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CHEAPTER 1

INTRODUCTION

Hypernuclei are stable bound states of the A hyperon

with various nuclei. The first specimen was discovered by

1/

Danysz and Pniewski in a photagraphic emulsion. The hyper-

nucleus was formed by a cosmic ray particle collision with a
nucleus in the emulsion. Now hypernuclei are produced by

bombarding nuclei with pions or K mescns.

A+l
A X

where Ay is the nucleus core to which the A particle is bound.

The standard notation for hypernuclei is

The interpretation of these systems as stable states
is supported by two facts: the hypernuclei half lives are about

equal to the lambda particle half life, and the energy

released in a pionic hypernuclear decay is about equal to that for

free lambda decay (37.5 MeV). The observed energy differen-
ces going up to more than 10 MeV is largely the A particle bind:
energy in the hypernucleus,

The A particle half life is of the order of 1g o
second. The time reguired to traverse a typical mean free
path in liquid hydrogen is considerably greater than the half

life and consequently, a study of the lambda-nucleon (A-N)

interaction from direct collisions is difficult. The nmost



detailed information about the interaction was for some time
deduced only from the binding energies of the hypernuclei.

A compilation of the binding energies of light hyper-
nuclei (A<16) ,measured by the European K Collaboration and
the EFINS-Northwestern Collaboration up to 1966, was made by
Gajewski et a1?/, A more recent experiment in the K col-
laboration3/ yields slightly different results. These cbserved
binding energies are listed in Table 1. The results are af-
fected by an error of about 0.05 MeV,which is not included in
the table, due to uncertainty in the determination of the
emulsion density.

Over the past few years measurements of the A-p cross
section have been made from low energy scattering events fol-
lowing hyperon production in bubble chambers4_8’lo”12/. The
general behaviour of the A-p elastic cross section as function
of CHM energy is shown in Fig. 3. The most detailed results

have been reported by the Maryland group and by the Rehavoth

Heidelberg group..

particle. However, some experiments seem to favour a for-
ward scattering, while the rest have reported an isotropic

angular distribution.



TABLE 1

Experimental A binding energies in MeV

Gajewski et al

K collaboration

compilation new result
Ref. 2 Ref. 3
o 0.20 + 0.12 ~0.08  0.08
iH+ﬂ“4Hé 2.26 + 0.07 2.11 + 0.04
Others 1.86 + 0.01 1.95 + 0.06-
fHe 2.20 + 0.06 * 2.20 + 0.04
zHe 3.08 + 0.03 2.96 + 0.02
iﬁe 4.09 + 0.27 4.25 + 0.21
2 §
1 He 4.67 + 0.28 4.54 + 0.12
el |
AL i 5.46 + 0.12 ; 5.44 + 0.08
:L ; H
b i 1
1 Be i 5.39 + 0.24 ; 4.91 + 0,19
SLi ! 6.72 + 0.08 ? 6.69 + 0.07
iBe 6.67 = 0.16 § 6.86 + 0.09
914 5.27 + 0.18 § 7.97 + 0.25
iBe+ﬂ“4sgs ‘ 6.68 + 0.09 i 6.45 + 0.06
others 6.61 + 0.17 l 6.15 + 0,13
B 10.30 = 0.14 -
iza. 11.26 + 0.18 10.81 + 0.16
L3 10.51 % 0.51 i -

£




Phenomenological potentials have been derived to re-
produce the scattering parameters. However, a serious dis-
crepancy appears when these potentials are applied to the
bound systems, since as yet every potential obtained from
the two-body data overbinds some hypernuclei in .conventional
binding -energy calculations..

In this thesis a number of effects are examined which
help to reduce the discrepancy between the calculated and

bserved binding energies. In order to obtain meaningful A

O

particle binding energies in hypernuclei it is rather
important to have a good, self-consistent description of

the nuclear core. Therefore, it is necessary to examine the
nature of the N-N force as well as the A-N force,and it is
also necessary to examine and reproduce the pertinent
properties of the nuclei relevant to hypernuclei studies.
Thus, in the following chapters, descriptions of the hyper-
nucleus and its core nucleus are presented side by side; and
propriate nuclear structure and a correct

- -

Y 3 z = .- 2 A T~ = = Y S | - - - roe? TTT 3 s P i
choice of a N~N force con the A binding energy will be dis-

In Chapter 2, a general theoretical discussion of the
variational method is given which is applicable to both the
nucleus and the hypernucleus as well, Variational considera-

tions require a deformed representation of states in crder to



adequately describe the 1lp shell hypernuclei and nuclei.
Chapter 3 deals with both the phenomenological A-N and N-N
potentials. The G matrix approach to nuclear matter suggests
a relatively simple density dependent central effective N-N
potential. The phenomenological N-N potential has been taken
as a guide for constructing a A-N potential. The A-N and N-N
potentials are then used, in Chapter 4, to calculate the
properties of the iHe hypernucleus as well as the a particle
core., The size, binding energy and spectrum of 4He are taken
as part of the criteria for determining an N-N force which is
then used in the lp-shell nuclei and hypernuclei calculations.
Several approaches have been employed to calculate the binding
energy of iHe including the effect of a density dependence

in the A-N force. Chapter 5 contains a study of the lp-shell
hypernuclei binding energies. The influence on the A binding
energies of deformation, a A-N space-exchange potential,
density dependence in the N-N and the A-N force are investi-
gated. Chapter 6 investigates some interesting hypernuclear
excited states, in particular the isomeric states of Zﬂﬂ

Some of the electromagnetic radiation transition rates have
been calculated. Chapter 7.is'60ncerned with the
effects of a ANN three-body interaction. Variational calcu-
lations of the A binding energies are performed ﬁsing a

phenomencliogical ANN force for the p-shell hypernuclei, and

5He.

the rigid o model is used in the case of A



CHAPTER 2

THE VARIATIONAL CALCULATION AND THE
"DEFORMED" REPRESENTATION

The nuclear shell model, which was first proposed to
explain certain experimental phenomena such as the magic num-
bers, ground state spins, etc., can be considered as an
approximate representation of the nuclear many-body system.

The Hamiltonian of the A~particle system

A
H= I T, -T_+ I v,.(r..), (2.1)
i i cm i< ij ~13j

where Ti is the kinetic energy of the single particle i,

T . is the kinetic energy of the centre-of-mass,

cm
and V4j(£ij) is the two-body potential depending on the
relative co-ordinates Eij = ri—rj, representing the intrin-

sic energy of the system.
Since no exact solution for more than two interac-

ting bodies exists, approximate solutions have had to be

(£
5
=
‘l-l

eveloped. One of the basic principles in physics is

Q2
©

pace

w

variational principle which states that in a function
¥, the solutions of the physical equation being studied are
some functions ¢y of F for which a functional Q(y¥) is sta-
tionary, i.e. the physical equation is eguivalent to the

variational equation



sQy) = 0. (2.3)

The equation to be solved here is the Schrcedinger

equation
HY = EY (2.3)

We can use a soluble system of Hamiltonian Ho such that
3 - 3
Hy, = E ¥, (2.4)

where y = ¢ _(r;,ry,...,r,) and E <E .- {wn} is a
complete orthonormal set of wave vectors in the Hilbert space

F,. Any solution y of (2.3) can be expressed as

(oo} [ee]
v = I ¢ ¢y, with I |c
Bl 2R n=1

2
L° = 1.

The average energy in the state y is given by

E = <ylH|Y> .

The appropriate variational equation toc be solved is

o]
i
il

0, subject to the condition [ w*wdr = 1,
W  SE = s[/yTHQAT/Sy¥Yarl = 0.
The variation in E is brought about by varying ¢ and wt independen
v > Y+6¥Y and u° -+ u* + &u*
§E = sov'mpdr/syFvdr - suFEpdr rev*par/ (e van ? +

complex conjugate = 0,

which,on ignoring second order terms,gives



SEY* (H-))ydT = 0,
and ' JU* (H-}) 6¥de= 0, (2.5)

where A = Sy*HYde/fy*Pde.
(2.5), when written as (H-A)Yy = 0, is simply equation (2.3).
In order to solve (2.5) we let

sy = I d v_, and
n=l B 'R

(dn + cn)wn.

Substituting the above expression into the integrand

of (2.5) yields
T Idc <y |HE-Alv > = 0.

mn BRm n

Since the dm are arbitrary,

I 8

\_‘. = >
C, <Y |H=A|y > = 0. (2.6)

n=1

The exact solution of (2.6) is impossible in the in-
finite space,and the Ritz variational method consists of
seeking solutions of (2.3) among the functions of a truncated
subspace F' of dimension N. (2.5) is thus approximated by

N
nil cn<¢m[H—x|wn> = 0,

o~
(28]

=L)'

Paast

N
or il Cn(Hmn - Asmn



l if m=n

where H = [y ® Hy_ dr, ¢
mn = n ="' mn 5 otherwise

(2.7) is a set of homogeneous equations which are soluble if
and only if

det !Hmn - A8 |

Consequently the possible values of A can be found by diagconali-
zation of the matrix (Hmn). This is, in fact, the shell model
calculation,where the wm are appropriate product functions of
the spherical harmonic oscillator.

The nucleons, being identical particles, obey the
Pauli exclusion principle, and hence the wave function should
be antisymmetrized with respect to the exchange of any pair
of the co-ordinates. Generally, such a wave function is

eXpressed as a Slater determinant,

A
y =32 (1% 2 7 ¢ (r,) (2.8)
B i=1 %3 *

A

where P is the permutation operator acting on the product wave

function. ¢ is takeén to be the harmonic oscillator single

w

i
particle wave function which is believed to be a good apprexi-

mation to the ‘best' set of single particle wave functicons

given by the Hartree~Fock variational solution. The use of
Hartree~Fock single particle states should result in better
results with a truncated representation.

The shell-model calculation used in this thesis has
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two special features which we shall now describe.

The usual shell model approximation assumes that the
A-n particles filling up the major shells form a core with
the n "valence" particles occupying levels in the unfilled
shell. The conventional prescription is to calculate the
interaction of the "valence" particles and use "experimentally”
determined single particle energies ej. The energy of the
core E_ is taken to be constant and the core is assumed to
remain inert. Thus the expectation energy of a Slater de-

terminant is given by

<Y|E[Y> = E_ + <Oy (25005 (zolvy 10, (2300 (x)

LW

m
l‘.
o

-
i
-

- ¢B(rl}¢0t(rj)> .

In our calculation, the interaction between all pairs of
particles including those inside the core is taken into ac-
count and

[\

<¢a}ri)¢8j(rj)lvijl¢a%(ri;¢f

)

o A A
Viog} FWiagy> = I T T 5

There is no assumption of any single particle energies or
the intrinsic energy of the core.

Since all particles are taken into consideration, the



kB 8

total energy is a function of each of the o, 's,the oscillator

constants of the different orbitals,

E =,E(al,...,aA) s (2.9)

The a's, which are a measure of the nuclear size, are conventional-
ly taken to have the same fixed value. However, we are involved
in a variational calculation and the proper consistent values
for the a's are those which give the lowest value for (2.9),
subject-to the constraint that the single particle states are
orthonormal.

The Hamiltonian of the hypernucleus has the form

A A A
H= T T, - T + T, + Z V.. + I v

, (2.10)
i=1 2 A g 10

iA
where Vi is the lambda-nucleon interaction. The same pro-
cedure as that for the nucleus is employed. However, the A
particle, with mass = 1115.57 MeVand T = 0, does not have
the Pauli principle imposed on it, and it is not necessary
to construct a wave function antisymmetric with the nucleons.

The wave function for the A+l particle system is therefore

A+l 5 & .
A\y ™= ¢A(rA)Z(—1)‘ P ‘ZT- ¢°{“(ri)- (Z,J.l}
P i=1 i

The A particle is assumed to be in a ls state which

can have generally different spatial extent than the ls nucleon,

i.e. oy is generally different from Gy Mathematicalily, thisz
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is equivalent to the mixipg of higher configurations to
¢A if Gy =0y, i.e.
n .

@, as well as the oy is allowed to vary until the minimum
value of the energy is reached.

In the minimization process, it is found that a bettexr
ground state can be achieved by allowing the system to deform.
In order to investigate the effect of deformation, a represen-
tation of states such as the cylindrical harmonic oscillator

(,D:‘brz) is used. wn'm'n (pedr2z)

single particle states wn
14
z z

m,n

satisfies the equation

2
2 2 Mw ”
# 2 Mw 2 @ v . A
Ly Gen g ——— % ] ¥ =E z)
S 2M L o * 32 a j‘Pn‘,vm,z':.é;(-r“d?’z) n,m,nvwn,m,nz(pf¢'
(2.12)
where 92 = xz + Yzl
and i Jo d ()%
wn,m,nz Rn,gm](/“ p}‘m(¢’énz(/§ z)
2nla .2 iml. lml .
= = . T S, ¢ i i i 4 132
a,|m| ‘(nvi.rpg) (Yap)™! a (ap™le (2.13
5 _ = 1 imo
/21 - 5
gz % E -Bz5/2
Z = (wpem——) H B z)e %
nz ﬂkznz ! nz

The energy E {(a;B) = {(2n+§m}+l)u+(nz+g)sjﬁﬁ/mo(Ap§enﬁiw

nyim,n
iR elh,



L3

The oscillator constants o = Mw/#i, B = Mmth de-
termine both the size and the shape of the system. If a=8,
the deformed and the spherical representations are essen-
tially identical (connected by an unitary transformation).

It is found that if the force gives saturation, the
volume V remains almost constant during deformation. If we
assume that the\volume remains constant, then

vV~ l/a/B ,
i.e. avB8 = ¢/V, where ¢ is the proportionality constant.

(V/c)2/3u, B = (V/c)z/3 B, which are dimensionless,

Define A
and AV/B = 1. A deformation paramater d is defined as

d £ vA/B. The state is prolate, spherical, oblate as

d

Aliv

1.

Dependence of the energy on the deformation will now

be consi@ered. The total kinetic energy Tn,m,n is related
zo the total energy by En,m,nz by ‘
ot = %Z-En:mpn_z = [ (2nt|m|+1) o+ (n_+3) 81K /M
1.V 2/3 *2 1 o
= 5(5) T {(2n+|m{+1)A + (n +n) 23. azﬁla%
Minimization of T with respect to the variable A yields

n,m,n
™
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daT
—B02 < (2n+|m|+1) - 2(n2+%)/A3 - 0
which gives

Boin = K2nz+l)/(2n+]m|+l)]l/3 (2.15)

and the corresponding deformation
1/2

doin = [(2n,+1)/(2nt|m{+1)] (2.16)
(2.16) shows that dmin # 1 unless n =m = n, = 0, i.e. the
state [0,0,0] or 2n, = 2n+|m|. PFor other states, it can be

concluded that the kinetic energy favours deformation, and
the orbits will either prolate or oblate depending on the
value of dmin . {Appendix 1).

2 direct matrix element of the two-body potential

V(rzz/Y) can be expressed as

WAL Yapy 004,782y >w (Vap,,6,,7B2, IV (x35/1)Y, Vo1 16,/B2,)
wv (/502,4)2, /E-Zz)pldpldd)ldzl pzdpz d¢2 dzz (2.17)

where vy is the range of the force. We note that a and B8

only appear in the wave functicns in the form /ap, /B
except for the normaiization constant where o and B occur in
, . . l/ / 8
the combination o B which is proportional to -— ,

/V

hence the normalization constant remains constant during the
deformation.

The volume clement can be written as
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—%EI/Ep d(Yap)do d(¥Bz)], and if we define
o
x = Yap, and y = YBz
(2.18)
Ty = Yay, and /By,

(2.17) can be written as

(27 2,0, ,y.) V2%, ,0,,¥ VX, ./ 25 Y. it A, &

<28 p ey e¥yd ¥y WarloeXy 12/ Ypr¥12/ Y51 % 9%,9019Y
xzdx2d¢2dy2 . (2.19)

Since the integrations are over x,¢,y spaces, and azB is a
constant, the only effective dependence of the matrix element

on o and B is in the range parameters y_ and ¥s which have

o
different values. (2.19) is therefore equivalent to maintaining
a spherical basis and employing a non-spherical potential.

For the case of a spherical representation, i.e. o=8,

v
i

o i For a prolate deformation, a>B and Yp>ys>yz;

p s

namely the radial force has a range larger than the spherical
range while the axial force range is smaller.

The matrix element (2.17) can be viewed as proportional
to the overlap integral of two density functions and a varieble

range potential:

¢/l
W
S8 ]

@
o
o

R

- 3.7- r

The behaviour of (2.20) when deformation occurs de-

pends on the nature of the density distribution functiocns
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By and Py+ If both the two particles are in spherical state
e.g. [0,0,0] then whatever overlap is gained by increasing

Yo is compensated by the loss due to the decrease of Vo and
vice versa. Consequently (2.20) is insensitive to the de-
formation of the system.

If one of p is spherical, e.g. y = [0,0,0], while the
other has 52 > 5 (Appendix 1), e.g. the state [0,0,1], then
the increase of the overlap for increasing T is more than
the loss due to the decrease of Yp; and (2.20) increases in
magnitude. However, an increase in P implies B has been
increased, i.e. an oblate deformation occurs. Because the
kinetic energy of such state favours a prolate deformation, an
increase of B would result in increasing the kinetic energy.
Thus potential binding is increased at the cost of increased

tic energy which will overcome the gain in the total binding

]
-
o
0]

energy. An increase of yg decreases the potential energy
of state like {[0,0,1], but, a corresponding decrease in the
kinetic energy just compensates the loss in potential energy.
Similar argument hclds for state having 52 > 22 . Thus it can
be said that the direct matrix elements of this type oppose
deformation favoured by kinetic energy consideration.

If the two orbitals in (2.20) have different charac-

2 2 and the other has 52 > %%, there

ters, i.e. one has z° > p
will be a cancellation of effects and the change due to de-

formation is small.



6 g

The exchange matrix element can be written as
<, 1y, 22 [V /v v, Gy (20>
= <y, (Y, (2) Vi /1R, |0, Qv (2)>

where the Majorana exchange operator Piz is defined by

b4
12

rg

f(;l!;zl = fégzlgl)' (2021)

If we transform r., ¥, into the relative and centre-of-mass

1
-

co-ordinates r, R by

. e a4
I=I =%+ R=3lz + 1,0,

1 il
then pX_ f£(r,r,) = P  £(x,R) = £(-r,R) (2.22)
12 ';-l"vz 12 ~’~ ~’~ ¢ : .
Consider a function f(r+ro,R).
Letting £, = = 2r gives f(r+ro,R) = £(~r,R) , {2.23)

which, according to (2.22) is P ?(r,R).

However f(r+ro,R) can always be expressed as a series having

the form
f(r+ro,R) = £(c,R) + x_-V_ £(x,R) + (roavz)zf(r,R)/Z:w i
ro-V
=e° T £(x,R) . (2.24)

(2.23) and (2.24) together give

=2reV :
P§2 sa T T se 125 g/h v (2
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where P is essentially the relative momentum operator except
that it commutes with T in the exponential.

The exchange matrix element can be taken as a direct
matrix element with the interaction multiplied by an oscil-

2iryio °P o1
latory factor e ar P12/

. An oscillatory factor will
in general reduce the magnitude of the integral in which it
occurs, and this explains why the exchange matrix element is
always less than the direct matrix element. The larger the
relative momentum, the greater the cancellation effect of
the oscillating term will be.

As for effect of deformation, consider again the or-
bital [0,0,1], a decrease in B will result in making
it more prolate, thus decreasing the kinetic energy. The

relative moment and hence the oscillating factor is therefore

reduced leaving a larger exchange matrix element. It is found

h
l-i

rom explicit calculaticn that the effect of the oscillatoxy

F

factor is more important than the range effect discussed
with respect to the direct matrix element. Consequently,
the exchange matrix element favours deformation as does the
kinetic energy.

The variation of the 1ls,1lp matrix elements as a
function of deformation is given by Volkovg/° Examination of
these matrix elements shows that from the energy point of

view, many systems prefer a deformed representation.
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For a non-spherical system, the total angular momentum
J is no longer a good quantum number. However, for comparison
purposes, it is desirable to use a basis in the deformation
calculation which will give the conventional intermediate
coupling results in the limit of zero deformation. This can
be done by using a Slater determinant representation charac-
terized by the total M value (z-component of angular momentum)
of the system. As long as the system has cylindrical symmetry,
the Hamiltonian does not connect states of different M, and
it can be diagonalized separately for each M basis. In
the zero deformation limit the results are identical to those
obtained from a spherical representation, and the appropriate
J for any given level can generally be determined by a simple
counting of the number of degenerate states for the particular

level.



CHAPTER 3

THE LAMBDA-NUCLEON AND THE NUCLECN-NUCLEON POTENTIAL

Since the introduction by Yukawa of thé meson-exchange
process, it has been accepted that the strong interaction
between baryons is generated by the exchange of one or more
mesons. Unlike the nucleon-nucleon case the A-N interaction
involves a two-channel process (Fig. la). Thus, the simplest
single-channel A-N potential includes at least two-pion exchange
(TPE) as shown in Fig. lb. The effect of two-pion exchange
processes is similar to the effect of the exchange of a
single scalar T=0 particle which gives rise to a static at-
tractive central potential with a very strong spin-independent
part. The spin-dependent terms are typically two orders of
magnitude smaller.

K-meson exchange {(OCKE)} (Fig. 1d) also contributes
directly to the A-N potential. The exchange of a T=1/2 par-
ticle leads to an exchange potential which contains the

M X o

factor (-P"P°), where P” and P are the space and spin exchangs

operators respectively. p’ operating on a singlet state

changes its sign but keeps the triplet wave function unaltered,
i.e.

20
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PY%| singlet>= - |singlet>

Pcltriplet>= | triplet> ,
while P* reverses the sign of relative coordinate of states of
odd Ll3/. The OKE contribution can produce a p-state sup-
pression in the A-N force. OKE alsc generates a strong tensor
potential though as yet no experimental verification of this
tensor potential is available.

Multi-meson exchanges should be included as well, but
owing to the short range and the complication of such contri-
butions theoretical progress on this guestion is small.

Instead of treating the multi-meson exchange mechanism
in detail, an alternate approach, the one-boson-exchange (OBE)
model, has been proposed. The underlying argument is that multi-
meson exchange processes are dominated by resonances, and that
such a rescnance can be treated approximately as a single
particle. A complete description of this model was given by

Downs and Phillipsl3/. Using this approximation and SU, sym-

14 . 5 .
/ was able to reproduce the scattering data,

netry, Deloff
though not the correct hypernuclear binding.

Since the dominant attractive contribution to the potenti:
comes from two-pion exchange or its equivalent, the intrinsic ranc
b cf the 'A-N interaction might be expected to be about 1.5 fm.

However ,the calculations o¢f Downs and Phillips suggest that a more

appropriate value of b would be larger than this. Ali et
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gl{s/ have alsc noted that the equality of the single and
triplet scattering parameters requires a longer intrinsic
range. They found that the best fit to the scattering data
(1966) required b to be 2.07 fm, whereas the corresponding
value suggested by Alexander and Karshonls/ for the 1967 data
is about 1.8 fm. An acceptable explanation for the large
intrinsic range is the existence of a hard core, since the
overall intrinsic range b is related to the intrinsic range
Qoof the attractive part by

by % b = 2r,

where T is the hard-core radius. The presence of a hard core

P

with T S 0.3 fm in the A-N potential as well as the tendency
towards a large intrinsic range (b>1.5 fm) have also been
verified by Herndon and Tangl7/. The absence of a bound hyper-
deuteron leads to an upper limit of core radius of about 0.¢
fm.

An interaction with an infinite core can not be used
in a shell model calculation since the matrix elements are
infinite in such cases. A similar situation occurs in the
nucleon-nucleon interaction; and,to overcome this difficulty,

the G matrix has been introducedla/. The matrix G is defined

to be

<k k,|ves|mm >
S c 172 12 T
<xl,xz]Gl11,12>=<klk2[vij|ili2>- by e;J <mlm2|65137m;
' mymy >kKp _
s =
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where vij is the two-body potential, kF the Fermi momentum,

and e the energy denominator defined as

e = e e - -
o
ml 'n2 ll 12

eml, emz, e eiz, are the single particle energies of
particles having momenta Mys Moy il' iz.

An exact solution of (3.1) is possible in principle,
but it is very difficult in practice. Approximation methods
have been developed,such as the Moszkowski and Scott (MS)
separation methodzo/. The interaction Vij is split into
a short and a long range part characterized by a separation
distance d. The long-range part vy of the potential is
well-behaved, while the short-range part, Vg , gives a re-
pulsive contribution G which is called the dispersion term

by MS. Details of the derivation are omitted Here but it can

pe proved that

_ A0 =1 L(0) , L(0) 1 _ 1., ~(0) ..
G, =Gy Sg=CG g *+ G ‘e o) Gg (3.2)

3 . L : - 5 4 O : 21 -~ B s e A e
where Q is the Pauli projection operator, e is the same energy
. : (0
denominator as for free particles of the same momentsa. Gé ) de-

{0) _ s o 00)
s = Vs Vs & Cs

The long range part of the potential is approximated

fined by G is-an approximation to GS.

by a Volkov type force; i.e.,the A-N potential is taken to be

the sum of an attractive and a repulsive Gaussian (Fig. 2).
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This choice of shape is taken for mathematical simplicity
rather than for any physical reason. Dalitz and Downs have
shown that, for low energy interactions, the shape depen-
dence is negligible. "This result will also be verified in this

work. The potential is of the form

e
- 2,.2 o A 4 x
> = (v. e ¥ /rA +V.e R} (wy + my P ) _ (3.3)
NA a
vy + m, = 1

where Va’Vr are the strengths,wA and m, are the Wigner and
Majorana exchange parameters, values of which are adjusted to
give the required p-state suppression.

The separation distance d is momentum-dependent. ro
in (3.3) is, in a way, a measure of this separation;and,
consequently it can be made a function of the.relative mo-
mentum k of the two interacting particles. The functional

form of r_ with respect to k is rather arbitrary. Here it

R
is assumed to be

rp = Tpo (1 * Cpk%), (3.4)
where CA is used as a parameter which has to be determined
in some manner.

Va,Vr,rA,rR are chosen to fit the free particle A-N
parameters at low energies, (Va + Vr) is kept to some small
value in order to make the radial shape similar to a
Moszkowski andAScott type v2 potential; Ty as mentioned above

corresponds to an intrinsic range of 1.7 to 2.1 fm approxi-
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mately. Satisfying these requirements reduces the arbitrary
nature of the potential (2.3).

The scattering lengths a_sa and the effective ranges

t

rosly for the singlet and triplet state were obtained from
the UAP scattering cross-section by use of the fqur—parameter
equation

P

L 5
i

GAP=%;' OgtT Op = “/[kz‘*(‘glrs' + 5 xg 1‘12)2]+31T/[1~:2+(—;'l—t + 3 r k%)
where k is the relative wave number. This relation is valid for
incident A laboratory momenta in the region 12°<PA<320 MeV/c.
The Maryland and Rehavctlh~Heidelberg groups both performed ex-
periments on low energy A-p elastic scattering, and their
results agree with each other gquite well. For higher energies

Ty is k=-dependent and Cy in (2.4) is fixed so as to give the
correct GAP (Fig. 3). However, the scarcity and uncertainty
of the high energy (>30 MeV) data prevents an accurate deter-
mination of CA. Fortunately CA is so small that reasonable
variation of its value has no important effect on the binding

and spectroscopic calculations.

A Majorana space exchange term is necess

n
0
o
=
o
=
b
0
(2
[on
{
)

-
=)
\\

to account for the K meson exchange. Herndon and Tang
have shown in their s-shell hypernuclear binding and Ap
scattering calculations that the potential strength in

odd-parity states should be 60% of that in even states .

Since WA+mA£l, a 40% suppression of the odd L state requires
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the m, = 0.2, whereas a Serber type force has m, = 0.5. Since
there is no theoretical justification for the &alues of m,,

it is treated as a parameter and the dependence of the A-binding
energy on m, shall be studied.

The expected density-dependence in the A-N interaction
should arise primarily from the short range repulsive interac-
tion mentioned previously and f£rom the short range tensor force
which in the case of the nuclear tensor interaction can be
approximated by a density dependent effective central poten-
tial as shown by Kuo and BrownZl/. The density dependence
can also approximate the effect of ANN forces expected from
meson theory.

Gg in (3.2) consists of the Pauli and the spectral
c(0) -1 . (0) () 1 (0)
s s

"
=4
=] e S

e

correction terms and G - lg) G
<
respectively. Since the interaction is very strong at
short range,the particle will most probably be scattered
out of the Fermi sea. The Pauli correction is therefore

egligible, leaving only the spectral correction. There-

o

“w

fore, G is nearly proportional to the difference e - 2y

oy

ut

o

N
(3]

- k)

|
|
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= U(ml) + U(mz) - U(il) E U(iz)

where U(ml), U(mz), U(il),,U(iz) are potential energies of

the particles in the states mys My, il' i2 respectively. As my
m, > kF’ the particles are at the top of the potential well
and U(ml), U(m2) are small. As far as il and i2 are con-
cerned, one of them Say il represents the A particle, which
having no Pauli principle imposed on it, always remains at the
bottom of the well and has a potential energy equai to

the well depth DA;while U{iz), the hole potential energy, is
of the order of the average potential of a nucleon. The

average potential energy of occupied states is given by the

well known relation

v - i 2 -1 2, —~ i
UQSJ = 12p £ x° (x=-1) (X+Z)G15J (xkF)dx (3.5)
where Esz is the averaged diagonal element which is related
to the G matrix by
= . A% (20+1) (27+1). T 3
stJ (k) = 4nm W 5 GZ,Q (k,k) MeV fm~,
and k,, is proportional to pl/ja Integrating (3.5) over x

F

shows that the average potential energy is function of the

density p. Thus it can be concluded that the relation

n
GS vop

which Bethelg/

suggested for N-N case is also applicable
to the A-N force.

Nuclear matter calculations suggest that nnvl is
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probably a reasonable choice. For hypernuclei involving
light nuclei cores, nuclear matter predictions have to be
modified. It is probably appropriate to take n as a para-
meter to be determined by the appropriate criteria.

The other source of the density dependence arises

22/

from the tensor force. Law, Gunye and Bhaduri approximate

the A-N tensor force by an effective central term of the form

c) = - iy 3 - J 2
Weff(HKF) = (‘1{2) = WT(r)SlA(r) .gQ(r,r')WT(r')r dr’
where . 2 _
Q(r,r') = —%— { F(s,S,Ui)jz(kFrs)jz(kFr's)sds and

s,d,Ui are functions of kF“

The potential W is difficult to deal with unless

eff
some assumptions are made. However, the main purpose of
presenting Weff here is to indicate that the tensor force
can be approximated by a k,-dependent effective term. The

Fermi momentum kF is in turn related to the nuclear density

by

A B i = W o~y
Since both the Gg and the tensor force have a range
shorter than the two-pion exchange range, phenomenologically
their effect can be summed up in making V_, the depth of

the short term, density dependent. A form
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Ve = 11 ¢A4 0" (EN)]vro(EN-EA) (3.6)
is used, where CA4 and n are taken as parameters determined
by fitting D,, the binding energy of the A particle in nuclear
matter.

The A binding in nuclear matter is calculated by first
order perturbation, with a force fitting the two-body scat-
tering. If my = CA= CA4 = 0, then DA is found to be 86 Mev,
rather close to the 90 MeV given by Bhaduri, Nogami and Van
Eijkzs/. DA is sensitive to the value of m, (Fig. 4). This
is understandable, since the odd state suppression does reduce
the A-binding considerably.

The generally accepted 'experimental' value of DA is
about 30 MeV. Much work24/ has been done to obtain this value.
However, the accuracy of Dy is subject to question. Recently
Bhaduri et.alzs/ have pointed out that if a three-body force is
included, the argument which leads to DA = 30 MeV is no longer

valid., Their reason is that the expression used to deduce D

AT
2.2
LN 7 RN B = N ™ 2 S 3_’2/3
the measurea Bpe B =iy T oEm——— &
i 2m,xr
N O

is only true for a two=-body interaction.

Bhaduri and Law26/ have deduced D, directly from scat-

A
tering data, and they have found that Dy should be 60 MeV
which doubles the previcus value. If it be the case, then the

value of W, would be less than 0.25 as seen from Fig. 4.

from



30

The density term helps to decrease Dyr and Fig. 4 gives
the relation between DA and CA4 for different m, . It is seen
that Dy decreases more or leés linearly with ah increase of
c

VL However, CA4 has to be rather large to reduce D, to 30 MeV.

A

The nuclear density is approximated by p= Po exp(—arz),
where r is the coordinate of the nucleon. Only the nuclear
density appears in the AN density dependent potential term
since this is implicit in the theoretical arguments given
above.

Spin dependence of the A-N interaction has long been
a subject of investigation. The s-shell hypernuclear binding
indicates a fairly strong spin-dependence because of the ratio
%as/ati N4, The analysis of these light hypernuclei is as
follows.

The experimental value of the volume integrals U, and

. . ; R . 3 5., =
U, are derived from the A binding energies of AH and Ahe. 92

@

and U, ere found to be 660+45 and 92545 MeV fm3 respectively,

ey

e
(ah
)
O
H
r
o)
1]

The volume integrals U_ a singlet and triplet
b=

potential are related to U, and U, by

) 3 .
Uy = 5 Ug T 5 Vo

Jf Us >vUt.
U, = U, + 3U

2
This gives US = 380 MeV £fm~ and U, = 180 MeVv fm3¢ The
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singlet is much stronger than the triplet interaction. How-
ever the scattering lengths are very close to each other for
the singlet and triplet interaction. The potential obtained
from scattering yields a Us only slightly stronger than Ut’
contradicting the result obtained from the binding energy
derivation.

The denéity dependence discussed in this chapter is
able to remove part of the discrepancy without explicitly
introducing spin dependence into the potential obtained from
scattering. Us and Ut are calculated with (A2.11) which
gives U_ = 414.57 MeV fm’, U_ = 402.42 MeV fm> for C,, = 0.0,
When the density term CA493 is added, it is found that
U, = 397.07 MeV fm° and U, = 364.24 MeV fm>, for C,, = 136.0.
The ratio Us/Ut goes from 103% to 109% which indicates that
the density dependent term has made the potential more spin
dependent. However, it should be pointed out that the choice
of the same density dependence £for both the singlet and trip-
let potentials is completely arbitrary.

The existence of isomeric states of XHe provides
another cheék of the spin dependence. Dalitz and Ga127f
have shown that if the difference in the potential matrix
element,-(vé-vt)y is greater than 0.25 MeV, then neither the
7/2+ nor -5/2+ state would be isomeric. Thus existence of

the isomeric state furnishes an upper limit to the difference

between the singlet and triplet potential energy.
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Though the scattering parameters for the singlet
and triplet interaction only differ slightly, the singlet
and triplet potentials are given explicitly in this work.

The AN force used throughout this thesis is of the form

~x2 /2 L mrl/e (1ac,x?)? N
s il =17 > (140 =
7 (r,p) v e + V_ (1+C, 0 le J[wy+m,P]
with
va vr rA rRO WA i mA
singlet ~55 60 l.2 0.7 1
triplet ~-68 73 1.2 0.85 ' 1

For hypernuclear binding calculations, the choice of
& nucleon-nucleon potential is important since'the A-binding
energy is sensitive to the nuclear size, and the excited states
of the hypernuclei are closely related to those of the nucleax
core.

It is well-known that low-energy nhuclear properties are
rather independent of the shape of the potential. It is not
necessary for the N-N force to have the same shape as the A-N
force, but it is convenient, when calculating the A-N and N-N
matrix elements, to use a gaussian form for both potentials.

The Tabakin potential has been employed by Bassichis and

Gal4o/ for calculation of the p-shell hypernuclear binding ensc-

gies. However, as pointed out by the authors, the assumption of the
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calculation is that the variation of the A wave function with
the nuclear mass number A should be negligible, whereas in

the actual calculation the A wave function changes due to the
poor saturation properties of the Tabakin potential. Law,

P -
2/ in their XHe Hartree~Fock calculation

Gunye and Bhaduri2
used both the Yale and Volkov potential. The former potential
is fouﬁd to éive too large a rms radius and too small a
binding energy for the a-particle unless the triplet reduced
matrix element is increased by 30%. The latter potential,
though leading to a correct size and binding energy,does not
saturate nuclear maﬁter.

A criterion in choosing a N-N potential for the hyper-
nuclear core is the fitting of the rms radius and the binding

energy of the nucleus. Furthermore, a N-N force has to

satisfy strictly nuclear criteria such as saturating nuclear

=]
o
¢

ticle and thesingletand triplet scattering phase shifts, etc.

t.
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gives the required size and binding for nuclei from 4He to
12C. A force can always be artificially constructed to pro-
duce the right size while discarding some of the other re-
guired properties. However, one purpose of hypernuclear

studies is to have a better understanding of the dynamical

tter at the correct density, giving the correct.energy per par-



34

relation of the nuclear core to the A particle binding,

and too artificial a N-N potential cannot lead to any meaning-
ful conclusion about the nucleus. Hence a ‘realistic”
effective N-N potential is insisted upon throughout the whole
investigation.

The N-N potential employed is a modification of the two-
Gaussian Volkov type of potential which is made density
dependent by multiplying both the long range attractive and
short range repulsive terms by appropriate factors. The

force used is then of the form

1/3 ~r?/1.5 3 ‘rZ/Ai X G T
vij=[—250(l+c3p e +255(1+C4p je ] [w+mP " +bP " +hP |
r— Ap = 1.247 [1 + 0.15 (k-0.836) %],
and w=0.5, m=0.5 b=0.075, h = =0.325.

In the zero density limit this is an appropriate phase fitting
force, while the density factocrs insure the saturation properties

nuclear matter.

Fh

O

The origin of the density dependence has been discussed

et
e

earlier for the A-N force. Phenomenologically in addition
density term C4p3 a term C:,’p}‘/3 is added to the long range
part which might be attractive or repulsive depending on C3 is
pesitive or negative.

The local density approximation with a small correc-

tion has been found to be valid for large systemslg{lt is

assumed that the density o is a function of the centre-of-mass
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coordinate R alone; i.e. p=p(rl+§2). If p is taken to be a

-z 1)

gaussian distribution then p=p, © where ry and r

~2
are the coordinates of the two nucleons. For light nuclei
this approximation appears to over suppress the potential.
Fcr instance, 4He is almost all surface and taking,p=p(§)
essentially always leads to an over estimate of the local den-
sity because of the central peaking of the density distribution.
The local-particle approximation would seem to be more appro-
priate for these nuclei. In this case p is taken to be the
geometrical mean of the co-ordinates of the individual
particle, p=pP e%a(r12+r22) = p%(rl)p%(rz) = p(#ri +r22) for
the gaussian density distribution. For all but the lightest
nuclei either approximation gives similar results.

The coefficients C3, C4 are adjusted to give the
nuclear matter binding energy and density (B.E., = 16 MeV per
. Since the force is gquite density
dependent (the repulsive part has a term ~ ps), the compres-
sibility in nuclear matter is rather high ~ 400 MeV. Calcu~
lated binding energies and rms radii are compared with the
experimental values in Table 2. The experimental rms radii
are taken from two sources. One is from a 1966 analysis of

i on scattering, proton binding energies and the

2>%

the data
Coulomb energy. An average is taken and the values <r
are obtained by correcting for the centre-of-mass. The other

entries are from the Hofstadler datajo/ deduced from electron



36

TABLE 2

The binding energies and the root mean square (rms)
radii of the p-shell nuclei

= Binding Energies rms radius -
iicleus (in MeV) ' (in £m) -
Experimental Calculated Experimental Experimental Calculated
i
(ref. 29) (ref. 30) <r?5%
He 27.34 25.49  2.32 & 0.28 - 2.165
Spe 29.24 24.94 - - 2.360
6.5 31.99 32.03 2.38 & 0.12 2.78 2,447
’Be - 32.04 - - 2.447
‘L4 39.24 39,11 2.36 + 0.16 2.71 2.53
7.. . .
Se 37.60 39.12 - - 2.53
°Be 56,50 58.15 2.17 + 0.17 - 2.63
o
“ni 41.28 35.74 - - 2.63
b
“¥s 64.75 62.62 2.26 + 0.13 - 2.64
1ig 76.21 70.10  2.24 + 0.11 - 3,66
1
13¢ 92.16 89.70 2.32 + 0.10 2,37 | 2.66
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scattering (1965).
For light p-shell nuclei e.qg. 6Li, 7Li, the rms radii
are overestimated by the force. However, the calculated

<r‘?‘>’é increases with A, whereas the observed values change
only slightly as A increases. A comparison between the two
sets of data indicates that considerable uncertainty still

exists in.the experimental rms radii and it is not too mea-

ningful to try to fit either of the values too exactly.



CHAPTER 4

5

AHe AND ITS CORE

THE BINDING ENERGIES OF

The study of both 4He and iHe is of great interest.
The oa-particle is the lightest closed-shell nucleus and is
closely packed with a rms ardius of about 1.7 fm. iHe is
the hypernucleus with a 4He core and the A binding energy
3.08 £ 0.03 MeV is by far the most accruately determined B,
value.

The four nucleons of 4He spend most of their time
as ls particles. However, if particle-hole excitations are
allowed, it is found that small configuration mixing occurs.
This not only affects the binding energy of the a particle,
but also affects the corresponding A binding énergy. The
calculated BA can be increased by about 20%. Furthermore,
a spectroscopic calculation of excited states can oanly be
accomplished with core excitation. Hence it is important
to extend the basis set wave functions to include higher
shells (e.g. 2sld].

The various effects of the core polarization are
presented in Table 4. The potentials used for this calcu-
lation are force A and C in Table 3. Table 4 lists the
probability that the c-particle is in the 1s, 1p, 2sld

shell. Although the wave function varies with the force
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TABLE 3

The N-N force constants
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2 2 2,.2
-/ -r“/A
V. = [V, (1+C.p3) e A v (14c,pMe Rq [w+mP*+bp%+hp "]
ij A 3 R 4
where A_ = 1.0 [1 + ¢, (k-C,) 2]
R R *1 2
n v C3 C4 b h
A 240 -1.0 -0.1724 1.5122 10,1375 -0.2625
B 2.0 -1.5 -0,1392 1.59%99 0.10625 =0.29375
C 2.0 -2.0 -0.1061 1.6437 0.075 -0.325
ct 2/3 -2.0 0.12731 0.76869 0.075 -0.325
c* 3.0 -2.0 -0.12%2 6.002 0.675 -0.325
D 2.0 -3.0 -0.0324 1.6680 0.0125 -0.3875
v = 10 {w-m) + 8(b+h;
“I’A = —2500 2 VR = 255#0 ' .AA laSy ).R = :— 247
Cl = 0,15 ’ C2 = 0,836 , m 0.5
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used, the 1ls character of the wave function is always more than
90%.The calculated binding energy increases by 0.8+ 1.6 MeV with
the correlated wave function. The rms radius for both un-
correlated and correlated wave function is given. When
higher orbitals are included, a decrease in the rms radius
is obtained. This is not too surprising since mixing of
higher configurations is equivalent to building up a longer
tail in the wave function. However, since the wave function is
normalized, (i.e. the area under the distribution curve is
constant) ,a longer tail results in decreasing the density of
the inner and intermediate perts which reduces the cross-
terms in the expression (a3.4). The diagonal matrix
elements of the tail are too small ©o compensate for the
reduction occurring in the cross-terms. Consequently, 4ge
has a smaller calculated rms radius when the. basis is extended.
Tt should be emphasized that when there is particle-
hole excitation, the centre-cf-mass energy has to be taken
care of, otherwise spurious states would be introduced.
etailed treatment of the centre-of-mass energies is given
in Appendix 4.
One of the criteria for selecting a N-N potential
for light nuclei is the fitting of 4He binding energy and
size in a variational eqguilibrium calculation. The experi-

- 3,

2 w4 205 A : L 3 i she
mental o binding energy 26.2506 MeV is well-established, b

[

£
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TABLE 4

Properties of 4He with the simple and
correlated wave function

F  Wave Probability of a-particle| Binding| rms

o) function in 8 Energy radius

R - :

c is | 1p 2sld (MeV) (£m)
simple 100 0 0 24.63 1,98
Correlated 91.834 | 2.729 5.437 | 25.47 1:.8%
Simple 100 0 0 31.12 1.89
Correlated 92.199 2.544 5.257 | 32,71 1.87
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there is still some disagreement on the rms radius. Two

31/ 32/

recently reported values are 1.71 and 1.68%+0.05 fm

The former value is a f£it tc the charge form factor of 4He,

4

while the latter is from the measurement of ™ - °“He and

o 4

L <y

m <= "He elastic scattering
Theoretical calcuiaticns have been performed to

S/

reproduce the 4He data. The Voclkov force was formulated
tc give the correct 4He size and binding, but it fails to
reproduce both the nuclear matter data and the 4He energy

e |
33,34,35/ have studied the

spectrum. Other investigators
negative parity states, and though some success has been
achieved, none of these authors has tried to calculate a
self-consistent nuclear size.

In order to reproduce the erimental data,; both the

’U

value of v and n in the NN force were allowed to vary (see

Table 3). However, the corresponding CEJ C, must then be
adjusted so as to satisfy the restrictions imposed by

nuclear matter.

The calculated binding energy B(4He) increases as v e~
comes more negative. Fig. 6 shows the variation of the calculatec
binding energy with respect to the rms radius <::2>1/2 as determined
by using different values of v. The relation is almost
iinear, and it appears that it is impossible to obtain a
force giving both the correct size and binding energy

simply by changing v.
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Increasing the density dependence also affects
B(4He) and <r2>%. If n is treated as a parameter, then both
2. %

4 - s 3
<r “> and B( He) decrease as n is increased. However, the

decrease is relatively greater for the binding energy (Table

2%

5); thus it is not possible to reduce <r“>° to its correct
value without underbinding 4He. n is restricted, somewhat
arbitrarily, to be less than or equal to three since the
usually assumed value, obtained from nuclear matter calcu-
lations, is n = %. Since the average density of 4He is
less than the density of nuclear matter, it does not seem
unreasonable to use n as a parameter to be determined by
the properties of 4He.

It should be noted in the second part of Table 5
that the properties of 4I—Ie are relatively insensitive to
changes of n as it is increased from % to 3. This is due
to the fact that C, and C, must be modified as n is changed
in order to give the correct results for nuclear matter.
The density dependence of the N-N fcrce, as copposed to the

-~

exchange dependence v, is self compensating in the sense
that the nuclear matter criteria are enough to virtually
£ix the qualitative results for finite nuclei.

The 4He spectrum is given in Fig. 5.. The 0+ state
at 28.1 MeV excitation energy is high compared to the

2
experimental value‘e/; however, it is still an improvement
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TABLE 5

4

(a) Properties of "He with different exchange dependence

FORCE v B(4He) 0" excitation energy rms radius
A -1.0 25,47 24,51 1.97
B T 28.95 - 26.79 1.92
C ~2:0 32.71 20.16 1.87
D -3.0 42,25 35,07 1.%7
n=2

(b) Properties of 4He with different density dependence

4 : ; .

FORCE n B( He) 0" excitation energy rms radius
c! 2/3 35.72 29.80 1.92
C 2 32.71 29.16 1.87
ct 3 31.45 29.01 1.8%
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on the 40 MeV above the ground state obtained from simple
phase fitting force. The 2~ and 1 states agree pretty
well with the observed levels. The 0 state is rather
high,an explanation for this is that 4He,which is spherical
in its ground state, may have deformed excited states; and
a gain of a few MeV by deformation is very plausible.

Force C (v = -2, n = 3) yields a binding energy*
nearly equal to the correct value. Nevertheless, with this
force the rms radius is still too large. If the experi-
mental value is taken to be 1.71 fm, then the calculated
one is 9% too large. For hypernuclear binding energies such
an error in the rms. value cannot be ignored, and a size
correction is essential to cbtain an absolute value of the
binding energy. Attempts have been made to reduce the
calculated siée; and while a decrease in v leads to an
acceptable radius, it also gives too high a binding energy
and a poor spectrum of excited states in which the O+ would
be & 35 MeV {(Force D in Table 3).

A "realistic" force leading to the correct calculated
size, binding energy and spectrum is hard to obtain. Force
C" appears to be the best in this approach and it will be

used for the nuclear core in the iHe calculation.

e
=

The Coulomb interaction would reduce the calculated energy
to about 29 MeV.
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The theoretically predicted A binding energy in iHe

15,17,23/ compared with the experi-

mental value. Several reasons have been suggested for the

discrepancy. They are:

1)

2)

3)

The existence of a tensor force in the triplet com-

iHe is a spherical system

in which the tensor force should be suppressed;

ponent of the A-N force, since

Isospin suppression,which has two possible origins.

Fig. 1 shows that,after exchanging a pion, the (A—4He)
system goes to the (Z-4He) channel. I has isospin equal
to 1, so in order to have isospin conservation, 4He
should be in one of the T=1 excited states which are at
least 22 MeV about the ground state. If this is treated
by second order perturbation theory, second order energy

<V Vv ><v vy, >

" e. - e,
J J i

i="z A
5~ mA = 77 MeV is the mass difference between

will have an energy denominator ej - e, >m, = m, + 22
MeV, where m
the I and A. The energy denominator for iHe is in-

creased by 28.6% compared to the smallest free interac-
tion energy denominator. Thus, all free energy terms

e
case and a resultant decrease in the second ordexr con-

from 77 MeV < ej -e; 2 99 MeV are excluded for the

tributions could be expected.

Charge symmetry breaking with which the binding energies

4 - 4 . . 2 9 A .
pHe and 2 H indicate the An force is weaker than the Ap
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4) The presence of a ANN three-body force which has been
theoretically calculated to be repulsive, and which
is therefore especially important for ove;bound hyper-
nuclei;

5) The effect of the short range interaction as described
in Chapter 3 of this thesis.

Bhaduri, Loiseau and Nogamisl/ have considered the
three-body force aspect of the problem with some success,
but the uncertainty in the ANN interaction leads to only
gqualitative results at best. Law, Gunye and Bhadurizz/ have
performed Hartree-Fock calculations with the tensor force
and have concluded that the tensor force effect is not
sufficient to reduce the A binding energy to the correct

value. Herndon and Tangl7/ ha

ve taken the charge symmetry
breaking effect into account, but overbinding persists.

As a starting point in these calculations, a central
two-body potential is employed and the A binding energy is
determined in several ways:

1} A simple variational calculation in which an antisym-
metrical wave function, a Slater determinant with all
the nucleons and the A particle in 1ls states is

minimized with respect to the ground state energy by

finding the optimum oscillator constants. The difference
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in the ground state energy between the hypernucleus and
the core gives the A binding energy;

2) A variational and configuration mixing minimization of
the binding energy as described in Chapter 2 is performed,
in which core excitations (1 particle-l1l hole to the 2sld
and 2 particle-2 hole to the lp shell) are allowed;

The rigid o model in which the average A potential

[¥3)
Syt

VA(IA) is the overlap integral of the nucleon single
particle density with the A-N potential;and the A bin-
ding is obtained by solving exactly the Schroedinger

eguation with V'A(rA}° (Appendix 2).

Results of the different calculations are presented
in Table 6. The first row is the result for the A-N po-
tential given in Chapter 3 and the N-N potential C", the
second row is obtained for a N-N potential made up to fit the
4

1
He size (<r2>’é = 1,70 £m), while the last row again uses

the size fitting N-N potential, but a A-N force which fits

¥
Lo 2
(4]

old (1966) A~N scattering data*. For the sake of com-

parison, the size parameter uszed in method 3) is adjusted

2, .2 2 2
v_ =-81.5 e F /1.4 P |

2
=-191.5 ¢ ¥ /1.4
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TABLE 6

iHe obtained from different models
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Scattering| Calculated 5 g Radial
data rms radius BA(AHe) (in MeV) Compressior
fitted of “He Method | Method Method from method
{(in fm) 3 2 3 2
1968 1.86 5.13 5.81 6.06 2%
Gaussian |Yukawa
2.2%
1968 171 6.34 7.01 1,25 127
1966 & (W 5 5.03 5,78 6.01 6,04 3%
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so as to give a rms radius equal to that obtained by method
2). Comparing the first and second rows shows that a ~ 10%
difference in the rms radius causes a changevof 1.20 MeV in
the A binding energy. This gquantity will be used as a size
correction for the other By (iHe) calculation.

Oout of the three methods outlined above, method 2) is
supposed to be the most precise. Method 3) assumes that the
a=-particle remains rigid when the A is added, and the A
binding energy obtained is the largest. This larger B, value
also appears when the rigid o model result is compared with
the Hartree-=Fock calculation22’37/. The A binding energy
from method 1) is ~ 1 MeV less than the others, thus showing
the importance of a correlated wave function for 4He.

The compression of the core due to the addition of
the A is small v~ 2% which indicates that the o core is
almost unchanged, and explainswhy.the.BA from methods 2) and
are close to each other. (Appendix 2).

The last column of Table € is the binding energy

with a ¢

<

r

-off Yukawa potential given by Bhaduri.

o

calculated

'S
(V)

o o
L

/ The Caussian ané Yukawa resul

Nogami and Van Dijki
are very close to each other which indicates that the A

binding is shape independent as pointed out by Herndon and

17/

. o
Tang °

The effects of the warious correcticns meuntioned
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in Chapter 3 are tabulated in Table 7. The odd state sup-
pression is introduced by letting the Majorana exchange
parameter m, be different from zero. This effect is very
small but non-zero, since the ls exchange matrix elements are
nect identical to the direct matrix element owing to that

oy and BA are different from the nucleon a's and B's.
Furthermore, the iHe ground state is found to have small
admixtures of (ls)z(lp)2 nucleon configurations which leads
to smaller exchange matrix elements. Nevertheless, the
suppression ié insignificant.

The coefficient Cp is taken to be 0.0l1,a magnitude
obtained by fitting the "high" energy scattering {(Pig. 3).
The accuracy of CA is subject to guestion, however, since
the decreasevin BA is small v 0.2 MeV, reasonable variation
in.CA deas not echange 5, much.

The reduction due to the density dependence is
rather considerable. The ccefficient CA4' a measure of the
strength of the density dependence, is determined by fitting
the A binding energy in nuclear matter DA*. CAé is sensitive

to the choice of m, . 50% suppression (mA = 0.25) and the

w
DA is calculated by first order perturbation.

k

[N les]

Dy (C a <00 1 Vign 1059,

, and ¢N, ¢A are plane-waves.

rs)

where Vi, is given by (2.

N
3

s~ |



TABLE 7

Effects of momentum dependence, Majorana exchange and
density dependence on the A binding energy

5 .
E& SA Cra BA( He) (in MeV)
0.0 0.0 0.0 5+81
0.0 001 0.0 5.57
0.25 0.01 0.0 5.54
0.50 0.01 57 «5 4.76

0.25 0.01 136.0 3.78



Serber force (mA = 0,.50) are chosen. Fig. 4 shows that a
better result (closer to experimental value) is obtained
for m, = 0.25.

In order to compare these results with the calcula-
tions of other authors, a size correction is necessary. Here
we just use the quantity 1.20 MeV obtained from Table 6 as
a rough estimate for the size correction which is added to
the corresponding BA' For m, = 0.25 and 0.5, BA is 4.98
MeV and 5.96 MeV respectively which is compatible with the
Hartree-Fock calculation with central and tensor forceszz/.

The density depeéendent force does reduce the A
binding energy, but even a factor as large as 136 93 is
not able to reproduce the experimental value. Some other

mechanisms such as isospin suppression, ANN force, etc.

have to be introduced.



CHAPTER 5

THE BINDING ENERGY OF THE P-SHELL HYPERNUCLEIL

The problem of the overbinding of the A particle in iHe
when using central forces that produce experimental cross-
sections also exists for the p-shell hypernuclei. The puxr-
pose of this chapter is to discuss several mechanisms which
reduce the A-binding energies in these hypernuclei.

The first two related mechanisms discussed here are
the effects of the deformation of the nuclei and their
corresponding hypernuclei, and the Majorana exchange component
of the A-N force.

The theoretical consideration of deformation has been
given in Chapter 2, and the effect of deformation on the
nuclear binding energy has been discussed by Volkovg/.
Recently, the possibility of deformation was mentioned in
the hypernuclear Hartree-Fock calculation of Bassichis and

40/

Gal » but no explicit change in the binding energy due th=

deformation effects was given.

Calculations for 7Li, iLi; 8Be, iBe; lOB, IZB and
lzC, l?C are presented as examples. A variational and con-

figuration mixing minimization of the binding energy is

performed. All the possible Slater determinants for a given

54
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nucleus are constructed from a set of single particle wave
functions of a cylindrical harmonic oscillator (Appendix 1)
YBiZi Ny T, (5.1)

T itivzi 8. "k,
i i

where P is one of the Al permutation operators for A particles.

Xm_ and T, are spin and isospin functions, and four
i % . ,
nucleons are’assumed to £ill the N= 0 shell, i.e, the "1s" shell;

and the remaining A-4 nucleons £ill the N = 1, the "1lp" shell,

A
so as to give the smallest total M = I {m +m ); and
A i=1l i
M, = I m, must be appropriate to the nucleus being studied.
- i=1 i '

If all the a's and B's in the states (5.1) are the same, then
the results of matrix diagonalizetion are essentially the
same as a conventional shell model calculation except no
single particle energies are assumed and all particles are
invelved in the Hamiltonian.

The general procedure is to assume that a, = Bv (the
Vv represents n, m, nz}, for a given major shell N, and then
minimize the energy which is cbtained from diagonalization of
a sub-matrix spanned by the most important determinants, by
varying the different a's. These size parameters are then
used in the full matrix diagonalization to give the results
for the 'spherical' representation. A more general calcu-

lation is for o, # Bv and - - minimizes the energy for all

possible oscillator constants (v={0,0,01,[0,0,1},[0,21,01)
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i.e. 3 a's and 3 B's for the nucleus orbitals, and N and BA

for the A particle which is, as in the case of iHe, assumed

to be in a [0,0,0] state. This defines the ‘'deformed' re-

presentation. Thus the variation includes up to 8 parameters

and as high as 158 determinants in the case of lkB. The

effect of varying the different size parameters is essentially

equivalent to mixing a nuﬁber of different major shells in

a Hartree-Fock calculation and characteristically the

variation leads, in deformed nuclei, to an energy gain of

a few MeV as well as a doubling of the mass quadruple moments.
The A binding energies for the different cases are

given in Table 8. 1In all cases it is noted that there is a total

hypernucleus binding energy gain .by allowing the representation

to deform since this represents a more complete variation.

However, the A binding energy decreases for the better

'deformed' representation. The absolute value of the A

binding energies should be taken with caution since the N-N

force does not give the correct nuclear size except in the

7

case of 'Li. It is noted tha L. binding energies are

e
gt
W

always smaller for my, = 0.3 as compared with my = 0.0,

and difference can be as large as 3.36 MeV for ‘ic, Herndon
and Tangl7/ have estimated that m, % 0.2 in their analysis
of the s-shell hypernuclei. It is also found that ABA is
decreased by about 0.3 n 0.4 MeV for m = 0.5 as compared

to my = 0.0.



TABLE 8

Binding energies in MeV for lp shell nuclei, hypernuclei and A particle
in "spherical®” and "deformed" representations

| Spherical representation | Deformed representation
A o (AtL ' A A+l

m, B( X) B(, "X By B("X) B() "X B, AB,

0.0 24.11 32.81 8.70 | 25.80 33.70 7.90 ~-0.80
6He .

0.5 24.11 31.72 7.61 | 25.80 32.97 7.17 -0.44
7 0.0 36.28 47.51 11.23] 39.11 49.61 10.51 -0.73
V. S — =

0.5 36.28 46.23 9.951 39.11 48.76 9.65 ~-0.30

0.0 50.38 64.01 13.63 | 55.59 68.38 12.79 -0.84
83e e -

0.5 50.38 62.18 11.80 ) 55.59 66.99 11.40 -0.40

G.0 60.45 77.33 16.88 | 62.62 78.87 16.25 -0.63
10, .

0.5 60.45 75.15 14.70 | 62.62 76.99 14.37 =033
12 0.0 87.09 108.57 21.48 | 89.70 110.82 21.12 -0.36

C —

0.5 87.09 104.84 17.75 | 89.70 107.46 17.76 +0.01

- . L

LS
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The reasons for these effects are as follows: the

nuclear system deforms primarily in order to minimize its

o
Q

total kinetic energy since the total potential energy is
insensitive to reasonable deformation because of exchange
effects (Chapter 2). However, the A particle is in a state
[0,0,0] where kinetic energy cannot be minimized by defor-
maticn; and if m, = 0.0, the maximum potential energy is
obtained by maximizing the AN wave function overlaps. A
éompromise is reached at the expense of A and nucleon kinetic
energy. The A orbital becomes deformed and the nucleon
orbitals become less deformed. This compromise results in
less A binding energy. The deformation is represented

by %Gthe nuclear quadruple moment in Table 9. A decrease

in QN {in absolute wvalus) is seen when the A is added to

the nucleus.

The effect of deformation on BA is further studied by

}]

llowing various deformations for the gLi hypernucleus (Table

fot

0).

[
“

) is the guadruple moment given by (A3.5). ABA
increases with the nuclear guadruple moment which is a measuxc
of deformation, i.e. the more deformed the nucleus, the larger
the decrease in A binding energy with the deformed represen-
tation.

For m, = 0.5 the total A-N interaction decreases since

a A-N exchange interaction introduces exchange matrix element
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TABLE 9

The quadrupole moments of the nuclear cores and the A particle

Core | Q.. (in barns)

Nucleus No A gresent with A 9y 4in mbj
%te 0.031 0.026 6.4
14 0.129 0.116 15.2
8se 0.250 0.215 23.4

105 | 0.175 0.158 14.4
1o ~0.193 ~0.186 ~14.1

QN.is given-by - (A3.5)

2, - <p, >

QA = 2<Z A

A
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TABLE 10

Effect of deformation on the A binding energy of zLi

QN (without A) QN (with A) ABA {(in MeV)
0.134 ‘ 0.118 0.52
0.129 0.116 0.30
0.117 0.112 0.16

. . e e O,
QN is the gquadrupole moment of L

deformed representation, ABA is the difference in binding

i calculated with a

e

energies calculated from a spherical and a deformed re-

presentation, i.e ABA = B, (spherical) - B, (deformed)
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contributions at the expense of direct matrix contributions
to the potnetial energy and the lp exchange matrix elements
are smaller than the corresponding direct matrix elements.
This leads to decreased binding. However, in this case since
v(r) P¥ can be considered in terms of an equivalent velocity-
dependent potential (2.25), it can be shown that the exchange
matrix elements favour deformation and consequently in the
final compromise, ABA is smaller in magnitude than for

m, = 0.0, This follows since the A orbital can deform with
less loss'of.energy.

Both deformation and Majorana exchange effects reduce
the A-binding energies. However, they alone are unable to
givé the experimental binding. A still further reduction
can be obtained by including density-dependence in both the
N-N potentials and A-N potentials.

An indirect reduction of the A binding energy results
from the use of a 'realistic' phenomenological density
dependent N-N force which has been quite successful in a numbe:
of nuclear structure applicationsél’gz’43’44/.

The main difference between a density independent and
a density dependent N-N force in a hypernuclear calculation
is the difference in the compression of the core by the A

particle. To examine the effect of compression on the bin-

ding energy BA’ the following procedure is adopted. A non-
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density dependent force is chosen to be

2
_ 2 =(z/23) "
(r/1.5)",g2.8 e R 110.2940.71 P*+0.2P%-0.0507]

(5.2)

v.. = [-78.03 e
i3

where AR = 0.76 (1 - 0.496 (k-0.7)2) and k is the relative momentum

4 35 nucleon-

This force is able to reproduce the average ~g and
nucleon scattering data, but saturates nuclear matter at much too
high a density. The binding energy of the nucleus is first
minimized with respect to the oscillator constants. The core
is now kept rigid by retaining the same set of a's and B's,
and the ‘'best' value of the hypernuclear binding energy is
obtained by varying only the N and BA. This binding energy
is compared with that from a complete minimization, i.e. by
allowing variation of all the o's and B's as well as N and
SA. It is noted in Table 11 that when the core is allowed tc de-
form, an increase in the A binding energy appears together
with a compression of the nuclear core. Similar calculations
with a density dependent potential lead to similar but smal-
ler compression and A binding energy gains.

The change in rms radii of the core due to the pre-
sence of the A particle is given in Teble 11l. The radial
compression for the force without density dependence is of
the order of 8% , a magnitude not too far from the result

quoted by Bassichis and Gal for the Tabakin potential. For

a density dependent N-N force, the compression is hindered,


http:0.29+0.71

TABLE 11

Variation in A binding energies to core compression

A+l 5,
Core X BA(A X) <25 A<r2>%
Nucleus |N-N force |B("X) [Core is |Core is AB | Without |Compressed — 3T
rigid compressed A core <r >
” 5,2 33.76 | 13.10: 13.54 0.44 2.20 2.02 8.2%
Li
§ 39.11 | 10.47 10.51 0.04 2.53 2.49 1.6%
8 5.2 50,26 | 15.34 15.68 0.34 2.24 2.14 4.5%
“Be
c” 55.59 | 12.78 12.79 0.01 2.63 2.59 1.52%
12, 5,2 80.83 | 30.49 30.86 0.37 2.28 2.15 5.75%
c" 89.70 | 21.07 21,12 0.05 2.69 2.63 2.20%

2% . .
<¥r®>2jig the rms radius of the nuclear core

A<r2§%is the radial compression due to the addition of the A particle.

£9
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since the N-N potential becomes weaker as the density is
increased and A<r2>%/<rzfﬁis reduced to about 2%. Since
it is less favourable in this case for the A particle to
compress the core in crder to increase the potential over-
lap, there is some reduction of the A binding energy com-
pared to other calculations.

In analogy with the deformation effect, the
compression effect is reduced by an increase of the Majorana
exchange component in the A-N potential. In order to study
the relation between the A binding energy, the density
dependence in the N-N force and the Majorana exchange, the
non-density dependent force (5.3) is modified so as to give
the same radius for 7Li as for the density dependent force.
B, is calculated for both forces. In spite of the equality

A
the calculated rms radii and the use of the same A-N force,

ol

A differs for the two cases. The A binding energy is re-

uced by the use of a density dependent N-N potential.

(1

However the difference in EA for the two different N-N
forces decreases as my incfeases, {Table 12).

The compression effect on the A binding energy can be
understood by the following argument. The direct A-N
potential matrix element is proportional to the overlap inte-
gral which varies roughly as the nuclear density p. Thus for
a force independent of p, the potential energy would favour

a higher density, resulting in the compression of the core
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o

o

Sensitivity of A binding energies and radial compression

TABLE 12
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to variations in Majorana exchange component

N=N force

independent

dependent

independent

dependent

independent

dependent

independent

dependent

2 % i
m, <ré>? A<172>2/<r2>;é BA(iLi) AB,
"with the A present o

0.0 2,38 5.92% 10.88

0.3
0.0 2.49 1.58% 10,51
0.25 2,41 4.,75% 10.31

0.21
0.25 2.491 1.54% 10.10
0.50 2.415 4.52% 9.80

0.15
0.50 2.493 1.47% 9.65
.75 2.420 4,35% 8.22

G.C
0.75 2.494 1.43% 9.22

7

2,
<r®s>% for 'Li = 2.53 £m,

AB is the A binding difference due to
density dependence in N-N force
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so as to increase p even though this leads to some increased
kinetic energy. However, if we include a density term in

the N-N force, an increase in p weakens the nucleon potential
which decreases the potential energy gain as the system is
compressed. The increase in the kinetic energy remains the
same. Hence, the effect of the density dependence in the
N-N force is to reduce the desirability for compression of
the core. The gain in the A binding energy is therefore re-
duced relative to the density independent N-N case.

The exchange matrix element has been shown to be smal-
ler than the direct matrix element and to be velocity depen-
dent. If the velocity dependent oscillatory term were ig-
nored, the relative increase of the A-N matrix element over-
lap would be the same as for the direct matrix element.
However, the kinetic energy {velocity) of the nucleons
increases as the core is - compressed. The oscillatory factor
therefore plays a greater role and reduces the gain due to
overlap. Thus the effect of compression on the total po-

- tential energy is reduced, and the decrease in BA due to
the use of a density dependent N=N force diminishes with
the increase of m .

If a density dependence is included in the A-N

potential, the A binding energy can be reduced significantly.

As mentioned in Chapter 3, a density dependence can be used
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to make the A-N interaction spin dependent. This is because
the range for the repulsive term is different for the singlet
" i _ 0.85 fm for triplet
and the triplet force (rR = 0.7 £m for singlet)°
even if we have the same factor CA4p3 multiplying the radial

Hence,

part of the singlet and triplet component, the weakening of
the interaction is different. To illustrate this effect,

the first order A-pdtential energy in nuclear matter. is given
below:

V(singlet)=26.368 MeV, V(triplet)=26.267 MeV for C,, = 0.0

]
F..l
(=]
o
o

V(singlet)=21.893 MeV, V(tripletj=16.744 MeV for Cra

An attempt is made to reproduce the ratio VS/Vt ob-
tained from the binding energies of the hypernuclei by
allowing density dependence only in the triplet component.

fig. 4 shows that to reach the 'experimental' value of DA'

Cra has to be about 157 which gives V, = 11.21 MeV. Since
Crg = 0 for the singlet interaction, Vs‘remains at 26.368

MeV. The ratic Vt/vs = 42.6% is much closer to that ob-
tained from the A binding energies of iHe and iHa

For finite nuclei we again take iLi as cur example.

For a nucleon in a [0,0,0] state, the first order potential
energies are

Vs([0,0,0iA)=3.654 MeV,Ve([0,0,0]A)=3.602 MeV, CA4 = 0.0
136.0

VS([O,O,OIA)=3.227 MeV,Vt([0,0,0iA)=2.975 MeV, CA4

-

- TN _ 0 single
VS(EOdO,OIA)=3.220 MeV,Vt({0,0,0}A)—2.840 MeV, Cmé.f 157 trip

e

]

et
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for a nucleon in a [0,0,1] state,
VS([O,O;l]A)=2.024 MeV,Vt([0,0,l]A)=2.080 MeV, CA4=0'0

=136.0

0 singlet
157 triplet

VS(EG,O,I)A)=1.569 MEV,Vt([0,0,l]A)=l,532 MeV, C,4

Vs({0,0,l]A)=l.645 MeV,Vt([0,0,l]A)=l.622 MeV, Crg™

It is noted that the effect is more prominent when the
nucleon is in the "1ls" [0,0,0] state. When the nucleon is
in the "lp" [0,0,1] state, the difference VS - Vt is small,
This is because the p-shell nucleons are at the nuclear
surface where the effective density is small, so even with

Cpha = 157 in the triplet potential and CA4 = 0 in the singlet
potential the difference in the corresponding potential energy
is only about v 0.02 MeV. However, there is a decrease in
energy with a density dependent A-N force even if the nucleon is
in the lp state. This is due to the change in the equilibrium
orbital size, due to the effect cf all interactions, rather
than the direct effect of the density weakening of the [0,0,0]4,
[0,0,1]N matrix elements.

The above discussion is entirely based on the dif-
ference in the repulsive range for the singlet and triplet
force. However, the choice is rather arbitrary, and there
is no reason why the repulsive range should be longer in
the triplet component of the A-N interaction. Therefore,

this is just a possible explanation of the spin discrepancy,

and no conclusive remarks can be made concerning the relation
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between the spin dependence and the density dependent force.
Like in the case of iHe, the A binding energy de-
pends upon simultaneous change in my and CA4‘ Table 13 lists
the values of By for different My A size correction should
be made in cases when the rms radii differ from the experi-
mental values. However, it is noted that even without the
size correction, the discrepancy of overbinding still persists.
It is also noted that even if the force is cépable of giving

the value of Dy it is still too strong for finite hypernuclei.



70

TABLE 13

Effect of density dependence on A binding energies

Hypernucleus 'CA4;57°5’mﬂ;O‘5 CA4=136'0’mA=0‘25
fLi 8.68 7.25
iLi | 11.04 9.41
iBe 10.24 9.21

B 12.75 11.45
B 13,78 12.68

- 16.86 15.06



14

CHAPTER 6

THE EXCITED STATES

In spite of the existencé of about fifteen established hy-
pernuclear species; there are hardly any excited states identi-
fied experimentally. An investigation of the energy spectrum
can be a useful tool in the study of the A-N interaction,
2specially with respect tc the spin dependence of the A-N
potential.

The excited states of hypernuclei and the correspon-

16
@
T

ding core nuclei are obtained by comstructing an appropriate
of states and diagonalizing the matrices of the Hamiltonians
given by (2.10) and (2.1) respectively. The "deformed"
representation, defined in a previous chapter, does not lead
to eigen states in which the total angular momentum J is a
good guantum number. In order to have a definite J, J

rojection must be performed on the deformed states which is

g

both difficult and tedious. To avcid the necessity of using
the projection approach, we use the "spherical" represen-
tation described in Chapter 5, i.e. we let a, = B\J for

v = [0,0,0], [0,%1,0] and [0,0,1]. A variational calculation
is performed tc obtain the best value of the ground state

energy. The oscillator constants are now kept fixed for


http:moment.um
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the spectrum calculation. The largest diagonalization occurs
for the Slater determinant representation having the lowest
total value of M, the gz component of the angular momentum.

The ground state must be included in this representation. The
energy level corresponding to this value of M is obtained by
diagonalization. A new representation with M increased by

one is constructed. An energy matrix diagonalization is
performed with the new representation to get the corresponding
spectrum. The process is repeated until the repfesentation

of the highest possible M is used. It is noted that all
states of higher M are degenerate with those of lower M. This
follows since we are now dealing with a spherical represen-
tation, and states of the same J but different M values are
degenerate, i.e. the diagonalization is creating states of

good J. The value of J for a particular state is therefore

equal to the highest value of M for a degenerate set of states.

A sample spectrum is now shown which illustrates the method

o TS e

M=0 M=1 M=2 M=3

o
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for determining the J values the energy eigenvalues.

The energy levels of a hypernucleus depend very
much on the levels of the "core" nucleus. The spin dependence
of the A-N interaction splits single states in the core nucleus
into pairs of states in the hypernucleus. If the singlet
component is stronger than the triplet one, the energy of the
is the angular momentum

state associated with J,.-1/2, where J

N N ‘
value of the corresponding nuclear state, is lower than the
corresponding JN+1/2 state; and the splitting AE between the
pair of states gives a measure of the difference between the
singlet and triplet strength.

As mentioned before, the excitation energies of the
hypernucleus depend sensitively on the spectrum of the core;
and consequently, a calculaticn of the hypernuclear spectrum
and the transition rates between levels is only meaningful
if the N-N force is chosen to give a good fit to the experi-
mental nuclear core spectrum.

- . . : A
°Li and pLt are taken as an example. The excited

aind ole
1
i

1
- . 5 =
3 21

states of "Li are calculated with force C given in Table
The levels are shown in Fig. 7. They agree fairly well
wuth the observed values. The spectrum of ZLi is calculated
with the same N-N force and the A-N potential given in
Chapter 3. It is noted that each of the levels of 6Li splits

into two, which are almost degenerate because the A-N singlet
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and triplet interactions used for the calculation are not
too different. A difference does show up in that the 1/2+
level is slightly lower than the 3/2+ level. If y=-rays
between members of a pair could be detected experimentally,
the Yy-ray energy would give a measure of the spin dependence
of the A-N interaction for the lp-shell hypernuclei. How-
ever as yet no measurement has been made. Difficulty may
result if the levels happen to be too close to each other.
The spectrum of XHe is of interest because it possesses
an isomeric state. The experimental determination of BA(ZHe)
exhibits a double-peak structure with B, = 5.1+0.4 MeV and

52/

%
By = 3.2%t0.4 MeV. Pniewsky and Danysz interpreted the

BA* as an energy associated with an isomeric state of XHe.
This is the only established experimental data for an excited
state of a hypernucleus. The difference in the two binding
energies BA - BA* = 1.9 MeV is about equal to the excitaticn
energy of the 2% level in 6He.

This isomeric state has been studied in detail by
Dalitz and Ga127/,in connection with the AN force spin
dependence, and they found that A = Vg = Vt has to be less
than 0.25 MeV for the isomeric state to exist. The existence
of the isomeric state requires that the electromagnetic transi-
tion rates between the levels (5/2++3/2+, 5/2+->1/2+ or
3/2++1/2+) are smaller than the weak interaction decay rate

of the A particle. Thus XHe decays by either the meson or
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some other weak decay instead of undergoing a y-transition.
The electromagnetic transition probability per
second from a state I to a state F is given by

2T

,g-l<FlH-ntlI>lsz (6.1)

1

T =

where om is the number of final states per unit energy inter-
val, and Hint is the interaction between the particles and

the electromagnetic field. After simplication (6.1) is of

the form,
2 A+1
T (Gh) Snlatl) ko B(o)) (6.2)
Al (2 x+1)11] :
where
B(OA,J,+J.) = (23,+1)"F & |<£|o |i>|2 (6.3)
At M - i E Au : :

M. M

oo

h

Details of the derivation can be founﬁ in most standard texts
on nuclear physics. The main assumption made in the deri-
vation is thét kR<<1l, where R is the nuclear radius and k

is given by |E;-E.| =#uw = ckfi . o in (6.2) stands for
either magnetic or electric multipole transitions and A is
the angular moment of the vy ray emitted. The Olu in (6.3)

is either an electric or magnetic multipole operator. The
electric multipole operator is given by

i " A u¥,
0, g, Xr; grad(r YA )i] (6.4)

. )\ u*-_ -
" =z [eiri Y lgsiuok(A+l)

i A

and the magnetic multipole cperator is given by
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M, =u_ L (g, s;: + =g Rss, L™
AM oy s;~1 A+l zi ~i)-grad (r ¥A )i. (6.5)

u_ is the nuclear magneton, and the g's are the gyromagnetic

o)
ratios.

2 transiticn, the first term of (6.4) is

L5}
55|

or a
simply the gquadrupole moment operator whose matrix elements
are given by (A3.6) , the second term of qu is of the same
order of magntidue as that of MA+1 and is usually ignored.

The operator M for A=1 is given by

Al

(2)
Ml =y (gk m,

o i ! v 9 msk) (6.6)

where I = 5.5856 for a proton, and -3.8263 for a neutron,
géﬂ) = 1 for a proten, and 0.0 for a neutron.
(6.4) is valid for both nuclei and hypernuclei since the A
is a neutral particle which does not interact with the
electric field so as to give rise to y-ray . However the A
particle has a non-zero magnetic moment. Thus it plays a
role in the magnetic multipole transition and (6.6) has to
be modified by adding a term SPE to include the A moment,
where g, = -1.46%0.34 n.m. . 2A+1

; . ~E
It is noted that T is proportional to kzk+l=(—£——£)

i.e. T(E2) varies as (Ei-Ef)5 and T(Ml) varies as fic

(Ei-Ef)3, where Ei and Ef are the energies of the appropriate

initial and final states.
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In order to determine the E2 transition probability of

He it was felt necessary to consider the effects of core

-~

polarization. The representation therefore should include all
2Kw excitations of the core. However, in that case the size
of the matrix to be diagonalized becomes tremendously large;
and due to the incapability of our computer to diagonalize
this matrix, we have limited the excitation to only 2-particle
excitations to the lp shell from the ls shell, and ignored

the excitations to the 2sld shell. The representation now
includes up to 158 states for M = 1/2. The energy matrix is
then diagonalized for different total M representations, as
discussed earlier, in order to obtain the eigen energy states,

and wave functions with definite J. The E2 rates from the

)

xcited states 5/2+ and 3/2+ to the ground'state are then

- , il =] . .
found to be of the order of 10’ sec ~— which is much smaller

than the hypernuclear decay rate of 0.40X1010 sec-l. Fur-

L

(i

thermore, in the above calculation, we have ignored the recoil
of the charged a-particle relative to the centre-of-mass of
ZHe. This recoil amount has an opposite effect compared to
the core excitation as discussed by Dalitz and Ga127/ and
the final result of T(E2) is therefore less than n 107.

Next, we consider the M1 transition. The transition
from the 3/2+ state to the 1/2+ state is caused by the transi-

tion of the iHe core from the J=2 to the J=1 state, and
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T(3/2++1/2+,M1) is found to be 0.896x10° sec Y. The

5/2++3/2+ transition is due to the spin flip of the A par-
ticle. T(5/2++3/2+,M1}) is proportional tc the cube of the
energy difference between the two states, and is found to
be 3.03XI08 sec-l. Hence, with the A-N potential used in
this thesis, i.e. a potential which fits the scattering
data and includes the density dependence, the 5/2+ and 3/2+
states are isomeric, thus leading to no contradiction.be-

tween the experimental scattering data and the experimentally

detected ZHe isomeric state.



- CHAPTER 7

THE THREE BODY ANN FORCE

The AIT coupling should in principle lead to a three-
body ANN force as well as the two-body AN force. The lowest
order ANN potential is generated when two pions emitted by a
A are absorbed by different neighbouring nucleons as shown
in Fig. lc. This pion-exchange potential has central and
strong non-central components such as the tensor force. The
three~body ANN force appears to be repulsive on the basis.

- of meson theory'calculationSSI/.
Effects of the ANN force on the binding energies of

light hypernuclei, such as iHe and iH, have been discussed

in the work of Bhaduri, Louseau and NogamiSl/

and the effects
of a three-body force in p-shell hypernuclei have beén
previocusly examined by Bodmer and MurphyéG/. It has been
pointed out byhkitzneé?/ that for a strong repulsive ANN
force, the binding energies of light hypernuclei can be
accounted for with an almost spin independent two-body po-
tential. Gal48/ has also estimated that it is possible to
obtain the experimental value for BA(iHe) provided that the

singlet and triplet AN forces have the same strength and a

central repulsive three-body force is used. Furthermcre,

~J
(Xe]
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he49/ has also suggested that a strong ANN force can be used
to explain the exceptionally large binding energy difference
for some pairs of p-shell hypernuclei, e.g. the negative
values of BA(iBe) - B (ALl) and B (A C) - B (A B) .
A ANN potential can be written in general as
A

v = I Vo s a 88 oTs s22) 0
ANN i<j=1 Aij ™ A’"1i"" 5

where i,j stand for the two nucleons.
A typical matrix element is given by

BT Ay )Y IR e sy} V

§ 1Ty ,r 16, ¢ l¥ )W (r reeeaXy )
145 A AT EA 1

Aij

&'z, &y Try (7.1)
where ¥y and WB are antisymmetric wave functions of the core
nucleus and ¢A(rA) is the A wave function which, if taken to
be an harmonic osciliatcr wave function as before, will in-
clude the size parameters oy and BA.

Integrating (7.1) over T, gives
R W (r pesesTp ) v (r ,r],a ,BA)W (r peserTy )
i<j

3

d r 3

1 e da rA

which is simply a matrix element of a two-bocdy nucleon-nucleon
potential. Hence the effect of a ANN interaction in a shell
model calculation is equivalent to the addition of a term to

the N=-N force.
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Several general features of this effective two-body

potential Gij are as follows:

1) Since ViNN is repulsive, ;ij will also be repulsive and
therefore, it tends to act against the compression of
nucleus;

2) Besides depending on Tie%y ;ij is also a function of
an and BA. Thus, in a variational calculation this
effective potential has to be determined self-consis-
tently;

3) Even if only the central component of the ANN force is

considered vij is in general non-central.

To give a qgualitative description of the three-body

ANN potential we used a §-function force of the form

Viin

= v3,8(r,-x,)8(x —rj)[(l-m3)+m3Px] (7.2)
where My is a.constant and P* the space exchange operator.
The exchange component is simply an effective term which sums
up the terms like (Ui°0j)(Ti“Tj), (Gi'OA)§Ti°TA) etc. The range
of a ANN force should be between one-pion and two-pion ex-
change range, since the intermediate state energy is me=M, W,
v 260 MeV. Thus the choice cf a §-function force is just a
matter of mathematical convenience and the results obtained
should only be taken as gualitative.

Ah approximate effective one~body potential 53(rA)for

the A particle can be derived from first order perturbation
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theory which gives
Gy(r) = 3£ oty oty
u, (r,) = « k2 ML
3YA i<3 ivi |

3 3
A,i,d ¢i(ri)¢j(rj)d r.d r, (7.3)

since VA,i,3 hgs the form (7.2}, (7.3) can be written as prc-
portional to iz' pi(r) pj(r), where pi,pj are the densities
for particles ig the states ¢i(§i) and ¢j(5j). 53 can there-
fore be approximated by a density dependent interaction.

A variational calculation as described in previous

chapters has been performed with the ANN component in the

hamiltonian, i.e.

H=ZIT, =T, + T (v..+ v,..) +Z v,.. (7.4)
;1 cM i<y i Aij N Ai

In order to compare the effect of the three-body force and
the density dependence in the two-body interaction, the
density dependent effect is eliminated by ‘setting CA4=O.
The A binding energies and the core radii of the hypernuclei
are given in Tdble 14. The chaice of Vag = 5.0 MeV is arbi-
trary and is just chosen to give a really weak ANN potential.
It is noted that the reduction of BA(%+lx) cor-
responding to a relatively weak three-body potential is quite
large. As mentioned earlier, the repulsive ANN force tends
to push the nucleus out, resulting in sméller nucleon com-
pression. This latter effect was also found by Gal in

: . . : . . 48
connection with his Coulomb interaction calculation /.
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The effect of ANN force on A binding energies and rms radii

B(A+1x) rms radii of the nuclear
~ A core when A is present
without with ANN without with ANN
ANN force force ANN force force
iLi 10.51 8.08 2.49 2.492
ise 12.79 10.04 2.59 2.59
125 16.68 13.53 2.60 2.61
e 21.12 17.66 2.63 2.64
v = 5,0 MeV

30
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Effect of ANN force on the A binding energy of iHe is
studied by employing the rigid o mecdel which has been found as
good or better for iHe than the variational calculations we
have used (Chapter 4). The average A potential due to the

three-body force in first order is given by

. B 3 .3
u3(rA) =6 [ VijA(ri,rj,rA)p(ri)p(rj)d rid rj (7.5)

where the factor 6 indicates that there are six possible ANN

bonds. Using force (7.2) we have

= _ 2 4 2
u3(rA) = 24T Vag¥p P (rA) (7.86)

which is added to the one-body potential (A2.9).

In order to reduce BA(iHe) to about its experimental
value, Vaq is taken to be 15.0 MeV which leads to BA(iHe) =
3.497 MeV by the rigid o model. This value of V30 is able to

3C to abeocut 4 MeV and

raeduce the A binding enexrgy of iLi and i
1L MeV respectively. However, owing to that a d§-function is
too rough an approximation to the ANN force and the uncertain-
ty in the strength of the potential to which the A binding
energy is very sensitive,no quantitaﬁive conclusion can really
be given.

Recently two=-channel formalism for the ANN force has

0/ and they have

been studied in detail by Nogami and Satoh
found this formalism rather successful in reproducing the A

binding energy in nuclear matter. Unfortunately our variational
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programme did not have the capability of including the two-
channel formalism. However, it is believed that a variational
calculation with a properly derived ANN force could lead to more
conclusive remarks concerning the effects of the three-body

force.



CHAPTER 8

CONCLUSION

This thesis reports various attempts which have been
made to reduce the A binding energy for hypernuclei from EHe
to i3c. The decrease due to different effects is given in
Table 15. It has been found that a "deformed" representation
and a density dependent N-N potential together are able to
feduce the A-binding of the p~shell hypernuclei by ~ 1.0 MeV.
However, these effects do not play a significant role in iHe,
which has a spherical equilibrium shape and a small core
compression.

The effect of Majcrana exchange, i. e. the relative
p-state suppression is important for hypernuclei with larger 2,e.g.
A C, since the number of relative p interactions increase
rapidly for A>4. The effect on BA(iHe) is insignificant,
i.e. < 1% A binding energy reduction for m, = 0.5. It was
noted that a larger Majorana exchange component in the A-N
force reduces the effect of both deformation and compressionj
and for m, = 0.5 the decrease in the A binding energy due
to these two effects is about half the value for m, = 0.0.
Nevertheless, it should be noted that whenever a N-N force
which allows for high compression, e.g. 10% radial compres-

sion, is used with a spherical representation, a correction

86



TABLE 15

Summary of various effects on A binding energies

Reduction of A binding energy due to

Hypernucleus Defofmation ibensity dependence Space exchange Density dependence
in N-N force component, mA=0.25 in A-N potential
“he 0.0 0.0 | 0.03 1.76
THe 0.8 0.37 0.36 2.05
BrLi 0.73 0.40 0.43 2.55
Be 0.84 0.33 0.70 2.92
liB 0.63 0.32 0.99 3.25
125 0.60 0.31 1.21 3.52
L 0.36 0.32 1.68 4.02

* 3
The numbers in this column are the difference in the A binding energy gain by core
compression when density dependent and density independent N-N force is used.

(v
~
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of 0.5 to 1.0 MeV should be subtracted from the A binding
energies.

The energy dependence of our A-N force, which might
be required to fit A-N high energy scattered data, leads to
an approximate 0.2 MeV decrease in the A binding energy.

This result is highly qualitative due to the lack of high
energy scattering data which could possibly determine the
parameter involved.

Density dependence in the A-N potential would reduce
the A binding energy by a considerable amount. The density
dependent term CA4p3 is rather phenomenological, and there is
no obvious physical reason why it should be the same for both
the ls- and lp-shell nuclei, or for the singlet and triplet
interaction. However, the scarcity of experimental data
does not justify the introcduction of more parameters.

The three-body force has been thought to be more
important for hypernuclei than for nuclei. The reason is
that the ANN interaction has I in the intermediate state as
shown in Fig. lc and the energy difference My = MWy is about
80 MeV, while in the three nucleons case, instead of I we
have the nucleon in excited states giving an energy difference
much larger than 80 MeV. It has been found that a relatively
weak ANN interaction is able to reduce the A binding energy
quite significantly; but unless the strength of the ANN

potential is properly derived thecoretically, the calculation
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including the three-body force can only lead, at best, to
qualitative results.

Apart from the three-body force, the theoretical
A particle overbinding is only partially removed by the
various effects we have investigated. The isospin suppres-
sion discussed in Chapter 4 seems to be a promising mechanism
tc remove the remaining discrepancies. However, very little
basic theoretical work has been done on this effect and
there was not enough time to include an investigation of the
isospin suppression effect in this work.

The importance of the excited states has been men-
tioned repeatedly by Dalit253/. Unfortunately no such state
has been identified (except for the probable iscmeric state
7He). However, our limited study of hyper-

A
nuclear excited states indicates the possibility of further

in the case of

determining the singlet-triplet differences in the A-N
notential. We have also shown, by explicit calculation, that
cur forces are consistent with the existence of a XHe
isomeric excited state.

It is hoped that A-N scattering data for the inter-
mediate and high energy regions can be determined experi-
mentally. This, together with the identification of some
hypernuclear excited states, would be very helpful in the
further study of the A-N interaction and the A particle

energy dilemma.
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APPENDIX 1
THE SINGLE-PARTICLE REPRESENTATION FOR
CYLINDRICAL SYMMETRY
The wave equation for the three-dimension harmonic
oscillator, in cylindrical coordinate is

2 2
13 oy, .1 3%, 8%, 2Mm_ _ 22 22  _
T (Dap) + ;—2";;2-'*' '527-*' (h_z E -a“p B“z“)y =0 (Al.1l)

where the oscillation constants a and B are defined to be

o = Mw/A, B = sz/ﬁ, (Al.2)

where w and w, are the oscillator frequencies.

The solution of (Al.l) has been given by Copley and

Volkov38/ and is of the form
o imd, % m m 2 =250,0 3s ~-%82 \
= Ny €7 7 afp) ! Llnl(ap ) e H (B%2) e (al1.3)
z z
where the normalization constant
i el (‘gs_)*/‘*/ T / 2Gn]
e [
nmnz S T nz {n+ |mpl
2 “n_l
z
3.
H, (B*z) is the Hermite polynomial and n_ can be any integer

z
greater than or equal to zero, and Llﬁl, the associated

Laguerre polynomial, can be expressed as
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n
lel= I ;fhnl (a)p®
n g=0 DS

iml
where the expansion coefficient5(l§’(a) has the value

S

(m[ _ n *i) I (=a)
5(9 (@) = &= s) (Im[+s)ist ’

n is any non-negative integer, and where m, the z-component

of the orbital angular momentum, can be any integer positive
or negative. (Al.3) will also be denoted by [n,m,nz].

The eigenvalue E associated with (Al.3) is

Enmnz = (2n+ |m|+1)¥w + (nz+k)hmz. (Al.4)

Since cnly the absolute valuve of m enters the energy (Al.4)
states for * m are degenerate.

The quantum number N is defined as N = 2n+|m|+nz.
The state [0,0,0] has N = 0, which for a=B is equivalent to
the spherical ls state. The states EO,tl,O].and [0,0,1] all
have N = 1. They are equivalent to the 1lp states when a=3.
Six states have N = 2. The [0,21,1] and [0,+2,0] states are eqgu’l
valent:to ld spherical states for a=8 while appropriate
linear combinations of [1,0,0] and [0,0,2] form the fifth
1d state and the degenerate 2s state. In general, the

cylindrical representation can always be transformed to

spherical representation by letting w = W, and using
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the appropriate unitary transformation. The energy is then

3
E= (2n+ m +nz+§yﬁw

= (N + %yﬁw.

N is just the usual principal qguantum number for a three
dimensional spherical harmonic oscillator. States with the
same N are degenerate in the spherical, a=gf, limit.

It should be noted that even in this "spherical"
representation, the different orbital density distributions
are not the same in all directions (except for the [0,0,0]

orbital) since X% = y° = % 52 = %(2n+]mi+1)/a and

2% = (nz+%}/8. The values X,y,z depend on the gquantum
numbers as well as the oscillatcr constants.

In Chapter 2 it is shown that a minimization of the
kinetic energy generally favours a deformed representation

and that the deformation d correspending to the minimum

kinetic energy is
2n_+1
Ao m B
min 2a+|m|+L °

Each single particle state favours a prolate, spherical or
; . > g
oblate representation according to whether 4 = 1. Relation

between n,m,n,, dmin and Tnmnz, a dimensionless quantity,

defined to be
t = (@n+|m|+1)3 220 +nt/3, (Al.4)

nmn
Z
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is shown below. Comparison of (Al.4) and (2.14),(2.15) shows

that 1 is a measure of the minimized expectation value of
nma,
the kinetic energy.

N n [m] n, a .. Tnmnz
0 0 0 0 1 1

1 0 | £1] 0 1/VZ Vg
1 0 0 1 V3 W
2 1 0 0 1/V/3 %)
2 0 | 2| 0 1/V/3 Wa
2 0 | +1| 1 V372 viz
2 0 0 2 V5 25

Kinetic energy minimization alone requires [0,0,0]
to remain spherical, while [0,0,1] and [0,%1,0] lead to
prolate and oblate representaticn deformation respectiveiyg
Kinetic energy minimization for states with N=2 also lead

to different representation deformations as shown above.
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APPENDIX 2
THE RIGID o MODEL

The rigid o model was first suggested by Dalitz and
Downs45{The assumption is that the 4He core is not affected
by the addition of the A particle. It is noted that the
rigid o model can be derived from the variational principle.

The binding energy of the 5-body system iHe is ob-
tained by minimization of (W(iHe)lHI?(iHe)> with the intrinsic

Hamiltonian H given by

4 4 4
H= I T, +T -T + % V.. (r;=x.) + Z (r. - T
j=1 * A CM i<j=1 13 (~1 ~3) i=l(~1 ~A)
4 1 2 4
= b 7] ] - D -
M T S 1 A UL IR 2
4
+ I V. (Tt ) (a2.1)
i=1 ik ‘=i <A
4 4
where Pa = I P, is the total momentum of "He, PA is the
~ i=1 ~ =

A momentum, and m, m, are the nucleon and A mass respec-

tively. To generate the rigid a equation, we write H as

4 P2 4
H = H( He) + e + iil ViA(fi - £A) ' (a2.2)

where H(4He),'the Hamiltonian of 4He is equal to
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2 4 Pa?‘ 4
H(He) = I T, - - I wv.. (r.-r.) . (A2.3)
g1 4 ZTERT T 450743 i S)

P is defined by

~

P 1

P = 4m+mA (4m§ = Ea)

which is the moment conjugate to the coordinate x, defined
below, and u is the reduced mass of the A particle

= 4mmA/(4m+mA).

A new coordinate system is introduced as shown in the
) : %
diagram below, where c is the centre-of-mass of the He and
; o S 4 4 i
X,, X,;X, are the internal coordinates of He. H( He) is
~ ~ e ~ o

therefore only a function of x,, x, and X3
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Furthermore the A-N interaction can be written as

Vipa ity = vy, (x,-85),

-~

where £ is some linear combination of X0 %, and Xqe
~l ~ -~ ~

The trial wave function is taken to be

Y= x(x,%,,%5)0,(x,) (A2.4)
and
' : 4 1P2 : 2
<Y|H|¥> = E("He) + <b, (x,) 57 + 2 IIXtgy 0% 0%3) |
- 3' 3 3 :
Vip(X,—gy) d7x,d7x,87%4 00, (x,)> MB2.5)
where E(4He) = <x|H(4He)[x> is the intrinsic energy of the

o core.

{a2.5) can be written as

_ 4 ol
<¥|H|¥> = E("He) + <¢,(x,) |5= +

which being substituted into (A2.6) leads to
2

| 4 (P
<¥iH|¥>=E("He) + <¢A(§4)|§;

, vl o
+ J o(R) v ,(x,-R)d R|¢A(§4)>. (a2.7)
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The variational principle requires

S<¥|H|Y> = 0

2
4 4 PP 4+ - 3 =
i.e. § E( He) + 6<¢A;EE i Jp(g)viA(§4 R)d RI¢A> =0 .

However, because 4He is assumed to be rigid, 6E(4He) 0,
2

% al P L} 3 = o

and 6<¢A'5§ + J piR) v, (x,-RIA"R[¢,> = 0 with

the condition <¢AI¢A> = 1 leads to the rigid o equation

p2

[ﬁ"“' VA(X4)3¢A = EA¢A (A2-8)
where the one-body potential vﬁ(x4) is given by

vpleg) = 0(R) vy (xmRI&R.

Substituting (22.8) into (22.7) gives

o 5 Y
E, = E(AHe) E( He),

- B, is therefore the A binding energy in iHe.

although the rigid o model assumes the core remains
unchanged, the fundamental derivation is variational in

nre

o

na’

. The variation is concentrated on ¢A and if the core

o]

O

.
iaee

};J
3

{

does remain rigid the value for EA should be good. The
method also has the virtue that an experimental density p (R)
can be used in the calculation. Any improvement in the
method, i.e. allowing additiconal variation in the 4He wave
function, should increase the A particle binding energy and
therefore -EA represents a lower bound for the A particle

binding energy.
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The one-body potential v for the two-body A-N force
(3.3) can be determined as follows.

The nuclear density is assumed to be Gaussian

2
plr) = Ne™%F
where N the normalization constant is equal to (a/ﬂ)3/2. o is
related to the rms radius with respect to the CM by
<r2> = [ rzp d3r
which gives <r2> -5
20 °
For a central potential of the form
. 2 ~k_r2
v =V_ e kAr + V_ e R
iA a r
v, can be solved analytically to give
§ 2 2
3/2 -akApAr 3/2 -%kRpRr
vA(r) = VapA e + V.Pg e (a2.9)
where Pa = . S and p_. = o
' A~ o+0.5k, R a+5.5kR :
i % Vi is density dependent and has the form
—kArz , n _erZ
vip =V, e + V{1 +Cp,l4p)T)e ’
then the term
2
% (3n+3) _ 12 =%k_(r-r')
Cpg 4 & v, f e (HRET TRE ST a3t (a2.10)

should be added to (az2.9).
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The volume integral can be obtained by integrating

VA(rA) over the whole volume. It is equal to

= a vr
(s + . 377
K R

3/2

u = (27) (A2.11)

A is density-dependence, a term given by integrating

(A2.10) over the volume should be added.

and if wv.
1

McMASTER UNIVERSITY LIBRARY.
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APPENDIX 3

NUCLEAR SIZE AND MOMENTS

The rms radius

The rms radius ro with respect to the nuclear centre-
of-mass is defined by

r? = k4| 1§ r?- 1y ¥> (A3.1)

e

oo

1

where Y = I ca]a> with |a> as the determinantal wave function
a

of the A-particle system. (A3.l1) can be written as the appro-

priate sum of one-body and two-body matrix elements

2 1 & T i i, 2
: o = “(l = =) bX L £ e c <alr' !B)
o A" 4148 o« B i
] -~ A 2 3 i .
- :E‘..o-: i - - i | - 1 i .
B, L LIILcTc” g’ ci<ablz, ryfys-ay>.
i¥j=l o 8 v § ‘

For 4He, the second term will vanish identically by
parity selection rules, if 2 particle - 2 hole excitations

into the 1lp shell are ignored. For this case

rmz & {1 = %J<r2> (a3.2)
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; = i i 2
where €S> =2 I e, < <a|r€|B8> . (A3.3)

(A3.3) is what is usually quoted as the experimental value,
f.e. <t = 1.71 fn.

For a shell model or Hartree-Fock calculation, the
value of <r2> should be fitted. For the rigid o model,
where the nucleon density function is chosen with respect to
the centre-of-mass of the a-particle, T should be used instead
of <r2>%.

In terms of the single particle wave function ¢,

2 1
<r"> = =¥ C
& o}

+
P
s
Q

Q
Q
w
A
Q
R
2}

I
B
~

o)
R
A
O~
™)
o
\V4

+ 2 % (-1) <¢g 126, > (33.4)

where (-1) is a phase factor determined by the position

of Bz,am in the determinantal wave function.

The guadruple moment

We define the static quadruple moment <Q> to be
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<Q> = <a

Il ™M
w
N
I
a}

Z
<Q> = c I <o

z o
a j=1 J 3

n
B, o
2300 F oy j3a” - =g, > (a3.5)
m

The quadruplie moment for transition probability be-

tween different states Wi and Wf where

¥, =% ¢  le> , ¥.=1Ic, |8> ,
a B
is determined by the matrix element
<v_lgl¥,> =32 L ¢ (2 < |, .2 2
1%} ¢ - ;
£ i a g % By 7;'3z r%]¢,>

(a3.6)
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APPENDIX 4

THE CENTRE-OF-MASS CORRECTION

The many body wave function Ti(rl,r rA) can be

~2"..
written as wi(cl,cz,...tA_l,R), where the r's are appropriate
relative coordinates and R = % Z ri is the CM coordinate.
~ L

If an appropriate set of harmonic oscillator single
particle wave functions is used as basis function , it is

always possible to perform an exact separation of the form

®
vigyr8areerta ) Oy (R)

where GN is a harmonic oscillator function and @v represents
o o . ) . St 39/

an intrinsic state of the system. Elliot and. Skryme have
shown that for shell model states with closed shells and
valence particles in only one major shell, N = n =1, 2=0,
n=0 {ls ground state) i.e. the CM state is always in the

lowest possible state. However, if there are particle hole

excitations, then we can, after diagonalization get

Qvl@ls’ ¢v2@18, e QvNels' @vlezs and possible other

states of the form @v ®2s etc. The latter states, e.g.
3

@V @25 are spurious and would show up as

1
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either or
Ev3 évl(aels-bels
Qv e1s ¢v2 @ls
I T, B 4
¥
o)
vy ®1g @vz 928 a? + p% =
E\) é\) (a@ls+b®15)
1 4
|
if TCM is subtracted from 1 £ TCN is not subtracted from
£y
Hamiltonian Hamiltonian

The method for eliminating the spurious state is out-
lined below. The CM hamiltonian has the form HCM=TCM+%Mw2R2,
where M is the mass of the whole system. Hop o multiplied by
a relatively large constant factor c, is added to the
intrinsic hamiltonian of the system. The hamiltonian now

can be written as

: 1 2.2

= - m v T = Maw

H i Ti Tem * ii% i3 + c {“CM + 5 Mw“R"},
v

The energies associated with CH,, will be c(N+%}ﬁ&,
which is to be added to the intrinsic energy. if ¢ is large
enough, say c = 50, the energy levels corresponding to
different N states of the CM will be distinctly separated

when the total representation is diagonalized, i.e.
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1s
1ls

¥
¥y

E +cE o) C]
v

1 1ls

The spurious states can be discarded and the expectation
value <Y§cHCMiY> can be calculated and subtracted from the
energy spectrum of the non spurious spectrum so as to bring
them to the correct energies. By using the great accuracy
inherent in modern computers, the gap between spuricus and
non-spuricus states can be made very large and the separation

beccmes very pure.
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APPENDIX 5

THE THREE-BODY ANN POTENTIAL MATRIX ELEMENTS

The ANN force is assumed to have the form

A

e B Vau B, T 2]
ANN i<3 AijM™A'™=i'"5

\Y

A
—izj Vao s(rA _i)s(rA rj)(l My +m,P ) (A5.1)
where 1,j are the two nucleons involved, P* is the space

exchange operator.

The general matrix element is written as

<Op Yeor | Vi | 0ar ¥igy?

where ¢A is the A wave function, and W{a},”W{B}tare the
determinental wave functions given by (2.8).
The diagonal matrix elements have {a} = {8} and

therefore the diagonal matrix element is given by

v, | %3 | 4 Vi
<¢A !{a} L Vann 1p “lal}

A A
1 b * P i
== [ J{Z(=1)"P 7 ¢  {xr.) ¢,(r,)) V (z(-1)"Pp 7 ¢, (r.)¢,(xr,)
Al P j=1 @3 17 TATTA ANN "5 j=1 93 LTTATA
a3r a’c. a3
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A
= Jeef mey (x) o) v GEDR R Toe ()
: : ~ R

¢A(rA))d3rl . d3rA d3rA
E o0t 6 e 0 e
= i X r v
i<i=1 .ai 4 aj 3 A A 30

G(rA-ri)S(rA-rj)(l-m3+m3 Px)(¢a.(ri) o (rj)

i j

2 3 3
o, (xp) - ¢aj(ri) ¢“i(rj) ¢y (x,))d7r, d r; d’r,
= Vi, ? I ¢ 2(r ) ¢ 2(: ) ¢2(r Y {1-6_,(m_ -m_ )

3 i<i=1 ai A aj A A A K si sj

3
6(mt_-mt‘))é z) (a5.2)
i 73

where Mg s Mg and m, , W, are z-components of the spin and
i 3 i 3 1
, . . . x =0
isospin of = =7 ——
ospin of the i and j nucleons, and §(x) 0, otherwise
m = C = - - :—3 3 =
The factor 1 GK(ms_ ms.)ﬁ(mt. mt;) 0; if m, =mg and
3. J i 3 i 3
m, =m, . However, when the two nucleons are in the same

s o
-

sp;tiai orbital, then the factor is always one.
Different off-diagonal matrix elements
have to be treated separately.
For case 1 all the states in {a} are the same as those

of {B}, but A' # A . Since the A particle is assumed to be in
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the state [0,0,0], and it has T=0, the only possibility that

A # A' is when the z-component of the spin of the two states

are different, i.e. m # m . In this case
Sh Spe

<Oy Proy [ Viane | ¢pr ®;43> = 0, since we have assumed that
the ANN force is spin dependent.
=m and all the states in {a} and

s s
A At
{B} match except for one state in each set. Let the dif-

For case 2 m

]
ferent state in each set be o, and oy respectively. The

matrix element then has the form

*
Vao § JI5 ¢, (xy) ¢a*i (r;) %-; (r4) (L-mg+m, P*)

, - v - ‘ 3 3
(C.DA(—-A) 4)0,'1(1'1) ¢aj(rji ¢A(A-A) ¢0',3 (rl) ¢al=(rj))d rAd

O . ot

= vy I/ ¢A2(rA) 6, % (r)) 6y . (x)) 6, 2(r,) b lm . ~m_ )
N 1 1. i |
o e 1 1

" 3
Jid = GK(mS -m ) GK(mt ~m, ylda rA.(A5.3)

; Gis " : & ; ; (e 10
Sg i e | | e | 3

-~ .‘.n s
Ox\m,. —my

For case 3 m  =m_ and all the states in {a} and
A A
{8} match except for two states in each set which we desig-

]
nate as oy # oy and Bi # B; . This class of matrix element

can be written as

15 ) txy) g (ry) ¢a;(rj)(l~m3+m3Px)[¢A(rA) b, 1 (23)

3

r.d r
y:

J
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L VA I I N M e

¢
j i ]

_ 2 * *

Id(ms .-m ') GK(mS -m ) GK(mt -m )

s s, t
oy N aj aj oy ai
§_(m, -m )y = §{m_. ~-m ) 6_(m_ -m )
R ta. ta! P Sa! K Sar Sa
J i 1 J
5K(mt -m, ,) 6K(mt '--mt )]l . (A5.4)
(o ol o .
i 3 i 3

If there are more than two states different from one
another in the sets {a} and {B}, then the matrix element
vanishes, since VANN' even though it is a three-body poten-

tial, contains only the two nucleon coordinates ry and rj.
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FIGURE CAPTIONS

One-pion exchange graphs for the AN system,
leading to the process AN -+ IN

Two-pion-exchange giving the lowest order
contribution to the AN two-body potential

Two-pion-exchange graph giving rise to a ANN
three-body force

K-meson-exchange graph leading to an exchange
potential

n
The radial shape of the N-N potential for C
in Table 3; the difference between the two
graphs showing the effect of the density de-
pendence. A two-gaussian A-N potential is
of the same shape but different strength and
range. '

The total elastic cross=—-seection o is plot-
ted as a function of the CM kinetic energy.
The theoretical curves are calculated with

A-N potential given in Chapter 3 with different
value of CA’

The calculated well depth D) and A binding
energy B (EHe) are plotted as a function of

Cpg for different Majorana exchange component
in the A-N potential. Values of Bj (fHe) for
my = 0.25 and my = 0.5 are almost identical,
and the difference of 0.02 MeV cannot be shown
distinctly in the graph.

% comparison cf the exp
He energy spectrunm, th
using force C in Table 3.

tal and calculated
r is obtained by

The 4He binding energy is plotted as a function
of its rms radius. The binding energy is ob-
tained by a variational calculation with dif-
ferent "realistic™" N-N forces which yield
different equilibrium size.

Energy spectra of ~Li and ZLi. Levels of energy
higher than -26.5 MeV are not shown.
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