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SCOPE AND CONTENTS: 

In this thesis, we shall solve the classical Dirichlet 

problem for a ball in n-dimensional Euclidean space, and then 

point out that the classical Dirichlet problem is not always 

solvable. Following Wiener and Brelot, we then introduce a 

generalized Dirichlet problem for any bounded region in n-dimensional 

Euclidean space and establish necessary and sufficient conditions 

for its solution. We show that the solution of the generalized 

Dirichlet problem coincides with the .solution of the classical 

Dirichlet problem whenever the latter exists. Finally, we 

characterize those regions for which the classical Dirichlet problem 

is solvable by considering.the boundary behaviour of those functions 

for which the generalized problem is solvable. 
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Introduction 

From a mathematical point of view, the. Dirichlet problem, 

also commonly referred to as "the boundary value problem of the 

first kind", belongs to the theory of harmonic functions. For the 

time being, we shall restrict ourselves to real valued functions 

defined on some region R (open, connected subset) of three dimensional 

Euclidean space E3, where a function U on R is said to be harmonic 

on R if it possesses continuous partial derivatives up to and includ­

ing second order in all variables, and satisfies everywhere on R the 
2a upartial differential equation of Laplace: ~ 	~ = o. The 

axii=l 

classical Dirichlet problem in its simplest form consists of trying to 

find a harmonic function on a bounded region R, which is continuous 

on the closure of R (R union its boundary in E3) and which coincides 

with a given continuous function on the boundary of R. 

For over a century, this problem has attracted the attention 

of numerous mathematicians including H. A. Schwarz, H. Poincar,, 

H. Lebes:gue, o. Perron, N. Wiener, and M. Brelot to name only a few, 

each of whom has directed considerable effort to the problem and its 

solution. The problem itself has physical origins of ~undamental 

significance, some of which were recognized before the birth of the 

German mathematician, whose name the problem now bears in nearly all 

cases. 
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We offer the following physical problem which helped to 

provide historical motivation for consideration of the Dirichlet 

problem: Consider a spherical shaped ball of uniform density which 

has a high degree of thermal conductivity and which is at a given 

initial temperature. Let us apply to the surface of the ball a 

continuous temperature function f, which is independent of time, 

and let T be the temperature inside the ball at a time t • Then 

T(x, y, z, t) satisfies the following partial differential equation: 

- K !l_ ( (15] t p.?8).- at 

The function U defined to be (x, y, z) =£im T (x, 9, z, t) is 
t-+ CIO 

independent of time and hence is called the steady state temperature 

correeipaiding to the boundary function f, and since u· is independent 

of time t, it follows that U satisfies Laplace's partial differential 
. . ' 

equation in the interior of the ball and it turns out that U is 

continuous on the closure, and coincides with f on the boundary. In 

view of our original statement of the Dirichlet problem, the function 

U is a soiution of this problem for the ball whose boundary function 

is f. 

The theory of harmonic functions and the associated Dirichlet 

problem can be applied to an endless variety of disciplines within 

the fields of mathematics and physics. We refer the reader to the 

,,,....--·. 
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recent book by Duff and Naylor ( (10) , p.13'+) for more information 

on these matters. 

For many years, it was generally conjectured that the 

Dirichlet problem was solvable for any bounded region, and that limit­

ations of generality were inherent in methods, rather than in the .. 
' 

problem itself. However, every attempt to. construct a general 

solution invariably had to presume some restrictions on the boundary 

and it was not until 1911 that Zaremba ( (24}Jp.310) published a resolution 

of this conjecture, by pointing out that there did exist regions for 

which the problem was not solvable, such as the deleted unit ball. 

A modified version of his example will be considered in Chapter III. 

Other examples of non-solvable Dirichlet problems soon 

followed, one of which is the so called "spine of Lebesgue" published 

in 1913 ( [21] , pp.12-13). The basic difference between the Lebesgue 

example and that of Zaremba, lies in the fact that the boundary of 

Lebesgue's region is a one-to-one continuous image of the sphere, 

whereas in Zaremba's example, the boundary consists of the union of the 

unit sphere and a singleton set whose member is the origin. 

Because of the fact that it is possible to construct regions 

for which the classical Dirichlet problem is not solvable, Wiener ( (22] ) 

was induced to define a generalized Dirichlet problem whose solution 

always coincided with that of the classical Dirichlet problem, whenever 

the latter was solvable. It turns out that the generalized Dirichlet 

problem is always solvable for any continuous function defined on the 

boundary of any bounded region in E3. 
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In this thesis we shall be chiefly concerned with the 

establishment of necessary and sufficient conditions for which the 

generalized Dirichlet problem is solvable relative to a bounded region 

and characterize those regions for which the classical Dirichlet 

problem is solvable in n-dimensional Euclidean space. 

The methods employed here will generally follow those of 

Brelot and it is to his works (especially [4) ) that we shall constantly 

refer. Finally, we shall consider the boundary behaviour of the 

solution of the generalized Dirichlet problem. 

Since the mathematical machinery required to accomplish these 

ends is considerable, our first chapter, which is the largest, is 

devoted to the development of this machinery. 

Whereas much reference shall be made to the Dirichlet problem 

itself, we shall find it convenient to call this problem the "D" 

problem. 



I. SOME FUNDAMENTAL CONCEPTS OF ANALYSIS 

§1 Some basic concepts and results in point set topology and 

' n-dimensional Euclidean space. 
,. 

It is convenient to first introduce some standard definitions 

and results from point set topology before considering the basic theory 

or n-dimensional Euclidean space. We shall assume acquaintance with 

standard set theoretic definitions and will generally follow the notation 

of Bourbaki. 

Definition 1.1.1: Let X be a set and<B(X) its set of subsets or power 

set. If J C'S (x), then 'J is called a topology on X if and only if ;) 

satisfies the following axioms: 

(i) ¢ E 'J 

(ii) x €-:J 

(iii) If { Ao< J is any subset of J , then U A-. E :J . 
9'. 

(iv) If {Ai\ is a finite subset of ';:) , then (.\Ai. f 'J • 
' L 

Definition 1,1,2: We define a topological space to be a set X endowed 

with a topology 'J on X and denote i.t by ( X, ':J ) • 

Definition 1.1,3: If (X, 'J ) is a topological space then Oc X is said 

t~ be open if and only if 0 ~ ':J • 

5 



Definition 1,1,4: If (X, 'J ) is a topological space, then Fe. X 


is said to be closed if and only if (X - F) ~ 'J, 

Definition 1,1,5: Let AC. X where (X, 'J ) is a topological space, 


Then ( O~J C :J is called an open covering of A if and only if ~~ "JA, 


Definition 1,1,6: Let (X, 'J ) be a topological space, A C..X and ,­

an open covering of A, We define 9
1 

C 9 to be a 


subcovering of A (relative to 9) if 9' is itself an open covering 


of A, 


Definition 1,1.?: Let (X, ri ) be a topological space and ACX, Then 


the set A is defined to be compact with respect to'J if for any open 


covering of A, there exists a finite subcovering (that is a subcovering 


possessing only a finite number of members) of A, 


Remark: We note that the above definition of compactness coincides 


with Bourbaki's definition of quasi-compactness, ·Bourbaki reserves 


the term compact for special spaces having the property of definition 


1,1.7, namely the T2 spaces to be defined later, 


.Definition 1,1,8: A topological space (X,IJ) is said to be compact if 


the set X is compact with respect to the topology ;] • 


Definition 1,1,9: Let (X, 'j ) be a topological space and x e-X. 


We define V(x) c X to be a neighbourhood of x relative to ":J if and o~y if 


there exists 0 E J such that x E- 0 and 0 C. V(x), 


Remark: A neighbourhood may or may not be an open ·set. Those that are 


open are usu~lly called open neighbourhoods, Usually we shall follow 


the convention of requiring any neighbourhood to be open, 
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Definition 1,1,10: Let ACX and (X, ':)) be a topological space, 

Let [ F"' ~ be the family of closed sets in (X, 'J ) such that each 

Fe<:> A, Then "F6' is closed, is called the closure of A, and 

is denoted by A, 
.., 

Definition 1,1,11: Let (X, ';) ) be a topological space and AC X, 

Let ( o...j be the family of all open sets in (_X, 'J ) such that each 

Then k' O~ is open, and is called the interior of A, 

•It is denoted by A. 
I> 

Remark: For any AC x, it is always true that A c. A c A, 

Definition 1,1,12: Let (X, r;::J ) be a topological space and AC x. 
- 0

The boundary of A denoted by aA, is defined to be the set A- A, 

. Remark: For any ACX, it is always true that aA is closed for a given 

- 0 - 0
topology since aA = A - A = A() (X - A) which is the intersection of 

two closed sets. 

Definition 1,1,13: Let f be a function (single-valued relation) whose 

domain is the set X and whose range is a subset of Y where (X, 'Jx) and 

(Y, 'Jy) are topological spaces, Then f is said to be continuous 


1
if and only if for any 0 E 'Jy it is always true that r- (0) E 'Jx 
where r-1co) denotes the inverse image of 0 under f, 

Theorem l,l,1: Let f be a function from the topological space 

(X, r:J x) to the topological space (Y, 'J y). For any x e X, let y € Y 

be the image of x under r (or y =f(x)). Then f is continuous if and 

only if it follows that for any open neighbourhood V( y ) relative to 

'J y then r-1 CV( y )) is an open neighbourhood of x relative to Jx• 
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Proof: Let f be continuous according to definition 1.1.13 and let 

y = f(x). Then x~ r-1(y) or (x}Cf-l ( fyJ ). Since V (7)-:>{yj, 

therefore f-l (V ( y)) ::> f-l ( { <t l) ::'.l lx1 , and hence x ~ r-1cvc "y ) ). 

Since V( y) is open, therefore f-l (V (. y)) is open which implies that 

r-1(V( y ) ) is a neighbourhood of x. Proceeding in the other 

direction, we let 0. E 'J y and A = f-l(O). Since 0 is an open neigh­

bourhood of every yt O, therefore A is an open neighbourhood of every x 

in A. It follows that A is open. 

Remark: The truth of the above theorem is not affected when an open 

neighbourhood is replaced by any neighbourhood. 

Definition 1.1.14: Two topological spaces (X, 'Jx) and (Y, 'Jy> are 

said to be homeomorphic or topologically eguivalent if and only if 

there exists a function f whose domain is X and whose range is Y which 

satisfies the following conditions: 

(i) f -1is one-to-one (or f is a )function • 

(ii) f is continuous. 

(iii) r­1 is continuous. 

Definition 1.1,15: Let (X, \) ) be a topological space and AC. X. 


Let 'J ={o.,.\ · and define J A = ( B c X : B E 'J A if and only if 


there exists an O.. fo 'J such that B =A I"\ OoA. ~ • Then 'JA satisfies · 


the axioms for a topology on A, and 'JA is called the relative topology 


of 'J on A, or we say that 'J is relativized to A, 
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Definition 1,1,16: Let ex, 'J) be a topological space and AC X, 

Then A is said to be __d~sconnected in ex, 'J ) if and only if there 

exist Band C where A= BU C and cwhere BA C =¢, B # ¢, C ~¢,and 

B, C E 'JA. r 

Definition 1,1,17: A set Ac. X is said to be .connected, relative to 

a topology 'J , if and only if A is not disconnected in the space ex,~ ) • 

Theorem 1,1,2: Let ex, 'J ) be a topological space and A a compact 

subset of X, Then eA,'j A) is a compact topological space, 

Proof: Let QA be an open covering of A with respect to 'J A' Then 
' 

9 A = { ~ I"\ A \ where each Ocol E- J and 9 = {or.<J is an open 

covering for A relative to 'J , Since A is compact with respect to ':J, 

therefore we can extract from f O..c} a finite subcovering of A denoted 
n 

Since AC U eo~(iJ ), therefore 
i=l 

(°"'<&'.>" A) and hence l O..cti> 0 A } , 1 .t, i { n, is a finite 

subcovering of QA from which the theorem follows, 


Definition 1,1,18: A topological space is said to be locally compact 


if and only if for every x £: X, there exists a compact set K c X which 


contains an open neighbourhood of x, 


Definition 1,1,19: Let ex, 'J) be a topological space and ACX., Then 


A is said to be relatively compact in ex, 'J ) if and only if Ais 


compact, 


Definition 1,1,20: Let ex, :J ) be a topological space and x E X, 


y E X where x ~ y, and both are arbitrary. Then (X, 'J ) is said to be 


Hausdorff or T if and only if there exists a neighbourhood vex) ) x
2 

and a· neighbourhood Vey)~ y such that vex) f'\ vey) =¢, 
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Remark: In future, all topological spaces considered will be T2 • 

Theorem 1,1.3: In a T2 space ex, 'J ), every compact subset is closed, 

Proof: Let K C. X be compact. We shall show that ex. - K) is 

open. Let p E ex - K) be fixed and let x €- K be arbitrary. There 

exist dis·joint neighbourhoodsof p and x denoted by V~p) and vex) 

respectively such that V~p) f\ vex) =¢. The set of neighbourhoods 

{vex)} form an open covering of K," and { V xep)} forms a collection 

of neighbourhoods of p such that V ep) 11 vex) = ¢ for every xE K. 
x 

Since K is compact we can extract from tvex)} a finite subcovering of 

" K denoted by l vexi ) J , 1' i ( n. Let vep) = r'\ ev ep)), 
i=l xi 

and note that vep) I'\ (is vexr >) = ¢. Then vep) is a neighbourhood of 

p such that vep) C ex - K) and the theorem follows. 

Theorem 1,1,4: Let ex,'J) be a topological space, and Ka compact 

subset of X. For any closed FCK it follows that F is compact, 

Proof: Let [o4 ] be an open covering of F, and note that ex-F) is open. 

Then l Q,i.) \J [ (X-F) J is an open covering of K. Since K is compact 

we can extract out a finite subcovering denoted by { O«ti))U ~X-F)~ 
n 

where 1 ~ i ' n. Since ( V ~J U ex-F) :> K and since (X-F)fl F = ¢, 
I\ i=l 

therefore U. Oc<(':> F.
i=l ..r 

Definition 1.1.21: A topological space (X,'J) is said to be a~-

space of eY, 'J •) if and only if XC Y and CJ is the topology 'J' relativized 

to x. 

Definition 1,1,22: Let (X, r;J) be a T2 space and AC. BC X, Then A 

is said to be dense in B relative to~ if A:> B, 
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Definition 1,1,23: Let ( X, 'Jx) be a T2 space, and (Y, 'J y) a 

compact T2 space, Then (Y, 'J y) is said to be a compactification 

of (X, 'J x) if and only if (X, 'J x) is homeomorphic to a dense sub­

space of (Y, 'Jy). 

Definition 1,1.24: Let (X, 'J ) be a T2 space and x e X, A set 

<y"°= {Vo<! C :J is said to be a fundam;ntal system of neighbourhoods 

.2£..! if and only if for any. neighbourhood V of x, there exists Vo< ~ ~ 

such that V~ c V where every V~ is a neighbourhood of .x. 

Theorem 1,1,5: Let (X,'J ) be a locally compact T2 space which is not 

00compact, Let X .. = XV l 00 ) where is a new element adjoined to the 

set X, Let a..• C 'B ( x•) be defined as follows: 

' .. 
(1) 	 If A• c. X then A• e:- a if and only if A*(:- 'J , 

if and only if A• n X = X - K 

where K is a compact subset of X with respect to:-:] • 

i'hen d • is a topology on x• • 

Proof:· (i) Since ¢ C Xc.x• and ¢ € '"] , therefore ¢~a.•. 

(ii) Since X c X and Xf 'J , therefore XE-0.. •. 

(iii) Let fA:C- ~ C Q•, and let A* = U Al • In the 
~ 

case where every A.!_ (. X, then A~ t: 'J also, and hence A• = U (A:_ ) t-'J. 
In general A* f Cl* for otherwise Xf'l A* =L1 (Xf\ Ai:) and hence 

"" 
C(XnA•) = Q C(X(\A~ ) where (denotes the complement of a set taken 

with respect to X, Since A=. () X is always open for any 'O( , there­
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fore ((XflA*) is closed, and since {(Xfl~) is compact for at 

least one ~ , therefore [(X n A*) is a closed subset of a compact 

set, and hence compact by theorem 1.1.4. Thus a* is closed under 

arbitrary union. ,., 	 ;· 

(iv) Let (At ~ < Cl * where 1 ~ i ~ n, and let A* = n Ai. 
~ i=l 

If A* C X then A* = C (A~ n X) where(A*i: (') X) t: 'J for each i, and1 

hence A*(: :J • Thus A*~ a,• for otherwise 00 c A*, and hence 00 e A*~ for 
fl 

all i. Then A*" x ::: C1 (A*.: () X) and {(A* n X} = Utt:CAtn X) = U Ki 
i=l ,, i=l 

where each Ki is compact. Hence A*fl X = X - K where K = U Ki is 

compact. 	 Therefore A* e- a. •. 
i=l 

(i), (ii), 	(iii) and (iv) consequently fulfil the four 

axioms of 	a topology and our theorem is proved. 

Thus a. is a topology on x• and we may write a. = J •• 

Theorem 1.1.6: Let (X, r:J ) be a locally compact T2 space, and (X*, r;J *) 

defined as in theorem 1.1.5. Then (X*, r;J *) is a compact T2 space. 

Proof: We first show that (X*, 'J *) is T2• If xC-XC. X*, y c X C. X*, 

x I y, there exists a V(x) t:-) t V( y) f J such that x e V(x), ye V( y) 

and V(x) II V(y) = ¢ because (X, 7) ) is T • If x t: X and y = 00
, there

2

exists by the local compactness of (X, 3) a compact Kc X such that 

x e V(x) c. 	 K where V(x) e r:i and hence V(x) E 'J • since 'Jc. 'J • always. 

00But (X* - K) is a neighbourhood of y = in 'J * denoted by V( y ) say. 

It follows that V(x) f\ V( y ) = ¢, and hence (X*, :J *) is T2 • 
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In order to show the compactness of ( X*, 'J *) we let 

[o; ~ be an open covering of X* relative to J *. Then co is a 

member of at least one of the sets in f o_:) Let co f- O* and• "llj}' 

note that for every o( , it follows that X/\ 0!_ .(:-J. Then 
r 

X n O* = X·- K where K is compact with respect to 'J and the 
ct(l) 

fallowing must be true: ~ Xn O~) is an ·open covering for K and 

we can extract out a finite subcovering of K denoted by { X n o;,i.} 
where 2' i ~ n, and hence [ o~,~,] is a finite covering of K 

where 2 ,( i ~ n. Hence { o.;<.t./l , 1 \( i ,( n is an open covering 

of X* with respect to']*• 

Theorem 1,1,7: If (X,'J ) is a locally compact T2 space which is 

not compact and (X*, ~ *) is defined as in theorem 1.1.5, then X 

is dense in ( X*, 'J * ) • 

Proof: If X were closed in (X*, 'J *) then X would be a compact 

subset of x•, which contradicts the hypothesis. Thus X fails to 

-be closed and th~refore x =x•. 

Definition ·1.1,25: The results of theorems 1,1.6 and 1.1.7 show 

that (X*, ']*) is a compactification of the locally compact T2 space 

ex, 'J >. The compact T2 space ex•, r:J*) is called the one point­

compactification or Alexandroff compactification of (X, 'J). 

Definition 1,1,26: A metric d on a set Y is defined to be a function 

whose domain is the cartesian product set Y x Y and whose range is 
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a subset of the non-negative reals such that: 

(i) d(x,y) ·= O if and only if x=y where xEY, yE Y. 

(ii) d(x,y) =d(y,x) for every x, y <:: Y. 

(iii) d(x,y) ~ d(x, z) + d(z, y ) for every x, y, z E: Y, 

which is often referred to as t.he triangle inequality. 

Definition 1.1,27 : A metric space is defined to be a set X endGwed 

with a metric d, and is designated by the symbol (X,d), 

Definition 1,1,28: If (X,d) is a metric space, x ~ X and r a real 
0 

number greater than zero, then { x c X : d(x, x ) (r] is defined to 
0 

be the open ball of centre x ·and radius r, denoted by Br(x ),
0 0 

Definition 1,1.29: If (X,d) is a metric space, x .~ X and r a real 
' 0 

number greater than or equal to zero, then f x e X : d (x,x ) .( r)
0 

is defined to be the closed ball of centre x and radius r, denoted 
0 

Definition 1.1,?0: If (X, d) is a metric space, x E X and r a real 
- 0 

number greater than or equal to zero, then f x (- X : d(x,x ) = r j
0 

is defined to be the sphere of radius r and centre x , denoted by
0 

Sr(xo) • 

Definition 1,1,31: Let (X,d) be a metric space, and~C. 'B(X) the 

set of all open balls in (X,d) i,e, ~ = [Br (x ) ~ for all 
0 

x (" X and all real r ) 0. Then the least topology on X (relative
0 

to set inclusion in ca (x)) which contains fJ is known as the topology 
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deduced from the metric d and is called the metric topology :Jd 

associated with d, or simply 'J if no confusion arises as to what 

metric is associated with it. 

Remark: The topology 'J d = ~ ( 'J,· ) where 'Ji. is any topology .. 
on X such that r:J	. .) ~ • It is a consequence of the distributive 

t 

' 
laws of set theory relative to the operations.of set union and 

intersection respectively which permits us to consider any 0 ~ "Jd 

to be either the arbitrary union of sets each one of which is the 

intersection of a finite number of open balls in (X, d) or the finite 

intersection of sets each one of which is the union of an arbitrary 

number of open balls in (X,d) ( [2] , p.107, Proposition 8). 

Theorem 1,1.8: Let (X,d) be a metric space and 'J the topology on 

X which is deduced from d. For any x ~ X it follows that 
0 

[ Bl/n (x )} 	 , for all natural numbers n, is a fundamental system 
0 

of neighbourhoods of x with respect to the topology r:J • 
0 

Proof: Let V(x ) be any open neighbourhood of x with respect toi).
0	 0 

Since V(x ) is a non emptv open set such that x ~ V(x ) therefore
0 	 u 0 0 

it follows from the above remark that V(x ) contains a set 0 which 
0 

is the intersection of a finite number of open balls and such that 
n 

x0 (: 0 
t Q. Bri (xi) where each B Cx1 ) is an

ri 
open ball in (X,d) and 0 C V(x ).

0 

We first show that if x E B Cx1) then there exists an 
0 1i 

C. 1 ) 0 such that Bf (x ) C B (x..), Let d(x1,z ) =r 1 and note _ 	 , o r · J. 
1 

http:operations.of
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that from the triangle inequality, r 1 ~ d (x1,x
0

) + d(x
0 
,z) or 

d(x ,z) 	) - d(x1,x ). Let r 1 - d(x1,x ) = 2~ , which is 
0

r 1 0	 0 1 

necessarily greater than zero since x E- B Cx1 ). Hence B£ (x )CB Cx1))
o r	 <;l o rl1 

and similarly we can construct a finite sequence of Ei's, 1 ~ i ~ n, 
() 

such that l i ) O and Bci(x0 ) C Bri (xi). ·Then Bt. (x
0 

) = ~ Bf i (x0 ) ,. 

r'\ 	 ,... 

where 	 ('\ Be (x ) ( (l B (x.) and hence the ball Be (x ) <.. 0 C V(x ) 

i=l c. i 0 i=l ri 1 ~ 0 0 

where ~ ) o. We now choose n such that 1- { ~ so that 
0 no 

The theorem follows. 

Remark: We may now think of any metric space (X,d) as being a topological 

space (X, 'J ) as well, where Xis endowed with the metric topology. 

It is always true that any metric space is a T2 space. 

Discussion 

We are now prepared to consider the Euclidean spaces. 

Let E denote the set of real numbers, and ~ the usual metric on E 

which we d~fine by "1,(x,y) = lx-yj for any x, y EE. Then (E,~) 

is a metric space which we denote by E' and which is also a topological 

space where the topology is deduced from the metric d1• We refer to 

this topology as the usual topology or E' topology and often refer 

to the space E' as the real line and the metric d1 as the one dimen­

sional Euclidean metric. 

We now consider the cartesian product set E x E which is the 

set of ordered pairs of real numbers, that is E x E = [" (x,y) : x,y t E J • 
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We now define a metric d on Ex E as follows: If P1=(xl'y )E-ExE2 1 

and p2 = Cx2, y2) ~ Ex E, then d2 Cp1,p2) =~x2 - ~)2 + (y2 - y1 ) • 

The function d2 is analogously referred to as the two dimensional 

2Euclidean metric and the metric space (E x E, d2) denoted by E , 

is called the two dimensional Euclidean space, or Euclidean plane. 

Its topology is deduced from d and is analogously referred to as the2 

usual topology or If- - topology. 

In a similar way, we define the n-dimensional Euclidean 

th ft
metric function on the n cartesian product X E. to be 

i=l :L 

n 2~ 
dn(pl' p2) = ( L (~i - x2i) ) where P1 = (xll' xl2' • • •' xln) 

i=l 
I\

Then d is a metric on X E. and the n i 

i=l 
" resulting metric space (X Ei' dn) shall be denoted by Ff, with the 

i=l 

resulting topology deduced from dn again called the usual topology or 

'If- topology. 

We shall often find it convenient.to endow Ff with the usual 

vector (linear) structure ( [11] , p.35) and the resulting vector space, 
·1 

which is often referred to as n-dimensional Euclidean vector space, 

shall also be denoted by Ff. When thought of as vectors, if 

~=(Xi, ••• , xn) t Ff and y = (y1 , •• , yn), then x+y = (Xi.+y1 , ••• , 

xn + yn) E Er
0 

and r~ = Cr~, .•• , rxn) for any real number r. We 

shall then write Ix I in place of dn (o,1), where 0 is the origin, and 

r-+ - f ~ 4hence x - y in place of dn(x, y). 

http:convenient.to
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Definition 1,1,32: Let I = ( o, l] and 'JI the uaual topology of 
- 4

E' relativized to I, and f a continuous function from (I, '"J I) into 

if, Such a function is called a~ in 'Ff, 

4 
Remark: f = (f ,,, f ) possesses the property that each r is a

1 ' n . 1 
~ 

continuous function from Cf, 'JI) into E'. We say that the curve f 

~ ~ 

joins f(O) to f(l). 

Definition 1,1.33: The image of I under f, i.e. f( I) C 'Ff, is called 
. 4

the image.of the curve f, 

Definition 1,1,34: The curve f 
~ 

is called an ..!.!:£._ if and only if 
-> ~ 

f(O) F f(l) t 

~ 

Definition 1,1,35: An arc f is called a simple arc or Jordan arc 

if and only if the function f' is one-to-one, 

Definition l,l,36: A curve is called a simple closed curve or Jordan 
~ ~ ~ 

curve if and only if f(O) =f(l) and f is one-to-one on the half open 

interval [0,1) • 

Remark: The image of a Jordan arc in the relative topology of 'Ff is 

homeomorphic to the closed interval I endowed with the relative 

topology and the image of a Jordan curve in the relative topology of 

J/1 is homeomorphic to a circle (sphere in Ff-. according to definition 

1,1,3()) endowed with the relative topology in E2•. 

Definition 1.1.27: A set X C 'Ff is said to be arcwise connected if 

and only if any two points of X can be joined by an arc, 

http:image.of
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Theorem 1,1,9: ([11, p,178, 119) An open set ocFf is connected 

(see definition 1,1,17) if and only if it isarcwise connected, 

Definition l,l,38: A region in Ff is defined to be an open 

connected subset of ef1, 


Definition 1,1,39: A component of a set XCEn is defined to be a 


maximal (with respect to set inclusion) connected subset of X, 


Theorem 1,1,10: ( [l] , p,182) Any open set in ef1 has a countable 


number of components, 


Definition 1,1,40: A set XC ef1 is said to be bounded if and only if 
~ 

there exists some r ) 0 such that Br (O) ::> X, 

Theorem 1,1,11: Any compact set K in Ff is closed and bounded, 

Proof: Since Ff is a T2 space, therefore K is closed (theorem l,l,3). 


Suppose K were unbounded, then fBn (~ : n = l, 2, • , , j is an open 


covering of K which has no finite subcover, which contradicts the 


supposition that K is compact, 


Theorem 1,1,12: (Heine-Borel Theorem ( [1] , p,53 ), Any set XC Ff 


which is closed and bounded is also compact, 


Remark: From theorems 1,1,11 and 1,1,12, the compact sets in ~ are 


characterized by those which are closed and bounded, 


Definition 1,1,41: A region R C Ff is said to be a Jordan region 


if and only if it is homeormorphic to the ball B1(O) C. ef1. 
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Definition 1,1,42: A set Mc -]f is said to be the image of a 

Jordan manifold if and only if (M, 'J M) is homeormorphic to the 

sphere s1(0) c Ff, 

Theorem 1,1,13: ( [23] , p,63) (Jordan Curve Theorem) Let C be 

the image of a Jordan curve in E2, Then Ff!- - C consists of two 

non-empty components one of which.is bounded and called the interior 

of C and the other is unbounded and called the exterior of C, and C 

is the common boundary of its interior and its exterior, 

Remark: The term "interior" as used in the last theorem has an 

entirely different meaning from that of its previous use, 

Theorem 1,1,14:( [23] , p,63) (n-Dimensional Analogue of Jordan Curve. 

Theorem), Let Mbe the image of an (n-1) Jordan manifold in Ff, Then 

'if - M consists of two non-empty components one of which is called the 

interior of M, and the other the exterior of M, The interior of Mis 

a Jordan region whose boundary is M, 

Remark: By an abuse of language, we shallsimply speak of (n-1) 

Jordan manifolds rather than the image of such a manifold, 

http:which.is
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§ 2 Some essentials of measure and integration theory 

The concept of a measure can be introduced via two 

different methods. One view is to consider a measure as an 

extended real valued function defined on a certain class of sets 

as is done in Halmos [l.4] and the other is to think of a measure 

as a positive linear functional defined on a t.opological vector 

space. The latter approach is taken by Bourbaki [3] and the two 

views can be welded.together by the Riesz representation theorem to 

be considered later. We shall find it convenient to adopt ~ne 

point of view in certain cases and the other one for different 

situations. Since good reference material is readily available for 

most of the results of this section, which are quite standard and 

basic to the theory of measure and integration we shall omit 

specific references to a large extent. Initially, we shall follow 

the approaches of Bllmos and Royden [17 J • Our first definitions 

will follow from some of the original historical results. 

Let E' be the real line and I = Ca,b) be a~ open interval 

in E'. · 


Definition 1.2.1: We define the classical (Lebesgue} measure of 


I= (a,b) to be m1(I) =b - a. 


Remark: If a is real and b =+ 00
, then we follow the convention of 


putting m1(I) = + •. 
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Definition 1,2,2: Let 0 -- 0i=l (Ii) be an open set in E', where 

each Ii is a component set of o. We define the classical measure of 

0 to be m (o) = :2:=_ m CI1 ) provided the series converges in the1 1i=l 
ordinary sense. Otherwise we formally define m1(o) to be+~. 

Definition 1,2,3: Let K be a compact subset of E' and I= (a,b), 

(where a and b are both real), have the property that I::> K, Then 

we define the classical measure of K to be ll]_(K) =m1(I) - !!'l (I-K). 

Definition 1,2,4: Let AC. E' or A f ca(E' ), and let 9 =fo""' j 

be the family of all open sets in E', each member of which contains 

A, i,e. AC 0 o1. for all«. , , Now consider the set of positive real 

numbers { ~(o_ ) J • We define i~f f ~(O..._ ) J to be the outer 

classical measure of A, and designate it by the symbol (m )•(A),
1

Definition 1,2,5: Let AC. E', and OJ<= [K"' ~ be the family of all 

compact sets in E', each member of which is contained in A, i,e, ~~A 

for all 0( • Define (~)_.,(A) = ~p [ ~(Ko<. ) J to be the inner 

classical measure of A, 

Remark: We note that both <111.>• and Cm1). are functions from 

93 (E') into the -non-negative extended reals. 

Definition 1,2,6: A bounded set ACE' is said to be m -measurable1

if and only if Cm1 ).(A) = Cm1)•(A) and the common value is called the 

classical m1-measure of A, denoted by m1(A), 



-.· 

Definition 1,2,?: An arbitrary set AC.. E-' is said to be m1­

measurable if for any In= {-n, + n), the set An In is m1-measurable, 

Theorem 1,2,2: Every open set OC. E' and every closed set F<. E' is 

Theorem 1,2,3: A set ACE' is m1-measurable if and only if the 


following condition holds for any X'- E' : m *{X) ~ m *{XI) A) + m *(Xn {A),

1 1 1 

This condition is often referred to as the Carath,odory criterion of 

measurability, 

Remark: The statement of theorem 1,2,3 is sometimes taken to be 

the definition of m -measurability in which case our definition 1,2,6
1

turns into a theorem, 

Theorem 1,2,4: If ACE' is Mi-measurable, thend:A is also m -measurable,1

where CA denotes the complement of A, 

Theorem 1,2,5: Let (A11 , i =1, 2, 3, ,,, be a sequence of 
00 

m1-measurable subsets of E', Then A::. L./ Ai is also m -measurable,1i=l 

Theorem 1,2,6: If AC. E' has the- property that mi{A) = O, then A 

is ~-measurable, 

Theorem 1,2,7: {Complete additivity property), If fAi~ is a sequence 
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Theorem 1,2,8: Let ~Ai), i =1, 2, •••• be a sequence of 

m -measurable sets in E'. Then A = r'I · A is m1-measurable,
1	 1

1=1 w 

Proof: By DeMorgan's laws for set theory, CA= U ({Ai). 
i=l 

Since each Ai is m1-measurable, so is (Ai by theorem 1,2,4 and 

hence {A is m1-measurable by theorem 1,2.5. Then A is m1-measurable 

by theorem l.2,4, 

Definition 1,2,8: Let .t=x:8C'13 ( X) for a given set X which possesses 

the following properties: 

(i) If A tcS , then ( AeJ• 

(ii) Let fAij be a sequence of sets such that if each 
w 

Ai f d , then 	 u Ai f:cJ (closure under countable union), 
i=l 

Then cJ is defined to be a Boolean 6--algebra on X, 

Remark: It follows immediately that both X and ¢ are members of any 

Boolean <;--algebra cJ o~ x. 

At this stage we make two observations, Firstly, the class 

of sets on E' on which the measure m1 is defined, satisfies the axioms 

for a Boolean Cl-algebra or simply a U--algebra, and secondly, the 

measure m1 itself possesses the property of countable additivity 

(theorem l,2,?). These considerations will motivate our next set 

of definitions, 

Definition l,2,9: Let X be a set and .cJc '13 (X) a . u-algebra on 

x. Then the pair (X, oJ ) shall be defined to be a measurable space, 
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Definition 1.2,10: Let (X, oJ) be a measurable space and ....U a 


function from~ into the non-negative extended reals such that 


(i) ..IA(¢) = 0 

(ii) ....U ( U (Ai)) = ) ..AA(Ai) where f AiJis .. 
i=l i=l 


any sequence of elements contained in oJ, and ~here Ai ('\ Aj = ¢ if i t j. 


Then_.u is called a measure on the measurable space cx,oJ ) 

and the triple ex, oft pl ) is called a measure space. 


; 

Definition 1.2,11: A measure space (X,oJ , .)...{ ) is called 0- -finite 


if f Xi! is a sequence such that 


(i) - xi (: .P<:f for all i =1, 2, ••• 

00(ii) A (Xi) ( + 

. (iii) u 

i=l 


Definition 1,2,12: A measure space (X, .J, )-I ) is c8J.led finite 

if AC.x) { + 00 
• 

Definition 1,2,12: Let (X,~ ,_µ ) be a measure space such that for 


any A e ~ , such that _..(.,((A) =O, then B is A -measurable for 


any B C A. Then ..L-< is said to be a complete measure on rJ , 

i,e, a measure space is complete if and only if every subset of a set 


of measure zero is measurable, 


:Theorem 1,2,9: Let~ c:Jo<. ~ be a family of er-algebras on X, then 

-0o2 =n is a o-algebra on x. 
. ol. J.l() o<.. 
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Proof: (i) Let ACX be such that A E r.J. Then A c-.iJo<. for 


every ~~ e- ~ .tJ.J. Hence C A f: cJ ~ for every .o8.,,_ ~ ~JJ. 

Bence If A c-oJ = Q ~~ . Therefore .cJ is closed under complementation. 


(ii) Let f Ai j be a sequence of sets such that Ai c-r:J ;· 

for each i =1, 2, Then Ai E: .cJ~ for each .::><. , or [ Ai JC -J<><.. 
co· 

for each ~ • Let A = U Ai and note that A C. ..oJo<. for e\rery <>< • 
. i=l 

Hence A ecJ , and it follows thatoJ is closed under countable union. 

The theorem follows. 

Remark: If Zc 93 (X), theorem 1.2.9 _indicates that there always 

exists a smallest v--algebra which contains 2: • 

Let 9 be the open sets of E', and <B the smallest 


~ -algebra which contains 9. Then <B is called the class of Borel 


~or sometimes Baire sets on E'. 

Definition l,2,15: When m1 is restricted to <3 , we refer to it as 

the classical Borel measure, 

Definition 1.2,16: When a measureA is defined on (E' ,63 ), it is 

called 

(i) a Borel measure. 

(ii) a Baire measure. 

(iii) a Radon measure, 

Theorem 1.2,10: The measure space (X,~ , DJ.) is not complete. 
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Definition l,2,17: Let -n_c 13 (E' ) be defined such that NE: -ff'1. 

if and only if Ne. A for some A f. if3 such that m
1

(A) =0, The least 

a-algebra ~ which contains~ v "t1 is called the completion of 03 • 

Theorem 1,2,11: The family ~ which is th~ completion of 63 is 

the rr-algebra of m -measurable sets defined in definitions 1,2,6
1

and 1,2,7. 

Remark: £., is called the er -algebra of Lebesgue measurable sets. 

In general we shall be more interested in the Borel or Radon measures 

than in the actual Lebesgue measures, 

Definition 1,2,18: Let (X, o8 ) and (Y, ~' ) be measurable spaces 
-

and let X x Y be the Cartesian product of X and Y, Now consider the 

set [ A x B : Ae ...J' and B ~sJ 1
} • We call A x B a measurable 

rectangle and defineJ x c-8~ to be the least o -algebra which contains 

the set ~ (A x B) ~ of all measurable rectangles, Then (X x Y, .DJ x .oJ/) 

is a measurable space called the product space of (X,o9) and (Y,~~). 

Definition 1,2,19: Let (X, ~ 1 ..L{ ) and (Y,J/ ', v) be two measure 
I . 

spaces, We can define a measure A on the product space (X x Y, :¥ x~ ) 

as follows: 

(i) If A x B is a measurable rectangle, define 

A (A x B) = .....U.(A)v(B) where we do not permit ...U (A) = 0 and v(B) = + co 

simultaneously, 
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(ii) If z -e:..cJxJ,., we let f ci1 =~o< be a co!!,~table 
covering of z by measurable rectangles, and define /\o<. = L. /\ (Ci~• 

i:l 
We let A •(z) =~f ~ /\..t_ ~ and make use of the fact ( ~7] , p.230) 

9 X ~Ithat ,..\ • restricted to t>() &(} is a measure on ~ x J ,. called the 

product measur.e of M and v denoted by A =.M x v. Then the spac~ 

(X x Y, .iJ x,..d' , ,..\ ) is called the product measure space. 

Remark: We define m2, the classical measure in Ff, to be m1 x DJ.. 

and can extend this process into higher dimensions to get m , the n 

classical measure in E11, to be m =llli x mn-l where n };2.
0 

Definition 1.2,20: Let (X, .J , ..I). ) and (X, J , v) be two measure· 

spaces on the same measurable space, We say that v is absolutely 

continuous with respect to ..M if for any t ) o, there exists a o(£) ) 0 

such that v(A) { E i:f' »(A) { 6 for any A eJ , 

Definition 1,2,21: A measure space (X,~ ,» ) is said to have a 

property almost everywher~ on X denoted by a.e. on Xif it has this 

property everywhere on X, except on a set of .A -measure zero, 

Theorem 1.2,12: Let ( X, o3 , .J.l ) be a measure space and let f be 

an extended real valued function on x. Then the following four 

statements are equivalent: 

-1 ( E,_cJ
(i) 	 For any real r, f r, + 00 i... 

-1 [ + Oo] c _J.(ii) For any real r, f r, 
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(iii) For aIJ.y real r, f-l [- 00
, r) t ~ 

(iv) For aIJ.Y real r, f-l [- 00
, r ] t -o$ 

The previous 4 statements imply the 5th: 

(v) For any extended real r, f-l t r l E-~ 

Definition 1,2,21: Let .<x, .oO ,A ) be a measure space aIJ.d f aIJ. 

extended real valued function on X. Then we define f to be measurable 

(or A -measurable) if it satisfies aIJ.Y one of the first four assertions 

of theorem 1.2,12, 

Remark: It is immediate that if f is measurable on (x,.cJ , ..LA ), then 

f-l (I) E ~ -where I is any interval in the extended reals, 

Theorem 1,2,13: If f aIJ.d g are measurable on (x,.J , ..Ll ) , then 

(f + g), rf and If I are also measurable on (X,d ,....tA ) for r any 

real number. 

We now consider some integration theory, restricing ourselves 

to bounded real valued functions, 

Definition 1,2,22: Let ( X, .cJ ,.A.A ) be a measure space 

l ,( i ,{ m, a finite subset of cJ • The function cp = 

where:XA 
i 

is the characteristic function on Ai 

i,e. XAi s 

= 
1 on A1 

O on X ­ A1 



and r a finite sequence of real numbers, is called a simple1 

function on ( X, .o.S , .,A...l ) • 

Definition 1,2.23: If (X,~ ,µ ) is a measure space and Ai E .cJ , 
we define the integral of XA with respect to A to be 5XA d_;..1 =A(Ai). .. 

' 
i x i 

Definition 1,2,24: .If (X,J ,µ ) is a measure space and cp = 
i=l 

is a simple function on X, we define the integral of f' with respect 

to .....u to be 5 'P dJl = 
x 

Definition 1,2,25: Let f be a bounded real valued function on the 

measure space (X,~ , ..M ) , and let ~ be the family of simple functions 

such that cp E: ~ if and only if lp f on x. We define the upper)1 

integral of f with respect to p to be 5 f dp =inf · ( J <P dp { • 
x 'P~ p { x ) 

Definition 1,2,26: Let f. be defined as in definition 1,2,25, We 

define p to be the family of simple functions on cx,.J' ,..u ) such 

that 't' f: ~ if and only if 't' ~ f on X, We define the lower integral 

of f with respect to ..A.A to be ) f dp = sup f5 ~dp ~· - (X) "fflj' 
x ­

Theorem 1,2,14: It is always true that S f dp ~ s f dp, 

-(X) x 

Definition 1,2.27: · If f is bounded on the measure space Cx,.cJ 1 ...l< ) 

then we say that f is integrable or summable with respect to .µ. 

if and only if ( f d)l = ~ fdp and denote the common value by
~(X) xsfdµ. We call the value of S fdp the integral of f with respect 

x x 
to -« . 
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Theorem 1,2,15: A bounded function f on ( X, .cJ , » ) is integrable 

with respect to.....U if and only if it is measurable with respect to .AA , 

Definition 1,2,28: Let f be an extended real valued function where 

f ~ 0 on the measure space ( X, cJ ,~ ) , and let f n = f J\ n = inf [ f,n~ 
on X, We define 5 fdp 

x 
= .eim 

n-:.,oo 
~fndp 
X 

provided that f 
n 

is 

}(-integrable for each n.• 

Remark: In an analogous manner to definition 1,2,28, we define the 

integral of a negative function, We allow the possibility that 

=+005 fdu for f ~ 0, Some authors do not permit this~ 
x 

Definition l,2;29: Let f be an extended real valued function on 

(x,cJ,.;« ) and denote f+ = fVO and f- = - (fAO), We define 

5 f d)l to exist if and only if S f+ dp and f f- dp both exist 
r x x 
and are not both infinite simultaneously, We then define 

S f du = ·S f + du - S f- du. 
x x x 

Remark: A bounded function f isµ -integrable if and only if it 

is p -measurable, and this is also true of a positive function, But 

in general, the class of )'(.-summable (integrable) functions are a 

proper subclass of the class of fa -measurable functions. 

Theorem 1,2,16: If f and g are_µ -summable on cx,cJ , .u ) then 

so is f +g and. rf for r a real number, It follows that 

5,Cr + g) dp = .s fdp + s gdp. and 5 r fdp =r sfdp. 
x x x x x 



Theorem 1,2,17: (Radon-Nikodym Theorem), Let (X,o.J ,)A ) and 

ex,~ t v) be <J -finite measure spaces and assume that v is absolute~y 

continuous with respect tojA. • Then for any A uJ , it follows that 

v(A) = 5 f du where f is some p-measurable function on X, The 
j'A 

function f is unique up to sets of .).(-measure zero, 

Remark: The function f need only be defined a,e. on X with respect 

to.,µ , 

Definition 1.2.29: If (X, ~ ,...u ) and (X, J , v) are o-finite 

measure spaces where v(A) = S f dµ for f defined a,e, on X for 
A 

each A I: cJ , then we say that f is the Radon-Nikodym derivative of 

v with respect to ft , We also call f a density function of v with 

respect to ).( • 

Throughout the remainder of this section we shall only 

consider measures on compaet T2 spaces. We require first some 

definitions from functional analysis, 

Definition l,2.31: Let (X, d) be a metric space and fxn \ a sequence 

of points in X, ·· We define fxn~ to be a Cauchy sequence if and only 

if for any c ) O, there exists an n ( ~ ) such that d(xn, xm) (£ _ when­
0 

ever n, m ) n ,
0 

Definition 1.2.22: A metric space (X,d) is called complete if and 

only if every Cauchy sequence ~xn\ in X converges· to a point x f X, 

# 
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Definition 1,2,23: Let Wbe a vector (linear) space over the reals 

and let f be a function from Winto the non-negative reals such that 

) ' ->) -4 ~ 
(i f(x =0 if and only if x =0 


Cii) fC~ + 1> ~ fCx> + f(y) 


(iii) f(r5t) = Ir I f(x) for r a real number 

Such a function on Wis called a norm. 

Definition 1,2,34: A normed linear space (W,f) is a vector space W 

endowed with a norm f, 

Remark: A normed linear space (W,f) may be thought of as a metric 

space by defining d(x,y) = f(~-y), The metric dis said to be deduced 

from the~ f. 

Definition 1,2,35: If a normed linear space {W,f) is complete with 

respect to the metric d deducible from the norm f, we call it a 

Banach space, 

Definition 1,2,36: Let Wbe a vector space over the reals, and x' 

a function from Winto the reals such that 

(i) x' (x+y) =x'(~) + x'(y) and 

(ii) x' (rx) =rx' (x} 

for any real number r, then x' is called a linear functional on W, 

Remark: The collection of linear functionals on W may be made into 

a vector space by defining (x' + y') =z' to be z'(x) =x'(x) + y'(x) 



for each x { W, and by defining. (rx') = z 11 to be z 11{x) = r{x•{i)), 

~ r a real number, for each x E w. 

Definition 1,2,37: The collection of linear functionals on W when 

thought of as a vector space, is called the (algebraic) dual space 

and denoted by w•. 

Definition 1,2,38: If {W,f) is a Banach space, then x•~ W' is said 

to be a continuous linear functional if and only if for aIY3 € } o, there ,,, 

exists a 6 ( E. ) ) 0 such that Ix' (~) I ( l whenever f(~) ( 6 !' 

Definition 112,39i Let (W,f) be a Banach space, The continuous 

linear functionals form a subspace of W' denoted by W*, and is called the 

topological dual space of Wwith respect to the norm f. 

Definition 1,2,40: Let (X,!J) be a compact T2 space and g a continuous 

function from X into the reals, The uniform norm of g, denoted by II g II 
is defined to be Ilg II = sup [ jg(x)l J • 

x~X 

Definition 1,2,41: Let (X, 1J ) be a compact T2 space, Define C to 

be the set of continuous functions from X into E' such that C is 

endowed with a vector structure and the uniform norm, C then becomes 

a normed linear space, 

Theorem 1,2,18 ( [i] , p, 395), The normed linear space C that was 

defined in definition l,2,41 is a Banach space, 

Theorem 1,2,19: Let (X,'J) be a compact T space and (X,od ,µ)be
2 

a measure space where~ constitutes the v-algebra of Borel sets on X, 

r 
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Then any continuous extended real valued function f on X is a 

p-measurable function. 

00Proof: Since f is continuous, it follows that f-l Cr, + ) is an 

-1 . . 0 
open subset of X for any real r and hence f Cr, + 00

) E- -P<J • From 

definition 1.2.21, f is Bf· -measurable function. 

Remark: For any finite Radon (Borel) measure }' on the compact 

space ex, 'J ), it is not hard to see that it is a member of c•, the 

topological dual of C with respect to the uniform norm. What is not 

so obvious, is the converse. 

Definition 1.2,42: A linear functional .A e' C* is said to be positive 

if and only if A(f) ~ o, where ft C and f 4 0 on x.· 

Remark: A positive linear functional is always continuous. 

Theorem 1,2.20: (Riesz Representation Theorem). Let ( X, 'J ) be a 

compact T2 space, C the Banach space of continuous real valued functions 

on X, and c• the topological dual of c. Let AEC• be a positive linear 

functional on C, Then there is a Borel measureµ on X such that 

~ (f) = ) t dµ for every f~ c. 
x 

Remark: It is common to identify a positive linear functional with 

its representation measure, and since any continuous function is 

measurable with respect to this measure, it follows that the open sets 

are also measurable, and hence the <I-algebra of measurable sets contains 

at least the Borel sets. It is for this reason that Bourbaki is able 



to define a Radon measure on X to be a member of c•. We further 

remark that there is a Riesz representation theorem for all of C*, 

but in this more ~eneral case, the representation measures may be 

signed measures. However, this level of generality is not required 

here. r 
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§3 Aspects of the Green calculus of n-dimensional manifolds 

The material of this section properly belongs to the general 

theory of integration on manifolds, and the modern theory of differential 

forms. We shall not develop a detailed account of this theory, but 

shall merely mention a few results which are necessary for our later 

work in harmonic functions. Our chief references will be M. Spivak [18] 

and H. Flanders [ 13] • We seek an n-dimensional representation 

of the divergence theorem of Gauss. 

Let us first introduce some definitions and notation. 

Definition 1.3.1: Let ~ denote the vector operator cL a! )t •• ' a~ n 
relative to Ff. 


Definition 1.3.2: A function f from Ff into E' is said to be a member 


of CK if and only if f possesses continuous partial derivatives of all 


orders up to and including K. 


Definition 1,3,3: If f is a C' function from Ff into E', then 

"4 
v f = (f ' 

~ 
••• t f ) which is a 

Xn 
function from Ff into Ff, is called 

the gradient of f. 

Definition 1.3.4: If g = (g1, ••• , gn) is a C' function from Ff 
into En (which means that g. E C' for all i, 1 ..( i ~ ii), then 

1 n ag 
~. g = 2 <ax1 ) is called the divergence of 8. We note that 

i=l i 

V .g is a !unction from Ff into E'. 

., 




41, then we replace O<'. by theDefinition l.?.5: 

symbol~ , 

Definition 1,3,6: If f is a C' function on a region R c. -lf, then 

we define the directional derivative of f at 1 E R in the direction rr<x +h~ > - f(x > 0 

.tim 0 o-of~ to be h_,,O+ h , which is equal to 

( ~ f ex:,)).~ and often written <*2 ~o~. 
--,>~ 2 - n 

Definition 1,2.?: The operator 'IV. v or "1\7 = L 
i=l 

called the Laplacian operator, which is _of fundamental importance in 

our later definitions of harmonic functions, 

Definition 1,3,8: Let M< -lf be a Jordan manifold such that 

M = f p E -lf : g (p) = 0 J where g f C' in. ef1, Let q ~ M, then 

by analogy with classical 'ff- and E3 theory, we define the vector 

to be a normal vector to the manifold Mat the point ~ q, 

denoted by -+n.:+,q 

Definition l,?.9: A Jordan manifold MC -lf such that 

M ={pE Ff1 : g(p) =o] where gE C' in Ff is called smooth, 

.... 
Definition l,3,10: The set of vectors of the form V = p 

~ 

-
~ 

q where 

-+-'>v. ll.-+ q =0 are called the set of tangent vectors to Mat q, The 

set of such tangent vectors are referred to as the tan6ent sEace to M 

ef!-1at ~ q, The tangent space is a copy of • 
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Definition 1.2.11: Let MC t1 be a smooth Jordan manifold and T 

be its projection function into an (n-1) subspace Ef-1 • We assume 

that Mand Ef-l are so chosen that T is a one-to-one function, and 

~ ....n-1 ~ 
let M' =T(M). Let N be the unit normal vector to ~ and nq 

/\ ,,..
be the unit normal vector to Mat ~ We require that n~ • N -/: 0 

q 

for any q 
4 

e- M. We define a measure on M, denoted by o- 1 , whose n-


density function at q~M with respect to the classical measure m 
n-1 
1on Ef-l is In other words S d <r'" = 5 dmn-1(q')

1I tiq. NI. M n- M' \(n~.N)\ 
q 


where q' =T(q). 


Remark: In 'Ff!., vi is the measure for _a_r_c_____ 

If M = f(x, y) : y = f(x) ~ C', O ~ x ( b} , 

2_.!.._ - /1 + f' (x) and therefore 5 d o­1I .~.~,- - M 

In E3, o- is the measure for surface area.2 
l z = f( x, y) <:- C' on R c ~J , then 11i. k I = 

= 2 2s d O- S'J1 + r + fy dm • · In the modern terminology
M 2 :a x 2


1
of measure theory, the density function is called the 

l~i- "' 
]ladon-Nikodym derivative of o-n-l with respect to mn-i• 

Before proceeding further with the Green cB.iculus, we 


require a few definitions from combinatorial topology. 
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Definition 1,3,12: Let [~, ••• , ;c;,J =AP denote a finite set 

of points in Ff of which there are p members, The closed convex 

hull of A , denoted by [A ] , is then defined by the set 
-	 p p 

[AP1=tX E: "if : x = ~ ti xi where t1 ~ 0 and 

i=l 


Remark: ~ e [ Apl may be regarded as the centre of mass of the unit 

j' 

mass distribution_,u on AP' where .A [xi~ 

Definition 1.3,13: A set Ap+l = fi~, t1, .. , , )tp} c Ff is said 

to be independent if the vectors ~Vi J , 1 ~ i ~ p, defined by 

-7 ~ ...). 	 . ...n 
Vi =(xi 	- x

0 
) are linearly independent in £ • 

Definition 1,3.14: Let Ap+l = { 1 , t1, ,, ., xp~ C Ff be an 
0 

ordered set of (p+l) independent points in Ff where p~ n, Then the 

closed convex hull (Ap+lJ = [x0 , ~' ••• , xp] is ca+led a 

p-simplex in En, 

Remark: 	 A 0-simplex is a singleton set, 

A 1-simplex is a directed closed line segment, 

A·2-simplex is a closed ordered triangle, 

The set AP is called the vertices of the simplex [AP] , 

Definition 1,3.15: A specific ordering of the vertices of [Ap1 is 

said to produce an orientation on • 

Definition 1,3,16: A permutation on the vertices of (AP] is said 

to be simple if any two adjac~nt vertices are permuted, 
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Definition 	1,3,17: Two orientations on A are said to be 
p 

equivalent if one can be transformed into the other by an even 

number of simple permutations, 

Remark: There are only two different orientations on a p-simplex ;· 

each of which is an equivalence class of orderings on the vertices, 

2In the case of E , we say that C is a Jordan curve of positive 

orientation if the interior of C is to the left as one moves along 

the curve, 

We now return to the Green calculus and shall consider only 

manifolds which have simple properties, Such manifolds shall be 

sufficient for our purposes, We now state without proof a version 

of Green• s theoran for the plane, 

Theorem l,3,1: (Green's Theorem ( [l] , p,289)), Let 
-+
f =f t + r t1 2 

be a C' function from Ff into E2 and let R C E2 be a Jordan region 

whose boundary aR is a smooth Jordan curve with positive orientation, 

We parameterize aR to be the function~ defined on I = [o, 1] 
~ - "' so that aR 	= ~(I), and let t be the unit tangent vector on aR, 

A ~· ar1S ar2denotedby t =cdt,1d-;z I . Then <a;c - a., > dm2 = 5(1.t) d cr- 1 • 

dt R aR 
We shall find it convenient to consider also the so-called 

divergence form of Green's theorem, Let n be the outer normal relative 

..,). " to aR and focus our attention on S (f,n) d<J l'
aR 
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--)

Theorem l.?.2: Let f, R, aR be defined as in theorem 1.3.1. 

Then j (f.n) d a-1 = S <-v •f~) dm ( where 5 (->f.n/\) d
2 	

rr-

1
v 

aR R aR 

-> 


denotes the total flux across the boundary aR 	of f .) 

, ,,.., " 
Proof: We briefly consider the relationship between t and n. ;· 

"' ,., /.\ " ( 'Jt)" ( 'JI:);. .... . ....I f t = cos 9 i.. + sin 9:.J , then n = cos 9 - 2 L + sin e - 2 J = sin 9'- -cos 9J • 
_,. ..... ,,...

and therefore f .n = (f1 L + r2 S ). (sin 9~ - cos 9J ) 

~A = f 1 sin 9 - cos 9 =F.t wherer2 
~ A 	 4 
F = -r2 L + r J and called the conjugate of f. Hence 

~ -" 
1 

j -+- 5 ar1.,. ar2
5Cr.n) dcJ.l = CF.t) dcr1 = C~ +a-) dm2 by theorem 1.3.2. 

oR oR R u.x u 	 y 

ar, ar2 ._. _,. 
The theorem follows because (__. + -) = V· r.ax a y 

Theorem 1.3.3: Let R Cr1,r2) =R be the region denoting the annulus 

between the. circles s1 = f~ E: Ff : l'*I = ~ and s2 =f°iEFf: lxl = fr 1 r 2 

and consider i = J:Ms Us • Let f = tJ + r J' be a C' function on R1 2 2

and assume that s and s are both oriented in the positive direction.
1 2 

~ I\

Then j (v. 1> dm
2 

= f cl. 11> dr1 + J er.ii> da-1 = J Cr.n)d r 1 , 
R s	 s aR

1 	 1 

where ~ is the outer normal to R. 

Proof: We cut -R into two pieces by the x-axis: 

let = {5t = Cx,y>E: 'R .. Y >.,o111. 


R2 = {x = Cx,y)E R .. Y ,< o1 




= ft= (x,y) ~ : y >1 o'js11	 s1 
;· 

5i_2= {5e = (x,y) E s1 : y ' 0 l 

Then 	 J<v .7> dm2 = J cv- .1> dm2 + J cv .1> dm2. 
'B 'Rl ~ 

But J cv .1> dm2 = j Cl.fl) d<i 1 
al)_~ .. 

Since the outer normal to ~ is the inner normal to 'R2 along I 2 or I 1, 

therefore, the integrals along the I's all cancel and we get 
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J ( .q •f) dm2 + j (~ .1> dm = 
-R R2 2 

{ cf.Il> dr1 + J cr.11> dir
1 

+ J <1.f1> d<r1 + 
21 s11 s12 

Hence ./ ( \J .1> dm2 = 

is proved. 

Remark: In the statement or theorem i.3.3, the unit normal vector is 

always exterior to R. Hence j (f.n)du = J (f.~8 ) dQ"'l' where1 
s2 s2.. 

fie is the ·outer normal to the ball B (O). But 
r2 

J cl.il> d1·i = - J Cf.ne) d<J""i where ile is the outer unit normal 
s1 . sl 

to the ball B Co>. 
rl 

We now state the n-dimensional divergence theorem for a ball. 

More general regions could be considered, but the ball and annular 

regions between two spheres 'Will be sufficient for our purposes. 

Theorem 1,3.4: ( (18) , p,123) (n-dimensional divergence theorem) 

Let f be a C' function from Bro(O) =B c. Ff into Ff and s = aB. 
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Then _J (:0 .f> dm = J (f.n) do 1 where n is the outer normal
B n S n-

vector to B and S is endowed with the proper orientation. 

Theorem 1,3,5: Let R = RJ. (\ R2 where R2 C:. Ff is the interior of the 

sphere s2 union s2 itself, and Ri c efl' is the exterior of the sphere 
-+ s1 union s1 itself, where s1cR2• Let f be a C' function from the 

annular region R into efl'. Then 

Jc~ .f>dm = Sct.n)d(j"'" + J ct.S> da- = j ctn.> d <r1 1 1R n Sl n- S2 n- aR n-

where ~ is taken to be exterior to R in all cases. 

Proof: The theorem follows by reasoning similar to that in the 

proof of theorem 1,3,3. 

Remark: Again, as in the statement of theorem 1,3,5, the unit normal 

vector is'. always exterior to R, Hence j Cf.~)d~-l = f Cf.ne)d~-l 
s2 sl 

where ne is the outer normal to the ball B2 whose boundary is s2. But 

J ctn> d!f" = - J Cf.n ) d 1"' 1 where he is the outer normals n-1 , S e n­
1 l 


to the ball B1 whose boundary is s. 

Theorem 1.3.6: Let u and Vbe c2 functions from 'If into E'. 

Then ~ • Cu :q V) = u ( v 2 V) + ( v u) • Cv V). 
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. d . ~ C av av >Proof: The 1eft S1 e gives v• U ~t•••t U axn 

n 

But ~ 
i=l 

n 

= the right side. 

Theorem 1.3.7: (Green's first identity). Let R be either a ball 

or a.Iinular region in Pl1. Then 

dtJ = Jn-1 R 

Proof: If re: C' on R, then J (v .f) dm = J (f,n) dG"' _1R n aR n 

~ - 2where n is the outer normal to R. If u and V are C functions, let 

f = u ( ~ V)~ Then J u(~ V).il.d ~ • J(uCv2v) +~u.~v) dm •1aR n- R n 

Theorem 1,3,8: (Green's second identity). Let u and V be c2 functions 

on Rc. P!1, where Ris either a closed ball or annular domain, Then 

2J (u (ll) - V (~)1 d a-n-l f ~C-~2v) - V( v u) 1 dmn 
aR an a~ R .. 

Proof: From theorem 1,3,7, we have 

d~ 1 = n­

,..~ 2 ..... -t )s v (~) d<I"'" 1 = cJ V( V u) + "V Vi Vu dm •
aR a~ n- R n 

Subtracting the last equation from the first, our theorem follows, 



§4 Convergence and envelope theory 

In this section we shall find it convenient to formally 

introduce a compactification on E' called the two point compactification 
~ ·~ 

and denote it by E • We shall also refer to E as the extended real 

~. 

Definition 1,4,1: Let the underlying set of the extended real line 

00 00 00be Elf =E' \J l+ "\ V { - \ where + 00 and - are two new elements 

added to E', 

Definition 1.4,2: Let i be a function from I = [ - 1t/2, 1t/21 

onto E* defined as follows: 

~(x) =tan x if x ~ (-1t/2, n/2) 


~ (1t/2) = + 00 


~ C-n/2) = - 00
• 


Then " ~ is a one-to-one mapping of -I onto E'ff , We now define a 

topology :l~on E~ such that O €. J:tt- if and only if 4>-1 Co) E. J y where 

::JI i.s the usual topology of E' relativized to I, The topological 

space (E41= , j'it-) is called the extended real line, 

Remark: The topological spaces (I, JI) and(E'lf', ;JIF) are homeomorphic, 

We stress that the elements + 00 and - 00 have only topological value, and 

cannot be treated algebraically, In future, many of our functions 

will have their range in E ~ rather than in E', 
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pefinition 1,4,3: Let \_fi~' 1 ~ i ' n, be a finite family of 

functions from a set X into the extended real line E~. The function 

f defined on X such that f(x) = s,up {fi(x)) , 1 ,( i ' n, for each 

x e. X, is called the upper envelope of the family lf1\ , 1 ' i ~ n, 
n 

and is denoted by the symbol f = V f .• 
i=l l. 

Definition 1.4,4: Let \f.i.."\ be any family of functions from a 

set X into E-tt-. We define f the upper envelope of tf~) in such a 

way that f( x) = s~p \. f' J.. (x)l for each x E X, 

Definition 1,4,5: Let f be a function from a topological space 

1"'f · iff­(X,~) into E and let x0~ X, Then r ~ E*is said to be, a cluster 

point of f at x if r € f(V') for every deleted neighbourhood V' of x ,
0 0 

Definition 1,4,6: · Let f be a function from a topological space 

(X, ~ ) 'into" E-:# and XO i= X, The collection of cluster points of f 

at x is called the cluster set of f at x , We note that the closure 
0 0 

of f(V•) i,e, f(V•), is relative to the two point compactification, 

Definition 1,4,7: Let f be a function from the topological space 

(X, ::J) into E*, and x E X, We define £im sup f(x) =2iiii f(x) to 
0 

X-+X X--+X 
0 0 

be the supremum (in E11 of the cluster set of f at x ,
0 

Remark: Any function from a topological space (X,;1 ) into E~ always 

possesses an upper limit in E+ at any x e X, Similarly we may define 
0 

£im f(x) to be the infimum of the cluster set of f at x • x..:,x 0 
0 



Definition 1,4,8: A function f from a topological space (X,j) 

into E•is said to be upper semi-co.µtinuous at x E. X if and only if 
0 

f(x ) >1 .eim f(x),
0 

X-+X 
0 

;· 

Definition 1,4,9: A function f from (X,d ) into E--w: is said to be 

u~per semi-continuous on X if and only if it is upper semi~continuous 

at every point of X, 

Remark: We may similarly define a function f to be lower semi­

.eimcontinuous at x €. X if and only if f(x ) ' f(x), A function 
0 0 X-;. x 

0 

f is defined to be lower semi-continuous on (X,~ ) if and only if it 


is lower semi-continuous at every point of X, 


Theorem 1,4,1: A function f from (X, 'J ) into E1'> is continuous if 


and only if it is both upper semi~continuous and lower semi-continuous on X, 

.. 

Proof: If f is continuous and x c;_ X, then f(x ) = £im f(x) and 
0 0 x..:,. x 

0 

hence f is both upper semi-continuous and lower-semicontinuous 

If f is both uppsr semi-continuous and lowel'-semicontinuous at x , then 
0 

f(x ) ~ ,eiiii f(x) It is always true that 
0 x..:rx 

0 

&!!!!.._ f(x) ~ £im f(x), and the combined conditions of upper and x...,.x
0 x--.x 

0 

lower semicontinuity at x , force £im f(x)' f(x ) ( !~x f(x ),
0 0

x'x o
0 

Bence lim f(x) = f(x ) = Fm f(x) and f is continuous at x •
x-;.x . 0 0 

0 x~x 
0 

The argument extends over X itself, 



Theorem 1,4,2: Let tfd..~ be a family of continuous functions on 

( X, j ) , and let f be the upper envelope of \ f ~1 · Then f is lower 

semicontinuous on X, 

Proof: For any x E. X, we shall show that f is lower semi­
o 

continuous at x • Since f ~ f~ for anyJ..., it follows that 
0 

iim f (x) ~ iim iim
fJ.. (x), But f,;i... (x) = iim fJ...(x) = f ""{x )

X-'>- X V X-+X X-+X 0 
0 0 0 x~x 

0 

since f:1.. is continuous at x , It follows that lim f(x) ~ fJ.. (x )
00 x~x0 

for each <A. and therefore is an upper bound for ff J... (x )} • Hence 
0 

&!! )Jf(x) ~ f(x ) because f(x ) is the least upper bound of [ f J. (x
X->X 0 0 0 • 

0 

Corollary: The lower envelope of \f~~ is upper semi-continuous, 

Theorem 1,4,3: Let f and g be functions from (X, J ) into E;:: and 

x0~ X, Then lim (f + g) (x) ~ £im f(x) + lim g (x) • 
X-i>X X-+ X x~x• 0 0 0 

Proof: Let lfiii f(x) = Li. and £im g(x) = L2 , and choose € ) 0, 
X-+X X-+- X 

0 0 

fhen there exists a deleted neighbourhood ~ of x such that f(x) ( ~ + E./2
0 

for any x £ v1, and also a deleted neighbourhood v2 of x such that 
0 

It follows that h(x)=f(x)+g(x){1'J.+L2+ E 

for any Xe Vl (\ V which is also a deleted neighbourhood of x , Hence
2 0 

.lim h (x) ~ ~ + L2 and the theorem follows, 
x-i-x 

0 

iimCorollary: {f+g) (x) >t ~ f(x) + iim g(x).
x·x X-+ X X-t> X ~ 0 0 0 
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#=­Theorem 1,4,4: For a function f from X into E , it follows that 

-sup { f(x)) = inf l-f(x\ • 
x E X x (; x 

Proof: Let S = sup {!Cx~. Then S }1 f(x) for all x ~ X and 
x E. x ;· 

therefore (-S) ~ - f(x) for all x E. X, Hence (-S) is a lower bound 

for f-f(x)J and hence -S' inf {-f(x)) •. Let s• =inf l-f(x)} 
x~X xcX 

then S' ~ -f(x) and hence (-S') >1 f(x) or -S' is an upper bound for 

lf(x)} • Hence (-s•) k Sor S'' (-S), 

Corollary: When the argument of theorem 1,4,4 is applied locally, 

we obtain - ~im (f(x)) = lim (-f(x)), 
x~x 

X-+ X 0 
0 

Theorem 1,4,5: Let f be any function from a topological space (X, j ) 

into the extended real line E"*': We define a new function g on X such 

that g(x ) =ifni f(x) for every x ~ X, Then g is upper semi­
0 0

• x-+ x 
continuous on (X, 0:J). 

Proof: Suppose the theorem is false. In such an event, there would 

exist some x E X such that g(x ) ( ~ x g(x) =L say. We put
0 0
 

0 


L - g(x ) = 2'- ) 0, For any open neighbourhood V(x ) , there exists 
0 0 

XJ. E. V(x0),~ ;i x such that g(Xi)} L - E/2 or g(x ) + ~E. ( g("l_)•
0 0 

But V(x ) is also an open neighbourhood of x1, and hence there exists 
0 

x2 e V(x ) such that x ;i x1 and f(x2) ) g(x1) - €/2, (because
0 2 

g(:xi) = £im f(x)). Since g(:xi) - €/2 ) g(x ) + f therefore 
0x-? x1 
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We have shown that for any neighbourhood 

V(x ), there exists x ~ V(x ), x # x , such that f(x2) ) g (x ) + ( 
0 2 0 2 0 0 

and hence £im f(x) ~ g (x ) + ~ • This contradicts the definition 
0 

X-?X 
0 

of g. It follows that g is upper semi-continuous. j' 

Corollary: If g(x ) = lim f(x) for every x <:. X, then g is 
0 X-'rX 0 

0 

lower semi-continuous. 

Theorem 1,4.6: A function f from a topological space (X, :J) into 

E * . r, + co)is lower semi-continuous if and only if f-1< €. ;J where 

r is any extended real and ( r, + co) means {x: r( x ~ + co1 . 

Proof: Let f be lower semi-continuous, and let V = -
f-

1
(r, + co] 

for any given r. For any x € V it follows that f(x ) ) rand
0 0 

hence for sufficiently small C:.) 0 it follows that x E; V if 

f(x) ~ f(x ) - e. • Hence V is a neighbourhood of x and since x 
o· 0 0 

is arbitrary it follows that V is a neighbourhood of each of its 

1points. Hence V, is open. Now suppose f- Cr, + ~ is open for any 

r e. E~ and let x € x. Choose € ) 0 and let r = f(x ) • Then 
t 0 0 0 

f-
1(r - t:, + co1 constitutes an open neighbourhood of x , and it 

0 0 

follows that lim f(x) ) r - € • Since E. ) 0 was arbitrary,
X-+ X 0 .e· 0

therefore ....2:!! f(x) ~ f(x ) and the lower semi-continuity of f 
x~ x o 

0 

follows. 

Corollary: A function f from (X,J) into E'lr is upper semi-continuous 

if and only if f-l ( - co,· r) ~ J for any r f E"'. 
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Theorem 1,4,7: Let f be a lower semi-continuous function from 

(X, ;J) into rand K a compact subset of X, Let S =inf ~f(x)} • 
x E:: x 

Then there exists x E. K such that f(x ) = S,
0 0 

.. 
Proof: We first construct a sequence \ xn·\ on K such that ­

iim f(x ) = s. Since K is compact, the sequence { x nl possesses 
n-oo n 

a subsequence \x ....~ which converges to a point x €. K, Hence 
0 

iim f(x.......;) =S and £im x (. ):x • 
i-"'00 ~ i...,co ni 0 

but since f is lower semi continuous f(x ) ~ ii.! f(xn(i)) = S 
0 00 

and the theorem follows. 

Corollary: An upper semi-continuous function attains its supermum 

on a compact subset of a topological space ( X, 'J ) , 

We now consider a fundamental structure theorem pertaining 

to lower semicontinuous functions, ( (19) , p,36). 

Theorem 1,4,8: Let f ~ 0 be a lower semi-continuous function on a 

metric space (X,d), Then there exists a monotone non decreasing 

sequence {<p n' of continuous functions from ( X, d) into E1 such that 

!(x) =lim f n (x) for every x ~ x. 

Proof: We shall assume that f 1 + co, For each x 6 X, we define 

f (x) = inf {f(y) + nd (x,y)} , and note that n yEX 
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for every xl£X, and that 'f (x) ~ m (x) for every xEX. Wen+1 Tn 

shall first show that 'fn is a continuous function. Let xE. X, 

x't X such that d(x,x') =o. Then there exists y (o) <:. X such 
0 

that ~n(x) + o ) f(y ) + nd(x,y~) by definition of fn(x).
0 

But <pn(x') ( f(y ) + nd(:ic' ,y ) ( f(y ) + n{d(x' ,x )+d(x,y )\
0 0 0 0 ~ 

by the triangle inequality. Hence 

It follows 

that (cpn(x') - 'Pn (x)) ( (n + 1) d(x,x•). By a similar reasoning 

process we can show that ( m (x) - f (x•)) ( (n + 1) d(x, x') and 
T n n 

hence \;> n (x) - f n(x' )l ( (n + 1) d (x, x'). The continuity of 'f' n 

follows and hence l q> n \ is a monotone sequence of continuous functions. 

It remains to be shown that f(x) =£im 'P n ( x) for each x E. x. 

Since ~n(x) ~ (f(y) + nd(x,y)) for any yf. x. It follows that 

cpn(x) ,( f(x) + nd(x,x), or <fn (x)" f(x) for n = 1, 2, ••• 

Since f is lower semi-continuous at x EX, it follows that for any 

£ ) O, f(x') ) f(x) -E. where x' lies in some t -neighbourhood of 

x where f depends on E. Hence f(x') ) f(x) - E if d(x' ,x) ( ~ 

and we note that f(x•) + nd(x,x') ) n~ if d(x,x') )1 ~ • For 

fixed x~ X, we can choose n sufficiently large so that n~ ) f(x) - E • 

For such an n it follows that f(x') + nd(x,x') ) f(x) - E, for every 

x'E X, and hence tp (x) ~ f(x) -~ because <p (x) =~nf ff(x') + nd (x,x')J • 
n n x'E i 

Since €) 0 is arbitrary, therefore, .eim ~ (x) }j f(x), but f(x) 
n~ oo n 

I 

I 
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is an upper bound for l f n(x)\ and therefore f(x) ~ £im 'Pn(x). 
n~oo 

It follows that f(x) =iim ~n(x) and the theorem is proved. 
n_. co 

The remaining theorems of this section will involve .. 
I 

convergence theory applied to measure and integration. We observe 


from theorem 1.4.6 that if f is the characteristic function on a 


set A~X where (X,j) is a topological space, then f =*A is lower 


semi~continuous if and only if A is open, and f is upper semi-continuous 


if and only if A is closed. 


Theorem 1.4.9: ( (141 , p.112) (Monotone convergence theorem) 


Let (X, J , ;t.- ) be a measure space and {f ~a monotone non-decreasing

n 

sequence of extended real valued functions each of which is integrable. 

Then f =.eim fn is integrable where convergence is point wise and 
n _,,. oo

J fdµ = iim f f dJt where we allow the possibility that 
n~oo x l\x 

J fd,u. = + oo. 

x 

Theorem 1,4.10: ( (14) , p,110) (Dominated convergence theorem) 

Let (X, A , A- ) be a measure space and lfnl a sequence of 

,M..-integrable functions which converges to f almost everywhere 

with respect to .ft, If there exists a,µ. -integrable function denoted 

by g such that lfn(x~ ~ \g(x)\ almost everywhere for all n, then 

f is integrable and j" fdµ =iim J fndµ, 
X n·-"' 00 X 
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Remark: Let A be a bounded subset of EI and m1 the Lebesgue measure 

on E'. Aset :SCE
1
is m -measurab1e if and only if its characteristic1

function XB is m -measurable and it follows that m1 (B) = JX.(B) dm1 ,1
E' 

where XB is the characteristic function of B and the outer Lebesgue 

j. 
measure of A is m1• (A) = ~ XA dm where -j :(dm1 = inf j f <X.B ) dm1\.1 e.' A "" l E, ~ · } 

where \ B.;..) is the family of m1-measurable sets such that BJ.::> A and 

hence~ }XA• But f X.A dm1 = inf S J <'to ) dmJ where \0~1 
.,_ ~· <A lE' "" 

is the family of open sets such that each OJ.,:> A, and hence_ Xo.,_ ~XA. 
Since every X.c'-is lower semi-continuous and since every XB which is lower 

semi-continuous is the characteristic function of an open set, the 

following theorem holds. 

Theorem 1.4.11: If ACE I ' it follows that ml*(A) = J cxA> dml = 

E' 
lf~\is the family of lower semi-continuous 

functions each of which dominates X.A, that is ~"- ~X.A for every J... 

Proof: The family\fJ contains the family{x. j where O.A. is any0

open set containing A, and therefore inf lJ <p dmJ ' inf SJ (X,0 )dm1J 
J... E' "" . °" l E' ,__ 

For any <f>.,;,. we define <p~ as follows: 

f.i..
I 
(x) 

. 
= 1, if ""(x) q 1. 


~~(x) = o, if <p....Cx) ( 1. 


-1
Since ti, + 001 = n 
00 

(1 _! +oo) therefore <p.;.. (1 + ooJ= n ' 
n=l 

l 
(1 - -n is a G

6 
set and hence V:, is a simpl~Borel 
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measurable function. Since ,: ~ ~' it follows that 

If we~: dm1\ ~ i~ l~, ~.. dmll 

combine the two inequalities the theorem follows. 

Corollary: Let f be a simple function relative to m1 • Then 

inf {/. ~.A.dmlJ where \<f..t-l is the family of lower semi-
j' 

J... 

continuous functions each member of which dominates f. 

Corollary: Let f be any function from E' into ~. Then 

J fdm1 = inf SJ 'fJ.. dm1\ where \ <(>._) is the family of lower semi-
E' J.. lE, 

continuous functions each. member of which dominates f. 


General Remarks for this Section 

Let (X, :I) be a compact T2 space, and C the Banach space 

of continuous real valued functions on x. Then every positive 

linear functional on C, which necessarily is a member of c• also, may 

by virtue of the Riesz representation theorem be identified with a 

measure µ. on X, which Bourbaki calls a Radon measure. Since the 

continuous functions on X are_;.t--integrable and hence _,«,-measurable 

it follows that the open sets in ex, j ) are in the ir-algebra J 

of the domain of )L, and hence .J is either the Borel sets with res­

pect to ex,~ ) or some u-algebra containing the Borel sets. Hence, 

any lower semi-continuous function f from ex,'J) into E1f- is µ.-measur­

able and if f )/ O, then f is p..-integrable allowing the possibility 
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J fdj.t. = + eo. In fact J fdp = £im J f .<ip where 
X n -=t eo X n 

is a monotone non-decreasing sequence of continuous functions 

which converges pointwi.reto f. Finally if g is any function from 

X into E~ one can define l g ¥ = i~f {f <p~ dJ.lJwhere l'\)") is 

the family of lower semi-continuous functions each of which dominates 

g on X, and J gdp.. = sup where \ 'f,_1is the family 
-(x) J... 

of upper semi-continuous functions each of which is less than or equal 

to g on X. These definitions can be made consistent with the earlier 

ones in section 2 of this chapter by extending the argument of 

theorem 1.4.11 into more general spaces. Then the function g is 

.JJ- -integrable if and only if Jg d,M. = Jg d}l and if g is fl-

integrable, it is fl-measurable. In the case where g is bounded, 

then g is p.. -integrable if and only if it is )L -measurable. 



II. 	 SOME FUNDAMENTAL RESULTS OF HARMONIC 

AND SUBHARMONIC FUNCTION THEORY 

~ 1 Aspects of 	harmonic function theory 

Definition 2,1,l: A :function u ~ c2 defined on a region R c W1 
2

and satisfying the equation ~ u = 0 at all points of R is said to 

be harmonic there, 

Laplace's partial differential equation is a fUndamental 

object of study in this thesis. Indeed, the class of solutions of 

it defined in W1 - {0 } which depend only on the distance r from the 

origin, play a major role in our development. We prove the follow­

ing theorem, 

Theorem 2.1,1: Let u depend on r alone and satisfy La.place's partial 

differential equation on t1 - { 0} • Then u =alog r + b for n =2 

where a and b are real constants, and u = _£___ + d for n ~ 3 wheren-2 r 
where 	c and d are real constants, 

Proof: Since 	v 2 u = O in !fl - [o~ , n )1 2, and u is a function of 

2 2 ar r alone, where r = x l.• , we have . 2r- =2 and hence:t 	 ~axi 
i=l 

for i 	 =1, ••• , n,r 

59 
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au x au du(~) car ) u' {r) (--.!)Therefore - = ar = r since .ar = dr,a.xi a.xi 

~i
2 X• 2 r -~'. (-)

a u { l. rand = u" (~) + u' ) for i = 1, • ., nr 2a.x 2 r
i 

2 u'xi 
2 

u"- ( ;( i) u' 
= . 2 + ­

r r -;:3"" • 

n n n2a u u" nu'Then '9"2u = = ( ~~~) + - - £ ( 2=_x 21>2 ral( 2 rL 
i=l i i=l ;?> i=l 

2 nu' (n-l)u'= u" (.!:-) + : UH + ...-.......-.;....._ 

r2 -- •r r 

2 {n-l)u•
If v u = O, then u" + =0 which is a second order ordinaryr 

{n-1) Vdifferential equation. If we let u' = V, then V' + r = 0 is 

a first ord.er linear differential equation. Multiplying the last 
)n-ldr 1equation by•the integrating factor e -Y- = rn- , we have 

V' rn-l + {n-1) rn-2 V =0 and hence (Vrn-l), = 0 which implies 

a av-­ if n ~ 2, ~ a real constant. Thus u' (r) if n )1 2.- n-1 = n-1 
r r 

Case 1: n = 2: then u•(r) =;and hence u(r) =alog r + b, b a real 

constant. 

Case 2: n ~ 3 then u'(r) = arl-n and hence u{r) = a ~ rl-n dr 

c 
- -- + d where - n-2 r 

c and d are real constants. The theorem follows.' 
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Returning to our Green calculus and its relationship to 

harmonic functions, we prove the following theorem. 

Theorem 2,1,2: Let R be a Jordan region in Ff whose boundary aR is 

a Jordan manifold which is smooth almost everywhere ( ~ measure),n-1 

and let u E C2, Then 5 (V 2u) dm = 5 (au) do- where
1R n aR aft n-

we recall that a-- is the classical hypersurface measure on aR. n-1 

Proof: We recall that Green's second identity states that 

5 (u \7 2V - VY' 2u) dm = 5 (u (aV) - V(!!:!)) dO- l 
R n aR On On n­

. 2
where u and V are both C functions on R LJ a R. If V :: 1 on R, 

2then 5 (v u) dmn = 5 (~) do 
n-1 •R OR a~ 

The following corollary is then immediate: 

Corollary: Under the hypothesis of theorem 2.1.2, if u is 

harmonic, then S <~> d er : o.
1OR a~ · n- · 

2 2
Theorem 2.1.;: (Green's third identity for E ), Let ut C and be 

defined on a Jordan region Rc ~ where 0 e- R, and where OR is a 

rectifiable Jordan curve which is smooth a,e( o- ). Then
1 

O(log !)] 5 1 2 
___r du - log (-)( V u)a uCo> = s -u dm2 •1a~ R r 

Proof: s~ = £"t : It I = t. J and 

R' =R - B~ where B C,. R, Then aR' = aRU S • From Green's second 
~ .( 
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2 2identity we have S (u\7 V - VV u) 
2 

= 5 ( u(~)-V(a~) ] do-
1

dm
R' aR' an 

2
where ~ is outer normal relative to R' and u and V are both c

functions on R' aR'. But 

5 [ u(av) - v (2.!!) ] do-:1 = s· [u (aV) -Va~ 1dcr-1 +5~(~ )-V(~)1 drr-1 ·,•
aR' art a~ 	 aR ail an s an an . 

E 

Therefore 

V(-a s[s(u v2v - V ,;2u) dm = s[u(~) - 0~) ] d v- - u(aoV) - V(-aau) ] do­
2 	 1 1R' oR aA n s" r r 

because outer normal relative to R' on S~ is inner normal to 1} on S~ • 

The function V = log r is harmonic .on R' and therefore 

SO - (log r) (iPul dm • 5[u a(l~r)- (logr) ~1dlr- 5[u f -(logE )(:~~ d"]_.1­
R' 	 2 aR an an Si;. . 

We analyze the term ) <r> d o- = i 52:rr. u (;tt) £ d9 where Ix I= t •1 . s 	 0 
t. 

21t 	 s2:rr. -+ 1 s2n; -+Then 	 5 u(~ )d9 = [uCx£) - u(O) dQ + u(O) dQ and hence 

0 0 0 


s~ ucXE) d9 2n;u(O) 	 "' d9 where- 1~ 521' Juct~) - u(d) Id9' Mt SI	 
2 

0 	 0 0 

Since u is continuous at O, therefore £im Mt =o, and hence 
E~O 

21tu(O) = £im ~ S I da- 1 ~ • 
t-?0 l S<:. 



Similarly, we consider the term S(log £ ) (~ ) d er • 
1s 

From Green's second identity with V =1, we have 

(log£) Sc~~) do-1 = logr Scv2 
u) dm and since (\7 2u) is con­

2 
s~ 	 BE. · 

2tinuous and hence bounded on· -B~ , therefore I'\7 u l ( M on -Bt • 

It follows that j 1og E ~ :~ d o 1 j ~ Mh~sE·• L 
2 j for t ) O 

2 
and since £im t log [ = £im ( l~g E) = £im .:-f- ·J = 0 by

1c---~ O t-~O - t~O \ ­
t.2 E-3 

L'HSpital' s rule, therefore £im S (log t ) <¥r> d (J = o. 
1t-40 s . 

~ 

Hence 

and therefore 
. 1 . 

l a alogC;> ] -:tS[log(-)(....!!) - u ( ) d r.l - au(o)
aR r a~ art 

or 
1 

~ Sr. 1 au alog(;> l · 5 1 2 
au(O) = Llog(-)(";A) - u ( ) J dwl - log(-) (v u) dm2 •

aR r un a~ R r 

The following corollary is then immediate. 

Corollar;r: Under the hypothesis of theorem 2.1.3, if u is 

also harmonic, then 

-). 1 
u(O) = 2i° 	 5(1og


.aR 
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- ¥
. Theorem 2,l,4: ( [131 , p.74-75) Let B1(0) be the closed unit ball 

in pf and s (d) its boundary, Then _5 ~ dm =V = 1t 
n/2 

.
1 B (o) 	 n n rci+n/2)

1

2rtn/2
and S..... dc:r =s = where P(x) = ~co e-t t(x-l) dt 

Sl(O) n-1 n-1 r <n12> 0 

for x ) 0 	and rcn+l) =n! if n is a natural.number. 


We consider now, the n-dimensional analogue of theorem 2.1.3. 


Theorem 2,l.5:(Green's third i.dentity for "If, n >1 3), Let ue C
2 

be 

~ 
defined on a Jordan region RC. "If where 0 ER and where aR is an (n-1) 

Jordan manifold which is sufficiently smooth and where Sd rr { + co.
1aR n-

Then 

\ a<~>] j
(n-2) sn-l 	u(O'> = Jr ( nl-2) (23!) - u rll do- - (.J:._)(92u) dmn. 

aR l r a~ o~ n-1 . R . rn-2 

Proof: We employ similar notation to that used in theorem 2.1.3, 

Then s[u(\7 2v)-V(\7 2u)] dm = sru(!!) - V (~)]do- -l where rt is 
R' n aR' ~ art an n 

the outer unit normal relative to R' and where 

5 f u(~) - V(~) 1d~ l = 
aR' l an an n­

1Let V =~ which is harmonic in R' by theorem 2.1.1. 
r 

'!'hen 
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Consider the first term 

1srr2-n {~) 1 do-:: = s(2:!) dcr- 1L ar J n-1 s ar n- = n-2 
S r= f c . t 

,. 

by theorem 2.1.2. 
I 

2 ­

~ 

Since V u is continuous on B~ and hence its absolute value is bounded 

there by M say, therefore 

2 
= MV t • n 

It follows that £im 
E~O 

Now consider term 5u(2-n) t l-n du
n-1

sf.. 

Then 


...L.l 5u(~c) do- l = ...Ll do- l = 
n-i n- S£ "' n- t n.­

dc.r + f u(O)da- = (s )u(b)+ Ji[uC;~)-u{O)l do- • n-1 n-1 n-1 , J n-1 
~ ~ . 

Since u is continuous, therefore Iu(;t~) - u(O) I { M£ where £im ME = O, 
· E-70 

and hence 

S{u<;£) - u(o)1d~n-l j~ ~ !uci,> - u(O) Id .-n-l ( (H£) (•n-l) and hence 

sl 
 l 
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Thus 

2£im S[o-( 1 _ )( v- u) dm = 2E-40 R' rn 	 n 

2-n(au)
do-n-1 +.tim. -a do-_,.9E-+O r n .a. 

St: 

Therefore 

(n-2) s n-l .u(O) 

and the theorem follows. 


The following corollary is then immediate. 


Corollarz: Under the hypothesis of theorem 2.1.5, if u is also 


harmonic, then 

~ 1u ( 0) = ___,;;;;;..___ s[r2-n (~) - u (ar2-n) 1dq' • 
(n-2)s aR an an n-l 

n-1 

Theorem 2,1,6: (Mean value theorem), Let u be harmonic on the 
-+ - -+ 1

ball B~ (O) =Bl' • Then u(O) = - S uGts> do-n-l for xs ~ Sr.s 
n-1 sl 

Proof: Case 1: n = 2, in whic~ case s =2Jt1 

From the corollary of theorem 2,1,3 it follows that 

-+ 1 1 a alog(!)S( 	 ]
u(O) = - log(-)(au) - u 	 ( r ) dr s r r ar 	 1s1 r=J 

= !.. (log 

~ 

!) s(EE.) d (f" + 	 !.. 5u calog r )l d~l. 
s1 f s or 1 6i or /

I 	 . SS" 
r =J 



By the corollary of theorem 2.1.2, it follows that 

-+ lSc~> d er =0 and therefore uCO) -- 5 uCi°~,) do-1s or 1 j' al sfr 

1 
=- suCJt.f )5' d cr-1

fBl ;·
s1 

l 
=~ ~ .uC~5.) da-1 which 

sl s1 

is often called the linear mean of u on Sf • 

Case 2: n ~ 3. 

From the co:i-ollary of theorem 2.1.5 it follows that 

uCO> 1 5~2-n C~) do- - 1 f uC~ )(2-n) f l-n do-n-l •= Cn-2)s ar n-1 (n-2)s
n-1 8 n-1 ss s .. 

But by the corollary of theorem 2.1.2, the first term on the right 

of the last equation is zero. Therefore cancelling the (n-2) factor, 

we get 

1 
=­uco> --1~­ do- 1- n-1 n-

f sn-l 

and the theorem follows. 

Throughout the remainder of this thesis we shall denote the 

1 -+s ~ integral - uCxj) d a- _1 by L Cu, O, s> ). We will observe 
6n-l S n 

that the origin potnt 0 was taken as the centre of s, in the above 

discussions, but this was merely done so for convenience as any such 

point ~ ~ if'" would suffice by a translation and St would then be 



68 

We should also observe thatl = J J. 
may be replaced by the equivalent 

expression S u(Jtf) do-
S n-1

t' 

which is a more apt notation for mean value. 

We come now to a stronger form of theorem 2.1.6. 

Theorem 2.1.?: (Extended form of the mean value theorem). 
--) 

Let u be a harmonic on the ball Bl" (O) :: Bsand continuous on 

Then u(6) = L(u,o, f ). 

~ ~ 
Proof: For any r { f , it follows that u(O) = L (u, O, f) by theorem 

4 	 ~ 4 
2.1.6. We shall show that L(u,o, ~) =£im L (u, O, r) or lim L(u,O,r). 

r---?-f 	 r-.+f 
r ( ~ 

Now L (u, 
~ o, r> = 1 

sn-1 sl 

1L(u, O, r) 	 s u(;tr) d .,.-n-l where 1:r ~ Sr and r {J •= ­5n-1 sl 

_,. 	 4 1Then L (u, O, f) - L (u, O, r) = s
n-1 

If 1 f and 1r are on the same ray, then f ~i - i'r f = f - r and 
- ~ 

since u is uniformly continuous on Bf(O), it follows that for any~) O, 

there exists 6 ( f ) ) 0 such that f u(lf) - u(ltr) j ( ~ if 

If (J' -r) { 6, then 

L (u, &, r) - L(u, 0, r) / { ;,1- (~) ( 5d<r 1) < ( • 
S n­· 	 n-1 
1 



--

~ -> ~ 
Hence, 	tim L Cu, O, r) = u(O) = L (u,o,}) and the theorem 

r-+j­

follows. 

Theorem 2.l:...§: (Special form of the maximum p·rinciple for a ball): 

- ~ 
Let u be harmonic on the closed ball Br (O). Then u cannot assume its 

~ 
maximum value relative to Bf (O) at o unless u is constant. 

~ 

Proof: From theorem 2.1.6 we have u(O) = S u(i) dcr-
S r n-1 

r 

~r d 	<r n-1 

for any r ~ J' • 

If u attains its maximum at d, then 5 u(O) d<r = 5u(£ )do­s n-1 r n-1
8 

f or a.ny r ~ ~ and therefore 5 [ uc6) - u(.°;t ) 1d.:J l ~ 0 for any
S r n-

where [ u\cf> - u(x;.)] ~ 0 on Sr• Since (u(6)-u(;r)) is 

~ -+ 
continuous on S , therefore u(O) - u(x ) : 0 on S • 

r 	 r r 
-+ ~ 

Since u(;t ) = u(O) for any x c- S and for any r ~ f , therefore 
r 	 r r 

- ~u(~) =u(O) on B s (O). 

Theorem 2.1.9: (Maximum principle for a region (first form)). 


Let u be harmonic on a region Rc ef!' and suppose u attains its maximum 


~ 
value at x <::- R. Then u is a constant function on R. 

0 

Proof: We first consider a topological space (R, 'JR) where J R 

is the usual topology of if relati~ized to R. Let Ge R be defined 

Then G is open in the usual 

topology of if by theorem 2.1.8, and hence in 1 R because R is open 

in Ff'. Since u is continuous, therefore GC R is a closed subset of 



R in relation to JR because the singleton setf u(~) $ is closed in 

E' and if u is continuous, then the inverse image of a closed set is 

closed. Also we note that G ~ ¢. Now consider the set G' =R-G • 

Since G is closed in (R, 'JR), then G' is open in (R, '] R) and therefore 

R = GU G' where both G and G' are open in relation to 'J and GAG' = ¢. 
R 

Since R is connected, therefore G' =¢ for otherwise by definition 1.1.16, 


R would have to be disconnected. The theorem follows. 


Corollary 1: If u is a non-constant harmonic function on a 


bounded region R L if, which is continuous on R v oR, then u attains 


its supremum on and only on the boundary oR. 


Proof: Since u is continuous on the compact set Ru aR, therefore 


u attains its supremum on Rv aR. Since u is a non-constant harmonic 


function, therefore u cannot attain its supremum on R by theorem 2.1.8. 


Hence u attains its supremum on aR. 


Corollary 2: (Minimum Principle for a region (first form)) 


Let u be harmonic on a region Re. lf and suppose u attains its minimum 


value at l 0 c- R• Then u is a constant function on R. 


Proof: Similar to theorem 2.1.9. 

Corollary 3: If u is a non-constant harmonic function on a bounded 

region Re -if which is continuous on RvaR, then u attains its infi.mum 

on and only on the boundary aR. 
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Proof: Similar to corollary 1. 

Theorem '2,1,10: (Maximum principle for a r.egion (second form) 


Let R be a bounded region in -Ff, and u a harmonic function on R, 


with the additional condition that .. 

' 

~ ~ ~-
£im u(x) ~ M for every xf'e aR. 

j?'~-x· ~ 
XE R 


1* e- aR 


Then ue1) ~ M for all 3t ~ R. 

~ 

Proof: Choose any f) 0 and x* e- aR. Then there exists a neigh­
. ~ ~ ~ 

bourhood V(x*) of x* such that u ( M + f.. in V(x*)A R, The set 

tV~*)' form an open covering of aR and since aR is compact, we 

can extract out a finite subcovering of f V(~) J denoted by 

fvc'i•i)1 ' l \< i ~ n. Let Rt = R - u v (x*i) and note 
i=l 

that the distance between a(R't.. ) and aR is greater than zero. Since 

Rt. c. R is compact, therefore u is harmonic on R€ and u ( M + £ on 

aii~ • By corollary 1 of theorem 2,1.9, u ( M + E throughout~ • 
n -+ 

But u ( M + ~ in ( U V(x*i) c. R and hence u ( M + l. throughout 
i=l 

R, Since l ) 0 is arbitrary, u ,< M throughout R. 
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~2 ·Some elements of subharmonic function t'heo!l" 

General Remarks: 

In section 1 of this chapter, we learned that a harmonic 

function u on a region R C Ef possesses on R the mean value property, i. 

i.e. if Br (~) c. R, then u(x ) = L(u, x , r ) • In chapter III, we
0 0 0 0 

0 

shall show that if u is continuous on R and satisfies the mean value 

property everywhere on R, then u is harmonic on R. Thus, a harmonic 

function on R may be characterized in terms of properties involving 

its integral mean rather than in terms of a solution of Laplace's 

partial differential equation. For a subhannonic function, we shall 

find it convenient to employ the integral mean as a fundamental tool 

for defining such. Our chief source of reference for this section 

will be Ra~'s book [16) • Also in this section, all integrals will 

be regarded as taken with respect to Radon measures. 

Definition 2.2,l: Let u be an upper semi-continuous function from a 

- 00region RC rff1 into E~ We shall allow u to take on the value but 

not +"°. Suppose that for any B (t ) c R, it follows that 
0ro 

~ 
u(x ) ,( L ( u, 

.... 
x , r ) • Then u is said to be subharmonic on R 

0 0 0 

provided that u F - "°. 


Definition 2.2,2: A function u from a region R C lf1 into E#- is defined 


to be superharmonic if and only if (-u) is subharmonic. · 
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- ~ 
Theorem 21 2.1: Let u be subharmonic on Br (x ), and suppose that

0 
0 

u attains its supremum at 't • Then u is constant on B Cx ).
0 r o 

0 

....LProof: Since u(t ) ~ 5 ud '7"" 1 , r ~ ro hence 
0 n­n-1 s r 

;·5 [u - u(x )] If u on Br (;to) attains itss 
1 

0 dun-l~ o. 
n-1 s r 

~ ~ ~ ~ ~ 
supremum at x , then u(x ) - u(x) )1 0 for any x (-Sr (x ), and hence 

0 0 0 

-:-- 5 [ u(: ) ), O.- u] d.,-- n-l Combining the two inequalities,
0n-1 S 

it follow: that ~ [ uC~) - u] da-n-l =0 where u(:it ) - u~O on Sr•
0 

r 
Let u(5t ) - u(JD = V(3t) on S , and note that V(x) ~ O is superharmonic. o r 

on Sr. Then ( [14), p.104),_V(Jt) =0 a.e. on Sr with respect to 

the a-n-l measure, and in particular, the set where V =0 is dense in 

Now let Xi_ e- Sr and note that V(~) .{ r ~,tt:J, 

x E- Sr) 

Hence £im V(x) =0 since V(i) ~ 0 and the subset of Sr on which 

V =0 is dense in Sr• Since V is lower semi-continuous and 

V(~) )1 O, it follows t~t V(~) =O, and since °;t1 is arbitrary, then 

V =0 on S for any r ,( r • Since r is arbitrary, V : 0 on 
-
B (x 

~ 
)

r " o r o 
0 

and the theorem is proved. 
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Theorem 2,2,2: Let u be subharmonic on a region RC Ff' and suppose 

that u attains its supre1IIUin at £ E:- R, Then u :: u(5t' ) on R,
0 0 

Proof: Let Ac. R such that xr:-A if and only if u(~) =u(~). We 

~ -· ->
shall show that A is open. Let x1 <- A and Brl. (~) c R, Since 

u attains its supremum at~' therefore u =u(x;_) in Br <;> by 
1 

theorem 2,2,l and hence B Cx;_)c A, It follows that A is an open
rl 

subset of R with respect to the relative topology 'JR, Now let 

B = R - A, We claim that B is open in 'JR also. Otherwise, 

'if ~l ~ B, there exists a sequence { 1•n f in A such that 

~. ~ 
£im x n =~ and since u is upper semi-continuous, therefore 
n~-co 

u(x ) ~ £im u(;' ) =u(l ) , Hence ~ E- A which is a contradiction,1 ll-4-c;io n o 
It follows that B is open with res:pect to i] , Hence R = A u B where 

R 
A, BE: r:JR and An B = ¢. Since A !. ¢, it follows that B =¢ since R 

is connected, 

Theorem 2,2,3: Let u be subharmonic in R c. Ff', Then 

Proof: Since u is upper semi-continuous, therefore u(x) )1 Em u(X) 
. 0 4- -+ 

X~X0 ) 
~ ~ R J 

let £im u(~) = L, If u(~ ) ) L, then u(;t' ) = L + ( where t ) o. 
5x~xo 0 0 

l:i E- R 
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Since tim u(1) = L, there exists Br(l
0

) c R such that 
X-tXO~ 
~ <: R ) 

u(i) ' u (}( ), for any t (:-- Br(j{ ) ~ l ;t ~ • By theorem 2.2.1, it 
0 0 0 

follows that u(;b ; u(;() in B (x_>) which is a contradiction to the o r o ;· 

assumption that u(x ) ) tim u(~) • 
o ,x~xo~ 

- x t- R J 

Remark: Theorem 2.2.2 is a form of the maximum principle for sub­

harmonic functions. There is an analogous minimum principle for 

super-harmonic functions; for harmonic functions, both the maximum 

and minimum principles are valid. 

Theorem 2,2,4: If u
1 

and u
2 

are subharmonic on R(. if, then 

V=u1 + u2 is subharmonic on R. 

Proof: 

by theorem 1~4.3, and hence V(; ) ), tim V('it) from which it follows that 
0 

x~x 
0 

- -+V is upper semi-continuous at ~o and hence on R. For any Br(x ) c. R,
0 

it follows that u1(~0)~L(u1 , l , r) and u Cl ) ~L(u2, lt , r). Hence 
0 2 0 0 

V(5{' ) ~ L Cu
1

, x;,, r) + L (u
2

, X:,, r) =L (u + u
2

, -i' , r) or 
0 1 0 

V(t
0

) ~ L (V, 3? 
0 

, r) and the theorem follows. 
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Theorem 2.2.5: Let u1 , u be subharmonic on R. Then2 

V defined so that V(i) = sup[ u (5t}, u (;t)Jfor each1 2

x& R, is subharmonic on R. 

Proof: • Hence 

It follows thatV(~ ) ~ .tim 
0 ~ ~ 

x~x 
0 

-+ ­V(x ) ~ tim Cu1v u2), so that Vis upper semi-continuous. For 
0 _ X-?X 

0 
any Br c-; ) c R, it follows that u1(~) ~ L (u1 , X:,, r), u CX:,> {LGu2, ~0 ,r)0 2

-'>and therefore L (V, x
0 

, r) is an upper bound for both u (; ) and1 0 

u (;; ). Hence V(;l ) \( L (V, '>t, r) and the theorem follows.
2 0 0 0 

Theorem 2.2.6: Let fun~ be a monotone non-increasing sequence 

of subharmonic functions on RC -lf1. The pointwise limit function 

(un) is either subharmonic on R or else is = - oo. 

Proof: We first show that V is upper semi-continuous on R. Let 

1 e- R, and note that u Ci ) = iim u (~). Since un(~) ~ V(~) on 
0 n o x-~ n 

R, it follows that tim u (i) ~0tim V(x). Hence tim V(~) ~ V(x) 
-x~"lo n x~~o -x~ x 0 

because V(~ ) is the greatest lower bound of ( u (-;) ~ • Let B (--; ) c R o l.noJ ro 

and recall that u ct> t. LCu , ~ , r). Then vclt > is a lower n o ' n o o 

bound of ( L (un' x, r) ) and by the monotone convergence theorem 
0 

(theorem 1.4.9) it follows that L (V, i, r) exists and L(V, -:: , r) = 
0 . 0 

tim L(un' t , r), and hence V(x ) ,( L(V, 1 , r). The theorem follows. 
0 0 0ll---? 00 
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General Discussion 

By application of the Green calculus, one can show that 

MY c 2 function u on R c Ff such that V 2 u ~ 0 on R is a sub­

harmonic function in the sense of definition 2.2.1. Such sub­

harmonic functions are called smooth and the locally uniform limit 

of a sequence of smooth subharmonic functions is a continuous sub­

harmonic function. The limit of a monotone decreasing sequence of 

continuous subharmonic functions will be a general subharmonic 

function or=. - ~,but not necessarily a continuous subharmonic 

function. A virtue of the general definition of subharmonic 

function lies·in the fact that for any monotone non-increasing 

sequence of such functions, their pointwise limit function is also 

subharmonic. Finally, we point out that for any theorem that can 

be proved about subharmonic functions, an analogous one can be proved about 

superharmonic functions. We close this section by stating a 

strengthened form of the maximum principle for subharmonic functions 

which is analogous to that for harmonic functions (theorem 2.1.10). 

Theorem 2,2.?: Let R be a bounded region in Ff, and u a subharmonic 

function on R, with the additional condition that 

~ 

M for every x* ~ 

Then u(x) ~ M for all ~0R. The proof is analogous to that of 

theorem 2.1.10. 



llI. THE CLASSICAL ·DIRICHLET PROBLEM 

§1 Classical Dirichlet Problem for the n-b,all and its solution. 

j' 

Throughout this section we shall generally concentrate 

on the solution of the "D" problem for a ball of radius·l and centre -o. 

We shall first introduce a special kern_e~ function which will be use­

ful, called the Green's function for the Laplacian operator. It will 

often be necessary to treat the case of n =2 and n ~ 3 separately. 

2Definition 3,1.1: Let Be E be the open unit disk of centre the 

origin, and let p € B be fixed, though arbitrary. The Green's 

function for B .with pole at p is defined to be the function 

GP (x) .= log ~iI + h(°i) where h is a harmonic function on B with 

the property £im G4 ~) =0 for every 1:• E aB = s. 
'i~i· p 

Definition 3.1,2: Let Bc"if, n ~ 3, be the open n-ball of centre 

the origin, and let pE B be fixed, though arbitrary. The Green's 

function for B with pole at p is defined to be the function 

~ P G) = I
~ 

1 
_,. I n-2 + h(~) where h is a harmonic function on B 

P - x 
with the property £im a_,. Gb =O for every x• E:. aB =S. 

X-7X* p 
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Remark: In order to construct the Green's function of B, n >t 2, 

we shall have to make use of the geometrical inverse of a point 

with respect to a sphere. 

Definition 3.1.3: Let ~ e:B where I~ I= r and 't =Cx1 , ••• , xn). 
j" 

Then the geometrical inverse of 3f' with respect to the unit sphere, 

(~)-1denoted by x , is by definition the point possessing the 

properties that 

(i) ("i)-l = ..\x where A} 0 is a real number. 

(ii) ICi) -l 11 i I =1. 

Remark: Combining properties (i) and (ii), it follows that 

Ar 2 = i and hence. A=~ • Thus if 't = c,_, ... , xn>' then 

(~)-1 (~ xn) r 
x = 2t .. , 2 . 

r r 

Theorem 3.1.1: If p E- B such that IPI =rand "<tcs (i.e. !"<ti =1), 

then 

I! =,!,-1 =r. 

Proof: We shall show that Pi - p j 2 = r 2 ICi - (p)-l I 2 
if 

jql =1. Left side: 

2lq - pf 2 = lctl 2 
+ litl2 

- 2 e<t_~) = 1 + r - 2rcos ¢ where ¢ is the 

4 ~angle between the vector.sq and p. 

Right side: 

r2 jq - (p)-1 I 2 = r2 (Pi I 2 + f(p)-1 j 2 - 2q. ((p)-1)) 

2 1 2 2=r (1 + 2 - r cos ¢) = r + 1 - 2r cos ¢ 
r 

The theorem follows.· 

http:vector.sq
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Theorem 3,1,2: For Bc. "If, the Green's function with pole at pc B 

1 I(-).)-1 -) I I~ log lp _ ¥\ + log p - x + log IP 

· · Ii> llGn-1-xl 4
if pp 0=log I-+ 41 

p - x 

=log ..L if p 
~ = ~ 0

Iii 

Proof: The case for p =0 is immediate and if p # 0 then from 

. Ii>-~ I 
theorem 3.1.1, I = h~ I if li•I = l,

I<:P>-1 - x• 
l<in-1 

- xi 
Hence GpCx) ..;. log I p I + log since 

lit- x I 

log I(p:-1 : "ii =log I-p I + log I<!>-l:x• 
p-x p-~ 

£im 
~ ~x-x• 
x E: R 

... = log Ip I + log ..L = 0 for any x* E s. 
111 

Theorem 3,1.3: Let B c. If' n ~ 3, p E B with rpI = r. 

.Then 

- l if it =0
1 

= l 

lx-i I n-2 

Proof: For p = -+O, the theorem is immediate. Otherwise we note 

that h (x) = - · t 1 I is harmonic on B, due to2 2rn- x -(p)- n- . 

l ~x• '""' I -~ . 
theorem 2.1.1. Also - P =r if I x• l =1.

Ix• - <i>> -11 
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n-2
1 	 1 r

Hence .t'im h(Jt) = - c_!_2) (I 1 ) - ­
, -+ 	 n- ~ ( ..... )- I n-2 - n-2 -> -+I n-2 • 
x-tx• r x* - p• 	 r Ix* - p 

1 	 1Therefore .t'im G....(i) .:: · ->I n-2 = o;t~;. p Ix• - -pl n-2 I~· - p 

-+
for any x• E- s, and the theorem is proved. 

- 2Theorem 3.1,4: Let u be harmonic on the closed ball Bc E of radius 1, 

1 s aG-> p E B, and S = \ t - p I • Then u(p) = - - u (~) d 6" where 
2"K s or 1 

S = fl : I~ I = 1} and S is oriented in a positive direction, and 

where GP· = log. cj> +his the Green's function with pole at -P. 

Proof: . Let B' = B - B~ where BE= fx : jt - p I ( ~ J and let 

Gp be denoted by v. Then applying Green's second identity as in 

theorem 2,1.3 and denoting by Sf the set fx : \ x - p .I =~ j , we 

have 

2s(u tr V - V( v 2u)] dm = sru (2!) - V(~)J d <r: - s~ il - V ~ Jdcr:1 • s~ ar ar l s r a3 a';B' 	 2 
E. 

Both terms vanish on the left side because u and V are both harmonic 

in B' •.· Also 5V (~) d o- = 0 because V =G.p vanishes on S,
1s 

Therefore we have 

a (log ¥ + h) 
1 	 ) au 

l 	

S(log ~ + h iY d (j"i.o = s 	 - u5u (*) d er 1 S a~ 
SE 	 s~ 

Again 	by Green's second identity, 


au . ah ] 2

a)' - u as> . d 11"1 = 5 (h v u - u\7~) dm2 = 0 and therefore 

B~ 
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ua log 

dol- s a'f 
E 

From Green's second identity, 

s(log (~) (:3) ) dO""i =O, 
~ y = E. 

and .e:1.m 5~ a a 1~ 'l ) d "1 =21tu(jl) (see proof of theor"11 2.1.3) 

E-to Se. ~ = t
· 5 aG~ 

and it follows that auCp) = - u ca; )d0-1 • . s 


Theorem 3.1.5: Let u be hannonic on the closed unit ball
. aG4 
- ....n -+ -.+ - 1

.BC.ti , n )1 3, and p cB. Then uCp) = c· 2) Su ca;-> d cr-n-1'n- s 
n-1 s 

:where S = aB and is positively oriented. 

Proof: F.mploying results of theorem 2.1.5, we note that if 
- - {-+ ... ~ )

V =Gp on B' = B - B~ where B~ = i x : I x-p I ( E 5 , then . 


1
5 Cu\72 v - vv2u) dm =. 5Cu1! _ v £!!.) dO- - 5u !Y _ v £!!. ) dcrn-1 • . B' . n S ar ar n-1 S \1 a5' a5 
~ r= ~ 

Hence 

0 = Su c.2!) dv - 5ar n-1s 

Therefore 


S (2-n) 5 av 

n-l udo-n-l = u Caz:> dO-n-l' and by ·the same 


s£ E. s 




- -

reasoning as in theorem 2.1.5, 

/Jim. 5(2-nn-)l ( ) .vt.:,.)
.t.. u d<ln-1 = 2-n sn-1 .."p 

f.-70 s c 


5 aa~ 
Hence u(p) = -1 (--R)

(n-2) s u d (1 l •n-1 S or n-

Remark: Theorems3.1.4 and 3.1.5 suggest that the normal derivative 

of the Green's !unction constitutes an important aid in establishing 

a relationship between the value of a harmonic function inside a ball 

and its values on the boundary. 

{ ....xTheorem 3.1,6: If GP is the Green's function for B = t : fit< 1 j 
.in E2, then the outer normal derivative for 

) aa~ 

Iti= i J is Tr = 

. a ·1~ ~1 l'Proof: We first note that ar log x - P = f~ ~j 
x-p 

2 2 2and if Ji' - Pl=~, then ) =(~ - p1 ) + (x - p2) where 
2 

a S'I xi-pi 
~ = (~, x2), p = (pl' p2) and axi = S' , i =1, 2. 

Hence ~(log~) = y CC"l_-p1)t + Cx2 - p2 ).:J ). If I"t I = 1,2 


then 


a log r 

ar = 

l -+ 4= - ( l - p. x).2 
f 



84 

Since Gp(;!) = - log J i - ~ f + log I1-<i)-l / + log/~ /, therefore 

aG~(~)
p = (~ (G..+(i) ) . "i if I -: ' =1par 

;:::t ~ =2. ~ . ..= (- v (log f ) ) • x + ( V (log f ' ) ) ·x where 5'' ' 

l l ~-> 
= - - 2 (l - p.5t) + - (1 - l?.:.! 2 ) • 

r <y'> 2 IP'I 


We recall that f ~ j itI by theorem 3.1.1. 

Hence 

-+ -+ 


= - 1 (1) + .f.s1S +
-;2 '12 

and the theorem follows. 


Theorem 3.1.7: If G-4 is the Green's function for BC t1, n )1 3,

p 


aG~ 2
 
<1 - 1nt ) f Jthen .....E... = - (n-2) "" - at "<t E: S · = f : j1f= 1 • 

ar f~ql n 

Proof: Let )' = 11 - Ji j and j' '= 11- I}I 2 1 as in theorem 

Then :; = (~ f ) • i if I11 = 1. 


ar:. x.-p. 4 

Now -2. = (...!_l.) f . 1 ( ) -> ( )axi f or i = ' ••• , n, x = ~, ••• , xn' p = P1t•••t Pn . 

Therefore (fl s:> ) • 't = ~ ( 1 - p.~). 

~ l ~ -7 
Similarly ll' = (V7'l'). x = - (1 - p.x )or 

~ 

~· l-Pl 2 • 



Therefore 

ClG~ 
_E._ .L ( 1 .L ( 1 )or = or. fn-2> - or J-P Jn-2 ( f, )n-2 

1
(2-n) ( ...L-1 

(!f.) - ~) •= S'n- ar fit In-2 (f') n-1 or 

Since ~ = IPI y • therefore 

aGP = C2-n> (a f ­
or fn-l ar 

(2 ) ~ ,-p,2 ~-) ) (2-n) ( l"'l:i.)p.x = l - p= ~-: <1 - -P.1- fPl+ l-Pl 2 . gn 

- (n-2) (l-lp I 2)= ~InIp4 - x 

oG-)2 l -1pl2 .
Definition ?.1,4: If B C E , we define -~ = to be 

I.... ~12q - p 

the Poisson kernel function of B with pole at '4. We denote the 

Poisson kernel function with pole at q to be Kq (p). 

aG... 1 - I]? 12 
Definition ':3.1.5: If BC If, n )1 3, we define - p = ­

(n-2)or Iq - p I n 

to be the Poisson kernel function of B with pole at 
~ 
q. Again we 

employ the symbol K4 · (jt) to represent it. q .. 

Remark: By direct computation, K4 is harmonic on B. Also by 
. q . 

- 1theorems 3.1.4 and 3.1,5, if u =l on B, then .-;-- SK~ d <:r l =1,
q n­-n-1 

S 
Let f be a continuous function on S and construct the !unction 
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1u(~) = - Sf(q) K4(p) d v.. l (q). We shall show that 
s q n­n-1 S 

u is the solution of the classical "D" problem for B with boundary-

function f. 

Theorem 3.1.8: The function u, defined such that 

j' 

u(p) = _L 
~.n-1 

Proof: By the dominated convergence theorem (theorem 1.4.10) 

auff/) ...L f{q)= K,. (it) d rr- laxi ax. 
[ 

6~-1 ~ q n- J 
1 

1- f(q) ..L (K4 (p)) do­= 5 
axi q n-1s

n-1 s 

2 1 
d!) 1 =0 becauseand hence V" u = S 

n­n-1 
K~ is harmonic on B. 

q 

..+xTheorem 3.1.9: Let f be continuous on S = [ l~I = 1J and 
1 = -s

n-1 

Then ~m~· uCii') = f (~ w~ere t E S is fixed. 
p~qo 

p 
4'

(:B 

-)
Proof: Without loss of generality, we may assume that f(<lo) =o. 
We shall show that tim u(p) =o. 

~ 4 
p4qo 
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For any E } o,. we may choose 61( E) such that if f~ - <f
0 

f< 6
1 

then jf(q)j( f since f is continuous. Let s1 =f 4<:: S : j"Ct-cf j ( 6 1J,
0 

and note that I 1(p) =s-1- 5 f("Cf> Kq (p) dcrn-l has the property 

n-1 s1 


£ ~ .
S- for any p <:-B. 

n-1 sl n-1 
that lr1 <P> I ( . ; S (~) K<t(p) d ~-l = 

Let s = S - s and let I (p) = l2 1 2 5
n-1 

d<J 1 ,( _M__ 
n- s )n( 6n-1 l 

·where M = sup (r(q) j. Now choose 6 ( 6 where f 't - q I ( 62 • Then2 1 0· qES 

1 - 111 ( I~ -q j ( 6 2 and it follows that
0 

6 
M We may choose o such that2n-1 

c._ )and hence ju(p) I ( (_s_ The theorem follows.s + c • 
n-1 

We have thus solved the classical "D11 problem for the 

n-dimensional unit ball and by the maximum principle, the solution is 

unique. By means of a 5 imple dilation process, our theory is 

applicable to an n-dimensional ball of any finite radius, say r ,
0 

for let p E B1 c<h and-;.~ B (0) ; then-;. = r-; or p =#:-- (p')·r o . v;
0 

is a dilation transformation. Thus if h(p) is a harmonic function 
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~ 

on B1 C6), then so is h(~) =H(p') on Br (o). By means of a 
0 

simple translation process, our theory is still applicable to any 

-7
n-ball with finite radius, whose centre point is other than o. 

,. 



§2 Convergence t.'heory associated with harmonic functions 

In this section we shall consider some special properties 

of harmonic functions, and shall focus our attention on certain 

convergence theorems. 

Theorem 2.2,1: (Converse of the mean value theorem) 


Let u be continuous on a region R c. I!f and possess the property that 

- ~ .

u(p) = L Cu, p, 6) for each p t: R and every 6 } 0 such that B
0 

(p) c R. 

Then u is harmonic on R, 

Proof: Since u is 

continuous on S£. (~ ) , we can solve the "D" problem for B (p ) whose 
. u 0 0 0 

boundary function is u I s cP:) · i.e. u restricted to s0 cit > =i~.tP--P0 r =6J . 0 0 

Let the solution of this "D" problem be denoted by h, and consider the 

function V = (u-h) on B0 (p-:) Since the functions u and h satisfy 

the mean value property on B (~), so does the function V, and hence 
0 

V satisfies both,the maximum and minimum principle on B6 (~). 
Since .lim V(p) =0 for every q ~ c; ), it follows that V' O, V ~ 0S0~->q 0 


Jr~ B0 (~) 


and hence V =0 on B0 (p ). Therefore u =h on B0(p ) and is therefore 
0 0 

Thus u is harmonic on R since ~ p was arbitrary.
0 
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Theorem 3,2,2: (Harnack's inequality in n-d~mensional form) 

Let u be a harmonic function on the unit ball B =f~ : l~I ( l~) B c Ff 

and continuous on its closure, Then for any pc-B such that 

IP I = r ( l, 	it follows that .. 
' 

(l - r 
2 

) u (O) ,{ u(p) ,{ (1 - r 
2 

) c6> n u • 
(l + r)n (l - r) 

~, 2 
u(Cl) 1-1 P do-Proof: By theorem 3.1.?, it follows that u(p) = ; 

n-1 
SS IP..<i In n-1 

For p fixed, K--+ (p)and note that uCo> = aL 5u<<i> d<Jn-l • q
n-1 S 

.attains its maximum value when 4 = Ap with ,\) 0 for in that case 
2 

q - p = (1-r) and hence the maximum of K,(p) is .!:!: • Also 
q (1-r)n 

Kq:(p) attains its minimum when q = /\p withA{ 0 in which case 
2 

l<i - P I = 1 + r and hence the minimum of K-+(P') is 
1 

- r • It 

q (l+r)n 


follows that 

_L 
d<rn-l. ~ u(jl) i ;f:.- Su(~8 · n-1 n-1 S 

2 ......, 2 
and hence u(O) (l-r ) { u(p) { u(O)(l-r ) or 

(1-r)n (1-r)n 

~ 

u(O)(l - r) 	 / (""") / u(6)(1 + r)

'' up~ •
(1 + r)n-1 	 (l-r)n-1 

~ 

Corallary: If B = B (O) for r ~ l,· and if u is harmonic on 
r o

0 	 --) 
B and continuous on its closure, then for any p E- B such that 

IPI = r { r, r ) 0 and finite, it follows that 
0 
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ucO>cr:-~'1 (r:-2> 

Cr - r)n
0 

. ~ 

.... n' 	 ~ ~ 
Proof: Let p = .._ be the dilation transformation of p f-B (O) to

1ro 	 IP'f 2<1- c > > 2 ->, I 2 Cn-2> .... 	 ro ro - 1p ro 
(O) • Then K~, (p') = q 	 = 

I.., ~,I nq - p 

By reasoning similar to that of theorem 3.2.2, the corollary follows. 

Definition 3.2.1: ·. A family of continuous functions f fQ(. j defined on 

. a common region R C If' is said to be equicontinuous at °'j t R if and 
0 

only if for any t} O, there exists a o ( E. , "i ) such that 
0

I	fQ(~;?) - f e>( cx>o) I <t provided that Ix - XO I < 0. (We emphasize that 

6 is independent of the o('s. 

Theorem 3.2.3: Let f~j be a family of harmonic functions on 

the open unit ball B C. If. Let l~~be also uniformly bounded 

above by M and below by -M where M } 0. Then - fu.:<') is equi­

continuous at -o. 

- ~ 
Proof: From theorem 3.2.2 we have that for any pf B 

(1-r ) u"'(Q) (l+ r) Uo;i1,.(6) 

(l+r)n-1 (1 - r)n-1 


Hence 

(l+r . -~1 = u(O) (1 +r -(1-r)n-l)
)n-1 o< ( )n-1(1-r 	 . 1 - r 

uo( co1 - ' n-1 
= (1 + r - (1-r) )

(1-r)n-1 
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If we let 0 { r' )2, where IPI= r, then 

-7 uo< (0) 
(~) (O) / (1 + r - (1 - r)n-1 ).uo( P - ucX. ~ (~)n-1 


)n-1

Let f(r ) = 1 + r - Cl - r where 0 ( r { o. By the mean 


value theorem of elementary calculus, f(r) = f(O) + f'(~) r, 


where 0 ( S ( r, and hence f(r) = O + (1 +(n-1) (1- ( )n-2 ) r { nr. 


Hence uo<cP) - ue<CO> ,< ut>< (d) (2n-l) nr { M (2n-l) nr. For anye> o, 


it follows that one can find o such that 0 ( o { ~ and if r ( o1 ,

1 1 

-+ .. 
then ~(p) - ua((O) (t. Similarly 

~) ~) ~(1-r or 
(l+r) 

U.x (p - u ~(OJ '/ u~(O) n-l 

~ 

~ ~ ~ ( 1 0 u~(O) 1 u (O) - u· (p) ~ u (O) 1 - -r = ((l+r)n- - 1 + r)
1 1~ c;i1.. O! (l+r)n- (l+r )n­

= u~cC~°>CCn-l>Cl+~)n-2+l)r if O(~ (r. 

-+ ~ ~ .2 n-2 .2 n-2
If r ( ~' u..( (O) - ue>{(pJ ~ ucc.(O) (1 + (n-1) C ) ) r ~ M (l+(n-1)(2 ) ) r.2

We may choose o ' such that if r ( o2, then2
 

~(d) - ~P> ( ~ (or u""'-(p) - ua{(O) } -E) for any ~) o. 


. t ~ ~ IChoose o = min Co
1

, o ). If r ( o, then '!,.,_(p) - u~(O) ·· ( l: and
2

the theorem is proved. 

Definition 3.2,2: A family of continuous functions ~ f'-< ~ on RC.. !fl 

is defined to be equicontinuous on R if and only if it is equicontinuous 

at every point of R. 
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Corollary 1: Under the hypothesis of theorem 3.2.3 with the 

unit n-ball replaced by the n-ball of any finite radius r /: 1,
0 

equicontinuity of £~~ at the origin holds. 

Corollary 2: Under the hypothesis of theorem 3.2.3 with the 

unit n-ball replaced by the n-ball of radius r ~ 1, fu),is
0 

equi9ontinuous on B if and only if fu.-<~ is equicontinuous 

at every point of B. 

Theorem 3.2.4: Let~ ~n~ be a sequence of harmonic functions on 

a bounded region RC.E11 each of which has a continuous extension 

onto aR. Let fun~ , when restricted to an, converge uniformly 

to a limit function f on an. Then fun~ converges uniformly to a 

limit function u on R as well. 

Proof: Since[un J converges to f uniformly on aR, therefore 

[un~is a uniform Cauchy sequence on aR, i.e. for any E. } o, there 

exists n (t) such that Ju (i\) - u c;t•) l (f if n, mare both o n m 
, _,. 

greater than n ) and n is independent of x• (£ an. Thus for any
0 0 


n, m, Cu - u ) is harmonic on R and by the ma:X:i.mum principle,
n m 


Iu n (~) - um(x) I ( f. if n, m are both greater than n , where i

0 

is any element of R. Hence f un~is a uniform Cauchy sequence on 

R also and hence converges unifonnly to a limit function u on R. 

Theorem 3.2,5: Let f un j be a sequence of harmo~c functions ori 

a region n< Ff such that { un) converges uniformly to a limit 

function u on R. Then u is harmonic on R. 

' ·, 



94 


Proof: Then u ("t ) = L ( u , "t , 6 ) n o n 	 o 

for each n. Since U.,t'im u =u on Rand hence on si:..<'t ),n 	 u on-+oo 

therefore £im L (u , 1, o) =L (u, °i , o) by theorem 1.4.10 n o 	 o 
n-+ 00 

~ 
and hence u (x	 ) = L (u, t , 6). Since u is continuous on R ( (1) , p.396

0 0 

theoreml3.8) , the harmonicity of u follows. 


Theorem 3.2.6: (Harnack's theorem of uniform convergen~e for the n-ball) 


Let {um~ be a monotone ~on-decreasing sequence of harmonic functions on the 


+ 00unit ball B C "if. Then £im u (~) ~ or else £im u (3E) =u(1)
n-)oo m n~co m 

for every 'i € B where u is a harmonic function on B, and the convergence 

is uniform on any B0 C B. 

Proof: We recall by theorem 3.2.2 that 

4
for any p EB 

( -)0)Case l: Suppose £im um = + cio. 

m~co 

Then u (~) ~.(< 1-r> 1 ) u c6> and hence £im \! (p) = + 00
• 

m (l-rr)n- m 	 m-+oo m 

It follows that 	timU..,(p) = + co on B. 

m-+co 


~ 
Case 2: Suppose £im u (O) is finite. m 

m-~co 

.Si. nee u (~p) ....( u (~O) (l+r) 	 S (4 )l is bounded~ 	 , therefore \um p l 
m m (l-r)n-1 

above and hence £im U (p) =u(p) exists as a finite number for 
m~oo m 

each j:> 
~ 

E: B. 
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Now let B0 c B and let 
-+ 
p E- B0 • 

Denote ~i =um - u1 which is a harmonic function on B for m and i 

fixed. If m) i, then 0 ~ u i(~) =u (p) - u.(PJ and m m i 

(~) (~) / - ''r;:h (l+r) / (~) (2) 
u P - u. p ~ u~·:;\OJ n 1 ~ umi· 0 - n 1 • 

m 1 ~1 (1-r) - _ (1-o) ­

j' 

The sequence fui(O) ~ is a Cauchy sequence and therefore 

-> ­
, p E B , is a uniform Cauchy sequence. Hence f um\0 

~onverges to u uniformly on B0 for any o { 1. Hence u is harmonic 

in -B by theorem 3.2.5. Since o { 1 is arbitrary, therefore u
0 

is harmonic in B itself. 

Corollary: A similar theorem holds for an n-ball of any finite 


radius. 


Theorem 3.2,7: CHarnack's theorem of monotone convergence) 


Let [Um~ be amonotone non-decreasing sequence of harmonic functions 


+ 00on a region R C i1, Then lim U Cx) : for every ~ t- R, or 
m 

m~"° 

else .eim Um Ci) = U(~) for every ~ ~ R where U is a harmonic function, 
m~oo 

and convergence is uniform on all compact subsets of R. 

00Proof: Let A C R such that 1 E-A if and only if .eim U Ci) = + • 
mm-?oo 

We shall show that A is open, Let B Ci) c R. By the corollary0 

of theorem 3.2,6, it follows that £im U (p) = + co for any P. t B0(~). 
~co m 

Hence A is an open subset of R. Now let BC. R be so defined that 

.;t € B if and only if lim U Ci) =U(t) is finite. 
m

m-700 
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We shall show that B is also open. For any B (°i) c R, it follows
0 

by the corollary of theorem 3.2.6, that tim U (p) is finite for m 
m-.+co 

every p(; B (~). Hence B c R is also open in both the Ff topology
0 

and the relative topology JR. But R = AUB where Af)B =¢and 
j' 

where AE JR and B~'JR. It follows that either A =¢or else 

B = ¢ since R is connected. In the case where tim U ()t) = U(i) 
m--4'° m 

and B0 (~)CR it follows that Um converges to U uniformly on 

B ; (~) and therefore U is harmonic at 3t, and hence harmonic
0 2 

everywhere on R. Now let KC. R be compact, and x e: R. Then there 

exists an open neighbourhood of ~denoted by V(t) such that U 
m 

converges to U uniformly on V(~ i.e. Ju(p) - Um(p) I ( E 

for any m ) M C1, £. ) • 

The family { von1, 
4 
x cK form an open covering for K 

and we can extract out a finite subcovering denoted by fvc;ti)J t 1 < i <t. 

Let Mi = M(~i,£ ) and define M = max {Mi~, 1 ( i ~ t. Then 

IU(p) - u (p) I <t for m > M independently of p ~ \.J vet.) and m • 1 
1=1 

hence independently of p e:: K. The theorem follows. 

Remark: The Harnack convergence principle .allows us to solve an 

extended "D" problem for a ball whose boundary function is bounded 

above and upper semi-continuous. 

Definition 3.2,3: Let <p be an upper semi-continuous function on 

Sr(~) which is also bounded above. Then there exists.a monotone 
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decreasing sequence ffn1 of continuous functions on S Gt ) (theorem 1.4.8)
r o B 

such that o/<i> =£im f (1) for any t {- s (~ ). Let Hr 
n r o00 fn~ - - ­ n 

be the solution of the "D" problem for B Ci ) whose boundary function 
B B r o ­

is fn. Then iim H r = H r is a harmonic function on B ct ) 
n~co f tp r o 

n B 
by Harnack' s convergence principle. We define. H ; to be the 

solution of the "D" problem for BrC'X:,> whose boundary function is cp • 



§3 Examples of insolvability of the classical Dirichlet Problem 

In this section, we shall consider an example which 

shows that the classical "D" problem is not always solvable. 

Let B' = { "i : 0 ( l'i I ( 1 j be the deleted unit ball in E3. 
4

Let f s 0 on s (O) •1 


= 1 at t. = 0. 


We claim that it is impossible to solve the classical "D" problem 

for B' relative to the boundary function f, for let B;l1: ~ ( I "t I ( l }, 

and Un the solution of the 11D" problem for Bn.' whose boundary function is 

-+ 
f =O on s (o) ~ n- 1


=1 on s
1 
n 

LetIt turns out that Un 

us assume now that U is the solution of the "D" problem for B' whose 

boundary function is f as defined above. By the maximum principle, 

U ' U on B' for every n. Now let x;_ ~ B' , and note 
n n 

for all n which are sufficiently large. If we let r
1 

l 1 .
(-) (- - I) ::o 
n and hence U(~) =o. It followsr 1 

that U : 0 on B'. But £i.m u(it) ~ 1, and hence U cannot be a 
x~o 

classical solution of the D problem for B' with boundary function f. 

Another example of a non-solv·able "D" problem, was intro­

duced by H. Lebei:giue ( [21] , p.12). The region considered consists 
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of a deformed ball whose boundary is homeomorphic to the unit 

sphere. Later authors have referred to this as the spine of 

Lebes~e. 



IV. RESOLUTIVITY OF THE GEJ.l.TERALIZED DIRICHLET PROBLEM 

§1 Continuous and bounded theory 

In this section we restrict f to be a real-valued bounded 

function on aR where RC Ff1 is a bounded region. If we are able to 

associate with f a certain harmonic function on R constructed accord­

ing to a formal process, denoted by Hf,R we shall say that this 

functionl-1~' sometimes called the Wiener function, is the solution 

on R of the generalized D problem whose boundary function is f. 

We first let M = sup [ f(~) ~ and m = inf [ f(:•) j . 
i• ' aR ? €: ~R 

Definition 4.1.1: Let Fi(f) = f~ i be the famil.y of continuous 

subharmonic functions on R such that u-< c Fi(f) if and only if 

Lim u 
<><. 

(x) ~ f(x*) for every 
~ 

x• c- aR. 

Remark: The family F.(f) is non-empty because it contains all 
1 

constant functions less than or equal to m. We shall be concerned 

with the upper envelope function of F (f), i.e. the pointwise supremum
1

of {~"<} and shall denote this function byl-f ~. By the maximum principle 

for subharmonic functior..s it follows thatH~ {;1) ~ ~ for any '* E: R. 

Thus the upper envelope H~· \is bounded, i.e. m~ H~ ~ M. 

100 
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Definition 4.1.2: 

. only if ul_ = sup (llo{, k) on R, denoted by u~ = u,;...V k , where 
-

k~ mis a fixed constant function, and ~~F1(f). 

Remark: The family F1

1(f) is uniformly bounded below (by the 

constant function k). If u~ E F 1 (f) and u~ 2~F1 (f), then1 1

u!.; V u.~ 2fF 1 1(f).1

RTheorem 4.1.1: Let CJ-ir)' be the upper envelope of F1
1(f). Then 

RtJ:r on R. 

Proof: For any u'-'(c-F1(f) it follows that u,! = uc<V k has the 

property that u 'Q( <*) }1 u o{ (5t) for every "t E-R. Therefore 

sup [ u!.t_ Ci)~ } sup { u"" (~) ~ for each ~ ~ R or <H~>' >t H~ on R.1 - -­
U~E-F~(f) uo(.c-Fi(f) 

The equality of the two functions follows. 


Let BC. R be a fixed closed ball whose radius is greater than zero. 


Definition 4.1.;: Define F" (f) C F1 (f) so that u~ E F\(f) if·
1 1 

and only if u~ is the Poisson modification of u ~ on B. 

Remark: We recall that u~ is harmonic in B and since u~ - u~ is 

superharmonic in B and identically equal to zero on aB, therefore, 

by the minimum principle of superharmonic functions u~ - u~ ~ 0 

on B and therefore on R. 
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Theorem 4.1.2: Let ( H~)" be the upper envelope of F11
1 (f). 

. R R)-4)- -+1Then <Hr)"' (:i) = ( Hf (x for every x t::- R. 

proof: By the previous remark,. u~ ); u! on R for each u ~ ~ F' i (f), 


therefore <H~)" )1 <H~>' on R. But F~"(f) C F\(f) and therefore ..
, 

CH~)"\( <H~)' o~ R-: The equality of the two functions follows. 

Remark: By theorems 4.1.1 and 4.1.2, we therefore have 

<H~)" .= <H~>• = H~ on R. 

We introduce the notation ho( = u'~ restricted to the open ball B 

and define u = ~pl h~j noting that u =H~ restricted to B. 

Theorem 4.1.3:: The upper envelope of {h:>(.~ 'is a continuous function 

on :B. 

Proof: Since [ hc<j is a uniformly bounded family of harmonic functions 

it is by theorem 3.2.3 equicontinuous. Let 't t- B be a fixed point and 
0 

~ e B an arbitrary poi~t. For any given t) O, we note that 

luct> - u<~>l ~ lucx> - ho( ci1 I+ 1hq <*> - h:>((:l0 >f + lh ·" ct >- u ex~» 10 

for any ho<. function. Since l h~ ~ is equicontinuous, there exists a 

6 ( ~) ) 0 such that Ih ci( (:£} - h~(t0 ) I ( €/3 if ll - ;o I ( 6 and we 

emphasize that o is independant of q • We now fix x so that l x - ~I~ ~ x ( 6 
0 

and note that_ there exists an o!.. 1 such that u(t ) - h (~) ( f/3
0 '11 0 

as well as an o< such that u( x )- h~ (x )( e_ /3 by definition of u.2 0 0 



We recall that h« is u" o<. restricted to B. Since the function1 1 

u'~ v u"-' t F 1 (f) and its Poisson modification, denoted by U 11
c( A'

'-'l ""2 i ./ 

is a member of F'\(:f) :· then defining h£>< 
3

.= u"~ restricted to B,
3 

'We have that Ih~3 <*> - u(5t) I< t;3 and Jb.<>( 3 cto)-u(:to) I ( £ /3. 

It follows that 

for any 1 f B such that f~ - i ( ( 6 • 
0 

Remark: Since continuity is a local condition and since B R is 

arbitrary therefore f-{~ is continuous everywhere on R. 

Theorem 4.1,4: u is subharmonic on B, for u and B as defined in 

theorem 4.1.3, 

Proof: Let t f B be so chosen that B0 Ci' ) c. B. 
0 0 

Then ho< (°;t ) =L (~ , i , 6). Since h""< (~) ~ u(i) for all 't t- B,
0 0 

therefore L (h"'- , ~ , 6) \{ L(u, ~ , o); therefore L (u, 1 , 6) is an 
0 0 0 

upper bound for the set f h cto> 1 . But u(;t'o) is the least uppero(. 

bound for lho1.. (x0)~ • Therefore u(t ) \{ L (u, x:, 6) and hence u 
0 

~ ->
is subharmonic at x • But x e- B was arbitrary. Thus u is sub­

0 . 0 

harmonic in B. The next two theorems will establish the fact that 

u is also superharmonic on B. 

Theorem 4.1.5: For the compact ball Bc. R and for aey f ) O, there 

exists a function u'""'~F'i(f) such that u!: (:;l}) H~ (x) - t uniformly 

on B. 
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--'> ­
Proof: Choose any x (; B and ~ ) o. Then there exists an 

QI. Ct, t ) , abbreviated to .>{ Ct) su~h that u.:i<.(;t) (;.. F; ( f) and. 

u otC*) (;b) ~ (~) - £/3•. Since uo<.(~) is co~tinuous, there 


·~ ~ ..) ( ~ -+ -+ ~ 

exists a o (x, t. ) such that if y E V0{x) = l Y : I y - x I ( 6, ) 


then lu <>{.{~)(y) - u r><..(;n(4 ( 93. Since ~~ is continuous 

j' 


on B, therefore 


IH! <Y> - u.,_(;!) m\ ~ I~ <Y )-~~11r (ii) - uo(wcti +kc±> (ii) - u~cx> <Y> I . 
ThusJ Cl~ (y) - uo..(~) . (y) \ ( E. for y (i.-V J' (5t} where o' ( o is such 

that I~ (y) - ~(~)I ( c13 if 11- ~ I ( 0' • We emphasize that 

->
6 1 depends on both x and E • The family tV0 , (t}J forms an open 

covering of B, and by the Heine-Borel theorem we can extract out a 

finite subcovering iV0 ,. (:li~ 1 ~ i ( n. We let o( i = o<.(xi), and 
1 

note that u t F 1 (f) for each i, 1 ~ i ~ n. The function
1 

11 ""1 
u' = V u P< satisfies the requirements of our theorem.

1~ i=l 

Theorem 4,1,6: u is superharm.onic on B. 

- 4Proof: Let 1 ~ B and B (x ) B and E) o. By theorem 4,1.5, there 
0 0 0
 

exists an ho< such that hQC (~) } u(i) - ~ .uniformly on B. Then 


-> -> ' ~ "' ' -7 ~ hi><(x) = L(ho(, x, o) )1 L (u -~ , x, O) = L (u, x ,o) -E.L(l, x ,o)}L(u,x ,o)­
o 0 0 0 0 0 

' , 

because the constant function 1 is harmonic and satisfies the mean value 

condition. Therefore u(~0 ) 

-+
t} 0 and hence u(x ) ~ L(u, 3to' o) • Since o and ~ can be made 

0 0 

arbitrary, therefore u is superharmonic on B. 
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We are now able to establish the following important and funda­

mental result. 

Theorem 4.1.7: H; is harmonic on R. 

Proof: Since H; is continuous on B by theorem 4.1.3.> 

H~ is subharmonic on B by theorem 4.1.4., 

H~ is superharmonic on B by theorem 4.1.6., 

therefore H~ is harmonic on B. Sinee BC R was arbitrary, and the 

property of being harmonic is a local condition, therefore, H~ is 

harmonic on R. 

Remark: In a similar way, we define the family F (f) = lV..._ ~ to be 
8 

the family of continuous superharmonic functions on R with the 

property that ~E F (f) if and only if £i~ V~ (~)
6 .. -+ 

x~x* 
x e:- R 

every 
~ 

x• t aR••. This family is also not empty since it contains all 

constant functions greater than or equal to M. We shall denote the 

lower envelope function of F (f) by~~' observing that by the 
8 

minimum principle ror superharmonic functions, that H~ cm ~ m 

for any 
4 
x ~ R. By analogous reasoning taken in the process of show­

ing H~ . to be harmonic on R, we may also show H~ to be harmonic on 

R. 
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Properties of H~ , H~: 
-R 

Theorem 4.1.8: HRf Hr on R. 

Proof: Let V ~ F (f) and u E F.(f). Then V + (-u) is super­s l. 

harmonic on R. 

By theorem 1.4.3, 
....,. 

lim (V - u) 00 )1 .eim V(x) + lim (-u) (x) for any x* c- aR, but aR,
:;---_,. ..... -..

i-x*1 . x~ x* ? x-.> x*) 

x~E R) -x~RJ xl'RJ 


but by theorem 1.4.4, 

Since lim u(Jt) ~ f (~) ~ lim V(i) for any ~ <; aR, therefore 
t~i· ~ x-x•i 
xE-R) x~R) 

lim V(~) - .eim U(x) ~ 0 everywhere on aR. Hence by the minimum 
:;---. ~": ---:)- x* } ! ~x* ~ 
x c- R ) x ~ R) 


principle for superharmonic functions V- u ~ 0 on R i.e. V ~u on R. 

· R -R 

Since V ~ F (f) was arbitrary, therefore \-\ f ,< \-\ f on R. s 

Theorem 4.1.9: Let f and g be bounded functions on aR. Then 

LjR HR l~R HRf + /_J gR "'II . f + - g ,< _I f+gand I ,,, 1-1~ + g. 
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which means tim uf 
..,. 4
x-+x* ~· 

~ f( i*) 

~ ~ R) 

-and .eim u ~ (x*) -+ ~ g(x*) on oR. Then by theorem 1.4.3, 
~-)i·~g . 
x C: R) ;· 

Proof: 

and hence uf + ug 	e Fi(f' + g). Therefore uf + ug ~ H~+g • 

H
R ­

Thus for fixed ug' f+g - ug is an upper bound for F1(f). 

Hence H~ + ug ( H~+g • Letting ug vary, we have 

H~ + H: ,( H~+g• By similar reasoning we have H~ + t"-1~ ~- H~+g• 

R -R 
Theorem 4,1,10: t\k = k =Hk for k a constant function. 

-R uRProof: k E F ( k) and k E F (k) and hence Hk ,( k~ ='it • But
1	 8 

f-1: ,< H~ and the theorem follows. 

Definition 4.1,4: When H~ = HRf , then f is said to be 

resolutive and their common value is denoted by H~, commonly called 

the Wiener function, and is the solution of the Generalized "D" 

problem. 

Remark: By theorem 4.1.9, if f and g are resolutive, it follows that 

f+g is resolutive also and that H~+g = H~ + f-J=. By similar 

reasoning,, one may also show H~r =A f-1~ on R for f bounded and defined 

on aR and A a constant function. 
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We come now to a fundamental result of resolutivity due 

to Norbert Wiener ( [ 22 J ) and which will be based on the following 

theorems. 

Theorem 4,1,11: If f 	 is continuous on RU aR and subharmonic on 
,. 
' 

R, then f\aR is resolutive, 

4 _,, 

Proof: f continuous 	on RUaR implies lim f(x) =f(x*) for all 
~ -+ 
x~x• 4 
x t' R ) 

~x*"' R~ a • Since f is subharmonic in R, therefore f ~ Fi(f) 

and hence t!~ I aR ~ f for all t e R. 

Thus 

on R.Therefore H~ IaR ~_F_s{f) and hence H~ laR >1 H~ IaR 


Since[i~ IaR ~ ~/~jaR on R always, we have H~ jaR = H~laR on R. 


Hence f \ aR is resolutive. 

, ' 

m 
Theorem 4~1.12: Let g(~) = Tr (x~ i where ~ = {,,1 •• , xn) ~ {J1f)+ • 

i;.l 

[ ~ : xi ) O, l ,( i \( n J • Then g is subharmonic in (J1f)+ and any 

polynomial in {t1)+ is 	the difference of two subharmonic polynomials, 

: 	 fi.. r~i{mi-1)1 ·· 
Proof: By direct computation, we have z l . . g· and2 2 ax i xi 

2therefore v g =g [ 	 ~ ( mi(mf1'i] . Since g ) 0 in (:Ef)+ 
i=l x. 

1 
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2and m. )1 o, therefore V g ~ 0 and the subharmonicity of g follows. 
1 

, ' ....n +
Let p(~) be a polynomial restricted to (.l!i ) • 

where all the coefficients of both P1(x) and P2(i) are positive. Since 

2 2 P c->> >. . . 2 c~> ,V is a linear operator and Q x / 0 and '\/' P x // o, therefore
1 2 

P is the difference of two subharinonic polynomials. 

Theorem 4.1,13: (Wiener's Theorem ( L22J ) : Let R C (Ff)+, then any 
.­

real valued continuous function f defined on aR is resolutive. 

Proof: By theorem 4.1.12, any polynomial is the difference of two 

subharmonic polynomials. Since the Stone-Weierstrass theorem 

( [17], p.150) says that any continuous function on a compact set can 

be uniformly approximated by a polynomial, it follows that any con­

tinuous function on aR C (~)+ can be uniformly approximated by the 

difference of two subharmonic polynomials. By theorem 4,1.11, sub­

harmonic polynomials restricted to oR are resolutive. By theorem 

4,1,9, the sum of two resolutive functions is again resolutive, and it 

follows then that any continuous function f on aR can be uniformly 

approximated by a resolutive function P on aR. Thus for any t ) o, 

HR R HR on R,P - E { f { P + E on aR. Therefore P• t. ~ Hf ~ P+ £. 


Since P + £ and P - £. are resolutive, t.i:J.erefore Fl! -f ~ H~ ~ Hp + t 


on R, Thus for 

fixed x c- R, we have IH~ (x >-H! C~,) I ,{ f Similarly
0 0 • 

IH~ CJt
0

) - H:cx
0 

) I ,{ £. and we have that 
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IHR ct) - HR Ci) I ~rH·Re;) -H·R(~ >fJI IR(x) -HR<t >I ( 2t..) o.
f 0 _f 0 " f 0 p 0 'jlp 0 _f 0 \ 


Since E) O was arbitrary, it follows that H~ (x ) = [j~ (:it ).

0 0 

Since 'i was arbitrarily chosen in R, it follows thatH~ = H~
0 

and hence f is resolutive. 
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§2 Resolutivity of semi-continuous functions 

Throughout most of this section ~ will be a bounded 

region though we allow f on oR to take on any extended real value 

and we shall consider general subharmonic functions. 

Theorem 4,2,1: Let f be a function from aR into E~ where we 

recall that E*' is the two point compactification of E'. Let 

Gi(f) be the set of all subharmonic functions on R such that 

u <: Gi(f) if and only if~£im~ u(x) ~ f(}t•) for any i• e­ aR. If 
. !~X*) 

x ~ R) 
RGi ( f) I= ¢, then the upper envelope of G1( f), denoted by 2:.1 f' is 

either identically equal to + 00 or else is a harmonic function in R. 

~ - - -+ ­
Proof: Let x c R and B =B&. (x ) such that B c R and let u c Gi(f)

0 u 0 0 

and u' its Poisson modification on B, Then u' is bounded in
0 0 

'B (~0 ), For any u..< t a (f) we define u.!:_ = u.s< Vu' , and
612 1 0 

G'1(f) = [ u~j • By analogy to theorem 4,1.11, we remark that 

G1 

1(f) and G (f) have the same upper envelope,1

in such a way that u~ €. G\(f) if and only if u~ is the Pois'son 

modification of u~ E G'i(f) on Band remark that again by analogy to 

theorem 4,l.12, G~(f) and G!(f) have the same upper envelope on R,
l. l. 

~ 00denoted by']--\~· If 'J-t ~ Ct ) =+ 00
, then 9-l ~ = in B by the

0 
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Harnack convergence principle, and if~~ cto) is finite, then 

R R ,


.9-f f is also finite throughout B. HenceJ~ f is finite, throughout 

R or else identically + w in R since if R1 equals the set of all 

points in R where :J-t ~ is finite and R2 equals the set of all points 
,. 

in R where'J-1 ~ is + w,. then we have that 

Hence either ~ =91 or R2 =91 by definition of connectedness. If 

9--f ~ (~0 ) is finite, then f u~ ~ is a uniformly bounded family of 

harmonic functions in B (f ) and hence by theorem 3.2.3 [ u•~ f0; 2 0
 

is equicontinuous at "l and thus everywhere on B ; (~0 ),it

0 6 2 

follows that 9-{ ~ is continuous in B~'>/2 (;t' ), and also subharmonic by theorem 4.1.4. 
0 

By theorem 4.1.6, it also follows that9-{ ~ is superharmonic in B
0

; 2C'i
0 
). 


R ~ ~ 

Since 'J-1 f is harmonic at x and x t R was arbitrary, it follows 

- 0 0 
R

that 2:f f' is harmonic throughout R. 

For our next result, we need to borrow a fundamental theorem 


from combinatorial topology which is phrased in a form suitable for 


our requirements. 


Theorem 4.2.2: Let R C E: There exists a sequence of n-simplexes, 


denoted by f [BJ J , p =1, 2, • • • such that Bin Bj = 91, 


, where B is the interior of [BP Jp =1, 2, • • • and such that 

- p

R = LJ [Bi] • 
i =1 
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This theorem may be rephrased to state that R may be 

triangulated. 

We shall carry out the argument of the next theorem 

2for E , realizing that a modified argument could be introduced in 

if. 

Theorem 4.2.3: Let R be a bounded region in E2, and let f be 

an extended real valued real valued function defined on aR. Let 

Gi(f) be defined as in theorem 4.2.1, and let Fi(f) C Gi(f). Then 

HR ruR HR . 	 'l_j R _ f =_Jl f , where _ f is the upper envelope of F1(f) and£:_. f 

is the upper envelope of G {f).
1

Proof: Since F Cr) CG (f), it is evident that H ~ ~ }1 ~ . 

f[B

1 1

Now let ] } be a triangulation on R, and let u E Gi(f). We1

shall show that there exists a V {.: Fi(f') such that V )1 u on R. 

For each [Bi] , Ca closed triangle), we may solve the "D" problem 

where the boundary 	function is u restricted to a[Bi] , and denote 
[Bi]

this solution by f-lu • We now define u1 as follows: 

: u elsewhere on R. 

Then u1 )1 u on R, u1 is subharmonic on R and may possess dis­

continuities only in Ua [ B1J . Now let [[Bi]) be another 
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triangulation of R such that each memi.o-(B~ JE- frB;)J , i =1, 2, 

has no edges in common with any member of the first triangulation

[r j1· Define u2 on R as follows:B1

[ B'J
" H u~ in Bi for each [BI] "r [Bi] j 

ii ~elsewhere on R. 

Then u2 ~ u1 
on R, u2 is subharmonic on R and is continuous except 

on the set A consisting of the common points of the edges of the 

two triangulations. Let A = LJ (aB ) n (aBi_), and note that1
i=l 

u2 is continuous except on A, where A is countable. We define 

again a third triangulation [ [Bi JJ on Rsuch that every member 

a E A is in the interior of some [Bi]. Now define 

in Bi for each 

= u2 elsewhere on R. 

Then V ~ u , V is subharmonic on R and continuous on R. Hence
2

t1 ~ ~ }-/ ~ , and the theorem follows. 

Remark: We have an analogous theorem with respect to the family 

G (f) of lower semi-continuous superharmonic functions whose lower 

limit is greater than or equal to f on aR. It should be noted that 

8 



115 


if Gi(f) and Gs(f) are simultaneously non-empty, then every function 

of G (f) does not~necessarily majorize every function G (f). To 
8 1


see this, consider the ball [ B1 - £0 J3c J!1. Let f :: l on the 


sphere s C If' and equal + "° at the origin. _Let Uk = l_L 2 - k + 1)1 rxin­

where k) 0 is a constant function and n} 3. Then uk is harmonic 

infB - toJ!and '\: E G (f) f' Gs(f) since ,uk' a harmonic function,1 1

is both subharmonic and superharmonic on R c. If'. Then 

In view of this example, it is not suitable to use the 

envelopes of the families G (f) and Gs(f) for the solution of the
1


generalized D-problem. We, therefore, restrict G (f) and Gs(f)

1

according to some process. 

Definition 4.2.1: Let Gi.(f) C Gi(f) be defined such that u € Gi.(f) 

if and only if u is bounded above. 

Remark: F.ach ~ e Gi,(f) is bounded above, but the family Gi,(f) 

is not necessarily uniformly bounded above. We similarly define 

. HRG' (f) CG (f). Henceforth we define ,. to be the upper envelope
s s ' - ... 


of Gi,(f) and H-R 
f to be the lower envelope of Gi, (f). 


. Theorem 4.2,4: It is always true that H; ~ f-1~ , 

Proof: Let V<: G'(f) and uE-G' (f). Then V-u is superharmonics s 


and .eim (V-u) ~ .ti~ V - .lim u } O becauae iii u is finite, 

~-~ 

. 
,;:;--:-~x-x• ... .... X-1''i*x A- x-x* 
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Hence V >tu by the minimum principle and the theorem follows. 

Definition 4.2:2: We define f on aR to be resolutive if and 

only if 1-i ~ = H ~ and denote the common function by /-1 ~ • 

Remark: By the minimum principle, H ~ = f-) ~ if and only if 

• -1>point :x !f-R such that HR<4>f x = 1'-'Re~>x • Ourthere exists a l f 
0 - 0 0 

definition of resolutivity given in definition 4.2.4, includes the 

earlier definition of resolutivity given inf 1 of this chapter. 

Remark: We recall from ~ 1, that H ~ ~o where f ~ 0 is 

continuous on the boundary of R, and therefore for a fixed i ~ R,
0 

the function 1-1~ c;to) is a positive linear functional on the 

Banach space of continuous real valued functions on aR. The 

functional H~ C:it ) is therefore a Radon measure on aR, denoted by 
~Cxo) 

0 

• 
Theorem 4.2.5: Let f be bounded above and upper semi-continuous 

on aR. Then f is resolutive. 

Proof: Since f is upper semi-continuous and bounded above, there 

exists a monotone non-increasing ·sequence { f n ~ of continuous functions 

on aR whose pointwise limit on aR is f (Theorem 1.4.8). Since- f ,( f 
- - - IL 

for all n, it follows that f-1 ~ ~ H ~ or rather H ~ ~ H ~ since 

n4 fi-R (~ )n' 1-\R (x...,. )f is resolutive for all n by theorem .1.13. Hence ... f x ~ f 
n ~ o n o 

and therefore f-/! (~0) ,< lim Sf d')l(xo) or H Rf·ci ) ,( 5f d}1(Xc,) 
n~00"' aR n o aR 

(i ) J (i )S 0 0
because f d)l =lim fn d)1 • 

aR n~00 aR 
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Case 1: If S f dJ1
ci 

o_ 
> 

= - co, then H ~ <X:,> = - 00 and 
aR 

00hence f is resolutive where H	~ = - on R. 

cio> 
Case 2: Assume that 	 5 f dp is finite. We shall show 

aR R -R 
that for any E ) o, it follows that tl f cto> > Ht '~o> - t. • 

We first construct ul (; G:i. (fl) such that ~cio> >H ~ (xo) - t. l 
l 

for given [ 1 ) o. We then construct u E: GJ. Cf - f ) such that
2 2 1 

u2C;t
0

) ) H~f~-fl) (;
0

) - . € 2 for given E2 ) 0 and note that 

u2 \{ 0 because f 2 - f 1 ,{ o. We continue to construct a sequence 

( u ?of subharmonic functions such that u E- G• (f - f ) if[ n) - n 1 n n-1 

n ), 2 and u ct) >., HRc:r -f <x):.> _ f n for given t ) o. We note 
n o n n-1 	 n 

We now define a new 

sequence of subharmonic functions lvn) such that Vn = 

Then fV:n~is a monotone decreasing sequence of subharmoni9 functions 

whose limit function, V sa:y, must also be subharmonic ( [16] ' p.14). 

Also 
n 

- '7
.tim Vn(i) ,< L lim. 	u Cx)1x...,.x* 	 i=l x~x• 

n 

~ <r1 - r1-1> ci*> 
i=2 

4 

f'n(x•) and hence Vn EGi, (fn) 	for each n. 
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.. 
' 

Since Vn e Gi(fn)' and V ~ Vn' for all n, on R, therefore 

CIO 

and V(~0) }; .eim }-If (~0 ) - ~ f i or 
. n->-~ n i=l 

CIO CIO 

:Z:. E.. i provided that 2=: E i converges. 
i:l i=l 

£
Now choose t } O, and Ei = (2i) f'or every i, and then 

construct [ v ~ accordingly. It follows that V€ Gi_ (f) and hence 

' ) HR 
1 

~ s Gto>-to ~ V(x ,( _ t (x ). But V(x ) )1 fd)l - ( because £ = L t ,
0 0 1o BR i=l 

and hence V(xo) ~ /-1~ <io> - (. Thereforefj~ c;o) >1H~ ,;o) -<t:. 

R ­
for every E } o, and hence Ht c;o) ~ H ~ Cio). Hence 

H Rf (~ ) =H Rf (x) and the resolutivity of f follows. 
- 0 0 
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§ 3 General resolutivity 

Let RC. !f1 be a bounded region. We shall characterize 

those functions on oR for which the generalized Dirichlet problem 

is solvable. From f 1 we know that a real valued continuous 

function on oR is resolutive, and from {2 we know that an upper 

semi-continuous function on aR which is bounded above is also 

resolutive. 

Theorem 4.3,1: For any f on aR, it follows thatH'Rr = sup fH! ~ 
- <p~ f ' ) 

where every f is bounded above and upper semi•continuous. 

Proof: We recall thatt-i~ is the upper envelope of the family 

GJ_(f). For any<p,( f on aR, it follows that Gi, ( <P)cGJ_ (f) _, 

and therefore H~ ~ 1-1 :. Since every f is bounded above and 

upper semi-continuous, therefore every such ~ is resolutive and 

therefore HR = H~ = HR. For every "i e R, rl Rf ( x) is an
-<P , ,'f ­'t' 

upper bound for \H : (it)\ • Therefore.tJ ~ (it) ~qi"J~ {H~ (l} J • 

It follows that H ~ ).,·sup [ H :J . Now let u E Gi (f) and define 
4-<e":;<..< f _ 4 '~ ­

V on aR such that V(x•) = £im u(x) ,{ f(x*) · for aIJ.Y x• e- aR.
x-»x* , 

Then V is upper semi-continuous on aR by theorem 1.4.5, and is 

bounded above. 
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. R 
It follows that u € G:l (V) and therefore u ,( H V • Hence 

the upper envelope of G:i_( f) is iess than or equal to sup l f'-1 ~J , <p 
f ,{f

~ . ,.... .. 

upper semi-continuous and bounded ~bove. Combining the two in­

equal~ties, it follows that H ~ = sup l f-1: 1where each 'f' is upper 
. <f\{f 

semi-continuous and bounded above. 

Theorem 4,3,2: For any f on aR, it follows that f-/ ~ =lim ( \-1: ) 
n~cio n 

where £<fl n ~ is a monotone non decreasing sequence of upper semi-

continuous functions on aR each of which is bounded above and is less 

than or equal to f on aR.· 

Proof: Choose ..~o c R, and ~ote that /-1 ~ (J; ) =:~} [ ~ <X:> ·~ 
0 

where r is the set of all upper semi-continuous functions each of 

which is bounded above and dominated by f on aR. We choose a sequence 

such that £im 1-1 ~ C:l ) = H ~(~) and then define
0

ll-7eo n 
n 

v \.fl ,i. Each f n l: P , and is a monotone non decreasing 
i=l 

sequence. 

Since 

Combining the two inequalities, it follows that H: <X:,> = lim 
n~oo 

In general, H ~ £im HR on R since)1 
<f'nn~"° 
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By the Harnack convergence principle (t.heorem 3.2.7), 
. R=H is a harmonic function on R. Since Hf ~ 

on R and since HRf (~) = r/ c-:)' therefore J-1 Rf = H everywhere 
- 0 0 ­

on R by the minimum principle. The theorem follows. 

Remark: For the Banach space of continuous functions on aR, the 

mapping/-!~ <X:,> is a positive linear functional from C into the 

reals and hence can be identified with a Radon measure on aR by the 

Riesz representation theorem (theorem 1.2.20). We can represent 

H ~ (~0 ) by . S tdp.(~) where J1 (xo) is the representation
aR 

. IR ~ measure of the linear functional I- f e\'0.luated at x • For any
0 

upper semi-continuous function cf> on aR which is bounded above, 

H~ ~exists and H ~ ci ) =£im H Rf ct) where ft ~ is a monotone 
i: 't' o n""'> n o ncio 

non increasing sequence of continuous functions converging pointwise 
( ,.... ) 

to <{1 • Hence H ~ <X:> =£im Jt dp Xe 
n~• aR n 

= 
aR
5 

by the monotone convergence theorem. 

Theorem 4.?.3: For any t from aR into E* and~ C:: R, it follows 
0 

Cxo)S f dp • 
aR 
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ct> 
Proof: Since J1 °, is a Radon measure whose o--	 algebra domain of 

definition necessarily contains the open sets, it follows from 

theorem 1.4.11 and its corollaries, that 
<~ > C3t

0 
> i.S f dJ1 ° =sup ~ S" d)l { where p consists of 

-(aR) 	 'P~! ( aR ) 

the family of upper semi-continuous functions each one of which is 

0bounded above and dominated by f. But H : (~) = 	 SCf d)l 
ct> 

and 
aR 

It follows that 

HR(~)
_f 0 

c£ > 
Corollary: 	 f dp· 0= 	 • 

Theorem 4,3.4: The function f from aR into E* is resolutive if 
(~) 

and only if it is }1 ° - summable for a given ~ e- R. 

Proof: Suppose f is resolutive, Then HRf Cx ) = H Rf <~) and 
- o o c-+ > 

HR 	 -R J- xothe common value is denoted by f ct ) . But Hf C3t ) = fdJl
Cx > o o aR 

0and HRr C~) = l fdp • Therefore resolutivity of f implies 
- 0 

-{aR) Ci'o) 
the existence of r fdp.(X'o )' or the Jl - summability of f. . - c... )al ..... 

Cx0 ) - summable, then f. fdp C3Eo> = f rdy. xo ' 
If f is J1 -CaR) aR 


- R -R -R R 

and therefore Hf Ci* ) = Hf a ) . SinceHf ~Hf on R, it follows 

- 0 0 

that t:j ~ =H; everywhere on R by the minimum principle. 
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. Cxo> 
Remark: If a function f on aR is )l _~ summable for a given 

summable for any other Xie R, and hence it 

is customary to simply say p-summability without reference to any 

given point in R. For a bounded function f, p-summability is equival­

ent to p-measurability. Following Brelot ( [ 4J ) , we shall refer 

to the measure p as harmonic measure. We caution the reader to note 

that harmonic measure is only a measure in the usual sense when it is 

taken with respect to a specific reference point. 

The theory of the generalized Dirichlet problem as developed 

in this chapter can be extended to unbounded regions. For any 

region Re t1, one can introduce the one point compactification on 

RU aR and consider a generalized Dirichlet problem for R whose bound­

ary function is on aR U \cio} , a compact subset of the compact T2 
space RU aR IJ \cio l We refer the reader to the work of Brelot ( l61 )• 

for results of this extension. 



V. 	 RESOLUTIVITY OF THE CLASSICAL DIRICHLET 

PROBLEM AND BOUNDARY BEHAVIOUR 

In this chapter we shall characterize the regions for 

which the classical Dirichlet problem is solvable and analyze the 

boundary behaviour of the functions \:::! ~ and H~ in such regions. 

Definition 5.1: Let'R be a bounded region and p• ~ aR. Then 

a function w defined on R is said to be a barrier for R at 

p• if the following conditions are satisfied: 

(i) 	 w is harmonic on R. 

(ii) 	 Lim iJJ (i) =O, XE R. 

i-.p• 


(iii) 	 £im W(x) ) 0 for any i• ~ aR where 1:• ;. p*. 
5~-x· 
!x e. R 

Definition 5,2: A boundary point which admits a barrier function 

is ca11ed regular. 

Definition 5.3: A boundary point which does not admit a barrier 

function is called irregular. 

124 

i. 



125 


Theorem 5,1: Let V be harmonic on a bounded region R such that 

£im VGJ ) 0 for any x* E aR.-
\-x-+x"""• .,,, 

x €. R 
;· 

Then there exists a k 	 ) 0 such that V(~) )1 k on R. 

Proof: V(~) ) 0 by the minimum principle, for if there e:xists an 

~~ E R such that V(x ) =o, then V(k) =o on all R. Suppose the 
0 

theorem is false; then the real number zero is an accumulation point 

of the range set lVCJO} which implies there exists a sequence \i°n1c R 

such that lim V(x) =o. By the Bolzano-Weierstrass theorem, \'i'n) 
n~co n 

has cluster points in 	R U aR, Let Jl be any cluster point in R,
0 

Then V(~ ) = lim V(:t (k)) = 0 and hence V(~) :: 0 on R, which is a 
0 k_,.GO ll 

contradiction of hypothesis, If 1~ is a cluster point in oR, then 

V(xn(k)) =o implies 	 Lim.., VG) ~ 0 which is a contra-
lt-Px* 

0 ~ 

diction of hypothesis. 

Theorem 5.2: Let f be defined on oR and bounded above,where R is a 

bounded region,and let 'i be a regular boundary point for R, If f
0 

is upper semi-continuous at x~, then Lim R~ <?£> ~ f(~~>. 
{ x-x~ x~R 
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Proof: The fact that f is upper semi-continuous at ';E~ implies 

f(x•> 	>1 & f(x•>.
-x•-x•

0 

If V is a barrier function at x• then: 
0 

(1) 	 V ) 0 on R 

(2) 	 .eim V(~) =0 


5x-x~ 

txt 	R 

.eim V(x) ) O,{x* '= aR 

x -x• x• ! l•
1-x E R 	 o 

(4) 	 For a sufficiently small f -ball Br of x~, V is 

continuous on Bf (~~) V aB f (~~). 

We choose an €) 0 and then find f ( t: ) } 0 such that if \~- i•\ ( ~ , 

then f(~•) .( f (~ •) + E • Since f is upper semi-continuous, the 
0 

existence of such a p ( ~ ) ) 0 is always assured. 

Let k = Inf lk' : k' = .eim V(t) lx - i•\ •0~x·
xe(R-B~)
x* E. a(R-Bt-) 

By theorem 5.1, k ) O. 

V(x)
Let ucx> =rct •> + E + 	 Oof .. - f(X! ) where M.. =sup r(x•)

0 k 	 0
.&. 	 .&. x·EaR 

We will show that U '- F (f).s 

Case l: x* =1•.
0 

We note that 
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Case 2: i• J x • \x•- x•\ 	 { f . 
0 ' 0 

Since 

r iU(x) =f(~~) + ~ + l k .. 
' 

~ f(x~) i' E ) f(x•). 

Since 


U(1) = 
0 

+ E + - ) )1 l ~
f(x•) .A (Mf f(l~) where since V(x) k 


therefore .tim U(x) ~ f(x•} + ~ +(Mf - f(°£•)) = t. + Mf >1 f(x*).

0~x· o 


In all cases we have shown that .tim U(x) ~ f(x•) and hence 

i-x• 

Therefore H-R 
f (~) ~ U(x) for any x 6. R. 

Hence lim \-\ ~ Ci) ~ 
x_,1•

0 

But €) 0 was arbitrary. Thus 	lim f(~~). 

x~x·


0 

Corollary: If f is lower semi-continuous at l •, then 
0 

l1m. H~ (x) }, f (x •).sx- x~ -	 0 

l_x E. R 
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Theorem 5.2: The classical Dirichlet problem is solvable for any 

bounded region R in ~ such that every boundary point pf R is regular. 

Proof:: Let R be a bounded region in ~ and let f be any continuous 

function on aR, where every point of aR is regular, 

any element of aR; then by theorem 5.2 and its corollary 

and tim 
~ x-+ i~ 
(x <.. R 

Hence 

.eim and the theorem follows.
x-x•

0 

x "R 

We may thus conclude by the above results, the following 

Theorem 5.4: A boundary point ~· of R a bounded region in if' 

is regular only if the generalized solution r\~ corresponding to f 

tends to f(~•) for any continuous f. 

Thus the origin point of the sphere in Zaremba's example 

of a non-solvable classical ''D" problem (chapter III, § 3) is an 

irregular boundary point of the deleted sphere, 

We state now without proof, a modified version of the 

Kellogg-Evans theorem ( ~81 , p.2), a fundamental result in the theory 

of irregular boundary points. 

Theorem 5.2: Let R be a bounded region in ~ and let\~•1 C aR 

be the set of all irregular boundary points. Then there exists a 

function· V ) 0 which is harmonic in R and such that tim V(~ = + <». 

x~i* 
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Concluding Remarks: From the Kellogg-Evans theorem one can 

show ([4\ ) that \--\;is independent of the values of fat the 

irregular boundary points. If H~ ~. - co, there exists some 

subharmonic functions in R, general or continuous or harmonic, 

each of which is bounded above and of upper limit less than or 

equal to f at all regular boundary points; and H~ is the upper 

envelope of each of these three families. If ' n\ Rf :_ - co, there 

do not exist any functions belonging to any of the three families. 

From these results it follows that a boundary point i•~ aR is regular 

if lim \-\~ (x) = f(~~ for every cont~~uous f, and hence the regions 
~x-dt*/x, R 

for which the classical "D" problem is solvable are those and only 

those whose boundaries consist only of regular points. In other 

words, a classical "D" problem cannot in general be solved for a region 

R if aR possesses any irregular boundary points. 



BIBLIOORAPHY 

l. 	 Apostol, T. M., Mathematical Analysis, Addison-Wesley, 
Reading, Mass., U. s. A., 1957. 

2. 	 Bourbaki, N., fu6ments de math~matique, livre I, chapitre II, 
Hermann, Paris, 1960. 

I / 	 I:;. Bourbaki, N., Elements de mathematique, livre VI, chapitresI-IV, 

4. Brelot, M., 

5. Brelot, M., 

6. Brelot, M., 

Hermann, Paris, 1952. 

Familles de Perron et robl~me de Dirichlet, 
Acta Univ. Szegec\9 1939 , 133-153. 

Points ir-r~guliers et transformations continues in 
thiorie du potent:iei, Journ. de Math. Pures Appl. 
9 1"°"''"s~rie, 19 (19'!<>), 319-337. 

Sur 	le r~le du point ~ l'infini dans la th~orie des 
functions harmoniques, Ann. Ecole Norm. S.up 61 
(1944), 301-332. - . 

7. 	 Brelot, M., Topologies on the boundary and harmonic measure, 
from Lectures on Functions of a Compex Variable, 
ed. Wilfred Kaplan et al., Univ. of Michigan, 1955. 

8. 	 Brelot, M., A new proof of the fundamental theorem of Kellogg-
Evans on the set irregular points in the Dirichlet 
problem, Rend. del. circ. mat. Palermo, 
Ser. 11, IV (1955), 112-127. 

9. 	 Carath~odory, c., On Dirichlet's problem, Amer. Jour. of Math., 

59 (1937), 709-731. 


10. 	 Duff, E. F. D. and Naylor, D., Partial Differential Equations, 
Wiley, New York, 1966. 

11. 	 Dunford, N. and Schwartz, J. T., Linear Operators Part 1: 
General Theory, Interscience Inc., New York, 1964. 

12. 	 Epstein, B., Partial Differential Equations, McGraw-Hill, 
New York, 1962. 

130 



... 

13. 	 Flanders, H., Differential Forms, Academic Press, New York, 1963. 

14. 	 Halinos, P., Measure Theory, D. Van Nostrand, New York, 1959. 

15. 	 Kellogg, o. D., Foundations of Potential Theory, Dover, New 

York, 1953. 
 .. 

' 

16. 	 Rad6, T., Subharmonic Functions, Chelsea, New York, 1949. 

17. 	 Royden, H. L., Real Analysis, MacMillan, New York, 1963. 

18. 	 Spivak, M., Calculus on Manifolds, w. A. Benjamin, New York, 

1965. 


19. 	 Tsuji, M., Potential Theory in Modern Function Theory, 

Maruzen, Tokyo, 1959. 


20. 	 de la Vall'e Poussin, Ch. - J., Le potentiel logarithmigue, 

Gauthier-Villars, Paris, 1949. 


21. 	 Vasilesco, F., 1@. notion de point irr~gulier dans le probl~me 

22. Wiener, 

Wilder, 

24. Zaremba, 

de Dirichlet, Act. Scient. et Ind., 660, 
Hermann, Paris, 1938. 

N•, The 	Dirichlet problem, Jour. of Math. and Phys., j 
Mass. Inst. Tech., 3 (1924) 127-146. 

R. 	 L., Topology of Manifolds, Amer. Math. Soc. 
Colloquium Pub. Vol. 32, 1949. 

s., Sur le principe de Dirichlet, Acta Math 34, (1911) 
297316. 


	Structure Bookmarks



