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CHAPTER 1 


INTRODUCTION 


Although there is increasing interest on the part 

of solid state physicists in both the experimental and 

theoretical areas, in molecular crystals; a good under­

standing of how to approach the unique problem of such 

crystals, i.e. librational and rotational motion, has 

not yet been obtained. By the term "molecular crystal", 

we refer to those crystals which have complexes of tight­

ly bound atoms such that the forces between these com­

plexes is much less than the internal forces between the 

atoms in the complex. So it becomes apparent that there 

is a better co-ordinate scheme to describe the dynamics 

of such crystals than the usual lattice dynamics which 

assign three displacement co-ordinates to each atom. 

That is to assign three displacement co-ordinates to the 

molecular center of mass and all the internal vibrational 

modes of the molecule and to describe the last two co­

ordinates as the angular orientation of the molecule. 

This becomes completely necessary on the realization that 

the molecules in such crystals actually rotate, so that 

the motion of a single atom may be some complex orbit 

1 
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about the center of mass of the molecule. This then is 

the nature of the unique problem of molecule crystals. 

There are a number of things which.may be ·1earned 

as a result of the theoretical study of the dynamics of 

molecular crystals. In general the internal vibrational 

modes are of so much higher energy than the intermolecular 

energies that they are only slightly perturbed from their 

free molecular values. This is definitely the case for 

the diatomic molecules which this paper discusses. Thus 

something can be learned about the perturbation to the 

vibrational modes due to the solid environment, but this 

is only a second order effect. When we consider the 

intermolecular dynamics, a knowledge of the normal modes 

and molecular motions may lead to a better understanding 

of the intermolecular forces, particularly of the angular 

dependent nature of such forces which are poorly described 

by the study of such molecules in the gas phase. But more 

frequently, the intermolecular potential is already 

reasonably well understood from the gas data, and this can 

be used as a starting point for a study of the molecular 

motions in the solid. This is the course chosen by this 

present research. Eventually, as these types of crystals 

are better understood, the question of how the solid 

environment affects the intermolecular potential may be 

answered. 
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Another characteristic of molecular crystals is 

the existence of low temperature phase transitions for 

which there is considerable evidence that the cause is 

the beginning of hindered rotations of the molecules in 

the crystals. 1 ' 2 • Although the formulations in this 

paper does not allow us to investigate this phenomena, 

this is certainly an important goal in the study of 

molecular crystals. 

This present research considers several properties 

of solid nitrogen and attempts to calculate the libra­

tional frequencies of the molecules in the solid. 

The second chapter is concerned with the static 

properties of the crystal. An intermolecular potential 

obtained from gas data is modified to give the correct 

lattice spacing at T=0°K.Then the calculated binding 

energy is found to be in good agreement with the experi­

mental heat of sublimation. 

The third chapter is concerned with the crystal 

dynamics. The intermolecular potential is extended to 

form a crystal Hamiltonian. With the center of mass of 

the molecules fixed, the librational frequencies are 

calculated from the classical equations of motion in the 

small angle approximation. The calculated £requencies 

are compared with experimental values obtained from Raman 

scattering, and are found to be too high, an effect which 
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can readily be understood from a consideration of the 

small angle, harmonic approximation. 

In chapter four, the N.Q.R. experiments are 

discussed. The temperature dependence of the resonance 

frequency is considered to be due to the librational 

modes of vibration. It is found that the temperature 

dependence can be reasonably well understood using the 

quasi-harmonic approximation in which the temperature 

dependence of the librational frequencies is considered 

to be due to only the thermal expansion. 

Chapter five, contains the results of an iden­

tical calculation for CO which is completely analogous 

to N2 . The results do not agree as well with experiment, 

a conclusion which is understood from the inadequacy of 

the potential for this case. 

The sixth chapter is a general discussion of the 

various methods which have been used to attempt to solve 

the molecular crystal problem. The strengths and 

weaknesses of each are pointed out and a possible direction 

for further study is outlined. 



CHAPTER 2 

STATIC PROPERTIES OF THE NITROGEN CRYSTAL 

A. The Intermolecular Potential 

We begin with an intermolecular potential 

which is obtained from the study of nitrogen gas and 

which is consistent with the form of the molecule. It 

is essentially the potential of Kohin 3 with some slight 

corrections and consists of three parts: the quadrupole-

quadrupole interaction, the attractive dispersion force, 

and the repulsive short range force. 

The quadrupole-quadrupole interaction between 

two axially· symmetric charge distributions is: 

where n and n are unit vectors along the symmetry axes
1 2 

of the two molecules and f 1 2 is a unit vector in the 

direction of the line joining the molecular_ centers. 

5 
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R is the distance between the molecular centers and Q is 

the quadrupole moment for a nitrogen molecule. 

The attractive dispersion forceJwhich is a type 

4
of London force , depends on the polarizability of the 

molecule and the parameters of the Lennard-Jones potential. 

6 

va=4~~ {-1 +K[l-~<n1.r12>2 

where K= (a -a } / (a +a +a } , and £ and cr are 
zz xx xx yy zz 

the Lennard-Jones parameters, derived from experiments 

in the gas ·phase which have been fitted with the potential 
cr 12 cr 6

V (R) = 4£ [ (R_) . - (R_) ] • 

The repulsive short range force is assumed to be 

. -12proportional to R . For this force the nitrogen 

molecule is assumed to be two nitrogen atoms at the 

correct nuclear separation of the molecule. (An assump­

tion which seems quite well justified from the density 

distribution plots of Bader (1967) 5 .) Each atom of the 

first molecule repels each atom of the secqnd molecule 

Bwith a potential ~ where r is the separation between12 
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the atoms under consideration. 

1 1 1 1therefore: Vr = B ( + + + . ) which12 12 12 12
ra; rad rbc rbd 

can be' expressed in terms of angles to first order in 

R- 12 as: 

d2 
= 4B {1+6 c14<fi1.r12>2+ 14Cfi2 .r12 >

2
-21vr Rl2 R2 

a4 
+42 [ 1 - l6Cfi1.r12>2 -16Cn2.r12>2

R4 

2 2 
+ 288(fi1.:e12> (fi2.:e12> + 2 (fil .fi2) 2 

where B is the repulsive potential parameter and d is one 

half of the internuclear separation. It should be noted 

here, that a correction has been made to Kohin's potential 

4in the inclusion of the last five terms which she neglects. 

While they are of the same order in the expansion parameter, 

the neglected terms do turn out to be small, introducing 

very little error in Kohin's work. 

The repulsive potential parameter B in this paper 
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has been determined such that the crystal will have 

minimum energy at the equilibrium lattice spacing and 

differs from Kohin's value, which is deduced from 

viscosity data, by 11%. The values of all parameters 

used in the calculations are included in Table 1. 

B. The Crystal Structure 

At low temperature, nitrogen solidifies in 


the a phase in which the molecular centers are found 


on a face centered cubic (fee) lattice. There are four 


atoms per unit cell and four sublattices. Table 2 gives 


a list of the four sub.lattices, their positions and or­


ientations. Figure 1 is a diagram of the unit ce116 • 


The crystal symmetry is Pa3. 


It has been reported in the liteiature that the 

actual crystal structure deviates from that described 

above by a shift of the molecules along their symmetry 

axis (the three-fold axis of the crystal) by a distance 

of 0.17 A which would reduce the symmetry to P2~3. 7 

This would produce a small effect since this shift is only 

3% of the lattice unit cell size. A theoretical investi­

gation of this result is discussed in Chapter II, Part D, 

and since no evidence for such a shift is found there, 

we shall continue to assume the higher Pa3 symmetry with 
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TABLE I 

PARAMETERS AND CONSTANTS 

Quantity Symbol 

8Lattice parameter

One-half the internuclear9 

distance d 

10Quadrupole moment Q 

3Lennard-Jones parameters E 

Polarizability3 
K 

Repulsive parameter B 

Moment of Inertia9 
I 

Transition Temperature7 

Plank~ Constant11 
l'i 

11Boltzmann's Constant k 

FOR N
2 

Value 

0 

5.644 A 

0 

0.552 A 

1~29xlo-26 esu 

l.313xl0 -14 ergs 
0 

3.708 A 

0.189 

8 °124.099xl0- ergs/ A 

1.40lxl0-39 g cm2 

0 

35.6 K 

1.054xlo-27 erg sec 

l.3805xlo-16 ergs /°K 
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TABLE 2 


CRYSTAL STRUCTURE 


Sublattice Number Position* Orientation 

(arbitrarily defined) (at equilibrium) 

1 1 1 0 (-1,1,1) 

2 1-1 0 (1,-1,1) 

3 0 1-1 (1,1,-1) 

4 0 0 0 (-1,-1,-1) 

*This is with a unit cell of side 2 units. 

NOTE: There is an arbitrariness of plus or minus 

in the equilibrium orientations, but this set is chosen 

so that the crystal appears identical from each sublattice 

position. 
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z 


FIGURE 1 


The crystal structure in a unit cell of aN 2 


showing the f .c.c structure with Pa3 symmetry 


and showing the orientations of the 4 sublattices 
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the assurance that any error introduced there by must 

indeed be small. 

As the temperature is increased, the crystal 

undergoes a phase transition at 35.6°K to the S phase 

in which the crystal structure is hexagonalclose packed~ 2 

It is found that the molecules are oriented at 56.0° ± 

2.5° with respect to the z axis. This result is con­

sistent with the pure quadrupole resonance which vanishes 

13 .
in the S phase. But the quadrupole frequency l.S 

proportional to ( P (cos8) ) which is zero if
2 

8=54°44'. It is not possible from the X-ray results to 

distinquish between precession about the axis and a 

random distribution of orientations. 

A third solid phase of nitrogen yphase) has 

14been reported at high pressure , but is not of interest 

in the present research. 

c. The Binding Energy 

With a knowledge of the intermolecular poten­

tial and knowing the crystal structure it is possible to 

determine the binding energy of the crystal. We sum up 

the contributions of each of the three potentials for one 

molecule with each of its neighbours out to- the sixth 

nearest neighbour. The contributions for further neigh­
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bours is less than 0.015% and is thus negligable. 

The only parameter which is difficult to determine 

independently is the repulsive parameter B, since it can 

be determined only approximately from viscosity data. 

The·refore the- molecular binding energy was calculated as 

a function of lattice parameter A0 .and B was chosen so 

dEthat ~ = 0 at A0 equal to the known experimental valuedA 0 
0 8 

at 4.2°K of 5.644 A. This gave a value of B = 4.103 x 

10-B ergs I A12 which differs from Kohin's value by 11% 3 • 

We can compare the calculated binding energy I mol­

ecule with the heat of sublimation per mole by using the 

relation. 

15 11
1 erg I molecule= 14.3937 x 10 cal/mol. , and 

remembering_ to sum each interaction only once introducing 

a factor of ~. The results are recorded in Table 3. 

There results are in precise agreement with Kohin's cal­

culations, recognizing the change in lattice parameter and 

including the previously neglected repulsive terms. To 

compare the total energy with the experimentally measured 

3 energy of -1652 cal/mole , it is necessary to include 

zero point energy corrections which have been estimated 

to be 213 cal/mole for the translational modes and 123 

3cal/mole for the librational modes • The deviation from 

pairwise additivity has also been estimated by Lupton to 
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TABLE 3 

,CONTRIBUTIONS TO THE CRYSTAL ENERGY FOR N2 

Energy Term Energy/Molecule Crystal Energy 
15xlO ergs 	 cal/mole 

Quadrupole Quadrupole -34-76 -250.2 

Attractive -461.91 -3324.3 

Repulsive +227.84 +1636.l 

Total -269.33 -1938.3 

Including 	effects of zero point energy -336 

and deviation from pairwise additivity + 30 

The calculated sublimation energy = 1632 

The experimental sublimation energy = 1652 

And the deviation is 1.2%. 
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be -30 cal/mole 15 • 	 Including these terms, the calculated 

value of the sublimation energy of 1631 cal/mole agrees 

well with the experimental value of 1652 cal/mole. 

It should be noted here that both the attractive 

and repulsive terms in the potential can be divided into 

spherically 	symmetric and angularly dependent terms. 

From Kohin's work 3 , the angularly dep~ndent contributions 

are +88 cal/mole and 	 -362 cal/mole respectively which are 

not small compared with the quadrupole terms of -251 cal/ 

mole. Therefore any 	attempt to calculate the librational 

lattice dynamics using only a quadrupole-quadrupole inter­

action omits a large 	contribution to the angularly depen­

dent potential and thus arrives at doubtful conclusions. 

Also the work by Kuan, Warshel and Schnepp (1970) 1 ~ 

which omits the quadrupole-quadrupole interaction, arrives 

at conclusions where a main part of the angularly depen­

dent potantial has been neglected. The parameters are 

also chosen to fit a set of librational frequencies 

which do not include 	the high frequency mode seen by 

17
Anderson et al (1970) · This work differs from Schnepp's 

in that it considers the polarizability of the molecules 

in the attractive potential which .Schnepp does not. 

D. 	 Shift of the Equilibrium Positions 

As noted in the section on crystal structure, 
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there has been some evidence from Xray diffraction that 

the equilibrium position of the molecules was shifted 

from the f .c.c. sites on the lattice along the four, 
7

three-fold axes of symmetry by 0.17A
0 

.. reducing the 

symmetry to P2 3.1

This was investigated using the potential 

described in this chapter by calculating the total 

crystal energy as a function of shift distance and in­
0 

vestigating the results for a minimum at 0.17A. The 

molecules were shifted as described by Lipscomb (1964) 7 

and the results are plotted in Figure 2. It can readily 

be seen that the lowest energy occurs for a crystal in 

which the molecules are not shifted and the higher 

symmetry of Pa3 describes the crystal. 

Other evidence favouring the higher symmetry is 

obtained from the fact that the P2 3 symmetry should1 

result in some extra lines in the Raman spectra which 
. 17 

have never been observed. Anderson has suggested that 

the apparent shift is a result of strains occuring in 

18. . t . 11 . 11t h e crysta1 since i was grown in a sma capi ary. 

Adding to this the lack of any theoretical justification 

for such a shift, we will assume in the remainder of this 

paper that the crystal structure has Pa3 symmetry until 
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FIGURE 2 

A calculation of the total crystal energy o~ an cystalN2 
vs the shift of the molecules along their 3-fold symmetry axis 

shows a minimum energy for zero shift implying that such a 

shift is not consistent with the theoretical potential. 
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further evidence is obtained to determine the question 

more exactly. 



CHAPTER III 

DYNAMICS OF THE LIBRATIONAL MODES OF THE CRYSTAL 

A The Librational Hamiltonian 

We have described in Chapter II an inter­

molecular potential between two nitrogen molecules in 

terms of the distance between the centers of mass and 

the relative angles. This potential can be expressed 

much more succintly in terms of spherical harmonic3 as 

defined by Edmonds. 19 It becomes 

2 
v12= Bo+ Bl. [Y2o<w1)+Y2o<w2)l + I 

µ=-2 

+D[Y4o<w1)+Y4o<w2>l 

where 6 
2 4241T 02 2 e::cr + 227 336Bd{Ao=. -5- Rs- K }

27Rb Rl6 

Q2 
6 

2 4161T 2e::cr 336Bd
Al = A = -5- {- -7 K + 5 }-1 RS Rl6 

Q2 
6 

2 424 1T 2e::cr 336Bd
A2 = A = -5- {- 2 K + 2 }-2 RS R6 Rl6 

19 
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D = 128 r7f
35 

and w1 and w2 are the polar angles of the molec­

ular axes of syrcunetry with respect to the intermolecular 

axis, and B0 and B are constants which are independent1 

of all angular quantities. 

Since we will be taking corcunutators of various 

operators with the Hamiltonian, the constant term B0 does 

not contribute to the librational Hamiltonian. Also, as 

is shown in Appendix A, the term Y cw ) summed over all20 2

sites of any particular neighbouring shell is a constant 

and so can similarily be neglected since it will not 

contribute to the librational motion. 

Now, rather than expressing each interaction 

between molecular pairs in terms of angles measured with 

respect to the intermolecular axis, we rotate the 

spherical harmonjcs and express them in terms of angles 

measured with respect to a crystal axis. The standard 

form of rotation of spherical harmonics is given by 

Edmond's equation (4.1.4) 

:f £ £ 
y· (w.) = \ D (a,S,y) Y ,UL)m 1 l m'm m 1 

The terms in Y4 are rotated directly to angles
m 
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measured with respect to the equilibrium positions of 

the molecule. Then the effective potential can be 

written 
4 

I 
51.=0 

y i 2I A m +m (S ,y) Y (fl )µ µ 1 2 m 11 

2Several relations among the n rotation matrixes 

have been used from Edmonds. 

It is then possible to sum over the whole 

crystal, remembering to sum each interaction only once. 

Then if the spherical harmonics for each molecule are 

expressed in terms of angles from the equilibrium position 

as described in the crystal structure Chapter II, the 

Hamiltonian takes the form 

H = ~ l [l C . · (m' m' ) Y* , ( w · } Y , { w · ) l1 2 2 1 2ij m' m' iJ m 1 m 2 J 
1 2 


I I 4 4
+ .. D, 
1 

D {a,S,y) .. Y (w.)Ji ~ µo Ji µ J 
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and 

= (-1) 
m' 

1 l [ 
4
l (4 7T ( 2fl+1) ) ~ 

m fl=o1m2 

( 2 2 fl ~ 
m m - (m +m ) ) l

1 2 1 2 µ=-2 

2 
Y ! +m ( B, y} iJ' o (a . B. y . ) 

I l.l.l.1 2 -m lml 

2D, (a.$.y.) 
m lm2 J J J 

In the above sums, i and j run independently 

over all the molecules in the crystal. I I 

m l' m 2' ml' 

and m all sum independently from -2 to 2.2 

In the expression for H, w. is the angular polar
l. 

co-ordinate of the molecular axis measured with respect 

to the equilibrium axis of molecule i which will in turn 

depend on the sublattice to which molecule i belongs. 

(a, B,y) .. are the Euler angles required to take the 
Jl. 

intermolecular axis between molecules j and i into the 

equilibrium axis for molecule j." And Dµo is the rotation 

matrix as defined by Edmonds.19 

2 2 fl .
The expression ( ( + m )) is the usual 

ml m2 - ml 2 

11 3." symbol. (8,y) .. are the last two Euler angles (a
J l. J 

http:Edmonds.19
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,. 

being arbitrary) required to align the intermolecular 

axis between molecules i and j with the crystal axis 

whereas (a. ,S. ,y.) are the Euler angles required to take 
l. l. l. 

the crystal axis into the equilibrium axis of molecule i. 

Certain symmetry properties of the co-efficients 

Cij(m 1 

1 ,m 1 

2 ) are stated here without proof. 

Cij(m'1,m'2) = Cji(m'2,m'1) 

and therefore 

m'1+m' 2= C*i j { -m ' 1 , -m ' 2 ) ( -1) 

These relations follow from the condition that the 

potential between two molecules be real. 

j 1Als~, if the points j and are related by in­

version symmetry 

c .. (m 1

1 ,m 1 ) = c .. • (m 1

1 , m1 )
l.J 2 l.J· 2

The last relation, which is used several times 

in the following proof, is that 

l c .. (m,o) = l C.. (o, m) = 0 if mfO 
j l.J j l.J 

This relation,which ensures the equilibrium of 

the crystal, ~s derived from a consideration of the 
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transformation of these co-efficients under the three­

fold rotational symmetry. 

. A partial check on the orientational equilibrium 

of a crystal described by this Hamiltonian has been made. 

Suppose all molecules in the crystal are fixed in their 

known equilibrium positions with the exception of molecule 

i. Then a H and a H should be zero for 8.equal to iero,
1ae. a¢.

1 1 

if the ith molecule is indeed to be found in its equili­

brium position. This has been checked and is found to 

hold for this Hamiltonian. A more general investigation 

of Nagai and Nakamura (1960) 20 using a Hamiltonian der­

ived from quadrupole-quadrupole interaction only (although 

it is easily extendable to this present Hamiltonian), 

shows that the structure described in Chapter II has the 

minimum possible energy of any orientation. 

B. The Equations of Motion 

It is desireable to have the time development 

of the librational motion of the molecules in the solid. 

Therefore we have chosen to consider the Heisenberg 

equations of motion. 
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1. The Quantum Mechanical Equations 

- +If we consider the operators J. and J. de-
J J 

fined as in the Messiah, 
21 J~=J .±iJ ., where the sub-

J XJ YJ 

script j refers to the j th molecule • 

Then the Heisenberg equations of motions are: 

+ 
ClJ"7 + 

in rr- =[Jj,H] 


It should be noted here that H must be the total 


Hamiltonian: the potential energy V, plus the kinetic 

energy T. But since 
T = l 1 J.2 

i 2Ii 1 

then: 
+

[Jj I T] = 0 

and therefore the effective Hamiltonian is only the poten­

tial energy term and we shall ignore the kinetic energy 

term. 

21Using the relations from Messiah , the 

Heisenberg equations of motion become 

ClJ~ 
ifi__l = ~ 

at i 

2* 2 
y +1 (w.) y {w.) + ci'J' {ml,m2)m1 - J 1m2 

4+ln ln4 {a,B,y) .. (20-µ{µ±l)]~ Y + (w.)
i µ µo Ji µ_ 1 J 



26 

2. The Classical Equations of Motion 

As has always been the case in lattice 

dynamics, the quantum mechanical equations of motion and 

the classical equations can be shown to be equivalent, 

and since the classical equations are often easier to 

solve, they are the equations which are used for calcu­

lation. 

Starting from the Lagrange Equation 

d aT aT av 
at aq. - aq. == - aq.

J J J 
and using the classical expression for T 

T == ~ I) l e. 2 + ~ l (I sin 
i l i 

we arrive at the final equations 

~ y2* y2+ cij(ml,m2) [6-m2(m2±1)] (w.) (w.)
l m ±1ml J2

k: 4
± l D I D4 (a,S,y) .. (20 - µ(µ±1)) 2 Y +l(w.)µ µo Jl µ_ J

i 
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The ± results from using the two different 

d 1 21
expressions for ae Ym(e,¢) found in Messiah 

~ L -i¢ 	 1[.R. (1+1) - m(m+l)] Ym+l e · + m cote Ym 

~ 1 -icp 	 Y1 = -[1(.R.+l) - m(m-1)) Ym-l e -m cote m 

and they are brought into this form by using the Lagrange 

equation of¢ .• Therefore these two e. equations are 
3 J 

linearly dependent with tne ¢. equation and may be used 
J 

as the two fundamental equations of motion 

3. 	 Equivalence of the Quantum Mechanical and Classi­

cal Equations. 

It can be seen immediately that if the 

association of the operators in J~ is made with the 
J 

+i¢· •
classical expressions re- J (8.±i sin 8.cos 8.¢.)' then 

J J J J 
the quantum and classical equations are identical. Further, 

it can be seen that the two equations in each pair are 

just Hermitian conjugate (or complex conjugate in the 

case of the classical set) which greatly simplifies the 

manipulation of these equations. 

4. 	 Discussion. 

Up to this point, no terms have been 

neglected in the equations of motion, but to proceed 
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further, some approximation must be made. Several 

approximations have been attempted in this research. 

J 

The first attempt made in this research was to 

express the Y2 's in terms of their operator equivalents 

and and then, to 
.

solve the equations 
+

for J: after 

linearizing to firstorder in J±. But the use of operator 

equivalents requires that the rotor be in a well defined 

J state. For molecules with as large a moment of 

inertia as N2 , the difference in kinetic energy between 

the different J rotational states is less than the inter­

action between nitrogen molecules. This means that the 

interaction will mix various J values, making the use of 

operator equivalents impossible. For a molecule such as 

H this is not the case since the rotational states are
2 

well separated. Calculations of this type have been 

22reported by Raich and Etters (1968) , for solid ortho­

hydrogen. 

A much poorer approximation, is to solve the 

.classical equations in the harmonic approximation. This 

is a doubtful approximation since even the librational 

zero-point root mean spare amplitude is of the order of 

10°. But the results do give qualitative agreement with 

experiment. 

A discussion of other possible approximations in 
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which to solve this problem will be returned to in 

Chapter VI .. 

c. Solution in the Harmonic Small Angle Approximation. 

If we write out all the spherical harmonics, 

expand them in powers of e, and keep only those terms 

which are linear in 8, the Lagrange equations become 

l ±i¢i - +i¢.-c . . ( ± 1 , ±1) e e . +c . . ( ± 1 , + 1) e i e . 
-i J l. l. J l. l. 

+ c .. (O,O)e±i¢j e. + c .. (O,O)e±i¢j e. 
Jl. J lJ J 

- +i¢. . - - ±i<Pi+ c .. (±1,+l)e ie. - c .. (+l,+l)e e.
l.J l. l.J l. 

+ ( 900 ) ~ D l D4 (a,8,y) .. e-+i¢•J 8.
41T i 00 Jl. J 

In writing the last term we have used the result 

that 4 which followsD (a,8,y) .. = 0 if µ= 1 
µo Jl.i 

from the threefold rotation symmetry of the crystal. 

A comment on the co-ordinates being used, is in 

order at this point. It is necessary to have two co­

ordinates to specify the angular orientatiori of a molecule. 

we are using the independent co-ordinates e+i<fie and 
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e-i¢ 8 where ¢ is assumed a constant and is also assumed 

non zero. If ¢=0, the two independent equations become 

identical and therefore ¢ must be chosen non zero. 

It is now necessary to transform the linearized 

equation by a Fourier Transform in which each sublattice 

v transforms independently according to 

i"'v \' e 'I' eqv = l 
j on sublattice v 

Then the linearized equation becomes 

I ±i¢vg = 15 I [- c (+l +l) ±i¢µ ee qv 4n µ vµ - ,_ e qµ 

+ c (±l,~l)e~i¢µeA + c (O,O)e±i¢veqAv]vµ qµ v 

where Cvµ is the Fourier transform of Cij 

D~ = ~ D D~ 0 (a,S,y) ji for j,a molecule of 
1 

sublattice v and 
=Ic .. (o,o>

i J1 

This equation now describes the lattice motion in 

terms of eight indep.endent variables ±i¢ve where v 
e qv 
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runs from one to four. Furthermore, the equations are 

linear. If we therefore assume that each parameter 

iwt 2varies as a e we can solve for w and for the. eigen 

vectors of the motion. 

D. Numerical Results for Nitrogen 

The frequencies have been calculated using 

the given potential parameters (Chapter II) and the 

-1corresponding energies are expressed in cm It is 

interesting to note that we can easily calculate the ener­

gies for quadrupole-quadrupole interaction only and that 

we obtain exact agreement with DOnkersloot who uses a 

completely different formulation 23117 . 

The calculation includes the interaction out to 
. 

6 nearest neighbours and since the difference between 5th 

and 6th nearest neighbours is less than 0.5%, this was 

considered sufficient accuracy. These results are re­

corded in Table 4. 

All the above results are reported for the q=O 
modes of vibration. These are the modes which are 

measured in the Raman experiments. These modes are also 

pure librational modes and are uncoupled from the 

translational modes. A proof of this is given by 

Walmsley and Pople (1964) 24 • For qfO the librational 
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TABLE 4 

CONVERGENCE OF THE 6TH NEAREST NEIGHBOUR APPROXIMATION FOR 

NITROGEN FREQUENCIES 

Frequency 5th nearest 6th nearest Difference % 
in cm-1 neithbour neighbour 

vl 54.558 54.377 .181 0.33% 

v2 62.800 62.643 .157 0.25% 

v3 80.526 80.403 .123 0.15% 
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modes couple with the translational modes as reported by 

Schnepp and Ron (1969) 25 . Therefore the diagram (Figure 3), 

of the q dependence of the librational modes has very 

little significance except to show that the modes depend only 

slightly~ on ~ and to justify the use of an Einstein 

approximation in Chapter IV. 

These calculated modes are compared with the 

results of the Raman experiments as measured by Anderson 

17et al (1970) , and are recorded in Table 5. It can be 

seen that the agreement is only qualitative and that all 

the frequencies are high. This is consistent with the 

use of the harmonic approximation when the librational 

modes are known to have considerable anharmonicity 25 • 

Also, whereas the harmonic potential is unbounded for 

large e, the actual potential must be periodic in e 

which would result in a lower experimental mode. Further, 

we expect the harmonic approximation to be worst for low 

energy modes which result from a shallow potential and ~ 

therefore have large root mean square values of 8. This 

is indeed found to be the case in. these calculations. 

Further discussion of the harmonic small angle 

approximation will be left to Chapter VI. 
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The q dependence of the librational modes of N throughout·

2 

the unit cell 
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TABLE 5 

CALCULATED LIBRATIONAL FREQUENCIES FOR N2 

17Mode Degeneracy Measured Calculated Ratio Calculated 
using Q-Q 
interaction 

only 

Eg (2) 32±1. 5 54.4 1. 70 30.4 

(3) 36.5±1.5 62.6 1. 72 39.2 

(3) 60±4 80.4 1.34 64.4 



CHAPTER IV 

NUCLEAR QUADRUPOLE RESONANCE 

A. Theory of Nuclear Quadrupole Resonance with Librations. 

The 	 frequency of the nuclear quadrupole reso­

26 nance (N. Q. R.) which has been measured in solid nitrogen

depends on the librational motion of the molecules in the 

solid. It therefore serves as an experimental check on 

the calculated frequencies. 

In general, any nucleus which has a permanent 

quadrupole moment (i.e. is not spherically symmetric) 

and which i.s situated in a non symmetric charge distri­

bution, interacts with the charge distribution by the 

. ·1 . 13,27f o 11owing Hami tonian , 

= eQq [ ( 3 I 2 
- I 2 ) + ~ n (I~ +I.:) ]

41 (2I-l) z 

14 28 · · r--1 . 

Q is the permanent quadrupole moment. 

q is the electric field gradient of the charge 

distribution of the molecule in which the nucleus is 

situated. It is assumed that the contribution to q from 

where I is the spin o f the nuc 1eus. for N

36 
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neighbouring molecules is negligible. 

<1E 
dT e - - -a.z z 

where re and e are the polar co-ordinates of the 

electronic charge 

()Ex ()E
- _:j_n= < ax ay > I az and is called the assymmetry 

parameter. We assume for a nitrogen molecule in the 

crystal that n=O since the molecules are still expected 

to be axially symmetric. 

Matrix elements for the various spin states are 

easily evaluated from this Hamiltonian. 

(±1 j HQ I ±1) = +2 e~q 


( o I HQ I o) = - e~q 


Thus, there are two levels separated by an energy 

of 3/4 eQq. Therefore only one N.Q.R.line is expected 

26and only one is found in the experimental results . 

Up to this point, we have been assuming a static 

lattice. This is definitely not the case, for even at 

0°K the zero point energy allows for considerable libra­

tional motion. This orientational motion has a character­

istic frequency which is much higher than the N.Q.R. 
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transition frequency, and therefore the N.Q.R. Hamiltonian 

experiences only an averaged field gradient q'. 

Translational motion of the molecules has no 

direct effect on the N.Q.R. frequencies since it displaces 

both the nucleus and the field gradient without re­

orientation. Only in the coupling of the translational 

and librational motion, does the translation affect the 

N.Q.R. frequencies but this is a second order effect. 

We note in passing, however, that this is the main 

mechanism contributing to the spin lattice relaxation 

time T 1 . 

The effective field gradient is 

q' = q <p2 (cos e>) 
where the a~gular brackets ( ) f refer to a time average 

and an ensemble average. But,,since all our work is in 

a small angle approximation, expressed to first order in 

e2 

This expression can be comsidered to be implicitly 

temperature dependent. It is too laborious to do an exact 

ensemble average and would be unwarranted considering the 

use of the small angle approximation. Therefore we assume 

the three modes to be the modes of an Einstein oscillator. 
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i.e. 	The frequency of each mode is assumed to be a con ­

stan~independent of q. The constant is chosen to be the 

calculated value at q=O given in Table 5. Since the q 
dependence of the modes is reasonably flat (see Figure 3), 

this is probably a justifiable assumption. 

Now if we consider these frequencies in the 

harmonic approximation and set the classical maximum 

potential energy equal to the energy of the guantum mech­

anical mode using a Bose,Einstein distribution 

2 2 
~ w.re.i imax 

where 8. is the amplitude of the ith libration and isimax 

equal to X. is the temperature dependent
l 

term and is equal to fiw l · 

kT 

We include all 8 modes by noting that in the 

classical small angle approximation, 

A proof of this result is given in Appendix B. 

Therefore, the N.Q.R. frequency can be written 

as a temperature dependent function of the 8 modes of 

libration fi 	 1
(~+Iw. nw·/kT )]

11 e -1 
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This is essentially the theory first derived by Bayer 

(1951) 29 with some mod,ifications to include several v 
modes. 

B. Results. 

The above expression has been calculated as 

a function of temperature using the calculated frequencies 

of Chapter III. The calculated frequencies are used be­

cause the work must be done consistently in the small 

angle harmonic approx~mation. 

The value of v is determined by fitting the 
0 

calculated curve to the extrapolated experimental fre­

quency of 3.489 MHZ at T=O 0 K. This gives a deduced 

value of 5.50 MH for ¥4 eqQ, which agrees with the value z 

cited by.De Reggi (1968) 26 of 5.55 MH . 
z 

The results are plotted in.Figure 4 along 

with the experimental results of De Reggi et al (1968) 26 . 

It can be seen that the curves agree only very qualita­

tively. 

c. Temperature Dependence of Librational Modes. 

In the above calculation, the librational 

modes have been assumed to be temperature independent 

but it is known from experiment that this is not the 

30 case To calculate the temperature dependence of the 
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N.Q.R. frequencies calculated using temperature 

independent modes of libration (~~~) and 

compared with the experimentally measured fre­

quencies (- - - -) 
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modes involves the introduction of anharmonic terms in 

the potential and phonon-phonon. interactions. But it 

has been shown for Aluminum by Gilat and Nicklow (1965) 31 

that the anharmonic effects can be quite well represented 

by considering them to be due to volume expansion alone. 

So that while N is a very different system, we attempt2 

this approximation to the temperature dependence of the 

modes. 

The thermal expansion of solid nitrogen has been 

32measured by Heberlein. et al (1970) and their results 

are included in Figure 5. From these experimental 

results which give the lattice parameter as a function of 

temperature, it is possible , by calculating the fre­

quencies for various lattice parameter~ to give the 

librational frequencies as a function of temperature . 
. 

This has been done and the agreement with the measured 

temperature dependence is impressive, showing that even 

in this case the temperature dependence can be well 

accounted for by the thermal expansion. 

In Figure 6, a calculated curve for librational 

frequency vs temperature is drawn through the experimental 

30points of St. Louis and Schnepp (1969) to which it is 

normalized. 
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Experimental measurement of Thermal Expansion in 

solid a-N 2 up to the transition point 36.5°K. 
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These temperature dependent modes have been used 

to calculate the N.Q.R. frequency as a function of 

temperature with the results plotted in Figure ·7. There 

is a significant improvement in the agreement with experi­

ment from the use of temperature independent modes as in 

Figure 4. 

The calculated frequencies are still higher 

than the measured frequencies and this is believed to 

be due to the use of the small angle approximation. The 

agreement becomes worst nearing the transition point, 

which is to be expected if the transition does indeed 

represent the beginning of hindered rotations. 

But in spite of the considerable approximations 

made in the use of a small angle assumption, this work 

does give a qualitative understanding of the nuclear 

quadrupole resonance results in solid nitrogen. 

D. Spin Lattice Relaxation. 

As measurements have been made on the spin 

lattice relaxation time (T ) in a-N 2 , it would be of1

interest to calculate T from a theoretical starting1 

point, since De Reggi et al (1968) 26 find that T1 
. . h h . 1 T3 • S varies wit t e temperature approximate y as . But 
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depends primarily on fluctuations in the librationalT1 

motion and on the decay times of the librational states. 

The main contribution to this is probably the coupling 

between the translational and librational states, but 

since this has been neglected in the calculations, no 

theoretical estimate of T can be given from this work.1 



CHAPTER V 

SIMILAR CALCULATIONS FOR CARBON MONOXIDE 

As a further check on the theory, a calculation 

of the librational modes of CO is carried out. The 

structure of a-CO is identical to the structure of 

a-N except that without the inversion symmetry the space
2 

group is reduced to P213. 17 Therefore, if dipole-

dipole interactions (which are known to be small) 33 are 

neglected and if the attractive and repulsive potentials 

are assumed identical between C-C and C-0 and 0-0 atoms, 

the same theory can be applied for a-co. But it is 

noted at this point, that the results are not expected 

to agree with experiment as well as for N2 due to these 

assumptions which are only partially justified. 

The values of the physical parameters are listed 

in Table 6. Again the repulsive parameter is chosen 

to minimize the crystal energy at the known lattice 

spacing. The total crystal energy is compared with the 

heat of sublimation iri Table 7, and is found to be higher 

by 1. 2% 

48 
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TABLE 6 

PARAMETERS FOR CO 

Quantity Symbol Value 

Lattice Parameter8 
Ao 5.64 

0 

A 
One-half the internuclear9 

0 

distance d 0.564 A 
. 3

Quadrupole Moment Q l.62xlo- 26 esu 

Lennard-Jones parameters 3 
£ l.382xlo-14 ergs 

0 

(J 3.769 A 

Polarizability3 
K 0.168 

Repulsive Parameter B 4.752xl0 -8 ergs I 
0 12A 

Moment of I .nert1a9 I 14.49xlo-39 g cm 2 

34Transition Temperature To 
0 

61.6 K 
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TABLE 7 

CONTRIBUTIONS TO THE CRYSTAL ENERGY FOR CO 

Energy term Energy/molecule Crystal Energy 

xlO 15 ergs cal/mole 

Quadrupole-Quadrupole -55.02 -396.0 

Attractive 271.58 1954.5 

Repulsive -541.64 -3898.1 

Total -325.08 2339.5 

Including effects of zero point energy -359 

and deviation from pairwise 

additivity +30 

The calculated sublimation energy =2011 

3The experimental sublimation energy =1987 

and the deviation is 1. 2%. 

MCMASTER UNIVER~ITY LIB~AR~ 
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Using these physical parameters, the fre­

quency of the librational modes is calculated for q=O. 
These are reported in Table 8, along with the calculated 

values using quadrupole-quadrupole coupling only and 

with the experimentally measured values from Raman 

. . t 17seattering experimen s 

The calculated frequencies can be seen to show 

the same type of agreement with the experimental fre­

quencies as the N results with all the frequencies2 

being too high and the best agreement occuring for the 

high frequency modes. 

There are no experimental N.Q.R. results for 

CO since experiments have not been done using 0 17 and 

13c which are stable and have permanent quadrupole 

moments. 

Similar calculations could be carried out for 

co and N o since they also have the same structure,
2 2

but slight modifications to include the repulsion between 

the center atoms which do not contribute to the moment 

of inertia would have to be included. These calculations 

have as yet not been done. 
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TABLE 8 

CALCULATED LIBRATIONAL FREQUENCIES FOR CO 

Mode Measured7 Calculated Ratio Calculated using 
Q-Q interaction 

only 

E q 44 63.8 1. 45 33.9 

T q 52 73.7 1. 42 43.8 

T q 90.5 98.3 1.09 71. 8 
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CHAPTER VI 

DISCUSSION OF THE THEORY 

A. Criticism of the Small Angle Approximation 

As has been pointed out all through this paper, 

the main source of error is the small angle approximation. 

The zero point motion of the molecules is of the order of 

10° which cannot be considered as a small angle. 

Furthermore, any small angle theory cannot be 

expected to give results near the transition point if the 

transition is indeed due to the commencement of hindered 

rotations. 

Therefore, we concluded that it is difficult to 

decide the merits of the various Hamiltonians used, (quad­

17rupole-qµadrupole 16anisotropic Lennard-Jones ; and the 

present work) while they are all used in a theory which is 

based on the small angle approximation. 

B. Suggestions from the Hydrogen papers 

The most apparent way to consider this librational 

motion (other than to include higher order terms in the expan­

53 
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sion in e which will not help near the transition) is to 

consider the angular wave function of the molecule as a 

sum of spherical-harmonics. 

The work of James and Raich (1967) 35 on ortho­

hydrogen provides leadership in this area. Their original 

paper, which is based on the self-consiste.nt molecular field 

approximation is easier than a similar theory for Nitrogen 

because it is possible in Hydrogen to restrict interest to 

a single J state (i.e. J= 1 in H ) ~ 2

Although the molecular field approximation does not 

follow the.correlation of neighbouring molecules as well 

as a theory which allows for q-dependent modes, it is found 

by Raich and Etters (1968) 22 to give results which are 

similar to the q-dependent model which is analogous to 

spin waves. Although the energy levels for molecular field 

and the spin wave model are quite different, the statistical 

average of P (cos8) differs only by 2%.2 

We note here for interest that the small angle 

approximation in H (which physically is unjustifiable)2 

yields the same energy levels for·the three librational 

frequencies (to the order of the accuracy of the results 

compared, 0.1%) as the Tyablikov decoupling of Raich and 

Etters in the non-linear spin wave treatment. It has not 

been determined whethe·r the results are equivalent or 

http:self-consiste.nt
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whether the agreement is fortuitous. 

However, there is reason to believe that the 

molecular field approximation in N may yield useful2 

results. 

C. Self Consistent Molecular Field Approximation. 

It has already been noted, that, due to 

the necessd.ty of a mixture of J states in N2 , the 

formulation of James and Raich cannot be used. A self 

consistent molecular field theory can be formulated 

following the Hartree theory for atoms. 

We write the total wave functions of the 

crystal as a product of angular wavefunctions for each 

molecule which,by symmetry are identical for the ground 

state. There ls no need to antisyrnmetrize, .since the 

rotors are spatially separated. 

N 

'¥total= II
i=l 

1/J(i) 

And the crystal energy is E = 'i'H'i' 

where the Hamiltonian H is given by H= LT·
' l. 
l. 

+ l v .. 
.. l.J 
l. J 

Now we assume that the angular wavefunction can be 

written as a sum over a finite number of J states. The 

higher J states do not mix because of their large kinetic 

energy. 

http:necessd.ty
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• 	 W { i) = l c JM Y~ 

J,M 


Then, 

I 
jJMJ'M' 

Minimization of E by variation of the cJM co­

efficients will result in a ground state. 

The excited states can be obtained by minimizing 

E with the cJM restricted to be orthogonal to the ground 

state. To obtain the correct number of excited states 

the four sublattices would have to be treated independently. 

This formulation is expected to give results which 

should complement the small angle approximation well. This 

theory can be extended to higher temperatures and should 

yield some information about the transition point. It 

should also give results which allow better calculations of 

statistical averages. It does not seem possible to include 

translational interactions in the librational frequencies 

as is possible with the small angle approximation. 
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It is felt by the author that a new formulation 

of the molecular crystal problem which is neither an 

extension of molecular field calculations nor small angle 

calculations, is needed. Such a theory should allow for 

large amplitude of librational motion and.for well 

correlated modes. 
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APPENDIX A 

Theorem: 

Proof: 

For any shell in an f .c.c. lattice, that is all 

48 points equivalent to{k,m,n}which are at a 

d 
. l 2 2 2 . .
istance;k +m +n from the origin, 

48 

l cos 2e. = const, where e. is the angle be­
. 1 i ii= 

tween lattice point i and the arbitrary direction 

(a,b,c,). 

jk2+m2+n2 cos e. = ka+mb+nc 
i 

48 
• •• ( k 2 +m2+n 2 ) l 

i=l 

2 cos e. 
i 

+8(k2a2+n2b2+m2c2) +8(m2a2+k2b2+ n2c2) 

Note: In some cases, i.e. when k,m, or n = 0, the set of 

48 equivalent points is degenerate, but the proof 

is identical· with the degenerate points counted twice. 
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APPENDIX B 

A proof of the result that l 
8 

(ef) 
i=l 

comes from considering the eigenvectors of the motion. 

For the two fold degenerate mode, the eigenvectors 

describe motions in which all molecules vibrate with the 

same amplitude in each of two orthogonal directions which 

we denote as ex and ey. Now if we consider a unit vector 

along the z axis which is rotated by e about the x axis,x 

and then e about the y axis, the angle between resultingy 

directiorr and the z axis is given by 

cos e = (cosey - sin2e ) I cosex x 

2 . 4 . ie cos e" sin exThen: sin = ""' 

And if all angles are assumed small so that the first 

terms of the trigonometric expansions are adequate, then 

to second order in the angles e2 =e2 + e2 
x y 

The three fold degenerate modes are treated 

analogously except that the eigenvectors describe modes 

which are at an angle of 60° to each other rather than 
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orthogonal. 


Therefore, when all the modes are considered, 


8 

I 


i=l 

, . 
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