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SCOPE AND CONTEHTS: 

The theory of Cellular Logic in Memory Arrays 

is discussed. Such an Array has been implemented and 

its system design is described, 

Supporting systems such as control and computer 

programs to operate the Array have been developed and 

are described. 
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ABSTRACT 

A Cellular Computing Memory Array consisting of 

twenty cells of three• words plus logic per cell has 

been constructed and interfaced to a digital computer. 

Both arithmetic and logic operations can be performed 

between words of a cell and those of adjacent cells, 

the results of which may be stored in any of the three 

words of the cell. The cells are organized in a two 

di!Ilensional array so that each cell can communicate 

with the four nearest neighbours. In addition to the 

ordinary comraunication between cells to perform oper

ations on data in adjacent cells, data can be transf

erred in the memory plane on a mass basis. 
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CHAPTER 1 

INTRODUCTION 

S1nce the birth of the electronic computer some twenty 

five years ago, and particularly in the last ten years, great 

advancements have been made particularly in the speed of cal

culations and in the techniques of using computers. Computer 

languages and software have been developed greatly, allowing 

easy use of complex computer systems, and computation speeds 

have increased tremendously due to the development of solid 

state technology. One area, however, which has resisted any 

significant change, is the basic organization of the computer. 

The conventional. organization where a large memory is associated 

with a sophisticated central processor is unquestionably, very 

useful and will remain so for a long time to come. 

There are some types of problems, however, where despite 

the great speeds of present computers, the sequential pro

cesslng of data is inappropriate and dread.fully slow. Such 

problems usually involve large masses of data on which identical 

operations are to be performed. For such problems, the draw

back 1s due, not just to having to repeat a large numoer of 

c.omputa.tions but also to the cumulative transfer times of 

data from memory to processor and then, of the results or 
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data back to memory for storage. Improvements can be madet 

of course by producing more efficient software or by using 

high speed hardware. But such steps would not be really 

significant and will be limited by the state of the technology. 

The accress time of dat& from memory, for example, could be 

reduced by replacing the popular ferrite core memories by 

the faster solid state semiconductor memories. 

The solution, not surprisingly lies with reorganizing 

the computer or J.iB.rt of the computer to operate 111 a parallel 

fashion. The concept is quite simple; increase the number 

of arithmetic processors, each working with e. different section 

of memory and the overall computation time is shorterned accor

dingly. The full power of this concept becomes apps.rent when 

we extend it to the limit, associating one processor with one 

memory word or more practically with a unique set of memory 

words. This arrangement makes possible the concept of operating 

on data in situ, without having first to transfer data from 

memory to processor. The time saving here is twofold, in 

eliminatlng the need to repeat sequences of operations and in 

not having to move data in and out of memory. 

Such an organization was proposed as early as 1958 by 

Unger (1) when he se.w that problems involving blocks of data 

which are locally correlated eould be handled with much greater 

ef'ficiency by operating on the data in a parallel fashion without 

having to sequenti,s.lly scan neighbouring data for correlatecl 



information. Irr 1962 Slotnick (2), based on Unger•s work, 

proposed Solomon. Solomon was to be a highly parallel com
. ., 

puter organized in a rectangular array wher~ each cell of the 

array had arithmetic capabilities and was capable of communicating 

with its four nearest neighbours. These, together with pro

posals made by Lee (4), Paull (5) and Holland (6) formed the 

basis which led to a steady development ln the concept of cells 

with arithmetic capabilities, and organized in arrays, also 

known as CLIM arrays (Cellular Logic in Memory Arrays)~ 
I 

The proposals of Lee and Paull have been commercially 

realized and are easily available now, but only a few ex

perimental versions of the more sophisticated Solomon type 

systems have been realized. Some of these include the ILLIAC 

IV (9), the Berkeley Array Processor {10) and a cellular APL 

Computer (14). These were designed with specific areas of 

application in mind, indicating the possible wide areas of 

application of CLIM arrays.· In particular, the Berkeley:-, ' 

Processor was designed to perform the operations of corre

lation, convoluti.on, matrix multiplication and a variation 

of the Fast Fourier Transform; the APL (A Programming Language') 

computer was designed to perform efficient execution of APL 

programs and the ILLIAC IV tr8.s designed as a more general 

purpose ma.chine to process data in bulk. 

GENERAL THEORY: 
.....IC • 

We see then that the concept of parallel processing 

http:convoluti.on
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shows promise in the critical areas of data processing which 

requires identical operations performed on large sets of 

data, and typical of this area are problems in matrix operations, 

scaling and partial differential equations, which even the 

fastest of conventional_computers are·unable to solve in a 

reasonable amount of time. What makes the concept of parallel 

processing even more exciting is its potential to operate 1~ 

real time, on the time averaging functions such as correlation, 

autocorrelation, convolution, Fast Fourier Tre.ns1.forms and re

cursive filtering. These characteristics makes the concept of 

parallel processing very attractive in a vast variety of ap

plications such as in communications, optimization, control 

requiring fast response such as in guidance, trajectory cal

culations and even weather forecasting. 

For the various functions, of course, different require

ments are put ori the way in which the processing array is 

orga.nized and also on the capabilities that each cell of the 

array must have. We may then characterize CLIM cells and 

arrays under the following headings. 

CELL COMPLEXITY 

In general, depending on the nature of the problem, the 

complexity of the cell may vary from the simplest logic function 
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capability to a co~plete system capable of elaborate arith

metic and logic operations The< ty.pe or ~e11. for example,s 

required to solve partial differential equations as proposed 

by Slotnick is considered fairly complex. Each cell has 

two storage words and possess fixed point arithmetic and 

some logic abilities. The iteration procedure for solving 

a two dimensional Laplace equation with cartesian coordinates 

involves relaxing the value at each point in a bounded re

gion, to the average value of its four neighbours, to the 
• 

north, the south, the east and west. This is illustrated 

in Fig. 1.1. An example of a simple cell is the .. assoeiat1ve 

memory proposed by Lee (4), where associated with ee.ch 

memory word is a logic unit which allows for fast retrieval 

of data from that word by associating an address with part 

of that memory word. 

ARRAY GEOMETRY 

Several geometric organizations of cells are possi

ble, the simplest of which ls the linear arrayo This or

ganization, shown in Fig. 1.2, ls being used in the asso

c1atlve memories of Lee and Paull and in the Berkeley Array 

processor. The linear array should be suitable for time 

averaging functions and other applications where one vari

able dimension is involved. Another geometry is the rectan

gular array which is suitable to operate on matrices and on 
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boundary parameters 

Assuming that the values of· the 
boundaries are known, the numerical 
solution to the Laplaclan Field 
problem can be calculated at each 
matrlx point (re presenting a cell) 
by successive relaxation. 

An e.rbitary point 'V' is relaxed by 

V = 1/4 ( Vn + V8 + Ve + Vw ) 

:


FIGUHE 1.-1. 	 SOLUTION OF A LA:PLACIAN FIELD 
PROBLEM USING A lOX10 ARRAY 
OF CELLS. 
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partial differential equations. Ann-dimensional geometry 

is· also possible where cells may be arb1'trarl.1;y connected. _ 

This type of structure could show great promise in a multi

variable problem where, for example, computations can be 

made while all dimensions are varied simultaneously, to 

converge to an optimum. Cells for such a structure would 

probably be highly complex. 

The above arrays represent very basic structures, and 

variations of these are possible. The rectangular array 

can be extended to a cubic structure, and branches or sub

arrays can be added on to the linear array. 

NEIGHBOURS 

An important characteristic ofcparallel processing arrays 

is the 'neighbour' relationship between cells. The term 

•neighbour' is rather loosely defined, but generally includes 

those cells with which communication is possible for the 

exchange of control_ or data information. In other words, 

mere geometric proximity does not make two cells neighb~l.l.rs. 

In the rectangular array for example, a cell can have four 

neighbours, to the north, south, east and west also defined 

as above, below, left and right, as in the array used to 

solve Laplace equations. However, if the appl1.cation re

quires it, the north-east, north-west, south-east and south

http:neighb~l.l.rs
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west cells could also be included in the neighbourhood. 

An interesting proposal, by J. Holland (6) is an example 

of a structure in which the neighbourhood is redefinable. 

Here, by program control, new paths are built by making 

connections vla intervening cells. This would give us; 

a versatile array, but would involve highly complex cells. 

This concept_of being able to communicate with neigh

bour cells is a prime contribution to the power of array 

processors especially when the data sets are locally or 

spatially correlated. 

CONI'ROL 

Another characteristic of parallel processing arrays 

is the de~ree to which control of the cell functions is- . -· 

distributed between a central controller and a localized 

in cell controller. The simpler and more common is where 

control is highly centralized. In this type of system, 

all cells perform the same operations as determined com

pletely by the central controller. Included in this group 

are the processors that handle matrices, partial differen

tial equations and time averaging functions mentioned earlier. 

At most, the above type of cells may possess the ability to 

ignore control instructions to limit the area of operation. 

The proposals of Unger, Lee and Slotnick are all of type~ 

The Holland proposal is an example where control is highly 
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localized. Here, the cell operation executed is determined 

mainly by control information contained locally in the 

cell. This gives it the advantage that independent com

putations may be executed simultaneously, and at the same 

time enjoy the other benefits of array organization. 

GENERAL 

One obvious characteristic that a parallel processor 
I 

should have, for versatility and for ease in implementation, 

1s that all cells should be identical. They should vary in 

function only in what control information is put in them or 

is· presented to them. This then suggests that cells should 

be designed with general purpose applications in mind, and 

may, for some applications be more complex than required. 

It is with this general purpose application in mind 

that this thesis project was pursued. The cell to be des
. ' 

cribed, referred to as 
' 

a 
.~ 

Computing Memory Cell possess~s 
. ' ~i. ' 

full arithmetic and logic capabilities as well as a degree 

of local control. 

SUMMARY 

I. 

The aim of this project is to implement a workable 

system based on the parallel processing characteristics of 
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CLIM arrays. A rectangular array was built and interfaced 

to operate under the control of a PDP8,· computer. A set 

of operate programs was developed to control the functions 
-· 

of the array. Since the control of the array was quite 

elaborate, a special purpose control unit was implemented 

to perform as much of the controlling as possible. The 

actual cell was designed around a set of arithmetic and 

logic parameters, this set being as extensive as was practical, 

and had to at least enable the array to be used in the solution 

Of,Lap~ace~s equation. 

In perspective, the system developed has a moderately 

complex cell which can perform both arithmetic and logic 

operations between words of the cell. Control is essentially 

centralized, but has more local autonomy, for example, than 

the cell proposed by Slotnick. The geometry is a rectangular 

array with a fixed neighbourhood where the neighbours consists 
' 

of the cells to the north, south, east and west. 



CHAF'l'EB 2 

THE COMPUTING MENORY Cfild! 

The work on the concept of Cellular Logic In Memory 

Arrays that ws.s done by Le.wre:ice 05) in 1969, . consisted 

of the design of s. comp:..tting memory cell, four of which 

were implemented in order to investigate the workings and 

limi tat1ons of such cells These cells consisting: of twoo 

memory words associated with two processors were organized 

in a linear array. Ea9-h cell was capable of performing 

fixed point arithmetic operations between the two words un

der suitable control. The arithmetic functions included 

addition, subtractlon, diYision by 2n (n=l,2,··-10) and 

multiplication. This project was developed to a state 

whereby the cell functions could be performed, largely by 

manual setting of the cell control lines, and initiating 

the operation cycle, also manually. 

In a.ttemptlng.to improve the cell design and to deve

lop a workable array, it was necessary to investigate the 

basic questions of what a cell must be capable of doing 

and what structure and intercorrlillunications to organize the 

cells. 

- 12 
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Obviously, the basic set of arithmetic operations used 

by Lawrence, also proposed by Slotnick and. others, was 11eces

sary. In addi ti cm, a set of Boolean operations would be 

necessary if the::.de.si.gn was to. be' useg.; as a general purpose 

device. It was decided to improve intercell communication by 

enabling operations to be performed between data in neigh

bouring cells without having to transfer the data~ It was 

also de«~1ded to add a 'convergence check' capa.b111 ty. This 

would be used for terminating iterative operations when there 

are no longer significant changes in data. 

Each cell needs a mini.mum of one arithmetic and logic 

processor and at least two memory words to be workable, but 

the two word per cell organization of Lawrence proved to be 

awkward, particularly when multiplication had to be per

formed and when intercell data transfers were to be ma.de. 

Adding a third word would be a great improvement, and since 

there was no apparant need for a fourth word, a three word 

cell was decided upon. These then, were the basic parameters 

around which the computing memory cell was designed. 

The cells were organized in a rectangular array so that 

it would be suitable for solving two dimensional problems. 

However, the array could be converted to a linear arrsy quite 

simply. Since control was to be highly centralizedp an ela

borate control unit was built, which was capable of con

http:the::.de.si.gn
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trolling the execution of all arithmetic, logic and in

put - output operations automatically. All this was in

terfaced ~-to. a'.. PDP.8' .. computer which served as the main 

controller, storing all data and iteration programs. 

The complete list of the basic characteristics of the 

realized system is as followsa

1) Each cell can perform the following functions be

tween words of the cell. 


a) addition 


b) substraction 


c) multi plication 


d) division by 2n 


e) logical AND 


f) logical OR 


g) logical EXCLUSIVE OR • .. 


h) complementing 


2) 	Each cell has an 'inhibit' feature which enables the 

cell to ignore contro1 instructions 

3) 	Each cell has a 'convergence check' feature which 

enables the cell to test for s1gnlf1cant changes in 

computed values. 

4) The cells are organized in a. rectangular array. 

5) The neighbours of a cell, except for the boundary 

cells, are the cells to the north, south, east and 
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west. 

6) Control of the array is highly centralized. 

7) The control unit generates all the necessary logic 

states to execute the cell functions. 

8) 	The realized system is interfaced to a PDP8L com

puter which serves as the overall system control. 

The details of the design follows. 

CELL ORGANIZATION 

As shown in Figure 2.1, each cell resembles a small 

computer, containing its own memory, arithmetic processing 

unit and input - output circuits. These cells receive in

structions from a central controller simultaneously, also 

shown in Figure 2.1. Each cell has three memory words (m1 , 

m2 , and m ), two of which are intended for operand and
3

operator and the third for the results of cell computatlons. 

Each word is a 16 bit serially addressed memory. The processor 

consists basically of gating circuits and a full adder, also 

designed to operate sequentially. At the present state of 

technology, parallel arithmetic would be prohibitive both 

in 	cost and labour. Figure 2~2 illustrates the logical flow 

of 	data 1n a cell. There are two selector circuits which 

drive the input of the processor unit (P.u.). Selector 

circuit 1 chooses either the contents of word m of this1 
cell or of any neighbour cell. Selector circuit 2 chooses 
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3 WORDS 
ml 
m2 
m3 

-- --
ARITHMETIC 
AND LOGIC 
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WITH 

INPUT/OUTPUT 
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1 2 3 n 

I I I 
I I I 

CENTRAL r I I 
l l l 

CONTROL 
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FIGURE 2-1. GENERAL ORGANIZATION OF CELLS. 




-L 

17 

DATA FROM DATA TO 
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FIGURE 2 .2 COMPUTING NEt<lORY CELL: 

BLOCK DIAGRAM 
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one of the three words in this cell. The processor performs 

the arithmetic and logic operations listed in Table 2.1 

subject to the state of the inhibit logic, which effectively 

either accepts or ignores instructions from the central 

controller depending on its setting. The output of the 

processor can be fed to any combination of the three words 

of the cell for storage •. Th1s data flow organization allows 

us to perform operations between data in the cell or between 

data of this, and another cell or an external source, the 
' 

results of which can be stored in the cell. 

The 'convergence• logic is designed to compare previous 

and present values of data for a prescribed number of bits. 

If, for:·· example• ; -vhe value from the previous computation 

1s stored in m3 and the P.U. is computing the present value, 

then the convergence circuit will produce an output when 

these data differ. The comparison is performed at the same 

time while the P.U. output is being stored in word m • If3
any enabled 'convergence' circuit produces an output, this 

1s detected in the central control and can be used to recycle 

an iteration. 

REALIZED CIRCUIT 

Figure 2-3 shows the overall circuit for one cell. 

Not sho~m, are the eight memory address lines and driving 

buffers. In the model constructed, each cell requires 

17 I.e. chips to implement {this includes the address llne 

buffers) and requires about 1o9 watts to drive. These two 
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Arithmetic Functions 

ml + ml 

ml+ m2 

_ml+ m3 

·ml - ml 

ml - m2 

ml - m3 

Results of these operations can be stored 
in m or m or Illr1 2 

'A' is set external to the array, and 
operates on the whole data plane. 

n = 0 , 1, 2 , • • . • , 11 
This operation also operates on the whole 
data' plane. 

Shift data 1 bit leftJ Operates on rn only.1
Shift data 1 bit right 

Log1c·Operat1ons 

m··
1 

• m
3 

ml+~ 

ml+ m3 The results can be stored in m1 , m2 or m3 • 

ml+ m2 + m3 

_ml @ m2 

. ml (±) m3 

Complement (m1, m2 , m3) 

Note: 	 All the above ftmctions can be inhibited in any selection of 
cells by setting control bits O, 1 or 2. 

Co!llParison 

m3Ct -	 1) vs m
1 

(t) This means that current data in m3 can be 
compared with results of computations being 

m3 Ct - 1) 'VS m2(t) performed. 
If data are equal the output of the comparison

m)Ct - l) vs m
3
(t) is 'O', if not, a sequence of l's. 

!ABL~ 2.1 CELL FUNCTIONS 
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factors fjlone liml t the magnltude of the array to a s:rnall 

but useful 20 cells. Such a cell would be an attractive 

organization for realization with L.s.r .. · Should this be 

done, ~ cell with 50 or so input-output pins and perhaps 

only a few I.e. chips would result. 

MEMORIES 

The memories used in this design have the disadvantage 

of requiring se:pernte lnputs for wr'lt.lng logic '1' and 

logic '0'. This means that the line selectors (see Fig. 2-3) 

which consists of 2-input AND gates, have to be duplicated, 

three gates for writing 8 1 7s' and three for writing 'O's'. 

However, only three 'select write' lines are required. 

DATA SELEC'rOHS 

DATA SELECTOR1 selects da.ta either from m1 (B) or from 

any of five external sources. In our present array organiz

ation, the four external sources are the il!lmediate neighbours 

of the cell and the fifth is the DATA INPU'l'. Excluded from 

this selector are the data from m end m • Their inclusion2 3
appears redundant and would also increase the complexity 

of the circuit. 

DATA SELEc·ro.B.2 selects data. from any combination of 

m1 , m2 , or m for processl.ng O!' fo:c operation with data3 
from DATA SELECTOR1 • 

http:processl.ng
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ARITHMETIC UNIT 

The arithmetic unit consists of a one bit binary 

full adder and a J.K. flip-flop for delaying the 'carry 

out•. Besides 'addition', the AU can be ma.de to perform 

the EXCLUSIVE OR function by merely disabling the •carry' 

flip flop and taking the output from 2: • The logical AND 

function can be performed, also be disabling the 'carry' 

flip-flop but taking the •output from '<I0 ' the CARRY-OUT 

output. Note that these two follow from the fact that in 

a binary full adder, the carry-out is the AND operation of 

the two data inputs and the ! output is merely the EXCLUSIVE 

OR operation. Also, by presetting the carry flip-flop, ie. 

by setting the CARRY IN to '1', data can be incremented by 

one. 

DATA LATCHES 

The rest of the circuit can be considered the Logic 

Unit. The D-type latches are used to hold information for 

a pa.rt of, or a whole 16 bit address cycle. D and n3 are1 

data latches which hold data intended for the AU, for only 

1 bit (1/16 th) of the cycle. n2 is used for multiplication 

and holds data from m2 only, for a full 16 bit cycle. The 

address cycle 1s treated 1n greater detail in chapter 3. 



,INHIBIT LOGIC 

o4 and its associated logic gates form the 'INHIBIT 

OPERATION' logic. This circuit i1S designed to interrogate 

bits o, 1 and 2, of any of the words m1 , m or m selected2 3 
for operation. If a logic '1' is detected 1n either bits 

O, 1 or 2, the INHIBIT CIRCUIT will disable the 'WRITE ENABLE' 

logic. This prevents writing over existing data currently 

stored in m1 , m or m3, and in effect is equivalent to inhibiting2 

an operation for the cell in question. 

WRITE LOJilQ 

The ·'WRITE EMABLE' logic basically is made of t"lTO 3-input 

'AND' logic gates, one each for writing 1•s and O's. One of 

the three inyuts is for data,. another for the inhibit logic 

discussed in the previous paragraph and the third, for the 

WRIT.E strobe pulses., The 2-input OR logic allows for two 

sets of WRfiTE STROBE pulses. One set is common to all cells 

and thus operates on all cells simultane~usly and the other 

set which is unique to each cell. (by line selecting/demulti

plexing) allows operations in the selected cell on1y. 

CONVERGENC~ LOGIC 

n and 1ts associated circuitry perform the •convergence
5 

Check' operation. Data stored in m
3

, presmnably from the 
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previous computation, is compared with incoming data from 

the current computation by the EXCLUSIVE OR gatec If 

incoming data in the range being compared is different from 

·the previous data, a pulse will be generated which informs 

the control unit that the desired convergence has not yet 

been attained. This, for a relaxation type problem for 

example, enables the computer to repeat a self·~determined 

number of passes until the desired convergence is reached • 
•

This operation is enabled by storing a logic •1• in control 

bit 3 of m • n
5 

serves to interrogate this bit (bit 3) in3
the first cycle of operation to see if a convergence check 

is required. 

DATA READ OUT 

The DATA ou·r logic serves merely to select data from 

or D • n is selected only when we wish to transfer m1D1 3 1 
data from one cell to a neighbour for simultaneous operation 

with data of the neighbour cell. DJ is selected for normal 

data Read Out from m1 , m or m of any cell.2 3 

SU1'1MARY 

From Figure 2.3 we can see that the cell design is really 

rather straightforward considering that it can perform all the 
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functions listed in Table 1. One reason for this relative 

simplicity in design is the fact that the computations are 

done serially, one bit at a time. Thus a cell function takes 

a minimum of 16 bits or a full address cycle. The heart of 

the processor section is the binary full adder. It performs 

most of the major functions, and with supporting gating logic, 

the full complement of arithmetic and logic functions can be 

performed. 

Twenty of these cells were built on five printed circuit 

boards and are organized in a rectangular array as shoi·m in 

~i.g,._2:.4 •..~-. Each cell communicates with its four neighbours. 

The boundary cells communicates with its three nearest neigh

bours and is connected •end-a.round' to communicate with its 

corresponding boundary cell on the opposite side of the array. 



CHAPTER 3 

CONTROL UNITa- CLOCKING LOGIC 

In a system where control is highly centralized such as 

this is, the controlling unit has to be elaborate by necessity. 

The CLIM array cells described in chapter 2 operate entirely 

under central control. ~he control unit sets the logic state 

of 41 control lines, the state of which enables the appropriate 

functions. The total control actually.extends beyond the con

trol unit to be described, to include the general purpose computer 

to which the system is interfaced. The general organization is 

illustrated «-1n:·' ~Fig• :3 .1. Certain as peets of control such as 

data storage, setting of the data field and programmi.ng of 

sequenti.al iterations are intended as being in the domain of 

the general purpose computer. On the other h::md, certain 

other aspects like storage of instruction states, system 

timing and clocking, decision logic and microprograromi~g 

are common to the domain of both the specially designed control 

unit and the general purpose computere 

Since the PDP8 .. computer, serving as the general purpose 

computer, has only a small 4K memory bank, the control unit was 

designed to do as much of the control as practical. The PDP8, 

to be discussed in chapter 5, is used mainly to store datat 

~ 2'7 

http:sequenti.al
http:programmi.ng
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sequentially iterate programs and perform the microprogrmas. 

The control unit is discussed in two parts, the instruction 

registers and system interface in chapter 4, and the system 

timing and clocking logic follows .. 

CLOCKING LOGIC FUNCTIONS 

Basically, the function of the clocking logic unit 1s to 

provide the necessary pulse trains to execute the operations in 

the computing memory cell'. These basic functions include 1 

1) 	addressing the 16 cell memory bits serially. 

2) 	producing appropriate clocking pulses for D-type flip 

flops, to latch information stored in memory locations 

currently addressed. These are for the purposes of 

interrogating and latching 'Inhibit' information, of 

- holding 'multi plier' bi ts for a complete address cycle 

of multiplicand data, of interrogating and latching 

'convergence' information and of holding operator and 

operand data for the cell functions. 

3) 	generating 'carry' pulses for the JK flip flop asso

ciated with the full adder of Figure 3.3 and also to 

generate properly timed pulses for the 'preset' and 

'clear' inputs of the carry flip flop. 

4) 	generating write strobe pulses for writing data into 

addressed memory locations. 



JO 

5) providing logic 

a) to control the ADD/SHIFT cycle used in multiplication 

b) to indicate Busy or Free mode of the system 

c) to control the interrogation range of the convergence 

cheek. 

6) generating Flag pulses to indicate completion of an 

operation. 

ADDRESS CYCLE 

Starting from a basic master-clock pulse with mark-space 

ratio 	of one, a typical operation on one bit 1s as follows a

l) latch information from location currently addressed. 

2) perform logic decisions, as in convergence, if any • 

. 3) 	write processed information into currently addressed 

bit of selected memory. 

4) change address to the next location. 

These four operations can be defined in the time spanned for 

two clock pulses, having a total of 2 alpha and 2 beta edges, 

one edge for each of the operations •. (See Figure J.2). Thus, 

a full 16 bit operation, being one address cycle, would span 

over 32 clock pulses. Currently, the longest time needed for 

operation, propagation and settling, is approximately 100 ns 

between the operations 1) and 2). This allows the clock to 

run at a maximum rate of 5 MHz. The system is currently set 
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to run at 2 MHz. 

PULSE TRAINS 

Based on the function requirements listed earlier and 

on the cell circuitry, repeated in Figure 3.3 for convenience, 

the basic pulse trains illustrated in Figure J.4 can be derived. 

DATA LATCH PULSES 

Of the 32 clock pulses for 1 cycle, the 16 odd numbered 

pulses are used for data latch. The first one being used to 

latch contents of memory location '0000' (binary '0') which 

is the location addressed in the 'clear state•, the 2nd one 

for bit 0001, and so on. 

INHIBIT LATCH PULSES 

Only three INHIBIT Latch pulses are needed, the first one 

to 1nterrogs.te location 0000 the next, locatton 0001 and the 

third, location 0010. (Recall from Chapter 2 that bits o, 1, 2, 

of the memories are used for Inhib1~ operations). 

RESET AND PRESET PULSES 

The Reset Inhibit Latch logic allows the inhibit circuit 

to erase an 'inhibit' state carried over from the previous 

http:1nterrogs.te
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address cycle.Using D-type latches, an erase can be performed 

only by clocking the latch and presenting a logic •o• at the 

data input, or in this case by presenting new data which per

forms the dual function of erase old data and latch on to new 

data. 

The 2's complement preset occurs at data b:tt 4 after 

the control bits O, 1, 2 and 3 have been pl'ocessed (note 

that data bits for arithmetic operations are stored in bits 

4 to 15 only). It sets the carry-in of the full adder to 

'1' which increments incoming data by 1. 

The Carry Reset occurs at the very beginning of a cycle 

to erase any carry over from a previous operation. 

CONVERGENCE CLOCK PULSE 

The Convergence Clock is timed to interrogate bit J of 

the control data. If a •1• is detected, the cell in question 

will perform a convergence check on its data. The ba.sic Con

vergence Range pulses are available from bits 4 to 15. These 

pulses generated 111 the convergence circuit on the CONTROL 

BOARD, determine the number of data bits being interrogated 

for convergence. If, for example only Convergence Pulses 8 

to 15 are generated, then Convergence is checked only for 

data bits 8 to 15, ignoring changes in the less significant 

bits 4, 5, 6 and 7e {The ctrcuit for selecting thts range is 

described later). 
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MULTIPLICATION PULSES 

The technique for multiplication used here is the 

ADD/SHIFT technique. During the first ADD/SHIFT cycle 

(equivalent to 2 address cycles) a pulse is generated at _ 

address bit 4, during the 2nd, at bit 5 during the third, 

s.t bit 6, and so on, until the 12th and final cycle where 

a pulse is generated at bit 15. The reason for this is 

that during the first ADD/SHIFT cycle bit 4 of the multi

plier is interrogated an~ held for the rest of the cycle to 

operate on the multiplicand, during the 2nd cycle. bit 5 

of the multiplier is interrogated for the same purpose and so 

on until the full multiplication cycle (12 .A.DD/SHI~T cycles 

or 24 address cycles) is complete. ·rhis operation is illustrated 

in an example for multiplication between two 4 bit binary 

.numbers, presented in the next page. 

WRITE PULSES 

Whereas the DATA LATCH pulses were composed of the 

16 odd numbered master clock pulses, the WBIT.E pulses 

are composed of the other 16 even numbered l?'ulses. Recall 

that each bit operation consists of the interval occupied 

by one DATA LATCH pulse and one WRITE pulse. These WRITE 

pulses are available in 8 selections, the particular 

sequence se~ected being dependent on the desired operation. 

Fer example if cohtrol data bits 0,1,2 and 3 only are to 
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0 1 1 0 A register 

0 1 0 1 B register 

0 1 1 0 


0 0 0 0 


0 1 1 0 


0 0 0 0 


0 0 1 1 1 1 0 C register 

(a) 'Long Multiplication' of two binary numbers 

Now, to illustrate in-cell multi plication, let 1

.A = 0 1 1 0 

B = 0 1 0 1 = b4 b3 b2 bl 

c = 0 0 0 0 

1st ADD/SHIF'T cycle 

= 1bl 

A - 0 1 	 1 0 

c = c +A 	= 0 0 0 0 + 0 1 1 0 

= 0 1 1 0 

Shift .A 1 	bit lefts A .. 0 1 1 0 0 

EXAMPLE 3.1 CELL MULTIPLICATION 
(contd) 
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2nd ADD/SHIFT cycle 

b2 = o 
since b2 = 0 t addition is inhibited. 

Shift A, 1 bit lefts A = 0 1 1 0 0 0 

3rd ADD/SHIFT cycle 

bJ = 1 

A = 0 1 l 0 0 0 

c = c +A= 0 1 1 0 + 0 1 1 0 0 0 

= 0 1 1 1 1 0 

Shift A, 1 bit lefts A = 0 1 1 0 0 0 0 

4th ADD/SHIFT cycle 

b4 = 0 

since b4 = 0 addition is inhibited 

c = 0 1 1 1 1 0 

Shift A, 1 bit left: A = 0 1 1 0 0 0 0 0 

The Multiplication is now complete, the answer is in 'C' 

wheres- AX B = C = 0 1 1 1 1 O 

EXAMPLE 3.1 (contd) CELL MULTIPLICATION 
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be operated on, then a sequence enablin~ pulses 0 to 3 only, 

of the 16 WRITE pulses, is selected. Note that new data 

can be written into memory only when the appropriate WRITE 

pulse occurs. For all ar1 thmetic operations, :tt. i:s<necessa:ry:' to 

enable bits 4 to 15, these being the 1.2 data bits. The full 

sequence 0 to 15 is selected when new information has to 

be written into all 16 bits of memory. Selections of single 

pulses 0,1,2 or 3 are used if it 1s:requiredtoalter just one 

control bit. The final selection is where all WRITE pulses
-

e.re disabled, as one would require when nondestructive 

data read out is desired. These selections are tabulated 

in Table 3.1. 

CARRY PULSES 

The final pulse train is the CARRY pulses. These 

operate the 'carry' flip flop when the cell ls performing 

addition, and hence a.re required only for blts 4 to 15. 

REALIZED CIRCUIT 

The circuit that was constructed produces all the 

pulses described. above, and is illustrated in Fig. J-5 .. 

The heart of this circuit is a free running clock and a 

string of counting elements consisting of J flip flops 

and two 4 bit binary counters .. The output of the first 

flip flop, which serves to genera.te a mark-space ratio 

http:genera.te
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-~of one for the clock pulses, is considered· the master clock. 

The second flip flop and the first counter (total of 5 bits) 

control the address cycle which occupies 32 master clock 

pulses. The third flip flop and the second counter (total 

of 5 bits) is used to control the multiplication cycle 

which occupies 24 address cycles. 

The CARRY OUT pulse from the first counter is used 

as a flag to indicate the end of a multiplication cycle. 

These pulses are fed to flip flop 4, which starts and stops 

the master clock and hence controls the cycle. A cycl·e is 

iniated by the START !OP, generated by the PDP8, which 

triggers flip flop 4 and starts the master clock. The CARRY 

OUT pulse from counter 1 or 2, serves to reset flip flop 4, 

It also serves as the system FIJ.AG 1 which informs the PDP8 

that the operation is complete. 

Prior to any operation, the PDP8 generates a CLEAR IOP 

which clears or sets all logic on the control board to an 

'initial' state. The output frou each bit of the first counter 

is decoded via a binary to a 'two out of e1ght' decoder. 

This gives 4 'X' lines and 4 'Y' lines to address the 16 bits 

of the memories. For example, bit 0 is addressed by Y1 x1 , 

bit 1 by Y1 x2 , etcJ and bit 15 by Y4 x4 • 



PULSE TRAIN LOGIC 

Logic for producing all the pulse trains of Fig. J.4 

are available from the counters and decoder so far discussed. 

The following pulse trains are fairly straightforward and the 

logic realizations should be obvious from Fig.J.4 and F1g.J.5s

DATA LATCH = F' 

IMHIBIT LATCH CLOCK = F'. Y1 .x4 

RESET INHIBIT LOGIC = Y'1 + x1 = Y1.X1 

2's COHP PRESET = F•.Y2 .x1 .(2's COMP ENABLE) 

CARRY RESET = F'. Y1 .x1 
CONVERGENCE CLOCK = F'. Y1 .X4 

CARRY CLOCK = F•.'Y1 .(BOOLEAN DISABLE) 

The WRITE logic has three control lines A, B, C, connected 

to the· IR, which allows the selection of eight pulse trains 

as illustrated in Table 3.1. The WRITE function can be 

produced by 1

WRITE = F.C.(~.Y + A.Y) + F.Y.C(B ® M + A$ L) 

The MULTIPLICATION clock pulses are intended to enable 

o2 of each cell to latch on to multiplier data bits, each bit 

for a complete ADD/SHIFT cycle. As explained earlier, since 

multiplier data 1s stored in bits 4 to 15, the multiplication 

clock must be designed to interrogate bit 4 during the 1st 

http:F1g.J.5s


logicIR setting pulse 
' c B A enabled train pur_I'.Q_s e 

0 0 0 F • 0 nothing no oper~~ion 

0 0 1 4 control btj;g·bits 0-3F • Y1 
.. y0 1 0 F ARITH OPERATIONbits 4-151 

F • 10 1 1 bits 0-15 all of memory 

·F•Y1 ~x11 0 0 bit 0 INHIBIT bit 

F•Y1.x2 bit 11 0 1 control bit 1 

bit 21 1 0 control bit 2F•Y1•XJ 

F•Y1 .x4 bit 31 1 1 CONVERG. bit 

The circuit to produce the logic of colu:rm~ two 

can be minimized by replacing x ,x2 ,x3fx1_,., by1 

logic from the 2 lsb. of COUNTER1 , where 1

X1 x 2 X3 X4 
M 0 0 1 1 

-L 0 1 0 1 

The pulse trains of column J can be generated 

by the WRITE function 1

WRITE= F.C.(B.Y + A.Y) + F.Y.C.(B E9 M +A E9 L) 

TABLE 3.1. WRITE PULSES SELECT 
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ADD/SHIFT cycle, bit 5 for the next cycle and so on, and 

finally bit 15 for the 12th and last ADD/SHIFT cycle. As 

illustrated in Table: J .2, this pulse train can be realized 

by the logic c-

MULT = F'. CL e 'P>. CM e Q). CN e R). co e s> 

Note, in Table: 3.2 that since COUNTER2 only needs to count 

12- cycles, it is always preset to binary 4 before any operation. 

The CONVERGENCE RANGE pulses are also produced by
• 

using m<'.CLUSIVE OR logic :

CONVG. = F'.(ae L).(b'e M).(c e N).(ce 0) 

The selection of pulse trains is presented in Table. J.J. 

These pulse trains are directed to the clock of flip-flop6 

which is designed to detect a logic 1 at the 'J' input for 

the duration of the CONVERGENCE RANGE selected. The input 

to 'J' of f11p-flop6 is the 'OR' function of the outputs 

from the CONVERGENCE logic circuit of all cells in the 

array. 

If in the selected range, a logic 1 ls detected from 

any of the cells, which are enabled for Convergence check by 

setting blt 4 of m3 to '1', a pulse is generated which is 

called Flag2 and is used to instruct the PDP8 computer to 

recycle the iteration. 
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COUNTER1 
ADDRESS 

BIT 0 N M L 

0 0 0 0 0 

1 0 0 0 1 
COUNTER2

2 0 0 1 0 
ADD/SHIFT 

J 0 0 1 1 CYCLE s R Q p 

4 0 1 0 0 1 0 1 0 0 

5 0 1 0 1 2 0 1 0 1 

6 0 1 1 0 3 0 1 1 0 

7 0 1 1 1 4 0 1 1 1 

8 1 0 0 0 5 1 0 0 0 

9 1 0 0 1 6 1 0 0 1 

10 1 0 1 0 7 1 0 1 0 

11 1 0 1 1 8 1 0 1 1 

12 1 1 0 0 9 1 1 0 0 

13 1 1 0 1 10 1 1 0 1 

14 1 1 1 0 11 1 1 1 0 

15 1 1 1 1 12 1 1 1 1 

By comparing these two 'truth' tables we can see that 

MULT = F' • ( L E9 P) • ( M ~ Q) • ( N E9 R} • ( O E!> S ) 

is 'true' when Address bit 4 coincides with ADD/SHIFT 

cycle 1, bit 5 with cycle 2 and so on. 

TABLE J.2.. MULTIPLICATION 
PULSES 



47 

IR SETTING 
c b a 

PULSE 
TRAIN 

# of signif
leant bits 

0 0 0 bits 4-15 12 

0 0 1 bits 5-15 11 

0 1 0 bits 6-15 10 

0 1 1 bits 7-15 9 

1 0 0 bits 8-15 8 

1 

1 

0 

1 

1 

0 

bits 9-15 
' 

bits 10-15 

7 

6 

1 1 1 bits 11-15 5 

The Convg. interrogation function can be generated 

by using logic from COUNTER1 alone together with .3 

externally set 'select' lines. The function a-

CONVG. = F'.(a Ef) L).(b Ef) M).(c@ N).(c E& 0) 

will produce a pulse when COUN·rER1 logic coincides 

with the 'select' setting. This pulse marks the 

beginning of the convergence interroga~ion, and is 

used to trigger f11p-flop5 of FIG.3.5., which will 

enable F' pulses from this time on till the end of 

the address cycle. 

TABLE J • .3.._._ CONVERGENCE PULSES SELECT 
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SUMMARY 

This section of the control unit serves to generate 

the various pulse trains to execute the cell operations, 

which are controlled by the state of the IR. 

The waveforms shown in Fig. J.4 were formulated, based 

on the logic_a.1 sequences required for the various cell functions 

decided upon. The circuit of Fig 3.5 is merely a logic circuit 

realization to produce the waveforms of Fig. J.4. 



CHAPTER 4 

CONTROL UNIT - INTERFACE DESIGN AND 

INSTRUCTION REGISTERS 

In conjunction with the clocking logic, the control 

lines to be described serve to enable or disable critical 

logic gates in the cells in order to allow execution of 

the desired operationo These lines control functions such 

as:

1) selecting array location from which data is to be 

read. 

2) selecting array location to which data is to be 

written. 

3) selecting the neighbour from which data can be 

read from or sent to. 

4) enabling the decision logic to inhibit or allow an 

operation. 

5) enabling a path for multiplication, addition or 

complementing. 

6) selecting data either from the sum output or the 

Carry-Out output of the full adder. 

Unlike the control lines described in Chapter 3, these lines 

are held in the same state for the whole address cycle. The 
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state of this group of control lines un1.quely define a path 

of information flow in the cells for a full cycle, consequently 

controlling the function to be performed. 

Most of the pulse trains described in Chapter 3 are 

·closely tied to the function to be performed and therefore 

also to the setting of these control lines. In these cases, 

the relevant pulse trains are enabled depending on the state 

of these lines. These lines then can be thought of as In

struction·:r;1n.as, their various states as Instruction Sets and 

the registers (1n this case, D-type latches) which hold the 

Instruction Set, as Instruction Registers. 

Not all the pulse trains are tied to the basic instruction 

lines. Those which require a measure of versatility like the 

write pulses, Convergence 'interrogation range' pulses and the 

Inhibit pulses are selected as required by their own allocated 

set of registers. · They. also form part of the IR (Instruction 

Registers). 

The control lines from all the cells are tied in parallel 

to the IR. The actual instruction set is stored in the PDF8 

computer which transfers the instructions to the IR as required. 

The IR then has to be interfaced. to communicate with the PDP8. 

For this pu~pose a stra.lghtforwa.rd and simple design is utilized 

where a one to one link is established between a limited number 

of registers and the accumulator of the PDP8. No 1nstruct1on

set coding is utilized, and the result is a simple hard"t·~are 

McMASTER UNIVERSITY LIBRAR\' 

http:stra.lghtforwa.rd
http:struction�:r;1n.as
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design which requires elaborate instruction and data loading 

procedures. 

INTERFACE 

The total interface design consists of 40 D-type latches, 

two 16 bit shift registers and some miscellaneous logic. or 

the 40 latches 31 serve as the IR, 5 as array location address 

registers and 4 are spares. One of the 16 bit shift register is 

used to store data 1ntend~d to be written in a selected array 

location and the other is used to store data to be read back 

to the PDP8. Both shift registers have parallel data input 

and output facilities. This is necessary because the PDP8 

accumulator handles data in parallel whereas the computing 

memory cells handles data serially. 

INSTRUCTION REGISTERS 

The IR (see Figure 4.1) is organized in 4 rows of 10 

latches each. The input of the 4 rows are connected in parallel 

as illustrated and. are presented wl th data from the FDP8 accumu

lator simultaneously. In any one instruction loading cycle 

only 10 of the 12 PDP8 accumulator bits serve to hold control 

information and the other 2 is used to select one of the four 

rows of latches to which control information is transfered. 

Thus a typical instruction set has to be loaded in four cycles. 
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For 	example the following state:

(ROW 	 SELECT) ( 10 INSTRUCTION BITS ) 

0 0 0 1 1 0 1 0 1 0 1 1 

loads the 10 instruction bits into the first row. The 

second row will be selected by the leading code '0 1', 

the third by '1 0' and the fourth by 1 1 1'. 

DATA 	 REGis·rERS 

Both Data Registers are 16 bit devices. This 

incompatibility to the 12 bit PDP8 accumulator makes it 

necessary to have two loading cycles for any data transfer. 

For the DATA IN register, the first cycle loads 12 data 

bits into the 12 msb of the register (most significant 

bits, bits 4 to 15), and the second cycle loads the 4 

control bits, from a new set of accumulator data, into the 

4 lsb of the register. Each cycle is executed by its 

assigned IOP (input-output pulse) generated by the PDP8. 

In a similar manner, for the DATA OUT register, the 12 

data bits are written into the PDPB accumulator in the first 

cycle by one !OP and the 4 control bits are written during 

the second cycle by another IOP. To write data into a selected 

array location, data from the PDP8 Accumulator is loaded in 

parallel into the DATA IN shift registers (See Figure 4o2) 
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Then a loading cycle is initiated which writes data into 

the selected location one bit at a time. This procedure is 

repeated for each location. Reading data out from the array 

is the reverse. One cycle reads data from the selected location 

into the DATA out register serially (See Figure 4.3). After 

this, data is read out in parallel to the PDP8 accumulator. 

One bit 1n the Instruction Register is used to select reading 

either the 12 data bits or the 4 control bits. 

ADD SHIFT CYCLE LOGIC 

Recall from Chapter J that multiplication was performed 

by a sequence of ADD cycles and SHIFT cycles. During each phase 

of the ADD/SHIFT cycle, different control lines have to be acti

vated in order to enable an ADD operation after which the lines 

have to be reset to perform the Shift operation. The circuit 

to perform this is 11lustrated ir1 F1g.~4.4.: , 

During the ADD cycle the A/S line is held 'High', and 

this enables Read m1 , Read m
3

, Write m • This setting allows
3

the data flow •m1 + m3 store in m3•. Thus the contents of m1 
are added to the contents of m • During the SHIFT cycle, the

3
A/S line is held 'Low•, and this enables Read m and Read m B1 1
and write m1 • This allows the operation 1 m1 + m1 store in m •.1
This is equivalent to multiplying the contents of m1 by 2, and 

since m is a binary number, it is also equivalent to-shifting1 
m by 1 bit -towards the msb. The ADD/SHIFT cycle /1s .r~pea"tEfd - .;,_ ,_i_ 1 
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12 times to complete the multiplication. 

MULTIPLICATION BY A CONSTANT 

A s1mple addition to the interface board allowed 

multiplication of data in the array by an externally set 

constant. ·The multiplier in this case is stored in the 

DATA IN register of Fig. 4.2, and the D type latch serves 

to hold multiplier data for a complete address cycle in much 

the same way as explained for in-cell multiplication. 

MULTIPLEXING 

Communication of data between the PDP8 and the array 

is performed for one cell at a time. This then necessitates 

the use of multiplexing and demultiplexing techniques to 

communicate with each cell uniquely. For this purpose we 

have a section of multiplexers and demultiplexers capable 

of handling 32 lines each, of which only 20 of each are used 

since we only have 20 cells. As illustrated in Fig.4.5, both 

multiplexer and demultiplexer are controlled by 5 select 

lines set at the interface IR. 

DATA OUT lines, one from each cell, are fed to the 

multiplexer/line selector, where data from one line only, 

selected by the IR setting is read into the DATA OUT 

register. This data. is then read out to the PDP8 for 
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storage and eventually for Type-Out Display. 

Reading data into the cells is somewhat different. 

WRITE pulses, rather than input data, are fed into the 

·demultiplexer and directed to a cell selected by the IR 

setting. Input data is presented to all cells simultaneously 

but only the selected cell can perform writing data into. 

memory, because only it has WRITE pulses. This technique 

has a very definite advantage over the alternative technique 

of feeding data to the demultiplexer, as this would require 

additional inhibiting operations in the cells not chosen. 

Recall that the absense of 'WRITE; pulses or the inhibiting 

of WRITE pulses in effect inhibits a cell operation, 

The organization ls such that line 'O', selected by 

binary 'OOOOO', is fed simultaneously to all cells whereas 

lines 1 to 20 are fed to one cell each, Thus when line 'O' 

is selected, WRITE· pulses are presented to all cells 

and allows the array to perform o~erat1ons in unison. 

SUMMARY 

The incompatibility of the PDP8's 12 bit accumrtl.ator 

to the 16 bit memory words of the cells pose an inconvenient 

problem when it is necessary to transfer data between the 

PDP8 and the array processor. However, the main point to 

note here is that in spite of the primitive interface 
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design, the c.apabillties of the array are :not hindered in 

any way. The only major d:i.sa.d:n~ntage is ;that the programmlng 

required to perform any operations will be more complex. 

It is only after e. more complete and .more efficlent 

instruction set is developed that an eff iclent interface 

control system can be designed.. The required instruction set 

would be dependent on the function capabilities requireda 



CHAPTER S 


OPERATE PROGRAMS 

The PDP8 serves as the general purpose· computer 

linking the array processor and the user. All information 

to be directed to the array must first be stored in allocated 

locations in the PDP8, after which the appropriate loading 

routine will be executed to transfer data from the assigned 

locations to the array on a one to one basis, where data 

from one assigned location will go to a particular address 

in the array. In a similar manner the complete instruction 

set is stored in the PDP8 and special routines have to be 

initiated which loads the IR and starts the operation. 

Normally one should look on the array as a special peripheral 

to a general purpose computer, however in this case where a 

significant part of the controlling is performed by the PDP8, 

the array becomes the main device and the PDP8 merely a 

programmable controller. 

The OPERATE programs consisting of the subroutines, 

the instruction set and the allocated data storage locations 

is fairly elaborate, and at pr.esent occupies nearly two thirds 
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of the PDP8's core memory. With the present distribution of 

functions, the PDP8 is completely tied up. Only when the 

interface-control design is improved to have its own memory 

to store microprograms and instruction set data, only then 

can the PDF8's role be reduced significantly. This would be 

4e~1rable since the general purpose computer can then be 

liberated to perform other functions while the array is 

performing some lengthy iterations. 

Following will be the description of the instruction 

set used to control the cell functions. Each instruction set 

consists of four octal numbers which are derived by grouping 

the 12 PDP8 accumulator bits which represents the instructions, 

into four groups of three bits each. 

BASIC CELL CONTROL LINE LOGIC 

All functions in the array processor are controlled 

via the INSTRUCTION REGISTER, and this in turn is set by 

software programs in the PDF8. The IR holds information to 

perform one operation only, the operation being determined 

by the state of the IR, 

Table 5.1 shows the setting of the cell control lines 

to perform the c~ll functions defined. In the table, a •1 1 

represents a high voltage level (3 volts) and a 'O', a low 

voltage level (0 volts). An 'S' is used to indicate that 
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010 

010 

010 

010 

010 
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•s• 

Logic 1 

Logic 0 

lines to be 
selected as 
requiredo 

TABLE 5.1 CONTROL LINE LOGIC FOR 

BASIC CELL FUNCTIONS. 
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one variation of the same control function is to be selected. 

For example, in the column for DATA TRANSFER, the 'S' indicates 

that the desired direction of transfer is to be set as 

selected by the user. An •s• in the WRITE SELECT column 

1ndioates that one or more of the three words, m1 ,m2 or m3 
are to be selected to store the results of the computation. 

INSTRUCTION SET 

The instruction register layout, organized in four 

rows of ten bits per row, is illustrated in F"ig. 5.1. 

When it is required to transfer an instruction from the PDF8 

to the IR, the instruction consisting of 12 bits of information 

1s first loaded into the accumulator. Of the·12 accumulator 

bi ts from the PD:P8, the· 2 msb are used to select one of the 

registers; O O for IR0 , O 1 for IR1 , 1 O for IR2 and 1 1 for 

IR3, as shown at the left side of each row. An IOP then 

transfers the other 10 bits of the accumulator into the 

selected IR, to be used as control information. 

The basic instruction set is presented 1n Table 5.2. 

The 12 accumulator bits are written as 4 octal numbers. This 

table is derived from Table: 5.1 and ftg.•, 5.1. Here again, 'S' 

is. used when a selection is required for one or more 

variation of the same control function. Each instruction 

set consists of four 12 bit instructions, one each for IR0 , 

IR1 , IR2 , and IRJ where 1n each case, the 2 msb of the 
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IR state setting in octal 
CELL 


FUNCTION 
 IBO IR1 IR2 IRJ 

0000 200? 4000 7142ml +ml = mJ 

0000 2007 4000ml + m2 = m3 7242 

0000 2007 4000 7442ml + m3 =mJ 

0000 2027 .4000 7142ml - ml = mJ 

0000 2027 4000 7242ml - m2 = mJ 
I 

0000 2027 4000 7442m1 - mJ = mJ 

x m 0000 40002307ml = mJ 7.5522 


x const 
 0000 2107 4000 7552ml = mJ 

m :. 2 0000 lt-0002017 7112•1 
'' ,· 

SH 
' 

1 Bit Left 0000 4000_·2007 7112 

SH 1 Bit Right 0000 201? 4000 7112 

LOGIC OP. 
0000 2006 4400 7242ml,•-·~ 

0000 2006 4400 7442ml • mJ 
0000 2004 4000 6J42ml + m2 

m., 0000 2004 4000 6542+ m3l 

0000 2004 4000 6742ml + m2+ m3 

!_@1_~__.id BASIC INSTRUCTION SET 

(contd. ) 

http:1_~__.id


68 

CELL 
FUNCTION 

mi·($ m2 

m
1 

@ m3 
COMP. m1 
Rd DATA IN 

Rd DATA OUT 

CONTROL OUT 

TRANSFER 

IR0 

0000 

0000 

0000 

10SS 

ooss 

' 01SS 

0000 

IR1 

2006· 

2006 

2004 

2000 

2000 

2000 

2000 

I~ 

4200 

4200 

5000 

4-000 

4000 

4000 

4sso 

IRJ 

7242 

7442 

6142 

6os3 

6soo 

6soo 

7043 

note: 	 Four octal numbers form one set of instructions. 

Each of the octal numbers represent the 12 ace

umulator bits of the PDP8. 

Of the 12 Acc. bits, only 10 are used as infer

mation for the IR, the 2 msb. are used to select 

the relevant IR. 

In the Table, an 'S' is used to indicate that 

the instruction code is to be selected, based 

on the IR shown in FIG. 5.1, as desired by the 

user 

T.1\BLE 5L2 (contd.) BASIC INSTRUCTION SET 



12 bit instruction are used to select the appropriate row 

of register • 

OPERATE PROGRAMS 

To facilitate the use of the array processor, a sub

routine library has been prepared which enables the user to 

perform any cell operation, input-output transfer or type

out display by just using a mnema-nie: code of up to six char

acters which calls the relevant subroutine. This library of 

programs, called the 'OPERATE PROGRAMS is completely listed 

in the appendix. The language which is used for these programs 

is PAL. Since the PDP8 ... has only a 4K memory, PAL which is 

the most efficient, is most appropriate. 

The basic subroutine to perform a cell operation is 

illustrated in the flow chart of Fi'&~ 5.2. Basically, it 

involves loading the appropriate instructions into IR0, IR1 
IR2 and IR3, and generating an !OP (input-output pulse) from 

the PDPS to initiate the cycle. The program, also illustrated 

in Fig, 5.2 is typical of all the programs for cell functions. 

The data for the instruction registers is available from 

Table 5.2. 

Programs for the communication of data between the array 

and the PDP8 is somewhat more involved. In these programs, a 

link must first be made between the PDP8 and the cells of the 
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array, one cell at a time. For example, the program for 

wr1t1ng data into the array.performs the following steps:

1) Load data register 

2) Select cell address 

J) Execute WRITE routine 

These steps, illustrated in the flow chart of Pig., 5.3, are 

repeated for each cell location. 

The program for rea~1ng data out from the array, is 

illustrated in the flow cha.rt of Fig-, ,5.4. It performs the 

following steps for ea.ch cells

1) Select cell address 

2) Transfer cell data to DATA OU~ register 

J) Transfer data to PDP8. 

The complete list of routines for writing data into the array 

and reading data out from the array 1s listed in the appendix. 

Another type of routine in the OPERATE PROGRAMS is the 

DISPLAY routines. These, also listed in the appendix, are 

used to display via the teletype machine, any selected set 

of data from the cells of the array. currently, the data is 

typed out in a rectangular 5 X 4 array similar to the array 

organization of the cells. Actually, these programs display 

data stored in allocated locations of memory. Data answers 

computed in the array, have to be transferred to these loca.t

1ons first, by using the programs for reading data out of 

the array. 
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STORAGE ALLOCATIONS 

Prior to any computations, all necessary data and 

control information together with the OPERATE programs and 

the main program must be stored 1n allocated sections of the 

PDP8 memory. After any computation, data answers from the 

cells are also read into allocated locations of the FDP8 

before they can be displayed. The idea of of using the PDP8 

memory as a buffer storage for input data and for output 

answers, though seemingly inefficient and redundant. is 

necessary to allow for easier programing. 

The complete list of memory allocations is presented 

in '!'able 5.3. Note from the table that the 16 bit words of 

the cells are stored in two sections. one section for 12 bits 

of data and the other section for the 4 bits of control 

information. This arrangement is necessary because of the 

incompatibility of the PDF8's 12 bit memories to the 16 bit 

words of the cells of the array. 

Note also, from Table· 5.3, that the OPE.BATE programs 

and the data storage locations together occupy about 60% 

of available memory, leaving less than JOOOa locations for 

the Main programs. If the array processor ls to be used as 

a permanent peripheral to the PDP8 or any other small computer, 

this situation will be most inconvenient. It can be alleviated 

only by using a more sophisticated interface and control unit 

design. 
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MEMORY 
LOCATIONS CONTENTS 

0 - 177 

200 - 2777 

3001 - 3025 

3031 - 3055 

3101 - 3125 

3201 - 3225 

3231 - 3255 

3301 - 3325 

3401 - 3425 

3431 - 3455 

3510 - 3525 

3601 - 3625 

3631 - 3655 

3701 - 3725 

4000 - 4777 

5000 - 5777 

6000 - 7600 

?600 - 7777 

Program Constants 

Main Programs 

12 data bits, answers 

from the array 

4 control bit~, read 

out from the array 

12 data bits, data 

for the array 

4 c~ntrol bits, data 

for the array 

m3 

OPERATE;::::~:u::~;r~s·"I 
PROGRAMS 

CELL OPERATIONS _J 

PDP8 Loader Programs 

Nb. the memory locations are in octal numbers. 


TABLE 5w3 STORAGE ALLOCATIONS 
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EXAMPLE 

The rather extensive list of OPE&.~TE programs however, 

enables us to write very simple main programs. One such 

program used to demonstrate multiplication between m1 data 

a~d m2 data, is presented in the following example, where 

all array operations a.re executed by calling the subroutine 

with a mnemonic code of up to six characters. 

The following test· program (in PAL) 1

l) clears all cells. 

2) writes Data and Control information, already 

stored in the allocated sections of the PDP8 

memory, into m1 and m2 of all cells. 

3) multiples m1 .by m2 _and stores the results in m •
3

4) reads answers 1n m3 to the PDP8. 

5) types out a display of the answers in m3• 

*200 starting address of main program. 

CLA clear PDP8 accumulator. 

CLEAR clear all memories in the array.

WR1D write data into m1 • 

WRlC write control bits 1nto m •


1WR2D write data bits into m • 

WR2C write control bits int~ mf. 

MULT multiply m by m2 , store _n m •
1 3RDJD read m data 1nt6 PDP8. 

RDJC read m~ control bits into PDP8. 

TPJD display m data via teletype. 

TPJC display m~ control via teletype. 

HLT halt. -' 




----

?? 


SUNMAHY 


The main purpose Of the OPERATE protrram library is to 

have available all subroutines which wouid make usae_e of the 

array p:rocessor easier. 'fypically, all the cell functions 

which are stored ln subprograms can be executed by merely 

tre.nsferring program contx·ol to the subroutines.. At present, 

the list of OPERATE progrmns ls complete 1!1 that. it has available, 

all the functions we require, Of course if any other functions 

a.re introduced, the list cr:m be exp9nded accorcUn.gly. What 

could be a major add1. ti on to this list of programs are routines 

which command. a sequenc~ of cell op21~ation.~ to perform some 

standard se,;qu.0ntlal i tera ti on. At present, such programs like 

relaxation solution for Laplace equations are considered as 

main prog:ca.ms. Other ;suc:h progra111s could include for example, 

programs to perform correlation between data in the array~ 

various matrlx opera.tlons ~ and. in fact e.ny algorithms that 

may be useful, 

This chapter has served as the final descriptive chapter of 

the array processor. The chapters 2, 3, 4 ancl 5 are intended 

to explain the overall system from the basic cell to the pro

gram usage of the systems It is expected that the user, in 

e.ddi tion to this thesis j become familiar with the PDP8 computer, 

and with programmlng ln PAL, in order to make use of the system. 

http:prog:ca.ms


.. '· 

CONCLUSION 

The field of parallel processors ls still very young. 

Although a fair amount of work is being done in 1t, each 

effort appears only to open up more areas of application 

and to reveal how pr1mttive the state of deYelopments still 

is in this area~ To date, except for t:ne simple associative 

memory of Lee and Paull, all po.rallel proc.essors, notably 

the Be!:'keley Array processor, the cellular LPL computer of 

Montana State University and the ILLIAC IV of the University 

of Illinois, have no collllllercial application fl.-nd e.re malnly 

special purpose, experiments.l models. 

This project was intended n.ainly to provide a base from 

which investigations can -be made o:n the a.ppllce.tion.s 

of parallel proccss:i.:'.1.g a:r.rays to the fields already mentioned 

in this thesis such as t1me averaging functions, :partial 

differenti.al equations with La:placian Field problems in 

particular, and possibly for operation on multidimensional 

problems such as those encountered. 111 optimizatlono 

It is only with a good understandlng of the basic 

capabilities and limltatlons of the basic cell, that a. 

realistic approach can be made ln investigating the areas 

mentioned above, and it is hoped that this thesis will serve 

to foster such unclerstandirig. 

- 78 
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The project itself has by no means, come to an end. 

Rather, it was a step in developing a system with which 

it is expected that a great deal more work can be done. 

Thus far, the system that was implemented consists of a workable 

array of 20 cells, arranged in a. rectangular geometry, with 

fixed neighbourhood, where the neighbours are the cells to 

the north, south, east and west. The cell consisting of 

three memory words and one processor is fairly complex, being 

able to do arithmetic and logic flmctions between data in 

the cell. Control of the array is essentially centralized 

but e~'lch ce11 has some local s.utonorny. This is all inter

faced to a PDP8 computer. A set of programs has been developed 

which executes the complete list of cell operations. Except 

for test progrs.ms and the very popular program for solving 

Laplacian Field problems, no :)ther programs or algorithms 

have been developed. Thls then is the area in which a great 

deal more work can be done. :Most immediate, especially with 

the Digital Instrumentation Group in mind, are the algorithms 

needed to perform correlation, autocorrelation, convolution 

and the Fast Fourier Transform and possibly even the Walsh 

Function. At this stage, any algorithms developed can at 

most be demonstrated usl.ng stored waveform data. If functions 

are to be processed in real time, an efficient data interface 

design must be i.'.Ilplemented to allow very high input-cutput 

data exchange rates. In the present design, all the cell 

http:progrs.ms
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functions are performed sequentially and those functions 

such as addition and subtraction which can be performed 

in one address cycle can be performed at a optimum time 

of approximate 4 microseconds. Multiplication however 

·which takes ~laADD/SHIFT~ cycles will require 96 micro

seconds. These may -irery well be the limiting factors when 

real-time processing is considered. The solution to this 

problem lies with the development of cells which performs 

the cell function in parallel. Such cells would be very 

complex and massive. However, with the development of 

Large Scale Integration, a cell with parallel arithmetic 

and logic could be readily realized. In connection with 

this concept, we note that the cellular array techniques 

for multiplication and division such as those proposed by 

J. Majithia (16) would be quite appropriate for this use, 

particularly if and when L.s.I. can produce these arrays. 

The existing interface design discussed in Chapter 

4 is simple and crude. The Instruction Register which 

controls the function to be executed is set directly by 

the PDP8 computer, and only one function state can be set 

at a time. Moreover, the instruction register which ls 4·0 

bits long requires 4 cycles from the computer, whose accumu

lator has only 12 bits, in order to set it. This requires 

lengthy programming and slows down the operations. This is 

an area where the present system can be greatly improved. 



It calls for a interface-control design where the instruction 

register can be reduced to a compatible 12 bits if the PDP8 

is U!=!ed or 16 bits if a machine is available with a 16 bit 

accumulator. This would involve implementing a network which 

decodes instruction register information to set the control 

lines of the cell array. Consequently a convenient instruction 

set will have to be developed which allows easy programming. 

In addition, it is proposed that a small memory be incorporated 

in any new interface-control design for the purpose of storing 
t 

microprograms. The microprograms may include, not just basic 

cell operations instructions but possibly, subprograms for 

complete sequences of iterations as well. This would lib8rate 

the general purpose computer for other function, while array 

computations are being executed, and r-rould represent a major 

improvement to the present system. The size of the array 

1 tself can be expanded by simply wiring in more cells. How

ever, it 1s expected that the 20 cells array will be adequate 

for present.. requirements, 

It appears quite certain now, that alo1"1g with the great 

speed with which the general field of digital devices, instru

ments and systems are ad1rancing, that the concept of a cell 

with memory and logic has an important roleo Its ultimate 

development depends very much on the advancement in L.S.I. 

technology and the development of algorithms that can make 

effective use of the sophisticated nature of the Comput1~g 

Memory Cell, 
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COLUMNt·i NUMBER 

6 5 4 J 2 1
7 


7400 7430 7400 7430 B.lJ 7408 

7400 7400 7400 7481 7481 7408 

7400 7410 7410 7481 7481 7408 

. 
7451 74Ht83 7486 7481 7481 74H11 

7476 7475 7475 7404 74H11 
--t-· . 

7400 7430 7400 7430 R6J 7408 

7400 7400 7400 7481 7481 7408 

7400 7410 7410 7481 7481 7408 

7451 74H183 7486 7481 7481 74H11 

7476 7475 7475 7401} 74H11 

7400. 

7416 

7416 

7451 

7475 

7454 

7416 

B.81 

7451 

-

2 


3 

R 

0 

w4 


N 
u 
M5 

B 
E 
R 

6 


7 


8 


9 


10 


Nb. 	 All the above I.e. chips have the 

prefix 'SN' • 

Each chip location is identified by the 

BOW number followed by the Column number~ 

TABLE A.. 1 p. c • BOARD LA.You·r FOR !~ CELLS 
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COLUMN NUMBER 


7 6 5 4 3 2 1 


R16 R15 R14 BlJ R12 

7417 7417 7417 7417 7417 7404 

7416 7416 ?416 ?416 7400 7400 

I 

MC 
7419.3 4040P 74193 7473 

7430 ?404 ?486 ?400 ?473 

7410 7486 7420 7473 74H11 

7410 7400 7400 7451 7406 

7404 7404 74.30 

I 

1 


2 


3 


4 


5 


6 


7 


8 


9 


10 


R 
0 
w 

N 
u 
M 
B 
E 
R 

Nb. 'MC' specifies a MOTOROLA I.e. Chip. 

TABLE: A. 2 LAYOUT OF CONTROL BOARD 




COLUMN NUMBER 

7 6 5 4 J 2 1 

?4156 7475 7475 7475 7475 7475 

7475 74757475 7475 7475 7475 

7416 R34 RJ2R37 R35 7417 7417 

' 
74167416 7416 9495 7495 7495 7495 

740474107451 7451 7451 7451 7451 

7416 ?408 740874957495 7495 7495 

7400 7416 7416 . 7416R76 R72 7416 

R85 R81R83 

Nb. 	 'R' stands for 'Resistor Platf·orrn' 

R85, for example, is the Resistor Platform 

of row 8 and column 5. 

TABLE A!..1 LAYOU1r OF INTEiiFACE HOARD 
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2 
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5 

6 

7 

8 
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10 
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E 
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FUNCTION IOPs CODE 

CLEAR IOP and STAR'r IOP 5-1, 5-4 
 6105 


LOAD IR, CLEAR ACC. 
 7-1, 7-4 
 6107 


LOAD DA'rA IN REGis·rER 
 IOI' 2 
 6112 

DATA BITS 

LOAD DATA IN REGISTER IOP 4 
 6114 

CONTROL BITS 


READ DA'l'A BITS INTO ACC. 
 IOP 1 
 6111 


READ CONTROL BITS INTO IOP 1 
 6111 

ACC. 


FLAG 1 CYCLE TES'l'. 
 1-1 
 6101 


F'LAG 2. CONVERGENCE 2-2 
 6102 


.Tfil21E A.14- LIST OF IOPs 
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LIBRARY OF Q..P.§.RATE P.f];QG~~ 

The neumon1c code at the left is the symbolic 


code of the subroutine in question. 


The rest of each line is the command in PAL to 


jump to-the appropriate subroutin~. 


RDlD : JMS I 2& READ DATA ?ROH THE fu.>lRAY 
RD2D :: JMS I 21 

RD3D : JMS I 22 
 eg. RD3D means, READ m3 DATA. 

RDlC : JMS I 23 

RD2C : JMS I 24 

RD3C :: JMS I 25 


WRl D = JMS I 26 	 WRITE DA"rA INTO TH B: ARRAY-,
WR2D = JMS I 27 

WR3D = JMS I 3~ 	 eg. WR2C means, WRITE COI,'i'rROLm2\IJRIC:: JMS I 31 

WR2C : JMS I 32 
 JWR3C = JMS I 33 


TPlD : JMS I 34 TYPE-OUT DISPLAY OF ANSWERS 
TP2D :: JMS I 35 
TP3D :: JMS I 36 

TPlC:: JMS I 37 


.TP2C:: JMS I 4~ 


TP3C :: JMS I 41 


TPlDX :: JMS I 42 

TP2DX : JMS I 43 
 DATA FOR THE AHH.AY 
TP3DX :: JMS I 44 

T?lCX :: JMS I 45 

TP2CX : JMS I 46 
 data intended for tae array 
TP3CX ·= JMS I 47 


CLEARPAM :: JMS I 5G 

ROTL :: JMS I 51 
 JROTR = JMS I 52 

FROM THl!: ARRAY 

eg. 	TPJD means, TYPE mJ DATA 

·rYPE-OUT DISPLAY OF INITIAL 

eg. 	TP2CX means, Type mg CONTROL 

CLEAR m1 , m2, m3 of all cells 
SHIFT m1 data one bit left of right 

CM ULT :: JM S I 5 3 Mult. m1 by externally set constant 
MULT : JMS I 54 Mult. m1 by m2 , store in m3 

TABLE A. 2 LIST OF OPERA·rE PROGRAMS 
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ADD121 : JMS I 55 
ADD122 : JMS I 56 
ADD123 : JMS I 57 
ADD131 : JMS I 6~ 
ADD132 : JMS I 61 
ADDJ33 : JMS I 62 

ADDITION 

eg. ADD131 means, ADD to mJm1 

store 111 m1 

!COMP! : JMS I 63 
TCOMP2 : JMS I 64 2 ' s Comp. of m1 , m2 , l'!l.1 , 
TCOMP3 : JMS I 65 and store in same memoryJ 

COMP : JMS I 66 
EXOR : JMS I 67 
BAND - JMS I 7& 
OR : JMS I 71 
SUB123 : JMS I 72 
SUB133 : JMS I 73 J 
TRN12U : JMS I 15~ 
TRN12D : JMS I 151 
TRN12L : JMS I 152 
TRN12R ~ JMS I 153 
TRN32U : JMS I 154 
TRN32D : JMS I 155 
TRN32L : JMS I 156 
TRN32R : JMS I 157 
CLEAR3 : JMS I 16~ 
SUB! : JMS I 161 
SUB2 : JMS I 162 
SUB3 : JMS I 163 
SUB4 : JMS I 164 
SUB5 : JMS I 165 
SUB6 : JMS I 166 

1 's Comp, of m1 
EXCLUSIVE~OR 
BOOLEAN AND: 
BOOLEAN OR 

SUB·rRACTION 

TRANSFER DATA FROM ONE CELL 
LOCATION TO ANOTHER 

eg. TRN12R means, TRANSFER m1to m2 of the cell to the 
RIGHT. 

CLEAR m only, of all cells
3 

spare subroutines 

TABLE A.5 (contd) LIST OF OPERATE PROGRAMS 
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LIST OF ABBREVIATIONS 


A.U. 

P.U, 

IR 

IS 

CLIM 

COMP 

2's COMP 

CONVG. 

IOP 

R 

OP. 

Rd 

Sh. 

lsb 

msb 

ff 

MHz 

const. 

ARITH. 

Fig. 

ns 

Ext. 

Int. 

Arithmetic Unit 

Processing Unit 

Instruction Register 

Instruction Set 

Cellular Logic in Memory 

Complement 

Two's Complement 

.Convergence 

Input/Output Pulse 

Left 

Right 

Operation 

Read 

Shift 

Least Significant Bit 

Most Significant Bit 

Flip Flop 

Mega Hertz 

Constant 

Arithmetic 

Figure 

Nanosecond 

External 

Internal 

TABLE A.6 LIST OF ABBREVIATIONS 
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