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INTRODUCTION 

The theory of the effect of a low concentration of 

defects on the lattice vibrations of a crystal has been 

worked out by various investigators, including in particular 

Elliott and Taylor (1964) and Maradudin (1963) , who investi­

gated the problem of a single mass defect in a crystal, and 

later extended the results to include a low concentration of 

defects based on the multiple scattering of phonons off 

individual defect sites (Elliott and Taylor (1967)). 

Theoretical investigations of the phonon shifts and widths 

were carried out by Lakatos (1967) , Lakatos and Krumhansl 

(1968), and Kesharwani and Agrawal (1971), but no comparison 

with experiment was done until Bruno and Taylor (1971) 

calculated the phonon shifts and widths in the T(zOO) and 

Tl(zzO) directions in a Cu-Au alloy and compared with the 

experimental results of Svensson and Kamitakahara (1971). 

They found that the results could be fitted with nearest 

neighbour force constant changes, but that the changes 

r equired were excessively non-central. Kesharwani and 

Agrawal (1973) have repeated the calculations using central 

f orce constant changes calculated from the Krebs model and 

have achieved some success in fitting to the experimental 

r esults in these directions. 

A 



B 

In this thesis the calculations of shifts and wi dths 

i n the T(zzz) direction for an alloy of 3% gold in Copper 

will be undertaken using the perturbation technique of Bruno 

and Taylor (1971) . Three constant changes will be determined 

by fi t ting to the elastic constants measured by O'Hara and 

Marshall (1971), and the shifts and widths calculated from 

these changes as well as those of Bruno and Taylor (1971) , 

and Kesharwani and Agrawal (1973) will be compared with the 

experi mental results of Kamitakahara (1973). 



CHAPTER I 


THEORY 

1.1 Green's Functions 

1.1.1 General Theory 

The Green's function relevant to the neutron 

scattering problem is the double-time thermal Green's 

f unction of Zubarev (1960). This is defined as follows: 

i f A and B are two operators, then the retarded Green's 

f unction G (t,t') is: 
r 

<<A ( t) ; B ( t I ) > > 
r 

= -ie(t-t')<[A(t),B(t')]> (I-1) 

where e{x) is the step function defined by: 

e(x) = 1 x > 0 (I-2) 

0 x < 0t 
iX t/h -i)(t/hand A(t) is the Heisenberg operator, A(t) = e Ae . 

[A(t} ,B(t')] is the commutator for the phonon case, and 

<A> is the thennal average of the operator A. This last is 

,... 
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given by 

<A> (I-3) 

where )-( is the Hamiltonian of the system and T is the 

t emperature. Similarly, the advanced Green's function is: 

Ga(t,t') = i8(t'-t}<[A(t),B(t'}]> (I-4) 

The significance of the Green's function lies in its relation 

to the correlation function <A(t)B(t'}> which is used in 

l inear response theory to describe the response of the 

observable A to a probe coupled to the operator B. This 

relati on will be shown below. 

The method used to obtain the Green's function is 

to form an equation of motion based on the equation 

satisfied by the Heisenberg operators, i.e., 

ifi dA = [A,){.]
dt 

Thus, by differentiating Gr(t,t') with respect tot, we get: 

in~~= no(t-t')<[A(t) ,B(t')l> 

+ < < [A ( t) ,X.] ; B ( t I ) > > (I-5)r 
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where use has been made of the fact that 

de(t) = o(t) 

dt 


The second term on the right represents a basically more 

complicated object than the original Green's function, and 

further differentiating generally leads to higher order 

Green's functions; all of which reflects the difficulties 

inherent in any general solution of the many-body problem. 

However, in the particular phonon case, it so happens that 

t his.. equation of motion can be solved exactly as will be 

shown below. 

Certain general properties of the Green's function 

are of interest here. First of all, if the Hamiltonian of 

the many-body system is time independent (as is the case in 

the phonon problem), then the Green's function depends only 

on t- t '. This stationarity principle allows us to write: 

T = t-t' (I-6) 

and s i milarly 

(I-7)Ga(t,t') = G (t-t') = a 

The relation between the Green's function and the 

correlation function can be seen explicitly by expressing 
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t he Green's function in terms of the so-called spectral 

r epresentation. This involves choosing a particular set of 

basis states, namely the eigenfunctions of the full 

Hamiltonian, )-( , and expressing the thermal average in terms 

of these atates. The Fourier transform of the Green's 

f unction is defined as: 

G ( ) = _!_ Joo G ( ) iwT d~ (I-8)r w 2~ r T e • 

-oo 


= ;i f
00 

8(T}<A(T)B - BA(T}>eiWT dT (I-9)
2


-oo 


I n the representation generated by the above mentioned 

basis states, the correlation function is: 

<A{T)B> = 1 z <m IA (L) B I m> e 
-Sw 

m (I-10)z m 

where s = n/kT and Im> = Em!m> = ~wmlm>. Using the fact 

that the set of states, Im>, is a complete set, we can 

write finally: 

oo 
<A(T}B> dwe-iwTS(w) (I-11)= f 


-oo 


where 

-Sw 
S(w) = .!. z: e m <mlA ln><n l Bl:m>o (w-wnm) {I-12) 

z mn 



5 


and 

w = w - w nm n m 

S(w) is called the spectral function, and depends on both 

t he excitation energies, w , of the Hamiltonian as well as nm 

on the operators A and B through the matrix elements, 

<mlAln>. Furthermore, the spectral function is simply the 

time Fourier transform of the correlation function in 

question. Similarly, we can write: 

-iWT ­<BA(T)> dwe S (w) (I-13) 

-oo 

where 

- -Sw 

S (w) = 1 I: e m <m I B In> <n I A Im> 8 (w+wmn) (I-14) 


z mn 

These two spectral functions are related by: 

S(w) = e-Sw S(w) (I-15) 

which can be seen by simply interchanging the indices m and 

n in the expression for S. In terms of these spectral 

functions, the Green's function becomes: 
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1 -iw'TG (w) = ro 8(T)eiWTdT r~ dw'er 2'1Ti 
-oo -oo 

x [1 - e-Sw']s(w') (I-16) 

or, by expressing the step function as: 

oo e-iXTi +8 (T) = dx E + 0 (I-17)2'1T J x+ie: 
_ oo 

and using the fact that: 

oo 
1 dt e-ixto(x) = (I-18)2'1T J 

-oo 

the Green's function becomes finally: 

[l - e-Sw']s(w')= 1 Joo dw' (I-19)2'1T w - w' + ie: 
-oo 

p oo dw' [l - e-Sw']s(w')
= 2'1T J w - w' 

-oo 

- i [l - e-Sw]S(w) (I-20)
2 

where P denotes the principal value integral. The advanced 

Green's function has a similar form: 
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G a (w) = 1 
2 TI 

ro dw' [ 1 
w 

- e-Sw']s(w') 
w' ie:- - (I-21) 

-oo 

p dw' [l e-Sw']s(w')Joo ­= 2rr 	 w - w' 
-oo 

+ i [l - e-Sw]S(w) 	 (I-22)2 

Several points should be noted here. First of all, the two 

Green's functions can be considered simply as two branches 

of the function G(z) defined over the whole complex plane 

by: 

f 00
1 dw'[l - e-Sw']s(w')

G(z) = 	 (I-23)2rr 	 z - w' 
-oo 

where there is presumed to be a cut along the real axis. 

In this case, the retarded and advanced functions are 

obtained from G(z) by approaching the real axis from above 

and below respectively, i.e., 

(I-24a) 

+e: 	 -+ 0 

(I-24b} 

Secondly, we obtain immediately the desired relation 

between the Green's function and the correlation function 

f rom the spectral representatives. Subtracting Eq. (I-22) 

f rom Eq. (I-20) gives: 

and 
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G(w + iE) - G(w - iE) = - i[l - e-Sw]S(w) (I-25) 

or 2ImG (w) = - [l - e-Sw]S(w) (I-26)r 

Remembering that S(w) is, in fact, the Fourier 

transform of the correlation function, we see that all 

physical information is contained in the imaginary part of 

the retarded Green's function and, in fact, the real part 

is related to the imaginary part as follows: 

oo Im Gr/a(w'}
= - ! p dw' (I-27)+ TI w - w'f

-oo 

which follows immediately from (I-20). Similarly, the 

retarded and advanced functions are related by: 

(I-28a) 

(I-28b) 

1 .1.2 Perfect Crystal Green's Function 

We consider first the lattice vibrations of a 

perfect crystal. By "perfect", we mean a crystal 

consisting of n identical unit cells which has translational 

symmetry. It is not necessary that all the atoms in the 
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crystal be identical, as for example, a crystal containing 

more than one atom per unit cell. However, as a 

consequence of the translational symmetry , it follows that 

the eigenstates of the perfect crystal Hami ltonian are 

plane waves. In general, the Hamiltonian for the vibrating 

crystal is written: 

(I-29) 

where it is assumed that the oscillations of the atoms from 

their equilibrium positions are small. In the above 

equation £ is the number of the unit cell running from 1 to 

N, while a and S run over the three cartesian components 

as well as the several atoms within the uni t cell, if the 

lattice is not a Bravais lattice. It is assumed that each 

atom oscillates within a potential¢ Cr1 , E2 , ••• , ~), 

dependent only on the atomic positions, but which may include 

non-central effects due to the conduction electrons in a 

metal, etc. Then, if u (£ ) is the a-component of the 
a 

thdisplacement from equilibrium of the £ atom, the 

coefficients AaS( ££ ') are simply those of the quadratic 

term in the Taylor expansion of ¢ about t he equilibrium 

positions, i.e., 

A (,Q,£') (I-30)
aS 

0 
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It is the stipulation of small oscillations which allows 

us to neglect all other terms in the expansion. 

For the neutron scattering problem, the relevant 

Green's function is the displacement-displacement Green's 

function: 

G 0 (,t.Q.';T) / (I-31)
a.µ r a 

Using this function and the Hamiltonian (I-29) , the equation 

of motion (I-5) becomes: 

in a G (ii • · T >1 = dT a.8 

(I-32) 

21T 1or: -r (.Q.) <<p,...(.Q.,T);u 0 (.Q,',O)>> (I-33) 
H Ma. '""' µ 

A second differentiation with respect to T gives: 

21T 1+ "flM ( .Q, ) < < (pa. ( .Q, t T ) , _ ] i Us ( .Q, i Q ) > > 
a. 

(I-34) 

and finally an equation consisting entirely of the Green's 

f unction: 
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a2 
- M (.Q,} - G a(tt';T} = 2rro(T}o(tt'}o(a,S}

2a dT a""' 

+ E A (tt"}G (t" t'·T) • 7 ay yS ' ' y 
.Q," (I-35} 

It is convenient at this point to use the Fourier transformed 

Green's function: 

-iwTG (.Q,.Q,' T} = Joo dwe G (tt' ·w} (I-36}aS I 

0 

as , 
-co 

and secondly, to define the mass reduced quantities: 

(I-37a) 

(I-37b) 

Equation (I-35} then becomes: 

2 
w gas (tt' ; w) = o(tt')o(a,6} + l: a ay (tt"} y 

.Q," 

x g (t" t' ·w) (I-38)y6 I t 

Up to this point, the assumption of a "perfect" 

crystal has not been used, i.e., the masses of the atoms 

have been allowed to vary from one position to another 

and no stipulation has been made concerning the force 
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constants Aa B(ii'). Therefore, Eq. (I-38) is completely 

general and will be used below to derive the defect-crystal 

Green's function. To solve for the case of the perfect 

crystal, it is convenient to transform to the so-called 

" normal coordinates" by means of the unitary matrix defined 

by: 

(I-39) 

where oj(k) is the eigenvector of the dynamical matrix a ­

associated with the force constant matrix: 

( I-4 0) 

and Ri is the position of the ith unit cell. It follows 

from the translational symmetry of the perfect crystal that 

aaB(ii') depends only on the distance between the unit 

c ells: 

(I-41) 

Then the crj(k) satisfy the eigenvalue problem:
a ­

2 . 
= W. (k} OJ (k) (I-42)

J - a ­
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It is assumed throughout the following that a Bravais lattice 

is being considered. Then j numbers the three eigenvalues of 

the above equation. Finally, since the eigenvectors can be 

chosen to satisfy t he relations: 

E cr*j (k) crj' (k) = cS .. , (I-43a) 
a a - a. - JJ 

and 

E cr*j (k) crj (k) = (I-43b)
j a - B ­

(Maradudin, Montroll and Weiss (1963)) it can be seen that U 

is the matrix which diagonalizes the matrix a: 

U ( ~ k ; o. 51.) a ( t 51. ' ) U* ( j ' k ' ; B51. ' )
J_ aB ­

2 
= cS .. ,cSkk'w.(k) (I-44)

JJ J ­

wh ere k and k' run over the N values within the first 

Bri l loui n zone, and j, j' run over the three branches 

c orresponding to the eigenvalues of (I-42). That the matrix 

U is unitary follows from the relation: 

(I-45) 
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where ~(k) = 0 unless k is a reciprocal lattice vector. 

Thus, if Eq. (I-38) is written in matrix form: 

2 w g = I + ag (I-46) 

t hen the transformed equation becomes: 

(I-47) 


2­or w g = I + ag (I-48) 

In the case of the perfect crystal, we know from Eq. (I-44) 

that 

- 2a (j j I ;kk I) = 0 " I 0kk I W • ( k) (I-49)
JJ J ­

So the equation reduces to: 

w
2
p(jj' ;kk') = ojj'okk' + w~(k)p(jj';kk') (I-SO) 

where the perfect crystal Green's function is written as p. 

This equation may be solved to give: 

0 "1 Okk'JJP ( j j I j kk I ) = (I-51)
2 2w w. (k)

J ­
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showing that the perfect crystal Green's function is 

diagonal in normal coordinate space, as expected. Finally, 

by performing the inverse transformation, t he Green's 

function in real space is: 

(I-52) 


(I-53)or: Pa.sC.R..R.';w) = ! l: 
2 2N jk w w. (k)

J ­

1 .1.3 Defect Crystal Green's Function 

The defect crystal is one in which certain atoms of 

the perfect crystal are replaced by atoms of a different 

mass and possibly a chemically different species. The more 

numerous atoms are called the host, and the others are called 

the impurity or defect. No assumption is made at this point 

concerning changes in the relative positions of the host or 

defect atoms, as a result of the substitution. However, these 

changes will become relevant in applying the formalism to the 

study of the neutron-scattering problem as will be seen 

b elow. 

If the mass of the host atom is M, then the change 

i n the mass of the atom at site 1 as a result of the impurity 

s ubstitution is conveniently written in terms of the 

p arameter £( .R. ) as: 
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M(t) - M = - £(.t)M (I-S4) 

(where Bravais lattice is assumed). Similarly, the force 

constants BaS( 'l 'l') of the defect crystal are written: 

(I-SS) 

where AaS(t 'l ') are the force constants between the host 

atoms in the perfect crystal. It should be observed that 

t he force constants between host atoms of the defect crystal 

may be changed due to the deformation of the crystal about 

an impurity. In general, the matrix 6A has non-zero elements 

clustered on and about the defect sites and this set of 

sites around a given defect is called the "defect space". 

With these definitions, the equation for the defect 

crystal Green's function may be obtained, using Eq. (I-38) 

in the form: 

+ I: B (.tt")G ('l" t' ·w) (I-S6)ay yS ' ' y 
R," 

or, using (I-S4) and (I-SS), 
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+ E A (££ 11 )G (£" £' ·w)
ay yS ' ' y 

£II 

+ E '1A ( R, R, " ) G ( R, II R, I • w) • 
ay yS ' ' y 

R, n (I-57) 

Introducing the defect matrix: 

(I-58) 

and reverting to the mass-reduced quantities: 

g = MG and A c (I-59)a = M c = M 

we get the equation in matrix notation: 

2w g = I + ag + cg (I-60) 

But if p is the perfect crystal Green's function, it must 

satisfy 

2 w p = I + ap (I-61) 

or p = (w 2r - a)-l (I-62) 
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Then Eq. (I-60) becomes finally: 

g = p + peg (I-63) 

which is ~n the form of a Dyson equation for g. 
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1.2 Solutions of Dyson Equation 

The starting point for the defect problem is the 

Dyson equation (I-63) : 

G = P + PVG (I-64) 

The solution of the problem depends on the precise nature 

of the matrix V, which is given by Eq. (I-58): 

(I-65) 

In general, this matrix of dimension 3Nx3N, consists of a 

series of blocks down the diagonal with zeros at other 

points. There is one block for each defect centred at the 

defect site and the size of the block corresponds to the 

"defec~ space" defined above. As is obvious from Eq. (I-65), 

it is the force constant changes which cause the off­

diagonal disorder, i.e., off-diagonal non-zero elements of 

V, and because of this, the possibility exists of overlapping 

blocks. Furthermore, the precise nature of V depends on the 

configuration of defects in the crystal. Since this is 

generally unknown, a configurational average must be 

performed, in the same way that unknown variables are 

averaged in statistical mechanics. 
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Several special cases are of interest: First, the 

single mass-defect; this corresponds to replacing a single 

host atom by another atom of different mass, such that the 

force constants throughout the crystal remain unchanged. 

Although this is obviously an artificial problem, it is 

important for several reasons: (a) the single defect is 

the only problem which can be solved exactly and shows the 

general nature of phonon scattering off defects; (b) it is 

believed that the mass changes account for most of the 

phonon scattering, while the force constant changes produce 

secondary corrections; and (c) the scattering of phonons 

off low concentrations of defects can be approximated by 

multiple scattering off single defects, thus involving the 

t-matrix for single defect scattering. 

The second case is that of a low concentration of 

mass defects situated randomly throughout the crystal. The 

random configuration ensures that the averaging will restore 

the translational symmetry of the crystal, while the low 

concentration ensures that coherent scattering off groups 

of defect's will be negligible and only the single defect 

scattering described above need be considered. 

Finally, we will consider the case of a low 

concentration of defects with force constant changes, under 

the assumption that the concentration of defects is 

sufficiently low and the defect spaces sufficiently small 
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that the probability of two defect spaces overlapping is 

taken to be zero. Under these assumption~, this problem is 

essentially the same as the mass defect problem above, 

while the increased difficulty is due to the short-ranged 

off-diagonal disorder. 

1.2.1 Single Mass Defect 

Equation (I-64) is easy to solve for the case of a 

single mass defect at the origin. The V-matrix can then be 

written: 

(I-66) 

Equation (I-64) then becomes: 

G (.U,') (I-67)cx8 

It is well known (Maradudin et al. (1963)) that the Green's 

function for the perfect crystal must transform under th2 

operations of the crystal point group in the same way as the 

force constant matrix, i.e., if scx represents an operation
8 

of the group, then: 

pcx8(LL') = (I-68} 
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where the operation S takes the atom at £' into the new 

position L' and the atom at £ into the position L. By 

applying Eq. (I-68) to those elements of the crystal group 

which leave certain atoms unmoved, various relationships 

among the elements of the P-matr.:j.x may be deduced. This is 

shown more explicitly for the F.c.c. case in Appendix I. 

Here, it is sufficient to note that for the case of cubic 

crystals, the following result can be shown: (Taylor (1964)) 

(I-69) 

Equation (I-67) can then be solved to yield the 

Green's function for the single mass-defect case: 

(I-70) 

In particular, the defect-defect Green's function becomes: 

P ( 0; w) 
(I-71)2 °a(3

l - Me: w P ( 0 ; w) 

From Eq. (I-70), we can see that the quantity 

is the single-defect scattering t-matrix referred to above 

(Klein (1963)). 
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We will be considering correlation functions like: 

2<u > = 3<u (t,T=O)u {t)> (I-72)a. a. 

3fl Joo dw = {2Im GR (it;w)} (I-73)
27T cmeBw - 1-oo 

2where <u > is the mean square displacement of the atom at 

position t from equilibrium. The last equation follows 

from the relation (I-11) between the correlation function 

and the spectral function, along with Eq. (I-26) relating 

the spectral function and the imaginary part of the Green's 

function. 

At the defect site, the displacement spectrum 

<u2 (w)> is proportional to 

ImP ( 0 ;w)ImG~a.(O;w) = 2 2 2 2[(l-M£w ReP(O;w)] + [M£w ImP(O;w)] 
(I-74) 

showing a resonance at that value of w = uJR satisfying: 

with a half-width at half-maximum given by 

(I-76)7 

if wR is contained within the range in which the density of 



24 


states of the perfect crystal is non-zero. It can be shown 

that wR is within this range only if the defect is heavier 

than the host atoms, i.e., E < 0 (Taylor (1964)). Then wR 

can be thought of as the frequency at which the defect 

naturally tends to resonate, while the finite width is due 

to the decay of the mode into the nearby perfect crystal 

modes. In fact, for the case of a light defect (0 < E < 1), 

the value of w satisfying (I-75) may be outside the perfect 

crystal band. In this range the imaginary part of P, which 

is proportional to the density of states, vanishes, so that 

ImG contributes a pole to the integral (I-73). This mode 

is called a "local mode" as it can be shown that the 

spatial extent of this vibration decays exponentially with 

distance from the defect. 

For the atoms neighbouring the defect, the 

2displacement spectrum <u (w)> is proportional to: 

ImGR (11;w) = Im{P(O;w)
Cl. Cl. 

+ r P cio> 
y a.y 1 - MEw2P(O;w) pya(Oi)} • 

(I-77) 

This equals ImP(O) plus a correction term due to the 

presence of the defect which contains the resonance 

denominator multiplied by P(01) 2 • This can be expected to 

get smaller as 1 gets larger, since P(Ol) measures the 

correlation between atoms 0 and 1. 
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Thus the main feature of the heavy-defect 

spectrum is the resonance which predominates at the defect 

site and becomes less important for increasingly distant 

neighbours. 

1.2.2 Low Concentration Theory 

The aim of the low concentration theory is to solve 

the Dyson equation to the first order in the concentration, 

c. As outlined above, the underlying assumptions are: 

(a) 	 defects are randomly situated throughout the 

lattice, so that the probability of finding a 

defect at any given site is equal to the 

concentration c. 

(b) 	 effects due to the overlapping of defect 

spaces or the coherent scattering of phonons 

off pairs or other clusters of defects, enter 

as second and higher order corrections in the 

concentration and may be neglected. 

Several approaches have been used to arrive at the 

low concentration result. In particular, the diagrammatic 

analysis outlined by Langer (1961) for the one-dimensional 

lattice and subsequently extended by other investigators 
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(e.g., Maradudin (1963), Aiyer et al. (1969)) has the 

advantage that higher order corrections can be included in 

a fairly straightforward way. However, it is convenient 

for this analysis to outline the algebraic approach of 

Taylor (1967). 

Since the defect spaces do not overlap, we can 

write the matrix as: 

(I-78) 

where Vn is the contribution from the defect at the nth 

crystal site. In principal, the summation is over all sites 

but the matrix r vanishes if the site n does not contain a 

defect. A non-zero Vn consists of a single block centred 

th on the n position on the diagonal, and may be written: 

(I-79) 

The Dyson equation becomes: 

G = P + 	l: PrG (I-80) 
n 

It is convenient to separate out the scattering due to the 

impurity at n by writing: 

(I-81) 
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where, obviously: 

(I-82) 

Thus Gn is the Green's function representing the scattering 

of phonons off all the defects except that at n. From 

(I-81), the final Green's function is: 

(I-83) 

so that 	(I-80) becomes: 

G = p + 	E PV1(I - PVn)-l Gn {I-84a) 
n 

Gnand: = p + E Fvncr - Pvn>-1 Gm (I-84b) 
mfn 

We can now define the T-matrix, Tn, by: 

(I-85) 

Tn is a matrix of dimension 3Nx3N, with a single block on 

the diagonal at the nth site if there is a defect at n, 

and equals zero otherwise. To see that Tn is the usual 

t-matrix for the scattering of phonons from a single defect, 

it is sufficient to assume that VU = 0 for all m~n, and 

then Eq. (I-84a) becomes: 
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(I-86) 

In terms of the t-matrix, the Eqs. (I-84a) and 

(I-84b) become: 

(I-87a) 

and (I-87b) 

It is now necessary to do a configuration averaging. 

For this purpose, it is assumed that all defects are 

identical. Then, since P is independent of the configura­

tion of defects, it is necessary to evaluate terms like 

<TnGn> = Nl ETnGn (I-88) 
c 

where the sum is over all configurations and Nc is the 

number of possible configurations consistent with the 

given concentration. Since Tn vanishes for all configura­

tions which do not have a defect at n, it follows that: 

(I-89) 

where tn is identical with Tn, except that it is independent 

of the configuration, i.e., it assumes there is a defect at 

n. <Gn> is the average over all configurations subject to 
n 
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the condition that a defect exists at n. The fact that all 

defects are identical ensures that tn is a matrix 

consisting of a single block centred at n, and that the 

only dependence on n is the position of this block. 

Finally, Eqs. (I-87a) and (I-87b) become: 

<G> 	 = P + L Pctn<Gn>n (I-90a) 
n 

and L (I-90b) 
mfn 

Here, the 	quantity <Gm> is the Green's function averagedm,n 

over all configurations subject to the condition that a 

defect exists at positions m and n. Obviously the quantity 

<Gm> - <Gm> is related to the correlation between the m,n m 

defects at m and n. Taking this latter quantity to be zero 

is equivalent to the assumption that the phonon scattering 

at the site m is independent of where the other defects are, 

i.e., the scattering off the several sites is incoherent. 

This assumption was pointed out at the beginning of this 

section, and is now seen to be necessary in order to solve 

the Eqs. (I-90a) and (I-90b). Any quantity which depends 

2 on the positions of two defects must be proportional to c 

after the averaging procedure. Hence, by setting 

I 
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we are neglecting terms of second and higher orders in c. 

The equations become: 

<G> 	 (I-9la) 

= P + c E 	 (I-9lb) 
m~n 

Switching indices in (I-9lb) and substracting (I-9lb) from 

(I-9la) gives: 

(I-92) 

or: 	 (I-9 3) 

Finally 	plugging this result into (I-9la), we get: 

<G> 	 = P + c E Ptn(I + cPtn)-l <G> (I-94) 
n 

n 	 n -1= p + c 	 E Pv (I - (1-c)Pv ) <G> (I-95) 
n 

I 
where vn is defined in analogy with tn, i.e., for every n, 

v n consists of an identical block centred on the diagonal 

a t the position n. Since the summation is over all crystal 

s ites, it can be seen that the quantity: 

n 	 n -1
X = E v 	 (I - (1-c)Pv ) (I-96) 

n 
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has the same translational symmetry as the perfect crystal, 

i .e. ; 

X ( .U,') = (I-97)
a. f3 

a property which will be used in the neutron scattering 

problem below. 

The Dyson equation in this form: 

<G> = P + cPX<G> (I-98) 

can be transformed to normal coordinates using the 

transformation (I-39) • Since X has the translational 

symmetry of the perfect crystal, it follows that the 

transformed quantity is diagonal in k. We can write: 

+L: (w) = cUX(w)U (I-99) 

o r explicitly 

L:jj'(k,w) = c L: U(jk;a..R-)Xa.f3(ii')U*(j'k;f3.R-') (I-100) 
ii' 
a. f3 

g i ving for the Dyson equation: 

(I-101) 
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If k is in a symmetry direction, it can be shown (Appendix 

II) that Ejj' (k,w) is diagonal in j. Then the equation can 

be solved immediately to give: 

= [w 2 - w~(k) - Ej(k,w)]-l (I-102)
J ­

where use has been made of the fact that: 

[w 2 - w~(k)]-l (I-103)
J ­

Thus the quantity E appears as a phonon self-energy 

due to the scattering of phonons off the defects. The 

defect crystal phonons have energies shifted from the perfect 

c rystal ones by an amount 

Re Ej ( k , w . ( k) ) 
- J ­

2w. (k)
J ­

with a finite lifetime related to 

Imtj (k,w. (k)) 
- J ­

2w. (k)
J ­

~hese results will be used in the neutron scattering problem 

llelow. 

The self-energy can be evaluated most readily for 

the case of a low concentration of mass-defects, since the 

defect matrix vn is diagonal. In fact, 
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(I-104) 

The self-energy in coordinate space is given by Eq. (I-96): 

(I-105) 

where 

(I-106) 

To evaluate Yn, we note that by definition of the inverse it 

must satisfy: 

(I-107) 

or using the definition (I-104) for vn 

= (l-c)M£w
2 E Pay(in)Y~S(ni') + oaSo(ii') 

y 
(I-108) 

But, if we make the replacement i=n in the above equation and 

use the cubic crystal result 

we get: 
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2 ny~f3 (n,Q, I) = (l-c)M£w P(O;w)YyS(nt') + oaSo(nt') 

(I-109) 

This can be solved to give: 

0 f3 0 (n,Q, I) 

y~ f3 (n,Q, I) = 
 (I-110) 

So that Eq. (I-108) becomes finally: 

(l-c)M£w 2PaS(tn)o(nt') 
= 

1 - (l-c)M£w2P(O;w) 
(I-111) 

I nserting this result into (I-105) and using the definition 

n 
1
(!-104) for v gives after some rearrangement: 

M£w2 
= E oaf3o(tt')o(tn)2 n 1 - (l-c)M£w P(O;w) 

M£w2 
= 2 oaf36(,Q,,Q,') (I-112) 

1 - (l-c)M£w P(O;w) 

We see that for the case of the low concentration of 

mass defects, the X-matrix is diagonal and has the transla­

t ional symmetry of the perfect crystal. Furthermore, the 

~act that it is proportional to the identity matrix means 

that the self-energy ~ as calculated by Eq. (I-100) is 

independent of both j and k, and is given by: 

2 · ·~ M£w
2 Q.. I (I-113) 

1 - (l-c)M£w P(O;w) JJ 
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~hat the self-energy is independent of both the branch and 

the wave-vector reflects the fact that the defect has no 

s patial extent, i.e., isotropic. 

1 .2.3 Perturbation Theory 

When the low concentration of defects includes force 

c onstant changes, the problem is much more difficult to 

s olve. For example, in the case of an F.C.C. lattice with 

only nearest neighbour force constant changes, the defect 

s pace has dimensions 39x39. Evaluating the X-matrix by 

Eq. (I-96) is facilitated by transforming to symmetry 

coordinates which block diagonalize the matrices (Lakatos 

a nd Krurnhansl (1969)). However, a further approximation is 

possible which eliminates the necessity of inverting matrices 

and hence greatly reduces the calculations involved. This 

~rocedure assumes that the defect matrix vn may be split 

into two parts: 

(I-114) 

nwhere it is assumed that the X-matrix corresponding to v 
0 

can be calculated exactly: 

(I-115) 
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It is obvious from the preceding section that this will be 

the case if v~ includes mass changes only. Furthermore, it 

is assumed that v~ can be considered a small perturbation 

whose effect need be included to first order only. If vn is 
p 

taken to include the force constant changes, then since 

2v~ = M€w I, it would appear that this last condition is not 

satisfied for low w. This point will be discussed later. 

Equation (I-115) can be inverted immediately to give: 

(I-116) 

Inserting (I-114) and (I-116) into Eq. (I-96) gives: 

(I-117) 

This can be manipulated to give: 

(I-118) 

Assuming that vn is a small perturbation allows us to write p 

to first order in v 
n 

: p 
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(I-119) 


(I-120) 


The simplification introduced is obvious since the first and 

fifth terms have entries only on the diagonal of the defect 

site, while the third and fourth terms are simply column and 

row matrices connecting to the defect site. Furthermore, the 

necessity of inverting matrices has been eliminated. 
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1.3 Neutron Scattering 

The low concentration theory can be used to solve 

the problem of the scattering of thermal neutrons from 

crystals with low concentrations of defects. The formalism 

relating the neutron scattering cross section to the defect 

crystal Green's functions is well known (Lakatos (1967)) and 

it is sufficient here to present the results for the coherent 

inelastic scattering which is the concern of this thesis. 

If the crystal is bombarded with low-energy neutrons , 

they may be considered a weak time-dependent perturbation of 

the crystal system and the differential cross section for the 

s cattering of neutrons through solid angle an with energy 

c h ange E is given by Fermi's golden rule: 

(I-121) 

where k' and k are the final and initial wave vectors of the 

neutrons, pA is the probability that the initial crystal 

state is A, pv is the probability that the initial neutron 

s p in s t ate is v and nw = E. We take as the effective 

p o tential between the neutron and the crystal, the Fermi 

p s eudopotential : 
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(I-122) 

ai is the scattering length which may change from one atom to 

another; in particular ai may be different for host and 

impurity atoms. With these changes, the cross section may 

be written in the form: 

1 foo dt exp(-iwt) ~ pA21Tfi 
A -oo 

x ~ atai,<Alexp{-i.Q·Ri-(O)}exp{iQ·Ri, t)}!A > 
ii' 

where Q = k' - k. (I-123) 

At this point, the cross section still contains the complete 

information about the defect configuration and an averaging 

must be done. What is required is the configuration average 

of the quantity: 

However, for simplicity this will be approximated by: 

<aiai,>CONF<<A!exp{-iQ·Ri(O)}exp{i~·Ri, (t)}!A>>CONF 

(I-125) 

The second factor is related to the defect crystal Green's 

f unction as will be seen below and the averaging is done as 

i n the preceding sections. Assuming a random distribution 

ff defects, the first factor may be written: 
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if 9.. 1 i' 

(I-126) 

if t = i' 

or, assuming that all sites are equal after the averaging: 

2 2 2 = <a> + cSti' (<a > - <a> ) (I-127) 

Since we are interested in the coherent scattering, 

2 we will retain only that term proportional to <a> in the 

cross section. 

Finally, for small vibrations, the usual expansion 

of the exponential terms yields the expression for the 

coherent inelastic scattering cross section 

(I-128} 

where 11.Q and nw are the neutron momentum and energy transfer 

2respectively, and a has absorbed the Debye-Waller factor 

which is assumed constant for all atoms. 

It is convenient at this point to write the Green's 

f unction in the normal mode coordinates using the transforma­

t i on (I-39) : 
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x ImcP 
' 

J 
'I 

(g_, w) (I-129) 

where the translational symmetry of the averaged Green's 

function has been used. Inserting (I-129) into (I-128), we 

get for the cross section: 

, , I 

x ImGJ J . (g, w) Li (k-g) (I-130) 

where Li(Q-g) = 0 unless k-g is a reciprocal lattice vector 

(the summation on g is over the first Brillouin zone, while 

there is naturally no such restriction on~). 

Experimentally, the scattering by a given phonon 

b ranch j may be examined if the experiment is arranged such 

that 

' I 

Q_ •cr J (g) = 0 for j' ":f j (I-131) 

I n particular for ~ along a symmetry direction, 

(I-132) 
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From Eq. (I-102), the imaginary part of the defect 

crystal Green's function is: 

2 2 J - 2 J 2[w -w . (g) -Rel: (g_, w) ] + [ImL: (g_, w) ]
J ­ (I-133) 

Thus the peak in the neutron scattering cross section for 

momentum transfer ng_ can be used to determine the shift in 

the phonon energies, while the width of the cross section 

peak can determine the phonon lifetimes. In the case of the 

perfect crystal, we have: 

2ImPj (a ,w) a: o(w - w~ (k)) {I-134)
:.I.. J ­

so that in principle, the neutron should scatter at precisely 

the energy nwj(g_) given by the perfect crystal phonon 

dispersion curves, with a peak width equal to zero, i.e., 

the phonon has infinite l ifetime. This is a consequence of 

t h e fact that the normal modes of vibration are exact 

e igenstates o-f the perfect crystal Hamiltonian. On the 

o t her hand, the eigenstates of the defect crystal 

Hamiltonian are expressed as linear combinations of the 

s i ngle-phonon states whose energies have been renormalized 

by the real part of the self-energy L: , while the imaginary 

part of L: reflects the spread in the single-phonon s t ates 

which have been mixed into the eigenstate. 
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In practice, the perfect crystal cross section peaks 

will never have zero width, but will have some finite width 

due to anharmonic effects, random isotopic impurities, etc. 

Furthermore, a basic width will be introduced due to the 

resolution limit of the experimental apparatus, involving 

experimental error in the measurement of neutron wave vectors 

and energies. When these effects are taken into account, 

the shifts and widths measured may be compared to the 

predictions of the low concentration theory presented above. 
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CALCULATIONS 

2.1 Single Mass Defect 

The details of the calculation of the perfect crystal 

Green's functions have been described in detail by Bruno 

(1971). The real and imaginary parts are calculated by: 

R -'IT
Im P 0 (ii';w) = ~ v Cii';w) (II-1)aµ 2w. a 8

and 

v (ii' ·w') 
= p (MAX aB ' -------- dW I (II-2)

2 , 2 w - w0 

where 

v L: 
( 2'1T) 3 j 

x o(w. (k) - w) (II-3)
J ­

The symbol P indicates the principle value integral, and the 

i ntegral over k in Eq. (II-3) is performed by the method of 

Raubenheimer and Gilat (1966) involving a summation over a 

44 



45 

mesh of points in the irreducible part of the Brillouin 

zone. 

The mean square displacements given by Eq. {I-73) 

have been calculated for the case of a single gold impurity 

i n a copper host crystal. The parameter E has the value 

-2.1, so a resonance is expected in the perfect crystal band. 

Figures 1 to 4 show the graphs of <u 2 (w)> which are simply 

proportional to Im G for the particular atom. In Fig. 1 

2 we see <u (w)> at the defect site; also plotted on the same 

2graph (dotted) is <u (w)> for an atom in the pure host 

crystal. Here the resonance can be clearly seen and in 

fact, since the resonance frequency is low enough that the 

perfect crystal density of states is relatively small at 

this frequency, the result is that the resonance peak is 

h igh and narrow indicating that the resonance mode is long­

lived with little decay into the band modes. Figures 2 to 4 

2 s how <u (w)> for first, second and third nearest neighbours, 

r espectively. In each case, it is the displacement in the 

p lane of the line joining the defect to the neighbour. 

F igure 2 shows that the effect of the impurity dies off 

d rastically and is already only a minor correction at the 

2f i rst neighbour. The behaviour of <u (w)> at the resonance 

f requency is easily understood by reference to Eq. (I-77) 

where the correction term is seen to change sign as w goes 

through wR thus giving the characteristic wiggle in the 

s pectrum. By the time the third neighbour is reached, 
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Fig. 4 shows the effect of the impurity to be negligible. 

The total displacements <u2 (~)> are shown in 
· aa 

Table 1 for the defect and the first four nearest neighbours. 

Since the defect is heavier than the host it is natural that 

the amplitude of vibration of the defect should be smaller 

than the host. However, what is surprising from this table 

is that the effect of the impurity is so small even for the 

nearest neighbours. Of course, if force constant changes 

were included in the calculation, then the effect would be 

somewhat greater. Reference to Fig. 2 indicates that even 

though the spectrum is significantly altered for the first 

neighbour, the changes are more or less symmetric about the 

perfect crystal spectrum and so these effects tend to cancel 

out in the total integral. Thus, if we take this change in 

t he vibration amplitude as some rough measure of the extent 

o f the impurity effects, we may conclude that these effects 

a re of very short range, and this result may support the use 

o f the low concentration theory even at fairly high random 

concentrations since the assumption is that the defects 

s catter incoherently. 

The same results can be seen for the case of a light 

defect. Figures 5 to 8 and Table 2 show the calculations for 

E = .575 corresponding to an Al defect in Cu. In Table 2, 

t h e contribution due to the inband integral has been shown 

s e parately from the local mode contribution in order to 

c ompare the two contributions. 
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TABLE 1 


MEAN SQUARE DISPLACEMENTS 


E = -2.1 T = 50°K 


(ANG 2 
x 10-3 ) 

<u~ (DEFECT)> 1.5287 

<u2 (l)> 2.1317 x 

<u~ (l)> 2.1330 

<u2 (2)> 2.1335 z 

<u2 (2)> 2.1320 x 

<u2 (3) > 2.1343 x 

<u~ (3)> 2.1353 

<u2 (3)> 2.1353 
z 

<u2 (4)> 2.1329 x 

<u2 ( 4) > 2.1321 
z 

<u~ (HOST)> 2.1383 
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Figure 7 
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TABLE 2 


MEAN SQUARE DISPLACEMENTS 

E = .575 T = 50°K 

INBAND LOCAL MODE 

CONTRIBUTION CONTRIBUTION TOTAL 

(ANG 2 ) x 10-3 (ANG2 ) x 10-3 (ANG 2 ) x 10-3 

<u~ (DEFECT)> 1. 3018 1. 60116 2.9029 

2<u (1) > 2.1118 .00267 2.1385 x 
<u2 (1) > 2.1335 .00017 2.1352 z 
<u2 ( 2) > 2.1367 1.2 x 10-5 2.1367 z 

2<u (2)> 2.1333 2.98 x 10-4 2.1336 x 
2<u (3) > 2.1361 1.86 x 10-4 2.1363 x 
2 -4<u ( 3) > 2.1363 2.45 x 10 2.1365 y 

<u2 (3)> 2.1363 2.45 x 10-4 
2.1365 z 

2<u (4) > 2.1342 6.90 x 10-4 2.1348 
x 

<u2 (4)> 2.1330 7.67 x 10-5 2.1331 U1 z 0\ 

2<u (HOST)> 2.1383 0 2.1383 x 
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The local mode contribution has been calculated by 

evaluating the imaginary part of the Green's function at 

w = wL. Since wL is .above the perfect crystal density of 

states maximum, it follows that Im P(w~) = O, and Im G can 

be found from Eq. (I-70) by adding a small imaginary part 

+to w + w+io, where o + O • Then Im G can be shown to be: 

Im Ga B(,U, ' ; w) = 
2 E: W) J \) (W I ) dW I ] 

L ( 2 I 2) 2
WL - w 

(II-4) 

and the contribution to the local mode is, from (I-73): 

(II-5) 

Once again, the spectrum is drastically altered at the defect 

s ite. In fact, Fig. 5 and Table 2 show that the contribution 

f rom the single local mode frequency outweighs the whole 

i nband contribution. However, as we go down through the 

neighbours, the local mode contribution becomes negligible 

( .1% at the first neighbour) and ·the spectrum looks like that 

f or e: = -2.1, except that the resonance effect is missing for 

t he light impurity. 
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Thus, for both the light and heavy mass defect, the 

effect of the impurity dies away so quickly that it is felt 

significantly by only the first neighbour. In fact even for 

t he first neighbour, when the total displacement is changed 

by 30% at the defect site, the change in that neighbour's 

displacement is about .3%. The changes in the spectrum can 

be seen at the first neighbour, especially in the region of 

the resonance, but then changes will tend to cancel in 

calculating any physical property involving the integral over 

frequency. 

To extend this argument to the case of a point defec t 

with small nearest neighbour force constant changes, it would 

seem reasonable to assume that the effects of the impurity 

would be felt significantly at the defect and neighbour with 

slight perturbation at the second neighbour. However, this 

calculation has not been done here, so all that can be 

argued is that physically, one would expect the force 

constant changes to shift the resonance, and to extend the 

effect of the impurity due to the larger defect space, but 

not to extend these effects much beyond the defect space, 

s ince the mass defect is incapable of doing this, as has 

been shown. The significance of this result is to lend 

s upport to the use of the low concentration theory, which 

wi ll break down when the coherent scattering of phonons off 

c lusters becomes significant. We conclude that these clusters 

must be extremely close together to cause coherent scattering, 

which means that the concentration must be fairly high. 
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2.2 Cupper-Gold Alloy 

The low concentration theory has been used to 

calculate the shifts and widths of the phonons in an alloy 

consisting of 3% gold in copper. This system has E = -2.1 

so no local mode exists, and the low concentration makes it 

suitable for this theory. Furthermore, the shifts and 

widths have been measured experimentally by Svensson and 

Kamitakahara (1971) for~ in the directions T(zOO) and Tl(zzO) 

[eigenvector (1//2, -1/12, O)], and in the T(zzz) direction, 

though this result is not published as yet. Calculations 

have been done on this system by Bruno and Taylor (1971) and 

most recently, Kesharwani and Agrawal (1973) for the T(zOO) 

and Tl(zzO) branches. No calculations in the T(zzz) direction 

h ave yet been reported. 

The self energy is calculated using the perturbation 

t heory, Eq. (I-120), as described in Appendix I, where it is 

a ssumed that only nearest neighbour force constant changes 

a re involved. The pure copper force constants fitted by 

.Svensson and Kamitakahara (1971) were used, as . modified by 

Bruno and Taylor (1971) to account for the overall expansion 

o f the lattice, which is about 1.6% at c = 3%. The imaginary 

part of Gj(~,w) was then calculated using (I-133). 

It has been shown, (I-130), that the neutron 

-j
scattering cross section is proportional to Im G (g,w). In 

fact, it is the peak in Im Gj which determines the peak in 
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t he scattering cross section. It can be seen from (I-133) 

t hat Im G would be Lorentzian in w if E j(~,w) were 

i ndependent of w. In the lowest approximation, we set 

w = wj{~) in L, and there the peak can be shown to occur at 

(II-6) 

while the half-width at half-maximum is given approximately 

by: 

(II-7) 
2w. (~)

J 

However, since L is not independent of w, the peak tends to 

be more assymetric and it becomes necessary to define the 

peak to be the center of the half-maximum points of the full 

function (I-133) in order to conform with the experimental 

method of Svensson and Karnitakahara. This procedure involves 

c alculating the function G(~,w) at many values of w for each 

· ~ and performing some kind of operational measurement of the 

peak position and size, so it is obviously more time 

consuming. The approximation (II-6) involves the value of 

E on the energy shell and will be referred to below as the 

"on-shell calculation", while the operational procedure will 

be referred to as the "off-shell calculation". 

The two procedures . are compared in Figs. 9 and 10 

which show the on-shell and off-shell calculations of the 
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frequency shifts in the Tl(zzO) and T(zzz) branches 

respectively. The force constant changes used are those of 

Bruno (1971) (see below). The off-shell results were 

calculated by evaluating Im G(k) at 100 points within a 

window of about sr centred on the peak, where the peaks and 

r were calculated with the on-shell method. Im G was then 

interpolated linearly and the shifts and widths were 

measured. We can see from the figures that in both direc­

tions, the two methods differ somewhat especially in the 

regions where the shifts are largest in magnitude. However, 

as w + O, the two methods converge. These differences 

reflect the asymmetry of the peaks due to the w-dependence 

of E, and are sufficient to warrant the use of the off-shell 

method for comparison with experiment at high w, while the 

on-shell method should be satisfactory for w + O. 
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2.3 Elastic Constants 

The frequency shifts for k + 0 can be used to 

calculate the elastic constants of the alloy, as has been 

done by Kesharwani and Agrawal (1972) for dilute Mo-Re 

alloys. In the symmetry directions, the elastic constants 

are related to the velocity of sound by 

cs = pvs 
2 (Kittel (1968) ) (II-8) 

where p is the density and v is the velocity of the s 

acoustic wave in the mode appropriate for the elastic 

constant required. In particular, for cubic crystals: 

2 (II-9)c441 = pvT(zOO) = P 
v2 

T2(zz0) 

2 
ell = (II-10)pvL(zOO) 

1 2 -c' (II-11)= 2 (ell - c12> = pvTl (zzO) 

The sound ve locities can be determined from the dispersion 

curves of t h e crystal: 

aws(k) 
v ·- , k -+ 0 (II-12)

S · ak 

ws (k) 
-~ for long wavelengths (II-13)k 
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In the dilute alloy, for small changes in the parameters 

involved, we can write: 

!:.w (k)
s - 6k = (II-14)w (k) k s ­

But the change in wave vector is related to the change in the 

l attice par ameter by: 

27TZk -- -­a 

which gives: 

6k !:.a = - (II-15)k a 

s o that from Eq. (II-14), we get finally: 

(II-16) 


As z + O, t:.w (z)/w (z) becomes independent of z. To s s 

s ee how low it is necessary to go in order to get linearity 

i n the shift s, Table 3 shows !:.w/w calculated using the force 

constant changes of Bruno and Taylor (1971). We can see from 

t he table that !:.w/w is linear to about .003% by the time w is 

-3down to about 10 THz. This accuracy is limited by the 

numerical me~ thods used in computing the shifts. However, in 

v iew of the approximations inherent in the perturbation 



TABLE 3 


!iw/w FOR z + 0 


w !iw/w - Tl(llO) w !iw/w - T(zzz) 


.629 -.037762 1.02 -.03428096 

.613 x 10-l -.03628096 .103 -.02937061 

.613 x 10-2 -.03627197 .103 x 10-1 -.02932597 

.613 x 10-3 -.03627201 .103 x 10-2 -.02932590 

.613 x 10-4 -.03627201 .103 x 10-3 -.02932607 

0\ 
0\ 
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approach, especially at low w, this accuracy is obviously 

sufficient. 

The elastic constants of Cu-(2.8 at.%)Au have been 

measured by O'Hara and Marshall (1971) at various tempera­

tures and can be used to compare with the predictions of 

the low concentration theory. The results reported by 

O'Hara and Marshall are shown in Table 4 where the elastic 

constants for pure copper are those reported by Overton and 

Gaffney (1955), since O'Hara and Marshall have not reported 

these. The other relevant parameters for Eq. (II-16) have 

been given by O'Hara and Marshall as: 

~a/a= 4.7 x 10-3 at c = .028 

and 

~p/p = .044 

Before using ~w/w from Table 3, it is important to 

a ccount for the finite frequency shift due to the overall 

e xpansion of the lattice, as evidenced by the change in the 

l attice parameter a. In fact, the shifts in Table 3 are 

measured with respect to the frequencies calculated at the 

new lattice parameter and not with respect to those of pure 

copper. The additional shift due to the lattice expansion 



TABLE 4 

ELASTIC CONSTANTS MEASURED BY O'HARA AND MARSHALL · 

AT T = 300°K IN UNITS OF lOll DYN/CM2 

% Au ell C44 c' 
1 

= 2 (cll-cl2) Cl2 

0 % 

0.23% 

2.8 % 

10.0 % 

16.039 

17.000 

16.917 

17.467 

7.539 

7.419 

7.392 

7.313 

2.348 

2.340 

2.265 

2.186 

12.142 

12.320 

12 . 387 

13.095 

a 

a 
0% Au, rneasurernents by Overton and Gaffney (1955). 

O'I 
00 
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can be expressed in terms of the mode Gruneisen parameter 

y by: 

(II-17) 

where 

a in w. (z) 
(II-18)a in v 

These have been measured in the limit z ~ 0 by Daniels {1965) 

for copper and have the values: 

yT l (zzO) = 1.49 

a nd yT 2 (zzO) = 1.92 

f or the modes which will be of interest here. 

It was decided to assume that the force constant 

changes were central, satisfying: 

~lXX - ~lXY = ~lZZ (II-19) 

where ~lXX is the change in the force constant between the 

de fect and the nearest neighbour at ! = a/2 (1, 1, O) . These 
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are related to what Agrawal (1973) calls the central and 

non-central force constants A and B respectively by: 

~A = ~lXX + ~lXY (II-20) 

~B = ~lZZ (II-21) 

There are two reasons why central forces were 

assumed. First, the c elastic constant can only be11 

calculated by knowing the frequency shifts along the 

longitudinal branches, and it is precisely along these 

branches that it might be expected that second and third 

neighbour force constant changes play a significant role, 

making this simple calculation unreliable. Secondly, the 

experimental results of O'Hara and Marshall show that c 11 

is not a monotonic function of concentration, which, if not 

casting suspicion on the results, at least rules out the 

possibility of explaining it with a theory linear in the 

concentration. So this leaves two elastic constants which 

c an fit unambiguously the two central force constant changes. 

The elastic constant changes ~c 44 and ~c' were 

c alculated by Eq. (II-16) in the Tl(zzO) and T2(zz0) 

b ranches for various sets of central force constant changes. 

Table 5 shows some of the results used in the fitting. We 

c an see from the table that the elastic constant changes vary 
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TABLE S 


CALCULATION OF ELASTIC CONSTANT CHANGES 


CENTRAL 

tilXX 

(THz) - 2 

so 

75 


100 


12S 


50 

so 


so 


so 


CONDITION: 

tilZZ 

(THz)- 2 

-S.23 


-S.23 


-S.23 


-S.23 


-s 
0 

s 

10 

tilZZ = ti1xx-ti1xY 

fiC44/C44 

-.0412 

-.0311 

-.0210 

-.0109 

-.0411 

-.0391 

-.0371 

-.03Sl 

tic'/c' 

-.0217 

-.00306 

.01S6 

.0342 

-.0212 

-.0100 

.00118 

.0123S 
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almost linearly with the force constant changes, which 

makes the fitting procedure straightforward. Table 6 shows 

the final fitted force constant changes along with the 

elastic constant changes calculated from them. The other 

force constant changes included are those fitted by Bruno 

and Taylor (1971), and those of Kesharwani and Agrawal (1973). 

The fitted force constant changes are very large 

compared with the other two sets. In particular ~lZZ is a 

change of 480% from the pure copper, while ~lXX and ~lXY are 

120% and 138% respectively. These results seem very 

unphysical, in view of the changes calculated by various 

authors using phenomenological models (e.g., Kesharwani and 

Agrawal (1973)). Furthermore, the validity of the 

perturbation approach becomes doubtful with such large 

changes. It may be that the second and further neighbour 

c hanges are significant at these long wavelengths and that 

these large values result from trying to force the nearest 

neighbour changes to account for all the elastic constant 

change. Also, it may be useful to relax the central forces 

condition, especially since the measured force constants of 

t h e pure copper are non-central. 

At any rate, it is obvious that neither the force 

c onstant changes of Bruno and Taylor nor those of Kesharwani 

a n d Agrawal come close to calculating the correct elastic 

c onstant changes, although Kesharwani is somewhat better 

Br uno. In fact, although the c elastic constant was not11 



COMPARISON OF 

L\lXX 

(THz)- 2 

FITTED: 137.3 

BRUNO: 22.28 

AGRAWAL: 58.75 

EXPERIMENTAL 

L\lZZ 

(THz) - 2 

EXPERIMENTAL 

-39.8 

5.21 

- 2.5 

TABLE 6 

AND CALCULATED ELASTIC CONSTANT CHANGES 

L\lXY L\c' /e'!::,.c44/C44 

(THz) - 2 

-.0199 -.034 

177.1 -.0199 -.034 

41.99 -.0515 - . 061 

61.25 -.0394 -.012 

!::,.ell/ell 

.004 

-.0196 

- .0695 

-.0540 

....., 
w 
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used in the fitting, it turns out that the fitted changes 

give a much better result in this direction than either of 

t he other two. At any rate, the final evaluation of the 

f itted changes must be the comparison with the shifts and 

widths measured throughout the entire frequency range. 
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2.4 CQlculation of Shifts and Widths 

The shifts and widths have been calculated for the 

three sets of force constant changes, and are shown in 

Figs. 11 to 13 for the shifts in the T(zOO), T(zzz) and 

Tl(zzO) branches respectively, and in Figs. 14 to 16 for the 

half-widths at half-maximum in the T(zOO), T(zzz) and 

Tl(zzO) branches. In these calculations the effect of the 

volume change due to the impurities has not been included. 

Figures 11 to 13 show that the shifts are 

considerably affected by changing the force constant changes. 

For the T(zOO) and T(zzz) directions, the shifts due to 

Kesharwani's changes tend to follow qui te closely those of 

the fitted changes, while in the Tl(zzO) direction, both 

shifts differ from those of Bruno as well as each other. It 

c an be seen that the stiffening of the force constants in 

t he case of Kesharwani and the fitted changes has resulted 

i n a general decrease in the low frequency shifts and has 

moved the resonance to slightly higher frequencies (see 

widths), while enhancing the resonance in general. The 

e ffect on the low frequency end in the T(zOO) and Tl(zzO) 

directions can be understood since it was necessary to 

decrease the shift as w tended to zero i n order to fit the 

elastic constant data (cf. Table 5). 

Since the shifts due to Bruno's changes have been 

s hown to fit the experimental data in the T(zOO) and Tl(zzO) 
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FREQUENCY SHIFTS IN T(zzz) DIRECTION (NO VOLUME EFFECT) 
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HALF-WIDTHS AT HALF-MAXIMUM IN T(zOO) DIRECTION (NO RESOLUTION EFFECT) 
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HALF- WIDTHS AT HALF-MAXIMUM IN Tl(zzO) DIRECTION (NO RESOLUTION EFFECT) 
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direct~ons using his calculated Gruneisen parameters, it 

would seem to follow that the shifts due to the fitted changes 

could only be made to fit the high frequency experiments by 

using some rather fortuitous combinations of k-dependent 

Gruneisen parameters. It appears that forcing the fit at 

this low frequency end has distorted the results in the high 

frequency range, indicating that the two-parameter model is 

too simple to fit the results over the entire frequency range. 

Referring back to Table 5 we see that changing the ~lXX force 

constant while holding ~lZZ constant had the effect of 

increasing both elastic constants, while increasing the ~lZZ 

force constant increased the C' elastic constant most 

significantly while hardly affecting the c elastic constant.44 

Thus starting from the force constants of Bruno, it was 

necessary to change both force constants in opposite 

d irections, in order to affect the change in the elastic 

constants, and as a result the large force constant changes 

have produced the distortion in the shifts at high w. 

Although Kesharwani has not shown any calculations 

o f shifts without volume effect in his paper (1973), it is 

obvious that the shifts calculated here using his changes 

a re somewhat larger than what he has shown even without the 

volume effect. In fact, the discrepancy amounts to as much 

60% in the T(zOO) direction. On the other hand, the shifts 

and widths calculated using the changes of Bruno and Taylor 
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agree precisely with their results, which tends to support 

the validity of these calculations. 

The comparison with experimental measurements of 

Kamitakahara (1973) in the T(zzz) branch is shown in Figs. 17 

and 18. Figure 17 shows the shifts after including the effect 

of the overall volume change using the mode Gruneisen para­

meters defined by (II-18) . Both Bruno and Taylor (1971) and 

Kesharwani and Agrawal (1973) include a calculation of the 

mode Gruneisen parameters in their respective papers, and it 

is these parameters which have been used. The widths shown 

in Fig. 18 include the effects of the experimental resolution. 

This has been done by folding the cross section function with 

a Gaussian, i.e.: 

= f exp[- (w - w') 2 JJ(j,~,w')dw' 
2W(~) 

where 

k' e8w ­
J(j,~,w) = - Im GJ. (g_, w)k 8w e - 1 

The value of W(g_) is obtained by observing the widths of the 

pure cu groups in this direction. The shifts and widths for 

the alloy are then measured offshell using Jb(j,~,w). 

Kamitakahara has given the following values for these Cu 

widths in the T(zzz) branch: 
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COMPARISON OF EXPERIMENTAL AND CALCULATED SHIFTS (WITH VOLUME EFFECT) T(zzz) 
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COMPARISON OF EXPERIMENTAL AND CALCULATED WIDTHS T(zzz) (BRUNO) 
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z WIDTH(FWHM)-THZ 

0.1 0.21 

0.2 0.29 

0.3 0.29 

0.4 0.39 

0.5 0.44 

so that W(~) is an approximately linear function chosen to 

give these widths. 

It is obvious from both Figs. 17 and 18 that the 

shifts and widths calculated with Bruno's force constant 

changes follow the general shape of the experimental curves, 

but are still rather far off. In the case of the shifts, 

the calculations are consistently too low at low w, but the 

positive shifts measured in this region would seem to cast 

doubt on these results. The calculated widths are too low 

over the entire frequency range which might indicate that 

the effects of the resolution have not been properly 

considered. As far as the shifts .are concerned, it is 

difficult to pinpoint any one cause of error since so many 

approximations have been introduced to handle the change in 

volume of the crystal. In particular, the mode Gruneisen 

parameters are crucial in determining the shifts, especially 

such k-dependent parameters as those of Bruno and Taylor (1971) . 

The mode Gruneisen parameters of Kesharwani and 

Agrawal (1973) have been added to the shifts due to the force 
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constant changes of Kesharwani as well as the fitted changes 

and are compared with experiment in Fig. 17. Here, both sets 

give shifts much too large in the vicinity of the resonance, 

but tend t o follow the results of Bruno at the low frequency 

end. Again, it would seem that the rather large force 

constant changes involved have distorted the curves at the 

resonance . 
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2.5 Conclusions 

It has been shown that the force constant changes 

fitted to the elastic constant data were unable to calculate 

the shifts and widths properly throughout the high frequency 

range, while the force constant changes adequate for the 

high frequency range failed to calculate the low frequency 

result. The obvious conclusion is that the model is too 

simple to cover the entir e range. A more realistic calcula­

tion has to include the possibility of long-range changes, 

and certainly non-central volume-dependent effects should be 

included as is now known to be necessary for any calculations 

in metals. At any rate, a model with several more parameters 

seems essential to fit shifts and widths in all d i rections. 

Furthermore, as has been pointed out by several investigators 

(e.g., Kesharwani and Agrawal (1973)), the effects of the 

change in volume must certainly be included in a more sys­

tematic manner than has been done in these calculations, or 

in fact, any calculation to date. Especially in calculating 

the shifts, the mode Gruneisen parameters play a crucial 

part, and must be calculated from some realistic model. At 

the low frequency end, the mode Gruneisen's are known 

e xperimentally so that the elastic constant data should 

p rovide some means of fitting the force constant changes 

which bypasses this volume problem. However, as there are 

only three elastic constants, the fit will be unambiguous 
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only for simple models, which seem to be inadequate from 

these calculations. 

The force constant changes of Bruno and Taylor (1971) 

fitted to the T(zOO) and Tl(zzO) branches have been shown to 

follow in general the trend of the experimental shifts and 

widths in the T(zzz) branch while deviating in some systematic 

manner from these results especially in the case of the 

widths. This seems to indicate that a more careful considera­

tion of the effect of experimental resolution is in order, and 

of course, a more realistic calculation of the mode Gruneisen 

parameters in this direction. 

The shifts and widths calculated by Kesharwani and 

Agrawal (1973) have not been reproduced in these calculations 

which indicates that there must be an error someplace. 

Possibly, the perturbation theory has broken down in the 

presence of such large force constant changes, and a compari­

son with the full t-matrix calculation is necessary. On the 

other hand, the results of Bruno and Taylor (1971) have been 

reproduced for all directions, and the effects of the changes 

in force constant changes on the shifts and widths seems to 

s upport the trends predicted by both Bruno and Taylor (1971) 

a nd Kesharwani and Agrawal (1973) • The discrepancy can be 

r esolved only by further calculations using the full t-matrix. 



APPENDIX I 


CRYSTAL SYMMETRY AND PERTURBATION THEORY 

The point group of a crystal is the set of proper 

and improper rotations which take the crystal into itself. 

Each element of the group may be represented by the 3x3 

matrix S B' such that if x(i) is the position of t he ith atom 
a ­

in the crystal, then the operative s has the effect of 

moving that atom to the new position x (L) 

(AI-1) 

Maradudin, Montroll and Weiss (1971) show that the force 

constant matrix ¢ and the perfect crystal Green's function 

must transform according to: 

(AI-2) 

a nd 

(AI-3) 

where the operation S takes the atom at i to the position L 

a nd that at i' to position L'. In particular, if the 

operation S leaves both i and i' unmoved, then the ¢-matrix 
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must satisfy: 

¢(ii') = S¢(ii')S (AI-4) 

i .e., it must be invariant, and this can be used to limit the 

number of independent elements in ¢. 

The symmetry properties of the F.C.C. lattice, of 

which copper is an example, are well known. 

If there is a point defect in the crystal, then the operations 

of the point group must be applied in such a way as to leave 

the defect unmoved. Under these conditions, all matrices 

must transform in the same way: 

A(LL') = SA(ii')S (AI-5) 

where it is assumed that the defect is at i = O. Using the 

operations of the Oh group which is the point group of the 

F . C.C. crystal, the following general results can be shown: 

(AI-6 ) 

For the twelve first neighbours: 

(AI-7) 
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where £ ~ O, £ and £+6 are co-linear with the defect and on 

opposite sides. Furthermore, the following properties are 

true for all force constant matrices (Maradudin, Montroll 

and Weiss (1971)): 

(AI-8) 


(AI-9) 


and 

(AI-10) 


Using these properties, the defect matrix for 

nearest neighbour force constant changes only has the form 

s hown in Fig. Al. Each of the matrices ci is of dimension 

3x3 as shown in Fig. A2. To calculate the self-energy x by 

the perturbation method (I-120), it can be seen that since 

Me:w 2 
xl (£R.') = cS (a$) cS (.U,') cS (£0) (AI-11)ex$ 21 - (1-c)Me:w P 0 

the only elements of P required are those connecting the 

defect to the nearest neighbours. We can, therefore, 

partition P in the same way as c. Furthermore, it can be 

s e en by inspection that the matrices Pi and ci commute for 



FIGURE Al 

PARTITIONING OF DEFECT MATRIX 

Cl C2 C3 C4 cs C6 C7 C2 C3 C4 cs C6 C7 

C2 -C2 

C3 -C3 

C4 -C4 

cs -cs 

C6 -C6 

C7 -C7 

C2 -C2 

C3 -C3 

C4 -C4 

cs -cs 

C6 -C6 

C7 -C7 

\0 
w 
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FIGURE A2 


NEAREST NEIGHBOUR FORCE CONSTANT MATRICEW 


y 

y 

0 0 

Cl = 

0 y 

0 B 0 

y 0 a 

C2 = 

C3 = B 0 O 

0 a y 

0 y a 

C4 = 

cs = 

C6 = 

-y 0 

-y 0 

0 0 B 

B 0 0 

0 -y 

0 -y 

0 -y 

0 B O 

-y 0 a 
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each value of i. Finally, using the symmetry of the Pi and 

ci allows us to partition the x-matrix as shown in Fig. A3, 

where 

1 	 . 2 
X = t(w)I + 1 + (1-c)t(w)P(O;w)] cl 


7 

+ 	4(1-c)t(w) l: ciPi[l + P(O;w) (1-c)t(w)] 

i=2 

(AI-12) 

and 

i i 	 i i
X = c [l + (1-c)t(w)P(O;w)] - (1-c)t(w)c P (AI-13) 

t (w) is the mass defect t-matrix: 

2Me:wt(w) = ~~~~~~....,,.....~~-	 (AI-14)2
! - (l-c)Me:w	 P(O;w) 

In terms of these partitioned matrices, the transformed self-

energy, L:, can be written: 

L:jj' .(k,w) = c l: U(jk,at)XaB(tt')U*(j'k,8t') 
a.S 
.Q, .Q, I 

= 	 + 2c ~ ~ · {-ctex1 · o .. , ~ 
7 
~ B 

a.a JJ 	 as t=2 a 

(AI-15) 



FIGURE A3 

PARTITIONING OF SELF-ENERGY MATRIX 

Xl X2-X7 X2-X7 

-C2 

-C3 

X2 -C4 
I 

X7 -cs 

-c6 

-C7 

-C2 

-C3 

X2 -C4 
I 

X7 -cs 

-C6 

-C7 

\0 
m 



APPENDIX II 


MATRIX ELEMENTS IN THE SYMMETRY DIRECTIONS 

If S is an element of the point group of the crystal, 


the effect of this operation on the dynamical matrix follows 


from the definition: 


D B(k) (AII-1)a. ­

where ~a.B(ii') is the mass reduced force constant matrix. 


From Appendix I, we can write 


D (k) = a.$ ­

x exp(-ik•(! - ~')), (AII-2) 

a nd using the property of the scalar product that: 

-1 -1 -1
exp(-ik· C! - !')) = exp (-is k · ( s ! - s ! • ) ) (AII-3) 

. g ives finally: 

(AII-4) 
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We define the group of the wave vector ~ as the set of those 

elements of the point group which leave k invariant. 

Denoting this group by Gk, its elements are those operatives 

Sk such that 

s k = k (AII-5)k-

Equation (AII-4) shows then that D(k) commutes with all 

elements of Gk. It follows that the eiqenvector cr j(k) must 

transform according to some irreducible representatives of Gk 

(Tinkham (1964)), and further if w~ is two-fold degenerate,
J 

then the two eigenvectors must transform according to the 

two different columns of the same two-dimensional irreducible 

representation. 

These results can be used to show that r jj' (~,w) is 

diagonal in j if k is in a symmetry direction. By Eq. (I-100): 

I:jj'(k) =I: exp[ik·(~n -R )]crj*X (ii')crj'
it' ~ -i• a aB B 
aB 

= <oj IX (k) Icrj '> (AII-6) 

But it can be shown that X(k) commutes with every element of 

the group Gk in the same way as the dynamical matrix. Hence 

it follows that the matrix element 
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. . ' 
must vanish unless aJ and aJ both transform according to the 

s ame column of the same irreducible representation of Gk 

(Tinkham (1964)). Now, for a general k, the group Gk has only 

one element; the identi ty, and aj and aj' automatically 

t ransform according to the identity representation, so nothing 

c an be said in this case. However, for k in certain special 

d irections (the symmetry directions), the group Gk has more 

t han one element and the result above may be deduced. The 

three symmetry directions in a ·cubic crystal are (z,O,O), 

(z,z,O) and (z,z,z). 

In the F.C.C. crystal, for the (z,O,O) and (z,z,z) 

directions the transverse modes are degenerate. These two 

eigenvectors must then transform according to the two columns 

of some two-dimensional representation of Gk. On the other 

hand, the longitudinal mode must transform according to the 

i dentity representation. Hence it follows immediately that 

t h e matrix element is diagonal ink for these directions. For 

t h e (z,z,O) case all modes are non-degenerate, and it must be 

v e rified by inspection that the three eigenvectors transform 

a c cording to three different one-dimensional representatives 

o f Gk, yielding the result that r jj' is diagonal in j for all 

thr ee directions. 
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