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INTRODUCTION 

It is appropriate at the outset to define the fundamental 

elements of the study presented here, and attempt to remove all 

possible ambiguities which could arise from the now accepted name 

assigned to them. If the set of values x1 , x2 , ••• xn occuring 

in a random sample of size n drawn from population having (known 

or unknown) cumlative probability function is ordered according to 

1 ~ i ~ n-1, then the elements x(i)' as well 


as functions of such variables, are known as order statistics, and,..· 


in particular, x(r)' the value not exceeded by r members of the 


sample, is termed the rth order statistic. 


In non-parametric statistical inferences it is being found 

that order statistics are playing a significant role. The importance 

at.tached to work on non-paramet.ric problems and order statistics is 

justified by recognition
.• 

of the advantages to be obtained from·the 

possible development of methods of statistical inferences which 

are applicable to broad classes of probability distribution functions, 

and the knowledge that considerable amount of new statistical information·· 

. theory can be derived using order statistics, assuming no stronger" 1 • '-" r 

conditions than that of continuity of the derivative of the ctimulatl.ve 

distribution function. For the statistician interested in paractical: 

applications it is advantageous to make statistical procedures simple 

l 
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and as broadly applicable as possible - which is the case of statistical 

inference theory based on order statistics. 

Among the earliest problems on the sampling theory of order 

statistics was that of finding the mean value of the difference 

between the rth and r+lth order statistic i~ a sample of n values from 

a population having continuous probability density functiono No 

other assumption was made about the probability distribution. This, 

the Galton's difference problem was studied in 1902 by Karl Pearson 11 

using a deferred integration technique: 

A random sample of n individuals is drawn from a population 

of N members, which when N is large may be taken to obey any law of 

frequency expressed by the curve 

y =N cP (x) 

y6x being the total frequency of individuals with the measured ., '· 

random variable taking a value somewhere in the interval between x 

and x + 6x. We seek the expected value of x - x •.
tr+1> (.r) 

.. 
Consider the graph with ordinate y and corresponding abscissa 

x, the measured random variable~ 

t.> \.+l) 

Then the area between the curve and the ·x-axis, by the defin­

ition of y, is the number of individuals in the population so that 
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jQ) i dxJQ) y dx =N sQ)~(~) dx = 1.= - Q) - Q)
- CD 

The probability of an element at x is *(x ) 6x and at x is
(r) _ - r r r+l 

ZN(x ) 6x • Also the probability of having an individual · r+1 r+1


fall below x is h.N(x ) where A is the area beneath the y-curve,

tr> (r) 

and to the left of the abscissa x(r~ 

1 5r fri.e. Prob ( x < xu-/ =N • y dx = j __ ¢ (x) 
-CD -a> 

and ~·)= N ¢ (x ) = y(x ) (i)dx r r 
r 


Thus the joint probability of ~ and tr+~ is 


, [ ( )J r-1 [ ( >jn-r-1f(x •,x ,J = ( l)'C• l)' l.N(x) Z.N(x 1) A xU"l_ 1-A tr+ll bx 6x ,,
(rJ (.r+~ r- • n-r- • _ \?"> <.r+ > N N _ a) tr+..u 

and 

J
~+l) 

dx f (x x ) (x -x )'\_ = E('tr+1nrl = f <Dfr+ll U'I <r>' <.r+l) l]'+l) U'l 

x =-m x =-a>cr+l) <r> 

Integrati_ng w.r.t. variable x • One needs consider only

(rJ 


x 

~+l) r-1 


I =J dx 'y(x ) A(J ) (x -x )

cr1 U"l ~r) • (r+l) <.r> 


x =-m

a') 

and using integration by parts and (i) 

r 
- x 

Ar(x ) Jtr+l)= x ,,-x ) rr1(r+.., lr) 
- r ~=-CD 

where the first bracket vanishes at both limits and we define a 

function U by 



4 

u n!Then "X..... = k ja> (n-r)dx ,,
r (r+..,, 	 ~· k: (r!) Cn-rH x = -Q) 	 N ~·-

er+]/ 

Employing (i) and integration by parts 

Q)

A(x(r+l))n-r 

xr =[- k N (1- N .tr:4-.TJ 
N 	 x 1 =-m 

- r+ 

+ k Ja> [ 1- A(xr+l )] n-~ dU 
dxN r dx tr+l)- a> N tr+l} 

where the first bracket again vanishes at both limit points to give: 

A(x ) n-r 
1 r+1 
- N 

Thus. if F(x) =Prob. (random variable < x). 

n-r 
~ = ni [ 1 - F(x)] dx. r r!Cn-r)! 

N.B. 	 were the sample ordered from greatest occuring, to least, 


as K. Pearson did,the form of Xr would be the same as above 


except for an interchange of r and n-r • 


Pearson's work was later extended by Tippett 13 who found the mean 

values of the sample range R, the difference between the least and 

greatest order statistic of sample. 

This derivation involved summing"J\. for 1,S r .S n-1. Thus 

n-rn!E(R) 	= r £.1 F1°(x) [1 - F(x)] dxr!(n":"r)! 
- Q) 	 r=l 
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n n-r 
n~ F1°(x) Ll-F(x)] dx= ~ r!(n-rHr=O 

JCD ~(x) dx 
- CD 

= J {1 - F~x) - (1 - F(x))n) dx. 
-CD 

But Tippett demonstrated an alternative technique~ which allowed 

the extension to obtain the moments of the' range's distribution. 

The alternative method employed the definition of a function 
n-s-11-a. d&- n-s-2

& = so that -da. = a. •n-s-1 

- CD 

Let x.. be the first order statistic and x the last in a 
~ ~ 

sample of size n from a population with curve of distribution 

y =¢(x). Then, supposing the population to be infinite, the chance 

of getting one individual at 1tt one at 7n\and n-2 between ll>and 

~n) is: 

(-l)nn? 
Cn-2)? 

(o: -a. )n-2 da.l da.
1 n n 

where o:
1 

= s~ ¢(x) dx 
- CD 

CD 

and 5 ¢(x) dx = 1. 
- CD 
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00 

Then E(R) = f ~~~=n-)CD (-l)nn! (a....-a. )n-2 d a. (x -x..)J d ol.n Cn-2)! J. n 1 ln> <..I)
X =-CD 
~ll) 

= JCDda. Jx(n) n! ~2 (n-2)! (-l)n-sas an-s-2 da. (x - ) 
n Cn-2)! s=O s!(n-s-2)! 1 n 1 tnJ'U.l1n> -CD ~= -CD 

n-2 CD t 	 2r d a. n. ( )n-s n-s­= £.. j n s!(n-s•2)! -l an
s:O X =-CD n 

and using integration by parts 

n-2 <D "S
(-1) nl an-s-2 U da.Z:f (s+l) Hn-s-2)1 n ns:O x =-a> 

n 

x s+l 
where U = 

. 
a.~+l d~ = 	 J ll: a.(x) dx 


-CD 


l-a.n-s-1 d&- n-s-2and de fining e-- = n so that ~ = -an • 
n-s-1 n 

n-2 

E(R) (;..1)".s n! u dt:r.
L. j 	 Cs+l)Hn-s-2)1

6=0 Xii= -CD 

.,
n-2 (-lf n. 

= z: 	 { [- U ~~CD=_; Sd~:.&.dan \.
s:O Cs+l·H (n-s-2)! 

n 

and U vanishes at the lower ·limit x = -CD while 6' vanishes at the 

upper limit x = m,so that f:.uelCD= -a>= o. 
. n 

n-2 (-l)n-s n! 

l a> e- cx.s+l dx · • 
Thus E(R) =. L (s+l)Hn-s-2)! . n n

s=O 	 -CD 

and using integration by parts 

n-2 ( 1 ,s , 
. .;;-- - J n. . 

= L (s+l)Hn-s-1)!


S:0 
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and splitting the summation into two parts 

J
CD 


E-(R) = (2) 

-CD 

agreeing with the earlier solution. 

This method of solution also yields expressions for other 

moments of R, and is therefore more general in application. 

In the same paper Tippett tabulated the mean range for a 

standardized, normal distribution for samples_ from two to one 

thousand, these being evaluated by finding a framework of values by 

direct computation of equation (2) using quadrature and filling this 

in by interpolation, using first Lagrangian Formulae and finally a 

difference formula. In addition, using the functional relation 

x

Jp f (x) dx = a.n 
-a> p 

-vhere f(x) is the distribution of the largest individual in samples 

of n (where JCD f(x) dx = 1) and a.* = Ip ¢(x) dx, y =¢(x) being
-CD p -CD 

the graphical representation of an infinite population's distribution,.. 

he tabulated the probability integral or cumulative distribution 

function of the largest order statistic in a sample from a normal 

population having zero mean and unit variance. 

Later R. A. Fisher and L. H. C. Tippett 3 determined bya 

method of function~l equations_, and for specified regularity conditions 

on the population distribution, the asymptotic distribution of the 

greatest (and also the least) val.ues in a sample as the sample size-­

tended to infinity. 
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It appears that a particular set of distributions provides 

the limiting distribution in all cases and the case derived for the 

normal curve is peculiar for the extreme slowness with which the 

limiting form is derived. 

The possible limiting forms are deduced from the functional 

relations they must satisfy: 

n .. 
P (x) =P(a x + b ).

n n 

The solutions of this functional equation will give all. possible 

limiting forms; and consequently these fall into 3 classes, 

i) a =1 Y1Cx) =P(x+b ) 
n 


ii) P =0 when x = 0 Pn(x) = P(a x)

n 

iii) P = l when x =0 Pn(x) =P(a x),
n 

which show that the only possible limiting· curves are such that-­

i') dP __ -x -x-e de x. 
. -k 

ii') dP 
k -x=k+l e dx. 

x k 

iii') dP ( )k-1= k -x -(-x)e dx. 

Further studies of the limiting distributions was made by 

Grumbel 5 , who made several applications to such problems as ··-·-­

flood flows, where the random variable often is the annual raihfall, 

and the sample size n is the number of years for which the records of 

the annual rainfall are available; and papers on order statistics . , , .· 

continued-to appear. In 1932 A. T. Craig 2 gave general ~xpressions 

for the exact distribution functions of the median, quartiles and 
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range of a sample of size n. 

Suppose a variable x to obey a law of probability given by 

f(x) which, initially is assumed to vanish outside of the interval 

from 0 to some positive real number A; and consider a sample consisting 

of n = 2m + 1 Cm, an integer) values of x with median ~ be drawn. 

The probability that m of the 2m +,l items be in the interval 

. (2m+l)? [f ~ ( ) \m
from 0 to ~is mHm+l)? f t dt .J • 

The probability that of the remaining elements m lie in the interval 

a Jmfrom Oto A and one lies in (,, ,+.~1 is (m+l) [ J f(t) dt • f(j) di•· 

~ 

Thus the probability distribution ¢( ') of the median in 

samples of size n = 2m+l is given by the equation 

(~ m A m(2m+l)!'
¢( ~) = [ d f(t) dt J ( ~ f(t) d~ f( i) d ~. 

(ml )2 

and ¢( ; ) has same form when the range of x is the entire real line. 

Similarly it may be shown that the probability function of 

the lower quartile SC. o.f samples of n = 4m+l elements, drawn from a 1 

universe represented by f(x) is 
~ 

. ¢< x.1> = C4m+1H [ 11 r<t> d~m[JmfCt> dtfm re~> 
mL. (3m)! 0 · 5\ 

and abviously any statistic which is defined as the value of the variate 

which exceeds and is exceeded by specified numbers of elements in the· 

sample may have its distribution determined in like manner. Still 

studying the median, Thomson 12 in 1936 showed how confidence lirriits 

for the. median (and also for other qu.antiles) of a population having .. c 
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a continuous cumulative distribution function could be established 

from order statistics in a sample from such a population. 

In recent times the probability behaviour of order stat­

istics has been significantly developed and unified by s. S. Wilks, 

his associates, and students at Princeton 14 , 15 and the post­

humous publication of collected papers 17 by him provides good 

evidence of his involvement with. the study of order statistics, and 

their applications. The accumulation of theoretical knowledge of 

order statistics had stimulated the development of areas of their 

application, in particular their application to non-parametric 

statistical inference. {]r.nferences from samples about distribution 

functions, under normal assumptions - e.g. continuity of the 

cumulative distribution function - are referred to as non-parametric 

inferences,in contrast to parametric inferences which are concerned 

with inferences about values of parameters of distribution functions 

of known functional form, depending on one or more unknown parameter~. 

The probability theory underlying such inference consists es~entially 

of the probability theory of certain functions of order statistics. 

Wilks 16 gives a survey of some of the basic ideas and results of 

non..parametric statistical inference. By .their usefulness in this 

field one is prompted to ask if order statistics may not be used in the 

estimation of parameters. 

Order statistics often permit very simple inefficient 

solutions of some of the more important parametric problems of 

·statistical estimation. R. A• Fisher introduced the concept of 
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efficient statistics, or estimates of efficiency. They serve as a 

measure of the information a statistic draws from a sample so that if 

statistics e• and ~n; unbiased estimates of a population parameter e-, 
A ... I;

with variance 9' less than variance of en, then the efficiency of 0" 

relative to e•" is the ratio of the smaller variance to the larger; 

and if there exists an unbiased estimate "'e for which the variance 
0 

is minimum, then the latter is called the most efficient unbiased 

estimate and "the" efficiency of all other estimations may be taken 

as their efficiency, relative to e • Mosteller 8 has investigated
0 

the efficiency of various linear combinations of several order 

statistics in large samples for estimating the mean and variance 

.of a normal distribution function and he obtained efficiencies as 

great as 0.87 by using the average of 10 properly spaced order 

statistics to estimate the mean. 

As an attempt to achieve further usage of order statistics 

in parameter estimation one may consider their application in estimating 

parameters of multivariate populations. In particular, can order . 

statistics be used to es~imate the correlation coefficient p of some 

bivariate population? s. K. Banerjee 1 derived the asymptotic 

approximations to the joint distribution of certain sample quartiles, 

which .I shall use in this study to observe the efficiency of certain 

functions of these order statistics when used to estimate p; f?r 

bivariate populations whose distributions satisfy certain specified _ 

conditions. 
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Banerjee's derivation of the asymptotic distribution considers 

two variates x1 and x2 with probability density fun?tion f(~,x2) 

which satisfies the following conditions, 

m

J O>.(i) 	 f(~,l/N) d~ =/

-m -m 


(ii) 

{iii) The following equations: 

~l 
JO> 	 1(a) 	J f(x1 ,x2 ) dx2 d~ =4 


-m -m 


1/2 Jm(b) 	 f(~,x2 ) d~ dx2 =4 

-m -m 


have 	unique real roots. 

[In particular f(~ ,x
2 

Y may be the bivariate normal density · 

function.] Let a sampl~. of (4n + 1.) elements (~r'x2r) (r = 1,2, ••• ,4n+l) 

be drawn from such a population. Let~' x designate the first
2 

qtaartiles (corresponding to "G1 , '{' in population) of the two2 

variables. (~, ~) will be referred to as the Quartile. Let us 

divide the plane into 9 zones~· R2, R3, R4, ~· ' ••• , R4' , R" by 

the straight lines: 
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- 1 -
x2 = x2 - 2 dx2 

. - 1
x2 = x2 .+ 2 dx2 

- 1 -
~=~-2d~ dx2 f 

x2 

R2 

-x2 ~~ 

~ 

' R2 ~ 
• 'R ~ 

' R4 R4 

dXi 

~ 
xl ~ 

Let the probability that an element falls in the region R(j) be
i 

pi ~ !I rc,_.x2) d,_ ~ 
i 

We shall consider now that the sample is drawn from a 

multinomial population with probabilities p1 , ••• , p" and pick out 

those terms which give rise to a sample quartile (~,i2 ). This can 

be done in the following five manners:­

(i) If the quartile is an element of the sample, then that 

element may fall in R" and the other elements must fall in regions· 

~' R2 , ~and R with frequencies n1 , n2, n , n4 with the conditions
34 
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and 

The probability that this occurs is: 

II 
p 

( L l), " 3n3+2n2 n2M-n+ • = 

(4n+l)l II 

• 
(3n

1
+2n

2
)1(n

2
!)2(n

1
!) p 

(ii) Now let us suppose that the quartile is determined by two 

different ·elements of the sample, for example, one in ~ ' and one in 

R' and n elements in R (i =i, 2, 3, 4) with:2 1 1 

and 

Therefore 

The probability in this case is: 
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(4n+l)! 
• 

= 
(4n+l)! • 

(2n2+3n
3

-l)!Cn2!)2(n
3
!) 

, , ,2n2+3n3-1 

• P1 • P2 • pl 

(iii) Similarly considering R and R :2 3

n1 + n2 + 1 = 3n } n2 + n3 + 1 = n } 
and 

=3n n + n4 = n ; thereforen1 + n4 3 

~ = 2n + ~ = 2n2 + 3n
3 

+ 2 

(4n+l)! 
• 

(4n+lH 
(2n +3n +2)!n :n !Cn +1)! • 

2 3 2 3 2

2n2+3n +2 ~ n2+13 n2 
• P1 • P2 • P3 • P4 
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• • 

16 
(4n+l)1 

• 

(iv) Considering R and R
3 4 

Prob. (4n+l)1 
0 

(4n+1)% 

(v) Lastly, considering l)_t R4 

~ + n4 + l =nl . 
!1J. + n4 + 1 =3n~ and therefore 
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Prob. = (4n+l)! 

(4n+l)! 
= P1 • P4 • L 	 • 

n +n4=n-l 	 (3n +2n4+2)!Cn4+l)!n !n !
3 3 3 4

3n +2n4+2 n4+1 n3 n43
•P1 	 • P2 • P3 • P4 

C4n+lHL 	 •=P1 • P4 	 • 
n1+n2=n-l (3~+2n2+2)!(n2+l)!n1!n2 ! 

3n +2n2+2 n2+1 nl n21
• P1 • P2 • P3 • p~ • 

Therefore the elemental probability corresponding to ~ and i 
2 

will 

be 

Asymptotic Distribution•.. In order to get an approximation to 

the distribution for large ~· we shall assume: 

(a) Ci) 	 If A.= B[i + O(l/n1/ 2>], we shall write A=. B where 

O(l/n1/ 2 ) represents any function such that 

lim • N.O(l/N) =L < CD 
N-i CD 

(ii) 	 We know the following result (Multinomial distribution 

tends to Normal in the limit): 
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(b).{i) We see that s has one more factor in the denominator than1 

the corresponding fractions in other sums. This may there­

fore be neglected in the asymptotic form as it is of order 

(l/n) in comparison with others. 

(ii) Therefore we have: 

1/2 

= • ( /A/ ) 
(2tt)3 

(°i+l) - (4n-l)p3 
where zl = (4n-l)l/2 
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Cn2) - (4n-l)p2 

z2 = (4n-l)l/2 


Z _ - (4n-l)p4n2 
3 - (4n-l)l/2 

n- (4n-l)(p +p )2 3
(4n-1)1/ 2 =• 

Similarly 

(say) 

A11·= l/p3 + l/pl; A22 = l/p2 + l/pl;. A33 =l/p4 + l/pl 

A12 = A21 =Al3 = A31 =A23 = A32 = l/pl 

/A/= (pl + P2 + P3 + ·p4)/pl P2 P3 P4 

• • ' . /A/l/~ ~ (•• = • 4n. pl o p2 • o .,,c::.._- exp. -?-/2 1(1/p1 +s2 3 2 
. (2't) ~+n2=n-l . 

. . . . 2. 
+ l/p2 + l/p + 1/p4)z1 - 2(UJ!'p1+U~p2 + UJ!'p2) +

3 

+ u2 IP4>z1 + (u~·+u2>2IP1 + ui/P2 + u~P41 • dZ1 

(Since in the approximate relation, Multinomial Distribu.tion ­

Multivariate Norm.a~ Law, the factors dZ correspond to factors1 

1/2 . .


1/m · and we therefore let dZ2 and dZ
3 

cancel the factor 4n-l in 

the coefficient of exponential.terms in s ) • 2

.. 
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The summation can now be performed to within terms of 

order l/m1/ 2 by integrati~n with respect to z between, -CD to CD,1 

which gives 

Now let us 	define: 

~ ~2 
q3 = 	

fl f f("J_,x2)dxi_dx2

-CD -CD 


(I> ~2 
Cl4 = J j f("J_ ,x2)dx dx2 and

1
{l -a> 

We have 	 pi =· qi (i =· 1, 2, 3, 4) 

p' - qj_ d~ (i = 1, 3)i -· 

p' - qi d~ (i = 2, 4)i -· 

1/2 1_Now let u = (4n) (4 - p3 - P4)2 


where 




21 

0<0<1 

=• j f(~,O)d~ 
- CD 

• 
•

0 

Similarly let 

Therefore 
1/24n q'q' (ql + q2 + q3 + q4)1 2 

_21t 1/2
(q1q2q3q41 

exp. - l/2 ~Ul + U2)2/ql + (Ul2+ u22)/q2 ­
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or 

(4n+l)% 

=• 4n(4n+l) P2 . 

n - (4n-l)pz - l 3where 
l - (4n-l)l/2 

n - {4n-l)pz 2 2 
- 2 = (4n-l)l/2· 

(n2+1) - {4n-l)p4 
Z3 = .(4n-l)l/2 
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.·o s is exactly equal to s2 except that Pi P2 are replace by
3 

P2~ P} 

~-(4n-l)p 
where zl = i?2 

(4n-l) 

n -(4n-l)p
7i - 2 2 

2 - (4n-l)l/2 

and 

(4n+l)1 
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where 

and A j•s same as in previous cases.1


1/2 1 .

Here also z1 + z2 =· (4n) <4 - p2-p3) =u1 

1/2 1and Z'l + z3 =· (4n) <4 - P4-P3> =u2 

Therefore Distribution o~ Cu
1

, u ) is
2


(q'q'+q'q'+q'q'+q'q')
1 2 2 3 3 4 4 1 
•21tq19.2 

0 

or 

1/2 1/2 
0=o {ql+q2+q3+q4) /(21t)(qlq2q3+qlq2q4+qlq3q4+q2q3q4) 

. 2 2 2 . 
• exp. -(U -2~UlU +U )/2) .dU du

2
.­

1 2 2 1
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The constant term in this integral can be finally chosen as to make 

the total integral unity. 

In Chapter I, I have tabulated values of certain constants 

defining the asymptotic joint distribution of the first sample 

quartiles of a bivariate normal population with zero mean and unit 

variance and correlation coefficient P• 

The application of the Edgeworth Series expansion for a 

population distribution function considered in 1 has prompted 

· the derivation in Chapter 2, of the expectation and variance of the 

var~able y - ~ when the population distribution is specified to a1 


sufficient degree of accuracy by the first terms of its Bivariate 


Edgeworth Series. 


Finally Chapter 3 embodies a consideration of the use of the 

"straight product interqt+artile range", (i - ~ )(y - y ) and the2 2 1

"crossproduct interquartile range" Ci - j ) Ci - i ) as estimators
2 1 2 1

of the population correlation coefficient. 



CHAPTER I 

Let us consider a bivariate population in which the random 

variables, denoted x and y, have joint probability distribution · 

function f(x,y), such that the conditions (A), specified on page 37 

of 1 are satisfied. 

r 1 	 1i.e. 	 i) f(x,N) dx = j f(x,O)dx + O(N) 
-Cl> - CD 

1ii) J 
Cl> 

r<N,y) dy = r f(O,y)dy + O(~) 
- CD - Cl> 

Ji
iii) Equations a) JCD f(x,y) dx dy = 41 

X= -Cl> Y= -CD 

CD . 1 
b) J~l J f(x,y) dx dy =49 

Y= -CD X= -CD 

have unique roots. 

On page 52 of £ the asympt9tic joint distribution function 

- of two linear functions, u1 and u2 , of the first quartiles, ~ ; i 1 

is given to be 

(1.1) 
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- 1 ) U
2 = (4 )1/2. (a1,, - 4 (1.2)and n 

CD 

al = f f(O,y) dy (1.3) 
-CD 

(1.4) 

(1.5) 

CD JCD
and q =J f(x,y) dx dy

1 (1.6) 
' ~l '0. 

1~l irm 
f(x,y) dy dx 

= ll j~ r<x,y) dy dx (1.8)q3 


=I r·71 
f(x,y) dx dy 
q4 (1.9)\ J-m 

~ i, 1 being the population first quartiles correspondi_ng to ~, y1,1 


respectively, and • indicating accuracy to order fn when 4n + l is the

.• 

sample size 

i.e. We write A = .B (l.10) 
1 

. l 
if A =-a [l + O(l/n2)]1 where 0(-) represents a function sucn n 

1that. lim N(N) = L < CD. 
- N~m 

It is cibserv_ed that if f{x,y) is such afi to aliow commutativity 

of integration w.r.t. variable x-and that w.r.t. variable y then 
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(1.11) 

{l.12) 

(1.13) 

In 	the case where the samples is drawn from a bivariate 

2 2normal population of known means, µ , µ ; variances, a a and x y x y 

correlation coefficient P• 

(1.14) 

(page 136 of 10 ) (1.15) 

2 2and for µ = µ =0 and a = a = 1, the standard bivariatex y . x y 

normal population,we have 

CD r CD 1 	 -1 2 2 
q ...; ..J~ 	 I exp x -2pxy+y dx dy. (1.16)1 	 1 2 - -.1745 -.6745 211:Cl-p2) 2<1-p2) 


Tables for the function 


exp -l l x2-2pxy+y 1dx dy 
22(1-p ) 

have been given in 11 for p =0 (•l) 1 , whence q1 may be approximated 

from tabled values of p by using repeated applications of Everett's 

interpolation formula. 



:1 

· 1 -P
TABLE OF VALUES FOR ql, 2 1 2 1 p

N °' a a 

p ql q2 =q4 = •75-ql q3 
1 = -2+ ql 

l-
a2 

-P 
a2 

p 

.1 .572 832 49 .177 167 51 .072 832 49 5.349 578 59 0.294 191 16 .055 106 61 

.2 .583 674 14 .166 325 86 .083 674 14 5.402 227 40 0.610 066 76 .112 928 74 

.3 .•595 101 22 .154 898 78 .095 101 22 50499 596 46 0.956 232 29 .173 873 17 

.4 .607 238 22 .142 761 78 .107 238 22 50655 299 67 10349 376 22 .238 603 84 

.5 

.6 

.620 273 28 

.634 503 05 

.129 726 72 

.115 496 95 

.120 273 28 

0134 503 05 

5.871 359 66 

6.255 878 27 

.. 
1.803 242 36 

2.402 359 01 

.307 125 17 

.384 016 26 

.7 .650 453 67 .099 546 33 .150 453 67 6.837 974 16 30207 599 58 .469 086 23 

.8 .669 oBo 19 .080 919 81 .169 o8o 19 7.879 173 19 4.478 740 14 .568. 427 68 

.9 .693 042 61 .056 947 39 ol93 042 61 l0.350 608 51 7•.206 375 74 .696 227 25 

Correct to 6 places of decimal. 



CHAPTER II 

Suppose the joint probability distribut~on of the two 

random vari~ples satisfies the specified conditions and may be 


approximated by the-terms of its Edgeworth series containing fourth 


and lower order derivatives w.r.t. each variable, so that 


Dr Ds 
f(x,y) = exp! i (-l)r+s K ...! 2 a.(x) a.(y) (2.1)t rs r! s! 

rh · t n ~ L d n - a ~ ere opera or = 'd x an = ~ y1 2 

1
--21 2x (2.2)

a. (x ) =J2;; e ; 

the summation~' extends over all values of r+s ~ 3 together with 

the term K ;and the K's are the bivariate cumulants of the distribution
11


in standard measure so that K =~l =p and terms K K
11 01 , 10 , K20 , 

· K02 do not appear·] 

may be approximated by 

-- ·{1 K D D K30 D3 K21 D2 D Kl2 D D2f( )- x,y + 111 2-- 31 1 - ~ 1 2 - 2'r- 1-2 
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Then the population first quartiles are ~l, i where these are the11 

solutions of 

l o.(x) dx + Kri (..0.(\1) + t,,_2 o.(~li) - K~ [3o.C\) - 6~ o.Cf,J + ~o.(\)1 =i (2.4) 

ll} 
and 

1 2 
a-~

Utilizing result: lim x e = O for all real a. 
X~CD 

and.notation p{x) =	~ «{t) dt the equations for evaluating ~land (2.61 
x 

'1 i may be written 

(2.7) 

(2.8) 

and having solved for ~l and '1 1 one can determine q1 by 
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Thus employing methods of Numerical Analysis ~l and Yll may be, 

determined from equations (1) and hence q1 may be-evaluated for 

any specific distribution satisfying the specified conditions, and 

given by its Edgeworth series truncated at terms of order four in 

derivatives. In particular if the population under consideration 

folxows the standard bivariate normal distribution ~l =fl1 = - .6745 

and by p.82 of 4 

K21 =O = Kl2 

K30 =K03 =0 . 

K04 = K40 =0 

ic,1 ;= Kl3 =O 

K22 =0 ­

so q reduces to form:1 
. . 

ql = ~(-0.6745)}2 
+ ,.~(-0.6745ll 2+~.1~f.6.674i} 2 • ~(-0.6745I\ 2. 

(2.10) 

• 
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1 • . 2 
and ql =1.7 -0.31 9_1471 -0.-088 90~ 

= = .1825 - 0.100 98op - 0.045 94lp 2 
q4 q2 

1 1 8 - 82- = - =5.479 452 + 3.031 8 ~ + 2.969 90>0
q4 q2 I 

. 8 2q3 =0.0625 + 0.100 9 oP + 0.045 9~ 

Ci1 
= 16 - 2.585 o88p + 3.000 611p2 


3 


1 1 2 
- + - = 7.25 7229 + 2.712 739p + 2.88 10050 
ql q2 r 

1 1 2 
- + - =21.479 452 + .446 7980 + 5.97 05190
q3 q4 F r 

1 1 1 1 -l 2<- + - + - + - ) =0.034799 -o.ooo ~83p--o.001 033]
ql q2 q3 q4 

.• 
1 1 1 1 2 

· (- + - )(- + - ) =155.881 302 + 61.5106 630 + lo6.423 879D 
· ql q2 q3 q4 r - _J 
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. 

2!l = 1.777 778 -0.319 147p -0.088 903p · 

1 - . 2
Thus ~ =5.424513 - 1.54~ 484J> + 3.518 86lp (2.11) 

a . 

~ :0.054994 + 1.669 149p + 1.003 083p2 (2.12) 
C1 
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Continuing our conside.ration of the standardized Bivariate norina.l 

population. 

If u and ~2 have joint probability distribution function1 
2 

l ul 
k exp- - (­ where the constant k may be

2 2 
0 

determined by integration. 

Ji_~2 Q . 
Thus variables ·v --;;- and v =u a follow the1 =u1 2 2 

standardized bivariate normal distribution, with correlation coefficient P 

and 

(2.14) 

for Bivarate normal 

and (2.15) 




(2.16) 


Thus Exp. (y - x) =o1 


Exp. 

(2 - 2~) (2.1?) 

(2.18) 




}7 


= 3 ____1;.....,,-- 1 
(4ttn)2 [...!.. + .!;.·) 2 

,,2 a2~ 

= 2 _1_______ 
(2.19) 

( 4ttn)2 { ...!.. + ~2 }2
2a a 

(2.20) 

Thus the linear function of}' which approximates Exp. (11-~)2 i.s 

lf!n ( 0.182 498 - 0.004 185y j 

so that to this degree of approximation-

estimate of the ~orrelation coefficient~ and 

. - 4mt 2. . - - 2 
Var. p' = 8 ) var (y1-~) o<.004 1 5

Now th~ variance of_ the minimum variance estimator f• is for a 

sample of size 4n+l is 

,,, 2 
. (4n+l)(l:_p ) 



Hence using Ro' A. Fisher's definition the efficiency of p', defined 

above is ­
7 


2 

• ·[0.004185] (4rtn) 

2 r.!. '1. ..!. l 
2 
_ 

/ 2 4n1t • 2 ·12T 23 

(4n+l)(l+J ) a a 

1 [ ' 2 J- -4 .000 263 + .0000 12.n + .000 092D - n+l /' J 



CHAPTER III 

INTRODUCTION: 

In this section I shall use Banerjee's derivation of the 

joint distribution of first quartiles and second quartiles in the 

case of bivariate normal population 1 to-obtain the mean value of the 

statistic (~ - Xi)Cy3 - y1 ) in terms of the population correlation 

coefficient fJ where~'~ are defined as the first and third quartiles 

of the x variate, and y1·, y the corresponding quartiles of the other
3 

var~ate y in a bivariate normal population, approximated by the first 

few terms of its Edgeworth series. 

Let f(x,y) be the joint probability density function of two 

variables from which a sample of 4n + 2 observations (x ,y ). r r 

1 ,S r ,S n is drawn. Assume that f(x,y) satisfies the conditions 

specified on page 1~; ~' ~' ~1; y3 are as defined above, and 

~l ce, 3 , 'li L3 are the correspdnding population quartiles. (~,~,~l '~3 ) 

will be referred to as the quartile.­

39· 
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IY 

5 
~ -y..2. 

R6 

- RT
Y1 I 6 

. R9 

1 


~o 

Rll 

2 

i{l 

Rll 
4 

~2 


-
xl. 

R2 


Rl 

2 

R5 

Rl
'2 

R8 

~· 


~l 


Rl 
8 
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Rl 
9 

-
X3 

Rl 

~ 

R4 

~ 

-

R7 

7 x 

The x - y plane is divided into 25 regions by the lines 

and we define p.. to be the probability that an element falls in1J . ­

the region R
1 

i.e. 



- -

- -

- -
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- . 

=r J~ f(x,y) dx dyp3 
X= -CD Y=Y3 

-
. Y3CD 

f dx dyP4 = J_ f _ 
x=x, Y=Y1 

. x3 Y3 

P5 = ·J_ J_ f dx dy 

X="i Y=Y1 

3 
/_ f dx dyp6 = J~ 

X= -a> Y=Y1 

-

J: JyiP7 = f dx dy 
x=x, y= -CD

.•- -· 
Pa=J: 1 

JY fdxdy 
x=;_ Y= -a:r 

"J. ;-Y1 

p =j f dx dy 


X= -CD y: -CD 


(3d) 

(3.5_) 

(3.6) 

(3.7) 

(3.10) 
9 
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The technique of considering the sample as drawn from a 

multinomial population with probabilities p1 , ••• , P4 i· is then 

employed and those terms which give rise to the observed sample 

quartile (~ ·~ y y ) are picked out. For example, the quartile
1 3	

'. ' t may be determined by one 	pair falling in R]_ and the other in R4 ·, 
-

the remaining 4n pairs being distributed in zones R. with frequency
1 

=2n = 2li1 	 {3.10) 

The probability that this occurs is 

ni ... 	 pi 
61 = P1 " P4 L._ (4n+2H 	 rt ilJ 

where the $Ummation (3.11) 
i=l i 

- is taken over all possib_le arrays ni with f n =4n.1 

Another possibility is that in which the quartile (~ i y y )
3 1 3


is determined by four different elements in the sample, for example, 

- t t t 	 I 

-one in R6 , one in ~l' one in R2 and the other i.11 R the other 4n-2
7 


elements falling in the regions Ri with frequences ni 1 < i ~ a 


such that 
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~ n. = 4n - 2 . l. 1
1= .. 

nl + n2 + n3 + l = n n1 ·+ n + n = 44 7 
1 2n 1 2nn4 + n5 + n6 + = n2 + n5 + na + = 

(3.12) 
n + n + n9 = n n3 + n6 -1: n9 + 1 = n
7 4 

f 

and the probability that this occurs is 

=P2 PG P7 Pil l:_ (4n+2)1s2 (3.13)En1:4n-2 

Banerjee lists the other 32 ways in which (xl x3 Y1 Y3) may be 

obtained and derives the asymptotic joint distribution, to approximation 

of order n-l/Z by using the normal approximation for the multinomial 

distribution when the sample size 4n+2, and hence n is large; and 

computing the sums involved by integration. 

For example, 

- (4n-2)pin1defining (3.14)
zi = (4n-2)1/2

.• 

in the normal approximation 

1i A.jz.zjJ TIdz~···
l 1 1_ .1 ij l., 
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·where A = 
• 

• 

0 


0 


1 
with :Aij = Aji - -pa i ~ j 

• l (3~16) 

l +-
1 <*>' 

Aii =pi pa 

By the conditions which f(x,y) is assumed to satisfy 

1J'" r f(x,y) dx dy = b{y2) (3.17)P1 + P2 + P3 = 
-CD 

.-2­
Y2 
-

JCD £72 
P4 + P5 + p6 = f(x,y) dx dy = .b<~3-Y1> (3.--18)"-CD Y.z-, 

J«> /_CD l ­f(x,y) dx dy = {3.19)P1 + P4 + P7 = •2 - ax3
-CD 

-
x2 


)CD f_~2 

P2 + P5 + Ps = f(x,y) dx dy = .a(i2-Xi> (3.20)

-CD ,_ 

where a = ]CD f(x .•o) d~ and b = ]Cl> f(O,x_) dxJ.. (3.21)
-Cl> -Cl> 

1 


and.z1 + z + z = .(4n)'2 <-i: + by3)

2 3 

1 

- z4 + z + z6 = .(4n)'2 (~ - bG 3-y )). (}.23)
5 1



! 

z1 + z4 + z7 = .(4n)2 (- t + ai2 ) 


If qi and qi' be the integrals represented _in the equations on page 28 

with ~ ~ replaced by the population quart;les ~ ~ 1y1 y3 1 3 11 3 
respectively 

ioe• ql =1·UJ f(x,y) dx dy (3.26)~3.,
113 

q3' tl = . m · etc.f(x,y2) dx 

and we have pi= .qi l,Si,S9 

pi = .qid~ ' ' - i =10, 11, 12 

(3.27)•
pi = •qi dx2 i = 7, 8_, 9 

pi = .qi ' dY1 i = 4, 5, 6 

pi ' = .qi clY2 i =1, 2, 3 

. ' Thus if _Pi and pi are. replaced ~y the correspondi.ng qi and qi J 

after the transformation: 

http:correspondi.ng
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(3.31) 

and 

yielding 

the exponent in the probability s is
2 

with A calculated_ from equations• on page 31 of this section, but 

with q1 replacing pi 1 .S i .S ~. 

with ~· = (z1 ,z2,z4,z ) and matrix C having (3.36)
5

elements. 



and L(z) 

..where •tBll =A33 + A37 Bl2 = A33 + A38 

Bl3 = A36 .+ A37 · Bl4 =A36 + A38 

B21 =A36 + A67 -B22 =A36 + A68 (3.39) 

B23 = A66 +- A6? B24 = A66 + A68 

B31 = A?? + A3? B32 =.A3? + A?8 

B33 = A67 + A7? B34 ~ A6? + A78 



48 

B41 = A38 + A78· B42 = A38 + A88 


.B43 =A68 + A78 B44 =A68 +·Aas 


If f(x,y) satisfies_ the conditions stated earlier and specified 


by the terms of order four (in derivatives) of its bivariate 


Edgeworth series> using the same method as in Chapter I it can be 


shown that 


K - CD CD
K30 2 " CD - 3: [-a.(x) + x a(x)J a(y) dy - 22'1 fxa.(x)-i - [_o:(y) J 

• j~ 13~3 

Kl2 r. u CD CD K03 J: CD 2 CD- 2! La(x) [-ya.(yl - 31 «(x) dx • /;a.Cy) + y ct(y)_J 

€i3 13 ~3 3 

K40 [ ~ ;l CD (CD . . K~l 2 CD~ CD 
+ 41 3x«(x) - inx(x\ -'f !X(y) dy + fi [ "'1(x) + x a(x~ [ a(y)~ 

3 3 
K22 . Kil ' a> a> Kl3 I J a> 2 l CD 

+ (-2'2' + -2,; f.xa.CxD r-y(«(y~ + 3' La.(x[! . [-«(y) + y «(y)j 
• • • ~3 L -~3 • ~3 _ 13 

+ ~~4 [3~a,(y) - y}cx(y)]. (CD «(x) dx. 


J~3 


For the-standardized n~rmal where K11 = p, K21 =0 = Ki2, 


K =o, K40 =O, K =K = 0 and K22-=,0 • This reduces

30 

=K03 31 13 


to the quadratic approximation in te.rms of p. 
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1 2 12 ·. 2
Pl =lb + f• (0.317774) + 2J> (0.6745 x 0.217774)· 

. 2 = .0625000 + .10098op + .0229701 

Similarly it can be shown that 

p2 =.125 - .04594lp2 - .04594lp2 

- 2 = .062500 - .100980p + .022970/p3 

p = 025 + .275646o6.5 

Hence -
1 =16 - 25.850958p + 35.886555D2 

rP1 

.:!.. = 8 + 2.94o224n2 
P . r

2 

1 - 2p- =16 + 25.850958, + 35.886555, 
3 > ­

.!. =4 - 4.410336,P~
P5 . 

All ~he above being approximated to s~cond power i~ l• 

Thus for the standardized bivariate normal distribution, equalities 

·exist between the elements of the matrix A such that 

l 
Aij = - _ 1 ' j 1. ,S i ,S 8, _ 1 ,S j ,S 8. 

P1 

A _ i 
11 - P1 



- -
- - -

--

1 - 1 

A33 =A77 
=p; + Pl 

A =..!.+_!.. 
55 PlP5 


-

.and the aymme~ric matrix C has elements c1 j i,j = 1,2,3,4. 

6 2 -- - -_, 2 

=p- + p- =128 - 103.403834p + 287.092440p
c11 

1 3 - ­

= =~+Pl = 96 - l03.4~3834p~+ 215.31933op
2
c12 	 c13 1 3 -· . ... ·····­. - . ­

= ..;- = Bo - 129.254792,P + I7_?~4327?5y2 c14 =c23 l 

...2... 2 1 - - .. - - .. -- . 2 


c22 ·= 	c = + ---- +---- =112:- lOJ.lf:9?834p + 220.553576p33- P1 P2 P3 ·-- .. - . ~- -----""'· ­

= 	 =..2.. + ..1.. = 88 - 129.2S4792i + 182.372999p2c24 	 c34 pl P2 - - - . 


....2.. 2 l 
-

. .. . 
.:i 

2

C44 = + - + - =100 - 129-•2847c92J +. l8o.902886p

P1 P2 P5 - .. - - ­

1and the inverse of c is the matr~x c~1 ~th elements, denoted c j. 

given by; 

11 . . . ,.(!"- - - ­
c = .034856 + .025536p - 30244710,, . ­
u 	 u . -· - 2 c =c = - .024038 - .024640)> ~ l0.1.86o90p 

14 - - 2 -. 


C : .014423 + .024490p - 6.816902,Pc_ --~ ­

- 33 22 . - 8 . 8 . 2­c =_ c = .045673 + .001181 --1~1945 6p 
c 23 = .014423 + .0~6433,P - 7.54o49_4:p:-~-:~_ 


24 34 .. - 2 

c _= _c - .033654 - .00148~ + _2~382654p 

- 44 	 26 . 64 -4 .c = .057 92 - .0107 1' + 2.2 5257J. -- -

McMASTER UNIVERSITY Llbt\t\tft. 
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- 2 

Bl3 =Bl4 =B21 =B22 =B32 =B34 =B41 =B43 =~ 

=32 - 51.70l9l?p + ?l.??3110p2 

Now to find the marginal joint distribution of U1 u U3-u4 one2 

integrates the joint distribution; (which turns out to be just a 

multiple of s ) of the U's and z1 , z2 , z4, z over the2 5 
Cz1 , z2 , z4, z ) region to- obtain

5

where k is the normalizing constant. 

l [ ( -1 l ,7= k exp- 2 Q1 U) + U'BC B UJ -(3.10) 

(3.11) 

The symmetric matrix D ~BC-~, has elements dij given by 

"-i1 =d33 =23.076795 + 2.410104p + 37248.059452,2 

dl2 = d34 = 11.07682~ - 19.927340p + 26681.924854p2 

- - 2 
dl3 = 15.076795 - 16.978077., + 35587.620459p 

- 2
dl4 =~23 =15.076822 ;,,, 19.215~44p + 27498o425898p 

d22 =d44 =J.6.074844 - 21.452619p + 21073.745121p2 

d24 =15.073771 - 19.832951,P + 20666.131167.P2 • 
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and the (eij) matrix has elements eij' 1 ~ i ~ 4, 1 ~ j ~ 4: 

. 2· 
=e} = 55.076795 + 2.410104p+ 37319.832562pe11 3 

= 27.076822 - 48.297655.J? + 26716.815409p2e12 =e34 
- - 2

013 =31.076795 - 42.829036p + 35623.507013, 

- - 2 =31.076822 - 76.143124p + 27534.312453pe14 =e23 
. . 2 

= 40.076844 - 47.303577-p + 21112.5719C>OJ>G22 = e44 
. 2 

024 =31.073771 - 45.683909p + 20702.017721p • 

. 1 ij .
and (e1 j)- = (0 ) has elements: 

22 44 2e = e = .075653 - .049438p + 23.215799p 

24 2and 9 = .044310 + .036826p + 6.295394p • 

Thus with 

Ui_'s follow the multivariate normal distribution· with covariance 

mat~x (eij)-l =(91
j) and zero means. 
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Page 86 of Morrison's book 7 records the fact that it the 

joint distribution of-a set of-elements, written as the coordinates 

of a vector 25 is multivariate normal with mean vector ~ and covariance 

matrix~ then any linear transformation e.g. z = A25 gives a vector 

whose components ~gain follow the multivariate normal distribution 

but with mean vector A~ and covarian~e matrix A" 2: A. 

Thus using matrix A= ( 0 1 0 0) one verifies that u ,u42

· \o o o 1 

are jointly distributed as a bivariate normal distribution with 

22 
zero means and covariance matrix (' e e~4 ) 

44&24 e 

Hence G3-Y: ) and Cx3-~) are jointly distributed as the bivariate
1 r::::- · 22 a44

0 . th ' 1t d . 1t 1t d .norma1 wi means :J 2 an . variances 2n =~ an covariance 



- E(y -y )(x -i.)~J 2 
3 1 3 J. 

and ~he efficiency of the linear function of Cy3-y1)(~-x1 ) used 

to estimate p from a sample of size (4n-2) may be ascertained to be 

.. ­

In like manner one may consider the statistic Cy3-~)(~-y1 ) 

and possibly linear com~~nations of these could yield a more 

efficient statistic for estimating P• 
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