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ABSTRACT 

Application of four statistical techn i ques of discrimination 

is made to a set of multivariate data. The techniques, proposed 

by R.A . Fisher [6], C.R. Rao Q4] , D.F. Andrews [l] and H. Ch~rnoff [4], 

are reviewed, applied and criticized in an intercomparison of the 

four methods. Graphic illustrations are also utilized to aid in 

t he classification of sampling units . 
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1 . INTRODUCTION 

The purpose of this project was to compare classical methods 

of discrimination with two recently developed modern approaches. 

Discrimination in statistics general ly implies a technique to facilitate 

t he classification of a sampling unit to its parent population. The 

t wo classical procedures that we emp loyed are Fisher's discriminant 

f unctions and canonical analysis of discriminance. The modern 
I

. computer-aided approaches are Andrews' fourier series and Chernoff's 

I faces. 
I 

The data under question had been divided into four groups but 

the grouping criterion was unknown. A preliminary analysis of the 

four groups revealed that t he groups were too similar in location 

(i.e. means) to supply any striking results. However, to illustrate 

the application and potential of the statistical methods, a subset 

of the original data was selected and analyzed. Sections 3 and 4 deal 

with the selected subset while section 5 examines the entire set of 

data to illustrate difficulties that may arise in application of 

these procedures. 

l 



2. DATA 

The datawere collected and compiled by a team of doctors at 

the Royal Victoria Hospital, Montreal, Canada. The study was concerned 

with investigating anemia in pregnant women . Of twenty-one measurements 

that were made per patient, six important measurements of the blood 

were used in this analysis. These were (a) Hemoglobin (Hb): an i ron

containing compound found in red blood cells that carries oxygen from 

the lungs to the body tissues. The units of measurement are grams 

per 100 ml. of blood. 

(b) Packed Cell Volume (PCV): also termed the hematocrit . 

This is a meas urement of the percentage by volume that tne red blood 

cells occupy in a sample of blood. 

(c) Mean Corpuscular Hemoglobin Concentration (MCHC): this quanti ty 

refers to the amount of hemoglobin per volume of red blood cells. 

(d) Serum Folate(SF) : the amount of folic acid found i n the 

serum or plasma of the blood. Measured in nanograms per millilitre . 

(lo-9 g/ml.). 

(e) Whole Folate(Wf ) : the amount of folic acid found i n the 

total volume of a sample of blood. (ng/ml . ). 

(f) Total Iron Binding Capacity(TIBC): transferrin is a carrier 

protein for iron which is necessary in the synthesis of hemoglobin. 

The iron binding capacity of the blood i s therefore the amount of 

transferrin in milligrams per 100 millilitre volume of blood. 

2 
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The above six measurements will be referred to as variables 

x1, x2, ... , x6 respectively. 

The women were classified into four groups D, E, F and G 

and forty from each group were involved in the study. The selected 

subset of the data was comprised of ten patients from each group. 

Table 2.1 supplies a complete listing of the six-variate 

data for each group and table 2.2, the subset of the data. 
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Table 2. 1. Measurements of the blood from 160 pregnant women 
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Table 2.1 . (cont inued) 

Group E 

Patient Hb PCV MCHC 
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Table2.l. {continued) 

Group F 
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Table 2. 2. Subs et of t abl e 2. 1 to be analyzed 

Patient Hb PCV MCHC SF WF TIBC 


Group D 


2 

! (~ 
16 

17 
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_ _,L?' 
2~ 

i ::> ., P. 
..... .t ..&... \ ., 

1 3. 25 

12 .. 13 

13.65 
13.l.S 

···· .i C .~ 5 

: 2. 30
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., 2.i:: :·,

· l i .. 37 


3 9 . 6 !.1 

'-;.2 • .: 7 

39.0'J 
4 3 .75 

41.75 
'35.6 C 
40 . CO 
4 1. 1 '! 
39. e J 
3 7 . 33 


Group E 


Group F 


Group G 




3. DISCRIMINATION AND CLASSIFICATION 


3.1 General 

Suppose we have k p-variate populations of a similar kind. 

If we must allocate a member to one of the k populations but are 

uncertain from which population it came, by what rule should we 

proceed? Questions of this type give rise to discrimination and 

classification, the general object of which is to find rules to assign 

individuals to predetermined classes. 

3.2 · Fisher's Discriminant Fv.nction 

In 1936~ R.A. Fisher introduced a linear discriminant function 

which distinguished two p-variate normal populations from one another 

[14]. His function was of the fonn 

d1V= X 

where X1 = (X1, x2, ... , Xp) is a p-dimensional random variable vector 

and d 1 = (d1, d2, ... , dp)' a vector of coefficients. 

Fisher's purpose in constructing this linear combination of 

t he p variates was to separate the populations as much as possible. 

He therefore chose the coefficient vector, d, which maximized the 

difference in mean values of each population subject to the constraint 

t hat the within population variance was constant. That is, if 

µi = (µil, µi 2' ... , µip) is the mean vector of the ith population 

and I is the corrmon covariance matrix for each population, then we 

9 




10 

... 


must find a vector of coefficients, d, such that 

. {d I (µl-µ2) }2 

is maximized while 

var (V) 	 = t{(V-E(V))(V-E(V))'} 

= t{(d 1 (X-µ))(d 1 (X-µ)) 1
} 

= d 1 E{X-µ)(X-µ) 1 }d 

= d'Ed 

is constant. This is equivalent to maximizing the ratio 

{d I {µl-µ2)}2 

d'Ed 

The solution by differentiating with respect to d yie1as 

d .a .. E-1 (µl-µ2) . 

Therefore, our linear discriminant function is 

)·, -1V = ( E X.µ1-µ 2 

Recalling that the motive of the discriminant function was to 

determine a classification rule, the rule is to assign the member 

x to the population which results in a mean discriminant value 

µ(Vi)= (µ 1-µ 2)~E-lµi i = 1, 2 

closer to the discriminant value 

v = 

evaluated for x [ l 2). 

An approximate calculation of the probability of misclass

ification may be made. Since we allocate x according to which µ{V 1) 

t he evaluated vis closer, the critical value is 
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~(µ (V1)+µ(V2)). 

The variance of Vis 

var (V) = d'Ed 

= d 't{E-l (µ 
1

-µ )}2

= d'{µl-µ2) 

which may be estimated by 

var (V) = d'(x1-x2) 

= v1-v2 

(without loss of generality, assume v1>v2). Because Vis a linear 

combination of normal variates and is itself therefore normal, the 

distribution of Vis approximately N(µ(Vi)' [µ(V 1)-µ(V 2)]) which 

may be estimated by 

v ~ N(vi, (v1-v2)). 

Therefore, the probability of misclassification, conditional on the sampling 

unit being from one of the assumed normal populations, is approximately 

where Z ~ N(O,l). 

Then given two multinormal populations with a common covariance 

matrix, we may classify any sampling unit into one of the two populations 

with a calculable probability. 

3.2.l 	 Application of Fisher's Discriminant Function~ k = 2 

Hereafter, until section 5, the data under consideration will 

be 	 the selected subset of the original data. 

Groups F and G were chosen to illustrate this application. 
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The parameter estimates of the covariance matrix E and the population 

mean µi were the pooled dispersion matrix Sand sample mean xi' 

respectively. To justify our assumption of a common covariance 

matrix E, we tested the hypothesis 

where Ei is the covariance matrix of the ith population. The 

required test criterion is 

k 1 l 2 2+3 -1 k 1s.1 ~(n;-1) 
h = -2[l-{i1l n;-1 - n-k} 6lp+l)(k-l)] ln [{;ll1 ~} ] 

where IS; I is the determinant of the estimate of the ith population's 

covariance matrix, ISi the determinant of the pooled estimate of the 

common covariance matrix, ni is the ith population's sample size and 

n = n1 + n2 + ... + nk the total sample size [15]. The test s~atistic 

his distributed as chi-square with degrees of freedom equal to 

[ (k-l)p(p+l)~2], [14]. Therefore with the dispersion matrices 

Group F (SF) 

1 2 3 4 5 6 
l .29 .94 -.04 -1 .49 17.21 -7.00 
2 3.48 -.49 -4.68 54.43 -1.88 
3 . 31 .04 -4.43 -17.99 
4 10.67 . -57 .83 45.57 
5 6827.60 -810.15 
6 4916.40 
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l 
2 
3 
4 
5 
6 

Group G (SG) 


l 2 3 4 5 6 

.60 1. 78 . 13 .22 15.35 22.47 

5.50 .23 .79 65.16 78.02 

. 17 -.05 -13.32 -3.90 
.80 25.17 30.74 

2979. 17 1774.71 
4797. 11 

Pooled (S) 

l 2 3 4 5 6 
1 
2 

3 
4 
5 
6 

.44 l. 36 .05 -.63 16.28 7.73 
4.49 	 - . 13 -1.95 59.80 38.07 

-.24 -.003 -8.88 -10.94 
5.73 -16.33 38. 15 

4903.38 	. 482.28 
4856.76 

and their determinants 

4
!SF! = 2.457 x 10
2!SG! = 5.944 x 10

1s1 = 5.364 x 104 

our test statistic becomes 
5h = -2[1-(~ - J8 ) :~ J ln {(.458){.0ll )}4· 

= 30.755 

The critical value of the chi-square distribution at a= .05 and 

d.f. = 21 is = 32.671. The non-significance of our testx:05 , 21 

statistic suggests that the assump.tion of the homogeneity of 

dispersions may not be·-violated. This e:icourages further analysis. 
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If we consi der the assumption that the populations have 

identical dispersions up~eld, we now test the hyppthesis 

that the populations are identical in location. If this were the 

case, then discrimination among the populations would not yield 

impressive results. In fact, this was the situation with the original 

data. 

This test of the dispersion of the populations from one 

another employs a test statistic based on Wilks criterion [14] 

_Jfil_
A = TP+Wf 

where~ and Pare the sum of squares and cross-product matrices 

r epresenting the within group dispersions and the between group 

dispersions, respectively. The actual statistic which is dis

t ributed as chi-square with p(k-1) degrees of freedom is 

n+k u = -[(n-1)-(2 )] ln (A). 

From the sum of products matrices 
W(within S.P . ) 

1 2 3 4 5 6 
1 3.99 12. 23 . 42 -5.70 146.52 69.60 
2 40 . 41 -1.18 -17.54 538.16 342.66 
3 2.19 -.03 -79.94 -98.50 
4 51 . 58 -146.97 343.37 
5 44130.46 4340.53 

6 43710.80 
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1 

2 

3 
4 
5 
6 

P(between S.P.) 


1 2 3 4 5 6 

. 13 . 31 .09 1. 71 51.52 -27.50 

.72 . 21 4.00 120. 26 -64.19 
.06 l. 16 34.92 -18.64 

22.14 665.81 -355.38 
20018.60 -10684.97 

5703.12 

and the necessary determinants 

IwI = 2. 851 x 	 1010 


1010
IP+WI = 7.285 x 

the test statistic is 

u = -[(39)-c6; 2)Jln(.3914) 

= 15.013 

The critical chi-square value, = 12.592, indicates that thex~05 ,6 
populations are significantly different at a= .05. 

These two preliminary tests signify that our underlying 

assumptions of the data are upheld and that good discrimination between 

the populations will be possible. 

The coefficients of the discriminant function between groups 

F and G were determined by 

-1(- - )d = s XF-XG 	 . 

Mean Vectors (i~) 
1 2 3 4 1 5 6 

Group F 12.2 38.33 32.l 9.9 396.5 327.2 

Group G 11. 7 37. l 31. 7 3.3 196.4 434.0 
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Inverse of Pooled Cov. Matrix (S-1) 


1 2 3 4 5 6 

1 1340.96 -413.24 -486.78 6.83 -.219 -. 0196 
2 127. 71 149.90 -1.97 .079 .0022 
3 181.59 -2.57 .107 .0188 
4 .27 -.002 -.0032 
5 .003 .0001 
6 .0003 

The result d' = (-17.51, 4.44, 4.87, -2.00, -.039, .046) would 

supply us with a discriminant function of the form 

V = d'X 

However, it is convenient to choose the coefficients of the linear 

combination of the p variates such that the variance within the 

groups of the discriminant function is one. Since our function is 

used only to separate the two populations, not to measure the distance 

between them, we may multiply it by any suitable constant. The 

necessary factor to standardize the discriminant function is the 

reciprocal of the square root of the variance of the functions. This 

variance may be determined since the sample dispersion of Xis known. 

As discussed in section 3.2. 

var (V) 	 = d'Sd 

= [s-1(xF-XG)]' S[S-1(xF-xG)] 

= CxF-xG)·s-1cxF-xG) 
2This value is also referred to as Mahalanobis o , a measure of the 

di stance between two populations D4]. Note that the estimated values 



17 

of r and µ. were used in the determination of the variance of the 
1 

function. This is because the discriminant function is entirel y 

sample dependent. 

The standardized coefficients are therefore 

1 
d* = [ J d 

(Mahal. o2)~ 

= (.1890)d 

= (-3.31, .84, .92, -.38, -.007, .0086} 

which gives us the desired discriminant function 

V* = -3.31X1 + .84X2 + .92X3 - .38X4 - .007X5 + .0086X6• 

The rule of classification of a sampling unit to the 

populations is then to assign the patient to group F if her dis

criminant value is closer to 

-* . VF= d*' XF = -17.445 

or the group G if it is closer to 

-* v = d*' x = -22.736G G 
Since we have standardized the discriminant function, then 

. * V* ~ N(v; , 1). Therefore the probability of misclassification of 

a new pati ent conditio nal t hat the patient be from either population F 

or G, is approximately 

-* -* Pr(Z> l~ (vF-vG)j) = Pr(Z>2.645) 

= .004 

which means that we may expect over 99% of our assignments of a patient 

to either group For S to be correct. 
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To test this result, patient numbered 40 of group G was to 

be assigned to either For G according to Fisher's discriminant 

function. Her p-variate vector was 
40x = (10.8, 34.5, 31.4, 3.3, 169.5, 458.0) 

and so her discriminant value was 

v*40 = d* 1 x40 = -23.695 

We therefore allocate her to group G where she belongs . 

The negligible probability of misclassification with this 

discriminatory technique favours strongly its application to problems 

of two population discrimination. 

3.2.2 Application of Fisher's Discrimi nant Function, k = 3 

When the number of populations is greater than or equal to 

three, Fisher's discriminating function becomes a system of functions 

which must be satisfied. That is, if we are considering the groups 

D, F and G, then to classify a patient into group D her discriminant 

value must satisfy appropriately the two di scriminant functions 

v = [E-l(µ 1-µ 2)]'X1 
and V2 = [E-l(µ,-µ3)J'X 

where µ1, µ2, µ3 represent the mean vectors of groups D, F and G, 

respectively. v will make the comparison between groups D and F and v21 
between groups D and G. The patient's discriminant values i n each case must 

be closer to group D's mean discriminant values in order for her to be 

classified as a group D patient. Similarly, allocation into group F 

requires that the new patient suitably satisfies the discriminant functi ons 

Vl = [E-l(µl-µ3)]'X 

and = [E-l(µ2 -µ3)]'X V3 



19 


whereas if she is to be classified as a group G patient her criterion 

would be determined by v2 and v3. 

We therefore have (~) = 3 discriminant functions with which 

to determine her proper parent population. Each allocation will have 

a probability of misclassification which will be somewhat more 

complicated to compute because of the non-zero covariances of the 

discriminant functions with one another. 

We illustrate with groups D, F and G. 

The initial tests of homogeneity of dispersions and multi 

variate analysis of variance were applied with the following results. 

2To be Tested Hypothesis Test statistic d.f. x a.=.05 

. homogeneity of dispersions Hi :z::,= ••• =Z::k h = 71.508 42 58. 124 


equality of means H2:µl = ••• =µk u = 40.03 12 21.026 


The significance of h leads us to a rejection of the H1 hypothesis that 

the dispersions may be represented by a common covariance matrix. 

However, this test is based on the assumption that the p variates are 

multinormally distributed whose violation may be the cause of the 

significant test value. We therefore transfonned the data into log

arithms in order to nonnalize the observations but to no avail. The 

test statistic was still significant at hlog = 59.584. We have 

no alternative but to conclude that there exists a difference in the 

sizes and/or the orientations of the density ellipsoids among the 

three groups. The abnonnality will be in group D since groups F and 

G were shown to be homogeneous in section 3.2.1. 
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A highly significant u statistic in t he multivariate analys i s 

of dispersion implies that a strong difference appears among the 

group means. Even though there is heterogeneity among the covariance 

matrices the test is robust enough to survive a certain amount of 

disparity [9]. We can then expect good separation of our groups 

by the discriminant functions. 

The following inverse of the pooled covariance matrix and 


the mean vectors will supply us with the required discriminant functi ons. 


Mean Vectors (x.' ) 

l 

1 2 3 4 5 6 
Group D 12.7 40.4 31. 6 17.2 299.2 282.6 

12. 2 38.3 32.l 9.9 396.5 327.2Group F 
11. 7 37. 1 31. 7 3.3 196.4 434.0Group G 

Inverse of Pooled Cov. Matrix (S-1) 

l 2 3 4 5 6 
l 854.57 -265.05 -321.27 . 1. 327 -.2416 - . 1269 
2 82.53 99.48 -.353 .0726 .0341 
3 127.06 - . 519 . l 026 .0550 
4 .036 -.0009 -.0019 
5 .0003 .0001 

6 .0003 

The three standardized linear discriminant functions are 

v,* = 14.3ox, - 4.06X2 - 6.53X3 + . 14X4 - .012X5 - .012X6 

V2 * = 8.01X1 - 2.06X2 - 3.29X3 + .16X4 - .003X5 ~ .014X6 

v3 * = -4.34X1 + l.56X2 + 2.53X3 + .09X4 - .009X5 - .008X6 

betwe~~ groups D and F, Dand G and groups F and G respectively. The 
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mean discriminant values for each group determined by 

v.* = d*' x. 
l J i = 1' 2, 3; j = D, F, G. 

are 
*- * * vl V2 V3 

Group D -193.575 -87.833 90.035 

Group F -197.979 -91.146 90.089 

Group G -198. 145 -93.626 86.670 

The first discriminant function gives the rule for distinguishing 

group D from group F when 

Vi*~ -193.575 197.979 _= _195 7772
Similarly, group Dis distinguished from group G by the second dis

criminant function when 

V* ~· -87.833-93.626 = -90.730 
2 2 

Therefore, the method of classification for group Dis to assign the 

new patient to this group when her discriminant values satisfy 

v1 * ~ -195.777 and v2* ~ -90.730. Correspondingly, the rule for 

group Fis v1 * ~ -195.777 and v3 * ~ 88.330, and for group G her 

values must satisfy v2 * ~ -90.730 and v3 * ~ 88.380. 

A test patient, number 31 of group D, will illustrate the 

classification. Her p measurements are 

31x = (13.6, 43.5, 31.5, 7.4, 252.7, 339.0) 

which gives her the three discriminant values 

v *31 = -194.2191 


. v 
2 
*31 = -88. 993 


v3 *
31 
 = 89.018 
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Then according to the previously defined rules, this individual 

is correctly assigned to group D. 

The determination of the errors of classification 04] were 

obtained once the variances and covariances of the discriminant 

functions were known. Since the ith discriminant ·function was 
2standardized by that patr of populations• Mahalanobis o , then 

the variances of each Vi* is one. The covariance 

cov(V1*, V2*) = E(V1*-E(V1*))(V2*-E(V2*))' 

= E(dt 1 (X-µl })(d2 *
1 (X-µ 2))' 

may be estimated by 

I\ l ) (- * -*)cov(V1*, V2*) = ~ v10 v16 

= (1 ) (-193.575 + 198 .145) 
133. 563 

= .789 

Similarly, cbv(V1*, V3*) = ;.f;2) (v1; - v;6) 

3 
l = (J: ) ( • l 66 ) 

{14.565 
= .044 
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= ~ 1 ) (2 .48)
4.565 

= .650 

The correlation matrix of the three discriminant functions is then 
* 

vl 
* 

vl 1 .789 .044 
* 

V2 1 . 650 
* 

V3 1 

The probability of an incorrect classification of a group D patient 

is therefore 

195 777Pr(V *<-195.777 or V *<-90.730) = Pr(Z< - · 1(-193.575)) +
1 2

Pr(Z< -9o. 73o-f-87 ·833 )) - Pr(Z<(l95.777+193.575) and Z<(-90.730+ 

87.833))r=. 789 

= .0138 + .0019 - .0013 

= .0144 

where the first two probabilities are obtained from univariate normal 

tab l es and the third from a tabulated function for computing bivariate 

normal probabilities found in Owen [13]. 

Similarly, the misclassification probability of a group F 

individual is 

Pr(V1*>-195.777)+Pr(V3*<88.380)-Pr(V1*>-l95 . 777 and V3*<88.380)r=.044 
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= Pr(Z>2.202) + Pr(Z<-1.709) - Pr(Z>2.202 and Z<-1.709)r=.044 

= .0138 + .0437 - .0033 

= .0542 

And the probability of the wrong assignment of a group G patient is 

Pr(V2*>-90.730) + Pr(V3*>88.380) - Pr(V2*>-90.730 and v3*>88.380)r=. 650 

= .0019 + .0437 - .0012 

= .0444 

Each of the above probabilities is conditional on the assunption 

t hat the patient to be classified is either a group D, group For 

group G individual and no other possibility. Given this, we may 

then expect 98% of the patients we classify as grou~ D patients to 

be correct 9 94%assigned to group F·to be correct and 95% of the 

allocations to group G to be correct. , 

However, we feel it necessary to treat these results with 

caution since there existed heterogeneity among the dispersions of 

t he populations. 

3.3 CanoniaaZ Analysis of Disarimination 

A direct extension of the reasoning employed in the development 

of Fisher's discriminant function is the canonical analysis of discri.minanca 

The general problem is to detennine m(<p) linear combinations of the 

p variates which best separate the populations. Again this is the 

st ip~lation of maiimizing the between populations dispersion with 
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respect to the within populations dispersion. Rao [14] has sh own 

that the coefficient vectors 

di= (di di ... ' i=l,2, .•. ,m1 ' 2 ' 

of them linear combinations of the random variables are the solutions 

of 

(B-t..t:)di' = 0 
1 

where Bis the dispersion matrix of the k population means, z: is the 

corrvnon covariance matrix of the p variates and "i is a root of the 

equation 

IB-Ait:I = 0 


Thus the coefficient vectors, di's, are the eigenvectors associated 


. with the eigenvalues, "i's, of the asymmetric matrix z:-18. These 

eigenvalues and eigenvectors are· termed canonica'T roots and,·-canonical 

vectors, respectively. The linear combinations 

T. = di'x 
l 

t hey produce are called canonical variates. 

Geometrically, the test space is transferred into a space 


defined by new axes whose directions are indicated by the c·anonical 


vectors. Each direction or axis is perpendicular to the others in 


t he sense that any two canonical variates, T. = di'x and T. = dj'x

1 J 


if j, are independent. That is, 


eov(T,., TJ.) = E(T.-E(T.))(T.-E(T.))'
l 1 J J 

1 1 

= E(di (X-µ))(dj (X-µ)) 1 

= 0 
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However, there is an upper limit to the number of dimensions that can 

be represented by the canonical axes. When the nurrber of populations 

is less than or equal to the number of random variables (k~p), the 

transformed space is restricted to (k-1) dimensions. This is exem

pl ified by there only being (k-1) non-zero canonical roots of the 

E-lB matrix. When k>p, the dimensionality of the canonical space can 

extend only to the full test space of p dimensions. 

Each canonical root is directly proportional to the amount 

of variation among the groups in the direction of its associated 

canonical vector. Therefore our best discriminating linear combination 

i s the one associated with the largest canonical toot. That is, 

T(n = i1) 
1 

X 

where a bracketed subscript or superscript denotes ordering with 

respect to magn i tude .of the canonical roots. Similarly, the second 

canonical variate 

T( 2) = i 2) 
1 

X 

supplies the next best discriminating function, and so on. Therefore 

t he zero roots of the E-lB matrix (if they exist) indicate that no 

f urther variability is left to be explained and hence do not introduce 

f urther funct ions. 

Using Fisher ' s discriminant function, the discriminating 

boundary 

where the constant is 
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defines a hyperplane which bisects the line joining the means µl 

and µ 2 of the two populations. On the other hand, with canonical 

analysis we discriminate along the lines of closest fit to the k 

means rather than the line joining each pair of means. Indeed, the 

first canonical axis defines the "best" line fitting the means, 

the second, orthogonal to the first, defines the next optimum line, 

and continuing in the same manner until the canonical space is filled. 

Therefore, when k = 2, the discriminating variate derived from the 

canonical analysis will be identical to Fisher's discriminator 

because the line of closest fit between two populations is that line 

which joins their me.ans. However, when k ~ 3 the two techniques, in 

general, are not equivalent. 

3. 3.1 AppZication of CanonicaZ AnaZysis of DiscriminanceJ k = 2 

We apply the analysis to groups F and G. 
A 

Mean Dispersion Matrix (B) 

1 2 3 4 5 6 

l . 1 3 . 31 .09 ,. 71 51. 52 -:27.50 

2 . 72 . 21 4.00 120. 26 -64 .19 

3 .06 1.16 34.92 -18. 64 

4 22.14 665 .81 -355.38 

5 20018.60 -10684.97 

6 5703.12 
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1 

2 

3 

4 

5 

6 

Since k < p, we 

. I\_,
Inverse of Pooled Cov. Matrix (r ) 

1 2 3 4 5 6 

1340 .96 -413.24 -486.78 6.83 -.2700 -.0196 

127. 71 149.90 -1 .97 .0794 .0022 

181 . 59 -2.57 .1068 .0188 

.27 -.0021 -.0032 

.0003 .0003 

.0003 

may construct only (k-1) = 1 discriminant function. 

1he non-zero canonical root of E-lB is 

"(l) = 14.001 

with its canonical vector 

i 1) = (-.931, .236, .259, -.106, -.002, .0024). 

We wish to standardi:ze the canonical variate so that its within_ groups 

variance is one as was done with Fisher's coefficient vector in 

section 3.2.1. The variance of the canonical variate is 

var( T ( 
1

) ) = d ( 1) 'E d ( 1) 

which is estimated to be .079. Therefore, the standardized canonical 

vector is 

d(l)* = ( 1 )~ d(l)

d(l)'£d{l} 


= (-3.31, .84, .92, -.38, -.007, .0086) 

which yields the canonical variate 

T(l)* = -3.31X1 + .84X2 + .92X3 - .38X - .007X5 + .0086X64 

identical to Fisher's V* of section 3.2.1. 
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Thus a parallel analysis to that section would follow. 

3.3.2 Application of C&nonical ·Analysis of Discriminance, k = 3 

Groups D, F and Gare the groups under consideration. 
,. 

Mean Dispersion Matrix (B) 

1 2 3 4 5 6 
l 

2 

3 

4 

5 

6 

. 25 .82 

2.75 
-.035 
- .184 

.065 

3.47 
11 .41 
-.56 

48.13 

26.43 
62.55 
17 .16 

342.46 
10011.77 

-38.01 
-119. 54 

1.25 
-522.14 

-5431 . 29 
6052.89 

Inverse of Pooled Cov. Matrix (E-1 > 

l 2 3 4 5 6 

1 

2 

3 

4 

5 

6 

854.57 	 -265.05 -321 . 27 l . 327 - . 2416 -.1269 
82.53 99.48 -.354 .0726 .0341 

127 .06 -.519 .1026 .0550 
.036 -.0009 - ·.0019 

.0003 	 .0001 
.0003. 

The (k-1) = 2 non-zero canoncial roots of the ~-ls matrix are 

A ( l ) = 8 • 4 7 39 

"(2) = 2.7711 

with their associated canonical vectors 

d(l) = (.896, -.235, -.375, -.016, -.0004, -.0014) 

i 2
> = (-.865, .264, .427, -.0008, .0011, .00004) • 

The estimated variances of the two canonical variates are 
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v;r(T(l)) = d(l) ' £ d(l) = .0102 

and var(T( 2)) = d( 2)'£ d( 2) = .0053 

Therefore, the standardized canonical vectors (such that the 

within groups variance of the canonical variates is one) are 

= (8.859, -2.322, -3.709, .162, -.0039, .: .0141) 

and d( 2)* = ( 1 )d(2) 
lvar(T (2)) 

= (-11 .932, 3.649, 5.890, -.0105, -.0145, .0006) 

Thus the two canonical variates best separating the groups are 

T(l)*=il)*\ 

= 8.859X1 - 2.322X2 - 3.709X3 + .162X4 - .0034X - .0141X
5 6 

and T( 2)* = d( 2)*'x 

= -11 .932X1 + 3.649X2 + 5.890X3 - .Ol05X - .Ol45X4 5 

+ .006X6 

A test of the significance of the dispersion of group means 

along each dimension was made. That is, we may test whether al l of 

t he roots after the jth say, can be given zero values. Bartlett's 

(1954) [15] test of this hypothesis, 

H : A(j+l) =A(j+2) = .. . = A(f) = 0 , f =miri{p,k-1 } 

i s based on the fact that under the null hypothesis 
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is approximateJy a chi-square variable with (p-j)(k-j-1) degrees of 

freedom. Therefore, we have 
2J+l x(j+l) iij+l(l+x(i)) · {24.5}l~{n{l+x(i))} x df Crit~cal Value 

\x=.05 

1 8.4739 35.7270 87.6097 12 21 .026 

2 2. 7711 3.7711 32.5205 5 11 .071 

We conclude that both canonical variates explain significant amounts 

of variation among the groups. 

Then to classify an individual, we compare her canonical 

values to each group mean's canonical values. 

The mean canonical variates for. groµps D, F and Gare 

- * (l)*'Group t(l) =d x 

D -100.9656 186.4475 
F -104.4725 189.1078 
G -106.7450 186 .0397 

These values represent coordinates in the transformed space with 

axes T(l)* and T( 2)*. We may therefore depict these three groups in 

a two-dimensional diagram to illustrate their relationship with one 

anqther. It was convenient to centre the groups about the grand mean 

canonical variates, 

i = 1, 2 

to emphasize the degree of separation attributed to each vari ate. 
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Let the transformed standardized canonical variates be denoted by 

i=l,2; j=D,F,G. 

The coordinates to be considered are now 

Group -
2(1) 

-
2(2) 

D 3.0954 -.7508 
F -.4115 1.9095 
G -2.6840 -1 .1587 

where (t(l)*' t( 2)*) = (-104.0610, 187.1984). 

Furthermore, since the canonical variates were constructed 

t o have unit variance, a one standard deviation contour encircles each 

group mean canonical variate. The representation of groups D, F 

and Gin this manner is found in Figure 3.3.2.1. 

A classification procedure of a new patient is to assign the 

individual to the group in which her canonical coordinates, (T(l)*' T( 2)*), 

= * - *and the group's mean canonical coordinates (T(l) , T( 2) ), are 

closest in terms of Euclidean distance. 

For example, we employed patient number 31 of group D to 

illustrate this procedure. Her canonical variates are 

t(l)*
31 

= d{l)*'x31 = -102.0991 

and t 
(2) 

*31 = d( 2)*'x31 = 186.0171 

which give the transformed values of 

31 31(z(l) , z( 2) ) = (l.9619, - 1.1813). 
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canonical axes with one standard deviation 
contours. X=first canonical variate, Y=second 
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This coordinate point is represented in Figure 3.3.2.l by a smal l 

circular point. Her distance from each of the three groups is 

determined from the well known planar distance between two points 

j = D, F, G 

From group D, patient number 31 lies 

. {(l .9619-3.0954) 2 + (-1 .1813+.7508) 2}~ = l .2125 units 

From group F, she is 

. {(l .9619+.4115) 2 + (-1 .1813-1 .9095) 2}~ = 3.8969 units, 

and from group G, this patient is 

.. -- - ~-· ·_ -{(l .9619+2.6840) 2 + (:-1.1813+1.1587) 2}~ = 4.646 uni ts. 
"r ~.: -- ·---• .., ~. ·--.~. - • 

-" ~ - 'i,,---- •. 

We therefore classify this individual as a group D patient. 

In essence, we have divided the canonical coordinate plane 

into three regions. Each region, associated with a givifo group, has 

t he perpendicular bisectors of the lines joining its mean to the 

other means as its boundaries. 

Diagrammatically: 

/ 

~0- --~ 
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The probability of misclassification is then an integral of a bivariate 

normal di.stributi on over a complex region. Namely, the probability of 

misclassifying a group D patient is the integral over the region 

denoted below. 

Rather than evaluate this integral, it is reasonable to accept a 

~l assif1cation of an _individua_l only if her coordinates_ are within 

a predetermined confidence contour. If we decided to specify a 90% 

class·ification probability then the 90% confidence contour has ·a 

radius of 1.645. With the previous distances determined for patient 

number 31, we may rightly allocate her to group D because she falls 

within this contour (l .2125<1 .645). 

Using this approach, we will not classify a patient to any of 

the groups if all three distances to the group means are greater than 

l .645. This is justifiable because a patient whose distances are 

very large from all groups should not be blindly allocated to a group 

even though she is within that groups region. This individual, in 

all likelihood, would not be from any of these populations at all. 
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This discriminatory approach did not resu1t in a different 

c1assification of patient number 31 than Fisher's function 1 s c1ass

ification. However, if the computationa1 faci1ities are available 

this technique is favoured due to its more informative nature with 

respect to variability among the groups. 

3.3.3 	 Application of Canonical Analysis of Discriminanee, k = 4 


All four groups are now to be analyzed. 


The preliminary testing yielded the fol1owing results. 


Hypothesis Test Statistic Degrees of freedom A2
a=.05 

H:I:1=... =Ek h = 141 .041 	 63 82.529 

H :µl = ... =µk u = 78.187 	 18 28.869 

_ Addi ti anal heterogeneity among the dispersions is introduced by group 

E. Caut1on must be applied in the interpretation of the remaining 


analysis. However, we can expect good discrimination of the groups 


with the (k-1) = 3 canonical variates .because of the highly signi


fi cant difference among the means. 


The necessary matrices for the computations are 

" Mean Dispersion Matrix (B) 
l 2 3 4 5 6 

l .19 .65 -.054 l.89 6.50 -21 .07 
2 2.32 - • 267 5.57 -11 .40 -59. 34 
3 .087 .23 27.24 -5.22 
4 40.58 450.42 -433. 25 
5 12481 .69 -5847. 31 
6 4888.88 
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1 

2 
3 

4 
5 

6 

"-1Inverse of Pooled Cov. Matrix (L ) 

l 2 3 4 5 6 

955. l O -295.92 -360.60 l .406 -.2687 - .1 251 

92.05 111 . 29 -.363 .0805 .0315 

142.96 -.575 .1177 .0554 

.046 - .0011 -.0024 
.0003 .0001 

.0003 

" l"'The non-zero canonical roots of the L- B matrix are 


"(l) = 7.2103 


A( 2) = 5.0296 

-- . 

,. . 

A( 3) = .0751 


with their associated canonical vectors 


-in = ( .8982; ,;.~21811 -.3810, .0239, -.0003, -.0020) 

i2) = (-.8658, .2583, .4286, -.0012, .0010, .0002) 

i3~ = (-.9045, . l 775, .3856, .0408, -.0015, .0004) 

The variances of the three canonical variates are estimated to be 

var(T(l)) = .0169 

" var(T( 2)) = .0039 

var(T( 3)) = .1803. 

t herefore the three standardized canonical variates which will act as 

our discriminating functions are 

T(1 )* = d(l)*' X 

= 6.912X1 - 1 .679X2 - 2.932X3 + .184X - .0024X - .Ol56X4 5 6 
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* = d( 2)* 'x T( 2) 

= -13.794X1 + 4.116X2 + 6.828X3 - .019X4 + .0161X5 + .0026X6 

and T( 3)* = d( 3)*'x 

= -2.13ox, + .418X2 + .908X3 + .096X4 - .0036X5 + .0010X6. 

The test of the significance of each canonical root yields 

the following: 

f 2j+l ;\ i~j+l(l+>-;) {34}ln{j¥l(l+Ai)} df. for Critical x.052 
x 


l 7. 2103 53.2226 135 .1324 . 18 28.869 

2 5.0296 6.4824 63.5491 10 18. 307 

3 .0751 . 1 .0751 2.4621 4 9.488 

The third canonical root is non-significant which implies that, when 

t he persons and group means are projected onto this canonical variate, 

t he differences among the group means are small relative to the diff

erences among persons within a group. The first two canonical roots 

are highly significant which indicates that good separation among 

t he groups will occur along these dimensions. 

To illustrate the separation of the data imposed by each 

canonical variate, the group mean canonical variates, with their unit 

st andard deviation contours, were plotted against each pair of 

poss ible axes combinations. Figure 3.3.3 .l. is the first canonical 

variate (X-axis) versus the second canonical variate (Y-axis). 

The larger degree of separation along the X-axis reveals the greater 

di scriminatory power of the first canonical vari ate. The transformed 

me an canonical variates (transformed by the grand mean canonicalvariate) 
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are, 

- - -
2(1) 2(2) 2( 3) 

Group D 
Group E 
Group F 
Group G 

Constant Tenn 
(Grand Mean) 

+3.5438 

-.5382 

-.0428 

-2 .9628 

-78.2939 

- .4039 

-2.4812 

+2.9603 

-.0752 

212.6007 

+.1890 

-.2722 

- . 1952 

+.2784 

19. 2126 

Figure 3.3.3.2 is the projection of the mean canonical variates onto 

the T(l) - T( 3) plane where the first canonical variate, T(l) is the 

abscissa. This clearly indicates the insignificant variation explained 

along this thtrd· canonical variate. . Figure J.3.3.3 is the repre- · 

sentation of the T( 2) - T( 3) pla~e with _the second canonical variate 

being _the abscissa. 

The apparent function of the first canonical variate is to 

al ienate groups D and G to the fullest extent, while groups E and F 

are separated by the second canonical variate. The unsuccessful role 

of the third canonical variate appears to be to distinguish between 

t he pairs of groups D, G and E, F. This is a good illustrati on of 

the capabilities of the canonical variates. 

Test patient, number 31 of group D, has the canonical values 
31 31 31(2(1) , 2( 31) , z( 3) ) = (2.2229, -1.0114, -1.2156) 

We then determined her three dimens i onal distance from each of the 

group mean canonical variates, in order to classify her, by the 
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equation 
- * 2 	 - * 2 ~. {(Tl* -Tl;*) 2 + (T2-T2i ) + (T3-T3i ) } 2 = distance from group i 

i = D, E, F, G. 

These are: 

Distance from 	 Group D = 2.0216 units 


Group E = 3.2642 units 


Group F = 4.6850 units 


Group G = 5.4772 units 


She is then correctly classified as a group D patient. 

The 90% contour about these trivariate normal points is a 

sphere of radius 2.5003. This value was obtained from the critical 

values tabulated forthe spherical normal distribution in Owen [13]. 

The test patient falls only within group D's 90% contour 

which leaves no ambiguity to which group she belongs. 

When the dimension of the canonical space is greater than or 

equal to four (i.e. min{p,k-1}~4), one would restrict the classifi 

cation rule to the first three canonical variates so that the con

fidence contours are easily determined. In practice, a great proportion 

of the variation is usually explained by the first three variates 

so that this approach would supply accurate results. 

This analysis has a distinct advantage over Fisher's when k = 4 

population~. With Fisher's discriminant functions we need(;)= 12 

di scriminators while canonical analysis accomplishes the same with 

t hree. Furthermore, the properties of the canonical variates make 

t he computations easier (i.e. cov(Ti' Tj) = 0) and the graphical 
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representation of these variates enhances the understanding of the 

data dispersion. 

However, when the dimensions do become large, the projection 

of the variates onto two-dimensional axes will be inadequate. The 

next section will attempt to supply us with alternatives. 



4. HIGH-DIMENSIONAL REPRESENTATION OF DATA 


4. 1 Genera l 

Graphical portraying of data has long been a useful aid 

in its analysis. The plotting of the residuals of a time series 

model reveals a great deal of information concerning the model. 

Histograms often are the basis of underlying distribution assumptions. 

The problem is not with univariate or bivariate data, but 

with data that may not be depicted by a planar coordinate plotting. 

To this end, the following procedures apply. 

4. 2 :Fourier Series 

This procedure is attributed to D.F. Andrews [l] who attempted 

to visualize high dimensional data in a space of functions. That is, 

each data point X = {x1, . . . , xk)' is mapped into a fourier series 

function of the form 

1 

fx(T) = (2)-2 x, + x2 sim + X3 COST+ X4 sin2T + X5 COS2T + ... 

and the function is plotted on the range O ~ T ~ 2n. 

So as to compare this approach with canonical analysis, the 

data points that were plotted were the canonical variates 

f = min{p,k-1}. 

Andrews notes that the choice of which numbers to examine, here 

canonical variables, is based on the nature of the data and the 

obj ectives of the analysis. Our objective is differentiating among 

45 
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the groups, so this selection of variables to use is exemplary. 

4.2.l. Properties of the Pourier Series Plots 

(i) The function representation preserves means. If tis 

the mean of a set of n multivariate observations ti, then the function 

corresponding tot is the point mean of the functions corres

ponding to then observations: 

f- (T) =-
l ln 

fti (T)
t n i=l 

As a result the average will appear like an average in this plot (1] . 

. (ii) An analagous concern to canonical analysis is the 

distance between two functions to imply their "closeness" to one 

another. One measure of distance is 

II f i (T) - f j (T) II= 
t t 

One may then evaluate a test patient's distance from each of the 

groups by determining her functional distance from each of the group 

mean fourier series plots [l]. 

(iii) 	 If the components of the data ·are uncorrelated with 
2common variance cr , then 

var(fT(T)) = cr2[~+sin2T+cos 2T+sin22T+cos22T+... ]. 

If f = min{p,k-1} is odd this reduces to a constant,~ cr2 f; if f is 

even the variance 1 i es between ~ cr2( f-1) and ~ cr2(f+1). In. the 

first case the variance does not depend on T and in the second the 

dependence on Tis' slight. Thus the variability of the plotted 
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function is almost constant across t he graph [l]. 

4.2.2. Application of Andrews TechniqueJ k = 4 

The 	 group mean canonical variates, 

(Z(l}j' z(2}j' z(3}j) j = D, E, F, G 

which 	are centred about the origin of the canonical axes, give the 

following four fourier series: 

3.5438/
f 2 (T) = ;-'! - .4039 sinT + .1890 COST 

D 
5382 

f- (T) = -. /~ - 2.4812 sinT - .2722 COST 
ZE . 

-.-0428 · . 
f 2 (T) = /.f'l + 2.9603 sinT - .1952. COST 

F 
2 9628 

f- (T) = - • 1;-'l - .0752 sinT + .2784 COST 
ZG 

f igure 4.2.2.1 is a plotting of these functions. _ The functioris 

in all subsequent plots are numbered by the following scheme: 

(i) 	 the group mean plots are the 500 series where 

501, ... , 504 represents the groups D, E, F, G, res

pectively. 

(ii) 	 all other functions are the individual patient's four i er 

series where the first digit of the function number 

implies the group from which the patient originated and 

the second and third digit her patient number. For 

example, function number 131 is the plotting of pat ient 



Figure 4.2.2. l. Fourier Series of three dimensional datA·. All groups. 
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number 31 of group D; function number 315 would be 

patient number 15 of group F; etc. 

Recalling how the canonical variates separated the data~ it 

is evident that they continue to do so in these plots. The first 

canonical variate which is the coefficient of the term(2)-2 
1 

widely 

alienates groups D (501) and G (504) by separating their Y-axis 

intercepts. The second canonical variate accomplishes its separation 

of groups E and F (502, 503) by imposing a large positive sine term 

on group E versus a large negative sine tenn on group F. The thi.rd 

term of the fourier series representing the third canonical variate 

offers little influence on the functions which was expected because 

of its insignificant canonical root. 

We plotted patient number 31 of group D among these group 

mean functions. Her fourier series is 

f 3l(T) = 2.229(2)-i - 1.0114 sinT - 1.2156 COST, 0 ~ T ~ 2n. 
t 

Figure 4.2.2.2 contains the five functions. 

By inspection, it appears that patient number 31 belongs to 

either group Dor group E; group D because for all T values her funct i on 

is positive as is group D's, and perhaps group E because the shape 

of her function is very close to group E's but not as severe. 

We took a closer look at the individual plots. The variance 

of the plots may be estimated by 

"' " 2var(f(T)) = ~ cr f = (. 5)(1 )(3) = 1.5 units z 
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since the variance of the standardi zed canonical varia t es is one . 

As was done for the plotting of the canonical variates against their 

canonical axes, a one standard deviation contour or band is plotted 

with each group mean fourier series. That is, for any T, 0 ~ T ~ 2rr, 

the vertical distance between the band and the function is 

(~ ; 2f) ~ = 1.2447 units. 

The test patient was then plotted along with these one standard 

dev iation bands against each group mean function. Figures 4.2.2.3, 

4.2.2.4, 4.2.2.5, 4.2.2.6 are these representations. 

An overall 90% confidence band can be determined to emcompass 

the function. Andrews [l] shows that, for all values of T, the 

probability of 

2where x a, f denotes the upper a point with f degrees of freedom of 

t he chi - square distribution, is approximately 1-a. Our 90% confidence 

band then becomes 

Referring to Figure 4.2.2.3 it is easy to see that the patient 

completely lies within a band width of±_ 3.5358 about group D. How

ever, in Figure 4.2.2.4 the patient function extends outside this 

band about the group E function at approximately 100° < T < 140°. 

In the other two plots, Figures 4.2.2.5 and 4.2.2.6, the patient exits 

the confidence ban~ in many regions. Therefore an appropriate class
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4.311 	 Figure 4.2~2.4. Fourier Series of group E wi th one standard deviation band and 

patient 131. Three dimensional data. 
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4.38l Figure 4.2.2.5. 	 Fourier Series of group F with one standard deviation band and pat i ent 131. 
Three dimensional data . 
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ification of patient number 31 is to assign her to group D. 

It was of interest to try to find a single discriminant 

value_associated with each group. That is, can we come up with a 

si ngle statistic which will indicate the group to which a patient 

belongs? This problem was considered by looking at each patient's 

fourier series in the hopes of finding a specific T where all the 
0 

patients within a group clustered but each group clustered at 

different fT(T )'s. Diagrammatically, the T we were looking for 
0 0 

would look like: 

-!--''c+:'~------------------T 


I 

T 
0 

We can then determine each group's mean discriminant fourier value 

ft. (T
0

) = fµ. (T 
0
), i = D, E, F, G. The hypothesis that the expect

, l 

ation of fT(T ) = \(T . ) for some hypothesizedµ may be tested. This 
0 0 

is accomplished by evaluating the significance level of 

as a standard nonnal variate. 
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In effect, we are determining a linear. combination of th e 

canonical variates which themselves are linear combinations of the 

original data, to obtain a representative quantity associated with 

each group. Given a test patient, her discriminant fourier value, 

f t(. ), is calculated and tested against each of the ft(. ), i = D,
0 i O 

E, F, G, to determine her allocation. 

Figure 4.2.2.7 to Figure 4.2.2.10 are the plottings of each 

group's individual patients' fourier functions. All of group D's 

fourier series (Fig. 4.2.2 . 7) are quite variable and do not cluster 

well at any •. The only striking feature of these plots is that 

essentially all values of ft(.) are positive. Group Eon the other 
D 

hand appears to have a very characteristic plot {Fig. 4.2.2.8) with 
' good clustering at.= 0° and.= 140° perhaps. A noteworthy point 

is that for. f 180° we find ft(.) < O and if.~ 180°, ft(.)> 0. 
· E . E 

Gr.oup F (Fig. 4.2.2.9) approximates· a mirror image of group E in the 

X-axis. Therefore the reverse s~atements are true; for.~ 180°, 

f t (.) > O, and.~ 180° implies ft(.) < O. Similarly group G 
F F 

(Fig. 4.2.2.10) imitates group D but below the X-axis. 

It is evident that a single. , as discussed previously, cannot 
'O 

be found to construct our discriminator among these groups. However, 

another: testing procedure applies. If we select L = 90° and test 
u 

whether or not the expected value of ft{. ) is greater than zero, we 
6 

may determine into which pair of groups this function belongs. That 

i s, if the tes t supports the hypoth esis that E(ft(. )) > 0 then the 
0 

patient is a member of group Dor group F. If the hypothesis is 

http:4.2.2.10
http:4.2.2.10
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Figure 4.2.2.8. 	 Fourier Series of a11 of the individual patients of group E. 

Three dimensional data. · 
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Figure 4. 2. 2. l O. Fourier Series of all of the individual patients of group G. 

Three dimensional data. 
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rejected, then she belongs to groups E or G. Once the pair of groups 

to which she belongs has been decided we may make the analagous test 

at •.. = 270° to di sti ngui sh between these two groups and allocate her 

accordingly. 

The allocation of patient number 31 of group Dis as follows. 

Her two test criterions are: 

2.2229/
f (. =90°) = ~ - l .0114 sin(90°) - l .2.56 cos(90°) = .5604

z31 o 


f.2229/

f (. =270°) = ~ - l .0114 sin(270°) - 1.2156 cos(90°) = 2.583231 0 z 

The test of whether ft 31 (. =90°) is significantly greater than zero 
0 

reduces to the determination of whether or not the standard normal 

value of 

(.5604-0.0) I 11:5)= .4572 

lies in the upper a= .05 tail of the normal distribution. It does 

not and in fact this value is non-significant approximately up to 

a = .10. We therefore must conclude that we do not have adequate 

i nformation to classify this patient. However, we can determine the 

pair of groups that she belongs to because f =270°) is signifi 31 {.,
0t 

cantly positive at a= .05 (i.e. a standard normal value of 2.1092}. 

Thus she is either a member of group Dor group E. 

Admittedly this procedure may accomodate a great number of 

variables but the interpretations and testings leave ambiguous results. 

The existence of a solitary • to di scr.triri:nate among the groups 
0 

would be extremely convenient. With the restriction that the .•s 

be integers, this linear combination is very unlikely to be found . 



63 

Furthennore the plotting of the canonical variates in the fou rie r 

series did not illuminate any hidden features butappeared to 

camouflage those discovered by the canonical axes. For example, the 

attempt of the third canonical variate to separate the pair of groups 

D, G -f~om the pair E, Fas illustrated by the two-dimensional canonical 

axes plot was nowhere evident in the fourier plot. 

An equitable comparison of the two graphical representations 

was made by plotting the fourier series with only the first two 

canonical variates as coefficients, in the form 

_ .1 
f (-r) = (2) 2 z1 + z2 sinT2 ' 

Then this plotting (Fig. 4.2.2.11 .) is equivalent to the canonical 

axes plot in Figure 3.3.3.l. Both plots illustrate the same features, 

that is, group D and G have large (in magnitude) first canonical 

variates and relatively small second variates and vice versa for 

groups E and F. Nonetheless the canonical axes supplies this in

formation immediately while one has to interpret the fourier functions 

to obtain the same conclusions. This further interpretation of an 

already complex set of data (canonical variates) may well be a source 

of error. 

4.3. Chernoff's Faces 

This graphical method of displaying points in p-dimensions 

was developed by Herman Chernoff in 1973 [4]. The method consists of 

representing a point in p-dimensional space by a drawing of a face 

http:4.2.2.11


Figure 4.2.2.11. Fourier Series of all groups. Two dimensional data. 
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whose characteristics are determined by the position of the po i nt . 

The object was to enable the investigator to quickly com

prehend relevant information of the data and then apply appropriate 

statistical analysis. No quantitative results are produced but a 

better "feel" of the data is obtained. 

At present, the number of variables that may be accommodated 

is less than or equal to eighteen. Each variable is associated with 

a given characteristic by the following scheme: if Y = (y1, y 2, ... , 

y18) is an 18-dimensional data point then the corresponding facial 

characteristics are 

Variable Characteristic 

radius r to corner of faceY1 

angle of r to horizontal Y2 

vertical size of faceY3 

'Y 4 eccentricity of upper face 

eccentricity of lower face Y5 

y6 length of nose 

vertical position of mouthY7 

Yg curvature of mouth 

Yg width of mouth 

vertical position of eyes Y10 

separation of eyes Y11 

slant of eyes Y12 

eccentricity of eyes Y13 
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size of eyes Y14 
position of pupils Y15 

vertical position of eyebrowsY15 

slant of eyebrowsY17 

size of eyebrowsY1a 

Two proposed advantages of the facial representation of data, 

as suggested by Chernoff, are (i) enhancing the user's ability to 

detect and comprehend important phenomena. 

People are in constant contact with varying faces each day. 

They subconsciously filter out repetitive and common features and 

focus their attention to the most striking characteristic of a 

person. If he be oriental, then the notable distinction is his eyes; 

his eyebrows and mouth perhaps would leave little impression. In 

this way, the relevant data is detected and comprehended. 

( ii) serving as a mnemonic aid for remembering major conclusions. 

If numerical data is inspected, preliminary separation or 

di stinctions may be made. However, as these features of the data 

become more numerous the ability to retain the information is poor. 

With the data represented as faces, certain major characteristics of 

t he faces are instantly observed and easily remembered in terms of 

emotions and appearance. 

The major advantage to be derived from using the faces should 

be in the heightened qualitative awareness of which numerical cal

cul ations are relevant [4]. 
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4.3. 1. Application o f Chernoff's Faces , k = 4 

As a direct comparison to the previous graphical represen

tations of the canonical variates, these set of variables were 

employed as the data points. Hence we have three-dimensional points 

representing each group. 

= (3.5438, -.4039, . 1980)z0 
zE = (-.5382, -2.4812, -.2722) 

zF = (-.0428, 2.9603, -.1952) 
-ZG = (-2.9628, -.0752, .2784) 

There are (18-3) = 15 characteristics which had no defining variable 

and therefore were fixed for each group . The traits that were 

defined by the three canonical variates were 
- = vertical size of facez1 
- = eccentricity of lower face z2 
-

= curvature of mouthz3 

The method of plotting converts the range of each variable 

into a range of suitable proportions for the faces. Thus the maximum 

and minimum of each variable become the extremes in the range adopted 

for the faces . . This ensuresthat each variable is scaled relative 

t o a measure of variability (i.e. range). 

Figures 4.3.1.1. through 4.3.1.4 are the computer drawn faces 

for groups D, E, F and G. The vertical size of the faces clearly 

emphasizes the effect of the first canonical variate. However the 

second canonical variate does not appear to separate groups E and F 
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Figure 4.3.1. 1. Face of group D. Derived from three 
canonical variates. 
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figure 4.3.1.2. Face of group E. Derived from three 
canonical variates. 
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figure 4.3. 1.3. Face of Group F. Derived from three 
canonical variates. 



71 

Figure 4.3.1.4. Face of group G. Derived from three 
canonical variates. 
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well at all. This implies that the significance of a variable 

depends to a large extent on the facial characteristic that the variable 

is assigned. The eccentricity of the lower face is not a good 

discriminating feature. The third canonical variate controlling the 

curvature of the mouth offers little in separating t~e groups. 

The test patient number 31 of group D had her caricature 

drawn with the same defined characteristics . Figure 4.3.1.5 reveals 

her facial features. On inspection, we classify her as a group D 

patient even though her mouth is uncharacteristic of group D. Her 

features of size of face and eccentricity of lower face convincingly 

suggest she is from group D. 

Another application of this procedure is to initially scruti

nize the data to determine which statistical analysis to employ. We 

t herefore looked at the faces constructed from the raw data and 

not the canonical variates. This enabled us to increase our defining 

variables to six. The point X = (x1, ... , x6) was assigned to the 

features as follows; 

= vertical size of facexl 

x2 = eccentricity of upper face 

= eccentricity of lower face X3 

= curvature of mouthX4 

X5 = slant of eyes 

x6 = size of eyes 

The remaining characterisitcs were fixed. The mean faces for each 

group were plotted using the data 
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Figure 4.3. 1.5. Face of test patient 31 of group D. Derived 
from three canonical variates. 
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x = (12.682, 40.408, 31.578, 17.155, 299.207, 282.600) 0 
xE = (12.479, 40.017, 31 .379, 4.296, 144.985, 406.3667) 

xF = (12.197, 38.332, 32.076, 9.938, 396.535, 327.200) 

xG = (11.682, 37.130, 31.727, 3.283, 196.442, 434.000) 

Figure 4.3.1.6 through 4.3. 1.9 are their portraits. The most 

obvious differences among the plots are the shape of the heads and 

the size of the eyes. This would suggest that close investigation 

should be aimed at variables x2, x and x6. This brings to light3 
an interesting question. Are the eyes and the shape of a head the 

most notable features one sees in a face? Under closer examination 

of the faces the mouths also are very distinct in each group, however 

this was unnoticed in first impressions. Similarly, the slant of the 

eyes were of secondary importance. Chernoff [4] admits these short

comings and is attempting methods of counteracting these psychological 

effects. He suspects that a series of faces, representing a single 

multivariate point, constructed by permuting the variables assoc i ated 

with given characteristics may remedy this . 
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Figure 4.3.1.6. Face of group D. Derived from the six original variates. 



76 

Figure 4.3.1.7 . Face of group E. Derived from the six original variates . 
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Figure 4.3.1.8. Face of group F. Derived from the six 
original variates. 
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figure 4.3.1.9. Face of group G. Derived from the 
six original variates. 



5. REAL DATA 

Anyone who has worked with real life situations and 

measurements is sure to admit the inconveniences that often arise. 

The data will seldom seem to comply to the theoretical restrictions 

that are necessary for underlying assumptions of analysis. However, 

even though these prerequisites for some statistical procedures are 

not upheld, information may still be extracted by the application of 

these techniques to the data. The important condition to remember 

is that the conclusions and interpretations drawn from the results 

must be treated with caution but not necessarily total rejection. 

5.1 	 Analysis of the Original Data~ k = 4 

The entire set of data consisting of 160 patients is tabulated 

in Table 2.1. 

A preliminary overview of the data was based on the tests of 

the homogeneity of dispersions and of the equality of means. To 

test the homogeneity of dispersions 

we evaluate the significance of the h statistic (section 3.2.1.). 

The necessary determinants of the matrices for its calculation are 

IS0 1 = 7.5406 x 106 

jSEI = 1.8660 x 105 

106 
· !SF! = 4.6512 x 

79 
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ISG! = 2.4670 x 107 

8
!Spooled! = 7.5433 x 10 

The test statistic is therefore 

· 4 1 89 19.5h = -2[1-{ 39 - 156}126Jln[(.009996)(.000247)( .006.66)(.03270)] 

= 778. 6095 
2The er,. t.,ca1 xa=. OS value with 63 degrees of freeom is 82.529. The 

t est statistic is highly significant and thereby forewarns us to the 

application of the discriminating procedures. 

The test of the equality of the mean vectors of the populations, 

H : µ1 = ••. = µk = µ 

based on the Wilks criterion (section 3.2 . 1.) yields the test statistic 

u = -[(1s9)-(s)J1n{(.964o)} = s.68os. 

The critical x~ 05 value with 18 degrees of freedom is 28.869. This 

would indicate that there is no significant difference among the 

group means. 

5. 1. 1. Canonical Analysis of Discriminance 

The differences among the groups that do exist will be best 

exhibited by the canonical variates. The necessary matrices for their 

computation were the inverse of the pooled covariance matrix and 

the group means covariance matrix. 
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"" Mean Dispersion Matrix (B) 

l 2 3 4 5 6 

l .023 .069 -.008 .204 l. 109 -2. 192 

2 . 230 -.040 . 501 -3.052 -4.459 

3 .015 .041 4.433 -. 774 

4 3.640 57.386 -33.489 

5 2032.428 -743.467 
6 417.485 

Inverse of Pooled Cov. Matrix (E-1) 

l 2 3 4 5 6 

l 

2 

3 
4 

5 
6 

33.22 -10. 29 -11. 34 .009 .0034 .00077 

3.36 3.48 -.010 -.0009 -.00122 
7.90 .026 - . 0010 .00043 

.054 -.0007 -.00004 

.0001 .00002 

.00014 

A 1 A 
The (k-1) = 3 non-zero roots of E- B matrix are 

= . 28826"(l) 

= . 15898"( 2) 

= .03331 "( 3) 

with their associated standardized canonica l vectors 

(l)* d - ( 1. 543, - . 406, - . 046, . 132, . 0039, - . 0041) 

{2)* d - (1.108, -.154, -1.486, .093, - . 0056, -.0032) 

(3)* d - (3.708, -l.046, -1.546, -.152, -.0029, -.0039). 
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Thus the three discriminating variates which best separate the groups 

are 

T(l) * = l.543X1 - .406X2 - .046X3 + .132X4 + .0039X5 - .0041X6 

T (2)* = l .108X1 .154X2 l .486X3 + .093X4 - .0056X5 - .0032X6 

T(J)* = 3.708X1 l.046X 2 - l.546X3 - .152X4 - .0029X5 - .0039X
6 

The mean canonical values for each group centred about the 
= grand mean canonical value, t = ( 1. 900, -41. 511 , -45. 986), are 

- -Group :ill ~ 2(3) 

D .406 .451 -.115 
E -.426 .206 . 212 
F .519 -.416 .087 
G - .499 - . 241 -:' 185 

We plotted these coordinates along their canonical axes in 

three plots. Figure 5.1.1.1 represents the projection of the 

canonical coordinates onto the T(l) - T( 2) plane and Figure 5.1.1.3 

onto the T( 2) - T(J) plane. One standard deviation contours were 

drawn about each group mean's canonical coordinates which illustrates 

t he "closeness" of the groups to one another relative to their 

variability. The coordinates of patient number 31 of group D, 
31

2 = (.516, .246, .426), are denoted by a small circle. 

A classification of this patient would have little meaning 

since she falls well within each groups 90% confidence contour of 

radius 2.500. 
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Figure 5.1. 1.1. 	 The group means of D, E, F and G along the canonical 
axes with one standard devi ation contours X=first 
canonical variate, Y=s econd canon ical var i ate . 
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Figure 5.1.1.2. As i n Fig. 5.1.1.1 except X=first canonical variate, 
Y=third canonical variate. 
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Fi gure 5.1. 1.3 . As in Fig. 5.1.1. l except X=second canonical variate, 
Y=third canonical variate. 
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The failure of canonical analysis to obtain discriminating 

results is a consequence of the high variability of the data within 

each group relative to the variability between the groups. 

5.1.2. Fourier Series Analysis 

The canonical variates associated with each group mean were 

plotted in the fourier series functions, 

.4o61n 
f- (T) = + .451 sinT - , 115 COST 

ZD 
-.4261n 

f 2 (T) = + .206 sinT + .212 COST 
E 

. 519/ 
f2 (T) = n .416 sinT + .087 COST 

F 
-.4991n 

f- (T) = - . 241 SiriT - , 185 COST , 0 ~ T ~ ·21r.
ZG 

These representations of the groups are graphed in Figure 5.1 . 2.1. 

The apparent separation of the groups appears promising, however when 

each fourier function is plotted with its one standard deviation band 

the distinction between groups diminishes . Figures 5.1.2.2 through 

5. 1.2.5 are these plots. The patient number 31 of group D also was 

represented on these graphs to illustrate the ambiguity that would 

result if one tried to classify her. Her function is defined by 

.516/ T7'i2
f 31 ( ) v + .246 sinT + .426 COST.T = L 

z 

A 90% confidence band for each group would be 

0 < T < 21r .... .... 



Figure 5. 1.2.1. Fourier Series of three dimensional data. All groups. 
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Figure 5.1.2.2. Fourier Series of group D with one standard devi at ion band and patient 131 . 
Three dimen si ona l data. 
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Figure 5.1.2.3. Fourier Series of group E with one standard deviation band and patient 131. 
Three dimensional data. 
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Figure 5.1.2.4. 	 Fourier Series of group F with one standard deviation band and patient 131. 
Three dimensional data. 
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Figure 5. 1.2.5. Fourier Series of group G with one standard deviation band and patient 131. 
Three dimensional data . 
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which would encompass patient number 31 in all cases. 

Attempting to classify a new patient would again be 

impractical because of the nature of the data. 



6. CONCLUSIONS AND REMARKS 

For purposes of classification, Andrews' technique appears 

to be the most general approach. The reason being that one can 

construct confidence bands about the functions which cannot be done 

easily with canonical axes if the dimension of the space is greater 

than or equal to four. In this way, quantitative assignments of 

individuals may be made with the fourier series approach by assigning 

those individuals to the population in which their function is 

entirely encompassed by the population's confidence band. 

However, the interpretations of the fourier functions are 

not clear at all. The complexity of the plots increases with the 

number of dimensions being represented and will therefore compound 

the task of interpreting any results of the data. Its use in terms 

of informative representations is limited. 

A by-product of the application of Andrews' technqiue is the 

determination of outliers in the data. For example, patient 35 of 

group F (function 335 of Fig. 4.2.2.9) does not appear consistent 

with the other patients of that group. Inspection of the raw 

measurements in table 2.2 however would not have revealed this. 

Th i s property of the plots is very useful in that respect. 

Chernoff's faces further contribute to technqiues available in 

cl ass i fication. Used in conjunction with an analytic method this 

93 
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representation of the results can supply very convincing allocation. 

The classification of patient 31 of group D by the canonical analysis 

of discriminance is certainly corroborated by the comparison of 

Figure 4.3.l.5 with Figure 4.3. 1.1. In this manner, these faces 

may be an invaluable tool when attempting to communicate results of 

an analysis to a client or an employer not familiar with statistics. 

The heavy computations were performed by the CDC 6000 

computer and the Benson Lehner Plotter was used for the graphic 

illustrations. 
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