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ABSTRACT

Application of four statistical techniques of discrimination
is made to a set of multivariate data. The techniques, proposed
by R.A. Fisher [6], C.R. Rao [147], D.F. Andrews [1] and H. Chernoff [4],
are reviewed, applied and criticized in an intercomparison of the
four methods. Graphic illustrations are also utilized to aid in

the classification of sampling units.
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1. INTRODUCTION

The purpose of this project was to compare classical methods
of discrimination with two recently developed modern approaches.
Discrimination in statistics generally implies a technique to facilitate
the classification of a sampling unit to its parent population. The
two classical procedures that we employed are Fisher's discriminant
functions and canonical analysis of discriminance. The modern
computer-aided approaches are Andrews' fourier series and Chernoff's
faces.

The data under question had been divided into four groups but
the grouping criterion was unknown. A preliminary analysis of the
four groups revealed that the groups were too similar in location
(i.e. means) to supply any striking results. However, to illustrate
the application and potential of the statistical methods, a subset
of the original data was selected and analyzed. Sections 3 and 4 deal
with the selected subset while section 5 examines the entire set of
data to illustrate difficulties that may arise in application of

these procedures.



2. DATA

The datawere collected and compiled by a team of doctors at
the Royal Victoria Hospital, Montreal, Canada. The study was concerned
with investigating anemia in pregnant women. Of twenty-one measurements
that were made per patient, six important measurements of the blood
were used in this analysis. These were (a) Hemoglobin (Hb): an iron-
containing compound found in red blood cells that carries oxygen from
the Tungs to the body tissues. The units of measurement are grams
per 100 m1. of blood.

(b) Packed Cell Volume (PCV): also termed the hematocrit.

This is a measurement of the percentage by volume that the red blood
cells occupy in a sample of blood.

(c) Mean Corpuscular Hemoglobin Concentration (MCHC): this quantity
refers to the amount of hemoglobin per volume of red blood cells.

(d) Serum Folate(SF): the amount of folic acid found in the
serum or plasma of the blood. Measured in nanograms per millilitre.
(1072 g/m1.).

(e) Whole Folate(WF): the amount of folic acid found in the
total volume of a sample of blood. (ng/ml.).

(f) Total Iron Binding Capacity(TIBC): transferrin is a carrier
protein for iron which is necessary in the synthesis of hemoglobin.

The iron binding capacity of the blood is therefore the amount of

‘transferrin in milligrams per 100 millilitre volume of blood.
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The above six measurements will be referred to as variables
X], X2, o g X6 respectively.

The women were classified into four groups D, E, F and G
and forty from each group were involved in the study. The selected
subset of the data was comprised of ten patients from each group.

Table 2.1 supplies a complete 1isting of the six-variate

data for each group and table 2.2, the subset of the data.



Table 2.1. Measurements of the blood from 160 pregnant women

Group D

TIBC

WF

Hb PCV MCHC SF

Patient
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(continued)

Table 2.1.

Group E

TIBC

POV MCHC  SE WF

Hb

Patient
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(continued)

Table 2.1.

Group F

WF TIBC

Hb POV MCHC SF

Patient
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(continued)

Table 2.1.

Group G

TIBC

POV MCH  SEWF

Hb

Patient
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3. DISCRIMINATION AND CLASSIFICATION

3.1 General

Suppose we have k p-variate populations of a similar kind.
If we must allocate a member to one of the k populations but are
uncertain from which population it came, by what rule should we
proceed? Questions of this type give rise to discrimination and
classification, the general object of which is to find rules to assign

individuals to predetermined classes.

3.2 Fisher's Discriminant Function

In 1936, R.A. Fisher introduced a Tlinear discriminant function
which distinguished two p-variate normal populations from one another
[14]. His function was of the form

V=d'X

where X' = (X], X - Xp) is a p-dimensional random variable vector

03 e

and d' = (d], d . dp), a vector of coefficients.

o -
Fisher's purpose in constructing this Tlinear combination of

the p variates was to separate the populations as much as possible.

He therefore chose the coefficient vector, d, which maximized the

difference in mean values of each population subject to the constraint

that the within population variance was constant. That is, if

u; = (“11’ Hios +oes “ip) is the mean vector of the ith population

and Z is the common covariance matrix for each population, then we

9
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must find a vector of coefficients, d, such that
{d'(u]-uz)}z

is maximized while

EC(V-E(V)) (V-E(V))"}
E{(d" (X-p))(d" (X-u))"}
d'E{X-p) (X-1)" }d

d'zd

var (V)

is constant. This is equivalent to maximizing the ratio
' 2
{d (U'l ‘Uz)}
d'zd

The solution by differentiating with respect to d yields
-1
doZ (U]'UZ) .
Therefore, our linear discriminant function is

1

Vo= (ug-mp) 27X

Recalling that the motive of the discriminant function was to
determine a classification rule, the rule is to assign the member
x to the population which results in a mean discriminant value

u(vy) = (u1-u2)}2']ui , 1=1,2
closer to the discriminant value
V= (u1-u2)'2'1x
evaluated for x [12].
An approximate calculation of the probability of misclass-

ification may be made. Since we allocate x according to which u(Vi)

the evaluated v is closer, the critical value is
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%(U(V])+U(V2))-
The variance of V is

var (V) = d'zd

d'20z™ (ug-y)}

d'(U]‘Uz)
which may be estimated by

var (V) = di(i]-iz)

= V1V,
(without loss of generality, assume V]>92). Because V is a linear
combination of normal variates and is itself therefore normal, the
distribution of V is approximately N(u(vi), [u(V])-u(Vz)]) which
may be estimated by
V N(Vi, (91-92)).
Therefore, the probability of‘misc1assification, conditional on the sampling

unit being from one of the assumed normal populations, is approximately

l%(;]'vz)l

Pr(V>k(v,+v,)) = Pr(Z>
27172 (z _\72)32

1
where Z ~ N(0,1).

Then given two multinormal populations with a common covariance
matrix, we may classify any sampling unit into one of the two populations

with a calculable probability.

3.2.1 Application of Fisher's Diseriminant Function, k = 2

Hereafter, until section 5, the data under consideration will
be the selected subset of the original data.

‘ Groups F and G were chosen to illustrate this application.
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The parameter estimates of the covariance matrix £ and the population
mean y; were the pooled dispersion matrix S and sample mean ii’
respectively. To justify our assumption of a common covariance

matrix I, we tested the hypothesis

where Zi is the covariance matrix of the ith population. The

required test criterion is

h = -2[1-{1§] E;QT-- Loy %%§$%%i%?TT 1 n [{iﬁl Tg}— } ]
where ISil is the determinant of the estimate of the ith population's
covariance matrix, |S| the determinant of the pooled estimate of the
common covariance matrix, n; is the ith population's sample size and
n=n;+n,+...+n the total sample size [15]. The test statistic
h is distributed as chi-square with degrees of freedom equal to
[(k-1)p(p+1):2], [14]. Therefore with the dispersion matrices

Group F (SF)

1 2 3 4 5 6
.29 .94 -.04 -1.49 17.21  -7.00
3.48 -.49 -4.68 54.43  -1.88
31 .04 -4.43  -17.99
10.67 -57.83  45.57
6827.60 -810.15
4916.40

o OB W N -



Group G (SG)

1 2 3 & 5 6
1 (60 1.78 .13 .22 15.35  22.47
2 5.50 .23 .79  65.16  78.02
3 7 =05 =18:32 73,90
4 .80  25.17  30.74
5 2979.17 1774.71
6 4797.11

Pooled (S)

1 2 3 4 5 6
1 [44 136 .05 -.63 16.28 7.73
2 4.49 -.13 -1.95 59.80  38.07
3 -.24 -.003 -8.88 -10.94
4 5.73 -16.33 - '38.15
5 4903.38  482.28
6 4856.76

and their determinants
|Sgl = 2.457 x 10"
|sgl = 5.944 x 10°
Is| = 5.364 x 10

our test statistic becomes
h=-201-( - 1) 8 11 ((.as8) (Lot
30.755

n

The critical value of the chi-square distribution at a = .05 and
d.f. = 21 is X205 21 = 32.671. The non-significance of our test

statistic suggests that the assumption of the homogeneity of

dispersions may not be violated. This encourages further analysis.



14

If we consider the assumpticn that the populations have

identical dispersions upheld, we now test the hypothesis

that the populations are identical in location. If this were the
case, then discrimination among the populations would not yield
impressive results. In fact, this was the situation with the original
data.

This test of the dispersion of the populations from one

another employs a test statistic based on Wilks criterion [14]

_ W]
A= P+W

where W and P are the sum of squares and cross-product matrices
representing the within group dispersions and the between group
dispersions, respectively. The actual statistic which is dis-

tributed as chi-square with p(k-1) degrees of freedom is

u = -[(n-1)-(5] 1 (n).

From the sum of products matrices
W(within S.P.)
1 2 3 4 5 6
3.99 12.23 42 =5.70 146.52 69.60
40.41 -1.18 -17.54 538.16 342.66
2.19 -.03 -79.94 -98.50
51.58 -146.97 343.37
44130.46 4340.53
43710.80

o g BWw NN -
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P(between S.P.)

2 3 4 5 6
13 .31 .09 1.71 51.52 -27.50
.72 .21  4.00 120.26 -64.19
.06 1.16 34.92 -18.64

22.14 665.81 -355.38
20018.60 -10684.97
5703.12

o O B W Ny~

and the necessary determinants

W] = 2.851 x 10'0
|p+U| = 7.285 x 100
the test statistic is
u = -[(39)-(%2-)]1n(.3914)

15.013
The critical chi-square value, X?OS,G = 12.592, indicates that the
populations are significantly different at o = .05.

These two preliminary tests signify that our underlying
assumptions of the data are upheld and that good discrimination between
the populations will be possible.

The coefficients of the discriminant function between groups
F and G were determined by
d =5 (xp-%g) -

Mean Vectors (i})
1 2 3 4 5 6
Group F 12.2 38.33 32.1 9.9 396.5 327.2

Group G 1.7 37.1 31.7 3.3 196.4 434.0
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Inverse of Pooled Cov. Matrix (S'])

1 2 3 4 5 6
1 |1340.96 -413.24 -486.78 6.83 -.219 -.0196
2 127.71 149.90 -1.97 .079 .0022
3 181.59 -2.57. .W7 .0188
B .27 -.002 -.0032
5 .003  .0001
6 .0003

The result d' = (-17.51, 4.44, 4.87, -2.00, -.039, .046) would
supply us with a discriminant function of the form
V=d'X

However, it is convenient to choose the coefficients of the linear
combination of the p variates such that the variance within the
groups of the discriminant function is one. Since our function is
used only to separate the two populations, not to measure the distance
between them, we may multiply it by any suitable constant. The
necessary factor to standardize the discriminant function is the
reciprocal of the square root of the variance of the functions. This
variance may be determined since the sample dispersion of X is known.
As discussed in section 3.2.

var (V) = d'sd
(57! (%p-%g)1" SIS™! (Rp-%g)]

= (%p-%g)'s™! (%)

This value is also referred to as Mahalanobis DZ, a measure of the

distance between two populations [14]. Note that the estimated values
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of Z and H; were used in the determination of the variance of the
function. This is because the discriminant function is entirely
sample dependent.

The standardized coefficients are therefore

1
d* = [——————-5-1] d
(Mahal. D%)?

(.1890)d
(-3.31, .84, .92, -.38, -.007, .0086)

which gives us the desired discriminant function

V* = -3.3]X] i .84X2 * .92X3 - .38X4 - .007X5 + .0086X6.

The rule of classification of a sampling unit to the
populations is then to assign the patient to group F if her dis-

criminant value is closer to

"*_d*l‘ .
VF— XF—

or the group G if it is closer to

% .
Vg = d* Xg = -22.736

Since we have standardized the discriminant function, then

-17.445

e .
V* A N(vi , 1). Therefore the probability of misclassification of
a new patient, conditional that the patient be from either population F
or G, is approximately
R
Pr(z>|%(ve-ve)]) = Pr(z>2.645)
= .004

which means that we may expect over 99% of our assignments of a patient

to either group F or 5 to be correct.
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To test this result, patient numbered 40 of group G was to
be assigned to either F or G according to Fisher's discriminant

function. Her p-variate vector was
x*0 = (10.8, 34.5, 31.4, 3.3, 169.5, 458.0)
and so her discriminant value was
vt = gu 30 = 23 695
We therefore allocate her to group G where she belongs.
The negligible probability of misclassification with this
discriminatory technique favours strongly its application to problems

of two population discrimination.

3.2.2 Application of Fisher's Discriminant Function, k = 3

When the number of populations is greater than or equal to
three, Fisher's discriminafing function becomes a system of functipns
which must be satisfied. That is, if we are considering the groups
D, F and G,.then to classify a patient into group D her discriminant

value must satisfy appropriately the two discriminant functions

V'| = [Z-](u]"uZ)]lx
and vV, = [Z'](u]-u3)]'x

where Hps Hps Mg represent the mean vectors of groups D, F and G,

respectively. V] will make the comparison between groups D and F and Vo
betweer groups D and G. The patient's discriminant values in each case must
be closer to group D's mean discriminant values in order for her to be
classified as a group D patient. Similarly, allocation into group F
requires that the new patient suitably satisfies the discriminant functions
1= [ g mug) 10X

[5 ' (upy-13)1'X

v

and V3



19

whereas if she is to be classified as a group G patient her criterion

would be determined by V2 and V3.

We therefore have (;) = 3 discriminant functions with which
to determine her proper parent population. Each allocation will have
a probability of misclassification which will be somewhat more
complicated to compute because of the non-zero covariances of the
discriminant functions with one another.

We illustrate with groups D, F and G.

The initial tests of homogeneity of dispersions and multi-

variate analysis of variance were applied with the following results.

To be Tested Hypothesis Test statistic d.f. X2a=.05
homogeneity of dispersions Hi:z]=...=zk h = 71.508 42 . 58.124
equality of means Hz:“1="'=“k u = 40.03 12 21.026

The significance of h Teads us to a rejection of the H] hypothesis that
the dispersions may be represented by a common covariance matrix.
However, this test is based on the assumption that the p variates are
multinormally distributed whose violation may be the cause of the
significant test value. We therefore transformed the data into log-
arithms in order to normalize the observations but to no avail. The
test statistic was still significant at h1og = 59.584. We have

no alternative but to conclude that there exists a difference in the
sizes and/or the orientations of the density ellipsoids among the

three groups. The abnormality will be in group D since groups F and

G were shown to be homogeneous in section 3.2.1.



20

A highly significant u statistic in the multivariate analysis
of dispersion implies that a strong difference appears among the
group means. Even though there is heterogeneity among the covariance
matrices the test is robust enough to survive a certain amount of
disparity [9]. We can then expect good separation of our groups
by the discriminant functions.

The following inverse of the pooled covariance matrix and

the mean vectors will supply us with the required discriminant functions.
Mean Vectors (ii')
1] 2 3 4 5 6
Group D | 12.7 40.4 31.6 17.2 299.2 282.6
Group F | 12.2 38.3 32.1 9.9 39.5 327.2
Group G | 11.7 37.1 31.7 3.3 196.4 434.0

Inverse of Pooled Cov. Matrix (S'])

1 2 3 4 5 6
1 854.57 -265.05 -321.27. 1.327 -.2416 -.1269
2 82.53 99.48 -.353 .0726 .0341
3 127.06 -.519 .1026 .0550
B .036 -.0009 -.0019
5 .0003 .0001
6 .0003

The three standardized Tlinear discriminant functions are

V]* = 14.30X] - 4.06X2 - 6.53X3 + .'I4X4 = .012X5 - .012X6
V2* = 8.01X] - 2.06X2 - 3.29X3 + .'IGX4 - .003X5,- .014X6
V3* - -4.34X1 + 1.56X2 + 2.53X3 + .09X4 - .009X5 - .008X6

between groups D and F, Dand G and groups F and G respectively. The



mean discriminant values for each group determined by

vi* = Xy i=1,2,3 j=0,F,G.
are
- % * *
1 ¥2 Y3
Group D | -193.575 -87.833 90.035
Group F -197.979 -91.146 90.089
Group G -198.145 -93.626 86.670

The first discriminant function gives the rule for distinguishing
group D from group F when

-193.575-197.979
z

Vx>

1 = -195.777

Similarly, group D is distinguished from group G by the second dis-

criminant function when

-87.833-93. 626
Vo* 3 7

= -90.730
Therefore, the method of classification for group D is to assign the
new patient to this group when her discriminant values satisfy
v]* > -195.777 and v2* > =90.730. Correspondingly, the rule for
group F is v]* < -195.777 and v3* > 88.330, and for group G her
values must satisfy vz* < -90.730 and v3* < 88.380.

A test patient, number 31 of group D, will illustrate the
classification. Her p measurements are

31 = (13.6, 43.5, 31.5, 7.4, 252.7, 339.0)

which gives her the three discriminant values

v*3 = -194.219
v2*3] - -88.993
«31 . g9.018

<
w
n

21
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Then according to the previously defined rules, this individual
is correctly assigned to group D.

The determination of the errors of classification [14 ] were
obtained once the variances and covariances of the discriminant
functions were known. Since the ith discriminant function was
standardized by that pair of populations' Mahalanobis D2, then

the variances of each Vi* is one. The covariance

cov(V]*, vV, *

2 ) E(V]*'E(V]*))(VZ*'E(VZ*))'

E(d]*'(X‘U]))(dz*'(X‘Uz))'

o1 092
d, z‘/l,)(-,—z.)

2

]

(A) d* 2z (ugug)

= )

) d1*'(u1-u3)

S

may be estimated by
A ¥ '| - % %
COV(V]*s VZ*) = (""") (V1D . V]G)

/D2

2

e §
v/33.563

= .789

-193.575 + 198.145)

&5 % A __‘|_ _*_..*
Similarly, cov(V,*, V3*) = Sﬁ?) (V]P V]G)
3

= (—) (.166)

A4.565

= .044




23

A 1 e R
and cov(V,*, V.*) = (=) (Vor = Von)
2 3 62‘ 2F 2G
3
= (——) (2.48)
/i4.565
= ,650
The correlation matrix of the three discriminant functions is then
) * *
Vi Vs V3
*
V1 1 789 044
%
V2 1 .650
*
V3 1

The probability of an incorrect classification of a group D patient

is therefore

Pr(V;*<-195.777 or V,*<-80.730) = Pr(z< 125777-(-193.578)) ,

-90.730-(-87.833)) "

Pr(z< ;

Pr(Z<(195.777+193.575) and Z<(-90.730+

87.833)) . 7g9

]

.0138 + .0019 - .0013

.0144
where the first two probabilities are obtained from univariate normal
tables and the third from a tabulated function for computing bivariate
normal probabilities found in Owen [13].

Similarly, the misclassification probability of a group F
individual is

Pr(V,*>-195.777)+Pr(V *<88.380)—Pr(V]*>-195.777 and V3*<88.380)r= 044

1 3
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= Pr(Z>2.202) + Pr(Z<-1.709) - Pr(Z>2.202 and Z<-1.7O9)r= 044

= .0138 + .0437 - .0033

= .0542

And the probability of the wrong assignment of a group G patient is
Pr(V2*>-90.730) + Pr(V3*>88.380) - Pr(V2*>—90.730 and V3*>88.380)r=.650

= .0019 + .0437 - .0012
= .0444
Each of the above probabilities is conditicnal on the assumption
that the patient to be classified is either a aroup D, agroup F or
agroup G individual and no other possibility. Given this, we may
then expect 98% of the patients we classify as groupn D patients to
be correct, 94% assignad to group F to be cerrect and 95% of the

allocations to group G to be correct.:

However, we feel it necessary to treat these results with
caution since there existed heterogeneity among the dispersions of

the populations.

3.3 Canonical Analysis of Diserimination

A direct extension of the reasoning employed in the development
of Fisher's discriminant function is the canonical analysis of discriminance.
The general problem is to determine m(<p) linear combinations of the
p variates which best separate the populations. Again this is the

stipalation of maximizing the between populations dispersion with



25

respect to the within populations dispersion. Rao [14] has shown

that the coefficient vectors

; [ i i i o

d "'(d] ’dz, DRI Y dp) 1 ], 2’ ...,m
of the m Tinear combinations of the random variables are the solutions
of |

.il

(B-Aiz)d =0
where B is the dispersion matrix of the k population means, r is the
common covariance matrix of the p variates and A is a root of the
equation

IB_A'iZl.:O .
Thus the coefficient vectors, dT's,are the eigenvectors associated

]B. These

~with the eigenvalues, Ai's, of the asymmetric matrix I~
eigenvalues and eigenvectors are termed canonical roots and canonical
vectors, respectively. The Tinear combinations
- #h
Ti = d X
they produce are called canonical variates.

Geometrically, the test space is transferred into a space
defined by new axes whose directions are indicated by the canonical
vectors. Each direction or axis is perpendicular to the others in

c' l'
the sense that any two canonical variates, Ti =d' X and Tj = dJ x
i # j, are independent. That is,
E(TyE(T)) (T -E(Ty)
- .
E(d" (X-u))(d (X-n))"’
.1 j
d' = d

éov(Ti, Tj)

0
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However, there is an upper T1imit to the number of dimensions that can
be represented by the canonical axes. When the number of populations
is less than or equal to the number of random variables (k<p), the
transformed space is restricted to (k-1) dimensions. This is exem-
plified by there only being (k-1) non-zero canonical roots of the
2"18 matrix. When k>p, the dimensionality of the canonical space can
extend only to the full test space of p dimensions.

Each canonical root is directly proportional to the amount
of variation among the groups in the direction of its associated

canonical vector. Therefore our best discriminating Tinear combination

is the one associated with the largest canonical root. That is,

= 4!
Tm-d( V'x

where a bracketed subscript or superscript denotes ordering with
respect to magnitude of the canonical roots. Similarly, the second
canonical variate
Trg = 42

supplies the next best discriminating function, and so on. Therefore
the zero roots of the Z']B matrix (if they exist) indicate that no
further variability is left to be explained and hence do not introduce
further functions.

Using Fisher's discriminant function, the discriminating
boundary

[Z-](p]-uz)]'x = constant

where the constant is



r.d §

S (027 (g ) Ty + L2 (o) 1)
defines a hyperplane which bisects the 1ine joining the means M
and My of the two populations. On the other hand, with canonical
analysis we discriminate along the lines of closest fit to the k
means rather than the 1ine joining each pair of means. Indeed, the
first canonical axis defines the "best" 1line fitting the means,
the second, orthogonal to the first, defines the next optimum 1ine,
and continuing in the same manner until the canonical space is filled.
Therefore, when k = 2, the discriminating variate derived from the
canonical analysis will be identical to Fisher's discriminator
because the 1ine of closest fit between two populations is that Tline
which joins their means. However, when k > 3 the two techniques, in

general, are not equivalent.

3.3.1 Application of Canonical Analysis of Discriminance, k = 2

We apply the analysis to groups F and G.

A
Mean Dispersion Matrix (B)

1 2 3 B 5 6
43 31 08 1.7 51.52 =27.50
.72 .21 4.00 120.26 -64.19
06 1.16 34.92 -18.64

22.14 665.81 -355.38
20018.60 -10684.97
5703.12

D OB w NNy~
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Inverse of Pooled Cov. Matrix (2'1)

1 2 3 - 5 6
1340.96 -413.24 -486.78 6.83 -.2700 -.0196
127.71  149.90 -1.97 .0794 .0022

181.59 -2.57 .1068 .0188
.27 -.0021 -.0032

.0003 .0003

.0003

o OB W Ny -

Since k < p, we may construct only (k-1) = 1 discriminant function.
The non-zero canonical root of 3 'B is
A(]) = 14.001

with its canonical vector

d1) = (~.931, .236, .259, -.106, -.002, .0024).
We wish to standardize the canonical variate so that its within groups
variance is one as was done with Fisher's coefficient vector in
section 3.2.1. The variance of the canonical variate is

var(T(])) = d(])lzd(I)

which is estimated to be .079. Therefore, the standardized canonical

vector 1is

dM" < YT ;d ¥ all)

(-3.31, .84, .92, -.38, -.007, .0086)
which yields the canonical variate

T(y" = -3.31X) + .84X, + .92, - .38X, - .007X; + .0086X

1 2 3 4 5 6

identiéa] to Fisher's V* of section 3.2.1.



Thus a parallel analysis to that section would follow.

3.3.2 Application of Canoniecal Analysis of Diseriminance, k = 3

Groups D, F and G are the groups under consideration.

Mean Dispersion Matrix (§)

1 2 3 4 5 6
« 2B 82 =-,038 . 3.47 26.43 -38.01
2.75 -.184 11.41 62.55 -119.54
.065 -.56 17.16 1.25
48.13 342.46 -522.14
10011.77 -5431.29
6052.89

S O Bw NNy~

Inverse of Pooled Cov. Matrix (2_1)

1 ' 2 3 4 5 6
854.57 -265.05 -321.27 1.327 -.2416 -.1269
82.53 99.48 -.354 .0726 .0341
127.06 -.519 .1026  .0550
.036 -.0009 -.0019
.0003 .0001
.0003

(o2 IS N

A_'IA .
r B matrix are

The (k-1) = 2 non-zero canoncial roots of the
A(]) = 8.4739

with their associated canonical vectors

d") = (896, -.235, -.375, -.016, -.0004, -.0014)
d(2) = (-.865, .264, .427, -.0008, .0011, .00004) .

The estimated variances of the two canonical variates are
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dM'2 4N = g102

var(T(]))

a(2)'% 4(2) = o053

and vgr(T(z))
Therefore, the standardized canonical vectors (such that the
within groups variance of the canonical variates is one) are

M 2 ()
VVar(T(1))

(8.859, -2.322, -3.709, .162, -.0039, -.0141)

and d(z)* = (————l————)d(z)
/Var(T(z))

(-11.932, 3.649, 5.890, -.0105, -.0145, .0006)

Thus the two canonical variates best separating the groups are

- 41
T(])* d X
= 8.859X1 - 2.322X2 - 3.709X3 F .]62X4 - .0034X5 - .0]4]X6
4
and T(z)* d X

-11.932X1 + 3.649X2 + 5.890X, - .0105X

3 - .0145X5

4
4 .006X6

A test of the significance of the dispersion of group means
along each dimension was made. That is, we may test whether all of
the roots after the jth say, can be given zero values. Bartlett's
(1954) [15] test of this hypothesis,

H : A(j+]) = A(j+2) = s A(f) =0 N f= min{p,k-]}

is based on the fact that under the null hypothesis
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{(n-1) - (EEEJ} ln'{1£j+1 (11 4y

is approximately a chi-square variable with (p-j)(k-j-1) degrees of
freedom. Therefore, we have

: f : : 2 .
Jt A(541) 1,H (]+A(1)) {24.5}1n{n(1+x(i))} x df Cr1t£ca1 Value

:j-l-'l
X4=.05
1 8.4739 35.7270 87.6097 12 21.026
2 2.7711 3.7711 32.5205 5 11.071

We conclude that both canonical variates explain significant amounts
of varjation among the groups.

Then to classify an individual, we compare her canonical
values to each group mean's canonical values.

The mean canonical variates for groups D, F and G are

- *!_ - *'_

Group t(])f = d(]) X t(Z) = d(z) X
D -100.9656 186.4475
F -104.4725 189.1078
G -106.7450 186.0397

These values represent coordinates in the transformed space with

axes T(])* and T(z)*. We may therefore depict these three groups in
a two-dimensional diagram to jllustrate their relationship with one
another. It was convenient to centre the groups about the grand mean

canonical variates,

] _ (_i)*l=
Tipr=d" X | i=1, 2

to emphasize the degree of separation attributed to each variate.
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Let the transformed standardized canonical variates be denoted by

F ens = (Trena® = Tyank i=1,2; j=D,F, G.
Ziiys = Myg™ = Ty™ 1= ke 17105 0
The coordinates to be considered are now

Group E(]) Z(9)
D 3.0954 -.7508
F -.4115 1.9095
G -2.6840 -1.1587

where (i(])*, ?(2)*) = (-104.0610, 187.1984).

Furthermore, since the canonical variates were constructed
to have unit variance, a one standard deviation contour encircles each
group mean canonical variate. The representation of groups D, F
and G in this manner is found in Figure 3.3.2.1.

A classification procedure of a new patient is to assign the
individual to the group in which her canonical coordinates, (T(])*, T(Z)*)’
and the group's mean canonical coordinates (?(])*, T(Z)*)’ are
closest in terms of Euclidean distance.

For example, we employed patient number 31 of group D to
illustrate this procedure. Her canonical varijates are

31 ,
t(l)* = a(M*' 31 = _102.0991

31 _ 4(2)* 31

*
which give the transformed values of

(2(1)3], 2(2)3]) = (1.9619, - 1.1813).
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Figure 3.3.2.1.

The group means of D, F and G along the
canonical axes with one standard deviation
contours. X=first canonical variate, Y=second
canonical variate.



This coordinate point is represented in Figure 3.3.2.1 by a small
circular point. Her distance from each of the three groups is

determined from the well known planar distance between two points

. " 2 - 2 :
() ) )° * (g E) )Y i Ful
From group D, patient number 31 lies

£(1.9619-3.0954)2 + (-1.1813+.7508)%}”

1.2125 units

From group F, she is

£(1.9619+.4115)% + (-1.1813-1.9095)%}% = 3.8969  units,
and from group G, this patient is

b{(1.9619+2.6840)2 + (51.1813+1.1587)2}% = 4,646 units.
We therefore classify this fndividua] as a group D patient.

In essence, we have divided the canonical coordinate plane

into three regions. Each region, associated with a given group, has

the perpendicular bisectors of the 1ines joining its mean to the

other means as its boundaries.

Diagrammatically:

34
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The probability of misclassification is then an integral of a bivariate

normal distribution over a complex region. Namely, the probability of

misclassifying a group D patient is the integral over the region

denoted below.

[T,

Rather than evaluate this integral, it is reasonable to accept a
classification of an individual only if her coordinates are within

a predetermined confidence contour. If we decided to specify a 90%
classification probability then the 90% cohfidence contour haé a
radius of 1.645. With the previous distances determined for patient
number 31, we may rightly allocate her to group D because she falls
within this contour (1.2125<1.645).

Using this approach, we will not classify a patient to any of
the groups if all three distances to the group means are greater than
1.645. This is justifiable because a patient whose distances are
very large from all groups should not be blindly allocated to a group
even though she is within that groups region. This individual, in

all 1ikelihood, would not be from any of these populations at all.
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This discriminatory approach did not result in a different
classification of patient number 31 than Fisher's function's class-
ification. However, if the computational facilities are available
this technique is favoured due to its more informative nature with

respect to variability among the groups.

3.3.3 Application of Canonical Analysis of Diseriminance, K = 4

A1l four groups are now to be analyzed.

The preliminary testing yielded the following results.

Hypothesis Test Statistic Degrees of freedom A§= 05
H:z]=...=zk' h = 141.041 63 82.529
H:u1=...=uk u= 78.187 18 28.869

Additional heterogeneity among the dispersion; is introduced by group
E. Caution must be applied in the interpretation of the remaining
analysis. However, we can expect good discrimination of the groups
with the (k-1) = 3 canonical variates.because of the highly signi-
ficant difference among the means.

The necessary matrices for the computations are

Mean Dispersion Matrix (ﬁ)

1 2 3 - 5 6
.19 .65 -.054 1.89 6.50 -21.07
2.32 -.267 5.57 -11.40 -59.34
.087 23 27.24 -5.22

40.58 450.42 -433.25
12481.69 -5847.31
4888.88

SO AW N~
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Inverse of Pooled Cov. Matrix (5_1)

1 2 3 4 5 6
1 1955.10 -295.92 -360.60 1.406 -.2687 -.1251
2 92.05 111.29 -.363 .0805 .0315
3 142.96 -.575 .1177 .0554
4 .046 -.0011 -.0024
5 .0003 .0001
6 .0003

A A
The non-zero canonical roots of the © B matrix are

A = 7.2103
(1)

A(Z) = 5.0296

A(3) = .0751

with their associated canonical vectors
4N
4(2)

(.8982, -.2181, -.3810, .0239, -.0003, -.0020)

(-.8658, .2583, .4286, -.0012, .0010, .0002)
a3 = (_.9045, .1775, .3856, .0408, -.0015, .0004)
The variances of the three canonical variates are estimated to be

var(T(1)) = .0169
v3r(T(2)) = .0039
v3r(T(3)) = .1803.

Therefore the three standardized canonical variates which will act as

our discriminating functions are
a(1)* '

Lihe

6.9]2X.l - 1.679X, - 2.932X3 + .184X, - .0024X. - .0156X

2 4 5 6
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x _ (2)%
T( d X

2)
= -]3'794X] + 4.116X2 + 6.828X3 - .0]9X4 + .O]G]XS + .0026X6
* = 4(3)*
= d
and T(3) X
= -2.130X] + .4]8X2 & .908X3 + .096X4 - .0035X5 o .OO]OXG.

The test of the significance of each canonical root yields

the following:

' f f S 2
jtt A i (1+Ai) {34}1n{j¥1(1+xi)} df.zfor Critical X_05

i=j+]
X

1 7.2103 53.2226 135.1324 18 28.869

2 5.0296 6.4824 . 63.549] 10 18.307

3 . .0751 . 1.0751 2.4621 4 9.488

The third canonical root is non-significant which implies that, when
the persons and group means are projected onto this canonical variate,
the differences»among the group means are small relative to the diff-
erences among persons within a group. The first two canonical roots
are highly significant which indicates that good separation among

the groups will occur along these dimensions.

To illustrate the separation of the data imposed by each
canonical variate, the group mean canonical variates, with their unit
standard deviation contours, were plotted against each pair of
possible axes combinations. Figure 3.3.3.1. is the first canonical
variate (X-axis) versus the second canonical variate (Y-axis).

The larger degree of separation along the X-axis reveals the greater
discriminatory power of the first canonical variate. The transformed

mean canonical variates (transformed by the grand mean canonicalvariate)
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Figure 3.3.3.1. The group means of D, E, F and G along the
canonical axes with one standard deviation contours.
- X=first canonical variate, Y=second canonical
variate.
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are,

%(1) %(2) %(3)

Group D +3.5438 -.4039 +.1890

Group E -.5382 -2.4812 -.2722

Group F -.0428 +2.9603 -.1952

Group G -2.9628 -.0752 +.2784

Constant Term | -78.2939 212.6007 19.2126
(Grand Mean)

Figure 3.3.3.2 is the projection of the mean canonical variates onto
the T(]) - T(3) plane where the first canonical variate, T(]) is the
abscissa. This clearly indicates the insignificant variation explained
along this third canonical variate. Figure 3.3.3.3 is the repre-
sentation of the T(2) = T(3) plane with the second canonical variate
being the abscissa.

The apparent function of the first canonical variate is to
alienate groups D and G to the fullest extent, while groups E and F
are separated by the second canonical variate. The unsuccessful role
of the third canonical variate appears to be to distinguish between
the pairs of groups D, G and E, F. This is a good illustration of
the capabilities of the canonical variates.

Test patient, number 31 of group D, has the canonical values

31 31 31y _
(z(1y7s 2(31)7 5 2(3)” ) = (2.2229, -1.0114, -1.2156)

We then determined her three dimensional distance from each of the

group mean canonical variates, in order to classify her, by the
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equation

Y = w2
T 7Ty )7+ (T Ty

-+

(T3-T31-*)2}1/2 = distance from group i
1= D; Es Fa G,

These are:

Distance from Group D = 2.0216 units

Group E = 3.2642 units
Group F = 4.6850 units
Group G = 5.4772 units

She is then correctly classified as a group D patient.

The 90% contour about these trivariate normal points is a
sphere of radius 2.5003. This value was obtained from the critical
values tabulated forthe spherical normal distribution in Owen [13].

The test patient falls only within group D's 90% contour
which leaves no ambiguity to which group she belongs.

When the dimension of the canonical space is greater than or
equal to four (i.e. min{p,k-1}>4), one would restrict the classifi-
cation rule to the first three canonical variates so that the con-
fidence contours are easily determined. In practice, a great proportion
of the variation is usually explained by the first three variates
so that this approach would supply accurate results.

This analysis has a distinct advantage over Fisher's when k = 4
. populations. With Fisher's discriminant functions we need (g) =12
discriminators while canonical analysis accomplishes the same with
three. Furthermore, the properties of the canonical variates make

the computations easier (i.e. cov(Ti, Tj) = 0) and the graphical
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representation of these variates enhances the understanding of the
data dispersion.

However, when the dimensions do become large, the projection
of the variates onto two-dimensional axes will be inadequate. The

next section will attempt to supply us with alternatives.



4. HIGH-DIMENSIONAL REPRESENTATION OF DATA

4.1 General
Graphical portraying of data has long been a useful aid
in its analysis. The plotting of the residuals of a time series
model reveals a great deal of information concerning the model.
Histograms often are the basis of underlying distribution assumptions.
The problem is not with univariate or bivariate data, but
with data that may not be depicted by a planar coordinate plotting.

To this end, the following procedures apply.

4.2 ‘Fourier Series

This procedure is attributed to D.F. Andrews [1] who attempted
to visualize high dimensional data in a space of functions. That is,
each data point X = (x1, - xk), is mapped into a fourier series

function of the form

(S

fX(T) = (2} X] * Xp sinT + X3 €OST + X, SIn2T + Xp cOS2T + ...
and the function is plotted on the range 0 < T < 2.
So as to compare this approach with canonical analysis, the
data points that were plotted were the canonical variates
¥ = (T(1)s T(z)s cees T(f)) 5 f = min{p,k-1}.
Andrews notes that the choice of which numbers to examine, here
canonical variables, is based on the nature of the data and the

objectives of the analysis. Our objective is differentiating among

45
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the groups, so this selection of variables to use is exemplary.

4.2.1. Properties of the Fourier Series Plots

(i) The function representation preserves means. If t is
the mean of a set of n multivariate observations t', then the function
corresponding to t is the point mean of the functions corres-

ponding to the n observations:
-1
t (x) = n

As a result the average will appear like an average in this plot [1].
(ii) An analagous concern to canonical analysis is the

~ distance befWeen two functions to imply thefr “closeness" to one

another. One measure of distance is

2m

j - ' - 1)3% dz
Hft" (x) - f3 ()]l = Jo {F 4lx) - f 500" d

One may then evaluate a test patient's distance from each of the
groups by determining her functional distance from each of the group
mean fourier series plots [1].
(iii) If the components of the data are uncorrelated with

common variance 02, then

var(fT(T)) = 02[%+sinzr+coszr+sin221+c05221+...].
If f = min{p,k-1} is odd this reduces to a constant, % o° f; if f is
even the variance lies between % oz(f—l) and 4 02(f+1). In the

first case the variance does not depend on T and in the second the

dependence on T is slight. Thus the variability of the plotted
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function is almost constant across the graph [1].

4.2.2. Application of Andrews Technique, k = 4

The group mean canonical variates,
(Z1)3° 2(2)5> Z(3)3) 3D E Fu G

which are centred about the origin of the canonical axes, give the

following four fourier series:

3.5438/
fie (z)= V2 - .4039 sint + .1890 cost
D
-.5382/
5 le) = V2 - 2.4812 sint - .2722 cost
E A : : »
- —.0428/ '
fo () = V2 + 2.9603 sint - .1952 cost
F
-2.9628/
fis (t) = Y 2 - .0752 sint + .2784 cost
G

Ocregen. :
Figure 4.2.2.1 1is a plotting of these functions. The functions
in all subsequent plots are numbered by the following scheme:

(i) the group mean plots are the 500 series where

501, ..., 504 represents the groups D, E, F, G, res-
pectively.

(ii) all other functions are the individual patient's fourier
series where the first digit of the function number
implies the group from which the patient originated and
the second and third digit her patient number. For

example, function number 131 is the plotting of patient
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number 31 of group D; function number 315 would be
patient number 15 of group F; etc.

Recalling how the canonical variates separated the data, it
is evident that they continue to do so in these plots. The first
canonical variate which is the coefficient of the term(Z)'% widely
alienates groups D (501) and G (504) by separating their Y-axis
intercepts. The second canonical variate accomplishes its separation
of groups E and F (502, 503) by imposing a large positive sine term
on group E versus a large negative sine term on group F. The third
term of the fourier series representing the third canonical variate
offers little influence on the functions which was expected because
of its insignificant canonical root.

We plotted patient number 31 of group D among these group

mean functions. Her fourier series is
f gq(1) = 2.229(2)% - 1.0114 sint - 1.2156 cost, 0 < T < 2m.
z

Figure 4.2.2.2 contains the five functions.

By inspection, it appears that patient number 31 belongs to
either group D or group E; group D because for all T values her function
is positive as is group D's, and perhaps group E because the shape
of her function is very close to group E's but not as severe.

We took a closer look at the individual plots. The variance
of the plots may be estimated by

var(f(r)) =40 2f = (.5)(1)(3) = 1.5 units

Z



added. Three dimension data.

Figure 4.2.2.2. Fourier Series of all groups but with patient 131
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since the variance of the standardized canonical variates is one.

As was done for the plotting of the canonical variates against their
canonical axes, a one standard deviation contour or band is plotted
with each group mean fourier series. That is, for any t, 0 < T < 2m,
the vertical distance between the band and the function is

(1 &5

The test patient was then plotted along with these one standard

1")1/2 = 1.2447 units.

deviation bands against each group mean function. Figures 4.2.2.3,
4.2.2.4, 4.2.2.5, 4.2.2.6 are these representations.

An overall 90% confidence band can be determined to emcompass
the function. Andrews [1] shows that, for all values of T, the

probability of

- S Y TR
|fr(t) - fuT(T)l s (5)o X, f

where x§ £ denotes the upper o point with f degrees of freedom of

the chi-square distribution, is approximately 1-o. Our 90% confidence

band then becomes

+ (B &2 Xoff F =+ ((F)(1)(6.251)1% = + 3.5358 units

Referring to Figure 4.2.2.3 it is easy to see that the patient
completely lies within a band width of + 3.5358 about group D. How-
ever, in Figure 4.2.2.4 the patient function extends outside this

band about the group E function at approximately 100° < t < 140°.

In the other two plots, Figures 4.2.2.5 and 4.2.2.6, the patient exits

the confidence band in many regions. Therefore an appropriate class-
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Fourier Series of group F with one standard deviation band and patient 131.
Three dimensional data.
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ification of patient number 31 is to assign her to group D.

It was of interest to try to find a single discriminant
vatue associated with each group. That is, can we come up with a
single statistic which will indicate the group to which a patient
belongs? This problem was considered by looking at each patient's
fourier series in the hopes of finding a specific T where all the
patients within a group clustered but each group clustered at
different fT(TO)'s. Diagrammatically, the T, We were looking for

would Took like:

- - — - —

f()

—— - - ——

15
]

We can then determine each group's mean discriminant fourier value

fz (1) = fu.(ro), i=0D, E, F, G. The hypothesis that the expect-
i i

56

ation of fT(TO) = fﬁ(ro) for some hypothesized p may be tested. This

is accomplished by evaluating the significance level of

Afp(r,) - fu(ro)} .
{var(fT(ro))}l/2

as a standard normal variate.
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In effect, we are determining a linear combination of the
canonical variates which themselves are linear combinations of the
original data, to obtain a representative quantity associated with
each group. Given a test patient, her discriminant fourier value,
ft(ro), is calculated and tested against each of the ffi(ro), i=0D,
E, F, G, to determine her allocation.

Figure 4.2.2.7 to Figure 4.2.2.10 are the plottings of each
group's individual patients' fourier functions. Al1 of group D's
fourier series (Fig. 4.2.2.7) are quite variable and do not cluster
well at any t. The only striking feature of these plots is that
’essentia11y all values of ftD(r) are positive. Group E on the other

hand appears to have a very characteristic plot (Fig. 4.2.2.8) with
0° and t = 140° perhaps. A noteworthy point

good clustering at =
is that for t < 180° we find ftE(r) <0 and if t > 180°, ftE(r) > 0.
GroupF (Fig. 4.2.2.9) approximates a mirror image of group E in the
X-axis. Therefore the reverse statements are true; for t < 180°,
ftF(T) > 0, and t > 180° implies ftF(r) < 0. Similarly group G

(Fig. 4.2.2.10) imitates group D but below the X-axis.

It is evident that a single T,» @S discussed previously, cannot
be found to construct our discriminator among these groups. However,
another testing procedure applies. If we select o 90° and test
whether or not the expected value of ft(To) is greater than zero, we
may determine into which pair of groups this function belongs. That
is, if the test supports the hypothesis that E(ft(ro)) > 0 then the

patient'is a member of group D or group F. If the hypothesis is
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Figure 4.2.2.7.

Fourier Series of all of the individual patients of group D..
Three dimensional data.
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Fourier Series of all of the individual patients of group E.

Figure 4.2.2.8.
Three dimensional data.’
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Figure 4.2.2.9. Fourijer Series of all of the indiﬁidda].patients of group F.
Three di jonal data.
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Figure 4.2.2.10. Fourier Series of all of the individual patients of group G.
Three dimensional data. -
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rejected, then she belongs to groups E or G. Once the pair of groups
to which she belongs has been decided we may make the analagous test
at Ty = 270° to distinguish between these two groups and allocate her
accordingly.

The allocation of patient number 31 of group D is as follows.
Her two test criterions are:

2.2229/ -
f 3](ro =90°) = /Y2 -1.0114 sin(90°) - 1.2.56 cos(90°) = .5604
4

2.2229/
i 31(To=270°) = Y 2 - 1.0114 sin(270°) - 1.2156 cos(90°) = 2.5832
3
The test of whether f 3](To=90°) is significantly greater than zero
T
reduces to the determination of whether or not the standard normal

value of
(.5604-0.0) / VY1.5) = .4572

lies in the upper o = .05 tail of the normal distribution. It does

not and in fact this value is non-significant approximately up to

o = .10. We therefore must conclude that we do not have adequate
information to classify this patient. However, we can determine the
pair of groups that she belongs to because f 3]('r,o=270°) is signifi-
cantly positive at « = .05 (i.e. a standard ﬁormal value of 2.1092).
Thus she is either a member of group D or group E.

Admittedly this procedure may accomodate a great number of
variables but the interpretations and testings leave ambiguous results.
The existence of a solitary T, to discriminate among the groups

would be extremely convenient. With the restriction that the t's

be integers, this Tinear combination is very unlikely to be found.
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Furthermore the plotting of the canonical variates in the fourier
series did not illuminate any hidden features butappeared to
camouflage those discovered by the canonical axes. For example, the
attempt of the third canonical variate to separate the pair of groups
D, G from the pair E, F as illustrated by the two-dimensional canonical
axes plot was nowhere evident in the fourier plot.

An equitable comparison of the two graphical representations
was made by plotting the fourier series with only the first two

canonical variates as coefficients, in the form

fz(r) = (Z)I%Z] + 22 sint . 0 <tTcg 2m.

Then this plotting (Fig. 4.2.2.11.) is equivalent to the canonical
axes plot in Figure 3.3.3.1. Both plots illustrate the same features,
that is, group D and G have large (in magnitude) first canonical
variates and relatively small second variates and vice versa for
groups E and F. Nonetheless the canonical axes supplies this in-
formation immediately while one has to interpret the fourier functions
to obtain the same conclusions. This further interpretation of an
already complex set of data (canonical variates) may well be a source

of error.

4.3. Chernoff's Faces

This graphical method of displaying points in p-dimensions
was developed by Herman Chernoff in 1973 [4]. The method consists of

representing a point in p-dimensional space by a drawing of a face
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Figure 4.2.2.11.

Fourier Series of all groups.

Two dimensional data.
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whose characteristics are determined by the position of the point.

The object was to enable the investigator to quickly com-
prehend relevant information of the data and then apply appropriate
statistical analysis. No quantitative results are produced buta
better "feel" of the data is obtained.

At present, the number of variables that may be accommodated
is less than or equal to eighteen. Each variable is associated with
a given characteristic by the following scheme: if Y = (y], Yos «ees
y]8) is an 18-dimensional data point then the corresponding facial

characteristics are

Variable Characteristic
Yq radius r to corner of face
Yo angle of r to horizontal
Y3 vertical size of face
Y eccentricity of upper face
Y eccentricity of lower face
Yg length of nose
Y7 vertical position of moutn
Yg curvature of mouth
Yq width of mouth
Y10 vertical position of eyes
N separation of eyes
Y12 slant of eyes

eccentricity of eyes
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Yia size of eyes

s position of pupils

Y16 vertical position of eyebrows
Yi7 slant of eyebrows

Y18 size of eyebrows

Two proposed advantages of the facial representation of data,
as suggested by Chernoff, are (i) enhancing the user's ability to
detect and comprehend important phenomena.

People are in constant contact with varying faces each day.
They subconsciously filter out repetitive and common features and
focus their attention to the most striking characteristic of a
person. If he be oriental, then the notable distinction is his eyes;
his eyebrows and mouth perhaps would leave little impression. In
this way, the relevant data is detected and comprehended.

(ii) serving as a mnemonic aid for remembering major conclusions.

If numerical data is inspected, preliminary separation or
distinctions may be made. However, as these features of the data
become more numerous the ability to retain the information is poor.
With the data represented as faces, certain major characteristics of
the faces are instantly observed and easily remembered in terms of
emotions and appearance.

The major advantage to be derived from using the faces should
be in the heightened qualitative awareness of which numerical cal-

culations are relevant [4].
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4.3.1. Application of Chernoff's Faces, k = 4

As a direct comparison to the previous graphical represen-
tations of the canonical variates, these set of variables were
employed as the data points. Hence we have three-dimensional points

representing each group.

z, = (3.5438, -.4039, .1980)

EE = (-.5382, -2.4812, -.2722)
zp = (-.0428, 2.9603, -.1952)
2, = (-2.9628, -.0752, .2784)

There are (18-3) = 15 characteristics which had no defining variable
and therefore were fixed for each group. The traits that were

defined by the three canonical variates were

Zy = vertical size of face
22 = eccentricity of lower face
23 = curvature of mouth

The method of plotting converts the range of each variable
into a range of suitable proportions for the faces. Thus the maximum
and minimum of each variable become the extremes in the range édopted
for the faces.. This ensuresthat each variable is scaled relative
to a measure of variability (i.e. range).

Figures 4.3.11. through 4.3.1.4 are the computer drawn faces
for groups D, E, F and G. The vertical size of the faces clearly
emphasizes the effect of the first canonical variate. However the

second canonical variate does not appear to separate groups E and F



Figure 4.3.1.1.

Face of group D. Derived from three
canonical variates.
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Figure 4.3.1.2.

Face of group E. Derived from three
canonical variates.
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Figure 4.3.1.3.

Face of Group F. Derived from three
canonical variates.
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Figure 4.3.1.4. Face of group G. Derived from three
canonical varijates.
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well at all. This implies that the significance of a variable

depends to a large extent on the facial characteristic that the variable
is assigned. The eccentricity of the Tower face is not a good
discriminating feature. The third canonical variate controlling the
curvature of the mouth offers 1little in separating the groups.

The test patient number 31 of group D had her caricature
drawn with the same defined characteristics. Figure 4.3.1.5 reveals
her facial features. On inspection, we classify her as a group D
patient even though her mouth is uncharacteristic of group D. Her
features of size of face and eccentricity of lower face convincingly
suggest she is from group D.

Another application of this procedure is to initially scruti-
nize the data to determine which statistical analysis to employ. We
therefore looked at the faces constructed from the raw data and
not the canonical variates. This enabled us to increase our defining
variables to six. The point X = (x], AP x6) was assigned to the

features as follows;

Xy = vertical size of face

Xy = eccentricity of upper face
X3 = eccentricity of lower face
Xq = curvature of mouth

Xg = slant of eyes

Xe = size of eyes

The remaining characterisitcs were fixed. The mean faces for each

group were plotted using the data
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Figure 4.3.1.5. Face of test patient 31 of group D. Derived

from three canonical variates.
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RD = (12.682, 40.408, 31.578, 17.155, 299.207, 282.600)
iE = (12.479, 40.017, 31.379, 4.296, 144.985, 406.3667)
;F = (12.197, 38.332, 32.076, 9.938, 396.535, 327.200)
RG = (11.682, 37.130, 31.727, 3.283, 196.442, 434.000)

Figure 4.3.1.6 through 4.3.1.9 are their portraits. The most

obvious differences among the plots are the shape of the heads and
the size of the eyes. This would suggest that close investigation
should be aimed at variables X2, X3 and X6‘ This brings to Tight

an interesting question. Are the eyes and the shape of a head the
most notable features one sees in a face? Under closer examination
of the faces the mouths also are very distinct in each group, however
this was unnoticed in first impressions. Similarly, the slant of the
eyes were of secondary importance. Chernoff [4] admits these short-
comings and is attempting methods of counteracting these psychological
effects. He suspects that a series of faces, representing a single
multivariate point, constructed by permuting the variables associated

with given characteristics may remedy this.
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Figure 4.3.1.6. Face of group D. Derived from the six original variates.
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Figure 4.3.1.7. Face of group E. Derived from the six original variates.
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Figure 4.3.1.8. Face of group F. Derived from the six
original variates.



Figure 4.3.1.9.

Face of group G. Derived from the
six original variates.
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5. REAL DATA

Anyone who has worked with real 1ife situations and
measurements is sure to admit the inconveniences that often arise.
The data will seldom seem to comply to the theoretical restrictions
that are necessary for underlying assumptions of analysis. However,
even though these prerequisites for some statistical procedures are
not upheld, information may still be extracted by the application of
these techniques to the data. The important condition to remember
is that the conclusions and interpretations drawn from the results

must be treated with caution but not necessarily total rejection.

5.1 Analysis of the Original Data, k = 4

The entire set of data consisting of 160 patients is tabulated
in Table 2.1.

A preliminary overview of the data was based on the tests of
the homogeneity of dispersions and of the equality of means. To

test the homogeneity of dispersions

we evaluate the significance of the h statistic (section 3.2.1.).

The necessary determinants of the matrices for its calculation are

|sp| = 7.5406 x 10°
|sgl = 1.8660 x 10°
Isg] = 4.6512 x 10°

79
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|sg! = 2.4670 x 107

B = 7.5433 x 10°

poo]ed|
The test statistic is therefore

-2[1-{%5-- 1%3&$§331n[(.009996)(.000247)(.005.66)(.03270)]]9'5

778.6095

=
]

The critical X§=.05 value with 63 degrees of freeom is 82.529. The
test statistic is highly significant and thereby forewarns us to the
application of the discriminating procedures.

The test of the equality of the mean vectors of the populations,

H : My = eee =1y = U

based on the Wilks criterion (section 3.2.1.) yields the test statistic
u = -[(159)-(5)11n{(.9640)} = 5.6805.

The critical X?OS value with 18 degrees of freedom is 28.869. This

would indicate that there is no significant difference among the

group means.

5.1.1. Canonical Analysis of Discriminance

The differences among the groups that do exist will be best
exhibited by the canonical variates. The necessary matrices for their
computation were the inverse of the pooled covariance matrix and

the group means covariance matrix.



A
Mean Dispersion Matrix (B)

1 2 3 4 5 6
1 .023 .069 -.008 .204 1.109 -2.192
2 .230 -.040 .501 -3.052 -4.,459
3 .015  .041 4.433 -.774
4 3.640 57.386 -33.489
5 2032.428 -743.467
6 417.485

: A-1

Inverse of Pooled Cov. Matrix (X7')

1 2 3 4 5 6
1 33.22 -10.29 -11.34 .009 .0034 .00077
2 3.36 3.48 -.010 -.0009 -.00122
3 7.90 .026 -.0010 .00043
4 .054 -.0007 -.00004
S .0001 .00002
6 .00014

A_'I A

The (k-1) = 3 non-zero roots of £ ' B matrix are

A(1) = ,28826
A(Z) = .15898
1(3) = ,03331
with their associated standardized canonical vectors
d)* = (1,543, -.406, -.046, .132, .0039, -.0041)
d(z)* = (1.108, -.154, -1.486, .093, -.0056, -.0032)

d(3)* - (3.708, -1.046, -1.546, -.152, -.0029, -.0039).
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Thus the three discriminating variates which best separate the groups

6

are
Tq)" = 1.543K; - 406X, - .046X5 + .132X, + .0039X; - .0041X
Tip) = 1.108X; - .154X, - 1.486X; + .093X, - .0056X; - .0032X
T(3) = 3.708K; - 1.046X, - 1.546X; - .152X, - .0029Xg - .0039K

The mean canonical values for each group centred about the

grand mean canonical value, t = (1.900, -41.511, -45.986), are

Group z(]) 2(2) 2(3)
D .406 .451 -.115
E -.426 . 206 g b
F .519 -.416 _ .087
G -.499 -.241 -.185

We plotted these coordinates along their canonical axes in
three plots. Figure 5.1.1.1 represents the projection of the
canonical coordinates onto the T(]) - T(Z) plane and Figure 5.1.1.3
onto the T(2) - T(3) plane. One standard deviation contours were
drawn about each group mean's canonical coordinates which illustrates
the "closeness" of the groups to one another relative to their
variability. The coordinates of patient number 31 of group D,

231 - (.516, .246, .426), are denoted by a small circle.
A classification of this patient would have little meaning

since she falls well within each groups 90% confidence contour of

radius 2.500.

6
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Figure 5.1.1.1. The group means of D, E, F and G along the canonical
axes with one standard deviation contours X=first
canonical variate, Y=second canonical variate.
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128

Figure 5.1.1.2. As in Fig. 5.1.1.1 except X=first canonical variate,
Y=third canonical variate.

"1&28..
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1.28]

Figure 5.1.1.3.

As in Fig. 5.1.1.1 except X=second canonical variate,
Y=third canonical variate.

"'1128.,
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The failure of canonical analysis to obtain discriminating
results is a consequence of the high variability of the data within

each group relative to the variability between the groups.

5.1.2. Fourier Series Analysis

The canonical variates associated with each group mean were

plotted in the fourier series functions,

.406/ .
f- (1) = v 2 + .451 sint - .115 cost

%D
-.426/
- (t) = v 2 + .206 sint + .212 cost
E
.519/
fs el = V2 - .416 sint + .087 cost
F
-.499/
f- (1) = /2 - .241 sint - .185 cost , 0 g 7T < 2m
G

These representations of the groups are graphed in Figure 5.1.2.1.
The apparent separation of the groups appears promising, however when
each fourier function is plotted with its one standard deviation band
the distinction between groups diminishes. Figures 5.1.2.2 through
5.1.2.5 are these plots. The patient number 31 of group D also was
represented on these graphs to illustrate the ambiguity that would

result if one tried to classify her. Her function is defined by

.516/
f 3](T) = J 2 + .246 sint + .426 cosT.
z

A 90% confidence band for each group would be

f5(1) + 3.536 y 0<tgenm



Figure 5.1.2.1.

Fourier Series of three dimensional data. Allgroups.
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Figure 5.1.2.2. Fourier Series of group D with one standard deviation band and patient 131.
Three dimensional data.
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Three dimensional data.
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which would encompass patient number 31 in all cases.
Attempting to classify a new patient would again be

impractical because of the nature of the data.
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6. CONCLUSIONS AND REMARKS

For purposes of classification, Andrews' technique appears
to be the most general approach. The reason being that one can
construct confidence bands about the functions which cannot be done
easily with canonical axes if the dimension of the space is greater
than or equal to four. In this way, quantitative assignments of
individuals may be made with the fourier series approach by assigning
those individuals to the population in which their function is
entirely encompassed by the population's confidence band.

However, the interpretations of the fourier functions are
not clear at all. The complexity of the plots increases with the
number of dimensions being represented and will therefore compotnd
the task of interpreting any results of the data. Its use in terms
of informative representations is Timited.

A by-product of the application of Andrews' techngiue is the
determination of outliers in the data. For example, patient 35 of
group F (function 335 of Fig. 4.2.2.9) does not appear consistent
with the other patients of that group. Inspection of the raw
measurements in table 2.2 however would not have revealed this.

This property of the plots is very useful in that respect.
Chernoff's faces further contribute to technqiues available in

classification. Used in conjunction with an analytic method this

93
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representation of the results can supply very convincing allocation.
The classification of patient 31 of group D by the canonical analysis
of discriminance is certainly corroborated by the comparison of
Figure 4.3.1.5 with Figure 4.3.1.1. In this manner, these faces

may be an invaluable tool when attempting to communicate results of

an analysis to a client or an employer not familiar with statistics.

The heavy computations were performed by the CDC 6000
computer and the Benson Lehner Plotter was used for the graphic

illustrations.
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