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INTRODUCTION

Ever since the early days, matroid theory has had

two unreconciled aspects. Van der Waerden in Moderne Algebra [42]

abstracted the common features of linear and algebraic dependence,
giving axioms for what would now be called a finitary matroid,

not necessarily finite. 1In his fundamental paper [43], Whitney,
considering only the finite case, introduced the concept of

matroid duality (along with many other of the basic ideas of the
subject) - this was by abstracting from the duality of planar
graphs. Until recently, work on matroids has followed either the
former path - infinite (finitary) matroids allowed but no duality,
or the latter - finite matroids only and hence duality (in
potential at least). The truth of the matter is that there does
not exist a completely adequate theory of duality for the class of
finitary matroids and it was this fact which provided the initial
motivation for considering the possibility of dropping the require-
ment that matroidal closure operators be finitary, the hope being
that thereby a class of closure operators would be obtained which
both admitted duality and contained the class of finitary matroids

as a subclass.

The question then arose as to which axioms to take. In
the case of finitary matroids one has a closure operator f on

a set E satisfying the exchange condition:



p in £(S u{q}), p not in £(S) implies q in
f(S u{p}), together with the finitary condition:
P in £(S) implies p in f£(T) for some finite subset
T of S. The simple omission of the finitary condition, so that
only exchange is retained, gives too wide a class of closure operators:

every T topological closure operator is included for example;

1
and, more to the point, no satisfactory duality theory is obtained.
Now the finitary and exchange conditions together have as a consequence
the following minimality condition:

X c f(S u Y) dimplies that there exists a minimal subset

Z of Y such that X ¢ f(S u 2)
(see results (84) and (35) below). It therefore seemed reasonable
to take as axioms the exchange condition together with this minimality
condition and on this basis a satisfactory duality was obtained
which behaved for the closure operators considered exactly as does
Whitney's original duality for finite matroids, the latter indeed
being a special case of the former. It was found subsequently
that the closure operators satisfying the exchange and minimality
conditions could be described in a somewhat more simple way - they
are precisely the B-matroidal closure operators as defined in [20].
(The equivalence of these two approaches to B-matroidal closure
operators is established by (35), in the more general Boolean

setting of this thesis.)
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At the same time, this work did not really get to the
essence of matroid duality. Now what one wants in mathematics,
one postulates; it was found that the most convenient way to
postulate matroid duality was to use the ''derived set'" operator
or derivative d corresponding to a given closure operator £
on the set E, where d(X) = {p; p € £(X\{p})} for all X ¢ E.
Then f(X) = X u d(X) for all X c E and duality is obtained
by defining d*(X) = E\d(E\ X) for all X c E and requiring that
g, where g(X) = X u d*(X) for all X c E, be a closure operator
on E also. The closure operators f for wﬁich this happens
are then, in a very natural sense, the most general for which a
precise duality holds-such that one has closure operators both
sides of the duality, and they are the closure operators which are

termed matroidal in [20].

It turns out that the class of all matroidal closure
operators is considerably more extensive than the class of
B-matroidal clsoure operators; in particular, fascinatingly,
the former class has a non-trivial intersection with the class of
topological closure operators (a preliminary study of this inter-
section is made in Chapter 4 and in the first part of Appendix 3).
In the course of a literature search, it was found that a concept
of duality, essentially equivalent to that expressed above in

terms of derivatives, had been set out by Sierpinski in 1945 [38];
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however, he was not concerned with closure operators but only
with preclosures = expansive functions (drop the idempotency
requirement). The definition of matroids and B-matroids (on
sets), together with the theorem that the dual of a B-matroid
is again a B-matroid (so that B-matroids are matroids), was
written up in [20] (in which a third, intermediate, and less
interesting class of matroids, the so-called C-matroids, was

also discussed).

By this time, it had become apparent that frequently one
was dealing, not with the elements of the set E so much, but
rather with its suBsets - that is, one was doing "atomless mathe-
matics" wherein, instead of working with a set E, one works with
a Boolean algebra A, often taken to be complete, treating it
as if it was the power set of E. For example: many (all?) of the
things done in straight Boolean algebra are analogues of purely
set-theoretical things (a good instance is Theorem 22.6 in
Sikorski's book [39]); measure theory and probability, as in
the books of Carathéodory [7] and Kappos [25]; Biichi's paper [6]
and in particular his Boolean version of relations (''die Paarung
von Gefligen'); and general topology done the Boolean way as in the
books of Nobeling [32] and Rasiowa-Sikorski [33] (see Chapter III).
Blichi's eloquent plea for atomless mathematics (see [6]; quoted
by Linton [30]) adds to the desirability of developing an atomless

matroid theory (based on that for sets, as sketched above); such

viii



a theory is the subject matter of the present thesis.

The first thing to check is the notion of derivative
for a closure operator on a Boolean algebra and here the formulae
of Hammer ([17], p. 32) and N&beling ([32], p. 66) provide an
immediate solution - in the case of a complete algebra. Simple
examples show that a satisfactcry notion of derivative does not
exist for all closure operators on an incomplete algebra and for
this reason it was decided to base everything at this stage on
a complete Boolean algebra (= CBA) (and after all, powéf séts are
CBA's, and analysts work with the reals in preference to the
rationals).

In Chapter 1, various properties of operators on CBA's
and their derivatives are obtained (noteworthy being the curious
identity for derivatives of closure operators implicit in (6)).
The concept of an analytic closure operator, defined in the second
section of the chapter, is basic to the subsequent theory and is
of independent interest in that all closure operators on atomic
CBA's are analytic - but not all closure operators on arbitrary
CBA's. Thus, given some condition which is known to hold for
closure operators on atomic CBA's but which fails to hold for
closure operators on CBA's in general, we may still hope to extend
it to all analytic closure operators. The discussion of separators
in Section 4 of Chapter 1, whilst elementary, is more thorough

than is customary even in the atomic case.
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Certain exchange conditions, known to hold for matroidal
closure operators in the finitary case, are studied in Chapter 2
and some of their consequences are given. Although the concept
of a matroidal closure operator is only defined in the next cﬁapter,
most of Chapter 2 is closely related to this concept and many of
the results of Chapter 2 are later applied to matroidal closure
operators. In (24) it is shown that the dual of the condition
given in (6) is equivalent to the exchange condition (super-E%)

most characteristic of matroidal closure operators. ;

General matroidal closure operators are defined in
Chapter 3 - though the main results of the chapter concern the
concept of a B-matroidal closure operator. In particular, it
is shown that the duality theorem for B-matroidal closure operators
together with their characterization by the exchange and minimality
conditions (mentioned above for the atomic case), extend very
satisfactorily to the general CBA situation ((34) and (35)).

The discussion of topological closure operators on CBA's
given in Chapter 4 perforce deals with a number of generalities
not especially relevant to those topological closure operators
which are also matroidal. The main results which do concern the
latter type of closure operator specifically are: (49), in which

two very simple characterizations of T, matroidal topological

1

closure operators are given; (56), which, together with the

subsequent discussion, describes completely the closure operators



which are both topological and B-matroidal; and the results in

the fourth section of the chapter, where a study (albeit rudimentary)
is made of the interesting closure operators, necessarily both
matroidal and topological, whose derivatives are Boolean endo-

morphisms of the given CBA - we call these Hewitt-Katetov—-closure

operators after Hewitt and Katétov who, independently, discovered

them (see [19] and [26]).

To illustrate how derivatives etc. come out in a particular
case, a fairly thorough analysis of the closure operators associated
with a section of a CBA is carried out in Appendix 1, and some
specific examples are mentioned.

Appendix 2 contains a discussion of various low-grade

separation axioms (between T, and Tl) for closure operators on

0

a CBA; except for the results on the '"passage to the TO case'" listed
in (73), most of this is of marginal relevance to matroidal closure
operators (with the possible exception of the abortive (79)) but

it was included on account of its cautionary value: it is seen how
a number of conditions, whichvare nice in the atomic case, split up
into a morass of hair-splitting distinctions on general CBA's.

In the fifst part of Appendix 3, some examples of Tl matroidal
topological closure operators on atomic CBA's are described and an
indication ((83)) is given of the sort of "pathologies" which arise
when the T2 axiom holds. The second part of the same appendix contains
some simple results concerning B-matroidal closure operators on

atomic CBA's.
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Appendix 4 is a reprinting of [21], in which are
characterized those graphs whose polygons and two-way infinite
arcs give rise to matroids (in the same way as, in Whitney's
original paper, the polygons of a finite graph give rise to a
finite matroid on the set of edges of the graph). This provides
a good illustration of the various notions involved in this
thesis, such as derivatives, bases, duality, (B-)matroidal closure

operators etc.

To summarize, it appears that the basic theory of
B-matroidal closure operators on a CBA is in a fairly satisfac-
tory state - as one would expect, this theory being closely
analogous to that for the finite case - but that not too much
yet is known about more general matroidal closure operators,
though a beginning has been made with those which in addition

are topological.
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PRELIMINARIES

The basic definitions and results which we shall need
from lattice theory and Boolean algebra may be found in the books
of Birkhoff [4], Halmos [14], and Sikorski [39]; for general
topology, see Kelley [27]. Of our notation and terminology, we
mention here the following (that not mentioned hereis completely

standard) :

Let L be a lattice. For each a,b in L with a < b, write

[a,b] = {x; a < x < b}, (a,b) = {x; a < x < b} and similarly

]

for [a,b) and (a;bl, =a < b 1iff (a,b) ¢, a=<b (b covers a)

iff a<b, a + b, and M(a,b) (a and b form a modular pair)

iff (xva)Ab<xvVv(aab) for all x<b. L is a \-lattice
iff for each a,b in L there exists a smallest ¢ (= a\b) in L
such that a < b Vecy L is a [-lattice iff it satisfies the

dual condition; and L is a (\,/)-lattice iff it is both a

\-lattice and a /-lattice.
Suppose that L has a smallest element O - then L 1is disjunctive
iff for each a,b in L with a < b there exists ¢ in L such

that 0O #c <b and a A c =0; and L is left-complemented

(Wilcox [44]) iff for each a,b in L there exists ¢ in L

such that ¢ <b, ave=avVvhb, M(,a), and a A c = 0.

A section of L 1is a subset S .of L such that a <b, b in S
implies a in S; dually for a cosection of L.

Suppose that L 1is complete and that X c L - then the }ZTCloggzg,

xiii



J(X), of X(in L) dis {\/Y; Y c X}, X is \/Cclosed 1ff J(X)
and X is \/—dense iff J(X) = L; dually for the /\—closure,

M(X), of X etc.. Under the same circumstances, L(X) denotes
the smallest complete sublattice of L containing X and, for
a complete Boolean algebra, C(X) denotes the smallest complete

subalgebra of L containing X.

xiv



CHAPTER 1

OPERATORS ON COMPLETE BOOLEAN ALGEBRAS

AND THEIR DERIVATIVES

) e Operators and Derivatives in General

An operator on a CBA (= complete Boolean algebra) A
is an order-preserving map f:A-— A. We shall denote the set
- of all operators on A by (jzA). CT(A) is a monoid under compo-
sition, fg being defined by (fg)(x) = f(g(x)), with the
identity map r=‘; on A as identity element.
Further, OTA) is a complete sublattice of the complete lattice AA,
where in both cases the order relation and complete lattice opera-
tions are the pointwise ones. We recall that for a complete
lattice L to be a (\,/)—lattice it is necessary and sufficient
that L be infinitely distributive - that is, for all x and
{y;} in L, =x Ay = \/i(x Ay;) and x V(/\iyi) = /\i(x vy,
Now any Booléan algebra is a (\,/)-lattice, with x\y = x A y'
and x/y = x V.y', where ' denotes complementation. From the
resulting infinite distributivity of our CBA A, it follows that
AA, and in turn O(A), are also infinitely distributive. The fact
that CT(A) is thus a (\,/)-lattice enables us to make the

following definitions. If f is an operator on a CBA A, we call



£ \ I the derivative of f and f/ ] the coderivative of f,

where f\l and £/ are to be taken in g@).

Remark on duality. As with "derivative" and

"coderivative'" above, we shall refer to the order-theoretic dual
of an order-theoretic notion "P" by writing "co-P'". As a

rule, we shall not state both each order-theoretical result and
the dual result. Since a CBA A possesses a natural antiauto-
morphism, namely complementation, we can define an associated
antiautomorphism * of the lattice (J'(A) by putting £*(x) = f(x')'

(notice that * is an automorphism of the monoid @(A)). Given an

order-theoretic property P of operators on A, an operator f

on A will then be co-P iff the "dual' operator f* is P. If we

wished, we could in this way refer only for instance to derivatives

and never to coderivatives; however we prefer to use * rarely and

to give explicit recognition to the order-theoretic duality present.
To begin the study of derivatives and coderivatives, we

remark that several of their properties follow immediately from

the results on /-lattices (= Brouwerian lattices; see Birkhoff [4],

pp. 45-47, 125, 128-131, 216-229, 280-281), together with the

corresponding dual results \-lattices. We shall not list these

properties but mention the following: the mappings f - f\[ and

d > Pvd establish a bijection between the interval [[,1] of

¢’(A) and the set of derivatives (of operators) on Aj; an operator

is a derivative iff it is its own derivative; and if d is the



derivative of an operator f then the equality [v d = Mv £
shows that d(0) = £(0).

As mentioned already, the \/ and /\ operations in BXA) are
given by the pointwise formulae; we now give an explicit formula
for the \ operation in C}(A) (and, on dualizing, obtain a formula
for / of course). Since in the case of f\I this formula was
used by Hammer ([17], p. 32) as the definition of the derivative

of f, we shall refer to it as Hammer's formula.

(1) Let f and g be operators on a CBA A. Then for all x in A

(ENg)(x) =VAIf(u\g(u); u < x}.

Proof. Let h(x) denote the right-hand side of this equation -
then clearly h 1is an operator on A. We have to show that

f <gvh and that if f < g v k for some operator k on A then
h < k. Certainly f < g v h since f(x) < g(x) v (f(x)\g(x)) <

< g(x) V h(x) for each x in A. Suppose that k is an operator
on A such that f < g v k. Then for each x in A and all

s < x we have f(s) < g(s) V k(s) and hence f(s)\g(s) < k(s) <

< k(x), from which it follows that h(x) < k(x) as we wished. Q.E.D.

Nobeling ([32], p. 66) has used quite a different formula
for his definiton of derivative. The following result establishes

the equivalence of Ndbeling's formula with the present definition.

(2) Let f be an operator on a CBA A and let d be the derivative
of f. Then for all x in A

d(x) = \/&u; u < f(x\u)l.



Proof. Let e(x) denote the right-hand side of this equation.
Then e(x) < d(x) since if u < f(x\ u) then clearly u < d(x).
To obtain the opposite inequality let s < x and put f£(s)\ s = u.
Then s < x\u and therefore u < f(s) < f(x\u). It follows

that f(s) \s € e(x) for each s < x and hence, by Hammer's

formula, that d(x) < e(x). Q.E.D.

As a corollary we have:
(3) Let S be a .\/Ldense subset of a CBA A and let f be

an operator on A with derivative d. Then for all x,y

in A
yAd(x) =V{u in S; u<y A f(x\uw}
and y Vv d(x) =‘\/{u in S$ru.<.y3. M flx\a)l.
Proof. The relevant fact here is that {u; u < f(x\ u)} is

a section of A. Thus in y A d(x) =\\/{y Auyus f(x\u)l,

which we obtain from No6beling's formula by infinite distributivity,
each y A u 1is the join of elements v in S satisfying the
inequality v <y A f(x\v). The first equation of (3) follows

and the second may be verified in a similar manner. Q.E.D.

These sharpened forms of Nobeling's formula apply in
particular to an atomic CBA A, when we can take S to be the set
of atoms of A.

For atomic CBA's, the notion of derivativity turns out

to be self-dual (contrary to the entry in the Sth row and 6th

column of Hammer's table in [18], p. 59):



(4) Let d be an operator on an atomic CBA A. Then the

following conditions are equivalent

(1) d 1is a derivative

(ii) d 1is a coderivative

(iii) p < d(x) dimplies p < d(x\p) for all atoms p of A,

(iv) x <y dimplies y < x v d(x) or y A d{y) <x for

all x,y in A.

Proof. The pattern of proof is as follows. We first show, for
any CBA A, that (iii) and (iv) are equivalent and that each is
implied by (i). Then in the atomic case we show that (iii) implies
(i), so that in this case (i), (iii), and (iv) are equivalent -
however, since (iv) is a self-dual condition and the dual of (i)

is (ii), it must be the case that all four conditions are equivalent.

For any CBA A, (iii) and (dv) are equivalent. Assume

that (iii) holds and that x <y - then y = x V p for some

atom p # x. Suppose that y A d(y) $ x. Then p < d(y) and

by (iii) p < d(y\p) =d(x). Thus y =x VvV p £ x v d(x). Now
assume that (iv) holds and that p is an atom and x an element

of A such that p <d(x). If »p $ x then x = x\p and

IA

p <d(x\p). If p<x then x\p <x and by (iv) we have

IN

X (x\p) vd(x\p) or x A d(x) £ x\p. The latter alternative
cannot hold since p < x A d(x). Hence x < (x\p) Vv d(x\ p)

from which it follows that p < d(x\p)-.



For any CBA A, (i) implies (iii). Assume that (i)

holds and that p is an atom and x an element of A such that
P < d(x). Then by the first equation of (3), with S = A, y = p,

and f = d, we must have p < d(x\p).

For an atomic CBA A, (iii) implies (i). Assume that

(iii) holds and denote the derivative of d by e. Then from

the first equation of (3), with S = the set of atoms of A,

y =1, and f = d, we have e(x) = \V?p an atom of A; p < d(x\p)}.
By (iii), the right-hand side of this equals ‘\/{p an atom of Aj

p £ d(x)} which in turn equals d(x). Q.E.D.

We shall show later that atomicity is a necessary con-
dition for the self-duality of derivativity, in fact proving
soﬁewhat more than this (see (8)). 1In any case, an operator which is
both a derivative and a coderivative will be said to be a bideri-

vative.

(5) Let d be an operator on a CBA A. Then the following

conditions are equivalent

(i) d dis a derivative
(ii) s A d(s) = \/%u; u<s Ad(s\u)} for all s in A,
(iii) s\d(s) = /\{v; v <8=<v Vd(v)} for all s in A,

(iv) (s A d(s))' = /\{w; wVs=wvVd(sAaw) = 1} for
A.

all ® d4dn

Proof. We first cbtain the equivalence, for each element s of



A, of the three equations in (5). This will.be done if we verify
that s A x'" =y, sAy'=x, and x' = z where x,y, and 2z are
the right-hand sides of these equations (in the order in which
they appear). Now s A x' =y and s Ay'=x iff x Ay =0
and x V y = s, and the truth of these two latter relations
follows by a routine computation from the following fact: if u
and v are elements of A such that uAv =0 and uVvv-=s
then u < s Ad(s\u) iff v < s <£v v d(v). The relation

x' = z follows in a similar way from the fact that if u' =w
then u < s A d(s\u) iff wVvs=wvVd(s Aw) =1. It remains
to be proved that (i) and (ii) are equivalent. If (i) holds then
(ii) follows as a particular case of the first equation of (3).
Suppose that (ii) holds and put m = \/ﬁu; u < d(s\u)l}. Since
clearly d(s) 2 m, (i) will follow by NBBeling's formula if we
show that n = d(s)\m =0. Now s An =0 on account of (ii)

and therefore n < d(s) = d(s\n). Hence n <m, so that n =0

as required. Q.E.D.



2% Closure Operators

An operator f on a CBA A is a closure operator iff
M<f= f2. A coclosure operator is called an interior operator;
f 1is a closure operator iff f* is an interior operator (this
is the usual association of interior operators with closure opera-
tors familiar from topology). A handy fact concerning a closure
operator f is that f(x) < f(y) dmplies f(x Vv z) < f(y V z)

(and likewise with ='s in place of < 's).

Let f be a closure operator with derivative d on a
CBA A and let x be an element of A. Then x 1is f-closed if
f(x) = x (equivalently, if d(x) < x); f-open if x' is f-closed;
f-clopen if both f-closed and f-open; f-dense if f(x) =1
(equivalently, if =x v d(x) = 1); f-pithy if x < d(x); f-discrete
if x A d(x) = 0; f-perfect if both f-closed and f-pithy; and
f-basic if both f-dense and f-discrete. (Here and elsewhere we
could have formulated our definitions, and many of the easier
consequent results, in a slightly different and indeed more general
way, but we have chosen the present course, with the closure operator
f in first place, since it is ultimately closure operators that
are our main concern.) Amongst the many properties enjoyed by
the above concepts, we mention the following, which are on the

whole well-known - and which in any event are straightforward (when,

as here, there is no ambiguity, we have omitted the prefix f).



(a) The set of closed elements coincides with the
range f(A) of f. f£f(A), being a /\—closed subset of A, is
itself a complete lattice: the meet in f(A) of a subset X
of f(A) coincides with A\ X and the join in f(A) of X, which
we denote by i?X, is given by §7X = f(\/&) (/\X and \V& denote
the meet and join respectively of X in A Valways). We call
f(A) the lattice of f. The mappings £+ f(A) and
L > (xlﬁ-/\{a; x < a in L}) establish a bijection between the
set of all closure operators f on A and the set of all

/\ -closed subsets L of A. If x 1is closed then so is d(x).

(b) x 1is pithy iff, whenever 0 # y < x, we have
u = f(x\\ﬁ) for some u such that 0 # u £ y (this is an easy
consequence of (3)). The set of pithy elements is aw\/—closed
subset of A. If x 1is pithy then so is the closure d(x) of
x (so that d(x) 1is in fact perfect) - expressed differently,

x £ d(x) dimplies d(x) = dz(x).

(c¢) x is discrete iff for no u such that 0 # u < x
do we have u < f(x\u) (this is also an easy consequence of (3)).
Further conditions equivalent to the discreteness of x are:
f(u) A x=u for all u < x; x 1is of the form y\d(y). The
set of discrete elements is a section of A, the join of which
we denote by j(f). x 1is discrete and closed iff d(x) =0
and iff each subelement of x is closed. x is basic iff it is

minimal dense. The set of basic elements is an antichain in A
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as may be seen from the fact that y A d(y)ls x <y <xVdx)

<

implies x =y (we have x = X (y Ad(y)) 2xV (v Ad(x)) =
y A (xVvdX) =y).

(d) Suppose that £(0)

0. Then we call the largest
element of A, every subelement of which is a join of closed
elements, the Il:2é££ of f and denote it by t(f) (it is easy
to see that such a largest element exists). If t(f) =1 -
equivalently, if £(A) 1is \V/—dense in A - we say that f
is T, (this is Nobeling's definition; see [32], p. 77). In
any case we have the relation j(f) A t(f) = \jh-l(O).

We next prove a curious result which turns out to be use-

ful later on.

(6) Let f be a closure operator with derivative d on a CBA A.

Then d(x) <y implies d(x vV d(x Ay)) <y for all x,y in A.

Proof. Suppose that d(x) <y but that d(x v d(x A y)) # Vs

Then y' A d(x vV d(x A vy)) # 0 and by the first equation of (3)

there exists an element s of A such that 0 # s < y' A d((x VvV d(x A y))\s)
From s < y' it follows that s A y = 0 and also that d(x A y) < d(x\s).
Using this latter inequality and the idempotency of Pvd we

obtain

s < d((x\s) Vv (d(x A y)\s)) < d((x\s) v d(x A y)) < d((x\s) Vv d(x\s)) <

(x\s) v d(x\s). Thus s < d(x\s) <d(x) <y so that s =s Ay =0,

a contradiction. Q.E.D.



11

Corollary. If f and d are as in (6) and d(x) <y
then there is an element 2z = x such that y A z is

closed and d(z) < y.

Proof. If we put z =x vd(xAy) then z 2x and d(z) <y

by (6); also y A z=(xAy) VvdxAy) f(x A y) and this is
closed. Q.E.D.

Let us call the condition: d(x) <y implies

d(x vd(x Ay)) <y of (6) condition (I). (I) may be expressed

as an identity by writing d(x) v z 1in place of y and taking

the meet of both sides of the second inequality with d(x) v z.

If d 1is any operator whatsoever satisfying (I) then d satisfies

the identity x Vv d(x) VvV d(x VvV d(x)) = x V d(x) expressing the
idempotency (P vV d)2 = Mvd and also the identity d(x Vv d(x A d(x))) =
= d(x) - that is, d(P v d(}P A d)) = d. (The first of these may

be obtained by putting y = x V d(x) in (I) and the second by

putting y = d(x) in (I).) However, small finite examples show

that neither of these two identities implies the other (and that

the second does not imply the first even when d is a derivative).

The question as to which identities are satisfied by the derivatives of
closure operators has apparently not been investigated - nor, for

that matter, the (doubtful) existence of non-trivial (finite)
identities satisfied by all derivatives, or by no operators other

than derivatives.

Another result we shall need concerning derivatives
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of closure operators is as follows.

(7) Let f be a closure operator with derivative d on a CBA A.
If x,y,z are elements of A such that f(x) < f(y) and

yAz=0 then z Ad(x Vv z) <z Ad(yV z).

Proof. By virtue of the first equation of (3) (with x VvV z in
place of x and 2z din place of y) it is sufficient to show that
u<zA£f((xV2z)\Nu) implies u <z Ad(y VvV z) for each u in A.
But this is the case since if u <z then y A u =0 and hence
f((x v z)\u) < f(x Vv (z\u)) < f(y v (z\u)) = £((y vV z)\u), the
second inequality here being a consequence of the fact that £ is

a closure operator. Q.E.D

We now come to a basic definition. Let f be a closure
operator on a CBA A. Then we say that £ is analytic iff the deri-

vative of f 1is a coderivative.

(8) Every closure operator on a CBA A is analytic iff A is

atomic.

Proof. It follows from (4) that if A 1is atomic then every

closure operator on A 1is analytic. To obtain the converse let

f be the closure operator on A such that £(0) = 0 and £f{x) =1
for x # 0, let d be the derivative of f, and let e be the

coderivative of d. Then Hammer's formula gives
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d(x) = \/{f(u)\u; u < x} = \/QU'; 0 + u<x}=0 for x=0,

1

P for x = an atom p, and = 1 otherwise. By the dual of
Hammer's formula we have e(0) = /\{d(v)/v; v = 0} and after a
little calculation obtain e(0) = C\/P)' , where P denotes

the set of atoms of A. If f is analytic themn e(Q) =d(0) =0

so that \/@ =1 and A is atomic. Q.E.D.

This result clearly has as a consequence the necessity of
atomicity for the self-duality of derivativity. The following

criteria for analyticity result immediately from the dual of (5).

(9) Let f be a closure operator with derivative d on a
CBA A. Then the following conditions are equivalent
(1) f is analytic,
(ii) f(s) =/\{u; u>s Vvd(sAas)] for all s in A,
(##1) s/f(s) = \/{v; v ANdlv) € 8 £ v} forall s in A,

(iv) £(s)' = \/{w;'w As=wAd(s vw) =0} for all s in

If f 1is a closure operator with derivative d on a CBA A,

let us say that f 1is analytic at an element s of A iff the

equations in (ii), (iii), and (iv) here hold for that value of s.
(Note that these three equations are equivalent, the equivalence of
the three dual equations having been obtained in the course of
proving (5).) We see that f is analytic iff it is analytic at

each s in A, that f is analytic at 0 iff j(f) = £(0)',
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and that £ is analytic at a closed element s of A iff the

following equivalent equations hold:

=/\{u;- u
i =’\/{v; v

s' =\/{W; wAs=wAd(s Vv w =0}

\

sz V.- dd{s:/u)}

>

d(v) £ s < v}

(10) Let f be a closure operator on a CBA-A and let s be
an element of A. Then £ is:-analytic-at. s iff £ is

analytic at £(s).

Proof. Using the equation of (9) (iv) we have that £ is analytic
at & Iff .E(x)" =\¢QW; wAs=wAd(s ¥ w) =0} and that £ is
analytic at f(s) iff £(s)' = \/{w; w A £(s) = w A d(£(s) Vv w) = 0}.
The result will follow if we show the sets involved in these two

joins to be the same. Now clearly w A f(s) =w A d(f(s) Vw) =0

implies w A s =w A d(s Vw) = 0. Conversely if w A s =w Ad(s Vw) =0

1]

then w A f(s) (wAs) V(wAad(s)) £ wAas) VvV (wad(svw)) =20

and by (7) w A d(f(s) Vw) <w Ad(s vVw)=0. Q.E.D.

As an immediate consequence of (10) we have:

Corollary. A closure operator on a CBA A is analytic

iff it is analytic at each closed element of A.


http:analytic.:.at
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g Reductions

Let s be an element of a CBA A and write A° for the
interval [0,s] of A. We define the reduction mapping fi— £2
of (9?A) to G(As) by putting fs(x) = f(x) A s and call £°
the reduction of f to A° (the term "reduction" is Tutte's
([41]1, p.7)). Dually we write As for [s,1] and fé, for the

coreduction of £ to As'

€i1) Let s be an element of a CBA A. Then the:reduction
mapping of (J(A) to GYAS)
(i) preserves the operations of \/,/\,\~, and coderivation,

(ii) preserves the properties of being the identity, a
derivative, a closure operator, and an analytic

closure operator, and also the duals of these properties,

(iii) fails in general to preserve the operations of
composition, /, and *, though the inequalities
(£2)° > £55°, (£/g)° < £°/g°, and (£%)° < (£°)*
always hold.

Proof. It is obvious that reduction preserves [* and a straight-

forward computation shows that it preserves \/and /\.

Let f and g be operators on A. Then (firstly) for each
x in A we have (f\g)s(x) = (f\g)(x) A s =\/{f(u)\g(u); u < xt As =
\/{fs(u)\gs(u); u € x}. Since \/and \ in AS are\v/and‘\ in A

restricted to A?, this last quantity evidently equals (fs\gs)(x).
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Thus (f\g)s = fs\gs, that is, reduction preserves \. The fact
that reduction thereby necessarily preserves the operation of
derivation shows that it also preserves the property of being a

derivative - for if £ \}=f then f£\IF = (f\ M) = £°.

Before showing that reduction preserves coderivation, let
us obtain the inequality in (iii) which involves /. We know that
f > g A (f/g) and since reduction preserves A we have £5 > gs A
(f/g)s, from which it follows that (f/g)s < fs/gS as required.
To see that this inequality can be strict sometimes, let A be
the 4-element CBA and take s to be one of the atoms of A, f
to be PA’ and g to be the other automorphism of A. Then
flg = PA so that (f/g)s = P, whereas fS/gS =Mo=1>"

(here P, 0, and 1 are the obvious operators on AS).

This inequality for / has as a particular case the inequality
< in the equation (£/M)° = £%/} which expresses the fact that
reduction preserves coderivation. We obtaiﬁ the reverse inequality
as follows.

Let x be an element of A°. Then (£/MD°(x) =
(£/NE) A s = /\{&(v)/v) A s; v >2x} —-—— (a). On the other hand,
(fs/h)(x) = /\{fs(w)/w; w 2 x}, where here everything takes place
in A%. Now the /\, being non-empty, coincides with the /\ in Aj;
“however y/z in A® (where y and 2z are elements of As) is the

. . s
same as (y/z) A s taken in A; furthermore w 2 x in A~ means
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s 2w 2x in A. Thus with everything taking place in A

we find that (fs/r)(x) /\{(fs(w)/w) As; s 2w =2x} =

\2

/\{(f(w)/w) As; s 2w 2x} —= (B). The desired inequality
will be obtained if each (f(v)/v) A s with v =2 x (as in (a))
is > some (f(w)/w) A s with s 2w 2 x (as in (B)) and on
taking w = v A s we see that this is indeed the case. The fact

that reduction preserves coderivation implies, as for the derivative

case, that it also preserves the property of being a coderivative.

The inequality in (iii) for composition is easily verified:
if x is in A° then (fg)s(x) = (fg)(x) A s 2 £(g(x) A s) A s =
-(fsgs)(x). To see that the inequality can be strict, use the same
example as given above but with both f and g equal to the non-
identical automorphism of A.

Now let f be a closure operator on A. Then from

£ = F follows fS > P and thence (fS)2 > fs. However fs =

(f2)S > (fs)2 from what has just been proved. Hence (fs)2 = £5
and f° is a closure operator on A°. Let f be an interior

operator on A - then from f 2 follows < |

Also for each x in A® we have f(x) < x £ s and hence

(£5)%(x) = £(£(x) As) As=f2(x) As=F(x) As=E(x). Thus
and f° is an interior operator on AS.
It is an immediate consequence of what has been proved

already that reduction preserves the property of being an analytic

closure operator and also the dual property.
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We come finally to the inequality involving *:
for x in As, (f*)s(x) = f(x")'" A s and (fs)*(x) reduces
to f(s A x'")' A s. TFor the example to show that strictness

may occur, let A be the 4-element CBA with s one of its

atoms again and define £f(1) = s, £f(x) = 0 otherwise. Q.E.D.

A number of the facts listed in (11), for instance that
reduction preserves the property of being a closure operator, are
traditional - as are many of the following remarks, up to but not
including (12). In this remarks, f is a closure operator with
derivative d on a CBA A and s,x are elements of A. Then
£° is a closure operator on A% and fs is a closure operator
on AS. Let us say that x is (f-)closed in s if x 1is in A®
and is fs—closed, and that x is (f-)closed over s if x 1is in
AS and is fs—closed; similarly fér pithyness, discreteness, etc.
(notice that we allow ourselves to omit the prefix £, but not £°
or fs). We shall sometimes also say that x 1is a base of s

when x 1is basic in s. The following are evident:

x 1is closed in s if f(x) A s = x, x 1is closed over s if x is closed

(equivalently, if d(x) A s < x < 8) and < s,
x 1is dense in s if x < s < f(x), x 1is dense over s if x is dense
(equivalently, if x < s < x v d(x)) and > s,
X 1is pithy in s if x is pithy X 1is pithy over s if s <x<d(x) Vv s,
and < s, z
x 1is discrete in s if x is discrete x 1is discrete over s if x A d(x)

and < s. < 8 < Xy
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The lattice fS(AS) of f£f° is f(A) A s; in particular

if s 1is closed then fS(As) is the interval [£(0),s] of £f(A).
The lattice of fs is f(A) ¥ £(s) = the interval [f(s), 1] of
f(A). ‘

Now let s and t be elements of A such that s < t

and write AZ for the interval [s,t] of A. Then (fs)t =

= (ft)s = f; say, the bireduction of f to A: (this goes

through for an arbitrary operator f on A). We shall not dwell
on the properties of bireduction except to mention that if s
and t are closed then the lattice of f; is just the interval

[s,t] of the lattice of £.

(12) A closure operator f on a CBA A is analytic at an

element s of A iff fS is analytic at s.

The proof of this is trivial.

(13) A closure operator f on a CBA A is analytic iff
\J%v; v is discrete over s} = 1 for each closed

element s of A.

(Note that in a notation introduced earlier we can write j(fs)

for \/tv; v is discrete over s}.)

This result is just a rewording of the corollary to (10).

Nevertheless it might be of interest insofar as it leads to a
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sensible definition of analyticity of closure operators on

arbitrary complete lattices.

4, Separators

Let B and C be CBA's. We define the cartesian product

mapping (g,h)+ gxh of Geyx0c) to (F(BxC) by putting

(gxh) (y,z) = (g(y), h(z)) and call gxh the cartesian product of

g and h. This construction is as well-behaved as it is possible to
imagine. Thus for example (gxh)\!= (g\M)x(®m\D and if g and h
are (analytic) closure operators then so is gxh and the lattice

of gxh 1is just the product of the lattices of g and h.

It is desirable to know when a given operator f on a
CBA A can be decomposed (up to isomorphism) as a cartesian product
f = gxﬁ for a suitable decomposition A = BxC of A. The following
definition is appropriate here: an element s of A 1is an f-separator

iff f(x) = [f(x A s) As] VvV [f(x A s'") As'] for all x in A

(the term "separator'" is Tutte's ([41], p.8)).

(14) (a) Let g and h be operators on CBA's B and C
respectively. Then the elements (1,0) and (0,1)

of BxC are (gxh)-separators.
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(b) Let f be an operator on a CBA A and let s

be an f-separator. Then associated with the

KR

: 5
A°x A% of A (given by

decomposition A
the mappings x (x A s, x As') and

-1
(y,z)ig y V z) we have the decomposition

s '

£5 x £°

e

f of £ (more precisely, we have

£

oL x £2 )a).

The verification of this is trivial.

(15) Let f Dbe an operator on a CBA A. Then an element s of
A is an f-separator iff f(x A g) A s = f(x) A s and

f(x vs) vs=f(x) vs for all x in A.

Proof. Let s be an f-separator and let x be in A. Then

f(x) A s = ([f(xAs) As]V [f(xAs'")y As'"]) As=Ff(xAs) As

and f(x) Vs < f(xVvs)Vvs=[f((xVs)asnhs] V[E((xVs)Aas')yAas']vss=
f(x As")vs < f(x) Vs, so that f(x) v s = f(x v 8) V s.

Conversely, suppose that s satisfies these conditions and put

u=[f(xAs) As] Vv I[f(xAs') As'], where x is an arbitrary

element of A. Then u A s = f(x As) As = f(x) A s and

uvs=f(xAs'"YY vs=Ff((xAs')Y vs) vs=f(xvVvs)vVvs f(x) v s.

On account of the distributivity of A, it follows that u £(x). Q.E.D.

This result shows that the notion of an f-separator is

self-dual. (Incidentally, the condition given in (15) leads most
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naturally to the alternative decomposition " A ¥ A~ X AS,
o 28
f=£f x fs.)
(16) Let f be an operator on a CBA A. Then the set of

all f-separators is a Boolean subalgebra of A.

Proof. It is immediate from the definition that 0 1is an
f-separator and that the complement of an f-separator is an
f-separator. Thus it enough to show that, given f-separators

s and t, s At 1is also an f-separator. Using the fact that s

and t satisfy the conditions of (15) we obtain

»f(x A (s At)) A(s At) f(x) A (s A t) and

f(xVv (s At)) v(sArt)

[(f(x Vv (s At)) vs] A[f(xV (sAt)) Vvi]s=
[f(xV (s At) vs) vs] A [f(x V (s At) Vt) vi] =[f(xVs)Vs]A
[E(xVvit) vit] = [fX) vs] A[f(x) vit] =f(x) V(s At).

Thus s A t 1is an f-separator by (15). Q.E.D.

(17) Let f Dbe an operator on a CBA A and let s be an
f-separator. Then s 1is also an (f‘xf)—separator and

a (MvE)-separator.

Proof. Write d for f\} and g for Mvf and let x be an

arbitrary element of A. Then using (3) we have
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\/{u; u
\/{u; u
\V%u; u

d(x) A s

d(x A 8) A s

IA

s A f((x A s)\ u)}

IA

s A f((x\u) A s)}

IA

s A f(x\u)} (since s 1is an f-separator)

and d(x vs) vs = \/{u; us<sV£Ef((xVs)\u)}
\/{u; u
\/{u; u

d(x) vs d(x vs) Vs,

IA
IA

s V £((x\u) Vv s) (since (x V s)\u < (x\u) V s)

IA

s vV f(x\u)} (since s 1is an f-separator)

so that d(x vVs) Vs =d(x) Vs. Thus s is a d-separator.

For g we have g(x As) As = ({(xAs)V E(XAS)) As

(xAs) V((xAs)As)=(xAs)V (£x)As)=(xVIx)Ars
g(x) As and g(xVvs)vs = (xVsVi(xVs)) vVs=xVs V)=

g(x) V s. Hence s 1is a g-separator. Q.E.D.

We next obtain a further condition for an element to
be a separator.
j
Lemma. Let f be an operator on a CBA A and 1¢t s be an
element of A. Then the following conditions are equivalent.
(i) f(s) A £(s') = £(0) and £f(x) = f(x A s) V £(x A s') for all x in A,
(ii) f(x As) = £(x) A £(s) and f(x Vv s) = f(x) V f£(s) for all x in A,

(iii) f(s) v £(s'")

f(1) and f(x A s) = £(x) A f(s), f(x A s') =

f(x) A f£(s') for all x in A.

Proof. Suppose that (i) holds. Then £f(x) A f(s) =
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[£(x A s) Af(s)] Vv [£(x As') A f(s)] = £(x As) v £(0) = £(x A s),

where f(x A s') A f(s)

I

f(0) on account of the inequalities

£(0) < f(x A s'") A f(s) € £(s") A £(s) = £(0). Also f(x) v f(s) <

IA

f(xvs)=f((xVvs)Aas)Vv E(xvs)As') =f() vV Exas') <

A

f(s) vV £(x) so that f(x) Vv f(s) = £f(x V s). Thus (i) implies
(ii). |

Now suppose that (ii) holds. Then x =s' in f(x Vs) =
= f(x) v f(s) gives f(s) vV f(s') = £(1) and to obtain (iii) we
only have to show that f(x A s') = £(x) A f(s') for all x. Now
we have f(x A s') A f(s) = £((x A s') A s) = £(0), and
(£(x) A £(s")) A £(s) = £(x) A £(s A s') = £(0), and we also have
f(x As'") VE(s) = f((xAs') vs) = f(xVvs) and (f(x) A f(s")) Vv
v f(s) = (£(x) Vv f(s)) A (f(s') Vv f(s)) = f(x v‘s) A £F(QQ) = £(x V s8).
It follows by the distributivity of A that f(x A s') = £(x) A £(s")
as required.

Finally suppose that (iii) holds. Then x = s' in
£(x A s) = £(x) A £(s) gives £(s) A £(s') = £(0); also
f(x As) VE®XAS") = (£(x) A £(s)) v (F(x) A £(s")) =

f(x) A [£(s) v £(s")] = £(x) A £(1) = £(x). Q.E.D.

Note that condition (ii) here is self-dual - thus the
duals of conditions (i) and (iii) are also equivalent to the conditions
of this lemma. Let us call an element s satisfying these conditions

an f-respector.
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(18) Let f be an operator on a CBA A and let s be an
element of A. Then the following conditions are
equivalent.

(i) s 1is an f-separator,

(ii) s 1is an f-respector and f(s) < s Vv £(0), f(s') <

£ ' v £(0),

(iii) s 1is an f-respector and s A f£(1) < f(s) < s Vv £(0).

Proof. Suppose that (i) holds. Then x =0 din f(x Vs) Vs =

= f(x) Vs gives f(s) Vs = f(0) vs so that f(s) <s Vv £(0),

IA

and since s' is also an f-separator we obtain f(s') s' v £(0)
similarly. The following inequalities show that s satisfies the
conditions in (i) of the above lemma and hence that s dis an
f-respector: £f(0) < f(s) A £(s'") < (s v £(0)) A (s' v £(0)) =

£f(0) and for all x in A f(x As) vV Ef(xAs'") < f(x) =

[f(x A s) As] VI[f(xAs')y As'"] < f(xAs)Af(xas'). Thus (i)
implies (ii). Now if (ii) holds then s A £(1) = s A (f(s) A f(s')) <
<s A (f(s) vs'vVvE()) =sAf(s) < f(s) and hence (iii) holds.

To prove that (iii) implies (i), suppose that (iii) holds and let

x be any element of A. Then f(x) A s = f(x As) A s =f(x) A

A f(s) A s 2 f(x) As Af(l) As =1f(x) As so that f(x As) As =

f(x) A s - and dually f(x vs) vs = f(Xx) Vs. Hence s is an

f-separator by (15). Q.E.D.
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We now discuss what happens when f ‘is a closure

operator.

(19) Let f be a closure operator on a CBA A. Then
(a) f(0) and all its subelements are f-separators, and

(b) an element s of A is an f-separator iff it is
of the form c\u, where ¢ 1is a closed f-separator

and u < £(0).

Proof. To show (a), suppose s < £(0). Then £f(s) = £(0)
and we see that f(x A s) = £(0) = £(x) A f£(s), f(x Vv s) = f(x) =
f(x) v f£(s), and s A £(1) < f(s) < s Vv £(0) so that s satisfies

the conditions of (18) (iii) and is therefore an f-separator.

To prove (b), first let s be an f-separator and put
f(s) = c and u = c\s, so that s = c\u. Then ¢ is an f-separator,
as follows from the fact that it satisfies the conditions of

(18) (iii): we have f(x) A f(c) = f(x A c) = f(x A s) = f(x)af(s) = £(x)Af(c)

I

f(xve) =f(xVvs)=£fx)V £f(s) f(x) v £f(¢), and c A £(1) =

= f(c) = ¢ v £(0) (each equals <c¢). Also, since s 1is an f-separator,
we can write c = f(s) = [f(s A s) As] Vv [f(s As') As'] =s Vv £(0),
so that u < £(0). To obtain the converse implication in (b), let

c be a closed f-separator and u < £(0). It is then easy to check

that s = c\u satisfies the conditions of (18) (iii) and is thus

an f-separator. Q.E.D.
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The fact that f(0) is an f-separator when £ is a
closure operator shows that with only a slight loss in generality
we may study closure operators f with £(0) = 0. Indeed, we
do this whenever £(0) # 0 proves to be at all inconvenient or

untidy.

(20) Let f be a closure operator with derivative d omn a
CBA A and suppose that £(0) = 0. Then for each element

s of A the following conditions are equivalent

(1) s 1is an f-separator,

(£1) s 1is an f-respector,

C11di) s 1is a d-separator

(iv) s 1is clopen and in the centre of £(A).

Proof. If s is an f-respector then £(s) A s' < f(s) A f(s') =
= £(0) so that f£f(s) <s v £(0), and similarly £f(s') < s' v £(0).
It follows by (18) that conditions (i) and (ii) of the present
result are equivalent. Moreover, the same holds for conditions (i)

and (iii) by (17). To show that (i) implies (iv), let s be an

f-separator. Then s is also an f-separator by (16) and s, s

are both in f(A) on account of (19)(b) and the fact that £(0) = 0.
Now (and this is actually a general fact concerning lattices with
1

0 and 1) it is not difficult to see that for the elements s, s

of the lattice f(A) to be complementary central elements of £(4)



28

it is necessary and sufficient that (a A s) V(aas')y=as=
=(aVvs')A(aVs') for all a in f(A). The fact that s and
s' do indeed satisfy these conditions is a consequence of the second

identity in (i) of the above lemma which, together with its dual,

gives a f(s) = f(aAas) vEi(@aas')) =(aAas)Vv(anas')c<

IA
<l

(a A s) (aArs') <a and a=f(a) =f(aVvs) Af(avs') =
=(aVvs)A(aVvs'), The proof of (20) will now be completed

by our showing that (iv) implies (ii). To do this, we suppose

that s satisfies (iv) and deduce that it satisfies the duals

of the conditions in (i) of the lemma above. It is obvious that

f(s) v f(s') = £(1) (this holds for every s in A). Now s'

as well as s is in f(A) since s is clopen, and also £f(x)

is in f(A) for each x in A. Because s is in the center of
f(A), we thus have f(x) = f(x) v (s A s'") =(f(x) vV s) A (f(x) v g') =

= f(x Vs) A f(x Vv s'") as required. Q.E.D.



CHAPTER 2

EXCHANGE AXTIOMS

i 9 13_11 _and E1

Let f be a closure operator on a CBA A and let x be

an element of A. We say that:

x 1s f-E_ iff, for all s and y in A such that
‘2

y < f(s VvV x) and y $ f(s), we have u < f(s Vy Vv (x\u)) for

some u, 0 # u < x; that

x is f—El iff, for all s and y in A such that

y < f(s V) and vy $ f(s), we have u < f(svy) for some u,
0 # u £ x; that

f is Ei iff the set of f—Ei elements is \/Ldense in
and that

f is suEer~Ei iff every element of A is f—Ei (where
in the last two definitions i =%, 1).

Evidently f dis E Af £t dis El’ f 1is super-E if

1 1
% ¥

it is super-E_, and f is Ei if 1t ds super—Ei, i=1%, 1.

1

(21) Let f be a closure operator on an atomic CBA A. Then

the following conditions &re equivalent
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(i) f is E%,
(1) £  is Ej,

(iii) p < f(s vq), p % f(s) dimplies q < f(s V p)

for all elements s and atoms p,q of A,

Proof. For any CBA it is the case that (ii) implies (i) and,

since each atom q of A is in every \/—dense subset of A,

that (i) implies (iii) also. Suppose that A is atomic. Then
(iii) asserts that every atom q of A is f—El (if y < f(s Vv q)
and y $ f(s) then p % f£(s) for some atom p <y so that by

(iii) q < f(s v p) < f(s V y)) and this implies (ii). " Q.E.D.

Note that, although an atom is f—El/2 16f it dis f—El, this
equivalence is not true in general for all elements, even in the
atomic case. To see this, it is convenient to use some terms
still to be defined: there exists a matroidal (and therefore
super—E%) closure operator f on the 8-element CBA such that
f(0) = 0 and yet which is not a quantifier (and therefore not

super—El).
(22) Let f be an E_ analytic closure operator on a CBA A
2
and let x and s be elements of A, If x is maximal

discrete in s then x 1is a base of s.

Proof. We have to prove that s < f(x). Suppose that this is
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not the case. Then s A f(x)' # 0 and since in the equation

fix)" = \/{w; wAx=wAdxVw =0} of (9)(iv) the set

on the right-hand side is a section of A, the fact that f is

Eli implies that there exists an f-ELi element w of A such

that 0 # w<s A f(x)' and wAdEx Vvw) =0, where d is

the derivative of f. Now x < x Vw<s éo that by the maxi-
mality of X, X V w cannot be discrete. Since w A d(x Vw) =0,
this means that x A d(x V w) # 0. From (3), there hence exists
an element u of A such that 0 # u < x A £((x\u) vV w). Now

u $ f(x\u) by the discreteness of x and therefore, since w is

f-E, , there exists v such that 0 # v < w, v < £((x\u) v (w\v) VvV u)).

1
2

But then 0 # v < d(x v (w\v)) which is contrary to the equation

w Ad(xx Vv w) =0. Q.E.D.

(23) The lattice of an E analytic closure operator f on

1
2

a CBA A is relatively disjunctive.

Proof. By saying that a lattice L is relatively disjunctive
we mean that each interval [a,b] of L is disjunctive - equiva-
lently that whenever a < b < c¢ in L there is an element d of
L such that a <d £c¢c and bAd=a. So let a,b, and ¢ be
elements of f(A) such that a < b < c¢. Using the equation

of (9)(iv) as in the proof of (22), we can obtain an f—l’il/2 ele-

ment w of A such that 0 #w <c, wAb=waAd®dVvw =0.
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Let d = f(avw). Then a <d <c and e=b Ad 2 a.

Suppose that the inequality here is strict. Then e < f(aVv w)

and e $ f(a) so that since w is f-Eli we have u < f(a v e v (w\u))
for some u, 0 # u < w. But theﬁ 0 #uc< f(vVv(w\u)) which

is contrary to the equation w A d(bVvw) = 0. Hence b A d=a

and d satisfies the required conditions. Q.E.D.

It can be shown by a similar but somewhat easier argument
that this result remains valid when the hypothesis 'EL+ analytic'
2

is replaced by 'El'.

(24) Let f be a closure operator with derivative d on a

CBA A. Then the following conditions are equivalent

(i) £f idis super—E%,

IA

(ii) y d(x) implies y < d(x A d(x Vv y)) for all x,y in A,

IA

(dd.40) y d(x) dimplies that there exists 2z < x such

that y Vv z is pithy and y < d(z), for all x,y in A,

(iv) same as (ii) but under the additional condition
X Ay =0,

(v) same as (iii) but under the additional condition
x Ay =0.

Proof. We obtain the implications (i)=— (ii) — (iii), (iv)::;(i),
and (v)==(i). Since (ii)==(iv) and (iii)== (v) are immediate,

this will give the theorem.
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i) =>(di). Let y <d(x), put z =x Ad(x Vy),
and suppose that vy $ d(z). Then 0 # yad(z)' =y A d(z)' A d(x)
and by (3) there is an element u of A such that
O#u<yAad(z)'Af(xaru'). From this it follows that
u<sf((zAau")v Aaz'Au)), u # f(z A u'). Therefore,
if (i) holds we have v < f((z Au'") vuVv (x A z' Au' Av'"))
for some v such that 0 # v <x A z' Au'. Now (zAu') vVuyv
VAaz Au'Aav')=zvuaA(xav') < x®Vy)Av' so that

we obtain v < d(x VvV y) which with v < x gives v <z, an

impossibility. Thus (i) implies (ii).

(ii)=>(iii), We first note, dually to a remark made
Y

in the discussion following (6), that (ii) implies the idempotency
of Pad (take y =x A d(x)). Now if y < d(x) and (ii) holds
then z = x A d(x V y) satisfies the conditions of (iii); for
certainly z < x and y < d(z) - and y Vv z is pithy since it
equals (x V y) Ad(x VvV y) which is pithy on account of the

idempotency of Fa d.

(iv) == (i) and (v) = (i). In the hypothesis of the

defining condition for an element x of A to be f—E%, it is
easy to see that we can without loss of generality take s and
y such that y < f(s vx), yAf(s) =xAs=xAy=0,y#0.
Let us suppose we are given elements x,s, and y satisfying

these conditions - then v < d(s vx) and (s vx)Ay=0.

7
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Hence if (iv) holds we have y<d((s v x) A d(s Vx V y))

so that, since vy $ d(s), it must be the case that x A d(s V x vV y) # 0.
Alternatively if (v) holds then for some 2z < s V x we have

y £d(z) and 2z < d(z Vv y), where the fact that vy * d(s) this

time implies that x A z # C and a fortiori that

x Ad(s VXAy)# 0 again. Hence under either assumption

Xx Ad(s VvV Vy)# 0 and by (3) there exists an element u of

A such that 0 # u < x A f(s vV (x\u) Vy) as is required for

(i) to hold. Q.E.D.

(25) Let f be a super E, closure operator on a CBA A. If
2
x ¢ f(y) and y 1is discrete then there exists a

smallest element z <y such that x < £(z).

Proof. It is sufficient to consider the case x A y =20

A

since if x Ay # 0 and Z, is the smallest element < y

such that x\y < f(zo) then it is easily seen that 2z = vV (x Ay)

%0
is the smallest element < y such that x < f(z). Suppose there-
fore that x A y = 0. Then x < d(y) and by (24) there exists
z <y such that x VvV z is pithy and x < d(z) (the proof of (24)
shows that z =y A d(x Vv y)‘is such an element z.) Let z, be
any element < y such that x < f(zl). ¥ .z $ 2y then since

Xx V z 1is pithy we have u < f(x v (z\u)) for some u,

0#uc< z\zl. But f(x v (z\u)) < f(zl v (z\u)) < f(y\u), and



35

0 # u < f(y\u) is contrary to the discreténess of y. Thus

z S Z Q.E.D.

1

(26) Suppose we have the following situation:
a super—E% closure operator £ on a CBA A, elements a,b
of f(A), and bases x,y of a,b respectively. Let
M(a,b) denote the statement that a and b form a modular
pair in the lattice £f(A). Then the following conditiomns

are equivalent.

(i) X Vy is a base of a Vv b,
(41) M(a,b) and x Ay 1is a base of a A b.
(Note that (i) holds iff x v y is discrete, and iff x Vv y is

a base of a VvV b).

Proof. Assume that (i) holds. We show first that x Ay is a
base of a A b. Suppose not - then since x A y is discrete it
must be the case that a A b ¢ £(x A y). Now a A b < f(x) =
=f((xAy) vV xAy')) and, since f is super—E%, there

exists u such that 0 #u<xAy', u<f((@aAab) vayyv
(xAy'"Au'))., But then 0 #u<f(yVv xAy) VvV xAy" Au")) =
f((x vy) Au') which is contrary to the discreteness of x V y.

To obtain M(a,b) we have to show that (c Va) Ab<cV (a Ab) -
that is, f(c va) Ab < f(cvVv (a Ab)) - for all closed c < b.

Take an element ¢ < b. Then f(c va) Ab < f(c va)=
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f(aAab) v (x Ay')). Hence if f(c v a)
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fE(xAy) vV xAay')) =

]

V(aAab) Vv (xAy")) since a = f(x)

>

b ¥ f(c v (a A D))

then because f 1is supe):—E;5 there exists u such that

0 #
Now
y A
0 #

of

not

[
IN

<
IA

u<xAy', u<f(cvi(@ab)v (f(c va) Ab) v (xAy'Au")).

cVv(aAab) v (f(cva)Ab) <b-=1£f(y) and, since

u=0, yvAay' Au')=(xVvy)Aau'. Thus

IA

u < f((x Vy) Au'") which is again contrary to the discreteness

X V y. Therefore (i) implies (ii).

Now assume that (ii) holds and suppose that x vV y is
discrete. Then either

a) there exists u such that 0 # u £ x A y,
f(xvy)au") =f(xAau'") v(yax'"aru")), or

b) there exists v such that 0 #v <y A x',
f(xv (y Av')), or

c) the same as b) but with x and y interchanged.

If a) holds then, since u < f(x A u') (x is discrete), there

exists v such that 0 # v<y Ax"Au', v<Ef(xAu'")vuyv

ViyAax'"Aau Av"))=£fxV (y Av')). It follows that we may

without loss of generality assume that case b) occurs. From

y A

v' < b and M(a,b) we obtain f((y Av') va) aAb < f((yAav') vV

(a A b)). This implies that 0 # v < £f((y A v') vV (a A b)) =

= f((y Av') v(xAy)) =£f(y Av') which however is contrary

to the discreteness of y. Q.E.D.
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Super-E closure operators f satisfying the

s
additional condition f(0) = 0 will be studied in Chapter 4;

under this condition they turn out to be precisely the same as

quantifiers.

2. S, _and_ S

2 '—l

We now introduce some restricted forms of the above
exchange axioms. In doing this, it will be convenient to consider
only closure operators f with £(0) = 0. So let f be such
a closure operator on a CBA A and let x be an element of A.

Then we say that:

x is _f;:.S;5 iff, for all y din A such that
0#y< £f(x), we have u < f(y vV (x\u)) for some u, 0 # u < x;
that

x is £:§1 iff, for all y in A such that
0#y < f(x), we have u < f(y) for some u, 0 # u < x (i.e. we

have x meets f£f(y)); that

f is §; iff the set of f—Si elements is \/Ldense in Aj
and that

f is suEer—Si iff every element of A is f—Si (where

in the last two definitions i =%, 1).

It is clear that these S-conditions satisfy the same
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implications between themselves as do the E-conditions, and that,

given f(0) = 0, each E-condition implies the corresponding

S-condition.

(27) Let f be a closure operator on an atomic CBA A such

that £(0) = 0.

equivalent
(1) f
(i1) f
(iii)

The proof of this is similar to that of (21).

(28) The lattice of an

on a CBA A is disjunctive.

The proof of this is similar to that of (23).

p < £(q)

implies

S

1
3

q < £(p)

Then the following conditions are

for all atoms p,q

analytic closure operator f

Here again the

result remains valid when the hypothesis 'Sy + analytic' is
2

replaced by 'Sl'.

Lemma. Let

£(0) =0

and let x be an element of A.

f be a closure operator on a CBA A such that

of A.
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(a) x is f—S1 iff x A a =0 dimplies f(x) Aa =20

for all closed a.
(b) If f(x A a) = £(x) A a for all closed a then x

is f—Sl, and the converse holds if f is Sl'

Proof. (a) Let x and a be such that x is f-Sl, a is

I

closed, and x A a = 0., Putting y = £(X) A a we have f(y) < a

0 since x 1is f—Sl and

y < f£(x). Conversely if x 1is not f—Sl and 0 # f(x), x A f£(y) =0

then a = f(y) is closed and disjoint from x but not from £(x).

so that x A f(y) = 0 and hence vy

(b) The first statement of (b) is an immediate consequence
of (a). To complete the proof of (b) we have to show that
f(x A a) = £(x) A a for all closed a, under the supposition that

f is Sl and x 1is f—Sl. Make this supposition and let a be closed.

Then certainly £f(x A a) £ £(x) A a. If the inequality here is

strict then since f is S1 there exists an f-—S1 element Xl such

that 0 # ®q < f(x) A aAN £f(xA a)'. Since x is f-S,, we have

1

y=xA f(xl) # 0 and, since x is f—Sl, we have Xy A f(y) # 0.

i

But y < x A a since Xy < a and hence f(y) < £f(x A a),

so that Xl is both disjoint and not disjoint from f(x A a),

a contradiction. Q.E.D.
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(29) Let f be a closure operator on a CBA A such that

f(0) = 0. Then the following conditons are equivalent.

(1) f is Sl’

(11) {x; x Aa=0 dimplies f(x) A a =0 for all

closed a} is V -dense in A,

(iii) {x; f(x A a) = f(x) A a for all closed a} is
\/ -dense in A,

(iv) for all closed a and all elements y % a, there
exists a closed b with 0 # b < a such that the

only closed element < b Ay is O.

(v) the V-closure J(f(A)) of £(A) in A is a

Boolean subalgebra (necessarily complete) of A.

Proof. The equivalence of (i), (ii), and (iii) is an immediate
consequence of the preceding lemma. To show that (i) and (iv)

are equivalent, suppose first that (i) holds and let a be

closed and y % a. Then there exists a non-zero f—Sl element

x £ a\y. Putting b = f(x) we see that b is closed and

0 #b < a; also if ¢ is closed and ¢ <b Ay then x Ac =0,

so that ¢ =b Ac = £f(x) Ac=0. Thus (i) implies (iv). Suppose
conversely that (iv) holds and let 2z be any non-zero element of A.
Put a = f(z) and y = a\z - then vy # a and there exists a

closed element b as described in (iv). Put x =z A b. Then

0#x <2z (if x

I

0 then b is non-zero, closed, and <b A y,

contrary to (iv)) and if ¢ dis closed and x A c =0 then f(x) A c
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is closed and < b A x' =D A.y, so that f{x) A ¢ = 0. Thus
every non-zero element 2z contains a non-zero f-—Sl element x
and we have shown that (iv) implies (i).

In (v) the \/—closure JCEGA)Y) of £(A)  in A, being
simply the set of joins in A of all subsets of £(A), is
obviously a \/—closed subset of A. Therefore in order to show
that J(f(A)) is a (necessarily complete) subalgebra of A it
is sufficient to show that it is closed under complementation.
So let a = \/ai be an arbitrary member of J(f(A)), where the

a,'s are in f(A), and suppose that f is Sl. Then a' is a

i
join \/x, of £-S elements x, where, for each a, and x,,

J 1 h| i 3
a; A xj = ( and hence a; A f(xj) = 0., It follows that
a' =\/f(xj) so that a' is in J(f(A)) and we have proved that
(i) implies (v). Suppose conversely that (v) holds - we argue
that (iv) must then hold also. For let y # a where a is closed
and let 2z denote the join of all closed elements <y. Then z
is in J(f(A)) and hence by (v) so also is a A z'. Therefore
since a A z' # 0 there is a non-zero closed element b < a A z'

and this element b clearly fulfils the requirements of (iv).

Q.E.D.

Using condition (v) of (29) we see that every T1 closure
operator is a fortiori Sl (indeed S1 is itself a sort of

separation axiom, as also is S%, and we shall study it in this

light in Appendix 2).
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(30) If £ 4dis an Sl closure operator on a CBA A then
the f-separators are precisely the central elements

of f£f(A) (e.f. (20).).

Proof. By (20) this will be proved if we show that each central
element s of £(A) is clopen. Let t be the unique complement
of s in f(A). Then s' A t' dis in J(£(A)) by (29). But if

a is in f(A) and a<s'At' then a=aA (sV t) =(anrs)V

<l

(a A £) =0, It follows that s' A t'=0 so that s v t =1,

t =s', and s is clopen. Q.E.D.
We shall use the following result in Chapter 4:

(31) If f dis an S1 closure operator on a CBA A and

k = Vd'l(O) then k' is pithy.

Proof. k 1is clearly in J(f(A)) and hence, by (29)(v), so also

is k'. Since the join of pithy elements is pithy, the result will
therefore follow if we can show that every closed element contained
in k' is pithy. Let a be closed, a < k'. Then d(a) is also
closed and hence a\d(a) is in J(f(A)). Now a\d(a) is discrete -

therefore the closed elements whose join is a\d(a) are all discrete

and, being closed, are thus all in d_l(O). It follows that al\d(a) £ k

and hence that a\d(a) = 0. Thus a < d(a) and a is pithy as

required. Q.E.D.
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so they will be studied in Chapter 4. Super—S% closure

do not appear to be of much interest for our purposes (a

closure operator which is not E

8-element CBA with closed

further element).

1
2

elements

is obtained by taking

0,1, the atoms, and
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closure operators are the same as quantifiers,

operators
super—S%
the

one



CHAPTER 3

MATROIDS AND B-MATROIDS

1 Matroids

A closure operator f on a CBA A will be said to be

a matroidal closure operator iff it is analytic and has a deri-

vative d such that PA d dis idempotent. The derivative of

a matroidal closure operator will be called a matroidal derivative.

Whitney duality for matroids is none other than the self-duality
of the following evident condition for matroidal derivativity:
an operator d on a CBA A is matroidal derivative iff d is

a biderivative and F v d, rA d are both idempotent.

(32) Let f be a closure operator with derivative d on

a CBA A. Then the following conditions are equivalent

(i) f dis matroidal,
(ii) £ is analytic and super-E,,
5

(iii) f is analytic and y < d(x) implies that there
exists 2z < x such that y Vv z 1is pithy, for all

X,y in A,

(iv) same as (iii) but with the second part of (iii)

under the additional condition x Ay = 0.

44
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Before proving this, we first obtain the following

Lemma. (a) TFor all operators d on a CBA A, PA d is idempotent

1ff
(nl) y < d(x) implies that there exists 2z < x such that

y VvV z<d(yvVz), for all x,y in A.

(b) Yor all derivatives d on a CBA A, PA d is idem-
potent iff
(r,) y <dx) and x Ay =0 implies that there exists =z < x
2 P

such that y v z < d(y Vv z), for all x,y in A.

Proof of lemma. We first note that (nl) is equivalent to:

IA

(nl') y < d(x) dimplies that there exists w such that
y<w<xVy, w<dw),

and that (nz) is equivalent to the analogous condition (nz').

(a) Clearly r A d 1is idempotent iff u A d(u) < d(u A d(u))
for all u in A. It follows that if rA d 1is idempotent and
y £d(x) then w= (x vVy) Ad(xVvy) satisfies (nl'). Suppose
conversely that (Wl') holds and let u be an arbitrary element
of A. Since u A d(u) € d(u) there exists w such that
uAd@) €<w<u, w<d(w). But thenm w < d(w) < d(u) so that
w <uAd(u) and hence w=u Ad(@u). Thus u A d(@) < d(u A d(u))

as required.

(b) On account of (a) it will be sufficient to prove that

(nz') implies (nl') (given that d 1is a derivative). So
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suppose that (nz') holds and let y < d(x). Then
y = \v/{u; u<yAf(x\u)} by (3). For each u in this join
we have u < d(x\u), (x\u) A u =0 and hence by (ﬂz') there
exists v such that u < v < (x\u) Vu=xvVvu, v<dw).
It is then easily verified that
w = \/{v; u<v<xVvVu and v < d(v) ‘for some u such that

u<yAfx\u)} is as described in (ﬂl'). 0Q.EDs

Proof of (32). (i) implies (ii) by the dual of (6) together

with the fact that (24)(ii) implies (24)(i); the fact that
(24) (i) implies (24)(iii) shows that (ii) implies (iii); (iii)
trivially implies (iv); and (iv) implies (i) by virtue of part

(b) of the lemma just proved. Q.E.D.

Since matroidal closure operators are super—E%, many of
the results of the previous chapter apply to them (note for example
the four very similar conditions, involving the hypothesis y < d(x),
on a closure operator f which arise from (24) (iii), (v) and
(32)(4ii), (iv) and which, when coupled with analyticity, are each
equivalent to the matroidality of £f). It would be pleasant to

be able to report that matroidal closure operators are E_, but

1°
whether this is actually so - and whether indeed El/2 implies El
in general -~ is at present unresolved (apart from certain cases -
see (21) and (44)(b)).

In view of (32), it seems doubtful whether matroidal
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derivatives satisfy any identities not derivable (for arbitrary
operators) from condition (I) and its dual (see the discussion
following (6)). Amongst the identities which are so derivable we
have those expressing the idempotency of Pvd and M A d, and also
d(} vd(PAad)) =d and its dual. The joint idempotency of Fva
and ' A d gives rise to a further pair of identities which might
be worth mentioning, namely dz(r vd) =d( vd) and its dual.
(This may be seen as follows. We have bvdo> d(r v d) from the
idempotency of Vv d and hence d(I Vld) > dz(r v d). The left-hand
side of this inequality is (} A d)(I' v d) by the idempotency of
P v d again and the right-hand side is > (I' A d)z(r v d) =
(f Ad)( v a) by the idempotency of P A d. The result follows.)
A simple fact which follows from the idempotency of | A d is that we
not only have:

x pithy implies d(x) perfect, but also the dual result:

x closed implies d(x) perfect - expressed differently,

d(x) < x implies d(x) = d2(x).

(33) Bireductions and cartesian products of matroidal

closure operators and matroidal derivatives are again such.

For bireductions, this is an easy consequence of the
definitions together with (11) and its dual; for cartesian

products it is trivial.
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Let us say that a lattice L 1is a matroid lattice iff L

is isomorphic to the lattice of some matroidal closure operator

on a CBA. Then from (33) we have

Corollary. Intervals and products of matroid lattices

are again such.

24 B-Matroids

A closure operator f on a CBA A will be said to be a

B-matroidal closure operator iff, for all s in A, each discrete

subelement of s 1is contained in a base of s. The derivative

of a B-matroidal closure operator will be called a B-matroidal
derivative. Whitney duality holds for B-matroids, since, as is
clear from the characterization given below, the notion of a
B-matroidal derivative is self-dual. This self-duality shows that
a B-matroidal derivative is indeed a matroidal derivative and hence

that a B-matroidal closure operator is a matroidal closure operator.

(34) An operator d on a CBA A is a B-matroidal derivative
iff d satisfies the following interpolaticn condition
IC: for all elements s,t,x,z of A such that

x A d(x)

IA

s <x <z <t <zvVvd(z), there exists an
element y of A such that y A d(y) <s, x <y <z,

and t <y v d(y).
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Proof. Let d be a B-matroidal derivative and let s,t,X,z

satisfy the hypothesis of IC. Let u be a base of s (0,

being a discrete subelement of s, is contained in some base of

s) - we claim that uV (x\s) is a base of x. Certainly u is
contained in some base v of x and we clearly have v < u Vv (x\s);

the reverse inequality follows from the fact that

x\s x As' A (vvdH))

(xAs'"Av)V (xAs'AdWw)

IA

vVv(xaAsadx)as"

IA

vV (s As'") =v.

Now there exists a base u Vw of 2z such that wAu-=20

and x\s <w. Put y=s Vvw - then x <y <z. Also y A d(y) =
=(sVvVw Ad(sVw) <sV (wAad(sVw))<sV (waAd@yvw)

by (7) and this equals s since u VvV w is discrete. Finally

y Vd(y) 2 t on account of the idempotency of Pv d and the

relations y Vv d(y) 2z, 2z v d(z) 2 t. Thus d satisfies IC.

Now suppose that d is given to satisfy IC. To show
that d is a B-matroidal derivative we have to prove the following
three facts, wherein we have put Pw'd = f:
(i) d 1is a derivative (and is therefore necessarily the
derivative of f);
(ii) f dis idempotent (and thus a closure operator); and

(iii) f is a B-matroidal closure operator.
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To do this we first prove the following lemma.

Lemma. Let d be an operator on a CBA A.

(a) If d satisfies IC in the restricted case x = s,
z =t then d 1is a biderivative.
(b) If d satisfies IC in the restricted case s =0
then ! v d is idempotent.
Proof of (a). We verify that t\d(t) = /\{y; y<st<yvdy?}

for all t in A; by (5) this will show that d is a derivative.
The self-duality of the hypothesis of (a) will then imply that d
is a biderivative. Now to obtain the above equation for a given

t in A it is easily seen to be sufficient to show that if

t\d(t) £ s < t then there exists y such that s <y < t <y Vv d(y).
So let t\d(t) < s <t and let y be such that y A d(y) £ s <
y<t<yvd(y). Wewant y # t - and this is the case since

if y =t then besides s >t A d(t)' we also have s > t A d(t),

so that s 2 t, a contradiction.

Proof of (b). Assume that d satisfies the restricted case s =0

of IC. We first show that if x <z < x vd(x) and x A d(x) =0
then (F v d)(z) = (T v d)(x). Suppose that x and 2z satisfy

Xx <z <xVvdx®, x Ad(x) =0. Then we can apply IC with s =0

and t = z Vv d(z) and we obtain y such that x <y <z, y A d(y) =0,

y vd(y) = z v d(z). Now, as remarked earlier, y A d(y) < x <y <

x V d(x) implies x =y for any operator d on A. Thus x =y
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in the present case and hence =z Vv d(z) = x vV d(x). We can now
show that ! v d is idempotent. Let 2z be any element of A
and apply IC with s = x =0, t = z. This gives an element x
such that x < z < x vV d(x), x A d{x) = 0. From what has just
been shown, this implies that (v d)(z) = (! vd)(x) and thence,
with z replaced by (Mvd)(z), that (h‘/d)z(z) = (Mvd) x).

Thiy (P vd)%z) = (¥ wdi(z) L as requived.” G.8,D.

Returning to the proof of (34), we see that this lemma
gives us the first two of the three facts which have to be proved
in order to show that d is a B-matroidal derivative. The third
fact, stating that f dis B-matroidal closure operator, follows
directly from the first two facts together with the fact that d
satisfies IC (here, as in (b) of the lemma, the case s = 0 only

is required). Q.E.D.

(Note. It is possible to prove (34) using the arguments
of [20] - see results (10), (11), and (12) in [20]; the proof of

(34) given here is obviously better however.)

The following two examples show that IC cannot be replaced
(34) by the restricted forms of IC occuring in the above two lemma
Let A be the finite CBA with four atoms P1sPysP3sP, and define
d@V;pi) = V§p1+1’ where P is Py Then d satisfies IC with
Xx=s, z =t but Mvd is not idempotent. Next let A be the

finite CBA with two atoms p; and p, and put d(l) =1, d(x)

in

S.



52

otherwise. Then d satisfies IC with s =0 yet d is not

a derivative.

(35) Let £ be a closure operator on a CBA A. Then f is
B-matroidal iff it is E% and satisfies the following
minimality condition
MC: for all elements s,x,y of A such that
x < f(s Vy) there exists a minimal element 2z of A

such that x < £(s v z), 2z £,

Proof. Suppose that f is a B-matroidal closure operator. Then

f is E, since by (32) it is super-E, . To show that f satisfies

L
2

e

MC let x < f(s Vy)., Let u and v be bases of s and s Vy

respectively with u < v - such exist on account of f being
B-matroidal - and denote by w the smallest subelement of Vv such
that x < f(w) - this exists by (25). Put 2z = w\u. Then 2z <y

and x < f(s v z), the latter since w < s Vv z., Also, if zg <z
then f(s v zl) = f(uv sl) and since w $ u vz, < v we cannot
have x < f(s v zl). Hence 2z is minimal such that x < f(s Vv z),
z <vy.

Now suppose that f dis E, and satisfies MC. We show

Ny

first that f is super-E, . Let y < f(s Vx), y £ f(s) and let

Ny

z be minimal such that y < f(s vV z), z < x. Then z # 0 and,

since f 1is E%, z contains a non-zero f-EL element, z, say.
2
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By the minimality of =z, y < f(s Vv (z\zl)), ‘whereas

y<f(svz)=1£f(vV (z\zl) v zl). The fact that z, is f-E;
2

1
thus implies the existence of an element u such that 0 # u < z,
and u < f(s v (z\zl) VyV (zl\u)) =f(svyvVv(z\u)). It

follows that 0 # u < x and u < f(s vy Vv (x\u)) as required for
f to be super-E%. To show that f is B-matroidal, let x be

a discrete subelement of an element s of A. By MC there exists
a minimal element y such that y < s and f(s) = f(x Vv y) -

note that then x A y = 0. We claim that x Vy 1is a base of s,

equivalently, that x v y is discrete. For suppose not - then

there exists either a) a non-zero element u < x such that

IA

u f((x\u) vy) or b) a non-zero element v <y such that

IA

v £ f£(x v (y\v)). If a) holds then, from u § f(x\u) (x is discrete)
and the fact that £ 1is super—E%, we obtain a non-zero v <y such
that v < £((x\u) vu Vv (y\v)) = £f(x v (y\v)) so that b) holds in
any case. However, b) is clearly incompatible with the minimality

of y. Thus x Vy 1is a base of s and this shows that f 1is

B-matroidal. Q.E.D.

(36) Bireductions and cartesian products of B-matroidal ¢losure

operators and B-matroidal derivatives are again such.

This is straightforward (c.f. (32); here we use (33) in addition).

Let us say that a lattice L is a B-matroid lattice iff
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L is isomorphic to the lattice of some B-matroidal closure

operator on a CBA. Then from (36) we have

Corollary. Intervals and products of B-matroid lattices

are again such.

(37) A B-matroid lattice is left-complemented.

Proof. Let f be a B-matroidal closure operator on a CBA A

and let a and b be in f(A). Take a base x of a, extend

it to a base x vy of aVvb, where x Ay=0, and put c = f(y).

Then certainly c¢ <b (since y <b) and a Vec=aVb. Now

X 1is a base of a, y is a base of ¢, and % vy 1is a base of
aVvec. It follows by (26) that M(c,a) and that x Ay 1is a
base of a Ac - so that aAc=£f(xAy)=1£(0), the smallest

element of f(A). Q.E.D.

Corollary. A B-matroid lattice is:
(a) relatively complemented;
(b) semimodular in the sense of MacLane [31]; and

(c) semimodular in the sense that the relation M(a,b)

is symmetric.

These are well-known and in any case easy consequences

of left-complementedness for arbitrary lattices with O.
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(38) Let f be a B-matroidal closure operator cn a CBA A

and suppose that f 1is S Then the set of all

1°

f-separators is a complete Boolean subalgebra of A.

Proof. By (30), part (a) of the preceding corollary, and
Janowitz's result [24] that the centre of a complete relatively
complemented lattice L is a complete sublattice of L, the set
S of all f-separators is a complete sublattice of f(A). 1In
particular, S is a /\—closed subset of f(A) and this, together
with the fact that f(A) is a /\—closed subset of A, implies that
S dis a /\—closed subset of A. Since S 1is a subalgebra of A
by (16), the result follows. Q.E.D.

The symmetry of M(a,b) in a B-matroid lattice, obtained

in (37), can also be seen directly from the following improvement

of (26).

(39) Let f be a B-matroidal closure operator on a CBA A
and let a and b be elements of A. Then the
following conditions are equivalent_

(1) M(a,b),

(ii) there exist bases x and y of a and b

respectively such that x Vy is a base of a VvV b,

(1ii) for all bases x and y of a and b respectively
for which x Ay is a base of a A b, x Vy is

a base of a v b.
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Proof. From (26) it follows immediately that (ii) implies (i)
and that (i) implies (iii). Since f is B-matroidal, there
exist bases x and y respectively of any given pair a and b
of elements of A which in addition are such that x A y is

a base of a A b. To see this, take a basé z of a A Db and
extend it to bases x and y of a and b respectively. Then
z<xXAy<aAb and, since z and x Ay are respectively
dense and discrete in a A b, we must have z = x Ay, and x Ay
is a base of a A b. On account of this fact, (26) also shows

that (iii) implies (ii). Q.E.D.

Some results specific to matroidal closure operators on

atomic CBA's will be discussed in Appendix 3.



CHAPTER 4

TOPOLOGICAL MATROIDS

L. Topological Closure Operators

A v-operator on a CBA A is an operator £ on A such
that f(\/X) = \/f(X) for all finite subsets X of Aj; equiva-
lently, such that £(0) =0 and f(x Vy) =f&) Vv f(y) for

all =x,y in A.

(40) (a) The join of v-operators is again a V-operator,

(b) If f is a V-operator and g 1is any operator

then f\g is a Vv-operator.

(c) Reductions and cartesian products of V-operators
are again such. If f is a v-operator then so is

the coreduction fS of f, provided that {(s) < s.

Proof. (a) and (c) are easily verified. To obtain (b), let X be
any finite subset of A. Then (f\g)(VX) = \/kf(u)\g(u); u < Vx}

by (1). Now for u < \/X we have f(u) = f(u A (\/X)) =\/f(u A X)

so that £(w\g(W) = (V,f@ A ))\g@) = Y, (F A x)\g(w) s
\/(f(u A x)\g(u A X)) < \Vl(f\g)(x). Therefore (f\g)(\/x) <

xeX x€eX
\/kf\g)(X) and since the reverse inequality is trivial we have

proved (b). Q.E.D.

57
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As an immediate consequence of parts (a) and (b) of

this result we have:

Corollary. An operator f = P is a v-operator iff

its derivative is a V-operator.

Note that this corollary applies in particular to any
closure operator f. A closure operator which is also a V-operator

will be called a topological closure operator and the derivative

of such an operator will be called a topological derivative.

We see from (40) that reductions and cartesian products of
topological closure operators are again such and that if £ is

a topological closure operator then so is fS when s 1is f-closed.

(41) A closure operator f on a CBA A is a topological

closure operator iff f(A) dis a v-closed subset of A.

Proof. This result is well-known but we include a proof for

the sake of completeness: If f is topological and X is a
finite subset of f(A) then f(\/X) = \/f(X) = \/X so that \/X
is in f(A), that is, f(A) is v-closed. If £f(A) is given to
be V-closed and X dis a finite subset of A then \/f(X) is in
f(A) - hence from \/X < \f%(x) we obtain f(\/X) < \/%(X) so

that £(Vx) = V(). Q.E.D.
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(42) A topological closureboperator is analytic iff it is

analytic at O.

Proof. Recall that a closure operator f with f£f(0) =0 is
analytic at 0 iff j(f) = 1. Let f be a topological closure
operator which is analytic at 0. To show that f is analytic
it is enough, by the corollary to (10), to show that it is
analytic at each closed element s, equivalently, that s' =

= \/{w; wAs=wAd(s Vw) =0}, where d is the derivative
of f. Now in this join d(s v w) = d(s) v d(w) so that, since
d(s) < s, we simply have the join of the elements w which are
discrete and < s'. Since the join of all discrete elements is
1 and the set of discrete elements is a section, the join con-

sidered does equal s' as required. Q.E.D.

(43) Let f be a topological closure operator on a CBA A
and let s be an element of A. Then the following

conditions are equivalent
(1) s 1is an f-separator,
(ii) s 1is clopen,

(1i1) s is in ‘the centre'of i E(AY « «(c.£.(20) and (30).)

Proof. Suppose first that s 1is clopen. Then £(s) A f(s') =

wigtA 81 = 0 = E(0) andy B x) o FEGE A B Sl AvE TS
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f(x As) vVExAS') forall x in A. It follows by the lemma

preceding (17) that s is an f-respector. Now suppose that s is
central in f(A), with t as its complement in £f(A). Then, since
f(A) is a sublattice of A by (41), t must be the complement s'

of s in A, and thus s 1is clopen. The combination of these two

facts with (20) leads directly to the result. Q.E.D.

The various exchange conditions introduced in Chapter 2

share in the general simplification occasioned by topologicality:

(44) (a) For topological closure operators the properties Ei
and Si are equivalent and so also are the properties
super-—Ei and super—Si, where 1i =%, 1.
(b) For analytic topological closure operators the

properties E , E., S;, and S are all equivalent.
¥ 1Y T

1

Proof. The proof of this rests on the following:

Lemma. Let f be a topological closure operator on a CBA A and
let x be an element of A. Then
(¢) x is f—Ei iff x is f—Si, where i =%, 1 and

(d) for x discrete, x is f-S, iff x is f-S..
L 1

Proof of lemma. (c) follows from the definitions and the fact

that (for f topological) y < f(s vV x) and vy $ f(s) dimplies
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z < f(x) and =z $ £(0), where z =7y A f(x). (d) follows from
the corollary to (40) and the fact that, for any closure operator

f with £(0) = 0, an element X is

£-S

]

iff x Ay=xAdEx Vvy) =0 implies y Ad(x) =0

1
2

and

f-S. iff x Ay =x Ad(y) =0 implies y A d(x) = O.

A

(These equivalences follow easily from the definitions.) Q.E.D.

(44) can now be proved: (44) (a) follows immediately
from part (c) of the lemma; (44)(b) follows from part (d) of the
lemma by virtue of the fact that, for a closure operator £ which

is analytic at 0 and has £(0) = 0, the f-discrete elements are

\/Ldense. Q.E.D.

The remaining results of this section are essentially all
familiar from the atomic case and are only given here since they

will be used in later sections.

(45) Let f be a topological closure operator on a CBA A
and let x and y be elements of A. Then
(a) x open and y pithy implies x Ay pithy, and

(b) x discrete and y pithy implies (x A y)' dense.

Proof. For (a) we have x Ay < x A d(y) =
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xAfdxAy) vAdE' Ayl sxA[dxAy) V'] <dxAy)

(where d(x' A y) < d(x') < x' since x is closed). The
inequalities x Ay < x A d(y) =xA[dx Ay) vdiE'Ay] <

d(x' Ay) <d((x Ay)') (where x Ad(x Ay) =0 since x

is discrete) give (b). Q.E.D.

A closure operator f on a CBA A will be said to be (i)

pithy iff 1 is f-pithy and (ii) perfectly disconnected (Semadeni

[36], pp. 33/34) iff, for all x,y in A, X Ay =0 implies

d(x) A d(y) = 0, where d is the derivative of f£.

(46) Let f be a topological closure operator with derivative
d on a CBA.A. .Then

(2) the following conditions are equivalent

(i) d* < d,
(ii) f is pithy
(iii) every open element is pithy;

(b) the following conditions are also equivalent
(i) d < d*,
(ii) f 1is perfectly disconnected,
(iii) d(x A y) =d(x) Ad(y) for all x,y in A; and

(c) if f is perfectly disconnected then every pithy

element is open.

Proof. (a) We prove that (i) and .(iii) are equivalent whether f

is topological or not. First note that, for any element x of A,
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the element f*(x) = x A d*(x) (= the interior of x) is always
open and that x is open iff x = f*(x), that is, iff x < d*(x).
It is clear from this latter remark that (i) implies (iii). On
the other hand, if (iii) holds and x is any element of A then
the elements x A d*(x) and x' A d*(x'), being open, are pithy -
from which it follows that x A d*(x) < d(x) and x' A d(x)' < d®E").
From the second inequality we obtain d(x')' < x v d(x) and thence
x' A d*¥(x) < x'" A(x v d(x)) € d(x) which combined with the first
inequality yields d*(x) < d(x). Thus (iii) implies (i). Now
suppose that f 1is topological. Then 1 is open since £(0) = 0
and hence (iii) implies (ii). If (ii) holds then for each element
x of A we have d(x) v d(x') = d(1) =1 and hence d*(x) < d(x)

so that (ii) implies (i). This gives (a).

(b) Here it is the case that (i) and (ii) are equivalent
whether f 1is topological or not, since (as is immediate from the
definition) f is perfectly disconnected iff d(x) A d(x') =0
for all x in A. Suppose that f 1is topological and perfectly
disconnected. Then for all x,y in A we have d(x) A d(y) =
[dx Ay) vdrAyD)] AldxAay) vdE'Ay)] =dx Ay)
since x Ay, xAy', and x' Ay are pairwise disjoint. Thus
(ii) and (iii) are equivalent (it is obvious that (iii) implies (ii)

whenever £(0) = d(0) = 0 ) and we have (b).

(¢) If x 1is pithy then x < d(x) < d*(x) by (b)(i) and

hence x is open. Q.E.D.
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The converse of (c) in (46) is not true - see the

discussion following (64) below.

A closure operator f on a CBA A will be said to be

extremally disconnected iff, for all x in A, x open implies

f(x) open. If we say that an element x of A 1is f-regular
closed iff it is of the form £f(y) for some open element vy

(equivalently, iff ff*(x) = x) and that x is f-regular open

iff x' 4is f-regular closed (equivalently, iff x 1is of the

form £f(z) for some closed element 2z, and iff f£*f(x) = x)

then f will be extremally disconnected iff any two of the

classes of clopen elements, regular closed elements, and regular
open elements are equal. Since for f topological the class

of regular closed elements is known to be a CBA under the order
inherited from A, it follows that if f is extremally disconnected
and topological then the class of clopen elements is a CBA under
this order (though this CBA will not in general be a complete sub-
algebra of A - c.f. (38)). A perfectly disconnected closure
operator f 1is always extremally disconnected: if x 1is open

then d(f(x)') £ dx") £ X' A dEX)' = £(x)' (d(x') < x' since

x' 1is closed and d(x') <.d(x)' since f is perfectly disconnected),
so that f(x)' 1is closed and £f(x) is open. It is well-known

that the converse implication here fails to hold even in the

topological case.
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47) Let f be a topological closure operator with

derivative d on a CBA A. Then the following hold:

(a) if f is T1 then d2 < ds and

(b) 1f d2 <d and f is analytic and Sl then f is Tl
Proof. We first prove the following result: For any topological
closure operator f, the set of elements x for which d(x) is
closed (that is, for which dz(x) < d{x)) -is \/-closed. Let S
denote this set; we show that s A (dz(x)\d(x)) = 0 for each
x in A and s in S such that s < x. This gives the result
since always dz(x)\d(x) sofx vV d))\d(E) £ x so that if x is
in J(S) then it will follow that d2(x)\d(x) =0, and x is
in S. Suppose therefore that s < x where x dis in A and
s ds in S. Put a = f(x\s) - then a is closed and x < a V s.
Hence d(x) < d(x A a) vd(x As) £ aVvd(s) so that d(x)\a < d(s)
and therefore d2(x) < d(d(x) A a) v d(d(x)\a) < a v d%(s) < a v d(s) =
(x\s) v d(x\s) v d(s) = (x\s) vV d(x). This implies that
s A (dz(x)\d(x)) < s A ((x\s) vdx)) Adx)'" and since this

latter term is 0, we have s A (dz(x)\d(x)) = 0 as claimed.

(a) follows immediately from this result since clearly

f(A) € S and by definition, £ is Tl 1FE“SEEA) - 18 \/Ldense in . A

To obtain (b), we show that if £ 1is any closure operator

with £(0) = 0 which is analytic at 0, S and such that the

l’

set S defined above is \/—dense indsA ‘then+ T = is Tl' Since
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f is Sl and analytic at O the elements ‘which are discrete
~and f—S1 are \/—dense in A. Hence if we show that each such

element is the join of closed elements we will have shown that

1 So let x be discrete and f—Sl and let s be an

f is T
element of S such that s £ x. Then d(s) is closed (since
s 1is in S) and disjoint froﬁ X (since x is discrete) and
therefore d(s) is disjoint from f(x) (since x is f—Sl) -
but then d(s) = 0, and s is closed. Since x is the join

of such elements s, x 1is the join of closed elements as required.

Q.E.D.

Part (a) of this result is the extension to the general

CBA case of Exercise D(c) in Chapter 1 of Kelley's General
Topology [27]. The fact that the set S as defined here is
\/—closed is possibly new even for the atomic case. It has

as an immediate consequence the result of Yang referred to in the
same exercise of Kelley, namely that if d is a topological
derivative on an atomic CBA then d(x) is closed for each element
x of A iff d(p) is closed for each atom p of A. In
Appendix 2 on separation axioms we shall make some further remarks
on the various conditions considered in (47), along with some

related conditions.
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(48) Let f be a topological closure operator on a CBA A with
derivative d such that d2 <d. If x and y are
elements of A such that x 1is dense in y and vy is

pithy then x 1is pithy.

Proof. From y < x V d(x) we obtain d(y)-s d(x) v dz(x) = d(x)

and hence x <y < d(y) < d(x). Q.E.D.

We have paid a certain amount of attention to the identities
satisfied by the derivatives of closure operators of various types;
in the topological case condition (I) gives us no more than we
already have from idempotency. Precisely: for any V-operator
d on a CBA A, d satisfies condition (I) iff I'v d is idempotent.
(To see this let d be any V-operator. Then in the first place
it is clear that | v d is idempotent iff d2 <My d. Suppose
that Alx) £y - then dfx ¥ dx A ¥)) = df) v 4°(z & y) =
dx) vV x Ay) vd(x Ay) <y as required for conditon (I). The
converse implication from condition (I) to the idempotency of

Pvad has previously been shown to hold for all d in ((A).)
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2. E& Matroidal Topological Closure Operators

Let f be a matroidal topological closure operator on a
CBA A. Then f is Sl by (32) and (44)(b), and the analysis of

Appendix 2 enables us to resolve f into an analytic quantifier

acting on A and a T, matroidal topological closure operator acting

1
on the CBA J(£(A)) (see (29)(v)). We may therefore divide the
study of matroidal topological closure operators into that of analytic

quantifiers and of T, matroidal topological closure operators.

1
The former will be considered in the next section and the latter,

briefly, here.

(49) Let f be an analytic topological closure operator on
a CBA A. Then the following conditions are equivalent.
(i) f is T1 and matroidal,

(id) every discrete element is closed,

(iid) the discrete elements form an ideal of A.

Proof. Let d denote the derivative of f. To show that (i)

and (ii) are equivalent, suppose first that (i) holds and let x

be discrete. Then from d(x) < d(x) and the fact that £ is

super—E% we obtain d(x) =dx A dEx Vv d(x)))‘= d(x A (dx) Vv dz(x))) =
=d(x Adx)) =0 (where d(x) v d2(x) = d(x) by (47)(a) and

d(x A d(x)) = 0 since x is discrete) - thus x is closed. Now

suppose that (ii) is given to hold. Then, since f is analytic,
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the discrete elements and therefore also the closed elements

are \/Cdense so that £ dis’' T To show that f 1is matroidal

1°
we have to show that M A d is idempotent. Let x be any

element of A - then x\d(x) is discrete and hence closed, so

that d(x\d(x)) = 0. This implies that d(x) = d((x A d(x)) V
(x\d(x))) = d(x A d(x)) and a fortiori that x A d(x) < d(x A d(x))

as required for the idempotency of M A a.

The equivalence of (ii) and (iii) may be obtained as follows.
If (ii) holds then the set of discrete elements = d—l(O) and this
is an ideal since d is a V-operator. On the other hand, if (ii)
fails and x is discrete but not closed, let s be a non-zero
discrete subelement of d(x) (such exists since d(x) # 0 and
f 1is analytic). Then x and s are discrete yet x V s 1is not

discrete, and (iii) fails also. Q.E.D.

(50) Let f be a Tl matroidal topological closure operator
with derivative d on a CBA A. Then:
(a) d2 = ds

(b) every scattered element is discrete; and

(c) x open implies x A d(x) open, for all x in A.

Proof. (a) 1In the course of proving (49) we showed that

d(x) = d(x A d(x)) for all x in A - i.e. that d = d(V A d); the

fact that d% = d then follows from the inequality g id= a(Ma d)

I\
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(b) An element x is scattered iff x contains no
non-zero pithy element. Now x A d(x) is pithy so that if =x is

scattered we must have x A d(x) = 0, and x is discrete.

(c) Let x be an element of A. Then x\d(x) is
discrete and therefore closed. Thus if x 1is open, so also is

x AdEx) = A E\dE))'. Q.E.D.

We see from (50)(a) and earlier results that, for a
matroidal topological closure operator with derivative d, the
three conditions:

£ - ds Tl; d” <£d; and d” = d,
are equivalent. In connection with (b) in (50) we should remark
that discrete elements are always scattered - so that, relative

to any T, matroidal topological closure operator, the properties:

1
discrete; discrete and closed; and scattered, are equivalent.
A few further necessary and sufficient conditions for the

matroidality of a T, topological closure operator, together with

i
some further simple consequences of such matroidality, could be
given here but none of these is particularly attractive. In
Appendix 3 (see (83)) we obtain two results on topological matroids
for the T2 atomic case which give some idea of the pathologies

such topological spaces must possess. If matroidal topological
spaces (atomicity understood) turned out to have some application

to, say, analysis, this would be very helpful in providing a direction

to their further investigation. However, the existence of even T3
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matroidal topological spaces (non-discrete)'is an open question
at present. In view of the apparent difficulty in producing a
T315 pithy topological space with just ome point which is not a
limit point of any discrete set (see Fine and Gillman [12], 2.6)
it would seem to be not at all easy to construct a non-discrete
T3l5 topological space which is matroidal and in which by (49)

no point is a limit point of a discrete set.

21 Supertopological Closure Operators and Quantifiers

A \/—operator on a CBA A is an operator f on A such

that f(\/X) = \/f(X) for ‘all :giubsets: X of A.

(51) (a) The join of \v/—operators is again a \v/-operator

(b)) If f£%ds:3 \v/—operator and g is any operator
then f\g is a \/-operator.

(c) Reductions and cartesian products of \/;operators
are again \/—operators. &£ dsia \/—operator
then so is the coreduction fS of £, provided that
£(g) < 8.

Corollary. An operator f 2 P is a \/loperator 1f£f

its derivative is a ‘V/—operator.

The proofs of these results are similar to those of (40)

and its corollary.
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(52) Let f be a \/Loperator on a CBA A and let S be a

‘\/—dense subset of A. Then

(a) f(x) = \/qf(s); s in S, s < x} for all x in A; and

(b) (F\g)(x) = V{f(s)\g(s); s in S, s < x} for all x

in A and operators g on A.

Proof. (a) 1is an immediate consequence of the definitions.
For (b), Hammer's formula gives (f\g)(x) = \/{f(u)\g(u); u < x} 2=
\/{f(s)\g(s);s in S, s £ x} and the reverse inequality follows

from the fact that, for u < x,

ful\g) = V {£(s); s in S, s < u}\ g(u)

\/{f(s)\g(u); s in S, s £ u}
\/{f(s)\g(s); s in S, s < u}

IA

\/{f(s)\g(s); s in S, s < x}. Q.E.D.

IA

(It is not difficult to show that the truth of (a) in (52)
for all \/—dense subsets S of A is also a sufficient condition
for f to be a \v/~operator, and similarly for (b) - indeed if £s ]

it is enough to consider only g = I in (b).)

A closure operator which is also a \/—operator will be

called a supertopological closure operator and the derivative of

such an operator will be called a supertopological derivative.
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(53) A closure operator f on a CBA A is supertopological

iff f(A) is a \/-closed subset of A.

The proof of this is similar to that of (41).

(54) If f 4dis a supertopological closure operator on a
CBA A then the join of any directed set of discrete

elements of A 1is again discrete.

Proof. Let D be a directed set of discrete elements and put
VD = s. Then from the fact that the derivative d of f is a
\/—operator (by the corollary to (51)), we obtain s A d(s) =
\/{x A d(y); x,y in D}. Now for each X,y in D there exists
z in D such that x,y <z - hence x A d(y) < z A d(z) = 0.

It follows that s A d(s) = 0. Q.E.D.

We now consider quantifiers.

(55) Let f be a closure operator on a CBA A such that
£f(0) = 0. Then the following conditions are equivalent
(i) every closed element is open (equivalently, every
open element is closed),
(ii) f(A) is a subalgebra (necessarily complete) of A,

(111) f 4is topological and f(A) is complemented,
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(iv) every closed element is an f-separator,

£,
l\

(v) f is topological and £*f

v

(vi) £ is topological and f*f

: ]

(vii) £ is super~El,

(viii) £ is super—Sl,

(ix) x A a=0 implies f(x) A a =0 for all x and
all closed a,

(%) f(x A a) = £f(x) A a for all x and all closed a,

(1) f is supertopological and Sl.

(Most of this result is well-known: see Banaschewski [2], Bergmann [3],

Davis [9], Halmos [15], Rubin [34], and Wright [46].

For the sake of completeness we prove the equivalence of all the

conditions listed.)

Proof. The equivalence of the two conditions mentioned in (i)
is obvious, as is the fact that (ii) implies (i). Since £f(A) is
a /\-closed subset of A for any closure operator f, it is
also obvious that (i) implies (ii) and that if £f(A) is a subal-

gebra of A then it is a complete subalgebra of A.

It follows from (41) that (ii) implies (iii). The fact
that (iii) implies (i) may be seen as follows, where we are
supposing that (iii) is given to hold. Since f is topological,
f(A) 1is a sublattice of A containing O and 1. Therefore,

for each closed element a, the complement cf a in £f(A) coincides
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' 4s also closed as is

with its complement in A - hence a
required for (i).

(i) implies (iv) by virtue of (43) and the already
proved fact that if (i) holds then f 1is topological; and (iv)
implies (i) by virtue of (20).

To see that (i) implies (v), let x be any element of
A - then f(x), being closed, is also open and hence f£f#*f(x) = f(x)
as desired. Clearly (v) implies (vi), and (vi) implies (i) since
if a is closed then (vi) gives a < f*f(a) = f*(a), and this
implies that a 1is open.

Of the next four conditioﬂs, (vii) and (viii) are
equivalent by (44)(a) and (viii), (ix), and (x) are equivalent
by the lemma preceding (29) (just as for the first three conditions

in (29)); also (ix) may be seen to be equivalent to (i) as

follows. Suppose that (i) holds and let x A a = 0 where a is

| Al

closed - then x < a and hence f(x) < a' since a is closed
also - thus f(x) A a = 0. Suppose that (ik) holds and let a be
closed - then from a A a' = 0 we obtain f(a') A a = 0 and this
implies that a is open.

To conclude the proof of (55), we remark that (ii) and (xi)
are equivalent on account of the fact that if f is any closure
operator on a CBA A then by (53):

f 1is supertopological iff f(A) is a complete sublattice of

and by (29), given that £(0) = 0,
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£ s S1 iff J(£(A)) is a complete subalgebra of A. Q.E.D.

A closure operator satisfying the conditions of (55),

including £(0) = 0, is called a quantifier.

(56) Let f be a closure operator onaCBA A. Then f is
B-matroidal and topological iff it is an analytic

quantifier.

Proof. Suppose first that f is B-matroidal and topological.

Then f 1is certainly analytic. To show that f is a quantifier,
let a be closed and let x be a base of a'. Now f is

super—S,/2 by (32) and therefore x is f—S%; but then x 1is f—Sl

by part (d) of the lemma to (44). Hence from x A a = 0 we conclude
f(x) A a =0, that is, f(a') A a = 0, whence a is open. Now
suppose that f 1is an analytic quantifier. Then f is surely
topological. To show that f is B-matroidal, let x be a

discrete subelement of an element s of A. Then by (54) and

Zorn's Lemma, X is contained in a maximal discrete subelement

y of s and y must be a base of s by (22). Q.E.D.

It is perhaps worth mentioning here one or two alternative
ways in which one may view the situation of a quantifier f on
a CBA A together with an f-base s. Given such a situation, let

w be the operator on A defined by w(x) = f(x A s) for all x
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in A. We then claim that w is a complete'idempotent endomor-
phism of A with range w(A) = £(A) (so that, in the terminology
of Halmos [15], w is a complete 'constant' in the monadic algebra
(A,f) - or, as we prefer, that w 1is a complete f-witness, to
borrow the other term used by Halmos in the same context) and
also that the restriction u of f (or, equally well, of w)
to A° is a complete morphism of A° to A with range f£(A)
such that A° -u—>A iAS = rAs and A —,S\-—>AS sy A = w, Wwhere
S:XF——x A s.

In the first place, w is clearly a \/—operator, so that
to show it is a complete endomorphism it is enough to verify that
it preserves complements. Let x be in A - then

x A s A f(x'As) =0 by the discreteness of s and hence

f(x A s) A f(x' A s) = 0, that is, w(x) A w(x') = 0.

Therefore since w(x) VvV w(x') = w(l) = f(s) =1 we have w({x') = w(x)'
as required. Now let a be in f(A) - then w(a) = f(a A s) =
= a A f(s) = a from which it follows, in view of the obvious

inclusion w(A) ¢ f£(A), that w(A) = f£f(A) and that w is idem-
potent. The statements concerning u are now easily seen to be
true (the fact that u(x) A s = f(x) A s = x for all x in AS
follows directly from the discreteness of s).

Now let us suppose we are given an arbitrary complete

idempotent endomorphism w of a CBA A. Then w is of course a

complete f-witness, where f 1is the quantifier on A such that
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f(A) = w(A). We want to show that there exists an f-base s

such that w(x) = f(x A s) for all x in A. If s is any
element which satisfies this equation for all x in A then

s must be the smallest element x with w(x) = 1l: for clearly
w(s) =1 and if w(x) =1 then f(x' A s) =w(x') =0 so

that x' A s = 0 and x 2 s. This shows also that such an element
s 1is minimal subject to f(s) = 1 and is therefore an f-base.

So let us take s =//\w_l(l) = the smallest element x with

w(x) 1. Then for each x in A we have w(x) = w(x A s) < £(x A 8)

(if w is any f-witness then f* < w < f, as follows on taking

w's in the inequality f*(x) < x

IA

f(x)). Also w(w((x) v x') =
wz(x) V' =wEx) vwkx') =1 so that w(x) v x' > s, that

is, w(x) 2 x A s and hence w(x) =2 f(x A s). Thus w(x) = £f(x A s)
for all x in A and, as already remarked, s must be an

f-base.

Finally, suppose we are given an element s of a CBA A

S

together with a complete morphism u of A to A such that
AS % A —gfbAS = PAS (§ as above). Let f be the quantifier

on A with f£fQA) = u(AS). Then u 1is the restriction of f to
NG equivalently: for each x in AS, u(x) 1is the smallest
element of u(AS) which contains x, this being the case since

if x < u(y) then x < u(y) A s =7y 'and hence u(x) < u(y). Also,
s

s 1is an f-base since f(x) A s = u(x) A s =x for all x in A

(so that s 1is discrete) and f(s) = u(s) =1 (so that s 1is dense).
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It is obvious that the complete f-witness constructed from s
as above coincides with the complete idempotent endomorphism of
A given by A-—ga As-—E; A.

Let (A,f) be a monadic algebra and let x be an element
of A. Then an f-witness w 1is said to be a witness for x iff
f(x) =w(x). If A and w are complete and s is the f-base
corresponding to w as above then this says that £f(x) = £(x A s),
equivalently, that s contains a base (necessarily equal to
X A s) of x. Now the monadic algebra (A,f) is said to be
rich iff there is an f-witness for each element of A. Analogously
we may say that a complete monadic algebra (A,f) is completely
rich iff there is a complete f-witness for each element of A.

By what was just stated, this is the same as saying that for each
element x of A there is a base of 1 which contains a base

of x. It follows that (A,f) is completely rich iff £ 1is analytic
(if f 4is completely rich then a fortiori every element of A has

a base so that the discrete elements are \/—dense, and f is analytic;
conversely if f is analytic then by (5%) it is B-matroidal and

hence every element has a base which extends to a base of 1).

This fact leads to a representation (closely analogous to the one
obtained by Halmos [15], [16]) for analytic quantifiers in terms

of analytic quantifiers of a particular type, which we now describe.

Let C be any CBA and I any index set and take V to be

the quantifier on the CBA CI with V(CI) consisting of the constant
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functions from I to C; we call V the diagonal quantifier on
CI. For x in CI we have: (V(x))({E) = \vgx(j) for all i
((W\P)YE) @) = ;ﬁgx(j) for all i (this follows from Hammer's

formula); x is V-discrete iff x(i) A x(j)

0 for all 4i,j

I

such that i # j; x 1is V-dense iff \/;x(i) l; and x is
a V-base iff the x(i)'s constitute a partition of 1 with
possibly zero parts. Also V is analytic since if x 1is any non-
zero element of CI, say x(k) # 0, define y in CI to have
the value x(k) at k and to be zero elsewhere - then y is a
non-zero discrete subelement of x.

Now let f be any analytic quantifier on a CBA A and
let W denote the set of complete f-witnesses. Define the evalu-
ation mapping e:A — f(A)w by e(x)(w) = w(x) for all x in A
and w in W. Then:

(a) e is a complete morphism of CBA's (this is clear);

(b) e is 1-1 (if e(x) = 0 then, taking w in W such that

w(x) = £(x), we obtain f(x) = 0 and hence x = 0); and

(c) e is a morphism of monadic algebras from the algebra
(A,f) to the algebra (f(A)w, V) (where V is the
diagonal quantifier on f(A)w)

[that is, e(f(x)) = V(e(x)) for all x in A (for each w in
W we have (e(f(x))(w) = w(f)) = £(x) and (V(ex))) w) =
\/w(e(x))(w) =\/;w(x) = f(x), the last equality holding since

each w(x) < f(x) and some w(x) = £(x))].

Thus (A,f) 1is represented as a complete subalgebra of the complete
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monadic algebra (f(A)w, 7). (We note that the analyticity of f
is necessary in b) and in c¢) since they each imply, for x # 0
in A, that w(x) # 0 for some w in W - equivalently, that

f(x As) # 0 for some f-base s, which in turn implies that x

contains some discrete element # 0).

4, Hewitt-Katétov Closure Operators

An HK (= Hewitt-Kat¥tov) closure operator on a CBA A

is a closure operator on A whose derivative is an endomorphism
of A (where by an endomorphism is meant a Boolean endomorphism,

not necessarily complete). An HK derivative is the derivative

of an HK closure operator. It is clear that HK closure operators
and HK derivatives are topological. The reason for the title
"Hewitt-Katétov" is that, for the 'maximal' spaces of Hewitt [19]
and the 'maximal pithy' spaces of Kat¥&tov [26], the corresponding
closure operators are HK. Since d* = d for any endomorphism d
of a CBA, the following result applies in particular to any HK

closure operator:

(57) Let f be a closure operator on a CBA A and suppose
that the derivative d of f satisfies d* = d. Then
f 1is matroidal and extremally disconnected. Also d(0) = 0,

d(1) = 1, and, for each x in A,
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x 1is pithy iff x' is closed (i.e. iff x is open)

x 1is discrete iff x is dense,

1

x 1is perfect iff x' 4is clopen (i.e. iff x is clopen), and

x 1is basic iff x' is basic.

Proof. It is clear that f is matroidal and that the four
equivalences concerning an element x of A hold. From the
equivalence of openness and pithyness, together with the fact
that for any closure operator the closure of a pithy element is
pithy, it follows that f 1is extremally disconnected. From
d(0) = d*(0) = d(1)' and d(0) < d(1) we see that d(0) =0

and d(1) = 1. Q.E.D.

It does not follow from the hypotheses of (57) that f
is perfectly disconnected - a counterexample is provided by

geometry #(1,8,28,38c,1) in [5].

(58) Let f be a topological closure operator with derivative
d on a CBA A. Then the following conditions are

equivalent

(i) f 1is an HK closure operator,

(41) d* = d,

(iii) f is pithy and perfectly disconnected,
(iv) d 1is a A-operator.

(The definition of a A -operator is dual to that for a V-operator.)
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Proof. It is immediate that (i) implies (ii) and that (ii)
implies (iv); the equivalence of (ii) and (iii) is a consequence
of (46); and (iv) implies (i) since an operator is an endomorphism

iff it is simultaneously a V-operator and a A-operator. Q.E.D.

(59) (a) Let f be an HK closure operatdr on a CBA A and
let s be an element of A. Then f° is an HK
closure operator iff s is open and fs is an
HK closure operator iff s is closed.
(b) Cartesian products of HK closure operators are again

such.

Proof. fs, which is certainly a topological closure operator

(see the remarks following (4)), will be an HK closure operator
iff its derivative d° (where d 1is the derivative of £f) is

a A-operator. Now a® preserves all non-empty finite meets since
d does so. Hence the condition for f° to be an HK closure
operator is that ds(s) = s3; equivalently, that s is open.

A similar argument gives the result for fS. (b) is trivial. Q.E.D.

(60) Let f be an HK closure operator with derivative d

on a CBA A. Then d3 = d.

Proof. Since d is a v-operator, the identity dz(f vd) = d( v d)
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(see the discussion preceding (33)) reduces to d3 vd=dyv dz;

taking *'s and using d* =d gives d3 Ad=4dA dz. These
two equations together imply that d3 =d, ((A) being a distri-

butive lattice. Q.E.D.

We now show how the resolution of an closure operator

S
1
into a quantifier and a Tl closure operator (to be discussed in

general in Appendix 2) may be given in a simple alternative form
for an HK closure operator: every HK closure operator is isomorphic

to an HK quantifier x a T HK closure operator ((62)), where

1

predictably, an HK quantifier is an HK closure operator which

is also a quantifier. We first prove

(61) Let f be a closure operator with derivative d on

a CBA A. Then the following conditions are equivalent

(i) f 4dis an HK quantifier,
(ii) f 1is a supertopological HK closure operator,
(iidi) f is an HK closure operator and d is 1-1,

2 _¢

(iv) f is a topological closure operator and d° =1,

V) f 1is a topological closure operator with a

complementary pair of bases,

(vi) f 1is a quantifier such that, for each x in A

x is pithy iff x 1is open,

(vii) to within isomorphism, A is a square and £f(A)

is its diagonal.
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(Note that in (iii), the condition 'd is 1-1' is equivalent

to the equation d-l(O) = 0.)

Proof. (i) (ii). 1In view of the fact that every HK closure

operator, being matroidal and topological, is Sl’ (see the
beginning of the second section of this chapter), the equivalence
of (i) and (ii) is an immediate consequence of (55).

(i) (iv). Suppose that (i) holds. Writing the equation

f*f = £ (see (55)(v)) in terms of d, we obtain d V d2 =d vV ﬁ

taking *'s and using d* =d gives d A d2 =d Al also. Since
@TA) is a distributive lattice, these two equations yield d2 = r,
and (iv) holds. Suppose conversely that (iv) is given to hold.
Thes from 1 2 d(1) = d°C1) +e obtatn~@tly = 1, and £ -ia pithy.
For all x,y in A, d@d(x) A d(y)) < dz(x) A d2(y) =X A y and
hence x Ay =0 dimplies d(x) A d(y) = 0 - that is, f 1is
perfectly disconnected. Thus f 1is an HK closure operator by

(59). d2 =P gives d Vv d2 = d v | which in terms of f is

f*f = £, so that f is a quantifier by (55).

(iii) &= (iv). By what has just been proved, (iv) implies

(iii). Suppose that (iii) holds and let x be any element of A.
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