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SCOPE AND CONTENTS: 

A number of questions are examined concerning many­

body correlations in connection with the electron gas at 

metallic densities (2 ~rs~ 5.7) and the annihilation of a 

positron in simple metals, by means of a technique involving 

the two-particle correlation Green's function. Estimates 

are made of low temperature contributions to angular corre­

lation data, which describe the momentum distribution of 

a nqihilating electron~positron pairs, in the form of smear­

ing at the sharp cutoff corresponding to the Fermi momentum 

from electron- and positron-phonon interactions, and in the 

f orm of broad tails beyond the cutoff resulting from the 

high-momentum components introduced into the electron wave 

function by the presence of a periodic crystal lattice . 

Phonon effects are introduced into th~ perturbation 

e xpansion of the two-particle Green's function describing 

an electron-positr on pair. A calculation of the lowest-order 

(ii) 



phonon contribution seems to indicate that such effects do 

not explain the smearing at the Fermi momentum. 

A Green's function calculation of the first-order 

enhancement of the lattice tails, due to the positron-

electron correlation, is made by introducing particle-

lattice interactions explicitly in a model based on a simple 

metal such as sodium. It considers a weak potential and 

treats as zero the lattice components corresponding to other 

than nearest-neighbours points in reciprocal lattice space. 

The enhancement for r =4, which is almost a constant, is s 

very similar to that for the main part of angular correla­

tion data. This indicates that, for simple metals at least, 

angular correlation data can be interpreted directly from a 

free-particle model. 

Short-range correlations among opposite-spin elec­

trons are examined by field-theoretic techniques as a step 

to obtaining a fundamental understanding of the correlations 

among electrons at metallic densities. A calculation of the 

p.d.f. for opposite-spin electrons is positive over a wide 

range of metallic densities and seems to account for short-

range correlations of the Coulomb hole through the multiple 

scattering of particle-particle ladders. 
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CHAPTER I 


INTRODUCTION 

1.1 Historical Introduction 

The many-body problem presented by a solid has found 

its solution in a variety of model approximations. One 

widely-employed technique has been to regard the system as a 

collection of interacting ions and electrons and to make fur­

ther simplifying assumptions within that framework. Many of 

the properties of metals, for example, have been understood 

in terms of the free electron theory of Sommerfeld (l) • In 

this model, it was assumed that one could neglect the strong 

interactions among electrons and between electrons and ions. 

The Hartree-Fock (2 ) approximation replaced free particles 

by quasiparticles. It handled the interactions between elec­

trons in an average way and, by taking account of the Pauli 

exclusion principle, led to the concept of an electron moving 

with an accompanying exchange hole. The exchange nature of 

the quasiparticle went part of the way towards e xplaining the 

binding of alkali metals (3 ) 

Various attempts to account for Coulomb correlations 

through a second-order perturbation-theoretic calculation led 

to a divergent result related to the long range of the inter­

action. In the 1930's Wigner (4 ) proposed a solution based 

1 
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on an interpolation between high- and low-density 

calculations of the energy. Then, in the early 1950's, 

Bohm and Pines ( 5 , 6 ) developed a collective description of 

the electron gas as a quantum plasma which exhibited collec­

tive behaviour in the form of screening and long-wavelength 

oscillations or plasmons. Within the Bohm-Pines theory, 

the random phase approximation provided a nontrivial model 

of the interacting electron system. From RPA, also described 

in terms of dielectric response theory, it was possible to 

calculate various properties of the electron gas at high 

densities (r << 1) (3 ) such as the ground state energy,
s 

plasmon effects and a more suitable quasiparticle pic t ure. 

In 1957 the perturbation-theoretic approach was finally 

applied successfully by Gell-Mann and Brueckner (7 ) who sum­

med entire sets of divergent terms using the Feynman (B) 

propagator method to obtain finite sums. Their result for 

the ground state energy confirmed the RPA calculation for 

high densities. 

Nonetheless, RPA failed to give a proper description 

of the electron gas in the metallic density range 

(2 ~ r ~ 5.7) (9 ,lO) where interactions become important.
s 

In particular, the approximation ignored exchange in its 

treatment of correlations so that short-range effects were 

inadequately described. This large momentum difficulty was 

pointed out by Nozieres and Pines (ll) and Hubbard (l 2 ) who, 

in 1957, proposed alternative solutions to the problem. 
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Hubbard introduced a particular infinite set of exchange 

diagrams which he approximated. This led to a modified 

expression for the dielectric screening function which was 

equivalent to RPA for small momenta but which had the effect 

of cutting in half the contribution to the correlation ener­

gy from large momenta. A number of modifications of Hubbard's 

approximation have since been suggested by Heine and 

Falicov {lJ), Rice {l4 ), Geldart and Vosko {lS) and 

Geldart {l 6 ) which maintain the essential momentum dependence 

of the average potential used by Hubbard but adjust a para­

meter to satisfy some additional constraint. 

. f bl' . {l?- 20) . . t 1In a series o pu ications Singwi e a . 

introduced and refined a theory which improved upon the short-

range aspect of Hubbard's approximation by accounting for 

the local-field correction associated with the Coulomb hole. 

They included the short-range correlations specifically, in 

an approximate way, by making the dielectric function a func­

tional of the Fourier transform of the pair distribution 

function {p.d.f .) g(r) which desc"ribes the probability that 

there is a particle at position r if there is one at the 

origin. Their approach was a semi-classical one, based on 

an ansatz relating the two-particle distribution function to 

the one-particle distribution function and the p.d.f. The 

effective field felt by a particle then involved a local 

part through the p.d.f. which was contained in the dielectric 

function. There resulted a set of equations involving E{q,w) 
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and S(q), the Fourier transform of the p.d.f., which had to 

be solved self-consistently. This method led to a good 

description of the p.d.f. for small r and of the compressi­

bility which is a long-wavelength phenomenon. 

The annihilation of positrons in solids has become 

a major tool in the investigation of many-body effects in 

solids. The angular correlation technique first carried out 

by de Benedetti et al. (2l) measured the momentum distribu­

tion of the photon pair resulting from the annihilation of 

a positron with an electron . 

Lee-Whiting (22 ) suggested that a high-energy posi­

tron incident on an electron gas quickly lost its energy to 

the electron system by the creation of electron-hole pairs 

and was thermalized at the time of annihilation; that is, a t 

zero temperature it was in the lowest energy state possible 

and at finite temperature it was in thermal equilibrium with 

the electron gas. At low temperatures, then, the momentum 

of the annihilating pair could be assigned to the electron. 

In the case of a metal, it was argued by de Benedetti (2l) 

and Ferrell (23 ) that a thermalized positron would be exclud­

ed from the cores so that annihilation would occur on l y with 

the valence electrons. Indeed, extensive measurements of 

angular correlations by Stewart (24 ), for example, agreed 

with a free-electron distribution, which took the form of a 

parabola with a sharp cutoff at an angle corresponding to 

the Fermi momentum. 
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The aforementioned arguments provided the basis for 

the analysis of positron annihilation experiments but they 

failed to account for a number of characteristic features 

of angular correlation data such as the broad tails, the 

smearing in the vicinity of the Fermi momentum and the large 

(23total annihilation rates. Ferrell > showed that a con­

sideration of the screened Coulomb interaction between a 

positron and an electron would enhance the electron density 

at the positron by an order of magnitude. Detailed calcula­

( 25tions by Kahana > and Carbotte and Kahana (26 ) by means 

(27128 )of a zero-temperature Green's function technique 

which took into account the Pauli exclusion principle and 

positron-electron correlations led to an enhancement f a ctor 

that was reasonably constant across the Fermi sea. The para­

bolic shape of Sommerfeld theory was left largely unchanged, 

but the corresponding increase in the total annihilation rate 

(29 was more in line with experimental results , 3 o) 

The independent work of Daniel (3 l) and Berko and 

(32Plaskett > on the positron wave function provided evidence 

that the major part of the broad experimental tails was due 

to annihilation of the positron with core electrons. Esti­

mates have since been made of annihilation with core elec­

trons, which included enhancement effects, by Carbotte and 

Salvadori (33 >. More recently considerable attention has 

been given to a determination of the positron wave f unction 

in order to study core cont ributions (34 >, as well as 
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anisotropies in angular correlation data (3 S) and defects 

in metals (36 ). 

Part of the angular correlation tails has also been 

shown to come from high momentum components introduced into 

the conduction electron wave function by the periodic lat­

(32137138 )tice. Most estimates have neglected Coulomb 

correlations, which are necessary for a quantitative measure 

of this effect. 

Angular correlation data has also been characterized 

by smearing at the Fermi cutoff. Measurements over a wide 

(39range of temperatures , 4o) showed that this smearing 

increased with temperature, an indication of increased posi­

tron motion. Now, Carbotte and Arora ( 4l) pointed out that 

positrons were not always thermalized when they annihilated. 

This fact was borne out by Kim et al. ( 40) who fitted angu­

lar correlation data with calculated curves based on a free-

particle Boltzmann distribution for the positron into which 

was introduced a parameter Teff' the effective positron tem­

perature. At high temperatures, the effective temperature 

was linear with the sample temperature, suggesting thermal­

ization. At lower temperatures, however, Teff was larger 

than expected for a thermalized positron and had a non-zero 

value at T=O. 

It can be seen that, since the positron perturbs 

the many-body system of a metal and obscures much of the 

information about the electrons, it is necessary to 
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understand the details of the problem. Certainly, there is 

also much valuable information such as the Fermi surface of 

a metal or alloy that is readily accessible in terms of even 

the simplest approximations (32 ) 



1.2 Scope of Thesis 

The work of this thesis falls into three separate 

parts. The first two parts, in Chapters II and III, deal 

with problems related to positron annihilation in simple 

metals. The third part, in Chapter IV, examines correla­

tions in the electron gas at metallic densities. 

(42 )Woll and Carbotte described the energy loss of 

a positron through interactions with the electron gas. Their 

estimate for the minimum (T=O) average positron energy was 

appreciably lower than interpretation of experimental evi­

dence for metals (40) would indicate. It seems that part of 

the smearing could represent an effect not described by that 

theory. For annihilation in a metal there is an additional 

feature to be considered, the presence of a system of vibrat­

. . h b . d (43,44) h .ing ions. It as een pointe out t at pos i tron­

phonon correlations provide an additional mechanism for ther­

malization of the positron. However, phonons can also lead 

to smearing at the Fermi cutoff. 

The positron annihilation rate can be related to the 

electron-positron Green's function G , which describes the ep 

propagation of an electron-positron pair in the medium. G ep 

has a perturbation e xpansion in terms of free - parti cle pro­

pagators described by Feynman diagrams, which can be e x tended 

8 
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to include phonon effects through additional diagrams 

involving positron (electron)-phonon correlations. The 

smearing from the lowest-order diagrams is calculated in 

Chapter II. 

A periodic lattice potential has the effect of 

destroying the simple picture, valid for an electron gas, 

of free electrons in plane wave states by introducing higher 

momentum components into the conduction electron wave func­

tion. This leads to tails in the angular correlation data. 

There have been a number of estimates of this effect based 

(32 37on an independent-particle model , , 3S). The purpose of 

Chapter III is to calculate the enhancement of the lattice 

tails due to first-order positron-electron correlation s for 

a model based on sodium. It involves an additional set of 

diagrams in the perturbation expansion which account f or the 

lattice e xplicitly through electron-ion interaction lines. 

The third part of the thesis examines correlations 

between opposite-spin electrons in an electron gas a t metal­

lic densities from a perturbation-theoretic approach. Vari­

ous approx imations based on such an approach h ave the problem 

of a negative value for the p.d.f. at small r (lG). The 

difficulty is that they all a s sume a weak interaction and use 

the Born approx imation in estimating Coulomb corre lations, 

while at small r even a screened potential is large. A solu­

tion for opposite-spin electrons, wh ich suggests its elf from 

(25the analysis of positron annihilation > and from a 
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(45calculation by Carbotte > of the charge environment of a 

light negative charge in an electron gas, is to sum the 

complete set of ladder diagrams in the perturbation expansion 

of the particle-particle Green's function G . This quan­ee 

tity is simply related to the spin-up-spin-down p.d.f. 

gt+ (r) • 

In section 2.1 of Chapter II the positron partial 

annihilation rate is related to the positron-electron 

Green's function and the perturbation expansion for G is ep 

discussed. In section 2.2 the motion of a positron in an 

electronic medium is described. Phonons are introduced and 

it is shown how they modify the thermalization rate, the 

momentum distribution and the perturbation expansion. In 

section 2.3 the electron-phonon and positron-phonon coupling 

constants are derived. In sections 2.4 and 2.5 the contrib­

ution to the smearing from three first-order phonon diagrams 

in the perturbation expansion is calculated. The experimental 

smearing is also recalculated from the experimental value for 

A discussion of the results of the calculations isTeff. 

given in section 2. 6. 

In section 3.1 of Chapter III reference is made to 

previous work on lattice effects. Section 3.2 describes how 

the lattice can be included in the perturbation expansion 

for G by introducing Bloch functions into the free-particleep 

Green 's functions and derives the contribution to R(p) from 

t he zeroth- and first-order ladders. An alternate derivation 
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in section 3.3 takes explicit account of the electron-ion 

interaction V by introducing an additional infinite set of e 

diagrams. In section 3.4 a first-order enhancement factor 

is calculated and discussed. 

Section 4.1 of Chapter IV relates the p.d.f. to the 

two-electron Green's function. In section 4.2 the RPA spin­

up-spin-down p.d.f. gt+(r) is derived and the contribution 

L2
gt+(r) of the remaining ladder graphs is formulated in terms 

of a Bethe-Goldstone function ( 4G). Particle-hole contribu­

tions to this function are discussed in section 4.3. In 

section 4.4 the Bethe-Goldstone function and g~~(r) are 

calculated by making an angle-averaged approximation and the 

(20)resulting gt+(r) is compared with Singwi et al. 

In section 5.1 of Chapter V conclusions are drawn 

about phonon smearing. In section 5.2 conclusions are drawn 

concerning enhancement of lattice annihilation rates. Con­

clusions about correlations in the electron gas are offered 

in section 5.3. 

In Appendix A the positron-phonon matrix element is 

calculated. In Appendix B the first-order ladder contribu­

tion to R(p) is derived in terms of electron Bloch states. 

A formulation of the equation for a Green's function propa­

gator is given in Appendix C, which accounts for the lattice 

through electron-ion interaction lines. In Appendix D an 

e quation for the angle-average of the Bethe-Goldstone func­

t ion is derived. 



CHAPTER II 


PHONON EFFECTS IN POSITRON ANNIHILATION 

2.1 Theory of Positron Annihilation 

The partial annihilation rate of a low-energy 

( 23positron in an electron gas has been shown by Ferrell > 

to be given by the expression 

R(p) 

( 2 .1) 

where ~(x) and ~ (x) are the electron and positron field 

operators, respectively, and the e xpectation value is taken 

in the fully-interacting ground state for the ini t ial sys-

tern of electrons and positron. In terms of the zero-

temperature electron-positron Green's function d e fined as 

( 47where T is the Wick > time-ordering operator, the partial 

(23 a nnihilation rate can be written > as 

-ip · (x-y) 
R(p) = n\ (- 1') 2 d 3x d 3y e - - - G (xt I x t; yt+ I yt+) . 

H epf 
(2. 3) 

12 
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The constant A is given by the spin-averaged positronium 

annihilation rate AO divided by the electron density, n 0 , 

at the positron in singlet positronium. It can be seen 

from equation (2.1) that the total annihilation rate is 

proportional to the electron density at the positron, aver­

aged over all positron positions. 

The Hamiltonian for the system of electrons and 

positron in the Heisenberg picture is 

r d3x t 2 d 3 2
H = J \jJ (x) (-\/ ) \jJ (x) + f x ¢ t (x) (-9 ) ¢ (x) 

d 3xd3x• \)Jt(x't) ¢t (x)v(x;x')¢(x)\)J(x't) ' (2.4)- f - - - ­

where v(x;x') is the Coulomb potential. In order to set up 

the perturbation series for a propagator, one derives the 

equation of motion for the propagator and then solves this 

equation by making a perturbation expansion in powers of the 

potential. Such a formulation has been carried out by 

Carbotte <37 ), for example, and a similar derivation is 

presented in Appendix C. The latter involves the additional 

complication of a per.iodic crystal lattice but is otherwise 

the same. 
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The electron-positron Green's function G satisfies ep 

the equation 

- i J d 4 zd4 z' v (z;z ')Go (x 1 ;z )e 

x [G (z't ,z,x ;z't+,x • ,x ')
eep - z 2 - z 1 2

+- G (z't ,z,x ;z't ,x • ,x ')]
pep - z 2 - z 1 .2

(2. 5) 

The positron Green's function G and the three-particle
p 

Green's functions G and G satisfy similar equations;eep pep 

in fact, the general n-particle Green's function G ,
P1P2 •• ·Pn 

where the subscript p. can be either "e" or "p", satisfies 
l 

an integral equation relating it to (n-1)- and (n+l)-particle 

Green's functions. 

If interactions are neglected, G reduces to ep 

(2. 6) 

where GO and GO represent electron and positron free-particle
e P 

propagators, respectively, which can be expanded in terms of 

plane waves as 
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G (k; w)ik• (x-x')c: (x;x') ) e ­dw -iw(t-t').!_ E= e e27f~ k I (
0 

)
Gp(x;x') Go(k;w) 

p ­
( 2. 7)where 

8(k-pF) 8(pF-k)0G (k;w) = + (2.8a)
e - k 2-w-1·a+ k 2-w+i0+ 

and 

0 8(k) + 8(-k)
G (k;w) = (2.8b) 

p - k 2 ·a+ ·a+-w-1 -w+i 

With the expression (2.6) for G , the annihilation rate ep 

reduces to the form 

;\
R(p) = E cS ( 2. 9)

~ k,pls . 
k<pF 

In this approximation, then, the partial annihilation rate 

is proportional to the free-electron momentum distribution. 

The quantity that is usually measured by the angular 

correlation technique is the number of photon pairs having 

a particular momentum p in some fixed (z-) direction; that 
2 

is, to within a proportionality constant one measures 

R (p ) = E R(p) (2.10)z 
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In the limit of infinite volume the annihilation rate 

described by equations (2.9) and (2.10) can be written as 

R(p z ) = 0 for Pz > Pp 

(2.11) 

which includes a factor of 2 to account for spin. The result 

of equation (2.11) is illustrated in figure (2.1) and is 

essentially the shape of experimental correlation data. 

For a fully-interacting system the equation (2.5) 

for G couples G to Green's functions having fewer and ep ep 

greater numbers of particles which satisfy similar equations. 

The solution of the resultant infinite set of equations 

leads to a perturbation expansion for G in terms of the . ep 

potential v(x;x') and the free - particle propa gators GO and 
e 

Go. Kahana ( 2S) and Carbotte and Kahana (26 ) have shown that 
p 

the major contribution to the annihila tion rate comes from 

the infinite series of ladder diagrams of figure (2.2), 

represented by the equation 

z 1- i u(z·z')GO( x · z)GO( x ·z')I d 4 zd 4 
I e l' p 2' 

( 2 .12) 



Figure 2 . 1 Sommerfeld positron partial annihilation 

rate as a function of the electron-positron 

momentum p in a fixed (z-) direction . z 
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Figure 2.2 (a) Infinite set of ladder diagrams in 

the perturbation expansion for the electron-

positron Green's function G The single lines ep 

represent the free-electron propagators G~ and 

the double lines represent the free-positron 

0propagators G . The interaction line describes 
p 

the static limit of the effective potential in 

the random phase approximation. (b) The effec­

tive potential in the random phase approximation. 
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where u(z;z') represents an effective electron-positron 

potential, taken in the static limit, that takes into 

account the effect of the medium on the Coulomb interaction 

between an electron and a positron. The correlations lead 

( 25126 )to an enhancement of the partial annihilation rate 

but do not modify appreciably the parabolic shape described 

by equation (2.11) and figure (2.1). 

The interpretation of angular correlation data for 

metals in terms of the electron momentum distribution is 

obscured by a number of features. There are, for instance, 

broad tails superimposed on the "parabolic" shape. Carbotte 

(26 )and Kahana have examined the tails introduced into the 

electron and positron momentum distributions by the inclusion 

of interactions with the medium and have found a strong 

cancellation between these self-energy contributions and 

ladder contributions. The experimental tails must come from 

the presence of the crystal lattice. The lattice, in fact, 

introduces tails through annihila t ion with core electrons. 

It also leads to higher momentum components in the conduction 

electr on single-particle wave functions, which form the 

subject of Chapter III. 



2.2 Positron Motion 

Angular correlation data is characterized by 

smearing at the Fermi cutoff. Extensive measurements over 

'd f b · , (40) h h ha w1 e range o temperatures y Kim s ow t at t e 

smearing increases with the temperature of the sample. 

Thermal smearing can be readily estimated. The smearing of 

the electron momentum distribution, 6k, is described by 

(2.13) 

which gives 

(2.1 4 ) 

At room temperatures in sodium, for example, this is negli­

gible. Thermal smearing due to positron motion is of the 

order k+' given by 

( 2 .15) 

which, in the same system, yields 

(2.16) 

20 
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This effect is observable. 

A high-energy positron entering a metal loses its 

energy essentially by collisions with valence electrons. 

The first estimate of the energy loss by Lee-Whiting (22 ) 

suggests that the positron is therrnalized at the time of 

annihilation. Carbotte and Arora ( 4l) have applied Green's 

function techniques in order to calculate the rate of energy 

loss in terms of the imaginary part of the positron self­

energy operator M(k;w) defined by the Dyson equation ( 4s, 49 > 

G (k;w) = GO (k;w) + GO (k;w)M(k;w)G (k;w) (2.17) 
p - p - p - - p ­

illustrated in figure (2.3a). The calculation took into 

account the simple self-energy diagram of figure (2.3b), 

with the effective potential taken in both the random phase 

and Hubbard a pproximations. The results of Carbotte and 

Arora indicate that the positron is not always therrnalized 

on annihilation. On . the other hand, estimates by Perkins 

( 43 ( 44and Carbotte > and Mikeska > of an additional rnechan­

ism for energy loss, phonon excitation, indicate that it 

becomes significant at lower positron energies, resulting 

in a shortening of the therrnalization time. 

Experiments designed to e xamine positron motion have 

(39been carried out by Stewart > a n d Kirn ( 40). Kirn assumed 

a free-particle Boltzmann distribution for the positron in 

terms of a parameter Teff' the effective positron 



Figure 2.3 (a) Dyson equation for a positron 

(electron) Green's function propagator. The 

heavy lines represent true propagators, the 

light lines represent free-particle propagators 

and the shaded circle stands for the self-energy 

operator. · (b) The lowest-order positron 

(electron) self-energy operator with the inter­

action given by an effective potential. 
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temperature, which he fit to experiments. This involved a 

comparison of the slope of the angular correlation data 

with calculated curves which were convolutions of an en­

hanced free-electron distribution, the optical resolution 

and the function 

describing the positron motion. At high temperatures, the 

effective temperature was linear with the sample temperature, 

as shown in figure (2.4). This was taken to signify that 

the positron was thermalized, with a Boltzmann momentum 

distribution 

e 

where m* is the positron effective mass. The effective mass 

obtained in this way from the slope of the curve plotting 

effective temperature vs sample temperature was considerably 

larger than theoretical estimates of the effective 

(50 51) . (44) . (52)mass ' Mikeska and Bergersen and PaJanne 

have since argued that the positron-phonon interaction leads 

to an additional contribution to the momentum distribution. 

If the real distribution is replaced by a Boltzmann distribu­

tion, the Boltzmann distribution has an apparent effective 

mass greater than m*, one which fits the experiments of 



Figure 2.4 Variation of positron effective tempera­

ture with specimen temperature for positrons in 

Na (from Kim et al. (40)). 
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39 53 )Kim <4o) and Stewart and Shand < , to within the 

experimental limits. 

As the temperature of the sample was lowered, the 

effective temperature was no longer linear with the temper­

ature. Thermalization was apparently incomplete, and at 

T=O the positron still had some minimum non-zero energy on 

annihilation, which in sodium corresponded to 160°K motion. 

A theoretical calculation of the minimum Teff from a 

42Boltzmann equation approach by Woll and Carbotte < > des­

cribed the positron decay in terms of its screened Coulomb 

interactions with the electrons and yielded a considerably 

lower value. It would seem that part of the experimental 

smearing may represent a temperature-independent effect not 

described by the theory out l ined thus far. 

Smearing at the Fermi surface can result from posi­

tron (electron)-phonon effects. As in the case of thermal 

smearing of the electron momentum distribution, the smearing 

due to electron- phonon inte ractions is quite small. Written 

as 6k, it is given by 

(2.18) 

so that for sodium 

.002 (2.19) 
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The positron-phonon interaction, on the other hand, leads 

to smearing, say k+' given by 

(2.20) 

This is roughly the extent of the smearing that is of 

interest at T=O. 

The perturbation expansion for the electron-positron 

Green's function propagator can be easily extended to include 

positron (electron)-phonon interactions, as shown, for 

(54)example, by Schrieffer A new set of Feynman diagrams 

results from replacing Coulomb interaction lines by phonon 

propagators with positron (electron)-phonon coupling con­

stants at the vertices. This is illustrated in figure (2.5). 

Carbotte and Kahana ( 26 ) found a strong cancellation of tails 

from the lowest-order self-energy and ladder diagrams in the 

perturbation expansion for an electron gas. However, in the 

case of the lowest-order phonon diagrams of figure (2.6), 

such a cancellation is not expected since the extent of 

smearing is quite different. A more detailed analysis 

appears in the remaining sections of Chapter II, based on 

(55the results of a paper by Hede and Carbotte > 



Figure 2.s (a) Coulomb potential. (b) Phonon 

propagator with positron (electron)-phonon 

coupling constants at the vertices. It can 

replace the element (a) in a perturbation dia­

gram in G for a system that includes phonons.ep 
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Figure 2.6 Lowest-order diagrams in the phonon 

propagator in the perturbation expansion for G ep 

The single lines represent electron propagators, 

the double lines represent positron propagators, 

the wavy lines represent phonon propagators and 

the shaded circles represent positron (electron)­

phonon coupling constants. (a) Positron se l f-

energy diagram. (b) Electron self-energy diagram. 

(c) Ladder diagram. 
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2.3 Electron-Phonon and Positron-Phonon Interactions 

In this section, the positron- and electron-phonon 

interactions are formulated. The rigid ion model (SG) is 

assumed and the potential seen by a positron (electron) 

is written as a sum over ionic potentials as 

L V(r - R) (2.21)
1 -1 

where : is the positron (electron) location and ~1 is the 

position of the 1th ion. Expanding the potential about the 

ion equilibrium position ~0 
1 , one has, to first order in the 

displacement ~ = ~ - ~~'1 1 

(2.22) 

The first term leads to the crystal potential for a perfect 

lattice, while the s econd term leads to the positron (elec­

tron)-phonon interact ion described by the Hamiltonian 

H = - L u . VV(r. - Ro) (2.23) 
~os (el) -ph i t - 1 - -l -1 

where the subscript i re f ers to the ith positron (electron). 

29 
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In second-quantized notation this becomes 

H = -l:pos(el)-ph kq 

x c t c (2.24)k+qa ka 

c t , care the positron (electron) creation and annihilation 

operators and the complete set of states I~> is taken to be 

the set of Bloch states defined by 

ik·r1= - uk(r)e (2.25) 
!IT - ­

where r2 is the crystal volume and uk(::) has the periodicity 

of the perfect lattice. 

~ £ can be e xpanded in terms of the nor mal coordinates 

Q(k,A.) as 

1 (2.26)
IMN 

where the sum on k' extends over the first Brillouin zone 

(FBZ). ~ A.(k') is the polarization vector for a phonon of 

polarization A. and waveve ctor k', Mis the ionic mass and 

N is the total numbe r of ions . From the periodicity of the 

function uk and the relationship 
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ik·RO 
1 - -9,N r. e = E (2.27) 

fl g 
ok,g 

where g is a reciprocal lattice vector, the positron 

(electron)-phonon Hamiltonian (2.24) can be seen to reduce 

to 

Hpos(el)-ph 

x c t (2.28)k+qcr ckcr 

The q-vector appearing in the normal coordinate Q and the 

polarization vector E is the reduced value of q, which is 

permissible since phonons are described in the first 

Brillouin zone. The Kronecker delta is non-zero for only 

one value of the reciprocal lattice vector g, given by 

k' = q + g, which reduces q to the FBZ. If the normal coor­

dinate is e xpressed in terms of phonon creation and annihila­

t
tion operators a~>..' aqA in the form 

Q (k, A.) = 1 (2.29) 


where w>.. (:P is the frequency of a phonon of polarization A 

and wavevector q, equation (2.28) can finally . be written in 

the form 



- - -

- - -
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Hpos(el)-ph 

(2.30) 

gk+q,k,A' called the positron (electron)-phonon coupling 

constant, is given by 

gk+q,k,A = -(hN/2MwA(g)) 
1

/ 
2 ~A(g )· <~+gl~VI~> , (2.31) 

and can be seen to satisfy the condition 

g * = (2.32)k+q,k,A 

In the vicinity of an ion a valence electron experi­

ences a strong Coulomb potential. It is also restricted by 

the Pauli principle to states that are orthogonal to the 

core states so that the wavefunction has rapid oscillations 

which are manifested as a large kinetic energy in the core 

region. The net effect of these various contributions to 

the valence electron energy is equivalent to a weak poten­

tial, called a pseudopotential, acting on the electron. It 

allows one to use perturbation theory and a plane wave basis 

for the electron wavefunction. In the medium of all the 

other conduction electrons this bare pseudopotential seen 

by an electron undergoes screening which can be described 

in terms of a dielectric function, by analogy with the 

screening of a bare charge in an electron gas. 
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The electron-phonon matrix element M (q) is given 
e ­

in the plane wave approximation by 

M (q) = - <k+q!VV jk> 
e - - - - e ­

i = - - qn ­

(2.33) 

assuming the electron-ion potential V (r) vanishes at large 
e ­

r. 

The effective electron-ion interaction is repre­

sented here by a one-parameter model pseudopotential pro­

posed by Ashcroft ( 57 ), which is zero out to a core radius 

R and is the Coulomb pote ntial beyond R • The potentialc c 

is screened and the parameter R is determined by a fit to c 

experimental band gaps. The screened pseudopotential form 

factor takes the form 

4rme 2 
v (q) = + f(q)) (2.34)

e q2 

where f (q), the static limit of the Lindhard <5S) polariza- . 

t i on part given by 

1f (q) = (-
2 
- + (2.35) 
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describes screening in the random phase approximation. The 

screened electron-phonon coupling constant ge shownk+q,k,A 

in figure (2.7) can then be written as 

1 2ge = -i(h/2MNw, (9)) / ~' (g) ·9 Ve(q) (2.36)k+q,k,A 	 A -- -A - ­

Evaluation of the positron-phonon matrix element is 

based on a self-consistent calculation of the electron­

phonon matrix element by Bardeen (S 9 ) . It explicitly 

accounts for the shift of conduction electrons due to the 

ion displacement and the resultant screening of the ions. 

A derivation of the positron-phonon matrix element M (q) 
p ­

given in Appendix A yields a result similar to equations 

(2.33) 	 and (2.34), namely 

-i
M (q) = q Vp(q) 	 (2.37) 

p - N ­

where V (q) is given .by
p 

2 	 24rrne	 4nnev (q) = G(qr 0 ) ( + - w(r0 )/(l + f(q)),p q 2 E0 	 q 2 

(2.38) 

with the function G defined as 

G(x) = 	~ (sin x - x cos x) (2.39) 
x 



Figure 2.7 Positron (electron)-phonon coupling 

constant with the interaction screened in the 

random phase approximation. 
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Figure 2.7 
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r in equation (2.38) is the radius of a Wigner-Seitz sphere
0 

about the ion, w(r) is the effective positron-ion potential 

of equation (A.2) and E is the energy of the k=O positron0 

state. The screened positron-phonon coupling constant 

-p
g then takes the formk+q,k,A 

gp = -i(t/2MNw, (q))l/2 ~' (9) ·9 Vp(q) (2.40)
k+q,k,A A -A - ­



2.4 First-Order Phonon Smearing 

If positron-electron correlations are ignored, the 

electron-positron Green's function G can be written as ep 

the simple product of single-particle Green's functions 

(2.41) 

The contribution to the positron annihilation rate of 

equation (2.3) from the uncorrelated product (2.41) has the 

form 

R(p) = n :\ E P (p-k)P (k) (2.42) 
H k e - - P ­

where P (k) and P (k) are, respectively, the electron and 
e - p ­

positron probability of occupation of a state I~>, given by 

- I . a+ 
p (k) = i dO G (k;w)e lW (2.43a)

e 2TI e ­

and 
. a+dO p (k) = i 27T G (k;w)e lW (2.43b)

p - I p ­

The first-order terms in the expansion of the product 

(2.42) represent the self-energy effects described by 

f igures (2.6a) and (2.6b). For the positron self-energy dia­

g ram of figure (2.6a) one can write 

37 
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r dw 0 iwO+ 
p (p-k) = i G (p-k;w)e (2.44a) 

e - - J 21T e - ­
and 

f 
dw de: 0 p (k) = L: L: [Gg(~;w)] 2 G (k-q; w-e:)
21T 21Tp - p - ­q A 


x DOA (g;e:) (-i) 2 1-p 12 ' (2.44b)
gk,k-q,A 

where DOA (g;e:) is the phonon Green's function defined by 

2wA (g) 

DOA (~;e:) = 
 2 2 

E: + iO+WA(~ ) 

1 1 
= . (2.45) 

E: - WA (g) + iO+ E: + WA (g) - iO+ 

P (p-k) reduces by contour integration to 
e - ­

B(pF - l~-~I>. Thew- and e:-integrations in equation (2.44b) 

can also be performed by contour integration to give the 

contribution to R(p) , 

e (k) e (-lk-ql > 8( -k) B{jk-ql) 
x [ 2 - - 2 - - ] 

(k + WA(~)) 
(2.46) 

The sum over k yields two terms. The second is negative 

and contributes only for p<pF. It represents a decrease in 

the probability of finding a positron of momentum ~=O as a 

result of interactions between the positron and phonons. 
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The first term is positive and contributes for arbitrary p. 

It represents the probability of finding a non-thermal ized 

positron with momentum k~O. The contribution for momentum 

p greater than Pp' written R;se(~), is then given by 

For the electron self-energy diagram of figure 

(2.6b), P {k) is simply 
p ­

= 8(-k) (2.48) 

so that the contribution to R(p) from this diagram reduces 

to 

Rese(p) 

2 -e 2 
x DO' (9;E:) (-i) lg ,I

I\. -- - ­p 'p-q' I\.-

(2.49) 
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The contribution, R>
ese 

(p), for p>pF is given by 

A = IT L: E 
q A (p2 ­

(2.50) 

In addition to the two phonon self-energy diagrams 

discussed, there is another diagram of first order in the 

phonon propagator. This is the ladder diagram of figure 

(2.6c) in which the positron and electron scatter off one 

another by exchanging a phonon. Its contribution to the 

positron partial annihilation rate is given by 

Rlad(p) =i~L: L: 
O kq I. 

0 0 0 
x G (k-q;w-E)G (p-k;w')G (p+q-k;w'+E) 

p - - e - - e - - ­

On performing the angular integrations, one obtains the 

. b . f lad ( ) . bcontri ution or p>pF' R> ~ , given y 

= ~ L: L: 8(p-pF)8(q) 

0 q A q2 + wA(g) 

8(pF - lp-gj)gg,0,1. sr;-q,p,>. 
X( 2 2 --­

p - lp-gl + w>.(g) 

-p -e 
e(pF - Ip+g I )gO,-q,>. gp,p+q,>. 

+ - - - - ] (2.52) 



2.5 Calculation of Various Contributions to R(p} 

In order to calculate the quantities of equations 

(2.47}, (2.50} and (2.52} it is necessary to go to the limit 

of infinite volume where it is possible to replace the sum 

over q by an integration. The angular integration is 

complicated by the presence of the reduced wavevector q in 

the phonon frequency wA(g} and the polarization vector ~A(g} 

which appear in the coupling constants. The integrand then 

contains quantities which involve the angle between q and· g, 

as well as the angle between g and ~· Furthermore, for q 

outside the FBZ both longitudinal and transverse phonon modes 

contribute to scattering of positrons and electrons. 

Reciprocal lattice space is illustrated in figure 

(2.8}. For E near the Fermi surface, g can have a magnitude 

extending out to about 2pF which, in terms of the lattice 

constant a, is given by 1.24 x 2n/a. The region of q-values 

contributing to umklapp processes is of the same order of 

magnitude as for normal processes. However, it is important 

to notice that q does not extend as far as a reciprocal 

lattice point, which means that the frequency denominator 

wA(g) is never small for q outside the FBZ. On the other 

h and, frequencies become small in the region of small q. 

Certainly, umklapp processes do not contribute disproportion­

a tely to the quantities expressed by equations (2.47), (2.50} 

41 




Figure 2.8 x-y plane in f cc reciprocal lattice 

space showing the FBZ and a sphere at 2pF. g' 

is a vector in the FBZ. q is a vector outside 

the FBZ which reduces to the FBZ as q d" -re 
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and (2.52) and it should not be a serious approximation to 

replace wA(~) by an isotropic longitudinal mode frequency 

w(q). The phonon frequency w(q) is approximated by a 

representative sine function which reduces at small q to the 

screened jellium frequency vq, where v is the longitudinal 

sound velocity given by 

v = (m/3M)l/2 VF (2.53) 

where m is the electron mass and VF is the velocity at the 

Fermi surface. w(q) has the form 

w(q) = c sin qb (2.54) 

where b is chosen such that the phonon frequency goes to zero 

at the nearest-neighbour reciprocal lattice point; that is, 

212 w (q) = -- v sin (2.55)a 

The sum over the polarization A then takes the form 

(2.56) 

Taking the qz-direction along the direction of ~' 

t he equations (2.47), (2.50) and (2.52) reduce, respectively, 

to the e xpressions 
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(2TI) 3 

p-p
F 

0 

I 

(2.57) 

lf 2fTI l~,p-gl2 q2 dq dµ d¢ 

(2n) 3 (2pqµ - q2 + w(q))2 
p-p 0

F (2.58) 

1 2TI 

2;\ 

J J(2n) 3 

p-p 0
F 

g=P g-e · * q 2 dq dµ d~g,o p,p-g 't' 

x (2.59)2 2(q + w(q)) (2pqµ - q + w(q)) 

The quantity µF is the value of µ determined by the condition 

that p-q lies on the Fermi surface, as shown in figure (2.9), 

a nd is given by 

(2.60) 


The quantities ~,O and ~,p-q have the forms 

(2.6la) 

a nd 



Figure 2.9 q-space showing the limit µF for the 

µ-integration of equations (2.56) through (2.58). 
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~,p-q = -i(t/2MNw(q)) 
1

/ 
2 

q Ve{q) (2. 6lb) 

Performing the angular integrations in equations (2.57) to 

(2.59) yields the quantities 

= A --=11=---- p+fpF dq q3 !vp {q) 12 (p; - (p-·q) 2) 

IT 16'1T2Mnp w (q) (q 2 + w (q)) 2 
p-p (2.62)

F 

p+pF 
dq q3 2

lve(q)l
R~se(p) = IT 2 w(q) 

A 

l6'1T 

11 
Mnp f 

p-pF 

(pF
2 - (p-q) 2 ) 

'x 
2 2(p2 - p + w (q)) ( 2pq - q + w(q))F (2. 63) 

p+pF 
dq q 3 V (q)V {q)

Rlad ( ) A 11 P e 
. > p = IT 2 287T Mnp f w (q) (q + w {q)) 

p-pF 

22pq - q + w (q) ] 
x .R- n [ 2 2 (2.64) 

p - p + w(q)
F 

A simpler approximation to the positron-ion and 


electron-ion interactions than is described by the form f ac­

. tors of equations (2.34) and (2.38) is the screened Coulomb 

potential. Taking the static long-wavelength limit of the 

RPA screening function f (q), the form factor V(q) can be 

wr itten 
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2 2 2
V(q) =±41me /(q +A.) (2.65) . 

where A. is the Fermi-Thomas screening parameter given by 

(2.66) 

The various form factors are plotted in figure (2.10) in 

units of Rydbergs. The value of R in the electron pseudo­c 

potential is taken to be 0.82089 A (60). 

In order to make a direct comparison of the quantities 

of equations (2.62), (2.63) and (2.64) with the smearing 

described by a positron effective temperature, the results 

of Kim <40) and Woll and Carbotte <42 ) are reformulated. 

The smearing at the Fermi cutoff due to positron motion can 
T 

be described by a partial annihilation rate, Reff (E), of 

the form 

(2.67) 

P {p-k) represents an enhanced free-electron distribution, 
e - ­

a nd can be described by the function £ 8 (pF - !~-~!). p (k) 
p ­

i s described by a Boltzmann distribution for free particles 

at an effective temperature Teff' given by 

-11 2k 2/2mkBTeff 
F(k) = c e (2.68) 



Figure 2 . 10 Comparison of the Ashcroft pseudopotential 

form factor (dashed curve) and the Bardeen "form 

factor" for the positron (solid curve) with the 

Coulomb form factor in the Fermi-Thomas approxima­

tion (dotted curve) (for Na) . The vertical scale 

is to be read as positive for the Bardeen form fac­

tor . 
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The normalization constant c is determined by the condition 

(2.69) 


which yields 

c = (2.70) 


Since positron-electron correlations have not been 

included in the analysis of phonon effects, for purposes of 

comparison the unenhanced free-electron distribution is used 

in equation (2.67) . The contribution for p>pF is then given 

by 

(2.71) 

This reduces in the limit of infinite volume to the form 

T 
1R>eff (p) dk k1/2

'IT p 
p-p

F 

... 2 2 
-n k /2mkBT ff 2 2 

x e e (pF - (p-k) ) (2.72) 

The integrals in equations (2.62), (2.63), (2.64) 

a nd (2.72) were solved for sodium using a six-point gauss 

i n tegration for a number of values of p greater than the 
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Fermi momentum and for the theoretical and e xperimental 

values of Teff" The resu l ts of the two self-energy terms 

are compared in figure (2.11). In figure (2.12) the sum of 

the three phonon contributions is compared with the differ­

ence between experimental and theoretical positron smearing. 



Figure 2.11 Smearing of the positron partial 

annihilation rate in Na from the phonon self­

energy effects of figure (2.6). The solid curve 

is for the pos i tron self-energy and the dashed 

curve is for the electron self-energy. 
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Figure 2.12 Comparison of first-order phonon smearing 

of the positron partial annihilation rate at the 

Fermi momentum with the difference between exper­

imental smearing (Kim (40)) and theoretical 

smearing (Woll and Carbotte (42 )) (for Na). The 

upper dashed curve representing phonon smearing is 

based on a screened Coulomb interaction while the 

lower dashed curve includes the Ashcroft pseudo­

potential and the Bardeen-type formulation. The 

upper solid curve gives the difference between 

smearing from positron motion corresponding to 

160°K and that for 110°K. The lower solid curve 

gives the difference between 110°K and 49°K motion. 
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2.6 Discussion of Calculations 

In evaluating the positron-phonon interaction, 

careful account was taken of the scattering of the conduction 

electrons by a displacement of the ions and the resultant 

enhancement of the screening of the ion from the positron. 

The weakness of this repulsive interaction which tends to 

exclude the positron from the vicinity of the cores can be 

seen from figure (2.10) by comparing the positron-ion i nter­

action obtained in the Bardeen approach with the simple 

Coulomb potential screened in the Fermi-Thomas approximation. 

Figure (2.11) gives the contributions to the partial 

annihilation rate from the positron and electron self-energy 

terms describing the smearing of the respective momentum 

distributions by phonons. It can be seen that the electron 

smearing is less than that for positrons, as expected. 

However, the electron self-energy diagram cannot be ignored 

in spite of its short tails. The · sum of these two contribu­

t ions and that from the first-order phonon ladder diagram, 

employing the screened Coulomb potential to represent the 

positron- and electron-ion interactions, is an order of 

magnitude smaller than the effect we are looking for. When 

the improved form of the pos i tron-ion interaction and the 

model pseudopotential are used, the results become even less 

s i gnificant. 
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All of the calcul ations depend on the plane wave 

approximation to positron states and conduction electron 

states, thereby ignoring their Bloch character. In the case 

of simple metals, where the pseudopotential and screened 

positron-ion potential are weak, this should not be a 

serious limitation. 



CHAPTER III 


LATTICE TAILS IN POSITRON ANNIHILATION 

3.1 Lattice Effects in Positron Annihilation 

When a positron enters a real metal, it sees more 

than just the simple medium consisting of an electron gas, 

as has already been indicated in Chapter II. In addition to 

the phonon effects described there, the situation is compli­

cated by the presence of core electrons with which the posi­

tron can annihilate. This leads to broad tails in the 

angular correlation data. The periodic lattice also means 

that the picture of conduction electrons as free electrons 

in plane wave states is no longer valid. By introducing 

higher momentum components into the conduction electron wave 

function, it leads to further tails in the annihilation data. 

A number of estimates have been made of this effect 

for simple metals, based on an independent-particle model 

which includes Coulomb correlations only in an average 

(32137138 ).way The result is additional weighted contribu­

t ions associated with Fermi surfaces about each of the 

r eciprocal lattice points. A paper by Fujiwara (6l) goes 

f urther than these by introducing a many-body theory which 

t reats the effect of a periodic field on the basis of nearly­

f ree electron theory and which includes electron-positron 

correlations. It deals with models based on metals whose 
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Fermi surfaces intersect a zone face and restricts itself 

to a treatment of the vicinity of a zone face. 



3.2 Bloch States in Annihilation Rates 

When the lattice potential is included, the 

Hamiltonian for the positron-electron system is given by 

2f d 3 x iJit(x) [-V + H (x)]iJi(x)H = e ­

3 2d x <f>t(x) [-V + H (x)]<f>(x)+ f p ­

+ .!_ 
2 

( 3 .1) 

where H and H represent some average potential seen bye p 

the electron and positron, r espectively. The equation for 

the electron-positron Green ' s function G takes a form ep 

e quivalent to equation (2.5) in terms of zeroth-order elec­

t ron and positron Green's functions that satisfy an equation 


a o 
(-i at+ He(p) (~))Ge(p) (x;x') = o4 (x-x') (3. 2) 
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The system is no longer invariant under an arbitrary 

displacement but has the periodicity of the lattice, so that 

the propagator satisfies the weaker symmetry described by 

(3. 3) 


It is concluded that the propagator can be written in terms 

of Bloch functions. In particular, the zeroth-order propa­

gators can be expanded in the forms 

0
Ge(x;x') = !. l: 

rl k 
e 
ik·(x-x') 

Uk (~) Uk (~ I ) 

x f 
dw -iw (t-t I) 
21T e Go(k;w) 

e -
(3.4a) 

and 

0
Gp(x;x') = !. l: 

rl k 

ik 
e 

· (x-x') 
vk (~) vk (~') 

x f 
dw -iw (t-t I) 
21T 

e 0G 
p 

(k; w)
- ' 

( 3 . 4b) 

where uk and vk are periodic functions. 0G 
e 

(k; w) 
-

and Go(k;w) 
p -

are given by 

a nd 

0G 
e 

(k; w) 
-

= 
Ee 

k 

8(k-pF) 

iO+- w -
+ 

Ee 
k 

8(pF-k) 

iO+- w + 
(3. Sa) 

0G 
p 

(k; w) 
-

= 
Ep

k 
-

e (k) 

w - iO+ 
+ 

Ep
k 

8(-k) 

- w + iO+ 
(3.Sb) 



59 

where E~ and E~ represent the energy of the electron and 

positron, respectively, in the Bloch states 

ik·x
1 (3. 6)= - e 

1&1 

From equation (2.5) it can be seen that, if all 

correlations are neglected, the positron partial annihila­

tion rate is given by 

R (p) 0 +G (x;x't )
e . -

(3.7) 


This describes the contribution of the diagram of figure 

(3.la). For simplicity it is assumed that the positron is 

in a plane wave state, so that G~ is given by equation (2.7), 

while GO is given by equation (3.4a). If the Bloch function e 

uk(~) is e xpanded in terms of Fourier components, it takes 

the form 

(3. 8) 




Figure 3.1 Lowest-order ladder diagrams in the 

perturbation expansion of G with a periodicep 

lattice taken into account through Bloch states 

in the propagators. The heavy lines represent 

electron propagators and the double lines posi­

tron propagators. The interaction line in (b) 

represents the dynamic effective potential. 
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Figure 3.1 
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where g is a reciprocal lattice vector. The partial 

annihilation rate described by equation (3.7) then reduces 

to 

AR(p) (3. 9)= ff 

where the ~-dependence of uk(~) has been ignored. This 

equation is very similar to the Sorrunerfeld result of equation 

(2.9). If R(p) is surruned over p and p , however, the pz­x y 

plane no longer intersects just the Fermi sphere centred 

about the origin, giving rise to the parabolic shape of 

equation (2.11). It also intersects a number of spheres 

situated at reciprocal lattice points, as shown in figure 

(3.2). This leads to parabolic contributions centred about 

these reciprocal lattice points weighted by the correspond­

2ing factor lu 0 (~) 1 . The annihilation rate is now non-zero 

for momenta greater than the Fermi momentum, as illustrated 

in figure (3.3). 

The effect of including the first-order electron-

positron correlation described by the ladder diagram of 

figure (3.lb) is the contribution 

(3.10) 




Figure 3.2 Projection onto the yz-plane of fee 

reciprocal lattice space with Fermi spheres 

about reciprocal lattice points and a plane at 

p • z 
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Figure 3.3 Positron annihilation rate as a function 

of electron-positron momentum component p for z 

an independent-particle model in a periodic 

lattice. The respective parabolic contributions 

centred about the reciprocal points at g are 

2weighted by the factors iu0 (~) 1 • 
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where u(z;z') is the dynamic effective electron-positron 

potential. G~ is again described by plane waves. Equation 

(3.10) is calculated in Appendix B to be given, in the limit 

of a static potential, by 

u(k - k' + 	 GI i 0)
2:\R(p) = n 	 L: L: L: ­

k k ' gGG' - + - k' +Ek' Ek I~ ~· 12 
k<pF k'>p

F 

x uo(~)uo(~+~')uo(~)uo(~-~')op,k+g (3. 11) 

The sums on g, G and G' represent sums over reciprocal 

lattice vectors. Again the k-dependence of uk(g) 'sis ignored. 

When one takes correlations into account through a 

term such as equation (3.10), one must be careful not to 

include these same correlations in the average field H of e 

equation (3.1) seen by an electron; that is, He must be 

taken to be the bare ion potential. It leads to electron 

Bloch states ~k of energy Ek which are not the same as the 

Bloch states calculated, for example, by Callaway (62 ), who 

used a Hartree-Fock type of potential. Furthermore, it 

appears that the triple sum over reciprocal lattice vectors 

does not readily converge. An alternative approach to 

h andling the lattice, first presented in a paper by Hede and 

(63)Carbotte is discussed in the following sections.I 



3.3 Enhancement of Lattice Tails From First-Order Ladders 

It is possible to account for the effect of a 

periodic lattice on the positron partial annihilation rate by 

handling the electron (positron)-lattice interaction 

explicitly rather than by employing Bloch states for the 

wave functions. In the absence of a crystal lattice, the 

electron-positron Green's function G has the well-known ep 

perturbation expansion in t erms of Feynman diagrams (37 >. 

The crystal field leads to additional diagrams which are 

modifications of the previous diagrams containing one or 

more electron (positron)-lattice interaction lines. A 

detailed derivation of the new perturbation expansion is 

given by Appendix C. The lattice diagrams actually replace 

the usual diagrams representing a uniform positive background 

i ncluded to ensure charge neutrality. The latter cancel 

against the set of bubble diagrams of figure (3.4), which 

correspond to an electron (positron) interacting with the 

electron gas. 

The major contribution to the partial annihilati on 

rate in an electron gas is given by the infinite set of 

(25,26)ladder diagrams of figure (2.2) The set of ladder 

diagrams with modified elect ron lines is shown in figure 

(3.5). If the plane wave approximation is made for positrons, 
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Figure 3.4 Infinite set of bubble diagrams which 

describe an electron (positron) interacting with 

the electronic medium. The single lines stand 

for electron propagators and the double lines 

stand for positron propagators. 
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Figure 3.5 Infinite set of ladder diagrams with 

electron lines modified by the presence of a 

crystal lattice. The single lines represent 

electron propagators, the double lines represent 

positron propagators and the dotted lines ending 

in a cross represent the electron-lattice 

interaction. 
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as in section 3.2, it is just these diagrams that should 

make the greatest lattice contribution to R{p), by analogy 

with the electron gas. The lattice is considered to be a 

weak perturbation, which is the case for metals such as 

sodium, so that only the lowest-order diagrams in the lattice 

potential V need be included. If, for simplicity, a calcul­

ation is made just of the enhancement from first-order 

correlations, there are but a very limited number of diagrams 

to be considered. 

It is assumed that the potential field about an ion 

is rigidly attached to it. The average crystal potential 

seen by an electron is written as the sum of ionic potentials 

0about the equilibrium positions ~i; that is, 

0V {x) = L: w{~-~i) 
i 


iq · {x-Ro)

1 - - -i= L: L: e W{q)n 

i q 

iq·x 
= n L: L: e W{q)o {3.12)

- q,gq g 

The contribution to the partial annihilation rate 

from the uncorrelated diagram of figure {3.6a) is given by 

( 3 .13) 




Figure 3.6 Ladder diagrams with a single electron­

lattice interaction line. These cancel against 

bubble diagrams. 
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where Gp is simply the free positron propagator Gg, while 

G is given bye 

(3.14) 

On doing the space- and time-integrations, R(r) reduces to 

= ITA 
nW(O) 	 l: 


k 

(3.15) 

W(O) is the 2=0 component of the lattice potential. It can 

be seen from figure (3.6a) that 2 is actually zero, by 

noting that the total electron-positron momentum corning out 

and the total momentum going in are both equal to p. Such 

a term cancels the equivalent bubble diagram. Similarly, a 

correlation diagram modified to first order in the lattice, 

such as that of figure (3.6b), leads to th~ g=O component 

of W and cancels against a bubble diagram. The lowest-order 

lattice diagrams which have a contribution to R(p) are those 

of second order in V shown in figure (3.7). 

The contribution to the partial annihilation rate 

from the uncorrelated diagram of figure (2.2a), which is 

referred to as R(O) (p), is given by equation (2.9) as 

(2.9)0k,p 



Figure 3.7 Ladder diagrams of second order in the 

electron-lattice interaction and up to first 

order in the electron-positron interaction. 
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R(O) (p) is zero for p>pF. The first-order correlation 

d iaqram of figure (2.2a) contributes the rate 

dw dw' de:R {c) (p) = iA L: f 27T 2TI 27T u(q;e:)n kq 

0 0 . 
x G (k;w)G (k-q;w-e:) 

e - e - ­

0 0 x G (p-k;w')G (p-k+q;w'+e:) (3.16)
p - - . p - - ­

Taking the static limit for the Fourier transform of the 

effective potential u(q;e:), R(c) (~) can be reduced quite 

easily to 

R {c) (p) (3.17) 

or, alternatively, 

u(k-k';O)o- - ~,~
R (c) (p) = 2;\ L: L: (3.18) 

n2 k k 
k<pF k I >p

- F 

Like equation (2.9) it is zero for momenta p>pF. Its con­

t ribution to an enhancement factor e:(p) is given by 

= R ( c ) ( p) /R ( 0 ) ( p)e: (~) (3.19) 
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The lattice contribution to the partial annihilation 

rate is mainly from diagr.ams of secs~d order in the electron­
•, ... 

lattice interaction V. For the uncot related diagram of 

figure (3.7a), the contribution can be shown to be 

dw dw'R(O') {p) = W(g)W{-g) 21T 27T- - I 

(3.20) 

The g=O term cancels against a bubble diagram. In the 

r egion p<pF' R(O') (p) is negligible compared to R(O) (p) 

since Vis a weak potential and this part of R(O') (p) is 

neglected. The contribution for p>pF, referred to as 

R;o') (p) 1 reduces on doing the angular integrations to 

2e (p-pF) e <Pp - l~-~I) !w(g) I, 
R(O') (p) = 

> - (p2 - I 2 2p-g 1 ) 

A 
l: (3.21)= IT 

J.s 
k<pF 

1~+2"j>pF 

The lowest- order lattice ladder diagrams involving 

c orrelat ions are shown in figures (3.7b), (3.7c) and (3.7d). 

Figure (3.7b) gives, on introducing an effective potential 
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in place of the Coulomb potential, a contribution, R(l') (p), 

of the form 

dw d w' de:R(l') (p) = iA ~ ~ W(g)W(-g) I 
21T ~ 21Tn2 ~g 2~0 

0 0 x u(q;e:)G (k;w)G (k-g;w) 
- e - e - ­

0 0 x G (k-q-g;w-e:)G (p-k;w') 
e - - - p - ­

0 . 
x G (p-k+q;w'+e:) (3.22) 

p - - ­

The angular integrations can be performed, on taking the 

static limit for u(q;e:), to give the result for p>pF as 

R(l') (p) 
> -

e<Ip-q I - P >e ( Ip-q-g I - P > . 
x u(q;O)[ 2 - 2 - ~ -- -2 2F 2 

- ( I r-g I +q - Ir-~ I ) ( I r-g-~ I +q - Ir-~ I ) 

e < lp.-qj - P >e (p - lp-q-gl > 
- - F F - - - ] (3.23) 

Th e two diagrams (3.7c) and (3.7d) contribute equally to 

the part ial annihi lation, so that it is necessary to calcul­

ate just the contr ibution from figure (3.7c). The rate, 
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( l")R (p), from these diagrams, with an effective electron-

positron potential, is given by 

0 0 0 
x G (k-q;w-E)G (p-k;w')G (p-k+q;w'+E) 

e - - P - - p - - ­

(3.24) 

For p >pF there is the contribution, called R!l") (r), which 

has the reduced form 

R(l") (p) = 
> ­

8(p-pF)8(pF - lr-~J)e(Jr-~I - Pp) 
x (3.25)2 2 2 2 2 2 

(p - lr-~I > (q + lr-~I - lr-~I > 

The sum of equations (3.23) and (3.25) can then be written 

in the form 
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1R(c') (p) l: 
> ­ k 

k< .Pp 

l~+2l>pF 

u(k-k';O) 

k'>p
F 

lk'+gl>pF 

u(k-k';O) 
l: 
:is I 


k'>p

F 

l~'+2l<pF 

u(k-k';O) 
l: 
:is I 

k'<p
F 

lk '+gl >p 
- - F 

u(k-k';O) 
L: - - Jo •+ 
k' (1~+~12-k2) (1~'+212+1~-~' 12-k2) p,~+2-

lk'+gl>p (3.26) 
- - F 

It is convenient, in the second term, to make the transfer­

mation of variable k' ~ k'-g in order to express the term 

in the form 

x [ l: 
k' 

l: l: 
ls I:is 

k<pF k'<p
F 

I~+2 I>pF lk'-gl>p
- - F 

u(k-k'+g;O) 
x • (3.27)

2 2 2 2 2
(l~'-21 -k' ) (l~-~'+gl +1~·-21 -k) 
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It is also convenient to expand the last term in equation 

(3.26) into a part for which the variable k' <pF and a part 

for which k' >pp. 

In the present approximation the annihilation rate 

and, hence, any enhancement in the region outside the Fermi 

momentum is due to the effect of the lattice . The contribu­

tion to the enhancement of the uncorrelated rate of equation 

(3.21) from the modified first-order ladder graphs, denoted 

by s' (p), is given by 

CI (p) = R ( c I ) ( p) /R ( 0 I ) ( p) (3.28)
> - > ­



3.4 Calculation of Enhancements 

The various quantities of section 3.3 are calculated 

by replacing the sums by integrals. An additional sum over 

p and p means an integration in the p -plane. For R(O) (p)x y z 

and R(c) (p) the integration is over an area in the p -planez 

subtended by a Fermi sphere at the origin. As a result, 

there is no contribution for p >pF. When the lattice is 
2 

included, as it is in equations (3.21) and (3.26), the p ­
2 

plane intersects spheres located at a number of reciprocal 

lattice points at g~O. This can occur for values of p 
2 

greater than the Fermi momentum. A model calculation is 

made which considers only nearest-neighbour reciprocal lat­

tice points. For a face-centred cubic reciprocal lattice, 

these occur at 2n/a(±l,O,l) and 2n/a(O,±l,l) (ignoring those 

RL points with negative z-component). These RL points are 

e quivalent in the present calculation, so that the sum on g 

merely introduces a factor of 4. 

The quantities which are actually calculated are 

1R (O) (p ) = (3.29)
z (2n) 3 f 

3k 1a u(k-k';O)o(k -p)
2 - - - z zR (c) (p ) = 

z 6 k'2 + I~-~, 12 - k2(2TI) 
(3.30) 
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R(O') (p ) = 
z 

(3.31) 

3d k 	 o(k + g - p > - z z zR(c') (p ) = 
2z l~+gl 2 - k 

d 3 k 1 u(k-k';O) 
x [ 

d 3 k 1 u(k-k';O) 

3
k 1f 	 d u(k-k'+g;O) 

k'<p (lk'-gl2-k,2~ <lk-~':gl2+1k'-gl2-k2)
F - -	 - - ­

i~'-gi>Pp 

d 3k 1 u(k-k';O) 
+ f 

k I <pF (I k+g I2-k2) (I~ I +g 12+ Ik-k I I2-k2) 

I~ '+gl >pp 

3
k 1f 	 d u(k-k';O) 

+ 	 I (3.32) 
k I >pF (I k+g I2-k2) (I~ I +g 12+ Ik-k I I2-k2)] 

i~'+gi>Pp 

where the effective electron-positron interaction is expressed 

i n terms of the Fermi-Thomas screening parameter of equation 

( 2 o 6 5) i that i S I 
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(3.33) 

The overlap in the p direction of the Fermi spheres. z 

located at the origin and at ~ means that there is an overlap 

of the main central contribution and the lattice contribution 

which extends from 0.612 pF to 2.612 pF . The enhancement 

factor for the region pz>pF corresponds to equation (3 . 28), 

and is given by 

E: I ( p ) = R ( c I ) ( p ) /R ( 0 I ) ( p ) (3.34)z z z 

Since lattice effects are small, the enhancement factor for 

t he region pz<pF is essentially given by 

E: ( p ) = R ( c) ( p ) /R ( 0) (p ) (3.35)
z z z 

However, it is helpful to calculate the quantity E:' (pz) for 

p <p . This quantity describes the enhancement due to z F 

positron-electron correlations of the contribution to the 

partial annihilation resulting from the presence of a crystal 

lattice and associated with the Fermi sphere at g. 

The regions of the k- and k'-integrations are 

de scribed in figure (3.8). The k-integration is actually an 

i n t egration over a plane rather than a volume integral. All 

but the simplest integrations in equations (3.29) through 



Figure 3.8 Regions of various k- and k'- integra­

tions in equations (3.29) to (3.32). The shaded 

area in (a) is the area subtended in the Fermi 

sphere by a plane. The shaded regions of (a) 

and (b) represent regions of integration. The 

shaded areas in (c) represent the region of k'­

space excluded from integration. 
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(3.32) were done by means of the Monte Carlo technique 

described, for example, by Shreider (64 ). This method, 

which is useful for a multi-dimensional calculation, samples 

at random a region of n-dimensional space which contains the 

region of integration. An integral can be approximated by 

the product of the average value of the integrand and the 

volume of integration. Now, in the limit of a large sample, 

n VR 
N = V (3.36) 

where n and N are the numbers of sampled points in the region 

of integration VR and the sampled region V, respectively. 

Therefore, the integral is given approximately by 

d x f (x) = f VRJ 
n 

R 
n 

= v E f (x.) (3.37)
l.N i=l 

For those terms in which the ~'-integration extends 

t o infinity, it is convenient to split the integration up 

i nto two regions. For k' > 10 Pp it is assumed that k' is 

much larger than quantities such as k and A, so that it is 

possible to do the k'-integration analytically. The enhance­

ment factors E and E' are plotted in figures (3.9) and (3.10), 

respectively, for various values of Pz and rs = 4. 



Figure 3.9 First-order enhancement factor E as a 

function of electron-positron momentum p for 
z 

annihilation in an electron gas (rs=4). The 

error bars describe the uncertainties associ­

ated with the Monte Carlo integration. 
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Figure 3.9 



Figure 3.10 Variation with electron-positron 

momentum component p of the first-order lattice z 

enhancement factors' associated with contribu­

tions to the positron annihilation rate centred 

about the reciprocal lattice point at g (rs=4) . 

The error bars give the uncertainties in the 

Monte Carlo integration. 
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The positron partial annihilation rate in the 

absence of all interactions is the inverted parabola of 

equation (2.11) and figure (2.1). The effect of electron­

positron correlations is to multiply this parabola by an 

enhancement factor. The enhancement factor due to the first-

order ladder correlation, shown in figure (3.9) for a static 

potential and calculated by Carbotte and Kahana (26 ) to 

include plasmons, has a slight momentum dependence. This 

results in a slightly distorted parabola that bulges out 

from a true parabolic shape. Such an effect is explained by 

the fact that electrons near the Fermi surface are more highly 

correlated with the positron. It is easier to scatter an 

electron near the Fermi surface. If all orders in the ladder 

diagrams are included, the momentum dependence and the 

distortion become slightly more pronounced (26 ) • The main 

difference, however, is just a greater enhancement. Experi­

mental observations have been made of the momentum dependence 

for metals such as sodium ( 6S). 

The lattice introduces a contribution to the annihil­

ation rate that is connected with the Fermi spheres about 

reciprocal lattice points, in particular those about the 

nearest-neighbour R-L points, which extend from 0.612 Pp to 

2.612 Pp· The effect of correlations is to enhance this 

quantity in essentially the same way as the central parabola. 

There is an overall difference of about 15% from the magnitude 
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of the enhancement factor E, but the momentum dependence 

near the edge of the Fermi sphere is very similar. 



CHAPTER IV 


SPIN-UP-SPIN-DOWN PAIR DISTRIBUTION FUNCTION AT 


METALLIC DENSITIES 


4.1 Short-range Correlations 

The properties of the many-body system of an 

interacting electron gas at high densities (r << 1) have s 

been adequately described by the random phase approximation. 

1 . f h . . . b . (3,66) fAn out ine o t e properties is given y Pines , or 

example. At metallic densities, however, the RPA is no 

longer satisfactory, particularly in describing short-range 

phenomena (9 ,lO), and it is not hard to see why. For 

i nstance, RPA ignores exchange effects in its treatment of 

correlations. Since correlations due to exchange act to 

keep electrons of parallel spin apart, they are an important 

. (13-16)feature of the small-r regime. Various attempts to 

correct this deficiency of RPA are based on an approximation 

due to Hubbard (l 2 ) of ~ particular set of exchange diagrams 

in the perturbation expansion describing particle-particle 

interactions. However, these estimates all possess the 

f eature of RPA at metallic densities of an unphysical nega­

t ive value for the pair distribution function g(r). 

The spin-dependent p.d.f. gcrcr' (~-~') describes the 

probability that, if there is an electron of spin cr at 

87 
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position ~ and time t, there is also an electron of spin cr' 

at position x' and the same time t. It is defined by 

( 4 .1) 

where lj!cr(~ 1 t) is the field operator for an electron of spin 

cr and the expectation value is taken in the fully-interacting 

ground state of the electron system. The two-particle 

electron Green's function G , which describes the propaga­ee 

tion of a pair of electrons, is defined as 

2G (xcr x'cr' ·ycr y'cr') = (-i) <T( 11•,..,.(x)
ee ' ' ' "'v 

x lj!cr' (x')ljJ~, (y')ljJ~(y))> 
(4. 2) 

In terms of G , the p.d.f. takes the form ee 

2g , (x-x') = (-i) G (xtcr x'tcr'·xt+cr x't+cr') ( 4. 3)
crcr - - ee ' ' ' 

The plus sign indicates the proper ordering of equal-time 

operators. The two-particle Green's function has the well­

known perturbation expansion < 
27 ) in terms of the free­

0electron propagator G defined by equations (2.7) and (2.8a).e 

The difficulty with Hubbard's approximation is that 

it includes only local-field effects due to the exchange hole, 

while continuing to ignore the local-field correction 
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associated with the Coulomb hole. Similarly, RPA not only 

neglects exchange correlations but also ignores the Coulomb 

hole by treating the interaction in the Born approximation, 

which assumes the potential is small. It can be seen, 

however, that in the small-r limit even a screened potential 

such as the simple Fermi-Thomas potential e-Ar/r becomes 

very large. At metallic densities, where correlations are 

important and, in fact, interaction energies are comparable 

with kinetic energies, it becomes necessary to consider these 

correlations much more carefully than in RPA . 

For a positron in an electron gas of metallic density, 

there is a considerable improvement in the electron density 

at the positron and, hence, in the total annihilation rate, 

if higher orders are included in addition to the first-order 

(25126167 ).ladder correlation These consist essentially of 

the remaining terms in the set of particle-particle ladder 

diagrams of figure (2.2). Such diagrams describe the 

repeated scattering of the charged particle off an electron 

in the presence of all the other electrons. In the problem 

o f a light negatively-charged impurity in an electron gas 

e x amined by Carbotte ( 45 ), the Coulomb hole in the RPA resem­

b l es that found by Ueda (G 8 ) for the spin-up-spin-down p.d.f. 

g t +(:) in the same approximation. This reflects the fact 

t hat it is the Coulomb repulsion and not the Pauli principle 

which keeps opposite-spin electrons apart. When the full set 

o f ladder diagrams is included, the Coulomb hole is much 
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improved over RPA. As shown in figure (4.1), the displaced 

electron density at the test charge is now reduced to a 

value less than the actual average charge density in the 

system over a wide range of the density parameter. It is 

expected that a similar procedure for opposite-spin electrons 

of including the complete set of particle-particle ladders 

of figure (4.2) would lead to a more adequate description of 

gt+<:) at small r. The results of this problem, considered 

in the following sections, are to appear in a paper by Hede 

and Carbotte (G 9 ) 



Figure 4.1 Displaced electron den~ity at a light 

negative impurity as a function of electron gas 

2density a = rs/(1.919 TI ) • The dashed curve ip 

the RPA result. The solid curve is from the full 

ladder treatment. The vertical scale i s read as 

negative for 6n(O) and positive for n (from
av 

Carbotte (45 >). 
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Figure 4.2 Members of the infinite set of ladder 

diagrams in the perturbation expansion for the 

electron-electron Green's function G The 
ee 

interaction lines represent the static limit of 

the effective potential in the random phase 

approximation. 
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4.2 Ladder Contributions to the Pair Distribution Function 

The lowest-order term in the perturbation expansion 

of the two-particle Green's function G involves a simple
ee 

product of Go's. e Its contribution to the spin-up-sp"in-down 

d fp ... , d t deno e by 0gt+' . . 1is simp y 

(4. 4) 

where n is the average density of single-spin electrons and 

the factor of 2 accounts for the fact that g+t is the same 

The higher-order terms in the expansion of G ee 

describe correlations among the electrons; in particular, 

the first-order ladder graph leads to the RPA result. The 

contribution to g(x-x') from such a term is 

(4. 5) 

u(z;z') is the dynamic effective potential taken in the 

random phase approximation. Fourier transformation and 

integration over the ~pace and time variables leads to the 

e xpression 
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-i ig· (~-~') J dE g (l) (x-x') = V l: e 2 7T u(q;e:)t+ q 

(4. 6) 


where Q (g;e:) is the polarization part given by
0 

i 
f 

dw 0 0 
= V L G (k;w)G (k-q;w-e:) ( 4. 7)

21T e - e - ­k 

It can be seen from equation (4.7) that o Cg;e:) satisfies
0 

the condition 

(4. 8) 


. ~ow, u(g;e:) and o0 Cg;e:) depend only on the magnitude 

of the vector g. If the sum is changed to an integration, 

it is a simple matter to do the angular integration by let­

ting the q -axis lie along the direction of r = x-x'. 
z - - ­

Following the procedure outlined in the Appendix of reference 

(67) , where the e:-integration is transformed to one along the 

imaginary axis, equation (4.6) reduces to 

6 Joo do a Q0 (q;o)Q0 (q;o) 
g (1) (r) Pp f"° dq q2 sin qr= t+ 321T6 r 0 q2 +a Qo(q;e:)0 

(4. 9) 
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where 

( 4 • 10) 

a is related to the parameter rs according to 

2 
a = r /1.919 TI (4.11)s 

and all momenta in equations (4.9) and (4.10) are expressed 

in units of Pp• 

It has been found that the infinite set of ladder 

diagrams in the perturbation of the particle-particle Green's 

function are of considerable importance in describing short-

range correlations involving a charged impurity in an elec­

tron gas of metallic density. The ladder series of figure 

(4.2) describing repeated scattering between opposite-spin 

electrons is given by the integral equation 

L
G (x x' · y y')ee ' , ' 

x G
L (z z'·y y') ( 4 .12)ee ' , ' 
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where spin subscripts have been omitted. It should be 

noted that the potential is static, so that t , = t . In z z 

order to make the problem tractable, the dynamic potential, 

which is taken to be the RPA screened potential, is approxi­

mated by its static limit. 

From the definition of equation (4.2), both 

G (xt,x't;xt+ ,x't)+ and g(x-x') are independent of time and 
ee - - - ­

Ldepend only on the space variable x-x'. Denoting by g the 

ladder contribution to the p.d.f., its space Fourier trans­

form can be expressed in terms of GL as ee 

L J dw iwO+ L 
g (q) == (-1) 2n e Gee(g;w) (4.13) 

It is convenient to introduce a new amplitude nL according 

to 

GL (x t ,x 't ;xt+ ,x ' t +) = Jd4 zd 3 ~· 
ee - - - ­

L . 0 + 0 + x n (xt x It. z z I) G (z. xt ) G ( z I . x It ) 
- '- ' ' e '- e '­

(4.14) 

This definition is consistent with equation (4.12). can 

be shown to satisfy the integral equation 

nL ( 1 ) .t' 4 ( ).t' 3 ( I I ) • Ja4 d3 I. (1 1 ) ~G x,x ;y,y = u x-y u ~ -¥ - 1 z z u z;z 

0( 0( L · x Ge x;z)Ge x';z') n (z,z';y,y') ( 4 .15) 
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and its Fourier transform satisfies the equation 

n~,n;m' ,n' (w) = 0m,m• 0n,n' + [p~,n(w) + P~,n(w)] 

' (4.16)x L: um n·k k' nLk,k' ,·m' ,n' (w)
kk I - f - I - f ­

+ ­
where the quantities Pm,n(w) and Pm,n(w) are given, respec­

tively, by 

+ (4.17a)Pm,n(w) = 2 2 . + m + n - w - 1 0

and 

- 8 (pF-m)8{pF-n) 
p~ n(w) = (4.17b)2 2 . ' m + n - w + iO+ 

This leads to the expression 

. o+L -i dw l.W g (q) = L: ev 27f n~+q,n-q;m,n(w)fmn 

x + + p- (w)] (4.18)[pm,n(w) m,n 

In order to do the w-integration in equation (4.18), 

L + ­t he product n (p + p ) is expanded to obtain terms in the 

i n tegrand which have the symbolic form 

(4.19) 
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In the case of the term involving only a single factor 

+ - ­(P + P ) , just P contributes through contour integration 

in the upper half plane. For the other terms a further 

e xpansion leads, in the case of n factors (P+ + P-), to a 

n sum of 2 products 

PUP . . . UP ( 4 • 2 0) 

where each of the P's can be either P+ or P • The product 

+ ­P UP , say, describes the scattering of two particles in the 

Fermi sea to states outside the Fermi sea, as illustrated by 

+ ­figure (4.3). Depending on there being another P or P f ac­

tor, there can then be a scattering to other excited states 

or to hole states, respectively. Now, the number of hole 

states is restricted, while the number of states outside the 

Fermi sea is essent ially unlimited. From this simple phase 

space argument, it is expected that the contribution from 

terms containing more than one P factor is negligible com­

pared to that from terms where all but one of the P's is P+. 

The significance of making such an approximation is the neg-

l ect of hole-hole scattering. 

An amplitude ~ O and its conjugate ~ Ot are now 

introduced by the equations 

(4.2la) 



Figure 4.3 Various scattering processes associated 

with a pair of electrons initially in the Fermi 

sea. Process A describes the scattering of the 

two particles outside the Fermi sea. Process B 

scatters the two particles to other states out­

side the Fermi sea. Process c involves scatter­

ing of the holes left in the Fermi sea by the 

electrons. 
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(4.2lb) 

Ignoring hole-hole scattering, as discussed above, means that 

the product nL(P+ + P-) can be approximated by nOP-nOt. 

Equation (4.18) can be rewritten as 

g 
L 

(q) = !_ 6 6 v mn m'n' 

(4.22)x Pm' 'n' (w) ( n0) ! ' 'n' ; m, n ( w) 

where n° , ,, according to equation (4.2la), satisfiesm,n;m ,n 

the equation 

n~,n;m I ,n I (W) = 0 + p+ (w) 6 u(g';O)m,m' 0n,n' m,n g' 

x n° c ) (4.23)m+q I I n-q I i m I , n I w 

The w-integration is performed by means of a contour integra­

tion to give 

L 1 no ( I 2 n, 2)g (q) = 6 6 6 ,m +v m,n;m' ,nmn m' n' - - ­
m' <p n'<p

F F 

x no (m'2 + n'2) (4.24)m+q ,n-q;m' ,n' 
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The zeroth- and first-order terms in gL(q) are 

handled easily, as in section 4.2, so these contributions 

are subtracted from g L (q) to leave a quantity which is 

2referred to as gL (q). It can be derived by keeping one of 

the n° factors to zeroth-order and the other to second- and 

higher-order or by taking both factors down to first-order 

in u . gL 2 (g) can be written in terms of a new quantity X as 

gL2(q) = 1 E Ev m n 

(4.25) 

where X is defined bym+q,n-q;m,n 

e(l~+gl-pF) e (j~-gl-pF) 
x = y Im+q,n-q;m,n 2 2 q 2 m+q,n-q;m,n------ l~+~I +l~-~I -m -n -----­

(4.26) 

while Y satisfies the integral equation 
~+~,~-g;~,~ 

x y (4.27)m+q ' , n-q ' ; m, n 
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x( 2 ) in equation (4.25) is the second- and higher-m+q,n-q;m,n 

order part of X • The first two terms in equation
~+~' ~ -g ;12_1, ~ 

(4.25) are equal. 



4.3 Particle-hole Scattering 

The Bethe-Goldstone (46 ) equation (4.27) describes 

the scattering of the ladder diagrams of figure (4.2). The 

contribution to the scattering amplitude Y from 
r_:i+g,~-g;r_:i,~ 

these diagrams is described in equation (4.28) as follows: 

for figure (4.2b), 

1 v u(g) (4.28a) 

for figure (4.2c), 

e (I m+q 1 1-p ) e (I n-q 1 1-p ) u (q') u (q-q') 
- - F - - F - - ­ (4.28b)

2 12 2 2 
I~+g' 1 + l ~-g' -m -n 

f or figure (4. 2d) , 

_!_ l: 

v3 g'g" 

e (jm+q"l-p )8(ln-q"l-p )u(q')u(q"-q')u(q-q") 
x - - F - - F - - - - ­

(4.28c) 

The ladder approximation ignores hole-hole scatter-

i ng events, as discussed above. In addition, ·it fails to 

a ccount for scattering between a particle and a hole. The 

theory c a n easily be e x tended to include such events by 

103 
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following the procedure of Kanazawa et al. (?O) who included 

positron-electron hole interactions in a calculation of 

positron annihilation rates. An additional infinite set of 

diagrams is introduced in figure (4.4). The contribution of 

these diagrams to the scattering matrix Y is given 
~+g,~-g;~,~ 

as follows: 

for figure (4.4a), 

e ( I~+g I-pF) e (j ~-·g+g' I -PF) u ( g' ) u ( g-g' ) 
(4.29a}2 2l~+gl 2+1~-g+g' 1 2 -l~+g' 1 -n 

for figure (4.4b}, 

1 - - L u (q I} u (q"-q I) u (q-q") 

v3 q'q" - - - - ­

x ;2 2 2( li;_1+gl 2+ I ~-g+g' 1 2 -l~+g' I2-n ) ( l~+g" 1 + l~-g+g" 1 2 -l~+g" I 2-n ) 

(4.29b) 

for figure (4.4c}, 

1 
- - E u(g'}u(g"-g'}u(~-g"} 

v3 g'g" 

x 
2 2 2 2 2 2 12 2(l~+g"I +l~-g"+g' I -l~+g' I -n} (!~+gl +l~-g+g' I -l~+g' -n} 

(4.29c} 



Figure 4.4 Members of an infinite set of diagrams 

in the perturbation expansion for the two-

particle Green's function G describingee 

particle-hole scattering. 
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for figure (4.4d), 

1 
-	 - {: U ( g I ) U ( g II -g I ) U ( g-g 11) 

v3 q'qll 

e (I JE+g 11 I-PF> e (I ~-g"+g' I -PF> e (I JE+g 11 I-Pp> e (I ~-g" I-Pp> 

2 2 2 2 2 2
( I JE+g 11 1

2+I~-g 11 +g' 1
2 -1 i_::i+g' 1 -n ) ( Ii_::i+g" ·I + I ~-g 11 I -m -n ) 

(4.29d) 

for figure (4.4e), 

1 
e (I m+q-q' 1-p ) e (I n-q 1-p ) u (q') u (q-q') 

The Bethe-Goldstone equation can then be rewritten as 

1 y 	 = - u (q)m+q,n-q;m,n V ­

u(q-q') e (jm+q' 1-p )e(jn-q' l-p) 

+ 	! L: - - - - F - - F yv I 2 1 2 2 2 i_::i+g I ,~-g I ii_::tr~q I i_::i+g' 1 + ~-g' I -m -n 


u(g') 8 (IJE+gl-pF) 8 (l~-g+g' l-pF)

! 	 L: y . 
v 	 2 2 2 2 m+q,n-q+q';m+q' ,nIg li_::i+gl +l~-g+g' I -li_::i+g' I -n - - - - ­

- - L: 
v2 g' 

F F • (4.29e) 

1 
v L: 

q' 
(4.30) 

where the last two terms are new terms introducing particle-

hole interactions into the scattering problem. 
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4.4 Calculation of Pair Distribution Function 

In order to make a calculation, the limit of infinite 

volume is taken in equations (4.25) and (4.30). The contribu­

tion to the p.d.f. from second- and higher-order terms is 

then written in the form 

6 
2pF f 3 iq·r

gL2(r) = d g e6 f f(2rr) 

x [2X( 2 ) . 
m+q,n-q;m,n 

, (4.31) 

where X is given in terms of Y by 
~+g,~-g;~,~ ~+g,~-g;~,~ 

equation (4.26) and Y satisfies the equation
12_l+g, ~-g; 12:, ~ 


y = U(q)
m+q,n-q;m,n 

3d q'U(q-q')e(!m+q'l-p )e(!n-q'j-p) 
- - - - - F - - F y+ f 2 2 2 2 m+q' ,n-q' ;m,nI::i+g ' I + I~-~ ' I -m -n - ­

d 3m1 U(m-m') 8 (!m+qj-p )e(!m'-m+n-qj-p) 

- - - - - F - - - - F y
- f 2 I 2 2 2 m+q,m'-m+n-q;m' ,n

l::i+gl + ~'-12,1+~-gl -m' -n - - - - - - - ­
d 3 1~ U(~-~')8(!~'-~+12_l+gl-Pp)8(j~-gj-pF) 

y I I•- f 2 2 2 2 n -n+m+q,n-q;m,n
l~'-~+~+gl +!~-~! -m -n' - - - - - - - ­

(4.32) 
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U(g) now has the form 

U(q) = a/(q 2 + aQ (q)) (4.33)0 

with 

(4.34) 

All momenta in equations (4.31) through (4.34) are in units 

of Pp• 

In their present form, equations (4.31), (4.26) and 

(4.32) present a considerable numerical problem. It is noted 

that in the case where m and n are both zero vectors, 

X and Y + depend only on the modulus ofm+q,n-q;m,n m q,n-q;m,n 

q. For finite m and n, the situation is complicated by the 

presence of vectors ~+g and ~-g but it can be simplified by 

making the approximation of an average over the angles of ~ 

and n. Such an angle-averaging process was carried out with 

(25171 ) ( 67 )considerable success by Kahana and Carbotte in 

a similar problem. The angle-averaged quantity X 
r_:i+g,~-g;~,~ 

is then described by 

x y 
A 

•
m+q,n-q;m,n m+q,n-q;m,n 

(4.35) 
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On introducing the variables p and n by 

P2 = lm+ql2 (4.36a) 

and 

(4.36b) 

the first averaged quantity on the right side of equation 

(4.35), denoted by 1/4 f (m,n,q), can be reduced to the form 

4 
1 f (m,n,q) = 1 

2 • (4.37)24mnq - n 

It is shown in Appendix D that the particle-hole contribu­

tions in the equation for Y+ can be neglected to 
~ g,~-g;~,~ . 

"' quite a good approximation. Then, Y · satisfiesm+q,n-q;m,n . 
the equation 

oo 

"' y = u (q) + ..!... dq'q'f(m,n,q')m+q,n-q;m,n 2q f------ 0 
lq+q' I 

,... I . (4.38)x Ym+q, ,n-q, ;m,n dxxU (x) 
- - - - - - Iq-q I I 

In this angle-averaged approximation, it is quite a 

s imple matter to the q-angle integration in equation 

(4.31). gL 2 (r) can be written as 



- -
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6 
2 2 2gL2(r) = 

2pF ro dqq sin qr fl dnn f 1 dmm 
'IT3r 

0 0 0 

x r2x <2 ) + f d3~fm+q,n-q;m,n 
...... - - ...., 

A A 

(4.39)
x x~+g·~~-g';~,~ x~+g+g' ,~-g-g' ;~,~l 

The quantity in square brackets in equation (4.39) can be 
A 

expressed in terms of Y asm+q,n-q;m,n 

TI f (m,n,q) 
oo 

dq I q If (m In I q I )4 q J 
0 

q+q' 

x A f .Ym+q' ,n-q' ;m,n dxxU(x) 
- - - - - - Iq-q I I 

00 

+ ~ f dq'q' 2f(m,n,q')Y + , ,8 ~ g ,~-g ;~,~ 
0 

dµq,f (m,n, lg+g' I )Ym+q+q' ,n-q-q' ;m,n (4.40) 
...... 

A 

In X m and n are averaged with respect tom+q+q' ,n-q-q';m,n' - ­

the direction of q+q'. On introducing the variable 

x = q+q', the second part of equation (4.40) reduces to 

oo dq'q'f(m n q')Y
' ' m+q',n-q';m,nJ

0 - - - ­
q+q' 

x dxxf (m,n,x)Y + (4.41)I m x,n-x;m,n
Iq-q I I - - - - - - ­
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A 

The integral equation (4.38) for Y wasm+q,n-q,m,n 

calculated by introducing a grid of variable size up to 75 

points extending from a minimum that satisfies the conditions 

m+q>l and n+q>l up to 40. This led to a set of i nhomogeneous 

linear equations which were solved by the gauss elimination 

method. The computation was carried ·out for electron gas 

densities corresponding to a = .1, .2 and .3, in each case 

for 11 values of m and n between 0 and 1. A 301-point grid 

between 0 and 40 was introduced for the q-integral in equa­

tion (4.39). For a particular density and q-value, the 

corresponding m-, n-, q'- and x-integrations in equations 

(4.39), (4.40) and (4.41) were carried out. Finally, the q-

integration was performed for 13 values of r between 0 and 

2 by means of a program designed to handle an oscillating 

function. g(l) (r)
t i-

was also calculated for the same densities 

and the same values of r. 

The RPA p.d.f. for opposite-spin electrons, RPAgt+ (r), 

is given by 

(4.42) 

The effect of including the full set of ladders describing 

particle-particle interactions is to give the spin-up-spin­

down p.d.f. 

(4.43) 
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~Agt+ (r) and gt+(r) are plotted in figure (4.5) for a= .1, 

.2 and .3 over the r-interval between 0 and 2. It can be 

seen that RPA gives a p.d.f. that is negative at small r over 

the whole metallic regime. The ladder p.d.f. on the other 

hand, is slightly negative at small r only for a = .3 . In 

fact, its short-range behaviour is quite similar to the spin­

up-spin-down p.d.f. calculated by Singwi et al. (20) which is 

plotted in figure (4.6) for very similar densities corres­

ponding to r = 2, 4 and 6. It appears that the set of s 

particle-particle ladder terms in the perturbation expansion 

accounts for a large part of the short-range correlations 

between opposite-spin electrons at metallic densities. An 

extension of the theory to include hole effects in the form 

of scattering of electrons off holes and holes off holes 

seems to be an unnecessary complication to the short-range 

effect considered here. 



Figure 4.5 Spin-up-spin-down pair distribution 

function gt+ as a function of electron separa­

tion r for electron gas densities a = .1, .2 

2and .3 (a = rs/1.919 TI ) • The dashed curves 

represent the RPA results. The solid curves 

represent full ladder calculations. 
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Figure 4.6 Spin-up-spin-down p.d.f. as a function 

of electron separation r for electron gas den­

sities rs= 2, 4 and 6 (from Singwi et al. (20)). 
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Figure 4.6 



CHAPTER V 

CONCLUSIONS 

5.1 Phonon Smearing of Angular Correlation Data 

This thesis has examined three separate and self­

contained problems dealing, firstly, with phonon smearing 

of positron annihilation data at the Fermi momentum, 

secondly, with the enhancement due to positron-electron 

correlations of lattice tails in the angular correlation 

data and thirdly, with correlations between opposite-spin 

electrons in an electron gas at metallic densities. The 

Green's function technique was emplo~~d - in all three pro­

blems, with attention being focussed on certain sets of 

terms in the perturbation expansions of the respective two­

particle Green's functions. 

In Chapter II the smearing at the cutoff of angular 

correlation data, which describes the momentum distribut ion 

of annihilating electron-positron pairs, was considered. 

(42 )Woll and Carbotte made an estimate of the minimum 

observable smearing in terms of positron motion . through an 

effective positron temperature, Teff' which they obtained 

from a Boltzmann equation approach by describing the posi­

tron decay in terms of interactions with electrons. The 

d iscrepancy between tneir prediction for Teff and the 
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experimentally-determined quantity led to a consideration of 

phonon smearing, described in Chapter II. 

The perturbation expansion of the electron-positron 

Green's function G was extended to include phonon effects ep 

by introducing positron- and electron-ion interactions and, 

thus, positron- and electron-phonon interactions, into the 

Hamiltonian for this many-particle system . The rigid ion 

model, extended to account for the self-consistent screening 

of the bare ions, led to a positron-ion form factor that was 

similar to a pseudopotential form factor for conduction elec­

trons. The weakening of the repulsive ionic potential which 

tends to exclude the positron from its vicinity was illus­

trated by the comparison with the screened Coulomb potential 

in figure (2.10). In the long-wave limit the scattering 

described by the two potentials is the same, since there it 

is the shift of the electronic charge, not the details of 

the ionic potential, that is important. However, such 

scattering similar to that from a screened impurity is valid 

only in this limit. The positron sees more of the ions than 

this simple picture would suggest. 

The new terms in the expansion of G led to an ep 

additional contribution to the partial annihilation rate of 

equation (2.3) in the form of smearing at the Fermi momentum. 

A calculation of the smearing from the three lowest-order 

phonon diagrams of figure (2.6) ignored positron-electron 

correlations, so that it was compared with thermal smearing 
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that involved only the unenhanced free-electron momentum 

distribution. It was found that such phonon smearing was 

small compared to the smearing that remained unaccounted for 

by previous theory (42 ) It should be pointed out that, even 

with the exclusion of correlations, there remained an infin­

ite number of higher-order phonon diagrams that were neglected. 

However, it is not expected that the inclusion of these terms 

would change the qualitative result of the calculation, that 

phonon effects are too small to explain the smearing at the 

Fermi cutoff. 

Mikeska (44 ) proposed the idea that the smearing and 

the large minimum positron energies may be explained by the 

deviation of the positron momentum distribution due to inter­

actions with phonons. He rightly suggested that the whole 

question of thermalization rates, momentum distributions and 

smearing would be answered by a proper Boltzmann equation 

approach. However, it is not obvious that this would result 

in drastically different conclusi~ns from ours. It would 

certainly be of considerable use if the experiments measuring 

the smearing could be repeated with greater accuracy. 



5.2 Enhancement of Lattice Tails in R(p) for Simple Metals 

In Chapter III the effect of a periodic lattice was 

included in the formulation of the positron partial annihila­

tion rate through the electron-positron Green's function 

propagator G , firstly, by introducing Bloch states into the ep 

zeroth-order Green's functions of the perturbation expansion 

and secondly, by accounting for it explicitly through elec­

tron (positron)-lattice interaction lines. The new diagrams 

resulting from this latter procedure actually replaced 

diagrams representing interactions with a uniform positive 

background usually included in the electron gas to ensure 

charge neutrality. 

The problem that was investigated was the enhancement 

due to positron-electron correlations of the tails introduced 

into the annihilation rate by the high electron momentum 

components that result from the presence of a periodic lattice. 

The enhancement factor for momenta less than the Fermi momen­

tum has been known, in the case of the electron gas, for some 

. (25,26)
t ime . It is essentially a constant factor, with some 

momentum dependence near the Fermi momentum. The Sommerfeld 

rate of equation (2.11) and figure (2.1), which reflects the 

free-electron momentum distribution, is but slightly distorted 

a s a result. The Sommerfeld parabola results from integrating 

over the area of the p -plane subtended by a Fermi sphere at
2 
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the origin. A periodic lattice introduces a reciprocal 

lattice space and corresponding higher momentum components. 

The p -plane then intersects Fermi spheres located at a
2 

number of reciprocal lattice points. 

A calculation was made in Chapter III of the first­

order enhancement, by including lattice interactions expli­

citly, for a model based on sodium. It assumed a weak 

interaction, as for sodium, and plane wave states for the 

positron. This model considered only nearest-neighbour 

reciprocal lattice points, assuming all other components of 

the electron-lattice potential to be zero. The resultant 

first-order enhancement factor of figure (3.10), associated 

with lattice tails, showed a magnitude and momentum depen­

dence very similar to that of figure (3.9), associated with 

the dominant central electron gas contribution. 

Further correlations are not expected to change the 

qualitative results of the calculation, any more than they 

(25126 ).did in the case of an electron gas They would, of 

course, lead to a greater overall enhancement which, on the 

basis of the first-order calculation, could be expected to 

b e roughly the electron gas enhancement. The greater enhance­

ment in the Fermi surface region, reflecting a higher degree 

of correlation between electron and positron, would probably 

become slightly more pronounced as well. Complicated inte­

g rations render unlikely any further investigations along 

that line. In fact, the Monte Carlo technique, which made 
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possible the present calculation, imposes its own limitations, 

as illustrated by the error bar s in figures (3.9) and (3.10), 

by depending on a convergence of the results. Nevertheless, 

the model calculation would seem to indicate that, for metals 

such as sodium, the angular correlation data, excluding core 

effects, can be considered to be essentially a constant fac­

tor times the uncorrelated contributions, with subtle distor­

tions in the form of a slight bulging of those contributions. 

A paper by Fujiwara (6 l ) introduced a many-body 

theory which treated the effect of a periodic field on the 

basis of nearly-free electron theory and included firs t -order 

positron-electron correlations. However, it was based on 

metals whose Fermi surface intersected a zone face and lim­

ited its treatment to the immediate vicinity of the zone 

boundary. At the time of writing of this thesis, the author 

(72)received a preprint of a furth~r paper by Fujiwara et al. 

presented in part at the Second International Conference on 

Positron Annihilation, which extended the treatment to beyond 

the vicinity of the zone boundary~ It was primarily concerned 

with interband transitions, which become most prominent when 

the Fermi surface just intersects a zone face. 

Fujiwara calculated a first-order enhancement factor 

f or a one-dimensional model that considered only R-L vectors 

h and -h. For the case where the Fermi momentum lies below 

t he zone boundary, his expression for the first-order intra­

band annihilation rate could be derived from equation (B.7) 
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by reducing it to the same one-dimensional model and 

approximating the product of coefficients uk(g), etc. Such 

a procedure, while obviously useful in obtaining a qualita­

tive understanding of the enhancement for interband transi­

tions is probably not sufficient for a quantitative calcula­

tion of the enhancement of lattice tails in simple metals, 

such as that of Chapter III . 



- - - - - -

5.3 Correlations in an Electron Gas 

In Chapter IV correlations between opposite-spin 

electrons were examined by a field-theoretic technique as a 

preliminary step to obtaining a fundamental understanding 

of the correlations among electrons at metallic densities 

and, indeed, the dielectric screening function. In particu­

lar, certain correlations important in short-range effects 

were treated in an effort to improve upon the RPA spin-up­

spin-down p.d.f. at metallic densities. From the scattering 

problem presented by a positron or a light negative charge 

(25in an electron gas at such densities , 45 >, the concept of 

multiple-scattering through high-order ladder diagrams was 
. 

introduced into the opposite-spin electron case to account 

for the fact that at small r the potential between the two 

particles is not small, as RPA assumes. 

Scattering between particles was described in 

Chapter IV in terms of a Bethe-Goldstone matrix element, 

denoted by Y , which had its solution in the inte­m+q,n-q;m,n 

gral equation (4.32). The solution was obtained through an 

angle-averaging approximation with respect to the angles of 

m and n. Such an averaging procedure over particle momentum 

(25171 )was carried out with justifiable results by Kahana 

(67 )and Carbotte in the case of the Bethe-Goldstone function 

122 



123 

describing positron-electron scattering. In the case where 

m and n are zero, the Bethe-Goldstone function does depend 

only on the magnitude of q and not its direction. A further 

approximation that was made in order to arrive at the Bethe-

Goldstone function was the static ap~roximation for the 

effective particle-particle interaction. It was made in the 

same spirit as the angle-averaging, as a first approximation 

in estimating the effect of multiple scattering on short-

range phenomena, specifically, the spin-up-spin-down p.d.f. 

Particle-hole scattering was considered in addition to the 

particle-particle ladder diagrams but its contribution was 

negligible by comparison. 

The spin-up-spin-down p.d.f. gt+(r) at small r was 

found to bear a close resemblance to gt+(r) as calculated by 

Singwi et al. (20), who included local-field effects through 

a semi-classical approach relating a two-particle distribu­

tion function to the p.d.f. g(r). This led to an effective 

field and a dielectric function which included a local-field 

correction by involving the p.d. f . With €(q;w) a functional 

of g(r), or more specifically, its Fourier transform, the 

structure factor S(q), there resulted a system of equations 

which were then solved self-consistently. It is not clear 

what the relationship is between the Singwi method and the 

perturbation-theoretic approach. However, it appears that 

the set of particle-particle ladders in the perturbation 

expansion for G accounts for a large part of the short­ep 
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range correlations between opposite-spin electrons at 

metallic densities. 

The problem of electrons with parallel spin involves 

the additional local-field effect associated with the e xchange 

hole. It is a far more difficult matter to treat the e x change 

terms, as evidenced by the approximation Hubbard found 

necessary for a particular set. Even the handling of the 

first-order exchange bubble diagram in that set is an impos­

ing task (6 B). Of course, the most satisfactory description 

of the electron gas would satisfy all of the consistency 

conditions discussed by Geldart (l 6 ) The significance of 

the above calculation, however, is one which has been ignored 

until now, that the important effect of the Coulomb hole at 

metallic densities is, to a large extent, accounted for by 

considering multiple scattering through particle-particle 

ladders. 



APPENDIX A 

POSITRON-PHONON MATRIX ELEMENT 

The positron-phonon matrix element describing 

scattering of the positron is given by 

(A.l) 

where VV is the gradient of the positron-ion potential and 
- p 

I~> represents the set of positron Bloch states. The deriva­

tion of this quantity follows a derivation of the electron­

(73phonon matrix element outlined by Ziman > which was based 

on the rigid ion model (S 6 ), the method of ~igner and 

(74Seitz > and a self-consistent method by Bardeen (S 9 ) to 

account for the shift of conduct i on electrons. 

It is assumed that the ionic lattice is surrounded 

by a uniform negative charge cloud. The usual Wigner-Seitz 

cell about each ion is replaced by a spherical cell of equal . . 
volume in order to simplify the potential se~ by a positron. 

The ionic potential seen by the positron is not just the bare 

potential, but is rather an effective potential that includes 

t he potential due to the uniform spherical charge distribu­

t i on. This potential is necessarily zero outside the cell. 

A positron inside the cell about a particular ion sees the 
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effective potential due to that ion alone, which is given 

by 

2 2 2 
w (r) = w. (r) - (~ - ~) I (A. 2)

ion - 2r0 2 r~ 

where w. (r) is the bare ion potential and r is the cell
ion - 0 

radius determined from the lattice constant a by the condi­

tion 

(A. 3) 

The Schroedinger equation for the positron in a 

periodic potential w(r) is 

I (A. 4) 

where ¢k has the Bloch form (2.25). Differentiation of 

equation (A.4) leads to 

ik·r ik·r 
~ ~k' V2(e - - ~uk) - (V2¢k,)e - - ~uk 

(A. 5) 

where use was made of the fact that, since phonon energies 

are small .compared to electron energies, Ek, ~ Ek. Integra­

tion over the cell volume gives, by Green's theorem, 

I 
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ik·r 
- e - -(~uk)¢k 1 ]dS (A. 6) 

It is assumed that ukir) can be replaced by u (:), the ~=O0 

state function. Furthermore, in order to ensure periodicity, 

the derivative of u (:) must vanish at the cell boundary.0 

Then, 

,!,*
"'k' 

(A. 7) 

Assuming that the positron is in a plane wave state, equa­

tion (A.7) simplifies to 

(A. 8) 

where G(x) is given by 

G(x) = -1:r (sin x - x cos x) (A . 9) 
x 
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Equation (A.8) describes not just the scattering of 

the positron by the ion itself but also the scattering effect 

due to the displacement of the uniform spherical charge 

distribution in the cell. In order to describe the scatter­

ing due to the ions alone, it is necessary to subtract the 

terms 

f ¢k' ~(e;)¢k dr - f ¢k' 

out - in ­

(A .10) 

where the integrations refer to regions outside and inside 

a particular cell. The matrix element describing scattering 

by the bare ion is then given by 

2 
M. (k' ,k) = -~(~-~')G(l~-~' lro) (w(ro) - Eo - 4Tine ) 

l - - I~-~ 12 •I 

(A.11) 
Up until this point, the conduction electrons have 

been ignored. These occupy the lowest states among the 

complete set ~k which are taken to be plane wave states. 

Scattering which involves the creation or annihilation of a 

phonon of wavevector q can only connect the conduction elec­

tron state ~k with the states w and ~ . The per-k+q+g k-q-g 

turbed set of electron states is t hen determined by first-

order perturbation theory to be 

(A .12) 
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where the coefficients akg and bkg are given in terms of 

the perturbing potential ou by 

-i(q+g)·r 
e - - - ou drf 

, etc. (A .13)aJs~ = 

Ek is the energy of the unperturbed state ~k" As a result 

of the perturbation there is a shift of charge, leading to 

a new electron density n(r) given by 

i(q+g) ·r 
= n + ~ ~ ~ [(akg + b~g)e - - ­

-i(q+g) ·r 
+ (akg + bkg)e - - -] (A .14) 

to first order in the coefficients. The shift from the 

average density n gives rise to an electrostatic potential 

energy U (r) determined by Poisson's equation. It is written 
s ­

i(q+g)·r -.i (q+g) • r 
U (r) = L: (U e + U* e - - -) (A.15) 

s - sg sgg 

where the Fourier coefficients U and U* are given bysg sg 

2
4Tie , etc. (A .16)u = sg 
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U must be included in the perturbing potential, so that the 
s 

perturbation coefficients of equation (A.13) can be written 

(Mi + usg) 

, etc. (A .17)
E - E 

k Js+g+~ 

The self-consistent total effective scattering matrix M (q) 
p ­

can be determined from equations (A.16) and (A.17) as 

2
81Te l: 1M (q) = M./(l + E )p - 1. 2 Ek+q -Dq k k 

4Tine 2 
= M./(l + f (q) ) (A.1 8)

1. 2 q 

f (q) is given, as before, by equation (2.35). ·rn terms of a 

form factor V (q), written p 

2 24Tine 4Tinev (q) = G (qr 0) ( 2 + E - w(r ) )/(1 + f(q)),
p 0 0 2 q q 

(A .19) 

M (q)
p 

is given by 

M (q)
p 

(A. 20) 



APPENDIX B 

FIRST-ORDER LADDER ANNIHILATION RATE 

The contribution to the positron partial annihilation 

rate from the first-order ladder diagram of figure {3.lb) is 

given by equation (3.10) as 

R{p) 

. {B.l) 

It is assumed that the positron can be described by plane 

0 wa ve state s so that G has the Fourier expansion (2.7), while 
p 

GO is e xpressed in terms of Bloch f unctions by equation
e 


(3.4a). R(p) can then be e xpanded in the form 
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E .f dw dw' dE dE dE' 
x kk'~KK' gg'GG' 2TI ~ 2TI 2TI ~ 

iq·(z-z') ik·(x-z) ik'·(z-x') 
x e e e 

iK· (x-z ') iK' · (z'-x') ig•x -ig' •z iG•z -iG' ·x' 
x e e e e - -e - -e - ­

-iE(t -t ) - i w(t-t) -iw' (t -t+) -iE(t-t )z z' z z z' 
x e e e e 

- iE 1 
( t z 1 - t + ) 

x e u(q;E) 

(B. 2) 

Integration over the time variables t and t , leads z z 

to 

o(w-w '-E) O(E+E-E') (B. 3) 

Integration over the space vari ables leads to the a-functions 

(B. 4) 
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In the limit of infinite volume the a-function and the 

Kronecker delta are interchangeable. The sums over K,K' and 

g and the w'- and E'-integrations can be performed to give 

R(p) = i 	 A. E E 

IT kk' gg'GG' 


x u (g)u*(g')u ,(G)u*,(G')u(k-k'+g-G';O)
k - k - k - k - - - - ­

0 0 0 	 0 
x G (k;w)G (k';w-E)G (p-k-g;E)G (p-k'-G';E+E) 

e - e 	 - p - - - p - - ­

(B. 5) 

where the dynamic effective potential has been replaced by 

its static limit. 

The E-integral can be performed by contour integra­

tion in the upper half plane to give 

R ( p ) = 2 	
n>;_ E L Uk (<;I ) uk* (2" ' ) uk , ( ~ ) uk* , ( ~ ' ) 
H kk I gg I GG I ·­

x u(k-k'+g-G';O)o '-G+G'o k+ - - - - g,g p, g 

G~(~;w)G~(~';w-E) 
(B. 6) 

IE-~·-~· 12
-E-iO+ 
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Contour integration over E and w leads to 

R(p) 	 L: L: 

k k' 


u(k-k'+g-G';O)o '~G+G'o k+ - - - - g,g - - pi_ g
x 	 (B. 7)

2
E I - E + lk-k'+g-G' 1 

k k - - - ­

where p has been explicitly replaced by ~+g in the energy 

denominator. 



APPENDIX C 


PROPAGATOR EQUATIONS 

The perturbation series for a Green's function 

propagator is obtained by deriving the equation of motion 

for the propagator and then solving the equation by making 

a perturbation expansion in powers of the potential. The 

positron Green's function propagator G is expressed in 
p 

terms of the positron field operator ¢(x) as 

= i <8(t-t')¢(x)¢t(x') - e(t'-t)¢t(x')¢(x)>. 

(C .1) 

Now, operators such as ¢(x) and t he electron operator ~(x) 

obey Fermi statistics. In particular they satisfy the 

anticommutation rules 

(C. 2a) 

{¢(xt), ¢(x't)} = 0 (C. 2b) 

Furthermore, a positron operator anticornrnutes with an elec­

tron operator. Differentiating equation (C.l) with respect 
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to the time variable t gives 

- o (t-t')<{¢(x)' ¢t(x')}>t'=t 

(C. 3) 

The equation of motion for the positron field variable ¢ (x) 

is 

i 0~ ¢ (x) = [ cf> (x), H] (C. 4) 

where H is the Hamiltonian for t h e positron-ele ctron system 

immersed in a crystal lattice given by equation (3.1). It 

follows that 

3 = H (x ) ¢ (xt) + fd z v (x; z) 
p ­

x [ ¢ t (zt) ¢ (zt) - ljJ t (zt) ljJ (zt)] ¢ (xt) (C. 5) 

from the anticornrnutator rules d i scussed above. Subs t ituting 

this result into equation (C.3) g i ves 
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4= H (x)G (x;x')-o (x-x')+ifd3 z v(x;z)
p - p ­

x [<T(¢t(zt+)¢(zt)¢(x)¢t(x'))> 

which can be written in the form 

x [G (zt,x;zt+,x') 
pp - ­

+ - G (zt x·zt x')] (C. 7)ep - I '- I 

An equivalent equation is obtained for the electron Green's 

function propagator G by replacing "p" ("e") by "e" ("p").e 

In a similar fashion it i s possible to derive the 

equation of motion for the general n-particle Gr~en's func­

tion defined as 

(C. 8) 
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where ¢ refers to a positron (electron) operator if p. is
pi i 

"p"("e"). Then 

n j+l 4 I 	 t 
+ 	 L: (-1) o (xl-xJ. )T(¢p2(x2) ... ¢Pn(xn)¢Pn(x~) ... 

j=l(pj=p1) 

... ¢t (x~+1>¢t (x~_l) ... ¢t (x1')) 	 (C. 9) 
Pj+l J pj-1 J P1 

In the last term the sum is over the primed positron (elec­

tron) coordinates if p is a positron (electron) index.1 

From the equation of motion (C.5) for the field operator, 

equation (C.9) can be rewritten, on taking expectation 

values, as 

(-i-8- + H (x )) G (x1 , ... ,x ;x ', ... ,x')
at1 Pl - 1 p1 •.. pn n 1 n 

( l) j+l-',4( ')G 	 1 ')1x - u x 1-x. 	 (x 2 , ... , x ; x1 
t , ... , x. 1x. +l' ... , x ,

J P1P2 ···Pn n J- J n 
(C .10) 
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where Pi stands for "p" ("e") if p refers to "e" ("p"). The1 

quantity G . (x 2 , ... ,x ;x •, ... ,x! x!+
1 

, •.. ,x') stands 
P1P2 · · ·Pn n 1 J-1 J n 

for 

... ¢t (x~+1><Pt (x!_l) ..• ¢t (x1'))>
Pj+l J pj-1 J P1 

(C. l°l) 

In the absence of interactions in equation (C.7), the 

equation of motion for the free-particle propagator has the 

conjugate equation 

(. a 2 0 4 
l- - 'V )G (x ;x) = cS (x -x) c .12)at 1 1x Pl 

2where the symbol v indicates the Laplacian with respect to 
x 

the variable x . The var iable x in equation (C.10) is1 

changed for convenience to x and the equation i s multiplied 

on the right b y G~ (x1 ;x). Equation (C.12) is multiplied on 
1 

t he left by G (x,x2 , ... , x ;x •, ... ,x') and the result1Pi···Pn n n 
i s subtracted from the first quantity. Integration over the 

4-vector x then leads to the equation 
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G (x , ••• ,x ;x •, ••• ,x')
1 1P1 · · · Pn n n 

n 
= E (-l)j+l GO (x ;x.')

1P1 Jj=l (pj=pl) 

x G (x
2

, x 
3

, ••• , x ; x 1 
, ••• , x ! 

1
x !+l' •.. , x')

P1 · · · Pn n 1 J- J n 

' 
(t.13) 

which follows from the fact that 

4x[GO (x ·x) (-1·2- - 172 )G (xx x ·x' x')fd 1 # °' t V I 2t•••f I it•••f 
a ~ Pi ..• Pn n nP1 

-G (x,x
2 

, ••• ,x ;x 1 
, ••• ,x') (i"'at - I/ 2 )G0 (x ;x)]

1 1Pi···Pn n n a x P1 
(C.14) 

can be shown to vanish by integrat ion by parts. The positron 

p ropagator then satisfies the integral equation 
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+ + 1x [G (zt,x;zt ,x 1 )-G (zt,x;zt ,x )]

PP - - 1 ep - 1 

(C.15) 

and there is a similar equation for the electron propagator 

G . The two-particle electron-positron propagator G is e ep 

described by the equation 

x [G (zt,x,x ;zt+,x ' ,x ')
eep - 2 - 1 2

- G (zt,x,x2 ;zt+ ,x ' ,x2')]
pep - - 1 

(C.16) 

It can be expanded as a perturbation series in powers of v. 

The only difference from the case of an electron gas is the 

presence of additional terms in the expansion involving the 

positron (electron)-lattice interaction Vp(e~ which do not 

completely cancel against the bubble diagrams. 
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APPENDIX D 

BETHE-GOLDSTONE EQUATION 

The amplitude X +q -q·m described by equationsm ,n , ,n 

(4.26) and (4.32) can also be written in the form 

[U (q) 

(D .1) 
A 

X is approximated by a quantity X + ,m+q,n-q;m,n m q,n-q;m,n 

obtained by averaging over the angles of m and n. In taking 

the average of equation (D.l), the quantities 

X and X in the last twor:;+g Ir:: I -r:;+::-g;r:; I 1 :: ~I -::+~+g I ~-g i~t:: I 

integrals are approximated by X+ which can be 
~ g,::-g;r:;,:: 

removed from the m'- and n'-integrations. The approximation 

is equivalent to replacing ~· by ~ and ~· by n, respectively, 

in these quantities. There results the integral equation 
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1x 
A 

= 4 f(m,n,q)[U(g)m+q,n-q;m,n 

3+ fd q 1 U(q-q')x
- - - ~+g',~-g·;~,~ 

1- X fd 3~ U(~-~')m+q,n-q;m,n _ _ _ 

(D. 2.) 

Returning to the averaged Bethe-Goldstone quantity 
A 

Y + through the equation (4.35), written alterna­
~ g,~-g;~,~ 

tively as 

(D. 3) 

A 

Y can be shown to satisfy the equation
~+g,~-g;~,~ 

co 
1T = U(q) + 2q f dq'q' f(m,n,q') 

0 
q+q' 

A 

x y f dx x U (x)m+q' ,n-q' ;m,n- - - - Iq-q' I 
TI f(m,n,q) y 

- 2 m m+q,n-q;m,n 

m+m'1 
x f dm' m' f dx x U(x) 

0 lm-m' I 
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A'TT f (m,n,q) 
2 n 

y
m+q ,n--q;m,n 

n+n' 

x fl dn ' n' f dx x U(x) (D. 4) 

0 ln-n' I 
A 

The quantity Y was determined fromm+q,n-q;m,n 

equation (D.4) for 11 values of m and n between 0 and 1 for 

a = .2. It was also obtained in an approximation which 

involved omitting the last two terms (hole contributions) in 

equation (D.4). The respective integral equations were 

solved by introducing a grid of variable size up to 75 points 

extending from a minimum which satisfied the conditions 

m+q>l and n+q>l up to a maximum of 40. The resultant set of 

inhomogeneous linear equations was solved by gauss elimina­

tion. 
A 

Y + 's for the two approximations are plottedm q,n-q;m,n 

in figure (D.l) for several values of m and n. It can be 

seen that particle-hole contributions can be neg l ected to a 
A 

good approximation. Y is then given by them+q,n-q;m,n 

simpler equation 

l 
y 
A 

= u (q) + 2'1Tq dq' q' f(m,n,q')m+q,n-q;m,n f 
0 

q+q' 

J dx x U(x) 

lq-q' I (D. 5) 



Figure D.l Ratio of the Bethe-Goldstone matrix 

element Y which includes particle-m+q, n-q ;m, n 

hole interactions to t hat involving just particle-

particle scattering as a function of q for various 

values of m and n for density parameter a= .2. 
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