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ABSTRACT

A Cellular Computing Memory Array consisting éf
twenty cells of threer words plus loglc per cell has
been constructed and interfaced to a digital computer.
Both arithmetic and logilc operations can be performed
between words of a cell and those of adjacent cells,
the results of which may be stored in any of the three
words of the cell, The cells are organized in a two
‘dimensional afray so that each.cell can communicate
with the four nearest neighbours., In additlion to the
ordinary communication between cells to perform oper-
ations on data in adjacent cells, data can be transf-

erred in the memory plane on a mass basis,
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CHAFTER 1

INTRODUCTION

Since the birth of the electronic computer some twenty
five &ears ago, énd:particﬁlarly in the last ten years, great’
advancements have been made particﬁlarly in the‘speed of c¢al-
culations and in the techniques of using computers. Computer
languages and software have been developed greatly, allowing
easy use of complex computer systems, and computation speeds
have increased tremendously due to ﬁhe development of solid
state technology. One area, however, which has resisted any
significant change, is the baslic organization of the computer.
Theconventionallorganiiat;onvﬁmre a large memory 1is associated»
with a sophisticatedkéentfal prodessor 1s unguestionably, very
useful and will remaln so for a long time to come, |

There are some types of problems, however, where despite
the great speeds of present computers, the sequential pro-
cecsing of data 1s inappropriate and dreadfully slow. Such
problems usually involve large masses of data on which identical
operatlions are to be performed. For such problems, the draw-
back 1s due, not just to having to repeat a large number of
computations but also to the cumulative transfer times of

data from memory to processor and then, of the results or



data back to memory for storage. Improvements can be made,
of course by pr@duclﬁg mbre efflcient software or bty using.
high speed hardware. DBut such steps would not be really
significant and will be limited by the state of the teéhndlogy.
The access time of data from memery, for example, could be
reduced by replacing the popular ferrite core memories by
the faster solid state semiconductor memories.

The solution, not surprisingly lies with reorganizing
the computer or psrt of the computer to operate in a paraliel
fashion. The concept 1s quite simple; increase the number
of arithmetic processors, each working with & different section
of memory and the overall cémputation time is shorterned accor-
dingly. The full power of this coﬁoept becomes apparent when
we extend it to the limit, assocliating one processor with one
memory word or more practically with a unigque set of memory
words. This arrangement makes rossible the concevrt of operating
on data in situ, wilthout having first to transfer data from
memory to processor. The time saving here is twofold, in
eliminating the néed to repeat sequences of operations and in
not having to move data in and out of memory.

Such an organization was proposed &as early as 1958 by
Unger (1) when he saw that problems 1nﬁo1ving blocks of data
which are locally correlated could be handled with much greater
efficlency by operating on the dsta in a parallel fashion without

having to sequentlally scan neighbouring data for correlated



information. Im 1962 Slotnick (2), based on Unger's work,

proposed Soclomon., Solomon was to be a highly parallel com-

puter orgaenized in a rectangular array whéré each cell of the
array had arithmetic capabillities and was capable of communicating
with its foqr nearest neighbours. These, together with pro-
posals mede by Lee (4), Paull (5) and Holland (6) formed the

basis which led to a steady development in the concept of cells
with arithmetic capabilities, and organized in arrays, also

known as CLIM arrays (Cellular Logic in Memory Arrays).,

The proposals of Lée and Paull have been commercially
realized and are easily available now, but only a few ex=-
perimental versions of the more sorhisticated Solomon type
systems have been realized. Some of these include the ILLIAC
IV (9), the Berkeley Array Processor (10) and a cellular AFL
Computer (14). These were designed with specific areas of
application in mind, indicating the possible wide areas of
application of CLIM arrays. In particular, the Berkeléy;“
Processor was designed to perform the operations of corre-
lation, convolution, matrix multiplicetion and a varlation
of the Fast Fourler Transform; the APL (A Programming Language)
computer was designed to perform efficlient execution of APL
programs and the ILLIAC IV was deslgned as a more general

purpose machine to process data in bulk,

GENERAL THEORY
= . —— -

We see then that the concept of parsellel rprocessing
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shows promise in the critical areas of data processing which
requires identical operations rerformed on large sets of
data; and typlcal of this area are problems in matrix operations,
scaling and partial differential equations, which even the
‘fastest of conventlional computers are unable to solve~in a
reasonable amounﬁ of time., - What mskes the conceptvof parallel
pr@oessing evén ﬁore exciting is 1ts_potent1al to operate 1in
real time, on the time averaging_functions such as correiation,
autocorrelation, convolution, Fast Fourier Trengforms and re-
cursive filtering. Thesé'characteristics mekes the concept of
parallel prodeSSing very attractive 1n a vgst variety of ap-
plications such as in communications, optimization, control
requiring fast respénse such as in guidance, trajectory cal-
culations and even weathér forecasting.

For the various functions, of course, different require- -
ments'ére put on the way in which the processing array is
orgaenized and élso 6n the carpabilities that each cell of the

array must have. We may then characterize CLIM cells and

arrays under the following headings.

'CELL COMFPLEXITY

In general, derending on the nature of the problem, the

complexity of the cell may vary from the simplest logiec function



capabllity te a‘complete system capable of elaborate arith-
metic and loglec operations. The type of cell, for example,
required to solve partial differential equations as proposedv
by Slotnick is considered fairly complex., Each cell has

" two storage words and possess fixed point arithmetlc and

some logic abilities. The iteration procedure for‘solving

a two dimensional Laplace equation with cartesian coordinates
involves relaxing the value at each point in a bounded re-
glon, to the average valye of 1ts four neighbours, to the
north, the south, the east and west. This is 1llustrated

in Fig. l.1. An example of a simple cell is the associative
memory proposed by Lee (4), where assoclated with each
memory word is 2 loglic unlt which allows forbfast-retrieval
of data from that word by assoclating an address with part

of that memory word.

ARRAY GEOMETRY

Several géometric organizations of cells are possi-
ble, the simplest of which is the linear array. This or-
ganization, shown in Fig. 1.2, 18 being used in the asso-
ciative memories of Lee and Paull and in the Berkeley Array
processor. The linear array should be suitable for time
averaging functions and other applications where one vari-
able dimension is involved. Another geometry is the rectan-

gular array wnich is sulitable to operate on matrices and on
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boundary parameters

Assuming that the values of- the
boundaries are known, the numerical
solution to the Laplacizn Field
problem can be calculated at each
matrix point(representing a cell)
by successive relaxation,

An arbitary poilnt 'V' 1s relaxed by :-

V==1/4{Vn+vs+ye+vw)

FIGURE 1-1. SOLUTION OF A LAFLACIAN FIELD
PROBLEM USING A 10X10 ARRAY
OF CELLS.

N



a) LINEAR ARRAY OF CELLS

b) RECTANGULAR ARRAY

- C) N-DIMENSIONAL ARRAY

FIGURE 1.2 CELL GEOMETRY




partial differential equations. 4An n-dimensional geometry
is also possible where cells may be arbltrarily connected. .
This type of structure could show great promise in a multi-
variable problem where, for example, computatlons can be
" made while all dimensions are varlied simultaneously, to
converge to an eptimum. Cells for sﬁ;h a structure would
probably be highly complex.

The above arrays represent very basic structures, and
variations of‘these are possible, The rectangular array

can be extended to a cuble structure, and branches or sub-

arrays can be added on to the linear array.

NEIGHEOURS

An important characteristic offparallel processing arrays
is thé 'neighbouf;.rélationshlp between cells. The term
'neighbour' is rather loosely defined, but generally includes

those cells with which communication is possible for the
exchange of control or dats information. In other words,
mere geometric proximity does not meke two cells neighbéufs.
In the rectangular array for exanple, a cell can have four
nelghbours, to the north, south, east and west also defined
as above, below, left and right, as in the array used to
solve Leplace equations. However, if the application re-

quires it, the north-east, north-west, sovth-east and southe
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west cells could also be included in the neighbourhood.

An interesting proposal, by J. Holland {6) is an example

of a structure in which the neighbourhood is redefinable.
Here, by program controi, new paths ére built by making
connections via 1ntervehing cells. VThisnwould'give us- |

a versatile array, but would involve highly complex cells,

7This conceptjof being able to communicate with neigh-

bour cells is a prime contribution to the power of_érraj'
processors especlally when the data sets are locally or

spetially correlated. :

CONTROL

Another characteristic of parallel processling arrays
.‘1srﬁhe degrée to ﬁhicﬁ control of the cell functions is
distributed between a central controller and a locallzed

in cell controller. The simpler and more common is where
control is highly centralized. In this type of system,

21l cells perform the same oprerations as determined com-
pletely by the ceﬁtral controller. Included in this group
are the processors that handle matriéeé, partial differen-
tlél equations énd time averaging functlions mentioned eariler.
At most, the above type of cells may possess the ability to
ignore control instructions to limit the area of operation.
The proposals of Uﬁger, Lee and Slotnick are all of typei

The Holland proposal 1s an example where control is highly
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localized. Here, the cell operatlon executed 1s determined
mainly by control information contained locally in the
celi. This gives it the advantage that ihdependent com=-
putations may be executed simultaneously, and at the same

time enjoy the other benefits of array organization,

- GENERAL~

One obvious characteristic that a parallel proceséor
should have, for versatility and for ease in implementation,
is that all cells should be identical. They should vary in
function only in what control information is put-in tﬁem or
is presented tovthem. This then suggests that cells should
be designed with general purpose a?plications in mind, and
may, for some applications be more complex than required.

It is with this general purpose application in mind
that this thesis projeét(was pursued. The cell to be des-
cribed, referred to as ; Computing ¥emory Cell possess?étl

full arithmetic and logic capabilities as well as a degree

of local control.,

SUMMARY

kThe aim of this project is to implement a workable

system based on the parallel processing characterlistics of
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CLIM arrays. A rectangular array was bullt and interfaced

to operateundér the contrdl of a PDP8Y computer. A set

of operate programs was developed to control the functions

of the array. Since the controlof(tﬁe array was quilte
"elaborate, a special purpose control unit was implemented

to perform as much of the controlling as possible. The

actual cell was desligned around a set of arithmetic and

logic rarameters, thls set being as extenslve as was practical,
and had to at least enable the array to be used in the solution
of . Laplace!s equation.

In perspective, the system developed has a modérately
complex cell which can perform both arlthmetic and 1ogic
opérations between words of the cell. Control is essentlally
centralized, but has more local autonomy, for example, than
the cell proposed by Slotnick. The geometry is a rectangular
array Qith’a fixéd‘neighbourhdod where the nelghbours consigts

of the cells to the north, south, east and west,



CHAPTER 2

[
row——

THZ COMPUTING MEMORBY CELL

The work on the concept of Cellular ngic In Menory
Arrays that was done by Lawrence (15) in 1969,  consisted
of the design of a compating memory cell, four of which
were implemented in order to investigate the workings and
linitations of such cells. Thess cells consisting of two
memory words assoclated with two processors were organized
in a linear array. Each cell was capable of performing
fixed point arithmetic operations between the two words un-
- der sultable control., The arithmetic functions included
addition, subtraction, division by 20 (n=1,2,--10) and
multiplication. This project was develoved to a state
whereby the cell functions could be performed, largely by
marmual setting of the cell control lines, and initiating
the operation cycle, also manually.

In attenpting to improve the cell'design and to deve-
lop a workeble array, it was necessary to 1hvestigate the
basic questions of ~ what a cell must be carpeble of doing
and what structure and intercommunications to érganize the

cells.

- 12 -
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Obviously, the basic set of arithmetic operations used
by Lawrence, also prorposed by Slotnick and others, was neces-
8ary. 1In addition, a set of Boolean opérations would be
necessary 1f the-deslgn was to.be used: as a general purpose
device. It was decided to improve intercell communication by
enabling operéﬁions to be performed between daté in ﬁeigh—
bouring cells without having to transfer the data. It was
also decided to add a 'convergence check' capability. This
would be used for terminating iterative operations when there
are no longer significant'changes in data,

Each cell needs a minimum of one arithmetic and logic
processor and at least two memory words to be workable, but
the two word per cell organlzation‘of Lawrence proved to be
awkward, particularly when multiplication had to be per-
formed and when intercell data transfers were to be made.
Adding a third word would be a great improvement, and since
there was no apparént need for a fourth word, a three word
cell was decided upon. These then, were the baéic paraneters
around which the computing memory cell was deslgned.

The cells were organized in a rectangular array so that
it would be suitable for solving two dimensionzal problems.
However, the array could be converted to a linear array quite
simply. Since control was to be highly centfallzed, an ela-

borate control unit was built, whlch was capable of cone-
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trolling the execution of all arithmetic, logic and in-
put - output operatlons automatically. All this was in-
terfaded “to a  PDPB. computer which served as the main
controller, storing all data and iteration programs,
The complete 1list of the baslc characteristics of the '
realized system is as follows:=- _
1) Each cell can perform the following functions be-
tween words of the cell. |
a) addition '
b) substraction
¢c) multiplication
d) division by 2"
e) logical AND
f) logilcal OR
g) logical EXCLUSIVE OR ..
h) 6oﬁpiementing
2) Each cell has an 'inhibit' feature which enables the
cell to lgnore control Instructions
3) Each cell has a 'convergence check' feature which
enébles the cell to test for significant changes in
computed values.
4) The cells are organized in a rectangular array.
5) The neighbours of & cell, except for the boundary

cells, are the cells to the north, south, east and
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west,

6) Control of the array is highly centralized.,

'7) The control unit generates all the necessary logic
states to execute the cell functions.

8) The realized system is interfaced to a PDP8L come
ruter which serves as the overall system control,

?herﬁetails of the design follows.

CELL ORGANIZATION

As shown‘in Figure 2.1, each cell resembles a small
computer, containing its own memory, afithmetic processing
unit and input - output circuits. These cells recelve in-
structiohs from a central controller'simultanéously, also
shown in Figure 2.1. Each cell has three memory words (my,
m,, end m3), two of which are intended fo? ope:and and
operator and the third for the results of cell computations,
Each word is a 16 bit serially sddressed memory. The proéessor
consists basically of'gating circuiis and a full adder, also
deslgned to orerate séquentially. At the present state éf
technology, parallel arithmetic would be prohibltive both
in cost and labour. Flgure 2.2 illustrates the logical flow
of data in a cell. There are two selector circuits which
drive the input of the processor unit (P.U.). Selector
eircuit 1 chooses elther thekcontents of word m, of thié

1
cell or of any neighbour cell, Selector circult 2 chooses
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3 WORDS
m
1
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o3

L——é——}_

ARITHMETIC
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FIGURE 2,2 COMPUTING MEMORY CELL:

BLOCK DIAGRAM
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one of the three words in this cell. The processor perfornms
the arithmetic and logic operations listed in Table 2.1
subjeét to the state of the inhibit logic, whichreffectively
elther accepts or ignores instructions from the central
§ontroller depending on its setting. The cutput of the
processor can be fed to any combination of the three words
of the cell for storage.. Thls data flow organization allows
,ﬁs to pexform operations between data 1n the cell or between
data of this, and another cell or an external source, thé
results of which can be stored in the cell.

The ‘convergence' loglc is designed to compare previous
and present values of data for a prescribed number of bits.
If, -for _exampley: the value from the previouskcomputation
is stored in m3 and the P.U. 1s computing the present value,
then the convergehce circult will produce an output when
these data diffef. The comparison is performed at the same-
time while the F.U. output is being stored in word m3. If
any enabled ‘convergence' circult produces an ouvtput, this
1s detected in the central control and can be used to recycle

an lteration.

REALIZED CIRCUIT

Figure 2~3 shows the overall circuit for one cell,
Not shown, are the eight mémory éddreSs lines and driving
buffers, In the model constructed, each cell requires
17 I.C. chips to implement (this includes the address line

buffers) and requires about 1.9 watts to drive. These two



Arithmetic Functions

i, + ml

m, + m

m fug3

m, —m

rn1 - m,

ml - m ]
‘ml xm, = m

ml XA = m3
m, 22"

Shift data 1 bit left

Shift data 1 bit right

“in m

Results of these operations can be stored
 OF m, or my.

'A' is set external to the array, and
cperates on the whole data plane.

nﬂo,l,z,-...,ll

This operation also operates on the whole
data' plane.

Operates on my only.

Logic Operations

—

Complement (ml, My, m3)

m3(t - 1) vs ml(t)
Mp3(t - 1) vs mz(t)
"mi(f - 1) vs mj(t)

The results can be stored in my, My OF Mg,
. Lo

Note: All the above functions can be inhibited in any selection of
~ cells by setting control bits 0, 1 or 2.

Comparison

This means that current data in mj can be
compared with results of computations being
performed.

If data are equal the output of the comparison
is '0', if not, a sequence of l's.

-

TABLE 2.3 CELL FUNCTIONS
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FIGURE 2.3 CELL SCHEMATIC
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factors slone 1limit the magnitude of the array to & small
but useful 20 cells, Such a cell would be an attractive

organization for realization with L.S5.I.." Should this be
done, a cell with 50 or so inpub~output pins and perhaps

only a few 1.C. chips would result,

HENORIES

The memories used in thils design have the disadvantage
of requiring severate inputs for writing logle '1' and
logic '0', This means that the line selectors (see Fig. 2-3)
which consists of 2-input AND gates, have to be duplicated,
three gates for writing 'i’s' and three for writing *'0's',

However, only three fselect write' lines are required.

DATA SELECTORS

DATA SELECTORq selects data either from ml(B) or from
any of five external sources, In our present array orgeniz-
atlon, the four external sources are the immedlate nelghbours
of the cell and the fifth is the DATA INPUT. Excluded from
this selector are the data from By and mB. Thelr inclusion
appears redundant and would also increase the complexity
of the circult,

DATA SELECTORZ selects date from any combination of
My mz.-or m3‘for rrocessing or for Qpeiation with data

from DATA SELECTORl.
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ARITHMETIC UNIT

-The arlthmetic unit consists of 2 one bit binary

- full adder and a J.K. flip-flep fo: delaying the ‘carry
‘out'. Besidés taddition', the AU can be made to perform
the EXCLUSIVE OR functlon by merely disabling the ‘carry!
flip flop and taking the output from EE « The logical AND
function can be performed, 2lso be dlsabling the ‘'carry'
flip-flop but taking the output from 'Cb’ the CARRY-QUT
output. Note that these two follow from the fact that in
& binary full adder, the carry-out i1s the AND operation of
the two data inputs and the Ei output is merely the EXCLUSIVE
OR operation. Also, by presetting the carry flip-flop, le.
by setting the CARRY IN to '1', data can be incremented by

cne.

DATA LATCHES

The rest of the circult can be considered the Logic
Unit. The D-type latches are used to hold information for
é part of, or a whole 16 bit address cycle. D, and D3 are
data latches which hold data intended for the AU, for only
1 bit (1/16 th) of the cycle. D, 1s used for multiplication
and hoids data from Mo only, for a full 16 bit ecycle. The

address cycle is treated in greater detail in chapter 3.
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INHIBIT LOGIC

D, and its assoclated logic gates form the *INHIBIT

4
QPERATION' logic. This circultiisdesigned to interrogate

bits 0, 1 and 2, of any of the words myy My OT m3 gselected

for operation. If a logic '1' is detected in either bits

0, 1 or 2, the INHIBIT CIRCUIT will disable the *WRITE ENABLE'
logic. Thls prevents writing over exlsting data currently

stored in ml, m, or m3, and in effect 1s equivalent to inhibiting

an operation for the cell in question.

WRITE LOGIC

The 'WRITE ENABLE' logic basically is made of €£¥wo 3-input

*AND* loglc gates, one each for writing i's and 0's. One of
the three inouts 1s for data,. another for the inhibit logic
dlscussed in the previous paragraph and the third, for the
WRITE strobe pulses. The 2Z2=-input OR logic allows for two

sets of WRITE STROBE pulses. One set 1s common to 211 cells
and thus operates on all cells simultaneously and the other

get which 1s unique to each cell, (by line selecting/demulti-

plexing) allows operations in the selected cell only.

CONVERGENCE LOGIC

D and 1ts assoclated clrcultry perform the ‘'Convergence

5

Check® opsration. Datza stored in ma. presumably from the
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previous computation, 1s compared with incoming data from
the current computation by the EXCLUSIVE OR gate. If
incoming data in the range belng compared is different from
the previous data, a pulse will be generated which informs
the control unit that the desired convergence has not yet
been attained. This, for a relaxation type problem for
example, enables the computer to repeat a self-determlned
number of passes until the desired convergence is reached.
This operation is enabled by storing a logic '1' in control

bit 3 of m3. D, serves to interrogate this bit (bit 3) in

5

the first cycle of operation to see if a convergence check

is required.

DATA READ OUT

The DATA OUT loglic serves merely to select data from
D1 or D3. D1 i1s selected only when we wish to transfer m,
~data from one cell to a nelghbour for simultaneous operation
with data of the neighbour cell. ﬁj is selected for normal

data Read Out from my, m, or m3 cf any cell,

SUMMARY

From Figure 2.3 we can see that the cell design is really

rather strailghtforward considering that it can perform all the
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functions listed in Table 1. One reason for this relative
simplicity in design is the fact that the computations are
done serxrially, one bit at a time, Thus a cell function takes
a minimum of 16 bits or a full address cycle. The heart of
the processor sectlion is the blnary full adder. It performs
most of the major functions, and with supporting gating logic,
the full complement of arithmetic and loglic functions can be
rerformed,

Twenty of these cells were built on five printed circuit
boards and are organized'in a rectangular array as shown in
Fige 244, Each cell communicates with its four neighbours,
The boundary cells communicates with 1ts three nearest neigh-

bours and is connected 'end-around!' to communicate with its

corresponding boundary cell on the opposite side of the array.



CHAFTER 13

CONTROL UNIT:- CLOCKING LOGIC

In a system where control is highly centralized such as
this 1s, the controlling unlt has to be elaborate by necessity.
The CLIM array cells described in chapter 2 operate entirely |
under central control. The control unit sets the logiec state
of 41 control lines, the state of which enables the appropriate
functions. The total control actually  extends beyond the con-
trol unit to be described, to include the general purpose computer
to which the system 1s interfaced. The general organization is
11lustrated ‘tn .Fige 3.1« Certaln aspects of control such as
data storage, setting’of the data fleld and programming of
sequential 1teraﬁiohs are intended as being in the domain of
the general purpose computer. On the other hand, certain
_other aspects 1ike‘storage of instruction states, systen
timing and clocking, decislon logic and microprogramming
are common to the domain of both the speclally designed control
unit and the general purpose computer,

Since the FDP8.. computer, serving as the general purpose
computer, has only & small 4K memory bank, the control unit was
designed to do as much of the control as practical. The PDPS,

to be discussed in chapter 5, 1s used mainly to store data,

- 27 -
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sequentially ilterate programs and perform the microprogrmas.
The control unit is discussed in two parts, the instruction
registers and system interface in chapter 4, and the system

timing and clocking logic follows.

CLOCKING LOGIC FUNCTIONS

Basically, the function of the clocking loglc unit 1is to
provide the necessary pulse tralns to execute the operations in
the computing memory cell's These bas;p functions includes

1) addressing the 16 cell memory bits serially.

2) producling appropriate clocking pulses for D-type flip

- flops, to latch information stored in memory locations
currently addressed. These are for the purposes of
interrogating and latching 'Inhibit' information, bf

’“”holding 'multiplier' bits for a complete address cycle
of multiplicand data, of interrogating and latching
'convergence' information and of holding operator and
operand data for the cell functions.

3) generating ‘carry' pulses for the JK flip flop asso-~
ciated with the full adder of PFigure 3.3 and also to
genérate properly timed pulses for the 'preset® and
*clear' inputs of the carry flip flop.

4) generating write strobe pulses for writing data into

addressed memory locatlions.
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5) providing logilc
a) to control the ADD/SHIFT cycle used in multiplication
b) to indicate Busy or Free mode of the system
¢) to control the interrogation range of the convergence
check,
6) generating Flag pulses to 1hd1cate completion of an

operation.

ADDRESS CYCLE

$

Starting from a basic magter-clock rulse with mark-space
ratio of one, a typical operation on one bit is as followsi-

1) lateh information from location currently addressed.

2) perform logic decisions, as in convergence, if any.

'3) write processed information into currently addressed

- bit of sélected memory.

L) change address to the next location.
These four operations can be defined in the time spanned for
two clock pulses, having a total of 2 alpha and 2 beta edges,
one edge for each of the operations.. (See Figure 3.2). Thus,
& full 16 bit operation, being one address cycle, would span
over 32 clock pulses. Currently, the longest time needed for
operation, proragation and settling, is approximately 100 ns
between the operations 1) and 2). This allows the clock to

run at a maximum rate of 5 MHz. The system is currently set




OPERATION TIME
ON ONE BIT
DATA WRITE
LATCH ENABLE
FULSE PULSE
A A A A A
CURRENT LATCH CONVG.,  WRITE CHANGE
ADDRESS CURRENT DECISION FPROCESSED ADDRESS
SAY, ADDRESS IF ANY DATA TO
0100 DATA INTO 0101
CURRENT
ADDRESS
FIGURE 3-2. BASIC OPERATION ON

ONE BIT.
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to run at 2 MHz,

" PULSE TRAINS

Based on the function regquirements listed earlier and
on the cell circultry, repeated in Flgure 3.3 for convenience,

the basic pulse trains i1llustrated in Figure 3.4 can be derived.

- DATA LATCH FULSES

Of the 32 clock pulses for 1 cyolé, the 16 odd numbered
pdlses are used for data latch., The first one being used to
lateh contents of memory location '0000' {binary '0') which
1s the location addressed in the *clear state', the 2nd one

for bit 0001, and so on.

INHIBIT LATCH PULSES

Cnly three INHIBIT Latch pulses are needed, the first one
,:to interrogate location 0000 the next, loecation 0001 and the
third, location 0010, (Recall from Chapter 2 that bits 0, 1, 2,

of the memories are used for Inhibit operations).

RESET AND PRESET FULSES

The Reset Inhibit Latch logic allows the inhibit clrcult

to erase an 'inhlbit' state carried over from the previous



http:1nterrogs.te

(Data from Neighbour Cell)

r—-"HBI - o AB0Rdg DOWN LEFT 'RGHT |
.—Mmz}SELECT —m} [sgéigT MuLT GOk AEB\-F BLE  COMP s U 0
LE | ABLE -
—— M3 WRITE ——m3 CLOCK » ____ILJ Select
o, U ™, , SV "\'"* \ \ -
___)—'l > - 7 Egj | } Ext. DATA
My , T nput
r_u\.____‘—)—o Q l
i D]
P )
b 5v > PRESET
T o) | | 5
| B : — m
W N N m2 % ! D__j A Cn
g N s ) Bl _ Lo, o
| i
=
e o SVLIL D ™ >—DO—<§
r“-"' 4 5 3 '
m, g 0 Q ‘ o [ J L_Qlear
W, W N o "O i Carry
‘r ciock
. D._ 1 % Select
| P j) > ' r——+¢c - ,
\M\
BTt S e oo e W S O
' | § G > > >
INHIBIT ENABLE RESET DATA DATA
: CLOCK INHIBIT - INHIBIT CUTPUT SELECT
_ | ' ~ LATCH
WRITE CONVG CONVG

PULSE INPUTS CLOCK  PULSES

FIGURE 3.3 - CELL CIRCUITRY

€€




BIT ADDRESS

MASTER CLOCK

DATA LATCH

INHIBIT LATCH
CLOCK

RESET INHIBIT
LATCH LOGIC

2's COMP,
PRESET

CARRY RESET

CONVYG, CLOCK

CONVG. RANGE
CLOCK

oooog ooo1| oo1o| 0011| 01oo| 0101

7 8 9 10 11

i o R o NN o N o OO
M T T .
' .

g _

¥ .
M -

rrt .

FIGURE 3.4  CONTROL BOARD PULSE TRAINS

1110 ' 1111 I

29 30 31 32

1 M
|

R [

(contd. )

4e



BIT ADDRESS

MULT. CLOCK
‘iIst CYCLE

2nd CYCLE

r th CYCLE

1ith CYCLE

WRITE PULSES

GARRY CLOCK

000 | o001 | ooro | o011 | o100 | o101 1110 | 1111

Mo e em wm am we ek em me e G e wm e s wm e ews e e

—— [ M

FIGURE 3.4 (contd)

19



36

address cycle.Using D-type latches, an erase can be performed
only by clocking the latch and presenting a loglc *0' at the
date input, or in this case by presenting new data which per-
forms the dual function of erase old dats and latch on to new -
datsa,
The 2's complement preset occurs at data bit 4 after

the control bits 0, 1, 2 and 3 have been processed (note
that data bits for arithmetic operations are stored in bits
4 to 15 only). It sets the carry~-in of the full adder to
'1' which increments 1ncqming datza by 1. |

| The Carry Reset occurs at the very beginning of a cycle

to erase any carry over from a previous operation.

CONVERGENCE CLOCK FULSE

- The Convergence Clock is timed to interrogate bit 3 of
the control data. If a '1' is detected, the cell in guestion
will perform a convergence check on its data. The basic Con-
vergence Range pulses are avallable from bits 4 to 15. These
pulsés generated in the convergence clreuit on the CONTROL
BOARD, determine the number of data bits being interrogated .
for convergence. If, for example only Convergence Fulses 8
to 15 are generated, then Convergence is checked only for
data bits 8 to 15, ignoring changes in the less significant
bits 4, 5, 6 and 7. (The circuit for selecting this range is

described later),
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MULTIPLICATION PULSES

The technique for multiplicatlion used here is the
ADD/SHIFT technique. During the first ADD/SHIFT cycle
(equivalent toVZaddresscycles) a pulse is generated at -
address bit 4, during the 2nd, at bit‘S during the third,
at bit 6, and so on, until the 12th and final cycle where
a pulse is generated at bit 15. The reason for this 1s
that during the first ADD/SHIFT cycle bit 4 of the multi-
plier is interrogated and held for the rest of the cycle to
operate on the multiplicand, during the 2nd cycle, bit 5
of the multipller is interrogated for the same purpose and so
on until the full multiplicatlon cycle (12 ADD/SHIFT cycles
or 24 address cycles) is complete. This operation 1s 1llustrated
in an examrle for.multiplicatioh between two 4 bit binérf

numbersg, presented. in the next paée.

WRITE PULSES

Whereas the DATA LATCH pulses were composed of the
16 odd numbered master clock pulses, the WBiTE pulses
are composed of the other 16 even numbered pulses. HRecall
that each blt orperation consists of the interval occupied
by one DATA LATCH pulse and one WRITE pulse. These WRITE
pulses are available in 8 selections, the particular
sequence selected being dependent on the desired operation.

For example if cohtrol data bits 0,1,2 and 3 only are to
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0O 1 1 ¢ A reglster
0 1 0 1 B register
0 1 1 O
0 0 0 O
0 1 1 O
0 0 0 0
¢ 0 1 1 1 1 O C register

(a) 'Long Multiplication®! of two binary numbers

Now, to 1illustrate in-cell multiplication, let 1=

(=)

O B e
o o g
(Y
i
o’
ey
o
W
o
o'

i1st ADD/SHIFT cycle

A =0 1 1 0

C+ A 0O 0 0 0+0 1 1 O

H
it

0 1 1 O

Shift A 1 bit left: 4 =0 1 1 0 O

EXAMPLE 3.1 CELL MULTIFLICATION

(contd)
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2nd ADD/SHIFT cyecle

b2 =0
since b2 = 0 , addition 1s inhibited.

Shift A, 1 bit lefts A=0 1 1 0 0 O

3rd ADD/SHIFT cycle

1
A =01 3% 0 0 O
Cc = C+A=0110 + 011000

=0 1 1 1 1 O

Shift A, 1 bit left: A =0110000

~ 4th ADD/SHIFT cycle

bu=0
since bh = 0 , addition is inhibited
c =0 1 1 1 1 O

Shift A, 1 bit left: A =0110000020
The Multiplication 1s now complete, the answer is in 'C!?

wheres- A XB=C=0 1 1 1 1 0

EXAMPLE 3.1 (contd) CELL MULTIPLICATION
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be operéted on, then a sequence enabling pulses C toc 3 only,
~of the 16 WRITE pulses, is selected. Note that new datsa

can be written into memory only when the appropriate WRITE
pulse occurs. For all arithmetlc operations, it is: necessary to
enable bits 4 to 15, these being the 12 data bits. The full
sequence 0 to 15 1s selected when new information has to

be written into all 16 bits of memory. Selections of single
‘pulses 0,1,2 or 3 are used 1f it is required to alter just one
control biﬁ. The final selection 1s where all WRITE pulses

ere disabled, as one would require when nondestructive

déta read out 1s desired. These selectlons are tabulated

in Table 301-

CARRY PULSES

The final pulse train is the CARRY pulses., These
operate the 'carry' flip flop when the cell 1s performing

addition, and hence are required only for bits 4 to 15,

REALIZED CIRCUIT

The circuit that was constructed produces all the
pulses described above, and 1s 1lllustrated in Fig., 3-5.
The heart of thils circult is a_free running'clock and a
string of counting elements cohsistlng of 3 fiip flops-
and two L bit binary éouhtersg‘The output of the first

flip flop, which serves toc generate a mark-spacs ratio
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""of one for the clock pulses, is considered the master clock,
The second flip flop and the first counter (total of 5 bits)
contfdl the address cycle which occupies 32 master clock
pulses. The third flip flop and the second counter (total

.of 5 blts) is used to control the multiplication cydle
which occupies 24 address cycles.

The CARBY OUT pulse from the first counter is used
as a flag to indicate the end of a multiplication cycle.,
These pulses are fed to flip flop 4, which starts and stops
the masterrclock and hence controls the cyecle. A cycle is
iniated by the START IOP, generated by the PDP8, which
triggers flip flop 4 and starts the master c¢lock. The CARRY
OUT pulse frém counter 1 or 2, serves to reset flip flop &4,
It also serves as the system FLAG 1 which informs the PDFP8

~that the operatidnhis complete,

Prior to aﬁy‘operation, the PDP8 generates a CLEAR IOF
which clears or sets all logic on the control board to an
*initial' state. The output from each blt of the first counter

is decoded via & blnary.to’a *two out_bf;eighf' decoder.
This gives 4 'X' lines and & 'Y' lines to address the 16 bits
of the memories. For example, bit 0 1s addressed by Y1 Xl’

bit 1 by Y X2, etc, and bit 15 by Yh Xu.

1
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PULSE TRAIN LOGIC -~ - -

Loglic for producing all the pulse trains of Fig. 3.4
are availablé from the counters and decoder so far discussed.
The following pulse trains are falrly straightforward and the

logic réalizations should be obvious from Fig.3.4 and Fig.3.51~-

DATA LATCH = F*

 INHIBIT LATCH CLOCK = F' .Yi.ib

RESET INHIBIT LOGIC = Y, +X; = Y;.X;

2's COMP PRESET = F'.Y5.X,.(2's COMP ENABLE)
'CARRY RESET = F'.Y,.X,

CONVERGENCE CLOCK = F'.Y,.X,

CARRY CLOCK

F! .Yl . (BOOLEAN DISABLE)

- The WRITE logic has three control lines A, B, C, connected
to the IR, which allows the selection of eight pulse trains
as 1llustrated in Table 3.1. The WRITE function can be

produced by :-

WRITE = F.G.(B.¥ + B.Y) + F.Y.C(E® N + &561)

The MULTIPLICATION clock pulses are intended to enable

D, of each cell to latch on to multiplier data bits, each bit

2
for a complete ADD/SHIFT cycle. As explained earlier, since

multiplier data is stored in bits 4 to 15, the multiplication

clock must be designed to interrogate bit 4 during the 1st
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I8 setting logic Tulse '
C B A enabled train purpose
0 0 O F <0 nothing no opergtidn7
0 0 1 F ¢ Yy | bits 0-3 L controlkb1;3~
01 0 F Y | bits 4-15 | ARITH OPERATION
0 1 1 F <1 bits 0-15 all of memory
1 0 0 'F’-Yiexl bit 0 INHIBIT bit

| 1 0 1 F'Yl-xz bit 1 control bit 1
11 0 F'Y1-X3 bit 2 control bit 2
i1 1 CONVERG. bit

stl.xu bit 3

The circuit to produce the

logic of column two

can be minimized by replacing Xl’XZ'XB’XU’ by

logic from the 2 1lsb. of COUNTEBI, where -

Xy X2 X3 X

M

0 0 1 1
0 - 1 0 1

The pulse'trains of column 3 can be generated

by the WRITE

function =

WRITE = F.C.(B.Y + £.Y) + F.Y.C.(BO N+ AB®L)

TABLE 3,

1. WRITE PULSES SELECT
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ADD/SHIFT cycle, bit 5 for the next cycle and so on, and
finally bit 15 for the 12th and last ADD/SHIFT cycle. As
111uétrated 1n Table 3.2, this pulse train can be realized
by the loglic -

MULT = WJL@EJMQQJN@EAO@Q

Note, in Table 3.2 that since COUNTER, only needs to count

12" cycles, it is always preset to binafy 4 before any operation.

The CONVERGENCE RANGE pulses are also produced by

using BXCLUSIVE OR logic :-
CONVG. = F'. (2@ L).(P® M).(c®N).(c ®0)

The selection of pulse trains 1s presented in Table 3.3.
These pulse trains are directed to the clock of flip-flop6
which is designéd to detect a logic 1 at the *'J' input for
the duration of ﬁhé CONVERGENCE RANGE selected. The input |
to 'J' of flip-flopg is the 'OR' functlon of the outputs
from the CONVERGENCE logic circuit of all cells in the
array; | _ |

If in the selected range, a logic 1 is detected ffom
eny of the cells, which are enabled for Convergence check by
setting bit L of my to *1', a pulse is generated which is
called Flag, and is used to instruct the PDP8 computer to.

recycle the iteration.
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COUNTER

1
ADDRESS

BIT O N M L

0 0 0 0 0

1 0o 0 0 1

. _ COUNTER,

2 0 0 1 0 -

ADD/SHIFT

3 0 0 1 1 "CYCLE S R Q P
I 01 00 1 01 0 0
5 01 0 1 2 01 0 1
6 011 0 3 01 1 0

7 001 1 1 L 001 1 1
8 1 0 0 0 5 1 0 0 0
9 1 0 0 1 6 1 0 0 1
10 1 0 1 0 7 1 0 1 0
11 1 0 1 1 8 1 0 1 1
12 1 1.0 0 9 11 0 0
13 1 1 0 1 10 1 1 0 1
1k 11 1 0 11 1 1 1 0
15 11 1 1 12 11 1 1

By comparing these two 'truth' tables we can see that
MULT = F'. (L®F).(M®Q).(NDR).(0®S)
1s 'true’ when Address bit 4 coincides with ADD/SHIFT

cycle 1, blt 5 with cycle 2 and so on.,

TABLE 3.2. MULTIFLICATION
PULSES




IR SETTING PULSE # of signif=-
‘c._. b a TRAIN lcant bits

0 0 O© bits 4-15 12

0 0 1 bits 5-15 11

0 1 O bits 6-15 10

0 1 1 bits 7-15 9

1 0 O bits 8-15 8

1 0 1 bits 9-15 7

1 1 0 bits 10-15 6

1 1 1 bits 11-15 5

The Convg. interrogation function can be generated
by using logic from COUNTER; alone together with 3

externally set 'select' lines., The function :=-
CONVG, = F' (2@ L) (5@ M).(c ®N).(c ® 0)

will produce‘a pulse when COUNTEBl 10310 coincides
with the 'select® setting. This‘pulse marks the
beginning of the convergence interrogation, and l1s
used to trigger flip-flopS of FIG.3.5.y which will
enable F' pulses from this time on till the end of
the address cycle.

TABLE 3.,3. CONVERGENCE PULSES SELECT
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SUMMARY

This section of the control unit serves to generate
the various pulse trains to execute the cell operations,
.which are controlled by the state of the IR.

The waveforms shown in Fig. 3.4 were formulated, based
on the logiceal séquences required for thé varlous cell functions
decided uron. The circuit of Fig 3.5 1is merely a logic clircuit

realization to produce the waveforms of Fig. 3.4.

A



CHAFTER 4

CONTROL UNIT - INTERFACE DESIGN AND

INSTRUCTION REGISTERS

In cohjunction with the clocking logic, the control

lines to be described serve to enable or disable critical

logic

gates in the cells in order to allow execution of

4

the desired operation., These lines control functions such

ass=-

1)

2)

3)

L)

5)

6)

selecting array location from which data is to be

read.,

selectiné affayrlocation to which data is to be
written. |

selecting the neighbour from which data can be

read from or sent to.

enabling the declsion logic to inhibit or allow an
operétion. |

enabling a path for multiplication.vaddition or
complementing., | o |

selecting datz elther from the sum output or thé 7

Carry-Out output of the full adder.

Unlike the control lines described in Chapter 3, these lines

are held in the same state for the whcle address cycle. The

- 4G -
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state of this group of control lines uniquely define a path
of information flow in the cells for a full cycle, consequeﬁtly
controlling the function to be performed.

Most of the rpulse trains described in Chapter 3 are
‘closely tied to the function to be performed and therefore
also to the setting of these control lines. In these cases,
the relevant pulse trains are enabled‘depending on the state
of these lines. These lines then can be thought of as In-
struction inzs, their various states as Instruction Sets and
the registers (in this c;se, D-type latches) which hold the
Instruction Set, as Instruction Registers.

Not all the pulse trains are tied to‘the basic instruction
lines. Those which require a measure of versatility like the
write pulses, Convergence ‘interrogation range® pulses and_the
Inhibit pulses are selected as required by thelr own allocated
set of registers. They also form part of the IR (Instruction
Registers).

The control lines from all the cells are tied in parallel
to the IR. The actual instruction set 1s stored in the FDF8
computer which transfers the instructlons to the IR as required.
The IR then has to be interfaced to communicate with the PDFPS8,
For this purpose astrailghtforward end simple design is utilized
where a one to one link is established between a limited number
of registers and the accumulator of the FDF8. No instruction-

set coding is utilized, and the result is a simple hardvare

McMASTER UNIVERSITY LIBRARY
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design which requires elaborate instruction and data loading

procedures,

INTERFACE

The total interface design consists of 40 D-type latches,
two 16 bit shift reglisters and some miscellaneous logie, OFf
the 40 latches 31 serve as the IR, 5 as array locatlon address
registers and 4 are spares. One of the 16 bit shift register is
used . to store data intended to be written in a selected array
location and the other 1s used to store data to be read back
to the PDP8., Both shift registers have parallel data input
and output facilities. This 1s necessary because the PDP8
accumulator handles data in parallel whereas the computing

~memory cells handles data serially.

INSTRUCTION REGISTERS

The IR (see Figure 4.1) is organized in 4 rows of 10
latches each. The input of the 4 rows are connected in parallel
as illustrated and are presented with data from the FDP8 accumu-
lator simultaneocusly. In any one lnstructién loading cycle
only 10 of the 12 FDP8 accumulator bits serve to hold control
information and the other 2 is used to select one of the four
rows of latches to which control information is transfered.

Thus a typical instruction set has to be loaded in four cycles.,
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For example the followling state:-

(ROW SELECT) ( 10 INSTRUCTION BITS )
0 0 011 01 01 0 1 1

loads the 10 instruction bits into the first row. The
second row will be selected by the leading code '0 1°',
the third by '1 0' and the fourth by '1 1°,

DATA REGISTERS

4

| Both Data Registers are 16 bit devices. This
incompatibility to the 12 bit PDF8 accumulator makes it
necessary to have two loading cycles for any data transfer.
For the DATA IN register, the first cycle loads 12 data
bits into the 12 msb of the register (most significant
bits, bits 4 to 15), and the second cycle loads the 4
control blts, from a new set of accunmulator data, into the
bk 1sb of the register. Each cycle is executed by its
assigned IOP (input-output pulse) generated by the PDP8,
- In a similar manner, foxr the DATA OUT register, the 12
data bits are written into the PDP8 accumulator in the first
cyclé by one IOP and the 4 control bits are written during
the second cycle by another IOF, To write data into a selected
. array location, data from the FDP8 Accumulator is loaded in

parallsl into the DATA IN shift registers (See Figure 4.2)
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Then a loading cycle is initiated which writes data into

the selected location one bit at a time. This procedure is
repeated for each location. Reading data out from the array

1s the reverse. One cycle reads data from the selected location
into the DATA out register serially (See FPigure 4,3)., After
this, data is read out in parallel to the PDP8 accumulator.

One bit in the Instruction Register is used to select reading
elther the 12 data bits or the 4 contfol bits.,

ADD SHIFT CYCLE LOGIC

Recall from Chapter 3 that multiplication was performed
by a sequence of ADD cycles and SHIFT cycles. During each phase
of the ADD/SHIFT eyele, different control lines have to be acti-
vated_in o:der to enable an ADD operation after which the lines
have to be reset to prerform the Shift operation. The circuit
to perform this is i1llustrated in Flge. 4.4, .

During the ADD cycle the A/S line is held *'High', and
this enables Read oy Bead m3, Write m3. This setting allows

the data flow 'm1 + m3 store in m3’~ Thus the contents of m,

ere added to the contents of m3. During the SHIFT cycle, the

A/S line is held 'Low', and this enables Read m, and Read mlB

and write,ml. This allows the operatlon 'ml + ml store in ml'.

This 1is equivalent to multiplying the contents of m1 by 2, and

since m, is & binary number, it 1s also equivalent to shifting

n, by 1 bit -towards the msb. The ADD/SHIFT c¢ycle.1s répeated . ..

1
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12 times to complete the multiplication.

MULTIPLICATION BY A CONSTANT

A simple addition to the interface board allowed
multiplicatioﬁ of data in‘the array by an externally set
constant. The multiglier in this case is stored in the
DATA IN register of Fig. 4.2, and the D type latch serves
to hold multiplier data for a complete address cycle in much

the same way as explained for in-cell multiplication.

MULTIPLEXING

Communication of data between the FDP8 and the array
is performed for one cell at a time. This then necessitates
the ﬁse oflmultiblexing and demultiplexing techniques to
‘communicate with eacﬁ éell uniqueiy._For this rurpose we
have a section of multiplexers and demultiplexers capable
of handling 32 lines each, of which only 20 of each are used
since we only have 20 cells. As illustrated in Fig.4.5, both
multiplexer and demultiplexer are coﬁtrolled by 5 seiect
lines set at the interface IR,

DATA OUT lines, one from each cell, are fed to the
multiplexer/line selector, where data from one line only,
selected by the IR setting is read into the DATA OUT

register, This data is then read out to the FDP8 for
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storage and eventually for Type-Out Display,

" Reading data into the cells is somewhat different.
WRITE pulses, rather than input data, are fed into the
‘demultiplexer and d;rected to a cell selected by the IR
setting. Input data is presented to all cells simultaneously
but only the éelected cell can perform wrlting data intc.
memory, because only 1t has WRITE pulses. This technlque
has a very definite advantage over the alternative technigue
of feeding data to the démultiplexer, as thig would require
additional 1nhibiting operations in the cells not chosen.,
Recall that the absense of "WRITE® pulses or the inhibiting
of WRITE pulses in effect inhibits a cell operation.

The organization 1s such that line '0', selected by
bingry *00000', is fed simultaneously to a8ll cells whereas
lines 1 to 20 are fed to one cell each. Thus when line ‘0°
i1s selected, WBITE' pulses are presented to all cells

and sllows the array to perform orerations in unison.

SUMMARY

The incompatibility of the PDF8's 12 bit accumulator
to the 16 bit memory words of the cells pose an inconvenient
problem when 1t 1s necessary to transfer data between the
PDP8 and the array processor. However, the maln point to

note here'is that in spite of the primitive interface
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design, the capabilities bf the array are not hindered in
any way. The only majorbdisadvantage is phat the programning
required to perform any operations will be more comyplex.

It is only after & more complete and more efficient
instruction set is developed that an efficient interface
control system can be designed. The required instruction set

would be dependent on the function capabilities required.



CHAPTER 5

OPERATE PROGRAMS

The PDP8 serves as the general purpose computer
linking the array processor and the user, All inxormation
to be directed to the array must filrst be stored in allocated
locations in the PDP8, after which the appropriate loading
rbutine will be executed to transfer data from the assigned
locations to the array on a one to one baéls, where data
from one assigned location will go to a particular address
1n the array. In a similar manner the complete instruction
set 1s stored in the PDP8 and special routines have to be
1n1t1ated which loads the IR and starts the operation.
Normally one should look on the array as a sreclal peripheral
to a general purpose computer, however in this case where a
significant part of the controlling is performed by the PDP8,
the array becomes the main device and the PDP8 merely a
programmable controller, |
~ The OPERATE prograns consisting of the subroutines,
the instruction set and the allocated data storage locatlions

is fairly elaborate, and at present occuples nearly two thirds

- 62 -
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of the PDP8's core memory. With the present distribution of
functions, the PDP8 is completely tied up; Only when the
interface-control design 1s improved to have 1its. own memory
to store microprograms and instruction set data, only then
can the PDP8's role be reduced significantly. This would be
Qeg;rable since the genefal bﬁrpoée computer ban theﬁ be
liberated'to_perform»other fﬁnctiohs while the array is
performing soﬁe lengthy iteratidns. ‘ ‘ _ - |
Following will be the descript;on'of the instruction
set used to control the ¢ell functions. Each lnstruction set
consists of four octal numbers which are derived by groupling
the 12 PDP8 accumulator bits which represents the instructions,

into four groups of three blts each,

BASIC CELL CONTROL LINE LQGIC

All functions inuthe array brocessor are controlled
via the INSTRUCTION REGISTER, and this in turn is set by
éoftware programs in the PDF8. The IR holds information to
perform one operation only, the operation belng determined
by the state of the IR. .

Teble 5.1 shows the setting of the cell control lines
to perform the cell functions defined. In the table, a *1'
represents a nigh voltage level (3 volts) and & '0', a low

voltage level (0 volts). An 'S' is used to indicate that



CONTROL LINES

CELL SET | 2's| ENABLE | 1's DATA | READ |WRITE |WRITE
FUNCTIONS muLT{coMP| A | B |comP | X |TRNS | SELECT |SELECT | PULSES
READ DATA IN 00 | o 0 o | o 1 0 0000 S 011
READ DATA OUT | 00 | 0 0 o | o 1 0 S 0 000
ADDITION 00 | 0 1 0 1 0 s s 010
SUBTRACTION 00 | 1 1 | 1 o | 1 0 s S 010
my X mé = m, 111 0 1 1 |0 1 0 1100 1011 010
m XA =mg o1 ] o 1 O 1 0 1001 101 | o010
SHIFT LEFT 00 | o 1 1 | o 1 0 1001 001 | 010
SHIFT RIGHT 00 | 0 1 0 1 0 1001 001 | 010
LOGICAL AND 00 | 0 1 {1 |0 0 0 S s 010
LOGICAL OR 0o | 1 o | o | 1 0 S S 010
EX-OR 00 | 0 1 1 0 1 0 s s 010
1's COMP 00 | o 1 0 1 1 0 s s 010
DATA TRANSFER | 00 | 0 | o 0 0 1 s s s 010
TABLE 5.1  CONTROL LINE LOGIC FOR

BASIC CELL FUNCTIONS.

KEY
'
"o
g

}Logic 1

Logic O

+
I

lines to be
selected as
required,

9
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one variation of the same control functlion is to be selected,
For example, in the column for DATA TRANSFER, the 'S! indicates
that‘the deéired direction of trénsfer is to be set'és

gelected by the user. An 'S' in the WRITE SELECT column
indicates that one or more of the three words, my,my OT mg

are to be selected to store the results of the computation.

INSTRUCTION SET

The instruction register layout, organlized in four
rows of ten bits per row, is illustrated in Fig. 5.1.
When 1t is requlred to transfer an instruction from the FDES
to the IR, the instruction consisting of 12 bits of information
is first loaded into the accumulator., Of the 12 accumulator
bitsrffom the PDPS,»thé 2 msb are used té select one of the
registers; 0 0O for-IRO, 01 for IRI, 1 0 fer IR2 and 1 1 for
IR3, as shown at the left side of each row. An IOP then
transfers the other 10 bits of the accumulator into the
selected IR, to be used as control information,

The basic instruction set is presented in Table 5.2.
The 12 accumulator bits are written as & octél numbers, This
table is derived from Table 5.1 and Fig., 5.1. Here again, 'S’
1s. used when a selection is reQuired for one or more
variation of the same control function. Bach instruction
set consists of four 12 bit instructions, one each for IRy,

IBl, IRy, and IR3 where in each case, the 2 msb of the
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IR state setting in octal

CELL
FUNCTION IR, IR, 1R, IR,
m +m =m, 0000 2007 4000 7142
m +m, =m 0000 | 2007 1000 2242
m +my = m, 0000 2007 4000 42
m - m =, 0000 2027 1000 7142
m - m = mg 0000 2027 uooo‘ 7242
m -my=m 0000 2027 4000 L2
m X m, = m, 0000 2307 4000 7552
m, x const = m,| 0000 2107 4000 7552
IR E: 0000 2017 1000 7112
SH 1 Bit Left 0000 2007 1000 - 7112
SH 1 Bit Right 0000 2017 4000 7112
LOGIC OP.
m, . .m, 0000 2006 4400 7242
m, .+ m, 0000 2006 1400 24442
m + m, 0000 2004 4000 6342
m, + m, 0000 2004 4000 6542
m, + m,+ my 0000 2004 4000 6742

' TABLE 5.2 BASIC INSTRUCTION SET

(contd.)


http:1_~__.id

CELL

PUNCTION IR, IRy IR, IR,

my @ my 0000 2006 4200 7242
m, @ mq 0000 2006 k200 7442
- COMP. m, 0000 2004 5000 6142
Rd DATA IN 10SS 2000 kooo 6053
Rd DATA OUT 00SS 2000 4000 6300
CONTROL OUT 0188 2000 4000 6300
TRANSFER 0000 2000 4sso 7043

notes Four octal numbers form one set of instructions.
Each of the octal numbers represent the 12 aco-
unmulator bits of the PDP8,
Of the 12 Acc. bits, only 10 are used as infor-
mation‘for the IR, the 2 msb. are used to select

the relevant IR.

In the Taeble, an 'S' is used to indicate that
the instruction code is to be selecied, based
on the IR shown in FIG. 5.1, as desired by the

user

TABLE 5,2 (contd.) BASIC INSTRUCTION SET
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12 bit instruction are used to select the appropriate row

of register .

OPERATE PROGRAMS

To facilitate the use of the array processor, a sub-
routine library has been prepared which enables the user to
perform any cell operation, input-output trahsfer or type-
out display by just using a mmemonie code of up to six char-
acters which calls the relevant subroutine. This library of
programs, called the OPERATE PROGRAMS is completely listed
in the appendix. The language wnich is used for these programs
is PAL., Since the PDP8. has only a 4K memory, PAL which is
the most efficlent, is most arpropriate.

The basic subroutine to perform a cell operation is
11lustrated in the flow chart of Figw 5.2. Basically, it
involves loading the appropriate instructions into IBO, IR1
IBz and IRB,_and generating an IOP (input-output pulse) from
the PDP8 to initiate the cycle. The program, also 1llustrated
in Fig. 5.2 1s typical of all the programs for cell functions.
The data for the iInstruction reglisters is avallable from
Table 5.2.

Programs for the communication of data between the array
and the PDP8 is somewhat more involved. In these programs, a

1ink must first be made between the PDP8 and the cells of the
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array, one cell at a time. For example, the program for
writing data into the array. performs the following steps:-
1) Load data register
2) Select cell address
3) Execute WRITE routine
These steps, illustrated ln the flow chart of Fig. 5.3. are
repeétéd for each~¢ell locatlon.,

The program for reading data out from the array, is
1llustrated in the flow chart of Fig. gy, It performs the
foilowing steps for each cell:-

1) Select cell address

2) Transfer cell data to DATA GUT register

3) Transfer data to PDF8.
The complete 1list of routines for Writihg data into the array
and reading data out from the array 1s listed in the aprendix.

Anothef type of routine in the OFERATE PROGRAMS is the
DISPLAY routines. These, also listed in the appendix, are
‘used to display via the teletype machine, any selected set
of data from the cells of the array. Currently, the data is
typed out in a rectangular 5 X 4 array similar to the array
organization of the cells. Actually, these programs display
data stored in allocated locatlions of memory. Data answers
computed in the array, have to’be transferred to these locat-
ions first, by using the programs for reading data out of

the array.
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STORAGE ALLOCATIONS

Prior to any computations, all necessary data and
control information together with the OPERATE programs and
the main program must be stored in allocated sections of the
PDP8 memory. After any computation, data answers from the
- cells are also read into allocated locations of the PDP8
before they can be displayed. The ldea of of using the PDP8
memory as a buffer storage for input data and for output
answers, though seemingly inefficient and redundant is
necessary to allow for easier programing.

The complete list of memory allocations is presented
ir Table 5,3, Note from the table that the 16 bit words of
the cells are stored in two sections, one section for 12 bits
of data and the other section for the 4 bits of control
‘information. This arrangement is necessary because of the
incompatibility of the PDF8's 12 bit memories to the 16 bit
words of the cells of the array.

Note also; from Table 5.3; that the OPERATE prograns
and the data storase locations together occupy about 60%
of available memory, leaving less than 3000g 1obations for
the Maln programs. If the array processor 15 to be used as
a permanent peripheral to the PDP8 or any other small computer,
this situation will be most inconvenient. It can be alleviated
only by using a more sophlsticated interface and control unit

deslgn.



MEMORY

LOCATICNS
0 - 177
200 - 2777
3001 3025
3031 - 3055
3101 - 3125
3201 3225
3231 - 3255
3301 - 3325
3401 3425
3431 - 3455
3510 - 3525
3601 3625
3631 - 3655
3701 - 3725
Looo 47?7
5000 - 5777
6000 7600
7600 - 7777

75

CONTENTS

Program Constants

Maln Programs

my 12 data blits, answers
my - - from the array
ml-" 4 control bits, read
my out from the array
m3 ]
m, | 12 data bits, data
m, for the array
my
mlc. 4 control bits, data
my for the array
m
3 —
INPUT/OUTPUT
' CPERATE
DISPLAY ROUTINES
PROGRAMS

CELL OPERATIONS _ |

PDP8 Loader Programs

Nb., the memory locations are in octal numbers,

TABLE

STORAGE ALLOCATIONS
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The rather extenslve 1list of OFERATE programs however,

enables us to wrlte very simple main programs. One such

program used to demonstrate multiplication between my data

and mpy data, 1s presented 1n the following example, where

-all arrzsy operations are executed by calling the subroutine

with 2 mnemonic code of up to six characters.

The following test: program (in PAL) :-

1) clears all cells.

*200
CLA
CLEAR
WR1D
-WR1C
WR2D
WRZC
MULT
RE3D
RD3C
TP3D
TP3C
HLT

2) writes Data and Control information, already
stored in the allocated sections of the PDF8
memory, into ml‘and m, of all cells.

3) multiples ml-by m2¢and stores the results inm

k) réadsAanswers in m, to the PDP8.

5) tyres out a display of the answers in m3.

starting address of main program.
clear FPDPB accumulator,

clear all memories in the array.
write data into m,. '
write control bits into ml.

write data bits intc nm..

write control bits intg o, e
multiply m, by m, , store In m. .
read m3 data intd PDEB, 3
read m3 control bits into PDP8,
displa? m. data via teletype.
display m3 control via teletype.
halt, 2

3.



7

SUMHARY

The main purpose of the CPERATE progranm 1ibrary is to
have availlable all subroutines which would meke usagze of the
array pirocesscr easier. Typricelly, all the cell functions
which ere stored in subprdgréms can be executed by merely
transferring program contyol to the subroutines, At present,
the list of OPERATE progrems ls complete in that it has available,
all the functions we requlre, Of course if any other functions
are introduced, the list can bs expanded acccréingly. What
could be & major additlion to this l1list of programs are routines
which conmand a sequence of c¢ell opesretions to verform some
standard segquentlial iteration. Atlpresent, such programs like
relaxation solution for Laplace equations are considered as
main programs. Other such programs could include for example,
programs to perform correlation between data in the array,
various matrix operstions, and in fact sny algorithms that
may be useful.,

This chapter has served as the final descriptive chapter of
the array processor. The chapters 2, 3, & and 5 are intended
to explain fhe oversall system rom the basic cell to the pro=-
gram usage of the system. It'is expected that the user, in
addition to.this thesis, becone familiér with the PDPB computer,

and with programming in PAL, in order to make use of the system,
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CONCLUSION

The field of parallel processors is still very young.
Although a falr amount of work 1is being done in it, each
effort appears only to open up more aress of application
and to reveal how primitive the state of developments still
1s in this area. To date, exceplt for tne simple asseciative
memory of Lee and Paull, all psrallel processors, notably
the Berkelsy Array processcor, the cellular AFL computer of
Montana State Unlversity and the ILLIAC IV of the Unlversity
of Illinois, have no commercial application and sre mainly
special purpose, exXperimentsl models,

This project was intended mainly to provide a bage from
which‘investigations can ‘be mnade on the applicstions
of parallel processing arrays to the fields alresdy mentioned
in this thesis such as tire averaging functions, partial
differential equations with Laplacian Fleld problems in
particuler, and vosslibly for operation on multidimensional
problems such as those encountered in coptimization.

It is only with a good understanding of the basic
capablillities and limitatlions of the basic cell, that a
realistic approach can be made in Iinvestigeting the areas
mentioned above, and 1t is hoped that this thesis will serve

to foster such understanding.

- 78 -
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The project itself has by no means, come to an end.
Rather, it was a step in developing a system with which
it is expected that a great deal more work can be done.,
Thus far, the system that was implemented conslsts of é workable
array of 20 cells, arranged in az rectangulax éeometry, with
fixed neighbourhood, where the nelghbours are the cells to
the north, south, east and west. The cell consisting of
three memory words and one processor 1ls falrly complex, being
able to do arithmetic and loglec functions between data in
the cell. Control of the array ls essentlally centralized
but each cell has some local sutonony. Tnis is all inter-
faced to a PDP8 . computer, A set of programs haé been developed
whic?;executes the compiete list of ecell operations. Except
for test programs and the very popular program for solving
Laplacian Field préblems. ho other programs or algorithms
have been developed. This then is the area in which a great
deal more work can be done. Most immediate, espscially with
the Digital Instrumentation Group in mind, are the algorithms
needed to perform correlation, autocorrelation, convolution
and the Fast Fourlzsr Transform and possibly even the Walsh
Function. At thils stage, any algorithms developed can at
most be denonstrated using stored waveform data. If functions
are to be processed in real time, an efficient data interface
design must be implemented to allcw very high input-cufput

data exchange rates. In the present design, all the cell
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functions are performed sequentially and those functions
such as addition and subtraction which can be performed
in one address cycle can bevpérformed at a optimum time
of approximate 4 microseconds. Multiﬁlication howsver
which takes .12 ADD/SHIFT- cycles will require 96 micro-
seconds. These may vexry well be the limiting factors when
real~time processing 1s considered. The solution to this
_problem lies with the development of cells which performs
the cell function in parallel. Such cells'would be very
éomplex and maésive. Ho%é%er, wifh the develbpment of
Large Scale Integration, a cell wlth'parallel arithmetic
and logic could be readily realized. In connection with
this concept, we note that the cellular array techniques
for multiplication and division such as those proposed by
J. Majithia (16) would be‘quite appropriate for this use,
particularly if and when L.S.I. can produce these arrays.
Thé exlsting interface design discussed in Chapter
L i1s sinple and crude. The Instruction Register which
controls the function to be executed is set directly by
the PDP8 computer, and only one function state can be set
at a time., Moreover, the instruction register which is 40
bits long requires 4 cycles from the computer; whose accumu-
lator has only 12 bits, in order to set it. This requires
lengthy programming and slows down the operations. This is

an area where the present system can be greatly imyroved.



It calls for a interface-control design where the instruction
register can be reduced to a compatible 12 bits if the PDP8

is used or 16 bits if a machine is available with a 16 bit
accumulator. This would involve implementing a network which
decodes 1nstruction'register information to set the control
lines 5f the cell array. Consequently a convenient instruction
set will have to be developed which alloﬁs easy programnming.

In addition, it is proposed that a small memory be incorporated
in any new interface-control design for the purpose of storing
ml&roprograﬁs. The micréprograms may lnclude, notbjust béslc
cell operations instructions but possibly, subproérams for ;
complete sequences of iterations as well. This would 11beréte
the generel purpose computer for other function, while array
computations are being executed, and would represent a major
improvement to the present system. The size of the array
1tself can be expanded by simply wiring in more cells. How-
ever, it is expeéted that the 20 cells array will be adequate
for present requlrements.

It appears quite certaln now, that alcong with the great
speed with which the general fileld of digital devices, lnstru-
ments and systems are advancing, that the concept of a cell
with memory and loglc hés an lmportant role. Its ultimate
development depends very much on the advancément inL.S.I.
technology‘and the development of algorithms that can make
effective use of the scphist1¢ated nature of the Computing

e

Menory Cell,
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COLUHN: NUMBER

7 6 5 v 3 2 )

7400 7430 7400 7430 R13 7408 7400

7400 7400 7400 7481 7481 7408 7416

7400 7410 7410 7481 7481 7408 7Lh16

7451 7hH183| 7486 7481 7481 74H11 | 7451

7476 7475 7475 7404 74H11 | 7475

7400 7430 | 7400 7430 R63 7408 2454

7400 7400 7400 7481 7481 7408 7416

7400 7410 7410 7481 7481 7408 R81

7L451 7481831 7486 7481 7481 74H11 | 7451

7476 7475 7475 7404 7UH11

"Nbe All the above I.C. chips have the
prefix 'SN*. |
Each chip location is identified by the
ROW number followed by the Column number.

TABLE A.,1 P.C, BOARD LAYOUT FGR &4 CELLS

wop=Ecd= 0™




COLUMN NUMBER

7 6 5 B 3 2
R16 R15 R14 R13 R12
7417 | 717 | 7wz | 7s17 | 7817 | 7hon
7&16 7416 7416 7&16 7400 7400
MC
74193 | 4OLOP | 74193 7473
7430 7404 7486 7400 7473
7410 7486 7420 7473 74H11
7410 ‘7u§o - 7400 7451 7406
740k 7404 7430

th 'MC' Speoifles a }'IOTOBOLA I!C. Chip.

TABLE 4,2

LAYOUT OF

CONTROL EOARD

85
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COLUMN NUMBER
7 6 5 L 3 2 1

74156 | 7475 | 7475 | 7475 | 7475 | 7475

7475 7475 7475 7475 7475 7475

R37 7416 R35 R34 7417 R32 7417

7516 2416 7416 9495 7495 7495 | 7495

7l51 7451 7410 740k 7451 7451 7451

7416 7495 7495 7495 7495 7408 7408

7400 R76 7416 74156 .7416 R72 7416

R85 RE3 R81

Nb, 'R' stands for 'Resistor Flatform*
R85, for example, 1s the Resistor Flatform

¢f row 8 and column 5.

TABLE A.3  LAYOUT OF INTERFACE BOARD

TR cE =0k
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FUNCTION I0Ps CODE

CLEAR IOP and START IOQP 5=1, 5=-4 6105
- LOAD IR, CLEAR ACC, 71, 7-b 6107

LOAD DATA IN BEGISTER I0F 2 6112

DATA BITS

LOAD DATA IN REGISTER I0P 4 6114

CONTROL BITS

READ DATA BITS INTO ACC., I0P 1 6111

READ CONTROL BITS INTO I0P 1 6111

ACcC,

FLAG 1 CYCLE TEST, 1-1 6101

FLAG 2, CONVERGENCE 22 6102

TABLE AU

LIST OF IOPs
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LIBRARY OF OFPERATE PHOGRAUNS

The neumonlc code at the left is the symbolic

code of the subroutine in question.

~

The rest of each line is the commend in PAL to

jump to the appropfiate subroutine.

RDID = JMS I 28
RD2D = JMS I 21
RD3D = JMS I 22
RDIC = JMS I 23
RD2C = JNS I 24
RD3C = JMS I 25
CWRID = JMS I 26
WR2D = JMS I 27
WR3D = JMS I 38
WRIC = JMS I 3]
WR2C = JMS I 32
WR3C = JMS I 33
TPID = JMS I 34
TP2D = JMS I 35
TP3D = JMS I 3§
TPIC = JMS I 37
TP2C = JMS I 4B
“TP3C = JNMS I 4l
TPIDX = JMS I 42
TP2DX = JMS I 43
TP3DX = JMS I 44
TPICX = JHS I 45
TP2CX = JMS I 46
TP3CX = JMS I 47
CLEARPAM = JMS I
ROTL = JMS I 51
ROTR = JMS I 52
CHMULT = JMS I 53

MULT = JMS I 54

58

READ DATA FROIl THE ARRAY

eg. BD3D means, RHAD mj DATA.

WRITE DATA INTO THE ARRAY

eg. WR2C means, WRITE my, CONTROL

TYPE-OUT DISFLAY OF ANSWERS
FROM THE ARRAY

eg. TP3D means, TYPE m3 DATA

TYPE-OUT DISPLAY OF INITIAL

DATA FOR THE AHHAY
eg. TP2CX means, Type m- CONTROL
data intended for thne array

CLEAR my, o, ms of all cells
SHIFT my data one bit left of right

Mult. my by externally set constant

HMult. myq by My, store in Iy

TABLE A.,5 LIST OF OPERATE PROGRAMNS

! N



ADD121
ADbDl22
ADD!123
ADD1 31

ADD132

ADD133
TCOMPI
TCOoMP2

- TCOMP3

CoMP
EXOR
BAND
OR

suBla3
SuUB133

TRNL2U
TRN12D
TRNLZ2L
TRNIZ2R

TRN32U

TRN32D
TRN32L
TRN32R

= JMS I 55
= JMS I 56
z JMS 1 57
= JMS I 68
= JMS I 61
= JMs I 62
= JMS 1 63
= JMS 1 64
= JMS I 65
JMs I 66
Jis 1 67
JMS I 78
JMS I 71
= JMS I 72
= JMS I 73
= JiMS I 158
= JMS I 151
= JMS I 152
= JMS I 153
= JMS I 154
= JHS I 155
= JMS I 156
= JHMS I 157
= JMS 1 168
JMS I 161
JMs I 162
JiS I 163
JMS I 164
JMS I 165
JMS I 166

L

"CLEAR m

89

ADDITION
eg. ADD131 means, ADD,m1 to mj

storg in my

and store in same memo
1's Comp, of m

2's Cdmn. of My, Mo, m;
y

EXCLUSIVESOR my ® m, = m3
BOOLEAN AND:s myemy = m3
BOOLEAN OR m, +m, ="m

1 -3
SUBTRACTION

TRANSFER DATA FROM ONE CELL
LOCATION TO ANOTHER

eg. TEN12R means, TBANSFE& m1

to mpy of the cell to the
RIGHT.

3 only, of all cells

spare subroutlnes

TARLE A.5 (contd) LIST OF OPERATE PROGRAMS
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LIST OF ABBREVIATIONS

A.U.
P.U.
IR

Is
CLIM
COMP
2's COMP
CONVG.
IOP

L

R

OP.

Bd

Sh.
1sb
msb
ff
MHz
const,
ARITH.
Fig.
ns
Ext.

int.

Arithmetic Unit
Processing Unit
Instruction Register
Instruction Set
Cellular Logic in Memory _
Complement

Two's Complement
.Convergence
Input/Output Fulse
Left

Right

Operation

Read

Shift

Least Significant Bit
Most Significant Bit
Flip Flop

Mega Hertz

Constant

Arithmetic

Flgure

Nanosecond

External

Internal

LIST OF ABBREVIATIONS



(Data from Neighbour Cell)

m g Fnad§
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[ ™Ms. M3 CLOCK | Select
LR
r—-f\~—£ 2 4 :
(2] 12 33 o m,B —1—0 o | | Er—~e | Ext.DATA
—" Im o i e mrarare 49\" Input
M._‘Z’_. / 1 ‘IZI?"';gn
2 0] 5
! Wpyzy S z %, e, D2 N
/4
E Py L L lo Ab y b ’
e T iz| (#4) PRESET
; d R
! . 7 Ry -i\ [T
; AT } A ‘2z ' ¥
#—J LT A L /3 2 73
| » gt I:::>
C
!
l s . e N m =
| ] i g {r3 b
d ' " &
: ; =8

T

V)
N

Y o

i

’¢e i

WRITE
PULSE INPUTS

CONVG
CLOCK  PULSES

FIGURE A,.1
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(Data from Neighbour Cell)

: ) | kEnlee) :
—m! }SELECT -—-r% SELECT X L N P P s s u
2 . 2 | READ MULT CLOCK ABLE | ABLE COMP : [
——my j WRITE ——My CLOCK D isetect
. R
W 2% g Z@ / 01 9—0:/ \TJ
] - / 4
’r ; 22:)37' -y — 3 Do | | \ | Ext.DATA
| | . m1 73 Q777 4 L2345 lnpul
s & o ¢ DZ&(E
D 7
¢ aff 7% PRESET
Ly 53}, 2,7 » ! j :> > ‘l
D Q 3N /3 52 = /
—C ﬁ 4 |§ . ] 7 ;
0, @G5 L s ok
< { ‘j’j' C
D QA Z/A, 213 3 & %] Clear
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oy 7 , clock
2
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| ‘ . LATCH
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CELL SCHEMATIC

26

FIGURE A.2 WIRING SCHEMATIC OF CELL 2



(Data from Neighbour Cell)

£nable)
N AL B DATA A@uu) B UP DOWN LEFT RGHT
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{Data from Neighbour Cell)

AL (E”"bﬁe) UP DOWN LEFT RIGHT
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