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RAMSEY NUMBERS 

INTRODUCTION 

The history of Ramsey's theorem and the Ramsey numbers may 

be considered to have 3 starting points - 3 pioneer worltS: 

(1) Ramsey's paper [17J in which the Ramsey theorem is 

for t~e first time stated and proved as an auxiliary combinatorial 

theorem for certain logical considerations (see ~l). 

(2) Greenwood-Gleason in (111 noted that one of the 

problems on a Putnam competition has deep combinatorial roots, 

phrased the general problem of determining the Ramsey numbers and 

found the first numbers using finite field theory (see § 2). 

(3) Schur's worK (18) originating from number theory gave 

rise to a series of number-theoretical results which provide some 

estimates for Ramsey numbers, as was ot>Served by Moser and 

Abbott, (11· 

In this theale § l and 2 are devoMd to a aurvq of. 

the :tirst two approaches and then in § 3 and 4 the last approach is 

followed. A new number-theoretical problem is introduced Cr-problem) 

which in its special case Cs-problem) is shown to be equivalent 

(v) 



with cyclic Ramsey's problem. Using some estimates of the numbers 

r and s, Ramsey numbers are estimated. 

Except Schur's theorems 6 and 10, all theorems and proofs 

of § 3, 4 are original. 

(vi) 



§ 1. RAMSEY'S THEOREM 


In December 1928 F. P. Ramsey formulated the following 

theorem and used it for finding a procedure to determine the 

consistency of the logical formulae: 

Theorem 1 (Ramsey's theorem) 


Given any r, n and r-<integers), we can find an m such that if 

0 

m ~ m and the r-combinations (subsets with exactly r elements)
0 

of any T:, (set with m elements) are divided in any manner into f" 

mutually exclusive classes Ci ,i = 1,2, •• f- , then ~ must contain 

a subset An, (subset with n elements) such that all the r-comoinat

ions of members of ~ belong to the same Ci. 

This theorem became very important in graph theory, 

especially for the case r =2 (we are interested mostly in this 

case). For this case we may reformulate the theorem in graph-

theoretic language. We call a complete graph with n vertices an 

n-clique and denote it by K • 
n 

Theorem 2 Given any integers k ~ 2, l ~ 2, there exists an m , 
0 

such that if m ~ m then each graph with m vertices has either 
0 

a K-clique or a set of i independent vertices. 

Proof One of the simplest proofs of Ramsey theorem when stated in 

this form is by Erd6s and SzeKeres ( 8J: 
1 
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Obviously if K =2, then each graph with at least t vertices has 

either an edge (i.e., a 2-clique) or does not have any edges and 

hence has a set of t independent vertices. 

For fixed K and arbitrary l let m ( t ) be as desired in the 
0 0 

theorem. When m > l. (m ( l ) + l), then each graph G with m 
0 

vertices has either a set of ~ independent vertices, or the 

maximal number of independent vertices is N < t. Thus from a 

set S of N independent vertices there goes an edge to each 

of the remaining vertices. Then there is a vertex v e S from 

m-Nwhich at least edges are going out of S. Since
N 

m-N m-1 ::!: m ( .t ) , there is a K -clique in the neighbour-
N > l o 0 

hood of v • Thus there is a (K + 1)-clique in G. 
0 

The following is a natural generalization of this theorem: 

Theorem 3 Let 1t1 ,K2 ,•••,.Kp be integers, .lti ::!: 2. Then there exists 

a maximal integer R =R (K1,K2,•••,KP) such that KR can t:>e· divided 

into p mutually edge-disjoint subgraphs G ,G , •• ~Gp in such a way1 2

that Gi does not contain a Ki-clique for i =1,2, •• ,p. 

Theorem 2 is a special case of theorem 3 for p = 2. 


Many proofs are Known, using various inductive inequalities. 


Greenwood and Gleason in (llJ used 


R(~,K2···•Kp) c R(~-l,K2t•••kp)+R(K1,K2-1, •• ,Kp)+ ••+R(~, •• ,Kp-l)+p-l 

a.stronger form of this inequality is available however - proved by 
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Kalbfleisch in (12J: 

Lemma l R(Kl, •• ,Kp) ~ R(Kl-l'K2, •• ,Kp) + •• + R(Kl,K2, •• ,Kp-l) + 1 


for Ki ::!!: 3. 


We shall prove theorem 3 and lemma 1 together with theorem 1 in a 


general form of Ramsey's theorem: 


Theorem 	4 Let K ,K2, ••• ,Kp and r be natural numbers, Ki~ r. Then
1 

there exists a maximal natural number S =S (r;K:J_,•••,Kp) such that 

all the r-combinations (subsets with r elements) of a set with S 

elements can be divided into p mutually disjoint classes T1 ,T2 , ••• ,Tp 

in such a way that T. does not contain all the r-combinations of any
l. 

subset 	with Ki elements. 

Proof (According to Erd6s and SzeKeres r8J): 

Clearly S(l;K1,K2, ••• ,Kp) =Kl+ K2 +••• + Kp-p' 

S(i;1,k2' ••• ,KP) = S(ipc2, •.• ,KP) and S(i;K) = K - 1. 

Now the proof is ready by an induction if we prove the following 

lemma: 

Lemma 2 S(i;K1,K2, ••• ,Kp) ~ S(i-l;S(i;K -l,K2 , ... ,Kp) + 1,1

S(i;Ki,K2-1, ••• ,Kp) + l, •.• ,S(i;Kl, ••• ,Kp-1) + 1) + 1. 

Since S(2;.,_, ••• ,Kp) =R(~, ••• ,Kp)' lemma 2 implies lemma 1. 

Proof 	 TaKe a set with 

S(i-1; S(i;Kl-1, ••• ,Kp) ~ l, •.• ,S(i;Kl, •.• ,Kp-1) + 1) + 2 

elements, denote by A one fixed element. 

Let the i-combinations be divided into mutually disjoint sets 
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T1,T2, •• ,Tp. 


The i-combinations containing the element A may be considered as 


(i-1)-combinations (by removal of A). 


Define a partition of all (i-1)-combinations of S(i-1; S(i;K1-l, •• , 


K) + l, •• ,S(i;K1, •• ,K -1) + 1) + 1 elements into sets T1•, •• ,T' by

p p p 

(~,A2 , •• ,Ai-l) e Ti if and only if (A1,A2, •• ,Ai_1 ,A) e Ti· 

Then a certain T~ contains all the (i-1)-combinations of some 
J 

S(i;~,K2 , •• ,Kj-l, •• ,kp) + 1 elements and hence there is either a 

set of kt elements with all the i-combinations in Ti for 

..l 4 j, or a set of (K.-1) elements with all the i-combinations 
J 

in Tj and thus together with A a set of Kj elements with all the 

i-combinations in Tj. 



§ 2. THE RAMSEY NUMBERS 

Let us note some properties of the Ramsey numbers 

{similar ones hold for S(r;k1 , ... ,kp)): 

(Rl) R(Ki, •• ,Kp) is invariant under a permutation of the 

Ki's 

(R2) R(2,K2 , ••• ,kp) = R(k2 , ••. ,kp) 

(R3) R(K) =K-1 

(R4) For each n ~ R(K ,K
2

, •• ,Kp) there is a partition of
1 

Kn into p edge-disjoint subgraphs G1 ,a2 , ••• ,Gp 

such that no G contains a Ki-clique.1 

The precise determination of the Ramsey numbers is a 

difficult combinatorial problem. The first estimates of these 

numbers were obtained from the proofs of Ramsey's theorem. 

For example, SzeKeres C8J noticed in 1935 that if 

R(K, ,( ) < R(K-1, .t ) + R(it, i-1) 

then R(k., R.,,) has to be smaller than the binomial coefficient, i.e., 

(1.) R( K ! ) < ( K + .£ - 2) 
t K-1 

In r 6] (1952) it was proved that 

(2.) Rp(K) < p(K-2).p + l 

where we write R (K) instead of R(~ K, ••• ,if;).
p .._-"¥•---

p times 

In 1947, Erdtls pro~ed a lower bound in ( 2 J : 

(3.) R(K,K) ~ 2~ 

The formulation of the·problem - to find R(Ki,a:2, ••• ,a:p) 

5 
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we introclaced 1>1 R. E. Greenwood aad A. M. Gleason in 1955. TM1 


gave also the first ezact values: 


R(3,3) =5 , R(3,4) = 8 , R(3,5) =13 , R(4,4) =17 and R(3,3,3) = 16. 


They also obtained 


(4.) Rp(3) s [p! eJ 


which is better than the value pp+l of (2.) and in a weaxer 


form will be proved in §4, using different methods. 


Since then only two new Ramsey numbers have been evaluated: 


R(3,6) =17 and R(3,7) =22 see (lOJ, [15J. From (10], (13], (14], r191 


we obtain the following table of present estimates of R(K, t ): 


' 
3 ! 4 s 6 7 8 9 : l; \0 ' 11 f 12 13 \4 

3 

4 

t 5 
6 

(lower estimate/upper esti"ma.te) 

New general estimates include 

(5.) R(3, t ) $ C • .t2 
• logl!;g/ 

(K ~ 3) R(K i ) ~ C. !1C-l. log log Z for suitable constant C , 
' log t 

proved in [lOJ, and 
c. £.2

(6.) R(3, L ) (see [4J, (5J, [?J).
> logl2 

We shall illustrate the non-constructive lower estimates of Ramsey 

numbers by proving (3.). 

K 
~ Theorem 5 R(K,K) ~ 2 

1C 
~ NProof by [2]: TaKe N s 2 vertices. There are (K) K-cliques in 

KN and if we taxe one fixed le-clique there are still 2(~)-(~) 

http:ti"ma.te
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subgraphs of ~ containing this k-clique. Hence the number of all 


the subgraphs containing a K-clique is less than 


{since k ::!: 3), 


i.e., less than half of the number of all subgraphs of KN. Thus 


there exists a subgraph without K-clique such that its complement 


is also without K-clique. 




§3. NUMBER - THEORETICAL PROBLEMS 


While investigating the solvability of the congruence 

xm + ym = zm (mod p),I.Schur proved the following theorem, (181: 

Theorem 6 (Schur's theorem) 


Let N > m! e. In any partition of the numbers 1,2, •• ,N into m 


disjoint sets there is a set which contains two numbers together 


with their difference. 


Def. A. A set S of natural numbers is called sum-free if aeS,br.S, 

a>b implies a-b • S 

Def. B. A set S of natural numbers is called sum-free if aeS,beS 

implies a + b t S 

Obviously definitions A and B are equivalent; the term sum-

free was introduced in (lJ. Schur posed the following problem: 

What is the greatest natural number N such that one can divide 
m 

the set {1,2, •• ,Nm} into m sum-free sets? 

From his theorem this number exists and Nm~m!eJ. 

Proof of Schur's theorem: Let 1,2, •• ,N be partitioned into sum-

free sets ~,z2 , •• ,zm and let~ be the largest set, ~ = 

{x1 ,x2, •• ,xn J, say, where x1 < x2 < •• < xn • Thus N ~ ~ m. 
1 1 

Let z2 contain the greatest number of the (n1-l) differences 

x2-~, •• ,xn -x1 (these differences do not lie in~), say 
1 

xK -x1 ,xK -x1, •• ,xK -~· Thus n1-1 ~ n2(m-l).
1 2 n2 

8 
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Continuing this procedure we obtain a chain n1 > n2 > 

lli 1 + 1 1 d N tThus(m-1)! ~(m-1)! (m-2)! + ···cm-p )! < e an ~ nl.m < m.e 
0 

~. Zn4m in (20), [211 generalized Schur's problem as follows: 

A set S of natural num.bers is K-thin, (1Q3) if a1,a2, •• ,ak-l e S 

=t al+ a2 + ••• + aK-1 ~ S 

Thus 3-thin sets are the same as sum-free sets. From [161 it 

follows that the following number exists: 

f(K, p) is the maximal natural number such that one can 

partition {1,2, ••• ,f(K,p)J into p disjoint K-thin sets. 

Thus f(3,p) =~ 
Schur also proved a lower estimate for Nm,viz.,Nm+l ~ 3. N + l,m 

m 
see § 4. This gives us N ~ 3 -l 

m 2 • 

In [20J this was generalized to f(K,p+l) ~ K.f(K,p) + (K-2) and thus 

K-2 p(7.) f (K,p ) ~ 
K-

l (K -1) 

Already for K =3, this estimate was improved in (lJ. It was proved 

there, that 
~-C.log p

(8.) f(3,p) > 89 for some constant C and 

sufficiently large p. 

ZnAm's problem is a generalization of Schur's problem based on 
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definition B of a sum-free set. If we looK at definition A 


it seems to be natural to generalize Schur's problem in another 


way: 


A set S of natural numbers is said to be K-poor (K~2) if in 


every (K-1)-tuple a1,a2, ••• ,aK-l e S with 8i<a2<•••<aK-l' there 


is a couple ai,aj (i>j) with (ai-a.j) ~ S. 


Note 1. 3-poor =sum-free ~ 3-thin. 


Note 2. Only the empty set is 2-poor, and if we extend Znjm•s 


definition of a k-thin set to K=2, then obviously 2-poor • empty 


~ 2-thin. 


Note 3. While in K-thin sets we have to check all the (K-1)-tuples, 


in K-poor sets we consider only (K-1)-tuples of different elements. 


Moreover the following is true: 


Proposition 1 Every k-thin set is k-poor 

Proof We have already noted this for K =2,3. Let K:.?4 and 


suppose S is not K-poor, i.e., the elements x1<x2< •.• < xK-l 


of S have all their differences in s. 


Then x1 + Cx2-x1) + (x3-x2) + ••• + (xK_1-xK_2) =xk-l is a sum 


of K-1 elements of S belonging to S. Thus S is not K-thin. 


Note 4. Every K-poor set is obviously (K + 1)-poor, while there 


are K-thin sets which are not (K + 1)-thin - for example, {1,K} 


is such a set. 


Let us state now the folloWing problem: 


r-Problem What is the maximal integer r = r (K1,K2, •. ,KP) (K1~2 integers) 
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such that the set (1,2, •.. ,rJ can be divided into p pairwise 

disjoint sets A1 ,A2, ••• ,Ap in such a way that each Ai is Ki-poor? 

The existence of such an r(~,K2 , ••• ,Kp) is guaranteed by the 

following theorem: 

Proof If the set (1,2, ••• ,rJ is partitioned into disjoint sets 

A1,A2, ••• ,Ap and each Ai is Ki-poor, then the complete graph with 

the vertices 0,1,2, ••• ,r can be divided into p edge-disjoint sub

graphs G1, G2, ... , Gp by definning ( i, j) to be an edge in G.2. if 

and only if fi-jl e At. Suppose the vertices i 1<12 ••• <iK 
t 

form a Ki-clique in Gt• Then Ci2-i1 ) < Ci -i1 ) < ••• <(ikt-i1 )3
are elements of Ai and so are all their differences, contrary to 

our assumption that A! is Kt-poor. 

The idea of this proof is very similar to that of (1), (20), where 

f(K,p) ~ R (K) - l is proved. Since 
p 

(9.) f(K,p) ~ rp(K) 

by proposition 1 (we denote r(K,.K, . .,it) by r (K)) , our theorem 7 
p 

p-times 

implies theorems of the type f(K,p) ~ Rp(K) - l from (11 or (20]. 

Theorem ? or the theorems of the type f(K,p) ~ R (K) - 1 from 
p 

(11, (20] and (21] also allow us to bound the Ramsey numbers from 

below. 

Properties of the numbers r 

(rl) r(11_,···•Kp) is invariant under permutation of the Ki's 
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(r2) r(2,K2····Kp) =r(K2····•Kp) 

(r3) r(K) =K - 2 

(r4) For each n ~ r(Ki,K2, •• ,KP) there is a partition of the set 

{1,2, ••• , n J into p disjoint sets A ,A2 , ••• ,AP such that1 


each Ai is Ki-poor. 


Theorem 	8 Let M be a K-poor set of natural numbers. 

Define M + d = {m+dlmeM} and M1= max M, M2=min M. 

If d > 2M -M2 , then N=MU(M+d) U (M+2d) U ... U(M+nd) is1

also K-poor for an arbitrary natural number n. 

Proof: Suppose the distinct natural numbers b1,b2, ... ,bK_1eN 


fulfill fbi-bjleN for all i~j. 


The sets M,M+d, ••• ,M+n.d are pairwise disjoint in view of the 


following inequality: 


t =O,l, ••• ,n-1. 

We now define Cj = bj - t.d. for b. e M + t.d (t=<>,l, ••• ,n).
J 

Since 

max (M+(t-1).d)~1+(t-l).d + (M
1

-M
2

') < t.d <min (M + t.d), 

we have t.d 4N fort= 1,2, ••• ,n, and hence b1-bjft.d whenever 

i+j. Tb.us the Ci are again pairwise different. Moreover, 

Ci CM, 1 =l, ••. ,K-1. 

Take c1 < Cj arbitrary. Tb.en there are two eases: 

(a) 	 C1=b1-t.d &Cj=bj-t.d, i.e., b1,bje(M+t.d) and the difference 



13 


Cj-Ci=bj-bieN. Since bj-bi ~ M1 + td - M2 - td < 2J\-M2 < d, 

it follows that Cj - Ci £ M. 

(b) Ci=bi-t.d &Cj=bj-s.d, i.e., bie(M+t.d) & bje(M+s.d) for s+t. 


Here necessarily t<s, since if t>s, then bi>bj(since M+t.d and 


M+s.d are disjoint)and bi-t.d<bj-s.d; thus 


max (M+(t-s-l)d)=M +Ct-s-l)d < M2~M1+Ct-s)d ~ bi-bj<(t-s)d<:min(M+(t-s)d),
1

i.e., bi-bj • N, contrary to our assumption. 

Now the difference Cj-Ci=bj-bi-(s-t).d, where bj-bieM+(s-t).d, since 

(s-t).d < bj-bi~1-M2+Cs-t).d<(s-t+l).d and we assumed 

bj-bieN. 

Thus Cj-CieM, and we have shown that if N is not k-poor, then 

neither is M. 

Corollary If the set M can be partitioned into p disjoint sets 

A1,A2, ••• ,Ap where each Ai is ki-poor, and if d>2M1-M2 , then the set 

N = M lJ (M+d) U ••• U (M+n.d) can also be partitioned into p disjoint 

Proof 	 Put B1=A~J(Ai+d) U •.• U (Ai+n.d) and use theorem 8; 

d>2M1-M;i>2 max Ai-min Ai for all 1=1,2, ••• ,p. 

Put ft(m)=rm(t) and define gt(n) to be the smallest number of t-poor 

sets into which fl,2, ••• ,n] can be partitioned. 
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Proof Let X = 2.ft{m)+l and write the numbers l,2, ••• ,x1'-l in 


base X. 


Define A= {ao+8i.X+••• +aK-lxK-l I ai~ft{m), i = o, ... ,K-1} and 


Bj={a0+~X +•.• +aK_1:xK-l f a1~rt(m) for i<j and aj>ft{m)} 


j = 0,1, ••• ,lt-l. 


Partition the set {1,2, ••• ,K.ft{m)} into g=gt{K.ft{m)\ disjoint 


t-poor sets M1,M2, ••• ,Mg and the set {1,2, •.• ,ft{m)} into m 


t-poor disjoint sets N1,N2, •.• ,Nm. 

g K-1 K-1 

Then A =U Ai where At= f t aix1 e A f E ai e M21 is clearly 
t=l i=o i=o 

a partition into disjoint sets. Each Ai is t-poor, since if 

z1<z2<•••<zt-l, elements of A2 , have all their differences in A_t, 

K-l i j 1 2 t-1 
= t ajX , then aj ~ aJ. ~ ... ~ aj for all j=0,1, •. ,K-1 

j=o 

K-1 l K-1 2 K-1 t-l 
and hence I: aj < _r. aj <••• < I: a. are elements of M_t with 

j=o J=O j=o J 

all their differences in Mt, contrary to the assumption that Mt 
m l l K-1 i 

is t-poor. Furthermore Bj= I.I B ., where Bj = f t aiX € B. f 
l=l J i=o J 

there is a {uniquely determined) b = ajeN~, such that ajE-ij(mod X)}, 

is a partition into disjoint sets. It ;_<z2<•••<Zt-l' elements of 
t i K-l 5 i 

Bj, have all their differences in B. and z = r aiX , then 
J s i

1 2 t-1 t-1 t-2 =O 1
ai~i~•••~i for all i<j and ft(m)<aj <aj <•••<aj; the 

difference aj - a~= Crs e Nt, {r<s), for a suitable Crs ~ ft(m). 
·1 -2 ..-t-1

Thus we have aj <a. <•••c;aj , elements of Nt, such that their 
- - J - 

differences a~-aj e Crs (mod X). Since a~, a~ and era are elements 



15 

•I 

of N2, and therefore are smaller than or equal to ft(m), we have 
-s -r ~ 
aj-aj =C rs • So, all the sets B.J are t-poor. 

Theorem 9 and its proof are generalizations of [lJ, where this 


theorem is proved for t=3. 


we shall maKe use of this theorem later. 




§ 4. SYMMETRY AND CYCLICITY 


Let us looK at Schur's proof of the theorem: 

Theorem 10 N ~ 3. N + 1m+1 m 

Proof Suppose {1,2, •.• ,N} is paritioned into sum-free and pair
. m 

wise disjoint sets A1 ,A2 , ..•Am. 

Then, putting Bj = {3alaeAjJ U {3a-lfaeAj} for j=l,2, •.. ,m 

and Bm+l = {3a-2fa =1,2, ••• ,Nm+l}, 

we obtain a partition (1,2, ••• ,3 Nm+l) = ~+f-Bj. The sets Bj are 
j=l 

obviously disjoint and sum-free (e.g., if 3a~Bj and 3b-l e Bj, 

then 3(a + b) - 1 e Bj implies a + b e Aj contrary to the sum

freeness of Aj). 

This construction has an interesting property: If the sets Aj 

fulfill the condition 

a e Aj :$ Nm+l - a e Aj 

then the sets B. fulfill the condition 
J 


a ~ Bj :$ (3Nm + 1) + 1 - a e Bj 


Proof B fulfills the condition, since 3N +2 - (3a-2) =3(N +2-a)-2 •m+1 m m 

For j =1,2, ••• ,m 3N + 2 - 3a =3 (N + 1 - a) - 1m m 


and 3N + 2 - (~-1) = 3(N +l-a)
m m 

A set Mc: (1,2, ••• ,n} fulfilling aeM =(n+l) - a e Mis called 

n-symmetric. 
16 
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p 
A partition (1,2, •• ,n} =UAK is called a symmetric :partition 

K•l 
it all the sets Ai are n-symmetric. 

Consider all n ~ r {~, •• ,KP) such that there is a symmetric partition of 

{l,2, ••• ,n} into disjoint sets A1,A2, ... ,AP where Ai is Ki-poor. 

Then there is a greatest such n and we denote it by sCK1,K2, •• ,KP). 

Clearly 

s{Ki,~···•tKP) ~ r {Ki,K2t•••tKP) 

· Since Schur's construction preserves symmetry {as we proved) we 

can start with N1 = 1 {which division is trivially symmetric) and 

obtain the lower bound 

(10. ) s (3) ~ 3P -l 
p 2 

From Zn!m's construction in r2o] one can easily see, that it also 

preserves symmetry and 

{ll.) 

An example of a non-symmetric division is that of Baumert, published 

in (11 for r 4C3) =44 

~: 13515171926284o4244 

A2 : 2 7 8 18 21 24 ~ 33 37 38 43 

A.3: 4 6 13 20 22 23 25 30 32 39 41 

A4: 9 10 ll 12 14 16 29 31 34 35 36 

Note, that only 2 pairs 12 and 33, and 15 and 30 are destroying 

the symmetry. 

It will be proved later that there is no symmetrical division of 

{l,2, ••• ,44} into sum-free sets, thus the same example.also provides 
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Tbe construction in the proof of theorem 9 does not preserve 

symmetry (1 e A while XK-1 e B ).1

Most of the Known Ramsey numbers have been reached by very regular 

paritions of the complete graph; Kalbfleisch calls them 

"regular colorings", see (12J, [14J. Actually, these partitions are 

strongly connected with the symmetrical partitions of natural numbers. 

A graph G with n vertices is called n-cyclic if there 

is an (n-1)-symmetric set S such that if we identify the vertices 

of G with the natural numbers modulo n, then (r,s) is an edge 

in G if and only if fr-sf e S 

A cyclic graph (defined also by Graever and YacKel in (lOJ is then 

completely described by the couple ( n,M) where n is a natural number 

and M is an (n-1)-symmetric set of natural numbers. 

A cyclic partition of K is a partition into n-cyclic subgraphs.
n 

The cyclic Ramsey number C(11_,K2 , ••• ,Kp) is the greatest number n 

such that K has a cyclic partition into edge-disjoint subgraphs
n 

G1 ,G2, ••• ,Gp such that no a1 contains a Ki-clique. 


RemarK C(~,K2 , ..• ,Kp) is identical with Kalbfleisch's L(K1 ,K2, ••• ,Kp) 


(see (12], (14J). 


The connection of symmetry and cyclicity may be seen from the follow

ing theorem: 
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Proof We only have to prove the first equality. 


To prove s(K ,K2 , •• ,K) ~ C(K ,K , •• ,K )-1 we can repeat the proof
1 p 1 2 p p 

of theorem 7 and note that if fl,2, •• ,sJ =U A. is a symmetrical 
j=l J 

partition, then the subgraphs G1,G2, ••• ,Gp are (s + 1)-cyclic. 

Also C(~,~, ••• ,KP)-1 $ s(K1 ,K2 , ••• ,Kp)' since having a cyclic 

partition of the complete graph on the vertices 0,1,2, ..• ,C-l into 

edge-disjoint subgraphs G ,G2 , •.• ,G where no Gi contains a Ki-clique,1 p p 
we may define, the partition {1,2, ..• ,C-l} = U A. by putting ne:A1 if 

' . l l.
I l.= 

and only if (O,n) is an edge in G.• This is a symmetrical partition
l. 

into disjoint sets and each Ai is Ki-poor, for if ~,n2 , ••• ,nK.-l 
l. 

are distinct numbers from A. such that all their differences are in . l. 

A1 , then Gi contains the Ki-clique on the vertices O,n1 ,n2 , ..• ,nKi-i· 

Properties of a-numbers and cyclic Ramsey numbers 

(sl) s(K1 ,K2 , •• ,Kp) is invariant under permutation of the Ki's 

(s2) s(2,K2, •• ,Kp) =s(K2, •• ,Kp) 

(s3) s(K) =!t-2 

There does not hold any property similar to (r4). A counter-example 


follows from the next proposition: 


Proposition 2 There is no (3K + 2)-symmetric sum-free set. 


Proof (K+l) + (K+l) = (3K+2) + l - (K+l) 

Thus s (3) +3.K + 2. p 

From proposition 2 it follows also that s4C3)=N4 is either 40 or 42 or 43. 
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From theorem 11: 

(Cl) C(K1, ••. ,Kp) is invariant under permutation of the Ki's 

(02) C(2,K2····•Kp) =C(K2····1Kp) 

(C3) C(K) =K - 1 

and no property of type (R4) holds. 

From theorems 6 and 11, C (3) ~ [m!eJ + 1, which is a weaKer 
p 

form of (4. ). Kalbfleisch in (12J and (141 determined some values 

of C(K1, ••. ,KP) = s(K1 , •.. ,KP) + 1 

~ 3 4 5 6 7 8 9 10 11 12 13 14 

3 

4 

5 

6 

5 

8 

13 

16 

8 

17 

24 

33 

13 16 

24 33 

~ ~ 
% ~~ 95 181 

21 26 35 38 45 '+8 ~57 ~62 

Table of C(K, i ) 

Moreover, C(3,3,3)-= 14 since s(3,3,3) ~ r (3,3,3) =13, 

and Kalbfleisch (14] gives C(3,3,4) = 29, C(4, 1+, 1+) ~ 79 

C4(3) ~ 41, c
5

(3) ~ 101, c6(3) ~ 277. 

We Know already that c4C3) = 41, 43 or 44; other such results will 

be i.mproved in Corollaries 1,2. 
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p 
Let {1,2, ••• ,s} = U ~i be a symmetrical partition, Ai K1-poor, 

i=2 
pairwise disjoint. 

Then let d = 2.s + 1 and define the sets B1 ,B2 , ••• ,Bp by 

Kt-2 

Bi = U (Ai + n.d) for i = 2,3, ••• ,p 


n=o 


Ki-3 
and Bl = U (A + n.d), where A = (s + l,s + 2, ••• ,2s + l}. 

n=o 

p 
Since Au U A. ={l,2, •.• ,2s + 1} we obtain a partition of the 

i=2 J. 

set {l,2, ••• ,(~-1).s + (~-2).(s + l)} into p disjoint sets 

Bl,B2' •.•,BP. 


Tatte be Bi (i = 2,3, •.• ,p), then b =a+ n.d for aeA1,o~~K1-2 and 


(K1-l). s+(K1-2)(s+l)+l-(a+n. d)=(K -2-n). s+(K1-2-n)(s+l)+(s+l)-a=
1

=(K1-2-n).d + (s + 1) - a e B1, 

since A is s-symmetric. Similarly beB1, b:::a+n.d, aeA, 0~~1-3, implies1 

(Ki-l).s+(~-2)(s+l)+l-(a+n.d)=(Kp-3-n).d+3s+2-a e B1, since A is 

(3s + 1)-symmetric. 

Thus we have a symmetric partition. 

The sets Bi are Ki-poor (i = 2,3, ••• ,p) by the corollary of theorem 8, 

since d > 2.s-1. 

Also the set B1 is Ki-poor, since for every CK1-l)-tuple of distinct 

elements of B there is a sequence A + n .d containing two of them,1 0 

say a and b (there are only (K1-2) such sequences) and fa-bf1:5. 

Thus fa-bf 4 Br 
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Remarx Obviously if we do not care about symmetry we may repeat 

the above proof and obtain 

TI (21c.-3) 
j<i J 

Proof 	 s(~~· •• ,Kp);:t(Kl-l).s(K2' •• ,Kp)+(~-2).[s(K2' •. ,Kp)+11 = 

=(21ti-3).s(K2, •• ,Kp)+(Ki-2)~ 

~c2~-3)(2K2-3).s(K3, •• ,Kp)+(~-3)(K2-2)+(~-2)~•••~ 


~(~-3)(2K2-3) ••• (2.Kp-l-3)(Kp-2) + 


+(2~-3)(2k2-3) ••• (2Kp-z-3)(Kp-l-2)+•••+(~-3)(K2-2)+(~-2). 


In the last step we have used property (s3). 

Considering property (sl) one may try to improve the above theorem 

by ordering the Ki's in such a way that the expression on the right 

would be maximal. However, this does not give any improvement since 

the following is true. 

p 
Theorem 14 t (Ki-2).TI (2Kj-3) is invariant under permutation of 

i=l j<i 

Proof 	 Since {Ki-2) is trivially invariant we can continue by 

induction on p. 

If the expression is invariant for p-1, then it is clear from 
p 	 p-1 
~ Ck1-2>. n C2Kj-3>= r. CK1-2>. n C2.Kj-3)+(K -2>. n (2Kj-3) 

i=l j<i 1=1 j<.i p j<P 

http:Ki-2).TI
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that it suffices to consider the transpositions Kp~t• 

Since l + 2. E (K.-2). n (2Kj-3) = l + 2(Kt+l-2) + 
t<i<p 1 t<j<i 

- n (2Kj-3)J = rr (2Kj-3), the difference of our expression 
t<j<p-1 t<j<p 

before and after the transposition Kp~t is equal to 

p-l 
(Kt-2>. rr (2K.-3)+(2Kt-3>. r. CK1-2>. rr • n +(K -2)(2Kt-3). n • n 

j<t J i=t+l j<t t<j<i p j<t t<j<P 

p-l 
-(K -2). n +(2K -3). r. (K.-2). rr • n +(Kt-2)(2K -3). ~ • n = 

p j<t p i=t+l 1 j<t t<j<i p j<t t<j<p 

=(Kt-K ). n (21<.-3).[1+2. ~ (K -2). n {2K.-3)- rr (2K -3)] = 0 
p j<t J t<i.<p i t<j<i J t<j<p j 

Corollary l of theorem 13: 

Corollary 2 R(K,t)-1 ~ r(K,t) ~ C(K,t)-l=s(K,t) ~ 2Ke-3(K+1) + 4 

Corollarylis an improvement of ZnAm's result R (K)-l~K~1p K-
2(KP-l)(see [7J). 

We can obtain some better estimates using theorem 12 on some Known 

values of r and s (or their lower estimates): 
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So using Baumert's result r 4C3) = 44 and the remarK after theorem 

12 we get 

p-4 p-43Estimate l: R (3) ~ r (3) + 1 ~ 3 .44 + -l + 1 for p~
p p 2

Using s(4,4)=16 from r11J,s(5,5)~36 from (14] and s(6,6)2lOO from [l4J: 
p-2

Estimate 2: C (4)=s (4)+l~P-2.16 + 5 · 1 + 1 ,p~
p p 2

Estimate 3: C (5)=s (5)+1~7P-2.36 + 7
p-2 1 + 1 ,p~2

p p 2

9
Estimate 4: 0 (6)=s (6)+1~9P-2.100 + 
p-2 

2- 1 + l ,p~.
p p 

Estimates l-4 improve the following presently Known results: 

R4(3) ~ 41 (see [191, (26J) to R4(3) 2 45 

c C3) 2 101 and c6C3) ~ 277 from (26] to o C3) 2 122 and5 5
C6(3) ~ 365, (R5C3) Oii: 136 and R6(3) 2 4ol), 

o C4) 2 79 (see (26J) to c C4) ~ 83,
3 3

~(5) 2 199 (see (24J) to c3C5) 2 256 


Moreover they give c4C4) 2 413, c4(5) 2 1789, c (6) 2 905, etc.
3

Finally let us improve the asympotical estimates. From (20J 

(estimate (7.) here), Corollary land estimates 1-4 it follows that 

R p(K) > (2K-3)P.Const (from r20J only R p(K) >KP.Const). Thus 

our function gt(n) defined in §3 fulfills 

(13.) gt(n) <log n 

and ft(K.m + log (K.ft(m))) > (2.ft(m) + l)k - 1 

by theorem 9. 

http:5)+1~7P-2.36
http:4)+l~P-2.16
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Kz+-C.log K 
For t = 3 and m = 4 this gives rK(3) > 89 , stated in 

(lJ (see (8.) above), and also for t =4,5,6 and m =2 the 

following estimates: 

K
2-C.log K 

Estimate 5 R (4) > r (4) > 33 for a constant C and
K K 


sufficiently large K. 


K2-C.log K 
F.stimate 6 \(5) > rK(5) > 73 for a constant C and 

sufficiently large K • 

K2-C.log K 
1'!stimate 7 R (6) > r (6) > 201 for a constant C and 

- K K 


sufficiently large K • 


K ...K KThese are obviously better than C.5 , C.~ , C.9 , respectively. 

Estimates 1-7 can easily be improved if we find exact values, or 

good estimates of rK(n) for small K. 

McMASTER UNIVE~~ITY lll:iHAHY 
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