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ABSTRACT

In power systems, dynamic stability analysis is an important
field of interest for both design and operation studies. This stability
analysis requires the formulation of the linearized power system equations
in the state-space form.

In this thesis, the state-space matrices of multi-machine systems
are constructed by.implementing two matrix formulation techniques, the
"PQR" and the direct elimination "ELIM" methods. Two computer
programs have been devised to apply these formulation techniques. The
programs are capable of handling systems up to a maximum order of 70, with
avaiiable central memory of about 49,000 words (decimal). Another
feature of these programs is their capability of accommodating generating
units with different degrees of complexity, by allowing a variety of
models for the sub-system components. Both programs have been applied to
two test examples to illustrate their validity.

The two formulation technique programs were compared from the
point of view of computational time, storage requirements and eigenvalue

sensitivity evaluation.
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CHAPTER 1

INTRODUCTION

1.1 Power System Stability

One of the important considerations in the design and operation
of a power system is the stability of the system. The stability problem
is concerned with the behaviour of synchronous machines after they have
been perturbed. If the perturbation does not involve any net change
in power, the machines should return to their original state. If an un-
balance between the supply and demand is created as a result of a change
in load, in generation or in network conditions, a new operating con-
dition should be achieved through different controllers of the system.
In any case, all interconnected synchronous machines should remain in
synchronism if the system is stable; (i.e., they should all remain oper-
ating in parallel and at the same speed).

Perturbations may be observed in different forms; one is a major
disturbance such as the loss of a generator, a fault or the loss of a
line, or a combination of these disturbahces. A second form is a small
disturbance such as a random or small load change occurring under normal
operating conditions. Stability depends strongly upon the magnitude and
location of the disturbance, and to a lesser extent on the initial operating

condition of the system.



There are two main categories of power system stability. These
are transient and dynamic stability. Transient stability is concerned
with the behaviour of the system following a "major'" or large disturbance
which can arise as a result of an abnormal condition. Immediate loss of
synchronism is generally of major concern affecting stability. The
differential equations describing the dynamic performance of the system
are nonlinear due mainly to the sinusoidal nature of the torque-load
angle relationships. Saturation in the exciter, prime mover response
and magnetic saturation are also significant factors in the nonlinearities
[19]. The system behaviour after a "major" disturbance is a function of
the nature of the fault and the system properties.

Dynamic stability is concerned with the behaviour of the system
following a "small' disturbance around a steady-state operating condition.
For a sufficiently small disturbance, linearized differential equations
may be used to describe the system dynamics. These equations are derived
by perturbing the nonlinear equations of the system around the equilibrium
operating point. This admits the use of modern control theory concepts.

The dominant theme of this thesis is dynamic stability analysis.

1.2 Dynamic Stability Evaluation

A power system is a nonlinear system. However, for the purpose
of investigatiﬁg the "small signal’ behaviour, the system equations may
be linearized and analyzed by any of several methods applicable for
linear systems. Methods used in conventional linear control theory,

such as a Routh or Nyquist criteria for evaluating dynamic stability of



power systems are restricted to thé analysis of small systems such
as a single machine infinite bus system. They are also of limited
value in the analysis of systems having a wide range in frequency of
oscillations [197]., However, the techniques of modern control theory
have now removed this diff;culty, subject to the requirement that the
system can be described by a set of differential equations in the state
space form.

The differential and algebraic equations describing the per-
formance of a power system are basically nonlinear. System performance

can be described by a set of first-order differential equations and

associated algebraic relationship [7], [11], as shown in (1.1).

+h

% = f (x) +g (w

(1.1)
y=h (x) +k (v

where, the x, u and y are vectors of state, input and algebraic var-
iables of order n, m and r, respectively; the f, g, h and k are vector

functions [24], i.e.,

~ —_
fl (xl, Xps wens Xn)

f(x) =|"
fo(x;, x ey X))
l 2’ s
| ° 7

When dealing with small disturbance stability of a system,

equation (1.1) can be expressed in terms of deviations from the equi-



librium point. If the disturbance is small enough, second-order and
higher-order terms are negligible in a Taylor series expansion. There-

fore, the equations will be described by the following linear form:

g
»
fl

[a] ax + [B] &u

(1.2)

>
<
i

[C] éx + [D] éu

which is the standard state-space equation representation. [A], [B],
[c] and [D] are real constant matrices with appropriate dimensions.
The entries of these matrices depend on the system parameter values
and also on the steady-state operating conditions.

The matrix [A] is called the coefficient or the state matrix
and its elements aij are given by equation (1.3) which is evaluated

at the equilibrium condition prior to the disturbance.

— -1
afl afl
o %?l axn
A= = : (1.3)
~0 of of
n n
Bxl an

The stability of the system is determined by computing the
eigenvalues of the state matrix. The eigenvalues correspond to the
natural modes of the system response and may be either complex or
real [19]. A real eigenvalue is associated with a non-oscillatory

mode. Complex eigenvalues always occur as conjugate pairs and each



pair is associated with an oscillatory mode. The imaginary part of
each pair represents the natural dngular frequency of oscillation and
the real part represents the amount of damping associated with the mode.
A negative real part of a complex pair is an indication of a damped
oscillatory mode, whereas a positive real part indicates instability

through oscillations of increasing amplitude.

1.3 Formulation Approaches

For dynamic stability studies, the differential and algebraic
equation sets of the system are manipulated into the state-space form
(1.2). Then the state matrix [A] may be examined for stability using
eigenvalue analysis. Different methods have been proposed for forming
the [A] matrix.

Laughton [4] proposed a method of forming the [A] matrix for a
multimachine power system by using a'direct elimination' technique to
extract [A] from the complete differential and algebraic equations of
the whole system, this name will be used for this general method.

Undrill [7] extended Laughton's method with more accurate gener-
ator, governor and exciter representation. His approach depends on
building up the matrix [A] of the multi-machine power system from sub-
matrices representing system segments and thus large blocks of null
elements can be avoided.

Anderson [il],[lé]extended the approach of Enns et al [2]
and represented the differential and algebraic equations of the system

in a linearized form, as shown in (1.4) and termed by him the "PQR" method.



[p] = [q] ax + [R] 4u (1.4)

where, Ax, Ay and Au are the state, algebraic and input vectors of
perturbations from the steady-state equilibrium point and are of the
same dimensions as those of equation (1.2). ‘[P], [Q] and [R]*are real
constant matrices of compatible dimensions with Ax, Ay and Au vectors.
The state-space form could be obtained from equation (l.4) using a matrix
inversion routine, it will be discussed in Chapter 3.

Alden and Zein E1-Din [28] combined the simplicity of the PQR
technique with the efficiency of the submatrix build-up technique while

retaining the identity between submatrices and system components.

1.4 Arrangement of the Material

In Chapter 2, a representation of the nonlinear equations and the
linearized state-space equations of one model for each subsystem will
be introduced as an example.

In Chapter 3, the details of a computer program are pre-
~ sented. It is used in building up the coefficient matrices A, B and C
for multimachine dynamic stability studies taking into account several
models for each subsystem. This program is based on the basic idea of
using the combined PQR and submatrix build up technique.

A second computer program is presented in Chapter 4 to

form the matrix [A], based on the "direct elimination" technique.



In Chapter 5, both of tﬂese computer programs have been
applied to two test examples to illustrate their validity. Detailed
comparison between these two programs and extensive analysis of both
algorithms have been done from the point of view of computational time,
storage requirements and eigenvalue sensitivity evaluation. In Chapter

6, the main conclusions of the thesis are summarized.



CHAPTER 2

SUBSYSTEM MODELLING

2.1 Introduction

The power system, shown in Figure 2.1, consists of two
major subsystems. The first one is the electric network which
can be divided into two sections: the transmission or bulk power
system, and the distribution system. The second major subsystem
comprises mutually uncoupled generating units. The input to this
subgystem is the vector of stator voltages, and the output is the
vector of stator currents. Each generating unit consists of four
elements, as shown in Figure 2.1: generator, mechanical shafrt,
turbine-governor and exciter-stabilizer. By appropriate choice of
generating unit subsystems, a wide variety of model types and com-
plexities may be considered. Table 2.1 shows the different sub-
system models used in this thesis. In this chapter, one model for
each element will be discussed and the other models are presented in

Appendix A.
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Figure 2.1 System Structure

Unit n-1 _ ____J
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- -< l Network
Power /
Field ]
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Turbine- > Exciter— |l
Governor Stabilizer
Ref . 1\ 1\ Ref.
Power Unit n Voltage
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Table 2.1 Subsystem Models

Element Type Classification Order
GO classical model 0
. Gl one rotor circuit (no damper windings) 1
Generator G2 three rotor circuits (two damper windings) 3
G3 three rotor circuits (two damper windings 5
+ stator transient included)
Sl lumped mass
System Shaft
82 two mass model 4
S3 five mass model 10
no turbine (constant mechanical power)
Turbine- steam turbine
Governor
hydraulic turbine
Eo no exciter (constant field voltage) 0
System El simple exciter 1
Exciter E2 static exciter 2
E3 static exciter with speed-stabilizer 4

10
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2.2 Synchronous Machine Model

Nonlinear Model Including Stator Transients

This model is used in the case studies where the effects of the
d.c. offset in the stator circuits are important, hence, the stator
transients must be retained [19]. The equation set no. (2.1) are based
on Park's transformations describing the nonlinear performance of a
synchronous machine in a reference frame rotating with the rotor. The

equivalent circuit representing this model is shown in Figure (2.2a).

Stator Equations:

. W .

wd - % (Vd + w lpq + s 1d)
(2.1a)

. w

= ——— -+ i
wq wo (Vq wo lpd rs lq)

Rotor Equations:

Vg = 0 Vgg = Tgg Tgg)
Yed = 7 ¥ (Frg g (2.1b)

kq - wo (rkq lkq)



3

i s s
d
e
i = . II’L
T
wip f
. q L " . “kd
d
ABC L
Ved kdg
1) < dgo 1=
Trans.
r
¥ L kq
Vq q mq IJ}kq
qul
. + 4 -
1C —_— e ] | fo\
. r
Tq o Wiy s Lse
(a). Equivalent Circuit
— . r— — ) - ot -
Mea| |9 Aigg A4
- i A
Awd Wt Ald W, Vq
Abral = ©5 kd Malt +
AY - ¥ Ai w
q o's q o
Awkq workq Alkg
L ot o — L ——ad b —
- -1 . — ]
Awfd W Aw
Yo AlPd lpqo AVfd
Awkd +
mw Al’Dkq —wdo
Awkg
L -— - L -
(b) State-Space Equations
Figure 2.2 Synchronous Machine "G.," Model

12
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The stator and rotor current components used in equation (2.1)

are presented in equation set no. (2.2) in terms of the flux linkages.

Y -y P - Y
i, = mdL d i = qu q
s q s
.= Yea " ¥ng .= Yka " ¥ma 2.2)
fd sz kd Lkd
Y -y
i - qu mg
q kq

b=k T )
md Loy Ley o Liag
(2.3)
Y Y
lpm =k2 (__q_+-ilﬂ_)
4 st “kqt
where: wd = de iz - Xd i + de 114
=-X i + X i
wq q q mq " kq
Yeg = Xp Teg 7 Xnd Ya T Xpg Tia (2.4)

<
P
Na
fl
b
g
0
s
Q
+
35*
[
e
N
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The state variables in equations (2.1 - 2.4) are the flux
linkages. The flux linkage state-space model is convenient for studying
the effect of magnetic saturation causing nonlinearity,as all the terms
of the model equations are linear except for the magnetizing flux link-
ages wmd and wmq' These flux linkages are affected by saturation of
the mutual inductances Lmd and Lmé and only these terms need to be
corrected for saturation. This can be done by computing a saturation
function to adjust (2.3) at all times to reflect the state of the mutual
inductances [31]. Practically, the g-axis inductance Lmq seldom satur-
ates, so it is usually necessary to adjust only Lmd for saturation using

the saturation curve shown in Figure (2.3).

v A
bpyg r——————— -
||
1prndT ————— l l :
|
|
| o
|
i |
| || o
i i i .
MT MO “MS lfd

Figure 2.3 Saturation Curve for wmd
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The procedure for including the magnetic circuit saturation

for salient pole machines is as follows:

(a)

(b)

(c)

(d)

(e)

From the saturation curve, the threshold flux linkage (before
saturation), wde, which corresponds to a magnetizing current

i is determined.
MT

For a given wmd’ the unsaturated magnetizing current i corres—

Mo’

ponding to Lmdo is determined.

For a flux linkage greater than wde, the current increment iMA

is calculated.
1MA = As exp [Bs (wmd - wde)]

where, AS and Bs are constants to be determined from the generator
saturation curve.

The saturated current iMs can be evaluated as follows:

The saturated value of the magnetizing inductance Lmd will be:

Lmd - Ks Lmdo

where:

i
. . o
Ks (saturation function) = IM_

Ms

Other forms of nonlinearities beside the magnetic saturation

are the product nonlinearities and trigonometric functions

[31].
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Product Nonlinearities

Considering the state variables Xi and X.j having the initial

values X, and X, , and X,, , X,, are the small changes of these var-
io jo iA

JjA
iables.

The new value of their product will be:

+X,,) X, +X )=X X +X X + o F XX,
(Xio XlA) ( jo JA) io XJO X10 XjA on X1A XlA XJA
It is seen from this equation that the last term, XiA XjA’ causes non-
linearity. Since this term is very small, so it could be neglected.
Thus, for a first—order-approximation, the change in the product (Xin)
is given by:
+ X, .+ X, - X, = X, ., F

(Xio XjA) (XJO XJA) XlO on XlO XjA on XiA

where, Xio and on are known quantities and treated as coefficients,

and X,, are "increment' variables.

while Xi 54

A

The Trigonometric Nonlinearities

This type of nonlinearity is treated in a form where the

expansion of the function is used, as follows:

cos (60 + SA) = cos 60 cos SA - sin 60 sin GA

with cos 6A ~ 1 and sin 6A = 6A. Therefore,

cos (60 +_6A) - cos 60 =~ (-sin 60) 6A
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The increment change in cos § is then (-sin SO)GA, the incre-

mental variable is SA and its coefficient is (-sin 60). Similarly,

for the incremental change in the term (sin §) is given by:

sin (60 + SA) = sin 60 cos 5A + cos 60 sin GA
or,

sin (60 + 6A) - sin 60 = (cos 60) dA

Linearized Equations

The different techniques adopted for developing the linearized
state-~space equations in all approaches are basically similar. The
nonlinear differential and algebraic equations of each subsystem model
are linearized around an operating condition, then the overall system
equations are formulated. The steady-state equilibrium condition of
the overall system is usually obtained using a load flow program [ 35].

The linearized equations of the differential equations (2.1) and the

algebraic equations (2.4) are:

Stator Equations

Awd = wOAVd + wOArS . Ald + wqo + Aw + w, " Awq
(2.5)
1 - + . H - - - .
Awq wOAVq woArS Alq wdo Aw W, Awd
Rotor Equations
Mg = 9o " AVgq T 0 Tgg T By
A. = - . 1
Vi “oTkd * A (2.6)
Awkq = —wcrkq Alkq
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Algebraic Equations

My = K og Mgy - XML+ X AL

nd 2iga T Xttg T Xpab g

Mg = SX AL F X AL

Meg = Xeatlea T *na®ta T Fna®ka (2.7)
Mg = Kbl = Xpabla ¥ Xpabipg

Awkq —quAlq + quA%kq

The linearized state-space form is represented in Figure (2.2b).

2.3 Mechanical’§ystem Model

Nonlinear Model Including the Effects of Torsional

Vibrations of the Mechanical System

The effects of turbine-generator torsional vibration effects
are considered in power system analyses and design. One of the possibil-
ities to have torsional oscillations is when a feed back of rotor speed
té the excitatijion system is used for damping power angle oscillations.
Another possibility causing the oécurrence of such a problem is when
series capacitors are used to compensate long-distance high-voltage
transmission lines; this could introduce potential modes of dynamic
instability and may include interactions with turbo-alternator shaft
oscillations. Analytical methods used to predict torsional instability

require the modelling of the mechanical system dynamics. The following
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equation set no. (2.8) describes the dynamic performance of the turbo-
alternator mechanical system which considers the shaft system as a

five-mass system [18], [19],as shown in Figure (2.4a).

Generator:
61 = wl - Y
0, = ‘Elg 8, + (—512) $ —-El w, - =S T
1 Ml 2 Ml 1 Ml 1 Ml e
LP
8y = Wy m g,
2 M2 3 M2 2 Mé 1 M2 2 2 LP
LP
(.S = w - W
3
3o (2.8)
SR VA i LN = BV BRI R
3 M3 4 M3 3 M3 2 M3 3 M3 LP
IP:
64 = wa - wo
. 45 5 _ Bus T35 8 +S—335 —B‘iw + L p
W, = 5 M4 4 M4 T3 M4 4 M4 IP



T 7

HP = High Pressure Stage H = Inertia Constant (sec)
IP = Intermediate Pressure stage D = Damping Factor (P.U. Torque/Radian/Sec)
LP = Low Pressure Stages S =

Shaft Stiffness Factor (P.U. Torque/
: Radian)

(a) Equivalent Mechanical System

Figure 2.4 Mechanical Shaft System "S3" Model

02
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H.P.:
55 = Wy = W
wg = %64_5’1?_565'Péw5+i%_ Pip
5 5 5 5
where,
Te = wd iq - wq i

The linearized state-space equations of this model are shown in Figure

(2.4b).

The above model is used for thermal generating units where the
generator rotor and each turbine stage is represented by one equivalent
rotating mass [187], Such representation is sufficiently accurate for
the prediction of the lower shaft natural frequencies (below 60 hertz)
at which torsional sub-synchronous resonance occurs. For hydraulic
turbines (shown in Appendix A), a two-mass equivalent system is con-—
sidered adequate, one mass corresponding to the rotor inertia and the
other representing the turbine inertia.

A single-mass equivalent may be employed in applications
involving many stability predictions in which the stability of a
specific shaft mode is required to be analyzed. This model is shown

in Appendix A. .
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2.4 Turbine/Governor Model

Nonlinear Model for Hydraulic Systems

In this section, a simplified model for a hydfo turbine-
governor subsystem is described [ 18]. Another model which is shown
in Appendix A represents a simplified model for steam units [18]. The
turbine-governor model for the steam unit is recommended also for
nuclear units.

The dynamic model for a hydfo turbine-governor subsystem is
shown in Figure (2.5a). The turbine representation in Figure (2.5a)
is an equivalent for the block diagram description in Figure (2.5b).
The governor model includes two different transfer functions represent-—
ing the speed relay and servo motor.- The nonlinear differential and

algebraic equations representing this model are as follows:

Differential Equations

S

g = —— g + W

1 Tl 1 Tl

. -1 1

g, = T8, +t—g : (2.9)
2 T3 2 T3 1

. -1 3 3

8y = T 8y~ 8, +t—P

3 TS 3 TS 2 5 ref

Algebraic Equation:
Pm = gy - 2 (Pref - g2) | (2.10)
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2.5 Excitation System Model

Static Exciter with Speed Stabilizer Model

In this section, the stafic exciter with speed stabilizer model
is presented. Another model which is a simple exciter is presented in
Appendix A. The static exciter has a very powerful capability which
can be used very effectively‘to control power system swings [16]. It
has also the advantage that there is no exciter saturation as in rotating
exciters. This saturation is a result of the nonlinear relation between
the exciter field voltage and the exciter field current in rotating ex-
citers. To correct for nonlinearity in rotating exciters, a similar
approach to that used in overcoming the magnetic saturation nonlinearities
in a generator is used. A device for producing a signal proportional to
small changes in generator speed has been developed by Ontario Hydro.

It has been found that a stabilizing signal based on direct measurement
of shaft speed has the advantage of being virtually independent of
system configuration and operating procedures [15]. This will provide
satisfactory damping of the generator oscillatiomns.

In Figure (2.6a), a block diagram description for the static
exciter—-speed stabilizer, using a signal derived from machine rotor
speed, is shown. This model is used by Ontario Hydro [15]. In this
model, the exciter is represented by a single time constant transfer
function, the inputs are the stabilizing signal (vs) and the difference

(vr - VV) between the reference voltage (vr) and the signal corres-
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pbnding to the machine terminal voltager(vv). The washout circuit
eliminates any steady-state offset of the speed signal into the exciter
input. The compensator is used for cancellation of phase lag contributed
by the machine and exciter. The differential equations describing the

performance of this model are shown in (2.11).

. 1 1
Yo i % T
v v v
KéK T, Ke 1 Ke Ty
> . &9 .8 . - £ (=
VEg T w T (T tL oo T v T T ga T T (T + 1) Vx +
o e X e e . e X
K K
< v +-L&y
Te y Te T
(2.11)
. -K 1
v = —31 - =y
X w T T x
°q q
—TaK Ta 1
v, = —-ﬂ§-w - VvV -V
y W T T x T™x Y
0 X X
where,
T
v = v -2y
v a Ty b

The linearized state-space equations are presented in Figure (2.6b)



CHAPTER 3

"PQR" FORMULATION

3.1 Matrix Formulation

In dynamic stability (small signal) studies of power systems,
it is useful to manipulate the linearized differential and algebraic
equation sets describing the performance of the system into the state-

space linear form, equation (3.1).

>
W
It

[A] Ax + [B] Au
(3.1)

>
v
il

[c] Ax + [p] Au

where Ax, Au, and Ay are vectors of state, input, and algebraic var-
iables of order n, m, and r, respectively. These vectors are con-
sidered the vectors of perturbation from steady-state equilibrium
point. The matrices, A, B, and C are real constant matrices with
appropriate dimensions. The entries of these matrices are functions
of all the system parameters. The state-space form, equation (3.1),
is convenient for the applications of modern control theory.

For a small problem such as a single machine-infinite bus, the
number of the differential and algebraic equations describing the system
performance is relatively small. The reduction of these equations into

state-space form is simple. However, for interconnected systems, it is



29

difficult and a systematic reduction technique should be used.

Enns et al, [2], suggested a systematic formulation technique
which has been extended by Anderson [11]and [14], where the method was
termed by him the PQR method. The linearized differential and algebraic
equations of the system are formulated in the following form:

Ax
[r] = [Q] ax + [R] Au (3.2)
Ay

The matrices P, Q, and R are real éonstant matrices of compat-
ible dimensions with the vectors Ax, Au, and Ay. These matrices are
functions of the system structure and the steady~state operating con-
ditions. These matrices are formed within the digital computer.
Equation (3.2) is then premultiplied by the inverse of the matrix [P]

to give:

= [P [Q] ox + [P17F [] au (3.3)
Ay )

If the matrices [P—l Q] and [P—l R] in equatién (3.3) are con-
formably partitioned [28], then the system equations are obtained in
the state-space form (3.1). TFor a large system, the inversion time is
relatively long and has to be performed every time a parameter setting
is changed.

Undrill [ 7], recommended a procedure for computing a multi-
machine model which represented each generator with order 5 and

required a matrix inversion of order 1lln, where n is the number
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of machines. On the other hand, the formulation recommended by
Anderson [ 14] required the inversibn of n matrices of order 15 to
produce the same model. He used a modular approach which replaces
the inversion of one large matrix by the inversion of a number of a
lower order.

The approach suggested by Alden and Zein E1-Din [[28], avoided
the inversion of a large matrix by ordering the state, algebraic and
output variables of each individual machine in such a way as to set
up the [P] matrix in a quasi-block diagonal form. The procedure developed
requires the inversion of n machine reactance matrices of order 5 and the
second one is the real network admittance matrix, of order 2n. If the
network impedance matrix is developed instead of the admittance matrix,
no inversion is needed for the last matrix.

In the last approach [28] equation (3.2) is rewritten after

partitioning the matrices P, Q and R, as follows:

- | T r = T
1 | pa éé QA ~ {ra

I ! —_ g =4 = p—=428x + }=oAu (3.4)
o | rB Ay QB RB

A T I TR S A |

The state-space form (3.1) can be obtained by matrix mani-
pulation described in section {3.5) using inversion by parts to invert
the matrix [PB].

A computer program which is a part of the interactive McMaster
University Multi-Machine Analysis System (MUMMAS) package has been
produced for building up the coefficient matrices A, B and C for multi-
machine dynamic stability studies taking into account several models

for each subsystem. This program is based on the basic idea of using
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the combined PQR and sub-matrix build-up technique [28].

3.2 Network Formulation

The network can be described by the nodal admittance matrix

equation [1]:

- 4 - A -
in1 811 Py : 812 P { e :gln - 1;_1 VDl.T
Q1 b1 g11 | Py g2 | - o En Vo1
D2 812 P1o ~f 822 ‘bzé_r T gn TPy VD2
| Q2 by1 81 | P22 B22 | -+ - 1oy &2n Q2
Bl B e P B R R
: . L. | : Z
I R ¥ A R ]
hn 81 TPm | ®n2 _bn;—r"": gin °mn Ybn
fon bn1 LY %ﬂ:'”'lhm 8n Von
— - — — . -

Equation (3.5) is the result of expanding a set of n simul-
taneous complex equations into a set of 2n real equatioms.

This equation can be written symbolically as:

i (3.6)

~

vy = ad vy

Each load is represented in this approach as a linear static
load. Hence, they are combined in the bus admittance matrix as a
constant admittance. This is achieved [35] by eliminating all non~

generator buses which are connected only to a linear static load.
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The components of the terminal voltage of a synchronous machine
with respect to its direct and quadrature (d, q) reference axes (which
rotate in synchronism with the machine rotor) are related to the com-
ponents in the D, Q reference frame of the network (which rotates at

the angular frequency of the steady-state network current), as shown

in Figure (3.1).

Qﬂ

Figure 3.1 Angular Relationships Between Network and Synchronous
Machine Reference Axes ’

This relationship can be expressed by the following equation:

Vi cos (Si sin (31 Vpi
- . (3.7)
ti ~sin di cos 6i in

or, -~ = [T] vy
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Considering n generating units are connected to the network, equation

(3.7) will be as follows:

Tll 0 ... 0
0 T22 0
_ . . . v ’
Ym . . . N (3.8)
0 0o .. T
nn

For small disturbances in the system, equation (3.8) can be linearized

around the operating condition. This yields:

— —_— - ) —
Vql 0 e 0 A 1
—vdl 0 ceen 0 A62
0 qu .
0 —vd2
Ay, = [T]O brg 1 . ] (3.9)
0 0 . v
gqn
0 0] ceee “Vdn Aén
- I I

Similarly, the machine and network current vectors are related by:

LIS

iy (3.10)
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where [T]t is the transpose of the transformation matrix [T]. From

equations (3.6) and (3.10), it can be proved that:

[2]° 1, = [ged vy (3.11)

For small perturbations, equation (3.11) can be linearized as follows:

F}Ql. 0  eeeen 0 | 26, ]

-igy 0 .. O 88,
0 102 0 :
(N 0 :

[T]z ai = [y T svy + : : : (3.12)

| W
0 = a8

- ]

3.3 Inclusion of an Infinite Bus

An infinite bus is considered to be rated at constant frequency
and voltage (both in magnitude and angle). A very large capacity bus com-
pared to the rating of the machine and connected in the power system is
considered as an infinite bus. In the case of existence of an infinite

bus, equation (3.6) is re-formulated as follows:

— — L — (3.13)
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where, vy and iI are voltage and current vectors of the infinite

bus. If small perturbation occurs in the system, equation (3.13) can

be linearized. This yields:

Mpo= Do) avy + [y ] oy
(3.14)
My = D] svp + [0 avy
Since the infinite bus voltage is constant, hence:
AvI = 0 (3.15)
As a result, the linearized equation (3.13) will be:
] [
1 NI
= A
S — Y, (3.16)
Ad
N NN
- | _ -

Using the same procedure adopted in the last section (3.3) to
refer the individual machine currents to the general reference frame,

equation (3.16) can be replaced by the following form:



36

- ]
0 0 ... O 26,
o 0 0 A8,
iy O 0 :
i 0 0
N 0 :
so . o) [ ave + [ 0 Tip2 0 ' (3.17)
0 I:To] A% YNN i 0 . .
.0 :
.0 :
o 0 in -
o 0 S A
e p—

If there is no infinite bus included in the system, it is
assumed [7] that the network frequency is always identical to that of one
arbitrarily chosen machine so that the axes (D, Q) rotate in synchron-
ism with the axes (d, q) of that machine. This implies that the rotor
angle deviation, A8, of the chosen machine is always zero.

As a result, one angle, and hence one state, is eliminated, and

equation (3.12) replaces equation (3.17).

3.4 Ordering of the System Vectors

There are two approaches for grouping the state variables:

(a) Type Grouping

In which all the state variables associated with the same

process in each machine are grouped together, e.g., the
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grouping of rotor angles of all machines, rotor speeds of

all machines, etc.

% = [61, 62, . e Gn; wl, Wos wee wn; N .]

(b) Generator Grouping

In which all the state variables associated with a partic-

ular generating unit are grouped together.

X = [61, Wiy wees 8oy Wos wees én, w eeo]

The first approach has been adopted in [4], [7] and [22]; whereas
the second approach has been used in [14], [25] and [28]. The second
approach is simpler than the first, especially for the general case
with different degrees of subsystem modelling, and also for system up-
dating. The generator approach has been used in the work presented in
this thesis.

The state variable vector, A%i’ for each individual machine, is
constructed from the perturbed values of the rotor angle, rotor speed,
internal flux linkages, governor and exciter state Variables. The choice
of the flux linkages as state Variables‘instead of the machine currents
is pfeferred as it is considefed more convenient for studying the effect
of a magnetic saturation in the synchronous machine, as mentioned in
section (2.2). The state variable vector for the ith generating'unit

is constructed as follows:

t t t 4t
_ 3.18
A%y = L8645 Awyy ay,7, Xous X (3.18)
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The state variable vector AX of the whole system is then con-
e 3ao e ’ t .
structed from all the individual vectors Agi of each machine, as

follows: t

_ t t t
A§ = [Agl, Agz, v Agn] (3.19)

The algebraic vector of the whole system is constructed from
the algebraic variables of each individual machine, as shown in equation
(3.20).

To avoid inversion of a large matrix, the algebraic vector of
the whole system is constructed from the algebraic variables of each
individual machine, each group of variables being placed alternately, as

shown in equation (3.20).

Ay = A[it it it vt Vt vt v v v
X ~ml’ “m2’ 77 mn’ ml® .m2’ 77 <mn’ tl® t2° " Ten?
t-5  (3.20)
Te1> Ten> oo Tepo Pol, Pogs =e- Pon’ “p1° 1QI’ YN]

The input vector is constructed from the input vectors of each

machine, as follows:

pu = [au, Aul

t
gy tees Agn] (3.21)

3.5 State-Space Formulation

In this section, the [P], [Q] and [R] matrices of equation (3.2)
will be constructed in detail based on the formulation proposed in

reference [14]. The [P] matrix is partitioned, as follows:

1 ! A ns

j
0 i
l

)

g

B nv

where ns and nv are the total number of state and algebraic variables,

respectively. [I] is an identity matrix, [0] is a null matrix. Since we
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want to reformulate equation (3.2) to be in the state-space form,

equation (3.1), the matrix [P] should be inverted, as shown in equation

(3.23):
l -1
1 I | -[pa] [PB]
[r] = - = i (3.23)
o | [PB]
|
The [PA] and [PB] matrices are partitioned as shown in equation
(3.24):
nv nx nv-nx
_ m m
r-PAl ns; PX ! 0 nx
[PA] = L= and [PB] = - (3.24)
PA ns PC PD nv-nx .
2 2 : m
PAn nsn
| —
where nsl, NSy, +.. DS are the number of state variables of machine

1, 2, ..., n,respectively and nx is the total number of state variables
associated with the synchronous generator (flux liﬁkages), i.e.,

n
nx_ = I nxi.

i=1

The matrix [PB] is of particular interest since it has to be

inverted, using inversion by parts as:

-1 |
rpp]~L R Lo (3.25)

-1 -1 -1
-[pp]™" [pc] [Px]™" [pPD]
l
From equation (3.25), it is noticed that the matrices [PX] and [PD]

should be inverted. Hence, further partitioning is done to reduce the

inversion computation time, as follows:



[~ |
px. |
1
| X-]
L_2 _
[px] = P
Fe |
L—-—.
0 T
L |

where, nvy and nv4

equals 2xn, nv

r_. —_—
I

7S]

[
[ olo |-[pr]

0 0

=5
|0 oy
o | ol o] -[en]

0
I

and [PD] =

A R

equals 3xn and nv

2 3
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nv
nv
(3.26)

nv

nv

equals 2 if the

system includes an infinite bus, and equals zero if it is not included.

The matrix [PX] is a block diagonal and includes all the reactance

matrices, one block per machine and the matrix [PD] can be inverted

using inversion by parts as follows:

[— I 0 |
-[ps]l 1
[PD]—l = — 4+ -
o t o
L —
0 |0
L. ]

i o
Iy
0 -[en]7t

— e — v —— A— —— — — -

(3.27)

where, the matrix [PN] is the real network admittance matrix [Ynn] and

the matrix [PI] is the real infinite bus admittance matrix [Y

NI]° Tbe

form of one block of the matrix [PX] considering the 5th order generation

model will be as shown in Figure (3.2).

p—

[px.] =

-X

| ]
mdi mdi |
ai Yodi | 0
L= 1
X | 1 ’
mdi kdi
S S [
| -x . X .
0 | qi mqi
I - mqi qui
pra——

cesy D

number of machines

Figure (3.2) [PX] Matrix for One Machine (Order 5)
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The matrices [PS], [PT], [PC], [PAi], [QAi], [QB] and [RAi] are shown
in Figure (3.3) - Figure (3.9) in full detail representing a three
machine system, the order of each machine is thirteen. The subsystem

models are chosen, as follows:

a) Mechanical shaft - Type 1 (order 2)
b) Synchronous generator - Type 3 (order 5)
c¢) Turbine/governor - Type 1 (order 2)

d) Exciter/stabilizer - Type 3 (order 4)

where, nx_, nxm, nxg and nxe are the number of the states associated
with mechanical shaft, generator, turbine/governor and exciter/stabil-
izer, respectively.

To obtain the coefficient matrices A, B, C and D, the following

procedure may be followed:
Recalling equation (3.4),

Ax QA RA
— — o4 = - AX  + - Au (3.28)
Ay QB | - RB ~

or, Ax + [PA] Ay [Qa] ax + [RA] Au (3.29)

I

[pB] by [qB] bx + [rRB] AB (3.30)

Equation (3.30) can be re-written as follows:

Ay = [PB]'l [qB] Af + [PB]"l [RB] Au (3.31)
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Substituting equation (3.31) into equation (3.29), leads to:

ax = {[0a] - [pa] [c]} ax + [Ra] bu (3.32)

Comparing the equation set (3.1) with equations (3.31) and (3.32), we

can conclude:

[A] [a] - [Pa] [c]

[B] = [Ra]

1 (3.33)
[c] = [®B] " [qB]
[p] = [eB]™' [Re]

In power system configurations, [RB] and consequently [p] are
zéro matrices. The program package description, user guide and program
listing have been presented in detail in a McMaster internal report [34].
The flow chart of this program is presented in Figure (3.10). The program
is capable of representing a synchronous machine, either in detail or
by a classical model (fixed voltage behind transient reactance).

Detailed ﬁodel representation is used for machines close to the point

of interest (study system) and the less detailed model representation

is used for the rest of the machines (external system). Using different
subsystem models is very important, as it facilitates representing the
system dynamics in different degrees of complexity. The different types
of mechanical shaft, governor/turbine and exciters shown in Table (2.1,
have been utilized in this program. The programris capable of handling

systems up to seventy states in an interactive mode.
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Figure 3.10 " PQR "
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3.6 Eigenvalue Sensitivity

The eigenvalues of the system state matrix [A] indicate system
dynamic stability. These eigenvalues are, in general, functions of all
control and design parameters in the system. A change in any of these
parameters affects the system performance, and a shift in the whole eigen-—
value pattern may occur.

If a change AfZ 1in a certain parameter £ occurs, an estimate

~

Ai, can be obtained using Taylor series expansion around a base value

A;,» as follows 32,
| 2
-~ 8 - -
P +—a ey + 220 24 (3.34)
i io 3g Eo 2 852 go

In equation (3.34), the term:

aA,
i

E L -

(o]

is defined as the first-order sensitivity coefficient of.the eigenvalue
Ai with respect to the parameter at the original parameter value go. If
only the first term of the Taylor series expansion is taken into consider-
ation, the estimation is called a first-order eigenvalue sensitivity. The

second-order partial derivative in equation (3.34)

BZK,
= |
352 go

is called the second-order sensitivity coefficient of the eigenvalue Ai

with respect to the system parameter £, Eigenvalue first and second-
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order sensitivity analysis has been applied in references [3], [26] and
[27]. Higher order eigenvalue sensitivities were computed in reference
[33] for determining the changes in the eigenvalues for a large change

in system parameters to obtain a more accurate estimate of the new eigen-
value location. The expressions for first and second-order sensitivity
coefficients with respect to different control parameters, are given in
equations (3.35) and (3.36). These expressions are taken directly from

reference [32].

3E = t (3.35)
(v, W)
~1 ~d
3°TA] s[a] "F
. == v wl+2[E= 1 o, V.)W.]
2 ~i~di o8 ij~3j’ ~1i
82A of j=1
= = 171 (3.36)
3¢ | (v, W)
where:
Ai : dith eigenvalue
Vi : eigenvector of [A] corresponding to ith eigenvalue
‘wi : eigenvector of [A]t corresponding to ith eigenvalue
& : system parameter of interest
a[A] . . . . .
-7;;~ state matrix partial derivatives with respect to parameter ¢

2]
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From equations (3.35) and (3.36), it is seen that to find the
sensitivity of the eigenvalues to a system parameter, it is necessary
to compute:

1. The partial derivative of the state matrix [A] with respect to
that parameter.
2. The system eigenvalues, the normal and transpose eigenvectors of

the matrix [A].

Nolan et al, [21] and [27], proved that the state matrix first-
order derivatives with respect to a variable parameter, &, using the

"PQR" matrix formulation, is as follows:

ofAl _ 3[s]
ot (1 o] 5t (3.37)
or,
o[a] _ -1 ~3[Q] 3[P]
e Lr ol [P] ~ L Y { 3 }s]] (3.38)
where
[s] - (217" [Q1=F83, (3.39)

and [I] is the unit matrix of order ns.

The "PQR" technique, described in the reference [32], formulates
the [A] matrix from the addition of two matrices. One of them, [QA],
contains most of the control and design parameters in the system as simple
explicit functions. Consequently, for most variable parameters and specif-

ically all control parameters (control gains, time constants, etc.),

3[P]

3¢ = [O], hence,
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s[a] _ a[Ql _ a[QA]
5t T [1 o] T RRY: (3.40)
and the second-order derivatives of the system state matrix [A] are
given by:
2 2
oAl _ a7[oa]
o = > (3.41)
9g 13

On the other hand, if it is required to compute eigenvalue

sensitivities with respect to parameters that appear in the matrix [P,

§%§J-= (0], and hence,

oAl _ -1 3[P]
ot ~[1 0] [P] 5% [s] (3.42)

The approach used by Nolan et al for calculating matrix first-order
derivatives is extended by Zein E1-Din, [32], to calculate the second-

order derivatives as follows:

2 2
7Aooy eyt 2Bl gy 4 o LRI STy (3.43)
ag? 13



CHAPTER 4

"DIRECT ELIMINATION" FORMULATION

4,1 Introduction

The dynamic system is represented by the state matrix [a]
which is based directly on the algebraic and first-order differ-
ential equations, or indirectly on the equations and block diagrams
representing the system performance.

Laughton [4] used the'direct elimination''technique to obtain
the state matrix [A] from the complete algebraic and differential
equations of the whole system. He formulated the general nonlinear
equations describing £he performance of a single machine without assoc-
iated excitation or prime-mover control, when connected to an equi-
valent transmission system and linearized these equations by consider-
ing the first terms only of a Taylor series expansion of the equations
around any operating point. He initially constructed the operating
matrix equation which summarizes the relationships between all machine
and system variables, keeping the variables of particular interest.

The system input variables (AV_., and ATm), the controlled machine

fd
variables (ASG, AVt and AT), and all time-derivative quantities, are in
the first equations. The variables not of interest may be eliminated

by matrix reduction. This method is of great significance, because it

is a practical method for obtaining the required differential equations.

55
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But, the reduction of the operating matrix by hand manipulation of the
system equations, may lead to errors in the calculations. |
Van Ness [3] and Muir [30] used the general block diagram
technique instead of direct representation of the controller equations.
For each biock, the name/of the output variable, the parameters (gains
and time constants), and the input variables must be provided on the
input cards. The input variable may include a plus or minus sign to
indicate the sign of the input. The system equations are formulated

in the program according to these dnformations. This facilitates addition

of voltage regulators, different types of governors, and other control
equipment to study their effect on systems dynamics. The interactions
between blocks are identified by integers, certain integers being
reserved to connect the controller to the controlled device. Each block
is given a name that is used to refer to a state, input or output var-—
iable. The method described by Muir [30] used the elimination method
described by Laughton [4]. He formed the state matrix [A] by forming
and storing the network equations first, then the equations of one
machine with its exciter/governor were formed and reduced until only
the differential equations of that maéhine and the algebraic equations
of the network were left. Then the two network equations for that node
could be eliminated. The same procedure is repeated for each machine
until the full state matrix of the system is formed. This method is
more flexible as it allows forAfuture modifications such as the addi-
tion of control equipment. But, the application of this method is

restricted to high standard users because any mistake in entering the



57

data (the parameters, input and output variable names) of each block
diagram may give misleading results, as the input data are supplied
in a transfer function form.

This chapter describes another computer program package
which forms the state matrix and computes the eigenvalues for deter-
mining the stability of the system. This program is based on both
ideas, direct elimination [4], and reduction of the machine shaft,
governor and exciter equations to state format, machine by machine,
starting With the interconnection between the machine and the network
at the beginning [30]. The matrices are constructed directly from the
linearized equations representing the different subsystems. The user
communicates with the program through a series of questions, which en-

ables him to select different models for each subsystem.

4.2 Matrix Formulation

The linearized differential and algebraic equations describing
the performance of a single synchronous machine without associated
excitation or prime-mover control, when connected to an equivalent
transmission system, are summarized in reference [4]. These equations

can be written in matrix form as shown in equation (4.1):
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- - - l — — -
AT AS
m |
AV I AY
fd
I ' fd variables of
0 Zl l 22 AVt interest
0 _ | AT
0 AVd (4.1)
AV
| q
. ' Al
fd variables not
l Ai "of interest
' d
Z3 | Z4 Alq
l by
l
0 Ay
| q
. 4 L ! . N

Equation (4.1) can be written in a symbolic form as follows:

Ax

= [Zp] A; (4.2)

L O, 5

where, [Zp] is an operational matrix.

This equation describes one machine connected to an infinite bus and
summarizes the relationships between all machine and system variables,
where the variables of particular interest (the forcing functions AVfd

and ATm representing system inputs through the excitation system or

prime mover, the controlled machine variables AS, AVt and AI, and all

time derivative quantities) are in the first equations. The variables not
of interest (AVd to Awq, equation (4.1)) may be eliminated by matrix

reduction. This leads to the following equation:
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- - - —-
AT [ r;a
m
AV _ A
fd = z, - zzz4 123 fd (4.3)
0 AV
t
0 AT
L el — —r e _J

The system represented by equation (4.2) can be formulated in

the following state-space equations (4.4) and (4.5).

Ax

Cal ax + [B] Au (4.4)

Ay

[c] ax (4.5)

This can be done through a few substitutions [4]. Assuming that:

X; = AS, X, = X, = Aw, Xq = Awfd, and for the control input variables,
u, = Avfd’ u, = ATm. Thus, equation (4.4) becomes:
AS FAG
. Avfd
Aw | = [A]l |Aw |+ [B] (4.6)
ATm
Ae A
i |*q

The output variables may be represented also in matrix form
as a function of the system variables, which in the case of equation

(4.5) can be expanded by substituting: vy = AV, Yoy = AI; this yields,

t
L.
AV AS
t
= [c] |Aw 4.7)
AT
Alpfd




Applying this approach [4] for the multimachine dynamic

problem, the matrix equation (4.2) may be rewritten as follows:

ns Aul Axl ns

nv nv

(]
>
o7

~

where, ns and nv are the total number of the state variables and

60

stabilitv

(4.8)

algebraic variables of the first machine [Zdl]and [ZL] are constant

real matrices,[zdl] is a diagonal matrix and [Zl] can be partitioned,

as follows:

ns nv
I
[z ] ) le : Z21 ns
1 —-—'-T—"-
Z3l : 241 nv

(4.9)

The differential and algebraic equations representing one

machine of order six are shown in equations (4.10) and (4.11).

The chosen subsystem models are as follows:

a) Mechanical shaft - Type 1 (2nd order)
b) Synchronous machine - Type 2 (3rd order)
¢) Governor/Turbine -~ Type 0 (constant mech. power)

d) Exciter/Stabilizer - Type 1 (1st order)
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The procedure used is based on the idea in reference [30].
The steps of this procedure can be summarized as follows:
1) The 2n real admittance matrix, [YNN]’ which is formed
in the load-flow program, is stored first.
-2) The equations of the first machine with its exciter and
governor are formed according to the user choice for the

subsystem models.

Nonlinear Differential Equations

0 = § - w+ w
‘0

T = g}i'.'*"D“w'f'T
m w w
o o

0 = Vg 7w Vg Fug Teg gy
(4.10)
0 = wkd + mo rkd lkd
0 = wkq 0 rkq 1kq

]

ref
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Nonlinear Algebraic Equations

0 = Yeq ™ Xeq Tga + Xna a7 *na Ta

0 = Vg~ %na Tea T %nd Ta 7 Fud Tka

0 = Vg ¥ g g7 *iq Tkg

0 = r A FV -l

0 = rs id -+ Vd + wwq

0 = V-V, - vcz1 (4.11)
0 = Po - Vd ld - Vq 1q

0 = Te - wd lq + wq 14

0 = Vd - cos 61 VD - sin 51 VQ

0 = Vq + sin 61 VD - cos 61 VQ

3) The matrix

equations,

[Zn]’ which includes all the network algebraic

the differential and algebraic equations of

the first machine, is reduced until only the differential

equations
the networ

4) The two re

of that machine and the algebraic equations of
k are left.

al network equations for that node connected to

the first machine are eliminated.

5) The next m

the full s

achine then is added and reduced and so on until

tate matrix of the whole system is formed.



63

4.3 Formulation of Network Equations

The formulation of the network equations is similar to that
in Chapter 3., The linearized equation (3.7) of the machine voltage
referred to the general reference frame for one machine can be form-
ulated as follows:

v

- - qi -
[T, Avyg As,
(o] -v..
di

Av (4.12)
L

ni

[ o]

i=1, 2, ..., n : number of machines

Also, the linearized equation (3.11) of the machine currents referred
to the general reference frame for one machine will be shown in

equation (4.13):

t . _ Qi -
[ty 17 o1y - Degd ovy - A8, 0 (4.13)
o i, .
Di
where,
cos Gio sin aio
[r.,] = ' (4.14)
o} -sin §, cos 6,
io io

aio is the rotor angle of machine i referred to the network reference

frame at steady-state, Avmi and Aimi are the voltage and current vectors

~

of machine i, i . and i.. are the components of the nodal current which

Di Qi

can be represented in terms of the components of the machine currents

by the following relation:



64

i, cos 6, -sin &, i..
i i di

= (4.15)
i, sin ¢, cos 6§, i,
i i qi

and the matrix [YNN] is the real nodal admittance matrix.

4.4 Inclusion of an Infinite Bus

The infinite bus absence assumption is similar to what was
mentioned in the previous chapter by selecting a machine having a
reference axes (dr’ qr) rotating in synchronism with the network
reference frame axes (D, Q), i.e. rotate with synchronous angular

frequency as shown in Figure (4.1).

Figure 4.1 Absence of an Infinite Bus

This means that the rotor angle of that chosen machine and con-

sequently the corresponding state should be eliminated.



If the system includes an infinite bus, equation (4.16)

replaces equation (4.13).

B |
15t o
11 I

e -r——‘
l
|
I

o

I

4.5

-

Ai .,
mi

— = =

Al .,
ni

R

-

State-Space Formation

AS

O
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(4.16)

To clarify how to get the state matrix from equation (4.8)

the matrix [Zl] can be constructed from the 2n real network equations,

the differential and algebraic equations of the first machine and

partitioning of this matrix,as shown in equations (4.17) and (4.18).

Figure (4.2) shows the matrix [21] in detail after adding the first

machine to the network, where,

k

k

This example is based on the system equations (4.10) and (4.11).

inf. bus

Differential
of machine

Algebraic eq

1 ~(1gp

s = Uy

network
equations

equations
equations

1

uations of

machine 1

sin 6, + 1

1

cos 6, -

1

i

ql

ql

cos 61)

sin 61)

2n 2 nsl nvl
| l
Ty | h, | By
SR ) E S P
| |
S
0 | 11 21
|
by | Hyp | By
L— |

(4.17)



Figure 4.2 [Zl] Matrix
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The matrix [Zl] is partitioned as shown in equation (4.18) to eliminate

the algebraic equations of the first machine.

- -
Z I 221

11 nal

(4.18)
31 41 1

]
7 : z nv
|

where, nal 2n + 2 + ns

1

number of state variables of machine 1

ns

nv number of algebraic variables of machine 1

Using matrix reduction for equation (4.18) to keep the algebraic
network equations and the differential equations of machine 1, leads
to:

-1 ]

[, d = M2y =25y 2,7 24 (4.19)

The reduced matrix [Mle is partitioned to eliminate the two real

network equations of the node connected to machine 1,as follows:

2 (nal~2)
z [ 7 1,
RAI- | 31
[r,1 = Zp11 (na,-2) (4.20)

R21
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Using matrix reduction for equation (4.20) leads to:

z 1 ] (4.21)

Zp13 = [2p17 = Zpo1 Zgyl Zpay

Then the differential and algebraic equations of the second machine

will be added to the matrix [ZRl] as shown in equation (4.22):

nal—2 ns, o,
- l =
Zg network ?quations + . ZRl h3,; | h4 nal-Z
diff. equations of machine 1 }
|
Diff. equations of machine 2 0 le I H22 ns, (4.22)
o ot — —— i — —
Algebraic equations of H | H nv
machine 2 . Lﬁ15 32 | 42 2
| —

2 2

2n network equations + diff. B [ 7]
equations of machine 1 + diff. Z | 2 na

. . 12 22 2
equations of machine 2 |

I (4.23)
Algebraic equations of I
Z Z
machine 2 32 | a2 ™y
- ! —

where, na2 = nal—2 + n32

Using matrix elimination for equation (4.23) to retain the
remaining algebraic network equations and the differential equations of

machines 1 and 2 leads to:

. -1
Mgl = L2, = 2,, 2,7 24,] (4.24)

The reduced matrix D%sz is partitioned to eliminate the two real net-



work equations of the node connected to machine 2, as follows:

[MRZJ =

“r22,
1

(na2-2)
I <P I
Zp12 (na,-2)

Using matrix reduction for equation (4.25) leads to:

[z

Dagpd =

R12

~1

= Zp22 Zr42

ZR32

]
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(4.25)

(4.26)

Then the differential and algebraic equations of the third machine will

be added to the matrix [ZR2] and the same steps will be repeated.

Finally, the last reduced matrix [ZRn], which is shown in equation

(4.27), will be formed after the elimination of the two real network

equations of the node connected to the last machine and the two real

equations of the network connected to an infinite bus.

[ | | | ]
By T2 o0 1 i ns,
—'-—-l—————r——-T-——-
Zg.] = £l n B 0 o nsy
«e I | l e e
- — — = — = — ]
L_fnl | fn2 | v l Hn | s,

(4.27)

It is noted that at each step a machine is introduced to the matrix

formulation,

two submatrices should be inverted.

The first matrix

is [H4i]’ where i is the machine number, this matrix may be inverted

by parts to reduce the computation time.

ioning the matrix, as follows:

This can be done by partit-
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[H4i] = - (4.28)

poe— l ——
771 ' 0
-1 X1 |
[H, ] == — ——— — — — (4.29)
-1 -1 1 -1
~Zpg zci’ Zx1 I %pi
L I

and the second matrix which should be inverted is [ZRA'] matrix.

The coefficient matrices [A], [B] and [C] can be obtained from

equations (4.8) and (4.9) as follows:

[au] [z, ] A% +[2,] bx + [2,] oy (4.30)

[0] = [z, ax +[2,] oy . 4.31)

From equation (4.31),

[ay] = -[2,77" [2,] 4.32)

By substitution from equation (4.32) into equation (4.30), we obtain,

[au] = D240 0% + {[2,] - [2,] [2, 07" 2,00 ox (4.33)
or, [ax] =24, 770 02,0 - (2,0 (2,77 [20) ox +0%5, 07  aw (4.38)

Comparing equations (4.4) and (4.34), we get:

() = T2 7 (02,7 - (2,1 (2,77 [2,7) (4.35)
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or, LAl

v—[zdn]"l [z, ] (4.36)

[B] = [zdn]'l (4.37)

where, the matrix[Z nj is a block diagonal matrix, one block per
machine, and each block is a diagonal matrix. Equation (4.38) shows
the matrix[zdn] and the first block [Zdl£30f the first machine based
on the equations (4.10) and (4.11).

7 ! | l 7]
“d11 | 1 |
Z |
[z, ] = | e U (4.38a)
n ' I___'
—— — — __f_ — = —
Z
" | | | “ann |
1 ! l | | ]
I —= . | |
__.__.L_wQ.___:___.;_._* —
' L (4.38D)
[ . — — ._._.__.}_.._.._ .
[2495d= ' [ L
R St
l S T
| ' L
L [ | l | !
Since [Zdn] is a diagonal matrix, there is no need for using matrix

.inversion routine and the inversion can be done direclty by storing the

inverse of the non-unity entries.
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Since the algebraic variable equations are eliminated in
sequence, the output matrix, [CJ, could be formed as a diagonal matrix,

one block per machine, as folloWs:

- I o
€ | '
a0 O R
R R e Tl (4.39)
__L_l_T__
| I 1 C
L [ P

~1
where, Ci = _[H4ij [HSi]’ and

i is the machine number

The program package description, user guide and program listing
have been presented in detail in another internal report [36]. The flow
chart of this program is presented in Figure (4.3). Some of subsystem
models, which are shown in Table (2.1), have been utilized in this pro-

gram. The models used are: G2, G Sl’ TO, Tl’ EO, E. and E,.

3’ 1 4



Figure 4.3 "ELIM"
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4.6 Eigenvalue Sensitivity

The sensitivity of the system eigenvalues with respect to control
parameters can be expressed in terms of the derivatives of the system
state matrix [A] with respect to any of these parameters and the normal
and the transposed eigenvectors. Following the same expressions used

in Chapter 3, for first and second-order sensitivities,

3[A]
g o WY
3 t
vy W)

2 [y yae2 @AY o vy

An expression has been derived for the [A] matrix first-order
derivatives with respect to a system control parameter, &, using the

"DIRECT ELIMINATION" technique, as follows:

. -1
N -1 oLZp,] 3z, ]
5 = —[Zdnj aall - { agn 1z

Rn] (4.39)

A detailed derivation of this expression is given in Appendix B.

The system control parameters T (steam turbine chest time con-

ch

stant) and Te (exciter time constant) exist in the matrix [Zdn]’ hence

ol Z
L Rn] and for these parameters,
= 0
98
a[A] atzdn]~l )
B T KO (4400
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The exciter gain, k,, exists in both the matrices [Zdnj and [ZRDJ. Con-
sequently for this control parameter, the expression in equation (4.39)
is used.

The other control parameters, like stabilizer gain, stabilizer

time constant, voltage sensor time constant, etc., exist in the[z ]

a[z ]‘
BE

matrix only. Hence, = 0 and for these parameters,

ofal _ -1 SEZ ]
T Lz, d 7 1 o —=} (4.41)

where,
the matrix [Zdn] is a block diagonal matrix, each block is a diagonal
matrix, most of its entries are unity, and the matrix[ZRn]is as shown

in equation (4.42),

_ | | | -
Hy : £y : T J—-fln fs1
R el | é___.
; a1 P2 T | 20 | Ms2
[2g )= b= = —b— T —— . (4.42)
Ty T T | N
Bl It e L
fnl i fn2 | T Hn Den
B I | _

The off-diagonal matrices, [fij], do not include the system control para-
meters. The diagonal matrices, [Hi] = [Hli(g) —-Eii]’ which means that

the system control parameters exist only in the matrices [Hli(g)], hence,

—41" o i,3=1, 2, ..., n (4.43)

and,
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slH. ] alH,.(&)]
)

i=1,2, ..., n (4.44)

From equations [ (4.42) - (4.44)], the partial derivatives of the matrix

[ZRn]with respect to system control parameter, g, could be obtained as

follows:
alz. 1 3[Hl'(€)]
Rn~_ . L
¢ - dieg I (4.45)
Substituting from equation (4.45) into equation (4.39), yields,
N -1 S[uy ()] alzy I
oE - —[Zdn] diag { 5% b~ { 3t }[ZRn] (4.46)



CHAPTER 5

VALIDATION AND COMPARISON

5.1 Program Validation

The computer programs developed have been successfully tested.
The stability of a synchronous machine connected to an infinite bus
through a transmission line has been chosen as the test problem to
illustrate the validity of these programs. Two specific examples have
been considered, namely, a simplified second-order system (classical
generator model) and a seventh-order system (detailed generator model).
The results obtained in both examples are presented and compared with

other results in the literature.

5.1.1 The Simplified Second-Order System Example

In this example, a 2-axis machine representation is considered
with the field circuit in the direct-axis. The damper effect is neglectgd.
Both the flux linkages and the input mechanical power are assumed constant,
i.e., no excitation and governor controls are represented. Hence, the
system can be easily described by a constant voltage behind transient
reactance (classical model) as shown in Fig. (5.1). The parameters and
the operating point are listed in Table (5.1).

The system equations (5.1), also given in Appendix A, are linear-

ized around a steady-state operating condition, and have been developed in

78
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the state—-space form using the techniques described in Chapters 3 and
4., These techniques were programmed on McMaster University CYBER 170/

730 computer.

AS., = Aw
i i
(5.1)
w
. -D 0
bog = g bey ~ 7w, K489
i i
where
n
klij = jil EiO EjO Yij sin (eijo - 610 + Gjo)
j#i

Yijleij = negative of the transfer admittance between

nodes i + j

The computed eigenvalues of this system using the developed
computer programs are:
A = -0.0714 £ j 12.3326 (5.2)
1,2
The stability of the torque-angle loop of this system, i.e., the
behaviour of the rotor angle and speed, following a small disturbance

has been analysed by deMello and Concordia [127]. They have shown that

the characteristic equation of this system is as follows:

s? 4+ (p/21) S + (g, /20) = 0 (5.3)
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Eé [i thﬂ Vg l&

Fig. (5.1): Equivalent Circuit of One Machine Connected to an Infinite
Bus Through a Transmission Line

H = 3.5 sec. D = 1.0

X' = 0.235 r = 0.005 X = 0.133
d e e

PB = 0.5 QB = 0.1 (lag)

Table (5.1): Data for Classical Model System
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The roots of this equation are:

w. .k 2 1/2
A =;12+j[01__9___]
1,2 4H M T 2

(5.4)

where D is the damping coefficient, M is the inertia coefficient, H is
the inertia comstant and wo is the synchronous speed. kl is the synchron-
izing power coefficient whicﬁ is computed as follows:

E' V i

\Y%
_7q0'B . : q0'B .
kl i [re sin 60 + (Xe + Xd) cos 60] + = [(Xq Xd) (Xe + Xq)

. - R
sin 60 r, (Xq Xd) cos GO] (5.5)
where

_ 2 '
A = [re + (xe + Xd) (Xq + xe)] R

Eé is the voltage proportional to the direct-axis flux linkages, VB

the infinite bus voltage, r, is the transmission line resistance, Xe

is

is the transmission line reactanée, Xé is the direct-axis transient
reactance, Xd is the direct-axis synchronous reactance, X is the quadra-
ture-axis synchronous reactance and § is the angle between quadrature axis
and the finite bus.

The system eigenvalues are computed by substituting the parameter
values of Table (5.1) in equations (5.4 - 5.5),as shown in (5.6),

Al 5 = -0.0714 + j 12.3329 (5.6)

Comparing the eigenvalues in (5.2) and (5.6), it could be seen

that they are the same which consequently proves the validity of the
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devised programs.

5.1.2 The Seventh-Order System Example

In this 7th order example, a detailed generator model (5th order),
is chosen Where‘the synchronous machine is represented with one field
winding and one damper winding in the direct—axis, and one damper winding
iﬁ the quadrature-axis. The stator transient is included and the mechan-
ical shaft system is represented by one rotating mass, (2nd order model),
corresponding to the generator rotor.

A single line diagram of the generator connected to an infinite
bus through an external reactance is shown in Fig. (5.2). The system
parameter values and the machine working point are given in Table (5.2),
this data is.taken directly from reference [37]. The system state
variables are: AS, Aw, Awf, Awd, Awkd’ Awq and Awkq'

The system initial conditions are as follows:

v, =1.0 v. = 0.652 v = 0.758
to do qo

i = 1.0 i, = 0.917 i = 0.398
o] do qo

wdo = 0.7590 wqo = -0.630 Pmo = 0.901

§ = 64.25 (deg.) Veq = 0.001 ifo = 1,496

Assuming that the generator is working under both constant field voltage

and constant mechanical power imput, the system computed eigenvalues are

shown in (5.7),
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mq

Infinite
Bus

System Line Diagram

il

1.605

1.49

0.00074

0.4

Synchronous
Machine . .
Transmission Line
Fig. (5.2)

Xd = 1.7 Xf = 1.65

X = 1.55 X = 1.64

md q

qu = 1.526 r, = 0.0011

rkd = 0.0131 rkq = 0.054

FB = 50 Hz H = 2.37

Pgo = 0.9 ng = 0.436 (lag)
Table (5.2) Data for Single Machine Infinite Bus

System (7th order)
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A = -34.7922 + § 992.0015
A, = =34.7922 - j 992.0015

Ay = -0.4814 + 3 8.7725

A, = -0.4814 - j 8.7725 (5.7)
A = -38.4784

g = -31.2552

A, = -0.1638

The evaluation of the 7th-order system eigenvalues using the
method described in reference [37], under the same initial conditions,

had led to the following values (5.8)

>
[

-29.50 + j 314.2

1
xé = -29.50 - j 314.2
Ay = -0.4464 + j 8.777
A, = -0.4464 - j 8.777
Ag = =39.71
Ag = -31.91
A, = -0.1639

Comparing the obtained eigenvalues in (5.7 - 5.8) showed that
the first two eigenvalues, which are corresponding to the stator trans-
ient mode, are different and that is due to the absence of the network
transients in the studied techniques, "PQR" and "ELIM". Comparing the
other five eigenvalues showed that they are close to each other within

an average tolerance of (about 3.27).
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5.2 Comparison between the "PQR" and "ELIM' Techniques

In this section, a compariscn between the "PQR" and the direct
elimination "ELIM" matrix formulation techniques is presented from the
point of view of required core storage and computation time and the

effect upon eigenvalue sensitivity computation.

5.2.1 Matrix Formulation Comparison

A. "PQR" Matrix Formulation

The differential and algebraic equations of all machines in
the system are formed and stored once at the beginning of the PQR
method, as shown in equation (5.9). P, Q and R are constant real
matrices associated with the state variable vector Ax, the algebraic
variable wvector Ay, and the control variable vector Au.

Ax
[PIR-4 = [ ax +[R] Au (5.9)
Ay h
To avoid inversion of the whole matrix [P], which may be large, the

P, Q and R matrices are partitioned (equation 5.10) as illustrated in

Chapter 3.
ns nv ns
] .
ns I yPA Ax QA RA
- - 24 = —- Ax + -4 Au (5.10)
nv 0 : PB Ay QB 0

As a result of this partitioning, only matrix [PB], of order nv, is
inverted, where nv is the total number of the algebraic variables in

the system. For further simplification, the inversion of the whole
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matrix [PB] is avoided by arranging the system algebraic variables

in a certain manner. The approach of Zein E1-Din shown in equation

(5.11),

Ay = A4 t it i 5 v vt ¢t v v v
M ml > . m2° """ Zmn > _ml > m2° "7 _mn > tl’ "t21° °°°°

' tot
T e e i i
Venl® “el? TeZ’ ’ Ten’ Pol’ PoZ’ i Pon’ *pI° lQI’ N i

(5.11)

Matrix [PB] has the form shown in equation (5.12) for a 5th order gen-—
erator model. The partitioning of the matrix [PB] in this case shows
that we have’to deal only with the inversion of two sub-matrices [PX]
and [PN]. Sub-matrix [PX] is a block diagonal which includes all the
machine reactances, two blocks per machine, the first one of order 3

and the second of order 2.

r Lo T
XXXI ' .
XXX | [
5n /n+2 _&g{%__ 0 54
1 0 XX‘
P}L:PE ixxl
(Bl =F~9-=F~~-1T-r7-T-1 T (5.12)
PC 1 PD (Lt U IPT | 20
pc lesirl 3n
R R
Ly 11 PI 2
FoTr-r-m-— +
| I 1 IPN 2n
L | R Jd 1
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The second sub-matrix [PN] to be inverted represents the reduced real

network admittance of order 2n, where n is the number of generators in

the system.

infinite bus.

Sub-matrix [PI], of order 2, only exists if there is an

When applying this partitioning to 3rd-order and/or lst-order

generator models, the matrix [PE] which was originally null in the 5th

order case is no longer null, as shown in Figure (5.3).

This will affect

the efficient procedure used for finding the matrix inverse, which is

shown in (5.13),

rXXXI Ol
xax | 01D
! I
T T
0 I?{i] @ 5n
A T-——- +
o ©1%ge®
o _lde__
I ! 9n+2
PC ] | PD
| I A 4
(a) 3rd-order generator model
Fig. (5.3)
(PX-PE-PD ~-PC) T
res] ™t = _ —_—
—PD_l-PC(PX—PE-PD_l°PC)_1

xx | |
xx 11 |

D
do ! ©

© 1600 _
!

SR ——

PD

|
PC I
|

-

7n+2

1

(b) lst-~order generator model

Matrix [PB]

[ —px 1

(PD-PC-PX T

——

-PE(PD—PC-PX—l-PE)—

‘PE)
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It is clear that this partitioning is very efficient only when applied
to a system where all the machines are represented by a 5th-order
generator model.

The partitioning approach developed in this thesis which ensures
the existence of a null matrix irrespective of the generator model
order used is shown in equafion (5.15). This has been achieved after

reordering the system algebraic variables, as shown in equation (5.14),

t .t t t t t

.o v v
m2 °’ ~mn N Tel?

_ .t
Ay = A[}ml , i

v. T ., T oy veu, T i J° (5.14)

tn el’ "e2’

|
PY; O 2
[(pB] = [ -t~ + (5.15)
PZV I 3n+2
' L

This partitioning requires the inversion of only one matrix, [PY] of
order £ which is equal to (5m + 7k + 4n), where m is the number of
generators represented by a lst or 5Sth-order model and k is the number
of generators represented by a 3rd order model. The order of the matrix
[PY] is larger than in the previous case, but this partitioning method

is applicable to all generator models.

B. "ELIM" Matrix Formulation

In the "ELIM" matrix formulation technique, the linearized 2n
equations relating the machine currents and network nodal voltages are

formed and stored first, then the differential and algebraic equations

PR
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of the first machine are constructed and stored in the matrix form
shown in equations (5.16) and (5.17), where most entries of the input

vector (Aul) are zero.

2n _Q_ Q RYN

ns; Agl = [zdlj A§l + [Zl] Ax (5.16)
S —— b i -

nv 0 0 Ay

1] ] | < [ ~1]
or,
F‘O‘ ”_o‘ 0 Io- —0— rlh ’h—lj
y \'s

. | 1 .L._1 |~ N ._l__:_z_ N
puyf=fo bz ol jax | + fo lHllJ Hy,| {ox, (5.17)
e ] — + — -‘—— — p— — - I— 1
2 01 0 04 19 By Hyp Hygl |9
L. I I 4 L . N )

where [YN] is the real network admittance matrix and [ Z ll] is a diagonal

d
matrix with most of its entries equal to one. After the addition of
machine i, two successive matrix eliminations are done as illustrated in
Chapter 4. The first elimination is to remove the algebraic equations of
the added machine which requires the inversion of the matrix [H4i] of
order nvi (number of machine i algebraic variables). The matrix [H4i]

is partitioned as shown in equation (5.18) to facilitate a quick inversion

for different generator model orders.

[ 1o
(B, ,1l=L 24—

L=t

r is equal to 7 when the generator is represented by a lst or 5th order

(5.18)

o

model and is equal to 9 when the generator is represented by a 3rd order
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model. It is clear from equation (5.18) that only the matrix [HX] of
order r has to be inverted each time a generating unit is added.

This matrix formulation approach compared with the '""PQR"
approach is more economical in the computer storage becauserthe
matrices are stored for each machine separately, in sequence, to build
up the system coefficient matrices. For example, for n, 5th order
machines, the storage capacity of the matrix [PB]] using the "PQR"
technique, (which includes the machine algebraic equations and the
network equations), requires the storage of a matrix of order 12n
(number of machine algebraic variables are 12) which means that l44n2
entries are stored, while using the "ELIM" technique, the corresponding
matrices to be stored are [H4] of order 10 and [YN] of order 2n which
means that (4n2 + 100) entries are stored. Another advantage of the
"ELIM" Matrix formulation approach is the reduction of the matrix
inversion time, that is because the elimination of the algebraic net-
work equations are not performed once as in the "PQR" technique, but
it is performed successively two by two. Both the storage and time

requirements of the two methods will now be studied in detail.
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5.2.2 Computation Time Comparison

For both the "PQR" and "ELIM"' techniques, the state matrix and
eigenvalue computation times were obtained for different cases, where
the system had different orders ranging from 2 up to 39, as shown ip
Table (5.3). Both techniques were implemented on the CYBER 170/730
McMaster University Computer.

For both the "PQR" and "ELIM" programs, the eigenvalue computation
time is the same, as the same eigenvalue evaluation subroutine was used
and the two techniques produce identical state matrices. On the other
hand, the state matrix computation time is different. It was found that
this time using the "ELIM" approach is less than that of the "PQR". The
average ratio between the "PQR" and "ELIM" times was found to be around
2.2 for the range of system ordefs studied, (Table 5.3).

Since the computation time is .a function of the number of arithmetic
operations (multiplication, addition and subtraction), an estimate of
these operations has been done in*terms of number of machines (n), number
of state variables (ns) and number of algebraic variables (nv), as follows:

For the "PQR" Method:

The number of multiplication operations = 24n3 + l62n2 +[2 xns x (nv)zj
The number of addition operations = 243n3 + 35n2 - 18n + [2><nS}<(nv2-nv)]
The number of subtraction operations = (ns)2

For the "ELIM" Method:

1

The number of multiplication operations = [(NT—Fnsl)}cnvljz X nv
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i

n
+ 3z [{[NT - 2(1-1)]+ = ns.}2 x nv, ]
. . j i
i=2 j=1
n k 9
+ % {[NT - 2xk) + I =ns.] x 2}
k=1 j=1 3
The number of addition operations = [(NT-Fnsl)i<nvl]2 X (nvl-—l)
n i 2
+ ¢ {INT - 2¢i-1)]+ % mns.}” x (av,-1)
. ) j i
i=2 j=1
n k 2
+ » [(NT - 2xk) + I ns.]
k=1 j=1 7

where NT is the order of the real network admittance matrix = 2n+2
(if there is an infinite bus).

To compare between the number of arithmetic operations for both
the "PQR" and "ELIM"' techniques, a 2-machine infinite bus system example
is presented in this section, where the selected number of state var-

iables is 13 and the algebraic variables are 12 for each machine, i.e.,

ns(tot) =2 x 13 =26 state variables

& nv = (2 x 12) + 2 = 26 algebraic variables

(tot)

The total number of arithmetic operations are calculated for both techniques
and listed in Table (5.4). From this table, it can be seen that the number
of multiplication operations using the ""PQR" approach is almost twice that
using the "ELIM" approach and the number of addition and subtraction opera-
tions using the "PQR" is about double that using the "ELIM" method. This

is because the formulation of the state matrices requires constructing the
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TABLE (5.3) State Matrix and Eigenvalue Computation Time Comparison

State Matrix Computation Time
syecen | ELSevalie, iy
Time (sec) Observed | Estimated Observed | Estimated
2 0.30 0.46 0.41 - —-—
7 0.44 0.72 0.71 0.33 0.28
10 0.65 0.81 0.91 0.36 0.38
13 0.96 0.94 1.16 0.42 0.52
18 1.40 1.67 1.7 0.77 0.78
24 3.20 2.58 2.46 1.18 1.14
29 5.00 3.28 3.15 1.52 1.46
34 8.00 3.89 3.87 1.78 1.79
39 11.00 4,58 4.7 2.14 2.16
140 —-— - 36.7 - 15.8

Note: Computation time includes any necessary inversion.

Table (5.4) Number of Arithmetic Operations for both "PQR" and "ELIM"

Method PQR ELIM
No. of multiplication operations 37,744 20,288
No. of addition and subtraction 36,924 17,500
operations
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P, Q and R matrices. Since these matrices are large, successive opera-
tions on them require a longer time. In the "ELIM" formulation, the
state matrices are formulated by the elimination of variables taken ocne
machine at a time.

From the observations of computation times for both techniques,
an estimation equation was derived using the Least Mean Square method.
It was found that the optimum equations to predict time as a function of

system order are as follows:

,
T = 0.2 + 0.05N + 0.0015(N - (5.19
(PQR) ) ( )

_ 2
T(ELIM) = -0.04 + 0.04N + 0.0005(N) (5.20)

The estimated results are shown in Table (5.3) beside the observed
values and in Figure (5.4) to demonstrate that the error is very small.
Additionally, the estimation equations are used to predict the computation
time required for a system of order 140. This larger system is discussed
in section (5.2.4) where storage requirements are computed. To place the
matrix computation time in perspective, the eigenvalue computation times

are also listed in Table (5.3).

5.2.3 Matrix Inversion Time Comparison

Since the matrix inversion time is relatively long for a large
power system and has to be performed every time as a parameter setting
is changed, an analypical comparison has been done between the two methods
to choose the most economical method for dynamic stability analysis of

large power system. The matrix inversion time is a function of the number



Time

(sec.)

A Approximated

t 1 1 1 1 1 1 ! | 1 ! 1 il 1 | ]

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

System Order

Figure (5.4) State Matrix Computation Time Comparison

G6



96

of arithmetic operations (division, multiplication and addition),
which are necessary to carry out a solution of £ equations.

For a Gauss-elimination method, which is used for matrix in-
version in both programs, it is possible to estimate the numbers of
these operations as a function of the matrix order. It is found [10]
that the number of arithmetic operations of an (£ x %) matrix are as
follows:

- The number of division operations = £
— The number of multiplication operations = 23-1 (5.21)

- The number of addition operations = 23 - 222 + 2

Hence,
Inversion time = time of one division x g +
time of one multiplication x (23-1) + (5.22)
time of one addition x (23 - 222 + %)

For a CYBER 170/730 computer, it is known [20] that:

Time of one division = 5.6 us

Time of one multiplication = 1.0 us (5.23)

— Time of one addition = 0.3 us

In Chapter 3, it is shown that, to produce the state matrix,
matrix manipulation using the "PQR" technique requires the inversion of
n machine reactance matrices of order 5 (stator transients are inqluded),
and the real network matrix of order 2n. So, the time required for
inversion as a function of machine number could be formulated using

equations (5.21), (5.22) and (5.23), as follows:
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T. = 5.60+ (83-1) + 0.3 &0 -22+0)
inv
3 2
= 1.327-0.62" + 5.92 -1 (5.24)
Applying equation (5.24) to the "PQR" approach, the inversion time, Tl’
will»be:
3 2 3
Tl =1.3 (2n)” - 0.6 (2n)" + 5.9 (2n) - 1 +n[1.3 (5)° -
2
0.6 (5)7 + 5.9 (5) -1 (5.25)

= 10.4 03 - 2.4 n® + 187.8n

From Chapter 4, it can be found that matrix manipulation to produce the
state matrix, using the "ELIM" technique, for the same machine model,
requires the inversion of n matrices of order 10 and n matrices of order
2. Applying equation (5.24) to the "ELIM" approach, the inversion time,

T2, could be formulated as follows:

]
il

, = n[L3 (2)3 - 0.6 ()% +5.9 (2) - 1]+ [1.3 (10)° -

0.6 (10)2 + 5.9 (10) - 1]

1316.8n (5.26)

Equating equations (5.25) and (5.26), we get:
n = 11

From Figure (5.5), we can see that when the number of machines in the
system equals fifty, the matrix inversion time using the "PQR" technique

will be about twenty times that using the "ELIM" technique.
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From the previous analysis, we could conclude that the matrix
inversion time using the "PQR" approach is less than that using the
"ELIM" approach for a system including number of machines less than
eleven, but fqr a larger system (greater than eleven machines), the
matrix inversion time using the "ELIM" technique will be less, and
consequently, this matrix formulation method will be more economical

than the "PQR" matrix formulation method.

5.2.4 Storage Requirement Comparison

Two examples are presented in this section to compare between
the required core storage for both the "PQR" and "ELIM" techniques.

The first example is a 3 machine infinite bus system (System
I) where the selected order of each machine is 13, as shown in Table
(5.5). The second example is a 20 machine infinite bus system (System
1I), where the first five machines are represented by a 13-order model
and the rest of the machines are represented by a 5-order model (less
detailed model). For each machine in both examples, the algebraic
variables are 12, so the total system algebraic variables, taking into

account the infinite bus, will be (12n+2).

SYSTEM 1 SYSTEM II

No. of | Subsystem |Machine|Total No. of | Subsystem |Machine]Total
Machines {Model Order| Order |Order | Machines| Model Order| Order |Order
GISJE]T GI{S|E|T
3 5121412 13 39 5 5121442 13 65
- -i=1-1- - - 15 11212~ 5 75
SYSTEM ORDER = 39 SYSTEM ORDER = 140

TABLE (5.5) System Orders
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A, "PQR" Core Storage

Using the matrix formulation approach illustrated in equation
(5.9), where the whole matrices P, Q and R are stored completely, it
is found that for the 3 machine infinite bus system a (12,397) entries
need to be stored and for the 20 machine dinfinite bus system, the
number of entries to be stored are (268,164).

By using the matrix formulation approach illustrated in equation
(5.10) where the matrices P, Q and R are partitioned, it is found that
for the 3 machine infinite bus system, the number of entries to be stored
are (4,524) entries and for the 20 machine dinfinite bus system, we need
to store (126,464) entries.

It could be seen that the saving in the required core storage
using the partitioned "PQR" formulation is about 63% for System I and

53% for System II.

B. "ELIM" Core Storage

Using the "ELIM" matrix formulation approach, which is shown in
equation (5.16), it is found that for the 3-machine infinite bus system
the total number of entries to be stored are (3,922) and for the 20-
machines infinite bus system, the number of stored entries are (51,760).

Now, by comparing the required storage for both the partitioned
"PQR" and "ELIM" techniques, it can be seen that there will be quite a
saving in the required storage when using the second technique. This
saving is about 13%Z for System I (3 machines), while for System II

(20 machines), which is larger, this saving has increased to about 597%.
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The "PQR" and "ELIM" programs are capable of handling systems
with up to about 70 state variables with available central memory of
49.2 k in time sharing mode. Computer memory requirements for both

programs are shown in Table (5.6). K denotes thousands of words.

Table (5.6) CDC Memory Requirements

Function PQR ELIM
Data Storage 26.1 k 24.3 k
Programming 15.9 k 11.2 k*
System Executive 6.8 k 6.8 k
TOTAL 48.8 k 42.3 k
Available Space 49.2 k 49.2 k
Unused Space 0.4 k 6.9 k

% "ELIM" program not as comprehensive as ""PQR"

The criterion of the "PQR" formulation requires the storage
of the whole system state and algebraic variables all at once. The
number of the system variables (NST) is flexible according to subsystem
models required complexity, while the number of the system algebraic
variables (NVT) does not have a wide range of choices, it depends on
the generator model only which could be represented by 7 or 12 or 14
algebraic variables. This could be followed from Figure 5.6 (a) where
four working arrays are used (W1, W2, W3 and W4) the size of which is

(70 x 70) which allows to a general utilizing process. In the case of
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low-order machine models, the NST value could be small, hence in the
special case this allows us to increase the number of the algebraic
variables (NVT), which requires a change in the dimensioning of the
working arrays of the main program. Hence, in the "PQR'" method, the
maximum number of machines to be considered is governed by both the
maximum number of algebraic variables (this number is governed by the
available computer storage) and the number of algebrajc variables asso-
ciated with each machine.

An appropriate manipulation of the relative sizes of the working
arrays as shown in Figure 5.6(b) will improve the storage efficiency of
the "ELIM" formulation method. It is shown from Figure 5.6 (b) that the
total number of state variables (NST) is equal to 124, which is greater
than that of the "PQR" formulation method, that is because in the "ELIM"
method one machine is considered at a time. As a result, the number of
algebraic Variables to be stored is equal to 12 which represents the
largest number of algebraic variables for one machine. Hence, in the
"ELIM" program the maximum number of machines to be considered is governed
by the maximum number of state variables and the number of state variables
associated with each machine. This indicates that the "ELIM" program has
a higher degree of freedom regarding the maximum number of machines to

be chosen.
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NST NVT NST + 4 12
NST Wl w2
NST + 4 Wl v,
NVT w3 » w4
12 Y3 vy
(a) Partitioning for the "PQR (b) Partitioning for the "ELIM"

Figure 5.6 Dimension of Working Arrays

5.2.5 Storage Comparison Using Sparse Technique

To apply both methods, the "PQR" and "ELIM" to a large power
system, the implementation of sparse matrix techniques>is needed. The
matrices involved in both methods are quite sparse. Sparse matrix

techniques enable us to store only the non-zero elements. So, a saving
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in memory and computation is usually achieved.

In both methods, the inversion of a given matrix is required.
Instead of finding the matrix inverse which is usually full, we find a
factorization of the matrix inverse (Bi-Factorization), [38]. Before
performing the factorization process, a re-ordering of the matrix is
needed. This re-ordering minimizes the number of newly generated elements
(fill-ins) during the factorization process. A simulation of the needed
computations (matrix inversion, matrix multiplication and row/column

elimination) gives an accurate estimation of the needed storage.

A. "PQR'"" Core Storage

Utilizing the sparse techniques in the "PQR" matrix formulation
of the 20 machine system (System II) requires the storage of (21342)
non-zero entries. This number is obtained after a complete simulation of
the required computations. On the other hand, the required full storage
of all matrices involved in the "PQR" formulation is (126464) entries
as calculated in section (5.2.4). It can be seen that the saving in the

required core storage using sparse technique is about 837.

B. "ELIM" Core Storage

Utilizing the sparse techniques in the "ELIM" matrix formulation
of the same system (System II), requires the storage of (4390) non-zero
entries. In section (5;2.4) the required full storage of all matrices
involved in the "ELIM" formulation was found to be (51760) entries. This
shows that utilizing sparse techniques results in a core storage saving

of about 917%.
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5.2.6 Eigenvalue Sensitivity Computation Comparison

From section (3.6), it is seen that to compute the eigenvalue
sensitivity with respect to a system parameter, &, the state matrix

derivatives with respect to that parameter are computed.

A, State Matrix Derivatives Using "PQR'" Technique

Using the "PQR" matrix formulation approach [327], the [A] matrix
g

is formulated from the addition of two matrices,

[A] = [Qa] - [»a] [PBI Y [qB] (5.27)

One of these matrices, [QA], contains most of the control and design
parameters (control gains, time constants, damping coefficient and
inertia constant). The other matrix is the product of the three matrices:
PA], [PB]_l and [QB] as shown in equation (5.27). The matrix [PA]]
includes resistances of all the machines. The matrix [PB] includes:
machine reactances, bus admittance matrix and other parameters depending
on the operating condition as machine currents, voltages, flux linkages
and rotor angles. The matrix [QBJ] contains machine currents, voltages
and rotor angles.

All the system parameters exist in the matrices [P] and [Q] as
simple explicit functions. This facilitates the direct calculation of
the [A] matrix derivatives, and a general expression has been developed

[27],as follows:

BEA] = [1.0] [T L%[gij {2 [Pj }[sj] (5.28)

where,
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[s] = (e77' Q] = (4]
or,

[s]=L1L 4:_@.’_@ et |oa

O ' [P B]*‘l QB
3[P] _ rq .
For all control parameters, 5 [0], also the matrix [QB]

BEQB] - [o].

does not contain any control parameter, hence, Based on

the previous two considerations, equation (5.28) will be as follows:

a[A] _ 3loAl
ag o0&

(5.29)

Computing the state matrix derivatives w.r.t. matrix [P para-

3LQ]
g’

meters only hence, = [0], and the state matrix derivatives will be

as follows:

B%§J.= - [:Eifj - {[ea] [pB]7" [ij:][C] (5.30)

Computing the state matrix derivatives w.r.t. the machine

3[PB]
&

be simpler than that of equation (5.16) as shown below:

resistances only hence, = [0] and the state matrix derivatives will

ig?] _ a[PA]} rc (5.31)

Computing the state matrix derivatives w.r.t. the machine

reactances only hence, EZA] (0], and equation (5.16) will have the
following form:
Aal [PA] 7t a[PB] [c] (5.32)

o€
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B. State Matrix Derivatives Using "ELIM'" Technique

Using the "ELIM" matrix formulation approach, [4] and [30],
the system state matrix is formulated from the multiplication of two

matrices,

[a] = - [z, 17 [z, ] (5.33)

The first matrix, [Zdn] of order ns, is a block diagonal matrix where
each block is a diagonal matrix and includes some of the control para-
meters as: steam turbine chest time constant (Tch), exciter time con-
stant (Te) and exciter gain (ke). The second matrix, [ZRn] of order ns,
iﬁcludes machine damping coefficient (D) and inertia constant (H), control
gains and time constants of voltage sensor, static exciter (except Te),
speed stabilizer and governor. The other parameters as machine resistances
and reactances and the parameters depending on the operating condition
do not exist explicitly as in the "PQR" matrix formulation approach due
to the successive matrix elimination operations which are carried out
whenever a machine is added to the system.

A general expression for the [A] matrix derivatives has been

derived in section (4.6), as follows:

-1
CslA] -1 BLZp,] a[Zdnj t
Y [Zd ] {*—ng*"}— {*EFSE—_A} [ZRn] (5.34)

n
If it is required to compute the state matrix derivatives with
respect to the control parameters Top OF T which exist only in the
al——ZRn] ‘ ©

matrix [Zdn], hence —5F = [0], and equation (5.34) is rewritten as

follows:
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Al g g —dn

5 } ' (5.35)

and for the exciter gain (ke) which exists in both the two matrixes:
Ezdn] and [ZRn], the general expression in equation (5.34) is used.
For the other control parameters, machine damping coefficient

and inertia constant, which exist only in the matrix [ZRn], the [A]

-1
I/
matrix derivatives are computed by considering g? = [07], hence
equation (5.34) is rewritten in this case as follows:
. oz ]
olA] -1 Rn
56 = T [z, 07 ° T (5.36)

Since the control parameters exist only in the block diagonal
matrices [Hi], of the matrix [ZRn], as shown in equation (B.18). So,
the derivatives of the off-diagonal matrices, [fij]’ with respect to

these parameters equal zero, where, i, j=1, 2, ..., n, and hence,

5% = diag {'agl } (5.37)

where,

[, 1 =108, ©J-[h ]
Since the control parameters exist specifically in the matrices [Hli(g)],

hence equation (5.37) is rewritten as follows:

3Lz, ] s v{a[Hli(E)] :
sg 198 g (5.38)
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From what have been mentioned above, it is concluded that all
system parameters exist explicitly in the "PQR" matrix formulation
approach which is an advantage, and this facilitates the direct calcul-
ation of the system state matrix derivatives w.r.t. any system parameter.

On the other hand, when using the "ELIM" matrix formulation
approach, it is found from the derivation in Appendix B, that only
the control parameters, damping coefficient and inertia constant exist
explicitly in the matrices [Hli(g)] and [Zdn], while the other system
parameters do not appear due to the successive matrix eliminations to
build up the system state matrix.

The state matrix derivatives w.r.t. the control parameters using
the "PQR" technique requires computing the derivatives of the ns-top
rows of the [Q] matrix w.r.t., these parameters, as shown in equation
(5.29), while using the "ELIM" technique requires computing the deriv-
atives of the two matrices [Zdn] and [ZRn], of order ns, as shown in
equation (5.34).

Hence, we could conclude that from the eigenvalue sensitivity
computation point of view, both the "PQR" and "ELIM" formulation tech-
niques are at the same level of adequacy as the most system control

parameters are generally available in both formulation methods.



CHAPTER 6

CONCLUSTONS

The dynamic stability analysis of power systems requires the
formulation of the linearized power system equations in the state-space
form. In this thesis, two matrix formulation techniques have been
implemented by constructing two computer programs, which have been verified
and applied to a test system of two different orders. The two programs
were documented and compared.

The first matrix formulation technique is the "PQR" method, which
is based on grouping the states of each individual machine together and
ordering the system algebraic variablgs in a certain manner to reduce
the matrix inversion time. A computer program has been developed to
construct the power system state matrices using the "PQR" method for multi-
machine systems. A variety of models are included for the system components;
the synchronous machine, exciter and governor control systems; this facili-
tates the representation of generating units with different degrees of
complexity. The system algebraic variables are re-ordered to adapt the
different generator models.

The second matrix formulation approach is the direct elimination
"ELIM" method which is based on the addition of one complete generating
unit equations to the network at a time and reduction until only the

differential equations of that unit and the algebraic equations of the
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network are left. Then, the two network equations for that unit node

are eliminated. The next generating unit is then added and reduced

and so on until the full system state matrix is formed. A computer
program has been produced to construct the state matrix for multi-

machine systems. Both af these computer programs are capable of

handling systems up to about 70 state variables with the available central
memory of about 49,000 words (decimal) on the CDC CYBER 170/730

McMaster University computer. The two programs are generalized by using
variable dimensions.

To illustrate the validity of the computer programs, an example
of a synchronous machine connected £o an infinite bus through a trans-
mission line is chosen as a test problem. Two specific examples, second
and sgventh—order systems, have been considered. When applying the two
programs to these examples, the achieved results were found to be in agree-
ment with the corresponding results in the literature.

A comparison between the two computer program computation times
has been done in Chapter 5 for different system orders and it was found
that the computation time of the '"PQR" program is higher than that of
"ELIM" program. Also based on these computation times, a prediction
equation has been developed to predict the computation time for a large
power system (20 machine system, 140 state Variables). To verify and
extend the computation time comparison, analytical expressions have been
constructed. These analytical expressions were based on the number of
arithmetic operations performed in terms of the number of machines, number

of state variables and number of algebraic variables. Based on the above
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comparison, it was found that the computation time using the '"PQR"
program is almost twice that of the "ELIM" program.

Since a matrix inversion is required for both methods and it
is a relatively long process for a large power system and has tb be
performed whenever a parameter setting changes, an analytical inversion
time comparison has been done between the two approaches. It is found
that the matrix inversion time using the "PQR" approach is less than
that using the "ELIM" approach for a system including number of machines
less than eleven, while by increasing the number of machines in the system
(greater than eleven) the matrix inversion time using the "ELIM" approach
will be less than that when using the "PQR" approach. This shows that
the "ELIM" technique is more economical than the "PQR" technique for
larger systems.

The storage requirement for both the "PQR" and "ELIM" programs
is compared in Chapter 5 and it was found that the storage required for
the "ELIM" program is less than that required for the "PQR" program. As
documented in Chapter 5, appropriate manipulation of the relative sizes
of the working arrays will increase the advantage of the "ELIM" method,
in addition to improving the storage efficiency of both methods. Also,
an estimate of the storage requirements for both matrix formulations
utilizing sparse techniques (only non-zero elements to be stored) has
been done for a 20 machine system (140 state variables). The analytical
comparison proved that there is quite a saving using sparse techniques
for both formulation methods and the‘saving is larger for the "ELIM"

formulation method.
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Eigenvalue sensitivity evaluation with respect to a system
parameter requires the computation of the state matrix derivatives with
respect to that parameter. A comparison between state matrix derivative
computation using the "PQR" and "ELIM" matrix formulation approaches
has also been done in Chapter 5. It was found that the system control
parameters in both formulation methods are generally available. The
formulation of specific derivative expressions with respect to a system
control parameter was developed for the "PQR" method by Zein El1-Din,
while in this thesis these derivatives have been developed for the "ELIM'"
method. The applicability of utilizing a similar eigenvalue sensivitity
approach for the "ELIM" method has been proven in Chapter 5 and Appendix
B, this adds to the advantages and flexibility of using the "ELIM" formula-
tion technique.

Finally, the specific contributions of the study in this thesis
are summarized as follows:

(1) Two state matrix formulation programs have been developed and
implemented on the University CDC CYBER computer., Detailed docu-
mentation has been presented in two internal reports. The validity
of these programs has been established by comparing with other
published material.

(2) Detailed comparison between these two programs and extensive analysis
of both algorithms has led to the conclusion that the direct elimina-
tion method requires considerably less storage and less running time -
than the "PQR" method when full advantage is taken of the implicit

data structure in both methods.
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(3) The advantage of direct eigenvalue sensitivity computation
in the "PQR" method has been extended in this thesis to the

direct elimination method.
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APPENDIX A

SUBSYSTEM MODELS

In this Appendix, the nonlinear equations and the linearized
state-space equations which describe the performance of each sgb—
system model will be presented. The models in this Appendix and in

Chapter 2 are taken directly from the appropriate references.

Al Synchronous Machines

The modelling of a synchronous machine in state-space form
has been considered in many references. Two different apprcaches
have been adopted in choosing the states of the model. The stator
and rotor currents (referred to the machine rotor frame) were used
as states in Reference 11. Alternatively, the stator and rotor fluxes
(referred to the machine rotor frame) wére used as states in References
7 and 32. The choice of this second approach is followed in this thesis.
Four models are used for the synchronous machine as shown in Table (2.1),
Chapter 2: The classical model (GO), one rotor circuit (no damper wind-
ings), model (Gl), three rotor circuits (two damper windings), model
(Gz) and three rotor circuits (two damper windings + stator transient

included), model (G3). The last model, G has been discussed in Chap-~

3’

ter 2, and the other models will be discussed in this section.
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Nonlinear Model (Gll

In this model, the stator transients and damper winding effects
are eliminated which means that only the field circuit effect is includ-
ed. The nonlinear differential and algebraic equation are shown in
(A.1la) and (A.1b). The equations of a model based on a linear approx-
imation around an appropriate operating copndition for a synchronous
machine are presented in matrix form in Figure (A.l). This model is of

first order.

Veg T Wy (Vpg m Teg teg) (A.1a)
Yeg = Xeg Teq T Xng T4
0 = T id + vy + wwq (A.1Db)
0 = T 1q + vq - Wiy
[Awfd] [w rfd] Alfd + [wo] Avfd
— -| pe - p— - - - - - r —
A _ - .
Vea| = | Xpg Xna piga| - av, | - [av]
]
Ay : do
d rS Ald l AVq T
L h (0]
Ay -r A -1 EQQ
q S q ©
(o]
L - L I ) L. - L -

Figure (A.l): The Linearized State and Algebraic Equations for a
' Synchronous Machine (Model Gl)
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Nonlinear Model (Gzl

In this model, the stator transients are eliminated, while the
damper winding and field winding effects are included. The nonlinear
differential and algebraic equations are shown in (A.2a) and (A.2b).
The linearized state and algebraic equations in matrix form are shown

in Figure (A.2). This model is of third order.

l’.’fd = 0, gg 7 T Tgg)
) ¢kd = -0 (rkd ikd) (A.2a)
R CE
Yea T Xea Tra T Xna T T Xna Tka
Yd T %*ma Tra T %na Ta T Xka Tka
Vg = Faq 1 " Fiq Fkq (A.2b)
0 = rs id + v + wy
0 =

o+ _
rs 1q va wwd
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-.T=E ] ]
Meq WoT g Bic] + Tugd Bugy
Aha “WoThd Aia
{%wkq —workq AlkCL
-l - s |
- - ar - A -
= - + —
ol =T %eq Fna *ua A“’fﬂ Avy [aw]
Mg Xd Zmd i Abya Avy
By Ko gl 1P
U]
do
iy r_ | | o, 1 s
lI)O
&y, T M, -1 —12
w
L ad b -t e = L - L.O_

Figure (A.2): The Linearized State and Algebraic Equations for a
Synchronous Machine (Model G2)

Classical Model (G )
o
In this model, the generating unit is represented by a classical
model which means that the generator is described by a constant voltage
behind transient reactance as shown in Figure (A.3). The nonlinear motion

equations are shown in (A.3a) and the linearized equations in (A.3b).

Ile
e r—————

Figure (A.3): Classical Model Representation
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8 = W, - W

i i o

(A.3a)

e 2 2
e .+_ws = P - E, + - =+ .
L mi = LBy Gyy I E E, Y, cos (6,5 - 08 GJ)]

o) o j=1

j#i

AS, = Aw

i

(A.3b)
Di wo
= —_— — k
Awl 2H Awi 2H, llJAél
i i
where:
n .
k. . . = i - +
113 jil El EjoY'joSID (ei. Gio Gjo)
j#i
A.2 Mechanical Shaft Systems

For the analysis of shaft torsional effects in power system
stability studies, the shaft system is represented by a number of con-
centrated rotating masses connected by weightless springs [25]. In
Chapter 2, the shaft is represented by five equivalent rotating masses,
one equivalent rotating mass corresponding to each turbine stage and one
equivalent mass representing the generator rotor. In this section, the
shaft system will be represented by two additional models: a single

equivalent mass model (Sl) and two equivalent mass models (82).

Nonlinear Model (Sll

In this model, the mechanical shaft gsystem is represented by
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a single equivalen£ rotating mass which corresponds to the generator
rotor. This model is represented by two states: rotor angle and
rotor speed. Equation (A.4a) describes the dynamic performance of

the mechanical shaft system and equation (A.4b) represents the linear-

ized equation.

(§ = w - (DO
' (A.4a)
w w
. D ,__© _o
o = T2 Y " %0 Teuw V20 P
Aé =  Aw
(A.4D)
D D+Pmu w
. , = o)
= — - (—— + ==
Aw oH ATeu § o ) bw on & Pmu

Nonlinear Model (Szl

In this model, the mechanical shaft system is represented by
two equivalent rotatiﬁg masses which correspond to the turbine and the
generator rotor. This model is of fourth order. Equation (A.5) des-
cribes the dynamic performance of the turboalternator mechanical

system. The linearized equations in matrix form are shown in figure

(A.4).

) = w, - w

1 1 0
62 = w2 —wo
A.5

. _Dl wo wo ( )
wi = 5w, ~5==5S . (8, ~8,) - =T

1 ZHl 1 2Hl 12 1 2 2Hl eu

. _DZ wo wo

wy = 7. Y2 T 7w S12 o8 o Prp
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‘ - — e — aand —r - - r -
= - +
Asl 0 0 l 1 0 AcSl 0 [ATeu] 0 [APLPJ
|
|
88, 0 0 1 0 1 As, 0 0
" ~9,519 95510 | 100 Buy o 0
1 2H, 2H, ' 2H, 2H,
Aw u‘0812 _“6812 I o _DZ sz 0 wo
H
) 2_ _2 ) 2H, | 2H2_ ] _2H2_

Figure (A.4): The Linearized State Equations for a Mechanical
Shaft System (Model SZ)

A.3 Excitation Systems

The static exciter with speed stabilizer has been discussed in

Chapter 2. In this section, two models of the exciter are presented.

Nonlinear Model (E1)

The exciter in this model is represented by a single time con-
stant transfer function. The input is the difference between the
terminal voltage and the reference voltage, as shown from the block
diagram, Figure (A.5). The differential equation and the linearized

equation are shown in (A.6a) and (A.6b).

vref
Avt k Avfd
e I,
1+ st
e
Exciter

Figure (A.5): Simple Exciter Block Diagram
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_ke 1 ke
Vea T T Ve "1 Vea T T Vret (4.6a)
e e e
. —ke 1 ke
= e K - + —= .
AVeg T AVt T AVfd t  Vref (A.6Db)
e e e

Nonlinear Model (Ezl

The exciter in this case is represented by two transfgr func~
tions. As shown in Figure (A.6), one represents the voltage sensor énd
the other represents the exciter. There is no stabilizer in this model,
and it is of order 2. The differential equations are shown in (A.7)

and the linearized equations are inmatrix form, Figure (A.7).

‘ Av
Avy 1 fd
1+ 8t 1l + St
v e
Sensor Exciter

Figure (A.6): Block Diagram of Second Order Exciter

. 1 1
VV = T—\; Vt - ?;VV
(A.7)
y _ ~ke o1 " ke
V£d Te v Ty VEd T T, Vref
F._ — - - - - - -
-1 1
AVv T AV'v T Avt erf
v Vv
= + + .
k. -
AVeq — ’r’l_ AVey =
L1 LTe Ted LY L | e ]

Figure (A.7): The Linearized State Equations for a Second Order Exciter
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A.4 Turbine—-Governor (Model Tll

In Chapter 2, a third-order turbine-governor model for a hydro
unit has been presented. In this section, a second-order turbine-
governor model for steam and nuclear units will be presented. These
two models are taken directly from reference [18]. The turbine-
governor model for steam and nuclear units is shown in Figure (A.8).

The turbine is modelled by a single-time constant transfer function.

The input is the difference between the reference power (Pref) and the
feedback signal tﬁrough the governor. The governor is also described

by a single~time constant transfer function. The differential equations
representing the model are given in (A.8)>and the linearized equations

in matrix form are given in Figure (A.9).

ref
Aw k g APm
s g 1 E—
1+ St 1+ St
3 ch
Governor Turbine

Figure (A.8): Block Diagram of Turbine-Governor Model
for Steam Unit

m = ;;L‘Pm - ;l_ g +‘¥l_ Pref

ch ch ch

k 1 (A.8)
Sl

o3 3
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Figure (A.9):

r—l

Tch

The Linearized State Equations for Turbine-Governor

-1

Tch

- (Model Tl)

T ref

k
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APPENDIX B

STATE MATRIX PARTIAL DERIVATIVES

USING THE "ELIM" APPROACH

Referring to equation (4.7) in Chapter 4, it is seen that the

system differential and algebraic equations could be written in the

following matrix form [4],

= [zp] = (B.1)

o, B
>
b

where [Zp] is an operational matrix.

Addition of Machine 1 to the Network

Applying the approach adopted by Muir [30], the n bus network
equations are formed and stored first and then the differential and
algebraic equations of one machine are formed and added to the network
equations (in matrix form) as shown in equation (B.2), assuming that the
number of buses equals the number of machines (non-generator buses having

been previously eliminated),

PN N e N
0 o' o 'ollo Y

0 N R ;:] R

pu, =101z, Jolax, |+fo Ta ole Ax B.2
4 a1l % ) iy ns (B.2)
SRt N SR i T [ ol _....L_l_i_l, .l__.1 _:}_1 1

0 0

0 | 00110 hy THy) [H, Ay nvy

b - - l ' - = . ' l — L -l
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Equation (B.2) can be rewritten as follows:

- — —- - 9 -

i 0 r [ 0 AVN 2n

Agl = Zdl Axl + Z1 A?l ns, (B.3)
0 0 byq vy

S = 4 L - — I —

where [Zdi] is a constant real diagonal matrix for machine 1 and the
network,
[Zl] is a constant real matrix for machine 1 and the network,
Agl, A%llare dimensioned ns, (the number of state variables of

machine 1),

Ayl is dimensioned nv, (the number of algebréic variables
associated with machine 1),

Av is dimensioned 2n (the number of algebraic variables

associated with the network)

Looking at the different submatrices of the matrix [Zl],

[YN] is the bus admittance matrix in 2n real equation form 1 .
[hl] includes the initial value of the network nodal current

components (i iQ) which depends on the operating point.

D’
[hzj,[h3] include the relationship between the machine quantities and

the network components of nodal voltage (VD, v.) which depends

Q
on the initial condition of the rotor angle ().
[Hll(i)j includes most of the control parameters (gains and time

constants) of interest for the governor and excitation

systems, inertia constant and damping coefficient
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[H, ] includes the machine resistances and the sensor voltage

time constant (TV) in the excitation system

[H3l] includes machine currents and voltage components which
depend on the operating point
[HAl] includes the machine reactances, currents, voltages and

flux linkages which again depend on the operating point

Thus, it can be concluded that most of the significant system control

parameters exist in the submatrix [Hll(E)].

To eliminate the algebraic equations of the first machine from

(B.2), the matrix [Zl] is partitioned as follows:

2n ns, nvl
network equations Ty l h h 7] [ 7]
NI 1 2 7 7
—— - 4 — 11 21
differential equations 0 2; ) | u
of machine 1 H11 21 | =
* 231 | %41
algebraic equations h3| H31 H41
of machine 1 [ 7] ] - -
Using matrix elimination for equation (B.4),
M 1=[2..-2.2, Yz ]
Mr1 11 7 %21 %41 %31
where,
v o h lh h b5
N | 1 41 7s 1l 2
LN P RS R PRI R N
(11 61 "7 318208
[ |

2n +ns

nv

2n

(B.4)

(B.5)

(B.6)



To eliminate the two real network equations of the node
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connected to the first machine, the matrix [MRl] could be partitioned

as follows:

2 2n-2 ns; 2 (2n—2)+2?l
R : 51 ZRa41 ZR31 2
o J=1% 1% % |- {%®a| Zu (20-2)+ns
e, | 0 lu @-n,
_ | 4L _

Using matrix elimination for equation (B.7),

- -1
Lzgyd = LZp1y = Zo1 Zra1  Zg3td
where,
| | —
SR T AN T N Y PR O S B S ke
R1 _ = _
0 IHll(E) h7 o | T r tH , (E)-h,, |ns

3 711 11171
|
[hy,J = (0] + [xJ

Substituting the reduced matrix of [Zl] s [Zle’ in (B.3),

] — A

I B S | i

= _

r3: 11 (8)=hy, |8
I

2n—-2 0 0 l 0 0

1

Addition of the Second Machine

Adding the second machine to the network and first machine

differential equations,

1

(B.7)

(B.8)

(B.9)

(B.10)



S — LA
m-2 | 0 o,0 (o j0llo
h I |

| = _.._'.__._’__ [ —
sy fAup_ |© L?dll 0 '0 Axy
ns, |bu, 019 EdZZEi_ %)
v, | 0 o1 o o Il o

|~ || I |
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Equation (B.11) can be re-written as follows:

2n-2 r 0
nsy | Ay
n52 A?Z
AT

—

—

d2

-

— 7 _ STl
Ll T2t g% P
i _
T3 11(8)-hy 1 O ! 0 1]8%
v 1]
S R e tAR Lo P el
s, | 0 H ta _{lay
3 32 4211%72
| T N |
(B.11)
EYN
Ax
-1 (B.12)
bx,
"2

To eliminate the algebraic equations of the second machine from

equation (B.12), the matrix [22] could be partitioned as follows:

2n~-2 r—_]'._‘l' ?2 l Sl s ]
14-___+__42_
nsy  |riflyp(€)-hyyy O O 1 1 %1 %92
ns O| 0 !le(g) H22
! —
2 hf3§ 0 I P32 Mo 239 42
Using matrix elimination for equation (B.13),
M. J1=[z,. -2..2 "tz ]
R2 12 22 742 32
where,
[ | - | 7 | l 7]
SRS WIS R D I I T
N _ !
[y, ] ry IHll(£> h%fi 0 -l oo ' 0 ns,
b— — e e — ——— . ——-—l—-—-—-—-—-
0 ; 0 !le(E) S : 0 ; 7 ns,

(B.13)

(B.14)

(B.15)
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To eliminate the two real network equations of the node
connected to the second machine, the matrix [MR2] could be partitioned

as follows:

B | | ] B N
B 1% | 7 | s 2 ZR42 ZR32
t, | tg | 0 | 0 2n~4 (B.16)
D, = b =t — — o — —
2 | -1z Z
ry | T i.H:L]_(E)—hll.:_ 0 ns, R22 R12
Ti14 T12 T— 0 IHy,(8)-s;1 ns,
L | - L ]

Using the matrix elimination for equation (B.1l6),

_ _ . -1,
L2god = L2315 = Zgon * ZRao Zp32- (B.17)
where,
L, P I I I - R ]
8| _ L buzsy o Lu_2 v 3
[2ppd = | T10 1Hyp (E)-hy,l 0 = | Ryl kglkg | = Lk Hy (E)~ {1{ K¢
e, 0 Hp(Bmsy | | kg kg kg | [ k31 kg 1Hp(8)7hyy
] | 2 e I T A I i
(B.18)
h,.=h +k h,., =s, +k. ,

and the elements in [ksj corresponding to the control parameters in
[Hll(g)] are zeros, also the elements in [kgj corresponding to the control
parameters in [le(g)] are zeros. This shows that the control parameters
do not change during matrix manipulation and appear explicitly in the

submatrices [Hli(g)], where i is the machine number.

Substituting the reduced matrix of [ZZ], [ZRZJ’ in (B.11),
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ma o] fol ol offo] [ 1 « 1w |fav,
e | © I [ M
i P ey | o T ol it et -
ns, jAu, | =10 12 | x Ik _
1 _;l_ ' dll ] _:l— _;2__:1’11_1(_%)_3111]- ___k6_ B f}fL (B.19)
ns, |Au 0 | 0,2 Ax k !
(5] PU0Pal] [o] w0 gl

Addition of the nth Machine

The same procedure is followed when adding the next machine.

After the addition of the nth machine, the following matrix form is

obtained:
_ _ o — - -
2 0 0 by
e - L
ns, = Zdn + Zn (B.20)
: Au AX Ax
ns e — I
n
nv_ 9 9 Ayn
T L L L L _J

After the elimination of the nth machine algebraic equations and the

left network algebraic equations, the reduced matrix of [Zn], EZRn] is

obtained:
E- (£)~-h ! f ' l f —-ns .; |f l lf )
1® My iz e i T L T S VAR P
——_—_-—_——_—__ ——————— i———‘—-—__——i————
£,1 [y, (©)-hy,] .. . £, ns, fleH ees 1E,
[Zpad = T L Lo T
R Sl T TR L GRS
fnl : fn2 | :Hln(g) h n|™*®n fnl:fnZ !"' :Hn

(B.21)
Substituting the reduced matrix of [Zn], [ZRn], in equation (B.20

leads to the following matrix form:
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- - S — | | | - -
ney fou T fzg, b 1 Axy R AR ] !
:—- _—_—‘.z_—_*--r_qzx—‘ R +H— hlf__4 A
a2 v L2y ) N I I AR | IR
30 POt I R oututi | Oty I bt povtie pbo bty | DU
S S __L_l__J__-__ e e e
A | b,
ns, | I I dnn A%n fnl Ifn2 |Hn A¥
= - [h i = 2, ...

where, [Hi] [Hli(g)] [hii] (i=1, 2, , 1)
or, generally,

bu = [zdn] bx + [an] Ax (B.23)
or,

px =-i[z, T 0z Bax+ [z, T au (B.24)

~ dn Rn N dn -
Comparing equation (B.24) with the state-space equation:

Ax = [A] ax + [B] Au (B.25)
The system state matrix, [A], is formed for n machines as follows:

-1
[ad = Lz, T [z,.] (B.26)

State Matrix Partial Derivatives

The general form of partial derivatives of the system state matrix

with respect to system control parameters (£) is obtained as follows:

-1
ofa] _ o1 o, a[“dn]
e = g d T ) - Lz M) (B.27)
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