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INTRODUCTION 

Ever since the early days, matroid theory has had 

two unreconciled aspects. Van der Waerden in Moderne Algebra [42] 

abstrac ted the common features of linear and algebraic dependence, 

giving axioms for what would now be ca~led a finitary matroid, 

not necessarily finite. In his fundamental paper [43], Whitney, 

considering only the finite case, introduced the concept of 

matroid duality (along with many other of the basic ideas of the 

subject) - this was by abstracting from the duality of planar 

graphs. Until recently, work on matroids has followed either the 

former path - infinite (finitary) matroids allowed but no duality, 

or the latter - finite matroids only and hence duality (in 

potential at least). The truth of the matter is that there does 

not exist a completely adequate theory of duality for the class of 

finitary matroids and it was this fact which provided the initial 

motivation for considering the possibility of dropping the require­

ment tha t matroidal closure operators be finitary, the hope being 

that thereby a class of closure operators would be obtained which 

both admitted duality and contained the class of finitary ma t roids 

as a subclass. 

The question then arose as to which axioms to take. In 

the case of finitary matroids one has a closure operator f on 

a set E satisfying the exchange condition: 
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p in f(S u{q}), p not in f(S) implies q in 

f(S u{p}), together with the finitary condition: 

p in f(S) implies p in f(T) for some finite subset 

T of S. The simple omission of the finitary condition, so that 

only exchange is retained, gives too wide a class of closure operators: 

every T topological closure operatqr is included for example;
1 

and, more to the point, no satisfactory duality theory is obtained. 

Now the finitary and exchange conditions together have as a consequence 

the following minimality condition: 

X ~ f(S u Y) implies that there exists a minimal subset 

Z of Y such that X ~ f(S u Z) 

(see results (84) and (35) below). It therefore seemed reasonable 

to take as axioms the exchange condition together with this min imality 

condition and on this basis a satisfactory duality was obtained 

which behaved for the closure operators considered exactly as does 

Whitney's original duality for finite matroids, the latter indeed 

being a special case of the former. It was found subsequently 

that the closure operators satisfying the exchange and minimality 

conditions could be described in a somewhat more simple way - t hey 

are precisely the B-matroidal closure operators as defined in [20]. 

(The equivalence of these two approaches to B-matroidal closure 

operators is established by (35), in the more gene ral Boolean 

setting of this t hes is.) 
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At the same time, this work did not really get to the 

essence of matroid duality. Now what one wants in mathematics, 

one postulates; it was found that the most convenient way to 

postulate matroid duality was to use the "derived set" operator 

or derivative d corresponding to a given closure operator f 

on the set E, where d(X) = {p; p E f(X \{p})} for all X ~ E. 

Then f(X) X u d(X) for all X ~ E and duality is obtained 

by defining d* (X) E \ d (E \ X) for all X ~ E and requiring that 

g, where g(X) = X u d*(X) for all X ~ E, be a closure operator 

on E also. The closure operators f for which this happens 

are then, in a very na tural sense, the most general for which a 

precise duality holds - such that one has closure operators both 

sides of the duality, and they are the closure operators which are 

termed matroidal in [20]. 

It turns out that the class of all matroidal closure 

operators is considerably more extensive than the class of 

B-matroidal clsoure operators; in particular, fascinatingly, 

the former class has a non-trivial intersection with the class of 

topological closure operators (a preliminary study of this inter­

section is made in Chapter 4 and in the first part of Appendix 3). 

In the course of a literature search, it was found that a concept 

of duality, essentially equivalent to that expressed above in 

terms of derivat1ves, had been set out by Sierpinski in 1945 [38]; 
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however, he was not concerned with closure operators but only 

with preclosures = expansive functions (drop the idempotency 

requirement). The definition of matroids and B-matroids (on 

sets), together with the theorem that the dual of a B-matroid 

is again a B-matroid (so that B-matroids are matroids), was 

written up in [20] (in which a third, intermediate, and less 

interesting class of matroids, the so-called C-matroids, was 

also discussed). 

By this time, it had become apparent that frequently one 

was dealing, not with the elements of the set E so much, but 

rather with its subsets - that is, one was doing "atomless mathe­

matics" wherein, instead of working with a set E, one works with 

a Boolean algeb~a A, often taken to be complete, treating it 

as if it was the power set of E. For example: many (all?) of the 

things done in straight Boolean algebra are analogues of purely 

set-theoretical things (a good instance is Theorem 22.6 in 

Sikorski's book [39]); measure theory and probability, as in 

the books of Caratheodory [7] and Kappes [25]; Blichi's paper [6] 

and in particular his Boolean version of relations ('~ie Paarung 

von Gefligen"); and general topology done the Boolean way as in the 

books of Nobeling [32] and Rasiowa-Sikorski [33] (see Chapter III). 

Blichi's eloquent plea for atomless mathematics (see [6]; quoted 

by Linton (30]) adds to the desirability of developing an a t omless 

matroid theory (based on that for sets, as sketched above); such 
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a theory is the subject matter of the presen~ thesis. 

The first thing to check is the notion of derivative 

for a closure operator on a Boolean algebra and here the formulae 

of Hammer ((17], p. 32) and Nobeling ((32], p. 66) provide an 

immediate solution - in the case of a complete algebra. Simple 

examples show that a satisfactcry notion of derivative does not 

exist for a l l closure operators on an incomplete algebra and for 

this reason it was decided to base everything at this stage on 

a complete Boolean algebra (= CBA) (and after all, power sets are 

CBA's, and analysts work with the reals in preference to the 

rationals). 

In Chapter 1, various properties of operators on CBA's 

and their derivatives are obtained (noteworthy being the curious 

identity for derivatives of closure operators implicit in (6)) . 

The concept of an analytic closure operator, defined in the second 

section of the chapter, is basic to the subsequent theory and is 

of independent interest in that all closure operators on atomic 

CBA's are analytic - but not all closure operators on arbitrary 

CBA's. Thus, given some condition which is known to hold for 

closure operators on atomic CBA's but which fails to hold for 

closure operators on CBA's in general, we may still hope to extend 

it to all analytic closure operators. The discussion of separators 

in Section 4 of Chapter 1, whilst elementary , is more thorough 

than is customary even in the atomic case. 
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Certain exchange conditions, known to hold for matroidal 

closure operators in the finitary case, are studied in Chapter 2 

and some of their consequences are given. Although the concept 

of a matroidal closure operator is only defined in the next chapter, 

most of Chapter 2 is closely related to this concept and many of 

the results of Chapter 2 are later applied to matroidal closure 

operators. In (24) it is shown that the dual of the condition 

given in (6) is equivalent to the exchange condition (super-E1 )
'2 

most characteristic of matroidal closure operators. 

General matroidal closure operators are defined in 

Chapter 3 - though the main results of the chapter concern the 

concept of a B-matroidal closure operator. In particular, it 

is shown that the duality theorem for B-matroidal closure operators 

together with their characterization by the exchange and minimality 

conditions (mentioned above for the atomic case), extend very 

satisfactorily to the general CBA situation ((34) and (35)). 

The discussion of topological closure operators on CBA's 

given in Chapter 4 perforce deals with a number of generalities 

not especially relevant to those topological closure operators 

which are also matroidal. The main results which do concern the 

latter type of closure operator specifically are: (49), in which 

two very simple characterizations . of T matroidal topological
1 

closure operators are given; (56), which , together with the 

subsequent discussion, describes completely the closure operators 
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which are both topological and B-matroidal; and the results in 

the fourth section of the chapter, where a study (albeit rudimentary) 

is made of the interesting closure operators, necessarily bo t h 

matroida l and topological, whose derivatives are Boolean endo­

v
morphisms of the given CBA - we call these Hewitt-Ka tetov-cl osure 

v . 
operators after Hewitt and Katetov who, independently, discover ed 

them (see [19] and [26]). 

To i llustrate how derivatives etc. come out in a particular 

case, a fairly thorough analysis of the closure operators associa t ed 

with a section of a CBA is carried out in Appendix 1, and some 

specific example s a r e ment i oned. 

Appendix 2 contai ns a discuss i on of various low- grade 

separation ax ioms (between T and T ) for closure operators on0 1

a CBA; except for the results on the "passage to the T case" listed
0 

in (73), most of this is of margina l relevance to matroidal closure 

operators (with the possible exception of the abortive (79)) but 

it was i ncluded on account of its cautionary value: it is seen how 

a number of conditions, which are n i ce in the atomic case , spl it up 

into a morass of hair-splitting distinctions on general CBA's . 

In the first part of Appendix 3, some examples of T ma t ro i dal1 

topological closure operators on atomic CBA's are desc ribed andan 

indication ((83)) is given of the sort of "pa thologies" which arise 

when the T axi om holds. The second part of the same a ppendix contains2 

some simple res ults concerning B-ma troidal clos ure ope r a tors on 

atomic CBA 's. 
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Appendix 4 is a reprinting of [21], in which are 

characterized those graphs whose polygons and two-way infinite 

arcs give rise to matroids (in the same way as, in Whitney's 

original paper, the polygons of a finite graph give rise to a 

finite matroid on the set of edges of the graph). This provides 

a good illustration of the various notions involved in this 

thesis, such as derivatives, bases, duality, (B-)matroidal closure 

operators etc. 

To summarize, it appears that the basic theory of 

B-matroidal closure operators on a CBA is in a fairly satisfac­

tory state - as one would expect, this theory being closely 

analogous to that for the finite case - but that not too much 

yet is known about more general matroidal closure operators, 

though a beginning has been made with those which in addition 

are topological. 
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PRELIMINARIES 

The basic definitions and results which we shall need 

from lat t ice theory and Boolean algebra may be found in the books 

of Birkhoff [4], Halmos [14], and Sikorski [39]; for general 

topology, see Kelley [27]. Of our notation and terminology, we 

mention here the following (that not mentioned hereis completely 

standard): 

Let L be a lattice. For each a,b in L with a~ b, write 

[a,b] = {x; a~ x ~ b}, (a,b) = {x; a < x < b} and similarly 

for [a,b) and (a,b], a~ b iff (a,b) ~ . a~ b (b covers a) 

iff a~ b, a f b, and M(a,b) (a and b form a modular pair) 

iff (x v a) /\ b ~ x v (a /\ b) for all x ~ b. L is a \ -lattice 

iff for each a,b in L there exists a smallest c (= a \ b) in L 

such that a :5:: b v c·, L is a /-lattice iff it satisfies the 

dual condition; and L is a ( \ ,/)-lattice iff it is both a 

\-lattice and a /-lattice. 

Suppose that L has a smallest element 0 - then L is disjunctive 

iff for each a,b in L with a < b there exists c in L such 

that 0 I c ~ b and a /\ c = O; and L is lef t-comElemented 

(Wilcox [44]) iff for each a,b in L there exists c in L 

such that c ~ b, a v c = a v b' M(c ,a), and a /\ c = o. 

A section of L is a subset s of L such that a < b, b in s 

implies a in s., dually for a cosection of L. 

Suppose that L is complete and that X 
' -c L - then the V--closure, 
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J(X), of X(in L) is {\/Y; Y ~ X}, X is \/-closed iff J(X) X, 

and X is \/-dens e iff J(X) = L; dually for the /\-closure, 

M(X), of X etc .. Under the same circumstances, L(X) denotes 

the sma llest complete sublattice of L containing X and, for L 

a complete Boolean algebra, C(X) denotes the smallest complete 

subalgebra of L containing X. 
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CHAPTER 1 

OPERATORS ON COMPLETE BOOLEAN ALGEBRAS 

AND THEIR DERIVATIVES 

1. Operators and Derivatives in General 

An operator on a CBA (= complete Boolean algebra) A 

is an order-preserving ma p f :A-t A. We shall denote the set 

of all operators on A by C)(A). {j'(A) is a monoid under compo­

sition, fg being defined by (fg)(x) = f(g(x)), with the 

identity map ~=~A on A as identity element. 

Further, (J(A) is a complete sublattice of the complete lattice AA, 

where in both cases the order relation and complete lattice opera­

tions are the pointwise ones. We recall that for a complete 

lattice L to be a (\,/)-lattice it is necessary and sufficient 

that L be infinitely distributive - that is, for all x and 

x " cV. Y . ) = V cx " Y • ) and x v CA. y.) = /\. (x v y.) . 
l l l l l l l l 

Now any Boolean algebra is a (\,/)-lattice, with X\Y = x /\ y' 

and x/y = x v _y', where 1 denotes complementation. From t h e 

resulting infinite distributivity of our CBA A, it follows that 

AA, and in turn CY(A), are also infinitely distributive. The fact 

that Cf(A) is thus a ( \ ,/)-lattice enables us to make the 

following defin itions. If f is an operator on a CBA A, we call 
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f \ ~ the derivative of f and f/ f' the coderivative of f, 

where f\ ~ and f I t' are to be taken in (f (A). 

Remark on dualit y . As with "derivative" and 

"coderivative" above, we shall re fer to the order-theoretic dual 

of an order-theoretic notion "P" by writing "co-P". As a 

rule, we shall not state both each order- theoretical result and 

the dual result. Since a CBA A possesses a natural antiauto­

morphism, namely complementation, we can define an associated 

antiautomorphism *of the lattice (J(A) by putting f*(x) = f(x')' 

(notice that* is an automorphism of the monoid (J'(A)). Given an 

order-theoretic property P of operators on A, an operator f 

on A will then be co-P iff the "dual" operator f* is P. If we 

wished, we could in this way refer only for instance to derivatives 

and never to coderivatives; however we prefer to use * rarely and 

to give explicit recogni tion to the order-theoretic duality present. 

To begin the study of derivatives and coderivatives, we 

remark that several of their properties follow immediately from 

the results on /-lattices (= Brouwerian lattices; see Birkhoff [4], 

pp. 45-47, 125, 128-131, 216-229, 280-281), together with the 

corresponding dua l results \-lattices. We shall not list these 

properties but mention the following : the mappings f -+ f \. l and 

d -+ /' v d establish a bijection between the i n terval [~,l] of 

t/ (A) and th e set of derivatives (o f operators) on A; an operator 

is a derivative iff it is its own derivative; and if d is the 
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derivative of an operator f then the equality ~ v d t' v f 

shows that d(O) = f(O). 

As mentioned already, the V and /\ operations in (](A) are 

given by the pointwise f ormulae; we now give an explicit formul a 

for the \ operation in (!(A) (and, on dualizing, obtain a formula 

for I of course). Since in the case of f\.~ this formula was 

used by Ham.~er ([17], p. 32) as the definition of the derivative 

of f, we shall refer to it as Hammer's formula. 

(1) 	 Let f and g be operators on a CBA A. Then for all x in A 

(f'\_g)(x) =\;'{f(u)\g(u); u $ x } . 

Proof. Le t h(x ) deno te the r igh t-hand side of this equation ­

then clearly h is an ope rator on A. We have to show that 

f $ g v h and that if f $ g v k for some operator k on A then 

h $ k. Certainly f $ g v h since f (x) $ g(x) v (f (x)\ g (x)) $ 

$ g(x) v h(x) for each x in A. Suppose that k is an operator 

on A such that f $ g v k. Then for each x in A and all 

s $ x we h ave f(s) $ g(s) v k (s) and hence f(s)\g(s) $ k(s) $ 

$ k(x), from which it follows that h(x) $ k(x) as we wishe~ Q.E.D. 

Nobeling ([32], p. 66) has used quite a different formula 

for his definiton of der i vative. The following result establ ishes 

the equ i val e nce of Nobe l ing 's fo r mu la with th e pres ent definition. 

(2) 	 Let f be an ope r a tor on a CBA A and let d be the derivative 

of f. Then for all x in A 

d cx) u ; u $ f cx \ u) } • = v{ 
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Proof. Let e(x) denote the righ t-hand side of this equation. 

Then e(x) $ d(x) since if u $ f(x \ u) then clearly u $ d(x). 

To obtain the opposite inequality let s $ x and put f(s)\ s = u. 

Then s $ x\u and therefore u $ f(s) $ f(x\u). It follows 

that f(s) \s ~ e(x) for each s $ x and hence, by Hammer's 

formula, that d(x) $ e(x). Q.E.D. 

As a 	 corollary we have: 

(3) 	 Let S be a \/-dense subset of a CBA A and let f be 

an operator on A with derivative d. Then for all x , y 

in A 

y A d( x ) =V{u in S; u $ y A f (x \ u) } 

and y v d( x ) =V{u in S; u $ y v f(x\ u)}. 

Proof. The relevant fact here is that {u; u $ f(x\ u)} is 

a section o f A. Thus in y A d(x) = v {y Au; u $ f(x\u)}, 

which we obtain from Nobeling ' s formula by infinite distributivity, 

each y A u is the join of elements v in S satisfying the 

inequality v $ y A f (x \ v). The first equation of (3) follows 

and the second may be verified in a similar manner. Q.E.D. 

These sharpened forms of Nobeling 's formula apply in 

particular to an atomic CBA A, when we can take S to be the set 

of atoms of A. 

For atomic CBA's, the notion of derivativity turns out 

th th 
to be 	self-dual (contrary to the entry in the 5 row and 6 

column of Hammer 's table in [1 8 ], p. 59): 
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(4) 	 Let d be an operator on an atomic CBA A. Then the 

following conditions are equivalent 

(i) 	 d is a derivative 

(ii) 	 d is a coderivative 

(iii) p 	 $; d(x) implies p $; d(x"'-p) for all atoms p of A, 

(iv) 	 x -< y implies y $; x v d(x) or y /\ d(y) $; x for 

all x,y in A. 

Proof. The pattern of proof is as follows. We first show, for 

any CBA A, that (iii) and (iv) are equivalent and that each is 

implied by (i). Then in the atomic case we show that (iii) implies 

(i), so that in this case (i), (iii), and (iv) are equivalent ­

however, since (iv) is a self-dual condition and the dual of (i) 

is (ii), it must be the case that all four conditions are equivalent. 

For any CBA A, (iii) and (iv) are equivalent. Assume 

that (iii) holds and that x ~ y - then y = x v p for some 

atom p $ x. Suppose that y A d(y) $ x. Then p $; d(y) and 

by (iii) p $; d(y'\ p) = d(x). Thus y = x v p $; x v d(x). Now 

assume that (iv) holds and that p is an atom and x an element 

of A such that p $; d (x) . If p $ x then x = x "'. p and 

p$;d(x\p). If p $; x then x'\p<x andby(iv)wehave 

x $; (x\ p) v d(x\ p) or x A d(x) $; x\ p. The latter alternative 

cannot hold since p $; x A d(x). Hence x $; (x\ p) v d(x\ p) 

from which it follows that p $; d(x\p). 
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For any CBA A, (i) implies (iii). Assume that (i) 

holds 	and that p is an atom and x an element of A such that 

p :5 d(x). Then by the first equation of (3), with S =A, y = p, 

and f = d, we must have p :5 d (x '- p) . 

For an atomic CBA A, (iii) implies (i). Assume that 

(iii) holds and denote the derivative of d by e. Then from 

the first equation of (3), with S the set of atoms of A, 

y = 1, and f = d, we have e(x) 'v{p an atom of A; p :5 d(x\.p)}. 

By (iii), the right-hand side of this equals \j{p an atom of A·
' 

p :5 d(x)} which in turn equals d(x). Q.E.D. 

We shall show later that atomicity is a necessary con­

dition for t he self-duality of derivativity, in fact proving 

somewhat more than this (s ee (8)). In any case, an operator which is 

both a derivative and a coderivative will be said to be a bideri­

vative. 

(5) 	 Let d be an operator on a CBA A. Then the following 

conditions are equivalent 

(i) 	 d is a derivative 

(ii) 	 s A d (s) = V{u; u :5 s A d(s'-u)} for all s in A, 

(iii) 	s '\d(s) = /\.{v; v :5 s :5 v v d(v) } for all s in A, 

(iv) d(s))' = /\ {w; w v s wvd(sAw) = l} for(s " 


all s in A. 


Proof. We first obtain the equivalence, for each element s of 
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A, of the three equations in (5). This will · be done if we verify 

that s Ax' = y, s A y' = x, and x' = z where x,y, and z are 

the right-hand sides of these equations (in the order in which 

they appear). Now s Ax' = y and s A y' = x iff x A y = 0 

and x v y s, and the truth of these two latter relations 

follows by a routine computation from the following fact: if u 

and v are elements of A such that u A v = 0 and u v v = s 

then u s s A d (s '- u) iff v s s s v v d (v). The relation 

x' = z follows in a similar way from the fact that if u' = w 

then u s s A d(s\ u) iff w v s = w v d(s A w) = 1. It remains 

to be proved that (i) and (ii) are equivalent. If (i) holds then 

(ii) follows as a particular case of the first equation of (3). 

Suppose that (ii) holds and put m = V{u; u s d (s "'.u)}. Since 

clearly d(s) ~ m, (i) will follow by Nobeling' s formula if we 

show that n = d(s)\ m = 0. Now s A n = 0 on account of (ii) 

and therefore n s d(s) = d(s\n). Hence n s m, so that n = 0 

as required. Q.E.D. 
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2. Closure Operators 

An operator f on a CBA A is a closure operator iff 

2~ ~ f = £ . A coclosure operator is called an interior operator; 

f is a closure operator iff f* is an interior operator (this 

is the usual association of interior operators with closure opera­

tors familia r from topology) . A handy fact concerning a closure 

operator f is that f(x) ~ f(y) implies f(x v z) ~ f(y v z) 

(and likewise with ='s in place of ~ 's). 

Let f be a closure op e r a tor with derivative d on a 

CBA A and l e t x be an element of A. Then x is £-closed i f 

f(x) = x ( equiva l ently , i f d(x ) ~ x); £-open i f x ' is £-c l osed; 

f-clopen if both £-closed and £-open; £-dense if f(x) 1 

(equivalent l y, if xv d(x) = l); £-pithy if x ~ d(x); £-d iscr e te 

if x ~ d(x ) = O; £-perfec t i f both £-clo s ed and £-p ithy ; an d 

£-basic i f both £-de n se and £-dis cr e t e . ( Here a nd e ls ewher e we 

could have f ormulated our def initions, and many of the easier 

consequent r esults, in a slightly different and inde ed more general 

way, but we have chosen the present course, with the closure operator 

f in first place, since it is ultimately closure operators tha t 

are our main concern.) Amongst the ma ny properties enjoyed b y 

the above c oncepts, we mention t h e f ollowing, which are on t he 

whole well-known - and which i n any event are straigh t fo rwa r d (wh en, 

as here, there is no ambiguity , we have omitted the prefix £). 
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(a) The set of closed el ements coincides with the 

range f(A) of f. f(A), being a ;\-closed subset of A, is 

itself a complete lattice: the meet in f (A) of a subset X 

of f (A) coincides with /\. X and the join in f (A) of X, which 

we denote b y \jx, is give n by \./x = f(\jx) c/\x and \;X denote 

the meet and jo i n respectively of X in A always). We cal l 

f(A) the lattice of f. The mappings f 1-+ f(A) and 

LH- (x i-+ j\ {a ; x $ a in L}) est ablish a bijection between the 

set of all closure opera tors f on A and the set of all 

/\-closed subsets L of A. If x is closed then so is d (x ). 

(b) x is pithy iff, whenever 0 # y $ x, we h ave 

u $ f (x '\,_ u) for s ome u such t hat 0 I u 5.. y (th i s is an easy 

consequence of (3)). The set of p ithy elements is a \/-closed 

subset of A. If x is pithy then so is the closure d(x) of 

x (so that d(x ) is in fact perfect) - expressed di f ferently , 

2 
x $ d(x) implies d(x) = d (x). 

(c) x is discrete iff f o r no u such that 0 # u $ x 

do we h ave u $ f(x°'\.u) (th is i s a lso an ea s y cons e quence of (3)). 

Further conditions equivalent to the discreteness of x are: 

f(u) /\ x = u for all u $ x; x is of the form y'\,_d(y). The 

set of discr e te elements is a s ection of A, the join of which 

we d enote by j(f). x is dis cre te and closed iff d(x ) 0 

and iff each subelement of x is closed. x is basic iff it is 

minima l dens e . The set of basic e l ements is an antich a in in A 
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as may be seen from the fact that y A d(y)· ~ x ~ y ~ xv d(x) 

implies x = y (we have x = x v (y A d(y)) ~ x v (y A d(x)) = 

y A (xv d(x )) = y). 

(d) Suppose that f(O) = 0. Then we call the largest 

element of A, every subelement of which is a join of closed 

elements, the 1
1
-part of f and denote it by t(f) (it is easy 

to see that such a largest element ex ists). If t(f) = 1 

equivalently , if f(A) is \/-dense in A we say that f 

is T (this is Nobeling's def inition; see [32], p. 77). In
1 

1 
any case we have the relation j(f) A t(f) = \jd- (0). 

We nex t prove a curious result which turns out to be us e ­

ful later on. 


(6) 	 Let f be a closure operator with derivative d on a CBA A. 


Then d(x) ~ y implies d(x v d(x A y)) ~ y for all x ,y in A. 


Proof. Suppose that d(x) ~ y but that d(x v d(x A y)) ~ y. 


Then y' A d(x v d(x A y )) # 0 and by the first equation of (3) 


there exists an element s of A such that 0 # s ~ y' A d((x v d(x A y)) \ s) 


From s ~ y' it follows tha t s A y = 0 and also that d(x A y) ~ d(x\ s). 


Using this l atter inequality and the idempotency of ~ v d we 


obtain 


s ~ d((x \ s) v (d(x A y) \ s)) ~ d((x\ s) v d(x A y)) ~ d((x \ s) v d(x\ s)) ~ 


(x \ s) v d(x \ s). Thus s ~ d(x\ s) 5 d(x ) ~ y so that s = s A y = 0, 


a contradiction. Q. E .D. 
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Corollary . If f and d are as in (6) and d(x) :::: y 

then there is an element z ~ x such that y A z is 

closed and d(z) :::: y. 

Proof. 	 If we put z = x v d(x A y) then z ~ x and d(z) :::: y 

by (6); 	also y A z = (x A y) v d(x /\ y) = f(x: A y) and this is 

closed. 	Q.E.D. 

Let us call the condition: d(x) :::; y implie s 

d(x v d(x A y)) :::: y of (6) condition (I). (I) may· hE expressed 

as an identity by writing d(x) v z in place of y and taking 

the meet of both sides of the second inequality wlth d(x) v ~. 

If d is any operator whatsoever satisfying (I) then d satisfies 

the identity x v d(x) v · d(x v d(x)), = x v. d(x.). expr_essing_ the_ 

2
idempotency ( ~ v d) = ~ v d and also the identity d(x v d (x A d .(x))) 

= d(x) 	 - that is, d(~ v d(r Ad)) = d. (The first of these may 

be obta ined by putting y = x v d(x) in (I) and the second by 

putting y = d(x) in (I).) However, small finite exampJes show 

that neither of these two identities implies the other (and that 

the second does not imply the first even when d is a derivative). 

The question as to which identities are satisfied by the derivatives of 

closure operators has apparently not been investigated - nor, for 

that matter, the (doubtful) existence of non-trivial (finite) 

identities satisfied by all derivatives, or by no operators other 

than de rivatives . 

Another result we shall need concerning derivatives 
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of closure operators is as follows. 

(7) 	 Let f be a closure operator with derivative d on a CBA A. 

If x,y,z are elements of A such that f(x) $ £(y) and 

y A z = 0 then z A d(x v z) $ z ~ d(y v z-). 

Proof. By virtue of the first equatio~ of (3) (with x v z- in 

place of x and z in place of y) it is sufficient to show that 

u$zAf((xvz)'-u) implies u $ z~d(yvz) foreach u in A. 

But this is t he case since if u $ z then y. A u =- er arrd henc e 

f((x v z) '-\u) $ f( x v (z'\_u)) $ f (y v ( z- '..rr)) = f((y v z-) "-- u), the 

second inequality here being a consequence of the fact that f is 

a closure op erator. Q. E .D 

We now come to a basic definition.. L.e.t E be a c:l:osur~. 

operator on a CBA A. Then we say that f is analy tic if£ t he deri­

vative of f is a coderivative . 

(8) 	 Every closure operator on a CBA A is analytic iff A is 

atomic. 

Proof. It follows from (4) t ha t if A is atomic then every 

closure operator on A is analytic. To obtain the converse let 

f be the c losure ope rat or on A such that f(O) = 0 and f (x ) = 1 

for x +0, let d be the derivative of f, and l e t e be the 

coderivat i v e of d. Then Hammer's formul a gives 
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d(x) = \/{f(u)\u; u $ x} = \/{u'; 0 f u $ x} = 0 for x = O, 

p' for x = an atom p, and = 1 otherwise. By the dual of 

Hammer's formula we have e(O) = j\{d(v)/v; v ~ O} and after a 

little calculation obtain e(O) = <VP)' ,. where P d-ena:te:S: 

the set of atoms of A. If f is analytic then e:(Q) =- d.(O:) = 0 

so that \IP = 1 and A is atomic. Q.E.D. 

This result clearly has as a consequence the necessity of 

atomicity for the self-duality of derivatitity.. The: fcrllnwing 

criteria for analyticity result immediately from th~ dual of (5). 

(9) 	 Let f be a closure operate~ with derivative d on a 

CBA A. Then the following c0nditions, are_ equiv:alent 

(i) f is analytic, 

(ii) 	 f(s) =/\{u; u ~ s v d(s/u)} for all & in A, 

(iii) s/f(s) = \l{v; v A d(v) s s s v} for all s in A, 

(iv) 	 f(s)' = \J{w; w As w A d(s v w) = O} for all s in A. 

If f is a closure operator with derivative d on a CBA A, 

let us say that f is analytic at an element s of A if f the 

equations in (ii), (iii), and (iv) here hold for that value of s. 

(Note that these three equations are equivalent, the equivalence of 

the - three dual- equations having been obtained. in the c..ourse of 

proving (5).) We see that f is analytic iff it is analytic at 

each sin A, that f is analytic at 0 iff j(f) = f(O)', 
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and that f is analytic at a closed element s of A iff the 


following equivalent equations hold: 


s- = /\ {u.; . u ;o:_ s= v d-( s ,- I u ) } 

I = v ; v A d ·(v) s s s v}V { 
s:-' = V{w; w /\ s ::: =w. /\ d.(s - v w) = =0}. 

{10) 	 Let f he a closure operator on a CBA· A. and let s be 

arr. ~Iement. oE A. Then L is:: analytic .:. at _ s _ iff f is 

arr.al.yt±c at E(s). 

Proof. Using th e equation of (9) (iv) we hav2 th2t f is an2lytic 

at s ilf f(s)' =\/{w; w /\ s - = w /\ d(s '! w) =- 0 } :md that f is 

analytic at f(s) i£E f(s-)' = V{w; . w /\ f(s) = w /\ d(f(s) v w) = O}. 

The result will follow if_ we show the sets involved in these two 

joins to be the same. Now clearly w /\ f(s) = - w /\ d(f(s) v w) 0 

implies w /\ s w /\ d (s v w) 0. Conversely if w /\ s = w /\ d(s v w) 

then w /\ f(s) (w /\ s) v (w /\ d(s)) s (w /\ s) v (w /\ d(s v w)) = 0 

and by ( 7) w /\ d ( f ( s) v w) s w /\ d ( s v w) 0. Q.E.D. 

As an immediate consequence of (10) we have: 

Corollary . A closure operator on a CBA A is analytic 

iff it is analytic at each closed element of A. 

0 

http:analytic.:.at
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3. Reductions 

Let s be an eLement of a CBA A and write As for the 

interval [O,sl of A. We define the reduction- mapping fr+-f!?- ­

of c:7(A) to ()(As ) by putting f:_s (x) = f (x) A s and call fs 

the reduction of f to A
5 

(the term 1rreduc;:tion" is : Tutte!s 

([41], p.7)). Dually we write A 
s__ 

£or [s, 1] and f= 
s -

for the 

coreduction of f to A . 
s 

(11) 	 Let s be an· element of a CEA A. Then- the : reduction 

mapping of {j'(A) tu G'(As:) 

(i) preserves the operations 0£. V , /\ ,'\ , and coder ivation, 

{ii) preserves the pro-perties of." being the identity -, a 

derivative, a closure operator, and an analy tic 

closure operator, . and al.s o the duals of _these proper ties, 

(iii) fails in general to preserve the operations of 

composition , /,and*, though the inequalities 

(fg)s ~ fsgs, (f/ g)s ~ fs/gs, and (f*)s ~ (fs)* 

always hold. 

Proof. 	 I t is obvious that reduction preserves ~and a straight­

forward 	computation shows that it preserves\/ and /\. 

Let f and g be operators on A. Then (firstly ) for each 

x in A we have (f\g)s( x ) = ( f\g) (x) /\ s =--V{f(u)\g(u); u ~ x} r, s 

s sV{f (u)\ g (u); u ~ x}. Since Vand \ in As are Vand "- in A 

restricted to As, th is last quantity evidently e quals (fs\gs) (x) . 
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Thus (f\ g) s = fs \gs, that is, reduction pr·eserves \ . The fact 

that reduction thereby necessarily preserves the operation of 

derivation shows that it also preserves the property of being a 

derivative - for if f \ ~ = f then fs\ ~ = (f\ ~ )s = f
5 

•. 

Before showing that reduction preserves coderivatian ,. let 

us obtain the i_.nequality in (iii) which involves /. We know that 


s s

f ;o: g A (f / g ) and since reduction preserves A we have f 2".. g A 

(f/g)s, from which it follows that (f/g)s :5 fs/gs as re.qu±re:d. 

To see that this inequality can be strict sometimes, let A. he: 

the 4-element CEA and take s to be one of the atoms of A,. f 

to be and g to be the other automorphism of A. ThentA' 


f/g = so that (f/g)s ~, whereas fs/g s 
= ~/O 1 > ~
~A 


(here ~. 0, and 1 are the obvious operators on As). 


This inequality for I has as a particular case the inequality 

:5 in the equation (f/ f) s = fs/ ~ which expresses the fact that 

reduction preserves coderivation. We obtain the reverse inequality 

as follows. 

Let x be an element of As. Then (f/t)s(x) 

(f/ ~) (x) A S /\{~(v)/v) As; v ;o: x} --- (a ). On the other hand, 

(fs I~)(x) = j\{fs(w)/w; w ;o: x}' where here everything takes place 

in As. Now the /\, being non-empty , coincides with the /\ in A·
' 

· however y/z in As (where y and z are elements of As) is the 

same as (y/z) A s taken in A· furthermore w ;o: x in As means
' 
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s ~ w ~ x in A. Thus with everything takL.rig place in A 

we find that (fs/~)(x) (\{(fs(w)/w) As; s ~ w ~ x} 

/\ {(f(w) /w) As; s ~ w ~ x} -- ( S). The desired inequality 

will be oqtained if each (f(v)/v) A s with v ~ x (as in· (a)) 

is ~ some (f(w) /w) A s with s ~ w ~ x (as in. (S)) and. on 

taking w = v A s we see that this is indeed the case. The fact 

that reduction preserves coderivation implies, as for the derivative 

case, that i t also preserves the property of being a c:.oder.L\Tative. 

The inequality in (iii) for composition is. easily verified: 

if x is in As then (fg) 
s 

(x) = (fg) (x:) A s ;::__ f(g.(x) A a) A s.. =­

( f sgs) (x) . To see t _ h at t h e inequa1 ity can b e · use t h e samestrict, 

example as given above but with both f and g equal to the: non­

identical automorphism of A. 

Now let f be a closure operator on A. Then from 

fs (fs)2f ~ ~follows ~ ~ and thence ~ fs. However fs = 

(f2)s (fs)2 (fs) 2 fs~ from what has just been proved. Hence 

and fs is a closure operator on As. Let f be an interior 

operator on A - then from f ~ ~ follows fs $ ~ 

AsAlso for each x in we have f(x) ~ x ~ s and hence 

f(f(x) A s) A s 

It is an immed iate consequence of what has been proved 

already that reduction preserves the property of being an analytic 

closure operator and also the dual property. 
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We come finally to the inequality involving *: 

for x in (f*)s(x) = f(x')' As and reduces 

to f(s Ax')' As. For the example to show that strictness 

may occur, let A be the 4-element CBA with s one of its 

atoms again and define f(l) = s, f(x) = 0 otherwise. Q.E.D. 

A number of the facts listed in (11), for instance that 

reduction preserves the property of being a closure operator, are 

traditional - as are many of the following remarks, up to but not 

including (12). In this remarks, f is a closure operator with 

derivative d on a CBA A and s,x are elements of A. Then 

is a closure opera tor on As and f is a closure operator
s 

on A . Let us say that x is (f-)closed in s if x is in As 
s 

and is fs-closed, and that x is (f-)closed over s if x is in 

A and is f -closed· similarly for pithyness, discreteness, etc. 
s s ' 

(notice that we allow ourselves to omit the prefix f, but not f 
5 

or 	 f ). We shall sometimes also say that x is a base of s 
s 

when x is basic in s. The following are evident: 

x 	 is closed in s if f(x) A s = x, x is closed over s if x is closed 

(equivalently, if d(x) A s $ x $ s) and $ s' 

x 	 is dense in s if x $ s $ f(x), x is dense over s if x is dense 

(equivalently, if x $ s $ x v d(x)) and <". s' 

x is pithy in s if x is pithy x is pithy over s if s :::; x :::; d (x) v s, 

and $ s' 

x is discrete in s if x is discrete x is discrete over s if x A d(x) 

and $ s. $ s $ x. 
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(
The lattice fs(As) of fs is f(A) As; in particular 

if s is closed then fs(As) is the interval [f(O) ,s] of f (A). 

The lattice of f is f(A) v f(s) =the interval [f(s), 1) of 
s 

f(A). 

Now let s and t be elements of A such that s ~ t 

and write At for the interval [s,t] of A. Then (f ) t = 
s s 

ft At= (ft) say, the bireduction of f to (this goes
s s s 

through for an arbitrary operator f on A). We shall not dwell 

on the properties of bireduction except to mention that if s 

and t are closed then the lattice of ft is just the interval 
s 

[s,t] of the lattice of f. 

(12) 	 A closure operator f on a CBA A is analy tic at an 

element s of A iff f is analytic at s. 
s 

The proof of this is trivial. 

(13) 	 A closure operator f on a CBA A is analytic if f 

\j{v; v is discrete ove r s} = 1 for each closed 

element s of A. 

(Note t hat in a notation introduced earlier we can write j(fs) 

for v is discrete over s}.)v{v; 

This result is just a rewording o f the corollary to (10). 

Nevertheless it might be of interest insofar as it leads to a 
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sensible definition of analyticity of closure operators on 

arbitrar y complete lattices. 

4. Separators 

Let B and C be CBA's. We define the cartesian product 

mapping (g ,h) 1-+ g xh of (Y(B) x (}(c) to Cf(BxC) by putting 

(gxh)(y,z) = (g(y), h(z)) and call g xh the cartesian product of 

g and h. This construction is as well-behaved as it is possible to 

imagine. Thus for example (gxh) \ ~ = (g\ ~) x (h\ ~) and if g and h 

are (analytic) closure operators then so is g xh and the lattice 

of gxh is just the product of the l a ttices of g and h. 

It is desirable to know v.tien a given operator f on a 

CBA A can be dec omposed (up to isomorphism) as a cartesian product 

f = g xh for a suitab le decomposition A ?; BxC of A. The following 

definition is appropriate here: an element s of A is an £-sepa rator 

iff f(x) = [f(x As) As] v [f(x A s') As'] for all x in A 

(the term "separator" is Tutte's ([41], p.8)). 

(14) 	 (a) Let g and h be opera t ors on CBA' s B and C 

respectively. Then the elements (l,O) and (O,l) 

of BxC are (g xh)-separators. 
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(b) 	 Let f be an operator on a CBA A and let s 


be an f-separator. Then associated with the 


CL 	 ' . . A ~- As x Asdecomposition 	 of A (given by 

CL
the 	mappings x ~ (x A s, x A s ') and 

-1 
CL

(y,z) 1-+ y v z) we have the decomposition 

f f s x fs ' of f (more precise· 1y, we have 

The 	verification of this is trivial. 

(15) 	 Let f be an operator on a CBA A. Then an element s of 

A is an f-separator iff f(x A s) A s = f(x) A s and 

f(x v s) v s = f (x) v s for all x in A. 

Proof. Let s be an f-separator and let x be in A. Then 

f(x) As= ([f(x A s) A s] v [f(x As') As']) As= f(x As) As 

and f(x) vs~ f(x vs) vs= [f((x . v s)As/\ s] v [f((x vs ) As') As '] vs 

f (x A s ') v s ~ f (x) v s, so that f(x) v s = f(x v s) v s. 

Convers ely , suppose that s satisfies these conditions and put 

u = [f(x As) As] v [f(x As') As'], where x is an arbitrary 

element of A. Then u A s = f(x A s) A s = f(x) A s and 

u v s = f(x A s') v s f((x As') vs) vs= f(x vs) vs f(x) v s. 

On account of the distributivity of A, it follows that u f(x). Q.E.D. 

This result shows that the notion of an f-separator is 

self-dual. (Incidentally, the condition given in (15) leads most 



22 


s
naturally to the alternative decomposition · A '?!. A x A , 

s 
,... s )f = f 	 x f . 

s 

(16) 	 Let f be an operator on a CBA A. Then the set of 

all f-separators is a Boolean subalgebra of A. 

Proof. It is inunediate from the definition that 0 is an 

f-separa t or and that the complement of an f-separator is an 

f-separator. Thus it enough to show that, given f-separators 

s and t, s /\ t is also an f-separator. Using the fact that s 

and t satisfy the conditions of (15) we obtain 

f (x /\ (s /\ t)) /\ (s /\ t) f(x) /\ (s /\ t) and 

f(x v (s /\ t)) v (s /\ t) [f(x v (s /\ t)) v s] /\ [f(x v (s /\ t)) v t] = 

[f(x v ( s /\ t) vs) vs] /\ [f(x v (s /\ t) v t) v t] = [f(x v s) v s] /\ 

[f(x v t) v t] = [f(x) vs] /\ [f(x) v t] = f(x) v (s /\ t). 

Thus s /\ t is an £-separator by (15). Q.E.D. 

(17) 	 Let f be an operator on a CBA A and let s be an 

f-separator. Then s is also an (f \~)-separator and 

a (\'vf)-separator . 

Proof. Write d for f '\ ~ and g for ~ v f and let x be an 

arbitrary element of A. Then using (3) we have 
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d(x A s) /\ s V{u; u ~ s /\ f((x As)\ u)} 

V{u; u ~ s Af((x\u) /\ s)} 

= V{u; u ~ s A f(x \ u)} (since s is an f-separator) 

d(x) /\ s 

and d(x v s) v s = V{u; u :o; s v f ((x v s) \ u)} 

:;; V{u; u ~ s v f((x \ u) v s) (since (x v s)\u :;; (x\ u) v s) 

V{u; u :;; s v f(x \ u)} (since s is an f-separator) 

d(x) v s :;; d(x v s) v s, 

so that d(x v s) v s 	 = d(x) v s. Thus s is a d-separator. 

For g we have g(x A s) A s = ((x /\ s) v f(x /\ s)) /\ s 

(x A s) v (f(x A s) /\ s) = (x A s) v ( f (x) /\ s) = (x v f(x) ) A s 

g (x) A s and g (x vs) vs = (x v s v f (x v s)) v s = x v s v f (x) = 

g(x) v s. Hence s is a g-separator. Q.E.D. 

We next obtain a further condition for an element to 

be a separator. 
' ) 

Lemma. Let f be an operator on a CBA A and let s be an 

element of A. Then the following conditions are equivalent. 

(i) f(s) A f(s') == 	 f(O) and f(x) = f(x As) v f(x As') for all x in A, 

(ii) f(x A s) = f(x) A f(s) and f(x v s) = f (x) v f (s) for all x in A, 

(iii) 	 f(s) v f(s') f(l) and f (x /\ s) = f( z ) A f(s), f(x As') 

f(x) A f(s') for all x in A. 

Proof. Suppose that 	(i) holds. Then f(x) A f(s) 



24 


[f(x As) A f(s)] v [f(x As') A f(s)] = f(x As) v f(O) = f(x As), 

where f(x A s') A f(s) f(O) on account of the inequalities 

f(O) s f(x As') A f(s) s f(s') A f(s) = f(O). Also f(x) v f(s) ~ 

s f(x v s) f((x v s) A s) v f((x v s) A s') = f(s) v f(x A s') s 

s f(s) v f(x) so that f(x) v f(s) = f(x vs). Thus (i) implies 

(ii). 

Now suppose that (ii) holds. Then x = s' in f(x v s) = 

= f(x) v f(s) gives f(s) v f(s') = f (l) and to obtain (iii) we 

only have to show that f(x A s') = f(x) A f(s') for all x. Now 

we have f (x As') A f(s) = f((x As') As)= f(O), and 

(f(x) A f(s')) A f(s) = f(x) A f(s A s') f(O), and we also have 

f(x A s') v f(s) = f((x A s ') vs) f(x vs) and (f(x ) A f(s')) v 

v f(s) = (f(x) v f(s)) A (f(s') v f(s)) = f(x vs) A £(1) f(x vs). 

It follows by the distributivity of A that f(x A s') f(x ) A f(s') 

as required. 

Finally suppose t hat (iii) holds. Then x = s' in 

f(x A s) f( x) A f(s) gives f(s) A f(s') = f(O); also 

f(x A s) v f( x A s') = (f(x ) A f(s)) v (f(x) A f(s')) 

f(x) A [f(s) v f(s')] = f(x) A f(l) = f(x). Q.E.D. 

Note that condition (ii) here is self-dual thus the 

duals of conditions (i) and (iii) are also equivalent to the cond itions 

of this l emma. Let us call an element s satisfying these conditions 

an f-respector. 
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(18) 	 Let f be an operator on a CBA A and let s be an 

element of A. Then the following conditions are 

equivalent. 

(i) s 	 is an f-separator, 

(ii) 	s is an f-respector and f(s) $ s v f(O), f(s') s 

s s' v f(O), 

(iii) 	 s is an f-respector and s A f(l) s f(s) s s v f(O). 

Proof. Suppose that (i) holds. Then x = 0 in f(x v s) v s = 


= f(x) vs gives f(s) vs= f(O) vs so that f(s) s s v f(O), 


and since s' is also an f-separator we obtain f(s') s s' v f(O) 


similarly. The following inequalities show that s satisfies the 


conditions in (i) of the above lemma and hence that s is an 


f-respector: f(O) s f(s) A f(s') s (s v f(O)) A (s' v f(O)) 


f(O) and for all x in A f(x As) v f(x As ') s f(x) = 


[f(x As) As] v [f(x As') As'] s f(x As) A f(x As'). Thus (i) 


implies (ii). Now if (ii) holds then s A f(l) = s A (f(s) A f(s')) s 


$ s A (f(s) v s' v f(O)) = s Af(s) $ f(s) and hence (iii) holds . 


To prove that (iii) implies (i), suppose that (iii) holds and let 


x be any element of A. T~en f(x) A s ~ f(x A s) A s = f(x) A 


A f(s) A s ~ f (x) A s A f (l) A s f(x) A s so that f(x A s) A s 


f(x) A s and dually f(x v s) v s ~ f(x) v s. Hence s is an 


f-separator by (15). Q.E.D. 
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We now discuss what happens when f ' is a closure 

operator. 

(19) Let f be a closure ope rator on a CBA A. Then 

(a) 	 f(O) and all its subelernents are f-separators, and 

(b) 	 an element s of A is an f-separat or iff it is 

of the form c \ u, where c is a closed f-separator 

and u :::: f (O). 

Proof. To show (a), suppose s ::; f (O). Then f(s) f(O) 

and we see that f(x As)= f(O) = f(x) A f(s), f(x v s) = f(x) = 

f(x) v f(s), and s A f(l) ::; f(s) ::; s v f (O) so that s satisfies 

the conditions of (18) (iii) and is therefore an £-separator. 

To prove (b), first let s be an f-separator and put 

f(s) = c and u = c \ s, so that s = c \ u. Then c is an f-separator, 

as follows from the fact th a t it satisfies the conditions of 

(18) (iii) : we have f(x) A f(c) ~ f(x A c) ~ f(x A s) = f(x)Af (s) f(x)Af(c) 


f(x v c) f(x v s) = f(x) v f(s) f(x) v f(c), and c A f(l) = 


= f(c) c v f(O) (each equals c). Also, since s is an f-separator, 


we can wri te c = f(s) [f(s As) As] v [f(s As') As']= s v f(O), 


so that u ::; f(O). To obtain the converse implication in (b), let 


c be a closed f-separator and u:::: f(O ). It is then easy to check 


that s = c \ u satisfies the conditions of (18) (i ii ) and is thus 


an f-separator. Q.E.D. 
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The fact that f(O) is an f -separator when f is a 

closure operator shows that with only a slight loss in g~nerality 

we may study closure operators f with f(O) = 0. Indeed, we 

do this whenever f(O) # 0 proves to be at all inconvenient or 

untidy. 

(20) 	 Let f be a closure operator with derivative d on a 

CBA A and suppose that f(O) = 0. Then for each element 

s of A the following conditions are equivalent 

(i) s is an f-separator, 

(ii) s is an f-respector, 

(iii) s is a cl-separator 

(iv) s is clopen and in the centre of f(A). 

Proof. If s is an f-respector then f(s) As' ~ f(s) A f(s') = 

= f(O) so that f(s) ~ s v f(O), and similarly f(s') ~ s' v f(O). 

It follows by (18) that conditions (i) and (ii) of the present 

result are equivalent. Moreover , the same holds for conditions (i) 

and (iii) by (17). To show that (i) implies (iv), let s be an 

f-separator. Then s' is also an f-separator by (16) and s, s' 

are both in f(A) on account of (19)(b) and the fact that f(O) = 0. 

Now (and this is actually a general fact concerning lattices with 

0 and 1) it is not difficult to see that for the elements s, s' 

of the lattice f(A) to be complementary central elements of f(A) 
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-
it is necessary and sufficient that (a As) v (a As') =a 

= (av s') A (av s') for all a in f(A). The fact that s and 

s' do indeed satisfy these conditions is a consequen ce of the second 

identity in (i) of the above lemma which, together with its dual, 

gives a = f(s) f(a As) v f(a As') = (a As) v (a As') ~ 

~ (a A s) v (a A s') ~ a and a= f(a) = f(a vs) A f(a vs') 

- -(a v s) A (av s'). The proof of (20) will now be completed 

by our showing that (iv) implies (ii). To do this, we suppose 

that s satisfies (iv) and deduce that it satisfies the duals 

of the conditions in (i) of the lemma above . It is obvious that 

f(s) v f(s') = f(l) (this holds for every s in A) . Now s' 

as well as s is in f(A) since s is clopen, and also f(x) 

is in f(A) for each x in A. Because s is in the center of 

A S 1 1f(A), we thus have f(x) f ( X) V ( S ) = (f (X ) V S ) A ( f ( X) V S ) 

= f(x vs) A f(x vs') as required. Q.E .D. 



CHAPTER 2 


EXCHANGE AXIOMS 


Let f be a closure operator on a CBA A and let x be 

an element of A. We say that: 

x :ls iff, for all s and y in A such that 

y :5 f(s 	v x) and y f f(s), we have u :5 f(s v y v (x\u)) for 

some u , 0 ; u :5 x; that 

x :is f-E iff, for all s and y in A such that
-1 

y:5f(sv x) and y~f(s),wehave u :5 f(svy) for some u, 

0 I u :5 x; that 

f is E. iff the set of f-E. elements is V-dense in A· 
-i 1 	 ' 

and that 

f is suEer-E. iff every element of A is f-E. (where
1 	 1 

in the last two definitions i !.:2 , 1). 

Evidently f is E1 if it is f is super-E1 ifEl'72 	 72 

it is super-E and f is E. if it is super-E., i = !.:2, 1.l' 1 	 1 

(21) 	 Let f be a closure operator on an atomic CBA A. Then 

the following conditions are equivalent 

29 
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(i) f is Ei ' ~ 

(ii) f is El' 

(iii) p s f(s v q), p ~ f(s) implies q s f(s v p) 

for all elements s and atoms p,q of A. 

Proof. For any CBA it is the case that (ii) implies (i) and, 

since each atom q of A is in every \/-dense subset of A, 

that (i) implies (iii) also . Suppose that A is atomic. Then 

(iii) asserts that every atom q of A is f-E (if y s f(s v q)
1 

and y ~ f(s) then p ~ f(s) for some atom p s y so that by 

(iii) q s f(s v p) s f(s v y)) and this implies (ii). · Q.E.D. 

No t e that, although an atom is f-E1 iff it is f-E
1 

, this 
~ 

equivalence is not true in general for all elements, even in the 

atomic case. To see this, it is convenient to use some terms 

still to be defined: there exists a matroidal (and therefore 

super-E1 ) closure operator f on the 8-element CBA such that 
~ 

f(O) = 0 and yet which is not a quantifier (and therefore not 

(22) Let f be an E1 analytic closure operator on a CBA A 
~ 

and let x and s be elements of A. If x is maximal 

discrete in s then x is a base of s. 

Proof. We have to prove that s s f(x) . Suppose that this is 
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not the case. Then s A f(x)' :f 0 and since in the equation 

f(x)' = Vw; w Ax= w /\ d(x v w) = O} of (9)(iv) the set 

on the right-hand side is a section of A, the fact that f is 

Ei imp l ies that there exists an f-E element w of A such 
~ ~ 

that 0 :f w 5 s /\ f(x)' and w /\ d(x v w) = 0, where d is 

the derivative of f . Now x < x v w 5 s so that by the maxi­

mality of x, x v w cannot be discrete. Since w /\ d (x v w) = 0, 

this means that x /\ d(x v w) :f 0. From (3) , there hence exists 

an element u of A such that 0 :f u $ x /\ f ( (x \ u) v w) . Now 

u t f(x\u) by the discreteness of x and therefore, since w is 

f-E1 , t here e xis ts v such that 0 :f v $ w, v 5 f ( (x \ u) v (w\ v) v u)). 
~ 

But then :f v 5 d(x v (w\ v)) which is contrar y to the equation 

w /\ d(x v w) • 0. Q,E.D. 

(23) The lattice of an E1 analytic closure operator f on 
~ 

a CBA A is relatively disjunctive. 

Proof. By saying that a lattice L is relative ly disjunctive 

we mean that each interval [a,b] of L is disjunctive - equiva­

lently that whenever a 5 b < c i n L there is an element d of 

L such that a < d 5 c and b /\ d a. So let a,b, and c be 

elements of f(A) such that a 5 b < c. Using the equation 

of (9)(iv) as in the proof of (22), we can obtain an f - E ele­
12 

ment w of A such that 0 :f w 5 c, w /\ b = w /\ d(b v w) = 0. 
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Let d = f(avw). Then a < d ~ c and e = b /\ d 2'. a. 


Suppose that the inequa lity here is strict. Then e $ f(avw) 


and e ~ f (a) so that since w is f-E1 we have u :<:; f (a v e v (w\ u))

'2 

for some u, o I u $ w. But th en o I u :0: f (b v (w\ u)) which 

is contrary to the equation w /\ d (b v w) = 0. Hence b /\ d = a 

and d satisfies the r e quired conditions. Q.E.D. 

It can be shown b y a similar but somewhat easier argument 

that this result remains valid when the hypoth esis 'E +anal ytic'
12 

is replaced by ' E '.
1 

(24) 	 Le t f b e a closure opera t o r with d e r iva t i ve d on a 

CBA A. Then the following conditions are equivalent 

(i) 	 f is super-E1 , 
'2 

(ii) 	 y $ d(x) implie s y :0: d(x /\ d(x v y )) for all x , y in A, 

(iii) 	 y $ d(x ) i mplies t h at there exists z $ x such 

that y v z is pithy and y ~ d(z), for all x, y in A, 

( i v) same as (ii) but under the additional condition 

x /\ y = 0, 

(v) 	 same as (iii) but under the additional condition 

x /\ y = 0. 

Proof. We obtain the i mplications (i) =::> (ii) ==} (iii), (iv) ====') (i) , 

and (v) -.;1 (i). Since (ii) ==} (iv) and (iii) =;) (v) are i mmediate, 

this will giv e the theorem. 
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(i) =~ (ii). Let y s d(x), put z = x A d(x v y), 

and suppose that y ~ d(z). Then 0 # y A d(z)' = y A d(z)' A d(x) 

and by (3) t h ere is an element u of A such that 

0 #u s y A d(z)' A f(x Au'). From this it follows that 

u s f((z Au') v (x A z' Au')), u f f(z Au'). Therefore, 

if (i) holds we have v s f((z Au') vu v (x A z' Au' A v')) 

for some v such that 0 #v s x A z' Au'. Now (z Au') vu v 

v (x A z ' A u ' Av') = z vu A (x Av') s (x v y) Av' so that 

we obtain v s d(x v y) which with v s x gives v S z, an 

impossibility . Thus (i) implies ( i i). 

(ii) ='7 ( ii i ), We f irst 'note, dually to a remark made 

in the discussion following (6), t ha t (ii) implies the iderapotency 

of ~A d (take y = x A d(x )). Now if y s d(x ) and (ii) holds 

then z x A d(x v y ) satisfies t he conditions of (iii); for 

certainly z s x and y s d(z) - and y v z is pithy s i nce it 

equals (x v y) A d(x v y ) which is pithy on account of the 

idempotency of lA d. 

(iv) =Hi) and (v ) .==} (i). In the hypothesis of the 

defining condi tion for an e lement x of A to be f-E1 , it is 
'2 

easy to see that we can without loss of generality take s and 

y such that y s f(s v x ), y A f( s ) X A S = X A y = 0, y # 0. 

Let us suppos e we are gi ven elements x,s, and y satis f y i ng 

these condition s - then y s d(s v x ) and (s v x) A y = 0. 
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Hence if (iv ) holds we have y :s; d((s v x) A d(s v xv y)) 

so that, since y ~ d(s), it must be the case that x A d(s v xv y) I 0. 

Alternative l y if (v) holds then for some z :::; s v x we have 

y:::; d(z) and z:::; d(z v y), where the fact that y ~ d(s) t his 

time implies that x 1\ z -I 0 and a fortiori th&t 

x A d(s v x A y) I 0 again. Hence under either assumption 

x A d(s v x v y) I 0 and by (3) there exists an element u of 

A such that 0 I u :::; x A f(s v (x\ u) v y) as is required for 

(i) to hold. Q.E.D. 

(25) Let f be a super E1 c l osure operator on a CBA A. If 
'2 

x ::=; f (y) and y is discrete then there exists a 

smallest element z:::; y such that x:::; f(z). 

Proof. It is sufficient to consider the case x A y = 0 

since if x A y # 0 and z is the smallest element :::; y
0 

such that x\y :::; f(z ) then it is easily seen that z = z v (x A y)
0 0 

is the smallest element :::; y such that x :::; f(z). Suppose there­

fore that x A y = 0. Then x :::; d(y) and by (24) there exists 

z :::; y such that x v z is pithy and x :::; d(z) (the proof of (24) 

shows tha t z = y A d(x v y) is such an element z.) Let be 

any eleme t :::; y such that x :::; f(z ). If z ~ z then since
1 1 

xv z is pithy we have u :::; f(x v (z\u)) for some u, 

0 # u $ z z1 . But f(x v (z \ u)) :::; f(z
1 

v (z \ u)) :::; f(y \ u), and 
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0 # u s f(y u) is contrary to the discreteness of y . Thus 

z $ Q.E.D. 

(26) 	 Suppose we have the following situation: 

a super-E1 closure operator f on a CBA A, elements a,b 
72 

of f(A), and bases x,y of a,b respectively. Let 

M(a,b) denote the statement that a and b form a modular 

pair in the lattice f (A). Then the following conditiorLs 

are equivalent. 

(i ) 	 x v y is a base of a v b, 

(ii) 	 M(a,b) and X II y is a base of a II b. 

(Note that (i) holds iff x v y is discrete, and iff x v y is 

a base of av b). 

Proof. Assume that (i) holds. We show first that x 11 y is a 

base of a 11 b. Suppose not - then since x 11 y is discrete it 

must be the case that a II b f (x II y). Now a II b s f(x)~ 

= f ( (x II y ) v (x II y')) and, since f is super-E1 , there 
72 

exists 	 u such that 0 # u $ XII y', U $ f ((a II b) v (x II y) v 

1 u 1(x II y' 	II u')). But then 0 # u $ f (y v (x II y) v (X II y II )) = 

f ( (x v y) II U 1
) which is contrary to the discreteness of x v y. 

To obtain M(a,b) we have to show that (c v a) 11 b s c v (a 11 b) ­

that i s, f(c v a) 11 b s f(c v (a 11 b)) - for all closed c s b. 

Take an element c s b. Then f(c v a) 1, b s f(c v a) = 
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f(c v (a A b) v (x A y')) since a = f(x) f((x A y) v (x A y')) = 

f((a Ab) v (x A y')). Hence if f(c v a) Ab~ f(c v (a Ab)) 

then because f is super-Bi there exists u such that 
~ 

0 =f us x A y ', u s f(c v (a Ab) v (f(c v a) Ab) v (x A y' Au')). 

Now c v (a Ab) v (f(c v a) Ab) s b = f(y) and, since 

y A u = 0, y v (x A y' A u') = (x v y) A u'. Thus 

0 =f u s f((x v y) Au') which is again contrary to the discreteness 

of xv y. Therefore (i) implies (ii). 

Now as sume that (ii) holds and suppose that x v y is 

not discrete. Then either 

a) there exists u such tha t 0 =f u $ X A y , 

u s f ( (x v y) A U 1
) = f ( (x A U 1

) v (y A X 1 A u 1 )), or 

b) there exists v such that 0 =f v S y A x' 
' 

v s f(x v ( y A VI))> or 

c) t he same as b) but with x and y interchanged. 

If a) holds then, since u s f(x Au') (xis discrete) , there 

exists v such that 0 =f v s y Ax' Au', vs f((x Au') vu v 

v (y A x ' A u' A v')) f(x v (y Av')). It follows that we may 

without loss of generality assume that case b) occurs. From 

y A V 1 s b and M(a,b) we obtain f ( (y A V 1
) v a) A ]:, $ f ( (y A V 1

) v 

(a Ab)), This implies that 0 =f v s f ( (y A V 1
) v (a t . b)) = 

... f ( (y A V 1 
) v (x A y)) = f (y A v 1 

) which however is contrary 

to the discreteness of y. Q.E.D. 
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Super-E closure operators f satisfying the1 

additional condition f (0) = 0 will be studied in Chapter 4; 

under this condition they turn out to be precisely the same as 

quantifiers. 

We now introduce some restricted forms of the above 

exchange axioms. In doing this, it will be convenient to consider 

only closure operators f with f(O) = 0. So let f be such 

a closure ope rator on a CBA A and let x be an element of A. 

Then we say that: 

x is f-S iff, for all y in A such that 
-~ 

0 :f y $ f (x) :• we have u $ f(y v (x \ u)) for some u, 0 -f u $ x·, 

that 

x is f-s iff, for all y in A such that
1 

0 :f y $ f (x), we have u $ f(y) for some u, 0 :f u $ x (i.e. we 

have 	 x meets f(y)); that 

f is s. iff the set of f-S. elements is V-dense in A·,
-l l 

and that 

f is suEer-S. iff every element of A is f-S. (wh ere 
l 	 l 

in the last 	two definitions i ~ . 1). 

It is clear that these S-conditions satisfy the s ame 
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implications between themselves as do the E-conditions, and that, 

given f(O) = O, each E-condition implies the corresponding 

S-condition. 

(27) 	 Let f be a closure operator on an atomic CBA A such 

that f(O) 0. Then the following conditions are 

equivalent 

(i) 

(ii) 	 f is s
1

, 

(iii) 	 p $ f(q) implies q $ f(p) for all atoms p,q of A. 

The proof of this is simila r to that of (21). 

(28) 	 The lattice of an S1 analy tic closure operator f 
'2 

on a CBA A is disjunctive. 

The proof of t h is is similar to that of (23). Here again the 

r~sult remains valid when the hypothesis 'S +analytic' is 
~ 

replaced by Is I
1 . 

Lemma. Let f be a closure opera tor on a CBA A such that 

f(O) = 0 and l e t x be an element of A. 
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0(a) x is f-S iff x " a 0 implies f(x) " a1 
for all closed a. 

x(b) If f (x " a) f(x) " a for all closed a then 

is f-S , and the converse holds if f is sl.1 

Proof. (a) Let x and a be such that x is f-s
1 

, a is 

closed, and x " a = 0. Putting y f(x) A a we have f(y) ::;; a 

so that x " f(y) = 0 and hence y 0 since x is f-s and
1 

y::;; f(x ) . Conversely if x is not f-S and 0 I f(x), x A f(y) = 0
1 

then a= f(y) is closed and disjoint from x but not from f(x). 

(b) The first statement of (b) is an immediate consequence 

of (a). To complete the proof of (b) we have to show that 

f(x A a) = f(x) A a for all closed a, under the supposition that 

f is s an d x is f-s
1

. Make this supposition and let a be closed.
1 

Then certa:!_nly f (x " a) ::;; f (x) " a. If the inequality here is 

strict then since f is s there exists an f-s element x such
1 1 1 

that 0 I x1 ::;; f (x) " a " f (x " a)' • Since x is f-s1 , we have 

and, since x is f-s
1 

, we have X t\ f (y) f: Q. 
.L1 1 

But y::;; x" a since x ::;; a and hence f(y) ::;; f(x" a),
1 

so that is both disjoint and not disjoint from f(x" a), 

a contradiction. Q.E.D. 
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(29) 	 Let f be a closure operator on a CBA A such that 

f(O) O. Then the following conditons are equivalent. 

( i) 	 f is s1~ 

(ii) {x; x /\ a = 0 implies f(x) 0 for all" a 

closed a} is V-dense in A, 

(iii) 	 {x; f(x 11 a) = f(x) 11 a for all closed a} is 

V -dense in A, 

(iv) 	 for all closed a and all elements y t a, there 

exists a closed b with 0 # b $ a such that the 

only closed element $ b 11 y is O. 

(v) 	 the \/-closure J(f(A)) of f(A) in A is a 

Boolean subalgebra (necessarily complete) of A. 

Proof. The equivalence of (i), (ii), and (iii) is an immediate 

consequence of the preceding lerruna. To show that (i) and (iv) 

are equivalent, suppose first that (i) holds and let a be 

closed and y ~ a. Then there exists a non-zero f-s element
1 

x $ a\y. J>utting b = f(x) we see that b is closed and 

0 # b $ a; also if c is closed and c $ b 11 y then x 11 c = 0, 

so that c = b 11 c f(x) 11 c = O. Thus (i) implies (iv). Suppose 

conversely that (iv) holds and let z be any non-zero element of A. 

Put a= f(z) and y = a\z then y *a and there exists a 

closed element b as described in (iv). Put x = z 11 b. Then 

0 # x $ z (if x = 0 then b is non-zero, closed, and $ b 11 y, 

contra ry to (iv)) and if c is closed and x 11 c = 0 then f (x) 11 c 
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is closed and s b A x' b A y, so that f(x) A c = 0. Thus 

every non-zero element z contains a non-zero f-S element x
1 

and we have shown that (iv) implies (i). 

In (v) the \/-closure J(f(A)) of f(A) in A, being 

simply the se t of joins in A of all subsets of f(A), is 

obviously a V-closed subset of A. Therefore in order to show 

that J(f(A)) is a (necessarily complete) subalgebra of A it 

is sufficient to show that it is closed under complementation. 

So let a= \la. 
]_ 

be an arbitrary member of J(f(A)), where the 

ai's are in f(A), and suppose that f is s . Then a' is a
1 

join Vx. of f-S elements x . where, for each a. and x.'
]_J 1 J J 

a. A X. 0 and hence a. A f (x .) = 0. It follows that 
]_ ]_J J 

a' =Vf(x. ) so that a' is in J (f (A)) and we have proved that 
J 

(i) implies (v). Suppose conversely that (v) holds - we argue 

that (iv) must then hold also. For let y ~ a where a is closed 

and le t z denote the join of all closed elements s y. Then z 

is in J(f(A)) and hence by (v) so also is a A z'. Therefore 

since a A z' # 0 there is a non-zero closed element b s a A z' 

and this element b clearly fulfils the requirements of (iv). 

Q.E.D. 

Using condition (v) of (29) we see that every T closure
1 

operator is a fortiori sl (indeed sl is itself a sort of 

separation axiom , as also is S1 , and we shall study it in this 
~ 

light in App endix 2). 
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(30) If f is an s closure operator on a CBA A then
1 

the f-separators are precisely the central elements 

of f(A) (c.f. (20).). 

Proof. By (20) this will be proved if we show that each central 

element s of f (A) is clopen. Let t be the unique complement 

of s in f(A). Then s' /\ t' is in J (f (A)) by (29). But if 

- -a is in f(A) and a ::; s' /\ t' then a = a /\ (s v t) (a /\ s) v 

-v (a /\ t) o. It follows that s' /\ t' = 0 so that s v t = 1, 

t = s'' and s is clopen. Q.E.D. 

We shall use the following result in Chapter 4: 

(31) If f is an s closure operator on a CBA A and
1 

1
k = \/d- (0) then k' is pithy. 

Proof. k is clearly in J(f(A)) and hence, by (29)(v), so also 

is k'. Since the join of pithy elements is pithy, the result will 

therefore follow if we can show that every closed element contained 

in k' is pithy . Let a be closed, a ::; k'. Then d(a) is also 

closed and hence a \ d(a) is in J(f(A)). Now a\d(a) is discrete 

therefore the closed elements whose join is a \ d(a) are all discrete 

1and, being closed, are thus all in d- (0). It follows that a \ d(a) ::; k 

and hence that a \ d(a) = 0. Thus a ::; d(a) and a is pithy as 

required. Q.E.D. 
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Super-s closure operators are the same as quantifiers,1 

so they will be studied in Chapter 4. Super-S1 closure operators 
~ 

do not appear to be of much interest for our purposes (a super-S1 
~ 

closure opera tor which i s not is obtained by taking theE1 
~ 

8-element CBA with closed elements 0,1, the atoms, and one 

further element). 



CHAPTER 3 


MATROIDS AND B-MATROIDS 


1. 	 Matroids 

A closure operator f on a CBA A will be said to be 

a matroidal c l osure operator iff it is analytic and has a deri­

vative d such that ~ /\ d is idempotent. The derivative of 

a matroidal closure operator will be called a matroidal derivative. 

Whitney . duali t y for matroids is none other than the self-duality 

of the followLng evident condition for matroidal derivativity: 

an operator d on a CBA A is matroidal derivative iff d is 

a biderivative and ~ v d, ~ /\ d are both idempotent. 

(32) 	 Let f be a closure operator with derivative d on 

a CBA A. Then the following conditions are equivalent 

(i) 	 f is matroidal, 

(ii) f is analytic and super-E1 , 
'2 

(iii) f is analytic and y ~ d(x) implies that there 

exists z ~ x such that y v z is pithy, for all 

x,y in A, 

(iv) 	 same as (iii) but with the second part of (iii) 

under the additional condition x /\ y = O. 

44 
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Before proving this, we first obtain the following 

Lemma. (a) For all operators d on a CBA A, ~ /\ d is idempotent 

iff 

(7T ) y s d(x) implies that there exists z s x such that
1

y v 	 z s d(y v z), for all x,y in A. 

(b) For all derivatives d on a CBA A, I" d is idem­

potent 	iff 

(7T ) y S d(x) and :x /\ y = 0 implies that there exists z s x
2


such that y v z s d(y v z), for all x,y in A. 


Proof of lemma. We first note ti1at ( 7T ) is equivalent to:
1


( 7T I) y s d(x) implies that there exists w such that

1 


y s w s x v y, w s d (w), 


and 	that ( 7T 2) is equivalent to the analogous condition ( 7T 2'). 

(a) Clearly I " d is idempotent iff u "d(u) s d(u " d (u)) 

for all u i.n A. It follows that if I" d is idempotent and 

y s d(x ) then w = (x v y) /\ d(x v y) satisfies ( 7T1'). Suppose 

conversely t ha t (n 1 
) holds and let u be an arbitrary element

1 

of A. Since u /\ d(u) s d(u) there exists w such that 


u /\ d(u) s w s u, w s d(w). But then w s d(w) s d(u) so that 


w s u /\ d(u) and hence w = u /\ d(u). Thus u /\ d(u) s d(u /\ d(u)) 


as required. 


(b) On account of (a) it will be sufficient to prove that 

( 7T ') implies (given that d is a derivative ). So
2 
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suppose that ( rr ') holds and let y s d (x). Then
2 

y = V{ u; u s y A f(x\u)} by (3). For each u in this join 

we have u ·$ d(x\u), (x\u) A U = 0 and hence by ( rr ') there
2 

exists v such that u $ v s (x\u) v u = x v u, vs d(v). 

It is then 'easily verified that 

w = \j{v; u s v s x v u and v s d(v) for some u such that 

us y A f(x u)} is as described in (rr '). Q.E.D.
1 

Proof of (3.2). (i) implies (ii) by the dual of (6) together 

with the fac t that (24)(ii) implies (24)(i); the fact that 

(24)(i) implies (24)(iii) shows that (ii) implies (iii); (iii ) 

trivially implies (iv); and (iv) implies (i) by virtue of part 

(b) of the lemma just proved. Q.E.D . 

Since matroidal closure operators are super-E1 , many of 
'2 

the results of the previous chapter apply to them (note for example 

the four very similar conditions, involving the hypothesis y s d(x), 

on a closure operator f which arise from (24)(iii), (v) and 

(32) (iii), (iv) and which, when coupled with analyticity, are each 

equivalent t o the matroidality of f). It would be pleasant to 

be able to :report that matroidal closure operators are E
1

, but 

whether this is actually so - and whether indeed E1 implies E
'2 1 

in general - is at present unres6lved (apart from certain cases ­

see (21) and (44)(b)). 

In view of (32), it seems doubtful whether matroidal 
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derivatives satisfy any identi~ies not deriv~ble (for arbitrary 

operators) from condition (I) and its dual (see the discussion 

following (6)). Amongst the identities which are so derivable we 

have those expressing the idempotency of ~ v d and ~ 11 d, and also 

d(~ v d(~ 11 d)) = d and its dual. The joint idempotency of ~ v d 

and ~ 11 d gives rise to a further pair of identities which might 

2
be worth mentioning, namely d ( ~ v d) d(~ v d) and its dual. 

(This may be s een as follows. We have ~ v d ~ d(~ v d) from the 

idempotency of ~ v d and hence d(t v ' d) ~ d 2 (~ v d). The left-hand 

side of this inequality is (~ 11 d)(~ v d) by the idempotency of 

~ v d again a!nd the right-hand side is ~ (~ 11 d)
2 cf' v d) = 

( I 11 d) ( ~ v d) by the idempotency of ~ A d. The result follows.) 

A simple fact which follows from the idempotency of !' 11 d is that we 

not only have: 

x pithy implies d(x) perfect, but also the dual resul t: 

x clos ed implies d(x) perfect - expressed diff e rently, 

2
d(x) :::; 	 x implies d(x) = d (x). 

(33) 	 Bi.red ctions and cartesian products of matroidal 

closur e operators and matroidal derivatives are again such. 

For b i. reductions, this is an easy consequence of the 

definitions t oge ther with (11) and its dual; for cartesian 

products it i s trivial. 



48 

Let us say that a lattice L is a matroid lattice iff L 

is isomorphic to the lattice of some matroidal closure operator 

on a CBA. Then from (33) we have 

Corell~ Intervals and products of matroid lattices 

are again such. 

2. 	 B-Matr oids 

A clos ure operator f on a CBA A will be said to be a 

B-matroidal closure operator iff, for all s in A, each discrete 

subelement of s is contained in a base of s. The derivative 

of a B-matroidal closure operator will ·be called a B- matroidal 

derivative. Whitney duality holds for B-matroids, since, as is 

clear from t he characterization given below, the notion of a 

B-matroidal derivativ e is self-dual. This self-duality shows that 

a B-matroidal derivative is indeed a matroidal derivative and hence 

that a B-mat roidal closure operator is a matroidal closure operator. 

(34) 	 An operator d on a CBA A is a B-matroidal derivative 

iff d satisfies the following inte rpolation condition 

IC: 	 for all elements s,t,x,z of A such that 

x A d(x) s s s x s z s t s z v d(z), there exists an 

element y of A such that y A d(y) s s, x s y s z, 

and t s y v d(y). 
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Proof. Let d be a B-matroidal derivative and let s,t,x,z 

satisfy the hypothesis of IC. Let u be a base of s (0, 

being a discrete subelement of s, is contained in some base of 

s) we claim that u v (x\ s) is a base of x. Certainly u is 

contained in some base v of x and we clearly have vs u v (x\s); 

the rever se inequality follows from the fact that 

x\s x A s' A (v v d(v)) 

(x A s' A v) v (x A s' A d(v)) 

s v v (x A d(x) A s') 

s v v (s A s') = v. 

Now there ex:Ls ts a base u v w of z such that w A u = 0 

and x\s s w. Put y = s v w then x s y s z. Also y A d(y) 

= (s v w) A d(s v w) s s v (w A d(s v w)) s s v (w A d(u v w)) 

by (7) a nd this equals s since u v w is discrete. Finally 

y v d (y) ~ t on account of the idempotency of ~ v d and the 

relations y v d(y) ~ z, z v d(z) ~ t. Thus d satisfies I C. 

Now suppose that d is given to satisfy IC. To show 

that d is a. B-matroidal derivative we have to prove the following 

three facts, wherein we have put ~ v d = f : 

(i) 	 d is a derivative (and is therefore necessarily the 

derivative off); 

(ii) f is idempotent (and thus a closure operator); and 

(iii) f is a B-matroidal closure operator. 
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To do this we first prove the following lemnia. 

Lemma. Let d be an operator on a CBA A. 

(a) 	 If d satisfies IC in the restricted case x = s' 

z = t then d is a biderivative. 

(b) 	 If d satisfies IC in the restricted case s = 0 

then ~ v d is idempotent. 

Proof of (a). We verify that t \ d(t) = j\{y; y s t s y v d(y)} 


for all t in A; by (5) this will show that d is a derivative. 


The self-dual ity of the hypothesis of (a) will then imply that d 


is a biderivative. Now to obtain the above equation for a given 


t in A it is easily seen to be sufficient to show that if 


t\d(t) s s < t then there exists y such that s s y < t s y v d(y). 


So let t \ d(t) s s < t and let y be such that y A d(y) s s S 


y st s y v d (y). We want y # t and this is the case since 


if y t t h en besides s ~ t A d(t)' we also have s ~ t A d(t), 


so that s ~ t, a contradiction. 


Proof of (b) _. Assume that d satisfies the restricted case s = 0 


of IC. We first show that if x s z s x v d(x) and X A d(x) 0 


then ( ~ v d) (z) ct v d) (x) . Suppose that x and z satisfy 


x s z s xv d(x), X A d(x) = o. Then we can apply IC with s = 0 


and t = z v d(z) and we obtain y such that x s y s z, y A d(y) 0, 


y v d(y) = z v d(z). Now, as remarked earlier , y A d(y) s x s ys 


x v d(x) implies x = y for any operator d on A. Thus x = y 
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in the present case and hence z v d(z) =xv d(x). We can now 

show that ~ v d is idempotent. Let z be any element of A 

and apply IC with s = x = 0, t = z. This gives an element x 

such that x $ z $xv d(x), x A d(x) = 0. From what has just 

been shown, this implies that ( ~ v d) (z) = (~ v d) (x) and thence, 

with z rep l aced by (~vd)(z), that (~vd) 2 (z) = (~vd)(x). 
2

Thus (~ vd) (z) = (~ vd) (z) as required. Q.E.D. 

Retur ning to the proof of (34), we see that this lemma 

gives us the first two of the three facts which have to be proved 

in order to show that d is a B-matroidal derivative. The third 

fact, stating that f is B-matroidal closure operator, follows 

directly from the first two facts together with the fact that d 

satisfies IC (here, as in (b) of the lemma, the case s ~ 0 only 

is required). Q.E.D. 

(Note. It is possible to prove (34) using the arguments 

of [20] - see results (10), (11), and (12) in [20]; the proof of 

(34) given here is obviously better however.) 

The following two examples show that IC cannot be replaced in 

(34) by t he restricted forms of IC occuring in the above two lemmas. 

Let A be the finite CBA with four atoms and define 

d cV. p. l = V. p. +i • is d wi thwhere Then satisfies IC 
1 1 1 l . 

x = s, z = t but ~ V d is not idempotent. Next let A be the 

finite CBA with two atoms and and put d(l) = 1, d(x)P2 
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otherwise. Then d sa tisfies IC with s = 0 yet d is not 

a derivative. 

(35) 	 Let f be a closure operator on a CBA A. Then f is 

B-matroidal iff it is and satisfies the followingE1 
~ 

minimality condition 

MC : for all elements s,x,y of A such that 

x s f(s v y) there exists a minimal element z of A 

such that x s f(s v z), z s y. 

Proof. Suppose that f is a B-matroidal closure operator. Then 

f is s ince by (32) it is super-E1 • To show that f satis fiesE1 
~ 	 ~ 

MC let x s f(s v y). Let u and v be bases of s and s v y 

respectively with u s v such exist on account of f bei ng 

B-matroidal and denote by w the s mallest subelement of v such 

that x s f(w) this exists by (25). Put z = w\ u. Then z s y 

and x s f( s v z), the latter since w s s v z. Also, if z < z1 

then f(s v z
1

) = f(u v s
1

) and since w f u v z
1 

s v we cannot 

have x s f (s v z ). Hence z is minimal such that x s f(s v z),
1

z s y. 

Now suppose that f is E1 and satisfies MC. We show 
'2 

first t ha t f is super-E1 • Let y s f (s v x), y ~ f (s) and let 
'2 

z be minima l s uch that y s f(s v z), z s x. Then z ~ 0 and, 

.; c•since 	 f -'-~• z contains a non-zero f-E element, 
~ 
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By the minimality of z, y $ f(s v (z \ z )), 'whereas
1

y $ f (s v z) == f (s v (z \ z ) v z ). The fact that z
1 1 1 

thus implies t he existence of an element u such that 0 f u S z
1 

and u s f(s v (z \ z ) v y v (z \ u)) = f(s v y v (z \ u)). It
1 1

follows that 0 I u $ x and u s f(s v y v (x\u)) as required for 

f to be super-E1 • To show that f is B-matroidal, let x be 
~ 

a discrete subelement of an element s of A. By MC there ex ists 

a minimal e lement y such that y s s and f(s) = f(x v y) ­

note that t h en x A y O. We claim that x v y is a base of s, 

equivalently , that x v y is discrete. For suppose not - then 

there exists either a) a non-zero element u s x such that 

u s f(( x\u ) v y ) or b) a non-z ero element v s y such that 

vs f(x v (y \ v ) ). If a) holds then, from u ~ f(x\u) (xis discrete) 

and the fact t hat f is super-E1 , we obta in a non-zero v S y such 
~ 

that v s f(( x \ u) v u v (y \ v)) = f(x v (y \ v)) so that b) holds in 

any case. However, b) is clearly incompa tible with the minima l ity 

of y. Thus x v y is a base of s and this shows that f is 

B-matroidal. Q. E .D. 

(36) 	 Bireductions and cartes i an products of B-matroidal closure 

operators and B-matroidal deriva tive s are again such. 

This is 	stra ightforward (c. f. (32); here we use (33) in addition ). 

Let us :say tha t a lattice L is a B- ma tro i d lattice iff 
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L is isomorphic to the lattice of some B-matroidal closure 

operator on a CBA. Then from (36) we have 

Corollary. Intervals and products of B-matroid lattices 

are again such. 

(37) A B-·matroid lattice is left-complemented. 

Proof. Let f be a B-matroidal closure operator on a CBA A 

and let a and b be in f (A). Take a base x of a, extend 

it to a bas e x v y of a v b, where x /\ y = O, and put c = f (y). 

Then certainly c ~ b (since y ~ b) and a v c = a v b. Now 

x is a bas e of a, y . is a base .of c, and Y. v y is a base of 

a v c. It f ollows by (26) that M(c,a) and that x /\ y is a 

base of a /\ c so that a/\ c = f(x /\ y) - f(O), the smallest 

element of f(A). Q.E.D. 

Corollary. A B-matroid lattice is: 

(a) relatively complemented; 

(b) 	 semimodular in the sense of MacLane [31]; and 

(c) 	semimodular in the sense that the relation M(a,b) 

is symmetric. 

These are well-known and in any case easy consequences 

of left-complementedness for a rbitrary lattices with 0. 
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(38) 	 Let f be a B-matroidal closure operator on a CBA A 

and s uppose that f is s . Then the set of all
1 

£-separators is a complete Boolean subalgebra of A. 

Proof. By (30), part (a) of the preceding corollary, and 

Janowitz's r esult (24] that the centre of a complete relativel y 

complemented lattice L is a complete sublattice of L, the set 

S of all £-separators is a complete s ublattice of f(A). In 

particular, S is a /\-closed subs e t of f(A) and this, together 

with the fac t tha t f(A) is a /\-closed subset of A, implies that 

S is a /\-closed subset of A. Since S is a subalgebra of A 

by (16), the result follows . Q. E.D. 

The symmetry of M(a,b) in a B-matroid l att ice, obtained 

in (37), can also be seen directly from the following improvement 

of (26). 

(39) 	 Let f be a B-matroidal closure operator on a CBA A 

and let a and b be elements of A. Then the 

following conditions are equivalent 

(i) 	 M(a,b), 

(ii) 	 there exist bases x and y of a and b 

respectively such that x v y is a base of a v b, 

(iii) for all bases x and y of a and b respectively 

for which x /\ y is a base of a " b, x v y is 

a base of a v b. 
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Proof. From (26) it follows immediately that (ii) implies (i) 

and that (i) implies (iii). Since f is B-matroidal, there 

exist bases x and y respectively of any given pair a and b 

of elements of A which in addition are such that x /\ y is 

a base of a /\ b. To see this, take a base z of a /\ b and 

extend it to bases x and y of a and b respectively. Then 

z ~ x /\ y ~ a /\ b and, since z and x /\ y are respectively 

dense and discrete in a /\ b, we must have z = x /\ y, and x /\ y 

is a base of a /\ b. On account of this fact, (26) also shows 

that (iii) implies (ii). Q.E.D. 

So e results specific to matroidal closure operators on 

atomic CBA's will be discussed in Appendix 3. 



CHAPTER 4 


TOPOLOGICAL MATROIDS 

1. 	 Topological Closure Operators 

A V-operator on a CBA A is an operator f on A such 

that f(\/X) = \ff(X) for all finite subsets X of A; equiva~ 

lently, such that f(O) = 0 and f(x v y) = f(x) v f(y) for 

all x,y in A. 

(40) (a) The join of v-operators is again a v-operator, 

(b) 	 If f is a v-operator and g is any operator 

then f \ g is a v-operator. 

(c) 	 Reductions and cartesian products of v-operators 

are again such. If f is a v-operator then so is 

the coreduction f of f, provided that f(s) $ s. 
s 

Proof. (a) and (c) are easily verified. To obtain (b), let X be 

any finite subset of A. Then (f \ g) cVx) V{f (u) \ g(u); u $ Vx} 

by (1). Now for u $ Vx we have f (u) = f (u A cVx)) =Vf (u A X) 

SO that f(u) \ g(u) = (\/Xf(u A x)) \ g(u) = \/X(f(u A X) \ g(u)) $ 
X E 	 XE 

vx(f (u A x) \g (u A x)) $ vx(f \ g) (x). Therefore (f\g) ( V x ) $ 
XE 	 X E 

\j(f\g)(X) and since the reve rse inequality is trivial we have 

proved (b). Q.E.D. 

57 
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As an immediate consequence of parts (a) and (b) of 

this result we have: 

Corollary . An operator f ~ ~ is a v-operator iff 

its derivative is a v-operator. 

Note that this corollary applies in particular to any 

closure operator f. A closure operator which is also a v-operator 

will be called a topolog ical closure operator and the derivative 

of such an operator will be called a topological derivative. 

We see from (40) that reductions and cartes ian products of 

topological closure operators are again such and that if f is 

a topological closure operator then so is f when s is f-closed. 
s 

(41) 	 A closure operator f on a CBA A is a topological 

closure operator iff f( A) is a v-closed subset of A . 

Proof. This result is well·-known but we include a proof for 

the sake of completeness: If f is topological a nd X is a 

finite subset of f(A) then f(\/X) = \/f(X) =\Ix so that \/x 

is in f(A), that is, f(A) is v-closed. If f(A) is given to 

be V-clos ed and X is a finite subset of A then V£ (X) is in 

f (A) hence from Vx s \/f (X) we obtain f(Vx) ~ Vf(x) so 

that f(\/x) = \/f(X). Q. E.D . 
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(42) 	 A topological closure operator is analytic iff it is 

analytic at 0. 

Proof. Recall that a closure operator f with f(O) = 0 is 

analytic at 0 iff j(f) = 1. Let f be a topological closure 

operator which is analytic at 0. To show that f is analytic 

it is enough, by the corollary to (10), to show that it is 

analytic at each closed element s, equivalently, that s' 

= \/{w; w A s = w A d(s v w) = O} , where d is the derivative 

of f. Now in this join d(s v w) = d(s) v d(w) so that, since 

d(s) ~ s, we simply have the join of the elements w which are 

discrete and ~ s'. Since the join of all discre te elements is 

1 and the set of discrete elements is a section, the join con­

sidered does equal s' as required. Q.E.D. 

(43) 	 Let f be a topological closure operator on a CBA A 

and let s be an element of A. Then the following 

cond i tions are equivalent 

(i) s is an f-separator, 

(ii) s is clopen, 

(iii) s is in the centre of f (A). (c.f. (20) and (30) . ) 

Proof. Suppose first that s is clopen. Then f(s) A f(s') 

= s As' = 0 = f(O) and f(x) = f((x A s) v (x A s')) = 
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f(x As) v f(x As') for all x in A. It follows by the lemma 

preceding (17) that s is an f-respector. Now suppose that s is 

central in f(A), with t as its complement in f(A). Then, since 

f(A) is a sublattice of A by (41), t must be the complement s' 

of s in A, and thus s is clopen. The combination of these two 

facts with (20) leads directly to the result. Q.E.D. 

The various exchange conditions introduced in ·chapter 2 

share in the general simplification occasioned by topologicality: 

(44) (a) For topological closure operators the properties E. 
1 

and 	 S. are equivalent and so also are the properties
1 

super-E. and super-S., where i = ~, 1. 
1 	 l 

(b) 	 For analytic topological closure operators the 

properties E1 , E
1 , 

S1 , and s are all equivalent. 
~ 	 1~ 

Proof. The proof of this res ts on the following: 

Lerrnna. Let f be a topological closure operator on a CBA A and 

let x be an element of A. Then 

(c) x is f-E. iff x is f-S., where i = ~, 1 and 
1 	 1 

(d) for x discrete, x is f-S iff x is f-S
1 

. 
~ 

Proof of lemma . (c) follows from the definitions and the fact 

that (for f topological) y ~ f(s v x) and y ~ f(s) implies 
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z s f(x) and z ~ f(O), where z = y A f(x). (d) follows from 

the corollary to (40) and the fact that, for any closure operator 

f with f(O) = O, an element x is 

f-S iff X A y X A d(x v y) 0 implies y A d(x) 0 
~ 

and 

f-S iff X A y = X A d(y) = 0 implies y A d(x) = 0.
1 

(These 	equivalences follow easily from the definitions.) Q.E.D. 

(44) can now be proved: (44)(a) follows immediately 

from part (c) of the lemma; (44) (b) follows from part (d) of the 

lemma by virtue of the fact that, for a closure operator f which 

is analytic at 0 and has f(O) = O, the f-discrete elemen ts are 

\I-dense. Q.E.D. 

The remaining results of this section are essentially all 

familiar from the atomic case and are only given here since they 

will be used in later sections. 

(45) 	 Let f be a topological closure operator on a CBA A 

and let x and y be elements of A. Then 

(a) x 	 open and y pithy implies x A y pithy, and 

(b) x 	 discrete and y pithy implies (x A y)' dense. 

Proof. For (a) we have x A y s x A d(y) 
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x A 	 [d(x A y) v d(x' A y)] $ x A [d(x A y) v x'] $ d(x A y) 

(where d(x' A y) $ d(x') $ x' since x' is closed). The 

inequalities x A y $ x A d(y) XA [d(x A y) v d(x' A y)] $ 

d(x' A y) $ d((x A y) ') (where x A d(x A y) 0 since x 

is discrete) give (b). Q. E .D. 

A closure operator f on a CBA A will be said to be (i) 

pithy iff 1 is f-pithy and (ii) perfectly disconnected (Semadeni 

(36], pp. 33/34) iff, for all x,y in A, x A y = 0 implies 

d(x) A d(y) = 0, where d is the derivative of f. 

(46) 	 Let f be a topological clo sure operator with d erivative 

. d on a CBA. A. .Then 

(a) 	 the following conditions are equivalent 

(i) d* $ d, 

(ii) f is pithy 

(iii) every open element is pithy; 

(b) 	 the following conditions are also equivalent 

(i) d $ d*' 

(ii) f is perfectly disconnected, 

(iii) d(x A y) = d(x) A d(y) for all x,y in A; and 

(c) 	 if f is perfectly disconnected then every pithy 

element is open. 

Proof. (a) We prove that (i) and . (iii) are equivalent whether f 

is topological or not. First note t hat, for a ny element x of A, 
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the element f*(x) = x A d*(x) (= the interior of x) is always 

open and that x is open iff x = f*(x), that is, iff x $ d*(x). 

It is clear from this l a tter remark that (i) implies (iii). On 

the other hand , if (iii) holds and x is any element of A then 

the elements x A d*(x) and x' A d*(x'), being open, are pithy ­

from which it follows that x A d*(x) $ d(x) and x' A d(x)' $ d(x'). 

From the second inequality we obtain d(x')' $ x v d(x) and thence 

x' A d*(x) $ x' A(x v d(x )) $ d(x) which combined with the first 

inequality yields d*(x ) $ d(x). Thus (iii) implies (i). Now 

suppose that f is topological. Then 1 is open since f(O) = 0 

and hence (iii) implies (ii). If (ii) holds then for each element 

x of A we have d(x) v d(x') = d(l) = 1 and hence d*(x) $ d(x) 

so that (ii) implies (i). This gives (a). 

(b) Here it is the case tha t (i) and (ii) are equivalent 

whether f is topological or not, since (as is immediate from the 

definition) f is perfectly disconnected iff d(x) A d(x') = 0 

for all x in A. Suppos e that f is topologica l and perfectly 

disconnec ted. Then for all x, y in A we have d(x) A d(y) 

[d(x A y) v d(x A y')] A [d(x A y) v d(x' A y)] d(x A y) 

since x A y, x A y', and x' A y are pairwise disjoint. Thus 

(ii) and (iii) are equivalent (it is obvious that (iii) implies (ii) 

whenever f(O) = d(O) = 0) and we have (b). 

(c) If x is pithy then x $ d(x ) $ d*(x ) by (b)(i) a nd 

hence x i s open. Q.E.D. 
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The converse of (c) in (46) is not true see the 

discussion following (64) below. 

A closure operator f on a CBA A will be said to be 

extremally disconnected iff, for all x in A, x open implies 

f(x) open. If we say that an element x bf A is £-regular 

closed iff it is of the fonn f(y) for some open element y 

(equivalently, iff ff*(x) = x) and that x is £-regular open 

iff x' is £-regular closed (equivalently, iff x is of the 

form f(z) for some closed element z, and iff f*f (x) = x) 

then f will be extremally disconnected iff any two of the 

classes of clopen elements, regular closed elements, and regular 

open elements are equal. Since for f topological the class 

of regular closed elements is known to be a CBA under the order 

inherited from A, it follows tha t if f is extremally disconnected 

and topological then the class of clopen elements is a CBA under 

this order (though this CBA will not in general be a complete sub­

algebra of A - c.f. (38)) . A perfectly disconnected closure 

operator f is always extremally disconnected: if x is open 

then d(f(x)') ~ d(x') ~ x' A d(x) ' = f(x)' (d(x') ~ x ' since 

x' is closed and d(x') ~ . d(x)' since f is perfectly disconnected), 

so that f(x )' is clos ed and f(x) is open. It is well-knovm 

that the converse implication here fails to hold even in the 

topological case. 
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(47) Let f be a topological closure operator with 

derivative 	 d on a CBA A. Then the following hold: 

2 
(a) 	 if f is Tl then d :::; d; and 


d2

(b) 	 if :::; d and f is analytic and sl then f is Tl 

Proof. We first prove the following result: For any topological 

closure operator f, the set of elements x for which d(x) is 

closed (that is, for which d
2

(x) :::; d (x)) is V-closed. Let s 

2denote this set; we show that s /I (d (x) \ d(x)) = 0 for each 

x in A and s in s such that s :::; x. This gives the result 

since always d
2 

(x)\d(x) :::; (x v d(x))\d(x) :::; x so that if x is 

2in J(S) then it will follow that d (x)\d(x) 0, and x is 

in S. Suppose therefore that s :::; x where x is in A and 

s is in S. Put a= f(x\s) - then a is closed and x:::; a v s. 

Hence d(x) :::; d(x A a) v d(x A s) :::; a v d(s) so that d(x)\a :::; d(s) 

2	 2and therefore d (x) :::; d(d(x) 11 a) v d(d(x) \ a) :::; a v d (s) :::; a v d(s) 

(x\s) 	v d(x\s) v d(s) = (x\ s) v d(x). This implies that 

2s A (d (x)\d(x)) :::; s A ((x\ s) v d(x)) A d(x)' and since this 

2latter term is O, we have s /I (d (x)\d(x)) = 0 as claimed. 

(a) follows immediately from this result since clearly 

f (A) s:. s and by definition, f is Tl iff f (A) is V-dense in A. 

To obtain (b) , we show that if f is any closure operator 

with f(O) = 0 which is analytic a t O, sl, and such that the 

set s defined above is V-dense i n A then f is Tl. Since 
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f is s and analytic at 0 the elements 'which are discrete
1 

and f-S
1 

are V -dense in A. Hence if we show that each such 

element is the join of closed elements we will have shown that 

f is So let x be discrete and f-S and let s be anTl. 1 

element of s such that s :o; x . Then d(s) is closed (since 

s is in S) and disjoint from x (since x is discrete) and 

therefore d(s) is disjoint from f(x) (since x is f-S ) ­
1 

but then d(s) = 0, and s is closed. Since x is the join 

of such elements s, x is the join of closed elements as required. 

Q.E.D. 

Part (a) of this result is the extension to the general 

CBA case of Exercise D(c) in Chapter 1 of Kelley's General 

Topology [27]. The fact that the set S as defined here is 

V-clos ed is possibly new even for the a tomic case. It has 

as an immediate consequence the result of Yang referred to in the 

same exercise of Kelley, namely that if d is a topological 

derivative on an atomic CBA then d(x ) is closed for each element 

x of A iff d(p) is closed for each atom p of A. In 

Appendix 2 on separation axioms we shall make some further remarks 

on the various cond itions considered in (47), along with some 

related conditions. 
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(48) 	 Let f be a topological closure operator on a CEA A with 

d2derivative d such that $ d. If x and y are 

elements of A such that x is dense in y and y is 

pithy then x is pithy. 

2
Proof. From y $ x v d(x ) we obtain d(y) $ d(x) v d (x) d(x) 

and hence x $ y $ d(y) $ d(x). Q.E.D . 

We have paid a certain amount of attention to the identities 

satisfied by the derivatives of closure opera tors of various types; 

in the topolog ical case condition (I) gives us no more than we 

already have from idempotency. Precisely: for any v-operator 

d on a CBA A, d satisfies condition (I) iff f v d is idempotent. 

(To see this let d be any v-operator . Then in the first place 

2it is clear that ~ v d is idempotent iff d $ ~ 	 v d. Suppose 

2
that d(x) $ y - then d(x v d(x A y)) = d(x) v d (x A y) $ 

d(x) v (x A y) v d(x A y) $ y as required for conditon (I). The 

converse implication from condition (I) to the idempotency of 

~ v d has previously been shown to hold for all d in cr (A) .) 
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2. I.
1 

Matroidal Topological Closure Operators 

Let f be a matroidal topological closure operator on a 

CBA A. Then f is s by (32) and (44)(b), and the analysis of
1 

Appendix 2 enables us to resolve f into an analytic quantifier 

acting on A and a T matroidal topological closure operator acting
1 

on the CBA J(f(A)) (see (29)(v)). We may therefore divide t he 

study of matroidal topological closure operators into that of analytic 

quantifiers and of T matroidal topological closure operators.
1 

The former will be considered in the next section and the latter, 

briefly, here. 

(49) 	 Let f be an analytic topological closure operator on 

a CBA A. Then the following conditions are equivalent. 

(i) 	 f is T and matroidal,
1 

(ii) 	 every discrete element is closed, 

(iii) 	 the discrete elements form an ideal of A. 

Proof. Let d denote the derivative of f, To show that (i) 

and (ii) are equivalent, suppose first that (i) holds and l et x 

be discrete. Then from d(x) ~ d(x) and the fact that f is 

. 2 
super-E1 we obtain d(x) = d(x A d(x v d(x))) = d(x A (d(x) v d (x ))) 

~ 

2= d(x A d(x)) 0 (where d(x) v d (x) d(x) by (47)(a) and 

d(x A d(x)) = 0 since x is discrete) - thus x is closed. Now 

suppose that (ii) is given to hold. Then, since f is analytic, 
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: ' 

the discrete elements and therefore also the closed elements 

are \/-dense so that f is To show that f is matroidal 

we have to show that ~ A d is idempotent. Let x be any 

element of A - then x \ d(x) is discrete and hence closed, so 

that d(x\d(x)) 0. This implies that d(x) = d((x A d(x)) v 

(x\d(x))) = d(x A d(x)) and a fortiori that x A d(x) ~ d(x A d(x)) 

as required for the idempotency of ~ A d. 

The equivalence of (ii) and (iii) may be obtained as follows . 

1
If (ii) holds then the set of discrete elements = d- (0) and t his 


is an ideal s ince d is a V-operator. On the other hand, if (ii) 


fails and x is discrete but not closed, let s be a non-zero 


. discrete sub e l ement of d (x ) (such exists s ince d(x) I 0 and 

f is analytic). Then x and s are discrete yet xv s is not 

discrete, and (iii) fails also. Q. E .D. 

(50) Let f be a T matroidal topological closure operator
1 


with derivative d on a CBA A. Then: 


2

(a) d = d; 

(b) every scatter ed element is discrete; and 

(c) x open implies X A d(x) open, for all x in A. 

Proof. (a) I n the course of proving (49) we showed tha t 

d( x ) d(x A d(x)) for all x in A - i.e. that d = d(~ A d); the 

fact that d
2 = d then follows from the inequality d

2 ~ d = d (~ A d) ~ d . 
2 
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(b) An element x is scattered iff x contains no 

non-zero pithy element. Now x A d(x) is pithy so that if x is 

scattered we must have x A d(x) = 0, and x is discrete. 

(c) Let x be an element of A. Then x \ d(x) is 

discrete and therefore closed. Thus if x is open, so also is 

X A d(x) x A (x\d(x))'. Q.E.D. 

We see from (SO)(a) and earlier results that, for a 

matroidal topological closure operator with derivative d, the 

three conditions: 

2 2
f is T ; d ~ d; and d = d,

1 

are equivalent. In connection with (b) in (SO) we should remark 

that discrete elements are always scattered - so that, relative 

to any T matroidal topological closure operator, the properties :
1 

discrete; discrete and closed; and scattered, are equivalent. 

A few further necessary and sufficient conditions for the 

matroidality of a T topological closure ope rator, together with
1 

some further simple consequences of such mat roidality , could be 

given here but none of these is particularly attractive. In 

Appendix 3 (see (83)) we obtain two results on topological matroids 

for the T atomic case which give some idea of the pathologies
2 

such topological spaces must possess. If ma troidal topological 

spaces (atomicity understood) turned out to have some application 

to, say, analysis, this would be very helpful in providing a direction 

to their further investigation. However, the existen ce of even T
3 
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matroidal topological spaces (non-discrete) ' is an open question 

at present. In view of the apparent difficulty in producing a 

T3~ pithy topological space with just one point which is not a 

limit point of any discrete set (see Fine and Gillman [12), 2.6) 

it would seem to be not at all easy to construct a non-discrete 

topological space which is matroidal and in which by (49)T31~ 


no point is a limit point of a discrete set. 


3. Supertopologica l Closure Operators and quantif i ers 

A \/-operator on a CBA A is an operator f on A such 

that f(\/x) = \jf(X) for all subsets X of A. 

(51) (a) The join of \/-operators is again a \/-operator 

~) 	 If f is a \/-operator and g is any operator 

then f \ g is a \/-operator. 

(c) Reductions and cartesian products of \/-operators 

are again \/-operators. If f is a \/-operator 

then so is the coreduction f 
s 

of f, provided that 

f(s) $ s. 

Corolla ry. An operator f ~ ~ is a \./-operator iff 

its derivative is a \/-ope rator. 

The proofs of the s e res ults are similar to those of ( 40) 

and its coro llary. 
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(52) 	 Let f be a V-operator on a CBA A and let s be a 

V-dense subset of A. Then 

(a) 	 f(x) = v{f (s); s in S, s s x } for all x in A·, and 

(b) 	 (f \ g)(x) = v{f(s) \ g(s); s in s, s s x } for all x 

in A and operators g on A. 

Proof. (a) is an immediate consequence of the definitions. 


For (b), Hammer's formula gives (f \ g)(x ) = \j {f(u) \ g(u); u s x} ~ 


v{f(s) \ g(s) ;s in s, s $ x} and the reverse inequality follows 


from the fact that, for u s x, 


f (u)\ g (u) V {f(s); s in s, s s u} \ g(u) 

v{f(s) \ g (u); s in s, s $ u } 

$ v{f(s) \ g(s); s in s, s $ u } 

$ \j{f (s) \ g(s); s in s, s $ x } . Q.E.D. 

(It is not difficult to show that the truth of (a) in (52) 

for all \I-dense subsets S of A is also a sufficient cond ition 

for f to be a "\/-operator, and simila rly for (b) - indeed if f ~ ~ 

it is enough to c onsider only g = ~ in (b).) 

A closure operator which is also a V-operator will be 

called a supe rtopolo gical c losur e operator and the de rivative of 

such an ope r a tor will be c a lle d a sup e r topo lo gica l derivative . 
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(53) 	 A closure operator f on a CBA A is supertopological 

iff f(A) is a \/-closed subset of A. 

The proof of this is similar to that of (41). 

(54) 	 If f is a supertopological closure operator on a 

CBA A then the join of any directed set of discrete 

elements of A is again discrete. 

Proof. 	 Let D be a directed set of discrete elements and put 

\ID = s. Then from the fact that the derivative d of f i s a 

V -operator (by the corollary to (51)), we obtain s /\ d (s) = 

\j{x /\ d(y ); x ,y in D}. Now for each x ,y in D ther e exists 

z in D such that x ,y $ z hence x /\ d(y) $ z /\ d(z) = 0. 

It follows that s /\ d(s) = 0. Q.E.D. 

We now 	consider quantifiers. 

(55) 	 Let f be a closure operator on a CBA A such that 

f(O) O. Then the following conditions are equivalent 

(i) 	 every clos ed element is open ( equ i valently , every 

open el emen t is closed), 

(ii) 	 f(A) is a subalgebra (necessarily complete) of A, 

(iii) 	 f is topological and f(A) is complemented, 



74 

(iv) 	 every closed eleraent is an f-separator, 

(v) 	 f is topological and f*f f, 

(vi) 	 f is topological and f*f ~ ~, 

(vii) 	 f is super-E
1 

, 

(viii) 	f is super-s ,
1 

(ix) 	 x A a = 0 implies f(x) A a = 0 for all x and 

all closed a, 

(x) 	 f(x A a) = f(x) A a for all x and all closed a, 

(xi) 	 f is supertopological and s .
1 

(Most of this result is well-known: see Banaschewski [2], Ber gmann [3], 

Davis [9], Halmos [15], Rubin [34], and Wright [46]. 

For the sake of completeness we prove the equivalence of all the 

conditions listed.) 

Proof. The equivalence of the two conditions mentioned in ( i ) 

is obvious, as is the fact that (ii) implies (i). Since f(A) is 

a /\-closed subset of A for any closure operator f, it is 

also obvious that (i) implies (ii) and that if f(A) is a subal­

gebra of A then it is a complete subalgebra of A . 

It follows from (41) that (ii) implies (iii). The fact 

that (iii) implies (i) may be seen as follows, where we are 

supposing that (iii) is given to hold. Since f is topological, 

f(A) is a sublattice of A containing 0 and 1. Therefore, 

for each closed element a , the complement of a in f(A) coincides 
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with its complement in A hence a' is also closed as is 

required for (i). 

(i) implies (iv) by virtue of (43) and the already 

proved fact that if (i) holds then f is topological; and (iv) 

implies (i) by virtue of (20). 

To see that (i) implies (v), let x be any element of 

A then f(x), being closed, is also open and hence f*f(x) = f(x) 

as desired. Clearly (v) implies (vi), and (vi) implies (i) since 

if a is closed then (vi) gives a~ f*f(a) = f*(a), and this 

implies that a is open. 

Of the next four conditions, (vii) and (viii) are 

equivalent by ( 44 )(a) and (viii); (ix), and (x) a re ~quivalent 

by the lemma preceding (29) (just as for the first three conditions 

in (29)); also (ix) may be seen to be equivalent to (i) as 

follows. Suppose that (i) holds and let x A a = 0 where a is 

closed then x ~ a' a nd hence f(x) ~ a' since a' is closed 

also - thus f(x) A a = O. Suppose that (ix) holds 2.nd let a be 

closed - then from a A a' = 0 we obtain f (a') A a = 0 and this 

implies that a is open. 

To conclude the proof of (55), we remark that (ii) and (xi) 

are equivalent on account of the fact that if f is any closure 

operator on a CBA A then by (53): 

f is supertopological iff f(A) is a complete sublattice of A·
' 

and by (29), given that f(O) = 0, 
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f is s iff J(f(A)) is a complete subalgebra of A. Q.E.D.
1 

A closure operator satisfying the conditions of (SS), 

including f(O) = 0, is called a quantifier. 

(S6) 	 Let f be a closure operator on a CBA A. Then f is 

B-matroidal and topological iff it is an analytic 

quantifier. 

Proof. Suppose first that f is B-matroidal and topological. 

Then f is certainly analytic. To show that f is a quantifier, 

let a be closed and let x be a base of a'. Now f is 

super-S1 by (32) and therefore x is f-S · but then x 
"2 ~· 

by part (d) of the lemma to (44). Hence from x A a= 0 we conclude 

f(x) A a = O, that is, f(a ') A a = O, whence a is open. Now 

suppose that f is an analytic quantifier. Then f is surely 

topological. To show that f is B-matroidal, let x be a 

discrete subelement of an element s of A. Then by (54) and 

Zorn's Lemma, x is contained in a maximal discrete subelement 

y of s and y must be a base of s by (22). Q.E.D. 

It is perhaps worth mentioning here one or two alternative 

ways in which one may view the situation of a quantifie r f on 

a CBA A together with an f-base s. Given such a situation, let 

w be the operator on A defined by w(x) = f(x A s) for all x 
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in A. We then claim that w is a complete 'idempotent endomor­

phism of A with range w(A) = f(A) (so that, in the terminol ogy 

of Halmes [15], w is a complete "constant" in the monadic algebra 

(A,f) - or, as we prefer, that w is a complete f-witness, to 

borrow the other term used by Halmes in the same context) and 

also that the restriction u of f (or, equally well, of w) 

to As is a complete morphism of As to A with range f (A) 
/\s s u

such that and A --+A ~A = w, where 

s:x~x II s. 

In the first place, w is clearly a V-operator, so that 

to show it is a complete endomorphism it is enough to verify that 

it preserves complements. Let x be in A then 

x II s II f(x' 11 s) = 0 by the discreteness of s and hence 

f(x II s) II f(x' II s) = 0, that is, w(x) 11 w(x') = O. 

Therefore since w(x) v w(x ') = w(l) = f(s) = 1 we have w(x') w(x)' 

as required. Now let a be in f(A) then w(a) = f(a 11 s) 

=a 11 f(s) = a from which it follows, in view of the obvious 

inclusion w(A) ~ f(A), that w(A) f(A) and that w is idem­

pot ent . The statements concerning u are now easily seen to be 

true (the fact tha t u(x) 11 s = f(x) 11 s = x for all x in As 

follows directly from the discreteness of s). 

Now let us suppose we are given an arbi trary complete 

id empotent endomorphism w of a CBA A. Then w is of course a 

complete f-witness, where f is the quantifier on A such that 
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f(A) = w(A). We want to show that there exists an f-base s 

such that w(x) = f(x A s) for all x in A. If s is any 

element which satisfies this equation for all x in A then 

s must be the smallest element x with w(x) 1: for clearly 

w(s) = 1 and if w(x) 1 then f(x' A s) = w(x') = 0 so 

that x' A s = 0 and x ~ s. This shows also that such an element 

s is minimal subject to f(s) = 1 and is therefore an f-base. 

So let us take s =/\w 
-1 (1) = the smallest element x with 

w(x) 1. Then for each x in A we have w(x) = w(x A s) $ f(x A s) 


(if w is any f-witness then f* $ w $ f, as follows on taking 


w's in the inequality f*(x) $ x $ f(x)). Also w(w(x) v x') = 


w 
2 (x) v w(x ') w(x) v w(x ') = 1 so that w(x) v x ' ~ s, that 


is, w(x) ~ x As and hence w(x) ~ f(x As). Thus w(x) = f(x As) 


for all x in A and, as already remarked, s must be an 


f-base. 


Finally, suppose we are given an el ement s o f a CBA A 

together with a complete morphism u of As to A such that 

As__5!_, A _!__.As ~As (g as above). Let f be the quantifier 

s 
on A with f(A) = u(A ). Then u is the restriction of f to 

equival en tly: for each x in u(x) is the smallest 

element of u(As) which contains x, this being the case since 

if x $ u(y) then x $ u(y) As= y · and h enc e u(x) $ u(y). Also, 

s is an f-b ase since f(x) A s = u(x) A s = x for all x in As 

(so that s is discrete) and f(s) = u(s) = 1 (so tha t s is dense) . 
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It is obvious that the complete f-witness constructed from s 

as above coincides with the complete idempotent endomorphism of 
,., 

A given by A~ As~A. 

Let (A, f) be a monadic algebra and let x be an element 

of A. Then an f-witness w is said to be a witne ss for x iff 

f(x) = w(x). If A and w are complete and s is the f-base 

corresponding to w as above then this says that f(x) = f(x As), 

equivalently, that s contains a base (necessarily equal to 

x A s) of x. Now the monadic algebra (A,f) is said to be 

rich iff there is an f-witness for each element of A. Analogously 

we may say that a complete monadic algebra (A,f) is completely 

rich iff there is a complete £-wi tness for each element of A. 

By what was just stated, this is the same as saying that for each 

element x of A there is a base of 1 which contains a base 

of x. It follows that (A,f) is completely rich iff f is analytic 

(if f is completely rich then a fortiori every element of A has 

a base so that the discrete elements are V-dense, and f is analytic; 

conversely if f is analytic then by (56) it is B-matroidal and 

hence every element has a base which extends to a base of 1). 

This fact leads to a representa tion (closely analogous to the one 

obtained by Halmes [15], [16]) for analytic quantifiers in terms 

of analytic quantifiers of a particular t ype , which we now describe. 

Let C be any CBA and I any index set and take \J to be 

the quantifier on the CBA CI with \/(CI) consisting of the cons tant 
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functions from I to C; we call V the diagonal quantifier on 

For x in we have: (V(x))(i) = \/x(j) for all i; 

J 


( (V\ ~ ) (x)) (i) = y x (j) for all i (this follows from Hammer's 

l.r-J 


formula); x is V-discrete iff x(i) A x(j) 0 for all i,j 


such that if j; x is V-dense iff V x (i) l·, and x is
l. 

a V-base iff the x(i) 's constitute a pa~tition of 1 with 

possibly zero parts. Also v is analytic since if x is any non­

zero element of CI , say x(k) -I O, define y in CI to have 

the value x(k) at k and to be zero elsewhere - then y is a 

non-zero discrete subelement of x. 

Now let f be any analytic quantifier on a CBA A and 

let W denote the set of complete f-witnesses. Define the evalu­

ation mapping e :A --7 f (A) W by e(x) (w) = w(x) for all x in A 


and w in W. Then: 


(a) e is a complete morph ism of CBA's (this is clear); 

(b) 	 e is 1-1 (if e(x) = 0 then, taking w in W such that 

w(x) = f(x), we obtain f(x) = 0 and hence x = O); and 

(c) e is a morphism of monadic a lgebras from the algebra 
w

(A, f) to the algebra (f (A) , V) (wher e V is the 

diagonal quantifier on f(A)W) 

[that is, e(f(x)) = V(e(x)) for all x in A (for each w in 

W we have (e(f(x))(w) = w(f(x)) = f(x) and (V(e(x)))(w) = 

V (e(x)) (w) =V w(x) = f (x), the last equality holding since w w . 


each w(x) $ f(x) and some w(x) = f(x))J. 


Thus (A,f) is represented as a complete subalgebra of the complete 
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monadic algebra (f(A)
w 

, v). (We note that ' the analyticity of f 

is necessary in b) and in c) since they each imply, for x # 0 

in A, that w(x) I 0 for some w in W - equivalently, that 

f(x A s) # 0 for some f-base s, which in turn implies that x 

contains some discrete element IO). 

4. Hewitt-Kat¥tov Closure Operators 

An HK (= Hewitt-Kat¥tov) closure operator on a CBA A 

is a closure operator on A whose derivative is an endomorphism 

of A (where by an endomorphism is meant a Boolean endomorphism, 

not necessarily complete). An HK derivative is the derivative 

of an HK closure operator. It is clear that HK closure operators 

and HK derivatives are topological. The reason for the title 

"Hewitt-Kat~tov" is that , for the 'maximal' spaces of Hewitt (19] 

and the 'maximal pithy' spaces of Kat~tov (26], the corresponding 

closure operators are HK. Since d* = d for any endomorphism d 

of a CBA, the following result applies in particular to any HK 

closure operator: 

(57) 	 Let f be a closure ope rator on a CBA A and suppose 

that the derivative d of f satisfies d* = d. Then 

f is matroidal and extrernally disconnected. Also d(O) O, 

d(l) = 1, and, for each x in A, 
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x is pithy iff x' is closed (i.e. iff x is open) 


x is discrete iff x' is dense, 


x is perfect iff x' is clopen (i.e. iff x is clopen), and 


x is basic iff x' is basic. 


Proof. It is clear that f is matroidal and that the four 

equivalences concerning an element x of A hold. From the 

equivalence of openness and pithyness, together with the fact 

that for any closure operator the closure of a pithy element is 

pithy, it follows that f is extremally disconnected. From 

d(O) d*(O) = d(l)' and d(O) $ d(l) we see that d(O) = 0 

and d(l) = 1. Q.E.D. 

It does not follow from the hypotheses of (57) that f 

is perfectly disconnected - a counterexample is provided by 

geometry #(l,8,28,38c,l) in [SJ. 

(58) 	 Let f be a topological closure operator with derivative 

d on a CBA A. Then the following conditions are 

equivalent 

(i) 	 f is an HK closure operator, 

(ii) 	 d* = d, 

(iii) 	 f is pithy and perfectly disconnected, 

(iv) d is a A-operator. 

(The definition of a A -operator is dual to that for a v-operator.) 
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Proof. It is immediate that (i) implies (ii) and that (ii) 

implies (iv); the equivalence of (ii) and (iii) is a consequence 

of (46); and (iv) implies (i) since an operator is an endomorphism 

iff it is simultaneously a v-operator and a A-operator. Q.E .D. 

(59) 	 (a) Let f be an HK closure operator on a CBA A and 


fs
let s be an element of A. Then is an HK 

closure operator iff s is open and f is an 
s 

HK closure operator iff s is closed. 

(b) 	 Cartesian products of HK closure operators are again 

such. 

Proof. fs, which is certainly a topological closure op erator 

(see the remarks following (4)), will be an HK closure operator 

iff its derivative ds (where d is the derivative of f) is 

a A-operator. Now ds preserves all non- empty finite mee ts since 

d does so. Hence the condition for fs to be an HK closure 

operator is tha t = s; equivalently, that s is open. 

A similar argument gives the result for f (b) is trivial. Q.E.D. 
s 

(60) 	 Let f be an HK closure operator with derivative d 

3 
on a 	 CBA A. Then d = d. 

Proof. Since d is av-operator, the identity d
2 (i vd) 
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3 	 2
(see the 	discussion preced ing (33)) r e duces to d v d = d v d ; 

d3 /\ 2taking *'s and using d* = d gives d = d /\ d . These 

3
two equations together imply that d = d, · (J(A) being a distri­

butive lattice. Q.E .D. 

We now 	show how the resolution of an s closure operator
1 

into a quantifier and a T closure operator (to be discussed in
1 

general in Appendix 2) may be given in a simple alternative form 

for an HK closure operator: every HK closure operator is isomorphic 

to an HK quantifier X a T HK closure operator ((62)), where
1 

predictably, an HK quantifier is an HK closure operator which 

is also 	a quantifier. We first prove 

(61) 	 Let f be a closure operator with derivative d on 

a CBA A. Then the following conditions are equivalent 

(i) f is an HK quanti fier , 

(ii) f is a super topological HK closure operator, 

(iii) f is an HK closure operator and d is 1-1, 

(iv) f is a topological closure opera tor and d2 = ~ 

(v) 	 f is a topological closure operator with a 

complementary pair of bases, 

(vi) 	 f is a quantifier such that, for each x in A 

x is pithy iff x is open, 

(vii) 	 to within isomorphism , A is a square and f(A) 

is its diagonal. 
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(Note that in (iii), the condition 'd is 1-1' is equivalent 

1to the equation d- (0) = 0.) 

Proof. (i) ¢::.::?(ii). In view of the fact that every HK closure 

operator, being matroidal and topological, is sl, (see the 

beginning of the second section of this chapter), the equivalence 

of (i) and (ii) is an immediate consequence of (55). 

(i)~(iv) . Suppose that (i) holds. Writing the equation 

f*f = f (see (55) (v)) in terms of d, we obtain d v d
2 

= d v l; 
2

taking *'s and using d* = d gives d A d = d Ar also. 	 Since 

2
(r'(A) is a distributive lattice, these two equations yield d = ~, 

and (iv) holds. Suppose convers e ly that (iv) is given to hold. 

2
Then from 1 ~ d(l) ~ d (1) we obtain 	 d(l) 1, and f · i s pithy. 

2 2
For all x,y in A, d(d(x) A d(y)) ~ d (x) A d (y) = x A y and 

hence x A y = 0 implies d(x) A d(y) = 0 that is, f is 

perfectly disconnected . Thus f is an HK closure operator b y 

2 	 2
(59). d gives d v d = d v ~ which in terms of f is 

f*f = f, so that f is a quanti f ier by (55). 

(iii) ~ (iv). By what has just been proved, (iv) implies 

(iii). 	 Suppose that (iii) holds and let x be any element of A. 

2 3
Then d(d (x) + x) = d (x) + d(x) = d(x) + d(x) = 0, where 

2d (x) by 	 (60). Hence d (x) + x 0, that is, = x. 

(i) ~ (v). If (i) holds then f is an analytic quantifier 

and by (56) there exists an f-base, s say. By (57), s' is also 
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a base and hence (v) holds. Suppose conversely that (v) is 

given to hold and that s and s' are complementary bases. 

Then d(s) = s' and d(s') = s so that d(l) = 1 and f is 

pithy. To show that f is perfectly disconnected, it is 

sufficient to show that d(x) A d(y) = 0 for all disjoint sub-

elements x and y of s for if x and y are arbitrary 

disjoint elements of A then d(x) A d(y) = (d(x A s) v d(x A s')) A 

(d(y As) v d(y A s')) and this will vanish since in its expansion: 

d(x A s) A d(y A s) = 0 by what we are about to prove, and 

d(x A s') A d(y A s') 0 by a similar argument (with s' in place 

of s); also d(x As) A d(y As ') ~ d(s) A d(s') = s' As= 0, 

and likewise for d(x As') A d(y As). So let x A y 0, 

xv y ~ s and put z = d(x) A d(y) = f(x) A f(y). Then z is 

a closed subelement of s' and hence d(z) = 0 since s' is 

discrete. Thus s = d(s') = d(z) v d(s' \ z) = d(s' \z ) ~ f(s'\z), 

from which it follows that s'\z is dense. By the discreteness of 

s', this implies that z = 0 as required. We may now app l y (58) 

to deduce that f is an HK closure operator. To show that f is 

an HK ~uantifier it is enough to show that d-1 (0) = 0 since we 

have already proved that (iii) implies (i). Suppose that d(z) = 0 

- then s'\z is dense as above and hence z A s' 0, s' being 

discrete; similarly z A s = 0, and therefore z = 0. 

(v)~ (vi). It is immediate from (46) that (i) implies 

(vi); thus (v) implies (vi). Suppose that (vi) holds. We show 
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first that f is analytic - by (41) it is sufficient to show that 

each non-zero element x of A contains a non-zero discrete 

element. If every subelement of x is closed then d(x) = 0 

(see Chapter 1, Section 2, c)) and hence x is itself discrete. 

If some subelement y of x is not closed then, since closedness, 

openness, and pithyness are the same under the present circumstances, 

y is not pithy either and y\d(y) is a non-zero discrete subelement 

of x. From the analyticity of f it follows by (56) that f 

is B-matroidal and therefore there exists an f-b ase , s say. Since 

d(l) = 1 (1 is closed and thu s pithy) we have s = s A d(l) 

s A (d(s) v d(s')) = s A d(s' ) so that s ~ d(s'). This impl ies 

that s' is dense and hence there exists an f-base t ~ s'. Now 

s v t, being the j oin of two disjoint dense elements, is pithy 

and thus closed. Therefore s v t = 1 and s and t are complemen­

tary bases: we have verified that (v) holds. 

(i )<==?(vii). Suppose that (i) holds and let s and t 

be complementary bases (we have (v)). Then d(s) = t, d(t) s, 

2
and, in view of the fact that d = ~ (we have (iv)), it is clear 

As
that are isomorphic under d (suitably restrict ed ) . 

Writing As - At - B say, we obtain A~ As x At~ B2 and it is 

easily seen that under this isomorphism f(A) corresponds to the 

2
diagonal of B . The converse - namely that if B is a CBA and 

2V is the diagonal quantifier on B (see the penultimate paragraph 

of the preceding section) then V is an HK quantifier - is 

straight forward. Q. E .D. 
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(62) Let f be an HK closure operator on a CBA A. Write 

s ft ,t = t (f), s = t I , g = f , B • As , h and C =At. 

Then g is an HK quantifier on B, h is a Tl HK closure 

operator on c, and s and t are complementary separators 

- so that f = g x h. 

Proof. Since f is analytic, j(f) = 1 and therefore 

t = t(f) A j(f) = ~-1 (0) (see Chapter 1, Section 2, d)), where 

d is the derivative of f. Since (as previously remarked), 

f is sl, (31) implies that s is pithy and henc e s is open 

by (57) (also t = s' is closed) . Thus g is an HK closure 

operator by (59)(a). To show that g is an HK quanti fier it is 

1sufficient by (61) to show that e- (0) = 0, where e = ds is 

the derivative of g. So let x $ s be such that e(x) = d(x) A s 0. 

Then for every subelement y of x we have y = f(y) \ t, and 

this is in J(f(A)) since f is s (us e (29)(v)). It follows
1 

that x $ t, and hence x = 0 as desir ed . The fact that g is 

an HK quantifier implies by (61) that there exist complementary 

bases x and y of s. We then have f(s) A t = (x v d(x) ) A t 

d(x) At $ d(x), and f(s) At $ d(y) similarly. However, 

d(x) A d(y) = 0 since f is perfectly disconnected. It follows 

that f(s) A t = 0 and therefore that s is clo sed . s is thus 

clopen and by (43) s is an f-separator. Moreover, the fact that 

t is open implies by (59)(a) that h is an HK closure operator 
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and it 	is obvious from the definition of t 'that h is T
1 

. Q.E.D. 

(63) 	 Let d be an operator on a CBA A. Then 

(a) the following conditions are equivalent 

(i) 	 d is the derivative of an HK quantifier 

(ii) 	 d is an automorphic derivative of period 2 

(iii) 	 d is an automorphism of period 2 such that 

{x; d(x) # x} is '\I-dense, 

(iv) 	 d is a complete HK derivative (complete as 

an endomorphism of A, that is); and 

(b) the following conditions are also equivalent 

(i) 	 d is the derivative of a T HK closure operator,
1 

(ii) 	 d is an idempotent endomorphic derivative, 

(iii) 	 d is an idempotent endomorphism such that 

{x; d(x) = O} is \/-dense. 

Proof. We first note the following fact : 

A V-operator d on a CBA A is a coderivative iff 

{x; x A d(x) = O} is V-dense. 

The proof of this is similar to that of (42) (which 

follows immediately from it), except that one relies directly 

on the dual of condition (iv) in (5). 

(a) The equivalence of (i) and (ii) follows from that 

of (i) and (iv) in (61) since d
2 f' implies d

2 
"$ ~ v d . The 
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equivalence of (i) and (iv) follows from that of (i) and (ii) in 

(61) in view of the corollary to (51). It is clear that (ii) 

implies (iii) and for the converse we have that if s is non­

zero and x :5 s is such that d(x) i- x then y = x\ d(x) satis-

fies 0 i- y :5 s, y /\ d(y) = 0 for if x :5 d (x) then 

2
d(x) '.S d (x) = x and hence d(x) = x, a contradiction. Thus 

(given (iii)) the above-stated fact applies to show that d is 

a coderivative so that, since d* = d, d is a derivative and 

we have (ii). 

(b) 	 The equivalence of (i) and (ii) follows from the 

2
remark immediately subsequent to the proof of (50) since d = d 

2implies d :5 ~v d; (i) implies (iii) for any T analytic topo­
1 

logical closure operator; and by the above-stated fact, (iii) 

implies that d is a coderivative, and hence (iii) implies (ii). 

Q.E.D. 

We will use condition (iii) in part (b) of this result 

as one way of constructing examples of T hK closure opera tors
1 

in Appendix 3. In the remainder of this chap ter we give two 

results which a re reformulations and extensions to the CBA setting 

of results due to Hewitt [19] and Katetov [26]. It does not 

appear that Hewitt's paper proves quite what is stated below and 

we do not refe r to any specific theorem therein; as far a s Kat~tov's 

paper is conce rned however, our results are virtually the same as 

his Theorem 2 (modulo the equivalence of (i) and (iii) in(58)). 
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It would have been possible to similarly reformulate for CBA's 

various of their other results - for instance, the properties of 

Hewitt's MI-spaces (note especially his Theorem 33 from which it 

follows by our (49) that Ml-spaces are matroidal); nevertheless 

it was felt that this would be a somewhat barren exercise and 

that an adequate impression of what to expect along such lines 

has been given. 

(64) Let f be a T topological closure operator on a CEA A.
1 

Then the following conditions are equivalent 

(i) f is an HK closure ope rator, 

(ii) for each x in A, x is pithy iff x is open. 

Proof. (i) i mplies (ii) by (57). Suppose that (ii) holds. Then 

1, being open, is pithy so that f is pithy and we will have ob­

tained (i) if we show that f is perfectly disconnected. To this 

end we first remark that if x ~ y ~ f(x) and x is open then 

so is y since the like implication for pithyness always holds; 

this shows in particular that f is extremally disconnected. If 

f is not perfectly disconnected th en it is not difficult to see 

with the aid of Nobeling's formula that there exist disjoint elements 

x,y and z of A with x v y v z = 1, z ~ f(x) A f(y), and 

z f 0. Put u = f*(f (x) A f (y)) then u is clopen since f 

is extremally disconnected. Moreover z ~ u, as may be seen by 
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the following argument: Let t = z A f(f*(x)). Then 

f*(x) s f*(x) v t s f(f*(x)) and hence f*(x) v t is open. 

But f*(x) v t is disjoint from y so that, sinc.e t s z s f(y), 

we must have t = 0. Thus z s (f(f*(x)))' = f*(f(x')) = f*(f(y)) 

(note that f(x') = f(y v z) f(y)). Similarly z s f*(f(x)) 

and thus z s f* (f(x)) A f*(f(y)) = f*(f(x) A f(y)) = u 

as claimed. Now from u s f(x) and the fact that u' is closed 

it follows that x A u is dense in u (we have u s f(x) 

f(x Au) v f(x Au') s f(x Au) vu' , so that u S f(x Au)). 

Since u is pithy (it is open) and f is T , (47)(a) and (48)
1 

now show that x A u is pithy also hence x A u is open. In 

view of the fact that x A u A y = 0, this implies that 

x Au A f(y) = O; therefore x Au = 0 since u s f(y). 

Because u is open we obtain f(x) A u 0 which, since z s f(x) A u, 

gives z = 0, a contradiction. Q.E.D. 

The requirement that f be T in (64) cannot be dropped,
1 

not even in the atomic case (though in this case anyway, as 

follows from Hewitt's Theorem 9 [19] and our (65), it is sufficient 

to suppose that f is T ). To obtain a counterexample, take
0

any ultraspace (Frohlich [13]) for which the corresponding ul tra­

filter is non-pr incipal and replac e each isolated point by a pair 

of points, each in the closure of the other. Then in the resulting 

topological space the pithy sets are the same as the open sets, yet 

the associated closure operator is not HK (by taking jus t one point 
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out of each of the pairs, we obtain a set of points which, to­

gether with its complement, has the single non-isolated point 

of the original space as a limit point - thus our space is not 

perfectly disconnected). There exist simpler counterexamples ­

on the 8-element CBA for instance - but the one given is s and
1 

shows therefore that we cannot replace T by s in (64). The
1 1 

question still remains as to whether a T topological closure
1 

operator, such that every pithy element is open, is necessarily 

perfectly disconne cted (c.f. (46)(c)). The answer is "No t 

necessarily ", a counterexample being furnished by the Stone space 

X of any infinite superatomic Boolean algebra A (Day [10) de­

fines superatomicity; his Theorem 1 shows that X is clairsem~ 

(=scatte r ed ), so that the only pithy set is the empty set which 

is certainly open; and X is not perfectly disconnected , for if 

it were it would be extremely disconnected a nd A would be complete 

- but an infinite atomic CBA has atomless homomo rphs and is thus not 

superatomic. (Actuall y , the Stone space of no infini te Boolean 

algebra is perfectly disconnected.)) . 

(65) 	 Let f be any topological closure operator on a CBA A. 

Then the fo llowing conditions are equivalent 

(i) 	 for each x in A, x is pithy iff x is open, 

(ii) 	 amongst the topological closure operators on A, 

f is minimal pithy. 
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Proof. We first remark on the following immediate consequence 

of (45)(a): f or any pithy topological closure operator each open 

element is pithy. In particular, if g is a pithy topological 

closure operator on A and g $ f then for each element x of A we 

have 

(iii) x is g-open implies x is g-pithy 

(iv) x is f-open implies x is g-open, and 

(v) x is g-pithy implies x is f-pithy. 

((iii) is becaus e g is pithy: (iv) and (v) are because g $ f). 

We deduce that if f satisfies (i) then for each x in A 

(vi) x is g-open iff x is £-open. 

Hence g = f and we have shown ·that (i) implies (ii). 

Now suppose that (ii) holds. Then from the pithyness 

of f it follows by our initial remark that every f-open element 

is f-pithy. We therefore have to show that every f -pithy element 

is f-open. Suppose that s is f-pithy but not £-open. We define 

a new topological closure operator g on A by taking as the 

g-open elements the elements of the form x v (y A s) where x 

and y are arb i·trary f -open e1 ement s. We note that gs -- fs and 

SI 
that g fs', as may be readily verified by looking at the open 

elements corresponding to these closure operators . Now it is clear 

that g < f, the inequality being strict since s is g -open but 

not f-open. On account of (ii) it follows that g is not pithy. 
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Hence there exists a non-zero, g-open, and g-discrete element t 

(for example, we may take e(l)' for t , where e is the deri­

vative of g). The fact that t is g-discrete and that gs= fs 

shows that t A s is f-discrete - and similarly t A s' is 

f-discrete. Write t x v (y A s) where x and y are f-open. 

Then t As= (xv y) As which is f-pithy by (46)(a). 

t A s is thus both f-discrete and f-pithy; hence t A s = 0. 

It follows that t itself is both f-discrete (t = t A s') and 

f-pithy (t = x v (y A s) = x since t A s = 0, and x is f-open 

- hence f-pithy by our initial remark); therefore t = 0, 

a contradiction. Q.E.D. 



APPENDIX 1 

SECTION CLOSURE OPERATORS 

Let S be a section of a CBA A. Define f in 0-(A) by 

f(x) = x for x in S, f (x) = 1 for x not in S. Then f 

is a closure operator on A and we call it the section closure 

operator associated with S. Notice that f(A) = S u {l} . In 

order to analyze f, we first introduce some notions which con­

cern the 'geometry' of S. 

(66) 	 Let S be a section of a CBA A. Then for each x in A 

there is a smallest y s x such that [y,x) ~ S . 

Proof. 	 Put 6 (x ) = {y ; y s x, [y , x) S} and =/\ 6 (x );~ Yo 

we wish to show that is in 6 (x). Let u be in [yo,x)Yo 

- then u = Yo v u =/\ {y v u· y in 6 (x)} and, since u < x,
' 

there must exist some y in 6 (x) for which y v u < x; but 

then y v u is in s and hence u is in s. It follows that 

is in 6 (x). Q.E.D.Yo 

We denote the smal l est y s x such that [y ,x) ~ S by 

o(x). Note tha t o (x) = 0 for x in S and that, for x not 

in s, o(x) = x except when x 'touches' s. 

96 
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We set 01 (x) =A{y; o(x) ~ y ~ x} and o.2(x) = v{y; o (x) ~ y ~ x} 

- then X = o (x) V o (x) and o(x) = o (x) A o (x).
1 	 2 1 2 

Dually, considering the cosection A\S in place of the 

section S, we define E(x) to be the largest z ~ x such 

that (x,z] ~ A\ S and put El (x) = \./{z ; x ~ z ~ E(x)} , 

E (x) =/\{z; x ~ z ~ dx)}, so that x = E (x) A E (x) and
2 1 2 

E(X) = El(x) v E2(x). 

(67) 	 Let S be a section of a CBA A and let f be the 

associated closure operator. Let d denote the 

derivative of f and e the coderivative of d. 

Then 

(a) x A 	 d(x) = o (x) for all x in A, 

(b) d(x) o(x) v x' = e(x) for x not in s, 

(c) d (x ) and x A e(x) 

for x 

Proof. 	 Hammer's formula gives X A d(x) = V {x\u ; u ~ x, u S} = z~ 

say. Let u be in [z,x) and suppose that u is not in s. Then 

x\u ~ z and hence x ~ z Vu = U which is not the case. It 

follows that z is in the set ti (x) introduced in the proof of 

(66). Let y be in ti (x) and suppose that y i z then 

there must exist u not in s such that u ~ x and x \ u t y 

- i.e. such that y v u < x . Hence y v u is in s, contrary 

to the fact that u is not in s . This shows that z = o (x) , 

in S. 
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the smallest element of 6 (x), and we have (a). It follows 

that d(x) (x A d(x)) V (x1 A f(x)) = o (x) V (x' A f(x)) which 

equals 0 for x in s and o (x) v x' for x not in s. 

e(x) remains to be determined (note that x A e(x) 

follows from e(x) = s (x) Ax' since s (x) ~ x). We first
2 2 

remark on the following consequence of wha t we have already 

proved, namely that 

\j{u'; u ~ x , u f S} = o(x) v x' for x not in S 

(both sides equal d(x), the left on acc ount of Hammer's formula 

and the right by what has alr eady been proved) and hence dually 

that 

j\ {v'; v ~ x, v s S} = s (x) A x ' for x in S . 

By the dua l of Hammer's formula, e(x) =/\ {d(v) / v; v ~ x}. 

Take x not in S then, since o (v) ~ v' for v not in S, 

we have e(x) ~ j\ {d(v); v ~ x } d(x). Take x in S. Then 

e(x) = /\{d(v)/v; v ~ x, v s S} A j\{d(v)/v; v > x, v ~ S} 

= /\{v'; v ~ x , v E S} A j\{d(v); v > x, v ~ S } 

E(x) A x' A/\{d(v); v > x , v ~ S} ••••• ( a ). 

We claim that 

e(x) s (x) Ax' A/\{d(y); y ~ x V o (y), y ~ S} .•.•• (8). 

By ( a ), we certainly have ~ in (8). The reve rs e inequality will 

be obtained if we show tha t, for every v not in S such tha t 

v > x, we either h ave 

(i) d(v) ~ s (x) A x ' , 
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or 

(ii) 	 d(v) ~ d(y) for some y not in S such that 

y >--xv o (y). 

Let v > x, v not in S then v ~ x v o(v) (v ~ o (v) always 

holds). If v x v o(v) then d(v) o (v) V v' = o (v) V (x' A o(v) 1
) 

o (v) v x' ~ x' ~ E:(x) A X 1 which is possibility (i) . If v >- x v o (v) 

then possibility (ii) holds with y = v. Therefore we may suppose 

that v > x v o (v), v not >- x v o (v). We can write v = v v v21 

where vl,v2 < v and vl A v = x v o (v). Under such circum­
2 

stances and are in s and hencevl v2 

d(v) ~ 	V 1 = V I A v • ~ /\fv'; v ~ x, v E: S } E:(x) A X 1 

1 2 

which is possibility (i) aga i n. Thus ( S) holds. 

We can 	show now that e(x) = E: (x) Ax' (=(\{z Ax ';2

x s z -:5 E: (x)} by the definition of E (x)).
2

Let y r xv o (y) , y not ins, and put z = E: (X) A (xv d(y)). 

Then 

XS Z :-!:: E:(x) (x V o (y) ~ y ==} XV o (y) Vy'~ 1 ==} E:(x) A (x V o (y) Vy') 

~ E:(x); o (y) v y' = d(y)); also z Ax ' s d(y). In view of ( S) 

it follows that e(x) ~ E: (x) Ax' since in any case
2 

E:(x) Ax' ~ E: (x ) Ax'. Now let x s z ~ E: (x). If z = E: (x ) then
2

z Ax' = E:(x) Ax' ~ e(x). If z ..<. E: (x ) put y = E: (x) A (x v z'). 

Then y ~ x and hence o (y ) s x since x is in S; t hus 

y >-xv o (y). Also, the fact tha t y is in (x , E: (x )] i mplies 
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that y is not in S. Therefore from ( S) we have 

e(x) ~ E(X) Ax' A d(y) = E(x ) Ax' A ( o (y) v y') ~ E(x) Ax' A 

(xv E(x)' v (x' A z)) = E(x) Ax' A z ~ z Ax ' ; hence 

e(x) ~ E (x) A x'. Q.E.D.
2 

(68) 	 Let s be a section of a CBA A and let f,d, o , E , Ez be 

as above. Then f is analytic iff c (x) = x for all
2 

x in s, and ~A d = 8 is idempotent iff 8 (x) = 0 

or x for all x in A\ S. 

Proof. 	 The first equivalence is an immediate consequence of 

( 67), and the second follows from 	t he fact that if o (x ) ~ x 

2
then 8 (x) is in S and hence o (x) = 0. Q.E.D. 

This last result enables us to describe comple t e ly the 

matroidal section closure operators on an atomic CBA A. Let us 

say that elements x,y of A are on the same level iff x\y 

and y \x are both joins of a finite number of atoms, the same 

number of atoms being required for each. 

(69) 	 Let S be a section of an atomic CBA A and let f be 

the associated closure op erator. Then the fellowing 

conditions are equivalent 

McMASTER UNIVERSITY LIBRAR1 
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(i) 	 f is matroidal, 

(ii) 	 f is El' 

(iii) 	 if x is in s and y is on the same level 

as x then y is in s. 

Proof. We know from (32) and (21) that (i) · implies (ii). Suppose 

that (ii) holds; we verify that (iii) holds by induction on the 

number n of atoms contained in x \y. The case n = 0 is trivial. 

Suppose that (iii) holds whenever n = k, and let n = k+l. Then 

there exists an element z and atoms p,q of A such that 

x\(z v p) and (z v p)\x each contain k atoms and y = z v q. 

Then z v p is in S (supposing that x is in S). If y is 

not in S then f(y) = 1 and we have p ~ f(z v q), pt f(z) 

(the latter since z is in S and is therefore closed). By (2l)(iii), 

this gives q ~ f(z v p), contrary to the fact that z v p is 

closed. Hence y is in S and we have shown that (ii) implies 

(iii). To see that ( iii) implies (i) we note that 6 (x) 

j\{y; y-:!:. x, y ES} for all x in A (as is clea r from the 

definition of 6 and the fact that A is atomic). It follows 

that if (iii) holds then , for x not in S, 6(x) = 0 if x 

covers some element of S, and S(x) = x otherwise . Thus ~A d 

is idempotent by (68) and, since f is analytic by (8), f is 

indeed matroidal. Q.E.D. 

The conditions under which f is topological-matroidal , 
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or B-matroidal, will be apparent from ( 69) and the results to be 

obtained in the remainder of this app endix , in which we apply 

the analysis of (67) and (68) to the cases: S an ideal; S de­

termined by a cross-cut. We might remark here that, as a conse­

quence of (69), the section closure operators introduced by 

Dlab in [11] are matroidal. 

(70) 	 Let S be a section of a CBA A and let f be the 

associated closure operator . Then f is topological 

iff either S is an ideal or S A\{l}. 

Proof. 	 By (41) f is topolog ical if f f(A) is v-clos ed . Here 

f(A) = S u {l} and this is clearly v-closed when S is an ideal 

or A\{l}. Suppose conversely that S u {l} is given to be 

v-closed, so that for all x,y in S either x v y is in S or 

xv y 1. Then if s is not an ideal there exist x,y in s 

with x v y = 1. But this implies t hat every element z of A is 

the join of the elements z /\ x, z /\ y of s and therefore 

either z is in s or z = 1; hence s = A\{l} or A. Q.E.D. 

Note that S = A\ {l} and S =A give the same f, namely 

f = ~. Thus to obtain a topological section clo sure operator on A 

we can always take the section to b e an ideal and there is a bi­

jection between topological section closure ope r ators on A and ideals 

of A. 
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(71) Let S be an ideal of a CBA A and let f,d,o, E , E
2 

be as above. Let P be the set of atoms of A. Then 

(a) 	 For x not in s, o (x) = x unless x covers an 

element y of s, in which case 6 (x) y; for 

x in S, E(x) = x v <Vs)' and E2 (x) x v <V<s u P)) '. 

(b) 	 f is analytic iff Vcs u P) l•, ~Ad = 0 is 

idempotent iff s = {O} or s ';2 P·, f is matroidal 

iff Vs = 1 or S = {O} and A is atomic. 

Proof. (a) If x is not in S and 6 (x) 1' x then o (x ) is 

in S and if x does not cover 6 (x) there exist in 

[ o (x ), x ) and hence in S such that x = y v y but then
1 2 

x is in S, a contradiction. If x covers an element y of 

S then certainly o(x ) ::::; y and from what we have just seen we 

must have o (x) y. Note that in this case x \ y is in P\S 

(if x\y is in S then so is x = (x\y ) v y). To obtain the 

formula for E, suppose first that x < u::::; xv <Vs)' then 

u is not in S for otherwise u ::::; Vs which with u ::::; xv <Vs)' 
implies that u ::::; x, a contradiction. This proves that E(x) ~xv (\/s)'. 

To prove the reverse inequality , observe that for an arbitrary 

element s of S, ( E (x) 11 s) v x is in S n [x , E (x)] and is thus 

equal to x. That is, E(x) 11 s ::::; x for all s in S and thus 

E(x) 11 (\/s) ::::; x so that E(x) ::::; xv (\Is)' as required. The 

formula for is an easy consequence of tha t for E • 
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(b) From (68) we know that f is analytic iff s (x) = x
2 

for all x in S and, in view of the formula for s (x) stated
2 

in (a), this is equivalent to the assertion that \/cs u P) = 1. 

Alternatively, we can rely on (42) which by (67)(a) asserts that 

f is analytic iff \/{x; o (x) = O} = 1 but, as we see from 

part (a) of the present result, o (x) = 0 iff x is in s u P. 

Now by (68) again, ~ A d = 0 is idempotent iff o (x) = 0 or x 

for all x not in s. This fails precisely when there exists an 

x in A\ S covering a non-zero element y of s, and this occurs 

iff s f {0} and there is an atom not in s (if we have x and 

y as described then s f {O} and there is an atom not in s (if we 

have x and y as d e s c r ib ed th en s f {O} and x \ y i s in P \ S 

conversely if y is in S\{ 0} and p is in P\S then x = y v p 

is in A\ S and covers y). Since f is matroidal iff it is ana­

lytic and I A d is id empotent, the final statement of the result 

follows immediately from what has been shown already. Q.E.D. 

A particular c a se in which this result applies to give 

a matroidal closure ope r a tor f is when S is a non-principal 

maximal ideal of A· the closure operators arising in this way
' 

may be characterized as the connected HK closure operators (a 

closure operator f is connect e d iff the only f-separators are 

0 and 1), and as the pithy topolog ical door closure ope rators (a 

closure operator is door iff every element is either op en or clos ed). 
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A cross-cut of a CBA A (or of any ordered set for that 

matter) is a maximal antichain c in A which satisfies the 

following interpolation property: 

If x $ a, x $ z, and c $ z, where a and c are in 

c, then there exists b in c such that x $ b $ z. 

(72) 	 Let c be a cross-cut of a CBA A and let s = {x ; x < some 

element of c }, T = {z ; z < some element of c}. Let 

f ,d, o , i:: , i:: correspond to the section s as before. Then
2 

(a) 	 {S,C,T} is a partition of A, 

(b) 	 If x is covered by an element of c then A is x 
atomic with A n c as its set of atoms . x 

(c) 	 o (x) 0 for x in c and o (x) = x for x in T·, 

E:(x) 1 and E: 2 (x) x for those x in s which 

are covered by some element of c and E:(x) i::2 (x) = x 

for the remaining x in s·, d (x) 0 for x in s, 
d(x) = x' for x in c, and d(x) 1 for x in T. 

(d) 	 f is B-matroidal; the set of bases of an element s 

of A is {s} for s in s and As n c for s 

in A\S. 

Proof. (a) S ,C, T are pairwise disjoint since C is an antichain, 

and S u C u T = A since every element of A is c omparable with some 

element of C, C being a maximal antichain. 

(b) This will be proved if we show that for each u > x 

there exists c in A n C with u ~ c. Suppose that x-< a 
x 
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in C and let u > x. Suppose if possible that u is in S. 

Then by the interpolation property there exists b in C for 

which u < b $ u v a. Now from x ~ a it follows that 

u = u v x ~ u v a. Hence we must have b = u v a which, since 

C is an antichain, can only happen if u $ a = b. But then 

x < u $ a which with x ...-<, a implies u = a, contradicting the 

supposition that u is in S. Thus either u is itself in C 

or, if u is in T, there exists by the interpolatior. property 

some c in C with x < c $ u, as desired. 

(c) Let x be in C then [O,x) ~ S and hence 

o (x ) 0. Let x be in T and suppos e that o (x) # x then 

o (x) is in S and by the interpolation property [ o (x) , x ) n C # ¢, 

contrary to [ o (x),x) c S. Let x be in S, x covered by some 

element of C then E(x) = 1 and E (x) = x by part (b ) of
2 

the present result. Let x be in S, x not covered by any 

element of C, and suppose that E(x) f x . Then E(x) is not in 

S and by the int e rpolation properfythere exists c in (x, E(x)] n C. 

Since x is not covered by c, ther e exists y in (x,c) but 

then y is in (x,E(x)] n S, contrary to the inclusion 

(x, E(x)] ~ A\ S. d(x) may be obtained from o (x) using (67)(b) and (c). 

(d) The discrete elements are precis e ly those x for 

which o (x) = 0, that is, they are the elements of S u C. The 

assertion in (d) which concerns bases is now obvious and it 
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follows by the interpolation property that f satisfies the 

defining condition for B-matroidal closure operators. Q.E.D. 

It is easy to see that the converse of (72)(d) is true 

in the sense that if f is a B-matroidal section closure operator 

on a CEA A then there exists a cross-cut C of A which gives 

rise to f in the way described (take C to be the set off-bases). 

The simplest examples of cross-cuts on CBA's are as 

follows. Let A be an atomic CBA, say A= g'J(E), and let k be 

a non-negative integer. Then the subset C of A which c ons ists 

of all subsets of E having exactly k elements is a cross-cut 

of A, and so also is C* = {c'; c in C}. ( It is clear in general 

that if C is a cross-cut of a ·· CBA A·· t:ht!n so is C* · as just 

defined.) For E finite, it is easy to see (use (72)(b) say) 

that there arc no other types of cross-cut on A· it is an un­
' 

solved problem ([22], pp. 343-344) whether all cross-cuts on A 

are given in this way when E is infinite. 

Other examples o f cross-cuts on CBA's may be obtained by 

considering a measure algebra (A,µ ) ([14], p. 67) with A atom-

less and letting C = tx; µ (x) = t } wher e O ~ t ~ l. It is 
t 

obvious that these are not the only cross-cuts on A: just shift µ 

a bit, say by express ing 1 = a v b where µ (a ) = µ(b) = ~ and 

defining a new measure algebra (A,µ ') with ).1 I ( a ) = 
1J> µ ' (b) = 

3 
2 

(so that µ '(x ) = 32 
µ (x A a)+ 

4
j µ (x Ab)). Of course it is still 
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conceivable that every cross-cut on A can be obtained as a 

Ct for some t and some µ such that (A,µ) is a measure 

algebra; this is an open question. It should also be remarked 

that if A has atoms then Ct is not necessarily a cross-cut. 

Indeed it is not difficult to show that if we take any measure 

algebra (A,µ) for which A is the power set of a countably 

infinite set then Ct is a cross-cut only when t = 0 or 1. 
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SEPARATION AXIOMS 

We suppose throughout this appendix, except where explicitly 

stated otherwise, that f is a closure operator on a CBA A such 

that f(O) = 0, and we write d for the derivative of f. The 

remarks which now follow will be useful later on. 

For f to be analytic at 0, which condition itself 

may be regarded as a sort of separation axiom, the cardinality 

of f(A) cannot be too small : we have Jf.(A) I 2". JAX! for all 

discrete x (if x is discrete then f(u) A X = u for all 

u in Ax). In particular, if JAX! = JAi for all non-zero x 

in A (such a CBA is said to be weakly homogeneous by Sikorski 

[39], p. 107) and JAJ > Jf(A) J, then there can be no non-zero 

discrete elements at all, and this is the same as saying that 

d = f (if there are no non-zero discrete elements then, for each 

x in A, the element x\d(x), which is invariably discrete, equals 

0 so that x ~ d(x ) and hence f(x) = d(x); th e converse is 

equally easy); f is thus as non-analytic as it can be. 

We will also need the following lenuna (in which it is 

not necessary that f(O) O). 

109 
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Lemma. Let f be any closure operator on a CBA A. Then ' ' f is 

analytic iff, for all closed a and all x such that 0 :f x s a', 

there exists y such that 0 ~ y s x and f(a v z) < f(a v y) 

for all z < y. 

Proof. By the corollary to (10), f is analytic iff it is 

analytic at each closed element a of A. Now for a closed, 

f is analytic at a iff a' \/{w; w A a= w A d(a v w) = O}, 

that is, iff for all x such that 0 :f x s a' there exists y 

such that 0 :f y $ x, y A d(a v y) o. Thus the result will be 

obtained if we show that, for all a and y with a A y = 0, we 

have y A d (a v y) = 0 iff f(a v z) < f(a v y) for z < y . 

Suppose that y A d(a v y) = 0 and let z < y. Then f(a v z) = 

a v z v d(a v z) $ a v z v d(a v y) < a v y v d(a v y) = f(a v y). 

Suppose conversely that y A d(a v y) :f 0 then by (3) there 

exists u such that 0 :f u s y A f((a v y)\u). Let z = y \ u. Then 

z < y and (a v y)\u a v z so that u s f(a v z) and hence 

f(a v y) = f(a v z v u) f(a v z). Q.E.D. 

The following definition has the advantage of permitting 

the customary "passage to the T case" to be carried through most
0 

naturally: 
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f is 	 To iff C(f(A)) ~A. 

(Note. The notations J(X), M(X), L(X) , and C(X), where X ~A, 

are as introduced in the Preliminaries and X" denotes {x '; x in 

X}.) 

Suppose that f is not necessarily T then we can
0 

associate with f a T closure operator g on C (f (A)) by
0 

defining g(x) = f(x) f or all x in C(f(A)). The following 

result gives (in a somewhat more general situation) various proper­

ties of this T -ization process.
0

(73) 	 Let A be a complete subalgebra o f A such tha t f(A) ~A, 

let g be the closure ope rator on A defined by g(x) f(x) 

for all x in A, and l et be the quantifier on A 

with A as its range. Then 

(a) 	 f(x) = g(x) for all x in A. 

(b) 	 For all x in A, x is f-discrete iff it ~s dis­

crete and x is g-discrete. 

(c) f 	 is analytic iff both g and are analytic. 

(d ) f 	 is matroidal if f both g and are matroidal. 

(e) f 	 is B-matroidal iff both g and are B-matroidal . 

(f) f 	 is topological if f g is topological. 

Proof. (a) We have f (x) s f (x) s f (f (x) f(x); hence 

f(x) = f(x) = g(x). 
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(b) Suppose that x is f-discrete. Then x is dis­

crete since $ f. To show that x is g-discrete, let u be in 

A, u $ x. Then g(u) A x = f(u) A x= f (u) /\ x u = u as 

desired (the second equality h2re holds because is a quanti­

fier with respect to wnich f(u) is closed). Now suppose that 

x is discrete and x is g-dis crete. Let u be in A, u $ x. 

Then f(u) " x = g(u) " x " x u A x = u. Thus x is f-discrete. 

(c) Suppose that f is analytic. Then the f-discrete 

elements are \/-dense and hence by (b) so also are the discrete 

elements. By (42) this implies that is analytic. To see that 

g is analytic, we apply the le111.'11a above . Take a in f(A) and 

x in A such that 0 i x $ a I• since f is analytic there exists
' 

y in A such that 0 I y $ x and f(a v z) < f( a v y) for z < y. 

Then y is in A and 0 I y $ x = x. Take z in A, z < y and 

put w = y /\ z. We must have w < y for if w = y then y $ z 

-
and hence y ~ z = z, a contradiction. 

Also w y /\ z = y /\ z = z, wher e the middle equality holds since 


is a quantif ier, and therefore f(w) = f(z). It follows that 


g(a v z) = f(a v z) = f(a v w) < f(a v y) = g(a v y) = g(a v y) a s 


-
required (here a v y = a v y since is topologica l and a is 

closed). 

Now suppose that g and are analytic. Take a in f(A) 

and x in A such that we wish to obtain in A 
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in A. Since the discrete elements are \/-dense, we may 

clearly suppose that x is discrete. Now 0 I x ~ ~ a' 

and hence there exists y in A such that 0 I y ~ x and 

f(a v z) < f(a v y) for all z in A such that z < y. Put 

= x /\ y. Then x 1\ y = y so that 0 I ~ x . LetY1 Y1 Y1 

in A satisfy < Then y, the inequalityzl zl Y1. zl = Y1 


being strict since x, and therefore also is discrete.
Yp 

Put z v (y\yl) then z is in A and z < y (it is= zl 

easy to see that y \ z Y1\z1). Hence f(a v z) < f(a v y), that 

is, f(a \/ zl v (y\yl)) < f(a v (y\yl)). It follows thatv Y1 

f(a v 21) < f(a v Y1) and this is the same as f( a v zl) < f(a v yl). 

(d) Suppo se that f is ma tro idal then f is analytic 

and hence by (c) so are g and is in fact B-matroidal by 

(56). By (32)' g will be ma troidal if it is super - E1 • Let 
~ 

x,s,y be elements of A such that y $ f (s v x) and y f (s);~ 

we want to show that there e x ists v in A such that 0 f v $ x 

and v :<; f(s v y v (x\v) ). Replacing x by a base of x does 

not affect f (s v x) and we can without loss of generality suppose 

that x is discrete. Since f is super-EL, there ex ists u 
'2 

in A such that 0 f u $ x , u $ f (s v y '.' (x\u)) and the fact 

that x is discrete implies that u /\ x ::: u and hence that 

I ­x\u = x\u . Thu s we have u in A, 0 'f u ~ x , and u ~ f(s v y v (x\u)) 

as required. 

Suppose that g and are matroidal to show that f 
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is matroidal it is sufficient by (c) and (32) again to show t hat 

f is super-E1 • Let x,s,y be elements of A such that 
'2 

y $ f(s v x), y ~ f(s). Then , y $ f(s v x), y ~ f(s) and hence 

there exists v in A such that 0 # v ~ x, v $ f(s v y v (x\v)). 

Put u = v 11 x then 0 # u $ x by the usual argument depending 

on the fact that is a quantifier; also x\u v v = (x\ u) v v = 

xv v ~ x so that x \ v $ x \ u and hence v $ f(s v y v x \ u) 

f(s v y v (x \ u)). 

(e) Suppose that f is B-matroidal. Then is B--matroidal 

as in (d). To show that g is B-matroidal, let s and x be in 

A with x a g-discrete subelement of s . Let y be a base 

of x. Then by (b) y is . an f-discr e te sub element of s a nd. 

therefore, since f is B-matroidal, there exists an f-base z of 

s such that y $ z. We claim that z is a g-b ase of s such 

-that x $ z: z is g-discrete by (b); z is g-dense in s since 

s $ f(z) g(z); z $ s since z $ s and s = s; and x $ z 

since x y and y $ z. 

Now suppose that g and are B-matroidal. Let s and 

x be in A with x an £-discrete subelement of s. By (b), x 

is a discrete subelement of s and hence there exists a base 

y of s with x $ y; also by (b), x is a g-discrete subelement 

-of s and hence there ex ists a g-base z of s with x $ z. We 

claim that y 11 z is an f-base of s such that x $ y 11 z: y /I z 
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is f-discrete by (b) since it is discrete (y /\ z :'> y) and 

-y /\ z = y /\ z 	 is g-discrete (y /\ z ~ z) ; y /\ z is £-dense in 

s since f(y /\ z) f(y /\ z) = f(y /\ z) = f <s /\ z) = f (z) = g(z) ~ s., 

and clearly x 	 ~ y /\ z. 

(f) This is immediate from (41). Q.E.D. 

There 	are a number of equivalent conditions which are 

reminiscent of 	 the classical T axiom and which in the atomic0 

case are indeed equivalent to it, and to T as defined here.
0 

We say that f is iff for all disjoint x~y I 0 in A 

there exists a in f(A) such that either x /\ a ~ 0 and y /\ a' f O, 

or x 	 /\ a ' # 0 and y /\ a I 0. 

(74) The following conditions are equivalent 

(i) 	 f is RO, 

(ii) 	 for all disjoint x,y I o in A there exist 

x1 ,y I o in A such that xl ~ x, ~ y,1 Y1 
and f (x ) I f(y ),1 1

(iii) 	 for all disjoint x,y I o in A there exist 

0 in A such that ~ x, ~ y,x1·Y1 I xl yl 
and either f (x ) /\ Yl = 0 or xl /\ f (yl) = 0,1

(iv) 	 for all x in A such that x is neither 0 

nor an 	atom there exists a in f(A) s uch that 

x /\ a I 0 and x /\ a' I 0, 

(v) 	 for all x in 
' 

A such that x is neither 0 nor 

an atom there exi s ts y in A such that 0 I y ~ x 

and f (y) < f(x) . 
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Proof. (i) =}(iii). If x A a 1 0, y /\ a' = 0 then xl = x A a, 

Y1 = y /\ a I satisfy (iii) with f (x
1

) o." Y1 

(iii)~ (ii). Trivial. 

(ii)~ (i). Suppose that f(x
1

) t f(yl) then f(x1 ) *Y1 

and 	 a = f(x1) satisfies x A a 1 0, y /\ a I 1 o. 

(i) =4 (iv). Write x = y v z, where y and z are non­

zero and disjoint, and apply RO. 

(iv) =" (v). Take y x /\ a. 

(v) ~ (iv). Take a = f (y). 

(iv) =} (i). Apply (iv) with x v y in place of x. Q.E.D. 

It is particularly easy to see from condition (ii) of 

this result that R is equivalent, when A is atomic, to the
0 

classical T axiom stating that distinct points have distinct
0 

closures. 

(75) (a) implies RO, and the converse holds when A TO 


is a tomic. 


(b) 	 If f is analytic at 0 and A is atomless then 

f is RO 

x ' Proof. (a) For each x in A, write A(x) = A u A = x 

{y; x /\ y = 0 or x /\ y' = O} - then this is clearly a complete 

subalgebra of A. Now (74) (iv) states that f(A) $ A(x) for 
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each x in A not 0 or an atom. But if ' f(A) ~ A(x) for 

some x, and f is T , then we must have A(x) = A, and it is
0 

clear that this only happens when x is 0 or an atom. By (74), 

this proves that T implies R . Now suppose that f is R
0 0 0 

and let p be an atom of A. Then, applying the defining condition 

for R with x = p, we see that p is the meet of all the ele­
0 

ments of f(A) u f(A)' which contain it. Thus every atom of A 

is in C(f (A)) and if A is atomic this implies that C(f (A)) A. 

(b) Suppose that f is analytic at 0 and that A is 

atomless - we verify that condition (iv) of (7 4) holds. Let x be 

non-zero - th en , since f is analy tic a t 0, x contains a non-z e ro 

discrete element y. Let z be such that 0 < z < y. Then 

f (z) /\ y = z since y is discrete, and a = f (z) mee ts x but 

does not contain x , as required. Q. E .D. 

We give an example to show that R may not be replaced by
0 

T in (75)(b) (so that T and R are not in general equivalent).
0 0 0 

Let C be an atomless CBA and let V be the diagonal quantifier on 

2c as defined in the discussion following (56). Then as shown in 

2
that discussion V is analytic, and of course c is atomless; but 

is not T .
0 

We have defined T to mean that C(f (A)) = A; the other
0 

T. ax ioms to be considered here may be regarded , more or less,
1 

as stating how nicely f(A) completely generates A. Thus for 

example T states that J(f(A)) =A already and is the stronges t
1 



118 


axiom we shall study. Examples of T. axioms which are equivalent
l 

to T in the atomic .case on account of the equation MJ(X) = JM(X)
0 

(which holds for all subsets X of an atomic CBA by virtue of the 

complete distributivity of the latter) are: 

MJ(f(A) u f(A)') =A; 11.J({a~b; a,b in f(A)}) =A etc .. 

It is worth noting that these axioms, and especially T1 , impose 

a cardinality condition on f(A) vis-a-vis A. Thus if f is 

T then clearly IAI ~ 2lf(A) I . Whereas no such condition holds in
1 

the case of T : Solovay [40 ] has shown that there exis t arbitrarily
0 

large CBA's A which are completely generated by a countable subset X 
N 

and hence by M(X) where IM (X) I ~ 2 ° - but M(X) is of the form 

f(A) for some closure operator f on A. A similar r emark applies 

to the T. axiom L(f(A)) =A which therefore is not equivalent 
l 

to T in general but which does reduce to T in the atomic
1 1 


case, when MJ =JM. Between L(f(A)) =A and T th e re is a

1 


multitude of T. axioms, for example MJ(f(A)) =A and 

l 

T + "f(A)' s:. J(f(A))"; we shall mention this last inclusion again
0 

(see (79)). 

If we look for conditions wh ich resemble the classical 

T axiom and yet which are appropriate to the non-atomic case
1 


(as R resembles the classical T axiom) , we find the following

0 0 


obvious result: 


(76) f is T iff for all disjoint x , y # 0 in A there
1 

exists a in f(A) such that x A a # 0 and y A a = 0 . 
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We also find these plausible conditions: 

f is iff for all disjoint x,y f. 0 in A thereRla 

exists a in f (A) such that X A a f. 0 and y /\ a' f. O· and
' 

f is iff for all disjoint x,y f. 0 in A thereRlb 

exist xl,yl f. 0 in A such that xl ::; x, . ::; y, andY1 

f(x ) A f (yl) = 0.1

(77) The following conditions are equivalent 

(i) f is Rla' 

(ii) for all disjoint x,y f. 0 in A there exis t xl,yl f. 0 in ,\ 

such that x
1 

::; x, Y1 ::; y, and f (x
1

) A y 1 = 0, 

(ii i) for alJ disjoint x , y f. 0 in A there exist xl, yl f. 0 

in A such that x
1 

::; x , Y1 ::; y, and f (x
1

) " yl= 

xl A f(yl) = 0. 

Proof. ( i) =:l. (ii). Take = x " a , y A a 1
•x1 Y1 

(ii) ==} (i). Take a= f(x ).
1

(ii)~ (iii). Let xl ,yl be as in (ii) - then, applying 

(ii) to the pai r yl,xl, we obtain x2,y2 f. 0 such that x2 ::; xl , 

y 2 ::; y1 , and x /\ f(y ) = O; but f(x ) /\ y = 0 also, being2 2 2 2 

contained in f (x ) A y
1

.
1

_(iii). trivially implies ( ii). Q.E.D. 

It is clear that Rla and Rlb coincide with the classical 
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T axiom in the atomic case - indeed that · 

(78) implies Rlb' Rlb implies Rla' and both conversesT1 


hold when A is atomic; Rla implies R0 . 


Let f be an analytic quantifier f ~ on an atomless 

CBA - then, as we have already seen, f is R and, since the
0 

now equivalent, f is actually Rlb' It follows that andR18 

Rlb do not in general imply T0 , still less T1 . 

Given some T. axiom, we define the corresponding "S." 
l l 

axiom by saying that f is s. iff the T -ization of f (as 
l 0

described at the beginning of this appendix) is T.; then f will 
l 

be Ti iff it is Si and T0 . As is clear from (29) , ands1 

T provide an example of such a pair of conditions s
1 

, Ti.1 

(For A atomic, s has been discussed by Csaszar [8] .)1 

Let A be atomic - then coincides with s (andS1 
~ 1 

hence the T. a xi om T1 S~ + T0 coincides with T1). Whether 
l ~ 

(or in general is unresolved; the only t heorems 

in this direc tion are (44)(b) and the following very partial result: 

(79) If f is analy tic and S1 then f (A) ' ~ J ( f (A) ). 
~ 

Proof. Let a be closed ... then a' =V{w; w A a= w 11 d(a v w) 0 } 

since f is analytic at a ( see just before (lO», and since f 
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is we need only take the join over those w' s which are f-8 1S1 
~ Yi 

(the set of w's in the original join is a section). For the 

resulting w's we must have f(w) A a= 0: if not, y = f(w) A a 

satisfies 0 # y s f(w) and then there exists u such tha t 

0 #u s w, u s d(y v (w\ u)) s d(a v w), a contradiction. 

It follows that a' is the join of the closed elements f(w) and 

we have the result. Q. E .D. 

It seems reasonable to conjecture that if f is analytic 

and S1 then it is s
1

. 
Yi 

andIn TH 

These are two instances of T . axioms which do not reduce 
l. 

to or when A is atomic. The axiom was introduced,TO Tl TD 

for the atomic topological case, by Aull and Thran [l] and it is 

the following adaption t o the general case of one of their equivalent 

conditions which we find it most convenient to take as the definition: · 

f is TD iff J( {a\ b; a,b in f(A)}) =A. 

Now it is a well-known and in any case trivial fact that, for any 

closure operator f on a CBA A, an element x of A is o f the 

form a\b for some £-c losed elements a and b iff f(x)\x = d(x)\x 

is closed . Thus 

f is TD iff J( {x; d(x) \ x is closed }) =A. 

Clearly T i mplies TD and TD implies T ; the examples give n 
1 0 
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by Aull and Thran show that nei ther of these implicatLons can be 

reversed even when A is atomic and f is topological (though it 

is easily seen that, as Aull and Thran remark, TD and T coin­
0 

cide when A is finite and f is topological). TD also implies 

the sort of cardinality condition encountered earlier: Lf 
2 

f is TD then IA I ~ 2jf(A) 1 . 

Besides TD, we wish to consider also the condition derived 

most directly from Aull and Thron's defin ition of we. say 

that 

f is (AT) 	 iff J({x; d(x) is closed}) = A. 

To see that (AT) and TD a re not equivalent in general , observ~ 

that the complete embedding of a CBA B into another CBA A constructed 

by Kripke (29) ( B does not have to be complete in Kripke's embeddLilg 

but we a re t aking it to be complete) is such that A L5 homogeneous 

(by the argument on p. 106 of Sikorski's book [ 39]) and of cardina­

lity greater than that of B. Thus if f is the quantifier on A 

with f(A) = B then, by the remarks made at the beginning of this 

appendix, the derivative d of f is just f and ev~y d(x) 

is closed, yet f is not T and thus not TD.
0 

We summarize various facts concerning TD and (AT) in: 

(80) 	 (a) f is (AT) if J( {x ; d(d(x) \x ) ~ d(x)}) 

TD implies (AT) . 
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(b) 	 The following conditions are equivalent 

(i) f is analytic at 0 and TD, 

(ii) 	 f is analytic at 0 and (AT), 

2
(iii) 	 J ( {x ; d (x) 5 d(x) \ x}) = A. 

2
(c) 	 d 5 d implies that f is (AT)' and the converse 

holds when f is topological. 

2
Proof. (a) Since {x ; d(x) is closed} = {x ; d (x) 5 d(x)} ~ 

{x; d(d(x) \ x) 5 d(x)} , (AT) certainly implies that J 0£ the.. 

latter set equals A. Suppose conversely that this is given to 

hold; we will th en have obtained (AT) if we show that every 

non-zero x, for which d(d(x) \ x) 5 d(x) , contains a non-zero y 

2
for which d (y) 5 d(y). Take such an x. I£ x\d-(x) = 0 

2
that is, if x 5 d(x) then d (x) = d(x) and we can use x 

as our y. If x\d (x ) I 0, let y be such that 0 I y 5 x \ d(x), 

d(d(y) \y ) 5 d(y). Then since x\d(x) is discrete so is y also 

2
and hence d(y) \y = d(y) thus d (y ) 5 d(y) and we again have 

a suitable y. This proves the first part of (a) and on account of 

it and the obvious inclusion {x ; d(x) \ x is closed} ~ {x ; d(d(x) \ x)5 

d(x)}, TD implies (AT). 

(b) It is obvious that the set of all discrete elements 

has 	the same intersection wi th the fout sets {x; d(x) \x is closed}, 

2
{x; d (x) is closed}, {x; d(d(x) \ x) 5 d (x ) }, and {x; d (x) 5 d(x) \ x} . 

It follows that if f is analytic at 0 and any one of these four 
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sets is \/-dense, then s o are the others. This shows that (i) 

and (ii) are equivalent and imply (iii). Since the fourth of the 

four sets just mentioned is always contained in the other three, 

it remains for us to prove that if (iii) holds then f is analytic 

at 0. This however follows immediately from the observation that 

2
if 	d (x) ~ d(x ) \ x and x is non-zero then the discrete subel ement 

x\d(x) of x is also non-zero (othe rwis e x ~ d(x), so that 

2
d (x) = d(x) and hence x ~ d(x ) 	 ~ d(x) \x , which implies x = 0). 

2
(c) It is trivial that d ~ d implies (AT). That the 

converse holds when f is topolog ical is a consequence of the fact 

that in such a case t he se t {x; d(x ) is c losed} is V-closed 

(this was p roved in the .. course of .. -p r oving ( 47)(a)). Q. E.D. 

Although (AT) is not a T . axiom (the example preceding
1 

(80) 	 showed tha t (AT) does not i mply TO), the condition 

= (AT) is of course a T . axiom in the sense that itTD' +TO 
1 

implies TO; and it is implied by TD, being equivalent to it when 

f is analyt i c. The following example shows that TD' is not 

equivalent to TD in gene ral, even for topological closure opera tors. 

By the resul t of Solovay [40] already referre d to, the r e e x i s ts a 

CBA A which is complete l y generate d by a countable set X 

No 
2

and which s a tisfies JAi > 2	 Le t f be the clos ure operator 
N o 

22 on A with f(A) = MJ(X). Then Jf (A)J ~ so tha t JA i 2'. 2 l f(A) J 

and hence f is not TD. Now A (as constructe d by Solovay ) 
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is homogeneous and since IA! > jf (A) I we have d = f: as, explained 

2
previously. Thus d = d and f is (AT); indeed, since 

C (f (A)) = A, f is TD r Also f is topological. by (4-1.) since 

f (A), being of the form M(Y) for a v-closed sub set y of A, 

is itself v-closed (let j\ Yl, /\y2 be in M(Y) where_ Y ,Y c _ y
1 2 _­

' v- then (;\ y1) J\Y2) =J\{yl v Yz; Y1 in yl' y 2- in Yz_}). 

It is very easy to see that (AT) do.es not_ imply d2 ~ d 

without the assumption that f is- tupological: Lake. arr atomic 

CBA A having 4 atoms, let S consist of 0 and the atoms of A, 

and let f be the closure operator on A a-s:sociated with the 

section S as in Append ix l; then f is T yet it is not true
1 

2
that d ~- d (nor that the set {x.;: d(x) · is. closed } is- V-elosed . 

incidentally ). 

The last separation axiom we shall consider is the fourth in 

the quartet of which the first three are R , T (as expressed
0 1 

in (76)), and Ria· We say that 

f is TH iff for all disjoint x,y I 0 in A there 

exists a in f(A) such that either x A a i 0 and y A a=- 0, 

or x A a = 0 and y A a I 0. 

(81) T implies TH and TH implies T .1 0 

Proof. It is immediate from (76) tbat T implies TH. To show
1 

that TH implies T0 , suppo se that f is TH but not T and
0 
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and let be the quantifier on A such tnat A C(f(A)). Then 

there exists x in A but not in A and we have x > x, 

X' > x'. Then by TH there is a closed element a meeting exactly 

1 1 1one of X A X and XA x ; suppose that X A X A a= 0, 


x' A x A a I 0. From th e former it follows that x A a = x A a, 


and thus that x A a is in A. But by the usual quantifier iden­

tity, this implies that "i' A x A a = x' A x A a = 0, a contradiction. 


Q.E.D. 

Let A be atomic and let s f be the quasiorder on the 

set P of atoms of A defined by p s f q iff p s f(q). It 

happens that a numbe r of the weak separation axioms which have been 

considered can be described in terms of (P,Sf). For example , 

states tha t (P, sf) is an order relation and that it isTO Tl 

an antichain. Of the axioms introduced by Aull and Thran in [ l], 

and Ty state that f is and (P, sf ) containsTF' TYS' TO 

respectively no f , no i or V , and no t or !><! ; TFF states 

that f is T and (P, sf) is of one of the thr ee forms :
0 


antichain ; antichain + ~ ... ; antichain + 

~···· 

On the other hand, it is not diff icult to see from some of the 

examples they give ([l], p. 34) that their axioms TD, TDD' a nd TUD 

are not able to be described in terms of (P, sf) only. The following 

result shows that TH can be so described . 
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(82) Let A 	 be atomic. Then f :Ls TH :Lff it is T
0 

and (P, ~ f) satisfies the descending chain condition (DCC). 

Proof. Suppose 	that (P, ~f ) does not satisfy the DCC and let 

etc. then x = v{ pn; n even}, y =\;{p-n; n odd}Po >f P1 >f P2 

violate the defining condition for Suppose conversely thatTH" 

f is but not and let x,y be a pair of elements forTO TH 

which the defining condition for fai1-s. Lat be au atomTH VO 

~ x - then f(po) meets y. Let be an atom ~ y /\ f(po)Pr 
then f(pl) meets x. Let b e an atom ~ x /\ f ::(pl), etc -..Pz 

We see that (P,~f) does not satisfy the DCC. Since by (81) TH 

always implies T , the theorem is proveci. . Q.E .D •. 
0 

It is clear from this result that TH lies strictly 

between TF and T in the table of :Lmplications on p.34 of [l]
0 

(and that TH coincides with T when A is finite). Examples
0 

4.1 and 4.4 of [l] show that TH does not imply TD and that 

TD does not i mp ly TH respectively . 



APPENDIX 3 

SOME REMARKS ON TOPOLOGICAL MATROIDS AND B-MATROIDS 


IN THE ATOMIC CASE 


For our atomic CBA we may take the power set ~(E) of 

a set E and we speak of an operator on l})(E) as being on E . . If_ 

f is a closure operator on E, the pair (E,f) will sometimes 

be called a space and we say that a space (E,f) is topological 

or matroidal , etc ., according as f possesses the property in 

question . 

Topological Matroids 

As remarked in Chapter 4, the analysis of Appendix 2 

on separation axioms enables us to confine our attention to those 

matroidal topological closure operators which are T and to
1 

analytic quantifiers; the latter can be dismissed in the atomic 

case - for then every quantifier is analytic and a quantifier on 

E simply corresponds to a partition of E . We have already en­

countered the simples t examples of T matro idal topological
1 

closur e operators: it follows from (70) and (7I)(b) that a section 

closure operator f will be such i ff f is the closure operator 
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associated with an ideal S of Cj>(E) such that Us = E, 

equivalently, such that S contains the ideal of finite subsets 

of E. Of course none of the resulting topological spaces- is T2_, 

except in the case S = C]J (E) which gives the discrete topology 

on E. Nevertheless, T matroidal topological spaces do exist
2 

in plenty, as we shall see. 

To the best of my knowledge , the only instanceE occur ing 

in the literature of T matroidal topological spaces, ot-her than
1 

those derived from ideals of ~(E) as just describeQ, are the HK 

spaces found by Hewitt [19 ] and Kat~tov [26]. They rely on the 

fact s stated in (64) and (65), const ructinga T minimal pithy
1 

topological closure operator on E by a dTrect application of ­

Zorn's Lemma, it being evident that if {f.} is a chain of pithy
J_ 

topologica l closure operators on E and, for e a ch i, G. denotes 
J_ 

the set of f. -open sets, th en G = U. G. is a basis of open sets 
J_ J_ J_ 

for a pithy topological closure operator f on E such that 

f ~ each f., f being pithy since there are no singletons in G 
J_ 

(there are none in any of the G. 's). It is true that Hewitt also 
J_ 

discusses the (presumably ) wider class of MI-spaces namely those 

pithy T topological spaces in which every dense set is open
0 

(and which, by his Theorem 33 and our (49), are matroidal); but 

the only examples which he gives of such spaces a re th e HK spaces 

obtained by the procedure just outlined . 
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Another way in which T HK closure operators may be
1 

arrived at is as follows . Let C be any atomless CBA and let C 

be r epresented as a subalgebra of some Cf CE) (say by means of 

Stone's Representation Theorem) . Since C is an injective 

Boolean algebra it is a Boolean retract of cj} ( E) and there exists 

an idempotent endomorphism d of Cj(E ) with range C . We claim 

that {X; d(X) = O} is V-dense in c]J(E), from which it follows 

by (63)(b) that d is the derivative of a T HK closure operator
1 

on E. Since J'JCE ) is a tomic , what we have to show is that 

d({p}) 0 for every p in E. Let p be in E then for 

each A in C which contains p we have d({p } ) s d(A) =A ; 

since d( {p}) is in C it follows that d({p }) s the mee t in C 

of {A; p E A E C} M say. The fact that C is atomless 
p 

implies that M 0 for if M f: 0 th en there exists N in 
p p 

c such that 0 f: N < M and, replacing N by M\N if necessary ,
p p 

we can take N to contain p but then M ~ N by the definition 
p 

of M , a contradiction . Thus d ( {p })= 0 for every p in E and our 
p 

claim is substantiated. 

Using either Hewitt's and Kat~tov's approach, or the one just 

described, it is easy to produce T HK closure operators . In
2 

the former approach, take a minimal pithy topological closure 

operator f s a g iven T pithy topo logical closure operator
2 

then f is automatically T . For the latter approach, note first
2 

that the clopen algebra of any T HK closure ope r ator f with
1 
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derivative d on a CBA A is just d(A) (x is f-c.lopen 	iff it 

2
is f-perfect by (57), and d(x) = x is in d(A) since d = d). 

Therefore in the latter approach the clopen algebra of the HK 

closure operator f obtained is just C and to ensure that- f ­

is T it is enough that the sets in C distinguish the points of
2 

E (as will be the case, for instance, when Stone's Theorem is 

used to represent C as a subalgebra of 'J CE)). 

We have already remarked on our inability t _o pr_oduce 

any non-discrete T matroidal topalogical spaces s:ti.lL less
3 

do we know whether there exist any T HK spaces. IE X_ was
3 

such a space th en the clopen s e ts in X would form a bas is of open 

sets fo r x X b e i ng eAtremally disconn ected by (57), . and.. hence' 

X would in fact be 

The two methods mentioned above for producing Tl matroidal 

topological spaces (Hewitt's and Kat-etov ' s, and the one using the 

injectivity of CBA's) produce a special kind thereof (HK) but they 

are purely existential. A more constructive method , whereby from 

a given T pithy topological space X one obtains a specific T
1 1 

pithy matroidal topological space Y, is as follows. On the same 

underlying set as X take a new topological space x having as
1 

a basis of open sets the sets of the form U\ N, where U is open 

in X and N is nowhere-dense in X (note that since the union 

of two nowhere-dens e sets is again nowhere-dens e , the family of sets 



132 


of the stated form is closed under finite intersect.ions). xl, 

being finer than X, is still T and x is still pithy since
1 1 

none of the basic open sets U\ N for x is a singleton (a non­
1 

empty set of the form U\N is never nowhere-dense otherwise 

U = (U\N) u (UnN) would itself be nowhere-dense which is impossible; 

and singletons in a T pithy space are always nowhere-dense).
1 

Now iterate this process transfinitely many times, taking the 

union of the families of open sets already constructed t.o obtain 

a basis for the new open sets at limit ordinals, and desist upon 

reaching constancy at X. =Y say. Then,. besides bE.ing
a 

and pithy, y also ha s the property that every set of theTl 

form U\M, u open. and N nowhere-dense i!'l Y. ,. is it.self open 

in Y equivalently, every nowhere-dense set. is closed. Now 

the discrete sets in a T pithy topological space are nowhere­
1 

dense (if U is an open subset of the closure of some set D 

then Un D is dense in U, and U is pithy hence U n D is 

pithy by (48); i f D is discrete, this implies that U n D ¢ 

so that U = ¢ and D is nowhere-dense). Thus every discrete set 

in our space Y is closed, and Y is matroidal by (49). And if 

we take X to be T , then Y will surely be T also.
2 2 

(We can modify this construction slightly by enlarging the 

topology on X only enough to make every discrete set closed, rather 

than every nowhere-dense set: in place of the sets U\N for the 
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basic open sets of the new topology at each stag e, use only the 

sets U\D, where D is a finite union of discrete sets. There 

are presumably many further variations.) 

(83) Let X be a T matroidal topological space. Then
2 

(a) 	 The only c ountably compact subse tso f X are the 

finite subs ets of X. 

(b) 	 No non-isolated point of X has a totally ordered 

basis of n eighbourhoods . 

Proof. (a) It is well-known that every infinite T topological
2 

space has an infini te d iscrete sub set. Thus if Y is an infinite 

subset of X then Y contains an inf inite discrete set D . . D is 

closed by (49), and Y cannot be countably compact since an infinit e 

discrete subset of a countably compact set is never closed . 

(b) This will be proved if we show that : 


If p is a non-isolated point in a T space X and p

2 

has a totally ordered basis of neighbourhoods then p is a limit 

point of some discrete subset D of X. 

Without loss of generality we can take {M ; a < A} to be 
a 

a base of neighbourhood s of p where the M ' s are open, is 
a 

an initial ordinal, and a < B < A implies MB c Ma Put A = {a ; a < A} . 

We prove that there exist functions f : A +A , q : A + X, and N: A +~ (X) 

such th a t, for al l a < B < A, 
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(i) 	 Na is an open set containing qa and disjoint 

from Mf(a)' and 

Suppose that such functions have been defined on {a;a < A} for 

some y < A • Then {f ( cx ); a < y} is not cofinal in A and 

0 v{f( cx ); a < y} is in Choose in M \{p} and let
0

N and he disjoint open neighbourhoods, both contained in 
y Mf_(y) 

Mo, of qy and p respectively. The only thing to check about 

our prolongation of f · to - {ex ; a s y} is that u N c M
Mf(y) y - f ( ex ) 

for ex < y and this happens since the left-hand side is contained 

•.:hich 	in turn is contained in Let D = {q · ex < A}. 
ex ' 

Since 0 whenever a < S < y , D is certain-Na n NS ~Na n Mf(cx) = ~ 

ly discrete. Also ex < S < y implies Mf ( S) c Mf ( cx ) and this 

implies f ( ex ) < f(S); hence ex s f ( ex ) for all ex < A • Thus for 

a < A we h ave q N e NN+l _c M c M from which it follows 
u. '"" f(a) - a ' 

that p is a limit point of D. Q.E.D. 

Part (a) of this result extends a result of Kirch [28] 

stating that MI-spaces satisfy (a). From pa~t (b) we have 

Corollary . No metrizable topological space is matroidal, 

unless it is discrete. 
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B-Matroids 

(Note. Of the results mentioned here, (84) and (85) have 

already appeared in [20] and (86) in [23].) 

(84) 	 Let f be a closure operator on a set E and suppose 

that f is and satisfies:. p in f(X) implies pEl 

in f(Y) for some finite subset y of x (for · all p 

in E and X ~ E). Then f is B-matroi.dal. 

Proof. Apply Zorn's Lemma and (22) to verify the defining con­

dition for a B-matroidal closure operator . Q.E.D. 

(85) 	 Let f be a B-matroidal closure operator on a set E . 

Then the coatoms of the lattice of f are /\-dense in 

this lattice. 

Proof. The result will be obtained if we show, for each closed 

set A and each p not in A, that there exists a maximal proper 

closed set H which contains A but not p. Let X be a base 

of A. Since f is E
1 

, it is easily seen that X u {p} is dis­

crete and can therefore be extended to a base X u { p} u Y of E , 

where (Xu {p} ) n Y = ~ · Let H f(X u Y). Then H is a 

closed set containing A but not p. Also f(H u {p} ) = E and 
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this, 	together with the fact that f is E , shows easily that
1 

H is a maximal proper closed set. Q.E.D. 

(86) 	 Let f be a B-matroidal closure operator on a set E. 

Then, under the assumption of the Generalized Continuum 

Hypothesis (GCH), all f-bases have the same cardinality. 

Proof. We prove the following result, from which the theorem 

follows in view of the easily verified fact that (for f B-matroidal) 

the set Lb of f-bases satisfies the hypotheses ( i) and (ii) of 

this result: 

Let UJ 	 be a set of subsets of a set E satisfying 

(i) 	 no one member of <8 is properly c:ontained in another , 

and 

(ii) 	 if and are in d3 and A,C are subs e ts ofBl B2 

E such that A c :::. c, and A :::. c then there- Bl' B2 

exists B in 6) such that AS::. B c c.-

Then if the GCH is true the members of (0 all have the 

s ame cardinality. 

Proof. 	 Le t B and B be in f!:> . If B i s infinite then, using
1 2 1 

Sierpinski ' s construction [37] and t he GCH ( see als o Wolk [45]), we 

obtain a chain -e_ of subsets of B such that ILi = 2IB1I.
1 

For each C in shows t hat there exists a subset D of Be , (i i ) 

such t hat C u D is in cJj and C n D = <P . If we select exac tly one 

D for each C th e n by (i) the r esulting D's will be distinct and 

must have at l eas t 2IB1I subsets . From 

2 
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and the GCH we obtain 

finite then a similar (and in this case familiar) argument leads 

to the same conclusion: take 1eJ = jB
1 

j + 1 and choose the D's 

to form a chain themselves, as is clearly possible when t'.. is 

finite. Likewise, we may show that jB j ::; jB j. Q.E .D.
2 1 

To conclude this appendix, we specialize (38) to the atomic 

case. 

(87) Let f be a B-matroidal closure operator on a set E. Then 

E is partitioned 

E. 
by the f-separators E. 

l 
for which the 

only f i-separators are ¢ and E., 
l 

Proof. We can split off f( ¢ ) by (19)(a); furthermore, by the 

same result, the singletons of the elements of f( ¢ ) are all f-sepa­

rators and clearly satisfy the stated condition. It follows that 

we may without loss of generality take f( ¢ ) = ¢ Then f is s
1 

by (27), and by (38j the set off-separators is a complete s ubalgebra 

of Cf (E) and, as such, is itself an atomic CBA . The result 

follows on taking the E 's to be the atomic f-separators (it is
i E. 

easy to check that if E. is any f-separator then the f 
1 

- sepa­
l 

rators are precisely the f-separators contained in E .). Q.E.D.
l 

Let us say that an operator f on a CBA A is connected 

iff the only f-separators are 0 and 1. Then, defining the 

cartesian product of an arbitrary family of operators exactly as we 

did for t wo operators in Chapter 1, and observing that the a pp r opr iate 
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analogue of (14) still holds, we have 

Corollary. A B-matroidal closure operator on a set is 

isomorphic to the cartesian product of connected B-matroi­

dal closure operators on sets. 

(87) and its corollary generalize to B-matroids on sets 

the decomposition into connected components first introduced by 

Whitney [43] for finite matroids and then extended to finitary 

matroids (as described in (84)) by Sasaki and Fujiwara [35). 



APPENDIX 4 

INFINITE GRAPHS AND MATROIDS 

The author's paper [21) is reproduced here with the kind 

permission of the copyright holders, Academic Press Inc. , New York. 

1. I NTRODUCTION 

Bean [\] has considered the problem of extending finite matroid theory to 

the nonfinitary case, and in particular rhe extent to which this theory may be 

carried over to infinite graphs when as circuits we take, not on ly the polygons, 

but a lso the two-way infinire arcs of the graph considered. Here we characterize 

those gra phs whose polygons and two-way infinite arcs give ri se to matroids 

in the sense of [3]. It will be helpful if we fi rst describe the relevant definitions 

and res ults of [3] , to which we refer for the proofs of these results. 


2. SPACES AND MATRO!DS 

The notion of a space on a set E used here is nearly the same as that of a 

Frechet ( V)-space , as described for example in Chapter I of Sierpinski's 

"General Topology" [6]. For our purposes, a space on Eis most convenient ly 

specified by means of the derived set operator a, which maps the set of subsets 

of E into itself and which satisfies the conditions: cA ~ cB whenever 

A s B s £; x E o(A \x) whenever x E oA and A s £.This concept of a space is 

in fact sligh tl y more general than th at of a Frechet ( V)-space, the latter being 

obtained when one further in sists tha t c0 = 0 . The class ofspaces is very wide, 

containing for instance a ll topological spaces. Indeed, any set£, on which a 

closure operator A I-> A is defined, becomes a space if we put oA = {x E £; 


x E A\x}. The spaces which a ri se in this way are characteri zed by the 
condition o(A u oA) s A u oA for a ll A s £, and we call a space satisfying 
thi s condition a transitii;e space. (The closure operator associated with a 
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transitive space may be recovered from o by means of the equation A = 
Au oA.) 

The examples of spaces most relevan t here are obtained as fo!low.; . Let 
E(G) denote the edge-set of a graph G and, for A s; E(G) , let oA be the set of x 
in E(G) for which there exists a p olygon of G with edge-set P such that 
x E P s; A u x. Then (E(G), o) is a transit ive space (indeed a matroid, accord­
ing to the definition below) in which the minimal dependent sets are the edge­
sets of the polygons of G. Our task is to consider what happens when we 
admit two-way infinite arcs, as well as polygons, in the definition of o. We 
still obtai n a space, but we shall see [(7) be low] that this space will only be 
transitive when a certain type of subgraph is excluded from G. 

This last circumstance suggests that there is some point in studying spaces 
which are not necessarily transitive, a suggestion which is reinforced by the 
fact that the dua.lity originally defined by Whitney [8] for the class of fini te 
matroids actually extends to the class of al! spaces (but not to the class of 
transiti ve spaces). This fact was discovered by Sierpinski [5] (see also [6, 
p. 15]), who was apparently unaware of W hitney's work, or at least of its 
relation to his own. (Inciden tally, in orJer to stay within the class of Frechet 
( V)-spaces, Sierpinski had to impose the (slight) restriction of applying 
duality only to those frcchet ( V)-spaccs which were "dense-in-themselves.") 

The dual of a space (£, o) is defined to be the space (E, c*) with o* A = 
E\o(E\A) for all A s; E. (One readi ly verifies that (E, c*) is a space. Note that 
o** = o.) If P is any property of spaces, we say that a space (E, o) is dually 
P if and only if (E, o*) is P. It may be v rified that a space (E, o) is dually 
transitive if and only if A n oA s; a(A n oA) for all A s; E. We define a 
matroid to be a space (E, o) which is both transitive and dually transitive . 
Certai nly for the case of E finite, this notion of rriatroid is coextensive with the 
usual one. 

A pleasant feature of spaces is that the relations established by Tutte [7] , 
between the reductions and contractions of a finite rnatroid and its dua l, 
carry over to spaces in genera l. If (£, o) is a space and S s; E, define the 
subspace of (E, c) on S to be the space (S, o· S) with (8 · S)A = S n oA 
for all A s;; S. Write o x S for (o* · S )* and refer to a space of the form 
(T, (a · S) x T), where Ts; S s; E, as a minor of(£, o). Then the resuits 3.331 
through 3.36 of [7] remain valid for arbi trary spaces. 

A subset A of a space ( E, a) is said to be dense (or spanning) if A u 8A = E; 
discrete (or independem) if A n iJA = 0; and a base if both dense and di screte. 
Then A is dense in (£, o) if and only if E\A is discrete in (£, o*) ; and A is a 
base of(£, o) if and only if E \A is a base of(£, o*) . 

We say that a space (£, o) is finit ely transitive if x E o(A u y) and y E oA 
implies x E oA fo r a ll A s; E a nd di stinct x, y E E\A; and we say that (E, a) is 
exchange if x E iJ(A u y) implies x E oA or y E o(A u x) for all A s; E and 
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distinct x, y E £\A . A transit ive space is finitely transitive, and a space is 
finitely transitive if and only if it is dually exchange (thus a dually transitive 
space is exchange). A space (£, o) is said to be B1 if each discrete set in it is 
contained in a base of it;(£, o) is a B-matroid if it is transitive and each of its 
subspaces is B1 • The class of B-matroids, like the class of matroids, is closed 
under the taking of duals-from which it follows that B-matroids are indeed 
matroids. The classes of transitive spaces, matroids, finitely transitive spaces, 
exchange spaces, and B-matroids are each closed under the taking of minors. 

Besides the two above-mentioned works of Sierpinski, we might also 
mention, in connection with general spaces, Hammer's papers on extended 
topology (see [2]) and the paper [4] of Schmidt, who discusses a number of 
the concepts arising in matroid theory. 

3. GRAPH TERMINOLOGY 

Graphs are undirected, possibly with loops and "multiple" edges. A 
monovalent vertex of a graph G is calied an end of G. Let G be a connected 
nonnull graph with e ends and its remain ing vertices divalent. Then G is a 
polygon if it is finite and e = 0; G is a two-way infinite arc if it is in finite and 
e = O; G is a ray if e = I ; and G is a finite arc if e = 2. A graph is rayed, or 
rayless , according as it contains or does not contain a ray . Let H, K, and L be 
subgraphs of some graph. Then Hand Kare connected via L if Hand K have a 
vertex in common or if there is a finite arc in L with one end in H and the 
other in K. If a graph His obtained from a graph G by replacing the edges of G 
with finite arcs then H is a subdivision of G. We will not distinguish between 
subgraphs having no isolated vertices and their corresponding edge-sets. 

4. THE SPACE (£(G), o) ASSOCIATED WITH A GRAPH G 

Let G be any graph . For each A £ E(G), define oA to be the set of x in 
E(G) such th at x E P £ A u x for some polygo n or two-way infinite arc Pin G. · 
Then (£(G), 8) is a space, which we call the space associated with G. Note that a 
subset A of E(G) is di screte in (E(G), 8) if and only if A contains no polygons 
or two-way infinite arcs. 

(!) The space (E(H), o) associated with a subgraph Hof a graph G is the 
same as the subspace on E(H) of the space (E(G), o) associated with G. 

This is an immediate consequence of the definitions. 

(2) Let G be a graph. Then every minor of (E(G), o) is dual/y transitive 
(therefore also exchange) and finit ely transitive. 
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PROOF: rt is sufficient to consider only the space (E(G), a) itself since the 
properties in question are preserved under the taking of minors. 

To show that (£(C), a) is duall y transi tive, suppose that x EA fl aA; we 
wish to deduce that x E c(A fl oA) . Since x E cA, there is a po lygon or two­
way infinite arc P such that x E P s; A u x, where A u x =A since x EA. Then 
clearly p s; aP s; aA and hence x E p s; A fl aA, so that x E o(A fl oA) as 
required. 

To show that (E(G) , o) is finitely transitive, we first remark th a t, as shown 
in Corollary (2- 16) of [1] , the po lygo ns and two-way infinite arcs of any 
graph satisfy Whitney's postulate (Ci) for circuits, namely tha t if Pi and Pi 
are circuits and y E Pi fl P 2 , x E P 1\P 2 , then there is a circuit P3 s; P1 u Pi 
such that x E P3 ' y ¢ P3. Now suppose that x E c(A u y ) and y E oA, where 
x and y are distinct and not in A. We wish to conclude that x E oA . Let P 1 

and Pi be polygo ns or two-way infinite a rcs such that x E P 1 s; A u y ux and 
yEP2 sA uy. Then x¢P2 ; also we may clearly suppose that yE Pi. By 
(C2), there exists P 3 such that P 3 s; P 1 u P 2 , x E P 3 , and y ¢ P 3 • It follows 
that x E P3 s; A u x, and we have x E oA as required. 

The nex t result extends Lemma (2 .62) of [l] and is the main fact r.eeded in 
the characterization of those graphs whose associated space is matroidal. 

(3) let G be a graph and let As; D s;E(G) be such that, for each x in 
E(G)\ D, there is a polygon or two-ll'ay infinite arc P, haring only finitely mcny 
vertices in common 1rith each ray less componen t ofA,for 1rhich x E P s; D ux. 
Then there exists a set B 1rhich is minimal 1rith respect to the requirement that it 
be dense in (E(G), o) and such that A s; B s; D. 

PROOF: Let vii be maximal such that 

(i) JI is a set of rays in D containing a ray from each rayed component 
of A, 

(ii) the only polygons in A u (LJ.!1) a re those a lready in A, and 
(iii) no two rays of jf are connected via A. 


Next let B be maximal such that 


(iv) A u (LJJI) s; B s; D, 
(v) the only polygons in Bare those already in A, and 
(vi) no two rays of vii are connected via B. 

[Any set JI of rays in A, exactl y one from each rayed component of A, 
will satisfy (i), (ii), and (iii); a nd if JI sati sfies (i), (ii), and (iii) th en B = 
A u (U.!1) will satisfy (iv), (v), and (vi). Zorn's lemma then guarantees the 
existence of a maxim al Jt and of a maximal corresponding B.] 

We have 



143 

(a) If vertices 11 and v of G are connected via D then ei1her they are con­
nected i-ia B or each is connected ria B to a ray of .II. 

(b) If a ray R in D has only finitely many ven ices in co111111011 1rith each 
ray less component of A then R is connected via A to a ray of .II. 

PROOF OF (a) : Suppose that (a) fail s for some pair of \·ertices of G. Then 
there is a min ima l finit e arc C in D whose ends u and v fa ir to sa ti sfy (a). We 
cann ot have Cc:; B; let x in C\ B have end s u' and i -' , where 11. 11 ', v' , v occur in 
that orde r in C. By the maximality of B, either B u x fail s to satisfy (v) , or 
Bux fails to sat isfy (vi) [B ux necessarily sati sfi es (iv)]. fn the fo rmer case. 
11' and v' are connected via B; and in the latter, each is connected via B to a 
ray of JI . Also, 11 and 11' satisfy (a) by the minim ality of C. and so likewise do 
v' and v. Jt follows that 11 and v sa ti sfy (a) a ft er all , cont ra ry to what was 
supposed. Hence (a) holds. 

P ROOF OF (b): Suppose that Risa ray for which (b) fail s. Then R has only 
finit ely many vertices in comm on with each co mponent of A (indeed , none a t 
all with the rayed componen ts of A) and we may modify R accordi ng to the 
foll owing descript io n (in which the orderin g of the ve rti ces of R implici tly 
referred to is the naturn l one, begin ning at the end). Let u1 be the first ve rtex of 
R in A , let A 1 be the component of A containing 111• and let 1•1 be the last 
vertex of R in A 1 • Repl ace the fini te a rc in R with en d u1 and v1 by a fini te 
arc in A 1 with the same ends. ow do th e same for the ray in R whose end is 
the vertex of R immedi ately foll owin g i: 1 , and cont inue in thi s way a ll along 
R (th e process termin ates if a ray in R is reached having no ve rtices in A) . 
The ray R' which res ult s in this way from R is like R in tha t it is in D a nd 
is not connected via A to any r:iy in JI- and in add iti on it is such that 
A u (LJ J I) u R' cont a ins no polygo ns not alrea dy in A. Thi s however is 
contrary to the max im ality of J I . Thus (b) holds. 

We can now show that if A a nd D sat isfy the hy potheses of (3) then Bis 
dense in (E(G), o) . For let x be in E(G)\ B and let 11 an d r be the end s of x. \\'e 
distin gui sh three cases . 1 n the first case, 11 a nd v are conn ected via B. If this is 
so then there is a polygon Q such th a t x E Q c:; B u x , and we have x E cB. In 
the second case, 11 a nd v are not co nnected via B bu t th ey a re co nnected via D. 
If this happens then by (a) each of 11 and c is connected via B to a ray of JI, so 
that each is th e end of a ray in B (the two rays have no \·ertices in common 
since 11 and v are not connected via 13 ). Hence th ere is a two-way in fi nite arc Q 
such th at x E Q c:; 13 u x , and we again have x E 2B. In th e las t case, u a nd 1· 

arc not connected via D. Then in pa rti cul a r x is not in D and there must 
exi st a two-way infi nite a rc P ha\·in g on ly fin itely ma ny \·erti ces in comm on 
with each ray lcss compo nent of A such th at x E P c:; D u x . From (b) we see 
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that the ray in P\x with end 11 is connected via A to a ray of .JI. Since A and 
P\x are subsets of D, u is connected via D to a ray of vii . By virtue of (a), this 
implies that u is in fact connected via B to a ray of JI and u is therefore the 
end of a ray in B. Applying the same reasoning to v, we obtain the situation 
already arrived at in the second case. Thus we have x E aB whenever 
x E E(G)\B, that is, Bis dense in (E(G), 8). 

It rem ains for us to prove that Bi s a minimal set den se in (E(G), a) and such 
that A £ B £ D. This will be d o ne if we show that 

(c) The only polygons and two-way infinite arcs in Bare those already in A. 

Condition (v) states that (c) is true as far as polygons are concerned . 
Suppose that Pis a two-way infinite a rc in B but not in A. By (v) , each ray in B 
satisfies the hypothesis of (b) a bove a nd is therefore connected via A to a ray 
of .//. Together with (vi), this implies that there exists a (un ique) ray R of vi! to 
which each ray in Pis connected via A. Let x be in P\ A, let P 1 and P 2 be the 
two rays into which P\x falls, and let Bi and B 2 be the two components of 
B\x containi ng P1 and P1 , respectively [81 and B2 are distinct by (v)]. Since 

and P 2 are both connected via A to R, x must be in R. It follows thatP 1 

P £ A u R. Now o ne of Bi and B 2 , say B 2 , contains a ray in R. Then P1 \Risa 
ray in A and by (i), the component A 1 of A which contains Pi \ R must also 
contain a ray S of.//. But then Sis co nnected via A to R , yet, being contained 
in B 1 , Sis distinct from R-and this is contrary to (iii). This completes the 
proof of (3) . 

Jt is convenient to have available the following dualized form of (3). 

(4) Let C be a graph and let X £ S £ E(G). Then Xis contained in a base 
Y of the subspace (S, 8* · S) of (E(G) , o*) provided that the following condition 
holds: for each x in X there exists a polygon or two-way infinite arc P, hai•ing 
only finitely many rertices in common ll'ith each rayless component of E(G)\S, 
such that X n P = x. 

PROOF: Assume tha t this conditio n does hold. Then A = E(G)\S and 
D = E(C)\ X sat isfy the hypotheses of (3). Hence there exists a minimal set 
B such tha t A£ B £ D and Bis dense in (E(G), 8) . Then Y = E(G)\ B is a 
maximal set such tha t X £ Y £Sand Y is discrete in (E(C), o*). It follows 
that Y is a maximal di screte set in the subspace (S, o* · S) of (E(C), o*) . Since 
(E(G), o) is finitely transitive by (2), (E(C), 8*), a nd hence also (S, o* · S), is 
exchange. N ow a maximal di sc ret e se t in an exchange space is actually a base 
of that space. Thus Y is a base of (S, o* · S). 

(5) Let C be a graph. Then 
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(i) every minor of (E(G), a) is B1 , and 
(ii) every subspace of (E( G), a) is dually B 1• 

(Note tha t since B1 is the property that every discrete set is contained in a 
base, dually B 1 is the property that every dense set contains a base.) 

PROOF OF (i): By (I) we need on ly show that every minor of (E(G), a) of 
the form (S, ax S) is B1-equivalently, that every subspace (S, a*· S) of 
(E(G), a*) is dually B 1• We make use of the following results. 

(d) A base of a dense subspace of a transitive space is a base of the whole 
space. 

(e) Ifevery subspace ofa transitive space has a base then every subspace of 
the space is dually B1 • 

[Result (d) is a direct consequence of transitivity. The conclusion of (e) 
states that if D is a dense set in a subspace (S, a· S) of the given transitive 
space then D contains a base of(S, a· S). By the hypothesis (e) , the subspace 
(D, a· D) has a base, B say. Also (S, a· S), being a subspace of a transitive 
space, is itself t ra nsitive. Hence Bis a base of (S, a· S) by (d) .] 

Returning to the proof of (!) , we see from (e) and the tran sitivity of 
(E(G), o*) [(E(G), a) is dually transitive from (2)] that (i) wi ll be obtained if 
we show that every subspace (S, o* · S) of (E(G) , a*) has a base Y. This last 
fact however foll ows immediately from (4) on taking X = 0. 

PROOF OF (ii): By (I) we need only show that (E(G) , a) is duall y B1- equi­
valently, that in (E(G) , a) every dense set D contains a base B. Let D be dense in 
(E(G) , 8) and put A = 0 : then the hypotheses of (3) a re fulfilled . Hence there 
exists a minimal set B such that B s; D and Bis dense in {E(G), o). Thus Bis 
a minimal dense set in (E(G), a). Now a minimal dense set in a finitely transi­
tive space is in fact a base of that space. Hence Bis a base of(E(G), o), in view 
of (2). 

Condition (i) of (5) shows that if (E(G), a) is transitive then it is a B-mat­
roid. On looking at (4), we see that what prevents the transitive space (E(G) , 8*) 
from being a B-m atroid is the presence in G of some two-way infinite arc 
having infinitely ma ny vertices in common with some rayless and connected 
subgraph of G. We now analyze this situati on further . 

5. TH E BEAN GRAPH 

This is the graph shown in Fig . 1 of [I] and in Fig. 1 here. 
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(6) If a graph C contains a t1ro-way infinite arc P having infinitely many 
vertices in common with a rayless and connected subgraph C of C then C has a 
subdivision of the Bean graph as subgraph. 

PROOF: Replacing C if necessary by a maximal tree contained in C, we 
may without loss of generality take C to be a tree. We may further suppose 
that C is the uni on of finite arcs having the ir ends in P, for the union of the 
arcs in C of this type itself satisfies the hypotheses o n C. Now since C is 
raylcss, infi nite,-and connected, it must have an infinite-va lcnt ve:-tex, v say. 
For each edge x in C which is incident with v, let Cx be a minimal finite arc in 
C containing x and having v as one end and a vertex of P as the other end. 
Then it is easy to see that P u (Ux C,J contains a subdivis ion of the Bean 
graph. 

The main theorem of this paper can now be proved. 

(7) Let C be a graph. Then the fo/!01ri11g conditions are equiz:alent : 

(i) (E(C) , o) is a matroid; 
(ii) (£(G), o) is a B-111atroid; 

(iii) C has no subdii;ision of the Bean graph as subgraph. 

PROOF: The equivalence of(i) and (ii) is a consequence of condition (i) of 
(5) and the fact tha t any B-matroid is a matroid. To see that (i) implies (iii), 
suppose that C contains a subdivision J-1 of the Bean graph and let A be the 
set of edges in H which are drawn in full in Fig. 2. Then the edge marked xis 
not in Au oA but is in u(A u cA). Thus (E(C), o) is not transitive and is there­
fore not a matroid. Finally suppose that (iii) holds . We then claim that every 
subspace (S, o* · S) of (£(G), 8*) is B1• For let X be discrete in (S, o* · S): 
then Xis discrete in (£(G), 8*), and therefore E(C)\ X is dense in (£(G), o) . 
Hence for each x in X there exists a polygo n or two-way infinite arc P such 
that x E P ~ (E(C)\ X) u x, or, what is the same thing, such th at X n P = x. 
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H= 

x ' 

FIG. 2. The broken lines represent single edges and the full lines represent finite arcs. 

From (iii) and (6), it is also the case that P has only finitely many vertices in 
common with each ray less component of E(G)\S. Hence the co nditi on of (4) 
holds, and Xis contained in some base Y of (S, c* · S), as required fo r our 
claim. Since (E(G) , c*) is in any case tra nsitiYe, we have shown th at (E(C), o*) 
is a B-matroid . The fact that the class of B-matroids is closed under the taking 
of duals now gives (ii). 
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