
Il1PLEMENTA'l'ION OF A

CELLULAR COMPUTING HEHORY ARRAY

IMPLENEN11i1.'rION OF A

CELLULAR CONPU'l'ING MEMORY ARRAY

BY

FRANCIS K.W. HO, B.ENG

A Thesis submitted to the School of

Graduute Studies in partial fulfillment

of the requirements for the Degree of

MASTER OF ENGINEERING

MCMASTER UNIVERSITY

February 1971

MASTER OF ENGINEERING (1971} McMASTER UNIVERSITY
(Electrical Eng1n8ering) Hamilton. Ontario.

·rrTLE: H1PLE:r1EN'I1ATION OF A CELLULAR
COMPU'rING MEMORY ARRAY

AUTHOR: FRANCIS K.W. HO, B. ENG. (McMaster University)

SUPERVISOH: Dr. E, Della Torre

NUMBER OF PAGES: x, 98.

SCOPE AND CONTEHTS:

The theory of Cellular Logic in Memory Arrays

is discussed. Such an Array has been implemented and

its system design is described,

Supporting systems such as control and computer

programs to operate the Array have been developed and

are described.

ii

ABSTRACT

A Cellular Computing Memory Array consisting of

twenty cells of three• words plus logic per cell has

been constructed and interfaced to a digital computer.

Both arithmetic and logic operations can be performed

between words of a cell and those of adjacent cells,

the results of which may be stored in any of the three

words of the cell. The cells are organized in a two

di!Ilensional array so that each cell can communicate

with the four nearest neighbours. In addition to the

ordinary comraunication between cells to perform oper

ations on data in adjacent cells, data can be transf

erred in the memory plane on a mass basis.

iii

ACKNOWLEDGEMENTS

The author wishes to thank Dr. E. Della Torre

for his guidanc_e and encouragement in the preparation

of this thesis.

Thanks are also due, to v. Diciccio and

J. Harris Jr. , who as summer assistants helped in

constructing the system.

The f 1nanc1al assistant provided by the

Department of Electrical Engineering is gratefully

acknowledged.

This work ls dedicated to my parents anu. to

D. Duggan, a friend.

TABLE OF 	 CONTENTS

.CHAPTER 	 1

INTRODUCTION

General Theory

Cell Complexity

Array Geometry

Neighbours

Control

General

Summary

CHAPTER 	 2

THE COMPUTING MEMORY

Cell Organization

Realized Circuit

Memories

Data Selectors

Arithmetic Unit

Data Latches

Inhibit Logic

Write Logic

Convergence Logic

Data Read Out

Summary

1

3

4

5

8

9

10

10

CELL 	 12

15

18

21

21

22

22

23

23

24

v

-FAGE

CHAPTER 	 3

Address Cycle JO

Data Latch Bulses J2

CONTROL UNIT: Clocking Logic 27

Clocking Logic Functions 29

Pulse Train .'.32

Inhibit Latch Pulses 32

Reset and Preset Pulses 32

Convergence ,Clock Pulses 36

Multiplication Pulses 37

Write Pulses 37

Carry Pulses 40

Realized Circuit 40

Pulse Train Logic 43

Summary 48

CHAPTER 4

CONTROL UNIT1 Interface Design and

Instruction Registers 49

Interface 51

Instruction Registers 51

Data Registers 53

ADD/SHIFT cycle Logic 55

Multiplication by a Constant 58

Multiplexing 58

Summary 60

vi

PAGE

CHAPTgH_2

OPERATE PHOGHAMS 62

Storage Allocations 7lt

Basic Cell Control Line Logic 63

Instruction Set 65

Operate programs 69

Suu:r::iary 77

CHAPT.fill._.£

CONCLUSION '18

APPENDIX 82

REPERENCES 96

vii

- -
LIS11 OF FIGURES

1.1 	 SOLUTION OF A LAPLACIAN FIELD PROBLEM
USING A 10 X l.0 ARRAY OF CELLS

2.1 	 GENERAL ORGANIZATION OF CELLS

2. 2 	 COMPUTING J\1El'10HY CELL BLOCK DIAGRAM

2.J 	 CELL SCHEMATIC

2 .4 ARRAY ORGAiJIZi1.TION OF CELLS SHOWING
CO.MMUNICA'rION BE'11 WEEN CELLS

J.1 	 GENEP.AL ORGANIZA'rION SHOWING
CONl'itJNICATION WI'l'H ARBI'I1ARY CELL

3 .2 	 Bl~src OPERATION ON ONE BI'I'

3. 3 	 CELL CIRCUPI'HY

J .4 	 CON'rHOL BOARD PULSE TRAINS

3.5 	 CONTROL SCHEMATIC

4.1 	 LAYOUT OF INSTRUCTION
AND DATA REGISTERS

4.2 	 DATA IN REGISTER

4.3 	 DATA OUT B.EGISTER

BEGIS'l'EBS

4.4 	 ADD/SHIFT LOGIC AND COMFL~MENT

4.5 	 CELL SELECTION FOR DIRECTING WRITE
PULSES AND FOR DATA OUTPUT

Y1.i1

6

7

16

1 '?

20

25

28

31

33

3L~

41

52

54

56

57

59

http:GENEP.AL

PAGE

5.1 n11srrRUCTION RE:GIS'r£m LAYOUT 66

5.2 TYPICAL CELL FUNCTION Rou·rINE 70

5.3 FLOW CHART FOB WRI'rING DA1'A n:no THE ARHAY 72

5.4 FLOW CHART 1'~0R READING DATA FROM THE ARRAY 73

A.1 WIRING SCHEMA'I'IC OF CELL 1 91

A.2 WIRING SCHEMATIC OF CELL 2 92

A.3 WIRING SCHEMATIC OF CELL 3 93

A.4 WIRING SCHEMATIC OF CELL 4 94

A95 WIRING SCHEHl:..'rI C OF CON'I'ROL BOARD 95

2.1 CELL FUNCTIONS 19

.3 .1 WRITE PULSES SELBC11 44

3.2 MULTIPLICATION PULSES 46

3.3 CONVERGENCE PULSES S~LECT 47

5.1 CONTROL LINE LOGIC FOH BASIC CELL FUNCTIO.NS 64

5. 2 BASIC INSTRUc·rro.N SET 67

5~ J 81.'0HAGE ALLOCATIONS 75

A.1 LAYOUT OF 4 CELLS 84

A.2 LAYOUT OF CONTROL BOARD 85

A. J LAYOUT OF INTEHFACE BOARD 86

A.4 LIST OF IOPs 87

A.5 LIST OF OPERATE PROGRAMS 88

A.6 LIST OF ABBREVIATIONS 90

CHAPTER 1

INTRODUCTION

S1nce the birth of the electronic computer some twenty

five years ago, and particularly in the last ten years, great

advancements have been made particularly in the speed of cal

culations and in the techniques of using computers. Computer

languages and software have been developed greatly, allowing

easy use of complex computer systems, and computation speeds

have increased tremendously due to the development of solid

state technology. One area, however, which has resisted any

significant change, is the basic organization of the computer.

The conventional. organization where a large memory is associated

with a sophisticated central processor is unquestionably, very

useful and will remain so for a long time to come.

There are some types of problems, however, where despite

the great speeds of present computers, the sequential pro

cesslng of data is inappropriate and dread.fully slow. Such

problems usually involve large masses of data on which identical

operations are to be performed. For such problems, the draw

back 1s due, not just to having to repeat a large numoer of

c.omputa.tions but also to the cumulative transfer times of

data from memory to processor and then, of the results or

2

data back to memory for storage. Improvements can be madet

of course by producing more efficient software or by using

high speed hardware. But such steps would not be really

significant and will be limited by the state of the technology.

The accress time of dat& from memory, for example, could be

reduced by replacing the popular ferrite core memories by

the faster solid state semiconductor memories.

The solution, not surprisingly lies with reorganizing

the computer or J.iB.rt of the computer to operate 111 a parallel

fashion. The concept is quite simple; increase the number

of arithmetic processors, each working with e. different section

of memory and the overall computation time is shorterned accor

dingly. The full power of this concept becomes apps.rent when

we extend it to the limit, associating one processor with one

memory word or more practically with a unique set of memory

words. This arrangement makes possible the concept of operating

on data in situ, without having first to transfer data from

memory to processor. The time saving here is twofold, in

eliminatlng the need to repeat sequences of operations and in

not having to move data in and out of memory.

Such an organization was proposed as early as 1958 by

Unger (1) when he se.w that problems involving blocks of data

which are locally correlated eould be handled with much greater

ef'ficiency by operating on the data in a parallel fashion without

having to sequenti,s.lly scan neighbouring data for correlatecl

information. Irr 1962 Slotnick (2), based on Unger•s work,

proposed Solomon. Solomon was to be a highly parallel com
. .,

puter organized in a rectangular array wher~ each cell of the

array had arithmetic capabilities and was capable of communicating

with its four nearest neighbours. These, together with pro

posals made by Lee (4), Paull (5) and Holland (6) formed the

basis which led to a steady development ln the concept of cells

with arithmetic capabilities, and organized in arrays, also

known as CLIM arrays (Cellular Logic in Memory Arrays)~
I

The proposals of Lee and Paull have been commercially

realized and are easily available now, but only a few ex

perimental versions of the more sophisticated Solomon type

systems have been realized. Some of these include the ILLIAC

IV (9), the Berkeley Array Processor {10) and a cellular APL

Computer (14). These were designed with specific areas of

application in mind, indicating the possible wide areas of

application of CLIM arrays.· In particular, the Berkeley:-, '

Processor was designed to perform the operations of corre

lation, convoluti.on, matrix multiplication and a variation

of the Fast Fourier Transform; the APL (A Programming Language')

computer was designed to perform efficient execution of APL

programs and the ILLIAC IV tr8.s designed as a more general

purpose ma.chine to process data in bulk.

GENERAL THEORY:
.....IC •

We see then that the concept of parallel processing

http:convoluti.on

4

shows promise in the critical areas of data processing which

requires identical operations performed on large sets of

data, and typical of this area are problems in matrix operations,

scaling and partial differential equations, which even the

fastest of conventional_computers are·unable to solve in a

reasonable amount of time. What makes the concept of parallel

processing even more exciting is its potential to operate 1~

real time, on the time averaging functions such as correlation,

autocorrelation, convolution, Fast Fourier Tre.ns1.forms and re

cursive filtering. These characteristics makes the concept of

parallel processing very attractive in a vast variety of ap

plications such as in communications, optimization, control

requiring fast response such as in guidance, trajectory cal

culations and even weather forecasting.

For the various functions, of course, different require

ments are put ori the way in which the processing array is

orga.nized and also on the capabilities that each cell of the

array must have. We may then characterize CLIM cells and

arrays under the following headings.

CELL COMPLEXITY

In general, depending on the nature of the problem, the

complexity of the cell may vary from the simplest logic function

5

capability to a co~plete system capable of elaborate arith

metic and logic operations The< ty.pe or ~e11. for example,s

required to solve partial differential equations as proposed

by Slotnick is considered fairly complex. Each cell has

two storage words and possess fixed point arithmetic and

some logic abilities. The iteration procedure for solving

a two dimensional Laplace equation with cartesian coordinates

involves relaxing the value at each point in a bounded re

gion, to the average value of its four neighbours, to the
•

north, the south, the east and west. This is illustrated

in Fig. 1.1. An example of a simple cell is the .. assoeiat1ve

memory proposed by Lee (4), where associated with ee.ch

memory word is a logic unit which allows for fast retrieval

of data from that word by associating an address with part

of that memory word.

ARRAY GEOMETRY

Several geometric organizations of cells are possi

ble, the simplest of which ls the linear arrayo This or

ganization, shown in Fig. 1.2, ls being used in the asso

c1atlve memories of Lee and Paull and in the Berkeley Array

processor. The linear array should be suitable for time

averaging functions and other applications where one vari

able dimension is involved. Another geometry is the rectan

gular array which is suitable to operate on matrices and on

• • • • • •

• • • • • • • •

• • • • •

• • • • •

• • • • • •

• • • • •

6

-
 ---·--~--.,:;.-----#----·----

• • • • • • Yn •

Vw v YeC>

• • .. • • .. Ys ..

...

..

---\. -----
\ / "'/

\ /

boundary parameters

Assuming that the values of· the
boundaries are known, the numerical
solution to the Laplaclan Field
problem can be calculated at each
matrlx point (re presenting a cell)
by successive relaxation.

An e.rbitary point 'V' is relaxed by

V = 1/4 (Vn + V8 + Ve + Vw)

:

FIGUHE 1.-1. 	 SOLUTION OF A LA:PLACIAN FIELD
PROBLEM USING A lOX10 ARRAY
OF CELLS.

l

l

7

~

a)

I-

J
i-

I-

t-

b)

......

C)

1-- 1-- t-h

LINEAR ARRAY OF CELLS

,__ ,__ t- I--:

] ll l
,__ I- I-t-

] Il]
t- t- t- t-

l l l J
I- I-r !-

RECTANGULAR ARRAY

'I. I
I\•
I

I ' ,

N-DIMENSIONAL ARRAY ·

I-- t--i

t-- t-

l l l
i- i-

l l l
r- r-

l l
r- t-

l

/

I
I ,- ,
1 ,,

r-'Ji
I I

•--::--J ,...
/

8

partial differential equations. Ann-dimensional geometry

is· also possible where cells may be arb1'trarl.1;y connected. _

This type of structure could show great promise in a multi

variable problem where, for example, computations can be

made while all dimensions are varied simultaneously, to

converge to an optimum. Cells for such a structure would

probably be highly complex.

The above arrays represent very basic structures, and

variations of these are possible. The rectangular array

can be extended to a cubic structure, and branches or sub

arrays can be added on to the linear array.

NEIGHBOURS

An important characteristic ofcparallel processing arrays

is the 'neighbour' relationship between cells. The term

•neighbour' is rather loosely defined, but generally includes

those cells with which communication is possible for the

exchange of control_ or data information. In other words,

mere geometric proximity does not make two cells neighb~l.l.rs.

In the rectangular array for example, a cell can have four

neighbours, to the north, south, east and west also defined

as above, below, left and right, as in the array used to

solve Laplace equations. However, if the appl1.cation re

quires it, the north-east, north-west, south-east and south

http:neighb~l.l.rs

9

west cells could also be included in the neighbourhood.

An interesting proposal, by J. Holland (6) is an example

of a structure in which the neighbourhood is redefinable.

Here, by program control, new paths are built by making

connections vla intervening cells. This would give us;

a versatile array, but would involve highly complex cells.

This concept_of being able to communicate with neigh

bour cells is a prime contribution to the power of array

processors especially when the data sets are locally or

spatially correlated.

CONI'ROL

Another characteristic of parallel processing arrays

is the de~ree to which control of the cell functions is- . -·

distributed between a central controller and a localized

in cell controller. The simpler and more common is where

control is highly centralized. In this type of system,

all cells perform the same operations as determined com

pletely by the central controller. Included in this group

are the processors that handle matrices, partial differen

tial equations and time averaging functions mentioned earlier.

At most, the above type of cells may possess the ability to

ignore control instructions to limit the area of operation.

The proposals of Unger, Lee and Slotnick are all of type~

The Holland proposal is an example where control is highly

10

localized. Here, the cell operation executed is determined

mainly by control information contained locally in the

cell. This gives it the advantage that independent com

putations may be executed simultaneously, and at the same

time enjoy the other benefits of array organization.

GENERAL

One obvious characteristic that a parallel processor
I

should have, for versatility and for ease in implementation,

1s that all cells should be identical. They should vary in

function only in what control information is put in them or

is· presented to them. This then suggests that cells should

be designed with general purpose applications in mind, and

may, for some applications be more complex than required.

It is with this general purpose application in mind

that this thesis project was pursued. The cell to be des
. '

cribed, referred to as
'

a
.~

Computing Memory Cell possess~s
. ' ~i. '

full arithmetic and logic capabilities as well as a degree

of local control.

SUMMARY

I.

The aim of this project is to implement a workable

system based on the parallel processing characteristics of

11

CLIM arrays. A rectangular array was built and interfaced

to operate under the control of a PDP8,· computer. A set

of operate programs was developed to control the functions
-·

of the array. Since the control of the array was quite

elaborate, a special purpose control unit was implemented

to perform as much of the controlling as possible. The

actual cell was designed around a set of arithmetic and

logic parameters, this set being as extensive as was practical,

and had to at least enable the array to be used in the solution

Of,Lap~ace~s equation.

In perspective, the system developed has a moderately

complex cell which can perform both arithmetic and logic

operations between words of the cell. Control is essentially

centralized, but has more local autonomy, for example, than

the cell proposed by Slotnick. The geometry is a rectangular

array with a fixed neighbourhood where the neighbours consists
'

of the cells to the north, south, east and west.

CHAF'l'EB 2

THE COMPUTING MENORY Cfild!

The work on the concept of Cellular Logic In Memory

Arrays that ws.s done by Le.wre:ice 05) in 1969, . consisted

of the design of s. comp:..tting memory cell, four of which

were implemented in order to investigate the workings and

limi tat1ons of such cells These cells consisting: of twoo

memory words associated with two processors were organized

in a linear array. Ea9-h cell was capable of performing

fixed point arithmetic operations between the two words un

der suitable control. The arithmetic functions included

addition, subtractlon, diYision by 2n (n=l,2,··-10) and

multiplication. This project was developed to a state

whereby the cell functions could be performed, largely by

manual setting of the cell control lines, and initiating

the operation cycle, also manually.

In a.ttemptlng.to improve the cell design and to deve

lop a workable array, it was necessary to investigate the

basic questions of what a cell must be capable of doing

and what structure and intercorrlillunications to organize the

cells.

- 12

http:a.ttemptlng.to

13

Obviously, the basic set of arithmetic operations used

by Lawrence, also proposed by Slotnick and. others, was 11eces

sary. In addi ti cm, a set of Boolean operations would be

necessary if the::.de.si.gn was to. be' useg.; as a general purpose

device. It was decided to improve intercell communication by

enabling operations to be performed between data in neigh

bouring cells without having to transfer the data~ It was

also de«~1ded to add a 'convergence check' capa.b111 ty. This

would be used for terminating iterative operations when there

are no longer significant changes in data.

Each cell needs a mini.mum of one arithmetic and logic

processor and at least two memory words to be workable, but

the two word per cell organization of Lawrence proved to be

awkward, particularly when multiplication had to be per

formed and when intercell data transfers were to be ma.de.

Adding a third word would be a great improvement, and since

there was no apparant need for a fourth word, a three word

cell was decided upon. These then, were the basic parameters

around which the computing memory cell was designed.

The cells were organized in a rectangular array so that

it would be suitable for solving two dimensional problems.

However, the array could be converted to a linear arrsy quite

simply. Since control was to be highly centralizedp an ela

borate control unit was built, which was capable of con

http:the::.de.si.gn

14

trolling the execution of all arithmetic, logic and in

put - output operations automatically. All this was in

terfaced ~-to. a'.. PDP.8' .. computer which served as the main

controller, storing all data and iteration programs.

The complete list of the basic characteristics of the

realized system is as followsa

1) Each cell can perform the following functions be

tween words of the cell.

a) addition

b) substraction

c) multi plication

d) division by 2n

e) logical AND

f) logical OR

g) logical EXCLUSIVE OR • ..

h) complementing

2) 	Each cell has an 'inhibit' feature which enables the

cell to ignore contro1 instructions

3) 	Each cell has a 'convergence check' feature which

enables the cell to test for s1gnlf1cant changes in

computed values.

4) The cells are organized in a. rectangular array.

5) The neighbours of a cell, except for the boundary

cells, are the cells to the north, south, east and

15

west.

6) Control of the array is highly centralized.

7) The control unit generates all the necessary logic

states to execute the cell functions.

8) 	The realized system is interfaced to a PDP8L com

puter which serves as the overall system control.

The details of the design follows.

CELL ORGANIZATION

As shown in Figure 2.1, each cell resembles a small

computer, containing its own memory, arithmetic processing

unit and input - output circuits. These cells receive in

structions from a central controller simultaneously, also

shown in Figure 2.1. Each cell has three memory words (m1 ,

m2 , and m), two of which are intended for operand and
3

operator and the third for the results of cell computatlons.

Each word is a 16 bit serially addressed memory. The processor

consists basically of gating circuits and a full adder, also

designed to operate sequentially. At the present state of

technology, parallel arithmetic would be prohibitive both

in 	cost and labour. Figure 2~2 illustrates the logical flow

of 	data 1n a cell. There are two selector circuits which

drive the input of the processor unit (P.u.). Selector

circuit 1 chooses either the contents of word m of this1
cell or of any neighbour cell. Selector circuit 2 chooses

16

MEMORY

3 WORDS
ml
m2
m3

-- --
ARITHMETIC
AND LOGIC
PROCESSOR
WITH

INPUT/OUTPUT
FUNCTIONS

A CELL WI~H MEMORY AND LOGIC

1 2 3 n

I I I
I I I

CENTRAL r I I
l l l

CONTROL

CELLS UNDER A CENTRAL CONTROLLER

FIGURE 2-1. GENERAL ORGANIZATION OF CELLS.

-L

17

DATA FROM DATA TO

NEIGHBOUR CELL NEIGHBOUR CELL

~

----....,

DATA
select

~ "' """'- 1 ProcessingMEMORY

(3 words) ·UNIT
ml DATA ..,.

"'-·m2
selectm.3

2
I ,...., - I . I . "

,1
I~~ 'INHIBIT

,.; -LOGIC

TO- Convg. ... CENTRALLOGIC CONTROL

FIGURE 2 .2 COMPUTING NEt<lORY CELL:

BLOCK DIAGRAM

18

one of the three words in this cell. The processor performs

the arithmetic and logic operations listed in Table 2.1

subject to the state of the inhibit logic, which effectively

either accepts or ignores instructions from the central

controller depending on its setting. The output of the

processor can be fed to any combination of the three words

of the cell for storage •. Th1s data flow organization allows

us to perform operations between data in the cell or between

data of this, and another cell or an external source, the
'

results of which can be stored in the cell.

The 'convergence• logic is designed to compare previous

and present values of data for a prescribed number of bits.

If, for:·· example• ; -vhe value from the previous computation

1s stored in m3 and the P.U. is computing the present value,

then the convergence circuit will produce an output when

these data differ. The comparison is performed at the same

time while the P.U. output is being stored in word m • If3
any enabled 'convergence' circuit produces an output, this

1s detected in the central control and can be used to recycle

an iteration.

REALIZED CIRCUIT

Figure 2-3 shows the overall circuit for one cell.

Not sho~m, are the eight memory address lines and driving

buffers. In the model constructed, each cell requires

17 I.e. chips to implement {this includes the address llne

buffers) and requires about 1o9 watts to drive. These two

19 .

Arithmetic Functions

ml + ml

ml+ m2

_ml+ m3

·ml - ml

ml - m2

ml - m3

Results of these operations can be stored
in m or m or Illr1 2

'A' is set external to the array, and
operates on the whole data plane.

n = 0 , 1, 2 , • • . • , 11
This operation also operates on the whole
data' plane.

Shift data 1 bit leftJ Operates on rn only.1
Shift data 1 bit right

Log1c·Operat1ons

m··
1

• m
3

ml+~

ml+ m3 The results can be stored in m1 , m2 or m3 •

ml+ m2 + m3

_ml @ m2

. ml (±) m3

Complement (m1, m2 , m3)

Note: 	 All the above ftmctions can be inhibited in any selection of
cells by setting control bits O, 1 or 2.

Co!llParison

m3Ct -	 1) vs m
1

(t) This means that current data in m3 can be
compared with results of computations being

m3 Ct - 1) 'VS m2(t) performed.
If data are equal the output of the comparison

m)Ct - l) vs m
3
(t) is 'O', if not, a sequence of l's.

!ABL~ 2.1 CELL FUNCTIONS

I
'J'

m2

a·

WRITE
ENABLE
LOGIC

o· aJ
5v

'1'
5

WRITE

LOGIC

CONVG CONVG

1.~1} SELECT
-m WRITE3

MEMORIES

ln5v
I m1 II

fl)
~
0
8
u
...::!
rx:i~ a'° •
rx:i
fl)

ril z
H
...::!

m,a} DATA A~~Pi'sm1 SELECT LAfCH EN- I EN- I
m2 READ MULT CLOCK ABLE COMP.IABLE ~}a.ct

PRESET
1

1A Cn i-----r---,

l: Cn·i

~lear
._____Ca.rry

clock

I Select

UNIT
ARITHMETIC

.-------=Ext. DATA
Input

DATA
lSE~CTOR

>

04

b

.

m3 CLOCK

element of , .
~data sel. 1

Os CONVG,

I

INHIBIT
LOGIC

INHIBIT ENABLE RESET DATA
CLOCK INHIBIT INHIBIT OUTPUT

LATCH

Ti= 8

DATA
OUT
LOGIC

DATA
SELECT

PULSE INPUTS CLOCK PULSES

I\)

FIGURE 2.J CELL SCHEMATIC 0

21

factors fjlone liml t the magnltude of the array to a s:rnall

but useful 20 cells. Such a cell would be an attractive

organization for realization with L.s.r .. · Should this be

done, ~ cell with 50 or so input-output pins and perhaps

only a few I.e. chips would result.

MEMORIES

The memories used in this design have the disadvantage

of requiring se:pernte lnputs for wr'lt.lng logic '1' and

logic '0'. This means that the line selectors (see Fig. 2-3)

which consists of 2-input AND gates, have to be duplicated,

three gates for writing 8 1 7s' and three for writing 'O's'.

However, only three 'select write' lines are required.

DATA SELEC'rOHS

DATA SELECTOR1 selects da.ta either from m1 (B) or from

any of five external sources. In our present array organiz

ation, the four external sources are the il!lmediate neighbours

of the cell and the fifth is the DATA INPU'l'. Excluded from

this selector are the data from m end m • Their inclusion2 3
appears redundant and would also increase the complexity

of the circuit.

DATA SELEc·ro.B.2 selects data. from any combination of

m1 , m2 , or m for processl.ng O!' fo:c operation with data3
from DATA SELECTOR1 •

http:processl.ng

22

ARITHMETIC UNIT

The arithmetic unit consists of a one bit binary

full adder and a J.K. flip-flop for delaying the 'carry

out•. Besides 'addition', the AU can be ma.de to perform

the EXCLUSIVE OR function by merely disabling the •carry'

flip flop and taking the output from 2: • The logical AND

function can be performed, also be disabling the 'carry'

flip-flop but taking the •output from '<I0 ' the CARRY-OUT

output. Note that these two follow from the fact that in

a binary full adder, the carry-out is the AND operation of

the two data inputs and the ! output is merely the EXCLUSIVE

OR operation. Also, by presetting the carry flip-flop, ie.

by setting the CARRY IN to '1', data can be incremented by

one.

DATA LATCHES

The rest of the circuit can be considered the Logic

Unit. The D-type latches are used to hold information for

a pa.rt of, or a whole 16 bit address cycle. D and n3 are1

data latches which hold data intended for the AU, for only

1 bit (1/16 th) of the cycle. n2 is used for multiplication

and holds data from m2 only, for a full 16 bit cycle. The

address cycle 1s treated 1n greater detail in chapter 3.

,INHIBIT LOGIC

o4 and its associated logic gates form the 'INHIBIT

OPERATION' logic. This circuit i1S designed to interrogate

bits o, 1 and 2, of any of the words m1 , m or m selected2 3
for operation. If a logic '1' is detected 1n either bits

O, 1 or 2, the INHIBIT CIRCUIT will disable the 'WRITE ENABLE'

logic. This prevents writing over existing data currently

stored in m1 , m or m3, and in effect is equivalent to inhibiting2

an operation for the cell in question.

WRITE LOJilQ

The ·'WRITE EMABLE' logic basically is made of t"lTO 3-input

'AND' logic gates, one each for writing 1•s and O's. One of

the three inyuts is for data,. another for the inhibit logic

discussed in the previous paragraph and the third, for the

WRIT.E strobe pulses., The 2-input OR logic allows for two

sets of WRfiTE STROBE pulses. One set is common to all cells

and thus operates on all cells simultane~usly and the other

set which is unique to each cell. (by line selecting/demulti

plexing) allows operations in the selected cell on1y.

CONVERGENC~ LOGIC

n and 1ts associated circuitry perform the •convergence
5

Check' operation. Data stored in m
3

, presmnably from the

24

previous computation, is compared with incoming data from

the current computation by the EXCLUSIVE OR gatec If

incoming data in the range being compared is different from

·the previous data, a pulse will be generated which informs

the control unit that the desired convergence has not yet

been attained. This, for a relaxation type problem for

example, enables the computer to repeat a self·~determined

number of passes until the desired convergence is reached •
•

This operation is enabled by storing a logic •1• in control

bit 3 of m • n
5

serves to interrogate this bit (bit 3) in3
the first cycle of operation to see if a convergence check

is required.

DATA READ OUT

The DATA ou·r logic serves merely to select data from

or D • n is selected only when we wish to transfer m1D1 3 1
data from one cell to a neighbour for simultaneous operation

with data of the neighbour cell. DJ is selected for normal

data Read Out from m1 , m or m of any cell.2 3

SU1'1MARY

From Figure 2.3 we can see that the cell design is really

rather straightforward considering that it can perform all the

25

End 	around DATA connected to

same COLUMN below

I

I
L

End around

DATAI

I
 connectedL

to same RO\V
at left

I
I

L

r"J
,,.. .,,. ,,...., . ,,-1

I

I
I--
I
I
I

I

-'-
I

I
I
I

I- - -
I

(
I

I
I---
I
i
I
I
I---
I '
I
I
I
I-- -
I

((
I I
I I
I

- ---'---- -
I I
I I
I I
I I
I I-- - - - -- -
I I
I I
I I
I I
I I------
I I

-,
I

- _/

7
I __J

7
I

_ _J

I i I .l_ I [_

I
L

I
L

I

I
r I

I -
I
I
I

f

-,--

I

I
I

I
I

- -- I--
I
I
I
I
I------
I

I I
I I

- -- I I-- --- - -
I I
I I
I I

I I--- -- ------
I I

'r--~

I
- _J

7

I
_ _J

I I

FIGURE 2.4 	 ARRAY ORGANIZATION OF CELLS

SHOWING COMMUNICATION

BETWEEN CELLS

26

functions listed in Table 1. One reason for this relative

simplicity in design is the fact that the computations are

done serially, one bit at a time. Thus a cell function takes

a minimum of 16 bits or a full address cycle. The heart of

the processor section is the binary full adder. It performs

most of the major functions, and with supporting gating logic,

the full complement of arithmetic and logic functions can be

performed.

Twenty of these cells were built on five printed circuit

boards and are organized in a rectangular array as shoi·m in

~i.g,._2:.4 •..~-. Each cell communicates with its four neighbours.

The boundary cells communicates with its three nearest neigh

bours and is connected •end-a.round' to communicate with its

corresponding boundary cell on the opposite side of the array.

CHAPTER 3

CONTROL UNITa- CLOCKING LOGIC

In a system where control is highly centralized such as

this is, the controlling unit has to be elaborate by necessity.

The CLIM array cells described in chapter 2 operate entirely

under central control. ~he control unit sets the logic state

of 41 control lines, the state of which enables the appropriate

functions. The total control actually.extends beyond the con

trol unit to be described, to include the general purpose computer

to which the system is interfaced. The general organization is

illustrated «-1n:·' ~Fig• :3 .1. Certain as peets of control such as

data storage, setting of the data field and programmi.ng of

sequenti.al iterations are intended as being in the domain of

the general purpose computer. On the other h::md, certain

other aspects like storage of instruction states, system

timing and clocking, decision logic and microprograromi~g

are common to the domain of both the specially designed control

unit and the general purpose computere

Since the PDP8 .. computer, serving as the general purpose

computer, has only a small 4K memory bank, the control unit was

designed to do as much of the control as practical. The PDP8,

to be discussed in chapter 5, is used mainly to store datat

~ 2'7

http:sequenti.al
http:programmi.ng

I
I I

I I I

I

1-- X; Y+1 ---~ X+1; Y+1 --~ X-1 ;3--
---.

I
I I

I I I

I I I

.L. -I

I

---1 X-1 ~--- ---~ y

-

CELL
X·Y•

.

I tCONVERG.

I

I

I

I

I
.

DATA
in&out information

y.~
control .
lines /

I

CONTROL UNITGENERAL
INSTRUCTION REGISTERS

PURPOSE CLOCKING LOGIC

COMPUTER MICROPROGRAMMED ROM

"1
co

FJ.GURE 3.1 GENERAL ORGANIZATIONs SHOWING

COMMUNICATION WITH ARBITARY CELI,

29

sequentially iterate programs and perform the microprogrmas.

The control unit is discussed in two parts, the instruction

registers and system interface in chapter 4, and the system

timing and clocking logic follows ..

CLOCKING LOGIC FUNCTIONS

Basically, the function of the clocking logic unit 1s to

provide the necessary pulse trains to execute the operations in

the computing memory cell'. These basic functions include 1

1) 	addressing the 16 cell memory bits serially.

2) 	producing appropriate clocking pulses for D-type flip

flops, to latch information stored in memory locations

currently addressed. These are for the purposes of

interrogating and latching 'Inhibit' information, of

- holding 'multi plier' bi ts for a complete address cycle

of multiplicand data, of interrogating and latching

'convergence' information and of holding operator and

operand data for the cell functions.

3) 	generating 'carry' pulses for the JK flip flop asso

ciated with the full adder of Figure 3.3 and also to

generate properly timed pulses for the 'preset' and

'clear' inputs of the carry flip flop.

4) 	generating write strobe pulses for writing data into

addressed memory locations.

JO

5) providing logic

a) to control the ADD/SHIFT cycle used in multiplication

b) to indicate Busy or Free mode of the system

c) to control the interrogation range of the convergence

cheek.

6) generating Flag pulses to indicate completion of an

operation.

ADDRESS CYCLE

Starting from a basic master-clock pulse with mark-space

ratio 	of one, a typical operation on one bit 1s as follows a

l) latch information from location currently addressed.

2) perform logic decisions, as in convergence, if any •

. 3) 	write processed information into currently addressed

bit of selected memory.

4) change address to the next location.

These four operations can be defined in the time spanned for

two clock pulses, having a total of 2 alpha and 2 beta edges,

one edge for each of the operations •. (See Figure J.2). Thus,

a full 16 bit operation, being one address cycle, would span

over 32 clock pulses. Currently, the longest time needed for

operation, propagation and settling, is approximately 100 ns

between the operations 1) and 2). This allows the clock to

run at a maximum rate of 5 MHz. The system is currently set

OPERATION TIME
...<,,_______ ON ONE BIT

DATA

LATCH

PULSE

WRITE

ENABLE

PULSE

CURRENT LATCH CONVG. WRITE CHANGE
ADDRESS CURR2:NT DECISION PROCESSED ADDRESS

SAY, ADDRESS IF ANY DA'rA TO
0100 DATA INTO 0101

CURRENT
ADDRESS

FIGURE)-2. BASIC OPERATION ON

ONE BIT.

32

to run at 2 MHz.

PULSE TRAINS

Based on the function requirements listed earlier and

on the cell circuitry, repeated in Figure 3.3 for convenience,

the basic pulse trains illustrated in Figure J.4 can be derived.

DATA LATCH PULSES

Of the 32 clock pulses for 1 cycle, the 16 odd numbered

pulses are used for data latch. The first one being used to

latch contents of memory location '0000' (binary '0') which

is the location addressed in the 'clear state•, the 2nd one

for bit 0001, and so on.

INHIBIT LATCH PULSES

Only three INHIBIT Latch pulses are needed, the first one

to 1nterrogs.te location 0000 the next, locatton 0001 and the

third, location 0010. (Recall from Chapter 2 that bits o, 1, 2,

of the memories are used for Inhib1~ operations).

RESET AND PRESET PULSES

The Reset Inhibit Latch logic allows the inhibit circuit

to erase an 'inhibit' state carried over from the previous

http:1nterrogs.te

F~1JSELECTlm3 WRITE

I
I

I
~~
! I
I LJn___.
I

--sv
'I'

m1

a· a~ o

.,.
m2

{)' Q ~ 4) • I

't"

m3

5

I
·o· 01~ o

I

~~Bl SELECT
f--m2 I READ
1m3;

05

DATA
LATCH

MULT CLOCK
CLOCK

• A (Enobtel
8H\mult I

EN I EN
ABLE ABLE

C QI 1 1 1 I

04

-·)

COMP.

INHIBIT ENABLE RESET DATA
CLOCK INH18iT INHIBIT OUTPUT

LATCH

0

'\ IA

~}•Leet
Ext.DATA

··---- Input

,..
"-n

PRESET

l: Cn.1

DATA
SELECT

,gtear
.______Carry

ciock

.I Select

\...)
\...)

WRITE CONVG CONVG
PULSE INPUTS CLOCK PULSES

FIGURE J.3 CELL CIRCUITRY

BIT ADDRESS 0000 I 0001 I 0010 I 0011 I 0100 I 0101 1110 I 1111 I

MASTER CLOCK

DATA LATCH

1 2 3 4 5 6 7 8 9 10 11 29 JO 31 32

INHIBIT LATCH
CLOCK __n n n~~~~~~-

RESET INHIBIT __r- - -- LATCH LOGIC

2's COMP.
PRESET LJ

CARRY RESET ~

CONVG. CLOCK

CONVG. RANGE
CLOCK _________.n n_ - - -

FIGURE J.4 CONTROL BOARD PULSE TRAINS (contd.)

w
~

L

BIT ADDRESS

MULT. CLOCK

1st CYCLE

2nd CYCLE

r. th CYCLE

11th CYCLE

0000 I 0001 I 0010 I 0011 I 0100 I 0101 1110 I 1111 I


~~~~~~~~~-n_ 

,_., 
- - -1 L 

_n___ 

12th·CYCLE 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-·~~~~~~- ---- n 

WRITE PULSES

_n..___ ____ _n rLCARRY CI..OCK

FIGURE J.4 (contd)

\.J
\,J\

address cycle.Using D-type latches, an erase can be performed

only by clocking the latch and presenting a logic •o• at the

data input, or in this case by presenting new data which per

forms the dual function of erase old data and latch on to new

data.

The 2's complement preset occurs at data b:tt 4 after

the control bits O, 1, 2 and 3 have been pl'ocessed (note

that data bits for arithmetic operations are stored in bits

4 to 15 only). It sets the carry-in of the full adder to

'1' which increments incoming data by 1.

The Carry Reset occurs at the very beginning of a cycle

to erase any carry over from a previous operation.

CONVERGENCE CLOCK PULSE

The Convergence Clock is timed to interrogate bit J of

the control data. If a •1• is detected, the cell in question

will perform a convergence check on its data. The ba.sic Con

vergence Range pulses are available from bits 4 to 15. These

pulses generated 111 the convergence circuit on the CONTROL

BOARD, determine the number of data bits being interrogated

for convergence. If, for example only Convergence Pulses 8

to 15 are generated, then Convergence is checked only for

data bits 8 to 15, ignoring changes in the less significant

bits 4, 5, 6 and 7e {The ctrcuit for selecting thts range is

described later).

37

MULTIPLICATION PULSES

The technique for multiplication used here is the

ADD/SHIFT technique. During the first ADD/SHIFT cycle

(equivalent to 2 address cycles) a pulse is generated at _

address bit 4, during the 2nd, at bit 5 during the third,

s.t bit 6, and so on, until the 12th and final cycle where

a pulse is generated at bit 15. The reason for this is

that during the first ADD/SHIFT cycle bit 4 of the multi

plier is interrogated an~ held for the rest of the cycle to

operate on the multiplicand, during the 2nd cycle. bit 5

of the multiplier is interrogated for the same purpose and so

on until the full multiplication cycle (12 .A.DD/SHI~T cycles

or 24 address cycles) is complete. ·rhis operation is illustrated

in an example for multiplication between two 4 bit binary

.numbers, presented in the next page.

WRITE PULSES

Whereas the DATA LATCH pulses were composed of the

16 odd numbered master clock pulses, the WBIT.E pulses

are composed of the other 16 even numbered l?'ulses. Recall

that each bit operation consists of the interval occupied

by one DATA LATCH pulse and one WRITE pulse. These WRITE

pulses are available in 8 selections, the particular

sequence se~ected being dependent on the desired operation.

Fer example if cohtrol data bits 0,1,2 and 3 only are to

38

0 1 1 0 A register

0 1 0 1 B register

0 1 1 0

0 0 0 0

0 1 1 0

0 0 0 0

0 0 1 1 1 1 0 C register

(a) 'Long Multiplication' of two binary numbers

Now, to illustrate in-cell multi plication, let 1

.A = 0 1 1 0

B = 0 1 0 1 = b4 b3 b2 bl

c = 0 0 0 0

1st ADD/SHIF'T cycle

= 1bl

A - 0 1 	 1 0

c = c +A 	= 0 0 0 0 + 0 1 1 0

= 0 1 1 0

Shift .A 1 	bit lefts A .. 0 1 1 0 0

EXAMPLE 3.1 CELL MULTIPLICATION
(contd)

39

2nd ADD/SHIFT cycle

b2 = o
since b2 = 0 t addition is inhibited.

Shift A, 1 bit lefts A = 0 1 1 0 0 0

3rd ADD/SHIFT cycle

bJ = 1

A = 0 1 l 0 0 0

c = c +A= 0 1 1 0 + 0 1 1 0 0 0

= 0 1 1 1 1 0

Shift A, 1 bit lefts A = 0 1 1 0 0 0 0

4th ADD/SHIFT cycle

b4 = 0

since b4 = 0 addition is inhibited

c = 0 1 1 1 1 0

Shift A, 1 bit left: A = 0 1 1 0 0 0 0 0

The Multiplication is now complete, the answer is in 'C'

wheres- AX B = C = 0 1 1 1 1 O

EXAMPLE 3.1 (contd) CELL MULTIPLICATION

40

be operated on, then a sequence enablin~ pulses 0 to 3 only,

of the 16 WRITE pulses, is selected. Note that new data

can be written into memory only when the appropriate WRITE

pulse occurs. For all ar1 thmetic operations, :tt. i:s<necessa:ry:' to

enable bits 4 to 15, these being the 1.2 data bits. The full

sequence 0 to 15 is selected when new information has to

be written into all 16 bits of memory. Selections of single

pulses 0,1,2 or 3 are used if it 1s:requiredtoalter just one

control bit. The final selection is where all WRITE pulses
-

e.re disabled, as one would require when nondestructive

data read out is desired. These selections are tabulated

in Table 3.1.

CARRY PULSES

The final pulse train is the CARRY pulses. These

operate the 'carry' flip flop when the cell ls performing

addition, and hence a.re required only for blts 4 to 15.

REALIZED CIRCUIT

The circuit that was constructed produces all the

pulses described. above, and is illustrated in Fig. J-5 ..

The heart of this circuit is a free running clock and a

string of counting elements consisting of J flip flops

and two 4 bit binary counters .. The output of the first

flip flop, which serves to genera.te a mark-space ratio

http:genera.te

ENABLE

MULTIPLY

FLAG1

SHIFT
BUSY/FREE LEFT/RIGHT -~ISTART

MODE

CLEAR
IOP

rr2

B M A L C Y1

COiNG

B Y1i r 1

I I

COUNTER1

.,.

Y4Y3Y2Y1x4x3x2x1

-.s.--'

rr3

·o·---.......--.

ADD/SHIFT
LOGIC

ENABLE
l'!ULTIPLY

MULT
CLOCK

ENABLE
CONVERGENCE

DATA INH COMP CARRY COHVG

LATCH LATCH PRE- RESET LATCH

CLOCK SET CLOCK

FUi.SESY2 Y1 X4 · X1 Y1X1

tttt
Y2 ·yl X4 X1 n PLAGz

IOP~

I-l>o I I

M401
CLOCK J-----t

rr1

Y1X4

2's

INHIBIT P CARRY WRITE WRITE
LOGIC CLOCK PULSES 	 ENABLE

PULSES

{::"
~

FIGURE J.5 CONTROL CIRCUIT

-~of one for the clock pulses, is considered· the master clock.

The second flip flop and the first counter (total of 5 bits)

control the address cycle which occupies 32 master clock

pulses. The third flip flop and the second counter (total

of 5 bits) is used to control the multiplication cycle

which occupies 24 address cycles.

The CARRY OUT pulse from the first counter is used

as a flag to indicate the end of a multiplication cycle.

These pulses are fed to flip flop 4, which starts and stops

the master clock and hence controls the cycle. A cycl·e is

iniated by the START !OP, generated by the PDP8, which

triggers flip flop 4 and starts the master clock. The CARRY

OUT pulse from counter 1 or 2, serves to reset flip flop 4,

It also serves as the system FIJ.AG 1 which informs the PDP8

that the operation is complete.

Prior to any operation, the PDP8 generates a CLEAR IOP

which clears or sets all logic on the control board to an

'initial' state. The output frou each bit of the first counter

is decoded via a binary to a 'two out of e1ght' decoder.

This gives 4 'X' lines and 4 'Y' lines to address the 16 bits

of the memories. For example, bit 0 is addressed by Y1 x1 ,

bit 1 by Y1 x2 , etcJ and bit 15 by Y4 x4 •

PULSE TRAIN LOGIC

Logic for producing all the pulse trains of Fig. J.4

are available from the counters and decoder so far discussed.

The following pulse trains are fairly straightforward and the

logic realizations should be obvious from Fig.J.4 and F1g.J.5s

DATA LATCH = F'

IMHIBIT LATCH CLOCK = F'. Y1 .x4

RESET INHIBIT LOGIC = Y'1 + x1 = Y1.X1

2's COHP PRESET = F•.Y2 .x1 .(2's COMP ENABLE)

CARRY RESET = F'. Y1 .x1
CONVERGENCE CLOCK = F'. Y1 .X4

CARRY CLOCK = F•.'Y1 .(BOOLEAN DISABLE)

The WRITE logic has three control lines A, B, C, connected

to the· IR, which allows the selection of eight pulse trains

as illustrated in Table 3.1. The WRITE function can be

produced by 1

WRITE = F.C.(~.Y + A.Y) + F.Y.C(B ® M + A$ L)

The MULTIPLICATION clock pulses are intended to enable

o2 of each cell to latch on to multiplier data bits, each bit

for a complete ADD/SHIFT cycle. As explained earlier, since

multiplier data 1s stored in bits 4 to 15, the multiplication

clock must be designed to interrogate bit 4 during the 1st

http:F1g.J.5s

logicIR setting pulse
' c B A enabled train pur_I'.Q_s e

0 0 0 F • 0 nothing no oper~~ion

0 0 1 4 control btj;g·bits 0-3F • Y1
.. y0 1 0 F ARITH OPERATIONbits 4-151

F • 10 1 1 bits 0-15 all of memory

·F•Y1 ~x11 0 0 bit 0 INHIBIT bit

F•Y1.x2 bit 11 0 1 control bit 1

bit 21 1 0 control bit 2F•Y1•XJ

F•Y1 .x4 bit 31 1 1 CONVERG. bit

The circuit to produce the logic of colu:rm~ two

can be minimized by replacing x ,x2 ,x3fx1_,., by1

logic from the 2 lsb. of COUNTER1 , where 1

X1 x 2 X3 X4
M 0 0 1 1

-L 0 1 0 1

The pulse trains of column J can be generated

by the WRITE function 1

WRITE= F.C.(B.Y + A.Y) + F.Y.C.(B E9 M +A E9 L)

TABLE 3.1. WRITE PULSES SELECT

45

ADD/SHIFT cycle, bit 5 for the next cycle and so on, and

finally bit 15 for the 12th and last ADD/SHIFT cycle. As

illustrated in Table: J .2, this pulse train can be realized

by the logic c-

MULT = F'. CL e 'P>. CM e Q). CN e R). co e s>

Note, in Table: 3.2 that since COUNTER2 only needs to count

12- cycles, it is always preset to binary 4 before any operation.

The CONVERGENCE RANGE pulses are also produced by
•

using m<'.CLUSIVE OR logic :

CONVG. = F'.(ae L).(b'e M).(c e N).(ce 0)

The selection of pulse trains is presented in Table. J.J.

These pulse trains are directed to the clock of flip-flop6

which is designed to detect a logic 1 at the 'J' input for

the duration of the CONVERGENCE RANGE selected. The input

to 'J' of f11p-flop6 is the 'OR' function of the outputs

from the CONVERGENCE logic circuit of all cells in the

array.

If in the selected range, a logic 1 ls detected from

any of the cells, which are enabled for Convergence check by

setting blt 4 of m3 to '1', a pulse is generated which is

called Flag2 and is used to instruct the PDP8 computer to

recycle the iteration.

46

COUNTER1
ADDRESS

BIT 0 N M L

0 0 0 0 0

1 0 0 0 1
COUNTER2

2 0 0 1 0
ADD/SHIFT

J 0 0 1 1 CYCLE s R Q p

4 0 1 0 0 1 0 1 0 0

5 0 1 0 1 2 0 1 0 1

6 0 1 1 0 3 0 1 1 0

7 0 1 1 1 4 0 1 1 1

8 1 0 0 0 5 1 0 0 0

9 1 0 0 1 6 1 0 0 1

10 1 0 1 0 7 1 0 1 0

11 1 0 1 1 8 1 0 1 1

12 1 1 0 0 9 1 1 0 0

13 1 1 0 1 10 1 1 0 1

14 1 1 1 0 11 1 1 1 0

15 1 1 1 1 12 1 1 1 1

By comparing these two 'truth' tables we can see that

MULT = F' • (L E9 P) • (M ~ Q) • (N E9 R} • (O E!> S)

is 'true' when Address bit 4 coincides with ADD/SHIFT

cycle 1, bit 5 with cycle 2 and so on.

TABLE J.2.. MULTIPLICATION
PULSES

47

IR SETTING
c b a

PULSE
TRAIN

of signif
leant bits

0 0 0 bits 4-15 12

0 0 1 bits 5-15 11

0 1 0 bits 6-15 10

0 1 1 bits 7-15 9

1 0 0 bits 8-15 8

1

1

0

1

1

0

bits 9-15
'

bits 10-15

7

6

1 1 1 bits 11-15 5

The Convg. interrogation function can be generated

by using logic from COUNTER1 alone together with .3

externally set 'select' lines. The function a-

CONVG. = F'.(a Ef) L).(b Ef) M).(c@ N).(c E& 0)

will produce a pulse when COUN·rER1 logic coincides

with the 'select' setting. This pulse marks the

beginning of the convergence interroga~ion, and is

used to trigger f11p-flop5 of FIG.3.5., which will

enable F' pulses from this time on till the end of

the address cycle.

TABLE J • .3.._._ CONVERGENCE PULSES SELECT

48

SUMMARY

This section of the control unit serves to generate

the various pulse trains to execute the cell operations,

which are controlled by the state of the IR.

The waveforms shown in Fig. J.4 were formulated, based

on the logic_a.1 sequences required for the various cell functions

decided upon. The circuit of Fig 3.5 is merely a logic circuit

realization to produce the waveforms of Fig. J.4.

CHAPTER 4

CONTROL UNIT - INTERFACE DESIGN AND

INSTRUCTION REGISTERS

In conjunction with the clocking logic, the control

lines to be described serve to enable or disable critical

logic gates in the cells in order to allow execution of

the desired operationo These lines control functions such

as:

1) selecting array location from which data is to be

read.

2) selecting array location to which data is to be

written.

3) selecting the neighbour from which data can be

read from or sent to.

4) enabling the decision logic to inhibit or allow an

operation.

5) enabling a path for multiplication, addition or

complementing.

6) selecting data either from the sum output or the

Carry-Out output of the full adder.

Unlike the control lines described in Chapter 3, these lines

are held in the same state for the whole address cycle. The

- 49

50

state of this group of control lines un1.quely define a path

of information flow in the cells for a full cycle, consequently

controlling the function to be performed.

Most of the pulse trains described in Chapter 3 are

·closely tied to the function to be performed and therefore

also to the setting of these control lines. In these cases,

the relevant pulse trains are enabled depending on the state

of these lines. These lines then can be thought of as In

struction·:r;1n.as, their various states as Instruction Sets and

the registers (1n this case, D-type latches) which hold the

Instruction Set, as Instruction Registers.

Not all the pulse trains are tied to the basic instruction

lines. Those which require a measure of versatility like the

write pulses, Convergence 'interrogation range' pulses and the

Inhibit pulses are selected as required by their own allocated

set of registers. · They. also form part of the IR (Instruction

Registers).

The control lines from all the cells are tied in parallel

to the IR. The actual instruction set is stored in the PDF8

computer which transfers the instructions to the IR as required.

The IR then has to be interfaced. to communicate with the PDP8.

For this pu~pose a stra.lghtforwa.rd and simple design is utilized

where a one to one link is established between a limited number

of registers and the accumulator of the PDP8. No 1nstruct1on

set coding is utilized, and the result is a simple hard"t·~are

McMASTER UNIVERSITY LIBRAR\'

http:stra.lghtforwa.rd
http:struction�:r;1n.as

51

design which requires elaborate instruction and data loading

procedures.

INTERFACE

The total interface design consists of 40 D-type latches,

two 16 bit shift registers and some miscellaneous logic. or

the 40 latches 31 serve as the IR, 5 as array location address

registers and 4 are spares. One of the 16 bit shift register is

used to store data 1ntend~d to be written in a selected array

location and the other is used to store data to be read back

to the PDP8. Both shift registers have parallel data input

and output facilities. This is necessary because the PDP8

accumulator handles data in parallel whereas the computing

memory cells handles data serially.

INSTRUCTION REGISTERS

The IR (see Figure 4.1) is organized in 4 rows of 10

latches each. The input of the 4 rows are connected in parallel

as illustrated and. are presented wl th data from the FDP8 accumu

lator simultaneously. In any one instruction loading cycle

only 10 of the 12 PDP8 accumulator bits serve to hold control

information and the other 2 is used to select one of the four

rows of latches to which control information is transfered.

Thus a typical instruction set has to be loaded in four cycles.

DATA FROM PDP8 ACCUMULATOR

0 1 2 3 4 5 6 7 8 9 10 11

IR

- ~ \11 \It ,1, ,11 t \I/ l) '
l0

'" '" \JI ' II
"'

,~ 'f w
,,,

"'1
IR

,,, ~ w , 't • 11 ..,
~ ,,

IR2

'
,,,

' • ~ 'ii w 'Lt '{/ ,.,

IR3

111 'II ,, ' 'ii II ~ ' --11/ 111

DATA-IN REGISTER II tr •ll

..:..-

...._

~-
r-

.....
~

PDP8
ACC.

0 1

," ,~

-SELE -
CTOR IOP A

"!lfro_
PDP8

!OP B
from 1P

!OP B2 --

I I I I I I I I I I I }r------r,-~LOCK FOR
SERIAL LOAD

DATA-OUT REGISTER - - ING OF DATA

[111--1I

FIGURE 4sl LAYOUT OF INSTRUCTION REGISTEHS

A..l>lD DATA REGIS'rERS.

53

For 	example the following state:

(ROW 	 SELECT) (10 INSTRUCTION BITS)

0 0 0 1 1 0 1 0 1 0 1 1

loads the 10 instruction bits into the first row. The

second row will be selected by the leading code '0 1',

the third by '1 0' and the fourth by 1 1 1'.

DATA 	 REGis·rERS

Both Data Registers are 16 bit devices. This

incompatibility to the 12 bit PDP8 accumulator makes it

necessary to have two loading cycles for any data transfer.

For the DATA IN register, the first cycle loads 12 data

bits into the 12 msb of the register (most significant

bits, bits 4 to 15), and the second cycle loads the 4

control bits, from a new set of accumulator data, into the

4 lsb of the register. Each cycle is executed by its

assigned IOP (input-output pulse) generated by the PDP8.

In a similar manner, for the DATA OUT register, the 12

data bits are written into the PDPB accumulator in the first

cycle by one !OP and the 4 control bits are written during

the second cycle by another IOP. To write data into a selected

array location, data from the PDP8 Accumulator is loaded in

parallel into the DATA IN shift registers (See Figure 4o2)

DATA FROM PDP8 ACCUMULATOR

0 1 2 3 4 5 6 7 8 9 10 11

+ ~ t + + + ~ + . + + ~l I
-----.1~1~~~~~.....

-·-L--=i

DATA IN

DATA TO
ALL CELLS

.EXT. MULT.
DATA

::

i
F

PULSES
(CLOCK)

-I

DATA CONTROL

[
IOP !OP
(PARALLEL LOAD LINES)

1
_J

_____ENABLE

MULTIPLY 'l D Q

...
-;:;

r--1

a b c a
4 bit

SHIFT REGIS.

a b c O

4 bit . I
SHIFT REGIS.

la --~b ---c

4 bit
SHIFT REGIS

~

a c

4 bi.t
SHIFT REGIS.

CLOCK
 C

FIGURE 4.2 DATA IN REGISTER

\J\
~

55

Then a loading cycle is initiated which writes data into

the selected location one bit at a time. This procedure is

repeated for each location. Reading data out from the array

is the reverse. One cycle reads data from the selected location

into the DATA out register serially (See Figure 4.3). After

this, data is read out in parallel to the PDP8 accumulator.

One bit 1n the Instruction Register is used to select reading

either the 12 data bits or the 4 control bits.

ADD SHIFT CYCLE LOGIC

Recall from Chapter J that multiplication was performed

by a sequence of ADD cycles and SHIFT cycles. During each phase

of the ADD/SHIFT cycle, different control lines have to be acti

vated in order to enable an ADD operation after which the lines

have to be reset to perform the Shift operation. The circuit

to perform this is 11lustrated ir1 F1g.~4.4.: ,

During the ADD cycle the A/S line is held 'High', and

this enables Read m1 , Read m
3

, Write m • This setting allows
3

the data flow •m1 + m3 store in m3•. Thus the contents of m1
are added to the contents of m • During the SHIFT cycle, the

3
A/S line is held 'Low•, and this enables Read m and Read m B1 1
and write m1 • This allows the operation 1 m1 + m1 store in m •.1
This is equivalent to multiplying the contents of m1 by 2, and

since m is a binary number, it is also equivalent to-shifting1
m by 1 bit -towards the msb. The ADD/SHIFT cycle /1s .r~pea"tEfd - .;,_ ,_i_ 1

4 bit 4 bit
SHIFT REGIS. SHIFT REGIS.

A B C D A B C D

CELL
DATA

CLOCK

4 bit
SHIFT REGIS.

A B C D

4 bit
SHIFT REGIS.

A B C D

READ OUT
CONTROL/DATA

SELECT

~"'

0 1 2 3 4 5 6 7 8 9 10 11

DATA TO PDP8 INPUT BUFFER

FIGURE 4.3 DATA OUT REGISTER
\J\
0\

2cs
COMP

Q

D TYPE LATCHES FROM INSTRUCTION REGISTER

_I_N_T--B--M-U_L_T_'
ADD/SHIFT _::xT EN. . DATA

LOGIC Q Q Q Q.

l's
COMP

Q

MULT WRITE
~N. m3
Q Q Q

VIRITE IREA~J IREA~ I
m1 m3 m1

Q Q Q---.-

..._,f. ,_,_,_, l -----1-1-1-1-----.

COMPLEMENT WRITE WRITE READ READ INT. B ENABLE
m3 ml mJ ml MULTIPLY

FIGURE 4.4 ADD-SHIFT LOGIC AND COMPLEMENT

\J\
-...:i

58

12 times to complete the multiplication.

MULTIPLICATION BY A CONSTANT

A s1mple addition to the interface board allowed

multiplication of data in the array by an externally set

constant. ·The multiplier in this case is stored in the

DATA IN register of Fig. 4.2, and the D type latch serves

to hold multiplier data for a complete address cycle in much

the same way as explained for in-cell multiplication.

MULTIPLEXING

Communication of data between the PDP8 and the array

is performed for one cell at a time. This then necessitates

the use of multiplexing and demultiplexing techniques to

communicate with each cell uniquely. For this purpose we

have a section of multiplexers and demultiplexers capable

of handling 32 lines each, of which only 20 of each are used

since we only have 20 cells. As illustrated in Fig.4.5, both

multiplexer and demultiplexer are controlled by 5 select

lines set at the interface IR.

DATA OUT lines, one from each cell, are fed to the

multiplexer/line selector, where data from one line only,

selected by the IR setting is read into the DATA OUT

register. This data. is then read out to the PDP8 for

.$9

A
B
c
D
E

...-
-- -

-""""-_,,,,,-...-_........
--

I- - - - -
1-- - - - --
r-- - - -
I- - ---
i---->

_,,,-

ALL CELLS
CELL 1
CELL 2SELECT
CELL JCODE
CELL 4

WRITE CELL 19PULSES
CELL 20

DIRECTING WRITE PULSES TO CELLS
BY DEMULTIFLEXING.

.......- LOGIC 'O'
A --- CELL 1

SELECT
CODE

B
c

--
•

CELL
CELL

2
J

D I - -
E 1-- -

I- - -
I - -
r - - -

TO DATA
REGIS'I'ER

OUT
~_..

1---E:

CELL
CELL

19
20

.

SELECTING CELL FOR DATA READ OUT
BY MULTIPLEXING,

CELL SELECTICN FOR DIRECTING
WRITE PULSES AND FOR DATA OUTPU'r.

60

storage and eventually for Type-Out Display.

Reading data into the cells is somewhat different.

WRITE pulses, rather than input data, are fed into the

·demultiplexer and directed to a cell selected by the IR

setting. Input data is presented to all cells simultaneously

but only the selected cell can perform writing data into.

memory, because only it has WRITE pulses. This technique

has a very definite advantage over the alternative technique

of feeding data to the demultiplexer, as this would require

additional inhibiting operations in the cells not chosen.

Recall that the absense of 'WRITE; pulses or the inhibiting

of WRITE pulses in effect inhibits a cell operation,

The organization ls such that line 'O', selected by

binary 'OOOOO', is fed simultaneously to all cells whereas

lines 1 to 20 are fed to one cell each, Thus when line 'O'

is selected, WRITE· pulses are presented to all cells

and allows the array to perform o~erat1ons in unison.

SUMMARY

The incompatibility of the PDP8's 12 bit accumrtl.ator

to the 16 bit memory words of the cells pose an inconvenient

problem when it is necessary to transfer data between the

PDP8 and the array processor. However, the main point to

note here is that in spite of the primitive interface

61

design, the c.apabillties of the array are :not hindered in

any way. The only major d:i.sa.d:n~ntage is ;that the programmlng

required to perform any operations will be more complex.

It is only after e. more complete and .more efficlent

instruction set is developed that an eff iclent interface

control system can be designed.. The required instruction set

would be dependent on the function capabilities requireda

CHAPTER S

OPERATE PROGRAMS

The PDP8 serves as the general purpose· computer

linking the array processor and the user. All information

to be directed to the array must first be stored in allocated

locations in the PDP8, after which the appropriate loading

routine will be executed to transfer data from the assigned

locations to the array on a one to one basis, where data

from one assigned location will go to a particular address

in the array. In a similar manner the complete instruction

set is stored in the PDP8 and special routines have to be

initiated which loads the IR and starts the operation.

Normally one should look on the array as a special peripheral

to a general purpose computer, however in this case where a

significant part of the controlling is performed by the PDP8,

the array becomes the main device and the PDP8 merely a

programmable controller.

The OPERATE programs consisting of the subroutines,

the instruction set and the allocated data storage locations

is fairly elaborate, and at pr.esent occupies nearly two thirds

- 62

63

of the PDP8's core memory. With the present distribution of

functions, the PDP8 is completely tied up. Only when the

interface-control design is improved to have its own memory

to store microprograms and instruction set data, only then

can the PDF8's role be reduced significantly. This would be

4e~1rable since the general purpose computer can then be

liberated to perform other functions while the array is

performing some lengthy iterations.

Following will be the description of the instruction

set used to control the cell functions. Each instruction set

consists of four octal numbers which are derived by grouping

the 12 PDP8 accumulator bits which represents the instructions,

into four groups of three bits each.

BASIC CELL CONTROL LINE LOGIC

All functions in the array processor are controlled

via the INSTRUCTION REGISTER, and this in turn is set by

software programs in the PDF8. The IR holds information to

perform one operation only, the operation being determined

by the state of the IR,

Table 5.1 shows the setting of the cell control lines

to perform the c~ll functions defined. In the table, a •1 1

represents a high voltage level (3 volts) and a 'O', a low

voltage level (0 volts). An 'S' is used to indicate that

CONTROL LINES

rI cEr.r.

FUNCTIONS
SET
MULT

2 • s
COMP

ENABLE
A B

1 • s
COMP ~

DATA
TRNS

READ WRITE
SELECT SELECT

WRITE
PULSES

READ DATA IN 00 0 0 0 0 1 0 0000 S 011

READ DATA OUT 00 0 0 0 0 1 0 S 0 000

ADDITION

I SUBTRACTION
I ,

m1 X m2 = m3

00

00

11

0

1

0

1

1

1

1

1

1

0

0

0

1

1

1

0

0

0

S

s

1100

S

s

101

010

010

010

. m1 X A = m3I SHIFT LEFT

SHIFT RIGHT

LOGICAL AND

! LOGICAL OR
' j EX.... QR

II l's COMP

LDATA TRANSFER

01

00

00

00

00

00

00

00

0

0

0

0

0

0

0

0

'

1

1

1

1

1

l

1

0

1

1

1

1

0

1

0

0

0

0

0

· 0

0

0

1

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

s

10_01

1001

1001

S

S

S

S

s

101

001

001

S

S

S

S

s

010

010

010

010

010

010

010

010

ill
'1'

• O'

•s•

Logic 1

Logic 0

lines to be
selected as
requiredo

TABLE 5.1 CONTROL LINE LOGIC FOR

BASIC CELL FUNCTIONS.

~ °'

65

one variation of the same control function is to be selected.

For example, in the column for DATA TRANSFER, the 'S' indicates

that the desired direction of transfer is to be set as

selected by the user. An •s• in the WRITE SELECT column

1ndioates that one or more of the three words, m1 ,m2 or m3
are to be selected to store the results of the computation.

INSTRUCTION SET

The instruction register layout, organized in four

rows of ten bits per row, is illustrated in F"ig. 5.1.

When it is required to transfer an instruction from the PDF8

to the IR, the instruction consisting of 12 bits of information

1s first loaded into the accumulator. Of the·12 accumulator

bi ts from the PD:P8, the· 2 msb are used to select one of the

registers; O O for IR0 , O 1 for IR1 , 1 O for IR2 and 1 1 for

IR3, as shown at the left side of each row. An IOP then

transfers the other 10 bits of the accumulator into the

selected IR, to be used as control information.

The basic instruction set is presented 1n Table 5.2.

The 12 accumulator bits are written as 4 octal numbers. This

table is derived from Table: 5.1 and ftg.•, 5.1. Here again, 'S'

is. used when a selection is required for one or more

variation of the same control function. Each instruction

set consists of four 12 bit instructions, one each for IR0 ,

IR1 , IR2 , and IRJ where 1n each case, the 2 msb of the

SELECT ENABLE DATA READ CELL ADDRESS
CODE DATA IN SELEC'r OUT

00
I Ro

IN - 1

OUT 0

_.A ,.,. 0

B - 1

DATA-0

CONT-1
16 8 4 2 1

.
SELECT

CODE
01
IR1

MULTIPLY SHIFT

CONVG. EXT 1 MULT 2's L - 1 A B INHIBIT
CHECK INT 0 EN. COMP R - 0 ENABLE ENABLE ENABLE

SELECT
CODE

j 10
IR2

BOOLEAN DATA TRANSFER CONVERGENCE RANGE

l's AND 1
E w N $ 4 2 1

COMP 2: 0
EX-OR RIGHT LEFT UP DOWN c b a

SELECT
CODE

11
IR)

READ SELECT

m1B mJ m2 m1 mJ

WRITE

m2 ml

WRITE ENABLE PULSES

c Lio -z T
B A

FIGURE 5.1 INSTRUCTION REGISTER LAYOUT 0\
0\

-- -- -

67

IR state setting in octal
CELL

FUNCTION
 IBO IR1 IR2 IRJ

0000 200? 4000 7142ml +ml = mJ

0000 2007 4000ml + m2 = m3 7242

0000 2007 4000 7442ml + m3 =mJ

0000 2027 .4000 7142ml - ml = mJ

0000 2027 4000 7242ml - m2 = mJ
I

0000 2027 4000 7442m1 - mJ = mJ

x m 0000 40002307ml = mJ 7.5522

x const
 0000 2107 4000 7552ml = mJ

m :. 2 0000 lt-0002017 7112•1
'' ,·

SH
'

1 Bit Left 0000 4000_·2007 7112

SH 1 Bit Right 0000 201? 4000 7112

LOGIC OP.
0000 2006 4400 7242ml,•-·~

0000 2006 4400 7442ml • mJ
0000 2004 4000 6J42ml + m2

m., 0000 2004 4000 6542+ m3l

0000 2004 4000 6742ml + m2+ m3

!_@1_~__.id BASIC INSTRUCTION SET

(contd.)

http:1_~__.id

68

CELL
FUNCTION

mi·($ m2

m
1

@ m3
COMP. m1
Rd DATA IN

Rd DATA OUT

CONTROL OUT

TRANSFER

IR0

0000

0000

0000

10SS

ooss

' 01SS

0000

IR1

2006·

2006

2004

2000

2000

2000

2000

I~

4200

4200

5000

4-000

4000

4000

4sso

IRJ

7242

7442

6142

6os3

6soo

6soo

7043

note: 	 Four octal numbers form one set of instructions.

Each of the octal numbers represent the 12 ace

umulator bits of the PDP8.

Of the 12 Acc. bits, only 10 are used as infer

mation for the IR, the 2 msb. are used to select

the relevant IR.

In the Table, an 'S' is used to indicate that

the instruction code is to be selected, based

on the IR shown in FIG. 5.1, as desired by the

user

T.1\BLE 5L2 (contd.) BASIC INSTRUCTION SET

12 bit instruction are used to select the appropriate row

of register •

OPERATE PROGRAMS

To facilitate the use of the array processor, a sub

routine library has been prepared which enables the user to

perform any cell operation, input-output transfer or type

out display by just using a mnema-nie: code of up to six char

acters which calls the relevant subroutine. This library of

programs, called the 'OPERATE PROGRAMS is completely listed

in the appendix. The language which is used for these programs

is PAL. Since the PDP8 ... has only a 4K memory, PAL which is

the most efficient, is most appropriate.

The basic subroutine to perform a cell operation is

illustrated in the flow chart of Fi'&~ 5.2. Basically, it

involves loading the appropriate instructions into IR0, IR1
IR2 and IR3, and generating an !OP (input-output pulse) from

the PDPS to initiate the cycle. The program, also illustrated

in Fig, 5.2 is typical of all the programs for cell functions.

The data for the instruction registers is available from

Table 5.2.

Programs for the communication of data between the array

and the PDP8 is somewhat more involved. In these programs, a

link must first be made between the PDP8 and the cells of the

70

EXECUTE
OPERATION

TYPICAL

Yes

RE·ruRN TO
MAIN

FIGURE 5.2.

(§iART OF
~BO!J'.}';£_~

LOAD !Ro

LOAD IR1
LOAD IR2

LOAD IR3

START, 	 0000
CLA
TAD Io
LOAD
TAD
LOAD

I 1

TAD I2
LOAD
TAD
LOAD

13
CLA
EXECUTE
FLAG
JMP .-1

.·· J.MP I 	 START

Io, 0000
I1, 2307
Iz, 4000
I3, 7552

CELL FUNCTION ROUTINE,

FLOW CHART AND PB.OGRAM FOR

71

array, one cell at a time. For example, the program for

wr1t1ng data into the array.performs the following steps:

1) Load data register

2) Select cell address

J) Execute WRITE routine

These steps, illustrated in the flow chart of Pig., 5.3, are

repeated for each cell location.

The program for rea~1ng data out from the array, is

illustrated in the flow cha.rt of Fig-, ,5.4. It performs the

following steps for ea.ch cells

1) Select cell address

2) Transfer cell data to DATA OU~ register

J) Transfer data to PDP8.

The complete list of routines for writing data into the array

and reading data out from the array 1s listed in the appendix.

Another type of routine in the OPERATE PROGRAMS is the

DISPLAY routines. These, also listed in the appendix, are

used to display via the teletype machine, any selected set

of data from the cells of the array. currently, the data is

typed out in a rectangular 5 X 4 array similar to the array

organization of the cells. Actually, these programs display

data stored in allocated locations of memory. Data answers

computed in the array, have to be transferred to these loca.t

1ons first, by using the programs for reading data out of

the array.

72

SET
STARTING

FIGURE 5,J. FLOW CHART FOR WRITING DATA

INTO THE ARRAY.

LOAD IR1
LOAD IR2

LOAD IR3

LOAD
CELL

ADDRESS
NTO !Ro

TRANSFER
PDP DATA
INTO DIR.

EXECUTE

OPERATION

RE'rURN TO
MAIN

YES

NO

INCREMEN'
CELL

ADDRESS

NO

YES

73

fsTART OF
~JJ~RO_UT_I!lE

LOAD IR1LOAD IR2LOAD IR3

SET RETURN ·ro
STARTING MAIN

ADDRESS
COUNTERS YES

NO

LOAD
CELL

ADDRESS
INTO IR

EXECUTE
OPERATION

NCREMENT
CELL

ADDRESS

YES

TRANSFER

DATA

INTO

PDP8

fl.QY.B.~. 5. i~. FLOW CHAR'l' FOR READING DATA

FROM THE ARRAY.

74

STORAGE ALLOCATIONS

Prior to any computations, all necessary data and

control information together with the OPERATE programs and

the main program must be stored 1n allocated sections of the

PDP8 memory. After any computation, data answers from the

cells are also read into allocated locations of the FDP8

before they can be displayed. The idea of of using the PDP8

memory as a buffer storage for input data and for output

answers, though seemingly inefficient and redundant. is

necessary to allow for easier programing.

The complete list of memory allocations is presented

in '!'able 5.3. Note from the table that the 16 bit words of

the cells are stored in two sections. one section for 12 bits

of data and the other section for the 4 bits of control

information. This arrangement is necessary because of the

incompatibility of the PDF8's 12 bit memories to the 16 bit

words of the cells of the array.

Note also, from Table· 5.3, that the OPE.BATE programs

and the data storage locations together occupy about 60%

of available memory, leaving less than JOOOa locations for

the Main programs. If the array processor ls to be used as

a permanent peripheral to the PDP8 or any other small computer,

this situation will be most inconvenient. It can be alleviated

only by using a more sophisticated interface and control unit

design.

75

MEMORY
LOCATIONS CONTENTS

0 - 177

200 - 2777

3001 - 3025

3031 - 3055

3101 - 3125

3201 - 3225

3231 - 3255

3301 - 3325

3401 - 3425

3431 - 3455

3510 - 3525

3601 - 3625

3631 - 3655

3701 - 3725

4000 - 4777

5000 - 5777

6000 - 7600

?600 - 7777

Program Constants

Main Programs

12 data bits, answers

from the array

4 control bit~, read

out from the array

12 data bits, data

for the array

4 c~ntrol bits, data

for the array

m3

OPERATE;::::~:u::~;r~s·"I
PROGRAMS

CELL OPERATIONS _J

PDP8 Loader Programs

Nb. the memory locations are in octal numbers.

TABLE 5w3 STORAGE ALLOCATIONS

76

EXAMPLE

The rather extensive list of OPE&.~TE programs however,

enables us to write very simple main programs. One such

program used to demonstrate multiplication between m1 data

a~d m2 data, is presented in the following example, where

all array operations a.re executed by calling the subroutine

with a mnemonic code of up to six characters.

The following test· program (in PAL) 1

l) clears all cells.

2) writes Data and Control information, already

stored in the allocated sections of the PDP8

memory, into m1 and m2 of all cells.

3) multiples m1 .by m2 _and stores the results in m •
3

4) reads answers 1n m3 to the PDP8.

5) types out a display of the answers in m3•

*200 starting address of main program.

CLA clear PDP8 accumulator.

CLEAR clear all memories in the array.

WR1D write data into m1 •

WRlC write control bits 1nto m •

1WR2D write data bits into m •

WR2C write control bits int~ mf.

MULT multiply m by m2 , store _n m •
1 3RDJD read m data 1nt6 PDP8.

RDJC read m~ control bits into PDP8.

TPJD display m data via teletype.

TPJC display m~ control via teletype.

HLT halt. -'

??

SUNMAHY

The main purpose Of the OPERATE protrram library is to

have available all subroutines which wouid make usae_e of the

array p:rocessor easier. 'fypically, all the cell functions

which are stored ln subprograms can be executed by merely

tre.nsferring program contx·ol to the subroutines.. At present,

the list of OPERATE progrmns ls complete 1!1 that. it has available,

all the functions we require, Of course if any other functions

a.re introduced, the list cr:m be exp9nded accorcUn.gly. What

could be a major add1. ti on to this list of programs are routines

which command. a sequenc~ of cell op21~ation.~ to perform some

standard se,;qu.0ntlal i tera ti on. At present, such programs like

relaxation solution for Laplace equations are considered as

main prog:ca.ms. Other ;suc:h progra111s could include for example,

programs to perform correlation between data in the array~

various matrlx opera.tlons ~ and. in fact e.ny algorithms that

may be useful,

This chapter has served as the final descriptive chapter of

the array processor. The chapters 2, 3, 4 ancl 5 are intended

to explain the overall system from the basic cell to the pro

gram usage of the systems It is expected that the user, in

e.ddi tion to this thesis j become familiar with the PDP8 computer,

and with programmlng ln PAL, in order to make use of the system.

http:prog:ca.ms

.. '·

CONCLUSION

The field of parallel processors ls still very young.

Although a fair amount of work is being done in 1t, each

effort appears only to open up more areas of application

and to reveal how pr1mttive the state of deYelopments still

is in this area~ To date, except for t:ne simple associative

memory of Lee and Paull, all po.rallel proc.essors, notably

the Be!:'keley Array processor, the cellular LPL computer of

Montana State University and the ILLIAC IV of the University

of Illinois, have no collllllercial application fl.-nd e.re malnly

special purpose, experiments.l models.

This project was intended n.ainly to provide a base from

which investigations can -be made o:n the a.ppllce.tion.s

of parallel proccss:i.:'.1.g a:r.rays to the fields already mentioned

in this thesis such as t1me averaging functions, :partial

differenti.al equations with La:placian Field problems in

particular, and possibly for operation on multidimensional

problems such as those encountered. 111 optimizatlono

It is only with a good understandlng of the basic

capabilities and limltatlons of the basic cell, that a.

realistic approach can be made ln investigating the areas

mentioned above, and it is hoped that this thesis will serve

to foster such unclerstandirig.

- 78

http:differenti.al

79

The project itself has by no means, come to an end.

Rather, it was a step in developing a system with which

it is expected that a great deal more work can be done.

Thus far, the system that was implemented consists of a workable

array of 20 cells, arranged in a. rectangular geometry, with

fixed neighbourhood, where the neighbours are the cells to

the north, south, east and west. The cell consisting of

three memory words and one processor is fairly complex, being

able to do arithmetic and logic flmctions between data in

the cell. Control of the array is essentially centralized

but e~'lch ce11 has some local s.utonorny. This is all inter

faced to a PDP8 computer. A set of programs has been developed

which executes the complete list of cell operations. Except

for test progrs.ms and the very popular program for solving

Laplacian Field problems, no :)ther programs or algorithms

have been developed. Thls then is the area in which a great

deal more work can be done. :Most immediate, especially with

the Digital Instrumentation Group in mind, are the algorithms

needed to perform correlation, autocorrelation, convolution

and the Fast Fourier Transform and possibly even the Walsh

Function. At this stage, any algorithms developed can at

most be demonstrated usl.ng stored waveform data. If functions

are to be processed in real time, an efficient data interface

design must be i.'.Ilplemented to allow very high input-cutput

data exchange rates. In the present design, all the cell

http:progrs.ms

80

functions are performed sequentially and those functions

such as addition and subtraction which can be performed

in one address cycle can be performed at a optimum time

of approximate 4 microseconds. Multiplication however

·which takes ~laADD/SHIFT~ cycles will require 96 micro

seconds. These may -irery well be the limiting factors when

real-time processing is considered. The solution to this

problem lies with the development of cells which performs

the cell function in parallel. Such cells would be very

complex and massive. However, with the development of

Large Scale Integration, a cell with parallel arithmetic

and logic could be readily realized. In connection with

this concept, we note that the cellular array techniques

for multiplication and division such as those proposed by

J. Majithia (16) would be quite appropriate for this use,

particularly if and when L.s.I. can produce these arrays.

The existing interface design discussed in Chapter

4 is simple and crude. The Instruction Register which

controls the function to be executed is set directly by

the PDP8 computer, and only one function state can be set

at a time. Moreover, the instruction register which ls 4·0

bits long requires 4 cycles from the computer, whose accumu

lator has only 12 bits, in order to set it. This requires

lengthy programming and slows down the operations. This is

an area where the present system can be greatly improved.

It calls for a interface-control design where the instruction

register can be reduced to a compatible 12 bits if the PDP8

is U!=!ed or 16 bits if a machine is available with a 16 bit

accumulator. This would involve implementing a network which

decodes instruction register information to set the control

lines of the cell array. Consequently a convenient instruction

set will have to be developed which allows easy programming.

In addition, it is proposed that a small memory be incorporated

in any new interface-control design for the purpose of storing
t

microprograms. The microprograms may include, not just basic

cell operations instructions but possibly, subprograms for

complete sequences of iterations as well. This would lib8rate

the general purpose computer for other function, while array

computations are being executed, and r-rould represent a major

improvement to the present system. The size of the array

1 tself can be expanded by simply wiring in more cells. How

ever, it 1s expected that the 20 cells array will be adequate

for present.. requirements,

It appears quite certain now, that alo1"1g with the great

speed with which the general field of digital devices, instru

ments and systems are ad1rancing, that the concept of a cell

with memory and logic has an important roleo Its ultimate

development depends very much on the advancement in L.S.I.

technology and the development of algorithms that can make

effective use of the sophisticated nature of the Comput1~g

Memory Cell,

82

APPENDIX

83

COWTEN·rs PAGE

84

TABLE A.2 LAYOUT OF CONTROL BOARD

TABLE A.1 LAYou·r OF 4 CELLS

85

TABLE A.3 LAYOUT OF INTERFACE BOARD 86

TABLE A.4 LIST OF IOPs 87

TABLE A. 5 LIST.,' OF OPERATE PROGRAMS 88

TABLE A.6 LIS'r OF ABBREVIATIONS 90

~

FIGURE A.1 WIRING SCHEMATIC OF CELL 1 91

FIGURE A.2 WIRING SCHE.dA'ric OF CELL 2 92

FIGURE A.3 wraING SCHEf•lATIC OF CELL 3 93

FIGURE A.4 WIH.ING SCHEMATIC OF CELL 4 94

FIGURE A.5 WIRING SCHE~l.11.TIC OF COlJTROL BOARD 95

1

84

COLUMNt·i NUMBER

6 5 4 J 2 1
7

7400 7430 7400 7430 B.lJ 7408

7400 7400 7400 7481 7481 7408

7400 7410 7410 7481 7481 7408

.
7451 74Ht83 7486 7481 7481 74H11

7476 7475 7475 7404 74H11
--t-· .

7400 7430 7400 7430 R6J 7408

7400 7400 7400 7481 7481 7408

7400 7410 7410 7481 7481 7408

7451 74H183 7486 7481 7481 74H11

7476 7475 7475 7401} 74H11

7400.

7416

7416

7451

7475

7454

7416

B.81

7451

-

2

3

R

0

w4

N
u
M5

B
E
R

6

7

8

9

10

Nb. 	 All the above I.e. chips have the

prefix 'SN' •

Each chip location is identified by the

BOW number followed by the Column number~

TABLE A.. 1 p. c • BOARD LA.You·r FOR !~ CELLS

85

COLUMN NUMBER

7 6 5 4 3 2 1

R16 R15 R14 BlJ R12

7417 7417 7417 7417 7417 7404

7416 7416 ?416 ?416 7400 7400

I

MC
7419.3 4040P 74193 7473

7430 ?404 ?486 ?400 ?473

7410 7486 7420 7473 74H11

7410 7400 7400 7451 7406

7404 7404 74.30

I

1

2

3

4

5

6

7

8

9

10

R
0
w

N
u
M
B
E
R

Nb. 'MC' specifies a MOTOROLA I.e. Chip.

TABLE: A. 2 LAYOUT OF CONTROL BOARD

COLUMN NUMBER

7 6 5 4 J 2 1

?4156 7475 7475 7475 7475 7475

7475 74757475 7475 7475 7475

7416 R34 RJ2R37 R35 7417 7417

'
74167416 7416 9495 7495 7495 7495

740474107451 7451 7451 7451 7451

7416 ?408 740874957495 7495 7495

7400 7416 7416 . 7416R76 R72 7416

R85 R81R83

Nb. 	 'R' stands for 'Resistor Platf·orrn'

R85, for example, is the Resistor Platform

of row 8 and column 5.

TABLE A!..1 LAYOU1r OF INTEiiFACE HOARD

86

1

2

4

5

6

7

8

9

10

R
0
w

N
u
M
B
E
R

87

FUNCTION IOPs CODE

CLEAR IOP and STAR'r IOP 5-1, 5-4
 6105

LOAD IR, CLEAR ACC.
 7-1, 7-4
 6107

LOAD DA'rA IN REGis·rER
 IOI' 2
 6112

DATA BITS

LOAD DATA IN REGISTER IOP 4
 6114

CONTROL BITS

READ DA'l'A BITS INTO ACC.
 IOP 1
 6111

READ CONTROL BITS INTO IOP 1
 6111

ACC.

FLAG 1 CYCLE TES'l'.
 1-1
 6101

F'LAG 2. CONVERGENCE 2-2
 6102

.Tfil21E A.14- LIST OF IOPs

88

LIBRARY OF Q..P.§.RATE P.f];QG~~

The neumon1c code at the left is the symbolic

code of the subroutine in question.

The rest of each line is the command in PAL to

jump to-the appropriate subroutin~.

RDlD : JMS I 2& READ DATA ?ROH THE fu.>lRAY
RD2D :: JMS I 21

RD3D : JMS I 22
 eg. RD3D means, READ m3 DATA.

RDlC : JMS I 23

RD2C : JMS I 24

RD3C :: JMS I 25

WRl D = JMS I 26 	 WRITE DA"rA INTO TH B: ARRAY-,
WR2D = JMS I 27

WR3D = JMS I 3~ 	 eg. WR2C means, WRITE COI,'i'rROLm2\IJRIC:: JMS I 31

WR2C : JMS I 32
 JWR3C = JMS I 33

TPlD : JMS I 34 TYPE-OUT DISPLAY OF ANSWERS
TP2D :: JMS I 35
TP3D :: JMS I 36

TPlC:: JMS I 37

.TP2C:: JMS I 4~

TP3C :: JMS I 41

TPlDX :: JMS I 42

TP2DX : JMS I 43
 DATA FOR THE AHH.AY
TP3DX :: JMS I 44

T?lCX :: JMS I 45

TP2CX : JMS I 46
 data intended for tae array
TP3CX ·= JMS I 47

CLEARPAM :: JMS I 5G

ROTL :: JMS I 51
 JROTR = JMS I 52

FROM THl!: ARRAY

eg. 	TPJD means, TYPE mJ DATA

·rYPE-OUT DISPLAY OF INITIAL

eg. 	TP2CX means, Type mg CONTROL

CLEAR m1 , m2, m3 of all cells
SHIFT m1 data one bit left of right

CM ULT :: JM S I 5 3 Mult. m1 by externally set constant
MULT : JMS I 54 Mult. m1 by m2 , store in m3

TABLE A. 2 LIST OF OPERA·rE PROGRAMS

89

ADD121 : JMS I 55
ADD122 : JMS I 56
ADD123 : JMS I 57
ADD131 : JMS I 6~
ADD132 : JMS I 61
ADDJ33 : JMS I 62

ADDITION

eg. ADD131 means, ADD to mJm1

store 111 m1

!COMP! : JMS I 63
TCOMP2 : JMS I 64 2 ' s Comp. of m1 , m2 , l'!l.1 ,
TCOMP3 : JMS I 65 and store in same memoryJ

COMP : JMS I 66
EXOR : JMS I 67
BAND - JMS I 7&
OR : JMS I 71
SUB123 : JMS I 72
SUB133 : JMS I 73 J
TRN12U : JMS I 15~
TRN12D : JMS I 151
TRN12L : JMS I 152
TRN12R ~ JMS I 153
TRN32U : JMS I 154
TRN32D : JMS I 155
TRN32L : JMS I 156
TRN32R : JMS I 157
CLEAR3 : JMS I 16~
SUB! : JMS I 161
SUB2 : JMS I 162
SUB3 : JMS I 163
SUB4 : JMS I 164
SUB5 : JMS I 165
SUB6 : JMS I 166

1 's Comp, of m1
EXCLUSIVE~OR
BOOLEAN AND:
BOOLEAN OR

SUB·rRACTION

TRANSFER DATA FROM ONE CELL
LOCATION TO ANOTHER

eg. TRN12R means, TRANSFER m1to m2 of the cell to the
RIGHT.

CLEAR m only, of all cells
3

spare subroutines

TABLE A.5 (contd) LIST OF OPERATE PROGRAMS

L

90

LIST OF ABBREVIATIONS

A.U.

P.U,

IR

IS

CLIM

COMP

2's COMP

CONVG.

IOP

R

OP.

Rd

Sh.

lsb

msb

ff

MHz

const.

ARITH.

Fig.

ns

Ext.

Int.

Arithmetic Unit

Processing Unit

Instruction Register

Instruction Set

Cellular Logic in Memory

Complement

Two's Complement

.Convergence

Input/Output Pulse

Left

Right

Operation

Read

Shift

Least Significant Bit

Most Significant Bit

Flip Flop

Mega Hertz

Constant

Arithmetic

Figure

Nanosecond

External

Internal

TABLE A.6 LIST OF ABBREVIATIONS

IEnabtel
m OJ~l~ Am:1s} SELECT LATCH EN~!1SELECT m2 READ MULT CLCCK ABLE-m~, WRITE

1

~,,.,9 'o' --~

INHIBIT E!JABLE RESET
CLOCK l\J.~IBIT INHIBIT

LATCH
WRITE CONVG CONVG

!

ti

i
"'°"""

f

--~ m'l
.e pear

:J

6~

m3

@

CLOCK

\mutt lBI EN-
ABLE COMP.

I
~l

;J 1 03 ;5/f 1, .R

13
. z,.)

©
"
l:l

r
DATA

OUTPUT

8

~}·l~t
Ext.DATA

.------ Input
1,-2.,1.~,E>.

!f-6 PRESET

11 Cn I'' ~

l: Cn.1 iz

,,_____Carry
clock

PULSE INPUTS CLOCK PULSES
CELL SCHEMATIC

~ '°
FIGURE A.1 WIRING SCHEMATIC OF CELL 1

I

6

<Doto from Neighbou!" Cell >

!

~l INHIBIT ErlABLE RESET DATA DATA
CLOCK li'Jl1181T INHIBIT OUTPUT SELECT

LATCH

CONVG

PULSE INPUTS CLOCK PULSES

',?

Q

!±.

0
,:..m3 l1J
a· Q ~

L = uwwwd
I/

(,.

O.t\n
LA~·c:Hr=~ B} SELECT

m3F CLOCK
m2 READ MULT CLOCK

/J ~II ldm,IJ •
I',?
I

-')%))1 In----,.,,..oi ifb

A~~~'B
EN- I EN-

ABLE ABLE

Ds@

!/
,.3 04 (s:f1

~; 7rc;·~~

COMP.

..£Jc

WRITE CONVG

UP 0

I

~}•Wei
Ext.DATA

..------ Input

I: Cn.1
tT 31

PRESET
I

17

~Lear
.____"""'Carry

...-JI' . ., ; clock

! Select

CELL SCHEMATIC I\) '°

FIGURE A.2 WIRING SCHEMATIC OF CELL 2

(

A~~~i'e
CLCCK

EN I EN
ABLE rLE

l . I D2~1t'fl
1~0

") • v I

COMP.

I .

-r-:;;i-c Q- ,,; "I

oj§''.
I

0

oa¥- l/tl
c

,..=~"' LJ
.-)

Ef lABLE RESET OAT.C\ DATA

t~}mc1
Ext.DATA

-------Input
~ 2,,. .>', y_,, ..;

PRESET

I

:?I ;,
- ~ l

~
c~
1·
I

a,,,-

m2

~

CLOCK

1
n---=-a ("..<~)) • I(, v ~-l 1

"'(JD 1~
II

/>

1~<2~4~

DAl~m,} E~B}SELECT LATCHm SELECi
2 r m2 READ MULT m WRITE3 m3r I

~~

~Y~.1

/6 ~
t

. 18

INHIBIT ~ CLOCK 1\1,~IBIT INHIBIT OUTPUT SELECT
LATCH

WR!TE CONVG · CONVG
PULSE INPUTS CLOCK PULSES

CELL SCHEMATIC
\...> '°

fIGURE A.J WIRING SCHEMATIC OF CELL 3
..,
•.

u

(Data from Neighbour Cell>

I
~;;1'1' i'~lL

m2 ~
f' I~)' Q

I ,_,(/

m3
'o' 0 l-4---$

I I''

IEnabte\
UP 0

m1
OJ1.T'.\ A\mutt I 8-m·"' m1B} SELECT

m1 l SELECT m2 READ
-m 2

J ... I WRITE ~m3 ~}s•l~I
2

II~ @)
.,--~-r:·:\L_ 'I' 1LL . Ext.DATAI -~I; -r ~ .I ~ , I El'

r1......I'--; 0 m1
Q TTII

I ij c'
'c'

,.f Ito- '?

I I I
. I

i
PRESET

clock
' I

; I I Select
ii~,

l~11~
....___,......·.....! /."' ., i.;i"~1-----

fV '

I >

~
II /} l I

LATCH

WRITE CONVG CONVG

PULSE iNPUTS CLOCK PULSES

I

I

LA""C:H
MULT CLOCK
CLOCK

. I

EN- I EN-

I
~,,

ABLE ABLE COMP.

~
~??6" ') ')f •

c

12,1JL--

®

INHIBIT E::tJABLE RESET DATA
CLOCK hli1181T INHIBIT OUTPUT

.------Input

8
Cn f.1,1

I: Cn.1
6 15 7

L.. Carry

\0CELL SCHEMATiC
.{::"

FIGURE A.4 WIRING SCHEMATIC OF CELL 4

FLA01

STA..'lT
IOP

CLIUR
IOP

P'

l l I ly

rr1

Y1X4 Y2X11 ~1x1

~ :l ~II
~ O; tl

CO!JNTER1

. ~~ ~ -

O!NIMIL

'1'

·o·--..-.--
PaeseT
TO 0100

~-

II

E:NABL!!
!'!ULTIFLY

I MULT®+'f'' ~ ,,?) '9131 Y4Y.-/i2"? 1x4xJX.2x1 CLOCK
2·s

Dll;!J.. !NH CO~P CARRY .CO?NG

LATCH LATCH PB!!:- ne:se•r LATCH I

CLOCK S&T CLOCK
ENA.BL~

CONVEBG:':NC!
Y2 Y1 i'1+ X1 Y1X1

lf ~ ~¢3+'r'
'(I j I ·' 11

j I I --i

Y2 Y1 X4 X1 y
I Iv I if

ItlHIE!T
LOGIC

p CARHY.
CLOCK

llHITE
PULses

IJB.!'lZ
&::ABLE
PULSES

\.0
\.J\

FIGURE A.5 WIRING SCHEMATIC OF CONTROL BOARD--·-....-·--""""'"

HEFERE[CE§.

1) S.B. Unger~ "A Computer Oriented towards Spatial

Problems". Proc. IR~, ·vol. 46, Oct. 1958. pp.1744..,.1750

2) D.L. Slotnick, w.c, Borek and R.C. McReynolds,

"The. Solomon Computer". Proc. AFI..f§, Fall Joint'

Computer Conf., 1962, pp. 97-107.

J) J. Gregory and R. McReynolds, "The Solomon Computer..

IEEE Trans. ~J.ectronic Computer~, Vol, EC-15 De'c. 1961,

pp. 718-722.

4) C.Y. Lee, "Intercommunicating Cellsa Basis for a

distributed logic computer". rroc. AFlf'S, Fall Joint

Computer Conf. 1962, pp. 130-136.

5) C.Y. Lee and M.C. Paull, "A Content Addressable

d1stributed logic memory with app11cs.t1on to infor

mation retrieval". !:.toe. I,J1;~E, Vol.51, June 1963,

pp. 924-932

6) J~ Holland, "A Universal Computer capable of executing

~.:n arbl tary number of sub-programs sim11l taneously".

£roe, Ea.stern Sc.int Computer Conf. 1959, pp 108-113.

7) B.A. Cranes and J.A. Gtthens, "Bulk Processing in

Dlstr1buted Logic Hemory". IEEE ·rr~, Electronic

r:omputers, Vol~ECr•l!~v April~ j965, pp.186-196.

97

8} 	 c.c. Yang and S.S. Yau, "A Cutpo1nt Cellu.ls.r Associ

ative Memoryn. IEEE Tran~. Electronic Computers,

Vol.EC-15, August, 1966, pp. 522-529.

9) 	 G.B. Barnes et al, "The ILLIAC IV Computer"

~ Trans. Computers, Vol.C-17, August, 1968

pp. 746-757.

10}'.; 	W.Y.Dere and D.J. Sa.krison, "Berkeley Array Proce

ssor". IEEE Trans. Computers, Vol.C-19, May 1970,

pp. 444-44?.

11) 	 W.E. Kautz, "Cellular Logic in Meillory Arrays".

IEEE T1~ns. Computers, Vol.C-18, August 1969,

pp. 719-727.

12) 	 J.H. Huttenhoff and R.R. Shively, '~Arithmetic Unit

of a Comvuting Element in a Global. Highly Parallel

Computer". IEEE Trans. Com-outers, Vol.C-18 , August

1969, pp. 695-698.

13) 	 H.S. Stone, "A Logic in Memory Com:puter".

JEEE Trans. Computers, Vol.C-19, Jan. 1970, pp.?J-78.

14) 	 K.J. Thurber and J.W. Myrna, ''System Design of a

Cellular A.FL Computer!f~ IEEE Trans~ Computers,

Vol. C-19, April, 1970, PP• 291-·JOJ,

98

15) 	 D.A. Lawrence, "A Computing Memoryi Design and

Applications with special reference to Correlation".

Master's Thesis, Mci.,i:aster University, 1970 ..

16) 	 J. Majithia, "A Digital Moments Analysers Design

and Error Charactersticsn. Ph.D. Thesis, McMaster

Unive~sity, 1971.

17) 	 N.R. Scott, Electronic Coillf!i.lter J~ch.nq+ou ,

McGraw-Rill, New York, 1970.

	Structure Bookmarks

