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CHAFPTER I

TITRODUCTION

Ultrasonic vibrations in solids are observed to show a simple

exponential attenuation over a large range of frequencies and applied

12 5y : .
stresses ("2’. At least ten distinct physical mechanisms that

contribute to this attenuation have been postulated for different types

(3)

of so0lids under various conditions . In large single crystals of
reasonably pure non-magnetic metals, however, it is believed that just
two of these mechanisms are important. Since the attenuation in such

crystals is reduced by annealing and increased by neutron irradiation,

1

part of the attenuation is attributed to the interaction of the

ultrasonic vibrations with dislocations. There 1s a vast literature

ES L3

ealing with experimental and theoretical investigations of this

(%)

contribution to the attenuation . The other important cause of

Q.

attenuation in metals is the direct interaction of ultrasonic vibrations
with conduction electrons., That this effect is important is suggested

by experiments which show that the attenuation in the superconducting
state of such metals as lead, tin and aluminum is dramatically lower
than that in the normal state of the same metals at the same temperature.
In nost metals this direct interaction with the conduction electrons is
. FPrevious theoretical

important for temperatures below about

catments of this contribution to the attenuation have used very

o+
H

simplified models for many of the details of the physics of the metals

e
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: (9,10,11)
considered . The prime purpose of the present thesis is to

extend the theory of ultrasonic attenuation in metals due to

conduction electrons to include realistic descriptions of the electronic
structure and the electron-lattice interaction., Some proposals for
nunerical calculations of the attenuation in real metals will also be

made,

)

brief review of the thesoxry of the

) 1

Chapter II of this thesis is a
electron-phonon interaction in the orthogonalized plane wave
pseudopotential formalism. The theory of scattering of electrons by
substitutional impurities is zlso examined.

ot

Chapter III is a discussion of the current state of the theory of
ultrasonic attenuation due to conduction electrons. In section 3.1
the 3oltzmann equation for the electron distribution function in a
metal which is disturbed by an impressed acoustic wave is derived.
Sections 3.2 and 3.3 are examinations of two approximate methods which
have been used to solve the 3oltzmann equation and obtain results for
the attenuation. In section 3.2 the isotropic scattering time

. .. (9,10) . Lk
approximation is used to define the range of frequencies which will
be of interest in this work ("low frequency regime") and to derive
certain approximate results that will be needed in Chapter IV, Section
3.3 is a brief review of the approximation proposed by 3hatia and

\;

Yoore * to solve the Boltzmann equation. This approximation will

serve as the basis of the more sophistocated treatment to ve presented

e
0

In Chapter IV a variational theorem for the Boltzmann eguation



derived and then used to investigate several aspects of ultrasonic
attenuation in metals. Section 4.1 is the derivation of the variational

solution to the Boltzmann equation, This variational solution is a

distinct improvement over the existing theory because it allows the

inclusion of realistic treatments of the electronic structure and

lectron-lattice scattering processes. Section 4.2 presents the

ariational formalism to the zero temperature

<

application of the
attenuation in dilute alloys. The variztional method is applied to the
attenuation in ideal crystals in section 4.3. Consideration is given
to both the temperature and volume dependence of the attenuation.

Section 4.4 is a treatment of the effects of phonon drag on the
ultrasonic attenuation.

In Chapter V an "anisotropic scattering time" solution to the
30ltzmann equation is proposed. Sections 5.1 and 5.2 examine this
solution in ideal crystals and dilute alloys respectively.

Chapter VI presents a {heory of the effects of electron-electron
collisions on the ultrasonic attenuation.

Throughout this thesis S5I units are employed.
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CHAPTER II

ELECTRON-LATTICE INTERACTION

. : . 2)
In the orthogonalized plane wave pseudopotential formalisn (12)

one distinguishes between core electrons, which are describable by
wavefunctions localised on the ztomic sites, and conduction electirons
whose wavefunctions are written as linear combinations of plane waves.

|2
&

In principle the conduction electron wavefunctions can be determined

by solving a Schrodinger equation with a realistic electron-ion
potential., The wavefunction determined in this way must also be

nrthogonal to the core states. It turns out that the effect of this

orthogonalization can be accounted for by adding a repulsive term to

tde

the electron-ion potential used in the Schrodinger equation. When this
term is added the new total "potential” is called the pseudorpotential.

The orthogonalization term tends to nearly cancel the attractive

o)
o
‘_J .
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},_J
e
0
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electron-icn potential and the resulting pseudopoten enough
that the electron-ion interaction can be treated in first order
perturhation theory. It is also weak enough that the conduction
electron (pseudo)wavefunciions can be adequately described by a
relatively few plans waves,

One can attempt to calculate pseudopotentials for various ions
from first principles bHut a much simpler way of obtaining a useful
pseudopotential for a particular metal is to take a parametrized model

form and fit the parameters to some measurable property of the metal



concerned. An example that is of some interest in the present work is

the open core Ashcroft model pseudopotential which has the real space

1 OoTrm

+

[

wo(9) e Ny e o

Wiley = o CaiR: (2.1)

where Z is the valence of the ion, e is the elementary charge, €, is the

o)

ernittivity of free space and Rc is a parameter to be

~s

fitted, It has
the matrix element

CeaglWiwy = Ze°

where fL_ is the atomic volune.
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netal, of course, the

conduction electrons screen W(g) and the effective form factor is

&

=\ (9) (
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is the dielectric function. For a metal with a spherical

ermi:.s

. Fi oo kA
surface one can write

. \ % 2 » = n N
3 (C\\ = \ % [ (W *(ﬁ\{1> L e e (Sf \ (C() (2.4)
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Flal = 1 o Gke —d dal Fketq (2.5)

Pt ?\(‘FC\ ‘ Z,\(\:‘C‘

< N . B y ~ \
and E, and k;, are the fermi energy and wavevector., The factor ?(q)

is a function which acccunts for exchange and correlation effec
Theoretical formulae for f{q) are available at different levels of

: s - ‘ 5 ” gl s | BT p
sophistocation. The simplest Zform for €  is the Hartree form wh

simply sets f(q)=0. A more realistic treatment by Singwi et al.

—~~
N
[9)

Kol

impurities. The derivetions are straishtforward and only the results
will be presented here,

First consider electron-phonon scattering under the assunption
that the electron wavefunctions are describable by m orthozonalized

plane waves, i.e.

TR \

i< G () < C_ (2.7)
N K B

where the hn are reciprocal lattice vectors and the a, are exransion

coefficients. Also assume that the phonon states, labelled by

pooulated as they would be in
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. Ok TS
\f\q,\ = O« A o &. € - \ ) : (9 Cj>

where

and Cdxﬁ%) is the angular frequency of the phonon {ﬁ(%}. Then the

intrinsic transition rate for an electron in the state k to he

(15)

Qe = 22X 72 g, >\\ \\cy\K (Ey B - RuWnql)
"

‘\’(Skusl\(c‘, gt | B N b \
T ; é’ kt’\j" —C\S b3 %\LQK(C*\)X (2.9)
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In (2.10) g(§¥k\ is the normalized polarisation vector of the mode

onic mass and there are a total of N, ions in the

=5

(=

(c_\,\\ , 1 is the

crystal.
The transition rates for scattering by substitutional impurities

can also be calculated using pseudopotentials and first order

perturbation theory. The 3 ,-applicable to scattering by a single

impurity is simply
: 2 e
Zit Feig N et iyl és(l:\( ) (2.11)
AN

where Vscatt is the change in the total pseudopotential of the crystal

e

is added. It is ezsy to show that for one-0FY

when the impurity
(16

S

electron states

L VN o Vaeng st 3((5(5@ ) W () » W (9

N
-
where N, is the total number of electrons in the crystal and W.(q) and

W_(a) are the host and impurity pseudopotential form factors. S(a) is
L - L
the structure factor and it accounts for the ef

the lattice about the impurity. §( ) is defined as



CHAPTER IIT

THE BOLTZMANN EQUATION AMD ITS ELEMENTARY SOLUTICNS

)
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"The 3oltzmann Iquation

In this section the basic physics of the interaction of sound waves
with conduction electrons will be examined. The Zoltzmann equation for
the electron distribution and an expression for the attenuation in
bution will be derived. In sections 3.2 and 3.3
simple attempts at approximate solutions of the Boltzmann equation will
be reviewed with an emthasis on results that will be of value in
formulating the more realistic solutions to be presented in Chapters
IV and V.,

The first complete theory of ultrasonic attenuation cdue to

5
{

by

P

3

iduction electrons was presented iprard . He pointed out

(49}

1

that when 2 longitudinal sound wave passes throush a metal the

electron and ion charge densities may not follow each other exactly.
Thus there will be a non-zero space charge density which will move with
the sound wave and produce a periodic electrostatic field within the
metzl. A transverse sound wave causes no bulldup of electric charge
but the electron and ion current densities assoclated with the wave
may not exactly cancel and the net current that results can produce
an electric field by induction. These electric fields accelerate the
conduction electrons and this acceleration is opposed by various

scattering mechanisms (e.g. scattering by phonons, impurities and other

O
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electrons). When the electrons are scattered they may transfer energy

from the sound wave to random thermal excitations of the lattice. 1In

Pippards original paper he treated these effects by following the

x/‘[ﬂ\!
motion of individual electrons., Steinberg ‘"7’ recast Fippard's work
in terms of a 3oltzmann equation for the conduction electrons. In

both of these papers the conduction electrons were treated in

electron approximation. A derivation of the resquired Zoltzmann equation

for a metal with a non-spherical fermi surface is presented below.

Define a distribution function f, (r,t) to be the number of
electrons with wavevector k anc some particular spin at the point r at

o) X . q .
:u(g,t; will be given
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where Ev is the energy of an electron in the state k and A+ is the

chemical potential. The distribution function must, of course, satisfy

the Boltzmann equation
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electron in the state k, 1 is the electric
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k near the fermi surface. This allows one to
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Yhen a long sinusoidal acoustic wave train moves through a metal one

expects the ion velocity, the electric field and the deviation function

iﬁﬁ to all vary as

Clw - gq,- )

ﬂ)

5 are the wavevector and angular

o~
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equency of the
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ound



where the number of electrons per unit volume, N, is equal to the
number per unit volume in the undisturbed metal, N_, plus n. As shown
— (10) S ; ;
in reference all effects due to temperature gradients can bhe
ignored for present purposes,

The current density, J, at any point is equal to the sum of the

current density carried by the ions and that carried by the slectrons.

That is

E.: NSQ.E:"_Q @w Vi JS“ (3.1.8)
ik Y T Vel

where u is the velocity of the lons and dS; is an element of area on the

fermil surface. The current density can be related to the electric field

by Maxwell's equations. For transverse sound waves the relevant

equations are

) RE A St
IYx® - v ot - u, ) (3.1.9)
e
¢ Tt
VxE 4+ 2B 1 o (3.1.10
\\)t
where 3 is the magnetic field and At is the permeability of free space.

Taking the time derivative of (3.1.9) and the curl of (3.1.10) producss

O (Yx (7) = 4 A&l A\ /,'ULQ?X_ £3.4.1

g
R R L3

v




and
(3.1.12)

Squating the right hand sides of (3.1.11) and (3.1.12) gives

TR LR W o R TR R (3.1.13)
G DR 2t

Tor an electric field and a current density that vary like plane

sinusoidal waves (3.1.13) becomes

(3.1.14)

|

2 W , =k
C\s ~ el € Aaydida /LLO 'y
L

Since the speed of sound is much less than c the second term on the le

A

E 4

T

% & ¥ e L Tk & o . .
hand side of (3.1.14) is negligible and the electric field is given by

E =000 (. ('L";'/LLG I o

2
C\S

For longitudinal waves

Y7 N SZ% !5 =4 &

and the only significant electric field is an electrostatic field. If
there is a net charge density Qi then
o (3.1.16
Nl & (8

.Y. E = = L.C(S g - Ve



By continuity, however,

(3.1.47)

/

(3.1.18)

jg = Gc,‘ys
where v_ is the sound velocity. Putting (3.1.16) and (3.1.17) together
yields the expression relating E and J for longitudinal waves
£ Ty
Lc“b%c

Squations (3.1.7), (3.1.8), (3.1.15) and (3.1.18) provide a

prescription for calculating the distribution furction of the conduction

=

electrons in the presence of

an acoustic wave,

find an expression for the scattering term that allows (3.1.7) to be

o

solved. TIf only scattering by the lattice is considered then the

scattering term has the well known form

All that remains is to

1 i

)

N e _ iy .
Cﬁg‘i 1 . = _él \_%\«' ('\‘ %-\(\ = ¥\< &\_g\g’\& Q,K <’ U\\f_, (?
i Stk\t \’_—3 ) =i & =) B ki
DL %W
where 0,,-1is the transition rate of electrons from a filled state k to
an empty state ki The relation
~ o0 < 43 5
ng\g_ F =9 Sr\i <\‘5~\§) (3.1.20)
oL,
allows (3.1.19) to be written as
. Y
Gg&']_ - = BIL (i&’_‘pg) Pg&'(ﬂﬁ( (3.1.21)
- T8 T § o e
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where

2., 11is, of course, the sum of transition rates due to phonons and other

lattice imperfections (such as impuri

ct

ies or dislocations). 1In an
undisturbed metal these transition probzbilities can be calculated
using the formulae of Chapter II. Uhen considering the scattering of
electrons by a lattice that is disturbed by an impressed ultrasonic
wave, however, it is physically reasonable to suppose that the
scattering will cause the electron distribution at each point to relax
towards the distribution that would be in local equilibrium with the
moving and dilated lattice. Indeed since the experimentally obtainable
wavelengths of ultrasonic waves are much larger than either the
wavelengths of most thermal phonons or the dimensions of most other
lattice imperfections, the transition rates of Chapter II can e used
as long as the equilibrium electron distribution which occurs implicitly
in equation (3.1.21) is taken to be the distribution that is in local
equilibrium with the disturbed lattice. In other words the collisions
must be viewed in local frames of refersnce moving with the ions. This
is referred to in the literature as the "collision drag assumption",

In the case of impurity scattering it is immediately apnarent that this

assumption is reasonable., The formal justification (given in
N
£ (1?/ (10‘)\ 5 : 2 2 N 3 1
references and ) when considering scattering by thermal phonons

is a much mors subtle problem since it involves constructing

wavefunctions that localise the conduction electrons to regions with



dimensions much smaller than ultrasonic wavelengths. All previous

heoretical treatments of ultrasonic attenuation have made the collision

a 101 9)
’1/!&111J/ 4 o A
. The practical consequence of assuning

(=]

o8

collision drag is the modification of (3.1.21) to read

bﬂsls@ e - gL L‘i’g“i‘\g K K("\g'—‘*“l«')] P\EE’ ‘j\fl
\\() (SN \_6.\_\3

where the P, sare those that would be calculated for an undisturbed

X

Vi
metal and Q& is the deviation function that brings the distribution

defined by (3.1.4) into eouilibrium with the moving lattice. For

Vo i

Transverse waves

< -~ & 2 & Y o
¥\i B 1V\< (w) = C’g\s c L—‘E «
EDE;E Vi
~, s s
— = b C)l:K . ~a &. < %& (3-1.2b)
l\-‘tl:\ O\_S_ NC)_I\_\'_

T o PR Y (3.1.25)

ective mass tensor whose elements are

\V\\_ = ’y\ ﬂ:) \<C (3.1

A \ Ao
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equation (3.1.25) reduces to

o
\ =
® =

inal waves a term must be

K
v Vi

fFor

2

For longitu added to (3.1.25) to account

¢

>

changes in the local ferml energy due to dilation and conpression of

the lattice, i.=c.

&=
! \~‘ s, s
(L‘ s d \.". w v——\-\ﬂ g \“_k )‘_ S ¢ o

o N

where n. is the number of electrons per unit volume in excess of K

The equation of

if the electrons follow the ions exactly. continuity

gives

—Q‘_\\\i.J =

Je

where JD is thes electron current density. If the electrons followed

<

ions exactly the electiron current would be the negative of the ion
current., That is
‘_Sc; g 7 /\/v"t__&_
S0
0o = Mo
i
Ns
It is easy to verify that for a metal with a spherical fermi surface

+ L

&

o1.87)

the

(3.1.30)
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e Qb = ALlt Obadl: P M (2.1.32)
!
N Vo' N ™
It is now necessary to find an expression relating the electron

distribution function to the zattenuation. If the amplitude of an acoustic

wave propogating along the z-axis is proportional to

o
=

then ¢ is called the amplitude attenuation coefficient and has units
of nepers/unit length. This is the definition of e that shall de
used throughout this thesis. Care should be taken in comparing the

n this thesis with those elsewhere in the

e

lgebraic expressions for

LS

»

iterature hecause there are about half =2 dozen different definitions

=

of &, Since the energy density, W, of an acoustic wave is
proportional to the square of its amplitude the equation for energy

dissipation can be written

02300 PSRN SV T

d'%

A . X 0.0 e B TR e, 31 (3.1.33)

—y—

where -dW is the rate at which energy is transferred from the impressed

dt
sound wave to thermal excitations of the medium throuszh which it



-

Ne

travels. In the situation of present interest the energy lost by the
sound wave is that which is given up to the lattice by the conduction
electrons during scattering processes, i.e.
L i Al i o % T
C\\l\l = _2_—_ LK(L_k\ (.vgul : LA\.\Q (3.1.'&,)
Fonts =2 = Jscatt = . o

At SN - R,

is the energy of an electron in the state k when viewed in

H
(0]
i
@
H

ence moving with the ions and where the anzular brackets

c

indicate that an averaze is to be taken over one complete cycle of the

sound wave., Zquation (3.1.34) is intuitively reasonable and a formal
(17) g (18)

O - o 8 - + 17) i 1J/ N : NE et 3

justification is given in references and .. Now to first order

in u

= 5T N v W~ LSBT Y {3:1.33)

X

where (@ 1is the density of the medium, A can be written as
A

_\\

Feda e 1 Fornila !

-8

Re denotes that the real part is to be taken and complex conjusation

ag\



is indicated by the asterisk.



3.2 Isotropic Scattering Time Approximation

The simplest phenominolozical aporoach to a solution of (3,1.7)

involves assuming the existence of a relaxation time T such that

™ e : s e N
ég“ ‘ = & \(;‘ &\4 Va\ 4-‘ = & g: (L’ - (p \
= 1. -~ i g = & 14 i< (3.2.1)
1 - 1\&'({"\ _\\ E =g AT =
IR 0 B ot QB F

g

Such an assunption is familiar in the theory of electrical conductivity

20,21) __. . g R e s .
(20,21) and has been widely used 1in treatments of the ultrasonic

(9,10,19)

attenuation in metals Clearly the values of € that apply

to the two prohlems nust be of zbout the same order of magnitude,
" (11) .
although they need not be identical « Thus for a particular metal

at a particular temperature

N
N
j, S ]

~
)

. . g . Ls o T o L Y
where ¢ is the electrical conductivity. With the assumption (3.2.1)

the linearized 3oltzmann equation becomes

V@) b~ U e v e Covy s kb g,

Z depend on integrals of ¢K over the fermi surface it

is convenient to attempt a solution of this equation by iteration. In
N
particular a first estimate for ¢, can be made by substituting <, = P«

. . o - . - o ~ \ . .
into the left hand side of (3.2.3). ror transverse waves this gives

o

{ &
(1)&5 = "t‘)| L 3 kk’i&g'\{“ "U\—\(J){—C i) ’2.35\

_-_ ‘i —
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~e _Jy



Substituting ¢. into the left hand side produces

i . g A ~ 2 _ a2
‘\li = 43\« x L(L:‘s'\ini'tdg)’f CL‘K O (C:‘S"\L\S—L‘;'z) T G

AN

TSI ol VI £ (V=Y w) (\—f\:-g\\ AS, (3.2.5)

=

.

9s $0° 0 Igs Wil

It is easy to see that the last term and hence the electric field will
be negligivle if

and
. L I 2 ] - 2
& Moy 8 N 44 Wo(qs Ve T) (3.2.6)

where v, is the fermi velocity. It is also clear that this iterative

®

pe

procedure will converge if the inequalities of (3.2.6) are satisfied,

. \ . . o - = - . ~ .
In practice (3.2.6) is generally satisfied by sound waves with Trequencies
of the order of 1J—105 Hz. This is the frequency range of prime

interest in this thesis and will be referred to as the "low frequency

ine another deviation function by

; ¢ ® T ~
B ; ) e B .
9]: - %]E ot 1‘§ = \5 4)5 (3.2.7/
8 €
Tt e . . . .
Prom equation (3.2.5) it is clear that in the low frequency resime
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This inequality will play an important

ant part in the derivation of t!
variational solution of the Boltzmann equation to be presented in the

next chapter. An algebraic expression for the a

R =Y

ttenuation in the low
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The familiar relation
t\l\: 5
and the fact that
w, << Cl .
an be used to reduce (2.2.9) to
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\'\(\‘:V‘ = = \Y\\f = e ‘v\ \< \”—
and
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ITWN, = K¢
so the expression for « can be simplified to
2 2
oL 5 N, mV- W, T (9.2.11)
3,
te Vs &?
. , - NN gt (9)
This result was first obtained by Fippard 7/,

W

In the case of longitudinal waves the same iterative procedure can

be used. The only difference is the existence of a non-zero fluctuation

in the density of electrons., The first two iterations produce

\ RS I~ . _
((’\\_5 - a9\5 b (%3"1’,\5 - L'Js) “ C\’\\' -t f]r‘\i\i’k Ny @ Cp
= G v g~ )T Voo Merw -t T g oG (3i2.12)
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then it is easy to verify that the last term, and hence the zlectric

field, is negligible and that

i,
R i T & S e \
l‘{’,i | €< (%o | <2 |15 (3.2.15)
m
and that
‘ 7. \“2!’ ‘; T—,’ = ~ N
n -0, 2 b e LG (3.2.16;
and finally that
| T [ € . 1 ,'
AN \ ’ ;- | PR . e
‘_.‘\. = = l \ru 2 w.l €&  Be \\{"g‘ (3.1.17)
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These inequalities will be used in the next chapter.
Once again it is straightforward to use equation (3.2.13) to
obtain an expression for the attenuation of longitudinal sound waves

in the low frequency regime in a metal with a spherical fermi surface,.

R IR R Re AN
LN \\.‘k\l G 0y 0 ‘K.\Yk\’c
N2 £ -

-
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For free electrons this is
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which is the stan



It is interesting to note fhat the linear dependence of > on G
in (3.2.10) and (3.2.19) has a simple physical interpretation (22’23>.
When an ultrasonic wave with a frequency in the low frequency regime
travels throuzh a metal it may be considered as propogating throuszh the
conduction electron zas with the lattice entering the problem only as =
cause of electron scattering. The acoustic attenuation in a fluid is
proportional to the fluid's viscosity and elementary kinetic theory show
that the viscosity of a dilute gas is proportional to the mean

(24)

scattering time . Such a treatment of the attenuation by this

simple-minded analogy between the electron gas and a classical fluid

breaks down at higher frequencies, however. hen the electron mean
free path becomes comparable to the wavelength of the ultrasonic wave
(o v5t'v1) a small number of electrons which have velocitles almost

S
perpendicular to q_ (qS‘VF =w;) travel in a way that always keeps then
at the same phase of the wave. These electrons are accelerated by the
electric field and absorb energy from the sound wave in a resonant
fashion., As the freaquency of the ultrasonic wave increases these few

electrons account for a larzer share of the attenuation until in the

limit

Cl'sv:’C = Al

~ )

the attenuation coefficient becomes independent of T,
If "C in the expressions for the attenuation (3.2.10) and (3.2.19)
is taken to be the relaxation time that governs the electrical

conductivity then clearly, for free electrons,
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.

(3.2.21) that 4/ should be virtuzlly independent o:
¥ T .

by

The prediction o:
temperature has received experimental verification in tin, aluminum and
potassium (25,26,27,22) but the measured values of =t/r tend to be
about 1.5 times larger than those of (3.2.21). In the following

chapters it will be shown that there is no compelling theorstical

would be of interest to perform numerical calculations of =/ using

the more realistic theory to be presented below.
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3.3 The Bhatia and Moore Analysis

The isotropic scattering time that aprears in the Boltzmann

ng
equation for the electrical conductivity in the standard treatments has

an expression in terms of an integral over the transition rates P. ..
e W

o) 3
« (~O/. Mo

which is exact if F,, rdepends only on the magnitude of (gfg;
\

such expression can be found for the T that appears in equation (3.2.3)

even for the case of isotropic scattering. In order to avoid this
1 t1 (11) , i B
problem Bhatia and loore solved the 3oltzmann equation for a metal

with a spherical fermi surface by assuming that the scattering term

could be written

S~ « % % e 5 -\.
DS:": ]nu\* = _Og\f if:« (CLM— CLM) \(LM (‘f\ <3-3-1>’
T = — ~ i— ’
o\ R E Ty
where
i A
b = Z iy Yen (gD (3.3.2)
NS s N .
e EE - Cont gl (3.3.3)
and the Y., are spherical harmonics. It is convenient to define the
\
Y_.. as in reference (11/, i.e,

'Y,_H(B, ¢) = AN (tos®) cos (M ¢) e M 2L

Yin (8, ¢) = O Leos0) slaM$)  -L ¢MLo

the Z_,. are associated Lezendre polynomials <;1“ = cosu,



-~

2
Hesn =(3/2)COS“E - 1/2 ete.). This definition means that

rabey 2 T ofem- @) MnlEY = £ (-G L8
o Stad A [ R =
o%x e

[

b I8

% <\( Lh(‘%\ -\(\.h L@/)) P\:\i: C\SE' (3.3.4)

©S

o . : LK ’ . .
'bv,aepends only on the maznitude of (515/ then it can be shown
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Just the usual relaxation time used in the theory of ele

conductivity.

For transverse waves in the low frequency regime the el

A >
fiield can b»e neeclected and

Ly << G
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so the 3Boltzmann equation can be written

L
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g the z-axis and
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Clearly the only non-zero c.,., Zor a wave with Og along the
iy
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A
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e T
ol H=2X1S 18 ..,41
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Sy = NV W (3.3.8)

. i 1117
the identity

Using
LUQG \( .6,4_,\)- (’L+|) Y ‘\b‘))‘* X Y (D ‘\ (33,:‘\
> L\k J Al '—",i ) Ltlli Jq.., e e,
AR 2L+
equation (j.j.?) can be written as =2n infinite set of coupled linezr
equations, i.e,
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ST W0 Melh = LGN TGy
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(3.3.10)
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=0 for L greater than two

10}

with increasing L If one sets all the ch
-~

t&}

equations can be easily solved to yield

0]

the remaining tw

Yow

o= U owE Vo | (e mel) ot sia?O dedé

" 3 IR
= N Ne Kege Lo (3.3.12)

which is just (3.2.10) with T replaced by T,.

ame procedure can oe used for longitudinal waves and t!

. %
‘)(\°“‘3 o :5' = P By (3.3.13)
Vit

. @ . . 5 . .
which is just (2.2.19) with C, replacing

It is apparent that by truncating the equations at a higher

value of L one can obtain solutions that are valid for higher

take the form of products of factors o

<) The first few terms of these solutions for both

=T
) X . » 11)
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included here because

(=5

(1) for the case of isotropic scatterinz it gives exact results in the

low frequency regime which can be compared to those obtained by the

=

s the basis for the anisotropic scattering time

b
)_l-
(_‘-.
=
}..J
=
0
o)
5]
<
®
o]

approximation to be presented in Chapter V.
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CHAPTER IV

THE VARIATIONAL 50LUTION OF THE BOLTZMANNI EQUATION

4.1 The Variational Princinle

1

One of the most powerful techniques for the study of th

D
[
k]
¢V
Q
ct
3
[
@]
(9]
=

conductivity of metals is the use of the variational principle for the
B . (21,29) . St s 5 ; g
Soltzmann equation . The similarity of the results for o and T

in the elementary solutions presented in the preceding chapter suggest
that there may be an analogous variational principle applicable to the
Boltzmann equation for ultrasonic attenuation, at least in the low
frequency regime. To apply the variational principle it is necessary to
force the 3oltzmann equation into the form of a linear inhomogseneous

integral equation with a positive definite kernel and to relate the

g

=
[t
%)
R
e
O
o]

kernel to the quantity of interest, in this case the atter
coefficient, This is done below, first for transverse wave and then for
longitudinal waves.

The Boltzmann equation for transverse waves in the low frequency

recime can be written
li sz— L\}If_ = k'h: ’-) ‘D'\_ki_c 6 C\\_E(

T

=1 -t (?5‘Y5“L¢s) ‘ \{PE + VoM k.u] ngi (#.1,1)
- Je Y \: -
(T8



been neglected and the usual Zoltzmann

equation has been divided by u. Under the familiar "3loch assumption"

i.e. that the phonon distribution is unaffected by electron-phonon
/ A .
scattering (see section 4.4), the transition rates P, »will be real.
Kk
my,

= L Ly Wi - L) “}’,; :;'_s:\ﬁ (4.1.2)

: R :
where the superscript- = denotes the real rart. o is given by

The imaginary part of (+.1.1) is

E%L{L (Lfm '(') ",<‘<" (_Q\( ({5 V i \.) VJ,R B(I:
417

¥ - e
= (?‘s"\i"i‘bi‘;‘) \LV_\ v \\5 Dg; (b.1.,0)
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- ¢ R . . . s e ] - .
"rom (3.2.R) 4% is insiznificant and (4.1.4) can be written as

R L X

where

Then the familiar properties of the scattering operator P

R SRE RS iy
CH PP Y By

. L. X . N .
insure that the solution to (4.,1.5) is the one that gives

<YIp ¢! 2
L <yox7 ]

its minimum value. [Now note that from (&,1.3)
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riational princivnle for (4.1.5) can be uwritten as
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(b.1.11)
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For longitudinal waves the Boltzmann equation can
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< (4.1.14)
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The inequality (3.2.17) shows that the last term can be neglected. The

imaginary part of (4.1.13) is

P\F 2 i (C‘{»E-.YK-LQ":) & LC\ x \.'_,\_l:'¥_/_1_\“<__l Y G ’\U"‘i

i o o
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e : 4 <
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G AT o= <””’7s) 5 (1
ON N €N 2 e,
The inequalities (3.2.15) and (3.2.16) show that the terms proportional

: KR g
to ?@R and &f\‘ﬂh) can be neglected. Thus (4.1.15) can be written in
T [CH

(4.1.16)
where
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75(2«
towy oG n, 8%, (4.1.17)
ON T =
Now from (4.1.14)
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By (3.2.17) the last term in this expression is negligible and once

again

of & oy £ 3PS (4.1.19)

:‘)\,‘,_)
and
-\ b T = o
el < Yy PN, LB 5 Qi S.“\K (e - Fieo ) P (5.1.20
e
v \ L 4,1‘ \ VS
C\\( (E&-"\!‘ -\_\‘\r) \[\Ahy——\‘( (€N e ¥ K f: £ & <
i 5 o N ",EK
It is interesting to note that equations (4.1.12) and (4.1.20)
demonstrate the validity of an equivalent of Matthiessen's rule for
the ultrasonic attenuation in metals, i,e, for a particular sample
& =, \ (4.1.21)
1) G
o[L OL\".’S o{\‘&e«\k\)
where dceb is the attenuation at zero temperature (when the electron

free path is limited only by static lattice imperfections) and = dc.\

is the attenuation in a perfect crystal of the metal in question (in

1

which the electron free path is limited only by phonons)., In pnractice

enuation (%4.1.21) will not be satisfied exactly because the transition
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probabilities due to phonon and impurity scattering do not add in a
simple way and because the addition of impurities into an ideal
crystal will somewhat modify the functional form of the ?ﬂ that solves
(4.1.5) or (4.1.16). An investigation of deviations from the
equivalent of lMatthiessen's rule (DEMR) will be undertaken in the next
chapter,

Reasonable first order trial functions to insert into (4.1.12)

and (4.1.19) are those obtained from the isotropic scattering time

analysis of Chapter III, i.e.

' l- &
} - X _ 3 AL \
L7L/5 ol ( gt* Vie L‘“'a) L\l_‘\i ‘v\-—‘:\i. Lﬁ) (transverse)
\/ [ ~ . 2) ‘:,
- (C-ks *Vicm ) (Wi WD) -w ="  (longitudinal)
. o N
For a metal with a spherical fermi surface the first order trial
function for longitudinal waves is
y & , e s A\ T {
HLI_( X k E\S © \i) o /—3

where terms of the order of v_/v_ have been neglected. In order to

obtain results for a randomly ordered polycrystal the value of

j'(i I< A E/ (NK{E? ¢ gtff).z‘am(<’

must be replaced by its average over all orientations of

.S.
-

might also expect this replacement to produce quite

Intuitively one

good results for single crystals with cubic symmetry as well., The



required average is evaluated in Appendix A. Haking the substitutions

(4.1.22) and (A.1) one obtains

(‘"'(“5(5!§)> (4.1.2

, - &
AL ¢ BT eV, sLpRK die | dk
N . v —
Z

28 1T ‘vﬂlq: V; k;

S

For transverse waves it is easy to show that

V lu-'-)

- 37 N
d'\'(u\hs = /“,’ UL\«:\-\C) A —1‘" y (u.l._?j,
v,

o

Equations (4.1.24) and (4.1.25) are the analogues of the standard

first order variational formula for the electrical resistivity of a

-y

%
4 21, i o R : .
simple metal ( /, If the scattering of electrons is isotropic then the
tant

integral over k in (#.1.24) amounts to a multiplication by a cons
factor and it is easy to verify that the variational method ocutlined

o

in this section reproduces the results of the Bhatia and Moore analysis.
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b2

4.2 The Residual Atfenuation

In this section the zero temperature attenuation in a metal that
contains dilute substitutional impurities or simple vacancies will be
examined, The theory will be presented only for electrons describable
by the one-0PW aprroximation but the generalisation to a metal with a
non-svherical fermi surface is obvious. ZFor a crystal containing a

. .4

single impuri

ncludes the factor 3(2k - E,. The

Fe

where 0, sis given by (2.11) and

o £/ w s 1 :
factors £, (1 - £,) and 8(Z,_ - I restrict scattering processes to

25 . N {5

. o 3 Le \ - .
electrons on the fermi surface and equation (4.1.24) can be written

t ¢ (35 ONg J) dS, | dby

) S

x 2T (- cost (ki) | We-k)\T e

The standard formula
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I
(W)

where
Ci: < =1
{

can be used to write (4.2.1) as

V¢ o B35eN, L 3 \ Wl q2- g7 | oy
~ =3 2 -
A 317 £ ‘131 \/Ew [<F+ f\/,t 3 \<r—L 4,4(,_&

Tique e

o

Multiplying by the number of impurities and changing the variable of

integration to

h

L g /e

AN 135 PVy N3 4% | W e m\“(q - :f) (&.2.5)
M / IE L LTI . '
ok 32N ™ qs Vi Jioien "

where n. is the impurity concentration (atomic fraction). For a metal

with a parabolic conduction band this becomes

: e
L & 135 OV N W' C\zfl \\:,}U:F_Q)\ 'l' _\f (L,2.6
ok 3 wm* ‘\J'.l:—LC\ ‘,Z ,\'\, N : \< \:L L\

7/
: e 3 ATt o , : : . (30)
This expression is in the same form as that used by Popovic et al, '

to calculate the residual resistivity of dilute alkzali alloys.

1ing about (4.1.5) is that it weights scattering

—3
=7
®
p
=]
t
D
R
D
6]
+
el
=3
ch
o
=

events with larze momentun transfers much more hezavily than does the

s . - ® . ~ P /7 a
comparable expression for the electrical resistivity (which has no ,]3
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term in the integrand). This means that a measurement of A reveals
information about the pseudovpotentials of the host and inpurity atoms

that very usefully complements any information available fr

o]

n
5 . Akl -
measurements of the electrical resistivity Q . 4indeed it is easy for

"> 1 dr
L L

meters

)

a theoretician to envisage a program of fitting several

i

specifying the form of the lon pseudopotentials to measurements of ol

o]

L%, ; . : .
and © in =z larze variety of host-impurity systems. It would also be
\
most interesting to compare the results obtained using the

pseudopotential formalism with those obtained by the use of realistic

iy

ion potentials for the impurities and the Friedel sum rule for the phase

o
£

shifts of the scattered electrons., Such a program would seem to be
impractical at the moment, however, because many of the resistivity
measurements that have been made are wildly contradictory and because
there azre no measursments of the low

“nown composition.

temperature £ in dilute alloys of



4.3 The Ideal Attenuation

In a2 perfect crystal the only contribution to the transition rates
?nk’COWQS rom electron-phonon scattering. Substitution of the
;;;r3551on (2.9) for Pkknproduces a formula for oL that is proportional
to

~

: L&\( ) -\i \g'/ (\{J“I_ ‘\'L,(Z/-)L ‘{\SC ('\"'E\Z') 4 z \ Cj\< k.l,\\l
b = = X Ml

X ‘(\:\}\ {Z’(t—;‘f:,‘-E'_‘ ‘kLL)I\(\_S-!fl)

BhRuwyle-r) ] !
Ll = = g S i L 1\
s (60 -6 r bl ©.3.)

This can be transformed into an integral over dS_, dSk,, dEk, and d w

R = E = By

\
n ; . 7 1 .
The result of such a procedure 1s well known (31) and can be written

[ duw Rlw) A3, A Sy
Fso Rtvel Jeso Rl

x[*f"i-"F:]ll. 2 \c¢ \'L? L - L k') 4.3.2)
[ I — N S¥€A Q(yp Luxkg <) (%.3.2;
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\') ladater 1)
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of the first -order

trial function (4.1.22), the

Thus, making use
variational expression for the attenuation of tranaverse waves is
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ol S e W S
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then it becomes apparent that .l can be written as a constant factor

tines
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B f{‘Z(m\ {QEQF('&U\ dw

The advantzge of this formulation of the problem is that all the
temperature dependence is contained in the factors g and R@). The
time consuming calculation of pikFQLOX needs to be done only once and
the evaluation of oL at any temperature can be done by a simple integral
over w. Obviously the same procedure can be used to obtain z similar
first order variational expression for the attenuation of longitudinal
waves.,

For a metal with a spherical fermi surface one can use (4.1.24) as

a starting point and quickly arrive at

VA 136 PN, AL B ¢ Riw) d o
) lL 2
o VLS T g vy

7

b dn, | el T g Slw- by o)
; _

R [\ 3 Cu%zﬁ\i\i'ﬂ (4.3.6)
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then
= . 3 % g 5 - '1 =il
Y ¢ msueNg B s RLw) o, Flw) dw
N *l ¢
ol N QN K

Tor free electrons this is

i o /5 g\"f LT3 j Chas Y Flw) dw

7N,

2

. x12 ) 'L
(_,L 1Lu«) (\'\\l\c

and the appropriate value of © in (3.2.20) is

Lo 6T 3 S R lw) filuq(:(w) A
£

< - Z
The function o, ¥ (<) is very similar to the functions o F (@) used in

2
the theory of superconductivity and &*VF(hi) familiar from the theoxry
S 2
of electrical conductivity (3 >.
Since both the phonon frequencies and the pseudopotential fornm

factors are volume dependent it would seem that a treatment of the

L8

(4,3.10)

§ i . A z "
pressure dependence of « would require a detailed recalculation of o2 F (W)

at each lattice volume of interest. There is a much simpler scaling
procedure, however, which can be used if certain assumptions are made
about the physics of the metal considered. A similar method has been
applied to scaling o F () and di‘Fﬂéd) (32>, To see how the method
works one first of all uses (4.2.2) and (4.2.3) to write AfQ&~F($o\

-~

as
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constant. Then one assumes that a volume change scales

wn
)

where C 1

up the frequencies of all the phonons by the same factor regardless of

the wavevector or branch index, i.e.

Cwnt \]ﬂ_ s /\sz\kc)l_\l;\zv (%.3.12)
% 1

where

A= | F (V.- 1) i 4 (4,
N/

~

&
S
;.s
(9]
s

and 3 plays the role of an average Gruneisen constant. t is easy to

show that if the form factors W(q) were independent of volume then
z = . 3 o
[’lug\ LAUJ)] Jl = __\_ L "{U(:\% Lu“‘\"&_ll:\’/‘ (4'3'1——&.\
o
e
A
To investigate the effects of changes in the pseudopotential form

2 -
factors one assumes that any alteration in « (.Y () can be accounted

for by a multiplication by a constant, i,e.

A LBt Awﬂ_i 9 1 [ IR 3 LL._\)]JL;V: (4.3.15)



Now 1t is useful to evaluate
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The normalization of the polarisation vector gives
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where ?T and I(q; are evaluated for a lattice volume £L.

1so be equal to
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w
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(4.3.16)

,,,,,,,



Since
™ Az EX " LV & - ld
[ .41 \L \'j 40 = < \= \ -
and since for many pseudopotentials of interest (such as the Asheroft

Wlg) = W Ly)

(4.3.19) can be simplified to

S = ) c.\'\\ .K\\S" Qj \\:J(K(_V\)\l] (.3.20)
" o

i 5 N k\
T (0 ) W Geor
%_

-’JC

It has been found that a similar scaling procedure produces results for

\ sii(FL“ﬁ that are very close to those of a detailed recalculation even
| for very large volume changes (33).

Mumerical calculations of the temperature and volume dependence
of the low frequency ultrasonic attenuation in the alkali metals could
he undertaken using equations (4.3.9) and (4.3.20). It has been found
that calculations employing the one OFYW approximation for the electrons
and the Ashcroft pseudopotential to describe the electron-ion
interaction can account quite well for other transport properties of
the alkalis as long as a realistic description of the lattice dynamics

L 35) = . . . . .
is also used ‘7 '??/, For a numerical calculation of ¢ in the alkalis

the phonon frequencies and polarisation vectors could be taken fronm



Born-von Karmen models fit to measured phonon dispersion curves in Li
) 3 r
Na (37), i (38) and Rb (39). The core radii for the Ashcroft

pseudopotentials could be fitted directly to experimentally measured

. (L0)

values of «f or they could be taken from reference where they wers

(1)

fitted to electrical conductivity measurements atl selected

temperaturss. The numerical techniques for computer calculation of

o ol b ; LI 42)
shonon distribution functions such as o, V) are well developed ( “
oo &
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4.4 FPhonon Drag
Numerical cazlculations of the electrical resistivity of the alkali
metals show that phonon drag effects are important below about 30 K in

in mp (3,

Li, 10 X in Na and X, and 2 K in Since the temperature range
of present interest is about 0-20 K it is clear that any realistic
treatment of ultrasonic attenuation due to interactions with conduction

5

electrons must include phonon draz effects. In this section the
variational formzlism will be extended to allow for the consideration
f phonon drag.

The description of phonon drag effects requires the use of two
coupled Boltzmann equations for the electrons and phonons., If

temperature gradients and phonon-phonon processes are ignored then the

two (linearised) equations for transverse waves in the low frequency

25 Lo (g a) 4 |

= ‘3 o U E (;\\ii [Cb‘i-;i:‘b A %%A_(i)\_cl |< )] (u(*/\
. e Ry
% \\

K q } . .
\ki\<- 4( _ig{,\- ( \( (iK\'X <-«.‘~A«,1_/

and

-\b‘ix.'\ K’ v ({5 TV A T W) Zﬁ.q\)\‘\
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where v 5 is the velocity of the phonon {a\),
Ig 1

9: K-k

and where

o R g - &
"'\g‘,\ z \\‘,\ R BATP 3«*)\ (4.4.3)
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I8 tCy\
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The expressions for :fo and Pgﬂ are
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A great simplification results if one makes the usual assumption
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It is also convenient to assume for the moment that

\‘Qq§ % i - \ 'V

2]
=]
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o]
=N
=
(4]
)
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@]
=

Tt will become clear later that assumption (3.4.8) ha

the final results. It is helnful to define
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An estimate for the magnitude of ?% can be made by taking the
DT (20) :
1limit of complete phonon drag . This means that the phonon

distribution is displaced the same amount from its equilibrium in g

o

space as the electron distribution is displaced from its equilibrium in

k space, The displacement of the electron distribution is

AK ~ " AV ~ T C\S\,‘F”C e (b.4.9)
R R

The phonon distribution function is

Y\ = ¥, B0 D& :
yh -~ ~’,}/\ A \__&1\_/\_ OLcl A AKX
o k’i_i, A \C) (‘

or

\2(_‘\ e (L\s\‘lf'm ™MV U (4+.4,.10)
Substituting (3.4.7) and (3.4.10) into (3.4.1) and (3.4.2), then

dividing both egquations by u and taking the imaginary part produces
-] 1 2 5 d

’B%\i [(is y\s 'L’Js) \L\k'm\: \':1‘1

Tal VRV
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where

and

The equations (4.4.11) ang R o be written in tpe Tornm

i o X

—

Clions Y an; /
= Foem

where the vector funct

— i
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(4.4.13)
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and

C(Ye,¥S) - (o), eb)

3 1 =l
The expressions for P, and P are
Z a
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g 2. gt j Bt s % e i Fide
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The properties of the scattering operator insure that the solution Y of

(4.4,13) is the function that gives

1 I\
(b.1.148)

NS
(Cyxy1

o (4 : 2 i
its minimum value * 5). Here the inner product 1is defined by

—+2 o

X' = n . A 3 & - T
<XXY %{3 g g N UL AN & Sy
t

throushout the first Brillouin zone.

where the integral over g extends
-~

In the present case
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41 BE
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By using the estimate (4.4.10) for g% one can easily convince oneself
that the second term on the right is negligible. It is thus easy to

show that

<XN2 = Z20Vs d (5.1.17)

. (45)

It can also be shown tha

3 i : ] - % .‘j‘
CLeYhy= L (die Ap f deilhe-Xg- %) Py |
i SR

.

where it is understood that (k' - k) reduced to the first Brillouin
zone is equal to q.

The problem of calculating the attenuation of transverse waves
including ‘phonon drag has been reduced to one of minimising the
expression (4.1.,14). The only extra complication over the variational
formalism without phonon drag is the necessity of minimising with respect

to variations of two functions, i and X A similar expression

G e
..l
nay be found for the attenuation of longitudinal waves; < YPY ¥

: % 27, .
remains the same as in (4.4.18) but ({XY))“ becomes equal to four times

the denominator of (4.1.20).

longitudinal waves reasonable first order trial

o = (K-Q) - '3
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L 2 - £= T A i . N
Ly = ¥ { R e 3 Y B ‘/3] (4.4.19)

where

is k. -~ times (k - k) reduced to the first 3rillouin zone and ¥ is to

B

£y

he determined by a2 minimisation. It can be shown that the result o

this minimisation is

. "’ .L o
L o8 K\ . W (4.4,20)
ok 0(0 ) \DLL P\\

where =( is the first order variational value for o without phonon drag,

= b . .
P;J“ - j R () Aue iy Flw) dw (4.5.21)
and
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and
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X

L. o) \ -~ . ~ e
Bauations (4.4,20, 21, 23, 24 and 25) allow ¥ for longitudinal waves

to be caleculated with the inclusion of phonon drag effects. Similar

ecuztions could he found for the attenuation of transverse waves.



5.1 The Anisotroric Scattering Time Solution

L0 S 7
The trial solutions given by (4.1.22) are clearly deficient in
one important respect. They are taken from the isotropic scattering
tinme approximation and ignore any anisotropy of the electron mean free
paths over the fermi surface. In reality the phonon linited mean free

path of an electron in the state k can depend on the position of & in

3

Brillouin =zone because

(1) the phonon freguencies W2 ]) which aprear in the expression for

P, .+ depend on the orientation of g as well as its magnitude

m

nd (ii) the phonon wavevectors involved in Umklapp processes depend on
the position of k with respect to the zone boundary. One approach to
including this anisotropy would invslve using as a trial function a
linear expansion in terms of cubic harmonics and then minimising oL
with respect to the expansion coefficients. Such a procedure would

be laborious and probahly not very edifying. Fortunately a much

more transvarent "anisotropic scattering time" solution has been

®

proposed by Robinson and Dow (46) for the analogous problem in th
theory of electriczl conductivity. In what follows a similar
time" solution to the Boltzmann equation will be derived for the

ultrasonic attenuation in the low frenuency regime. Attention will be

restricted to metals with spherical fermi surfaces.
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Suppose that the Bhatia and Moore solution for ¢, applicable

transverse waves, gilven by (3.3.11), was modified to allow for
. . L . . ~ A s ., -
anisotropic scattering times C (&) and T,(K) . DSuppose further that

1 times have the symmetry of the Brillouin zone. Then

G = WV L9 V)T TR TR )L
5

- Lo\\'F "CZ(@) \f\f\*\;',‘: e \(7_\(@ (5.1.1)

And

= & ~ i & g |
0¥ = Nz Nz LB Akt

s - 3% e
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Now
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Since the'tlk%) have the symmetry of the Brillouin zone the last term
will pass through zero whenever k and R'are related by a symmetry
operation, In a cubic crystal this will occur at a total of 48 points
on the fermi surface. Thus it is reasonable to suppose that when
inserted into the integral in (5.1.2) this term will make a negligible

contribution. The same argument may be applied to the second integrzl

in (5.1.2). Ignoring the small terms one obtains

\U%“ 1 = C\f \',:Z M-V U« Bn C\if' (DK %
‘(;\*'\ [\ .l T Dol
Dt S ST}

AR L 5 @i . % ‘» “ 5 5 2
A substitution of the solution (5.1.1) into the right hand side of the
Boltzmann equation (3.3.7) yields

12

’ 2 { AL - A \ A
Al S PP [ CqVe MUvg L\(\—(C\V) (7 T (&) T, ))) cas@G Y (k)
E19E

~
Ry o = -+ . o~ A Q 2 Og 4
—q Ve VR W (Y3, 8)) cos 8 Y (R) | 9T (515
- v
- b ‘:
: . "2
The term proportional to (qﬁv?;'C;QL is clearly negligible and

~

ces O (kY = 2 Y, («)
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So (5.1.5) can be written

N g » o
v Y _ : : ., y 3
:“'.‘i( ]s«-\ﬁ =1 U Ve M il Yo (k)
¢t 2
P 1 = AL = = i %
"IN Ve T L) cos B Yo, (k) 28 (5.1.6)
3 0 Ey

&5 o 0 & By -2
Dividing each of the two expressions for LSEJSL\* ((5.1.4) and (5.1.6)
-~ o

by u and equating the imaginary parts produces

—BS':"; Yl\(g) Ly (3 il [ YZ\(E) i .Y’L\(‘\;I )‘X P‘f e’ ('\ \f’ (
OCe | T ) g7’

- SR L % a . %
The C,uik; defined by (5.1.7) does not precisely have the symmetry of the
Brillouin zone, The equation Robinson and Dow found for their

relaxation times is very similar and can be written

o < —
P T () $T

_?g; \(\DL'\’E\_) == ?\a— ' t\(\g L\E) *\(\u(’\«i/ )1 \D\i\fl d\fl
—3
\

Robinson and Dow replaced the intesral in (5.1.8) by

[ MRy - B (&89 Y ()] gy A

This is strictly correct only for isotropic scattering. In practice,

however, there is very little difference between the results of
esistivity using the Robinson and Dow

4 N (h'?)

aporoximation and those usinz the exact solution to (5.1.8) . Thus

calculations of the ideal

(2]

n
i

7 i}
\n

0
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it seems reasonable to replace (5.1.7) by

_?zif : = B ) (- P (&k)) B di’ 19)
B! TR Rt _
This T}{@) does have the required symmetry.
The phonon limited T,(k) can easily be determined from (5.1.9) by
substituting expression (2.9) for P zand integrating both sides with

respect to Ek' The energy intezrals on the right hand side are then the

same as those encountered in section 4.3 and so it is straizhtforward

to obtain

A !3’»17-_1<Fz Rlw) dw cf'\D_E, (\—Pu(lf‘"«@))
T, (K) 27" RV:
* o / \
x E\ﬂusx\izoﬁu‘bdﬁk'ﬁ)) (5.1.10)
Define
Wb F G, 1) = Doonkelnbd DUl as™Lic, )
ST RV

Then| the fact that

- B CR-R) - 3 (1= cost (&2



allows (5.1.10) to be written as

== (a T(’ /? ;{ I<.!:
(43} V;:

The solution (5.1.1) can now be used to obtain an expression

Rlw) o(%kg ?r(;u;,\g) dw

the attenuation coefficient by a direct substitution into (4.1.11)

| 3 A
This reduces to
R L wl £ . RO oy
307T1KV5
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where

X F’CZ(@) d})(.i.;z-
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(5.1.14)

{5.1.15)
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Numerical calculations will have to be performed before it can be
said with certainty that the scattering time solution presented in this
section will produce smaller (and hence better) values for o ' than the

first order variational solution,
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5.2 Attenuation in Dilute Alloys

The study of the finite temperature transport properties of alloys
is, in general, a complicated subject. This is largely because
inelastic scattering of electrons from impurities must be considered.

(48)

Fortunately in very dilute alloys Kus and Carbotte found that the
electrical conductivity can be treated by a simple extension of the
Robinson and Dow theory. In this section a completely analogous theory
applicable to the ultrasonic attenuation is considered.

If one ignores inelastic scattering from impurities and any
changes the impurities may cause in the spectrum of thermal phonons then
the transition rates for the electrons may be written

(=Y

= ° K
lf ! e ‘\_( \_<' ‘\’ P"f !

Pl = : 2 Do .
where P, , +is the ideal transition rate due to electron-phonon scattering

R : s y kst 8 . ot "
and ngiarlses from elastic scattering from impurities. The relaxation

times of section 5.1 become

\ = 1 ¥ el (5.2.1)

T,(K) T, 0 TR

where’ttﬁgy is defined by (5.1.10) and

o, - R
e, 1 = BAL VAR - RS CR R i det G
RE, TR $ T

.rare, in general, somewhat anisotropic

7/ found that quite good results can be obtained
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by ignoring this anisotropy. In the present case this amounts to
setting
\ - \ (=
)
Z

or equivalently

W

= B ooy 1t R \
2. () = /1 o S )TE N e
\ o~ G g /\‘Z/
— A — I
C, (<) z
The advantage of this assumption is that allows LL to be determined
from a measurement of the zero temperature attenuation. For transverse
Wwa.ves
2 “ L R
B $5 i .3 . ,
O(V" = _ Z \\\ \I ll-__(zj L 2 (L’ 2

es
ST Ky
and, of course,o . . for lonzitudinal waves is just 4/3 times (5.2.5).
Under the assumptions (5.2.1) and (5.2.3) the finite temperature

ittt ation for transverse waves is given by

o= 2 ".‘ _\ "Cf(_i&) ey (5.
C

4S TRV,

-0

n

t is convenlent to express this

equivalent of Matthiessen's rule (4.1.21), i.e.

Bud
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1o = A 4 A ¥ DENMR (5.2.7)

t i — 2
T, ; —© - L
4T RV <, (k)+ TR b+ =
> L 20 g e N >
<, (k)
.- : : = p—_ . . < (5.2.8°
Numericzl calculations of the DEMR using (5.2.6) would provide an bt et

indication of how confidently one can use (4.2.21) to seperate out the

ideal attenuation.



CHAPTER VI

ELECTRON-ELECTRON SCATTERIN

Throughout the previous chapters of this thesis it has been
tacitly assumed that electron-electron scattering processes can be
neglected in the Boltzmann equation., It is well known (49) that the
contribution of electron-electron collisions to the electrical
resistivity varies as TZ. The extreme difficulty in finding any T2
dependence of e*experimentally is good evidence of the insignificance
of electron collisions <49). The situation for the ultrasonic
attenuation is rather different, however. Only Umklapp electron-
electron processes contribute to Q*but, as will be shown below, liormal
processes can contribute to L'V A rough theoretical calculation has
been performed by Bhatia and lloore (11) who found that the effect of
electron collisions may become important at temperatures below about
2°K in monovalent metals. Though this contribution to the attenuation
may be significant over only a smell temperature range it is
interesting in its own right as a many-body effect in metals that is
(in principle) observable. In fact a measurement of the T2 dependence
of o¢ would essentially be a determination of the intrinsic viscosity of
the conduction electron gas. In this chapter the theory of the
contribution of electron-electron scattering to o« will be presented.
The treatment will be restricted to free electrons.,

-

The effect of electron-electron scattering can be included in the
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Bhatia and loore analysis in a simple way ( ). For transverse waves

P
LY = Xy : PR | (6.1)
L o W\ V. . C .

where T is the Bhatia and lMoore T, calculated by considering onlj

electron-lattice scattering and where T, is T, evaluated with only

@

electron-electron scattering. The attenuation coefficient for longitudinal

vaves is just 4/3 times that given by (6.1).
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where Q;;.ls the intrinsic transition rate of the two ele
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If both sides of (A.2) are integrated with respect to E,_ the result is
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~ " Py ] . 5
depends only on the angle between k and_g has been used.

. Y 2ty , 3 . L9)
he integrals appearing in (6.3) are very similar to those in reference (49)

where it is shown that they can be reduced to

2 s 2 : b
kg \ K¢ J_ cl ,-1,\5, L\ft.\:”

P ) \A“\(i”
k . ’7 w% - i _ _‘ A”)‘_ iy o - A l'-" //'\,
L ts PR - B (R - B (R (R @) (e (61)
where
“ . L it
e, AR RENY ¢ = = y -
k{\(\<l — CJLL,‘—( ML‘_" V\’\f‘il
and where it is understood that the vector
. / 2t
Ka k' -
must lie on the fermi surface.
The four dimensional intezral in (6.4) can be further reduced to
o . » Sese 4 =N
a two dimensional integral as follows., [Figure 6.1 shows the vectors Z, k
2 i PR . A % = . = L -
and k.. k, is the kX which for given %k and X makes the largest angle OM.
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6.2 The definition of the angles ﬁ and ¢ . The notation is

the same as in Fig, 6.1.
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in figure 6.2, Thus the integral over Aly is equivalent to one over o

and the integral over L, is equivalent to one over

- W
C'( _}1 ! ) 2y 3 S:\ A C\ o,
Fs >
and
: 21T
SR o7 em LB d ¢
s 2

The angle P can be found by noting that

o >

s cosd = kL (RrE) -

h . More precisely

(6.5)

(6.6)

(6.7)

Now observe that in the (x,y,z) system of figzure 6.2 the coordinates of

~ly o~

T 3
%k, kiand k are

K - (‘()) ‘Skvw Kﬁ gl e>>

R
N

Ny

~
s0 k+-k'and ksk can both be evaluated simply. Equations (6.5), (6.6),

(6.7) and (6.8) allow (6.4) to be written as a complic

Sdiad

> LTl

% = Lo, Siwipedhatcos L g-a3)

(“ S\hfﬁ Skﬂ(bﬁ - S0 ﬁ toScb) LGS’B)

which, however, only involves a two dimensional integral.

1
S i
fd’q

To evaluate W=> the form of the electron-electron

il

potential

i3

expression

S

(6.8)
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needed. The collective coordinates method of treating many body

in a charged fermi liqu

id produces a potential which may to a good

29) 3 S (JO>
aonnro ximation be writt

<
o)
1Y
{
1)
,‘l
~
il
V]

For electron densities of real
is too strong for the Born approximation to
Born aporoximation may overestimate the

1 by a factor of about 5 (51’. It can

al wave aznalysis of the

be shown (52) that a proper partia
&u_\:lu -———_3 3 . 1!
\‘\1< w! = AL 1 t“ \ g Lt’\\ (6-1O>
Sk . 5 =
"L
vhere ©§ is the angle between k and K'an \
; - o \UL - -
‘g L@) = \(\‘_ 2 (2L+) € 5 LA SL (L(Lost\,)
Lz s
SR
where the ¢, are the usual partial wave phase shifts (54) and the }T
the

The phase shifts can be determined from
(54)

aniliar fashion P

endre polynonials,

a function of electron density that would be very

calculation o~'i& as
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i,

nearly exact for free electrons. Such a calculation would provide

useful guidance to experimentalists who mizht wish to engage in a search

for 2 T ~ dependence in the low temperature «,
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Appendix A

In this appendix

COY G- G T = L@ - owelH

- (g or- (%w}'ﬂ)

will be evaluated. The angular brackets indicate an average over all

orientations of q. Without loss of generality k can be taken to lie

along the z-axis and k can be taken to lie in the xz-plane. The

cartesian components of X, kX and g can be written as

‘\Z = KO)C)\3

‘/%_I: kS:\f\'*) D) S flx

i S (S:\(\L‘? (esqv, Sin (9 sin 47’;LOSG‘)

where © and ¢ are the polar coordinates of q. The 1

can thus be written

a T
< > - _\_ c\ ‘# SN C\ d )
"l’T!— v o s

2
: g . ; 2
x L (os O - KS\!\:LS\v\'GkoS% 4 Lc.‘SDLLcSE‘) '1
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