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CHP..PTER 1 


INTRODUCTION 

Hypernuclei are stable bound states of the A hyperon 

with various nuclei. The first specimen was discovered by 

Danysz and Pniewskil/ in a photographic emulsion. The hyper

nucleus was formed by a cosmic ray particle collision with a 

nucleus in the emulsion. Now hypernuclei are produced by 

bombarding nuclei with pions or K- mesons. 

The standard notation for hypernuclei is ~+lx 

where ~ is the nucleus core to which the A particle is bound . 

The interpretation of these syst~ms as stable states 

is supported by two facts: the hypernuclei half lives are about 

equal to the larr~da particle half life, and the energy 

r eleased in a picnic hypernuclear decay is about equal to th~t ror 

f ree lambda decay (37,.,:) MeV), The observed energy differen

ces going up to more than 1 0 MeV is largely the A particle bi.,Y~ · 

energy in the hypernucleus. 

The A particle half life is of the order cf 10-lO 

secondo The time required to traverse a typi cal mean free 

path in liquid hydrogen is considerably greater than the half 

l ife and consequently, a study of· the lairi:Oda-nucleon (A -N) 

i nteraction from direct collisions is difficult. The moEt 

1 
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detailed information about the interaction was for some time 

deduced only from the binding energies of the hypernuclei. 

A compilation of the binding energies of light hyper

nuclei (A <l6),measured by the European K- Collaboration and 

·che EFINS-Northwestern Collaboration up to 1966, was made by 

Gajewski et a l 2/. A more recent experiment in the K- col

laboration3/ yields slightly different results . These observed 

binding energies are listed in Table 1. The results are af

fected :Oy an error of about 0.05 MeV,which is not. included in 

the table, due to uncertainty in the determin~tion of the 

emulsion density. 

Over the past few years measurements of the A-p cross 

section have been made from low energy scattering events fol

lowing hyperon production in bubble chambers 4-a,lO-l2/. The 

general behaviour of lhe A-p elastic cross sec~ion as function 

o= CM ~nergy is shown in Fig. 3. The most detailed results 

have been r ported by t.he Maryland group and by the Rehavoth 

2eidelberg group. 

Diffe renti ~ 1 crcss~sec·tio i nformation is abs~~-:: in 

~..est ex?erimen-:::.s du to ~l:e poor s ·catistics. One exp.9r :;.irk::.n t 
6. 

' 

has indica ed a predominantly backward scatte ring of the A 

paLticle. However, some experiments seem t o favour a for 

ward scat.tering, while 1...he rest have repor ted an i sotropic 

angilar distribution. 
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1\Be 6.67 ± c. ].5 6.86 ± 0 . 09 

8.27 -'- 0.18 7.97 ± 0.25 

9 -4Be+TI BA · ~g_s 
6.58 ± 0.09 t;. 45 ± 0.06 

0°thers 6.61 ± 0.17 6.15 ± 0~13 

i 1B· I 10.30 ± 0.14 

0.1£ 1 0.81 ± 0.16 

0.51 

11.26 ± 

10.51 + 

TABLE 1 

Experimental A binding energies in MeV 

3HA.. 

4 4 . 
AH->'IT He 

Others 

4
AHe 
5
AHe 

6 ' 

Ga jewski et 
compilation 
Ref. 2 

0.20 ± 0.12 

2.26 ± 0.07 

1.86 ± 0.01 

2.20 ± 0.06 

3. 08 ± 0.03 

4.09 + 0.27 

-al K collaboration 
new result 
Ref. 3 

-0.08 ± 0 .08 

2.11 ± 0 .04 

1.95 ± 0.06 

2.20 ± 0.04 

2 .96 ± 0 .02 

4.25 ± 0.21 

4.67 ± 0.28 4.54 ± 0.12 

7 . 
AL.1. 5.45 + 0 .12 5.4 4 ± 0 .08 
"' -;7 
· Be L. 5.39 ± 0.24 4.91 ± 0 .19 
A~~~~-~ ~~~--·~~~~~~--1-~~--~~~---~~~-

Li i o.72 ± O.C8 6.69 ± 0.07 
8,..--~--~~-~1~~~~-~~~~~~~~~<~~~~~--~~~~~ 
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Phenomenological potentials have been derived to re

produce the scattering parameters. However, a serious dis

crepancy appears when these potentials are applied to the 

bound systems, since as yet every· potential obtained from 

the ··C.wo-body data overbinds some hypernuclei in .conventional 

binding·energy calculations. 

In this thesis a number of effects are examined which 

help to reduce the discrepancy between the calculated and 

observed binding energies. In order to obtain meaningful A 

particle binding energies in hypernuclei it is rather 

important to have a good , self-consistent description of 

the nuclear core~ Therefore, it is necessary to examine the 

nature of the N-N force as well a s the A-N force , and it is 

a~so necessary to examine and reproduce the pertinent 

pr~perties of the nuclei relevant to hypernuclei studies . 

Thus, in the following chapters, descriptions of the hyper

n~cleus and ~ts core nucleus are presented side by side; and 

tb.e ef:cect.s of a.n appropriate nuc l ear structure and a correct 

cussedo 

In Chapter 2v a genera_ theoretical discussion of the 

variational method is given which is applicable to both the 

nucleus and the hypernucleus as well. Variationa l considera

·tions require a deformed representation of states i n o:cd. :;: t o 
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adequately describe the lp shell hypernuclei and nuclei. 

Chapter 3 deals with both the phenomenological A-N and ~-N 

potentials. The G matrix approach to nuclear matter suggests 

a relatively simple density dependent central effective N-N 

potential. The phenomenological N-N potential has been taken 

as a guide for constructing a A-N potential. The A-N and N-N 

potentials are then used, in Chapter 4, to calculate the 

properties of the ~He hypernucleus as well as the a particle 

core. The size, binding energy and spectrum of 4He are taken 

as part of the criteria for determining an N-N force which is 

then used in the lp-shell nuclei and hypernuclei calculations. 

Several approaches have been employed to calculate the binding 
.:'. . 

energy of ~He including the effect of a density dependence 

in the A-N force. Chapter 5 contains a. study of the lp-shel l 

hypernuclei binding energies. The influence on the A binding 

energies cf deformation, a 11. -N space-exchange potential , 

density dependence in the N-N and the A-N force are investi-

g-ai::ecL Chapter 6 investiga.tes some interesting· hypernuclea~ 

excited states, in particula:r the isomeric states of ~He " 

Some of the electromagnecic radiation transition rates have 

been calculated. Chapter 7 is 'toncerned with t he 

effects of a ANN three-body interaction. Var i ational calcu

lations of the J\ binding· energies are performed using a 

phenomenological ANN force for the p-shell hypernucleif and 

5the rigid a model is used in the case of fl.He. 



CHAl?TER 2 

THE VARIATIONAL CALCULATION AND THE 
II DEF'ORMED II REPRESENTATION 

The nuclear shell model, which was first proposed to 

explain certain e~perimental phenomena such as the magic num

bers, ground state spins, etc., can be considered as an 

approximate ·repr·esentation of the nuclear many-body system . 

The Hamiltonian of the A-particle system 

A 
H = L: T. - T + L: v .. (r .. ) , 2 .1)

i cm l.J -l. Ji =l i <j 

where T. is the kinetic energy of the single particle i,
1. 

T - is the kinetic energy of the centre-of-mass,c ___ 

a;.1d v .. (r . . ) is the two-bociy po·cential dependil}g on the
-J -l.J 

::-ela.tive co-ordinates r .. = r . -r. / representing the in'i:.rin
"' l.J -l. -J 

sic energy of the system. 

Since no exact solution for more than two interac

~ins bodies exists, approximate solu~ions have had to be 

developed. One of th~ basic principles in physics is tte 

variational principle which states that in a function opace 

F, the solu·cions of the physical equation being .,.tudied are 

some £1:..nctions ~ of F for which a f unctional Q(~) is sta

tionary, i.e. the physical equation is equivalent to the 

variationa~ equation 

6 
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oQ (iJI ) = o. (2. 3) 

The equation to be solved here is the Schroedinger 

equation 

HljJ = Etj; (2 . 3) 

We can use a soluble system of Hamiltonian H such that 
0 

Hij; =Etj; (2. 4)o n n n 

and En < E 1 . {ljJ } is a - n+ n 

complete orthonormal set of wave vectors in the Hilbert space 

F o Ar1y solution tjJ of (2. 3) can be expressed as
0 

00 00 

l/i = L: c 1./J with L !-n12 = 1. 
n=l n n n=l 

The average energy in the state ljJ is given by 

The appropriate variational equation to be .solved .:Ls 

oE = o, subject '-o the condition J tjJ *tjJd-r = 1., 

i.e . 

The variation in E is brought about by varying I/I and tlJ * ind e pendeD.' 

complex conjugate = o. 

which,on ignoring second order terms . gives 
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f 014! * (H:-Al ljJdt: = 0, 

and JijJ* (H-;\) 61jldt= 0, (2 •.5) 

where 

(2.5} 1 when written as (H- A. ) ijJ = 0, is simply equation (2. 3). 

In order to solve (2 .5) we let 
00 

oljJ = E dn 14J n, and 
n=l 

00 

= L: (d + c )1jJ • n n nn=l 

Substituting the above expression into the integrand 

o f (2.5) yields 

E Ed c <1/J jH-t..I~ > = O. m n m n m · n 

Since the d are arbitrary,
m 

<
00 


111
E cn -vm,IH-AI''''l'n> = o. (2. 6) 
n=l 

The exact solution of (2. 6) is i r1.1possible in the in

finite . space ,and the Ri tz variational method consist.s of 

s eek.:..ng solutions of {2 "3) among the functions of a trur..c2.-~E:,.. 

subspace F' of dimension N. (2.5) is thus approximated by 

N 
l.: 

n=l 

N 
or E C (H - Ao ) - O,n mn mn n= l 
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1 if m=n 
where 

O otherwise 

(2.7 } is a set of homogeneou s equa tions which are s oluble if 

and on ly if 

Consequently the possible values of A can be found by d iagonali

zati o n o f the matrix (Hmn ) . This is, in fact, the shell mode l 

c alc ulat i on,where the ~m are appropriate product funct ions of 

t he spherical harmonic osc illator . 

The nucleons, being identi cal particles , obey t he 

Pa uli exclusion principle, and hence the wave func tion should 

be antisyrnmet.ri zed with respect to the exchange of any pa i r 

o~ t he c o-ordi nate s a Generally , such a wave fun c tion i s 

A 
7l" cp {r . ) (2. 8)

a . ii=l l.p 

wnere P .:..s the pe~mutation operator acting on the product wave 

fu~~ ·::.i on. ct> is taken to be tile har mon ic o scill ator sinqle. a . 
l. 

?a~tic_e wave :fun tiori whic:'.'l i.s belie e d to b e a good app::-ox ~ -

~ation to t he 1 best 1 set of s i n g le p a rticle wa ve fun c t ions 

g iven by the Hartree-Fock variational solut ion . The u s e of 

Ha~tree-Fock single particl e s tat es s hould result in better 

r esults with a t r uncated rep re s ent a tion. 

The she l l - model calcula.:.ion used in t his thesis has 
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two special features which we shall now describe. 

The usual shell model approximation assumes that the 

A-n particles filling up the major shells form a core with 

the n "valence" particles occupying levels in the unfilled 

shell. The conventional prescription is to calculate the 

interaction of the "valence" particles and use "experimentally" 

determined single particle energies e: •• The energy o f the 
J 

core E is taken to be constant and the co~e is assumed to
0 

remain inert. Thus the expectation energy of a Slater de

t erminant is given by 

A A 
E + L: E. + L: «P (r.)¢s(r.)jv .. 1¢ (r.)¢ 0 (r.}0 i<j=l a i J l.J a 1 µ Jj=A-n+l J 

- <Ps(r. ) ¢ (r .) > 
i a J 

I n our calculation, the int$raction between all pairs of 

particles including those inside the core is taken into ac

count and 
A A 

i'•l: Ti+ l: <¢ (r. )c/> 0 (r.) Iv .· l<P (r.)¢ 8i=l i <j=l ai 1 µj J J.J ai l. ; _, 

- ¢ 0 (r . ) <I> (r . } > • 
µ . l. ().• J

J l. 

There is no assumption of any single particle energies or 

the intrinsic energy of the core. 

Since all particles are taken into consideration, th~ 
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total energy is a func t ion of each of the a i 's ,the oscillator 

consta n t s o f the d iffe r ent orbit a ls, 

(2. 9) 

Thea's, which are a measure of the nuclear size, a re conventional

ly taken to have the same fixed value. However, we are involved 

in a variational calculation and the proper consistent values 

for the ais are those which give the lowest value for (2.9), 

subject to the cons traint that the single particle states are 

orthonormal. 

The Hamiltonian of the hypernucleus has the form 

A A A 
H = L: T. - TCM + TA + L: v . . + r (2.10)

1 viAl.Ji=l i<j=l i=l 

where viA is the lambda-nucleon interaction. The same pro

cedure as that for the nucleus is employed. However 1 the A 

partic e, with mass = 1_15. 57 MeV and T = O, does not have 

the Pauli princ~ple imposed on it, and it is ~ot necessary 

to construct a wave function antisyrrrraetric with the nuc leons . 

T~ E wave function for the A+l particle system is therefo~e 

A+l'l' = ¢ (r . ) • (2.11)
A Ci. • l. . 1. 

The A partic le is assumed to be in a 13 state which 

can have generally different spatial exten~ than the ls nucleon ~ 

i. e. aA is generally different f rom a • Mathematical! , thia1 
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is equivalent to the mixi!lg of higher configurations to 

<PA if aA = a1, i.e. 

E C n n 

all. as well as the a. is allowed to vary until the minimum 
l. 

value of the energy is reached. 

In the minimization process, it is found that a bette~ 

ground state cari be achieved by allowing the system to deform . 

I n order to investigate the effect of deformation, a represen

tation of states such as the cylindrical harmonic oscillator 

single particle states ~ (,p;<j>,z) is used . ~nm n (p,¢,z}n,m,n 
I I Zz 

satisfies the equation 
? 2 ~1··12 ~.... 2 1v' 2 i· UJ r_ '\/ • ~iw + __z_ 

~ 2rv1 .,.. ~ P 2 z2 ] i/J n m " . (Ji P cp , z ) =En m n 'P n m n { P ' qi ' z ; 
; L I~• ~ I I I zz z 

( 2 .12) 

2 2 2where p = x + y , 

and wn ,m ,n z 

wi·ch 
(2 ' 13) 

1 im<Pcp = e m i27r . 


8~ ~ -sz.2/2 

z = ( ) H (/8 z)e


n z 'IT~2n z 1 nz 

The energy E (a,B) = [(2n+!mj+l )a+(n~..+~)B]ff2 /~·L(Appendix :.. ;n,m,rt ... 
z 
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The oscillator constants a = Mw/~, S = Mw /~ dez 
t ermine both the size and the shape of the system. If a=B , 

t he deformed and the spherical representations are essen

tially identical (connected by an unitary transformation). 

It is found that if the force gives s aturation , t h e 

volume V remains almost constant during deformation . If we 

assume that the volume remains constant, then 

V rv l/a/i3 , 

i .e. a!B = c/V, where c is the proportionality constant. 

3Define A_ (V/c) 213a, B = (V/c) 2/ S, which are dimensionless, 

and AIB = 1. A deformation paramater d is defined as 

d = IA/B. The state is prolate, sphericalr oblate as 

>
d 1.< 

Dependence of the energy on the deformation wi ll nO'il 

ba considered . The total kinetic energy T is relat ed n,m,n
z 

t o the total energy by E by 
n,m~nz 

T = l.E . = .i:.£ (~n+ !m I+l) a+ (n +.!.) BJ11'2/M
n !m,nz 2 nJm 1 nz 2 z 2 

(2.14) 

Minimization of T with respect to the variable A yields n,m,n 
z 
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which gives 
113

A . = [(2n +ll/(2n+lml+l}] (2. 1 5)
min z 

and the corresponding deformation 

d . = [(2n +l}/(2n+[ml+l}] 112 (2.16)min z 

(2ol6) shows that d . ~ 1 unless n = m = nz = O, i.e . themin 

state [ O; O,O] or 2nz = 2n+!ml. For other states, it can be 

concluded that the kinetic energy favours deformation, and 

the orbits will either prolate or oblate depending on the 

value of d . . (Appendix 1).
nun 

A direct matrix element of the two-body potential 

V (r /y) can be expressed as12

( 2 .17) 

where y is the r ange o f the :fo::-ce . We note that a e.nd S 

on l y a ppe ar in 1.-b.e v;ave f·..,;.nc'cic:.v i.r. t~1e for , l ap, /"~b 

except for the normalization constant. where a and B occur ir.. 

' h mb. t. l/2 
Q l/4 - . h . t. 1 lJ ~ e co ina ion a µ wnic. is propor iona ~o ~-, 

IV 
hence the normalization constant remains cons ta~t during t he 

deformation. 

The volmne element can be written as 
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1 
- . [/ap d(iap)dcj> d(v'Bz }] , and if we define 
a. 113 

x = Vap , and y = /6z 
(2 .18 } 

y 
p 

= ./Ciy , and y z = ISy , 

(2.17} can be writ t en as 

(2.19) 

Since the integrations are over x,¢,y spaces, and a 2 S is a 

constantu the only effective dependence of the matrix element 

on a and S is in the ran~e parameters y 
p 

and y z which have 

diff~rent values. (2.19) is therefore equivalent to maintaining 

a spherical basis and employing a non-spherical potential. 

For the case of a spherical representation, i.e. a=S , 

y p=yz=y
8 

• For a prolate deformation, a>S and yp>ys>yz ; 

namely the radia l force has a range larger than the spherical 

range while the axial force range is smaller. 

The matrix ele1nent (2 .:1.7 1 can be vieweC. as proporticr;..:.. '

to the overlap integral of two density functions and a vari.s:.n Je 

r ange potential: 

The behaviour of (2.20} when deformation occurs de

pends on the nature of the density distribution functions 
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Pµ and Pv· If both the two p~rticles are in spherical state 

e.g. [O,O,O] then whatever overlap is gained by increasing 

y is compensated by the loss due to the decrease of y and 
p z 

vice versa. Consequently (2.20} is insensitive to the de

formation of the system. 

If one of p is spherical, e.g. t/J = [O,O,O], while the 

-2 -2other has z > p (Appendix l}, e.g. the state [O,O,l], then 

the increase of the overlap for increasing Yz is more than 

the loss due to the decrease of v . and (2. 20) increases in•p' 

magnitude. However, an increase in Yz implies B has been 

increased 0 i.e. an oblate deformation occurs. Because the 

kinetic e!'lergy of such state favours a prolate deformation, an 

increase of S would result in increasing the kinetic energy . 

Thus potential binding is increased at the cost of increased 

k inetic ene~gy which will overcome the gain in the total bindi··~.(:· 

e.ergy. An increase of yp decreases the potential energy 

of state like [O,O,l], but, a ccrresponding decrease in the 

kinetic energy just compensates the loss in potential ener gy. 

Similar argument holds =or state having p2 > z2 • Thus i t c~ : 

be said that the direct matrix elements of this type oppoBe 

deformation favoured by kinetic energy consideration. 

If the two 	orbitals in (2.20} have different charac

-2 -2 -2 -2t ers; i.e. one has z > p and the other has p > z , there 

will be a cancellation of effects and the change ~ue to ~ e-

formation is small. 
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The exchange matrix element can be written as 

<1/Jµ ( l }l/J\) (2 l IVC:r 1 2 / y} 11/J \) (1}1/Jµ ( 2 } > 

= <l/Iµ (1 ) 1/J\) (2} V (E12/y) l'~2 Il/Jµ (l} 1/J\) (2) > 

x wher e the Majorana exchange operator P12 is defined by 

(2 . 21} 

If we transform :;-11 ~2 into the relative 
I 

and centre-of-mass 

co-ordinates r, ~by 

x xthen Pl2 f (f~f2) = Pl2 f ( r,R) = f (-r,R). (2. 22) 

Consider a functi on - I ' , R) •1: \.r·rr 
- - 0 

Let.ting r = - 2r gives f(r+r ,R) == f(-r,R) 
-o - - - o - 

v;rhichg according to (2.22) is P12 (r; R). 

However f (r+.c ,R) ca..:--i always be expres3ed as a s e :c i es having 
- - 0 

"i.:he form 
2

0f (r+r 1 R) = f (r,R ) · ~ \/ f (rrR) + (r •\7.p ) f(r,R)/2!+ ••. 
- -o :.o r - - o .... ,:., 

r •'V 

-o r .c ( R}= e .i. r, (2 .24) 

(2. 23) and (2.24) together give 

P~2 = e-2~·Vr = e i2:·~/-i"i (2. 2 5) 
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where P is essentially the relative momentum operator except... 
t hat it commutes with r in the exponential. 

The exchange matrix element can be taken as a direct 

matrix element with the interaction multiplied by an oscil

. An oscillatory factor will 

in general reduce the magnitude of the integral in which it 

occurs 0 and this explains why the exchange matrix element is 

always les s than the direct matrix element. The larger the 

relative momentum, the greater the cancellation effect of 

the oscillating term will be. 

As for effect of deformation, consider again the or

bital [O,O,l], a decrease in S will result in making 

it more prolate, thus decreasing the kinetic energy . The 

relative moment and hence the oscillating factor is therefore 

reduced leaving a larger exchange matrix element . I t is found 

f~ m exolicit calculation that the effect of the osci llatory 

~actor is more impor~ant than t~e r ange effect discussed 

with respect to the direct matrix element. Consequently, 

the exchange matrix element favours deformati n as does t .he 

kinetic energy. 

The variation of the ls,lp matrix elements as a 

function of deformation is given by Volkov91. Examination of 

these matrix elements shows that from the energy point of 

view , many systems prefer a deformed represent ationo 
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For a non-spherical system, the total angular momentum 

J is no longer a good quantum numbero However, for comparison 

purposes, ~t is desirable to use a basis in the deformation 

calculation which will give the conventional intermediate 

coupling results in the limit of zero deformation. This can 

be done by using a Slater determinant ~epresentation charac

teri~ed by the total M value (z-component of angular momentum) 

of the system. As long as the system has cyl~ndrical symmetry , 

the Hamiltonian does not connect states of differen~ M, and 

it can be diagonalized separately for each M basis. In 

the zero deformation limit the results are identical to those 

obtained from a spherical representation, and the appropriate 

J for any given ievel can generally be determined by a simple 

counting of the number of degenerate states for the particular 

level . 



CHAPTER 3 

THE LAMBDA-NUCLEON AND THE NUCLEON-NUCLEON POTENTIAL 

Since the introduction by Yukawa of the meson-exchange 

process, it has been accepted that the strong interaction 

between baryons is generated by the exchange of one or more 

mesonso Unlike the nucleon-nucleon case the A-N interaction 

involves a two-channel process (Fig. la). Thus, the simplest 

single-channel A-N potential includes at least two-pion exchang~ 

(TPE) as shown in Fig. lb. The effect o! two-pion exchange 

processes is similar to the effect of the exchange of a 

single scalar T=O particle which gives rise to a static at

tractive central potential with a very strong spin-independent 

part. The spin-dependent terms are typicaily two orders of 

magnitude smaller. 

K-meson exchange (OKE ) (Fig . ld) also contributes 

directly to the A-N potential. The exchange of a T=l/2 par~ 

ticle leads to an excha.nge potential which contains the 

factor (-J;>xPo'> , where Px and Pcr are the space and spin s xc:t;a.:1.s, c 

P0operators respectively. operating on a singlet state 

changes its sign but keeps the triplet wave function unaltered, 

i.e. 

20 
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P 0 j s inglet>= - !single t> 
a

P !triplet>= !triplet> , 

while Px reverses the sign of relative coordinate of states o f 

~ Ll3/oda • The OKE contribution can produce a p-state sup

pression in the A-N force. OKE also generates a strong tensor 

potential though as yet no experimental verification of this 

tensor potential is available. 

Multi-meson exchanges should be included as well , but 

owing to the short range and the complication of such contri

butions theoretical progr ess on this question is small. 

Instead of treating the multi-meson exchange mechanism 

in detail~ an .alternate approach, the one-boson-exchange (OBE) 

~odel, has been proposed. The underlying argument is that multi -

meson exchange processes are dominated by resonances, and that 

such a resonance can be treated approximately as a single 

p article. A complete description of this model was given by 

Downs~ a-na~ Phi'lli' ps13/. U ·s ing ~h · ~ is · · · dapproxima~ion an SU
3 

sym

14metry, Deloft / able to reproduce the scattering data·'was 

though not the correc~ hype~nuc ear b'nding. 

Since the dominant attractive contribution to the potent.i ,11 

comes from two-pion exchange or its equivalentr t he intrinsic ral1 g •. 

b o f the ·A-N interaction might be exp~cted to be about 1.5 fm . 

However,the calculations of Downs and: Phillips· suggest that a more 

appropriate value of b would be larger tha n this . Al i et 
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al~S/ have also noted that the equality of the single and 

triplet scattering parameters requires a longer intrinsic 

range. They found that the best fit to the scattering data 

(1966) required b to be 2.07 fm, whereas the corresponding 

value suggested by Alexander and Karshon161 for the 1967 data 

is about 1.8 fm. An acceptable explanation for the large 

intrinsic range is the existence of a hard core, since the 

overall intrinsic range b is related to the intrinsic range 

b of the attractive part by
0 

where re is t~e hard-core radius. The presence of a hard core 

with re ; 0.3 fro in the A-N potential as well as the tendency 

t owards a large intrinsic range (b>l.S fro) have also been 
, 7/verified by Herndon and Tang• • The absence of a bound hyper-

deuteron leads to an upper limit of core radius of about 0.6 

f m. 

An il"iteraction with an infinite core can not be u sed 

i n a shell model calculation since the matrix elements are 

infinite in such cases, A similar s i tuation occurs in the 

nucleon-nucleon interaction; and,to overcome this difficulty , 

the G matrix has been introduced181. The matrix G is defined 

to be 

(3 .1) 
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where v .. is the two-body potential, kF the Fermi momentwn ,
l..J 

and e the energy denominator defined as 

e = em e - e. - e. 
1 + m2 l..l 1 2 

e , e / e . , e. , are the single particle energies of 
ml m2 il i.2 

particles having momenta mi, m2 , i 1 , i •2

A~ exact solution of (3.1) is possible in principle, 

but it is very difficult in practice. Approximation methods 

have been developed,such as the Moszkowski and Scott (MS) 

separation method201 . The interaction v . . is split into 
l..J 

a short and a long range part characterized by a separation 

distance d. The long-range part v.Q, of the potential is 

we_l-behaved, while the short-range part~ vs , gives a re

pulsive contribution Gs which is called t he dispersion term 

by MS. Details of the derivation are omitted here but it c an 

b e proved that 

G c! - L> Geo> (3 .2)
s e o s e 

where Q is the Pauli pro jection op.erator , e 0 i s -::he sa1ne E.ne..:gy 

denominator as for free· particles of the same momenta. G~O) de

fined by G(O) = v - v · 1 G(O) is · an approximation to G • 
s s s e s s 

The long range part of the potential is approximated 

by a Volkov type force; i.e. ,the A-N potential is taken to be 

the sum of an attractive and a repulsive Gaussian (Fig . 2). 
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This choice of shape is taken for mathematical simplicity 

rather than for any physical reason. Dalitz and Downs have 

shown that, .for low energy interactions, ~he shape depen~ 

dence is · .negligible. · This .result will also -be .verified in this 

work . The potential is of the form 
2 2 

2 + V -r /r ) ( Px)(v -r21rA r e R wA + mA (3. 3)
VNA = a e 

wA + mA = 1 
where V ,v are the strengths,wA and mA are the Wigner and a r J> H 

Majorana excha~ge parameters, values of which are adjus ted to 

give the required p-state suppressiono 

The separation distance d is momentum-dependent . rR 

in (3. 3) is, in a way, a measure of this separation ; and , 

consequently it can be made a f unction of the.relative mo

mentum k of the two interacting particles. The functional 

form of rR with respect to k is r ather arbitrary . Here it 

i s assumed t o be 

(3. 4) 

where CA is used as a parameter which has to be determined 

in some manner. 

Va, vr , rA,rR are chosen to fit the free particle A- N 

para~eters at low energies, (Va + Vr) is kept to some small 

value in order to make the radial shape similar to a 

Moszkowski and Scott type vi potential; rA as ~entioned above 

corresponds to an intrinsic range of 1.7 to 2.1 fm approxi
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mately. Satisfying these requirer!'.ents reduces the arbitrary 

nature of the potential (2.3}. 

The scattering lengths a ,at and the effective ranges . s 

rs,rt for the singlet and triplet state were obtained from 

the crAp scattering cross-section by use of the four-parameter 

equation 

crA =} cr +~ crt = TI/[k2+(-!_ + 12 r k2)2]+3TI/[k2+(-!_ + 12 rtk2 )2J
p ~ s ~ as s at 

where k is the relative wave number. This relation is valid f or 

incident A laboratory momenta in the region 120<PA<320 MeV/c . 

The Maryland andRehavoth-Heidelberg groups both performed ex

perirnents on low energy A-p elastic scattering, and their 

results ag~ee with each other quite well. For higher energi es 

rR is k-dependent and CA in (2.4) is fixed so as to give the 

correct crAp (Fig. 3). However, the scarcity and uncertainty 

of the high energy (>30 MeV) data prevents an accurate deter

mination of CA. Fortunately CA is so small that reasonable 

variation of its value has no important effect on the binding 

and spectroscopic calculations. 

A Maj orana space exchar..g·e ·term is necess ary in or d er 

, 7/
to account for the K meson exchange . Herndon and Tang~ 

have s.hown in their s-shell hypernuclear binding and Ap 

scattering calculations that the potential strength in 

odd-parity states should be 60% of that in even states • 

Since w/\.+mJ\.;1, a 40% suppression of the odd L state require s 
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the mA = 0.2, whereas a Serber type force has mA = 0.5. Since 

there is no theoretical justification for the values of mA' 

it is treated as a parameter and the dependence of the A-bindinq 

energy on mA shall be studied. 

The expected density-dependence in the A-N interaction 

should arise primarily from the short range repulsive interac

tion mentioned previously and from the short range tensor force 

which in the case o~ the nuclear tensor interaction can be 

approximated by a density dependent effective central poten

tial as shown by Kuo ana Brown21/. The density dependence 

can also approximate the effect of ANN forces expected from 

meson theory. 

Gs in (3.2) consists of the Pauli and 	the spectral 

!.._) G(O)correction terms G~O) Q~l G~O) and G~O) (~ 
eo s 

re$pectively. Since the interaction is very strong at 

short range,the particle will most probably be scattered 

out of the Fermi sea .. The Pauli correction is therefore 

1 . . b1neg ig.'.!.. _e~ leaving only the ~pect:ral 	correction. There

fo=e, Gs is nearly proportio~- · .l to the difference e - e 0 • 

But 

2 2 2 e-e = e +e - e. -e . - (k + k - k. - k~)
0 i i	 i im1 m2 1 2 m1 m2 1 
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where U(m }, U(m2), U(i1 ), U(i2 } are potential energies of1

the particles in the states m1 , m2 , i 1 , i respectively. As m
1 

,2 

> ~, the particles are at the top of the potential wellm2 

As far as i and i are con1 2 

cerned1 one of them say i represents the A particle, which1 

having no Pauli principle imposed on it, always r.emains at the 

bottom of the well and has a potential energy equal to 

the well· depth DA;while U(i ), the hole potential energy, is2

of the order of the average potential of a nucleon. The 

average potential energy of occupied states is given by the 

well known relation 

- l 2 2 
UR.SJ= 12p { x (x-1) (x+2)GtsJ (xkF}dx (3 o5) 

where GtsJ is the averaged diagonal element which is re lated 

to the G matrix by 
412 (2J+l ) (2T+l) . GJ (k,k) MeV fm3 G~sJ (k) = 4rr M 88 t , t 

1/ 3 and kF is proportional to p Integrating (3.5) over x 

s hows that the average pote!'.tial e nergy is function of t he 

density p. Thus it c~n be concluded that the r e lation 

,.. "' Pn\.:Is 

which Bethe191 suggested for N-N case is also applicable 

to the A-N force. 

Nuclear matter calcula tions suggest that n~l is 
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probably a reasonable choice. For hypernuclei invo lving 

light nuclei cores, nuc lear matter predictions have to be 

modified . It is p=obably appropriate to take n as a para

meter to be determined by the appropriate criteria. 

The other source of the density dependence arises 

from the tensor force. Law, Gunye and Bhaduri221 approximate 

the A-N tensor force by an effective central term of the form 

M 3 2 00 2
Weff (r,kF) = - ~2 ) 27r WT (r)SlA (r) {· Q(r,r')WT(r')r dr' 

where 
k 2 co 

F
Q (r, r ' ) = /;""" { 

s,o,ui are functions of 

The potential W~~f is difficult to deal with unles s 
,__ .... 

some assumptions are made . Howe v er.' the main purpose of 

presenting weff here is to indicate that the tensor forc e 

can be approximated by a kF-dependent effective term. The 

F'ermi momentu..in kF is in turn rela t ed t o the nuclear dens ity 

by 

I 2 ~ . 2 p = \ -1 K2 F3'lT 

therefore weff = weff (r , p) . 

Since both the Gs and the tensor force have a range 

shorter than the two-pion exchange range, ph ·nomenological l y 

their effect can be summed up in making Vr, the depth of 

t he short. term, density dependent. A form 
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n= (1 + CA4 p (3. 6) 

is used, where cA 4 and n are taken as para~eters determined 

by fitting DA, the binding energy of the A particle in nuclear 

matt er. 

The A binding in nuclear matter is calculated by fi rst 

order perturbation, with a force fitting the two-body scat-· 

t ering. If mA = CA= cA 4 = 0, then DA is found to be 86 MeV , 

rather close to the 90 MeV given by Bhaduri, Nogami and Van 

J.J ' k23/D . • DA is sensit ive to the value of mA (Fig. 4). This 

i s understandable, since the odd state suppression does r educe 

the A-binding considerably. 

The generally accepted ' exper imental ' value of DA i s 

about 30 MeV. Much work2 4
/ has been done to obtain this value . 

However, the accuracy of DA is subject to quest.ion . Recently 

Bhaduri et a125/ have point ed out that if a three-body force is 

i ncluded , the argument which leads to DA = 30 MeV is no longer 

valid. Their reason is tha t the express i on used to deduce DA frcn 
7i2.fi2 - 2/3 

t he 1l1·easured BA , BA = D.I\. - --~~ A · 
2m r ~ 

0 

i s only true for a two-body interac tion . 

Bhaduri and Law261 have deduced DA directly from scat

tering data, and they have found that DA s houl d be 60 MeV 

which doubles the previous value o If i t be t he case, then t he 

val ue of mA would be less tha n 0 . 25 a s seen from Fig~ 4 . 
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The density term helps to decrease DA' and Fig . 4 gives 

the relation between DA and cA 4 for different mA. It is seen 

that DA decreases more o= less linearly with an increase of.. 
cA 4 • However, cA 4 has to be rather large to reduce DA to 30 MeV . 

2The nuclear density is approximated by p= p exp(-ar ),
0 

where r is the coordinate of the nucleon. Only the nuclear 

density appears in the AN density dependent potential term 

since this is implicit in the theoretical arguments given 

above . 

Spin dependence of the A-N interaction has long been 

a subject of investigation. The s -shell hypernuclear binding 

indicates a fa.ir ly strong spin-dependence because of the ratio 

The analysis of these light hypernucle i is as 

fo llows. 

The experimental value of the volume integrals c:.ndu2 

are derived from the A bi~ding en_rgies of ~H and ~He. u2u4 
. 3

and U are ;ound to be 660±45 and 925 ±45 MeV fm respectively.
4 

The volume integrals u and Ut of the singlet and triplet
5 

potencial are related ·t o and U4 byu2 

3 l u = u + ut,2 2 s 2 

3 3mh· ' ' U 380 M V c- - ~ U. ,80 M V f TheI is gives = e ~m gnu - ~ e m • s "(. 
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singlet is much stronger than the triplet interaction. How

ever the scattering lengths are very close to each other for 

the singlet and triplet interaction. The potential obtained 

from scattering yields a Us only sli. ghtly stronger than ut, 

contradicting the result obtained from the bind ing energy 

de rivation. 

The density dependence discussed i n this chapter is 

able to remove part of the discrepancy without explicitly 

introducing spin dependence into the potential obtained from 

scattering. Us and Ut are calculated with {A2.ll) which 

3gives U = 414.57 MeV fm , Ut = 402.42 MeV fm3 for CA4 = 0. 0. 
5 

When the density term cA 4p 
3 is added, it is found that 

= 397 . 07 Mev fm3 and ut = 364.24 MeV fm 3 , for cA 4 = 136 .0.u8 

The ratio U /U~ goes from 103% to 109% which indicates that s I.. 

t.~e density dependent term has made t he potential more spin 

dependent . However, it should be pointed out that the choice 

of the same density dependence for both the singlet and trip

let potentials is completely arbitrary. 

The existence of isomeric states of ~He provides 
27another check of the spin dependence . Dalitz and Ga1 / 

have shown that if the difference .in the potent ' al matrix 

element , (V -Vt) ·; is grea.ter than 0.25 MeV., then neither the 
5 

7/2+ nor '5/2+ state would be isomeric. Thus existence of 

the isomeric state furn i shes an upper limit to the difference 

between the singlet and triplet potential energy. 
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Though the scattering parameters for the singlet 

and triplet interaction only differ slightly, the singlet 

and triplet potentials are given explicitly in this work. 

The AN force used throughout. this thesis is of the form 
2 2 2 2 2 2 

-r /rA M -r / rR
0 

(l+CAk } x 
v(r:p}=[V_ e · + V (l+C~t1p· 1 )e ] [wA+mAP ]

a. ro n _ 

with 

v 
r 

singlet -55 60 1 .2 0.7 1 

triplet -68 73 1.2 0.85 1 

For hypernuclear binding calculations, the choice of 

a nucleon-nucleon poten~ial is important since the A-binding 

energy is sensitive to ".:he nuclear size, and the excited stat~s 

of the h~ypernuclei are closely related to those of the nuc lea~· 

core. 

It is well-known that low-energy nuclear properties are 

rather independent of the shape cf the potantial. It io no~.: 

necessary for the N-N force to have the same shape as the A-N 

force, but it is convenient, when calculating the A-N and N-N 

matrix elements, to use a gaussian form for both potentials. 

The Tabakin potential has been employ~d by Bassichj.s and 

Ga140/ for calculation of the p-shell hypernuclear binding ens£

gieso However, as pointed out by the authorsf the assumption of ~u~ 



33 


calculation is that the variation of the A wave function with 

the nuclear. mass nwnber A should be negligible, whereas in 

the actual calculation the A wave function changes due to the 

poor saturation properties of ·the Tabakin potential. Law, 

Gunye and Bhaduri22
/ in their ~He Hartree-Fock calculation 

used both the Yale and Volkov potential. The former potential 

is found to give too large a rms radius and too small a 

binding energy for the a-particle unless the triplet reduced 

matrix element is increased by 30%. The latter potential, 

though leading to a correct size and binding energy,does not 

saturate n~clear matter. 

A criterion in choosing a N-N potential for the hyper

nuciear· core is the fitting of the rms radius and the binding 

energy of the nucleus. Furthermore, a N-N force has to 

satisfy strictly nuclear criteria such as saturating nuclear 

matter at the correct density, gi-v.ing the correct. energy p.e.r p<:tr

ticle ang ·the.singlet and triplet scattering phase shifts , etc. 

It is found that it is dif ficult to determine an effective 

potential which satis:: .~ s all ::hese conc:i'c:_cns and which 3lso 

gives the required size and binding for nuclei from 4He to 

c . A force can always be artificially constructed to pro

duce the right size while discarding some of the other re

quired properties. However, one purpose of hypernuclea r 

studies is to have a better understanding of the dynamical 

12
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r elation of the nuclear core to the A particle binding, 

and too artificial a N-N potential cannot lead to any meaning

ful conclusion about the nucleus. Hence a irealistic" 

effective N-N potential is insisted upon throughout the whole 

i nvestigation. 

The N-N potential employed is a modification of the two-

Gaussian Volkov type of potential which is made density 

dependent by multiplying both the long range attractive and 

short range repulsive terms by appropriate factors. The 

f orce used is then of the form 

-r 2/1.s 2 -r 
2/A 2 

Vij = [-250(l+C3 p1/ 3 )e +255(l+C4p3 )e R] [w+mPx+bPcr+hPT ] 

where AR = 1 • 2 4 7 ( l + 0 • 15 ( k -0 • 8 3 6 ) 
2

] , 

and w = 0.5, m = 0.5, b = 0.075, h = -0.3 25. 

I n the zero density limit this is an appropriate phase fitting 

f orcel while the density factors insure the saturation propert ies 

of nuclear matter. 

The origin of ~he density dependence has been discusse~ 

earlier for the 11.-N force. Phenomenologically in addition to ;.:{1e 

3 113density term c p a term c is added to the long range3 p4 

part which might be attractive or repulsive depending on c 3 is 

positive or negative. 

The local density approximation with a small correc

tion has been found to be valid for large systems 1 9~rt is 

a ssumed that the dansi ty p is a. fu..'1.ction of the centre-of-mass 
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coordinate R alonei i.e. p=p(r1+r2}. If pis taken to be a 
- - 2 

gaussian distribution then p=p e-~a<:1+:2> where : and : 
0 1 2 

are the coordinates of the two nucleons. For light nuclei 

this approximation appears to over suppress the potential. 

Fer instance, 4He is almost all surface and taking p=p (R) 

essentially always leads to an over estimate of the local den

sity because of the central peaking of the density distribution ~ 

The local-particle approximation would seem to be more appro

priate for these nuclei. In this case p is taken to be the 

geometrical mean of the co-ordinates of the individual 

Par~i'cle, p=n e~a(r12+r~ 2 > - p~(r )p~(r ) p( 1r 2 +r 2} for~ ~o ~ - 1 2 = vl l 2 

the ga.ussian density distribution. For all but the lightest 

nuclei either approximation gives similar results. 

The coefficients c3 , c are adjusted to give the4 

nuclear matter binding energy and density (B.E. = 16 MeV per 

particle; kF = 1.36 fm
-1 

). Since the force is quite density 

dependent (the repulsive part has a term ·v p 
3 

) , the compres 

sibiiity in nucl~ar matter is rather high ~ 400 MeV~ Calcu

lated binding energies and :;:-ms radi.:. are compared with the 

experimental values in Table 2o The experimental rms radii 

are taken from two sources. One is from a 1966 analysis of 

the data291 on scattering, proton binding energies and the 

2Coulomb energy . An average is taken and the values <r >\ 

are obtained by correcting for the centre-of-mass. The other 

entries are from the Hofstadler data301 deduced from electron 
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TABLE 2 

The binding 	energies and the root mean square (rms) 
radii of the p-shell nuclei 

Binding Energies 	 rms radiusNucleus (in MeV) 	 (in fm} 

Experimental Calculated Experimental Experimental Calculated 
2 ~ 

(ref. 29) (ref. 30) <r > 2 

5He 27.34 25. 49 2.32 ± 0.28 2.165 

6He 29.24 24.9 4 	 2.360 

31.99 32.03 2.38 ± 0.12 2.78 2.44 76Li 

6Be 32.04 2.447 


7T •
.u1 39 . 24 39 .11 2.36 ± 0.16 2.71 2.5 3 

7Be 37.60 39. 12 	 2.53 

8	 ..., "i-Be 56.50 5 8.15 ~ • ..i.. I ± 0 .17 	 2. 63 

8L~ ·~l.28 35.74 	 2.6 3 

lOB 64.75 62.62 2.26 ± 0.13 2 .'54 

11
B 76.21 70 .10 2.24 ± 0.11 2.66 

i2c 92.16 89.70 2.32 ± 0.10 2.37 2. 6€: 
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scattering (1965). 

6For light p-shell nuclei e.g. Li, 7Li, the rms radii 

are overestimated by ~he force . However, the calculated 

< r 2 >~ increases with A 8 whereas the observed values change 

only slightly as A increases. A comparison between the two 

sets of data indicates that considerable uncertainty still 

exists in the experimental rms radii and it is not too mea

ningful to try to fit either of the values too exactly . 



CHAPTER 	 4 

5
THE BINDING ENERGIES OF AHe AND ITS CORE 

The study of both 
4

He and ~He is of great interest. 

·The a-particle is the lightest closed-shell nucleus and is 

5 .closely packed with arms ardius of about 1.7 fm. AHe is 
Ll

the hypernucleus with a -He core and the A binding energy 

3.08 ± 0.03 MeV is by far the most accruately determined BA 

value s 

.4


The four nucleons of -He spend most of their time 

as ls particles. However~ if particle-hole excitations are 

a_iowed, it is found that small configuration mixing occurs. 

This not only affects the bindhi.g energy of the a particle, 

but also affects the corresponding A binding energy. The 

c alculated BA can be increased by about 20%. Furthermore v 

a spectroscopic calculation of excited states can only be 

accomplished with core ex.:::i·tati.on. :-Ience i.t is important 

to extend the basis se·t wc.ve funct.i ns to 5_~1cL1de higher 

shells (e.a. 2sld). 

The various effects of the core polarization are 


presented in Table 4. The potentials used for this calcu

lat.ion are force A and C in Table 3. Ta:ble 4 lists the 


probability that the ~-:;_:>article is in ·che ls, lp, 2sld 


shell. Although the wave fi..mc·i::.ion varies with the force 


http:ex.:::i�tati.on
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TABLE 3 


The N-N force constants 


where AR= A O [ l + c (k-C ) 2 ]R · l 2 

b hn \) c3 c4 

A 2o0 -1 .0 -Ool724 1.5122 0.1375 -0.2625 

3 2.0 -1.5 -0.1392 1.599 9 0.10625 -0 .29375 

c 2.0 -2.0 - 0.1061 1.6437 0.075 -0. 325 

C ' 2/3 -2.0 0 .12731 0.76869 0.075 -0.325 

,,,., !I 
'-' 3.0 -2.0 -0.1292 6.002 0.075 -0.3 25 

D 2.0 -3.0 -0.0324 1.6680 0.0125 -0.38 75 

\) = 10 (w-m) + 8 (b+21; 

vA = -250.0 VR ::: 255 .0 ! AA = _ .5 , J..R 
0 

= l .247 

cl = 0.15 c2 = 0.836 , m = o.s 
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used, the ls character of the wave function is always more than 

90%.The calculated binding- energy increases by 0.81\.. 1.6 }1eV with 

the correlated wave function. The rms radius for both un

correlated and correlated wave function is given. When 

higher orbitals are included, a decrease in the rms radius 

is obtained. This is not too surprising since mixing of 

higher configurations is equivalent to building up a longer 

tail in the wave function. However, since the wave function is 

normalized, {i.e . the area under the distribution curve is 

codstant ),a longer tail results in decreasing the density of 

'-he inner and interrr.ediate parts which reduces the cross-

terms in the expression (A3.4). The diagonal matrix 

elements of the tail are ~oo small to compensate for the 
4 

reduction occurring in the cross-terms. Consequently, He 

has a smaller calcu_ated r ms radius when the.basis is extended. 

rt should be emphasized that when t'ere is particle

hole excitation, the centre-of-mass energy has to be taken 

care of, otherwise spurious states would be introduced . 

Detailed treatment of t'"le ce:-i.t.:ce-of-mass energ:~es is give::. 

in Appendix 4. 

one of the criteria for selecting a N-N potential 

for light nuclei is the fitting Of 
4He h_1nAi· ng~ ~ . energy and 

size in a variational equilibrium calculation. The experi 

mental a. binding energy 28c29S MeV is well-establish.ad , bu-... 

http:well-establish.ad
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TABLE 4 

• LL • •
Properties of ~He with the simpl e and 

correlated wave function 

rmsBindingF l lvave Probability of a-particlei
0 function Energy radiusin % 
R ls lp 2sld (MeV) (fm) 

I 
c l I I 

I I 24.63s imple 1. 99100 0 0 
.... I I~-;. 

I 

Correlated 91.834 2.729 J 5.437 1.9725.47 

-
'I 1. 89Simple 100 0 0 31.12Ic 

1. 87Correlated 92 .199 2 .5 44 32.715.257 

J 
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there is still some disagreement 	on the rrns radius . Two 

31/ 32/r ecently reported values are 1.71 and 1 . 68±0.05 fm • 

4The former value is a fit tc the charge form factor of He, 

4while the latter is from the measurement of il"- - ae and 
+ t. 

TI - -He elastic scat~e~i~g 

Theoretical cal culations have been performed to 

4 - 9/reproduce the He aata. The Volkov forc e was formulated 

~ . ~h 4~ogive ~L e cor r ect He size and binding, but it fails to 

r eproduce both the nuclear matter data and the 4He energy 

331 34135/spectrurr. . Other i nvestigators have studied the 

ne gative parity stat~s, and though some success has been 

achieved, none of t hese authors has tried to calculate a 

s elf-consistent nuclear size. 

In order t.o repro'\uce th2 experimental data, both the 

value o f v and n in the N~ force were allowed to vary (see 

Ta b le 3 ) . However r t_e corresponding C~ 6 c 4 must t hen be 

adjusted so as to satisfy the ~es~rictions imposed by 

nuclear matter. 

The calculated binding energy B( 4He) increases .as v Le-

comes ..-,ore negative Fig. 6 shows the variation of t he calculatea.o 

2 k2binding .energy with respec t to therms radius <r > as determined 

by using different values of v . The r e lation is almost 

lin ear 1 and it appears that it is i:mpossi:Ole to obtain a 

force giving both t he correct size and binding energy 

sim?lY by changing v. 
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Increasing the density dependence also affects 

B( 4He) and <r 2 >~. If n is treated as a parameter, then both 

4and B( He) decrease as n is increased. However, the 

decrease is relatively greater for the binding energy (Table 

2> 2S) : thus it is not possible to reduce <r 
~ 

to its correct 

value without underbinding 4Heo n is restricted, somewhat 

arbitrarily, to be less than or equal to three since the 

usually assumed value , obtained from nuclear matter calcu

4lations, is n Since the average density of He is 

less than the density of nuclear mat.ter, it does not seem 

unreasonable to use n as a parameter to be determined by 

the properties of 
~ 
-He. 

It should be noted in ·;;.he second part o f Tab le 5 

. 4 1 .that t 1e properties of He are r e atively insensitive to 

c:i.anges of n as it is increased from ~ to 3. This is due 

t o the fact that c3 and c4 must be modified as n is changed 

in order to give t..he correc · results for nuclear matter . 

The density depenC.ence of the ~~-i.J fc::-ce / as oppoaed to t..11.e 

exchange dependence v , is self compensating in the sense 

that the nuclear matter criteria are enough t o virtually 

fix the qualitative results for finite nuclei. 

4 +The He spectrum is given in Fig. 5. The 0 s t ate 

at 28ol MeV excitation energy is high c ompared to the 

experimental value361; however q it is still an improvement 
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TABLE 5 

(a) Properties of 4He with different exchange depende nce 

4
FORCE B (.He) O+ excitation energy rms radius 

A -1 .0 25.47 24.51 1.97 

B -1.5 28 .95 26079 1.92 

c -2.0 32.71 20.16 1097 

D -3.0 42.25 35.07 1 . 77 

n = 2 

4(b) Properties of He with differen t density d e p endence 

+ . ' ,_ .FORCE n O exci~a~ion ener~y rms rad:~us 

C' 2/3 35. 7 2 29.8 0 1 . 92 

c 2 32.71 29. 1 6 1.87 

3 31.45 29.01 1 .8 6 

\) = -2.0 
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on the 40 MeV above the ground state obtained from simple 

phase fitting force. The 2 and 1 states agree pretty 

well with the observed levels . The O state is rather 

high,an explanation for this is that 4He,which is spherical 

in its ground state, may have deformed excited states ; and 

a gain of a few MeV by deformation ""is very plausible. 

Force C " (v = -2, n = 3} yields a binding energy * 

nearly equal. to the correct value . Nevertheless, with this 

force t.~e rms radius is · still too large. If the experi

mental value is taken to be 1.71 fm, then the calculated 

one is 9% too large. For hypernuclear binding energies such 

an error in the rms. value canno·t be ignored u and a size 

correction is essential to obtain an absolute value of the 

binding energy. Attempts have been made to reduce the 

calcu lated size; and while a decrease in v leads to an 

acceptable radius, it also gives too high a binding energy 

and a poor spectrum of e:(cited states in which the O+ would 

be ~ 35 MeV {Force D in Table 3). 

A "realistic" force leading to the correct calculate ~ 

size, binding energy and spectrum is hard to obtain. Force 
II 

c appears to be the best in this approach and it will be 

used for the nuclear core in the ~He calculation. 

*The Coulorr~ interaction would r educe the calculated energy 
to about 29 MeV. 
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5The theoretically predicted A binding energy in AHe 

has a l ways been t oo large151171231 compared with the experi

mental value. Several reasons have been suggested for the 

discrepancy. They are: 

l} The existence of a tensor force in the triplet com

ponent of the A-N force, since ~He is a spherical system 

in which the tensor force should be suppressed; 

2) Isospin suppression,which has two possible origins. 

4Fig. 1 shows that,after exchanging a pion, the (A- He ) 

system goes to the (E-4He) channel. E has isospin equal 

4to 1, so in order t o have isospin conservation , He 

shou ld be in one of the T=l excited states which are a t 

least 22 MeV about the ground state. If this is treated 

by second order perturbation t h eory, second order energy 

<"lji · Iv I ~ .><tlJ . Iv It1J. > 
l. J J l.E e. - e.

j J l. 

wil l have an energy denominator e j - ei ~ mE - mA + 22 

MeV, where ml: - mA = 77 MeV is the mass differ e nce between 

the 2: and A. The energy denominator for ~He is i n

creased by 28.6% compared to the smallest free i n t erac

tion energy denominator. Thus, all free energy terms 

5from 77 MeV < e. - e. < 99 MeV are excluded for the AHe 
- J l. 

case and a resultant decrease in the second order con 

tributions could be expected. 

3} Charge symmetry breaking wi th which the bindi ng energies ;:)f 

4 4
J\. He and J\. H indicate tb.e !t

f, 

n force is weak e r than '.;he 11. p 
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4) The presen~.e of a ANN three-body force which has been 
' ' 

theoretiqally calculated to be repulsive, and which 
1, I ~ 

is therefore especially important for overbound hyper-

nuclei; 

5) The effect of the short range interaction as described 

in Chapter 3 of this thesis. 

Bhaduri, Loiseau and Nogami 51/ have considered the 

three-body force aspect of the problem with some success , 

but the uncertainty in the ANN interaction leads to only 
22

qualitative results at best. Law, Gunye. and Bhaduri / have 

performed Har~ree-Fock calculations with the tensor force 

and have concluded that the tensor force effect is not 

sufficient to ~educe the A binding energy to the correct 

17/value. H~rndo~ and Tang have taken th~ charge synnnetry 

breaking effect into account, but overbinding persists. 

As a starting point in these calculations, a central 

two-body potential is employed and the A binding energy is 

determined in several ways: 

1) A simple variational calculation in which an antisym

metrical wave function 1 a Slater determinant with all 

the nucleons and the A particle in ls states is 

minimized with respect to the ground state energy by 

finding the optimum oscillator constants ~ The difference 
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in the ground state energy between the hypernucleu s and 

the core gives the A binding energy; 

2 ) 	 A variational and configuration mixing minimization of 

the binding energy as described in Chapter 2 is performed , 

in which core excitations (1 particle-1 hole to the 2sld 

and 2 particle-2 hole to the lp shell) are allowed; 

3 ) 	 The rigid a model in which the average A potential 

vA(rA) is the overlap integral of the nucleon single 

particle density with the A-N potential; and t he A bin

ding is obtained by solving exactly the Schroedinger 

equation with VA(rA). {Appendix 2). 

Results of the different calculations are presented 

in Table 6. The first row is ·Che result for the A-N po

tential given in Chapter 3 and the N-N potential C
II 

, the 

second row is obtained for a N-N potential made up to fit t.h . .:: 

4He s~ze ( <r 2 >~ = 1.70 fm)~ while the last row again uses 

the size fitting N-N potentialu but a A-N force which fits 

the olO. (196 6) A-N scatterL1g data*. E'or the sake of com

parison~ the size paramater used in method 3) is adjusted 

2 	 A2 2 2* =-81.5 e-r /l •. + 87.0 e-r 11 • 125 

2 2 2 2 
=-1 91.5 e-r /l. 4 + 196.5 e-r /l. 3 



49 

TABLE 6 


5
A binding energy of AHe obtained from different models 

5
Scattering Calculated Radia l
BA (AHe) (in MeV )data Compressionrms radius 

of i+Hefitted Method from me t...11.odMethod IMethod 
(in fm) 2
3
1 l 2 


I 


1968 
 Sol3 l 5.81 2%1.86 6.06 
. .. -

YukawaGaussianT 
2.2% 

1968 
 6. 34: 7.01 7.25 7.271.71 

I .
l -l I 


1966 
 3%1.71 I 5.03 5.78 6.01 6.041 
 ll I 

---- ..·

http:met...11
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so as to give a rms radius equal to that obtained by method 

2). Comparing the first and second rows shows that a~ 10 % 

dif=erence in the rms radius causes a change of 1.20 MeV in 

the A binding energy. This quantity will be used as a size 

correction for the other BA (~He) calculation. 

Out of the three methods outlined above, method 2) is 

supposed to be the most precise. Method 3) assumes that the 

a-particle remains rigid when the A is added, and the A 

binding energy obtained is the largest. This larger BA value 

also appears when the rigid o: model result is compared with 

the Hartree-Fock calculation22 
r 
371. The A binding energy 

from method 1) is ~ 1 MeV less than the others, thus showing 

the importance of a correlated wave function for 4He. 

The compression. of t he core due to the addition of 

the A is small ~ 2% which indicates that the a core is 

almost unchanged, and explains why. the. BA from· ~thods -2) and 3. 

are close to each other. (Appendix 2). 

The last colu.mn o= Table 6 is the binding energy 

calc'l:'.lated with a cut-of:Z Yu:<.awa :._::iot:.ential given by Bhadu··:-1 : 

N•oga..,u.· and Van Di"J" k23~_ The Gaussian and Yukawa results 

are very close to each other which indicates that. the A 

binding is shape independent as pointed out by Herndon and 

. 17/
Tang • 

The effects of the va.rious corrections mei;.tioned 



in Chapter 3 are tabulated in Table 7. The odd state sup

pression is introduced by letting the Majorana exchange 

parameter mA be different from zero. This effect is very 

small but non-zero, since the ls exchange matrix elements are 

not identical to the direct matrix element owing to that 

aA and SA are different from the nucleon a's and S's. 

Furthermore, the ~He ground sta·i:e is found to have small 

admixtures of (ls) 2 {lp) 2 nucleon configurations which leads 

to smaller exchange matrix elements. Nevertheless, the 

suppression is i nsignificant. 

The coefficient CA is taken t o be 0.01,a magnitude 

obtained by fitting the 11 high 11 energy scattering {Fig. 3). 

The accuracy of CA is subject to question, however, since 

the decrease in BA is small "' 0.2 MeV,reasonable variation 

in .CA do~s not .change BA. ·much. 

'!'he reduction due t.o the density dependence is 

rather considerable. The coef::icient CA4:' a measure of the 

strength of the densi t:x· dependence , is qetermined by fitt ing 

t:11.e A binding energj' in nuclec-.r matter DA * • cA 4 is sensit..:.?e 

to the choice of mA . 50~ suppression (mA = 0.25) and the 

* 	DA is calculated by first order perturbation. 
k.,.,,

.I:! 

DA(CA4) = - ~ <¢N~AlvNAj¢N~A>
N::.:l 

where vNA is given by (2 .3), and ~N 8 ~A are p l ane-waves. 
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TABLE 7 

Effects of momentum dependence, Majorana exchange and 
density dependence on the A binding energy 

5
BA ( He) (in MeV)mA CA CA4 

0.0 o.o o.o 5.81 

o.o 0.01 o.o 5.57 

0.25 0.01 o.o 5.54 

0.50 0.01 57.5 4.76 

0.25 0.01 136.0 3.78 
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Serber force (mA = 0.50} are chosen. Fig. 4 shows that a 

better result (closer to experimental value) is obtained 

for mA = 0.25. 

In order to compare these results with the calcula

tions of other authors , a size correction is necessary . Here 

we just use the quantity 1.20 MeV obtained from Table 6 as 

a rough estimate for the size correction which is added to 

the corresponding BA. For mA = 0.25 and 0.5, BA is 4 . 98 

Me V and 5 .96 MeV respectively which is compatible with the 

Hartree-Fock calculation wi th central and tensor forces 221. 

The density dep~n~ent force does reduce the A 

3binding energy, but even a factor as large as 136 p is 

not able to reproduce the experimental value. Some other 

mechanisms such as isospin suppression, ANN force, etc . 

have to be introduced . 



CHAPTER 5 

THE BINDING ENERGY OF THE p-SHELL HYPERNUCLEI 

The problem of the overbinding of the A particle in ~He 

when using central forces that produce experimental cross-

sections also exists for the p-shell hypernuclei. The pur

pose of this chapter is to discuss several mechanisms which 

reduce the A-binding energies in these hypernuclei. 

The first two related mechanisms discussed here are 

the effects of the deformation of the nuclei and their 

corresponding hypernuclei, and the Majorana exchange component 

of the A-N force. 

The theoretical consideration of deformation has been 

given in Chapter 2, and the effect of deformation on the 

nuclear binding energy has been discussed by Volkov9/. 

Recently, the possibility of deformation was mentioned in 

~e hypernuclear Hartree-Fock calculation of Bassichis a nd 

Gal~O/, but no explicit change in the binding energy d ue th3 

deformation effects was given. 

. 7L . 8L . 8 9 10 11 dCalculations for . 1 1 Ai; Be, ABe; B, AB an 
12c, 1;.c are presented as examples. A variational and con

figuration mixing minimizat ion of the binding energy is 

performed. All the possible S1ater de terminants for a given 

54 
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nucleus are constructed from a set of single particl e wav~ 

functions of a cy l indri cal harmonic os cill ator {Appendix 1) 

(5 .1) 

whe=e P is one of the A! permutation operators for A particles. 

Xm and T are spin and isospin functions, and·four 
Si mt. 


1 11 ls 11
nucleons ar~ assumed to fill the N= O shell, i.e. t he shell; 

and the remaining A-4. nucleons fill the N = 1, t he 11 lp" shell, 
A 

so as to give the smallest total M = E (m.+m ); a nd 
. 1 l. s.A i= l. 

M~ = E mt must be appropriate to the nuc l eus being studied. 
~ i=l i 

If all the a's and S's in the states (5.1) are the same, then 

~he results of matri x diagonalization are essentially the 

s arne as a conventional shell model ca culation except no 

s ing-le particle energies are asEiu..rned and all particles are 

i:1volv.ed in the Hamiltonian. 

The general procedure is to assume <1-hat a = 13 (the... \) \) 

v represents n, m, nz ) , for a given major shell N, and t he n 

:;;iinimize the ene rgy which is btained f.1..orn d iagonaliza tion of. 

a sub-matrix spanned by the most. important de t .r mi nantsr 

varying the di f f erent a's. These size parameters are then 

llsed in the full ma:t rix diagonalization to give the results 

f or the 'spherical' representation& A mor e general calcu

l ation i s for av ;!: Sv and ·· -. :minimi~es the energy for all 

possible oscillator constants (v=[O,O,O],[O,O,l],[0,±l , O]) , 

http:i:1volv.ed
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ioe. 3 a's and 3 S's for the nucleus orbitals , 	 and aA and SA 

5for the A particle which is, as in the case of AHe , assumed 

to be in a [O,O,OJ state . This defines the ' deformed' re

presentation. Thus the var iation includes up to 8 parameter s 

and as high as 158 determinants in the case of 1~B. The 

effect of varying the different size parameters is essentially 

equivalent to mixing a number of different major shells i n 

a Hartree-Fock calculation and characteristically the 

variation leads, in deformed nuclei, to an energy gain of 

a few MeV as well as a doubling of the mass quadruple moment s. 

The n binding energies for the differen t cases are 

given i~ Table 8 . In a l l cases it is noted that there is a t otal 

hypernu cleus binding e nergy gain.by allowing the representation 

to deform since this represents a more complete variation. 

However, the A binding e nergy decreases for the better 

'deformed' representation. The absolute value of the A 

binding energies should be taken with caution since the N-N 

force does not give the correct nuclear size except in t he 

7 . case o f Li. It is noted that the f binding energies are 

always smaller for mA = 0.5 as compared wi t h mA = 0 . 0, 

13
and difference can be as large as 3.36 MeV for ACo Herndon 

and Tang171 have estimated that mA ~ 0.2 in their analysis 

of the s-shell hypernuclei. It is also found tha.t ABA is 

decreased by about .0. 3 "' 0. 4 MeV for mA = 0. 5 a s c omp a r e d 

t.o mk = O O.o 



'rABLE 8 

Binding energies i n MeV f or lp shell nuc l ei; hyper nucle i and A particle 
i n 11 spher:l.ca. l 11 and. "d efo rmed" r epr esentations 

-- , ---·--- ··--- --- --· . ·

:?:~~~j\~~~Kn:~e~,t~t~~-;?:~mea _ :~A~~;~ntat~on 

flBAmA • A 

-4-- - - -----+-

8.70 I 25.8 0 33 . 70 7 .90 

7. 61 I 25. 80 32 . 97 7 . 17 

7.S~:r~l.2~::-j 4;~ 10.51 

A I A A 
- ---+------+--- ·--·- --

o.o 2 4.11 32.81 -0.80 
6He 

24 . 11 0 .5 31. 7 2 -0.44 

?Li 
' o.o_- 136-~-~:~ 4_ Ii -0. 73 

~ -5 [ ~2~-,J~ f 9 ._j 39.11 :l 48. 76 ' 9 . 65 - 0.30 

o. o I 5 0 .3~~ 6 4.0l 
8Be 

~ 0 ~ 5 l::~c~h~-

lOB 
o.o 6 0~4~--~ 
0. 5 

-1~---r---0-·-
6,0·~:J~-
~-7-.-;;- f108 . 57 

15 

'c o. 5 . ~-~~~-- l 04

_ ~~3 , 55.59 ! 68. 38 I 1 2. 79 I -0.84_ 
s -~ iL eo ~ 5 5. 59 ~ 66 . 99 I ll.40 _ ~ -o .4o 

62 . 6 2 78 . 8 7 16 . 25 -0.631 6 .88 

~-70 I 6 2.62 _76.99 14 . 37 I -0 .33 

1 1 
1 1 0 . 82 21. 1 2 -0 . 36 21. 48 89. 70 

._-04--_.i.-L-1_7_:_7_5-+J-a-9-.-70--11--10_1_._4_6_!17 . 7 6 l +o . o 1 U1 
-...J 

http:4---------+-8.70
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The reasons for these effects are as follows: the 

nuclear system deforms primarily in order to minimize its 

total kinetic energy since the total potential energy is 

insensitive to reasonable deformation because of exchange 

effects (Chapter 2). However, the A particle is in a state 

[OvO,O] where kinetic energy cannot be minimized by defor

mation; and if mA = 0.0, the maximum potential energy is 

obtained by maximizing the AN wave. function overlaps. A 

compromise is reached at the expense of A and nucleon kinetic 

energy. The A orbital becomes deformed and the nucleon 

orbitals become less deformed . This compromise results in 

less A binding energy. The deformation is represented 

by Ckthe nuciear quadruple moment in Table 9. A decrease 

in QN (in absolute value) is seen when the A is added to 

the nucleus. 

'I1he effect of deformation on BA is further studied by 

allowing various deformations for ths ~Li hypernucleus (Tab le 

10). QN is ....he quadruple no:ment given by (A3.5). t,.SA 

increases with the nuclear quadruple moment which is a measu:.:.:. 

of deformation, i.e. the more deformed the nucleus f the large1~ 

the decrease in A binding energy with the deformed represen

tation. 

For mA = 0.5 the total A-N interaction decreases s ince 

a A-N exchange interaction introduces exchange matrix element 
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TABLE 9 

The quadrupole moments of the nuclear cores and the A particle 

Core (in barnsjQN
Nucleus (in mb)No A present with A QA 


6
He 0.031 0.026 6.4 


7Li 0.129 0.116 15.2 


8Be 0.250 0.215 23.4 


lOB 0.175 0.158 14.4 


12c 
 -0.193 -0.186 -14.1 

QN is given ·by - (A3. 5) 
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TABLE 10 

Effect of deformation on the A binding energy of ~Li 

QN (without A} QN (with Al LiBA (in MeV) 

0.134 0.118 0.52 

0.129 0.116 0.30 

0.117 0.112 0.16 

7
QN is t he quadrupole moment o f "Li calculated with a 

deformed representation, b..BJ\ is the difference in binding 

energies calculated from a spherical and a defor med re

presentation, i.e b..BA = BA (spherical) - BA (deformed ) 
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contributions at the expense of direct matrix contributions 

to the potnetial energy and the lp exchange matrix elements 

are smaller than the corresponding direct matrix elements . 

This leads to decreased binding. However: in this case since 

v(r) Px can be considered in terms of an equivalent velocity-

dependent potential (2.25), it can be shown that the exchange 

matrix elements favour deformation and consequently in the 

final compromise, ~BA is smaller in magnitude than for 

mA = 0.0. This follows since the A orbital can deform with 

less loss of anergy. 

Both deformation and Majorana exchange effects reduce 

the A-binding energies" However, they alone are unable to 

give the experimental binding. A still further reduction 

can be obtained by including density-dependence in both t he 

N-N potentials and A-N potentials. 

~..n indirect reduction of the A binding energy results 

from the use of a 'realistic' phenomenological density 

dependent N-N force which has been quite successful in a nurri..bs~ 

' . 41 42 43 44/of m:i.clear structure applicat ion s ' ' ' • 

The main difference between a density independent and 

a density dependent N-N force in a hypernuclea r calculation 

is the difference in the compression of the core by the A 

particle. To examine the effect of compr ession on the bin

ding energy BA , the following procedure ~s adopted. A non
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density dependent force is chosen to be 

2 - (r/>. ) 2 

v .. = [-78.03 e- .~r/l.S) +82.8 e · R ] [0.29+0.71 Px+0.2P 0 -0 .0 5PT]
l.J 

(5.2) 
2

where A.R = 0.76 (1 - 0.496 (k-0.7} ) and k is the relative mome nt um 

This force is able to reproduce the average 1s and 3s nucleon-

nucleon scattering data, but saturates nuclear matter at much t oo 

high a density. The binding energy of the nucleus is first 

minimized with respect to the oscillator constants. The core 

is now kept rigid by retaining the same set of a's and S's, 

and the 'best' value of the hypernuclear binding energy is 

obtained by varying only the aA and SA. This binding energy 

is compared with that from a complete minimization, i.e. by 

allowing variation of all the a' s and S's as well as aA and 

SA. It is noted in Table 11 that when the core is allowed t o d e· 

form, an increase in the A binding energy appsars together 

with a compression of the nuclear core. Similar calculations 

with a density dependent potential lead to similar but s ma l 

l er compres sion and A binding energy gains. 

The change in r ms r adii of the c :>re due to the p re

sence of the A particl e is given i n Tab l e 11. The r adia l 

comp~ession for the force without density depende nce is o f 

the order of 8% , a magnitude not too far from t he result 

quoted by Bassichis and Gal for the Tabakin potential. For 

a density dependent N-N force, the compressiop is hindered , 

http:0.29+0.71
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'11ABLE 11 

Variation i n A b i nding energies to co.re compressio n 

. ....
~--·---1 

B (A.+lX) 2 !...:<r > 2
A A . 
t. B Witho ut Compr esse d Core i s ~~ -· re is 

7

~~~~eus IN-N fore:_ ja (AX) 


I 
 5.2 I 33. 76 

Li 

c II 139,ll ________L 
·--·-:i..·--···

B I 5 . 2 150.26 
Be 

II 
c I ~15.59 

I 5.2 180.881 2c 

c II 189.70 

Acompressedgid core 
- 1--·-

Oo 44
13 . 54 
 2. 20 
 2.0213 . 10 ' 


1o.~n 10 .5 1 
 0. 01 2.53 2 . 49 


------ --·-· r-----

0 .34 
 2 . 2 4 
l 5. 34 
 1 5 .6 8 


2.6312. 79 
l 2. 78 
 Jo .01 
30 . 8 6 
 0.37 2 . 28
3 0. 49 


2 1 .12 
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2.59 

-
2.15 

2.63 

6<r2 >~ 
<r2>~ 

8.2% 

1.6% 

4.5% 

1.52% 

5.75% 

2.20% 

<r2~is the rms radius o f the nuclear cor e 

t.<r 2 >~ i s the radia 1 compression due to the addition of the A particle. 

O'I 
w 
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since the N-N potential becomes weaker as the density is 

increased and ll<r
2 >~/<r2 >~ is reduced to about 2%. Since 

it is less favourable in this case for the A particle to 

compress the core in order to increase the potential over

lap , there is some reduction of the A binding energy com

pared to other calculations. 

In analogy with the deformation effect, the 

compression effect is reduced by an increase of the Majorana 

exchange component in the A-N potential. In order to study 

the relation between the A binding energy, the density 

dependence in the N-N force and the Majorana exchange, the 

non-density dependent force (5.3) is modified so as to give 

7the same radius for Li as for the density dependent force. 

BA is calculated for both forces. In spite of the equality 

the calculated rms radii and the use of the same A-N force, 

BA differs for the two cases. The A binding energy is re

duced by the use of a density dependent N-N potential. 

However the difference in BA :Zor the two different N-N 

forces decreases as mA inc~eases. {Table 12). 

The compression effect on the A binding energy can be 

understood by the following argument. The direct A-N 

potential matrix element is proportional to the overlap inte

gral which varies roughly as the nuclear density p. Thus for 

a force independent of p, the potentia l energy would favour 

a higher density 6 resulting in the compression of the core 
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TABLE 12 

Sensitivity of A binding energies and radial compression 
to variations in ~ajorana exchange component 

N- N force 

p independent 0.0 2.38 5.92% 10.88 
0. 37 

p dependent 0.0 2.49 1.58% 10.51 

p independent 0.25 2.41 4.75% 10.31 
0 .2 1 

p dependent 0.25 2.491 1.54% 10.10 

p i ndependent 0.50 2.415 4.52% 9.80 
0 .15 

p dependent 0.50 2.493 1.47% 9.65 

p i ndependent 0.75 2.4:20 4.35% 9.22 
o.o 

p dependent 0.75 2.494 1.43% 9.22 

2
>

k2 7 
<r for Li= 2.53 fm 0 

~B is the A binding difference due to 
density dependence in N-N force 
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so as to increase p even though this leads to some increased 

kinetic energy. However, if we include a density term in 

the N-N force, an increase in p weakens the nucleon potential 

which decreases the potential energy gain as the system is 

compressed. The increase in the kinetic energy remains the 

sameo Hence, the effect of the density dependence in the 

N-N force is to reduce the desirability for compression of 

the core. The gain in the A binding energy is therefore re

duced relative to the density independent N-N case. 

The exchange matrix element has been shown to be smal

ler than the direct matrix element and to be velocity depen~ 

dent. If the velocity dependent oscillatory term were ig

nored, the relative increase of the A-N matrix element over

lap woµld be the same as for the direct matrix element. 

However, the kinetic e~ergy (velocity) of the nucleons 

i ncreases as the core is compressed. The oscillat ory factor 

therefore plays a greater role and reduces the gain due to 

overlap . Thus the effect of compression on the total po

t ential energy is reducedv a.nd the decrease in BA due to 

the use of a density dependent N-N force diminishes with 

the increase of mA. 

If a density dependence is included in the A-N 

potential, the A binding energy can be r educed significantly . 

As mentioned in Chapter 3, a density dependence can be used 
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to make the A-N interaction spin dependent. This is because 

the range for the repulsive term is different for the singlet 

0.85 f m for triplet)and the triplet force (r = Hence,
R 0.7 f m for singlet • 

even if we have the same factor CA4P 
3 multiplying the radial 

part of the singlet and triplet component, the weakening of 

the interaction is different. To illustrate this effect, 

the first order A-potential energy in nuclear matter. is given 

below: 

V(singlet)=26.368 MeV; V(triplet).=26.267 MeV for cA 4 = 0.0 

V(singlet)=21.893 MeV, V(tripletJ=16.744 MeV for cA4 = 100.0 

An attempt is made to reproduce the ratio V /Vt ob
9 

tained from the binding energies of the hypernuclei by 

allowing density dependence only in the triplet component. 

Fig. 4 shows that to reach the 'experimental' value of DA,. 

has to be about 157 which gives v..... = 11. 21 MeV • Since ... 
= 0 for the singlet interaction, V . remains at 26.368 s 

MeVo The ratio Vt/v
5 

= 42.6% is much closer to that ob

~ . d F "h Ab' d' ' ~ SH d 3H...aine ~rom ~ie in .ing energies o~ A e an A • 

For finite nuclei we aqain take ~Li as 0·12;1.:' examp.!.e. 

For a nucleon in a [0,0,0] state, the first order potential 

energies are 

V ([O,O,O]A)=3.654 MeV,V~([O,O,O]A )=3.60a MeV, CA4 = o.o 
s -. 

Vs((O,O,O] A)=3.227 MeV,Vt([O,O,O]A)=2.975 MeV, CA4 - 136.0 

:::: 
0 singlet

Vs([Oq0p0)A)=3.220 MeV,Vt([-O;Or&1A)=2.840 MeV, CA4. 157 triplE't. 
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for a nucleon in a [O,O,l] state, 

V ([0g-0,1)A)=l.569 MeV,Vt([O,~,l]A)=l.532 MeV, cA 4=136.05 

C = O singletV ((0,0,l]A)=l.645 MeV,Vt([O,O,l]A)=l.622 MeV,
8 A4 157 triplet 

It is noted that the effect is more prominent when the 

nucleon is in the "ls" [O ,O,O ] state. When the nucleon is 

in the "lp" [0,0,1] state, the difference Vs - Vt is small. 

This is because the p-shell nucleons are at the nuclear 

surface where the effective density is small, so even with 

cA 4 = 157 in the triplet potential and cA = 0 in the singlet4 

potential the difference in the corresponding potential energy 

is only about ~ 0.02 MeV. However: there is a decrease in 

energy with a density dependent A-N force even if the nucleon is 

in the lp state. This is due to the change in the equilibri urr: 

orbital size, due to the effect of all interactions, rather 

than the direct effect of the density weakening of the [O,C, O]A f 

[0,0,1 N mat.rix e"ements . 

The above discussion is e~tirely based on the dif

ference in the rE:pulsive range for the singlet and trip.let 

force. However, the choice is rather arbitrary, and there 

is no reason why the repulsive range should be longer i n 

the triplet component of the A-N interaction. Therefore, 

this is just a possible explanation of the spin discrepancy, 

and no conclusive rero4rks cau be made concerning the relati on 
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between the spin dependence and the density dependent force. 

Like in the case of ~He# the A binding energy de

pends upon simultaneous change in mA and cA 4 • Table 13 lists 

the values of BA for different mA. A si~e correction should 

be made in cases when the rms radii differ from the experi

mental values. However, it is noted that even without the 

size correction, the discrepancy of overbinding still persists . 

It is also noted that even if the force is capable of giving 

the value of DA' it is still too strong for finite hypernuc lei o 
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'!.'ABLE 13 

Effect of density dependence on A binding energies 

Hypernucleus . cli. 4=57 .s , mJ\.=O. 5 CA 4=136.0,mA=0.25 

8L.A i 
8.68 7.25 

9L . 
A i 11.04 9.41 

9BeA 10.24 9.21 

,, _ ...B 
A 

12.75 11.45 

12B 
A 13.78 12.68 

13c 
A 16.86 15.06 
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CHAPTER 6 

THE EXCITED STATES 

In spite of the existence of about fifteen established hy

pernuclear· species ~ there are· hardly any excited states identi

fied experimentally. An inve stigation of the energy spectrum 

can be a useful tool in the study of the A-N interaction, 

especially with respect to the spin dependence of the A-N 

potential. 

The excited states of hypernuclei and the correspon

ding core nuclei are obtained by · constructing an appropriate s et 

of states and diagonalizing the matrices of the Hamiltonians 

given by (2.10) and (2.1) .respecti vely. The "deformed" 

representation, defined in a previous chapter, does not l ead 

to eigen states in which the total angular moment.um J is a 

good quantwn number. In order to have a definite J, J 

projection must be performed on the deformed states which is 

both difficult and tediou s. ~o avoid the necessi~y of using 

the projection approach, we use the "spherical" represen

tation described in Chapter 5, i.e. we let av = Sv for 

v = [0 6 0 1 0], [0,±1,0] and [0,0,1]. A variational calculation 

is performed to obtain the best value of the ground state 

energy. The oscillator constants are now kept fixed for 

http:moment.um
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the spectrum calculation. The largest diagonalization occurs 

for the Slater determinant representation having the lowest 

total value of M, the z component of the angular momentum. 

The ground state must be included in this representation. The 

energy level corresponding to this value of M is obtained by 

diagonalization. A new representation with M increased by 

one is constructed. An energy matrix diagonalization is 

performed with the new representation to get the corresponding 

spectrum. The process is repeated until the representation 

of the highest possible M is used. It is noted that all 

states of higher M are degenerate with those of lower M. This 

follows since we are now dealing with a spherical represen

tation, and states of the same J but different M values are 

degenerate, i.e. the diagonali~ation is creating states of 

good J. The value of J for a particular state is therefore 

equal to the highest value of M for a degenerate set of states . 

A sample spectrum is now shown which illustrates the method 

J= G 

M=O M=l M=3 
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for determining the J values the energy eigenvalues. 

The epergy levels of a hypernucleus depend very 

much on the levels of the "core" nucleus. The spin dependence 

of the A-N interaction splits single states in the core nucleus 

into pairs of states in the hypernucleus. If the singlet 

component is stronger than the triplet one, the energy of the 

state associated with JN-1/2, where JN is the angular momentum 

value of the corresponding nuclear state, is lower than the 

corresponding JN+l/2 state; and the splitting ~E between the 

pair of states gives a measure of the difference between the 

singlet and triplet strength. 

As mentioned beforec the excitation energies of the 

hypernucleus depend sensitively on the spectrum of the core; 

and consequently, a calculation of the hypernuclear spectrum 

and the transition rates between levels is only meaningful 

if the N- N force is chosen to give a good fit to the experi

mental nuclear core spectrum. 

6_ · " 7.,. · .._ ' 1 Th . t d ~~ ana A~i are ~a~e~ as a n examp e. ~e exci e 
6 n 

s tates of Li are c a lcula ...ed. wi·:.~. f orce C g · Ven in Tabl e 3 ~ 

The l evels are shown in Fig. 7. They agree fairly well 

wuth the observed values. The spectrum of ~Li is calculated 

with the same N-N force and the A-N potential given in 
6Chapter 3 . It is noted that each of the levels of Li splits 

into two, which are ~lmost degenerate because the A-N singlet 
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and triplet interactions used for the calculation are not 

too different. A difference does show up in that the 1/2+ 

level is slightly lower th.an the 3/2+ level. If y-rays 

between members of a pair could be detected experimentally, 

t he y-ray energy would give a measure of the spin dependence 

of the A-N. interaction for the lp-shell hypernuclei. How

ever as yet no measurement has been made. Difficulty may 

result if the levels happen to be too close to each other . 

The spectrum of XHe is of interest because it possesses 
7 a n isomeric state. The experimental determination of BA {AHe ) 

exhibits a double-peak structure with BA = 5.1±0.4 MeV and 

BA* = 3.2±0.4 MeV. Pniewsky and Danysz 52/ interpreted the 

* 7BA as an energy associated with an isomeric state of Alie. 

This is the only established experimental data for an exci t ed 

state of a hypernucleus. The difference in the two bindi ng 

energies BA - BA* = 1 09 MeV i s about equal to the exc itation 

energy of t he 2+ level in 6He ~ 

Thi s i s omeric state ha s been studied in detai l by 

~~ ~ 't ~ ~ ~ 2 7/ · ~ · w · ·.~h ~w~J.e AN :i:r-orcesp i'n.:.;a..!.. .l. z anu. 1.;;a•.L , :i.n connec·....:..on Mi _ 


dependence, and they f mn1d that 6. = V . - V has t o be les s 
s t 

t han 0.25 MeV for the isomeric state to exist. The existence 

of the isomeric state requires that the electr omagnetic trans i 

tion rates between the levels (5/2++3/2+, 5/2++1/2+ or 

3/ 2+-+l /2+) are smaller than the weak inta raction decay rate 

of the A particle . Thus IHe decays by either the me son or 
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some other weak decay instead of undergoing a y-transition. 

The electromagnetic transition probability per 

second from a state I to a state F is given by 

(6 .1) 


where pE is the number of final states per unit energy inter

val, and Hint is the interaction between the particles and 

the electromagnetic field. After simplication (6.1} is of 

the form, 

T(aA) = 
A [ (2A+l) 11] 2 

(6. 2) 

where 

(6. 3) 

Details of the derivation can be found in most standard texts 

on nuclear physics. The main assumption made in the deri

vation is that kR<<l, where R is the nuclear radius and k 

is given by IEi-Ef I = ..riw = ckil • cr in (6.2) stands for 

either magnetic or electric multipole transitions and A is 

the angular moment of the y ray emitted. The OAµ in (6.3) 

is either an electric or magnetic multipole operator . The 

electric multipole operator is given by 

{6. 4) 

and the magnetic multipole operator is given by 

.,· 
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0 

M, __µ = µo L: (g s. + '21 g R,. } d ( A µ *} '6 5}
I\ i si-J. /\+ . R,i -J. •gra r YA i" \. • 

µ is the nuclear magneton, and the g's are the gyromagnetic 

ratios¢ 

For a E2 t~ansitionu the first term of (6.4) is 

simply the quadrupole moment operator whose matrix elements 

are given by (A3.6) , the second term of Q1 is of the same
I\µ 

order of magntidue as that of Mt.+l and is usually ignored. 

The operator Mt.µ for t.=l is given by 

" ( i)Ml = µo (g + gk m ) 	 (6. 6)L.. 	 I 

k k 	 sk 

where 	gk = 5.5856 for a proton, and -3.8263 for a neutron, 

,.. (Q.)
'jk = 	 1 for a proton, and o.o for a neutron . 

(6 . 4) 	 is valid for both nuclei and hypernuclei since the A 

is a neutral particle which does !lO'i:: :_nteract with the 

electric field s o as to give rise to y-ray • However the A 

particle has a non-zero magnetic moment. Thus it plays a 

role in the magnetic multipole transition and (6.6) has to 

be modified by adding a te~m gAmA to i .~clude the A moment , 

where gA = -1.46±0.34 n.m. 2>.+lE.-E ,It is noted that T is proportional to k 2 :A+l=( i f) 
5i.e. 	T(E2) varies as (Ei-Ef) and T(Ml) varies as 

.fie 

3
(Ei-Ef} , where Ei and Ef are the energies of the appropriate 

initial and final stateso 

http:1.46�0.34
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In order to determine the E2 transition probability of 

~He it was felt necessary to consider the effects of core 

polarization. The representation therefore should include all 

2~w excitations of the core. However, in that case the size 

of the matrix to be diagonalized becomes tremendously larg~; 

and due .to the incapability of our computer to diagonalize 

t his matrix, we have limited the excitation to only 2-particle 

excitations to the lp shell from the ls shell, and ignored 

t he excitations to the 2sld shell. The representation now 

includes up to 158 states for M = 1/2. The energy matrix is 

then. diagonalized for different total M representations, as 

discussed earlier, in order to obtain the eigen energy states , 

and wave functions with definite J. The E2 rates from the 

excited states 5/2+ and 3/2+ to the ground state are then 

f ound to be of the order of 107 sec-l which is much smaller 

t han the hypernuclear decay rate of O. ,rox10 10 sec-l. Fur

·.::hermore; in the above calculation, we have ignored the recoi l 

o f the charged a-particle relative to the centre-of-mass of 

7AHe. This recoil amount has an opposite effect compared t o 

27the core excitation as discussed by Dalitz and Gal / and 
. 7 

t he final result of T{E2) is therefore less than ~ 10 • 

Next, we consider the Ml transition. The transition 

f rom the 3/2+ state to the 1/2+ state is caused by the transi

t ion of the XHe core from the J=2 to the J=l state, and 
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9 -1T(3/2++1/2+,Ml) is found to be 0.896xlO sec The 

5/2++3/2+ transition is due to the spin flip of the A par

ticle. T(S/2++3/2+,Ml} is proportional to the cube of the 

energy difference between the two states, and is found to 

be 3.03xlo8 sec-1 • Hence# with the A-N potential used in 

this thesis, i.e. a potential which fits the scattering 

data and includes the density dependence, the 5/2+ and 3/2+ 

states are isomeric, thus leading to no contradiction be

tween the experimental scattering data and the experimentally 

detected ~He isomeric stateo 



CHAPTER 7 

THE THREE BODY ANN FORCE 

The A~TI coupling should in principle l e a d to a three-

body ANN force as well as the two-body AN force. The lowest 

order ANN potential is generated when two pions emitted by a 

A are absorbed by different neighbouring nucleons as shown 

in Fig. le. This pion-exchange potent~al has central and 

strong non-central components such as the tensor force. The 

three-body ANN forc e appears to be repulsive on the basis 

of meson theory calculati ons 511. 

Effec ts of the ANN force on the b i nding energies of 

light hypernuclei, such as ~He and ~H, have been discussed 

in the work of Bhaduri, Louseau and Nogami Sl/ and the e f :i:e :-"i:.::: 

of a three-body force in p-shell hypernuclei have been 

46previously examined by Bod.mer and Murphy /. It has been 

4 7I· t e out oy Weitzner· .... h..a"t.· f or a s t rong ·poin a · t.. repu1sive 1\ ~ JL\'~11·· 1 

f orce, the binding energies of light hypernuclei can be 

accounted for with an almost spin independent two-boo y fJO ·

tential. Ga1 48/ has also estimated that it is possible to 

obtain the experimental value for BA (~He) provided that the 

singlet and triplet AN forces have the same strength and a 

central repulsive three-body force is used. Furthermc £ e , 

79 
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he49/ has also suggested that a strong ANN force can be used 

to explain the exceptionally large binding energy difference 

for some pairs of p-shell hypernuclei, e.g. the negative 
9 8 . 13 12

values of BA(ABe) - BA(ALi} and BA(A C) - BA(A B) • 

A ANN potential can .be written in general as 

A 
= 2: vA .. (rA 1 r.,r.),VANN 1J 1 Ji<j=l 

where i,j stand for the two nucleons. 

A typical matrix element is given by 

* * .i~j J 4>11. (rA)'i'o.(rl, ••• ,rA)vAij(rA,ri,rj)¢A' (rA)'i'S(rl, ••• ,rA) 

(7 .1) 

where ~a and 'i's are antisymmetric wave functions of the core 

nucleus and ¢A(rA) is the A wave function which, if taken to 

be an harmonic oscillator wave function as before, will i n -

elude the size parameters °"A and SA. 

Integrating (7.1) over rA gives 

3
••• d rA 

which is simply a matrix element of a two-body nucleon-nucleon 

potential. Hence the effect of a ANN interaction in a shell 

model calculation is equivalent to the addition of a term to 

t he N-N force. 
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Several general features of this effective two-body 

potential v .. are as follows:
l.J 

l} 	 Since VANN is repulsive, vij will also be repulsive and 

therefore, it tends to act against the compression of 

nucleus; 

2) 	 Besides depending on r.,r., v .. is also a function of
l. J l.J 

aA and SA. Thus , in a variational calculation this 

effective potential has to be determined self-consis

tently; 

3) 	 Even if only the central component of the ANN force is 

considered vij is in general non-central. 

To give a qualitative description of the three-body 

ANN potential we used a o-function force of the form 

vijA= v 30o(rA-ri)o(r -rj) [(l-m3 )+m3Px] (7.2) 

where m is a.constant and Px the space exchange operator.
3 

The exchange component is simply an effective term which sums 

up 	 the terms like {cr . 0 cr .)(-r . .. T . ), (cr . ·cr~)( T. 0 'tA) etc. The range
l. J J.. J J.. ll. l. 

of a ANN force should be between one-pion and two-pion ex

change range, since the intermediate state energy is rnE-mA+m'IT 

~ 260 MeV. Thus the choice of a o-function force is just a 

matter of mathematical convenience and the results obtained 

should only be taken as qualitative. 

An approximate effective one-body potential u3 (r~ for 

t he A particle can be derived from first order perturbation 
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theory which gives 

A * * 3 3E f cp • (r . ) <P • (r . ) vA . . <P • (r . ) cp • (r . ) d r . d r . ( 7 . 3 ) 
i<j l. l. J J . ,i,J l. l. J J l. J 

since vA .. has the form (7.2), (7.3) can be written as prc, i, J A 

portional to E p . (r) p. (r}, where p. ,p. are the densities
l. J l.. Ji<j 

for particles in the states~. (r.} and cp. (r.). u can there
'l.. -1. J -J 3 

fore be approximated by a density dependent interaction. 

A variational calculation as described in previous 

chapters has been performed with the ANN component in the 

hamiltonian, i.e. 

H = E T. T + l: ( v . . + VA . . ) + l: VA . • ( 7 • 4 ) J. - CM l.J l.J i l.i i<j 

In order to compare the effect of the three-body force and 

the density dependence in the two-body interaction, the 

density dependent effect is eliminated by ~etting cA 4=o. 

The A binding energies and the core radi i of the hypernucle i 

are given in Table 14. The c~1oice of v30 = 5.0 MeV is arbi

trary and is jus t chosen to give a i:-eally weak ANN potential. 

It is noted that th.e reduction of B (A+lX) cor-A A 

r esponding to a relati vely weak three-body potential is quite 

large~ As mentioned earlier, the repulsive ANN force tends 

t o push the nucleus out, resulting in smaller nucleon com

pression. This latter effect was also found by Gal in 

c onnection with his Coulomb interaction calculation
481. 
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TABLE 14 

The effect of ANN force on A binding energies and rms radii 

B(A+TX) 
. A 

rms radii oT tne nuclear 
core when A is present 

without with ANN without with ANN 
ANN force force ANN force force 

SL.A 1 10.51 8.08 2.49 2.492 

A 
9Be 12.79 10.04 2.59 2.59 

12B 
A 

13c 
A 

16.68 

21.12 

l 
I 
! 

13.53 

17.66 

2.60 

2 . 63 

2.61 

2.64 

= 5.0 MeV 
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Effect of ANN force on the A binding energy of ~He is 

s tudied by employing the rigid a model which has been found as 

5 good or better for AHe than the variational calculations we 

have used {Chapter 4). The average A potential due to the 

three-body force in first order is given by 

u 
-

3 (rA) = 6 J v ..A{r. ,r.,rA}p(r.)p(r.)d3r.d3 r. (7.5)
i] i J i J 1 J 

where the factor 6 indicates that there are six possible ANN 

bonds. Using force (7.2) we have 

-u 3 (rA) = 2 4 224TI v30rA p (rA) (7. 6) 

which is added to the one-body potential (A2.9). 

In order to reduce BA (~He) to about its experimental 

5 value, is taken to be 15.0 MeV which leads to BA(AHe) =v 30 

3.497 MeV by the rigid a model. This value of is able tov30 
8 13 reduce the A binding energy of ALi and AC to about 4 MeV and 

11 MeV respectively. However; owing to that a a-function is 

too rough an approxima~ion to the ANN force and the uncertain

ty in the strength of the potential to wl:ich the A binding 

energy is very sensitive~no quanti tative conclusion can really 

be given. 

Recently two-channel formalism for the ANN force has 

been studied in detail by Nogami and SatohSO/ and they have 

found this formalism rather successful i n reproducing the A 

binding energy in nuclear matter. Unfortunately our variational 
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programme did not have the capability of including the two

channel formalism. However, it is believed that a variational 

calculation with a properly deri ved ANN force could lead to more 

conc lus i ve remarks concerning the effects of the three-body 

f orce o 



CHAPTER 8 

CONCLUSION 

This thesis reports various attempts which have been 

made to reduce the A binding energy for hypernuclei from XHe 
13to A c. The decrease due to different effects is given in 

Table 15. It has been found that a "deformed" representation 

and a density dependent N-N potential together are able to 

reduce the A-binding of the p-shell hypernuclei by ~ 1.0 MeV. 

However, these effects do not play a significant role in ~He , 

which has a spherical equilibrium shape and a small core 

compression. 

The effect of Majcrana exchange, i. e. the relative 

p-state suppression is important for hypernuclei with larger A, e .g. 

~3c, since ·· the number of rslative p interactions increase 

rapidly for A>4. The effect on BA (~He) is insignificant, 

i.eo < 1% A binding energy reduction for mA = 0.5. It was 

noted that a larger Majorana exchange component in the A-N 

f orce reduces the effect of both deformation and compression~ 

and for mA = 0.5 the decrease in the A binding energy due 

t o these two effects is about half the value for mA = 0.0. 

Nevertheless, it should be noted that whenever a N-N force 

which allows for high compression, e.g. 10% radial compres

sion, is used with a spherical representation, a correction 

86 



TABLE 15 

Summary of various effects on A binding energies 

Reduction of A binding~nergy due to 
Hypernucleus Deformati6n ·w-1Yensi ty dependence $pace exchange ---Den-sH:.y aependence 

in N-N force component, mA=0.25 in A-N potential 

5
Alie o.o o.o 0.03 1.76 

7
Alie 0.8 0.37 0.36 2.05 

8L. 0.73 0.40 0.43 2.55A i 

A 
9ae 0 . 84 0.33 0.70 2.92 

llB 0.63 0.32 0.99 3.25 
A 

12
A8 0.60 0.31 1.21 3.52 

13c 0.36 0.32 1.68 4.02
A 

*The numbers in this column are the difference in the A binding energy gain by core 
compression when density dependent and density independent N-N force is used. 

CX> 
-...! 
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of 0.5 to 1.0 MeV should be subtracted from the A binding 

energies. 

The energy dependence of our A-N force, which might 

be required to fit A-N high energy scattered data, leads to 

an approximate 0.2 MeV decrease in the A binding energy. 

This result is highly qualitative due to the lack of high · 

energy scattering data which could possibly determine the 

parameter involved. 

Density dependence in the A-N potential would reduce 

the A binding energy by a considerable amount. The density 

dependent term cA 4p 
3 is rather phenomenological, and there is 

no obvious physical reason why it should be the same for both 

t he ls- ahd .. lp..,.shell nuc l ei, or f or the singlet and triplet 

interaction. However, the scarcity of experimental data 

does not justify the introduction of more parameters. 

The three-body force has been thought to be more 

L~portant for hypernuclei than for nucleio The reason is 

that the ANN interaction has ~ in the intermediate state as 

shown in Fig. le and the energy difference m~ - mA is about 

80 MeV, while in the three nucleons case, instead of r we 

have the nucleon in excited states giving an energy difference 

much larger than 80 MeV. It has been found that a relatively 

weak ANN interaction is able to reduce the A binding energy 

quite significantly: but unless the strength of the ANN 

potential is properly derived theoretically, the calculation 
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including the three-body force can only lead, at best, to 

qualitative results. 

Apart from the three-body force, the theoretical 

A particle overbinding is only partially removed by the 

various effects we have investigated. The isospin suppres

sion discussed in Chapter 4 seems to be a promising mechanism 

to remove the remaining discrepancies. However, very little 

basic theoretical work has been done on this effect and 

there was not enough time to include an investigation of the 

isospin suppression effect in this work. 

The importance of the excited states has been men

tioned repeatedly by Dalitz531. Unfortunately no such state 

has been identified (except for the probable isomeric state 

7. t • . f )i n ne case o AHe • However, our limited study of hyper-

nuclear excited states indicates the possibility of further 

determining the singlet-triplet differences in the A-N 

potential. We have also sho~vn, by explicit calculation, that 
7 our forces are consistent with the existence of a Alie 

i someric excited state. 

It is hoped that A-N scattering data for the inter

mediate and high energy regions can be determined experi

mentally. This; together with the identification of some 

hypernuclear excited states, would be very helpful in the 

f urther study of the A-N interaction and the A particle 

energy dilemma. 
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APPENDIX 1 


THE SINGLE-PARTICLE REPRESENTATION FOR 

CYLINDRICAL SYMMETRY 


The wave equation for the three-dimension harmonic 

oscillator, in cylindrical coordinate is 

where the oscillation constants a and 8 are defined to be 

a = Mw/~, 8 = Mw /.f'i, (Al. 2)z 

where w and wz are the oscillator frequencies. 

The solution of (Al.l) has been given by Copley and 

volkov381 and is of the form 

ljJn~m,z ( /ap,¢,/Sz) 
2 

-~ap= Nnmn eim<!> (a~p) lml LI ~I (ap2) e (Al. 3) 
z 

where the normalization constant 

2om! 
(n+ !mj)l ' 

H (8
;,

2
. 
z) is the Hermite polynomial and n can be any integer znz 

lmlgreater than or equal to zero, and L n , the associated 

Laguerre polynomial, can be expressed as 
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~ ~Im ! (a)ps 
s=O ns 

where the expansion coefficient~lml {a) has the value ns 

) 1 ( -a) 5 
v:Jlrn I ~ : (a.) = rn +s) i s ! ' ns 

n is any non-negative integer, and where m, the z-component 

of the orbital angular momentum, can be any integer positive 

or negative. (Al.3) will also be denoted by [n,m,n ] . z 
The eigenvalue E associated with (Al.3) is 

= (2n+lml+l)~w + (n +~)~w • . (Al. 4)Erunn z z z 

Since only the absolute value of m enters the energy (Al.4) 

states for ± m are degenerate. 

The quantu.~ nurober N i s de f ined as N = 2n+lml+n . z 

The s t ate [O,O,O ] has N = Ou which for ~=s is equivalent to 

the s pherical ls state. The states [ 0,±1,0] and [O,O,l] al l 

have N = 1. They a re equivalent to the lp states when a.=S. 

Six states have N = 2. The [0,±1 , l] and [0,±2,0] states are eqa~ · 

valent ·to ld spherical states f or a=S while appropriate 

linear combinations of [l,0,0] and [0,0,2] form the fif th 

ld sta"i:.e and the degenerate 2s state. In general, the 

cylindrical representation can always be transformed to 

spherical representation by letting w = wz, and using 
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the appropriate unitary transformation. The energy is then 

E 	= (2n+ 

= (N + 

N is just the usual principal quantum number for a three 

dimensional spherical harmonic oscillator. States with the 

same N are degenerate in the spherical, a=S, limit. 

It should be noted that even in this "spherical" 

representation, the different orbital density distributions 

a~e not the same in a ll directions (except for the (0,0,0] 

-2 -2 i -2 1 I I orbital) since x = y· = ~ p = 2 c2n+ m +l}/a and 

-2 1 - - z = (nz+2) /8. The values x,y ,z depend on the quantum 

numbers as well as the oscillator constants. 

In Chapter 2 it is s hot.m. that a minimization of the 

kinetic energy generally favours a deformed representation 

and that the deformation d corresponding to the minimum 

kinetic energy is 

2n +l z
d 	 . = nun 

Each single particle state favours a prolate, spherical or 

>oblate representation according to whether d < 1. Relation 

between n,m,nz, dmin and Lnmn a dimensionless quantity,
z' 

defined to be· 

(Al. 4}Lnmn 
z 

,. 
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is shown below. Comparison of {Al. 4) and (2.14) I (2.15) shows 

that Tnmn is a measure of the minimized expectation value of 
z 

the kinetic energy. 

N n !ml n z dmin Tnmn 
z 

0 0 0 0 1 1 

3 v'41 0 l±ll 0 1/12 

1 0 0 1 I! 3f! 

2 1 0 0 1//3 319" 

2 0 1±21 0 1//3 3/9 

3m2 0 l ±ll 1 {3f2 

2 0 0 2 15 115 

Kinetic energy minimization alone requires [O,O,O] 

to remain spherical, while [O,Oul] and [0, ±1,0] iead to 

prolate and oblate representation deformation respectively. 

Kineti c energy minimization for states with N=2 also lead 

to different representation deformations as shown above. 
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APPENDIX 2 

THE RIGID a MODEL 

The rigid a model was first suggested by Dalitz and 
45/ h . . h . .d • ff dDowns .T_e assumption is t~at tne -He core is not a ecte 

by the addition of the A particle. It is noted that the 

rigid a model can be derived from the variational principle . 

The binding energy of the 5-body system ~He is o~

tained by minimization of (~(~He) !Hl~(~He)> with the intrinsic 

Hamiltonian H given by 

4 
H = v. . (r . -r . ) + I: (r. - r )

l.J -i -J i=l -i -A 

4 

= 2: T. + 1 v. . (r. -r.)
i TA - ~2~{~4m_+_m~~ l.J -1 -Ji=l 


4 

+ 2: viA (r.-rA ) (A2 .1 )

i=l - - J. 

4 4 
where P = 2: P. is the total momentum of He, PA is the 

-a 1i =l - 

A momentum, and rn, mA are the nucleon and A mass respec

tively. To generate the rigid a equation, we write H as 

2 4 
H = H(4He) + E._ + I: v.A (r. - r ) (A2. 2)2µ l.. -l. -Ai=l 

.where H(4He), the Hamiltonian of 4He l.S equal to 
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4 p 2 4 
= E T a + 2: v . . {r . -r . ) • (A2. 3)

i =l i - 2 (4m) i<j=l l.J -l. -J 

P i s defined by 

P = 4 
1 

(4mPA - mAP )m+mA - -a 

whi ch is the moment ,con j ugate to the coordinate ~4 defined 

below , and µ is the reduced mass of the A particle 

4mm 
µ = A/(4m+mA). 

A new coordinate system is introduced as shown in t he 

diagram below, where c is the centre-of-mass of the 4He and 

~1 , ~ 2 §~3 ar e the internal coordinates of 4He. H( 4He) is 

theref ore only a fur.ction of ~ , ~2 and ~3 •1 

A 
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Furthermore the A-N interaction can be written as 

v.A(r.-rA} = v.A(x4-~.},i -i - i - -i 

where ~i is some linear combination of ~l' ~2 and ~3 • 

The trial wave function is taken to be 

(A2. 4) 

and 

(A2. 5) 

4where E( He) = <xlHC 4He) Ix> is the intrinsic energy of the 

a core. 

(A2.5) can be written as 

4 . p2 4 2 
<'!'IHI':!'>= E( He) + <cpA C~4) Irµ+ i~lll x<~1'~2'~3>I viA (~4-~) 

(A2. 6) 

but the density of 
I!.
·He is given by 

. 4 3 
p(R) = ) t 2 ~ ( 'd3 d d3 ~ J IX ~1'~2;~3 I u R-~i ' ~l . ~2 ~3 

i=l 

which being substituted into (A2.6) leads to 

P2 
<~IH!~>=E(

4
He) + <cpA (~4 ) 12µ + l p{~) viA (~4 -~)d

3
RjcpA (~4 )>. (A2 .7) 
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The variational principle requires 

4 .p2 , 3 I c E( He) + o<¢Al'2"µ" + Jp(~)viA{~4-~)d R ¢A>= 0 

4However, because He is assumed to be rigid, 6E( 4He) = O, 
p2 3 

and 6<¢Aj2µ + ! p(~) v~A (~~-~)d ~j¢A> = 0 with 

the condition <¢Al¢A> = 1 leads to the rigid a equation 

2 
[~µ + vA(x4)]~A (A2.8) 

where the one-body potential vA(x4) is given by 

Substituting (A2.8) into (A2.7) gives 

5 - EA is therefore the A binding energy in AHe. 

Although the rigid a model assumes the core remains 

unchangedq the fundamental derivation is variational in 

nature. ~he variation is concentrated on ¢A and if the core 

in6eed does remain rigid the value for EA should be good. The 

method also has the virtue that an experimental density p(R) 

can be used in the calculation. Any improvement in the 

4method, i.e. allowing additional variation in the He wave 

function, should increase the A particle binding energy and 

therefore -EA represents a lower bound for the A particle 

binding energy. 
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The one-body potential vA for the two-body A-N force 

(3.3) can be determined as 	follows. 

The 	nuclear density is assumed to be Gaussian 

2 
p{r) = Ne-a.r 

312where N the normalization constant is equal to {a/TI) . a. is 

related to the rms radius with respect to the CM by 

2 3which gives <r > = 2ci" 

For a central potential of the form 

-k r2 -k r2


A + V e Rv.A = V e
i a r 

vA can be solved analytically to give 

2 23/2 -~k p r 3/2 -~k p rAA 	 RR
vll. (r) = VapA e + vrpR e 	 {A2. 9) 

where a.+0.SkR • 

If v.tl. is density dependent and has the form
1. 

2 	 2-k r 	 -k r 

viA a 
e A 

J.. 
= v + V~(l + cA 4 (4p) 

n )e R 

then the term 

~(3n+3)
C 4n (~)

A4 TI 

$.hould be added to (A2 • 9 ) • 
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The volume integral can be obtained by integrating 

vA(rA) over the whole volu.TUe. It is equal to' 

(A2.ll) 

and if vi/\. is density-dependence, a term given by integrating 

(A2.10) over the volume should be added. 

McMASTER UNIVERSITY Llt:3HAt<'t 
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APPENDIX 3 

NUCLEAR SIZE AND MOMENTS 

The rms radius 

The rms radius rm with respect to the nuclear centre

of-mass is defined by 

A 
(A3 .1)= _! <\f I r r . 2 

l.i=l 

where \f = r c l a> with l a> as the determinantal wave function 
Ct 

a. 
of the A-particle system. (A3.l) can be written as the appro

priate sum of one-body and two-body matrix elements 

A2 L i i 
r = !.c1 - - j L: L: L: c cs <air~ l s >:m A A a l. Ii=l a s 

1 2 A .,_ i j- -"-- I l: l: L: l: c c cs c f. j <a Slr. ·r~lyo-oy> .A A a. y J - J. -Ji;C'j=l a. s y 0 

For 4He, the second term will vanish identically by 

parity selection rules , if 2 particle - 2 hole excitations 

into the lp shell are ignored. For this case 

(A3. 2) 


.. . 
"' 



101 

A 
where 	 =.!. r rrci (A3. 3) 

A i=l a ·6 a 

(A3 . 3 ) is what is usually quoted as the experimental value, 

. 2 ~ 


i.e. <r > = 1.71 fm. 

For 	a shell model or Hartree-Fock calculation, the 

2value of <r > should be fitted. For the rigid a model, 

where t he nucleon density functi on is chosen with respect to 

the centre-of-mass of the a-particle, rm should be used instead 
2 ~ of <r > • 

In t erms of the single particle wave function cp, 

2 l 2 A 
<r >=A E ca <a j L: r. 

2 
la> 

Cl i =l l. 

= 1 [E 2 A 
r <cj> lr21<P >caA 	 CY. • Ci. • 

Cl j=l J J 

ns a. 
I 21+ 	 2 r ( - l) i m <¢ Ir ¢ >l (A3 . 4) 

a <S 	 s.9., °'m 

ns a 
where (-1 ) i m is a phase f act.or determined by the pos i t ion 

of s.Q,'°'m in the determinantal wave function. 

The quadruple moment 

We define the static quadruple moment <Q> to be 



102 

z 2<Q> = <al r 3Z. - r.21s> 
l.. l..i=l 

which by analogy to (A3. 4) is given by 

z 
<Q> = r c 2 r <cb . a. l3z

2 - r2l<P > 
a a j=l J 

a. 
J 

+ 2 (A3. 5) 

The quadruple moment for transition probability be

tween different states ~i and 'l'f where 

'!'. = r c Ia>
i a. 

a 

is determined by the matrix element 

(A3. 6) 
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APPENDIX 4 

THE CENTRE-OF-MASS CORRECTION 

The many body wave function ~i <: 1 ,~ 2 , ... :A> can be 

written as ~iC~ 1 ,f 2 , ••• ~A-l'~), where the f's are appropriate 

relative coordinates and R = Al E r . i s the CM coordinate. 
i _i 

If an appropriate set of harmonic oscillator single 

particle wave functions is used as basis function , it is 

always possible to perform an exact separation of the form 

where GN is a harmonic oscillator function and ~v represents 

a n intrinsic state of the system. Elliot and . Skryme 391 have 

shown ...hat for shell model st.ates with closed shells and 

valence particles in only one major shell, N = n = 1, i=O, 

m=O {ls ground state) i .e . the CM sta·:::e is always in the 

l owest possible state. However ¥ if there are particle hole 

excitations, then we can g after diagonalization get 

~v 1e 15 , ~v 2 e15 , ••• ~vNels' ~v 1e 2 s and possible other 

states of the form ~v etc. The latter states, e.g.e 25
3 

~ e are spurious and would show up as v 2s
1 
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either or 

~ (ae -be )E 
\) 
. 
3 vl. ls ls 

cp qi 
\) 2 

e l s "2 
e ls 

Ev 
2cp cp a2 + b2l s vl 

e 
\) 2 

e
2s = 1 

E ~v l (aels+be1s>\) 1 

if TCM is subtracted from if TCM i s not subtracted from 
Hami l t onian Hami l tonian 

The method for eliminating the spurious s·tate is out-
L 2 2l ined below. The CM hamiltonian has the form HCM=TCM+~w R , 

whe r e M is the mass of the whole system. HCM' multiplied by 

a relative l y large constant factor c, is added to the 

intrinsic 'ha.~iltonian of the system. The hamiltonian now 

can be written as 

. { 1 2 2} H = ~ T . - ,,.,-cM + v i j + c TCM + 2 Mw R ,
i l. i < -i

.J 

The energies a ssoci a ted with cHCM will be c(N+2
3 )>.'lw, 

which is to be added to the intrinsic energy. If c is large 

enough , say c = SO, the energy levels corresponding to 

different N states of the CM wi ll be distinctly separated 

when the total representation is diagonalized, i.e. 
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0 2s 

E +cE1\)1 s 

The spurious states can be discarded and the expectation 

value < ~ i cHcMI~> can be calculated and subtracted from the 

e nergy spectrUi~ of the ~on spurious spectrum so as to bring 

them to the correct energies. By using the great accuracy 

i nherent in modern computers , the gap between spurious and 

non-spurious states can be made very large and the separation 

becomes very pure. 
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APPENDIX 5 

THE THREE-BODY ANN POTENTJ.AL MATRIX ELEMENTS 

The ANN force is assumed to have the form 

A 


VANN=. E . vA.. {rA,r. , r.)

l.<) J.) I 1. J 

(AS .1) 

where i,j are the two nucleons involved, Px is the space 

exchange operator. 

The general matrix element is written as 

where <I> A is the A wave function 8 and 'I' {a.}, .'I'ff3} - are the 

determinental wave functions given by (2.8). 

The diagonal matrix elements have {~} = {e} and 

therefore the diagonal matrix element is given by 

http:POTENTJ.AL
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A 

= f • •• f ('IT cp (r;) * (r(-l)P p 1T


Ct. 1. <I> A(rA)) VANN <Pa. (ri)
p1. i=l 1. 

3 3 _3 
ct> A(rAl l d r 1 d rA d rA 

A 
= r Ill 4> * (r. } cp * (r. ) cp A * (rA)Ct • 1. a. . J v30

i<j=l 1. J 

3 3
<PA (rA) - <I> a. (ri) qi (r.) <PA (rA))d3ri d r. d rAa.. J Jl.J 

A 2 2 = v30 r l cp cL (rA) ¢a~(rA ) cpA(rA) (1-oK(ms. -m )

i<j=l l. J l. 

s. 
J 


(AS. 2) 

where ms . ' ms. and mt.' mt . are z-components of the spin and 
l. J 1. J 1 x = 0 

0i s ospin of the i and J nucleons. and o(x) = ' · O, otherwise· 

The factor 1-oK(m -m }o(mt -m~ } = O, if m =m ands. s. . ._.. s. s. 
l. J l. J 1. J 

re . =m. • However, when the two nucleons are in the same 
-;:: . "C . 

l. J 
S?atial orbital, then the factor is always one. 

Different off-diagonal matrix elements 

have to be treated separately. 

For case 1 all the states in {a} are the same as those 

of {$}, but A' ~A • Since the A particle is assumed to be i n 
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the state [O,O,O], and it has T=O, the only possibility that 

A f A' is when the z-component of the spin of the two states 

are different, i.e. m =I m In this case 
SA SA' 

«PA <f>{a.} I <PA I <f>{a.}>= a, since we have assumed thatI VANN 

the ANN force is spin dependent. 

For case 2 ms = m and all the states in . {a} and 
A SA I 

{S} match except for one state in each set. Let the dif-
I 

ferent state in each set be a.i and ai respectively. The 

matrix element then has the form 

3 3 3(cpA ( r;~) <P . , (r. ) cp (r. ) - <PA (rA) <P (r . ) <P , (r.) ) d rAd r . d r . 
l ai · i aj J aj i ai J i J 

For case 3 m = m and all the states in {a} and 
SA SA ! 

{S} match except for two states in each set which we des ig

nate as a . =I a. 
I 

and a. f SJ·
I 

• This class of matrix element 
1. 1. 1 

can be written as 



109 


- o(ms 

(AS. 4) 

If there are more than t~.ro states different from one 

another in the sets {~} and {8} , then the matrix element 

vanishes, since VANN' even though it is a three-body poten

t ialr contains only the two nucleon coordinates r. and r .• 
l. J 
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FIGURE CAPTIONS 

Figure l(a) 	 One-pion exchange graphs for the AN system, 
leading to the process AN + ~N 

(b) 	 Two-pion-exchange giving the lowest order 
contribution to the AN two-body potential 

(c) 	 Two-pion-exchange graph giving rise to a ANN 
three-body force 

(d) 	 K-meson-exchange graph leading to an exchange 
potential 

II 

Figure 2 	 The radial shape of the N-N potential for C 
in Table 3; the difference b etween the two 
graphs s howing the effect of the density de
pendence . A two-gauss ian A-N potential is 
of the same shape but different strength and 
range. 

Figure 3 	 The total elastic cross-s~ction crAp is plot
ted as a function of the CM kinetic energy. 
The theoretical curves are calculated with 
A-N potential given in Chapter 3 with different 
value of CA. 

Figure 4 	 The calculated well depth DA and A binding 
energyBA{RHe ) are plotted as a function of 
CA4 for different Majorana exchange component 
in the A-N po~ential. Values of BACRHe} for 
mA = 0.25 and mA = 0.5 are almost identical, 
and the difference of 0.02 MeV cannot be shown 
distinc tly in the graph. 

_ igure · 5 ~ . comparison cf t?:ls expe:!:'imeni:al and calculated 
He energy spect.r::.n , the latter is obtained by 

using force c" i Table 3. 

Figure 6 	 The 4He binding energy is plotted as a function 
of its rms radius . The binding energy is ob
tained by a variational calculation with dif
ferent "realistic " N-N forces which yield 
different equilibrium size . 

- 6L. d 7_ .tFigu:=e 7 	 Energy spec-ra o~ i an ALi. Levels of energy 
higher than -26. 5 MeV are not shown. 
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