerical integrations
were carried out employing the closed type eleven-point Newton-Cotes
Formula eight éimes, thus covering the entire range of integration
(-a, a)(36). In this type of formula the error vanishes if the function

being integrated is a polynomial of degree not greater than 10,
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The overall featurcs of the solutions of the infinite strip
cavity with an angular seclective device are best presented in graphical
form. The eigenvalues corrcsponding to the lowest-order even modes of
the cavity arc particularly amenable to this type of presentation. In
Figure (3-1) we have plotted the power loss per transit, as a function of
the Fresnel number of the cavity for three valucslof the angular number.

We define the power loss per transit by the relationship:

Input Power - Output Power

x 100%

Power loss per Transit
(percent) Input Power

Q- |A|2) ‘x  100%

The Fox and Li results for an infinite strip cavity without an angular
limiting device (angular number -+ «) are shown for comparison. The
corresponding phase shifts per transit have been plotted in Figure (3-2)
in a similar manner. The Fox and Li results are again plotted for com-
parison. The phase shift per transit is the phase shift in addition to
the geometrical phase shift suffered by the field distribution and is
hence just the phase angle of the eigenvalue of the mode of interest.

The power loss per transit plot sﬁows some interesting features
associated with the presence of the angular selective device in the cavity.
First of all we note that a break point in the angular number 0.566 curve
appears at a point given approximately by formula (NA)C = /2 as predicted.
The break point for the angular number = 0.141 curve also correctly
appears at a Fresnel number of roughly 11. The break point for the

angular number = 2.26 would have appeared at a Fresnel number of roughly



Figure (3-1)

Power Loss Per Transit of the Lowest-Order Mode of

an Infinite Strip Resonator as a Function of the

Fresnel Number for Three Values of the Angular Number

The Fox and Li results are shown for comparison.
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Figure (3-2)

The Phase Shift per Transit of the Lowest-Order Mode

of an Infinite Strip Resonator as a Function of the

Fresnel Number for Three Values of the Angular Number

The Fox and Li results are shown for comparison.
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0.7, had we taken the calculations far cnough to show it. Seccondly, we
sece that the curve for the angular number = 2.26 coincides for all
practical purposes with that of the unrestricted cavity, for thc range
of Fresnel numbers covered in the calculations. A similar comment applics
to the case pertaining to the corresponding phase shift per transit
curves. This result implics that the angular selcctive device is not
significantly perturbing the lowest-order even mode field distribution
of the infinite strip cavity witﬁout an angular selective device, for
the range of Fresnel numbers considered. We should bear in mind in
relation to the point just mentioned that in general, to evaluate an
eigenvalue of tﬁe integral equation (3-8) to second order of exactness,
the field distribution corresponding to that eigenvalue need only be
known to first order of exactness.

As less and less of the plane wave components, into which the
steady state field distribution at the first aperture breaks up, are
allowed to contribute to the field distribution at the second aperturc --
by narrowing the acceptance angle of the angular selective device - the
losses corresponding to the lowest-order even mode increase. This bchavi-
our is shown graphically in Figure (3-1). For a given Fresnel number,
the losses increage as the angular number decreases. The phase shift per
transit is also seen in Figure (3-2) to decrease as the angular number
decreases. Physically, we can explain this behavioﬁr by cbnsidcring.the
limiting case: angular number -0. We sce that only those plane-wave
components in the immediate vicinity of normal emergence from the first
aperture, contribute to the field distribution at the second aperture.

It follows that as the angular number is made smaller and smaller, the
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field distribution at the second aperture becomes closer and closer to
what it would be if only a single normally incident plane wave illumina-
ted that aperture. Hence, the phase shift per transit (i.e. that phase
shift in addition to the geometrical phase shift) tends to zero. It
also follows that the phase shift per transit has as its origin the off-
axis plane waves that are allowed to contribute at the second aperture.
Arguing further, we can state that the higher the order of the mode the
larger is the additional phase shift per transit that it suffers on pro-
pagating back.and forth between the two reflectors.
As the angulér number is decreased, keeping the Fresnecl number
constant, one expects to find a tendency on the part of the lowest-order
even mode magnitude to "flatten' out. The value of the field magnitude
at the edge of the reflector will increase, giving rise to higher "spill
"over" losses. This behaviour of the eigenfunction solutions_isjn geperal,found
to take place. The phase of the field along the réflector short dimen-

sion also tends to flatten out with decreasing angular number. A "flat"

phase front would have to be considered a desirable feature of a laser
beam-indicating a poséible use for an angular selcctive device. Figure

(3-3) shows the behaviour outlined above for two lowest-order even
eigenfunctions. \

The smoothness of the phase and amplitude functions of the modes
shown‘in Figure (3-3) contrasts with the solutipns of Fox and Li, which
show a superimposed low amplitude ripplé on both the phase and amplitude
functions.” The ripple can be explained in terms of the magnitude of the
Fresnel numbercss). The fact that it is not present in the solutions

shown in Figure (3-3) is due to the presence of the angular selective
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Figure (3-3)

The Amplitude and Phase of the Lowest Order Even

Mode of an Infinite Strip Cavity for Angular Numbers

of 0.141 and 2.26
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device which "filters out" the high-frequency field variations. The
ripple would cventually appear for an angular number largc cnough to lct
through the off-axis planc-wave packects necded to account for the
fluctuations.

The behaviour fbr infinite angular number of the solutions of
the integral cquation governing thec stcady state field distribution in
an infinite strip cavity has been discussed by Fox and Li. The behaviour
for constant angular number of the solutions is essentially the same and
will not be discussed here.

We have indicated earlier that the numberical method process of
starting with an aperture restricted plane wave field distribution and
iteratiﬁg it by calculating the resultant ficld distribution at the
second aperture and then repeating the process several times, corresponds,
physically, to launching a plane wave excitation into the equivalent
cavity and letting diffraction continually reshape the field distribution
until a steady state field distribution is obtained. There is no a priori
reason to believe that the aperture-restricted plane wave does not contain
to some extent all the even-order modes. In particular, it should have
a fair amount (greater than %ﬁ-of the lowest-order even mode content)
of second-order even mode content. As the iterative procedure is carried
to its limit, the last surviving mode contents in the transient field
distributions, to all ‘intents and purposes, will be the lowest-order
cven and the second-order even modes, with the second-order even mode
content decreasing rapidly relative to the lowest-order mode content.

If, instcad of launching a plane-wave field distribution, we chose to

launch the field distribution having only the lowest-order even and
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second-order cven mode contents in thc same proportions as the equivalent
planc-wave contents, thec solution would converge to a given degree of
accuracy in the same number of iterations as the planc-wave initiated
solution. We emphasize that the above rcsult does not follow in general
and is a fact cstablished through observation of the convergence of the
solutions. This point will become clcarcr below.

It follows from the above arguments that thc number of iterations
required to determine the eigenvalue of the lowest-order even mode to a
prescribed degrce of accuracy, starting from a plane wave, is a measure
of the relative magnitudes of the eigenvalues corresponding to the
lowest-order even and second-order even eigenfunctions. If, for a
particular cavity configuration and cavity angular number, the solution
converges more rapidly than it doés for the same cavity configuration
Ao

Ay

and different cavity angular number, we can say that the ratio,

’

of the eigenvalue magnitudes of the two lowest-order cven modes in the
former case is greater than thét in the latter case. This is the same
as saying that the ratio of the diffraction losses, with the angle limiting
device, of the second order even mode to the lowest order even mode is
greater in the former case than in the latter. The former cavity configura-
tion offers increased mdde selection properties over the latter.

A pvlot of the number of transits required to detcrmine the

lowest-order cven cigenvalue magnitude to a particular and sufficiently

fine degree of accuracy (* ) starting from an aperture restricted

0%
plane wave field distribution, is shown in Figure (3-4). The plot can
be used to give a rclative idea of the high order mode rcjection properties

of cavity configurations under comparison. When used together with the



Figure (3-4)

The Number of Transits Required for an Aperture Limited

Plane Wave to Converge to the Lowest Order Even Mode for

an Infinite Strip Cavity as a Function of the Fresnel

Number for Angular Numbers of 2.26, 0.565 and 0.141
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power loss per transit plot, a hanpy medium of balancing lowest order
mode losses against mode rejection propertics can be attained. It
appears that, if one can tolerate a certain loss, the best mode rcjection
is obtained by decreasing the angular number and incrcasing the Fresncel
number commensurate with the allowable losses as much as practically
possible. It should be poiﬁtod out that, ideally, if the losses of all
the modes werc available, the number-of-transits-to-converge plot would
be superfluous.

We can show the behaviour of the converging solutions graphically
by plotting the power ratio:

Power Input

Power Output

as a function of the number of passes. In Figure (3-5) we show threec
plots of this quantity each for a Fresnel number of 6.25. As the angular
number decreases, the convergence becomes more rapid. For the largest
angular number it is scen that the power ratio at first oscil}ates irregu-
larly, gradually going into a damped sinusoid about 1.0069. The initial
irregular behaviour is associated with the presence of several modes in

(33). As diffraction takes its toll of

the transient field distributions
the higher order modes only two modes, having the lowest losses, remain.
These give rise to tlie damped sinusoid. The phase shifts per transit

of the two modes, being differcnt, periodically concentrate to a certain
extent the net field distribution on and off the second aperture, giving

rise to fluctuating diffraction losses. The second-lowest-order even

mode has higher losses than the lowest-order mode, resulting in the



Figure (3-5)

Power Ratio as a Function of the Number of Passes

The power input divided by the power output is
plotted as a function of the number of passes, starting from
a plane wave. The Fresnel number is 6.65 in each of the

three cases corresponding to angular numbers of 2.26, 0.565

and 0.141.
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damping which, in this case, will be almost exponential. As the angular
number is decreased to 0.565, the second-lowest-order even mode damps
out much more rapidly relative to the lowest-order mode and convergence
is thus approached faster. The higher order modes, needless to say,
damp out even sooner. For the smallest angular number considered, the

limit TXlTy- is approached even more rapidly. A similar behaviour is
o

observed for other values of the Fresnel number.

In summary, we have shown that an angular selective device,
which restricts some of the plane wave components of a propagating field
distribution in a cavity from contributing to the ficld distribution at
the second reflector, is capable of mode selecting. The purpose of a
mode selecting device is to leave essentially unperturbed the lowest-
order mode of the cavity without a mode selecting device, while increasing
the losses of all the other modes.b For an appropriately-adjusted angular
number, the lowest-order even mode will ﬁear a close resemblance to the
lowest-order even mode for infinite angular number and the same Fresnel
number. The other equivalent modes, however, will be quite different
for the two cases.

Mode selection is an important aspect of laser cavity design.
Several methods of realizing an angular selecting device are available.
The simplest consists of two lenses and a pin-hole. Another such device
is the Lummer Gehrcke plate. The operation of the plate will be
explained at a later stage in this Thesis in connection with its caﬁacity

to increase the apparent switching specd of a rotating prism Qfswitch.'



CIIAPTER 4

EXPERIMENTAL APPARATUS AND PROCEDURE

4.1 Introduction:

This Chanter will deal with the details of thc experimental
apparatus employed during the course of this work to observe those
aspects of a Q-switched laser system of direct interest to us here. The
method of extracting meaningful physical data from the system will be
clarified. In relation to Lhe Firsf instance, the gencral features of a
Q-switched laser éystem as well as the role of supporting equipment will
be ‘described. A dctailcd characterization of the various individual
components of the particular system used will follow,.and some of the
design considerations involved in the realization of an efficient 0-
spoiled laser system will be presented. In the sccond instance, the
specific experimental mcthods used to extract information about the
system bchaviour relevant to this Thesis will be outlined in detail. The
type of measurements required for the comparison of theoretical predictiens
with experimental results will show the necessity of having a versatile
laser system on which to undertake those measurements. It is this
requirement that rules out as impractical the "off-the-shelf" commercially

available units.
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4.2 Experimental Apparatus:

4.2-1 The Q-Switched Laser System-

A schematic diagram of a Q-switched laser with subsidiary equip-
ment for observation of the time evolution of the giant pulse, as well as
its energy content, is shown in Figure (4-1). A photograph of the system
is shown for reference in Figure (4-2). The laser itself consists of
two plane parallel reflectors between which is placed a material capable
of providing gain at some optical frequency. The laser material is
usually shaped in the form of a long cylinder with optically polished
ends. The ends, in the case when the cavity is formed by external
mirrors, may be plane parallel and normal to the axis of the rod. It is
then advantageous to have anti-reflection end coatings. Brewster angle
ends can alternétely be used, in which case.the component transverse
vibrations of the electromagnetic ficld_in the plane of incidence are
transmitted through the interface without reflection loss -- for a beam
propagation vector parallel to the rod axis. Brewster angle ends may
thus serve in lieu of antireflection coatings.

The cavity formed by the output reflector and the Porro prism
has as its purpose the providing of sufficient optical feedback to form,
together with the laser material amplifier, a laser oscillator. The Q
of the cavity can be switched, periodically, by rotating the Porro prism
(Section 4.2-2) at a uniform rate. It is only when the Porro prism is
aligned parallel to the output reflector to within a rather narrow toler-
ance angie; tha£ gain in the éxcitcé laser crystal can overcome inherent
cavity losses. Lasing can occur, then, only within a very small fraction

of the time required for the rotor to complete a full revolution.
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Figure (4-1)

Schematic of the Giant Pulse Laser System

1. Energy Detecting Therﬁopile head
2. Back-Biased Light Sensitive Diode
3. Diode Load

4, . Diode Power Source

5. Oscilloscope

6. Microvoltmeter

7. Capacitor Bank Power Supply

8. Synchronizing Unit

9. Fife Button

10. Pick-up Coil

11. Porro Prism

12. Xenon Flashlamp

13wy Reflection Filter

14. Cooling Fan

15. Nd+3-in-g1ass Laser Rod

16. Output Reflector
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. Figure (4-2)

Photograph of the System
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Excitation'of the laser rod itself is accomplished by optically
pumping it with the aid of a pulsed lincar flashlamp, located along
one focus of an elliptical housing (Section 4.2-5) which has highly
polished inner metal surfaces acting as rcflectors. The rod is located
along the other focus of this elliptical housing, assuring good coupling
for optical excitation transfer from the flashlamp to the rod.

The flashlamp is driven by a capacitor-bank power-supply (Section
4.2-5), and is triggered by a high-voltage ionizing pulse from a trigger
coil. In practice, the duration of the pumping pulse from the flashlamp
" is much longer than the time interval during which the Q of the cavity
is high enough to allow os;illation of the system. The pump will
establish a laser level population inversion which grows to a maximum at
sohe time during the pumping pulse, and it is desirable that the Q of
the cavity be switched at é time when this population inversion is a maxi-
mum. The requirement is, therefore, that the rotor shall bring the Porro
prism into alignment with the output reflector at the appropriate time
during the flashtube cycle. This state of affairs is accomplished by
synchronizing the rotor to the power supply. The rotor position, under
steady state conditions, is determined by the phase of an AC signal from
the pickup coil located in the rotor housing. This information is used
by the synchronizing unit (Section 4.2-7) to trigggr the flashlamp,
through the power supply, in such a way that the Porro prism comes into
alignment when maximum inversion in the crystal has been established by
the pump. The laser is fired by activating the synchronization unit

which in turn triggers thc flashlamp at the appropriate time.

The phase of the AC signal may be varied coarsely with respcct



77

‘to the Porro prism orientation by.rotating the pickhp coil with respect
to the rotor housing. It is thus possible to synchronize the rotor to
the flashlamp pulse in spite of the varied range of conditions that can
arise in practice. Fine phase control is accomplished electronically
within the synchronization unit proper.
The output pulse from the laser is monitored in two ways. In
—the—first-of these; the-energy content-of-the-pulse is converted into
heat at the input cone of the energy monitoring thermopile (Section 4.2-6)
thus raising its temperature. The cone has a long taper making its
aperture appear like .a black body to an incident beam. Identical referé—
nce and input cones absorb roughly the same amount of non-collimated
radiation. The maximumAtcmperature difference reached by the two cones
-—is then proportional to the energy content of the pulse. The tempera-
.'turc difference is measured by meahs of a thermopile -- fhe'?hot"
junctions being those attached to the input cone and the '"cold" those
attached to the reference conc. The maximum voltage generated by the
thermopile is monitored by a DC microvoltmeter and is associated, by
—~calibration of the device, with the joule content of thé laser pulse.
A small pin-hole, bored through the end of the input cone, provides a
means of extracting a minute fraction of the power of the pulse which is

then collected at the surface of a fast response photodiode. The output

of the photédiode is coupled to an oscilloscope tTektrOﬁE;wvéss) and thus

-provides a means of observing the time development of the giant pulse.
Some subsidiary equipment, not shown in Figure (4-1) completes

the laser system. This subsidiary equipment consists of a high-resolu-

tion autocollimator which may be used to measure the degree of parallelism
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of a surfade's unit normal with respect to the optic axis of the auto-
collimator. A trénsit-type optical telescope, with the capability of
focusing on close lying planes, also forms part of the system. These
optical tools may be used, in conjunction, to align the optics of the

laser system.

4.2-2 Rotating Prism Laser Q-Spoiler-

The Q-spoiling was accomplished with the aid of a Beckman and
Whitley Model 402 rotating-prism laser Q-spoiler. The dcviée is driven
by compressed air. The maximum applicable drive pressure is.80 psi
resulting in a turbine rotational rate of 1500 rps. The device accommo-
dates 5/8" maximum diameter laser beamg. To eliminate critical alignment
problems, the device employs a Porro prism, rotated about an axis parallel
to the prism hypotenusc and perpendicular to the prism roof edge.
Syﬁchronization of the Q-spoiler with the flashlamp pﬁmping pulse is
accomplished through the signal coming from a built-in pickup coil in
the turbine housing. The signal frequency is a direct measure of the
prism rotational rate. Its phase‘with respect to the prism position is
continuously variable through'360° by rotating the pickup'coii with
respect to the rotor housing. The prism roof edge width is less than
0.1 mm and the prism roof angle tdlcrance is better than 1 minute of arc.

The manufacturer claims light losses for the device at least five
times less than those incurred with Kerr cell Q-spoilers. The Porro
prism results in cavity lengths which are effec£ively about twice those
which would rcsuit if an ordinary mirror were mounted on the fo£or

turbine.
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—-—~The upper-bound on the rotational rate of the device results from
tensiie sfréngth limitations of the materials used in its construction.
The lower bound of 50 cps, achieved by us, is mainly limited by jitter
in the synchronizationvbetween the rotor and the flashlamp pump pﬁlse.
Also, at lower switching spceds, the percent random fluctuations in the
rotational rate of the device are larger than they are at higher speeds.
At low switching speeds, there is some difficulty involved in setting
”thé pﬁége of the signal from the"pickup coil for correct synchronization.
It is not difficult to understand the reason for fhis if one considers
that the optimum time for Q-sWitching our laser lasts at best 0.1 milli-
seconds. At 50 cps, 0.1 msec. corresponds to an angle sweeﬁ of 1.8
degrees. The phase must therefore be set to within 1.8 degrees. The
scale monitoring the position of the pickup coil is readable to 1% or
3.6 degrces.

A,Hewlcttﬁackard digital frequency couster was used in the
"Period" mode to measurc the time required by the rotor to complete a
revolution. This procedure yields a periodically sampled ”instantanequs”
rotor rotational rate. Since the stability of the rotational rate was
thus readily monitored, it was. possible to keep the long term rotational

rate of the Q-spoiler within tolerance.

4.2-3_Nd*>In Glass Laser Rods-

The laser rods uséd for the experimental work of this Thesis
were Type ND-11 as supplied by the Eastman Kodak Company. The doping of
allhthé rodg.wa; nominally 3% by wcight Nd203 in EK silicate glass. The

relatively long lifetime of the metastable “F state of Nd+3 in this

312

host material makes it particularly uscful in Q-spoiling applications and
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is recommended in this regard by the LCastman Kodak Company. The mcta-
stable lifetime of Nd+3 in silicate glass is 360 microscconds at room
temperature as compared with the 51 microsecond lifetime of the Ng*3 ion
in borate-base rare earth optical glass - a laser material manufactured
by the same company.

A large majority of the cxperimcntﬁl results were obtaincd using
3" x 1/4" rods with plane parallel ends normal to the rod axis. The
rods werc supplied by the manufacturer with antirceflection coatings on
both ends peaked for 1.06 u opcration. One 3" x 1/4" rod wés purchased
with Brewster angle ends and some fluorescence observations werc madce
employing it.
%6 and end-parallelism

better than 6 seconds of arc for its glass laser rods. In order to

Kodak quotes end-flatness better than

evaluate the tolerances, note that a 1/4" aperture has a diffraction
limit of approximately 30 seconds of arc and that T% in 1/4" corresponds
to about 3 seconds of arc of 'roughness'. Thus the end faces are to all
intents and purposes optically perfect, since the quoted tolerances are
well within the diffraction 1imit of the 1/4" aperturec used. Homogeneity
of the glass laser rods as checked by us with the aid of a He-Ne laser,
appears to be excellent -- a fact that is not surprising since optical
quality glass is being employed as the host material for the Nd+3 ions.
It might seem that accurate measurements of the parallelism of two sur-
faces are limited by the diffraction limit of the smaller of the two
surfaces. However, one may use large-diameter optical flats placed in
intimate contact with the surfaces being measured and so avoid the

limitations placed on the parallelism measurement by Rayleigh's criterion.
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4.2-4 Optical Mounts-

That ﬁart of the system comprising the laser hcad, the rotating
prism Q-switch, the output reflector mount and the high resolution auto-
_co]limator as well as the cnergy monitoring hcad was mounted on a 2.5 m
lathe bed. The rigidity of the lathe bed resulted in.a reclatively
vibration -free optical cavity.

The mount for the Q-switch was a 1" thick platc made of mild
stecl which could be pulled firmly onto the two horizontal flat rails of
the lathe bed by means of a crossbar and bolt asscmbly. Vertical height
adjustment of the Q-switch,which is desirable, was made possiblec by
mounting a machinist's éliae onto the plate and bolting the Q-switch
firmly on the carrier of the slide. Vertical positioning of the Q-switch
to 1/1000" could thus be accomplished without difficulty. The mount of
the Lummer Gehrcke device was similarly constructed. Iﬁ the latter case,
however, an aluminum plate was horizontally mounted on the éarrier of a
machinist's slide. Threce adjusting screws, symmetrically located and
passing through the plate, (each having been provided with a ball-end),
fitted onto V-cut strips on the Lummer Gehrcke device, thus giving the
necessary freedom to controi the attitude of the device.

Lateral attitude was accomplished in both cases by appropria;ely
orienting the mild steel base of the mounts with respcct to the lathe
bed. This adjustment was undertaken with the aid of an optical alignment
telescope and autocollimator. Precision alignment of the Lummer Gehrcke
device and the Q-switch rotor with respect to the axis of the cavity was
thus made possible.

The reflector mount was of kinematic design. A vertical holder
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mounted on a steel base plate, similar to those already described,
coupled a plate to the lathe bed. The plate itself could be slid
vertically on the holder and secured to it at will. Another plate, to
which a reflector could be attached, had three screws passing normally
through it. The screws formed the vertices of a righf angle triangle.
One of the screws had a ball end-—thé other two had fine point ends.

The ball end screw rested against the platc held by the holder, while
one of the point-end screws rested in a V-cut groove on the holder plate.
The point end of the last screw rested in a conical identation of the
hoider platc. Two strong springs, within the triangle formed by the
three screws, were mountcdhin such a way that the two platecs werc always
held in contact through the screws by pressure from the springs. The
V-cut groove was oriented to prevent rotation of the actual mirror mount
about the conical indentation. This design gives reflector tilt about
two independent axes. The threc inch closest-neighbour separation of
the screws together with their fine‘thread allowed accurate control of
the reflector tilt. In practice, and with some care, it was possible to
sect angles to within one second of arc.

The autocollimator was placed on a rigid platform located at one
end of the lathe bed. The platform's height relative to the lathe bgd
was adjustable. Precision height and lateral adjustment was not
required because the exit pupil of the autocollimator was 5 cm in diameter.
The autocollimator's tilt attitude could be controlled precisely using
the three support screws provided on the instrument for that purpose.

The laser head was bolted to a plate which in turn was held

-securely to the lathe bed by a cross-bar and bolt assembly. All
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adjustments werc made with respect to the lascer crystal axis and so only
lateral translation and rotation of the laser hecad with respcct to the.
lathe bed needed to be controlled to align the laser crystal axis,
initially and appropriately, with respect to thc lathe bed. No height
adjustment was nccessary and adequately machined laser head parts
assurcd that the laser crystal was horizontal, within necessary tolcrance,
to the lathe bed rails.

The energy meter optical-head was placed on a beliows type mount

whose height could be readily adjusted.

4.2-5 Laser licad and Power Supply-

The lascr head used to optically pump the laser crystal was of
the elliptic type. A pumping system must be capable of coupling light
from the pump source to the laser crystal as efficiently as possible.

The elliptical cylinder type of laser head, when used in conjunction

with a linear flashlamp, constituteé such a system. If the laser crystal
is supported along one focus of the ellipse and the flashlamp along the
other, a degree of concentration of the light emanating from the flash-
lamp on the crystal is realized. That degree is strongly dependent on
the quality of the rcflectors forming the closed elliptical cylinder and
on the geometry of the ellipse. The present trend is to have the crystal
and the flashlamp close together in an appropriate elliptical cavity.

Two partial sections of an ellipticél cylinder are very often used to
form a symmetrical three-focus system with the crystal located between
two linear flashlamps. The ecllipse in the present case had the following

dimensions:
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. Major Axis G
Minor Axis 4 P2
Distance Between Foci 2.1/8%

)

Using the calculations of Schuldt and Aagard(40 , which assume
a Lambert's Law pump and define the efficiency of the system in terms of
the relative percentage of rays which travel from the source to the laser
crystal and reach there--suffering no more than one reflection by the
cylinder--one obtains an efficiency of 50% for the above geometry.
The flashlamp used as the pump séurce was a Edgerton, Germeshausen
and Grier FX-42 linear xenon flashtube. It was excited by a GNB Model
 20-002 power supply and capacitor bank. This unit is composed of 8
separate capacitor units, each capable of storing 250 joules of energy
at 2200 volts: This being the maximum rated.voltage of the power supply
At the dtﬁer extreme the minimum output energy obtainable is 62.5 joules -
at 1100 volts. The individual capacitor units are easily connected in
parallel to cover this output energy range of 62.5 - 2000 joules.
The stored energy is controlled by the controller module in the
GNB unit. The flashtube easily supports a potential difference of 2200
volts across its terminals until a 20,000 volt trigger pulse is supplied
to a'c0arsé 1/2 inch conducting grid surrounding the flashtube. The
-”W“AA‘«ﬁ_ffigger'éulse ionizes the xenon in the flashtube, resulting in a main
_breakdown of the gas by the energy stored in the capacipor banks. This
energy is‘cqnverfed into useful 1light output as Qell as into heat. Part

of the role of the controller module can now be appreciated; it can

control the trigger pulse in any of three ways, namely:
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. (1) Manually

(2) Automatically with a period ranging from
0.0l:sec.. to 100 sec.

(3) By an external +10 volt pulse into 4000 ohms.

The controller module also sets the energy stored in the capacitor to
the value required by a manually adjustable control which is of the on-
off type. To offset the accuracy limitations of such a control, we
incorporated an error monitoring meter into the power supply, which
allowed for 1:1000 energy reset-ability from firing to firing. We note
that the average output power of the GNB unit may not exceed the rated
linear charging rate of 200 joules per second. The pulse from the
thyratron that generates the flashtube trigger pulse via a pulse trans-
former, is also used to generate a +2 volt pulse from 100 ohms which is
useful for external synchronization purposes.

The energy module is used to generate a linéar charging rate of
200 joules per second until a predetermined voltage across the capacitor ‘
banks is reached. This voltage is controlled from the panel of tﬁe
controller module. A pointer and scale on that module is calibrated to
read directly in joules. The scales may be interchanged with one of
several others which are available in order to allow direct energy set-
tings to be made for different capacitor bank interconnections.

An inductance module is provided consisting of two 800 millihenry
coils each tapped at 100, 200, and 400 millihenries. This permits inter-
connections to be madc between the chokes and the capacitor banks in order,
for instance, to give the resulting circuit current limitingproperties, or to

simulate the discharge from a transmission line and so approach a
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rectangular shaped light output pulse from the flashtube. In general,
only the current limiting aspects of a single choke (200 millihenry) in

series with the flashtube were exploited in this Thesis work.

4.2-6 Dctectors-

Three different types of detectorslwere essentially used in
performing the expcrimental mcasurements. The first of these was an
encergy detector, while the second and third were a fast response solid
state photodiode and photomultiplier recspectively. |

The energy detector (TRG Model 102) consists of a béllistic
thermopile which measures fhe temperature risc of a nickel-plated silver
input-cone resulting from absorbed incident radiation, with respect to
the temperature rise of a second.idcntical reference cone. The input
cone receives the laser beam together with non-collimated background
radiation, while the reference cone reccives only the non-collimated
background. The thermOpiie consists of ten series-connected iron-
constant thermocouples. Radiant cnergy, which is directed into the
aperturc of the input conec, is almost totally absorbed duc to the
Mendenhall wedge effect. The temperature rise of the input cone with
respect to the reference cone causes an emf to be gencrated in the thermo-
pile, which can be monitored by an externally-connected microvoltmeter.
The peak emf measured is linearly related by a known calibration factor
(206 pv/joule) to the total input energy, as long as that energy is
incident on the input cone in a time short compared to the response time

of the instrument (~10 seconds).
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The radiant power of the lascr becam is monitored by a fast
response (risc time = 4 nscc.) photodiode located in an cnclosure
immediately bchind the input-cone. A small pin-hole at the vertex of
the input-conc allows a small fraction of the power in the beam to be
incident on the photosensitive arca of the diode detector. The diode is
backbiased with a 90 volt battery across whose tcrminals is connected a
0.1 p farad capacitor. The capacitor serves to maintain the bias
voltage when currcent isvdrawn by the photodiode and also reduces external
transients from the signal picked up by the batteryv-leads. The photo-
diode is loaded by a 200 ohm resistor and it is across this resistor that
a voltage signal, prOporti6n31 to the laser beam incident power, is
monitored by a Tektronix 555 oscilloscope. The connection between the
oscilloscope and the photodiode is made using 100 ohm coaxial cable,
terminated at the input of the vertical amplifier of the oscilloscope
with a 100 ohm load. This procedure ensures a fast responsc time for
the system frece from degrading capacity-loading‘cffects. The system
comprising the photodiode circuitry and the oscilloscope was estimated
to have an impulse response time of roughly 20 nanoscconds.

From the point of view df Q-spoiled pulse detection, noise
considerations take a secondary place to response time. This is, of
course, due to the strength of the signals being detectcd;

In order to make observations on the fluorescent 1.06u
b'F:,,/z > ”111/2 transition of Nd+3, a Dumont 6911-S1 photomultiplier
tube was used in conjunction with a grating spectrograph. The circuit
for the photomultiplier was designed using the relecvant principles outlined

in reference 41. The S-1 photocathode response is the only response
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characteristic commercially available in photomultiplier tubes which
is satisfactory in\thc Iy region of the electromagnetic spectrum. lven
so, at 1.06p the quantum cfficiency is down to 0.04% corresponding to a
photocathode sensitivity of 0.004 ampercs/watt. The only alternate
choice to the S-1 photomultiplier at 1lu is a silicon photodiode or a

(42). The availability of the S-1 photo-

Riese p-i-n junction photodiode
multiplier forced the choice in this instance.

The photomultiplier circuitry was designed to provide a 0.5pscc.
rcsponse time. A faster response time would have been desirable and
could have been obtained by cooliﬁg the photomultiplier tube to 7K.

‘The response time was limifed by the necessity of minimizing the noise-
bandwidth. The limited response time of the photomultiplier and associated
circuit simply puts an upper limit on the spced of the transients of the
signal being detected which can be observed. To be more specific: If
one observes fluorescence from a laser rod in a narrow frequency range
and then, by some means or other, is able to bﬁrn a hole in the fluores-
cent line, the equilibrium liné shape will be restored after a certain
time. If the time required for this process to take place is shorter

than the detector response time, the hole burning will not be detected.

4.2-7 The Synchronization Unit-

A schematic diagram of the synchronization unit is shown in
Figure (4-3). The sinusoidal signal from the pickup coil of the rotor
Q-switch is clippcd symmctrically and then amplified. This procedurc
assurcs that faster rise-times than would be obtained with a sinusoidal signal

will characterize the resultant waveform. Fast rise-times at the input of the
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Schematic of the Synchronization Unit
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Schmitt trigger circuit result in a rectangular waveform output from _
that circuit with less phase jitter than would be obtained with a
sinusoidal input signal.
The rectangular waveform output of the Schmitt trigger circuit
is differentiated and clipped to allow only the positive going spikes
to arrive at the monostable multivibrator input. The spikes trigger the
“monostable multivibrator thusAchanging its state. That state lives for
a time determined by the RC timc—constant.of the multivibrator. Control
of the RC timq—constant of the device allows one to obtain a delayed
signal. Thus, the spike train output from the differentiator and clipper
following the multivibrator is delayed by a controllable time interval
with respect to the spike train output of the first differentiator and
clipper. By making contact-with the aid of the control release switch-
.between the terminals from the second differentiatér and ﬁlippcr and
those of the binary, one is able to obtain a change in state of the
binary. The switching action initiated in the binary by the pulse just
following the contact instant, gives rise to that change of state. The
result is a step output from the binary which is used to automatically
trigger the power supply. The circuit is readied for the next laser
pulsing cycle on reversing the state of_thc binary by means of‘a switch.

The synchronlzatlon unit we have described is capable of providing

a trigger pulse whose phase can be varied w1th1n a certain range (0.5msec)
with respect to a reference sinusoidal signal. The 0.5 msec electronic
phase control proved to be adequate in practice. A.maximum.3600 phase
control could be obtained mechanically by rotating the.pickup coil in its
mounting on the Q-switch housing. The electronic phase control could then

be used as a trimmer.
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4,2-8 The Lummer-Gehrcke Plate-

(32)

A modification of the Lummer Gehrcke interferometer results

in an optical device uscful as a one-dimensional angle-limiting filter.
The device is available commercially from TRG Inc. under the name Daly-
Sims accessory. It makes usec of the phenomenon of total intcrnal
reflection in a multiple-reflection plane-parallel optical plate.

To understand the operation of the Lummcr Gehrcke platc as an
angular limiting filter, we consider a beam of monochromatic light pro-
pagating within a ﬁlanc-paral]el non-absorbing plate with a given angle
of propagation measured with respect to the unit normal of thec plate.

We further limit our discussion to‘a plate whose thickness is large
compared to the width of the beam being considered. This restriction
allows us to neglect the effects of vignetting on the plane-wave com-
ponents of the beam after it is allowed to exit from the interior of

the plate. Those plane-wave components of the beam, whose angles of
incidence are greater than the critical angle of the medium in which the
.planc-waves are propagating, will be totally internally rcflected. 1In
contrast, those plane-wave components whose angles of incidence arc
smaller than the critical angle will, in part, be refracted at the
boundary and, in part, be reflected. The net result is that such rcflected
planc-waves have suffered attenuation. After a large number of passes
the angular content of the beam will essentially be the same as the
angular content before the first reflection--except that now the angular
content is truncated on one side by the loss mechanism described.

A schematic of the Daly-Sims accessory is shown in Figure (4-4).

The diagram shows the way in which the ideas just outlined are implemented



Figure (4-4)

Schematic of Daly-Sims Accessory
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to yicld a practical device. The arrangement shown in the Figure has
the advantage of having the entrance and exit pupils on line. The
Brewster angle ends allow those planc-wave components, polarized with
the qlectric vector in the plane of incidence, to cross the houndarics
without suffering a reflection. The angular field of acceptance can be
varied by simultancously rotating the two component plates about the
axes shown in Figure (4-4). In the device proper an arbitrary scale is
provided to allow the monitoring of the field of acceptance of the
device.

To gain an idea of the sharpness of the cut off of the device
it is perhaps useful to quote the results of some of our calculations
on a l2-reflection plate made from a medium of index of refraction
n = 1.46. The calculapions'assumc a planc-wave polarized in the plane
of incidence and are based on thec Fresncl formulmész), and the law of
refraction. The restriction on the polarization takes account of the
fact that when the device is placed inside a laser cavity, the losses
' for the two linearly independent polarizations are different. Due to
the Brewster angle windows of the plate, the losses for those plane-
waves polarized in the plane of incidence arc the smallest, and hence
the output beam will be polarized accordingly. For small deviations

from the critical'angle, Gc, given by A > 0 we can easily arrive at the

formula:

- 1
2 /7 n(n2-1)7 g s &
G-

1 %
(1 Ez-)



94

where R is the reflecctivity for one reflection and n is the index of

refraction of the plate. For a 12-pass plate with n = 1.46 and A = 10_3

12 S

radians = 3.4 minutes, R"" = 0.01. For the same plate with A=0.5x10
radians, R = 0.04. These figures, applicable to this Daly-Sims accessory,
give an idea of the sharpness of the cut-off of the device for plane-waves
incident at angles smaller than the critical angle.

As long as the main lobes of the plane-wave components of a given
beam fall within the band-pass of the device, the beam will propagate
through the device essentially unattenuated. To be more specific, we
focus our attention on the lowest order transversc mode of the cavity in
which the device is assumed to be located. The lowest order mode has its
main anguléf lobe symmetrically located about the axis of the cavity. We
further assume that the angular width of the main lobe is narrow cnough to
be allowed fo propagate through the device essentially unéttenuated. The
device then has no apparent cffect on that cavity mode. Assume now that
the previously well-aligned cavity has one of its reflectors tilted with
respect'to the other. The lowest-order mode of thc new configuration, if
it exists, can be considered to be made up from a mixture of modes of the
unperturbed cavity. Some of these component modes which normally would

give rise only to extra diffraction losses arc now also attenuated by the

device since they will fall outside its bandpass. Bearing this picture in

mind it is not difficult to understand that the losses associated with

the misaligned cavity containing the device will be higher than the losses
for the misaligned cavity without the Aevicc. On the other hand, for the
case of the aligned cavity with and without the device, the lossecs can,

under certain circumstances, be made approximately equal.

o—
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Onc of the uses of the Lummer Gehrcke plate is to increasc thé
cffective switching speced of a rotating reflector OQ-switch. The cffective
switching speced may be increascd by narrowing the loss vs angular-misalipgn-
ment function of the cavity. This narrowing may be accomplished by intro-
ducing the Lummer Gehrcke device into the cavity. The lnrgcsf increcase in
cffective switching speed is obtained when the angular bandpass of the
device is adjusted to the minimum valuc that results in essentially

identical losses for the aligned cavity with and without the dcvice.

4.2-9 Reflectors:

The cavity in a laser system is formed by two reflectors. In O-
spoiling applications these are usually plane parallcl. If Q-spoiling is
accomplished using a rotating totally internally reflecting prism, onc of
the rcflectors forming the cavity is the prism itself, the other one being
the output reflector.

The output reflector can be made from a metallic thin film
deposited by vacﬁum-evaporation techniques on a dielectric substrate, such
as fused quartz or glass polished to optical tolerances. This type of
reflector is highly unsuitable for Q-spoiling applications sincec it may
become irreparably damaged after a single operation of the laser in the
giant pulse modc.

Multiple dielectric coated optical flats provide a much more satis-
factory answer to the search for a suitable output rcflector. It has been
observed experimentally by us that they may become damaged by the output
giant pulsc of the laser for output pulse power densities of the order of

0.3 joules in 25 nanoseconds over a 0.05 in2 area.
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By far the most suitable type of reflector for O-snoiled operation
is of the resonant type. This type of reflector has a wavclength-dependent
reflectivity. TFor normal incidence an n platclet resonant reflector

formed from a medium of index of recfraction n has reflectivity R given by:

(n)zn-l

(n)2n+1

at optimum rcsonance. The derivation of the formula follows from the
Fresnel laws(32).

For a threc platelect rcsonan£ rcflector made from sapphire
(n =1.76) R = 87%. The separation and thickness of the platelets arc

such that the spacing between the resonant clectromagnetic waveclengths is

1 cm-l. Since the fluorescent line width of Nd+3 in glass for the

4 4
Fera * 11172

that there are many rcsonant wavelengths within the fluorescent line width

& : -1 :
transition is about 300 cm = at room tempcrature, we sce

for which the reflectivity is high.

Most of the expefiments were performed using dielectric rcflectors
of either 50% or 80% reflectivity. An 87% resonant reflector was available
but was not used except in making some cnergy utilization measurcments.

The recason for not using it morc extensively was that it was found to be
defective in its alignment when it was checked out dsing a high resolution
autocollimator. The resonant rcflector was later realigned with.the aid
of a He-Ne gas laser and subscquently used in some of the energy utiliza-
tion factor mecasurements. It performed in a similar manner to the 80%

dielectric coated rcflector,’ as far as could be determined from observations



97

of the output cnergy level of the beam and the encrgy utilization factor.

4.3 Proccdure:

4.3-1 Alignment Techniques-

The alignment problem in laser systems lies in the requirement that
cavity reflectors be 5arallel and that all optical apertures bhe centered
on'the optical cavity axis. The optical cavity axis need not be a straight
line. This casc obtains whén a Brewster anglc laser rod is used as the
drive element in a cavity.

The solution to the alignment problem may be found in the use of
a single optical-tooling telescope and autocollimator combination. This
solution is adcquate when high resolution is not demanded from the auto-

’collimation process. High resolu%ion autocollimators (A810.5 seconds of
arc) arc only available as fixed focus instruments. They do not perform
the function of a tclescope. llowever, when uscd in conjunction with a
transit type telecscope they may be used to effectively solve the alignment
‘problem. We will now briefly indicate the method employed to realize the
solution. |

The projection of the cross-over point of the autocollimator cross
hairs defines a dircction in space within the circumference of autocollimator
becam. A telescope focused at infinity with its axis parallel to the
dircctjon defined by the autocollimator and whose objective reccives the
‘beam from thec autocollimator will form a real image of the autocollimator
cross-hairs at its focal plane. If the axis of the telecscope is marked by
cross-hairs located in its focal plane, then the cross-over point of the

imaged cross-hairs will coincide with the telescope cross-hairs. Imagine
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that the teclescope is now refocused at a point intermediate between it and
the autocollimator. The output reflector is placed at that point and is
then tilted in its mount until itf reflected cross-hairs, as vicwed in the
autocollimator, indicate parallclism of its unit normal to the axis of the
autocollimator. The reflector is now aligned when once has made certain
that the imacc of ghc;rcflcctor centre falls on the cross-over point of
the telescope cross-hairs.

The next step is to refocus the telescope at a closer point on the
front face of the laéer rod which, held in the elliptical pumping housing,
has becn moved into the line,of sight of the telescope. The axis of the
laser rod is made to coincide with the imaginary line segment traced in
space by the cross-over point of the telescope cross-hairs as the telescope
is first focused on the front end of the laser rod and then on the back cnd.

If it is desired to make use of the Lummer-Cehrcke plate, the same
technique may be applied to align it as was used to align the laser rod,
after placing the plate between the telcscope and the laser rod. llowever,
one must now check the position in angular space of the angular field of
acceptance of the device‘with respect to the autocollimator axis. To this
end the telescope is refocused on the autocollimator cross-hairs. The field
of the platc is then closed almost completely. The precviously circular field
of view of the telescope as illuminated solely by the autocollimator beam is
now a single vertical band. If this band is located symmetrically about the
vertical cross-hair of the telescope the Lummer-Gehrcke plate is perfectly
aligned. If not, a slight adjustment of the attitude of the plate is made

until this situation obtains. For this procedurc to be successful the

Lummer-Gehrcke plate must be in perfect adjustment.
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The Q-switching rotor may now be placed in the desired location
closest to the telescope. It is positioned with the 90° edge of the Porro
rpr;smﬂin fhé imaginafy ﬁlaﬁéff£aced out by the horizontal cross-hairs of
the telescope as it is focused over its range. This is accomplished by
means of a previously-placed accurate mark on the back of the rotor housing.

If it is desired to operate the laser in its normal mode, the
prism must be fixed in position and the whole rotor housing rotated until
the prism is normal to the output reflector. The existence of this condition

may be monitored with the aid of the autocollimator.

- 4.3-2 Q-Spoiled Pulse Output Energy Measurements

and Complementary Measurements:

A set of Q-spoiled output energy measurements cénsists of those
values obtained ekperimentally for the output énergy content of the Q-
spoiled laser beam for various Q-switch rotor speeds and laser rod excita-
tions. Those measurements must be complemented by a knowledge of the values
of other variables of interest.

The aim of making output energy measurements, together with measure-
ments of other relevant data, on a O-switched laser system is to obtain
sufficient quantities to allow a complete description of that system.

At this point, therefore, it is perhaps worth while to recall those

quantities which are complementary to the output energy measurements. Cavity
configuration measurements are though; of as yielding values of the physical
cavity'lengfh, ﬂ, the lasér rod length, &, the index of refraction of the

rod, n, and' the rod end face area, A. Measurements on the physical properties

of the laser rod are similarly thought of as yielding the value of the
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magnitude of the electric dipole matrix element for the transition in
question, which has alrcady becen rclated directly to ao;hy mecasurements on
the decay time constant and the branching ratio of the upper level for
laser action. Such mecasurements are also thought of as yiclding the

Wy g the half-width of the

operating angular frequency of the device,
fluorescent transition, Aw, the relevant level degeneracies, g, the
operating temperature, To’ and the splittings of the upper and lower
levels for laser action, AE.

By refering to the cquations for Nd+3 ions in a glass matrix (2-13),
(2-14), (2-15) we sce that a knowledge of the above listed quantities -
together with a knowledge of y(T), 1, and the initial conditions - are suf-
ficient to enable us to predict the bechaviour of the laser system by
solving those equations. ' In particular it is possible to predict the out-
put energy characteristics of the O-switched laser system under consideration.
The complementary measurements yield, through the rate equations, predicted
output energy characteristics which may be compared with the experimentally
observed characteristics.

In practice, the situation is not quite as simple as that described
above. In the first place the lecvel degeneracies are not known; this
obtains because of experimental difficulties in their measurement. Secondly,
the relaxation time constant, 1, of the lower level for laser action is also
not'directlf known. In Section 2.3-5, however, we have indicated how to
deal approximately with those unknown level degeneraciés. On the second
point, however, if we assume that the rate equation model is valid, we may
fit the predicted output energy characteristics to those observed experi-

mentally if we treat 1 as an adjustable parameter in the solution of thosc

MILLS MEMORIAL LIBRARY
McMASTER UNIVERSITY
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rate cquations. This procedurc allows us to obtain an approximatc valuc for
T. The overall validity of the model can then be judgcd by the measure of
agreement between the experimental and theoretically fitted output energy
characteristics.

The problem ig simplificd somewhat if one considers the normalized
rate equations (2-19), (2-20), (2-21). The solution of thosc cquations is

determined by a knowledge of the switching function, y(T), the time per pass

_Le(n-1)2 eky
c b

K1 + K2

of a photon in the cavity, T the degeneracy factor,

1
and the relaxation lifetime of the terminal level,t - taken together with
the imposed initial conditions. The output cnergy, Eo’ of the laser system
model being considered will certainly be proportional to:

[ o an
o

T=0

The proportionality constant may be determined by fitting that point of
maximum experimentally observed output energy, (for single laser-pulse
action at a particular constant excitation encrgy), to the corresponding
point of the theoretical characteristic. Once this constant is determined
it should be applicable to all excitations of the laser rod. AThe fit
further enables one to determine ¢oi'- thch is the initial condition on @0.
The quantity ¢oi cén also Be obtained from theorctical calculations and
thu; a comparison may be made with the fitted ¢oi' The validity of the
rate equations can therefore be determined in respect to their ability to
predict the relative behaviour of the output energy characteristics. To
validate the rate equations as far as the prediction of the absolute energy
output is concerned we nced to use the results of Section 2.5. It may be

noted at this time that a very satisfactory agrecement of predicted output
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energy with experimentally observed output cnérgy results (secc Section 6.2).
The fitted ¢oi is also found to be in good agreement with the corresponding
predicted value.

The method just outlined is, in fact, the one uscd to test thecoretical
predictions against experimental rcsults. We have indicated that the first
step in the procedure to apply the method consists in determining the

2K4

K1 + kz

Of ‘these, the degeneracy factor

switching function, y(T), the degeneracy factor, , and the time

per pass of a photon in the cavity Tl'
and T1 arc easily arrived at. The problem is then to detecrmine y(T) and

the initial conditions. Since Qoi is fitted to experiment we nced only
determine No (recall that N01 =0 initiaiiy) to be able to find the

solutions of equations (2-19), (2-20), (Z-Zi). We naturally need the

" experimentally determined output energy characteristics to determine the
quantity L and the output encergy constant of proportionality. Later

(see Section 6.1) we will sec that in fact ¢oi can be estimafed theoretically.

The result of such an estimate will be shown to be in good agreement with

the experimentally fitted value.

4.3-3 Determination of The Loss Function y(T):

In this Section the mcthod of evaluating.the loss function y(T),
associated with the prism switch, will be described. To begin with, the
laser system is first aligned for normal operation without Q-spoiling and
the cavity length is noted. The threshold energy for laser action is then
measured by observing the minimum pump cﬁergy required to bring about the
onset of laser rclaxation oscillations. That value of the pump energy is

recorded.
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Refering to equation (2-19) we see that the threshold conditon is
simply: No = y(T) Since we make ‘the measurements with a static aligned

Porro prism, the threshold condition becomes:

[No] 8 = 0, Thresholg = Y(0) = = nR

This result obtains since for high quality Nd+3 in glass rods, and
large cavity Fresnel numbers, the only significant losses arise from the
fractional reflectivity of the output reflector. We are consequently able
to associate a particular value of the qﬁantity No with the threshold pump
energy. Now, experimental evidence indicates (see Section 4.1) that No for
our laser system, (assgming for the moment that positive feedback is being
prevénted), is to a good approximation, proportional to the pump energy for _
the entire‘range of fiashlamp input energies¥ It follows that if the output -
reflector is misaligned by an angle O, and the threshold pump energy is

once again measured and recorded we immediately obtain [No] 6, Threshold

which we can then equate to y as follows,
[No] 6, Threshold = ()

Repeating the measurcments for various degrees of misalignment, 6, we obtain
‘the angular dependence of y. This informafion together with an assumed
given rotational rate of the Q~switéh detemines the time dependence of

the switqhing function, y(T);A In thesc measurements it is evident that we
hﬁve made use of an approximation; namely, that it does not pafticularly

matter which reflector - the output reflector or the Porro prism - is made
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responsible for the misalignment. For small angles, 6, this conclusion
will certainly follow. We may in a similar manner determine y(©) for a
cavity containing a Lummer-Cehrcke plate. In this case we can arrive at a
family of curves each of which corresponds to a particular field opening of

the device. \

4.3-4 Measurement of The Q-Spoiled Output Energy

Characteristics of a Mechanically Switched Laser:

Once the switching function y(T) has been determined by the method
~outlined in the previous Section it only remains to determine the output
energy characteristics of the device. To this purpose the rotor is
allowed to come to a fixed rate of rotation, following which the energy
content of the Q-switched output pulse is ponitored for certain pump-drive
energies. The synchronization of the Q-SWitch is set to assure that the
giant pulse appears when the lascr rod is at peak excitation. This require-
- ment maintains the linear relationship between the inversion, No’ prior to
giant pulse evolution and the energy input into the flashlamp. It is also
the condition for obtaining maximum inversion pfior to the appearance of
the giant pulse, for a given pump excitation.

The output encrgy measurements are 'made for various rotational
rates of the Q-switch rotor. These measurcments are continued until
enough data points are secured to determine the functionai dependence of
the output energy content of the beam on the rotational rate of the prism.
The result is several energy output constant-excitation characteristics,

distinguishable from each other by the particular input energy to the flash-

lamp used in the observation of each one of them.
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In practice, the range of switching specds of the rotor must be
such as to allow cut-off of the laser giant pulsc to be reached at the
maximum excitation of the laser rod. The origin of cut-off has becn
explained. Tor a given laser rod; cut-off is a function of laser rod
excitation, cavity length and output reflector rcflectivity. The higher
the excitation of the. rod the greater will be its gain, and consecquently
the shorter will be the build-up time of the pulse; thus in order to reach
cut-off one will be required to employ a faster switching speced.

Increasing the cavity length results in two effects. The first of
these is duc to the increase in the transit time per pass of a photon in
the cavity. This increase, in fact, slows down events taking place in the
cavity by the ratio of the old transit time to the new. In turn, cut-off
will occur at a slower switching speed. ELxperimentally it has been
observed that loﬁger cavity .lengths have a narrower switching function y(8).
Thus at a given rotor speed it will appear to the photons in the cavity
that switching is taking place faster when longer cavity lengths are
employed. The two effects taken together result in a higher appafent
switching speed, and cut-off will consequently occur at slower switching
speeds for the longer cavity. The highcf the reflectivity of the output
reflector, the faster will be the pulse build-up and consequently higher
switching speeds will be required to cut off the pulsc.

For 50% and 80% output reflector reflectivitics it was found that
the interesting portion of the output cnergy characteristics could be
observed employing a cavity length of 45 cm separating the Porro prism and
the output reflector. The experimental output energy characteristics

presented in this Thesis were in gencral mecasured using 50 joule flashlamp
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excitation cnergy intervals to approximately cover the 250-550 joule range.
The procedurc can be extended to the measurcment of encrgy characteristics
for the case of a rotating prism Q-switched laser containing a Lummer-
Gehrcke plate with its ficld of acceptancc held constant.

One serious cxperimental difficulty arises from these measurements.
At peak output powers and high excitations any damage that occurs to
either the Porro prism or the output reflector, from the high power
densities of the beam, will change y(8) irreversibly. On various occasions
mcasurements had to be halted because of radiation damage sustained by the
dielectric coated output reflector. The damage may be sensed by observing
any drop in output cnergy - for constant excitation and switching speed.
To avoid the detrimental effects of such damage the characteristics were
measured by starting the run at low switching speeds and finishing it at
high switching speeds. Thus relatively high power densitics were only
encountered at thc end of the run when most of the measurements had been
completed. The results presented in this thesis were obtained with minimal
resultant damage to the laser system components and it is therefore felt

that they are a good measure of the actual characteristics of the system.

4.3-5 Fluorescence Measurcments and the

Encrgy Utilization Factor:

The determination of the fluorescent line width, Aw, for the

4 4

—_ +5 . g
F:,,/2 -> 111/2, 1.06p transition of Nd in glass, as well as the line shape

of the transition, was ascertained with the aid of a concave cylindrical
grating spectrograph. (1.5 meter Bausch and Lomb Model 11 stigmatic grating

" spectrograph). The required setting of the grating was determined with the
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aid of a mercury source by observing in second order thc two mercury ycllow
lines (Al = 5791, Xz = 5770 R) as well as the mercury green line (A = 5461 R).
Use was made of the fact that a grating will not distinguish spatially
between spectral lines satisfying the condition n) = constant, where A is

the wavelength of the lines under obscrvéiion and n the spectral order in
which they are observed. Observations on fhe above mercury lines thus

- provided markers in first order at A = 1.1582u, 1.1540p and 1.0922p
respectively. The dispersion of the grating in first order could thus be
calculated and the position determined at which to expect thé 1.06p transi-
tion of Nd+3.

A photo multiplier with an S1 spectral response was used to monitor
the wave length dependence of 1.06u fluorescence transition, for various
pulsed excitations of the laser rod. The fluorescence was guided into the
entrance slit of the grating spectrograph with the aid of fibre optics.
Visible radiation was excluded from the spectrograph by an appropriately
located Wratten 87C filter.

The fluorecscent strength of the 1.06u transition is a direct
mecasurc of the number of ions in.the excited 4F3/2 state of Nd*s. By
measuring the drop in fluorescent strength at the time the giant pulse
occurs, one obtains the fraction of‘the available ions which have in fact
contributed to the energy of the output pulse. This quantity is just the
energy utilization factor. The value of such a factor may also be
obtainable from solutions of the rate equations; thus a further check is
possible on the validity of thosc gquations.

Energy utilization factor measurements were made on the system and
the results of those measurcments are in good agreement with the values

predicted by the ratc equations (sece Section 5.7).



CHAPTER 5

EXPERIMENTAL RESULTS

5.1 The Fluorescent Output Strength of the

4 4 i s 7 HS
F3/2+ 111/2 Transition of Nd as a

Function of the Pump Input PInergy:

Figure (5-1) presents the functional dependence on wavelength of

the fluorescent strength of the 4F3/7 > 4111/2 transition of Nd+3

for Kodak type ND11 laser rods at room temperature, and under pulsed

-in glass

excitation conditions. The energy input into the flashlamp is the variable
parameter labeling the family of curves obtained experimentally.

A background signal, which is dependent on flashlamp excitation and
wavelength, is clearly visible on the wings of the fluorescence response
curves. The background is attributed to the flashlamp output in that
region of the infrared spectrum. The output from xenon flashlamps extends
well into the infrared and certainly into the lu region of the spectrumT
We note, in particular, that the background signal increases by a factor of
approximately two for a change by a factor of three in the excitation energy
into the flashlamp. This observation may result from the increcase in
- voltage across the flashlamp which was employcd to gain the increase in

excitation energy, since xenon flashlamps tend to give proportionally less

(43)

output in the infrared at higher operating voltages . The background is

+ General LClectric Flashtuhe Datalggnual



Figure (5-1)

Intensity of the 4F >4 Transition

3727 11172

of Nd+3-in-glass as a Function of Wavelength

for Various Values of the Pulsed Input Energy

into . the Flashlamp
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not constant with wavelength, but drops as one approaches the long wave-
length side of the clectromagnetic spectrum. This result cannot be attributed
to a variation of the infrared output of the flashlamp with wavelength,
since we arc decaling with a relativclyvnarrow spectral band. The causc of
such a dependence lies in the spectral response characteristic of the Sl
photo surface of the photomultiplicr, which drops rapidly with increcasing
wavélength in this region of the spectrum(42). Finally, we should note that
it is important to consider‘the presence of flashlamp background in the
fluorescent signal when cnergy utilization measurements are made.

In Figure (5-2), the peak fluorescent intensity has becn plotted as
a function of excitation energy into the flashlamp. The data used to obtain
the plot were obtained after subtracting out the background contribution
from the fluorescent signals. It.is evident that the dependence of fluore-
scent output on the flashlamp input energy is linear, and that the extra-
polation of the plot to low flashlamp energies goes through the origin.
Thus, in the calculations based on the rate equations, it is correcct to
assume that the initial inversion just prior to switching is proportional
to the ipput energy into the flashlamp. These results hold as long as
switching takes place at a time when peak inversion has been recached.

Referring back to Figure (5-1), we observe that the measurement of
the fluorescent line half-width yields a value for that width of about 180R;
this is somewhat low. Kodak quotes a fluorescent line width for its ND 11
laser rods of approximately 300 R. Recall that the responsec curves of

Figure (5-1) have not been corrected for the spectral characteristics of

the S1 photo surface used for their measurement. Also, the observations of



Figure (5-2)

' ; 4 4
Peak Fluorescent Intensity of the F3/2 - 111/2

Transition of Nd+3-in-glass as a Function of Pulsed

Excitation Energy

The peak fluorescent intensity is a measure of the
maximum gain of the laser rod obtained with the given

excitation. It depends strongly on pumping geometry.
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the fluorescence were man on axis, and at 600 joules cxcitation the gain
of the laser rod is significant - so that one may be observing a degree of
fluorescent line narrowing due to stimulated cmission taking place in the
~laser rodT

As a final note, it may be pointed out that the slope of the
straight-linc relation ship between fluorescent strength and excitation
energy will depend strongly on-the condition of the reflectors of the
elliptical pumping housing, as well as on the relative alignment of the
linear flashlamp and the laser rod within the pump housing. Thus, the use
of newly buffed pump reflectors will yield a steeper slope for the above
relationship than reflectors that have experienced the effects of a
deteriorating environment. The slope will evidently also depend on the

+3 o i
Nd © concentration present in the laser rod.

5.2 The Experimental Determination of the

Switching Function y(8):

Figure (5-3) shows the dependence of the threshold energy for
normal laser action upon the tilt angle of the output reflector, which is
. of 75% reflectivity. .Wc have indicated previously that the same dependence
wouid result if we held the output reflector fixed, and tilted the Porro
prism about its axis of rotation in the turbine housing. Theé plot is for a
separation of 46 cm between the Porro prism and the output reflector.

Because of the optical properties of a Porro prism, this distance corresponds

+ TFluorescent measurements made under very low excitation conditions on a
+3 . : i
Nd 3-1n-glass sample at room temperature vieclded a fluorescent line half-

width of 230 R.



Figure (5-3)4

Threshold as a Function of Output Reflection Tilt

Cavity Length = 46 cms.
Output reflector reflectivity = 75%

At 100 rps sweeprate is 2.16 minutes/usec.
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to a cavity length of approximately 92 cm.

The plot in Figure (5-3) is quite symmetric about the position
3' 50". This dependence may be described - up to 450 joules excitation -
by two straight lines, onec valid for 6 > 3' 50" and E £ 450 joules and the
other valid for 6 < 3' 50" and E < 450 joules. If we changc the scale of
the dependent variable in Figure (5-3) so that in terms of thc new scale
the functional dependence becomes y(68) we need to keep in mind the
reflector reflectivity (R = 0.75) which was used to obtain the measuremcnts.
We know that the minimum threshold for a high quality laser rod and a large
enough cavity Fresncl number is g;verncd entirely by the cavity reflector

reflectivities. In the casc being considered, there is only one such

reflectivity to take into account. This may be done by recalling that

Yrh = - ¢nR = 0.286 for R = 0.75

We thus arrive at the correspondence: 125 joules excitation is ﬁceded to
overcome losses characterized by a loss function value Y11, = 0.286. We sce
that if, say, 250 joules arec now assumed to be nceded to overcome the
losses, y must be equal to 2 x Yoy, = 0.572. The dependence is linear.

Both scales are shown in Figure (5—3) for ease of reference.

We now clérify a small point in order to avoid confusion. The
roof edge of the Porro prism in the experimental apparatus lies in a
horizontal plane. The angle © in y(®) is a rotation about a vertical axis.
A rotation about a horizontal axis does not change the losses significantly
if the angle of rotation is kept small, a consequence of the optical
properties of the Porro prism. Thus only one anglc of rotation needs to be

specified.
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Many loss-function devendences on tilt angle were measured. It
was observed, experimentally, that the widths of the loss functions vary
with cavity length. For long cavities the loss function is narrow. The
loss function is also critically dependent on the condition of the optical
components within the cavity. A damaged output reflector or faulty

dielectric antireflection coatings on the laser rod faces, as well as

ﬂ’thippéd“?orrb“prishs, increase the losses at a given angle and generally

change the function y(©).

The loss function y(9) depends somewhat more subtly on cavity
alignment. The position of the Porro prism roof edge with respect to the
cavity axis passing through the centre of the laser rod end-faces is
critical. A variation of as little as 0.040 in, Porro prism heightnchanges
the response of the laser system significantly. This is a result of
‘'variations in the loss function brdught about by the chaﬁge of the prism

roof edge height.

5.3 The Switching Function y(6) with the Lummer Cehrcke

Angular Limiting Device Present in the Cavity:
The methods for the determination of the loss function for a
cavity containing the Lummer Gehrcke device, are exactly the same as those

employed to determine that function for the case without the device. One

can now determine, howevé£,>é fahily of lo;s-fuﬁctions, each member of
-which corresponds to a particular field opening of the device.

Figure (5.4) shows the results of measurements- yielding the family
of loss functions for various arbitrary field openings of the device. The

degree to which the field has been opencd is monitored on a scale provided



Figure (5-4)

Threshold as a Function of Output Reflector Tilt

with the Lummer Gehrcke Plate in the Cavity

Cavity Length = 40 cms.
Output Reflector Reflectivity = 55%
The arbitrary field setting is the parameter for the

family of loss functions.

FIELD SETTING

0 - No Lummer Gehrcke in the cavity

1 - 320
2 - 340
3 - 300
4 - ZSQ
5 - 270
6 - 260-
7 - 245

(Experimental points not shown in order to avoid clutter

of the diagram)
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on the dévice for that purpose. The loss function obtained by simply
femoving the device ffom the cavity, is also shown for comparison.
The familx of loss functions is characterized.by various note-

worthy features. It is evident that the threshold energy for the aligned
configuration is essentially independent of the field opening and further-
more of whether or not the device is present in the cavity. On the other
~ hand, the angular width of each loss function i; strongly dependent on the
particular field opening - as monitored on the scale pfovided for that
purpose - that characteriies each of those functions. The Lummer Gehrcke
angular limiting dévice nrovides a means, then, of incréasing the effective
switching speed of a Porro prism Q-switched laser.

s Before proceeding further, an apparent discrepancy will be pointed
out, and an explanation removing it given. The reflector reflectivity
"used to obtain the measurements of the loss'functions was 55%. Using the
data'of the previous section, we would expect threshold for the alignéd
cavigy to haﬁe occurred at joules excitation. Threshold, however, occurred at
175 jhules excitation. The apparent discrepancy will be resolved with thé follawing
addi{ional information. In particulaf, the measurements on the system .
coﬁtéining tﬁe angular selective device were carried out under ideal con-
ditions. A new flashtube had just been installed and the elliptical
cylinder reflector surfaces polished to a fine finish. A new laser rod had
been inserted accurately along the appronriate focal liné of the elliptical
cylinder pump housing. These conditions combined to obtain an ideal situétion
which would ;end'to minimize threshold, in contrést to the measurements des-
cribed in the last Section which were.not carried out undef quite such ideal

circumstances. The differences in the system,from one set of measurements to



118

another make analytical comparisons méaningless.

The results of Figure (5-4) were not easy to obtain. Many attempts
to make similar measurements were frustrated by incorrect results. In
particular, it was observed on numerous occasions that, rather than narrow-
ing the loss function, closing the'field of the angular limiting device
.simply resulted in an apparent upward displacement of the loss function
vy(®). The correct results depicted in Figure (5-4) were obtained after
careful alignment of the Lummer Gehrcke device with respect to the axis of
the cavity, and also after careful alignment of the two component plates
of the device with respect to each other.

The device plates must be positioned in such a manner that on a
double pass through the system by a beam, well spread in angular space,
the two resulting cut-off angles of one plate coincide with the appropriate
tcut-off angles of the other plate. In this'cohfiguration, the cut-off is
as steep as can be obtained with the given device. Inspection of the
characteristics of Figure (5-4) tells us that the above mentioned condition
must be met within approximately ten seconds of arc.

With reference to the alignment of the cavity axis with respect
to the axis of the device, the condition to be_mct can be formulated as
follows. The cavity axis must coincide in direction with the propagation
vector of one of the 'plane-waves' which will be allowed to propagate,
unattenuated, through the device when.the acceptance angle of the device
tends to zero. Inspecting once more thc magnitude of the angles involved
in Figure (544); we see that the abo&e restriction can be violated by

not more than ten seconds of arc without imparing system performance.
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From such tolerance restrictions, therefore, it is evident why
success did not arrive immediately on the first attempt at measuring the
characteristics with the device in the cavity.

Output energy characteristics were obtaiﬁed from the laser using
a field setting of 270 as determined from the arbitrary scale of the
Lummer-Gehrcke device. The results of those measurements will be presented

—in Section 5.6.

5.4 The Output Energy Characteristics:

Figure (5-5) shows graphically tﬂe results of output energy
‘measurements on our Q-spoiled laser systemfor a cavity configuration
without an angular limiting device. The output reflector reflectivity
was 75%. The cavity configuration which was used in the measurement of
the output energy characteristics shown.in Figure (5-5) was identical to
that used to determine the switching fqnction shown in Figure (5-3). The
appropriate switching function to use, in calculations attempting to
predict the energy characteristics of Figure (5-5), is thus the switching
function depicted in Figure (5-3).

Each member of the family of chara;teristics of Figﬁre (5-5) is
distinguished from all other members by a label giving the energy input

into the flashlamp which was used in obtaining the particular characteristic.

CﬁeréouldAjust_éé éésily label each characteristic by the maximum population
inversion obtained for the particular flashlamp input energy. To avoid

. cumbersome numbers one could, alternately, use the value of No correspond-
ing to‘the flashlamp energy. The procedure is already familiar to us.

Corresponding to the aligned threshold value of 125 joules, we can


http:shown.in

Figure (5-5)

Experimental Output Cnergy Characteristics

Cavity length = 46 cms.
Output reflector reflectivity = 75%
Excitation energy into the flashlamp is the

family parameter.
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calculate the appropriate valuc of No given by No = ¢nR - which for R = 75%
gives NO = 0.286. The relationship between NO and input cnergy into the

flashlamp is lincar; thus, for 450 joules, the correcsponding valuc of No

450

will Dbe 155

x 0,286 = 1.03. The value of NO so obtained will be the
normalized inversion just prior to the start of positive feecdback in the
cavity for 450 joules,excitation into the pumping flashlamp. Since all
measurcments refer to that time during the pulsed pumping cycle when the
fluorescent strength is at its maximum, the value of No which we have
arrived at for 450 joules excitation is the maximum normalized inversion
obtained during the pumping cycle. Since we now know how to relate the
input energy into the flashlamp to the normalized initial peak inversion,
NO, we henceforth may label the characteristics by the input energy into
the flashlamp.

The charéctcristics of Figure (5-5) have some noteworthy features.
In particular, we sce that each characteristic of the family cuts off at
sufficiently high switching spceds. There also exists a maximum for cach
characteristic, (corresponding to the largest energy output obtainable
from the laser system for a given excitation), which occurs at a switching
speed roughly one half that of the corresponding cut-off speed. We have
indicated ecarlier that this is just the behaviour one would expect in the
presence of a symmetric switching function, y(8). If we restrict our
attention to that porfion of the 450 joules characteristic relating to
switching speeds slower than the optimum, we note that the output energy
first decrcases and-.-cventually recaches a minimum at about 200 rps.

The increase in output energy, upon continuiﬁg to still slower

switching speeds, would finally saturate, resulting in a new cnergy maximum,
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The 450 joules characteristic of Figure (5-5) unfortunatcly docs not show
this behaviour, because sufficiently low switching spceds were not rcached
during the experimental run.

If we refer now to Figurce (5-6), we notce the clear cvidence for a
sccondary maximum in the casc of the 550 joule and 600 joule characteristic.
The characteristics of Figurc (5-6) werc obtained with a 75% reflectivity
output reflector employing a similar cavity configuration as that which
was used to obtain the results represented by Figure (5-5). On making a
comparison between the two sets of characteristics, it is evident that
the characteristics of Figurc (5-6) have shifted towards lower switching
speeds with respect to the characteristics of Figure (5-5). The shift is
due to somewhat different cavity configurations wused in obtaining the
two sets of characteristics. The second cavity configuration either
because of the positioning of the laser rod in the elliptic pumping
housing or because of slight maladjustment of the Porro prism height with
respect to the cavity axis, was not quite as cfficient as it could have
been made. We conclude that about 50 joules of excitation werc '"lost'.

The characteristics of Figure (5-6) clearly show the effects of
reflector damage, which probably occurred at 460 rps and 500 joule excita-
tion, and this fact was confirmed visually. The rcsult of thc damage was
to make the high excitation energy (> 350 joules) characteristics cut-off
much quicker than they would have done had damage to the output reflector
not occurred.

The two sets of characteristics we have been discussing show

clearly that the optimum switching speecd depends strongly on the excitation



Figure (5-6)

Experimental Output Cnergy Characteristics

Cavity length = 46 cms.
Output reflector reflectivity = 75%
Excitation energy into the flashlamp is the

family parameter.
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of the laser rod. In particular, the lower the lascer rod cxcitation, the
slower will be the optimum switching spced required to yield maximum
cnergy-content in the.pulse. We should, at this point, specify that we
arc speaking of the optimum switching spced as determined from the maximum
in the output energy characteristic for the cxcitation of interest. We
shall see later that maximum pulse energy and maximum pulse power arc not
necessarily obtained simultaneously.

Together with the output energy measurcments presented in Figure
(5-6), ;ime evolution observations on thc development of the giant pulse(s)
were made. The results of those mcasufcmcnts are presented in the next

Section.

5.5' Relation of the Time Evolution of the Ciant

Pulse to the Output Enérgy Characteristics:

Figure (5-7) is a plot of the peak output power of the giant
pulses that gave rise to the output energy characteristics of Figure (5-6).
The plot represents the height of the lcading pulsc, when two or more
output pulses arc observed in a single pulsing of the laser. The power
scale is arbitrary. The arbitrariness of the scale may be approximatcly
removed by recalling that the giant pulses are, in our case, typically
about 30 nsec. long. The appropriate output cnergy measurcments may then
be used to calculatec giant pulse power content. |

We sec, upon referring to Figure (5-7), that the height of the
lead pulse for a particular laser rod excitation has a single maximum and
that output power decreascs monotonically about that maximum for switching

speeds on cither side of the optimum. If we compare the switching speceds



Figure (5-7)

Experimental Output Power Characteristics of

the Leading Pulse

These data were taken simultaneously with the
data of Figure (5-6). It should be noted that the
response time of the oscilloscope was not really

fast enough to make accurate power measurements.
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at which maximum power and maximum cncrgy arc obtained by simulatcously
referring to the rclated characteristics of Figure (5-7) and (5-6), we scc
that peak power outnut occurs at higher switching spceds than does maximum
output pulsc energy content. This experimental observation appears to be
somewhat baffling. It is, however, onc of the morc plcasant surprisecs of
the laser rate equation solutions in that such behaviour is indeed
attained.

It is not difficult to understand why a single giant pulse output
from a given lascr system will, in gencral, be narrower in time than a
giant pulse allowed to evolve in the same system, but whose encrgy content
is lower than that of the former pulse. ‘The output energy characteristic
for a laser rod excitation of 550 joules, as depicted in Figure (5-6), has
a minimum at a switching speed of about 240 rps. At somewhat slower
switching spceds the cnergy content of the laser output pulsc is scen to
increase. On the other hand, referring to the related power characteristic
of Figure (5-7), wec sec that the peak power of the lead pulse is decreasing
in this switching speed rcgion. Hence, its width in time is increasing,
but not nearly as fast as the corresponding decrecase in pulsc height.
Thus, the sudden increase in energy content of the output'is duc to the
evolution of a secondary pulsc following the lead pulse and which contribu-
tes its energy content to that of the lead pulsc. In the foregoing we
have been discussing the onset of double pulse outputs. Multiple pulse
outputs would be observed at still lower switching speeds. Obscrvations
of the time evolution of the giant pulse on an oscilloscope screen

confirmed the point in question, namely; that the rather sudden increase

in laser pulse output cnergy content as observed at sufficiently low



Figure (5-8)

Experimental Time Evolution of the Giant Pulse

The results shown in the Figure are for constant

excitation (500 joules) and for a 46 cm cavity length.

1 - 663 1rps
2 - 565 rps
3 - 461 7rps
4 - 382 rps
5 - 313 rps
6 - 276 1rps
7 - 236 rps
8 - 180 rps
F 9 - 115 rps

See Figure (5-6) for the corresponding output energy

characteristic.
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switching speeds, is due to the appearance of a secondary giant pulse.
Pulse narrowing is observed as a consequency of increased pulse
"dehéfgy éontéhf;m'Thﬁg;uif i;mnbfwsﬁfﬁrisihg that the peaks of the power
characteristics increase more rapidly with excitation than do the optimum
switching speed peaks of the corresponding energy characteristics.
In Figure (5-8) we show the various stages of pulse time evolution
“as a function of switching’spéed‘for”constant excitation of the laser rod.
The data necessary to depict suchltime developments was obtained from
photographic records of pulse evolution as viewed on an oscilloscope
screen. Figure (5-8) represents a faithful record insofar as
giant pulse height and width are concerned, while in the case of double

pulse outputs, pulse separation is also recorded.

5.6 Output Energy Characteristics - Lummer-Gehrcke

Device Within the Cavity:

—~The -introduction of an-angular limiting device within the cavity
of a rotating.Porro prism Q-switched laser alters the operating characteris-
tics of the laser. The alteration is particularly drasgic in the case of
the apparent switching speed of the Porro prism. The direct effects of
the Lummer-Gehrcke plate can be summarized as follows:

‘"*“‘—;17—*Pofarization”of-the‘beam due tothe four Brewster angle
Qindows which hfford a lower reflection loss' to a particular polarization.
2. A significant increase in cavity lepgth fo; cavities whose

output reflector Porro prism separation is of the order of 40 cms. This
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incrcasc in cavity length comes about, first of all, because of the intro-
duction of the quartz medium (index of refraction n = 1.46) within the
previously air filled.space. Secondly, the fact that the plates arc
oriented at a significant angle (270) to the axis of the cavity contributes
a further increase in cavity length. Thirdly, an increasc in that path
length also results from the fact that the propagating beam within the
plates travels at a steep angle with respect to the axis of the given
plate (critical angle = 430). We may amalgamate thesc effects by saying
that an air filled space of 20 cm appears upon the introduction therein
of the Lummer-Gehrcke device to have‘ah optical path length of 40 cm.
This effective iﬁcrcase in cavity length brought about by the aforementioned
causes will increase the effective switching speed of the Porro prism.

3. An increase in effective switching speed accomplished by
critical adjustment of the band-pass of the angular sclective device.

4. Somc extra insertion losses arc added to the cavity arising
from multiple internal reflections from imperfectly 'clean" boundaries.
A secondary apparent loss mechanism will be pointed out. If the laser
prefers to lase in a given polafization and the introduction of the Lummer
‘Gehrcke device changés that situation there will be an increase in the
threshold for the given cavity configuration. We can, therefore, think

in terms of an increase in the losses.

We have reviewed the direct effects of the presence of the Lummer
Gehrcke plate on the cavity characteristics., Particular attention should
be paid to the increase in cavity length. We can state quite generally

that if other variables remain constant, then a doubling of the cavity
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length will in fact rcsult in a doubling of the cffective switching speed
of the prism. Now consider a particular cavity whose switching function
y(8) has bcen narrowed by a factor of 3.6 due to the presence of the
angular limiting device. The cavity is also assumcd to have been shortened
from a separation of 45 cm to one of 40 cﬁ between the output reflector

and the Porro prism. The effective cavity lengths would then be 90 cm and

120 cm, respectively. The switching speed of the rotor would appcar to be

120

increased by a factor of 50

= 1.34 due to the longer cavity length. The
net apparent switching speed increase may then be obtained by multiplying
the actual rotor speed by a factor of 1.34 x 3.6 = 4.8. We would thus
expect the characteristics to peak at rotor switching speeds which are
lower than those of the device-free cavity, as a result of the introduction
of the angular limiting device into the cavity.

Referring to Figure (5-10), we sec that the 450 joule characteristic
| pecaks at a switching §peed of 80 rps. Figure (5-10) represents the
experimental output energy characteristics for a cavity length of 40 cm,
and for a field setting of 270 on the Lummer Gehrcke device. The appropriate
switching function is that of Figure (5-4) corresponding to a field
‘setting of 270, where we also note that the output reflector reflectivity
is 50%.

If we now refer to the results of Figure (5-5), we gee that the
450 joule energy output characteristic peaks at 525 TpSs. Since the
" results depicted in Figure (5-5) weré obtained by employing a 45 cm cavity
length and in addition the width of the appropriate switching function
(sce Figure (5-3) ) at 450 joules excitation is 6 minutes of arc, it

follows that we have results at our disposal that are equivalent to the



‘Figure (5-10)

Experimental Output Energy Characteristics with the

Lummer Gehrcke Plate in the Cavity

Cavity lengih = 40 cms
Reflector Reflectivity = 50%

The field setting was 270. Refer to Figure (5-4)
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situation postulated above. The only differcnce between the experimental
conditions under which the data of Figures (5-5) and (5-10) werc obtained
and the postulated situation is thatin the former case the output
“reflector reflectivities were not held constant. The effect of reflector
rcflectivities on the argument will be considered in Section 6.3.

We know that the 450 joule characteristic with the Lummer Cehrcke

525
4.8

(5-10) ) that,in fact, it peaks at 80 cﬁs. The difference in the two

plate in the cavity should pecak at = 110 cps. We recall (sce Figure
values is due to the two different reflector reflectivities used. Had a

+ 75% output reflector reflectivity been used for the output encrgy measure-
ments on the cavity with the angular limiting device, the 450 joule output
energy characteristic could be expected to peak closer to 110 cps. llowever,
since a 50% reflector reflectivity was used, the 450 joule characteristic
naturally peaks at the lowef value of 80 cps. The estimate is admittedly
rough, especially since the shapes of the two switching functions we have
been concerned with, are somewhat different. In the case of the simple
cavity, the switching function of Figure (5-3) applies, whereas in the

case of the angular limited cavity it is the switching function of

Figure (5-4) corresponding to the field setting of 270 which applies.

Also, we have noted that the relevant reflectivities are somewhat different.
However, the generdl agreement between the two sets of characteristics is
secen to be present. One cannot,.without direct solution of the laser rate
equations, verify precisely the degrce of agreement betwecen the two scts

of characteristics. Ncvertheless, in Section 6.3 we take into account the
remnant reflectivity factor, employing an approximate calculation, the

result of which is to improve upon the agreement already obtained for the
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positions of thec pecaks of the two 450 joule characteristics.
The characteristics of Figurc (5-10) show the general behaviour
that we have come to expect on the basis of previous discussions. We will

‘not discuss such behaviour further at this time.

5.7 Energy Utilization Factor Mecasurcments:

An important consideration in giant pulse laser studies is the
fraction of the available excitation encfgy in the laser rod which is
converted into cohereﬁt photons upon the cvblution of the pulse. This
- fraction is just the energy utilization factor. In this section we will
concern ourselves with the measurement of that factor under strong pumping
conditions. It is under such conditions that the energy utiiization tends
asymptotically towards its maximum valuec.

The strength of the.1.06u fluorescence of Nd+3 just beforec the
start of the evolution of the giant pulse provides us with a measure of

the number of excited ions in the 4F state. The relatively short life-

3/2

time of the terminal state assures us that it will be essentially

1172
empty under the conditions being considered.

Let us for a moment digress from our considerations and thereby
pinpoint the conditions under which we assume the laser to be operating.
The population inversion is severél times above its threshold value at the
instant the giant pulse evolves. The laser rod has gain as long as the
pertinent population is inverted. We recall that the pcak power in the
laser pulse is rcached when the population inversion is equal to its

threshold value, having been driven to that point by the depleting effect

of the positive feedback. We may say that the giant pulse goes through a
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maximum when the system gain is equal to losses. The population inversion
will, however, continue to drop because of the high flux density now
present in the laser cavity. Its final value will depend upon the initial
inversion, among other things, but if the initial inversion is large
compared with the losses, the population inversion will be driven to a value
close to zero. This final value will be essentially reached by the time
the flux density has decreased to one tenth of its maximum value. The
upper éFS/Z level poPulation has at this time almost reached jts short
term steady state value, which naturally depends on the population of the
terminal 4111/2 level at the same instant of time. If the latter level is
not depopuiated fast enough by transitions to the ground state, the final
population of the 4F3/2 level will not be zero after the evolution of the
_giant pulse. It will take on a definite value just after the evolution
.of the pulse. It is now evident that, cvcn'under ideal circﬁmstances,
only a certain fraction of the initially excited ions will be allowed to
contribute energy to the giant pulse.

From the foregoing it-is concluded that a measure of the fluorescent
stréngth, just before and just after the evolution of the giant pulse,
yields a value of the energy utilization factor. The quantity yielded by
the measurement will be independent of laser rod excitation as long as the
pumping is strong enough and operation takes place in the optimum energy
output region of the switching speed characteristic corresponding to that
excitation.

In ofdef to measure the fluorescent strength of the 1.06p transi-
tion, a grating spectrograph was utilized to provide the necessary disper-

sion. Fiber-optics were used to pick off fluorescent radiation from the



Figure (5-11)

Experimentally Observed Fluorescent Strength of the

4 4 \y s +3 ; :
F3/2 > 111/2 Transition of Nd “ During the Pumping

Interval

The step discontinuity is due to the evolution of

the giant pulse.
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laser rod. The entrance pupil of the fiber-optics bundle was located

close to and facing one of the crystal end faces but just outside the
spatial extent of the Q-spoiled béam. The exit pupil was positioned in such
a manner as to illuminate the entrance slit of the grating spectrograph.
An appropriately located photomultiplier detected the fluorescent strength
of the 1.06p transition as a function of time. The signal from the photo-
multiplier was displayed on an oscilloscope screen.

A result of a measurement of the fluorescent strength is shown in
Figure (5-11). The measurement was made with the laser opc;ated at 600
joules excitation with a cavity length of 45 cms and a 50% output reflector
reflectivity. With reference to this fiéure it is to be noted that the -
flashlamp pump builds up the fluorescent intensity to a peak value, which
is rcached when excitation losses by spontaneous emission are equal to
the rate of population of the upper level by the flashlamp pumping pulse.
At this time the Q~5poiléd pulse is allowed to evolye,_and so force the‘
fluorescent intensity to drop sharply to a value which is proportional to
the 4F

3/

Spontaneous emission now takes its toll on the upper level population and

2 population just after the evolution of the giant pulse.

the fluoresceht intensity falls exponentially to zero once the pumping
pulse from the flashlamp has died out.

From the figure one would conclude that the energy utilization
factor is approximately 50%. Tt must bé remembered, however, that the
signal has background '"noise'" from the flashlamp superimposed on it.

When this background noise is taken into account the true energy utiliza-
fion factor is found to be 61%. The energy utilization factor(just quoted
will be close to its saturation value because Q-spoiling was allowed to

take place at optimum energy output and, furthermore, because 600 joules
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excitation corresponded to three times threshold. Calculations show that,
at three times threshold, 94% of the available encrgy will be released in
the giant pulse.

This 61% encrgy utilization factor saturation value provides
dramatic proof of the conversion efficiency of the Q-switched laser
system used in obtaining the experimental results prescnted in this thesis.
At this point we indicate that theory precdicts a saturation value of

approximatcly 68% for the energy utilization factor (sce Section 5.3).

Reasons for the disércpancy will be presented in Chapter 6.



CHAPTER 6

DISCUSSION OF RESULTS

6.1 Determination of the Initial Flux in the Cavity

and its Relation to the Positions of the Enecrgy

Maxima in the Switching Spced vs Energy Output

Characteristics:

In the Appendix it is shown that the initial normalized flux L

is given approximately by the expression:

~

< o R e (6-1)
'l"r )

©
"
1
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where L35, is the mean lifetime of a photon in the cavity and L is the
spontaneous radiative lifetime of the laser transition under consideration.
R is the output reflector reflectivity and AQ is the solid angle containing
LR We recall that LI is the initial value of L appropriate to

cquations (2-19), (2-20) and (2-21) just at the time when the laser
‘material gain overcomes the cavity losses and the caVity is perfectly
aligned. It is in general not necessary to worry greatly about the
accuracy of 001, as estimated from expression (6-1), since the dependence
of the optimum switching speed on ® 50 for a particular output energy
characteristic, can be seen after some tﬁbught to be logarithmic. Thus

the position of the optimum switching speed for a given excitation of the

" laser rod is relatively insensitive to variations in Qoi'
' 138
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For the Nd+3 doped glass laser rods used in the experiments forming
the basis for this work, the value T ™ 360 usec is appropriate. T, is
estimated to be of the order of magnitude of the time per pass of a photon
in the cavity. Since we are dealing with cavities with an effective
cavity length of approximately 90 cm, we can sct this valuec as % % 3 nsec.
The appropriate reflectivity is 75%, therefore, ¢nR = - 0.29, Further, if
we assume the diffraction limit for AQ, we can sct the magnitude of this
quantity as AQ & (1 minutc)2 = (3 x 10-4 radians)2 =9 x 10'8 steradians.
Upon inserting the ﬁuantities just estimated into cquation (6-1) we

13. This is the value of ¢oi at threshold for

arrive at ¢ . % 0.2 x 10~
oi

the aligned cavity (125 joules for the case being considecred). °oi will
increase in proportion to the input pump energy. Hence at 400 joules the
appropriate value for Yo is'approximately 10'13. This value of L
represents an estimate which most likely is good to within an order of
magnitude.

We have indicated earlier ‘(sec Section 2.5) that the initial lower

1level population N is to be taken as zero due to the expected short

101

lifetime of the terminal 4 laser level of Nd+3 in glass. The method

172
of obtaining Noi has also been outlined. Tnis information together with
the form of the switching function is sufficient to allow one to proceed
with the solution of equations (2-19), (2-20) and 2-21) with t treated as
a parameter. If it so happens that the estimate of ¢oi_is too large or
too small, we expect the output energy characteristics, as calculated from
the above mentioned coupled differential equations, to peak sooner or

~later respectively than in the case of the experimentally observed

characteristics. The reason for this expectation is not'difficult to
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understand.” The value of ¢o uﬁ to which the field in the cavity must
build in order to significantly disturb the inversion No’ is independent
éf ;oi' It follows that if too large a value is assumed for ¢oi’ the
switch, y(T), must sweep at a rclatively fast rate in order that ¢0 build
up to its perturbing value in the time vicinity where y(T) takes on its
minimum value. The calculated energy maximum of the characteristic will
therefore lie at a faster switching speed value than that of the
corresponding experimentally observed characteristic.

The value of ®,; as estimated from equation (6-1) yields a very

satisfactory fit of the positions of the energy maxima of the calculated

output energy characteristics to those corresponding positions which are

observed experimentally. We conclude that equation (6-1) is valid for the
case we have considered and provides the basis for a useful estimate of

¢oi' Finally,.it may be pointed out that the value of ¢oi can be -

~translated back into physically more meaningful dimensions by reversing

the appropriate parts of the argument used in the derivation carried out
in the Appendix.

We can employ a simple physical argument as a cross check on the
estimate of Qoi obtained using equation (6-1). If we allow the crystal--
upon being»pumped——to de;excite itself by the process of spontaneous
emission, we can in fact assume for §implicity that a "pulse'" (of
360 x 10.6 sec. duration for our pumping configuration) has been emitted
isotropically into space by the laser rod. On the other hand, if we now
imagiﬁe thevlasér to be Q-spoiled, wec obtain a giant pulse whose half

width is of the order of 20 x 10_9 sec. and is contained in a solid angle
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AQ. It follows immediately that:

®op _ 360 x 107° ATl

ol 20 x 1077 aQ

If we take the value AQ = 9 x 10'8 steradians we obtain

o
=2 = 0.2x 1013
oi

Calculations show that ¢op is of the order of 0.2 in the case of interest.
Hence a value of ¢oi‘= 10'13 is im good agreement with our previous
estimate.

It is important to note that there are certain limitations in the
arguments uscd to arrive at the results outlined above. Tor instance, no

mention has been made of the fact that the 4F level of Nd+3 can undergo

3/2
three known approximately equal strength spontaneous radiative transitions

(44)

in its quest to recach the ground state Under Q-spoiled laser action,

on the other hand, the 4F "level will mainly be depopulated through

3/2
stimulated cmission to the 41“/2 level. It is not difficult to see that
[}
these considerations will influence somewhat the ratio 32E as written
’ oi

above.

6.2 Estimation of the Output Energy of the Nd+3

Doped Glass Q-Switched Laser:

An expression which is useful in estimating the output energy of
a Q-spoiled Nd+3 doped glass laser is already available to us. This

expression is explicitly;
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2

N, : 41t _n
<A—*‘> S\ § TR
o Threshold A 29

o
) £ 3 : < 2mCAA
and follows directly from equation (2-29). We may write Aw = v oo where
0

A) is the spectral half-width of the 1.06p transition of Nd+3, and Aw is

the corresponding angular frequency half-width. If VR is the volume of
the laser rod, the number of excited Nd+3 ions at threshold is then VRNK’

which is, in the case of interest, just the number of ions in the 4F3/2

states - Thus: .

' 41_n?
V.N, = -"2n(R) 3 2mCcAX
R K 2 X 2
b e o

s . c
Each transition contributes energy hw = %—- to the output beam. Hence,
. ¥ : ,

.the net available energy in the laser rod at.threshold, EAT’ for de- -

excitation by Q-spoiled laser action to the 4111/¢ level is

f e 8n1rc2n2AAh
Ear = VRl X VR

= - ¢n(R)
A o2

o vee.(6=2)

In order to find the available energy at 450 joules excitation knowing

that threshold is 125 joules (this is just the case which applies to the

-——experimental results-depicted graphically in Figure (5-5), we need to

450

multiply EAT by the ratio 5% -
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TABLE 6-1
an(R) = - 0.29 R = 75%
T = 360 x 10'6 sec.
n? = 1.582 = 2.34
2SS = (1.06 x 1075 = 1.34 x 1077 en®
c? . 9 x10°7 e / secz
2 = 15.2-cem
: 3
,VR = . 2.4 cm
8 = 25.1
-4
AX = 0.03.x 10 cm
h = 6.63 x.10°% joule - sec.

.Table 6-1 summarizes the values of the quantities used in the energy
estimate and are applicable under the experimental conditions used to
arrive at the results of Figure (5-5). Using the values of the Table in

equation (6-2) we arrive at E,.. = 0.13 joules. At 450 joules excitation

AT
the available energy is then equal to 0.46 joules.

Using the experimental value of 65% energy utilization, the .
optimum energy output to be expected in the gian; pulsé at 450 joules
excitation is 0.65 x 0.46 = 0.3 joules, a value which is in good agreement
with the experimental value of 0.33 joules obtained from Figure (5-5).

This agreement is presented as an indication that the Q-spoiled
laser rate equation model is capable of predictingAin_a,sé§isfactory
manner the absolute energy.content to be expected in the Q-Spoiled output

beam from a Nd+3 glass laser.
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Having established the direct relation between the observed peak
output energy and the predicted value of the same quantity, we can now
simply concentrate on the relative behaviour of the predicted and the
observed energy output characteristics. We may scale the calculated
quantity JQOdT appropriately to fit the 450 joule characteristic for
the particular case involving the results depicted in Figure (5-5). Once
the scaling factor has been determined forthat characteristic, it is not
varied when it is to be applied to the results of calculations relevant
to lower excitation charaeteristics. The method can be similarly

employed to deal with other situations which may arise.

6.3 Theoretical Switching Speed vs Output

Energy Characteristics:

In the previous two Sections we conqentrated on tw6 important
aSpectS of the solutions of the rate euaations.‘ In the firsf of thosé
Sections we indicated that ¢oi " 10-13, and later we estimated the
available energy in the laser rod to be 0.46 joules at 450 joules exci-
tation. The available energy estimate gave a fairly close fit of the
expected and measured peak outpﬁt energy-froﬁ the laser rod operating
under 450 joules of excitation.

In this Section we shall direct our attention to the relative
behaviour of the calculéfed outpdt énérgy characteristics and then proceed
to make a comparison of this relative behaviour with that of the observed
characteristics. We will, in‘specific terms, be concerned with the

experimental characteristics depicted in Figure (5-5). We will allow our-

selves the freedom to arbitrarily fit the calculated quantity J QodT to
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a particular point on one experimental charaétcristic; having already
established that the rate equations yield the correct output energy to
within a reasonable degree of accuracy.

Figure (6-1) shows the caiculated output energy characteristics
obtained by solving the set of laser rate equations (2-19), (2-20) and
(2-21). The solutions were carried out on the basis of the appropriate
experimental switching function shown in Figure (5-3). The switching
function was approximated in the calculation by two ramps having slopes
of equal mégnitude and opposite sign. Table 6-2 summarizes the initial
values of Qo’ No-and N10 together with the numerical values of other
relevant quantities used in the solution of the laser rate equations
(2-19), (2-20) and (2-21) for a laser rod excifétion corresponding to

+ 450 joules.

TABLE 6.2
QUANTITY (INITIAL) . VALUE
o . " 10'13
o1
N . I 1.036
01
Nlo,i 050
JoodT 0.0
T 400 n sec
ok 0:59
l(1 + K2
T1 3.29 nsec




Figure (6-1)

‘The Calculated Output Energy Characteristics Together

with the Observed Experimental Data

Cavity length = 46 cms
Output reflector reflectivity = 75%

Terminal level lifetime = 400 nsec.

The calculated characteristics are for excitations of

450, 400, 350 and 300 joules.
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For the other laser rod excitations of interest, the only quantity which
‘ 2K

S
K1 + KZ

determined elsewhere in this Thesis (see Section 2.2-5). The value of 1

is varied appropriately is Noi' The degeﬁgracy factor was
is an estimate arrived at by comparing the behaviour of the theoretical
characteristics with the experimental ones as 1t is varied incrementally.
'Before entering into a discussion of the complete sef of output
energy characteristics and their relation to the observed experimental
behaviour, it is worth while showing in detail just how 1 is chosen.
Figure (6-2) shows four calculated characteristics corresponding to 450
joules excitation. They differ from onc another only in the choice of t
used to calculate them, and which has been varied incrementally from 100
nsec. to 800 nsec. The appropriate experimental points are shown in the
same Figure for comparison. The experimentally observed turn-up point
observed at about 200 rps is seen to be best described by the calculated
characteristic based on t = 400 nsec. One cannot immédiately draw the
conclusion that t is of the order of 400 nsec. because of the particular
behaviour exhibited by the characteristics as 1t is varied. To make the
point clear, as 1 is decreased still further from 100 nsec., the turn-
over point, instead of climbing the characteristic with decreasing 1t (as
it has shown a tendency to do in Figure (6-2) ), in fact starts to appear
at lower switching speeds once again. This behaviour is shown in Figure
) "
(6-3). Thus, for 1 = 25 nsec., the turn-over point appears once more at
about 200 rps. This means that one must distinguish between 1 = 25 nsec.
and T = 400 nsec by arguing from a point of view not based on the position
of the turn-over point. It is seen that the secondary maximum in the

output energy characteristics for the short lifetime region is not as



Figure (6-2)

The 450 Joule Excitation Characteristic for LQEE

Terminal Level Lifetimes

The points and circles represent two sets of
independent experimental data.
The solid lines represent the calculated chara-

cteristics for:-terminal level lifetimes of:

1 - 100 n sec.

2 -200 " "
3 -400. " "

4-800 " "

The degeneracy factor used in the calculations was

0.59 in all cases.
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Figure (6-3)

The 450 Joule Excitation Characteristic for Short

Terminal Level Lifetimes

The points represent one of the sets of data from Figure (6-2)
The solid lines represent the calculated

characteristics for terminal level lifetimes of:

1 - 50 nsec.

2 - 125 "
31280
4 - 6" "

Terminal Level Lifetimes
The degeneracy factor used in the calculations was

0.59 in all cases.
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marked ;s it is in the long lifetime region. However, the recovery in
the experimental characteristics is quite strong, favouring the long life-
time 1t (= 400 nsec.) over the short lifetime T (= 25 nsec.). The calcu-
lated energy utilization factor for thé case T = 400 nsec. is 68%

at obtimum energy output whereas for the case Tt = 25 nsec. it is 82%

It is evident upon comparing these two values with the appropriate experi-
menfally observed energy utilization factor of 61% that once again t = 400
nsec. is a favoured choice éver T = 25 nsec.

Theoretical estimates of the multiphonon spontaneous emission

4
I11/2

probably the one being observed. Those estimates will form the basis for

lifetime of the level indicate that the long lifetime case is

a discussion in Section 6.4.

The arguments just outlin;d suggest the choice of t = 400 nsec.
in the calculations utilizing the rate equations. This choice will be
assumed to hold true from this point on.

Referring once more to Figure (6-1) we clearly see the degree of
agreement that is present between the experimental points and the
theoretical characteristics. The theoretical characteristics cut off
somewhat slower than is indicated by the éxperimental points. Also the
fit of the observed and calculated output energy peaks corresponding to
iow excitations leaves something to be desired. On the other hand, the
experimental and theoretical behaviour of the magnitude of the energy
‘maxima as the laser rod excitation is varied is consistent. The overall
behaviour predicted on the basis of the rate equations is also in good
agreement to that observed experimentally.

In looking for reasons for the lack of detailed agreement between
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theory and experiment, one must look more closely at the physical sysfem
comprising the active amplifying medium as well as the resonator structure

and properties thereof. The use of a rectangular line profile in the model

4 : 4
for the F3/2 - 111/2

approximation, but it is one that must be made to keep the problem simple

2 +3 . ;
transition of Nd 3 is certainly not a very accurate

enough to be handled analytically. The rectangular approximation will
break down for large changes in the excitation to threshold ratio. The
breakdown will not be manifested too strongly in the build-up time of the
pulse, nor on the positions of the energy maxima of the characteristics.
However, it will manifest itself in the 5ehaviour of the energy utiliza-
tion factor. In particular, the rectangular line approximation would
appear to be valuable as long as the envelope of the laser emission
_spectrum remains fairly constant. This case will result if the excitation-
over-threshold ratio is ﬁot varied significahtly during an experiment.

The case close to cut off represents large variations in the ratio. The
effect of the spectral shape of the 4F3/2 » 4111/2 transition on the

" laser emission will manifest itself in a variation of the latter's spectral
envelope half-width. This will be particularly true if the energy utili-
zation factor is far from its ideal optimum value. At low excitation-
tﬁreshold ratios the spectral envelope of the laser emission will be
relatively narrow, widening towards a saturation value at high excitation

~ to threshold ratios. The saturation value would be the line width of the
laéing line only in the case where there is no energy transfer within the
lasing line for frequencies separated by the separation of the longitudinal

modes of the cavity. The narrowing of the spectrum envelope of the laser

emission at low excitation to threshold ratios will result in a lower
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overall energy utilization factor than that obtained on the basis of an
assumed rectangular line shape. This point of view leads us to conclude
that the experimental characteristics should cut-off faster than the
theoretical, as is observed. The actual calculation of the size of the
effeét would be difficult to carry out.

It is important to note then that spectral line dynamics and the
mode structure of giant pulse lasers are likely not unimportant considera-
tions in determining the performance of a device. Another point to keep
in mind is that the output beam divergence represents a considerable
fraction of the switching function, y(e), angular extent. This is parti-
cularly true in the case of switching functions which have been narrowed
by the introduction into the cavity of an angular limiting device. It
has been observed experimentally by us, that the n#rrower the switching
function with respect to the natural divergence of the beam, the poorer
will be the determination of the true switching function by threshold-
misalignment measurements. The conclusion may be reached by considering
the output beam as being composed of its component plane waves. The
angular content of the beam is pictured as being spread over a relatively
large poftion of the switching function y(é). With each plane wave com-
ponent an appropriate average loss can thus be associated. The normal
cut-off condition would occur when the centre of the angular content of
the "evolved' beam océurs just at the point when losses are equal to gain.
However, cut-off will in fact occur sooner because the assumed angular
field configuration is not, as it were, "allowed". An estimate of the
size of the effect of diffraction would be difficult since one is dealing

with a misaligned cavity. Essentially, then we conclude that the switch,
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~ as determined by threshold-misalignment methods, is a first approximation
to the real situation and it will be a good approximation as long as the
switch is wide compared to the angular diVergence of the output beam.

It was mentioned earlier'that the peaking of each individual
characteristic, as the excitation is varied, shows a degree of disagree-
ment when experimental and theoretical results arc coﬁparod. The
position of the energy maxima for different excitation may be shown
theoretically to be dependent on the shape of the switching function.
The disagreement probably results from extr;polating the shape of the
switch determined by threshold - misalignment measurements to above-
threshold giant pulse output conditions.

We refer now to the characteristics of Figure (5-10), for a
cavity configuration which includes the presence of the Lummer Gehrcke
ahgular selective device. The solutions to the rate equations, for the
given situation, may well be expected to yield characteristics whose
positions along the switching speed axis will be in essential agreement
with those observed experimentally. To prové this statement we need
only consider'reflector reflectivities since we have already accounted
for the other factors which affect switching speed in Section 5.6. To
see juét how one includes the effect of reflector reflectivity on the

characteristics let us look at the equation for the build-up of ¢o, namely;

dé

_ﬁ%' = o (N, - v(T)) et (6-3)

We note that N, is a constant during the build up of the giant pulse.

Hence, we can formally integrate equation (6-3) to arrive at the result:
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T
(N - y(T) ) dT
o = o . e JTl i

o oi

When °o reaches a certain value ¢o' the approximation, No = constant,

will no longer hold. This point is reached at the timg just prior to the
evolution of the giant pulse proper.. The value of ¢o' is fairly insensi-
tive to the assumed operating conditions of the device, as is 001. Hence,
a similar insensitivity will hold for the quantity

T, ,
J (Ny-- v(T) ) dT
T, .

if the integral is evaluated over the total region where N0 = constant.
The integral represents the area bounded by No’ y(T), Tl, and T2' If Tl
is defined by No = y(Tl) and T2 by Tty ™™ 2nR =-y(T2), we have the
approximate condition for optimum energy utilization. The integral then

becomes equal to the one half of the area bounded by y(T) and No' We

know that if we change the output reflector reflectivity from R, to a

1
higher value, RZ’ the threshold for the aligned cavity will have decreased
2nR
by a factor of Eﬁﬁl . The aligned threshold for the cavity used to
2 »

measure the characteristics of Figure (5-10) was 200 joules with a 50%
reflector. This thréshold would have been expected to be about 85 joules
- had a 75% reflector been used. Note that the area bounded by the
switching function and No is roughly proportional to excitation minus
threshold. Thus, for the 450 juule characteristic we considered in
Section 5.6, the switchiné speed at which maximum energy output would

have been expected, (if a 75% reflector reflectivity had been employed),
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would be:

450 - 85
450-200

x 80 RPS = 117 rps

This value compares favourably with the value of 110 rps estimated in
Section 5.6. We conclude that the rate equation solutions remain valid

over a reasonably wide range 80 - 500 rps.

4

3
L2

6.4 De-excitation of the Level of Nd* by

Multiphonon Emission:

In this Section we apply the multiphonon spontaneous emission

4

111/2 level of Nd*s to obtain an estimate of

theory of Kie1(45) to the
the lifetime of that level.

In contrast to multiphoton emission, multiphonon emission occurs
with relatively high probability. The reasqn for this can be found in

-the densities of modes which differ by a factor of %; = 10%1.

To give an éxample from the field of lasers, Kiel has calcu}ated
the 5 phonon emission rate for non-radiative transitions from the green
4T2 absorption band of ruby to the narrow 2E state. The 2700 cm'1 separa-

tion of these two states is far above thé'energy of either the acoustical

or optical modes of ruby so that direct single phonon lattice transitions

- are not possible. Yet Maiman has shown that the efficiency of the trans-

fer of the excitation from the 4T2 to the ?E state is nearly perfecf(45),
Multiphonon processes must evidently be invoked here. Kiel has done this
for the 4T2 -+ 2E transition of ruby and concludes that the 5 phonon

6 1

transition rate is: We 3‘10 sec.
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.ws is the inverse of the lifetime of the 4T2 state and the subscript
refers to the number of phonons which are assumed to be emitted in the
calculation. ' This result obtains because the 4T2 + 2E transfer is nearly
perfectly efficient. Kiel alsovpoints.but that since there are optical
modes for even 3 or 4 phonon processes available, W could easily be
108 sec™!.

| The above example indicates that the emission probability does
not drop off very rapidl} as higher and higher order processes are invoked,
in contrast to the case of multiphoton emission. Since optical phonons
~are generally more energetic than acoustic phonons it is a good approxi=

\

mation to consider that they alone are effective in coupling energy
i (45)
levels which are greatly separated .
As an indication of the concepts involved in multiphonon sponta-
neous emission,'it is worth while considering the case of emission of a

single optical phonon by an excited ion in a matrix host. We start by

recalling the golden rule:

2w
e e |y,

|2
-where W is the rate of occurrence of transitions, p(K) is the demsity of
final states and M is the initial state. H'KM is the matrix element of

the perturbation Hamiltonian which is given by(zs)

H''= I v = v_ LI a_.
s S R s S i si 9

The stterlsare normal co-ordinates of the modes causing the transition

while the v, terms are the associated energy gradients. The QS terms
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arise from thermal motions of the lattice and so are considered to be
iinear functions of the normal co-ordinates Q associated with lattice
heat waves.

In order to evaluate the density of final states p(K) we consider
that the density of states of a particular optical branch is uniform over
the frequency range Ay and zero outside this range. The number of modes
per branch is equal to the number of primitive cells contained in the
material being studied. Hence we may write:

p(K) = -‘7$L—_""' : - Ve i (Ged)
R, h Av

where V is the volume of the host material, and Ro3 the volume of the

primitive cell. Equation (6-4) is evidently an approximation to the real

" situation. We obtain:

2 2
: 4 V
W, = ——s——0 € XU)Ew Rissa | M >
1 h2R 3 e g By 8L
o
r | | vg | SN
X e ga. <Kk \4 M >< K q.[M_>
h2R03 AV s si e s e P i''p

where the summation extends over the localized modes and the lattice modes.

The summation over the lattice modes will only contain one non-zero term

which we assume to be the ith. After evaluating the appropriate matrix

: : . .th :
element we can therefore write for the i~ phonon:

2 2 ‘hn;
4 V i
ﬁ 3si & Ke l Vs IMe A Zmeh

-~ AR e L Sl S
8651 2..53
h Ro Av
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where M is the mass of the host material and w, is the angular frequency
of the emitted phonon which conserves energy approximately. The quantity

th mode; we can set n, X %- for room

n, is the number of phonons in the i
temperature operation. The quantity ags of course depends on the details
of the crystal structure surrounding the ion being studied. The result

is complete if we sum over all the optical branches. If we consider that

the relaxations due to the different normal modes of vibration of the

complex take place indepéndently then,

Moy it s G B | <K | v | M >
e! s !

12
i 2hpAw. Ay s Ot

....(6-5)
where P is the number of ions in the primitive cell and A their average
mass. Our final result as represented by equation (6-5) is in essential
agreement with the appropriate result of Kiel for the single phonon
spontaneous emission transition rate.

The method of calculation.just outlined can bé generalized to account
for'an nth order process. The golden rule can once again be applied if

th

one substitutes the n order matrix element for the usual first order

matrix element(?G). The calculation of the density of final states must,
however, be treated with care. To be specific, nth order convolution of
the single phonoﬁ density of states must be applied.

We will simply write down our result for the rate of spontaneous

emission of phonons in second order. Wzifan be shown to be given by the

expression:
2
8 h ~
W,,. = | L £ a_.a<K|v_ |n>
23 2 (v, ) ) szgb int g ST e s e
: elect <ne|va'|Me > ..(6-6)
states

(EM'En),' /\-)—1\) j l
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Once again we must suﬁ over.allthe optical branéhes.

Kiel has argued that the relation between the probability of an
n-phonon process and an (n-1)-phonon process is approximately (for a 3-
fold degenerate branch) )

|2

W Ch |[<K |v_ |n >
n et 8 178

W) 10nPA v_ (E(n.) + hv) +--= - E(M)) ceen(6-7)
where C is the number of equivalent ﬁrocésses. Equation (6-7) together
with the transition rate for a one phonon process provides us with an

_ approximate means of calculating the nt? order optical phonon transition
rate between two given levels.

The application of the procedure to Nd+3in glass cannot be
‘approached wi thout trepidation. However, it i; instructive to do so iﬁ
the sense that an idea of the order of magnitudes of the transition rates
involved will be gained. Before entering into the detailed calculations
it is worth while noting.that the ratio Wz/w1 as obtained from equations

(6-5) and (6-6) is given by:

2 -, 2 ‘ 2
: . ’ <asi><adj>|<Ke|Vslne>| Imelvd[Me>[
Nis in. } 2
243 . h ~(in.elect.states)sd (%i'En) v,v.
W 87wPA .
18 2
v R |<_1,Se_| Yy IMe >
58 aK > ;
K 2’ "!, 5 ‘o-(6-8)

The above result is to be compared with Kiel's result given by equation

(6-7) after setting n = 2. We see that the two expressions are in
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essential agreement. The disagreement is minor - we obtain the figure 8

as opposed to Kiel's 10 in the denominator. Our analysis also results in

the appearance of the mode expansion coefficients ag;-
With the above considerations in mind we are now in a position to
e non-radiative transition of Nd*>
11/2 9/2

in glass. The Debye temperature GD of glass is about 1000°K. Hence,

apply the theory to the éI

Ke 13

D A
g ™ e 2.1 x 107" cps = 700 cm

1

c . 4 4 "
Since the energy separation between the 111/2 and the 19/2 levels of
Nd+3 is 2000 cm’l, it is evident that 3-phonon processes will be the most
likely to occur. Now for rare earths the matrix elements

5

|< K, | veR | M, >|2 % 10 cn”2. where R is the radius of the complex

being considered(45). It can be shown that W3 is given approxiﬁately by:- .

" % 6
wo=dnC h |<Ke | vKR I Me>|
5. g Y32 “pap® )4 o3 -

‘where C is the number of equivalent processes.

The quantity C may be calculated quite readily. We assume that

Oy
11/2 9/2

be included in the calculation. We are thus dealing with 22 electronic

—— .——only the component states of the and il multiplets of Nd+3 need
states, which for a given set of optical modes give rise to (22)2 = 484
equivalent processeé. Assumihg that there are 3 normal modes of the neigh-

bours which have the - right frequencies, we obtain C = 484 x (3)3= 13,000.

If we now assume AV = 28 cm'1 (1:€7; %? of v ) we may calculate W3 from



161

_the above formula. We obtain %— = 30 nsec. In the calculation it was
3 :
assumed that each of the 13,000 equivalent processes contributed strongly.
Thus the magnitude of %— = 30 nsec. is an estimate of the shortest
3 .

4

possible lifetime of the 'I state as determined by multiphonon

11/2

spontaneous emission. The existence of selection rules which must be
accounted for in the matrix element calculations could easily increase

state of Nd+3 by an order of magnitude.

4
Li1/2

level of Nd*3 is shorter than 30 nsec. Our experimental results are

¢ . 4
the lifetime of the 111/2

We conclude that it is unlikely that the lifetime of the
consistent with two values of the lifetime of the 4111/2 level of Nd+3'-
one that is shorter than 30 nsec. and one that is longer - so that to
account for the results of this Section we must choose the longer of the

4

two. On this basis we may conclude that the lifetime t of the Iu/2

level is given by:

T = 400 nsec.

6.5 Temporal Development of the Giant Pulse:

This Section will concern itself with those aspects of a giant

- pulse laser involving the time base growth and decay of the output pulse.
In particular, atteﬁtion will be focused on the time half-widths of the
experimentally observed giant pulses. They will be shown to be in good
agreement with those which are calculated from the rate equations. We will
deal with the separation between multipulses as-calculated and observed.
In this connection we will restrict ourselves to the double pulse region.

The discussion of the giant-pulse widths will necessarily be semi-quantitative
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sincc the response time of the oscilloscope used to make the time
evolution dbseryations was of the order of the giant pulse half-width.

Figure (6-4) shows the time development of the calculated giant pulse,
under certain conditions which are included in the Figure for reference.
We note that the pulse is occcring close to the point of highest energy
output of the 450 joule characteristic of Figure (6-1) and so is |
characterized by close to the narrowest expecfed giant pclse width. The
insert in Figure (6-4) is a faithful copy of a polaroid photograph of the
oscilloscope screen showing the giant pulse obtained from the Q-switched
laser under the same ideal conditions. fhe pulse widths of the observed
and calculated output pulses are clearly in good agreement, both being of
the order of 25 nsec. The somewhat steep rise and more gradual fall of
the giant pulse intensity is clearly visible in both reproductions.
Generally speaking, we méy conclude that the-magnitude_of the observed
and calculated pulse widths will be in good agreement since over the normal
operational range of the laser we expect the pulse width to do no more
than double. The calculated pulse width will also tend to increase under
the less ideal circumstances being assumed, leaving little room for any
significant discrepancy.

Figufe (6-5) illustrates the calculated output pulse trains in
the vicinity of the secondary maximum of the 450 joule characteristics of
Figure (6-1) for various valueé of the terminal level lifetime. In that
switching speed region (at approximately 125 rps) two output pulses
characterize the beam.

The pulse appearing first in time, some 500 nsec after the laser

gain just overcomes the cavity losses, is seen to be fairly insensitive



Figure (6-4)

Calculated Time Development of the Giant Pulse

Unit of time = 3.29 nsec

Excitation = 450 joules

T = 400 nsec

Output reflector reflectivity = 75%

Gain overcame losses at T = -685

Rotational rate = 616 rps

The pulsé is occurring at a time of minimum losses
The small insert is the obsérved time evolution of

the giant pulse - sweeprate is 20 rnisec per division.
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Figure (6-5)

Calculated Time Development of the Giant Pulse

in the Double Pulse Region

The calculated pulse trains are for a terminal level

lifetime of:

800 nsec

; My

2 - 400 nsec
RSN M 1 1

4 - 100 nsec

' Unit of time = 3.29 nsec

Excitation = 450 joules

2

n
~
w

Output reflector reflectivity

Gain overcame the losses at T -328.8

Rotational rate = 128.4 rps

The small insert is the observed time evolution of the

o giant pulse - sweeprate is 100 nsec per division.
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to the lower level lifetime. The observation is not surprising since the
pulse has a half width of 50 nsec which does not give the lower level
enough time to reinvert the population significantly - even with an assumed
lifetime of 100 nsec. The effects of the lower level lifetime are, however,
felt strongly by the second pulse. For the range of lifetimes considered
in Figure (6-5), we see that shorter lifetimes effect an earlier

appearance of the second pulse. The largest secondary pulse in the

Figure is seen to correspond to a terminal level lifetime of 400 nsec.

The reason it is the largest is that it occurs closest to the zero of the
time scale, which is precisely the timé when the losses in the cavity are
lowest. Comparing the two secondary pulses characterized by the lifetime

T = 800 nsec and 200 nsec, we note that they evolve at two different times
whiéh are, however, characterized by approximately equal losses. (* 20

time units). However, in the first case the lifetime corresponds to

800 190

= 244 time units. Roughly, = 0.78 is the number of lifetimes

3.29 244
representing the separation between the two pulses in the first case, and
l%% = 2,46 is the corresponding number in the second case. We conclude

that reinversion by lower level depopulation is almost complete by the
time the second pulse evolves in the case of Tt = 200 nsec, whereas this
is hardly the case for 1 = 800 nsec. Thus, the secondary pulse is more
intense for T = 200 nsec than it is for 1 = 800 nsec - even if both
secondary pulses are evolving when the losses are approximately equal.
The insert of Figure (6-5) illustrates the experimental time
evolution of a double pulse output from the laser. The experimental
situation under which the observation was made allows us to compare the

pulse train of the insert with the pulse trains calculated from the rate
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equations. We see first of all that the pulse widths are in good agree-
ment. The pulse separation observed experimentally is about 350 nsec,
which does not compare too favourably with the calculated separation of
about 550 nsec. This is an indication that the threshold-misalignment
loss function is not quite as accurate as one would hope it would be.
However, the simplifications involved in arriving at the laser rate
equation model are so drastic that better agreement between theory and
experiment is unlikely to result. Another point of disagreement is in the
relative heights of the two ﬁulses of the train as observed and calculated.
The lead pulse of the calculated pulse'sequence has the largest amplitude
while it is in fact observed experimentally that the secondary pulse is
actually the one with the largest amplitude.

Finally, we sum up by saying that giant pulse widths as calculated
on the basis of the rate eqﬁations are in good agreement with those widths
as obsérved éxperihentally. The pulse separations in the double pulse
region are in reasonable agreement. That agreement could conceivably be
improved upon by varying somewhat the shape of the switch used in the

rate equations.



CHAPTER 7

CONCLUSIONS

A theory of giant pulse regengrative action in a Q-spoiled laser,
based on the modified laser rate equations of Wagner and Lengyel, has
been presented. The theory of those authors was augmented to include the
effects on giant pulse évolution of a terminal level lifetime and of laser
level degeneracies, as well as of a time dependent loss function. We have
shown that good agreement between theory and experiment results when the
threshold-misalignment function i§ used as the time dependent loss
function to solve the laser rate equations - as long as the angular width
of thelloss function is significantly wider than the diffraction limit
of the cavity. An estimate of the relaxation lifetime éf the 4111/2 level
of Nd+3 in glass was obtained by making comparison of the experimental
and calculated output energy characteristics of the giant pulse laser.

The value of T = 400 nsec so arrived at was shown to be in essential agree-
ment with the value for that, quantity obtained from the multiphonon
spontaneous emission theory of Kiel.

Experiments to determine the efficiency of utilization of the
stored energy in the Nd+3 in glasé laser rod were shown to indicate that
'the device was operating reasonably close to maximum efficiency. Calcula-
tions of the output energy of the laser, as based on the rate equations,

were found to be in close agreement with the observed value of that quantity.
’ 167
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The effects of an angular limiting device on the switching speed
output energy characteristics of the laser were considered.. In particular
it was found that it was possible to obtain an increase in apparent
switching speed of a factor of six by incorporating the device into the
cavity, without significant losses of output beam strength.

Comparison of the observed and calculated giant pulse widths
indicated essential agreement. Multipulse separations in the double pulse
region as observed and calculated showed some disagreement.

In future work on gi;nt pulse Nd+3 in glass lasers it would
perhaps be fruitful to study the dynamics of the 4F3/2 + 4111/2 laser
transition during and after evolution of the giant pulse. With such a
study it would be rossible to arrive at information on cross-relaxation

processes within the spectral line, and an attempt could then be made to

include such effects into an analytical description of the laser device.

(27) (14)

Some work has already been done along this line by Michon and others

but further effort in that direction would not be wasted.

One cannot help feeling that a more adequate switching function
can be arrived at by means other than those described here. The problem
of the switching function can of course be completely avoided by using
fast switches as exemplified, in particular, by Kerr cells. Use of such
switches, capable of lowering the cavity losses in a time less than the
build-up time of the giant pulse, would allow a more detailed concentra-
tion on the actual physical.proéesses taking place in the laser itself
than is possible when mechanical'means are used to switch the Q of the

Cavity.



169

Finally, we considered the introduction of an angular limiting
device in a plane parallel Fabry Perot laser interferometer and

illustrated the transverse mode selecting properties of such a device.



APPENDIX

In the Appendix we wish to first calculate the quantity L and
later consider those transitions between the close lying electronic energy
levels of an ion located in a crystal matrix which are accompanied by the

spontaneous emission or absorption of a single acoustical phonon.

1. Let ¢ be the number of photons per unit volume per unit angular
frequéncy range in the cavity. Further, let those photons be contained within
solid angle AQ.

We recall the relationship:

N T_w, 2n2
.._l.(_ = - 2. ¢nR __r_ﬂ__

L
o Thresh. R

which yields the number of ions in energy level K per unit angular frequency

range per unit volume.

If we neglect induced emission we may write the rate equation;

dNK 3 55
dt T
T

where % is the radiative lifetime of the Kth level.

The number of photons per unit volume emitted spontancously per
second per unit angular frequency range at laser threshold into solid

angle AQ is then;

170
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czﬂzl e

where Vx is the laser crystal volume, and Vc the cavity volume. Now,

photons are lost at a rate given by:

R
Y 3
c

Tt

where T. is the cavity lifetime. Assuming equilibrium to exist between

the two rates we may write:

K2 n X

|e2qn2g c

= -2 == R

Making the usual linear transformations we obtain for the quantity ¢oi at

threshold
T

AR €

[?oi Thresh % o 4T T

2nR
r

For excitations X times above threshold we have:

[éoi] b x [§oi] Thresh

2. Under the action of a perturbation H', the state m is assumed to
make transitions to a band of states K characterized by a density of states

p(EK). The transition rate W is given by the golden rule:

: %, T e
po= 3

o (Ey) | <K [ H | m>|2



172

The transition probability per unit time that an atom in state g

absorb a lattice phonon i of energy AE and make a transition to state e

is then given by:(zs)

41!2 } ' 2
wg+e,i _;_ p(Ee) < We: ni-l AN wg’ ny >

The above exnression needs to be averaged over i;

[ w

] = W

g+e, i” av g-+e

Now we may assume for H' the form;

= L]
H Vgt & B0y
. ¢ i
hni g
and recalling that < n,-1 | 9. | n, > =
1 1 2
4 Mwi
we obtain: ,
W -+ [p(E)lza <y lv'lw >2 n—‘]
g>e M e K Ki e K g wy J Ly

The values of the density of states in terms of w, for longitudinal and

transverse waves are given by:

872w, 2V 162w, 2V
i o (w) = .____i.._._
tyi 3

p, (w,) =
5 i hv 3 ' hv
e . : t

where vy and vi'are, respectively, the velocities of the longitudinal and

transverse waves and V is the volume of the crystal. Assuming V. " ¥, =V

we obtain’
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: ,~n24n2m12v
pla,) = —Samie.
s hv3

Assuming that the relaxations due to different normal modes take place
independently and further allowing fiw = AE to be the average value of‘ﬁmi

and <n,> the average value of n, we obtain:

2412y

s Sl e a>—L<ad> Jey | v |y >2

g v.e hv3p i K Ki e K g
where < n. > = N et a

i AE/KT :
e -1
? 2p2,2
~—Now <al.2> Ml 0 v B < a6,2 >av = E_B_EL_EQ.
“ 1 15v2 3

if we assume v = Vg = v, and further restrict ourselves to an XY_ complex.

t 6

R is the equilibrium distance X « Y.

_ 256 17R?(AE)3 1

W :
3 Vsph3 eAE/KT _

g e

bX ' 2
e 3 R YR D e

Similarly;

_ 256 n7R2(aE)3  AE/KT

w —— ———
e g 3 v5ph3 eAE/KT w1

s ]2
i I< we I VK' l tl’z >I

where p is the host matrix density.
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. . TABLE A-1

P ' 3.09 gms/cms'

R 1078 cms

v S.Sx105 cms/sec

h 6.63x10_27 erg-sec.

K 1.38x107 10 g%k

T -300°K

AE 3.98x10’14ergs
I<welvxlwg>l2‘ 4x10—12erg2/cm2

n’ 3020

Using the‘yalues in the Table we can calculiateAWg+e for Nd+3 in a’

glass matrix, and so obtain,

W X 8.74 x 1011 sec-1
gre

This corresponds to a phonon broadened homogeneous linewidth of about

5 cm'1 for the Nd*s ion in a glass matrix. The calculation shows that

Nd+3 Stark split energy levels which are separated by about 200 t.:m-1
5598 % 10'1{~ergs) and are connected by the phonon matrix element
<we | VK' | wg > . have a lifetime of the order of 10.12 seconds at room

temperature. Hence those levels tend to thermalize very rapidly.

Work done by Michon(4§) indicates that the homogeneous‘iine width
4 4 ‘

: e +*3: .
of the F3/2 - 111/2 transition of Nd © in glass is of the order of 158
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or 15 cm'1 at room temperature. Most of the broadening of the transition

is in homogeneous and due to the different environments in which the

+3

Nd © ions find themselves in;the glass matrix.
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