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In this thesié, we shall solve the classical Dirichlet
problem for a ball in n-dimensional Euclidean space, and then
point out that the classical Dirichlet problém is not always
solvable, Following Wiener and Breiot, we then introduce a
generalized Dirichlet problem for any bounded region in n-dimensional
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Dirichlet problem wheneier the latter exists, Finally, we
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is soivable by considering the boundary behaviour of those functions
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Introduction

From a mathematical point of view, the Dirichlet problem,

“also commonly referred to as "the boundary value problem of the

first kind", belongs to the theory of harmonic functions, - For the
time being, we shall-restrict,ourselves to real valued functions
defined on some region R (open, connected subset) of three dimensional
Buclidean space E3, where a function U on R is said to be harmonic

on R if it possesses continuous partial derivatives up to and includ~ -

ing second order in all variables, and satisfies everywhere on R th

3 2 “
partial differential equation of lLaplace: Q—J% = 0, The
’ | ' =1 %

classical Dirichlet problem in its Simplestcform consists of trying to
find a harmonic function on a bounded region R, which is continuous
on the closure of R (R uﬁion its boundary in EB) and which coincides
with argiven continuous function on the boundary of R,

For over a century, this problem has attracted the attention
of numerous mathematicians(including H. A, Schwarz, H, Poincaré,
H, Lebesgpe,.O, Perron, N, Wiener, and M, Brelot to name only a few,
each of whom has directed considerable effort to the problem and its
solution, The problem itself has physical origins of fundamental
significance, some of which were recognized before the birth of the
German mathematicién, whose name the problem now bears in nearly all

.cases,



We offer the following physical problem which helped to
provide historical motivation for consideration of the Dirichlet
problem: Consider a spherical shaped ball of uniform density which
has a high degree of thermal conductivity and which is at a given
initial temperature, Let us apply to the surface of the ball a
continuous temperature function f, which is independent of time,’
and let T be the temperature inside the ball at a time t, ‘ Then

™x, y, 2z, t) satisfies the following partial differential equatioh:

2 g =K 'aE- ( {15] y P.78).

- The function U defined to be (x, y, z) = Zim T (x, y, 2z, t) is
. t—>

independent of time and hence is called the steady state temperature

correspnding to the boundary function f, and sinée U is independent
‘of ti@e t, it follows that U satiéfiés Laplaée's partial differential
equation in‘£he interior.of the ball and it turns out that U is
continuous on the closure, and Cincides with f on the boundary, In
view of our original statement of the Dirichlet problem, the function
U is a solution of this problem for the ball whose boundary function

is £,

The theory of harmonic functions and the associated Dirichlet
problem can be applied to an endless variety of disciplines within

the fields of mathematics and physics, We refer the reader to the



récent book by Duff and Naylor ( {iq] s P.134) for more information
on tﬁese matters,

For many years, it was generally conjectured that the
Dirichlet problem was solvaﬁle for any bounded region, and that limit-
ations of generality were inherent in methods; rather than in the
problem itself, However, every attempt to construct a general
solution invariably had to pfesume some restfictions on the boundary
and it was nét until 1911 that Zaremba ( [?4],p.310) published a resolution
of this cohjecture, by pointing out that there did exist regions for
which the problem was not solvable, such as the deleted unit ball,

A modified vgrsion of his example will be considered in Chapter III,

Other examples of non-solvable Dirichlet problems soon

followed, one of which is the so called "spine of Lebesgue" published

in 1913 ( [Zi] , Pp.12-13), The basic differenge befween the Lebesgue
example and that of Zaremba, lies in the fact thét the boundary of |
Lebesgue's region is a one-to-one continuous image of the sphere,
whereas in Zaremba's exampie, the boundary consists of the union of the
unit sphere and a singleton set Qhose member is the origin,

Because of the faét that it is possible to construct regions
for which thé classical Dirichlet problem is not solvable, Wiener ( [22] )
was induced to define a generalized Dirichlet problem whose solution
always coincided with that of the élassical Dirichlgt'problem,-whenever
the latter waé solvable, It turns out that the generalized Dirichlet
problem is always solvable for any continuous function defined oﬁ the

boundary of any bounded region in EB.



a.

In this thesis we shall be chiefly concerned with the
establishment of necessary and sufficient conditions for which the
generalized Dirichlet problem is solvable relative to a bounded region
and characterize those regions for which the classical Dirichlet
problem is solvable in n—dimensional Buclidean space,

The methods employed here will generally follow those of
Brelot and it is to his works (especially [4] ) that we shall constantl&
refer, | Finaily, we shall consider the boundary behaviour of the
solution éf the generalized Dirichlet problem,

Since the mathematical machinery.:equired to accomplish these
ends is considerable, our first chapter, which is the largest, is

devoted to the development of this machinery,

Whereas much reference shall be made to the Dirichlet problem

itself, we shall find it convenient to call this problem the npn

problem,



I, ' SOME FUNDAMENTAL CONCEPTS OF ANALYSIS

§1 Some basic concepts and results in point set topologykand

n~-dimensional FKuclidean space,

It is convenient to first introduce some standard definitions
and results from .point set topology before considering the basic theory
of n-dimensional Euclidean space, Ve sha1.1 assume acquaintance with
standard set theoretic definitions and will generally follow the notation

of Bourbaki,

Definition 1,1,1: Let X be a set and B(X) its set of subsets or power

set, If "JCB(x), then ) 1is called a toj:vology on X if and only if 7J

satisfies the following axioms:

(1) g€0
(i1) x€¢J ‘
(111) If {Aa(% is any subset of ), then UALEJ.

(iv) If {Ai's is a finite subset of "J, then NA €7,

Definition 1,1.2: We define a topological space to be a set X endowed .

with a topology 7) on X and denote it by (X, T ),

Definition 1,1,%: If (X, ) is a topological space then 0C X is said

to be open if and only if 0€¢T) |



Definition 1,1,4:  If (X,7) ) is a topological space, then FCX

is said to be closed if and only if (X - F) € °J,

Definition 1,1,.5: Let AC X where (X, ) ) is a topological space,

Then {0,‘} ¢’J is called an open covering of A if and only if UQ:)A

Definition 1,1,6: Let (X,7) ) be a topologn.cal space, A ¢X and

0= 20‘,‘} an open covering of A, We define ' € 0 tobea
‘subcovering of A (relative to 8) if @' is itself an open covering
of A,

Definition 1,1,7: Let (X, ) be a topological space and ACX, Then

the set A is defined to be compact with respect toJ if for any dpen
covering of A, there exists a finite subcovering (that is a subcovering
possessing only a finite number of members) of A,

Remark: We note that the above definition of compactness coincides

with Bourbaki's definition of gquasi-compactness, Bourbaki reserves
the term compact for special spaces having the property of definition

1,1,7, namely the 'I'2 spaces to be defined 1atér.

Definition 1,1,8: A topological space (X,7J) is said to be compact if

the set X is compact with respect to the topology J.

Definition 1.1.9: Let (X, J ) be a topological space and x €-X,

We define V(x)C X to be a neighbourhood of x relative to’J if and only if
there exists 0€) such that x € O and 0C V(x),

Remark: A neighbourhood may or may not be an open set, Those that are

open are usually called open neighbourhoods, Usually we shall follow

the convention of requiring any neiéhbourhood to be open,



Definition 1,1,10¢ Let ACX and (X,7)) be a topologicél space,

Let {F,} be the family of closed sets in (X, J ) such that each
F;‘. D A, Then QF,( is closed, is called the closure of A, and

is denoted by A,

Definition 1,1,11: Let (X, 7J ) be a topological space and AC X,
Let { 0.‘} be the family éf all open sets in (X, 7] ) such that each
OxC A, Then UJO, 1is open, and is called the interior of A,

It is denoted by .z.,

Remark: For any AC X, it is always true that Rcac A,

Definition 1,1,12: Let (X, ':7 ) be a topological space and AC X,

The boundary of A denoted by 9A, is defined to be the set A- X,
‘Remark: For any ACX, it is always true that 3A is closed for a given
‘ i — o -

topology since 3A = A - A = AN (X -R) which is the intersection of

two closed sets,

Definition 1,1,1%3: Let f be a function (single-;valued relation) whose
domain is the set X and whose range is a subset of Y where (X, J,) and
(Y, 7 Y‘) are topological spaces, Then f is said to be continuous

if and only if for any O ¢ ‘jY it is always true that £1(0) € r_)x
where f-l(o) _denotes.the inverse image of O under f,

Theorem 1,1,1: " Let f be a function from the topological space

(x, 'jx) to the topological space (Y,b i Y)' For any x € X, let y € Y
be the image of x under f (or y = £f(x)), Then f is continuous if and
only if it follows that for any open neighbourhood V( y) relative to

r) y then f-_l(V( y)) is an open neighbourhood of x relative to r]x.



. Proof: = Let f be continuous according to definition 1.1.13 and let

"~y = £(x)., Then xé f—l(y) or {x}C £ ¢ fy} ). Since V (Y)D{Y} .
therefore £+ (V (y)) > ¢t (§¥3) 3 §xY , and hence x € vy N,
Since V( y) is open, therefore £t (v (¥)) is open which implies that

£~ (v ¥)) is a neighbourhood of x. Proceeding in the other |
direction, we let 0 € J yand A - £X0), Since O is an open neigh~
bourhood of every y¢ O, therefore A is an open neighbourhood of evéry X

in A, It follows that A is open, |
Remark: The truth of the above theorem is not affected when an open
neiéhbou’rhood is replaced b& any neighbourhood,

Definition 1,1.14: Two topological spaces (X,"Jx) and (Y, ':)Y)‘are

said to be homeomorphic or topologically equivalent if and only if

there exists a function f whose domain is X and whose range is Y which
satisfies the following conditions:
(1) f is one~to-one (or £} is a function),

(i1) f is continuous,

(1i1) - £ is continuous,

Definition 1,1,15: Let (X,7] ) be a topological space and ACX,

Let 'j :{0*3- and define rJA = {

o

< x:Bé’JAifandonlyif

there exists an Q € rJ such that B = A N Od} w  Then UA satisfies

the axioms for a topology on A, and 'j A is called the relative topology

of 7] on A, or we say that "J is relativized to A,



Definition 1,1,16: Let (X, 7J) be a topological space and A C X,

Then A is said to be disconnected in (X, ) if and only if there
exist B and C where A = BU Cand where BAC =@, B# @, C # ¢, and
B, ce'J,. |

Definition 1,1,17: A set AcX is said to bé nnected, relative to

a topology "}, if and only if A is not disconnected in the space (X, ),

Theorem 1,1,2: Let (X, 'J ) be a topological space and A a compact
subset of X, Then (A,':] A) is a compact topological space,

Proof: Let 0, be an open covering of A with respect to ) Then

A A*
OA = { QN A} where each Ox € 'J and 0 = ‘20.‘} is an open
covering for A relative to") , Since A is-compact with respect to J s

therefore we can extract from { Ox} a finite subcovering of A denoted

‘ ) n .
by {0,((,:,} , 1 i n, since ACJ (0.¢) ), therefore

n i=1
A C 581 (Oyy N A) and hence { O )NA} , 1{ i n, is a finite

A from which the theorem follows.

 Definition 1,1,18: A topological space is said to be locally cémpact

subcovering of @

if and only if for every x € X, there existsta compact set K C X which

contains an open neighbourhood of x,

Definition 1.1.19: Let (X,’J ) be a topological space and ACX; Then:

A is said to be relatively compact in (X,’D) ) if and only if X is
compact, »

Definition 1,1,20: Let (X,'J ) be a topological space and x € X,

Y € X where x # y, and both are arbitrary, Then (X,'J ) is said to be

Hausdorff or T, if and only if there exists a neighbourhood V(x)d x

and a neighbourhood V(y) 3 y such that V(x) N V(y) = ¢,
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. Remark: In future, all topological spaces considered’ﬁll be TZ‘

Theorem 1,1,3: In a T, space (X,71), every compact subset is closed,

Proof: Let K C X be compact, We shall show that (X - K) is

open.v Let pe(X - ‘, K) be fixed and let x € K be arbitrary, There
exist disjoint neighbourhoodsof p and x denoted by Vép) and V(x)
respectively such that V,sp) 'a) v(i) = @, - The set vof neighbourhoods
{V(x)} form an open covering of K,"and {Vx(p)} forms a collection
of neighbourhoods of p such that Vx(p) (\‘ V(x) = & for every xé€K,
Since K is compact we can extract from iV(x)} a finite. subcovering of
K denoted by iV(xi )} , 1¢14 { n, Let V(p) = /2\ (in(p)),

and note that v(p)n(i'\?l V(x; )) = @, Then V(p) is :_‘ieighbourhood of
p such that V(p) € (X - K) and the theorem follows,

Theorem 1,1,k: Let (X,"J) be a topological space, and K a compact

subget of X, For any closed FCK it follows that F is compact,

Proof: Let {Od} be an open covering of F, and note that (X-F) is open,

_ Then {QJ v { (X-F) } is an open covering of K, Since K is compact

we can extract out a finite subcovering denoted by {O“ WYV {(X—F)}
4]
where 1{ i { n, Since (U Qg U (X-F) DK and since (X-F)NF = ¢,
i=1 '
n
therefore \U %P Foo
i=1

Definition 1,1,21: A topological space (X,J) is said to be a sub-

space of (Y, 7J') if and only if XC Y and ) is the topology 7} ' relativized

to X,

Definition 1,1,22: Let (X, 7)) be a T, space and ACBCX, Then A

2
is said to be dense in B relative to7] if 1> B,



n

Definition 1,1,23: Let (X, ] ) be a T, space, and (Y, Jy) a

compact 'J.'2 space, Then (Y, 7] Y) is said to be a compactification

of (X,7J,) if and only if (X, J ) is homeomorphic to a dense sub-

space of (Y, 'jY ).

Definition 1,1,2k: Let (X,7]) be a T, space and x € X, A set

9}/6.1 f"d c U is said to be a fundamental system of neighbourhoods

of x if and only if for any neighbourhood V of x, there exists V, ¢ V=

such that V, € V where every V, is a neighbourhood Qi_‘ X,

Theorem 1,1,5: Let (X,7J ) be a locally compact T, space which is not

compact, Let X* = XU§{*°} vhere*is a new element adjoined to the

set X, Let A *C B (X*) be defined as follows:

. - . _
(1) If A*c X then A* ¢ & if and only if A*c 7],

(11) If = ¢ A* then A*¢ QU  if and only if A*N X = X - K

where K is a compact subset of X with respect to'_J N

Then a“ is a topology on X*,
Proof: (1) Since #C XCX* and ¢ € "] , therefore € *,

(ii) Since X C X and X€¢7J | therefore xed *.

(111) Let §A%3C Q*, and let A* = L“) A* ., Inthe
case where every A* C X, then A% ¢7) also, and hence A* = U(A} yerj,
In general A* & (|* for otherwise XN A* = ‘L,(J(Xr\g:) _and hence
C(XNaA*) = Q €(XN A% ) where T denotes the complement of a set taken

with respect to X, Since A M X is always open for any % , there- ‘
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fore ((XNA*) is closed, and since C(Xn A*) 1is compact for at
 least one % , therefore @ (X M A*) is a closed subset of a compact
set, and hence compact by théorem 1.1.’+, " Thus A * is closed under
arbitrary union, A

(iv) Let {:\{} C (A * where 1 1 ¢ n, and let A* = /) Ay.
If A* C X then A* = Ql (4% N X) where(A* N X) ¢") for each i,i:xlld

hence A*ej . Thus A* ¢ ¢|* for otherwise *® ¢ A*, and hence *¢ A% for

n n n_ ’
all i, Then A*N X = 1/3 (A% N X) and C(A*N X) = UCatnx) = U K
: = : i=l 4 i=1
where each K, is compact, Hence A*/Y X = X - K where K = w/ K, is
. i=l

compact, Therefore A* ¢ *,
(1), (1), (4ii) and (iv) consequently fulfil the four
axioms of a topology and our theorem is proved,

Thus () * is a topology on X* and we may write (| * = 7*,

Theorem 1,1,6: Let (X, "J ) be a locally compact T, space, and (x*, 5 *)

defined_ as in theorem 1,1.5, Then (X*, 'j *) is a compaét T2 space,

Proof:  We first show that (X*,r7*) is T If x€XCX*, yeX C X+,

20
x £ y, there exists a V(x)¢J , V(y )¢ '] = such that x ¢ V(x), y ¢ V(3)
and V(#) M V(y) = g because (X,7 ) is T,. If x¢ Xandy=®, there
exists by the local compactness of (X, J) a compact K< X such tha.f

x € V(x) € K where V(x)¢ "] and hence V(x) € ﬂ * since TJc 7] * always,
But (X* - K) is a neighbourhood of y = ® in 7* dénoted‘by V(y ) say.

It follows that vv(x)f\ V(y) =g, and hence (X*,J *) is T,



13

In order to show the compactness of (X*,7 *) we let

o 50; g be an open covering of X* relative to J*. Then ® is a
member of at lgast one of the sets in g Q:‘} . Let = ¢ Qi’;}, and
note that for every of , it follows that XA 05 ¢7J,  Then
) ¥ (‘): =X- K where K is compact with respect to 7] and the
follovg:ag must be true: i N 0:3 is an open covering for K and
we can extract voﬁt a finite subcovéring of K denoted by { XN 0:«{.)}
where 2 { i { n, and henceé Ofuu} is a finite covering of K
where 2 { 1 n; Hence { o;LL;) , 1{ i nis an open covering

of X* with respect to T ..

Theorem 1,1,7: If (X,7J ) is a locally compact T, space which is
not compact and (X*, 7 *) is defined as in theorem 1,1,5, then X

is dense in (X*, 5*),

Proof:  If X were closed in (X*, 7J *) then X would be a compact
subset of X*, which contradicts the hypothesis, Thus X fails to

be closed and therefore i = X*,

Definition 1,1,25: The results of theorems 1.1.6vand 1.1,7 show

that (X*, J*) is a compactification of the locally compact T, space

(X, *7). The compact T, space (X*, 7*) is called the one point-
2 ’ one_point

compactification or Alexandroff compactification of (X,"J),

Definition 1,1,26: A metric d on a set Y is defined to be a function

whose domain is the cartesian product set Y x Y and whose range is
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a subset of the non-negative reals such that:

(1) d_(x,&)' 0 if and only if x=y where x€Y, ye Y.

(ii) a(x,y) = d(y,x) for every x, y € Y,

(iii) alx,y) { d(x,2z) + d(z, y) for every x, y, z € Y,

which is often referred to as the triangle inequality,

Definition 1,1,27: A metric space is defined to be a set X endowed

with a metric d, and is designated by the symbol (X,d),

Definition 1,1,28: If (X,d) is a metric space, xo ¢ X and r a real
number greater than zero, then {x € X d(x,xo) (r} is defined to

be the open ball of centre x ‘and radius r, denoted by Br(x o)'

Definition 1,1.29: If (X,d) is a metric space, X, € Xand r a real
number greater than or equal to zéro, then { x¢X: d (x,xo) $ r}

is defined to be the closed ball of centre X, and radius r, denoted

by Br(xo).

Definition 1,1,%0: If (Jg, d) is a metric space, X € X and r a real

number greater than or equal to zero, then { x¢X s dlx,x ) =r 3 :
is defined to be the sphere of radius r and centre X9 denoted by
5.(x,).

Definition 1,1,%1: Let (X,d) be a metric space, andBC B(X) the

set of all open balls in (X,d) i.e, B = {Br (x°)§ for all
x, ¢ X and all real r ) O, Then the least topology on X (relative

to set inclusion in B(x)) which contains B is known as the topology



15

deduced from the metric d and is called the metric topology jd
associated with d, or simply ] if no confusion arises as to what

metric is associated with it,

Remark: The topology 'J 4= Q ( 'J" ) where 'J‘- is any topology
on X such that U‘ ») @ . It is a consequence of ‘the distributive
laws of set theofy relétive ;co the operations of set union and |
intersection respectively which permits us to consider any O ¢ jd

to be either the arbitrary union of sets each one of which is the
intersection of a finite number of opeﬁ balls in (X,d) or the finite
intersection of sets each one of which is the union of an arbitrary

number of open balls in (X,d) ( [2], p.107, Proposition 8),

Theorem 1,1,8: Let (X,d) be a metric space and "] the topology on

X which is deduced from d, For any x, & X it follows that
{ B, /n (5(0)} , for all natural numbers n, is a fundamental system

of neighbourhoods of x, with respect to the topology 7.

Proof: Let V(xo) be any open neighbourhood of X, with respect to '7 .

Since V(xo) is a non empty open set such that x, € V(xo). therefore

it follows from the above remark that V(xo) contains a set ’0 which

is the intersection of a fim‘.te number of open balls and such that

X, € 0. Thenx & 0 = A B (x;) where each B_ (x,) is an

(4] i=1 i i ry i

open ball in (X d) and O C V(x ). :
We first show that if x, € B’i (xl) then there exists an

§1 ) 0 such that BE, (xo) C Br‘ (xl), Let d(x,,2 ) = r, and note -
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that from the triangle inequality, r, 4 (x ,xo) + d(xo,z) or
d(xo,z) > vy = dlx),x ). Let ry - d(x;,x ) = 2%, , which is
(xl). Hence B, (x )C B, (xl))

1 | 1 ° 1
and similarly we can construct a finite sequence of £,'s, 1 i n,

'necessarily greater than zero since xoé; Br

. N
such that &, ) 0 and Bfi(xo),c 13ri (xi). “Then B&(xo) = 1(_\1 B.E 1(x°)

n n o ) ) v )
where ) B, (xo) A B, (xi) and hence the ball B (xo)QQC V(xo)
i=1 i i=1 “i _
where & ) O, We now choose n_ such that %— {( t so that
. o ‘
Bl/.no (xﬁ)( B£ (xo). The theorem follows,

Remark: We may now think of any metric space (X,d) as being a topological
space (X, 77 ) as well, where X is endowed with the metric topology.

It is always true that any metric space is é'Ta space,

Discussion
We are now prepared to consider the Euclidean spaces,

Let E denote the set of real numbers, and dl the usual metric on E

which we d‘efirie by dl(x,y) = |x-y| for any x, y € E, . Then (E,dl)'
is a metric spac; which we denote by E' and which is élso a topological
space where the topology is deduced from thg metric dl' Ve refer to
this tqpology‘as the usual topology or E!' topology and often refer
to the space E‘-as the real line and the metric dluas the one dimen-
sional Euclidean megric. | |

We now consider the cartesian product set E x E which is the

set of ordered pairs of real numbers, that is Ex E = é (x,5) : x,y€¢E }A,
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We now define a metric 62 on E x E as follows: If plé(xl,yl)E%ExE

) ; 2
~and p, = (x5, ¥,) € E x E, then 4, (pl.pz) = \V/?xz -x) + 0, -1

)2

The function d2 is analogously referred to as the two dimensional

2

,

Buclidean metric and the metric space (E x E, d,) denoted by E
is called the two dimensional Buclidean space,ror Euclidean plane,
Its topology is deduced from d2 and is analogously referred to as tﬁe
usual topology or E2 - topology. | .

In a similar way, we define the n-dimensional Euclideén

: , "
metric function on the nth cartesian product X Ei to be
i=1

n
- 2.%

d (p,p,) = ( E (x5 = %54)7)° where py = (70, X5 eaey Xp,)
1 |

2
and p, = (x5, Xypeees x, ). Then d is a metric on X E; and{the
i=l

: ‘ | . ,
resulting metric space (X E,, dn) shall be denoted by En, with the
i=1

resulting topology deduced from dn again called the usual topology or
Eq-topology.
We shall often find it convenient.to endow E" with the usual

vector (linear) structure ( [11] , p.35) and the resulting vector space,

g
which is often referred to as n-dimensional Euclidean vector space,
shall also be denoted by E', When thought of as vectors, if
- - -
X = (xl, coey xn) ¢ E® and y = (yl, .oy yh), then X+¥ = (x1+yl,...,
x, + yn) ¢ E"and r¥ = (rxl,,,. , rxn) for any real number r, We |

R - = s P

shall then write |X| in place of dn(O,x), where O is the origin, and

hence [; - Y| in place of dn(;, ;).
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va

t I = [0,1] and ﬁ]i the usual topology of
-
f

Definition 1,1,32: Le
an

 E' relativized to I, and f a continuous function from (f,'J f) into

En. Such a function is called a curve in En.

2 '
Remark: f = (fl’.., fh) possesses the property that each f; is a
continuous function from (I, f}i) into E', We say that the curve

joins £(0) to £(1),

- > >, =
Definition 1,1,33: The image of I under f, i,e, £f(I) ¢ EP, is called

the image.of the curve f{

.)
Definition 1,1,34: The curve f is called an arc if and only if

£0) £ 1),

- ,
Definition 1,1,%5: An arc f is called a simple arc or Jordan arc
5 —_—

i
if and only if the function f is one-to-one,

Definition 1,1,36: A curve is called a simple closed curve or Jordan

- - - ,
curve if and only if £(0) = f(1) and f is one-~to-one on the half open

interval [0,1) ,

Remark: The image of a Jordan arc in the relative topology of E® is
ﬁomeomdrphic to the closed interval I endowed with the relative
topology and the image of a Jordan curve in the relative topology.of :
E® is homeomorphic to a circle (sphere in E2 according to definition

1,1,30) endowed with the relative topology in B,

Definition 1,1,37: A set XC E° is said to be arcwise connected if

and only if any two points of X can be joined by an arc,
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Theorem 1,1,9: ([1], p.178, 19 ) An open set OCE" is connected

(see definition 1,1,17) if and only if it is arcwise connected,

Definition 1,1,%8: A region in E® is defined to be an open

cénnected subset of En,

Definition 1,1,%9: A component of a set XCZEn isrdefined to be a

maximal (with respect to set inclusion)'conneéted subset of X,

Theorem 1,1,10: ( [IJ , P.182) Any open set in E® has a countable

number of components,

Definition 1,1,40: A set’XCIEn‘is said to be bounded if and only if

there exists some r ) O such that B (0) > x,

Theorem 1,1,11: Any compact set K in E® is closed and bounded,

Proof: Since En is a TZ space, therefore K is closed (theorem‘l.l.B).
Suppose K were unbounded, then an (53 : n=1 2, ...; is an open
covering of K which has no finite subcover, which contradicts the

supposition that K is compact,

Theorem 1,1,12: (Heine-Borel Theorem ( [lJ , P53 ), Any set XC B

which is closed and bounded is also compact,

Remark: From theorems 1,1,11 and 1,1,12, the compact sets in E" are
characterized by those which are closed and bounded,

Definition 1,1,41: A region RC E® is said to be a Jordan region

if and only if it is homeormorphic to the ball B,(G) c E°,



© Definition 1,1,42: A set MC E® is said to be the image of a

Jordan manifold if and only if (M, ] M) is homeormorphic to the

sphere 81(3) < E°,

Theorem 1,1,13: ( |23] , p.63) (Jordan Curve Theorem) Let C be

the image of a Jordan curve in E2. Then E2 -~ C consists of two
non-empty components one of whidhAis bounded and called the interior
of C and the other is unbounded and called the exterior of C, and C

is thebcommon boundary of its interior and its exterior,

Remark: The term "interior! as used in the last theorem has an

entirely different meaning from that of its previous use,

Theorem 1,1.14:( [23] , p.63) (n-Dimensional Analogue of Jorden Curve

Theorem), Let M be the image of an (n-1) Jordan manifold in‘En. Then
E® - M consists of two non-empty components one of which is called the

interior of M, and the other the exterior of M, The interior of M is

a Jordan region whose boundary is M,

Remark: By an abuse of language, we shallsimply speak of (n-1) "

Jordan manifolds rather than the image of such a manifold,
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‘ §2 - Some essentials of measure and integration theory

The concept of a measure can be introduced via two
different methods, One view is to consider a measuré_as an
extended real valued’function defined on a certain class of sets
as is done in Halmos [14] and the other is to‘thiﬁk of a measure
as a positive linear functional defined on a topological vector
space, The latter approach is taken by Bourbaki [3] and the two
views can be welded.together by the Riesz representation theorem to
be considered later, = We shall find it convenient to adopt one
point of view in certain cases and the other one for different
situations, Since good reference material is readiiy available for -
most of the results of this éection, which are quite standard and
basic to the theory of measure and integration we shall omit
specific references to a large extent, Initially, we shall follow
the approaches of Halmos and Royden [17:] - Our first definitions
will follow from some of the original historical results,

Let E' be the real line and I = (a,b) be an open interval

in B, -

Definition 1,2,1: We define the classical (Lebesgue) measure of

I=(a,b) tobem(I)="b-a,

Remark: If a is real and b = + ®, then we follow the convention of

putting ml(I) =+,
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N m ’ >‘ . N ) :
Definition 1,2,2: Let O = }_-_Jl (Ii) be an open set in E', where

each Ii is a component set of O, We define the classical measure of

0 to be m,(0) = i m, (I,) provided the series converges in the
1 £ M _ ,

ordinary sense, Otherwise we formally define mi(O) to be +%,

Definition 1,2,3:  let K be a compact subset of E' and I = (a,b),

(where a and b are both real), have the property that I> K, Then

we define the classical measure of K to be ml(K)' = ml(I) -m (1-K),

Definition 1,2,4: Let AC E' or A € B(E'), and let 8 ={0,3
be the family of all open sets in E', each member of which contains
A, i,e, ACO, for all«x , Now consider the set of positive real

numbers fml(m ) } . We define inf { m, (04 )} to be the outer

classical measure of A, and designate it by the symbélﬂ(ml)*(A).

Definition 1,2,5: Let ACE', and‘ K= {K,\g be the family of all

compact sets in E', each member of which is contained in A, i,e, K< A
for al1 X , Define (ml),,(A) = s'?p{ ml(K,g_) ; to be the inner

classical measure of A,

Theorem 1,2,1: It is always true that 0 (ml), (a) (ml)"‘(A) E+=

Remark: We note that both (m,)* and (m,), are functions from

B (E') into the non-negative extended reals,

-~

Definition 1,2.6: A bounded set ACE' is said to be ml-measurable

if and only if (m),(4) = (ml)‘(A) and -the common value is called the

classical ml-measure of A, denoted by ml(A).
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Definition 1,2,7: An arbitrary set AC E! is said to be ml-

' measurable if for any I, = (-n, +n), the set AN I is m,-measurable,

Theorem 1,2,2: Every open set OC E' and every closed set FC E!' is

ml-measurable.

Theorem 1.,2,%: A set ACE' is ml-measurable if and only if the

following condition holds for any X< E' : ml*(X) ¥ ml‘(Xn A) + ml"(Xﬂ tA),

This condition is often referred to as the Carathéodbry criterion of

measurability,

Remark: The statement of theorem 1,2.% is sometimes taken to be
the definition of ml—measurability in which case our definition 1,2,6

turns into a theorem,

Theorem 1.2,k: If ACE' is m1~measurab1e, then€ A is also ml—measurable,

where CA denotes the complement of A,

‘Theorem 1,2.5: Let gAii ,i=1,2, 3 ... bea sequence of

-
m1~measurable subsets of E', Then A= {_/ Ai is also ml-measurable.
i=1

Theorem 1,2,6: If AC E' has the property that mi(A) = O,'then A

is ml-measurable.

Theorem 1,2,7: (Complete additivity property). If {Aiiis a sequence

of m,-measurable sets in E' such that A, N A; =g if i #j , then

my ( !;;}l Ai) = § m1<A1)' |
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Theorem 1,2,8: Let gAi \Sk, i=1, 2, .... be a sequence of

m.-measurable sets in E', Then A = /O A, is m_ -measurable,
1 i 1l .
i=1 o
Proof: By DeMorgan's laws for set theory, €A = O/ (iAi),
) i=1
Since each Ai is ml-measurable, s0 is (Ai by theorem 1,2.4 and
hence (A is ml-measurable by theorem 1,2,5, Then A is ml-measurable

by theorem 1,24,

of sets‘ on E' on which the measure m

Definition 1,2,8: Let L(SJC‘B(X) for a given set X which possesses
the following properties: |
(1) If Aeod | then € A,
(ii) Let {Ai} be a sequence of sets such that if each

A € e , then Aiﬁ'OJ (closure under countable union),
' i=1 '

Then CJ is defined to be a Boolean 5 -algebra on X,

Remark: It follows immediately that both X and @ are members of any
Boolean 6‘-algebra DJ’ oﬂ X, ‘

At this stage we make two observations, Firstly, the class
) is defined, satisfies the axioms

for a Boolean 5 -algebra or simply a G -algebra, and secondly, the

measure m, itself possesses the property of countable additivity
(theorem 1.2.,7). These considerations will motivate our next set

of definitions,

Definition 1,2,9:  Let X be a set and D(?C B(X) a .f-algebra on

- X, Then the pair (X, od ) shall be defined to be a measurable space,
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Definition 1,2,10: Let (X,od ) be a measurable space and . &

function frompg into the non-negative extended reals such that
1) U@ = o
had —
(1) L (U (a)) = > A4 where §a}is
i=l i=l
j = ¢ if i £ jo
Then_ii is called a measure on the measurable space (X,of )

any sequence of elements contained ino(?,and where Ai N A

~ and the triple (X, of , 14 ) is called a measure space. ‘

Definition 1,2,11: A measure space (X,of , 4 ) is called 0 -finite

if {Xi§ is a sequence such that

(1) % eof foralli=1, 2, ...

- (41) A(xi) ( +®
(444) J X, =X
i=1 ‘

Definition 1,2,12: A measure space (X, pf s M ) is called finite
if (X)) (+ =,

Definition 1,2,13: Let (x,d 4 M ) be a measure space such that for

any A € o , such that -4(A) = 0, then B is A -measurable for
any BC A, Then 44 is said to be a complete measure onoy 3
i.e, a measure space is complete if and only if every subset of a set

of measure zero is measurable,

. Theorem 1,2,9: Letg qui be a family of G -algebras on X, then

oy = QA(S)Q( -is a G =-algebra on X,
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Proof: (i) Let AC X be such that A € 58, Then A tod, for

every .odp,\f‘ %.o&j, Hence €A 6—;;8 « for every -Og,,\é En:?j.

Hence Ca tDX = QDC? PR Therefore o(? " is closed under complementation,
(ii) Let g.Ai g be a sequence of‘sets such that A, ead

for each i = 1, 2, ,.. Th:P A3.64Q84 for each # | or g.Ai } < qaél(

for each & , LetA= U/ A, and note that A ¢ bé?‘,( fdr every < ,

Hence A eckQ , and it folizis thatikg is closed under countable union,

The theorem. follows,

Remark: If ZC B(X), theorem 1,2,9 indicates that there always

exists a smallest ¢ -algebra which contains %X ,

Definition 1,2,1h: Let @ be the open sets of E', and @ the smallest‘.

o -algebra which contains 8, Then @ is called the class of Borel

sets or sometimes Baire sets on E',

Definition 1.2,15: When my is restricted to Q , we refer to it as

the classical Borel measure,

Definition 1,2,16: When a measure Al is defined on (E',03 ), it is

called

(i) a Borel measure,
(ii) a Baire measure,

" (4ii) a Radon measure,

Theorem 1,2,10: The measure space (X,@v . ml) is not complete,
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Definition 1,2,17: Let 1< B(E') be defined such that N¢ 7%

if and only if NC A for some A¢{S such that ml(A) = 0, The least

6 ~algebra X- which containsBv J"V} is called the completion of 3

Theorem 1,2,11: The family &L which is thé completion of B is

the G -algebra of m,-measurable sets defined in definitions 1,2,6

1
and 1,2,7. ,

Remark: d\i, is called the 9 -algebra of Lebesgue measurable sets,

In general we shall be more interested in the Borel or Radon measures

than in the actual Lebesgue measures,

Definition 1.2,18: Let (X,of ) and (Y, né)’) be measurable spaces

and let X x Y be the Cartesian product of X and Y, Now consider the
/
set {AxB : Aced ~and Bt'xsé)} « We call A x B a measurable
/
rectangle and defineog xn(? "to be the least ¢ -algebra which contains

/
the set g (A x B)% of all measurable rectangles, Then (X x ¥, of x5 )

. . I'd
is a measurable space called the product space of (X, of) and (Y,nc? ).

, ’ : |
Definition 1,2,19: Let (X, of ,-4 ) and (Y,of , v) be two measure

. ’ _ ’
spaces, We can define a measure /\ on the product space (X x Y, oy xog )

as follows:

(i) If A x B is a measurable rectangle, define V
A(A xB) =  _M(A)v(B) where we do not permit M(A) = 0 and v(B) = + ®

simultaneously,
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(ii) If = (-pyxog,, we let f 013 = ﬁo( be a countable

covering of z by measurable rectangles, and define /\o‘ = E A (Ci)\‘

i=1
Ve let \ *(z) = 5‘.;11‘%/\,43 and make use of the fact ( i7] , p.230)

that \* restricted to o<f x 43/ is a measure on 98'):08/ called the

product measure of 44 and v denoted by /\ = Ux v, Then the space

(X x ¥, o§ xo” A\ ) ie called the product measure space.

Remark: We define m,, the classical measure in Ez, to be moxm o
and can extend this process into higher dimensions to get mo the

classical measure in En, to be m, = ml b4 mn-l where n )/_ 24

Definition 1,2,20: Let (X,.J , 44 ) and (X,mo', v) be two measure-

spaces on the same measurable space, We say that v is absolutely
continuous with respect to 4 if for any € ) O, there exists a 6(€) ) O

such that v(A) ( € 4f (A) { & for any A€sd ,

Definition 1,2,21: A measure space (X,of ,2r ) is said to have a

. property almost everywhere on X denoted by a,e, on X if it has this

property everywhere on X, except on a set of U4 -measure zero,

Theorem 1,2,12: Let (X,D(S7 , 4 ) be a measure space and let f be

an extended real valued function on X, Then the following four

statements are equivalent:

(1)  For any real r, f-l(r, +=] € -DQ

(11) For any real r, £ 1[r, + =] ¢ <d
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(iii) For any real r, £1 [« =, r)e¢ _Dé)
(iv) For any real r, g1 [-= r _I € _03

The previous 4 statements imply‘the 5th:

(v) For any extended real r, £1 { r %e;&

Definition 1,2,21: Let ,(X,Pg ,JA‘) be a measure space and f an

‘extended real valued function on X, Then we define f to be measurable

(or -4 -measurable) if it satisfies any one of the first four assertions

of theorem 1,2,12,

Remark: It is immediate that if f is measurable on (X,o{Y ,4 ), then

f_~1 (1) ¢ D(? where 1 is any interval in the extended reals,

Theorem 1,2,13:  If f and g are measurable on (X,of ,-1), then

(f +g), of and |f] are also measurable on (X,of ,.u« ) for r any
real number,
We now consider some integration theory, restricing ourselves

to bounded real valued functions,

Definition 1,2,22: Let (X,DX ,4 ) be a measure space and {Ai% ’
m

1§ 1¢ m a finite subset ofod .  The function © = —Z_ rsXa
' i
i=1

whereXA is the characteristic function on A
5 i

o OonX-Ai



~and r; a finite sequence of real numbers, is called a simple

function on (X,0d , 4 ),

Definition 1,2,23: If (X, ,4t ) is a measure space and A€ of .

we define the integral of with respect to -4 to be X, du =
Ay Ay
x .

, _ n
Definition 1,2,24: Jf (x,pé ,AM ) is a measure space and ¥ = E

is a simple function on X we define the 1ntegra1 of ¢ with respect

m
to _u to be S Pap = E ri«U(Ai).
: X
i=1

Definition 1,2,25: Let f be a bounded real valued function on the

measure space (.X'OJ , A1), and let § be the family of simple functions

such that € P if and only if @ ) f on X, We define the upper

integral of f with respect to ¢ to be 5 fdp = in% g .5 P dp§ .
’ X Pe X

Definition 1,2,26: Let f be defined as in definition 1,2 25, e

define ¥ to be the family of simple functlons on (X, J 4t ) such

that we'Y if and only if v { fon X, We define the lower integral

of £ with fespect to_u to be g fdp = sup gs v dn 3 .
= Yep
(x X , ,
Theorem 1,2,14: It is always true that 5 fap( 5 £ dn.
-(x) X

Definition 1,2,27:  If f is bounded on the measure space (X'DJ s A)

then we say that f is integrable or summable with respect to A4

if and only if 5 )' faps= g fdn and denote the common value by
(x X

S fdu, We call the value of 5 fdp the integral of f with respect
X

toM.

(4).

3 XA.
i
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Theorem 1,2,15: A bounded function f on (x,o<? , -4 ) is integrable

with respect to_u if and only if it is measurable with respect to.-U ,

Definition 1,2,28: Let f be an extended real valued function where
£ ) O on the measure space (X,od , -4 ), and let f . =fA n=inf {f,n%

on X, We define 5 fdqp = Zim fnd}l. provided that fn is

M~-integrable for each n,
Remark: In an analogous manner to definition 1,2.28,- we define the ’
integral of a negative function, We allow the possibility that

S fau = + for £ ) O, Some authors do not permit thiss
X

Definition 1,2,29:¢ Let f be an extended real valued function oh

(X,od, 44 ) and denote £* = £VO and £~ = - (£A0), We define

_S fdp to exist if and only if S £t dp and f £ dp both exist
X X X

and are not both infinite simultaneously, We then define

gfdu = S fau - 5 £ du,
X X X

Remark: A bounded function f is -integrable if and only if it
is st -measurable, and this is also true of a positive function, But
in general, the class of M -summable (integrable) functions are a

proper subclass of the class of A -measurable functions.

Theorem 1,2,16: If f and g are M ~summable on (X,od , U ) then

so is f+g and rf for r a real number, It follows that

Sj(f+g) dn = S fap + S gdp and Srfdpar Svfd)x,
X X X X X




32

Theorem 1,2,17: (Radon-Nikodym Theorem), Let (X,«J WA ) and.

(X,pJ , V) be ¢ -finite measure spaces and assume that v is absolutely
continuous with respect tou ., Then for any Afﬁé) , it follows that

v(A) = 5 f du where f is some p-measurable function on X, The
A

function f is unique up to sets of .i-measure zero,
Remark: The function f need only be defined a,e, on X with respect
tOﬂ - S ‘ ‘\

Definition 1,2,%0: If (X, ,.t ) and (X, o , v) are o -finite

measure spaces where v(A) = _{ £ dp for f defined a,e, on X for
A

each A éo<? , then we say that f is the Radon-Nikodym derivative of

v with respect to R We also call f a density function of v with

respect to M ,
Throughout the remainder of this section we shall only
consider measures on compact T2 spaces, We require first some

definitions from functional analysis,

Definition 1,2,31: Let (X,‘d) be a metric space and gxn% a sequence

of points in X,  We define gxn% to be a Caucﬁy sequence if and only

if for any & ) O, there exists an no( € ) such that d(x , x ) (€ when-
ever n, m ) n..

Definition 1,2,32: A metric space (X,d) is called complete if and

only if every Cauchy sequence %x n)s in X converges-to a point x ¢ X,




33

Definition 1,2,%%: Let W be a vector (linear) space over the reals

and let f be a function from W into the non-negative reals such that

(1) £(*) =0 if and only if X =0
(11) £ +y¥) { £ + £

(iii) £(rX) = |[r| £(*) for r a real number

Such a function on W is called a norm,

Definition 1,2,34: A normed linear space (W,f) is a vector space W

endowed with a norm f,

Remark: A normed linear space (W,f) may be thought of as a metric
space by defining d(R,¥) = £(%-F). The metric d is said to be deduced

from the norm f,

Definition 1,2,35: If a normed linear space (W,f) is complete with

respect to the metric d deducible from the norm f, we call it a

Banach space,

Definition 1,2,%6: Let W be a vector space over the reals, and x'

a function from W info the reals such that

(1) x' &) = x'(F) + x'(F) and

(11) x' (rx) = rx' (%)

for any real number r, then x' is called a linear functional on W,

Remark: = The collection of linear functionals on W may be made into

a vector space by defining (x' + y') = 2' to be z'(X) = x'(X) + y'(X)
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for each X € W, and by defining (rx') = z" to be 2"(%X) = r(x'(X)),

ra feal number, for each X € W,

Definition 1,2,37: The collection of linear functionals on W when

thought of as a vector space, is called the (algebraic) dual space

and denoted by W',

Definition 1,2,38: If (W,f) is a Banach SPace,~then x'e W' is said

to be a continuous linear functional if and only if for any € ) O, there

exists a & (£ ) ) O such that [x' (X)| (€ whenever £(3) (yb;

Definition 1,2.39: Let (W,f) be a Banach space, The continuous

linear functionals form a subspace of W' denoted by W*, and is called the

topological dual space of W with respect to the norm f,

Definition 1,2,40: Let (x,J ) be a compact T2 space and gva continuous

function from X into the reals, The uniform norm of g, denoted by || g |l

is defined to be llgll= sup {lg(x)I} .
v xeX

Definition 1,2,41: Let (X,7) ) be a compact T, space, Define C to
- be the set of continuous functions from X into E' such that C is
endowéd with a vector structure and the uniform norm, C then becomes

& normed linear space,

Theorem 1,2,18 ( [i],, p, 395), The normed linear space C that was

defined in definition 1,2,41 is a Banach space,

~ Theorem 1,2,19: Let (X,7J) be é~compact T2 space and (X,DJ y JA ) be

a measure space whereaj constitutes the ¢ -algebra of Borel sets on X,
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‘Then any continuous extended real valued function f on X is a

p-measurable function,

Proof: Since f is continuous, it follows that 1 (r, + ) is an
open subset of X for any real r and hence f-l(r, + “)fﬂiky . From

definition 1,2,21, f is e} -measurable function,

Remark: For any finite Radon (Borel) measure M on the compact
space (X,J ), it is not hard to see that it is a member of C*, the
topological dual of C withrespecttothe uniform norm, What is not

so obvious, is the converse,

Definition 1,2,42: A linear functional A €C* is said to be positive

if and only if A(f) ) O, where £€C and £ ) O on X,
Remark: A positive linear functional is always continuous,

Theorem 1,2,20: (Riesz Representation Theorem), Let (X,7 ) be a

compact T2 space,'C the Banach space of continuous real valued functioné
on X, and C* the topological dual of C, Let A<C* be a positive linear
functional on C, Then there is a Borel measure g on X such that

x(£) = St dp for every fe C,
‘ X

Remark: It is common to identify a positive linear functional with

its representation measure; and since any continuous function is
measurable with respect to this measure, it follows that the open sets
are also measurablé, and hence the ¢ -algebra of measurable sets contains

at least the Borel sets, It is for this reason that Bourbaki is able
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~ to define a Radon measure on X to be a member of C*, We further
remark that there is a Riesz representation theorem for all of C*,
but in this more general case, the representation measures may be

signed measures, However, this level of generality is not required

here,
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§:§ Aspects of the Green calculus'of n-dimensional uénifolds

The material of this section propérly belongs to the general
theory of integration on manifolds, and fhe modern theory of differential
forms, We shall not develop a detailed account of this theory, but
shall merely mention a few results which are nécessary for our later
work in harmonic‘}unctions. Our chief references will be M, Spivak [18] |
and H, Flanders [13] . We seek an n-dimensional representation

of the divergence theorem of Gauss,

Let us first introduce some definitions and notation,

Definition 1,%,1: Let < denote the vector operator (%;; o ooy 3%-)
=22, : 3

relative to En.

Definition 1,%,.2:¢ A function f from En into E' is said to be a member

of CK if and only if f possesses continuous partial derivatives of all

orders up to and including K,

Definition 1,3,%: If f is a C' function from E into E', then

G- (f fxn) which is a function from E® into E', is called

x1| seey
the gradient of f,

Definition 1,3,k Itg = (gl, coay sn) is a C' function from Eg

into E® (which means that g; € C' for all i, 1{ 1 n), then

n og
T.8= E (3;?)' is called the divergence of g, We note that
' i=1

t_7> .‘§ is a function from E® into E',
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Definition 1,3,5: If ¢ En, where '«l = 1, then we replace < by the

symbol & o

Definition 1,3,6: If £ is a C' function on a region RcEn, then

we define the directional derivative of f at ;o € R in the direction
fim £ +h&) - £(x) / | ~
h— 0+ ™ s Which is equal to

of & to be

(D (J?o))-;\( and often written (-g—;) @c) .

n 2

- . —
Definition 1,%3,7: The operator ©.¥ or VZ = Z —a—-é- is
» =1 %

called the Laplacian operator, which is of fundamental importance in

our later definitions of harmonic functions,

Definition 1,3,8:  Let MC E® be a Jordan manifold such that

M= {3&En:g(§)=03 where ge C' in E°, Let § ¢ M, then

by analogy with classical E2 and 127 theory, we define the vector

(3 g&, to be a_normal vector to the manifold M at the point ?l),

denoted by -ﬁa».

Definition 1,%,9: A Jordan manifold MC E® such that

M= {Se E' : g(®) = O} where ge C' in E* is called smooth.

. > >
Definition 1,%,10: The set of vectors of the form V=p = ?1) where

V. ﬁa = O are called the set of tangent vectors to M at 4§, The

set of such tangent vectors ai'e referred to as the tangent space to M

at 4. The tangent space is a copy of En-l.
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_ Definition 1,3,11: Let MC o be a smooth Jordan manifold and T

be its projection function into an (n~1l) subspace E° -1. We assume
that M and En-l are so chosen that T is a one-to-one function, and
. A En-l A
let M* = T(M), Let N be the unit normal vector to and nia
. N
be the unit normal vector to M at ii We require that Anixv R N A0
for any _q)e M. We define a measure on M, denoted by crn—l’ whose

density function at geM with respect to the classical measure mo_3

. - ) =ry
on B 1 is /'1 - In other vords S d Gan-l = S dmn-—l(q )
> . ' P
| | 8. A M "Gl

where §' = T(3).

Remark: In .EZ, o 1 is the measure for arc length of a curve,

IfM.-:{(x, y) :y:f(x)éci,o\(x(b} , then

l ,]\' = /1 + £ (x)2 and therefore 5 do, = S \/1 + 29007 ax,
An.ﬁ‘l M a

In EB, 0"2 is the measure for surface area, If M = g(x, s z) ¢

z=f(x,y)c—C'onRCE2§ , then |A1A|=\/1+fi +f§,and
S do = - S \/ 1+ f2 + f2 dn_, - In the modern terminology

of measure theory, the density function ——
| . ]

is called the

with respect to m

n-1

Radon-Nikodym derivative of o~ -1

Before proceeding further with the Green célcu_lus, we

require a few definitions from combinatorial topology.
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Definition 1,%,12: Let gfl, Jees s?p} = A, denote a finite set

of points in E® of which there are p members, The closed convex

hull of A, denoted by [Ap] , is then defined by the set

. , P
[AP]=§§<~E”:SE = pz, t, % where t; ) O and zti:lg'
. i:l i=1

Remark: X ¢ [ATJ may be regarded as the centre of mass of the unit

mass distribution_u on>Ap, where_;x{xiz = ty, 1ilr.
e OO ) '
Definition 1,%,1%: A set Ap+1 = Xy Xye eees xb% c B° is said

to be independent if the vectors éVi»%, 1 ¢ i{ p, defined by

- .
v, = (2i - 35) are linearly independent in E°,

Definition 1,3,14: Let A, = R, Xy oeees SEP% C E® ve an

ordered set of (p+l) independent points in E° where p{ n. ‘Then the
closed convex hull [Ap+1] = X xl, cony x?] is called a

p-simplex'innEn.

Remark: A O-simplex is a singleton set,
A l-simplex is a directed closed line segment,
A 2-simplex is a closed ordered triangle,

The set Ap is called the vertices of the simplex [Ap] R

Definition 1,3,15: A specific ordering of the vertices of {A ] is

said to produce an orientation on [ﬁé} -

Definition 1.%,16: A permutation on the vertices of [Ag] is said

to be simple if any two adjacent vertices are permuted,
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Definition 1,%,17: Two orientations on Ap are said to be

equivalent if one can be transformed into the other by an even

number of simple permutations,

Remark: There are only two different orientations on a p~simplex
each of which is an equivalence class of orderings on the vertices,
In the case of EZ, we say that C is a Jordan curve of positive

orientation if the interior of C is to the left as one moves along

the curve,

We now return to the Green calculus and shall consider only
manifolds which have simple properties,  Such manifolds shall be
sufficient for our purposes, We now state without proof a version

of Green's theorem for the plane,

Theorem 1,3,1: (Green's Theorem ( [l] , P.289)), Let T = flt + £,
2

be a C' function from E2 into E2 and let R C. E™ be a Jordan region

£,

whose boundary 3R is a smooth Jordan curve with positive orientation,
We parameterize 3R to be the function = defined on I = [o, l]

so that 3R = SZ(E) and let T be the unit tangent vector on 3R,

af 2t

S §
denoted by t = (dt) . Then g Py )dm (f.%) do, .
R

We shall find it convenient to consider also the so-~called

divergence form of Green's theorem, Let 1 be the outer normal relative

-> -~
to 3R and focus our attention on S (f.n) do

aR - 1
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> ,
Theorem 1,3,2: Let £, R, 3R be defined as in theorem 1,3.1,

Then J (F.a) d o=, = J (V.9 dn. (where 5 (F.8) a o=
R 1 R 2 3R

denotes the total flux across the boundary 3R of ?.)

1
Proof: We briefly consider the relationship"between ’t\ and ﬁ. -
If t = cos 61 + sin 67 , then n = cos (8 - -g-)'\‘- + sin (0 - -;-)?: sin 8¢ -cos 67 ,

and therefore f.n = (f{t + f25' )-(sin 8C - cos 07 )

> A
= fl sin 0 = f2 cos 8 = F,t where

- A ~ . -
F= --fZL + flJ and called the conjugate of f, Hence

A of of
5 (f.n) a0, = 5 (F.t) doy = (3-3+ 6—3 ) dm, by theorem 1,3.2,
R - R R % y oo
of of '
The theorem follows because (-a-;l + -a-—i%—) = V. -i

Theorem 1,3,3: Let R (r),r,) = R be the region denoting the annulus

v ' > 12 > . -
between the. circles S1 = gx € EZ 2 xl o= rl} and S2 =gx€E2. Ixi = rzg

el

and consider R = RUs Us Let £ = £.0 + £.7 be a C' function on R

12 1 2

and assume that Sl and 82 are both oriented in the positive direction,
Then é (+.%) dn, = f (%, f) de, + f (F.A) ar, = .f (f.8)a ¢ ’

2 1 1 1

R S S aR
1 1

where fi is the outer normal to R,
Proof: We cut R into fwo pieces by the x-axis:

let il = {?= (x,y)€R : ¥ ),0}

= (x,y)eR:5( 0}

Nwl
]
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:‘[1={i’=(xy)eR y=0andr { x( rz}
T2={§=(x,y)e'§:y=0and-2{x\(-rl.g

8,9= {i’ =(x,y)es, 15 ) O'S

5,5= £ = (x,7)e 5, : ¥ 0&

5,.= % = (x,3)¢s,

y>/0‘1

-

tn
(]

oy
"
I

(x,3)¢ 8, : 3 O

Then f(’.'f) a, = [ (F.9) an . J (3.9 an,

2 oy
R
But _:f @ .9 dn, = J @ acr 1
B o”y
= Ja@ ) doy + f(i"n)do— f(fn)d'" f(fn)dv""
Sa1 I Sn I
and ﬁf- @ . an, = _if (F.8) a + sf (f.)de, +{<f.ﬁ>dﬂ'1+sf (F.ary
-2 1 12 2

Since the outer normal to 'ﬁl is the inner normal to -ﬁz along I, or I,,

therefore, the integrals along the I's all cancel and we get



J@ba+ JEDao -
: Rl RZ 2

JEDan s JEDar+ [ G e+ (.0 d o
S 13 b s |
21 11 12 22

1

éf(f'.ﬁ) sy + J @D ac, .

1 Sy

Hence _:[(‘V' K9] dm, = f (£.7) da, + f (F.8) day and the theorem
R S S
2 1

is proved, -

Remark: In the statement of theorem 1.,3.,3, the unit normal vector is

always exterior to R, Hence f (F, n)dG‘ = j (f.8 o) 497y, vhere
v- 2 2
ne is the outer normal to the ball B @), But
rs>
I( M) da, = - f (?.ﬁe) dq7 where ?xe is the outer unit normal
S s
1 1

to the ball B_ (3),
1

We now state the n-dimensional divergence theorem for a ball,
More general regions could be considered, but the ball and annular

regions between two spheres will be sufficient for our purposes,

Theorem 1,%,4: ( [18] s P.123) (n-dimensional divergence theorem)

Let £ be a C' function from ﬁr @) = Bc E® into E*.and S = @B,
o
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Then ‘ﬁJ (3.5) dm =~ = J- (F.8) a7 where § is the outer normal

n-l

S

vector to B and S is endowed with the proper orientation,
Theorem 1,3,5: Let R = R} n R, where R, € E" is the intérior of the

sphere 32 union 82 itself,and §i < E" is the exterior of the sphere

S1 union Sl itself, where Slc RZ; Let T be a C' function from the

ennular region R into En. Then

S Pam = [ @ERar .+ [ (FD ar 1= J GRar 1

R n 3 -1 g n-1 3R n-
1 2

where 1 is taken to be exterior to R in all cases,

Proof: The theorem follows by reasoning similar to that in the

proof of theorem 1,3%,3,

Remark: ) Again, as in the statement of theorem 1,3,5, the unit normal

vector is always exterior to R, Hence f (f’.ﬁ)dd‘ f (f.4 )dﬁ'
: | F
2
where 'ﬁe is the outer normal to the ball §2 whose boundary is SZ‘ But
@ A = A A |
J (f.n s 4 = - g (f.ne) dg,_, where i is the outer normal
1

to the ball '1-31 whose boundary is S,

Theorem 1,3,6: Let u and V be C2 functions from E° into E',

Then T, (uI V) = u(’\'7 V)+ (FTu)e V),




n

. e ot av Wy oo b
Proof: The left side gives We(u ax, 7" u axn) = 2 %, ( axi)

i=1

n . n > : n > n

< d udVv - ug V.. ou av av du
But Z. axi (axi ) = Z_ (axa + axi axi) =u Z ax2 + Z (axi

i=1 i=l i i=l i i=1

the right side,

Theorem 1,3,7: (Green's first 3dentity). Let R be either a ball

or annular region in En, Then

S u & aT = RJ (€2 +3u.3V) @ .

oR ot

Proof: If f€C' on R, then f(ﬁ’ D oam = J(f’.ﬁ) da, 4
: R n 3R n=

where fi is the outer normal to .ﬁ, If uwand V are 02 functions, let

f=u (¥V). Then a'{z u(@ V)hde ;) = ﬁJ(u(VZV) +Ju,SV) am_ .

Theorem 1,3,8: (Green's second identity). Let u and V be C2 functions

on Rc En , where R is either a closed ball or annular domain, Then

a_lg Doy (i—f;)} ar, g (v - vvPw] am,

Proof: From theorem 1,3,7, we have .
,J u (9{') e, = J’ (_u( VZV) u, I JV] dm  and also
oR on R
du ' ‘ ) 2 = = »,
j V(=)daT = J v(y© u) +VV'Vu] dm_,
88 an o1 R \ ' n

Subtracting the last equation from the first, our theorem follows,

(=]

<3

(o]
9
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§4 Convergence and envelope theory

In this section we shall find it convenient to formally
introduce a compactification on E' called the two point compactification

o
and denote it by E#, We shall also refer to E as the extended real

line,

Definition 1,4,1: Let the underlying set of the extended real line

be E¥ = E' U {4+ *}V {- ©\ yhere + * and - « are two new elements

added to E',

Definition 1.,4.2: Let ¢ be a function from I-= [~ n/2, u/21

onto E¥ defined as follows:

¢(x) = tan x if x € (~n/2, /2)
1>(1c/25 =+ @
¢("1I/2) = = °°o

Then ¢ is a one-to-one map;iing of ‘]-Z onto E%‘F . We now define a

; : 4 - e
topology J on E¥ such that 0€J" if and only if ¢ Lioye Jf where
j:—[ is the usual topology of E' relativized to I, The topological

space (E* . j#) is called the extended real line,

Remark: The topological spaces C[, J -I) and(Ew, J#) are homeomorphic,
We stress that the elements + ® and - ® have only topological value, and
cannot be treated algebraically. In future, many of our functions

will have their range in E" rather than in E',
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Definition 1,4,3:  Let §£;§, 1 i { n, be a finite family of

functions from a set X into the extended real line E#', The function

f defined on X such that f£(x) = sup {fi(x)hﬁ , 1{ i¢{n, for each
. t

xeX, is called the upper envelope of the family {fi} , 1{i{n,

n
and is denoted by the symbol f = V fi.
i=1

Definition 1,4,4:  Let {f,} be any family of functions from a

set X into E#, We define f the upper envelope of {f“\ in‘such a

way that f(x) = sup {f, (x)} for each xe X,

Definition 1,4,5: Let f be a function from a topological space

(x,J) into E'and let x, & X, Then rc Eis said to be a cluster

] 3 1
point of f at X, if re £(V') for evgry deleted ne:.ghbourhoo\d V! of Xge

Definition 1,4,6:  Let f be a function from a topological space

(x, d) into E¥ and x e X, The collection of cluster points of f
at X, is called the cluster set of f at x e We note that the closure

of £(V*) i,e, £(V'), is relative to the two point compactification,

Definition 1,4,7¢  Let f be a function from the topological space

(x, J ) into E#, and x € X, We define Lim “sup f(x ) = Zim £(x) to

X-rX ' X=X
© [

be the supremum (in E*) of the cluster set of f at Xe

Remark: Any function from a topological space (X,:T ) into E¥ always

possesses an upper limit in E#' at any x € X, Similarly we may define

Zim
XX
°

£(x) to be the infimum of the cluster set of f at x_.
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~ Definition 1,4,8: = A function f from a topological space (X, )

into E#Lis said to be upper semi—~continuous at xbe X if and only if

£(x ) ¥ Bim £(x),

XX
[+}

.Definition 1.4,9: A function f from,(X,j ) into ET is said to be

upper semi-continuous on X if and only if it is upper semi-continuous

at every point of X,

Remark: We may similarly define a function f to be lower semi-

continuous at x_€ X if and only if f(x ) £m f(x), A function
—_— ) o X— X,

f is defined to be lower semi-continuous on (X,J ) if and only if it

is lower semi~continuous at every point of X,

Theorem 1,4,1: A function f from (X,J ) into E¥ is continuous if

and only if it is both upper semiécontinuous and lower semi-continuous on X,
Proof: If £ is continuous and x_€X, then f(x ) = £im £(x) and

X=X
(]

hence f is both upper semi-continuous and lower-semicontinuous at X, ‘
If f is both upper semi~continuous and lower-semicontinuous at Xq then

f(xo) Yy #im  £(x) and f%?;— £(x) Y f(xo), It is always true that
o N

X X
ﬁ%g; £(x) 2im £(x), and the combined conditions of upper and
o X=X o
o
. - Ty £im
lower semicontinuity at x, force fim £ § £(x)) § =, &),
. X=X [+ .
o
Hence ﬁ#m f£(x) =_f(x°) = fim f(x) and f is centinuous at X,
%o ' XX

The argument extends over X itself,
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Theorem 1,4.,2:  Let ifo& be a family of continuous funétions on

(X, 3 ), and let f be the upper envelope of {f,}. Then f is lower

semicontinuous on X,

Proof: For any X, € X, we shall show that f is lower semi-

continuous at Xy Since £ ) f, for any & , it follows that

£im £im £im .
o x £ (x) ¥ % f‘,~ (%), But o x £, (x) = £im f‘(x) = fﬁ(xo)
[#] [o] [+ X~ X

)
. . Lim
since f, is continuous at x . It follows that $=_ = f(x) EN (XQ)

o
for each A and therefore is an upper bound for {f & (xo)} . Hence
Zim

XX

3 £(x) ) f(xo) because f(xo) is the least upper bound of {fd‘ (x°,)} .

Corollary: The lower envelope of if;& is upper sémi-—continuous.

Theorem 1,4,3: Let f and g be functions from (X, J ) into E¥ and

x,e¢ X, Then fm (£ + g) (%) $ 2im £f(x) + Zim g (x),
. XX X X X —>x

Proof: = Let Zm f(x) = 1, and Zim  g(x) = L,, and choose € ) O,
X=X, X X

Then there exists a deleted neighbourhood ¥, of x such that f(x) ¢ L + €/2
for any x € v, énd also a deleted neighbourhood V, of kxo such t.hat-

g{x) ¢ L, + €/2 ior any x € ‘Vz.
. for any xe¢ Vl N V2 which is also a deleted neighbourhood of Xy Hence

It follows that ﬁ(x):f(x)+g(x)(l~1+L2+ €

4im h(x){ L, +L, and the theorem follows,

X=X
o
. £im £im £im
Corollary: — x (f+g) () Y . f(x) + g(x),

X+ X
[+

: [+] [+
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Theorem 1,4.,4: For a function f from X into E#, it follows that

- (x} = inf §-£¢( .
e, (20 - nr et

Proof:  Let S = sup {f(x)}. Then S ), £(x) for all x€X and
xeX ’

therefore (~S) { - f(x) for all xe¢ X, Hence (-S) is a lower bound

for {-f(x)] and hence -S { inf {-f(x)} . . Let 8' = inf {-£(x)} ;
xeX x€X

then 8' { ~f(x) and hence (-S') ) £f(x) or -S' is an upper bound for

{f(x)\ . ~Hence (-8') ¥ S or 8' { (-8),

Corollary: When the argument of theorem 1,4,4 is applied locally,

ve obtain - dm  (£(x) = &L (or(x)),
X~ Xo [}

Theorem 1,4,5: Let f be any function from a topological space (X, 7 )
into the extended real line E#, We define a new function g on X such
that g(xo) = £im f(x) for every x,¢ X, Then g is upper semi-—

. X—> X
continuous on (X, 7).

Proof: Suppose the theorem is false, In such an event, there would

exist some x_ € X such that g(xo) { Zim g{x) = L say, We put
X-> X
o

L - g(xo) = 2€ ) 0, For any open neighbourhood V(xo), "there exists
x| € V(xo),xl # x such that g(xl) )L - €/20r g(xo) + -ge ¢ g(xl).
But V(xo) is also an open neighbourhood of x,, and hence there exists
x, € V(ico) such that x, # x; énd £(x,) ) g(xl) - €/2, (because

g(xl) = ﬁ . £f(x)). Sincelg(xl) - €/2) g(xo) + & therefore
1
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' f(xz) > g(xo) +€ . We have shown that for any neighbourhood
V(x ), there exists x, € V(x ), x, # x_, such that f(x,) > g (xo) + €

and hence Zim f(x) ) g (xo) + € . This contradicts the definition
X > X ’ .
o]

of g, It follows that g is upper semi-continuous,

. _ fim V .
Corollary: If glx ) = $——, £(x) for every x ¢ X, then g is

o
lower semi-continuous,

Theorem 1,4.,6: A function f from a topological space (X, J) into

E:#' is lower semi-~continuous if and only if f-l(r, +=) eJ where

r is any extended real and (r, + °°] means {x:  x§ + ”.} .

-

Proof: Let;. f be lower semi-continuous, and let V = f.l(r,‘ + °°]
for any given r, For any x,€ V it follows that f('xo) ) r and
hence for sufficiently smallé€) O it follows that xeV if

f(x) » f(x ) -€ . Hence Visa neighbourhood of x_ and since x_
is arbitrary it follows that V is a neighbourhood of each of its
points, Hence V is open, Now suppose ful(r, + °°] is open for any
reEY and let x,€ X, Choose € ) O and let r = f(x ), Then
f"l(ro -€, + | constitutes an opén neighbourhood of x ,and it

follows that ZiM-
X~ X

therefore ’ﬁ}f x f(x) ¥ £(x)) and the lower semi-continuity of f

f(x) ) r, -€ . Since €) 0 was arbitrary,

follows,

Corollary: A function f from (X, ) into E¥ isu per semi-continuous
Corollary ' Pper 3

if and only if £1 [ -, r)e J for any re¢ EY,
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" Theorem 1,447:. Let f be a lower semi~continuous function from

(X, J) into E*and K a compact subset of X, Let S = inf if(x)} .

‘ xe X
Then there exists X, € K such that f(xo) = S,
Proof: We first construct a sequence {xn‘k on K such that -

Lim f£(x ) = 8, Since K is compact, the sequence {x ] possesses
i 0 n n

a subsequence {x mi;} vwhich converges to a point X, ¢ K, Hencé

,iezixiw f(xncb) = S and ,f.‘:mw X (17 %,» For a genmerel £, S § f(x),

but since f is lower semi continuous f£(x ) § 4im £(x
o o n

(s)) =8

and the theorem follows,

Corollary: An upper semi-continuous function attains its supermum

on a compact subset of a topological space (X, J ).

We now consider a fundamental structure theorem pertaining

to lower semicontinuous functions, ( {191 , p.36).

Theorem 1,4,8: ILet £ ) O be a lower semi-continuous function on é.

metric space (X,d), Then there exists a monotone non decreasing
sequence {¢ n“‘ of continuous functions from (X, 4) into E' such that

f(x) = Lim ?q (x) for every x € X,
n->

Proof: We shall assume that £ # + ®, For each x& X, we define

P, (x) = inf {f(y) + nd (x,y)} , and note that @ (x) is finite
yeX o
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for every x€X, and that @ . (x) Yy q)n(x) for every xe X, We
shall first show that ¢ is a continuous function, Let xe¢ X,
x'e X such that d(x,x') = 6, Then there exists y_(6) € X such
that @ (x) + 56 ) f(yo) + nd(x,y_) by definition of @ (x),

But (Pn(x') 4 f(yo) + nd(x',yo) 4 f(yo) + n(d(x',x )+d(x,y°)) '
by the triangle inequality, Hence

: ?n(x') 4 f(yo) + nd(x,y_) + nb 4 (Qn(x) +5) + 06, It follows

that (¢ (x' ) - @ (x)) ( (n+1) d(x,x'), By a similar reasoning
process we can show that (q)n(x) - <}’n(x')) ( (n + 1) d(x,x') and
hence \‘Pn(x) - ‘Pn(x')‘< (n +1) d (x, x'). The continuity of ¢
follows and hence {(pn\ is a monotone sequence of continuous functions,
It remains to be shown that f(x) = £im <pn(x) for each x ¢ X,

n—r*

Since 'Pn(x) { (£(y) + na(x,y)) for any yeX, It follows tﬁat
P, () L £(x) + nd(x,x), or ¢ (x){ f(x) forn =1, 2, ...

Since f is lower semi-continuous at x& X, it follows that for any

€) 0, £f(x') > £f(x) -€& where x' lieé in some‘ g -neighbourhood of

x where p depends on €, Hence f(x') ) f(x) -€ if da(x',x) (R

and we note that f(x') + nd(x,x') > ng if alx,x') » ¢ . For

fixed x€¢ X, we can choose§ n sufficiently large so that np > £(x) -€ .

For such an n it follows that _f(xA') + nd(x,x') ) f(x) - €, for every

x'¢ X, and hence q‘n(x) Y £f(x) =€ because ‘Pn(x) = ix'lz f(x') + nd (x’xv' )} .

Since € ) 0 is arbitrary, therefore, Zim ®n (x) ¥ £(x), but £(x)
n-r*® '
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is an upper bound for iqbn(x)"; and therefore f(x) 3 £im @n(x).
n>*

It follows that f(x) = Zim tPn(x) and the theorem is proved,
n-**

The remgining theorems of this section will involve
convergence theory applied to measure and integration, We observe
from theorem 1,4,6 that if f is the characteristic function on a
set AS X where (X,J ) is a topological space, then f = X'A is lower
semi~continuous if and only if A is open, and f is upper semi—continuous

if and only if A is closed,

Theorem 1,4,9: ( [14¥] , p.112) (Monotone convergence theorem)

Let (X,d, ~ ) be a measure space and {f} a monotone non-decreasing

sequence of extended real valued functions each of which is integrable,

Then f = £im fn is integrable where convergence is point wise and
n-» :

f fap = Zim J § du where we allow the possibility that

X n—~* X ‘ ' ’

St = + =,

X

Theorem 1,4,10:( fi4) , p.110) (Dominated convergence theorem)

Let (X, 8 , 4 ) be a measure space and ’{fn's a sequence of

M ~integrable functions which converges to f almost evérywhere
with respect to &, If there exists a g -integrable function denoted
by g such that Ifn(x)\ $ \g(x)\ almost everywhere for all n, then

f is integrable and  J fap = &im [ £ dp.
X X

n-r «
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' Remark: Let A be a bounded subset of E' and m, the Lebesgue measuz;e'

1

on E', Aset B¢E'is ml-measurab’le if and only if its characteristic

function % 5 is m -measurable and it follows that m,(B) = fx(B) dm

1
Bt
where X is the characterlstlc function of B and the outer Lebesgue
measure of A is m,* (A) = j 4 dm, where jxdm = inf f(x ) dm\
E'

where { 13 is the family of m 1-measurable sets such that B, A and
hence %B& )/XA. { X, dm = inf Eﬁ[ (‘xo‘) dm:&whereXOA

is the family of open sets such that each 0D 4, and hence.xo& ) xA‘
Since every xc‘his lower semi-continuous and since every xB which is lower
semi~continuous is the characteristic function of an open set, the

following theorem holds,

Theorem 1,4,11: If ACE', it follows that m *(4) = J (%) dm, =

; i B |
inf { j P, dm‘X where iQ‘;‘,is the family of lower semi-continuous
Py B 1

functions each of which dominates X‘A’ that is ‘\‘& )/X’A for every Ao

Proof: The family {CF‘_} contains the family{xo} where O, is any
£

open set containing A, and therefore inf dm inf{ ( )dm-s =m,*(A),
o o . e e 5 11 € it (L) <

For any {. we define (Pi as follows:

ol(x) =1, if (=) y1.
Q‘k(x)v.: 0, if @(x) < 1,
Since D-s + “} = N - -:'; , + “] , therefore <P-l (1 " oo]=
n=1. &

o
7o,
)

5 n--

°°} is a G set and hence ?l is a simple,Borel
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measurable function, Since g K¢ Q. it follows that
™

m* (a) = inf {ﬁf' g | ¢ inf {%' ¢, )} . If we

combine the two inequalities the theorem follows,

Corollary: Let f be a simple function relative to m Then

1.
Ef'. fdml = iif { f:{ (p‘dml} where {?‘;3 is.the family of lower semi-

continuous functions each member of which dominates f,

Corollary: Let f be any function from E' into E¥,  Then

f;j: fom) = inf { ﬁI' $, dm;} where {9 is the family of lower semi-
continuous functions each member of which dominates f,

General Remarks for this Section

Let (X,J) ve al coﬁpact T, space, and C the Banach space
of continuous real valued functions on X, Then every positive
linear functional on C, which necessarily is a membef of C* also, may
by virtue of the Riesz representation theorem be identified ﬁth a
measure s on X, which Bourbaki calls a Radon measure,} Since the
continuous functions on X are #-integrable and hence A -measurable
it follows that the open sets in (X,7) are in the g~-algebra .4
of the domain of ., and hence 4 is either the Borel ‘sets with res-
pect to (X,ﬂ ) or some G=-algebra containing the Borel sets, Hence,
any lower semi-continuous function f from (X,J ) into E¥ is M-measur-

able and if f ) O, then f is yL-integrable allowing the possibility
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. %fd,u, =+ %, ' ‘In fact ?(rfdp = ﬁiin*m 3{fn.d,u where {fn}

is a monotone non-decreasing sequence of continuous functions

which converges pointwiseto f, ‘Finally if g is any function from

X into E#: one can define j g du = inf { f 9, d}{} where {0};& is
X AN 5 ¢

the family of lower semi-continuous functions each of which dominates

g on X, and J ) gdjL = sip {J ¥, d,u,} where {\h} is the family
“(x X

of upper semi-continuous functions each of which is less than or equal

to g on X, These definitions can be made consistent with the earlier

ones in section 2 of this chapter by extending the argument of

theorem 1,4,11 into more general spaces, Then the function g is

M -integrable if and only if [g du = fg dy and if g is s~
integrable, it is U -measurable, In the case where g is bounded,

then g is u ~integrable if and only if it is ')u- -measurable,



II, SOME FUNDAMENTAL RESULTS OF HARMONIC

AND SUBHARMONIC FUNCTION THEORY

§1 Aspects of harmonic function theory

Definition 2,1,1: A function u ekCZ defined on a region Rc E®

and satisfying the equation V72 u = O at all points of R is said to
be harmonic there, '

Laplace's partial differential equation is a fundamental
object of study in this thesis, Indeed, the class of solutions of
it defined in E® - {0} which depend only on the distance r from the
origin, play a major role in our development, We prove the follow-

ing theorem,

Theorem 2,1,1: Let u depend on r alone and satisfy Laplace's partial

differential equation on En - {()} . Then u =glog r + b for n =2

c
n-2
r

where a and b are real constants, and u = + d for n ), 3 where

where ¢ and d are real constants,

Proof: Since €72 u=0inE - {O} , %2, and uis a function of

2 2 2 ar .
r alone, where r = :E x ;4 wWe have 2r > = 2 x, and hence

i=1 i
x,

or - i . _

3%, = = for ; = l, eeey B,

59
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-~

. @y ATy | i) (=) since M. &
Therefore " (ar) (ax_i) = u'(r) (— ) since == =,
x
232 %42 r -x'i(—-f-)
and —, = u" (=7 +u'( 5 ) fori=1, .., n
aﬁii r
T ' u'xi
= u" ( 21) + -;‘l- - .
r 0
s . n > n n
" ~ ) ] .
Then WVou = E a“2= 2-2-( E_%§)+5%--§-3—( Exzi)v
a1 9%y roia TS
2
C @y, omt_ow e, e
=uw' () + ¢ = u' & S .
r
. t
It V2u = 0, then u" + {n-1)ut = O which is a second order ordinary

r

differential equation, If we let u' = V, then V' + 0 1is

(n-1) V

Ao .
r

a first order linear differential equation, Multiplying the last

equation by<the integrating factor e T - r s we have

V! rn'l + (n=1) 2 ¥V - 0 and hence (Vrn";)' = O which implies
vV = ——2—_—_]-_ if n ) 2, a a real constant, Thus u'(r) = nfl if n ) 2,
r

Case 1: n = 2: then u'(r) = % and hence u(r) =alog r + b, b a real

constant,
Case 2¢ n Y% 3 then u'(r) = axr]"'n and hence u(r) = a Srl"n dr
a 2-n
= i-n r + 4
= —— 4+ d where

¢ and d are real constants, The theorem follows,'
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Returning to our Green calculus and its relationship to

‘harmonic functions, we prove the following theorem,

Theorem 2,1,2¢ Let R be a Jordan region in E® whose boundary 9R is

a Jordan manifold which is smooth almost everywhere ( 6_ , measure),

and let ueCz. 5(\7 u) dm 5 ( ) do- , where

“we recall that O’;_l is the classical hypersurface measure on 8R,

Proof: We recall that Green's second identity states that

5 (uV2V - Vv u) dm, 5 (u ( ) - v(a“)) ao—

R an an -1

where u and V are both C> functions on RU 8 R, IfV =1 on R,
then 5 (v2) dn_ = 5 ( ) as l ,
R n n=te

The following corollary is then immediate:

Corollary: Under the hypothesis of theorem 2,1,2, if u is
harmonic, then 5 (& d q-n-rl z0.
3R oh

Theorem 2,1,%: (éreen's third identity for Ea). Let ue 02 and be

defined on a Jordan region RC Ea where 6)C~R, and where 3R is a

rectifiable Jordan curve which is smooth a,e( T ). Then

a1 -)
2n u(d) = 5 (e 1) @ -0 —2F Jao, - § 108 @ (v u) a,
af an R

Proof: I:et:gi =§i(3) = g§° I;I( 2} y 5= g? ,;c)[= i} and

R' =R - Ei wherei{c‘. R, Then 3R' = 3RU SE . From Green's second
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identity we have 5 (uv %y - vv2u) dm., S[ ( X) V('QE) ]d’“
R' aR'

where ﬁ is outer normal relative to R!' and u and V are both 02

- functions on R' @8R', But ’

S [u( )-V(au)]dO‘ - a% [u (-Z-‘éi-v-i—i]ao—“)sfa(: -v( )] ary .

aR!'

Therefore

RS' vV - V g%u) dn, = S[u@:) - v(a“)] ar, S[u@f), - vcgi;-)] do

1

because outer normal relative to R' on SE is inner normal to Bé on S2 .

The function V = log r is harmonic on R' and therefore

é' 0 - (log r) (3211) dm, = a«i[u i(—;‘ztsz)- (logr) ]du—- SS[U { -(log&)( )]dO".

€

2x
We analyze the term S("%) doy = % 5 u (S?i) € d0 where |x |=¢,

S 0
3

2n 2n 2n
Then S ‘ u(ftz )de = S [u(i’i) - u(g)] ae + S u(0) @ and hence
o o 0 :

¢ §
0

2x :
lS u®, ) do - 2vu(d)
0

-3 2 on
u(x,) - u(0) ld@ $ Mig d9 where
' 0

—,
Mo = Swp o (R) - u(@)
: Xe § -

3 3
Since u 1s continuous at 0 therefore Zim M

£—0

-5

2ru(0) = Zim ES -‘-&‘- do-l§ .
E—0 e

¢ = 0, and hence
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‘Similarly, we consider the term 5 (log € ) (-g—?- ) ao
S

From Green's second identity with V = 1, we have

(loge ) S( ) doy = logg S(VZ u) dm, and since (Vzu) is con-

E BE

tinuous and hence bounded on'ﬁi . therefore’Vz u|{Mon E&- .

It follows that ’ log ¢ S -gl;- a 0‘1,\< M!-logg.nga | for ¢ ) 0

and since Zim ¢ 2 logf = fim (l%ﬁ.f) = £im (_—g— \} = 0 by
>0 ‘ E—>0 = -0 ( =
o &2 65
L'Hopital's rule, therefore Zim S (log £ ) ( ) do, =0,
€0 S&

Hence

Lim S -(logrXv u)dm = S{_ (.._.252)) logr ( )] df‘l-,elmg do ., +.€1mSlog£( )dO"
&0 R! . é-—>03 S

and therefore

an

S log (--)(V u) dm,, S [log(—)( ) -u ( alog(- ] doy - 2nu(3)

or

1
alog(r)

2nu(®) = aSR loe@ &) - u ¢ ) Jaer) - RS log(3) (v %) dn,

on
The following corollary is then immediate,

Corollary: Under the hypothesis of theorem 2,1,3, if u is

also harmonic, then

@ - L S[lgu( >-u(a g(—)]ar—
on
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Theorem 2,141 ( [13] , p.74-75) Let B (o) be the closed uﬁlt ball
' n/2 :
in E* and sl(o) its boundary, Then S_) am =V o= ——f——

' B, (0) Y P(14n/2)

n/2 o
and 59 d Tl =81 % . A where ['(x) = S e-t t(x-l) dat
Sl(O) n I" (n/2) 0

for x Y 0 and ['(n+l) = n! if n is a natural number,
We consider now, the n~dimensional analogue of theorem 2,1,3,

for n ) 3,

Theorem 2,1,5:(Green's third identify for En, nY)3), Letuec 2 be

Y
defined on a Jordan region RC B where O €R and where 3R is an (n-1l)

Jordan manifold which is sufficiently smooth and where \3 do a1 ( +*,
oR
Then
5 du a(rn"' 5
@2) 5,5 9@ = I (G & - w5 (G272 an,
r h

Proof: We employ similar notation to that used in theorem 2.1,3,

Then fgS: [u(Vav?-V(V 2u)] dm ag'[ (a: -V (-g—;l)] do-,_, where nis

the outer unit normal relative to R! and where

[ (9-‘!> V(au)]dr S[u( ) - v(““)] ar 5[ (”) v ao .
n

oR' an
Let V = —L which is harmonic in R' by theorem 2,1.1,
Then

é' {w©-E v ] m_ - S [ °(r2:n (rz""’ﬂg%)]dfn-l
' A r

S[u-@-(-f—g) (2 ( )] da—
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Consider the first term

5 2-n ,2u A g_b_q 1 j’ 2
2@ ] am, = i V@ ar - A J(Rom,
SE r=¢ ¢ 'Si & Bi

by theorem 2,1,2,

Since Vzu is continuous on Bi and hence its absolute value is bounded

there by M say, therefore

1 j 2 Ml _ 2
S| YW [ SV, =MV €5,
¢ Bi 3
It follows that Aim S [rz-n & ] a o, =&in MW E% <o,
€0 s, r=¢ €0
Now consider term 5 {_u .‘1%’.__.) ‘) do 1 = S u(2-n) El-n do— l
S r r= n- S n-=
3 t e

-
G,
where xE Sa o

Then
1 S > 1 j n-1 >
_ £n-1 2 u(xi) do. 4 = ;1;1 ; £ u(x,) dos o =

€ 1

- Q [aGp @] a0 d u@rary , = (o, 0 sj[“(;;)"u(a)] "o

1 ! | 1
‘Since u is continuous, therefore l“(;g) - u(3) | ¢ M where fim M, = O,
: £—0
and hence

, §l{u(;i) - “(3)1d°_n_1 l( Ss lu(;:)i) - u(g) ld o1 § (HE) v(sn-l‘) and hence
1



66

) = (5w

Thus

£im j[o-( = 2404 20) dn =

£-0 R! 3

- 2-n
(_ a( - &) (a“)] do, ) ~2in y(” ) do 4 +.€im§2 yao, ..
Pleso s T 2=l e507%
' {3
Therefore
S 2-n, 3 2 j 2 2
(n-2) s, u(@®) = [( )¢ “) e ]ao— - JETH( )
' R

and the theorem follows,
The following corollary is then immediate,

Corollary: Under the hypothesis of theorem 2,1,5, if u is also
hérmonic, then

5 [ 2-n <au

u(®) =

aq
(n—-Z)S n-1

Theorem 2,1,6: (Mean value theorem). Let u be harmonic on the

ball Bo(0) = B, . Then u(0) = = S u(x,) do for x,¢ S,,
S $ 8.1 8 s n-1 S £
1
Proof: Case 1: n = 2, in which case 8 =2n

From the corollary of theorem 2,1,3 it follows that

u(®) = - 5[13()( )-u(ffi(—%-)) ] ar

5, g or =3 1

1 5 3u 1 dlogr \
=-—-(los () doy + = Su( ) d .,

5y S ar 1 s1 S? ar i 1
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By the corollary of theorem 2,1.,2, it follows that

S(-g%) dey = O and therefore u(O) - 5 u(x ) doy

8y 1
b3 S,
1 S\ -
m — u(x.,)§ do
1
- = S u(X,) do, which
s s 1l
1 Sl

is often called the linear mean of u on Se
Case 2: n ) 3,

From the corollary of theorem 2,1,5 it follows that

u(5) = (;1_2_)_8__- S 32—11 ( ) do n-1 _:Ss—- fu(;r;)(z-n) gl-n do

g -1 S

But by the corollary of theorem 2;1,2, the first term on the right

of the last equation is zero, Therefore cancelling the (n-2) factor,
ve gét v , _
¢ 1 j; n—l 1 J{ -3 »
u(0) = —= u(x ) ¥ do; 1 = u(x;) dot 4

s
57 % 5 nl 85

and the theorem follows,

Throughout the remainder of this thesis we shail denote the

1 = > .

integral = S u(x) do, by L (w, 0, § ). We will observe
n~-1 S

that the origin po%nt 8 was taken as the centre of S, in the above

discussions, but this was merely done so for convenience as any such

point i: ¢ E® would suffice by a translation and Sp would then be

n-1 °
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I
defined by Sg ={x :lx - X, l = 3’} We should also observe that

1 5 u(?éj,) do may be replaced by the equivalent
-3 n-1
n-1 Sl
expression j
, s, u(xf) do 4

Ssdﬁhl

which is a more apt notation for mean value,

We come now to a stronger form of theorem 2,1,6,

Theorem 2,1,7: (Extended form of the mean value theorem),
R ,
Let u be a harmonic on the ball B S’(O) = B and continuous on

Bo(® = B,Us,. ' Then u(® = L(u,3, 5 ).

S .
Proof: For any r {§ , it follows that u(0) = L (u, 8, ¥ ) by theorem

2.1,6, We shall show that L(u,-g, $) = £im L (u, 8, r) or 4im L(u,?)),r).

r—¥ r—>g§
r{S
N - 1 5 - I <>
ow L (u, 0, §) = < u (Xe') do- _, where X ¢ S, and
n-1 Sl
’ -
P U SO P
n-1 S.
1
Then L (u, 0, §) = L (u, O, r) = < [u(x:) - u(xr) do= 1.
' n-1 s, n

If ?f and ‘;r are on the same ray, then l;! - § = r and

% |
- >

since u is uniformly continuous on B.(0), it follows that for any £) O,

there exists 6(€ ) ) O such that l u(i'}) - u(;c)r) ,( € if

, %[ C8. If (P -r) (5, then

,L(u,(?g)-L(u,O r), (-—-——(&)( de‘
Sn-1 1

)€€,

n-1
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. ‘ - > -
Hence, Zim _ L (u, 0, r) = u(0) = L (u,0, §) and the theorem
r—§ :

follows,

Theorem 2,1,8: (Special form of the maximum principle for a ball):

- = , , .
Let u be harmonic on the cléosed ball B? (0), Then u cannot assume its

- >
maximun value relative to B, (0) at 0 unless u is constant,

Proof: From theorem 2,1,6 we have u(0) = S u(:?r) do nel
d . ’
S; o n~-l
r

for any r {§ .
R TP
If u attains its maximum at O, then u(0) do_ . = ulx )d o
' ’ n-1 s T n-1
S 5T - r
for any r { § and therefore [ u(0) - u(xr) ]drn-l = 0 for any
S :
r{§  wher ‘_u(ff) - u("’)] § OonsS Since (u(8)-u(x)) is
e Xr /4 re e (u r
~ -
continuous on S, therefore u(0) - u(x) = 0 on S ..
Since u(;:’r) = u(0) for any ;r ¢ S and for any r¢§, therefore

u(® = u®) on B, .

Theorem 2,1,9: (Maximum principle for a region (first form)),

Let u be harmonic on a region RCED and suppose u attains its maximum

_) ) -
value at xoé R, Then u is a constant function on R,

Proof:  We first consider a topological space (R,7Jg) vhere J .
is the usual topology of E® relativized to R, Let GCR be defined
so that G = %3’: ¢R s u (}) = u("io) %. ‘I‘ﬁen G is open in the usual
topology of E by theorem 2,1,8, and hence in rJ R because R is open

in E®, Since u is continuous, therefore GC R is a closed subset of
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R in relation to i]R because the singleton set{ u(;;)g ris closed in
E' and if u is continuous, then the inverse image of a closed set is
closed, Also we note that G £ #, Now consider the set G' = R-G .,
Since G is closed in (R,”Jp), then G' is open'in'(R,i]R) and therefore
R = GU G' where both G and G' are open in relation to ']R and GnG*' = ¢,

Since R is connected, therefore G' = for otherwise by definition 1,1,16,

R would have to be disconnected, The theorem follows,

- Corollary 1: If u is a non-constant harmonic function on a
bounded region RL En, which is continuous on R V 3R, then u attains

its supremum on and only on the boundary 9R,

Proof: Since u is continuous on the compact set Ruv 3R, therefore
u attains its supremum on Rv 3R, Since u is a non-constant harmonic
function, therefore u cannot attain its supremum on R by theorem 2,1,8,

Hence u attains its supremum on 3R,

Corollary 2: (Minimum Principle for a region (first form))
Let u be harmonic on a region RC E" and suppose u attains its minimum

value at 2; ¢ R, Then u is a constant function on R,
Proof: Similar to theorem 2,1.9,

Corollary 3: If u is a non-constant harmonic function on a bounded
region RC B which is continubus on RUQR, then u attains its infimum

on and only on the boundary aR,
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- Proof: Similar to corollary 1,

Theorem 2,1,10: (Maximum principle for a region (second form)

Let R be a bounded region in E' s and u a harmonic function on R,

with the additional condition that

£im u(®) { M for every X% 0R,
T X*
¥e R

** e B3R
" Then u(%) { M for all X ¢R,

Proof: Choose any € ) O and ** ¢ 3R, Then there exists a neigh-
: - -> ->
bourhood V(x*) of x* such that u { M + £ in V(x*)~ R, The set
év&*))ﬂ form an open covering of 3R and since 3R is compact, we
-
can extract out a finite subcovering of { V(x*)g denoted by
- n )
{v(}’*i); ;11 {n. LetR =R~ LJ V(x*) andnote
i=1 :

that the distance between a('ﬁ,c) and 3R is greater than zero, Since

i;c R is compact, therefore u is harmonic on -fle andu { M+ § on

aii,c . By corollary 1 of theorem 2,1,9, u { M +  throughout §t .
; n .
But u{(M+¢% in (U V(x"‘i)C-R and hence u { M + € throughout

i=1 \ _
R, Since ¢ ) O is arbitrary, u { M throughout R,
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&

~$2 some elements of subharmonic function theory

General Remarks:

In section 1 of this chapter, we learned that a harmonic

function u on a region R C En possesses on‘R the mean value property,

i, if B, (X)CR, then w() = Ly, X, r_). In chapter III, we
shall showqthat if u ig continuous on R and satisfies the mean value
prorerty everywhere on R, then u is harmonic on R, »Thus, a harmonic
function on R may be characterized in terms of properties involving
its integral mean rather than in terms of a solution of Laplace's
partial differential equatioﬁ. For a éubharmonic function, we shall
find it convenient to employ the integral mean as a fundamental tool
for defining such, 6ur'chief source of reference for this section

will be Radb's book [16] . Also in this section, all integrals will

be regarded as taken with respect to Radon measures,

Definition 2,2,1: Let u be an upper semi-continuous function from a

region RC EP into E*f We shall allow y to take on the value -=* but
not +%, Suppose that for any E; (;;)C;R, it follows that

v o
u(;b)'& L (u, 3;, ro). Then u is said to be subharmonic on R

provided that u ¥ - =,

Definition 2,2,2: A function u from a region R C.En into E#: is defined

to be superharmonic if and only if (-u) is subharmonie, -
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Theorem 2,2,1: Let u be subharmonic on gr (;CZ), and suppose that

, ° _
u attains its supremum at ;?o' Then u is constant on Br (xo).

o
Proof:  Si (x)§ =— 5 d {r h
oof': ince ulx ) § u Tn-l’ r § r, hence
n-1 S
r -
sn]-.l é [u - u(fo)] dg‘n—l}‘o‘ If u on Er (;?0) attains its
- .

- -,
supremum at ;c)o, then u(zo) - u(x) ) 0 for any X ¢s, (;t-;), and hence

51 S [u(:?o) - u] dr_ 4 ),0. Combining the two inequalities,
n-1 - S s o
it follows that 2 [u(xo) - u] do- . = O where u(xo) - u)0 on S,

r
Let u(X)) - uw(X) = V(X on S., and note that V(X) ) 0 is superharmonic

on S, Then ([14], p.104), V(X) =0 a.e, on S, with respect to

the o , measure, and in particular, the set where V = O is dense in

-> 2 :
Sr‘ Now let X] € S, and note that V(ﬁ) $ 4im o V().

-
X €8
r

Hence fZim V(x) = O since V(X) ) O and the subset of S, on which
x—+x1
b &3 Sr

V=0 is dense in S, Since V is lower semi-continuous and

V(X)) ) 0, it follows that V(¥) = 0, and since X, is arbitrary, then

V=0on Sr for any r oo Since r is arbitrary, V=0 on Er (:—c:))
‘ °

and the theorem is proved,
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Theorem 2,2,2: Let u be subharmonic on a region RC E" and suppose

-

9
that u attains its supremum at X ¢ R, Then u = u(i’o) on R,

‘Proof:  Let ACR such that X ¢A if and only if u(X) = u(x))., Ve

shall show that A is open, Let X; € A and ﬁ; (x)) €R, Since
1

. . -> — e d o >
u attains 1tsrsupremum at x,, therefore u = u(xl) in Brl(xl) by
theorem 2,2,1 and hence B (i’l)c A, It follows that A is an open
subset of R with respect to the relative topology ") R* Now let

" B=R-A, Veclaim that B is open in ‘JR also. Otherwise,
E?
1
> - -
Lim x'n =X and since u is upper semi-continuous, therefore
n—* - ‘ :
n(:?l) Y &im  u(x' ) = u(x¥ ). Hence "x‘; ¢ A which is a contradiction,
" n (<]
It follows that B is open with respect to 7} Hence R = A UB where
‘ R

if X, ¢ B, there exists a sequence £ ’i'nf in A such that

A, Be ‘JR and ANB = @, Since A £ @, it follows that B = § since R

is connected,

Theorem 2,2,3%: Let u be subharmonic in R¢C En. Then

5 —
u(xo)—~ Lim u(X) for any St’o& R,

[ X —>X
{?e R °
Proof: Since u is upper semi-continuous, therefore u(:?; ) ), £in p;(i’)
X—X }
°
£<R

let Zim  w(#) =L, Ifu(@) )L, thenu(X) =L +¢ uhere £) 0,
{x——>§° ° ° I
X¢R
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since fin _ u(@) = L, there exists B () C R such that
x——»?o : ,
X € R §

- ~> LD : - 2
u(x) { u (i’o), for any X ¢ Br(xo) - g xog . By theorem 2,2,1, it

u(§:) in Br(fz) which is a contradiction to the

1]

follows that u(®)

assumption that w(X) ) fim u(X) .

,:?-———-)fo
X € R }

Remark: Theorem 2,2,2 is a form of the maximum principle for sub-
harmonic functions, There is an anélogous minimum principle for
super-harmonic functionsj ~ for harmonic functions, both the maximum

and minimum principles are valid,

Theorem 2,2,4:¢ If u, and u_ are subharmonic on RC En, then

1 2
V= uy + u2 is subharmonic on R,
. 2> >y _ i
Proof: Let X ¢ R, and note that ul(xo) = £im_u, (),
X—X
u, (X)) = Zim u, (F), Then V(X)) = £im u (X) + £im u () Y fim (u, (R4 (D)),
2 o > = 2 0 <3 ] o > 2 -~ 1 2
XX, X%, XX, X—Xx

by theoremi.ﬁ.}, and hence V(;o) ¥ Zim V(X) from which it follows that
X—>X
o

V is upper semi-continuous at 3:’0 and hence on R, For anylgr(;c:)c R,

- - \< » -3 '

it fol;ows that ul(xo) L(ul, fo' r) and uz(i’o) {\L(ua, X, r), Hence
X)L (u, B, r) +L(u, :'c:, r) =L (u +u, X, r)or

V(J?o) S L, ?o’ r) and the theorem follows,
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Theorem 2,2,5: Let Uy, U, be subharmonic on R, Then

v defined so that V(X) = supg lil(:?), uz(-;c)))? for each

X ¢R, is subharmonic on R,
: . hocd - > R
Proof': We note that V(x ) = supf u, (%), u, (%) . Hence

> o > - Pyan -3
V(xo) p) fim o uy (¥X) and V(xo) ) Aim ua(xo). It follows that

X —%, XX
- — .
V(x,) ), Aim (u,vu,), so that V is upper semi-continuous, For
= __)x~—>x° . - ) - - . ->
any B, (x)) < R, it follows that w,(x ) { L (uy, X, ), uy(x) (Llu,, %,

and therefore L (V, :Tc:., r) is an upper bound for both ul(?o) and

ua(;o). Hence V(;c)o) XS A SE;, r) and the theorem follows,

Theorem 2.2.6: Let {unzS be a monotone non-increasing sequence

of subharmonic functions on RC En. The pointwise limit function

V = flim (un) is either subharmonic on R or else.is = = <,
n—>*
Proof: We first show thaf V is upper semi-continuous onVR. Let

%, e R, and note that u (X ) = Zim u (¥, Since u (X ) V(¥) on

. e XX _
R, it follows that £im u () YYeim V(X). Hence £im V() $ V()
] - - n -> - - [+
XX , i’—axo X X

- - - >
because V(xo) is the greatest lower bound of gun(xo)j . Let Br(xo)C R
- > -
and recall that un(xo) £ L(un, X r). Then V(xo) is a lower

bound of {L (un, ;o’ r) 3 and by the monotone convergence theorem

-

(theorem 1,4,9) it follows that L (V, :Tc;, r) exists and L(V, X r) =

Lim  Lu , ?o’ r), and hence V(;o) S (v, 3::, r). The theorem follows,
n—®

r)
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General Discussion

By application of the Green calculus, one can show that
any ¢® function u on ﬁ ¢ B such that V° u Z‘O on R is a sub-
harmonic function in the sense of definition'2.2.l. Such sub-
harmonic functions are called smooth and.the locally uniform limit
of & sequence of smooth subharmonié functions is a continuous sub-
harmonic function, The limit of a monotone decreasing sequence of
continuous subharmonic functions wili be a general subharmonic
function or = = %, but not necessarily a continuous subharmonic
function, A virtue of the general definition of subharmonic
function lies in the fact that for any monotone non-increasing
sequence of such functions, their pointwise limit_functién is also
_subharmonic. Finally, we point out that‘for any theorem that can
be proved about subharmonic functions, an analogous one can be proved about
superharmonic functions, k Wé close this section by stating a
strengthened form of the maximum principle for subharmonic functions

which is analogous to that for harmonic functions (theorem 2,1,10),

Theorem 2,2,7: Let R be a bounded region in En, and u a subharmonic

function on R, with the additional condition that
2im u(R) M for every x* < IR,
- >
x—x*
XeR
x* ¢ oR

‘4Then u(x) { M for a1l XcR, The proof is analogous to that of

theorem 2,1,10,



I1I, THE CLASSICAL -DIRICHLET - PROBLEM

§1 Classical Dirichlet Problem for the n-ball and its Solution.'

- Throughout this section we shall generally concentrate |
on the golution of the "D" problem for a ball of radius 1l and centre 6,
We shall first introduce a special k*ern‘e;lm function which will be use-

ful, called the Green's function for the Laplacian operator, It will

often be necessary to treat the case of n = 2 and n ) 3 separately,

Definition %,1,1: Let BCE> be the open unit disk of centre the

origin, and let Y)EB be fixed, though arbitrary, The Green's

function for B with pole at p is defined to be the function

63 (%) = log Pl"i + h(3) where h is a harmonic function on B with
P-x
the property £im G (R) = O for every X* € 8B = S, .
% P

Definition 3.1,2: Let BCE", n ) 3, be the open n-ball of centre

the origin, and let 36 B be fixed, though arbitrary, The Green's

function for B with pole at? is defined to be the function

P -3

with the property /Zim G- (5:)) = O for every x* ¢ 9B = S,
- X—x*

G (%) = ’ 1 o+ h(®) where h is a harmonic function on B

78



Remark: In order to construct the Green's function of B, n ) 2,

we shall have to make use of the geometrical inverse of a poixit

with respect to a sphere,

Definition 3,1,.3: Let X €B where |5§!= r and ?z (x s ovey xn).

Then the geometrical inverse of X with respect to the unit sphere,
denoted by (?:)-1, is by definition the point possessing the
properties that ;

(1) ™7 - Ax where A) O is a real number,

an jo TR =1,

Remark: Combining properties (i) and (ii), it follows that

/\1!2 =1 and hence A = !‘-5 . Thus if X = (xl, coey xn)’ then

X T
(3):)-1 = (%, ey —%)o
Theorem 3,1,.1: If B €B such that |'f>| =r and Q¢S (i.e. I’ci‘ &
then

_§__:;§__1 -r.

T -3

Proof: We shall show that |§ - 3B |2 - r° IQ - (ﬁ)-l ' 2 is

|3} =1, Left side:

Ig - _P)lz = l&la + l‘fﬂa -2 =1+ r2> 2rcos # where @ is the
angle between the vectorsq and p.
Right side:
217 @ 220712 (@2 - 2™

=r2(l+-1—2-- -f; cos¢)=r2+1-2rcos¢
r

The theorem follows.‘ -

1),
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Theorem %,1,2:  For BC—EZ, the Green's function with pole at 368

I -3 |

theorem 2,1,1, Also " -1
|2+ - €:)) ‘

=rif| > ) =1,

- _ 1 Syv=1 - -
is G-p»(x) = log 5z =R\ * log ,(p) xl + log | Pl
T = eyl
216 ™ { B
I3 - 2|
' >
= log "l" . if f =0
Fi{le | |
Proof:  The case for P = O is immediate and if P £ O then from
. ' I3 = 3| a1 s |2e
theorem 3,1.1, = I8l i¢ |3 = 1,
l®o2-% |
) = log | 3| e -2
Hence G,(X) = log | p| + log since
B0 =7 Y
| l - = (*)_l -3 - (;)-l-'-i"
_{im_} G.(X) = log | B|+ £im log —2—-—-—_)—-— =1og,'pl+log —-_;L—_)——
*—3x* P R—3* P-X P~-x
X €E€ER . e R .
=log |Pl+ 1log '%' = O for any X* € S,
Theorem 3,1,3: Let B CE', n )3, BeB with [B| = r,
- . Then | _
. i > - 1 ‘ .
G5(R) = =l -1if3=0
1 1 -
s ——— - if PO,
'.i—-ﬁ I n-2 . rn-leE - (i) l‘ n=2
. Q . )
Proof:  For P = O, the theorem is immediate. Otherwise we note
that h (X)= - 1 is harmonic on B, due to
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Hence £im  h(®) = - ( 1 ) ( 1 _ ) = - 1 i
EEY o " [ - (3)7| -2 e e
. 1 N
Therefore £im _ Gu(X) = - e———
R—x* P |3+ - 3] 22 [x+ - 3|72

for any X* e S, and the theorem is proved,

Theorem %,1,.4: Let u be harmonic on the closed ball BC E of radius 1,

v 9G>
PeB, and $=|X~- B | ., Then u(®) =~ -]'—-Su(s-;p-)dé"' where

| | on 5 | 1
S= §f%:1%l = 1} and S is oriented in a positive direction, snd
where Gﬁ = log (%) + h is the Green's function with pole at Tp>.

Proof: Let B' =B - B

. vwhere B = f2:|X-3 I(EB and let

GB be denoted by V, Then applying Green's second identity as in
theorem 2,1.3 and denoting by S. the set g'i' : \T=-D | = E} , e

have

S[uV V- V(V u)]dm S[ (‘W)_v(au S %_-V%% ]dc_.

S
Both terms vanish on the ieft side because u and V are both harmonic

in B', Also SV (_a_g) do- = O because V = G vanishes on S,
3 or’ 1 | P

Therefore we have

6(10g-+h) S
0= Su(av)da‘l Su —3 do, + (log§+h) u doy.

09 1
S SE ‘ &

‘Again by Green's second identity,

STa & - w@ Voo = S v -
5 [h AT LT ] doy = .2 (V% - uV?h) dm, = O and therefore
‘ 3
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S o N |
: ~ ud log (3)
0= S ( ) as” S[——-———?— ] g[log (au ac— .
5 1” 5, 3¢ £ M

From Green's second identity,

S(:Log G & ) e =o;,

S=¢ 1
S a log
and £im do = 2nu(p) (see proof of theorem 2,1,3)
&0 5, 09 g=¢ 1

, _ : 3Gy
and it follows that 2xu(P) = - Su (—51’- ) do—, .,
| s r 1

o Theoren 3,1,5¢ Let u be harmonic on the closed unit ball

G~
Rc > 2 o 1 S P
B E', n ) 3, and 3€B, Then u(3) (W— Su( ar)dﬁ—n-l’
‘where S = 3B and is positively oriented,
Proof: Employing results of theorem 2,1,5, we nbte that if
V-vBonB'--}?,--BE where B _g‘*:l?c-.f)l(ig,.then
5 5 au IRV G > |
= (uVV V-VvV u) dm (wsz- V3D doy w3~ Vg 4o, 4.
, & §= ¢
Hence
ST N S w0 (i) 1\ _&u
o= J)u@aoy, - ) —L——|ar, ,+ ( — 2) o
s 5 5 e £ g
S(h a? ) do 4
Therefore

S (-2:% udoy _, = 5 (aV) do” _y, and by the same
s &' = s
S .
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reasoning as in theorem 2,1,5,

(2-n) | r>
Lim = udo . = (2-n) 8 . wWp)
£50 8 &n 1 n-1 n-1
-1 ’ 5 ‘ 8G>
Hence u(®) = 2y 5 u (-5;2) 'dG“n_l .

n-1 8 |
Remark: Theorerrs}y.l.# énd %.1,5 suggest that the normal derivative
of the Green's function constitutes an important aid in establishing
a relationship between the value of a harmonic function inside a ball

and its values on the boundary,

Theorem 3,1,6; If Gi? is the Green's function for B = {3’( : ?{K 1 }
in Ez, then the outer normal derivative for ~ ‘

3G~ |3 "1

ogat- des={3: |Fl= 1}5.5 T e e N
| Ip-qf
. . . [ I o Sl S | a_ _
Proof: We first note that 2= log,x p'-‘;-f;' ar'? 'ﬁ’{ .

"

and if l?c) -'5‘ S, t:henﬁ’2 = (x1 - p1)2 + (x - p2)2 where
2

X = (x, x,), P = (py, P,) and .g..gi - xi;pi Cie1, 2,
Hence ¥ (log§) = lf-z (Gxp)E + (xy - p)0 ). If |R] =1,
then

E.%%S_Z - (Va3 = "%;2 ) - pyx)) + (’xg - p, X,)

s
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Since G-p>(§) = - log, -3 '+ log ' }-(B)'l , +1og| 3B I , therefore

3G (3)
B = (VD) . Rif || =2
or p _
._)
= (—6(103?))»?+(3(103 §'))-X where p' =[(X - ﬁz)l
b
1 - > ! : .*;
= . - l-p.X)+'— (1-L ).
We recall that -5% = l?l by thedrem 3,1,1,
Hence
O L gy, B2, BE_32 131E%
2 2 2 2 ~» 2
ar [ § £ lp-xl

and the theorem follows,

Theorem 3,1,7: If 'Gi) is the Green's function for BC En, n ) 3,

Gy - 2
then —&- = - (n2) 2=1BlL) 435 . g;n l¥l=1}.
: or r)c'fl n
~> - -3 E .
Proof: Let ¢ = l X =-p l and F"’ X~ ~5—,| as in theorem
| |7l
3.1.6. Then—g% =(F9) .74 |¥] = 1.
e 17 P; . > >
Now -;i = (T ) for 1 : 1, se ey n’ X = (le"" xn)’ p ='(pl’..., pn)

Therefore (3¢ ) . Xe

Similarly %f—' =(Vg" ,X= }S;,-(l- RX ),
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Therefore
i A P WP Y PO
ar or on-2 ar |7 ln-2 (1)72
1 3 1 209 t)
= (2—n)( 9n-l <3‘§) = I'ﬁ ‘n-a (¢") n-1 3r | °

Since § = |P|¢' therefore

¥ _(2m) (s _ 3] @L). @n) -39 _ I8l o 2.2
- - . [
a? ?n 1 or | n 1 ¢ [4 ‘Blz
2 >.2 '
£ a-33- BN, 5 Ea- b
o |
_-(a-2) -1312
5-3°
> G 3 _‘-—),2'
Definition 3,1,4: If B C ES, we define - —2- = i3 EI"" to be
q-3

the Poisson kernel function of B.with pole at a. We denote the

Poisson kernel function with pole at g to be K 3 (p).

0G> - ""
Deflnltlon 2.1 5. If BC ]E.’n n ), %3, we define - 2 _-;—_-%_E
» (n-2)or 13-731

to be the Poisson kernel function of B with pole at q. Again we

employ the symbol Ka» (P) to bre/present it,

Remark: By direct computation, K3 is harmonic on B, = Also by

: 1 Ksdo =1,
S‘n-l q n—l
, S _
Let £ be a continuous function on S and construct the function '

theorems 3,14 and 3,1,5, if u =1 on B, then
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u(@ = 2— S £(@) Ky doy , (. Ve shall show that

u is the solution of the classical "D" problem for B with boundary

function £,

Theorem %,1,8: The function u, defined such that

u(® = ‘ - 1 5 £(3) Ka) ¢)) db"‘n_i_i), is harmonic on B,
-n-1 s '

Proof: By the dominated convergence theorem (theorem 1, 4,10)

u(?) 3 1 v N
w@ {s Sfcap Ko @) a0,

ox ox,
i i n-1
S
1 5 - 0 -
f e (K a

|-

and hence Vzu =

5 f(ﬁ)(ﬂ? 2 Ko (3) > 45~ , =0 because
1 4 n= -

W
7

Ka is harmonic on

-5

Theorem 3,1,9: Let f be continuous on S ={§ : ‘x ] = 1} ~and

wu@ = =& 58 23 Ky (B) a0y, ;.

n~l

Then ﬁim_)' u(ia)) = f (63 wlgere 30 € S is fixed,

P"‘)qo

pe¢B
Proof: Without loss of generality, we may assume that f(a;o) =0,
We shall show that Zim u(3) = O,

- 3
P,
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>

. . B B . . .§
‘For any £ ) O, we may choose 61( €) such that if ‘q - qol( 6,

then |£(q)|¢ € eince £ is continuous, Let 5, = g Jes s !a—ﬁao] ( 6,3 .

and note that I,(F) = ;=

S £(3) Ko (p) do~ y has the property
n-l S Q n= '

1
that lxlc‘f)’)l { fg::-l § () Ky(B) avy; = ‘;:1 for any BB,
B 4 -

. O 1 \ < 3
Let S, = S = S) and let I, (3) = 5 £(3) kg @) dop ;.

2 1 s
n-1l S

| 2
We note that I,(8) + I(3) = u(¥). Then

| l:z(m $

n 8 (6,0 s

, ' "->2 .
= 5 ley | QLB oo ¢ M 5 Q-3 ao
-1 5 (6,7 01017 %2

-where M = sup lf(c}))l. Now choose 6., { & wherel? -3 l ( 6,. Then
A a'ES 21 (Y 2

1- |B] ¢ |B-Tq,| (6,and it follows that

s

I(8) ¢ i (6,) (2) (8 .)., We may choose " such that
2 s % h-1 2 ,

|12<‘:6) | { £ and hence ju(§)| 14 (—af‘- + &), The theoren follows,
: ) n-1 ~ - .

We have thus solved the classical '"D" problem for the
n-dimensional unit ball and by the maximum principle, the solution is
unique, By means of a Simple dilation‘ process, our theory is

applicable to an n-dimensional ball of any finite radius, say r_,

- - -> . - - 1
for let p € Bl(O) and p'eBro(B) ! then p' = rpporp = - (p')

is a dilation transformation., Thus if h(i}) is a harmonic function
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> .
5 ' -,
on'Bl(O),'then so is h(?—) =H(p') on Br (0). By means of a
. Yo ] o

simple translation process, our theory is still applicable to any

._9
"n-ball with finite radius, whose centre point is other than O,
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§ 2 Convergence theory associated with harmonic fumctions

In this section we. shall consider some special properties
of harmonic functions, and shall focus our attention on certain

convergence theorems,

Theoren 5.2.1: (Converse of the Mean Value theorem)

Let u be continuous on a region RcE® and possess the property that
u(®) =L (u, P, ) for each D ¢R and every 6 ) O such that 55(3) CR,

Then u is harmonic on R,

Proof: Let B_ ¢ R, and £fix 6 ) O so that 36 (ﬁ)o) CR, Since u is
continuous on Sb(i::), we can solve the "D problem for Bb(f): ) whose
. . -y - . . , 2y (R |
boundary function is u I Sb (po) i.e, u restricted to Sb(po) -g;_.!p Pyl = 6} .
Let the solution of this "D" problem be denoted by h, and consider the
function V = (u-h) on Bb (p?) Since the functions u and h satisfy
the mean value property on B, (13: ), so does the function V, and hence
v satisfies both ‘the maximum and minimum principie on Ba(i;; ).
Since_gim V(B) = 0 for every qe S,(P,), it follows that V{ O, V } 0
P—7q |
P e Ba(ﬁz)
and hence V = 0 on B, (ffo). Therefore u = h on Bb(;o) and is therefore

~ harmonic at 30. Thus u is barmonic on R since Bo was arbitrary,
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Theorem 3,2.2: (Harnack's inequality in n-dimensional form)

Let u be a harmonic function on the unit ball B = gi’ : |%IC 1\S)BCEn
and continuous on its closure, Then for any P ¢B such that

1Bl = r{ 1, it follows that

2 .
- - >,
_.9_-___1‘_2. u @ & u@® S_l..__.}_‘_l u(0).
@+ )" 1-r)"
A 1~
Proof: By theorem 3.1.7, it follows that u(3) = %’-—-— Su(%) "-_T;E-rﬁ o1
’ “n-1 78 =
: ‘ = 1 5 ‘)' > ae =
and note that u(0) = = w(d) do- _, . For D fixed, Ko (B
. N~ . q
n-1 S ,
‘attains its maximum value when ?l) = Ap with A ) O for in that case
: 2
4 - P = (1-r) and hence the maximum of Kc—i(ﬁ) is X o+ Mso
(1-r)
Ka(i)’) att‘ains its minimum when § = AD withA{ 0 in whichacase
4 - P | =1+ r and hence the minimum of Kx(p) is 1o rn . It
' 4 (1+r)

follows that

.2‘
1 ju(a) (A=r7) ao £ u@® ¢ -——-5 () (lr) do—

fpel S (142)? n-1 -1 S (1-r)® n-1
. 2y e 2
and hence u(0) (1-x") ¢ u(®)( u(0)(1-r) or
(1-r) (1-r)®
-

w(0)(1 - r) o, u@Q + 1)

—eoo L u@) (| e,

1+ r)n—l ' (l—r)n-1
Corallary: IfB =B ©) for ‘ré';é 1, and if u is harmonic on

(o] i -
B and continuous on its closure, then for any p € B such that

IP| = ro{r, r) 0 and finite, it follows that
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- - -
u(0) (rs - rz)(rz 2) . u(©@(r2-% (rz 2)
— FEEOR —
‘.(ro-c-r) , (r, - 1)
. =,
Proof: Let p = £- be the dilation transformation of P (—B (©) to
- ° (- (-2-—>2 ) B2 D
'3' €B (3), Then K>, (3') = To =
r ; Q' I - -a,ln ,q,__;'ln

By reasoning similar to that of theorem 3,2,2, the corollary follows,

Definition 3,2,1: - A family of contimious functions {f, ] defined on
‘ a common region R € E" is said to be equicontinuous at '5):0 ¢ Rif and
only if for any £) O, there exists a & (&, S?o) such that

£ (%) - £, (i’o)l (€& oprovided that lx - xol (5., (We emphasize that

6 is independent of the «('s,

Theorem %,2,%: Let gucd be a family of harmonicbfunctions on
the open unit ball B C En. " Let gu,ébe also uniformly bounded
_ above by M and below by =M where M ) O, Then- g up(% is equi~-

continuous at 3.

Proof: From theorem %,2,2 we have that for any BGB

Lzl w8 gu (B G u,(3)

(er)?? Q1 - r) '
Hence
: : 1
(B -u_ @) u @ (li}.‘___._l>=u- (3)(1+r'(1'r)
= ~ h (1-r)*t = (1 - p)* 2

U (6))

n-1

(1 +1 - (1-r)* 1)V

(1-r)
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If we let 0 { r { %, where |B|= r, then

u (&)
u @ - u,© ¢ (;n_l (L+r-(-1

n—l).

Let f(r) =1 +r -~ (1 - r)n-l where 0 { r {( 6, By the mean

value theorem of elementary calculus, f£(r) = £(0) + £'(€) r,

n—2) r { nr,

Hence u_, @) - u_(O) $ vy @ @ ar (M (@) ar,  For anyé) o0,

where 0 { E 4 r, and hence (r) =0 + (l‘+(n-l)_ (1~ i)

it follows that one can find 6, such that 0 ( 6, { % and if r( 814

then uo((;) - uo‘(a) (. | Similarly
‘) -
u, (® - uq(a}) Y u,(0) (?;L:;;i_:l - 1) or
o 4
> S =2 l-r u°<(0) n-1 :
u (0) - u (p) { u O 2 ! = ‘(I:;_)n'l ((14r) 7" =1+ 1)

= O (@19 )r 12 o8 <,

Irr (% u, @ -u @ u® @+ @) Q¥ rdn QD@ -,

We may choose 62’ such that if r ( 5,, then

u“(g) - 1_;53) (& (or u*(ia)) - u,((‘O)) > =€) for any &) O,
Choose 6 = min (5., 5,). Ifr (s, ‘then luﬂ(g) - “4\(8) l (% and

the theorem is proved,

Definition 3%.,2,2: A family of cohtinuous functions %f q}. on RC B

is defined to be equicontinuous on R if and only if it is equicontinuous

at every point of R,
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Corollary 1: Under the hypothesis of theorem 3.2,% with the
unit n-ball replaced by the n-ball bf any finite radius r, A1,

equicontinuity of £u,,\§ at the origin holds,

Corollary 2: Under the hypothesis of theorem 3.,2,% with the

unit n-ball replaced by the n-ball of radius r, #1, f%}is
equicontinuous on B if and only if fu_3is equicontinuous

at every point of B,

Theorem 3,2,k Letf ujn)s be a sequence of harmonic functions on
a bounded region RCE" each of which has a continuous extension

onto 3R, Let {un% , when restricted to 9R, converge uniformly
to a limit function f on 9R,  Then fun% converges uniformly to a

limit function u on R as well,

Proof: Since{un} converges to f uniformly on 3R, therefore
{un)is a uniform Cauchy sequence on 3R, i,e, for any £ ) O, there
exists n (&) such that lun(:?') - u (x*)| (€ if n, m are both
greater than n_, and noA is independent of %* ¢ 9R. Thus for any
n, m, (un - um) is harmonic on R and by the maximum principle,
IunGc’) - um(i’)l (£ 4if n, m are both greater than n,, where X
is any element of R, Henceg un%is a uniform Cauchy sequence on

R also and hence converges uniformly to a limit function u on R,

Theorem %,2,.,5: Let { un§ be a sequence of harmonic functions on

a region RCE" such that { un} converges uniformly to a limit

function u on R, Then u is harmonic on R,
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- - o -~ >
. C -
Proof: Let x € Rand B, (x )CR, Thenu (xX) =1L (u, x, 5)
for each n, Since U.fim Y _ = u on R and hence on S (¥ )
[ n 6 "ot
n—°
therefore £Zim L (un, 3:’0, 5) = L (u, 20, 6) by theorem 1,4,10

0

n , .
and hence u(;c)o) = L (u, i’o, ). Since u is continuouson R ((l) s P.396

theoreml?.8) | the harmonicityof u follows,

Theoren 3.2.'6: (Harnack's theorem of uniform convergence for the n-ball)

Let {um% be a monotone non-decreasing sequence of harmonic functions on the

unit ball B C E°, Then Lim u () = + © or else Lim u (F) = u(R)
n—oe 0 n—so M ’

> . s
for every x €B where u is a harmonic function on B, and the convergence

is uniform on any E& C B,

Proof: We recall by theorem 3,2,2 that

(1-r) (24x) >
u_ (0) { u (p) $ u ) for any p ¢ B
n 7 (el om0 -
Case 1: Suppose Lim u_ ) = + =,
n—®
Then u (p) )((111;)-—5 1 )u (0) and hence £im u 3P =
(L4r) ™ n—®

It follows that Zimu,(P) = + ® on B,
n—o*

Case 2: Suppose £im \ u (0) is finite,

m-— \oo

(1+r)
Since u, (p) $ u (@) iz
(1-r)""1

above and hence £im - “m(p) = u(p) exists as a finite number for
n— ,

, therefore {u 6] S is bounded

b
each P € B,
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, -
Now let Bbc B and let p€ B.,

Denote ‘%ni = um - u',L which is & harmonic function on B for m and i

fixed, Ifm ) i, then O ( umi(ﬁ) = um(f) - 'ui(if) and

o~ - ’ e (1+r) 3 .(_.2..).
um(p)- ui(p) $ uﬂ"xﬁ(a) "'""‘"(l-r)n_l £ W (0) (1_5)n-1 .

The sequenceg ui('é*)% is a Cauchy sequence and therefore

- < 3 N .
S\u.m(p)} s P¢B,, is a uniform Cauchy sequence, Hence gu-m ;)
converges to u uniformly on 56 for any 6 { 1, Hence u is harmonic
in .f’»b by theorem 3.2.,5, Since b { 1 is arbitrary, therefore u

is harmonic in B itself,

Corollary: A similar theorem holds for an n-ball of any finite

radius,

Theorem %,2,7: (Harnack's theorem of monotone convergence)

Let { Umg be a monotone non-decreasing sequence of harmonic functions

n

on a region R C E*, Then 4im v XD

n—%
else Lim U () = U(R) for every X¢R where U is a harmonic function,
m—5°

+ ® for every X € R, or

-and convergence is uniform on all compact subsets of R,

Proof: Let AC R such that % €A if and only if Zim Um(i’) = + ®,
m—® .
We shall show that A is open, Let B (X) € R, . By the corollary

of theorem 3,2,6, it follows that £im U () = + ® for any P e B6(§).
m— ot
Hence A is an open subset of R, Now let BC R be so defined that

¥ € B if and only if £im U_(R) = U(X) is finite,
n—> =
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We shall show that B is also open, For any Bb(;)CR’ it follows

by the corollary of theorem 3,2,6, that £im Um(in is finite for
n—s5°
every P 636(3?). Hence BCR is also open in both the o topology

and the relative topology "J ge But R = AUB where ANB = ¢ and

where A€ jR and Be ) It follows that either A = @ or else

R.
‘B = ¢ since R is connected, In the case where fim Um(Sc’) = U(R)
7 mn—

and BG(§)C R it follows that U converges to U uniformly on
ﬁb /2 X) and therefore U is harmonic at X, and hence harmonic
everywhere on R, Now let KC R be compact, and X ¢R, Then there

exists an open neighbourhood of X denoted bby V(®) such that U_
converges to U uniformly on v(x) i.e, lUl(f?) - Um(i)’)l (&
for any m ) M (X,€£).

The family { V(?c)} , X€K form an open covering for K

and we can extract out a finite subcovering denoted by gV(:?i)} , L(ida,

i

'U('f?) - Um(i’) | (& for m ) M independently of P ¢ \U V(?i) and
» i=l
hence independently of 'ﬁéK. The theorem follows,

LetM:M(‘x’.,e)anddeﬁneM=max{M }, 1{(i{ 4,  Then
i i) 2

Remark: The Harnack convergence principle allows us to solve an
extended "D" problem for a ball whose boundary function is bounded

above and upper semi-continuous,

Definition %,2,%: Let P be an upper semi-continuous function on

Sr(;o ) which is also bounded above, Then there exists.a monotone

*
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decreasing sequence {fn§ of continuous functions on Sr(SE:)) (theorem 1.4,8)

: , B
such that P(X) = fim £ (%) for any X e Sr(;c:). Let H *
n—= f
- N - . - n

be the solution of the "D" problem for BrG:o) whose boundary function

' B B .

i6 £ . Thenfim H ¥ = H is a harmonic function on B (X )
n—* £ ¢
n Br ,

by Harnack's convergence principle, We define H ¢ to be the

solution of the "D" problem for B r(?o)‘ whose boundary function is @ .
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§3 Examples of insolvability of the classical Dirichlet Problem

In this section, we shall consider an example which
shows that the classical "D" problem is not always 601vable.
Let B' = §32: 0( x| (1 3 be the deleted unit ball in B2,

Let £

n

0 on sl(b’) .

lat? =a.

We ciaim that it is impossible to solve the classical "D" problem
) » ol
for B' relative to the boundary function f, for let B;{“f :‘% IR L 1},

. N .
and Un the solution of the "D" problem for Bn' whose boundary function is -

-3
£, =0 on 5,(0).
S
£1lon ) (0).
n .
It turns out thaf U = i (-]-= -1) Let
e , n  n-l'r ¢

us assume now that U is the solution of the "D" problem for B' whose
boundary function is f as defined above, By the maximum principle,

' = ' o> ng
U U, onB' for every n, Now let x, ¢ B', and note that U(x;) U (x)
for all n which are sufficiently large, If we letr; = ‘§1')| , then

fim U () = fin- ) <-11;- -1)=0

and hence U(i’l) = 0, It follows

n-—™ n—3< 1
that U = 0 on B', But Zim u(X) # 1, and hence U cannot be a
x—0 ‘

classical solutién of the D problém for B' with boundary function f,
Another example of a non-solvable "D problem, was intro-

duced by H, Lebemgue ( [21] , P.12), The region considered consists



of a deformed ball whose boundary is homeomorphic' to the unit
sphere, Later authors have referred to this as the spine of

Lebesgue,
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IV, RESQLUTIVITY OF THE GENERALIZED DIRICHLET PROBLEM

§1 Continuous and bounded theory

In this section we restrict f to »be a real-valued bounded
functicn on 3R where RC E® i?; a bounded region, If we are able to
assdciate with f a certain harmonic function on R constructed accord-
ing to a formal ﬁrocess, denoted byHI;, we shall say that this
function I-ﬁ, sometimes called the Wiener functionm, ié the solution
on R of 1;he generalized D problem whose boundary function is f,

We first let M = sup f f(:?")% and m ibn.f {f(i”')g .
R

X* ¢ 3R X* &

Definition 4,1,1: iet Fi(f) = {qb(g be the family of continuous
subharmonic functions on R such that u_ ¢ Fi(f) if and only if

Aim u (x) { £(x*) for every ;‘C-aR. '

;—-);*

X e R

‘_R_e_zg_a__x_'I_c_: The femily Fi(f) is non-empty because it contéins all
constant functions less than or equal to m, We shall be concerned
with the upper envelope function of Fi(f), i.e, the pointwise a;upremum
of {‘{ ‘} and shall denote this function by!j ?. By the ma:dmum pr‘inciple

for subharmonic functions it follows tha.tl-—ilf2 (X) { M for any X¢R,

Thus the upper envelope H? lis bounded, i.e, m H? My

100
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Definition 4,1,2: Let F} (£)CF,(£) such that ul e F' (£) if and

only if uj = sup (u«, k)noh R, denoted by uf =~ud~\{ x , where

k{ mis a fixed constant function, and u, eﬁ‘i(f).

Remark: The family F'i(f) is uniformly bounded below (by the
constant function k). If ul ,€F' (f) rand u%( 2<*Fi(f), then

ul |V ul &, (),

Theorem 4,1,1:  Let (H?)' be the upper envelope of F'i(f). Then

(H?)' (2) =_H§(:?) for every X ¢ R,

Proof: For any u a(eFi( f) it follows that u! =u QV k has the
property that u'e (%) ) u, (X) for every X R, Therefore

sup guL (53)3 ), sup gu,R (52)% for each X <R or (Hf;)' ) HI; on R,
u!eF; () © ueF; (1) o

But F'y (f) C Fi(f) and therefore (H?)' £ }:[1:. on R,

The equality of the two functions follows,

Let BC R be a fixed closed ball whose radius is greater than zéro.

Definition 4,1,%: Define F"i(f) C Pt i(f) so that ull € F"i(f) if -

and only if ug( is the Poisson modification of u'o( on B,

Remark: We recall that u':( is harmonic in B and since u:'( - uo'( is

superharmonic in B and identically equal to zero on 3B, therefore,

by the minimum principle of superharmonic functions u:; - u0'<

>/0

on E and therefore on R,
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Theorem 4,1,2: Let (HR)" be the upper envelope of F!, (f)
Then (H (D = H )t (X) for every X € R,

Proof: ' By the previous remark, ul Y u! on R for each ul, éF'i(f),
: Ryn Ry, But W ' ; ' |
therefore (Hf) Y (Hf) on R, But F, (f)Cc F i(f) and therefore

(H?)" N4 (H f) ‘on R, The equality of the two functions follows.

: Remark: By theorems 4,1,1 and 4,1,2, we therefore have

Hpr = (HPr = H} onrx

We introduce the notation h, = u'y restricted to the open ball B

. . R .
~ and define u = i?p%hv‘g noting that u =Hf restricted to B,

Theorem 4,1,3:: The upper envelope of %h 9‘3 is a continuous function

on B,

Proof:  Since gh‘x} is a uniformly bounded family of harmonic functioms
it is by theorem %,2,% equicontinuous, Let 3?0 ¢B be a fixed point and

X € Ban arbitré.ry point, For any given &) O, we note that

$ ud®) - by () l-+ b (%) - h,{(fo)[ "'lh« (5::) -u (;c:)

1u(x) - u(x’)
o
for any h D(functicn. Since fhd is equicontinuous, there' exists a
. >

6 ( £) ) O such that 'lh°<(i)) - B (X)) |( €/3 it F:’- x | (6 and e

. R L > 2
emphasize that 6 is independant of »{ , We now fix x so that I X - xol( 6

: ' / g g £
and note that there exists an o , such that u(x)) - h"l(xo)_ ¢ ¥3

- b E 3 3
as well as an °<2 such that u( xo) hJ\2 (xo)( /3 by definition of u,
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We recall that h‘"l is ut « 1 restricted to B, Since the function
'l lV uly , € F‘i(f) and its Poisson modification, denoted by u'. 3

is a member of F‘N':.;(f): then defining hx , = restricted to B,

5'_ u"b( 5
we have that ihgs G -u@ | Y3 ena |ne 5 (i’o)-u(i’o)l ( £ /3.

It follows that
@ - wG[a -y @]+ [y <mag@)] B @) | CE
for any % ¢ B such that l?: _.;c)o l {6,

‘Remark: Since continuity is a local condition and since B R is

arbitrary therefore HI; is continuous everywhere on R,

 Theorem k4,1 k: u is subharmonic on B, for u and B as defined in

theorem 4,1,3,

Proof:  Let 5?06 B be so chosen that -éb (;0) c B,

- -
Then h_, (;o) =L (hy , X 6), Since h«(i’) $ ulx) for all X B,
therefore L (h, , ?o, 8) & L(u, ¥, 8); therefore L (u, %, 6) is an

> <>

upper bound for the set f h o (xo)3 . But u(xo) is the least upper
. : -
bound for Ehd(xo)% . Therefore u(;c:) L (u, x, 6) and hence u
is subharmonic at ;c:.._ But i’oeB was arbitrary, Thus u is sub-
harmonic in B, The next two theorems will establish the fact that

u is also superharmonic on B,

Theorem 4,1,5: For the compact ball BCR and for any £) O, there

. . ~ R ’ .
exists a function u'v\éF'i(f) such that u! (D) Hf (x) = £ uniformly

on B,
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Proof: Choose any X ¢Band £€) 0, Then there exists an
0&(3?, £ ), abbreviated to « (X) such that uy) € Fi'( f) and
N -5 - E - N o D
Y () D) 51; (x) /3. Since U (3 is continuous, there
, - , : 5 N
exists a & (2, ¢ ) such that if ‘§ev5(3’:) = gy : [; -x] < 6,31
2y L, ¢ e R ;
then Iud(%)(y) - ud\(:?)(q { /3. Since H_f is continuous

on '}_3, therefore

l _H]: ¥ - () (§)\< ‘EJ:' @)‘Bgﬂﬁﬁ (5?). - ud(z)@hlu&(}) (%) = vz (;}’)I .

Thus)HI; F - LNEN 62 \ (€ fory C—VJ"(E}) wherg 6' { 6 is such
that |g§ &) - gl;(s’c)’ ¢ &3 it |~Sr’- 2| ¢ 8'. We emphasize that
. §' depends on both X and € , The family be, (;c))} forms an open
covering of §, and by the Heine-Borel theorem wé can extract out a
finite subcovering gvé,. (;i)} 1{i{n, VWelet o, = o((xi), and
note that ";(_f F'i(f) fo:IL' each i, 1 { i { n, The function
n

no'( = Uy satisfies the requirements of our theorem,
i=1

Theorem 4,1,6: u is superharmonic on B,

Proof: Let 3?0 ¢ B and 56(;0) Band £) 0, By theorem 4,1,5, there

exists an h., such that h_ (%) ) u(%) - ¢ uniformly on B, Then
o X

- - ' ’ - = | - o
h, (x) = Lhy, X, 8) yLu-g , X, 6) = L (u, xo,b) -¢ L(1, xo,é))L(u,xo,b)"

-

beééﬁse the constant function 1 is harmoziic and satisfies the mean value

cae >
condition, Therefore u(x ) )/ho((;go) Y L (u, ;20’ 8) - £ for any

£) 0 and hence u(;c)o) ) Ly, :?o, 5). Since & and '5%0 can be made

arBitrary, therefore u is superharmonic on B,
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We are now able to establish the following important and funda-

mental result,

Theorem 4,1,7: H?. is harmonic on R,
. R . .
Proof: Since H g is continuous on B by theorem l}.l.3.>

—

H? is subharmonic on B by theorem 4,1.k,,

H? is superharmonic on B by theorem 4,1.6.,, .

therefore H?, is barmonic on B, Since BCR was arbitrary, and the -
property of being harmonic is a local condition, therefore, H? is

harmonic on R,

Remark: In a similar way, we define the family Fs(f) = %\L& to be
the family of continuous superharmonic functions on R with the

‘ >
property that ve Fs(f) if and only if fim V(X)) £(x*) for
. . >

X x*
X ¢R

every ;" ¢ 3R,. . This family is also not empty since it contains all
constant functions greater than or equal to M, We shall denote the
lower envelope function of Fs(f) by H?, observing that by the )
minimum principle for superharmonic functions, that l:l? () ym

for any X «R, By ané.logous reasoning taken in the process csf show-
ing _H? to ﬁe harmonic on R, we may also show HI; to be harmonic on

R,
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Properties of H? V, H};

. R
Theorem 4,1,.8: H? \< Hf on R,

Proof: Let V ¢ Fs(f) and u & Fi(f). Then V + (-u) is super-

harmonic on R,

By theorem 1,4,3,

Zim (V- u) (X) ¥ £im V(Z) + £im (-u)(X) for any > 3R, but R,
Tox* o x»x"‘ o X*)
iew $oR) % e R)

but by theorem 1,4k,

Lim V(R) + Lim (-u)(X) = Lim V(f) .e:un u(f:’)

X — x* X %* 2~)x*§ gg-» x* g
%X ¢ R Xe¢e R X ¢ R x ¢ R

Since  £im u(R) { £ (x*) { £in V(X) for any x ¢ 3R, therefore

?c‘%x* % x— %>

%X ¢ R XeR ;
Lim V(%) - zim U(x) ) O  everywhere on 3R, Hence by the minimum
x— %* % X —3X*
X ¢R X ¢ R%

principle for superharmonic functions V- u >, OonRi,e, V) uonR,

Since V € Fs(f) was arbitrary, therefore \ji\( H? on R,

Theorem 4,1,9: Let f and g be bounded functions on 3R, Then

HE+ HEC Higm HEo F2 0 HEL o

’
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Proof: Let u, € F, (f) and u, € F,(g) which means ,e:un u, £(3*)

x-+x*
¥ ¢R
and fim u_(%*) g(x*) on 3R, Then by theorem 1,4,3,
i’_,x* g
£in (u; +u X (£im u (33) + £im u (R) £(3*) + g (3*)
i‘—q‘xyﬁ S xg%‘ x_,x‘g
X e R} ¥eR FeR

and hence u, + u_ € F,(f +g), Therefore up + B, K¢ H§+g .

f s
Thus for fixed u H fig ug is an upper bound for Fy ().
R i (R 7
Hence Hf +uy ( _Hf-a-g . Letting u, vary, we have

: H? + Hg $ H1;+g‘ By similar reasoning we have H? + I—I? )/ H1;+g"

Theorem 4,1,10: ]:!ll: = k= [-——{_f: for ka constant function,
' =R
Proof: k€ F()) amdk € F_(k) and hence By § kg H . But
R (R
f‘lk \( Hk and the theorem follows,

Definition 4,1,4:  When H . = then f is said to be

f *
resolutive and their common value is denoted by H?, commonly called

the Wiener function, and is the solution of the Generalized_"D"

problem.

Remark' By theorem 4,1 .9, if £ and g are resolutive, it follows that

f+g is resolut:.ve also and that HR l ‘i By similar

reasoning,, one may also show H Af -)d-——! s on R for f bounded and defined

on 3R and /\ a constant function,
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We come now to a fundamental result of resolutivity due
to Norbert Wiener ( [ 22] ) and which will be based on the following

theorenms,

Theorem 4,1,11: If f is continuous on R U 9R and subharmonic on

R, then fl oR is resolutive,

- -, -
Proof: £ continuous on RUIR implies £im f(x) = £(x*) for all
. X—X*
%X eR
X* € oR, Since f is subharmonic in R, therefore f ¢ Fi( £)

and hence H? | oR Y £ for all x ¢ R,

Thus

fin  Hip ) LX) = b 2 = 1)
E Rt Bl XX X%
X*c R x*¢ 3R X* € 3R

R R T IR
7. Therefore}jf laR € ?s(f) and hence Hf IaR 2 Hf [aR on R,

. R | R R TR
S:mceHf !aR \( }_lflaR on R always, we ‘have Hf laR:' HfIaR on R,

Hence f \ 9R is resplutive. :

m
Theorem 4.1,12: ~ Let g(x) = T (xi) where X = (x;; .., xn) (M =
i=1 o
g—> . } e in (EM)*F
‘ x.xi)o, 1 i nj , Then g is subharmonic in (E")" and any

polynomial in (En)+ is the difference of two subharmonic polynomials,

‘ 2% m, (m -1)] . ,
Proof: By direct computation, we have = > = {3 ) gand
ax x
S m,(m, -1) 1 1 o
therefore v2 g=g [ 2 (.—L——%——)] . Since g ) 0 in (EM)?
i=1 X,
i _
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and m, ) 0, therefore v2 g » O and the subharmonicity of g follows,

Let K(3) be a polynomial restricted to (E®)*. Then P(2) = Pl(;) - PZ(?:)
wheré all the coefficients of both Pl(?c) ‘and 92(2_) are positive, Since
v2 is a linear operator and VZ Plf(‘;?) ) O and ‘Va Pa(f) Y O, therefore

P is the difference of two subharmonic ;Solynomials.

Theorem 4,1,1%: (Wiener's Theorem ( 122] )i Let R C (En)+,_then any

real valued continuous function f éefined-on 6R is resolﬁtive.

Proofs By theorem 4,1,12, any polynomial is the difference of‘two
subharmonic polynomials, Since the Stone-Weierstrass theorem

([li], P.150) says that any continuous function on a compact set één'
be uniformly approximated by a polynomial, it follows that any con-
“tinuous function on 3R C (En)+ can be uniformly approximated by the
difference of two subharmonic polynomialé. | By theorem h.l.ll, sub-
harmonic polynomials restricted to 3R are resolutive, By theorem
k,1,9, the sum of two resolutive functions is again reSolﬁtive, and it
follows then that any continuous function f on 9R can be uniformly
approximated by a resolutive function P on 3R, Thus for any & ) O,

R LIR, IR
Pt {(£{(P+¢ onaR, ThereforeHP.E\( Hf\( HP+£ on R,
'y : . P _ R —R
Since P + ¢ and P - T are resolutive, tnerefore '——,P -84 Hf $ HP + £
- R R R ‘
on R, Similarly HP -£ ._Hf K¢ H p+€ on R, Thus for

ox || IR R C mees
fixed 3{”0@ R, we have ’ Hf (20)—HP (i’o) l € . Similarly

l H? (;o) - Hl;(?o) , ¢ and we have that
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HE &) - H & \<IH§<;€°> -HE) 4[4R<;0) -HEE ¢ 29 o
Since £) O was arbitrary, it follows that Hf ) = ljf (x ).

: 2 . o R
Since x, was arbltrérily chosen in R, it follows thatH g = H £

and hence f is resolutive,
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$2 Resolutivity of semi~continuous functions

Throughout most of this section R will be a bounded
region though we allow f on 9R to take on any extended real value

and we shall consider general subharmonic functions,

Theorem 4,2,1: Let f be a function from 3R into E:“= where we

recall that E# is the two point compactification of E', Let
Gi(f ) be the set of all subharmonic functions on R such that
u €6,(f) if and only if Zim u(®) { £(i*) for any x* < oR, It

X —x*
X ¢ R%

' R
| Gi(f) # ¢, then the upper envelope of Gi(f)' denoted by 2—’} o 15

either identically equal to + ® or else is a harmonic function in R,

Proof: =~ Let X ¢ R and B = Ba(i’o) such that B € R and let u_€ G, (£)
and u' o its Poisson modification on B, Then u'o is bounded in

B 2 s ' - '
36/2 (xc). For any u, ¢ Gi(f) we define u! = -us(v u' and

G'i(f) ={u;} . By analogy to theorem 4,1,11, we remark that

G'i(f) and Gi(f) have the same upper envelope, Now define G"i(f)C G'i(f)
in such a way that ug ¢ G"i(f) if and only if u!" is the Poisson
modification of u! ¢ G' i(f) on B and remark that again by analogy to
theorem 4,1,12, Gg(f) and Gi(f) bave the same upper envelope on R,

denoted byHR. If'J_—_‘I; (1?0) =+ %, thengj Ift =+®4in B by the
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Harnack convergence principle, and if 3__’_1? (J_:)o) is finite, then

R
HE

R or else identically + ® in R since if R, equals the set of all

is also finite throughout VB. Hence?_‘_‘? is finite, throughout

points in R wheretH? is finite and R‘2 equals the set of all points g

in R where_?j? is + %, ‘then we have that

R = Rlu R., Rln Rz = @ and Rl’ R2 are both open;

Hence either Rl = @ or R2 = @ by definition of connectedness, If

D"? (5:)0) is finite, then { uz% is a uniformly bounded family of

harmonic functions in B, /2 (':Zo) and hence by theorem 3,2,3 { u'Lg

is equicontinuous at %, and thus everywhere on By /2 (330), it |
follows that JH ? is continuous in By /2 (?o), and also subhérmgnic by theorem 4,14,
By theorem 4,1,6, it also follows that?:(? is superharmonic in B6 /2(;0). |

Since H 1; is harmonic at X_ and ¥ ¢ R was arbitrary, it follows

——

that ﬂ? is harmonic throughout R,

For our next result, we need to borrow a fundamental theorem
from combinatorial topology which is phrased in a form suitable for

our requirements,

Theorem 4,2,2: Let RC E'.\ There exists a sequence of n—simplexes,i

denoted by f[Bp]} +P=1,2 ... suchthat BN B, = g,

i /) , where B_ is the interior of [Bp Jp =1, 2, ... and such that

B = 1U=‘1 [3] -
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This theorem may be rephrased to state that R may be

triangulated,

We shall carry out the argument of the next theorem

for Ea, realizing that a modified argument could be introduced in

E,

Theorem 4,2,3: Let R be a bounded region in EZ, and let f be

an extended real valued real valued function defined on 3R, Let
G, (f) be defined as in theorem 4,2,1, and let F,(f) C G,(£f). Then
HI; .-._'HI;. , where HI; is the upper envelope of F,(f) andl}_j?.

is the upper envelope of Gi(f)‘

Proof:  Since F,(£)CG,(f), it is evident that HI; XS fH? .
Now let g[Bi] g be a triangulation on R, and let u¢ G (£),  We
shall show that there exists a V& Fi( f) such that V) u onR,
For each [Bi] , (a closed triangle), we may solve the "D" problem
where the boundary function is u restricted to 3 [Bi] , and denote

(5,1

this solution by Hu i . We now define u, as follows:

u - EHEB:L:LD B, for each [B]¢ g [Bi]%

% u elsewhere on R,

Then u, > u on R, w, is subharmonic on R and may possess dis-

N . oo y
continuities only in (/3 [ Bi] . Now let g(B{]% be another
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|v' . 1
. triangulation of R such that each member[Bi] € %[Bi}j ,i=1,2, ...

has no edges in common with any member of the first triangulation

é {B;B)S . Define u, on R as follows:

[B') in Bf for each [ J {[B;‘_‘)%

u

2

= u, elsewhere on R,

Then u, ¥ u, on R, u, is subharmonic on R and is continuous except

on the set A consisting of the common points of the edges of the |
(-] .

two triangulations, Let A = {_J (8B;) N (3B}), and note that
’ i=1
u, is continuous except on A, where A is countable, We define

again a third triangulation E( [ B;]} on R such that every member
a€ A is in the interior of some [Bg], Now define

{Bg in B} for each [B ] g [Bﬂ%

5

v -H

ua elsewhere 6n R,

Then V ) u 20 V is subharmonic on R and continuous on R,  Hence
HR )/ f , and the theorem follows.
Remarks: We have an analogous theorem with respect to the family

Gs(f) of lower semi-continuous superharmonic functions whose lower

limit is greater than or equal to f on aR.‘ It should be noted that
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if Gi(f) and G’s(f)' are simultaneously non-empty, then every function'
of Gs(f) does not necessarily majorize every function Gi(f-). To

see this, consider the ball §B, - { 0}J3¢E®. Let £3=1 on the

sphere S. C E® and equal + ® at the origin, Let uy = (-——l-{-- -k + 1)
1 : % 'n-Z

where k ) O is a constant function and n )y 3, Then u, is harmonic
in{Bl - Eofgand u ¢ Gi(f) N G _(f) since vy, a harmonic function,.
is both subharmonic and superharmonic on R < En. Then

u, € Gi(f) and u, € Gs(f) where u_ is str;ctly greater than w,,

1

In view of this example, it is not suitable to use the
envelopes of the families Gi(f) and Gs(f) for the solution of the
generalized D-problem, We, therefore, restrict Gi(f) and Gs(f)

according to some process,

Definition 4,2,1: Let G}(£)C G,(f) be defined such that ue¢GJ(£)

if and only if u is bounded above,

Remark: Each u¢ GJ(f) is bounded above, but the family Gi(f)
is not necessarily' uniformly bounded above, We similarly define
Gl ()T a s(f’). Henceforth we define L_-, 1; to be the upper envelope

of Gi(f) and Hg to be the lower envelope of Gj'.(f),

~Theorem 4,2,4: It is always true that {jl; \( ”‘lR .

Proof: Let V¢ G;(f) and ue Gl (f), Then V-u is superharmonic

and £im (V-u) ) fim V - {E*u Y O because fim u is finite,
X->x* S XSXY x—-x* X—»>%*
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Hence V ), u by the minimum principle and the theorem follows,

Definition 4.,2.2: We define f on 3R to be resolutive if and

only if l—}? = HI; and denote the common function by ]——} ? .

Remark: By the minimum principle, __&-j? = HI; if and only if
there exists a point S?oéR such that %_—_—l? Gc’o) =\H§ (Sz’o). Our
definition of resolutivity given in definition 4,2,4, includes the

earlier definition of resolutivity given in 55 1 of this chaptér.

Remark: We recall from ¢ 1, that H? » 0 where £ ) O is

continuous on the boundary of R, and therefore for a fixed ;o ¢ R,
R .oy, “ '

the function Hf (x)) is a positive linear functional on the

Banach space of continuous real valued functions on 3R, The

functional HR (x ) is therefore a Radon measure on dR, denoted by
(%)
S4°

Theorem 4.2.5: Let f be bounded above and upper semi-continuous

on AR, Then f is resolutive,

Proof: Since f is upper semi-continuous and bounded above, there

exists a monotone non-increasing 'sequence { fn% of continuous functions

on 3R whose pointwise limit on 9R is f (Theorem 1,’+ 8) Since~f\( £

for all n, it follows that '-r_!f.\( H? or rather \( H ~ since
n

£, is resolutive for all n by theorem 4,1,13, Hence H (x ) \( HR (x )

= » ()
and therefore HR (;:) )  4im jf dp %o or H R(x ) S £ d}x(x°)
n->* 3R ‘
(%)

e L

xo)

(
because S f dp
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~ (x) — ~
Case 1: If 5 f dp R thenH§ (i:’) = - ® and
R ' ' ’ : ;

hence f is resolutive where H? = =--“onR,

| S (%)

Case 2: Assume that f d}x
aR o 2
that for any £ ) O, it follows that [y (X)) }‘1 Z)-¢ .

is finite, We shall show

We first construct u

1 ¢ G‘::,'L (fl) such that ul(xo) )H £ xo) - El

for given f > 0, We then construct u, ¢ G (fé - fl) such that

u2(§o) )H(f -£) (x ) - 2 for given €, ) 0 and note that

u, £ O because -1 £ 0. We continue to construct a sequence

»{u §of subharmonic functions such thai u ¢ G'b (f - f -1 ) if

n)/2andu(x))/ (f - )‘) f forgivenf > 0, Ve note
n-1

that.w { 0, n ) 2, since £ - £l § 0. We now define a new

n
sequence of subharmonic functions évn% such that V= > w.
) : i=

Then {Vn§is a monotone decreasing sequence of subharmonic functions

whose limit function, V say, must also be subharmonic ( [:16] , D.14),

Also
£im v Z— 4in u(x)
x> x* i=1 x-—»x"'
)+ % (£, - 2, 1) ()

- :
£ fn(x*) and hence VneGi (fn) for each n,
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o A n > R ,» ' Bt R -3 ]
M VG = 3w )Y (HE G-+ g{ FARECRERA

re - -

R | - n
y H (x)- 2= ¢..
./ fn ° i=1 i

Since V¢ GI(f ), and V{ V , for all n, on R, therefore

fim V3 S £ (x*) for all n and hence Zim V'Gf)(f(:?“). It
R n - -

x—>x* . i—»x‘

%*c 3R ) ‘ - X€QR

o«
follows that V ¢ GJ(f) and V(X)) ¥ &im - (R) - 2 €, or
o f 7o i=1 i
(- -]

(5? y - . D= n
w2 Y f p - ?_

& 4 provided that > € 5 converges,
oR

1 i=1l
Now choose £ ) 0, and &, = (fi') for every i, and then

construct {Vii accordingly, It follows that Ve G} (£) and hence

() ad ,
V(;o) K¢ HI; (;0). But V(;o) Y j fap © - ¢ because £ = > ¢ 1
- oR i=1

and hence V(B?o) Y l"}l; Gc’o) -t . Therefore_/_‘jl:. (;t)o) )/Fﬂ; (;o) -<

R —_
for every &) 0, and b.ence_ljf (520) Y H? (;o)‘ Hence

f__“{? (x) =H§ (X)) and the resolutivity of f follows,
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§3 General resolutivity

Let RC E* be a bounded region, Ve shail characterize
those functions on 3R for which the generalized D1r1ch1et problem
is solvable, From J1 we knbw'that a real valued continuous
function on 3R is resolutive, and from @" 2 we know that an nppe_r‘
semi-continuous function on 3R whiéh is bounded above is also

resolutive,

Theorem 4.,%3,1: For any f on 9R, it follows that}{? =  sup %#42 g
- et

where every ¢ is bounded above and upper semi-continuous,

Proof: We recall that _l':l}fl is the upper envelope of the family
6i(f), For any ¢ f on 3R, it follows that @ (@)c6y (£)
and. therefore ‘_H g \( tl R. Since every ? is bounded above and

" upper semi-continuous, therefore every Such @ is resolutive and ‘
therefore H = H R HR ~ For every x¢R, H ?(i’) is an

A R - R
upper bound for iH P (x)k Therefore | p (D ),(\Dstzp {H@ (:?)%
i (N

It follows thatH? Y sup { H qu . Now let ueGy (f) and define
_)(?\( f-———- -> > -
V on 3R such that V(x*) = £im u(x)  f(x*) for any x* & 3R,
X>x*

Then V is upper semi-continuous on 3R by theorem 1.4.5, and is

bounded above,
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It follows that u € Gj'_(V) and therefore u H‘B} . Hence

the upper envelope of Gi(f) is less than or equal to s%p% H%} . P
, ¢&f

upper semi-continuous and bounded above, Combining the two in-
equalities, it follows that H ? = supg Hg g where each ¢ is upper
‘ T oelt

semi-continuous and bounded above,

Theorem 4,3 2: For any f on 3R, it follows that HI:. = fim (Hﬁ )
- n->** n

where ({q) n% is a monotone non deéreasing sequence of upper semi=-
continuous functions on 3R each of which is bounded above and is less

than or equal to f on 9R,

: % € — Rz = % %
Proof Choose X ¢ R, and note that _I‘_'l £ (xo) qu‘el% {HI; (xo)

where % -is the set of all upper semi-continuous functions each of
which is bounded above and dominated by f on 3R, We choose a sequence

é‘Pn }C $ such tnat aim My, () = H?(i;) and then define
n

n-* ¥ n -

¢ n = v Y g Each f?n € @ , and is a monotone non decreasing

i=1 .
sequence, Since ¢ 2 )7 Wn’ it follows that ﬁi:l“ H:n (';o) Y ﬂ?(xo).
: R R 3, R
Since {‘(’nfC§, therefore Uf (;t;) ) sup @“fq (i:)% = feima H‘p (J?O).
. <Pne @ n n- n

Combining the two inequalities, it follows that HE (¥) = fim H R ).
_ , _ —f noeo  ¥n O

In general,Hl; ), #im HR on R since {‘P %C 3.5.
— { pse Qn n
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By the Harnack convergence principle (theorem 3,2,7),

£in R

o = H is a harmonic function on R,  Since H? y H
n->%® n . - .

on R and since H? (;o) = (;c;), therefore H If{ = H everywhere
on R by the minimum principle, The theorem follows,

Remark: For the Banach space of continuous functions on 3R, the
mapping H? (J.{Z) is a positive lineér functional from C into ‘l;he.

reals énd- hence can be identified with a Radon measure on 4R by the
Riesz representation theorem (theorem 1,2.20), We can represent .

-

Hl; (;o) by 55; fdp(;o) where p.(x") is the representation
measure of the linear functional H 1; evaluated at ’;::. For any
upper semi-continuous function € on 3R which is bounded above,

Hl}? ‘exists and Hg (;o) = ﬁimw H ?n (E;) where %fn% is a monotone
non 'increab.-sing sequence. of continuous functi,ons converging pointwise

to@ . Hence H 1; (:?o)? Lim 5 £ dn (%)
| 3

nﬁ“
’ (x.)
= 5 ¢d}1 ° .
3R

by the monotone convergence theorem,

Theorem 4,3%,3: For any f from aR into ET and ;c: & R, it follows |

- : (%)
that_l—:l?(xo) - éfd}z o
aR
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->
(x) B .
Proof: Since ) is a Radon measure whose o - algebra domain of
definition necessarily contains the open sets, it follows from
theorem 1.4,11 and its corollaries, that

_ (X x ) o
S fdp ° « sup g g dp § vhere § consists of
=(aR) P<& | 3R _

the family of upper sem:.—contlnuous functions each one of whlch is

(x)
bounded above and dominated by f, But Hcp (x ) = § @ ap ° and

oR
H (xo) = %g H?‘%) ? by theorem 4.3.1. It follows that
oo ‘
R o (x,)
H £ (xo) = S fop .
- - =(3R)
— 5 4 < (x)
Corollary: He (x) = S ¢ - .
oR
Theorem 4,3.k: Thg) I;unction f from 3R into E# is resolutive if
(x) , “
and only if it is p — summable for a given i; & R,

Proof: Suppose f is resolutive,  Then H (x ) = H (x ) and -

the common value is denoted by HR (?) But HR (x ) = f fdp
and HI;. (¥ o) = J‘ fap () . Therefore resolutivity of f implies
. -(bR) (% ); (xo)
the existence of fan or the p - suunnablhty of f,
8 g &
X ,
If £ is (%,) - summable, then f o) ffdy .
, -(aR)
R IR R
and therefore H H (" ), SinceH 'y yH ¢ o0 R, it follows

that H? = H§ everywhere on R by the minimum principle.
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(%)

Remark: If a function f on dR is )u °~-- summable for a given

(%) N
'it’oe R, it is p -~ gummable for any other i?ie R, and hence it

is customary to simply say p~-summability without reference to any

given point in R, . For a bounded function f, J-summability is equival-
ent to p-measurability. Following Brelot ( [#] ), we shall refer

to the measure p as harmonic measure, We caution the reader to note

that harmonic measure is only a measure in the usual sense when it is
£aken with respect to a specific ‘re»ferer;ce point,

The theory of the generalized Dirichlet problem as developed
in this chapter can be extend>ed to unbounded regions. For any

region RC En, one can introduce the one point compactification on

RUAR and consider a generalized Dirichlet problem for R whose bound-
ary function is on 3R U e} s & compact subset of the compact E['2
space RUQRU 1=} .  We refer the reader to the work of Brelot ( [6] )

for results of this extension,



V., RESOLUTIVITY OF THE CLASSICAL DIRICHLET

PROBLEM AND BOUNDARY BEHAVIOUR

In this chapter we shall characterize the regions for
‘which the classical Dirichlet problem is solvable and analyze the

boundary behaviour of the functions H? and }-—\1; in such regions,’

Definition 5,1:  Let R be a bounded region and p* ¢ dR,  Then

a function W defined on R is said to be a barrier for R at

f;’)‘ if the following conditions are satisfied:

(1) W is harmonic on R,

(i) #im w(X) =0, X € R,
%

(1ii) gim W(X) ) O for any X* ¢ 3R where X* # P*.
ii—*i“' ‘

XeR

Definition 5,2: A boundary point which admits a barrier function

is calied regular,

‘Definition 5,3: A boundary' point which does not admit a barrier

function is called irregular,

124
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Theorem 5,1: Let V be harmonic on a bounded region R such that

£im V(¥) ) O for any ¥* ¢ R,
z-sz»sz*
ge R

Then there exists a k ) O such that V(X) ) k on R,

Proof: V(X))o by the minimum principle, for if there exists an

'i; ¢ R such that V(':'Eo) = 0, then V(k) = O on all R, Suppose the
_theorem is false; then the real number zero is an accumulation point

" of the range set iV(i’)} which implies there exists a sequence §X nk}c: R

such that Zim V(S’cn) = 0, By the Bolzano-Weierstrass theorem, \Yn}
n-—>e N ,

has cluster points in R U 3R, ILet 3:’0 be any cluster point in R,

Then V(X.) = £im V(¥ ) = O and hence V(%) = O on R, which is a
° k>0 n(k) | -

contradiction of hypothesis, If 'ﬁ; is a cluster point in 3R, then

£im V(X (y) = 0 implies fim V(X)  ( O which is a contra-
R, R nlk g :
n(k) "o °.
diction of hypothesis,
Theorem 5,23 Let f be defined on 3R and bounded above,where R is a

bounded region,and let i’o be a regular boundary point for R, If f

is upper semi-continuous at 3’:;, then £im H? (%) f(?c';).
, o {i',; X* )
°

X eR
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Proof: - The fact that f is upper semi-continuous atv?c; implies
£(x*) Y £im £1(x*),
° * g
% —~%]

If V is a barrier function at x; thén:

(1) V)>OoonR
(2) £im V) =0
%x—vx;
¥e¢ R
(3)  4im V(%) ) 0,)%* c OR
¥
XX -i* # ?{;
X ¢R
(4)  For a sufficiently small § -ball B, of X, V is

continﬁous on Bf, (3’:;) U 8B ?(?:;).

(5) V is harmonic on Be(go*).

We choose an €) O and then find P (&) ) O such that if |R-%{( ¢,
then £(%*) ( £ (i: *) +¢ ., Since f is upper semi-continuous, the
existence of such a P(€) ) O is always assured,

Letk = Inf {K':k' = YD |F-%) ¥e Y .
Xe(R-B¢) _ '
x* ¢ 3(R-Bp)

By theorem 5,1, k ) O,

W

v(

Let U = £ + € + HE 0, - 1(35) where M, = sup £(3%)

£ X*<9R
We will show that U ¢ Fs(f).

Case 1: X* = 'x’;.

We mote that Aim  U(H) = £(F) +e ) £(F),

- -
»
X xo
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. 2 3 - k
- Case 2. x* £ i”o', \x*— X2\ (p.

Since

dim U@ = £2(E) +c + 1-11; v(i)} (Mg - £(x*))

Zim
- ) -
X—oX* x-—>x*

y£(x) e ) £(x*),

GaseZ: ¥4 T, ¥ - e

Since
TR = £(3*) + ¢ + )‘(Mf - f(i;) where A ), 1 since V(Z) ) k
therefore £im U ) £2(x*) + ¢ +(Mf - £1(Z*)N= ¢ + M, Y £(2*),
2% ° ° |

In all cases we have shown that Zim = U(X) ) f(x*) and hence
X-%*

veF, (1),
Therefore HI; (X) { U(R) for any % ¢ R,

7~ 1R prem > '
H im im U b4 .
ence i’.e.&: He & ( é—»ii: B £ (x*) + ¢

But € ) O was arbitrary, Thus Zim H? ® $ @D,
' X%
o

Corollary: If £ is lower semi-continuous at fo‘, then
fn HF ) ¥y (x "),

)

X~x*"

o

Xe R
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'Theprem 5,38 - The classical Dirichlet problem is solvable for anyv

bounded region R in E® such that every boundary point pf R is regular,

Proof s Let R be a bounded region in o and let f be any continuous
function on 3R, where every point of 3R is regular, Let ?;* be

any element of 3R; then by theorem 5,2 and its corollary

gin B @) amdaim HE® )G
ix—»x‘ . X-» X3

X ¢R ‘ ifeR
Hence

Lim \~{ ? (%) = £(%*) - and the theorem follows,
2% °
o _

XeR

We may thus conclude by the above results, the following
Theorem 5,k: A boundary point X* of R a bounded region in E
is regular only if the generalized solution %{? ‘corresponding to f.
tends to f(X*) for any continuous f, '

Thus the origin point of the sphere in Zaremba's example
of a non-solvable classical "D" problem (chapter III, § B)jis an
irregular boundary point of the deléted sphere,

We state now without proof, a modified versién of the
Kellogg-Evans theorem ( {8} ’ P.2), a fundamental result in the theory

of irregular boundary p01nts.

Theorem 5,.5: Let R be a bounded region in E® and let?i*} C @R

be the set of all irregular boundary points, Then there exists,a'

function V ) O which is harmonic in R and such that fim VW(X) =
Xrx*

.
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Concluding Remarks: From the Kellogg-Evans theorem one can

show ({4 ) that }%? is independent of the values of f at the
irregular boundary points, If k{? #," ©, there exists some
subharmonic functions in R, general or continuous or harmonic,

each of which is bounded above and of upper limit less than or

equal to f at all regular boundary points; and P%? is the upper
enveloée of each of these three families, If }—%? E - %, there

do not exist any functions belonging to any of the three families,
From these results it follows that a boundary point X*c R is régular‘
if 4im ¥%§ (x) = £(x% for evefy cont;huous f, and hence the regions

ifﬁi*

X< R
for which the classical "D" problem is solvable are those and only
those whose boundaries consist only of regular points, 1In other

words, a classical "D" problem cannot in general be solved for a region

R if 3R possesses any irregular boundary points,
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