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INTRODUCTION

It is appropriate at the outset to define the fundamental
elements of the study presented here, and attempt to remove all
possible ambiguities which could arise from the now accepted name
assigned to them. If the seﬁ of values xi, X5y eee X, occuring
in a random éample of size n drawn from population having (known
or unknown) cumlative probability function is ordered according to
magnitude so that X(1) *(2)‘; X(n) is a permutation of Xpv XypeeeiXy’
with X(1) < X(141) 1l <i < n-l, then the elements X(3) @S well::
as functions of such variables, are known as order statistics, andy:

in particular, X(p)? the value not exceeded by r members of the

sample, is termed the rth order statistic. ' SRR e

In non-parametric statistical inferences it is being found
that order statistics are playing a significant role. The importance
attached to work on non-parametric problems and order statistics is
justified by recognitioq of the advantages to be obtained from the-
possiblé development of methods of statistical inferences which:
are- applicable to broad classes of probability distribution fﬁnctions,
-and-the knowledge that considerable amount of new statistical -information--

-theory can be derived using order statisfics, assuming no stronger:: <o

.

conditions than that of continuity of the derivative of'thefcumuléfivé"i>r:i'

distribution funetion. For the statistician interested in paraéticali

applications it is advantageous to make statistical procedures simple
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and as broadly applicable as possible - which is the case of statistical

inference theory based on order statisticé.

.Among the earliest problems on the sampliﬂg theory of order
statistics was that of finding the mean value of the difference
between the rth and r+lth order statistic in a sample of n values from
a population having continuous probability density function. No

other assumption was made about the probability distribution. This,

the Galton's difference problem was studied in 1902 by Karl Pearson 11 = .

using a deferred integration technique:

A random samplé of n individuals is drawn from a population
of N members, which when N is large may be taken to obey any law of

frequency expressed by the curve

y‘:N (b(x)

y5x being the total frequency of individuals with the measured
- random variable taking a value somewhere in the interval between x

and x + 6x. We seek the expected value of x - X .-
r+l) ‘@

Consider the graph with ordinate y and corresponding abscissa

"Xy the measured random variable,

W D) *

Then the area between the curve and the x-axis, by the defin-

ition of y, is the mumber of individuals in the population so that



® ’ @® (<)
j ydx =N 5 %dx: 54;<x)dx=1.

- - - -®

The probability of an element at x is N(x ) 6x and at x is
: (r) r r+l
l(x ) 6x_ .. Also the probability of having an individual
T+l r+l .
fall below )Er) is -%(xm) where A is the area beneath the y-curve,

and to the left of the abscissa x ..
_ r

(
1 S)xr r"‘ A
i.e. Prob (x < xm) =5 y dx = g(x) dx.= ff(xr)

- - @

and ﬂ_ =Ng (x ) = y(xr) (i)

Thus the joint probability of *n and ¥red is

-1 n-r-l :
- n! L,y X AMx )T Alx_ ) o
f(’fr) (r+h> ~ (r-1)!{(n-r-1)! N(xu')) N(x(r+1)) [_N_(_r)_ l-——‘g'—l-)i- : '6xm6fr+b
and
T+
’& = E(’Er+l)-xgr? = j trsdy j dx(rp (}fr,’ (r+1)) (xlr+1 ))
= X ==
@+l ir)
. Integrating w.r.t. variable 2: 5 One needs consider only
T
X
xr+D) “ rel
I= e, y(xwg A({r)) (’Em—l) cr>)
X = =®
)

and using 1ntegrat10n by parts and (i)

: ‘ . 1) T+1) ro o\
- ~ Af(x ) |V ¢ AT(x )
S = | [(’{N];’fr)) .__fﬂ.-J o dx

r r

where the first bracket vanishes at both limits and we define a -
function U by

U = dx AT(x)

S’?r-r_l)

X= @



N=l-i|

A(’fr+1>) ] U Kk = nd
I‘+1’ (rt) (n-r)!

®
Then"&f =k fo (:-_ra))d)gml) EN((I'+1)

r+}

Employing (i) and integration by parts

®
- VA(X(r_‘_l))n-r p |
X, =£- k N (1o ——p 3T
- s X, 4= =0
. = “ral
® ) n-r
k j [l- r+l j r dx Xr+1
o ey O
where the first bracket again vanishes at both limit points to give:
® A(x_ .) n-r
r+l r
% = k_m - (x(r+1))d’$r+h
Thus if F(x) = Prob. (random variable < x).

n! SCD_ Fr( [ ( ]n-r
‘Xi.;-m Py x) 1 - F(x)

N.B. : were the sample ordered from greatest occuring, to least,
as K. Pearson did,the form of Xr would be the same as above

except for an interchange of r and n-r .

Pearson's work was later extended by Tippett 13 who found the mean
values of the sample range R, the difference between the least and

greatest order statistic of sample.

This derivation involved su’mming")Lr for 1 < r < n-l. Thus

- ®

n-1 ' n-r
B(R) = jm %1 ﬂﬁ?r)— F(x) [1 - Fx))




L« o) n n! ‘,L - n-r
f Z m Fr(x) Ll-F(x):i dx

- @ r=0

) ® n ®
- [ - Fad, - _j@ F(x) dx

- ®

= ~jp{1 - F?x) - (1 - F(x))nlﬁ dx.
-D

But Tippett demonstrated an alternative techniqueg which allowed
the extension to obtain the moments of the range's distribution.

The alternative method employed the definition of a function

l-c:nn"s"1 46 _  n-s-2
da ~ *

so that

n-s-l

¥y = g(x)

e — ~ —

t
|
]
. [}
- §1) fn?‘n"—’
Let xl be the first order statistic and x the last in a
(B4} (ny
sample of size n from a population with curve of distribution
y = #(x). Then, supposing the population to be infinite, the chance
of getting one individual at one.at and n-2 between and
getting Ty oy o)
_is:
o

(~1)"n!
n-2)!

vhere o, = ‘i; #(x) dx |

n-2 -
(al-an) doy doy

B )}
and ‘S P(x) dx = 1.



-1 ! - '
Then E(R) = dem é G.)Z_)—r: (fli—an)n 2 d OLl ()En)-)%.b)

b4 n-2 '
(n) n! (n-2)¢ n-s s  N-5-2
j_dan j =n- (n-2)¢ s% 8! (n-s-2)1 (-1) i ™ dox l(fnf’fl))

b d
e} N=s N=-5=2
(-1) o

n .
s
%n Si(n-s=2)! \~ n -‘L @ 4% (’inf)fl) *

n
18
[o N

and using integration by parts

ni? f (-1)° ! 52 4 4
T neeo2)?!
0 % =-o (s+l).(n.s 2)! n n
n
. xn s+1 . X s+l
vwhere U = j %y dxl = J Na(x) dx
- ’ _-co
1-aP"8"1 4o np-s-2
and defining € = n so that W = .
— n
n-s-1 n
E , ) = sz—:O - e® -1) (5+1)!(n-s-2)! o
= b ul
n-2 (--l)‘s nd

i[ U 9] -» -(%}l.e.da ‘&

s=0 (s+1)! (n-s-2)!

and U vanishes at the lower limit x = -® while ® vanishes at the

upper limit x = ®,so that EUel:D_ - = ©°

n-2 n-s : )] i
(-1) n s+l ,
Thus E(R) = g;;o (S+1).;(H—S-2)! --jo e’ a-n dxno

and using integration by parts

n"2 N [] ; | .
Z (-1) n! jm OLs+l(1__'mn-.s-l) o .
- B n n

(s+1)!(n-s-1)!



and splitting the summation into two parts
® n_ -
ER) = [ 1-Q-0)"-d" ax (2)

agreeing with the earlier solution.

This method of solution also yields expressions for other

moments of R, and is therefore more general in application.

In the same paper Tippett tabulated the mean range for a
standardized, normal distribution for samples from two to one
thousand, these being evaluated by finding a frameﬁork of values by -
dirgct computation of equation (2) using quadrature and filling this
in by interpolation, using first Lagrangian Formulae énd finally a - -

difference formula. In addition, using the functional relation
. xp
j £(x) dx = o°
- p

_.where f£(x) ié the distribution of the largest individual in samples

R (4] -
“of n (where j. f(x) dx = 1) and « =»‘pr #(x) dx, y = @(x) being -
- D p -0 . _

~the graphical representation of an infinite population's distribution,
he tabulated the probability integral or cumulative distribution ,
function of the largest order statistic in a sample from a nofmalA

population having zero mean and unit variance.

- Later R. A. Fisher and L. H. C. Tippett 3 determined;byﬂa
method of funcfional equations, and for specified regularity conditions
'Vén»tﬁe population-distribution, the asymptotic distribution of -the -
greatest (and also the least)'valueé in a sample as the‘sample'size»~»~

tended to infinity.



It appears that a particular set of distributions provides
the limiting distribution in all cases and the case derived for the
normal curve is peculiar for the extreme slowness with which the

limiting form is derived.

The.possible limiting forms are deduced from the functional

relations they must satisfy:

n, <
P(x) = Pla_x + b ). _
The solutions of this functional equation will give all possible

" limiting forms; and consequently these fall into 3 classes, -

- 1) a=1 P(x) = PCxsd ) -
ii) P =0Owhen x =0 P (x) = P(a_x)
j3i) P =1 when x = 0 P%(x) = P(anx),

which show that the only possible limiting curves are Suchrﬁhéfil,v

-X
i') aP = ¢ X% g4x.
kK -x¥ : :
') dP = =z e dx. : ' o
N S

\k
1419 P = k(=x)¥T &= (%) 45,

Further studies of the limiting distributions was made by -

‘ Gfum?el 5  who made several applications to such proﬁlém;”é;i;f~'"
-flood flows, where the random variabie often is thé annual'rainfall;;_
-and the sample size n is the number of years for which~tﬁé rec§rds of -~

the annual rainfall are available; and papers on order statistics .- ==

"~ continued to appear. In 1932 A. T, Craig 2 gave general expressions

for the exact distribution functions of the median, quartiles and . . . - ..



range of a sample of size n.

Suppose a variable x to obey a law of probability given by
f(x) which, initially is assumed to vanish outside of the interval
from O to some positive real number A; and consider a sample consisting

of n = 2m + 1 (m, an integer) values of x with median & be drawn.

The probability that m of the 2m +. 1 items be in the interval
. (2m+1)o [ 1
from O to ¢ is o5 Y CTSO) f(t) dt
The probability that of the remaining elements m lie in the interval

. a m
from O to A and one lies in Eﬁ, ﬂ+§§] is (m+1)[J* £(t) dﬁ] . f(ﬁ) dg .

-

Thus the probability distribution @( e\) of the median in

samples of size n = 2m+l is given by the equation

#e) = (2m+1)- [J £(t) dt] (J:f(t) d} £(8) d g,

and #( E\) has same form when the range of x is the entire real line.

Similarly it may be shoﬁn that the probability function of
the lower quartile 551 of samples of n = im+l elements, drawn from a
universe represented by f(x) is
' _ (4m+1)! _ )
(%) = [j £(t)- dt] U £(¢) dt £035) %,
o (Bm)' '
. and abviously any statistic which is defined as the value of the variate
which exceeds and is exceeded by specified numbers of elements in the -

sample may have its distribution determined in like manner. Still

‘studying the median, Thomson 12 in 1936 showed how confidence limits

for the median (and also for other ‘quantiles) of a population having -~ = -
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a continuous cumulative distribution function could be established

from order statistics in a sample from such a population.

In recent times the probability behaviour of order stat-
istics has been significantly developed and unified by S. S. Wilks,
his aséociates, and studénts at Princeton'rlh s 15 and the post-
-humous publicétion of collected papers 17 by him provides good
.. evidence of his invol?ement with the study of order statistics,‘and
their applications. The accumulation of theoretical knowledge of
order statistics had stimulated the development of areas of their
‘application, in particular their application to non-parametric
: sta%istical inference.: [}nferences from samples about distribution
functions, under normal assumptions - e.g. continuity of the
cumulative distribution function - are referred to as non-parametric
inferences,in contrast to parametric inferences which are concerned
with inferences about values of parameters of distribution functions
of known functional form, depending on one or more unkhown parameterél.
The probability theory underlying‘such inference consists essentially
of the probability theory of certain functions of order statistics.
Wilks 16 gives a surv;y of some of the basic ideas and results 6f
noﬁeparametric statistical infefence. By their usefulness in this
field one is prompted to ask if order statistics may not be used in the

estimation of parameters.

Order statistics often permit very_simple'inefficient
solutions of some of the more important parametric problems of

-statistical estimation. R. A. Fisher introduced the concept of
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efficient statistics, or estimates of efficiency. They serve as a
measure of the information a statistic draws from a sampie so that if
statistics &' and é“; unbiased estimates of a population parameter ©,
with variance o less than‘variance of é", then the efficiency of é"
relative to é' is the ratio of the smaller variance to the larger; -
~and if there exists an unbiased estimate %64 for which the variance
is minimum, then fhe latter is called the most efficient unbiased
estimate and '"the" efficiency of all other estimations may be taken
as their efficiency, relative to éb . Mosteller 8 has investigated
the efficiency of various linear combinations of several order
--gtatistics in large samples for estimating the mean and variance
¢of—;-norma1 distribution function and’he obtained efficiencies as

- great as 0.87 by using the average of 10 properly spaced order

statistics to estimate the mean.

As an attempt to achieve further usage of order statistics .

in parameter estimation one may consider their application in estimating -

parameteré of multivariate popuiations.. In particular, can order
statistics be used to estimate the correlation coefficient p of some -
bivariate population? S. K. Banerjee 1 derived the asymptotic
approximations to the joint distribuﬁion of certain sample quértiles,:
- which I shall use in this study tb obéerve the efficiency of certain
functions of these order statistics when used to estimate pj; for
bivariate populations whose distributions satisfy certain specified,ﬁx,

conditions.
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Banerjee's derivation of the asymptotic distribution considers

two variates X and x5 with probability density fungtion f(xl,xz)

which sétisfies the following conditions,

_ ) |
1) ) £ M) ax; = [ £(x,0) dx, + OCI/N)
-® L =®

a a0
(11) _fm £1/N) x,) dx, = 4 £(0,x,) dx, + O(L/N)

- (iii) The following equations:

: g€ ; .
1 ®
(a) f f f(xl,xz) dx, dx, 2%
-0 -

5
2 @
1
(b) [m :/m £(x),x,) dx) dx, = 3

have unique real roots.

[;n particular f(xl,xa) may be the bivariate normal density.
function{j‘ Let a sampl{ of (kn + l)velements (xlr’x2r) (r = 1,24000,ln4+1)
be drawn from such a population. Let il’ §2 designate the first
quartiles (corresponding to 'ﬁl, ?é in population) of the two
variables. (§1, §2) will be referred to as the Quartile. Let us

’ "

' * ]
divide the plane into 9 zones Rl' R2' R}’ R, , Rl, ""»Rh’ R by

the straight lines:
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A
X. = % - = dx x
2 = X 3 &% 2
L}
- 1 R R
x2 = x2 + > dx2 2 2 R1
: - ] ]
’ - A ' R
we=x-zey el 5 i
[ ]
x =% +3d% By Ry By
dx1 -
7~
_V
1 1

Let the probability that an element falls in the region Rij) be

o pg - /ﬂ( £(x)4x,) dx, dx,
1

[« )] a
/)_:1 /; £(x),x,) dx, dx
2

For example Py

n

k-]
1

= f(xl,xa) dx, dx2 etc.

We shall consider now that the sample is drawn from a
: : . "
multinomial population with probabilities Pyv eee2 P and pick out
those terms which give rise to a sample quartile (§1,§2). This can

be done in the following five manners:-

(i) If the quartile is an element of the sample, then that
" . ’ s
element may fall in R and the other elements must fall in regions -

Rl' Rz, 33 and R“ with frequencies Dy, Ny n3, ny, with the condltiqns



14

ny + 1, = 3n "\ n2 + n3 =n
and
nl+n‘+=3n n3+n4=n

We have therefore nh = n2 and n1 = 2n2 + 3n3.

The probability that this occurs is:

- : (4n+1)! " y n, n3 -y
Sl = Z (nl)!(na)!(n3)z(n‘+); P . Pl . P2 b p} . pl’
(bn+1)! " 3n3+2n2 n, ny ny
= n (3n.+2n)i(n ,)2( n Y * P, ¢ Pg Py
fgtnzIh IAmgreny/iingtl gt
.2 (4n+1)8 n p3n1+2n2 NI,
By +ny=n (3n1+2n2)!(n2!)2(n13) 1 2 *F3 Py

(ii) Now let us suppose that the quartile is determined by two
L
different elements of the sample, for example, one in Rl and one in

1]
R, and n, elements in Ri (i=1, 2, 3, 4) with:

2 i
An3 + nu =n . nl + n2 +1=>53n
and
na + n3 =n nl + nb +1=73n
Therefore

| n, = gh and oy = 2n2 + 3n3 -1

The probability in this case is:
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S = : (bn+1)!
2 n +...+nu-4n-1 (ﬁijf(n ')(n ')(n *
. . n, n, ny n,
. pl . p2 o pl . p2 . p3 . pl‘.
> (4ns1)? .
nytng=n (2n2+3n3-l)£(n2!)2(n3!)
' ' ?n2+3n3-1 113 n2
° pl . pa . pl . p2 . p‘+
v | (4n+l)?
F P e P .

n1+n2=n-l (nl+1)8(3n1+2n2+;)!(n2!)2

3n1+2n2+2 n n +1 n
opl apz op; op‘}

L4 L
(iii) Similarly considering R, and R,:

2 3
nl + n2 + 1 = 3n , n2 + n3 +1=n
and

ny + 0y = 3n . n3 + 0, = n + therefore

nh = n2+1 and =2n + n3 2n + 3n3 + 2
Prob: S (bn+l)t

S by n!n!ntn! °
N, +eeetny = n=-1 "1° "2* "3* "4

0 " nl nz n3 n1+
op20p3.pl .pz op3 op‘*

' K ‘ jz:: » (4n+1)l‘

n2+n3=n-1 (2n2+3n3+2)!n2!n3!(n2+1)3

2n2+3n3+2 n2 n3 n. +1
.pl opa -p3 .p’.}
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v S (4n+1)3
= P2 . P3 . — (3 > 2)'n+') ' b .
n1+n2_n- n1+ n2+ .na.nl. n2+ H
3n1+2n2+2 n2 n1 na*l
° pl L4 p2 . p3 b4 pu

' t ]
(iv) Considering R3 and R,

n, +n, = 3n = D, + My and

n,+n, +1=n-= nh +n, + 1

2 3 3

jz (4n+1)!
Prob. = Su = e °

B n1+-o.+n‘+=‘+n-1 nlz nzz n : n‘+!

3

e * . n n2 n na
° p3 . pu 4 pl . pa . P3 4 Ph'

' ' (4nsl)?
S P3Py namen-l  (2n,+3n,+3)1(n1)%(n 1)
2*"3" 2tohato /i gt Mgt
2n2+3n3+3 o n, Ny n,
.pl . p2 . p3 . p“’
' ' ) (4n+1)¢
= P3 L P4 L4 A ..n_l (3 2n +3).(n ')Z(n ')
Ay #pTATE MMy ren o i ingsl Ay s

3n1+2n2+3 n2 nl n2
opl . pz . p3 . ph

- .
(v) Lastly, considering R, R,

n3 +m + 1

n2 + n3 =n =n

and _ .
n+n, = 3n n +n o+ 1l =73n and therefore
n, =mn + 1. and n, = 2n + n3 = 3n3 + 2nh + 2 . -
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Prob. = 8, = =2 (bn+1)!
n1+...+n“=4n-l (nlz naz n3! nhg)

' ' n, n, n n,
e Py s PP +Py ¢ Py P

) ' g 1
= pl . pl’. . Z. ("“!1-!-1). .

n3+nu=n-l (3n3+2n4+2)3(nu+l)!n3!nu!
3n3+2nh+2 nh+l n3 nu
Py *P2 s P3 ey

| ] !
=P+ D - = (4ns+1)e .

- ' tn 'y o
+n_=n-1 (3n1+2n2+2).(n2+1).nl.n2.

o R
3nl+2n2+2 n2+1 nl n2
* *Pp Py e Py

Therefore the elemental probability corresponding to §1 and §2 will

be

D(xl,xa) dx, dx, = s1 + s2 + s3 +, S, + SS'

Asymptotic Distribution., In order to get an approximation to

the distribution for large n, we shall assume:
(a) (1) IfA =B+ O(l/nl/z)J s we shall write A = . B where
0(1/n1/2) represents any function such that

1lim . N.O(IN) = L < ®
N—wo

- (ii) We know the following result (Multinomial distribution

tends to Normal in the limit):
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m 5 M 1/2(r-1) =1 -l r-i
- l}; p;" = «(JA|/2n) . exp(~ 1/2 2f % Aijzizj) i,='l dz,

|
Hl‘“i :

) /2
where Zi = (mi - mpi)/m / s =1, 2, eeey =1

i~ l/pr

Aii = l/pi + l/pr; Aij = Aj

(b).(i) We see that S1 has one more factor in the denominator than
the corresponding fractions in other sums. This may there-
fore be neglected in the asymptotic form as it is of order

(1/n) in comparison with others.

¢ii) Therefore we have:

SZ = l&n(‘m+l) . p;- . p; . n -l-nz—n-l - (l"n'l): >
172" (3n1+2n2+2)!(n2!) (n1+1)!
3n1+2n2+2 n, nl+l n,
. pl . pa . pj . pl{. .
1/2 . 33
]
= « n(ln+l) o p;_ o Py e (—]A—IB . exp-l/z(zZ‘AijZiZj).
n,+n,=n-1 (2n) 11 =
o le . dZ2 o dZ3‘
. (n,+1) - (4n-1l)p
where 4. = nl b

1 (‘m—l)'l/2



19

(n2) - (‘+n_-1)p2

Z, =
2 7 (4n-l)l/2
- n, - (4n-1)ph
3 (4n- 1)1/ 2
, n - (4n-1)(p. +p,) o '
: . 2 ~3° 1/2,1
Now %, + Z_, = — =e (bn)™7 (3 - p, = p,) = U. (say)
17 2T T a2 L~ P2 Py 1
Similarly-
n - (hn-l)(ph+p )
"3 \1/2,1
2, + 2, = = o (4n)"5(F -p,-py) = U (say)
173 )2 AR
Aj = 1/p3 + 1/py5 Ay = 1/p, + U/pgs Ay = 1/py, + /7y

Alz = A21 ) A13 = A31 = A23 = A}Z = l/pl

M2 |
e = o 4n . p o p eXPe -1/2 (l/p +
1 2" (2n)> 2" ny+n, —n-l : {‘ 1

+‘1/p2 + l/p3 + 1/p4)Zi.- 2(Ul/pl+U2/p2 + Ul/pz) +

PRE- 2 2
+ 02 /pk)zl + (U1+U2) /Pl + Ul/p2 + Ua/p;}4. dz

(Since in the approximate reldation, Multinomial Distribution -

i correspbnd to factors

l/m;/a and we therefore let dZaraﬁd dZ3 cancel‘thevfactor'hn~1 in

the coefficient of exponential terms in 52)'

Multivafiate Normal Law, the faétors az



20

The summation can now be performed to within terms of

1/2

order 1/m by integration with respect to Zl between, - @ to ®,

which gi'ves

' 1/2
52 = .‘l"n p; . p2 L] LA/ B
2n(l/ p1+1/ p2+1/ p3+l/ ph)

75 - eXp.-1/2 {(Ulma)z/ Py

2
e 0.2 s U2 _Oy/py + Uy/py + U/, + Uy/p,)
127 T2 /Py Vpy + Up, + 1/p; + 1, )

Now let us define:

@ ®
q; = /:7 42 f(xl,av:z)dx._\.dx2 qi = / f(xl,o)dxl
1
fl @ Jg)
q, = J b/; t‘(:c._L.xa)dyrfix2 qé = / f(O,xZ)dx‘,2
2 : 2
E1 ‘?'2 E:l.
ag = [m J;m f(xl,xa)dxldx‘2 qé = ‘[m f('xl,O)dxl
w 52 | o ' ?2
q, = .! ‘/“.‘:Ii;(xl,xz)dxldx2 andr ql'; = ‘[m 1‘(0»,x2)dx2
1 ,
We have Py =+ 9 1=1,234

= ' 4% 4
P =. aj dx, (]t

"
Pt
-
W
~

pj = qf d% (i = 2, b)
Now let U, = (lm)]‘/‘2 (]:'L; - Py - p,)

where
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*2 ® O
£(x, 4%, )dx.dx, = T fxy,x.) dx,dx, +
[m el [m/_m 0T e

@

Py +py =/

- O

' mfo(
f(x, 4x.)dx. a
‘[mo 10 %274
1 = P -
=3+ X, [Q f(xl,exa)dxl 0<e<1

1., & ®
=e 5+ 8% (say, where a, = / f(xl.exz)dx1

22 Yo
=. ‘/@f(xl,o)dxl
-®
=q) + q%)
. 1/2 (1 -
o'o U‘.2 = = (4n) (-E +a, x2)
Simi:larly let
U, = (4 )1/2 (-]5+ X.), where = cl,I(O )a
l-o"' n l’ all’w al-[m ‘xa x2
, LA
Therefore
1/2 ‘
bn q}q) (g, +q, + q; +q,) _
S me 2 L2 3 W% (1/q +1/a, + Va, + 1/q) "2
2% Ton B 172 | 1t 3 b

exp. = 1/2 {(Ul_+ II?_)a/q1 + (U5_2+ 1122)/q2 -

<Ul+02 . U1+U§) 2 »
- q q 3% d%
1 2 dxldx2 »

/gy + 1/ q,+1/ q3+1/q,+)
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or
1 . 1
g - a 2 | 3
2, (40,4040, )2/(a, 0,040, 0,0, +0, 020,40, 050, )
2= * 2raja, 179 3™, 192%3%93 959,797 959, +9,959,
(u) 2_2BU. U_+U : :
expo-{ 222_2 Ag:qi.qé.ﬂ (say)
(s}

thre 1/02 = (1/q1+1/q2)(1/q3+l/q4)/(1/q1+1/q2+1/q3+1/qu)

and - B}-"oz = l/ql - (l/ql+1/q2)2/ (l/a1+l/q2+1/q3'+1/qh)

. _ (bn+1)!
(1i1) 33 - pé~- p% i§§§;£;1 (3n1+2n2+2)!n2!n13‘nafl)! °
‘  3nl+2n2+2 n, ny n1+l
. pl 4 pz . p3 . pu
. Y‘S‘
= #n(hnfl) pé . ps .;Er——1§é7§ eXpe - - 3 A, JZ Zj)dzldzzdz3
n, - (4n-l)p
where Z1 = 1 1/25
(4n-1)
. - n, - (lm-l)p2
27 (Y2
_ _ ' - |
. - (n2+l) (4n l)ph | : |
> .(lm-l)l/2
and Aij's are exactly as in SZ'
1 | :
5 E
Here also Z, + Z, =. (4n) (% - pz-p3) = Ul(say)
_ i '
2. 42, = (4n)% & - p.-p.) = U_ (say)
17 % L T PPyl = o



«'c S, is exactly equal to S

3
P;- Py

. 1 ] y
5 except that P, p, are replace by
... S e '.' '.H
3% % 9%

(iv) 8, = p% P}, :E:::; (hn+l)!2 .
nl+n2=n-1 (3n1+2n2+3)3(n2!) (nll)

3n1+2n2+}. n2 hl na

. pl b P2 ‘ p} ne pl* °
1/2 3 3
A 1 :
=o 4n(4n+l) p% P} o Z -éﬂ—)%/—a- eXpe = -é-( % Zl Aijzizj) .
. d2,d2.dZ,.

. 1723
_ - ny=(4n-1)p '
where Zl = """"‘"i%é
(4n-1)
n2-(1+n-1)p2

Z. =
2 (hn-l)n a

nz-(kn;l)pu

2. =
37 n-1)¥2

's are exactly as in S_ and S;.

and A, , 2 3

Héré als§ Zy + B, = (hﬁ)l/a (% - py=pg) = U;  (say)
and Zy + 2 s.(un)?ka (% - ph;p3) = U, (say)
ote ;Su =.‘qé qa-. M |

(") S5 =P P} nlnn- (3n1+2n2+ég?{i;il)lnllnu!'

n2+1 3n1+2n2+2 n1 » n2
. pa B Pl hd p} M pl} hd

23
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A i jZ izj ) ledZ.ZdZ3

M

1/2 3
=e 4n(hn+l) Pin, Z'éi)%'a' €Xp. = %(?

nl-(hn-l)p

where 2 -——————7r2;
17 (4n-1)¥2

~~(n2+1)-(4n-1)1/2pg .
1/2

(4n-1)
nZ-(kn-l)pu

Z=—_——7—
-3 (lm-l)1 2

and A, .'s same as in previous cases.

ij
~ Here also 2, + Z, =. (hn)l/a(% - Pa'Ps) = Uy
and ST+ Z3 =, (lm)l/2 (%’- pu—pB) = U,

=. a' q!f
. e SS = ql qh M.

Therefore Distribution of (Ul' UZ) is

g 1/2
L P | TNt tat Yo ?
(ajaj+ajag+azaj+aja;) (q;+0,+q5+q,,) |
dF(Ul' Ua) =e 21tq q ° 1/2 ]
12 (q1q2q3+ooo)
| 2 .o 2y, 2 |
expe. - (Ul -2501U2+U2 )/20 ..dU1 . dU2

or

. . B ) .,.. - 1
dF(q;, U,) = (a3+q,+a5+q,) /?/(an)(q1q2q3+q1q2qu+q1q3q4+q233q4)

: - C 2 2 vy -
e €Xpe -(Ul -25U1U2+U2 )/2) .dUldUZ.

24
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The constant term in this integral can be finally chosen as to make

the total integral unity.

In Chapter I, I have tabulated values of dertain constantsr
defining the asymptotic joint distribution of the first sample
quartiles of a bivariate normal population with zero mean and unit

variance and correlation coefficient p.

The application of the Edgeworth Series expansion for a
‘population distribution function considered in 1 has prompted
" the derivation in Chapter 2, of the expectation and variance of the
var%able ;l - §1 when the population distribution is specified to a
sufficient degree of accuracy by the first terms of its Bivariate

Edgeworth Series.

Finally Chapter 3 embodies a consideration of the use of the
"straight product interquartile range", (;2 - §1)(§2 - 51) and the
"erossproduct interquartile range" (§2 - 51) (ia - il) as estimators
of the population correlation ;oefficient. -

&>



CHAPTER I

Let us consider a bivariate population in which the random
-variables, denoted x and y, have joint probability distribution
function f(x,y), such that the conditions (A), specified on page 37

of 1 are satisfied.

fvee 1) [ ted ax= | #x00ax + o)

- -m
® . .

: ii) f f(%.y). dy = fD £(O,y)dy + 0(%‘-')

. -® , : -® }
q'l @ . 1
3ii) Equations a) j f(x,y) dx dy = T

X=~-® Y= -0

)]1 ® 1
b) £(x,y) dx dy = s

y=~-® X=-®

have unique roots.

On page 52 of 1 the asymptotic joint distribution function

of two linear functions, U, and U,, of the first quartiles, ).cl 3 §1

is given to be

"aF(U, ,U.) = = 1/2 (1.1)
10727 7 2mlaya,q5 + 439,50, + 93959, + 9959 |
(vf - 280U, + U3 ‘ ]
o€Xp - — > = dUl dUa I

.20
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/2 = 1 /2 = 1
where U, = (4n) (ayy, -3) ~and U, = (n)™" (ax, - § ) (1.2)
® - ' ® v
ay = { £(0,y) dy ' a, = £(x,0) dx (1.3)
. -0 -0 .
1 1 1 1 1 1 1,
S n (= g )( )/(“"+“'f+“"+"").: : (1.4)
2 4 9 879/ Ty g, B
- 1- ,1 1.2 /1 1 1 1,.-
= == (= 4+ =) (= + =4 =4 =) (1.5)
o h h B h % %G
®  (®
and ql = ) ‘41 f(x,y) dx dy : (1.6)
1
: ﬁl ® ‘ .
q2 = r{ f(x.y) dy dx » ) : 1.7
. 1
C 1 1 .
az = f j f(x,y) dy dx (1.8)
‘o ®

T2 : |
qy = jm /m f(x,y) dx dy - (1.9)

%i. ']1 being the population first ﬁuartiles corresponding to 3'(1, 51'

respectively, and . indicating accuracy to order 4.-3.;.— when 4n + 1 is the

sample size

iceo We Write A = QB
if A =_B_[1 + 0(1/n2):]', : wheré O(l) represents a function such

(1.10)

- that . lim N(-—) =L < m.
N-am :

It is observed that if f(x,y) is such as to allow commutativity

of infegratidn Wer.t. variable x and that we.r.t. variable y then



.2
T 27ET %
U S
QG ==+ %
U, = é =9 =9

28

(1.11)

(1.12)

(1.13)

In the case where the samples is drawn from a bivariate

normal population of known means, Bos py; variances, oi 65 and

correlation coefficient p.

i1

- 6745 Ox + 'p,x

i}

h

- 6745 Oy + ‘p.y

2

: 2
and for n, = py = 0 and ox = oy = 1, the

normal population)we have

a @® 1

q=‘g
1o _%ms

Tables for the function

L e
erhs 2n(1-p2)M2

=1

NI
—S——75 exp
: é 1{ 2x(1p)M?

(page 136 of 10 ).
standard bivariate

2(l-p2>

x2-2pxy+y2

(1.1#)'

(1.15)

dx dy. (1.16)

2
;z;:;E; i'x =2pXy+Y X dx dy

have been given in li for p =0 ('l) 1 , whence q, may be approximated

from tabled values of p by using repeated applications of Everett's

interpolation formula.
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ol

2

3

'l*

5

o6

o7

.8

9

1

- .572 832 49

.583 674 14

.«595 101 22

.607 238 22
.620 273 28
.634 503 05
650 453 67
.669 080 19

.693 ob2 61

}

TABLE OF VALUES FOR q1,~%5 , Zg , B
. g O .

qa = q4 = '75"q1

177 167 51
4.166 325 86
154 898 78

142 761 78

«129 726 72

.115 496 95
.099 546 33
.080 919 81

<056 947 39

Correct to 6 places of decimal.

SN
93 = =3+ 9

072 832 49
.083 674 14
.095 101 22
.107 238 22
.izo 273 28
013k 503'05
«150 453 67
.169 080‘19

193 Ok2 61

5.349 578 59
5.402 227 40
5.499 596 46
5.655 299 67
5.871 359 66
6.255 878 27

6.837 974 16

7.879 173 19 -

10.350 608 51

lel
w

0.294 797 16

- 0,610 066 76

0.956 232 29

1.349 376 22

1803 242 36
2.402 359 01

3.207 599 58

4,478 740 14

7206 375 74

.055 106 61

<112 928 74

-173 873 17
.238.603 84
307 125 17
.384 c;s 26

1469 086 23

. .568 427 68

696 227 25



CHAPTER II

Suppose' the joint probability distributj.on of the two
random variables satisfies the specified conditions and may be
approximated by the -terms of its Edgeworth series containing fourth

and lower order derivatives w.r.t. each variable, so that

r o5
' { ' r+s Dl DZ ' ,
f(x,y) = exp L = (-1) Krsﬁ ST a(x) a(y) (2.1)
[here operator Dl £} l— and D = %—-}; 3 .
1 ; S ,
" ' ' | (2.2)

a(x) = "ré—u e :
\
the summation ¥ extends over all values of r+s > 3 together with

the term K. .;and the K's are the b:.var:.ate cumulants of the distribution

1Y
in standard measure so that K =Wy ’,’ P anc} terms KOl' 10° KZO'
Kpp do not appear.] '

may be approximéted by

- f(x,Y)

_D],Dgf +_K%_L' D, }Sa(x) aly) T (2.3)

o

30 E
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Then the population first quartiles are t‘l’ ',lvwhere these are the

- solutions of

K | , X '
f alx) dx + =3¢ C"“_(ﬁl) v 2 at6)) - 22300 - 62 a) + gla(s)) = 2 @)
")

and

) K
f? aly) ay + -3—,2{;1(71) o w03 - 0 [3aeq) - 6F atn) + qlatn))) = 2
1l

‘ (2.5)
l2
Utilizing result: lim x* e = O for all real a.
X =>@® .
and notation p(x) = jo a(t) dt the equations for evaluating €, and (2.6)
X .
'Vll may be written
@) - 20 g2y a ¢ ko [, 6&2»5‘*}( ~
PE) =37 Q-8 @ @) + = L3+ 6 8 = &y “sﬂ)"% (2.7)
(1)
. fo3 el '
p(y) - =% Q- %) a(y) + g3 -3 + 6q1 ql—la(vll) - (2.8)

and having solved for &, and one can determine q, by
g 1 1 1

| ® o
a4 =J£1 4 'f(x,y) dx dy

K | |
- BE) B+ Ky <8y () - $20uce)) - Bacs)) )

Ky, -
2§ ace) a(ny) + 5F a(&) My a0 - 332 p&lacr-1G atrp)] -
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K
= [36.,«( ) + €2 a(e)]p( )+ [.a(s,)+§ a(&. ]«
1 1 #6701 Py 1% 1)

I

2'2' % '11 “(ﬁl) () + '3_}2 (&) [’“(‘71) + 'li"‘('(l)]
Koy, L 3 Kil | R
car 2@ [aqaq) + aqle Gy we ) @9)

Thqs employing methods of Numerical Analysis &l'and ,Ll may be.
determined from equations (1) and hence q, may be- evaluated for ‘
any specific distribution satisfying the specified conditions, and
given by its Edgeworth series truncated at terms of order four in
der;vatlves. In particular if the population under c0551deratlon
follows the standard bivariate normal distribution & =1, = - 6745

and by p.82 of &

K =»p

Koy =0 =Ky,

K30 = K03 = ©

Koy = Kig =0

507 %5 = © !
| Koo =9

80 ql reduces tb form:

- [pt-o. 6745]2 + plac-o, 6745)] w6 g2 [20.6745)2. (- 0.6745)] 2
(2.10)

= 0,562_5 + 0,100 98°f + ‘0.015311702 | 4
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and 9, = 1.7 -0.31 9.1#7} - 0,088 903})

= +1825 - 0.100 980p - 0.0k5 9u1p®

O
&
]
o
n
1

5.479 452 + 3.031 886p + 2.969 90§P2

= 0.0625 + 0.100 980p + 0.045 9&»2

o
\N
4

|
"

16 - 2.585 088p + 3.000 61;y2

1,1 _ =
o + 1, = 7.25 7229 + 2.712 739 + 2.88 1oo§p

1 ) 2
+ = = 21.479 452 + 446 798p + 5.97 0519
3 YW | 4 y

L ,1 .1 .1y 28,936 681 + 3.159 537p + 8.851V52%?2

' -1
& .3 .31 .,3)

. 2
3 %5, e, -0.034799.-0.000 383p- -0.001 033p~

A Llyd L1,y 2
«(qi + qa)((13 + ql’)_ = 155.881 302 + 61.5106 63) + 106.!}2_3 87?y

“ o1 l.,,1 -1
(ql +'q2)(q3 + qh)_

¢ .I.1.5,

QB L 3y

= 5.2k 513 + ~L.5k3 4Bkp + 3.518 861p°

& + % )2 ='52,667 373 + 39.373 93§P + 28;267 06§p2

9 9
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= 1.832 772 + 1.350002p +0.914 180):‘2

2 = 1.777 778 -0.319 147p -0.088 903)° -
1 i ~ - . .
& +19
% -3 _c.o54 994 + 1.669 149p + 1.003 083p°
& . .2 £ 3 ql-.-. ’ ) : ? ) ? "
Thus -:-Lé = S.h24513 - 1.543 484}5 + 3.518 861;;2 (2.11)
g - T .

32- =0.054994 + 1.669 149p + 1.003 683},2 (2.12)
. |
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Continuing our consideration of the standardized Bivariate norial

- population.

If U, and U, have joint probability distribution function

1 2
, 05 hLU, 5
k exp- 5 (;-é- - 2B ralelts ;-2-) dUl d.U2 where the constant k may be

determined by integration.

2 )
U 1] U U -
kexp-%'(—!a'--ZB—z—;- j‘-2-+-§) du, duy
o o
k 2x 1 1 Ji-g? 2
=1 B \2 2\ S¥PT T 2 i v =)
L—K - ("2) ) 21t(l-fi3 ) . 2(1-8%)
o g
2 o
r_l_:é_ 1B 62 B .K au, du L. (-9-)2} . o° (2.13)
- 2p(u, =By (v, 22 (o =
. , T a2 2
Thus variables Vl = Ul 'l]ﬁ;-ﬁ- and Vé = U2 ﬁ__é_—ﬁ_ follow the

standardized bivariate normal distribution, with cox_'relation coefficient B

»

EREE G EA th
o

- _..-l-iv ____9_______ +l\ wh‘erea,— Sm f(o )d— —L-
17 8 U1l Jun(1-82). % — 17 g RF y = Tew (2.1%)

for Bivarate normal

.. . (a5

- e ) 1 |
Ta= oo i"aﬁ:;a'; SN
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- _ = 1l . o '
V1% =~ Jin(1p2) v, - V. | (2.16)
Thus Exp. (§; - X) = ©

’ i

Exp Weov Y o°

- =2 2
Exp. (yl = xl) = 2] Exp. (V2-Vl)

gnn(1/ 2-6%/ 2)  &m [(1/ 2)° - (B/2)

1

- 02

3 2 2
8xn  (1/ 2)°-(8/ 2)

(2 - 2B) (2.17) '

A
- A - ln:tn 15.479 507 + 0.125 665p + b.521 94#};2 k

) bn ((1/,2 + B/,2)

Tml—n' § 0.182 498 - 0.004 185 3p - 0.150 510;;271
1
&

Exp. (5}1-;1)" - Exp {vg-wzvfévgvi-w Vot

(8n)2 {(2=)°-(£)2 12 211
102 02 } ]

1l
i

- g
(8xn)? {(5)° - (;%}2

-12(3-p2)

= . - o T (2018)
(L n)Z{I + B}-Z ' A !
I P ] -
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. * « Var, (;1-21)2

_Exp.(yl";l)l’ - @xp-(if'l-s?l)ajz

3 1 1

= 2 ¢1 B2 271 B g2

(4nn) - + = (ben)< { = + —=
fda 02} {02 oai
- = 2 11 B 12 (2.19)
(4xn) = 4 '
1L

= £ { 0.033306 - 0.001 528p - .027 450p? | (2.20)
()2 f’ 4 | |

Thus the linear function of p which approximates Exp. (S"l-)-cl)2 is

= [ 0.182 498 - 0,004 185p |

so that to this degree of approximation.

A 1 - = (2 |
p' = 5,005 185 [(yl-xl) nn - 0,182 498_} is an |

estimate of the correlation coefficient P and-

Var. p' = (-.-58%-55)2 var (il-il)zo

Now the variance of the minimum variance estimator P. is for a

~sample of size 4n+l is

1-p°
, ’ 2
' (4n+1)(1+)p )
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Hence using Rs A. Fisher's definition the efficiency of p', defined

above—, is -

1.p2 0.004185 (bn)® 1 B °
[ 45+ 5)

(tm+1)(1+)> ) hnm T2

,

lm+1 [ 000 263 + 0000 12p + .000 092p j



CHAPTER III

INTRODUCTION:

In this section I shall use Banerjee's derivation of the
joint distribution of first quartiles and second quartiles in the
case of bivariate normal population 1 to.obtain the mean value of the
étatistic (§3 - §1)(§3 - 51) in terms of the population correlatiqn
coefficient‘P where §1, §3 are defined as the first and third quartiles
of the x variate, and il} 53 the cqrresponding quartiles of the other
variaﬁe Yy in a bivafiate normal population, approximated by the first

few terms of its Edgeworth series.

Let f(x,y) be the joint probability density function of two
variables from which a sample of in + 2 observations (xr,yr)
1 <r <nis drawn. Assume that f(x,y) satisfies the conditions
specified on page 13; §i’ §3, i1§ 53 are as defined above, and
ql.EB"ll'lj are the correspdpdlng population quartiles. (xl,x3,&1.33)

will be referred to as the quartile.-



Lo

S
y
1. |
R | o R ol B
- 1T [ 1 1 T R
Y3 > R B B Ry
1 1
Re R Ry Bl R
- T 11 1 1T
! R R R 5 Rt
1 : 1
Ry | R, Rg Ry R,
- - \x
xl - x3

and we define pij to be

the region Ri.

i.e. pij

is divided into 25 regions by the lines

1 o
yl;:adyl

y

< .1
Y3 £3 45

o
}

the probability that an element falls in

= ‘g"’ f(x,y) dx dy. - - - '(3.1)‘

o



Pp= . _ f(x,y) dx dy
. X=Xy Y=V
X ®
o 3 ,
P2'=£_‘!: /- fx,y) dx dy
R Y3
5 e |
P3 =[ o fx,y) dx dy
Xz =« Y= 3
® 3
Py = _[_ ‘f-_ f dx dy
X—XB y—yl
x y
3 o
Pg = f_ _ fdxdy
21 f;} ‘
Pg = Jf _ faxdy
X= -® y::yl
!
Py = ,/jp J/’ f dx dy
x=7k3 y=-®
5 rh
bg = ,/; f dx dy
x=x1 Y= ~®
i1 ¥y
f dx dy

(3.3)

(3.4)

(3.5)

- (3.7)

(3.8)

(3.9) -

(3.10)

41
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The technique of considering the sample as drawn from a

multinomial population with probabilities Pyr oo p&* is then

employed and those terms which give rise to the observed sample

quartile (§1'§3 il 53) are picked out. For example, the quartile

(X} - te
may be determined by one pair falling in Ri and the other in Rk“,

the remaining 4n pairs being distributed in zones Ri with frequency

n,,1<1i<9 with

i

i=1
n, +n, + n5 =n n1v+ n, + ng = n
nu + n5 + g = an n, + n5 + ng = a2n
n7 + ng + n9 =n n3 + ng + n9 = n.
The probability that this occurs is
n
: i
"o . 9 by
- : 4 :
5, =P, P Z(lmfa). W =
: . i=1l ng

" (3.10)

where the summation

is taken over all possible arrays ng \nrj.t:th.i = ln,
’ 3

Another possibility is that in which the quartile (Ei %5 7y T3

‘is determined by four different elements in the sample, for exémple.

R [} . [] ]
~one in R., one in»Rll’ one in R, and the other in

2

‘elements falling in the regions Ri with frequences n

such that

. ,
R7 the other lin-2

i 1<i <a

(3.11)



b3

, 2§ n, = bn - 2 | o

i=1 - °
ny) + 0y + 0y + l=n ny+my o+ n, = 4
hh + ns + n6 +1=2n n, + #5 +ng +1=2n (3.12)
n7 + q% + n9 =n 7 n3 + g+ n9 +1l=n '
and the probability that this occurs is
A pi
s, = p} p p! p! }E: (4n+2)!¢
2°727% 771 ' 121 MY (3.13)
' Zhi=hn-2 -
Banerjee lists the other 32 ways in which (xl 3 yl y3) may be
obtaimed and derives the asymptotic joint distribution, to approximation

-1/2

of order n by using the normal approximation for the multinomial

distribution when the sample size 4n+2, and hence n is large; and

- computing the sums involved by integration.

For example,

ni - (kn-é)pi

defining zZ, = (3.14)
X 3 (4n—2)1/2
in the nérmal approximation . : T
- 1 ,
- ) 21‘-‘1——-' TN Maz,
8, = «(4n)" pp B¢ Py Py et Ziii 1_22 %



"where A =

[t}

with A, .
i3

Ayg =

All’ ..0 .y A18 ‘

o 0©o o @

Aal’ L A88

Aji.:..p—a' . 1£3

s (k)
i,
pr  pa

- By the conditions which f(x,y) is assumed to satisfy

_ @ o
Py + Py + Py = _( f f(x,y) dx dy

[i]

*2

(] "’2
Py + Pg *+ Pg = j f f(x,y) dx dy = 'b(ij.;l)

2 ») @® i _
Py + P+ Py = [ £(x,y) dx’ dy = 3 - axg

- ® . - . ® B
‘where a = ] f(x ,0) dx and b = f £(0,x) dx

and 2 +za+z

1

-2, + 2
Tl

P, + Pg + Pg =

-® X,
| @ §2 -
j ' ]_ f(x,y) dx dy = .a(:-cz-il)

3-

-® B

5

1

(4n)? (5 + by )

3
1

PRI U
+ 26 = o("”n) (E - b(y;‘yl))o

3 - W5,

Il

(3.16)

(3.19)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22) )

(3.23)
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1 :
Z2) 42y + 2, = .(4n)? (-'% + a§2) (3.24)
. 1
, 2 /1 - - : '
za + 25 + 28 = .(Qn) (E - a(xz“xl)o 7 (3025)

If ay and ag be the integrals represented in the equations on page 28

with % §3 ¥, 53 replaced by the population quartiles §, % 14 13

respectively

@
i.es g J/’ ‘L; - £(x,y) dx dy (3.26)
T '

gl
1]
4 ;! f(x,ya) dx etc.

<]

and we have

pi = 'qi 1 S i‘s 9

' ' -

IR - (3.27)
p; = .q; dx, | i =‘7. 8, 9

. .

Py = «Qy dyl i=4,5,6

' a -
pi = 'qi dya : v i=123

: ' . _ . '
Thus if Py and Py are replaced by the corresponding 9 and 9

after the transformation:

n
a .

o Z, + 2, + 2

- | N - (3.28)

1
<t

zh + 25 + 26'— 2 ‘ _‘ . ’ . . (3'29)’.
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+z4+z7=u3 | ' o (3.30)

2, + 25 + g ='U‘+ 7 ' v (3.31)

gnfi Z, = 21, Z, = 259 Z) = Z), z5 = zs. (3.32)

yielding
z -_-:VUlv - (zl + ZZ)
zg = U, - (zl’,f 25)
z =U3-(?;+z4)

zg = Ul} - (z2 + 25)

the exponént in the probability s, is

.-:--(ZZ A, .2, 2, + A (U ~z.-2_) + etce. (3.33)
2 i,j:l.Zfl;S ij "1 73 33‘ 17172

with A calculated from 'eq:uations * on page 31 of this section, but

. with q, replacing p; i_<_ i<38.

= -% (Ql(U) + QZ(Z) - 21(z)) say o _ (3.34)

331 773

. 2 2 -
where Q (U) = A e . AggUa + A U5 + Agsuﬁ + A5 01U, + 28,0, U

+ 20,q0 Uy + 285U U; + 2h U Uy + 28,000, ~(3f35)

Qz(z) =.,z' C z - with 2' = (z_l,za,zu-.zs) and matrix C having (3.36)

elements..



L7

€1y = Ayy ¥ Ag3 + Ay + 2y,

12 = A2 *+ 53 . A3 * VA38 *Az8 = °a

€3 = Ay, + A?B + A36 + Agy + Agy = opy

8y, = Ais + A36 + A38 + A67 + A78 = cqi . (3.37)

c,, = A + A33 + A88 + 2N~8
Ca3 = Ay +\A36 +'A37‘+ Agg + A78 = €35
€y = Ags + Agg + Asg + Asg + Agg ® Ch2
c,, = Ay + Rgg + A,'?7 +
034 = AA} + A66 + 467 +_A68 + A78 = ch}

°l|.1|. - A55 + A66 + A88 + 2A68

and L(z)vz (ﬁl, Uys Ups U5) B(gl, 52, 23 25)'- ‘3438)
vhere B, = Ayg + Aso 3 By =g A38 ]
Biy= Ay Ay Pay = As6 + Asg |
, ?21 = Ay +Agy | By = A+ Agy L Ga9
323 = Agg *+ Ago | Boy = Rgg + Rgg
: By = App + A5y Byp = Az + Agg.
Byy = Agy + Ay By, = Agy + Ang
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= Azg + Agg

o
F —d
Pt

i

>
W
(2]

+

>
-Q
oo

ve)
£
n

4

= Agg + Agg

o)
£
AV

I

g
o
Co

+

o>

ﬂ
(o]

o
£
E—d

I

If f(x,y) satisfies the conditions stated earlier and specified
by the terms of order four (in derivatives) of its bivariate
Edgeworth series using the same method as in Chapter I it can be

shown that

® ® ® .o - ®_ . ®
' =£ & =% a(x) dj a(y) dy + Kll[u(x)_] [a(y)‘]
3 | 13 ' “ - T3

| X 0 > ® o : K21‘ T ® m‘
- —32,- L—a(x) + X a(xﬂ & ~a(y) dy - T Exa(X)_}%. E“(y)%]
. 2‘3 ) * . 3

K ® ® K ® ' : ®
R R R
s T T o3 >

'Kkol | - ® @ Ell. P ® ®
+ 2 [3x() - x3a(xi¥3 l; a(y) ay + —2F [ta(x) + a(x)] [;acy{xb

’ .
s 3

2

K K ®
+ Gy Eet)] [vew)
% 3

X | o
o+ L—c!)ﬁ [}xﬂ(y) - Pa(y)]. f a(x)_ dxe.
G3 o

K B B
®. '3'}'2 {atx)] ° [-a(y) + y%a(y) ©
. 4 ‘
3 : 3

- For the standardized normal where Kjy =P Ky =0 =,K12’7

K}O = KO} = O, K‘*Q:yo’ K31 = Kl} = 0 and K22' = 0 o+ This reduces

to the quadratic approximatiion in terms of p.



P
i

{%-+‘p.(o.31777h)2 + %92(0-5745 x 0-2177'7.&)?2

40625000 + +100980p + .022970}92
and pq = pl'_
Similarly it can be shown that

p, = +125 - L0u59k1p% - .045941P2
~and p, = p = Pg = Pg}
= 062500 - .10098qp . ’022979P2

Pz

and'i)3 = P

Ps = 025 + 427564606,
1 2
Hence ;; =16 - 25.850958}5 + 35-8865§5P
1 2
" 8 + 2.94022lp

1 Py 2
;; = 16 + 25.85095§p + 35-88655§p

1 2
= = 4 - 4,410%36
g T 336p: |

All the above being approximated to second power in pe

k9

Thus for the standardized bivariate normal distribution, equalities

‘exist between the elements of the matrix A such that

1 ,
A, = — i 1.<1<8 1<3i<8, -
ij Py - X jrv =T=" 0= J 3
2
A11_= >



' 1 1
A = A = A = A = g -
22 F My = %66 88 P, Py
1 1
A33,‘ A77 - Pz * 1
N L )
Ass5 = P "r
‘.and the_symmet_:ric matrix C has ’g;éylents Cj:.j i, = 1,243,k
e.. =% .2 _18. 103 ubﬁé;u ,# zé? 092440p®
n=p e T . /i P
e 5.1 of - 108 hosala” 2
€15 = Cy3 = Py ! P, " 96 19}-5Q383#gwf 215.319530p
C., =C.. = <2 = 80 = 129.254792 + 1791#32775 2
1 = 723 T py - }’ Salts /4
- _2 2 1 _ -
c22 033 = By + P + 7, = 112 }SBf%S?BBQP + 220, 553576;
v .5 1 -’ LT 2
Cay = Cay = ) + >, - 88 129.;5A79;p:+ 182.372992p
5,2 ,1 _ 300- 8
c“u By pa s = 100 ,129 25479gp 180 902 8§p

and the inverse of C is the uwd;ra.xc-'1 ,with elements, denoted Cij,

given by:

¢t = 034856 + .025536p - 3, 2&4716;2b

¢'? = ¢ - - .02038 - .024640p +- 10.186099P .

) Clu = 014423 + .OZ‘+'+9OIp - 6. 816902})

e e - Lous673 + .001188p --1,19u58§P
ca3i= 014423 4 026433p - 7. 54049&p_
¢4 - ¢3M - o336k - .00148§p+ 2 382654p

t' = 057692 -_.01076gp +_2.2u5252p',n_-f

McMASTER UNIVERSITY LisrARY
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, , 2 1 . 2
By, = By, = By, = e 48 - 25.850958p + 107.659666p
: - _ . - . _ - _ 2
Byg = Byy = Byy = Byp = Bgp = By = By = Byz = By
= 32 - 51.701917p + 71.773110p2
B.. = B =B,-1§ 7—-2—»,—1--&0-'-51701917 + 7he71333h4p°
23 % 24 T "w2 ¥ "uh T p T p, T L DL (ULILIP . P

Now to find the marginal joint distribution of Ul U2 U}-Ul+ one

integrates the joint distribution; (which turns out to be just a
. . ' -
multiple of 82) of the U's and Z)s Zy1 Zys Zg OVer the

(zl, 2,0 Bys 25) region to obtain

. , ® . o .
» , ® 1 |
f(UlsU29U3'U4) = k‘ZQZZZ:;_AexP‘- 3 Ql(U)+Q2(z)-2L(z)) dzldzadzudz5

1 where k is the normalizing constant;

= k exp- 2 [Q,(0) + uv'sc~ 8y (3.10)
Lk b
= k exp- 5 21':;-013 LA _ (3.11)

The symmetric matrix D = BC™B! has elements d; 4 given by

d)y = dgy = 23.076795 + 2.41010kp + 37248.059452?2
e LR EL
d), = d}k = 11.076822. ~ 19.923340p + 26681.92485#;» |
- .
dy3 = 15.076795 - 16.978077p + 35587.620459p _
a4 R . 0082
dl‘f = g123 = 15.076822 19.2153_1@ +.27498°l+25898?
= .2
dy, = 4y = 16.074844 - 21.452619;: + 21073.745121?
: , 2
dyy, = 15.073771 - 19.832951;, + 20666.131167p".
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and the (eij) matrix has elements Gij, 1<i<h,1<3<h:

, o .
ellr= 933 = 55.,076795 + 2.#10104P>+ 37319.832562p |

: : 2
6, = esh = 27.076822 - 48.297655p + 26716.815409p

05 = 31.076795 - 42.829036p + 35623.5q7013p2
18y, = 0,5 = 31.076822 -»76.1#3124p + 27534,312453p°
0,, = By, = 40.07684k - 47.303577p + 21112.571900p°
8, = 31.073771 - 45.683909p + 20702.91772;P2.

and (eij)-l = (eij) has elements:

022 = 0" - .o75653 - .OMU3Bp + 23.215799p°

and 62" = 04310 4 .036826;; + 6.295394p°,

Vin [. Lt “ ny] /
=V [3-26,-5)]
Jin [- 5]

3°° .
UA = .1[2; \;— - -— (x xl)t]

Thus with i

=
1

(=]
1}

U

-
¥l

i

U, 's follow the muitivariate normal distribution with covariance
matrix (Gij)-l = (Qij) and zero means.
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Page 86 of Morrison's book 7 records thé fact that if the
joint distribution of.a set of .elements, written as the coordinates.
of a vector x is multivariate normal with mean vector u and covariance
, matrixzthen any linear transfbrmatio_n e.g. Y = Ax gives a vector
whose componexits again follow the multivariate normal distribution

but with mean vector Ap and covariance matrix A" Z A.

Thus using matrix A =/ O 1 O 0) one verifies that U,U,

k0001

are jointly distributed as a bivariate normal distribution with

2 24
zero means and covariance matrix / © 2 0,
Lk
& o

Hence (y,~y.) and (x —)-cl) are jointly distributed as the bivariate
371 > 1 22 L

. ‘ . no no . :
normal with means A z and variances = and covariance
2 a2n 2n
L
e2
In , .

wzlr i
+—

o'.o Exp. (§3-§1)(§3-;‘1) = 2n . >

]]
=
S
()
~~
ot )
. }
ﬁ)l: }
=
.
A4
)
—



2 2 —l
2 n >
- == (0,0} + U,03) 5 uguiJ
2 2 N 2 3 2 '
22 m2 22 Qb 2D oAb w2 2202 24,2
=T+T+-r-1'(& +S.)+n6 +lm21.(9,) + (20 )J

Whence variance of (53-51)(§3-§1) = Exp.%fy3-yl)2(x3'x1)

.
- E(yj-yl)(xB—xl) i |
2 ~ .
o G R R I (Ca 0]

and ‘the efficiency of the linear function of (§3—§1)(§3-§1) used

to estimate p from a sample of size (4n-2) may be ascertained to be

hn+2 l+p2

1 1p° | (2036826y [2922 PPCUNN | [(922)2 . (622 :U-l
n n
In like manner one may consider the statistic (yj-xl)(x3-y1)
and possibly linear combinations of these could yield a more

efficient statistic for estimating p.
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