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PREFACE

The first chapter of this thesis summarizes some properties of
the conformal plane and, in particular, of M;bius transformations.

The second chapter deals with the differentiability properties
of general arcs in the conformal plane.

In the third chapter, properties of arcs of cyclic order
three are discussed.

In the final chapter, we give necessary and sufficient
conditions for the union of two arcs of cyclic order three to be again
an arc of cyclic order three. We also give conditions under which an
arc of cyclic order three can be extended to a larger arc of cyclic

order three.
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CHAPTER T

FOUNDATIONS OF CONFORMAL GEOMETRY

l.l. The Conformal Plane.

In the Euclidean plane we can introduce an 'ideal' point ®

which we call the "point at infinity'". The set of points in the

Buclidean plane together with the point at infinity is called the

conformal plane. We shall assume that eQery straight line passes through

the point at infinity. Every point in the conformal plane can be

represented by a complex number z = x+iy or by .

l.2. Stereographic Projection.

Consider the unit sphere S whose eguation in the Duclidean

three dimensional space is

2 2 2

X +y +u =1,
With every point on S, except N:(0,0,1), we can associate the complex
number

X + iy
(1.2-1) R G

and this correspondence is one-to-one. The correspondence can be

completed by letting the point at infinity correspond to (0,0,1).



Thus we can regard the sphere ns a representation of the conformal
plane.

Let P(x,y,u) be any point other than N on the sphere. Then
the line NP meets the plane in the point P', given by (1.2-1). This
napping of the sphere onto the (x,y)-plane is a central projection from

the centre (0,0,1). It is called a stereorraphic nrojection (Fig. 1),

l.2.le Theorem., Under stereographic projection circles on the

sphere are mapped into circles and straight lines of the plane and

vice-versa.
£

Proof. A circle on the sphere S is the intersection of the

sphere with a plane

(1.2-2.) Ax + By + Cu =D

with A2 + B2

]
+ C~ 2,D2 to ensure actual intersection. Let (% ' + G
be any point on the sphere corresponding to the voint (x,y,0) in the

(x,y)=-plane. By (1.2-1.) we have

T+ i :
zZ = < where 2 = x + iy,

1 =
Thus
¥ A
(1.2-3.) X= 7o s TETT
2 2
Now ,z'e = :i——il%— . But _‘§2 A i + 3 & = s
(1-3)°
'ZIZ . 1 +% :
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Solving this for <% , and then computing "¢ and W , we obtain

2 - e
% = .L'f’_’__z.._:__l y, T2 =222 ana M- .L(_Ea_-_?_)_
lz1™ + 1 lz\" + 1 [z)7 + 1

Thus if (Y, n, ¥) also lies on the plane given by equation

(Le2-2.) we obtain

A(z+z) + Bi(z-z) + C(f%jaul) = D(lZ\2+1)o

or

(Le2-k,) (D~C)(x2+y2) - 2hx = 2By + C + D = 0O,

Yor D # C, this is the eguation of a circle, and for D = C it represents
a straight line. In the latter case, the plane given by (1.2-2.))and
hence also the circle on the sphere, passes through (0,0,1).

To prove the converse, we start with the equation (l.2-k.)
with A2 + B2 + C2 2.D2 and retrace our steps. Equation (L.2=k.)
represents all lines and circles in the (x,y)-plane. Using formulas
(1.2-3.) to express x and y in terms of (%, N3 ) we see that the
latter point on the sphere must lie in the plane (1.2-2.).

Thus the stereographic projection of a circle or a straight

line in the plane onto the sphere is always a circle, and this circle

passes through N:(0,0,1) if and only if the pre-image is a straight

line.

1.3. The ¥5bius Plane.

In general by a conformal transformation we mean an angle-

preserving mapping. There are conformal representations in which



c¢ircles are not necessarily transformed into circles, but we shall not
consider these in this discussione

Rather, we shall restrict our attention to the mappings T of

the form
az + b ,
(103-10) W = —cz""+" "d"'

whose coefficients a,b,c,d are complex numbers. We assume that
ad - be £ O, so that w is not independent of z. This also makes w
well-defined, except when ¢ £ 0 and 2z = - %. A mapping of this form is

1"
called a Mobius Transformation. (It is also called a circular trans-—

formation and a linear (fractional) transformation.) Certain geometrical

properties will remain invariant under these transformations.

11
Definition. (Mobius) Conformal Geometry is the study of the

properties which remain invariant under the conformal mappings (1.3-1.)

The equation (1l.3-1.) can be solved with respect to z and yields

dw - b
T -CW 8

The resulting transformation is inverse to T; we denote it by
-1 ; : r
7 ~« The existence of an inverse shows that the correspondence defined

by T is one-to-one.

1.4, Cross-ratio.

Given any three mﬁtually distinct points 2z L in the conformal

Zey 4%
2’ 3!
"
lane, there exists a Mobius transformation T which carries these points
9

into 0,1,0. In particular, if none of the given points is o, T will

be given by



VAR Loy = B
TZ = o 2 / 3 2 .
Z ZLI- 23 - ZL}

Z, Or 2) = @ he transformation reduces to
If 2., L , the t format d t

23

$

respectivelye.

Definition. The cross-ratio (Zl’ZZ’ZB’Zh) is the image of 2,

" .
under a Mobivs transformation T which carries Z?’Z3’Zh into O;1,00 ¢

n
1.4.1. Theorem. Under a Mobius transformation U, the cross-

ratio of any four distinct complex nurbers zl,z2,z3,24 is invariant;

i.e.,
(1.4-1.) (Uz ,Uz UQB,Uzh) = (41,22,27,24)

. =
Proof., If Tz, = (Zl’ZZ’ZB’Zh)’ then TU = carries Uz UZ3’ Z),

into 0,100 . By definition, we have

(Uzl’UZE’UZ UZA) - (L'zl) = Tz, = (21’22’23’24)°

l.5s Angles in the conformal plane.

Let zl,za,z'3 and z) be the complex numbers A (with finite
coefficients), 0,1 and respectively. Then (Zl’z2’23’zh) = A, and
hence
(1.5-1.) amp(zl’ZZ’ZB'Zh) = anp(A),

(Fig. 2).

The relation (1.5-1.) is unaltered if we interchange simultaneously z

"
and Zh and z. and z_. It is likewise invariant under a Mobius trans-

2 3
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formation on account of the relation (1.4-1.).

Let C1 and 02 be two circles intersecting at two points P and

R (Fig. 3). Let Q be a point on C, and S a point on C,» Q APAS

X
and Q A R#£ZS. Bya hobjus transformation, we can map P, ¢, R into
0,1, respectively. Let S be mapped into a complex pumber’,<A. Then
C1 and C2 will be mapped into the two straight lines through O and 1
and O and A& respectively (Fig. 4). Let these lines intersect at an

angle ©. Then

O = amp( ).

On account of the relation (1.5-2.) and Theorem 1l.4.1,

@-0)(ro5)
G = amp GENRG) °

Thus we can define an angle between two circles in the conformal plane
as follows.

If two circles Cl and 02 intersect at P and R; and if Q and

S lie on C1 and 02 respectively, where P,Q,R,S are mutually distinct,

then the angle between C1 and 02 is the amplitude of the cross-ratio

(p,Q,R,S), where P,0,R,S are complex numbers.

T

In particular, if the amplitude of the cross-ratio is 5 then

we say that Cl and 02 are orthosonal,

"
Since a Mobius transformation preserves the cross-ratio of

four points, it preserves the angle between two circles.
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10

We define two circles to be tangent to each other if they have
a single point in common,

Remark, We observe that if R tends to P and S £ P # Q, then

lim amp(P,Q,R,S) = amp(1l) = O,
R—=P

SEPAQ
and hernce
lim § (C,,C,) =0

whether or not the circles C, = C(P,Q,R) and c,

converge, Thus we may define the angle between two tangent circles

= C(P,R,S) themselves

to be zero,

1.6, Orientation of a circle,

An orientation of a circle C is determined by an ordered triple

of mutually distinct points z on C, With respect to this

10720 %3

orientation a point z not on C is said to lie to the left of C if

) > O and to the right of C if In(z, z ) 0, If we

11 ZZ’ 2'5 9 112'2 5
orient the circle C, then the region lying to the left of the oriented

In(z,z %
circle is called the "interior'" of C, and the region to the right is
called the "exterior" of C, Thus any proper circle C (i.e., not a
point-circle) divides the conformal plane into two open regions, the
"interior" C, of C and the "exterior" C* of C,

We now show that there are only two different orientations;

i,e,, the distinction between left and right is the same for all triples,
while the meanings may be reversed,
Because of the invariance of the cross-ratio it is sufficient

to consider the case where C is a real-axis, We have then to examine
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) az + b

Im(z,zl,zz,za). Writing (z,zl,za,z5 ol with real coefficients,
we obtain
d - be
In(z,z,,2,,2,) = 2"22 Imz,
TR 'cz+d|2

Hence the distinction between left and right is identical with the
distinction between the upper and lower half-plane,

Since a Mgbius transformation T carries the real axis into a
circle which we orient through the triple Tzl, Tz2, TZ5’ hence from the
invariance of the cross-ratio it follows that the left and right of the
real axis will correspond to the left and right of the image circle,

In general there is no way or reason to compare the orientations
of two circles, An exception occurs when the circles are tangent to
each other, In this case they can be transformed into parallel lines,
and the circles are said to be equally oriented if they correspond to
lines with the same direction, Another exception occurs when we consider
the circles through three points of an arc of cyclic order three

(cf. 3.3.2),

n
1,6,1, Theorem, A Mobius transformation preserves the

angles between oriented circles,

Proof, Let Cl~and 02 be any two oriented circles, Suppose C

intersect at two points P and R, If Q € C1 and S € 02 then we

1

and CZ

have defined the angle between C1 and C, as the amplitude of the cross-

2
ratio (P,Q,R,S)(cf, Theorem 1,4,1), Hence we conclude that the amplitude

of the cross-ratio is preserved, i,e., angle between the oriented

circles is preserved,
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In the geometric representation the orientation z.z.,%

172

can be indicated by an arrow which points from Z, Over z to z

2 3

3

(Fié. 5)s

When the unextended complex plane (Buclidean plane) is
considered as part of the extended plane, (conformal plane) the point
at infinity is distinguished. We can therefore define an absolute
positive orientation of all finite circles by the requirement that point
at infinity should lie to the right of the oriented circles,

On a Riemann sphere there is no reason to call one side of a

circle the interiore

1.7. Reflection

1l.7.1e The points z and z are symmetric with respect to the
real axis. A Hgbius transformation with real coefficients carries the
real axis into itself and z,z into points'which are again symmetrice.
More generally, if a Hgbius transformation T carries the real axis into
a circle C; we shall say that the points w and w' defined by w = Tz and

w! = T2 are symmetric with respect to C.

1

The relation‘E:I; = 77w between w and w' and C does not depend
on the particular choice of Ts For if S is another transformation which
carries the real axis into C, then S_lT is a real transformation and
hence

-~ - - S} Hr i, =
stw = 5717z = T and S ) g

are also conjugate. Thus w = 8% and w' = S‘f and so S—lw' = 58 “w,



FIGURE 5
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Suppose T carries 0,1,00 into w on the circle C, The

l’wz,w5

transformation defined by

W o> (w’wl'WZ’WB)

maps wl,wz,w5 into O,1,00 respectively, Hence
-1
(w’wl’WZfWB?,= T “w,
Thus
RS ot

WS (w'vwl’WZ’wa) = (w,wl,wa,wa),

Then symmetry can be defined in the following terms:

Definition, The points w and w' are said to be symmetric with

respect to the circle C through w
(w',wl,wa,wa) = (w,wl,wz,wa),

The points on C and any only those-are symmetric to themselves,

y W dfhand only if

1%

5

The mapping which carries w into w' is a one-to-one correspondence

and is called reflection with respect to C, A reflection is isogonal

but not conformal, i,e,, it preserves angles in magnitude but reverses

"
the signs, Two reflections will evidently result in a Mobius trans-

formation,

1.7.2. In this subsection we would revert to.the notation

z,z',zl,zz,z instead of w,w‘,wl,wz,w and investigate the geometric

5 2

significance of symmetry, Suppose first that one of the points

z, is the point at infinity, Then choosing z_ = @, the

Zl,Za, 3 5

-

condition for symmetry becomes



15

N
t
N
Nt
i
INR]

(1.7-1) 1 _ )
1

\S)

N
!
Nt

Taking absolute values, we obtain,

z' - 2z .

:IZ—Z

1| 1

Here zl

line. Thus we conclude that 2z and z' are eguidistant from all points
1 P

can be any finite point on C, which in this case is a straight

on C. By the relation (1.7-1.) we have further

Z - Z
72! - 2 il
— o e T ——

s | i

Im

Hence z and z' are in different half-planes determined by C.

1%, and 23 all are finite. Tet

a be the centre and R the radius of the circle C through z

Now we consider the case where 2z

1,22 and z3.

"
Since cross-ratio is invariant under a Mobius transformation we have

= (5—5,%1—5,52—5,53—52 i o
(z.-a)(z,~a) (z_ -a)(z.-a) (z_-a)(z_-a)
- =7 2, 2 2 5 3
= (z-a, Z. =2 2 (z.-a) ' (z_-a)
1 2" 3
e L
. zl-a’ z2-a’ 23—a
Z.~=a Z.~a Z_-a
13 1 2
= NaTlany 3 t 2 )
Z-2 R2 R2 2
LK s
- Z"‘é: ) Zl"a‘ 3 22—8 ] ZB-CA
2

"

(E:g + ay 21’22’23)'
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2

This equation shows that the symmetric point of z is z' = ~—— + a or
Z-a

that z and z2' satisfy the relation

(e )2 = B,

from which we obtain

2

-

Iz' - g,,z - al = R

which shows that z and z' lie in different regions determined by C.
Also the ratio 3&23 is real and positive, say z' - a = k(z-a) which
means that the amplitude of z' ~ a is equal to the amplitude of z -~ &
and hence z and z' are situated on the same half line from the centre
a. There is a simple geometric const?uction of the symmetric point of

z (Fig. 6). Ve note that the symmetric point of a is w.

" :
Theorems If a Mobius transformation T carries a circle C

1

into a circle C then it transforms any pair of symmetric points with

2)

respect to C. into a vair of symmetric points with respect to C_, i.e.,

21

1

1
lobius transformation perserves symmetrv.

Proof., If Cl or 02 is the real axis the theorem follows from

the definition of symmetry. In the general case the assertion follows
by the use of an intermediate transformation U which carries Cl into
the real axis. Thus '1‘U—l takes the points Uz and Uz' which are

symmetric with respect to the real axis into the symmetric points Tz

and Tz' on 02.
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1"
le7.%. Consider a Mobius transformation of the form

g ~ 5
z - b’

w =k
where k # O is a constant, say k = 1. Here z = a corresponds to
w=0and z =b tow =o®. It follows that the straight lines through

the origin of the w-plane are images of the circles through a and b

in the z-plane., These circles in the z-plane have equations of the form

ampz:z':e, < Q&N

On the other hand, the concentric circles about the origin in the
w-plane, £WI = (where £ > 0 is a constant) correspond to the circles

in the z-plane with the equation

These are called circles of "Apollonius", with limit points a and b.

Denote by C, the circles through a and b and by C_, the circles

2
. of "Appolonius" with these limit points (Fig. 7 for w-plane and Fig. 8

1

for z-plane).
The configuration formed by all the circles C1 and 02 is called the
Steiner Configuration determined by a and be This Steiner Configuration

has many interesting properties.

(i) There is exactly one Cl and one 02 through each point

# a,b, in the plane.

Proof. Any point of the plane, together with the point a and

b determines a unique circle C Any finite point © in the plane

lt


http:Stein.er
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g—plane
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. _ c - a . o
determines a unique f = g———% and the unique circle CZ:
7 - a
z - b g

(ii) BEvery C, meets every C. at right angles.

1

1
Proofs This follows from the fact that a lMobius transformation

2

preserves the angles between two circles,

(iii) Reflection in a C. transforms every C. into itself and

i /2
every Cl into another Cl' Reflection in a 02 transforms every Cl into
itself and every 02 into another C2'

Proof. Let z be any point on 02 and Z5 be on Cl (Fig. 9). Let

z' be the image of z with respect to a reflection in C Then the

l.

following relation holds.

(z‘,a,zz,b) (z,a,za,b)

ot =g [Z2—8 —(z - a Z, - a)
7. = b \z. .~ b i s A

z!' - b 2 2
Hence
z! - a z2 e Z - a Z2 i
z' = b z. - b z - b z, - b|?
2
and
z! - a 7 - a
e Y BN e BRSO

This shows that z' lies on C2.

Since points on C1 are always syrmetric to themselves with

respect to C, hence by reflection the point a is mapped into itself and

1

b into itself.. Thus a circle through the point a and b is transformed

into a circle through the point a and b.



22

FIGURE 9
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For reflection in a C, consider the w—piane. Then the

2

circles 02 are the concentric circles about the origin and C1 are the

straight lines through the origine. Let z by any point on Cl' Then by
reflection in a 02, z is mapped into the symmetric'point z's. But by
the discussion in the subsection 1l.7.2 we know that z and z' are

situated on the same half-line from the centre of the circle C2'

1 is mapped onto itself by a reflection in

"
By a Mobius transformation we can extend the proverty (iii) to

Hence z' lies on Clo Thus C
a CE'

the Steiner configuration.

(iv) The limit points are symmetric with respect to each C

2’

but not with respect to anyv other circles

Proof. Let the point a be symmetric to b with respect to a

circle C. Then for any points =z on C we have

11722173

(a,zl’ZZ,ZB) = (.ETZT;ZE,ZB) °

Or
a-zl/za-zl—(b-zl/zz-z:L)
a - 23 22 - 23 b - 23 z2 - 23
Hence
a - zl’ Z. =% b - zy ’za -7
a - 2z Z, - 23 b - z3 IZZ - z3
and
liele: SR hE vk
|a - zﬂ o - z3]
Finally
a -2 a -2z
I B s §
b - 7y T b - 23 - ? y SaTe




2k

But this relation holds if and only if Zy and Zy lie on the 02 given
by ;
Z - a
z -Db

= 3

cfe 17430

Hence the point a is symmetric to b with respect to 02 but not with

respect to any other circles

The points a and b are called the fundamental points of the

, and C. is called a pencil of the first kind. C_ is called

i
pencil C >

1 4}
a pencil of the third kind (Fig. 8).

A liniting case of a pencil of the first kind as a tends to b

is a pencil of the second kind. It possesses only one fundamental

point and is identical with the set of those circles that touch a
given circle at that point (Fig. 10).

1.8. The closure propsrty of the conformal nlane.

We know that the conformal plane may be represented on the
surface of a sphere in three dimensional Euclidean space. Hence every
infinite sequence of points in the conformal plane possesses at least
one accumulation point, which also lies in the plane. Thus the
conformal plane is closed and compacte.

Theorem. Fvery infinite sequence of circles in the conformal

‘plane possesses at least one limit circle.

Proof. Let chk be an infinite sequence of circles in the
conformal plane. Then there exists a subsequence, Cél C:{an of

circles .which contains an infinite sequence of points possessing an
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accumulation pointe Again there is a subsequence lCal Cj{Cél of
circles which contains a different sequence of voints possessing an
accurmulation pointe. Finally there is a subsequence iC;‘{c:{CSE of
circles which contains yet another sequence of points possessing an
accunulation point. Thus we have a sequence C'" of circles which
possesses a limiting circley the circle determined by three accumulation
points.

We call a limit circle an accumulation circle of the original

sequence.

1.9. Convergence.

A sequence of points Pi’P2°°' is said to be convergent to P,
if there exists a number n = n(C) for every circle C with P ¢ C, such
that Pyc: C, if y > ne

In the same way, convergence of circles to a point is defined,

Such a point is called a point-circle.

A sequence of circles Cl’C2°" in the conformzl plane is said

to be convergent to C if there exists a number n = n(C',C"), for everv

pair of circles with C'< C, and C" < C*, such that C'C Cy* and

G C; for every y > ne



CHAPTER TII

CONFORMAL DIFFERENTIABILITY

2¢1ls Arcs.
An arc A is the continuous image of a real closed intervale.

Thus if a sequence of points of that parameter interval converges to

a point p, then their image points converge to the image of p. Ve
shall use the same letters p,t,... to denote both the parameters and

their images on A, The end (interior) points of A are the images of

the end (interior) points of the parameter interval,

A neighbourhood of p on A is the image of a neighbourhood of

the parameter p on the parameter interval. If p is an interior point
A, this neighbourhood is decomposed by p into two (open) one-sided
neighbourhoods.

From the definition, different points of A, i.e., points with

different parameters, may coincide with the same point of the conformal

plane. However, we shall assume that each point p of A has a neighbour-

hood such that no other point of that neighbourhood coincides with p

(cfs condition I, Sec. 2.3).

2+.2. Support and Interseétion.

Let p be an interior point of A in the conformal-plane. Then

p is called a point of support (intersection) with respect to a circle

C, if a sufficiently small neighbourhood of p in A is decomposed by p

27
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into two one-sided neighbourhoods which lie in the same region (in

different regions) bounded by C. The circle C is then called a support-

ing (intersecting) circle of A at p. Thus C supports A at p even if

P ¢ C. By definition, the point circle p always supports A at p
(Fig. 11).
It is possible that every neighbourhood of p has points PARY)

in common with C. Then C neither supvorts norintersects A at p.

2.3. Differentiable points of an arc in the conformal plane.

Suppose p is a fixed point of an arc A and t a variable point.
If P £ Q are points different from p, the unique circle through these
points will be denoted by C(P,Q,p).

An arc A is called once conformally differentiable at p if

it satisfies the following:

Condition I. To every voint Q # p and to every secuence of

points t — py, t £ p, t € A there exists a circle C' such that
= C(t,p,Q) - C',

The limit circle C' is called a tangent circle at p and is

denoted by C(7,Q). By our definition this limit tangent circle is
independent of the choice of the sequence of points t. The point p

itself is the tangent-point circle of A at p. The family of tangent

circles together with point circle p will be denoted by 7.

We call A conforrmally differentiable at p if it satisfies

~

Condition I and
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Condition IT. 1lim C(T,t) exists.
t—>p
t £p

The limit osculating circle is denoted by C(p).

Remark. Condition I does not imply Condition IT.

(cf, 4, Sec, 7, P, 516),

2¢%+1e Theorem. The set T = T(p) of all the tangent circles

of A at p is a pencil of the second kind with the fundamental point p.

Proof. Let P,Q,R be three mutually distinct points. If the
point R' £ R converges to R, then the angle between the circles
C(R',R,P) and C(R',R,Q) converges to zero; cf. 1.5. We choose R = p
and R' = t. Since the angle between two circles depends on them
continuously, we conclude that any two tangent circles at p touch each
other at that point. Thus two tangent circles of A at p that have
another point in comron are identical. In particular, there exists
one and only one tangent circle at p through each point different

from p.

2¢3.2. Theorem. Suppose A is once conformally differentiable

at p. Let ® be a vencil of second kind with p as its fundamental

point; ™ #Z t. If the points t # p coverse to p then C(m,t) — v.

Proof. Let us assume that the statement in the theorenm is

false« Then there exists a circle C such that p € C, and a sequence

—

of points t —» p», t # p such that C(m,t) gf C, for each t. Let Cl

and 02 be two circles of m that touch C. We may assume that = is



21

oriented such that C lies in the closure of C¥ N C Then this

8 e

closed domain also contains the circlesC(m,t) and therefore the points
t (Fige 212).

Let Q be any point of Clg Q # ps If a sequence of points R
converges to p through the above domain, then the circles C(p,Q,R)

converge to C = C(7,q), while T £ =,

l.

This is a contradiction.

Choosing R = t, we obtain Cl

>

2.4. In the following p can be either an interior point or
an end point of A,

We call C a general tangent circle of an arc A at a point p

if there exists a sequence of triplets of mutually distinct points
t,1,Q such that
(2.4-1) lim c{t,u,Q) = C,

t,u—>po

VAO

If in addition, Q € A also converges to p, then we call C a general

osculating circle of A at p.

A is said to be once strongiy conformally differentiable at

p if the following condition is satisfied:

Condition I', Let RZ p, Q — R and t,u be two distinct

points on A, Then

lim C(t,u,Q) exists.
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2.4,1 Temma., Condition I' implies Condition T.

Proof. Condition I' implies that the limit circle given by
the relation (2.4-1.) depends on p and R but not on the choice of the
particular sequences t and u. Specializing Q = R and u = p, we see

that Condition I' implies Condition I and therefore,

lim Cc(t,u,Q) = C(7,R).

U,V o5 D
Q—>R

Thus the general tangent circles of a point which satisfies Condition I
are identical with its ordinary ones.

Vle call A strongly conformally differentiable at p if it

satisfies Condition I' and

Condition IT', Let t,u,v be three mutually distinct points

on A, Then

1lim C(t,u,v) exists.
tyyyv—-o

2.4,2, Lemma, Conditions II' and I imply Condition IT,

Proof. Suppose a sequence of points {un} converges on A to
pe By choosing a suitable subsequence of &_un} we may assume that the
sequence &C(T,un)} converges. Each C(T,un) can be approximated by
a circle C(p,un,vn) such that the seqﬁence {C(p,un,vn)} has the same
limit circle and such that the sequence ivn{ also converges to pe
On account of Condition II', lim C(t,u,v) and in particular,

lim C(p,un,vn) is independent of the choice of the sequences t,u,v
converging to p. Hence the same will hold true of lim C(T,unj,

~
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Condition II is satisfied, and we have

lim C(t,u,v) = lim C(p,u,v) = 1lim C(7,u) = C(p).
tyu,v—p U,V —=p u—p

Thus strong differentiability implies ordinary differentiability

and C(p) is one and only one general osculating circle.

2¢e3. Theorems Conditio:l II' with 1im C(t,u,v) # p,

or with p an end-point or with Condition I implies Condition I'.

Proof. Assume Condition II' and let R # p.

Case I: 1im C(t,yu,v) # p.
t,u,v—>p

Choose a point S on C(t,u,v) such that S does not tend to p
as t,u,v converge to p; thus C(t,u,v) = C(t,u,S). Then the angle
between C(Q,t,u) and C(S,t,u) is given by the amplitude of the cross-—
ratio (u,Q,t,8)s This amplituﬂe,tends to zero as t and v converge to p.
Hence any accumulation circle of the circle (Q,t,u) is the
unique circle through R, which is tangent to C at p. Thus A satisfies
Condition I' at p, (Fig. is).

Case II: lim C(t,u,v) = p.
tyu, v p

In this case we can choose a subarc B of A with p € B such
that R #‘C(t,u,v) for every choice of t,u,v on B. This implies that
C(t,u,;R) does not meet B elsewhere; thus B has "R-order" two, i.e.,

no circle through R meets B more than twiceo.
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We first prove that if p is an end-point of B then B and hence
A satisfies Condition I at p.
Suppose Condition I is not satisfied. Then there are two

sequences of points 51 and 5 ksl different from p and @nverging on

B to p such that the circles C, = C(szk,p,R) and C

2 okl = (B PR)

converge to different limit circles Co and C. respectively. Since p

it

is an end-point of B we may assume that s lies between p and S,

n+1l
- < . : 3 1
If k is large C2k [?2k+i] will lie close to CO [bl]' Let C and C
be two circles through p and R which separate Co and Cl. Then C L C!

wvill separate C_ and C and therefore also s_ and s for every
n n+1 n n+l

large n. Hence the subarc of B bounded by s, and Sp1 will neet
CuUC' in at least one-pointe Thus B will meet C U C' infinitely many
times. This is impossible. Hence Condition I holds at p.

Ve now prove that case 2 and Condition I imply Condition I
whether or not p is an end-point of A,

Since B has "R-order" two, as x moves continuously and

monotonically from p to v C(R,t,x) moves continuously and monotonically

from C(R,p,t) to C(R,t,v). Thus

C(R,t,u) C [C(R,p,t)*n C(R,t,v);] O {;C(R,p,t)*o c(R,t,v),] URUt,

(Figo ll*‘) .

(cfe 2, 2,7.)
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Let D denote any accumulation circle of the C(Ryt,u). Letting t,u _—>p

we conclude that D lies in the closure of
[C(r,R)*(\ C(R,p,v)ﬂ\J[b(r,R)*r\ C(R,p,v){]
for each choice of v on A. Hence letting v_, p we obtain

1lim C(R,t,u) = C(T,R).
Ty = P

Thus Condition I' is satisfied.

Remark. If Condition II' holds with lim  C(t,u,v) =p
tyu,v »p

and if p is an interior point of A, then Condition I' need

not hold.

For example, consider the arc A = AL y p VU A3 where A, and

3 3

A} are given by

3

i
]
o+
e
1
s
o
IN
o
N
N

and
x:—tB,y=t, —%$t<0,
respectively (Fig. 15).
Now A satisfies Condition II' at the origin p, and

Iim: Cltaav) = pe
t,u,v -p

However Condition I, and hence Condition I' does not hold.
Proof. Since A3 and Aé are of cyclic order three they are

strongly differentiable at p; cfe. Theorem 3.3%.2.

P

Let T and t' denote families of tangent circles of A, and A}

3

respectively.

Honce lim C(s,t,u) = 1lim C(t,s).
S,t,u@A s —>p
s,t,u »p
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But C(t,s) is given by equation

(2.4-2.) £ y2 - (s-sB)y = 0,

Thus as s > p (i.e., 8 > 0) this circle tends to the circle

x2 + y2 = 0, which is the point-circle p.

Hence

lim C(s,t,u) = 1lim C(%,s) = p.
->DP A
e A

Let R #Z p be a fixed point. We first show that no circle

through R can meet A, and A} twice each near p.

3 3

A circle through @ near R and two points of A3 near p is close

to C(7,R), while a circle C' through R and two points of Aé near p

is close to C(T}{R), where T and T' denote the family of‘tangent circles
of AB and A% at p, respectively. But T £ 7', because, in fact, circles
belonging to T are orthogonal to circles belonging to T'. Hence we
obtain that C £ C',

Suppose

lim Cltu,t¥;u") = C0 Z pe
tyuttyu' - p

Take S € Co’ S #p. Let Q€ C(tyuyv), Q>S5S as t,u,v > p. Then
Gt ,a,t"ut) = Clt 130} = €(t",u",Q)

vhich contradicts the fact that T # t'. Hence it follows that a circle

through two points of A, near p and two points of A!} near p is close

b 3

to the point-circle p.
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It'is_readily verified (cf. eq. 2.4~2,) that C(T,R) supports

A A3\J P U A3 at pe Hence the end-points of a smzll neighbourhood

"

M=NUpPUN' of p lie on the same side of C(T,R). Hence a circle C

1

through R and two points of Nc A3 will meet M with an even multiplicity

and hence twice or four times. From the above, C, cannot meet M four

1
times. Hence Cl meets M exactly twice, i.e., Cl meets N twice and
Cl(\ N' = . Symmetrically a circle Ci through R and two points of
N' C Aé will meet N' exactly twice and ¢ N N = B

Finally, a circle through three points of a sufficiently small
néighbourhood of p on A cannot pass through a noint @ near R if
R # p. As above, this implies that
1im C(t,u,v) = p.

ty,u,v—=>p
t,0,v € A

2.5. Non-tancent circles.

Let p be an interior point of A. Suppose that p satisfies

Condition I (cfe 2.3).

2.5.1. Theorem. Every non-tangent circle either supports

or intersects A at p.

Proofs If a circle C neither supports nor intersects A at p,
then p € C and there exists a sequence of points t — p such that
teANCand t #p. Let PeC, P# p. Then C = C(t,n,P) for each
t, and Condition I implies that C = C(t,P), which is a contradiction

to the fact that C is a non-tangent circle.
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2¢5:2. Theorem. Non-tangent circles through p all intersect

or all supporte.

Proofs Let C, and C_, be two non-tangent circles through pe.

1 2
Suppose that C1 and 02 have another point P in common. Let C1 intersect
and 02 support A at p. Thus AN Cl* and A f\Ci are non-void. Ve
may assume that A C.CE (Figs 16).
Ift cAN Cl*’ then -

C(p,t,P) C (cl*n cz) U (Ci N 02*) ) p
By having t — p, we conclude that
(2.5-14) ¢(r,p) c (€1, nC; ) U(crnC,,) VPUp.

Considering now a sequence of points, t'_— p, where t'¢ AN Ci we

obtain symmetrically the relation
(2.5-2.) c(t;P)c (Cl*ﬂ 02*)u(cin cz)upuP.

Hence by the relations (2.5-~1.) and (2.5-2.) we see that G(t,P) lies

in the intersection C1 V) 02 of these two domains, i.e., C(T,P) is

either Cl or CZ’ contrary to our assumption. Thus C1 and 02 either

both intersect or both support.

If Cl and C2 meet only at v, then they touch at that point.

Choose any non-tangent circle C3 through p that does not belong to

>

the pencil through C1 and C2. From above, Cl and C3, and also C3

and C?, either both support or both intersect. Hence our statement
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remains valid for C1 and C2 also in this casee.

Definition: We call an interior point of A which satisfies

Cadition I a cusp point_if the non-tangent circles of A at q all support

A at q.



CHAPTER ITI

ARCS OF CYCLIC ORDER THREER

3.1le Arcs of finite cycli€ order.

An arc A is said to be of finite cyclic order if it has only

a finite number of points in common with any circle. If the least

upper bound of these numbers is finite, then it ie called the cyclic

order of Ay, and A is said to be of bounded cyclic order., The order
of a point p of A then is the minimum of the orders of 211 the

neighbourhoods of p on A

3.l.1le Lermae. let A be an arc of finite cyclic order, and

let a circle C intersect A at a point p. Then any circle C', sufficiently

close to C, also intersects A, and does so in an odd number of points

close to pe

Proof. Since C intersects A at p, the end-points of a
sufficiently small neighbourhood M of p, lie in opposite regions with
respect to C. Hence they lie on opposite sides of C'. Since C'
meets M a finite number of times, it must intersect M an odd number

of timese.

k5
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3¢l.2. Lemma. Let A be an arc of finite cyclic order. If

the parameter tr tends to one of the end-voints of the parameter
1

interval, then the corresponding seouence of points tn on A converges.

Proof. Let 1lim t? = p and 1lim
Yy = o y — 00

t2y+l = q be any two

accumulation points of the sequence tn. We may assume that tn+l lies

between tn and tn+2 for 2all n. If p £ q, let C be a circle separating

these two points. Thus there is a number N = N(C) such that t2y and

£2y+l are separated for all y > N. But this implies that A meets C

an infinite number of times, which is not true. Hence p = q.

%s1le3. Theorem. Let p be an end-point of an arc A of finite

cyclic order. Then the arc A is conformally differentiable at p.

Proof, Suppose Condition I of section 2.3 is not satisfied.

Let tZk and t2k+l be two sequences of points converging to p such that
some point R £ p702k = C(R,tZk,p)~» C, and C2k+1 = C(R’t2k+1’p) —> Ci)
C. #C . Ve may assume that ¢t lies between t_ and t on As

1 o n+l n n+2

R . . - 2] . 1]
If k is large, C, [02k+];] will lie close to Co[Cl:[ . Let C and C
be two circles through p and R which separate Co and Cl’ (Fige 17).
Then, for each n sufficiently large, C and C' separate C(R,tn,p)

and C(R,tn+ ;p). Hence the sub-arc of A bounded by t and t o will

17,\ : +l
.neet CUC' in at least one point. Thus A will meet C U C' infinitely
nany times. This is impossible. Thus Condition I holds,

Let us now suppose that Condition II of section 2.3 does not

hold. Let t2k and t2k+1 be two sequences of points converging to p
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on A such that C(t,t )—a-Co and C(1;t )-—>'C1 7 C, o As before we

2k 2k+1

lies between tn and tn+ on A. Both of the circles

assume that t
n 2

+1
C0 and Cl’ being the limit of sequences of tangent circles are them-
selves tangent circles, and since family of tangent circles at p form
a pencil of second kind, they touch at p.

Suppose first of all, that Co and Cl are both proper circles.
1< Co*\J P an&'COCl Ci U pe Consider a circle
Cetv,C#p, C C:(Co*{\ Ci) U p. Ve may assume ClC: C, VY pand

We may assume that C

Cocz C* U p (Fig. 18). Then for sufficiently large k, C(7,t ) ccCc,up,

2k+1

and C(T,tzk) C C*up. Here again the arc A crosses C an infinite number
of times, which is impossible.

If now, C, is a point circle p, consider two circles of -

1
T,Cand C', CC C .U pand C'<C C* yp. Also we may assume that
o o

2k) c

) (C, UC'*)up. Since these two regions

c,c (c*ncy) up (Fig. 19). Then for sufficiently large k, C(7,t
(¢ ncy) pondle Clvyt,

are separated by C and C', one or both of these circles will meet A

between t and t

(- - )
ok Sksl®  Thus C U C' will meet A an infinite number of

times, Since this too is impossible by our hypothesis, Condition IT

holds, and the point p is differentiable.

-

3.2. Arcs of Cyclic Order Three.

Since any three distinct points determine a circle, the cyclic
order of any arc is at least three. An arc A is said to have cyclic

order three if no circle meets A more than three times. Let A, denote

3

an open arc of cyclic order three,
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3.2,1, Multiplicities.

Ve introduce multiplicities by counting an end-point p of A3

twice on any non-osculating tangent circle at p, and three times on

C(p). Ve count an interior point q of A, three times on any general

3

osculating circle at g and twice on any other general tangent circle

at q.

Let p and e be the end-points of A3. A3 = p\JAB(Je. Let
Te denote the family of tangent circles of A3 at e« The goal of this
section is to prove that:

If C(t,e) # C(p,Te), then no circle meets the closure of A3

more than three times. Thus the inclusion of the end-points of A3
and the introduction of multiplicities do not alter the cyclic order
of A3 (cfe Theorem 3.2.12).

Remark. Any circle through q € A, will either support

3

or intersect A, there, because of the finiteness of the

3

cyclic order of A;‘

342420 Lerma. A general osculating circle at an interior

50

point q of A3 intersects A, at q while any other general tancent circle

4

of A, at q supports A3 there.

2

Proof. Let q be an interior point of A Let C be a general

3'
osculating circle at q. Then for some triplets t,u,v,

Tim ClEuw) = C,
t,u,V -7q
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Consider a neighbourhood N of the point q. If t,u,v are sufficiently
close to q, then, the end-points of N lie in opposite regions with

respect to C(t,u,v); otherwise the arc A, meets C(t,u,v) once more,

3

because any circle meets an arc an even number of times if and only if
the end-points of the arc lie in the same region with respect to the
circle. Hence the end-points of N lie in opposite regions with respect
to the circle C.

Let R>Q # q and let t,u —»q. Choose any neighbourhcod N of

¢ on A Let C, be a general tangent circle of A, at q which is not

3 1 3 :

an osculating circle of A, at q;

3

lim C(t,u,qQ) =C
tyu—-rp

l.
If t,u are sufficiently close to q, then the end-points of N will 1lie

in the same region with respect to C(t,u,Q) and hence will lie in the

same region with respect to Cl. Hence Cl supports A3 at qge

3¢2¢e%s Lemmaes No circle through p and two voints of A3
intersects AB at another poiht.

Proof. Suppose a circle C through p intersects A3 at q and
meets A, in two more points r and s. Choose disjoint neighbourhoods

3

N of p and M of q which do not contain r or s, If t ¢ N and t— p,
then C(t,r,s) - C. By Lemma 3.1.1 C(t,r,s) separates the end-points
of M if t is sufficiently close to p. Thus C(t,r,s) meets A3 again in
~ the neighbourhood of q (Fig. 20). Thus C(t,r,s) meets A3 in not less

than four points, which is impossible.
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3.2.4e Lemma. A circle throush three points of A, U p does

3

not suvport A, at any>of thems.

3

Proof, If a circle C supports A

at q and also meets A

% 3\J p

at r and s, then a suitable circle near C through r and s intersects

A, twice near q. This is impossible by Lemma 3.2.3 and the definition of A

2 3

3.245. Lemma. No circle meets A,up in four pointse.

k.

Proof. Lemnas 3.2.3 and 3.2.k4.

3.2.6. Lemma. No tangent circle at p meets A, in more than

3
one point.
Proof. Suppose a tangent circle C at p intersects A3 at q
and meets A3 also at r £ q. Then there will be a circle through p
and r which intersects A, near p and also near q. Thus we have a

3

circle which meets AB\J p in four points, which is impossible by
Lernma 3.2.5,

Suppose the circle C tangent at p supports A, at q. Then we

3

have another tangent circle C' at p which intersects A, twice near q.

3

This contradicts the above,

3.2.7. Lermma. C(p) does not meet A

3.
Proof. C(p) being the limit circle of tangent circles at p

is also tangent circle at p. By Lemma 3.2.6, C(p) can meet A, only

3

once and that point is a point of intersection. Suppose that C(p)

intersects A, at q. Let N and M be disjoint neighbourhoods of p and

3
q respectively, and let t € N, t >p. Then C(t,T), when close to C(p)
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vill meet M, this contradicts Lemma 3,2.6.

3,2.8. Lemma. No circle supports A, at two distinct points.

3

Proof. Suppose a circle C supports A, at two distinct points

3
q and r. Ve may assume A3c: CuUC’, Let Mand N be disjoint neighbour-

hoods on A, of @

3 £y
sufficiently close to C (Fig. 21). Since the end-points of M and N

and r respectively. Choose a circle D in C* and

lie in C*, they will also lie in D*. On the other hand CC D, implies
q¢D, and r ¢ D,. Thus D separates q [r] from the end-points
M [N], D will intersect M[N] in not less than two points, and thus

DN A, contains more than three points, which is impossible by the

3

definition of A_.

k.

3.2+.9. Lemma. Let C be a general tangent circle of A, at q

3

but not a general osculating circle there. Then C meets A3 LU pat

most once outside q and that point is not a point of suvport.

Proof. By lemma 3.2.2, C supports A, at q. By Lemma 3.2.8

3
any other point of AB(\ C is a point of intersection. By Lemma 3.2.4

C meets AB(J p at most once outside q.

3.2.10. Lemma., A general osculating circle at an interior

point of A, does not meet A,y p elsevhere.

6 b

Proofse Let C be a general osculating circle of A3 at an

interior point q. Thus

G = lim C(t,u,v).
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Suppose C meets AB!J p at a point r £ q, Then the crthogonal

circle of C through q and r will intersect C(t,u,v) at a point R

converging to r, (Fig, 22), Thus
C(t,u,v) = C(t,u,R),

The circles C(t,u,r) will not meet A, U p elsewhere by

3

Lemma 3%,2.5, and they will intersect A, at t and u, by Lemma 3.2,&,

3
Thus the end-points of any small neighbourhood of q will lie on the
same side of C(t,u,r), if this circle is close enough to C, Hence any

limit circle D of C(t,u,r) will support A, at q, By the Remark of 1,5,

5
lim § [C(t,u,R), C(t,u,r;l = 0,

Since the angle between two circles depends on them continuously, it
follows that { {C,D] = O, Since C and D have points q and r in common,
this implies C = D, However D supports but C intersects (by

\) p outside q,

Lemma 5.2,1) A, at q, Hence C does not meet A

> >

3.,2,11, Combining the Lemmas from 3.2,5 to 3,2,10, we obtain

Lemma, No circle meets A, U p more than three times,

2
3.2,12, Theorem, If p and e are the end-points of A3 then
no circle meets E5 =e U A5 U p more than three times provided that

c(¥_,p) £ C(T,e),
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Proofe By 3.2.11 we know that ABLJP is of cyclic order three
counting multiplicities. Thus to prove that K3 is of cyclic order
three we need to show that C(e,t,p) where t € AB’ does not support A3

at t and does not meet A, elsewhere and that C(t,e) and C(Te,p) do

3

not meet A, again, and the osculating circle at one end-point does not

3

pass through the other'end—point.

Assume that C = C(e,t,p) meets A, in q (Fig. 23). By 3.2.h

3

t and q are points of intersection of A Then there exists a circle

3.

C' through p and t close to C which intersects the arc A3 in neighbour-
hoods of the points q and e. Thus C' meets ABk)p four times. This

contradicts 3%.2.11. Thus no circle through p and e intersects A

3

at two distinct vointse.

Suppose C(p,t,e) supports A, at t. Then a suitable circle

2

through e and p would meet A, at two points near q. This is impossible,

o

Hence no circle throush p and e supports A, at any point.

3

Let C(t,e) intersect A, at a point r. Then there is a circle

3

C' through p and e and close to C(t,e) which meets A, near » and r

s Skl

(Fig. 24), contrary to the above. Thus C(7,e) does not meet AB'

Similarly C(Te,p) does not meet A

3.
Suppose C(p) poes through the other end-point e. Then there is

a circle C', close to C(p), which is a tangent circle of A, at p and

3

intersects A, near e and p (Fig. 25). This contradicts Lemma 3.2.11.

3

Hence C(p) does not pass through e. Similarly C(e) does not pass

throuch p.

——b e
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FIGURE 24
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Remark. There exists an opnen arc A, of cyclic order three

e

whose closure A3 is not of cyclic order three. We shall construct

an open arc A, of cyclic order three with the end-points p and e of

3

A3 such that C(t,e) = C(Te,p). Then A

cyclic order three.

= pUA,Ue will not be of

3 3

Proof. Let p(-1,0) and e(1,0) be the end-points of an open
arc A, passing through the third and first quadrant, of the lemniscate

given by
(3.2-1.) G Cof iietel o 5P g, 26).

Claim: The arc A is of cyvclic order three.

(i) Tangent circles at p or e nmeet the arc A at most once.

Proof., Different tangent circles at e are given by

(X-h)2 + y2 = (1—h)2, for different values of h.

Or

(3.2-2.) x2 + y2 o v b P B O,

Solving (3.2-1.) and (3.2-2.) for x we get

2

(2hx-2h+1)2 -2x"  +2hx-2h +1 =0,

This equation being of second degree in x has at most two distinct
roots. Hence the circles given by (3.2-2.) meet the lemniscate at
rost two times. Because of symmetry, the circles (3.,2-3) meet the arc

A at most once., The symmetric result holds for p.
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(ii) Circles through the end-points p and e meet the arc A

at most once outside p and e.

Proof., Circles passing through p and e are given by
(3.2-3.) 2+ y2 + 2fy -1 =0,
Solving (3.2-1.) and (3.2-3.) for y we have,

(1--2fy)2 2 2y2 + 2fy -1 = 0.

This being a second degree equation in y has at most two distinct

roots. Hence the circles through p and e meet the lemniscate at most

twice. By symmetry, only one of these points lie on the arc A. Thus

the above circles (3.2-3.) meet A at most once outside p and e.
: ) _

(iii) Circles through p or e meet the arc in at most two

hoints.

Proof. Let r,s be two points interior to the arc A. Suppose
C(e,r,s) meets the arc A in t. Let e and r be fixed and let s move
from e to p. Clearly t cannot coincide with e, because then we have
C(e,r,s) € T,» contrary to (i). Also t does not coincide with p, 2s
this yould contradict (ii). Finally t cannot drop out as a point of
support, because in that case the circle would meet the lemniscate
five.times and we know thaf any circle meets the lemniscate at most
four times. Hence C(e,r,s) always meets A at another point t. Let

v

8 — p. Then we have a circle through both the end-points of A which

meets the arc in two interior points this contradicts (ii), By symmetry

C(p, r,s) does not meet A again.

{
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(iv) No circle through three interior points of A meets A

elsewhere,

Proof. Consider C(r,s,t), where r,s,t are three interior
points of A. Suppose C(r,s,t) meets A in a fourth point say x. Let
r,s be fixed and let t move on A. Then x cannot coincide with either
of the end-points, as this would contradict (iii). Also x cannot
drop out as a point of support, otherwise, C(r,s,t) would meet A five
times. Thus x € C(r,s,t),; has to remain an interior point of A. Now
let t —» p. Then we obtain a contradiction to (iii).

Thus A is of cyclic order three. ﬁut the circle x2 + y2 = 4L

is a tangent circle of A at both the end-points. Thus
C(rye) = C(r_,p).
Hence K = pulAu e is not of cyclic order three.

%.3. Strong differentiability of arcs of cyclic order three.

3.%.,1. Theorem. Let A, be an open arc of cvclic order three,

3

satisfies Condition I'; cf. 2.k4.

Then every point of A

3

Proof. let q,r € A, and q # r. Choose two disjoint one-

3

;- 3 .y 1 M = N "Io
sided neighbourhoods Tl and N2 of q such that r'¢ M Il U q \)I2

Let Cl and 02 reet A3 at least twice at q and altogether at least

three times. Hence C, (i=1,2) meets A, exactly twice at g, once at

3

r and nowhere else (cf. Lemma 3.2.9). In particular, Ci (i=1,2)

supports A, at q (cf. Lemma 3.3.1). Without loss of generality

3
we may assume NlU N2C Cl"‘ N CZ*'
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Suppose Cy £ C,e Then there is a third circle C, through

3

o%® Thus 03 will support A3

at q. Ye may assunme that Nl\) N2<: 03* (Fig. 27)« By Theorem 3.1,

q and r which does not meet Cl*(\ C

the arcs N1 U q and N, U q satisfy Condition I at q. Thus they

2

possess two well-defined tangent circles at q through r. At least

one of the circles C say the circle C, is different from them.

1102163 3

Let m be the pencil of the second kind of the circles which touch C
at q.
Let s € Ny U N,. Thus s ¢ C, and hence C(rn,s)c C,V q.

also if s approaches q through Nl or N2,

lim C(m,s) = q;
5—>q
cf. Theorem 2.3.2.

Since C(m,s) depends continvously on s, there are circles in T which

are arbitrarily small and meet both Nl and NZ near q. Thus they meet

M not less than three times. On the other hand, the end-points of M
will lie on the same side of such a small circle. Hence it will meet
M with an even multiplicity and therefore not less than four times.

This being impossible we obtain C1 = 02' Thus the general tangent

circle at g through r is unique.

Let C' and C" be the two one-sided tangent circles of A

3

at through a point R A Since

30
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and
£ [en, ¢} o,

it is true that

gl e

Since C' and C" have the point R Z q in common they coincide; cf.

Theorem 2.3.1. Hence the tangent circle of A, at q through R is

2

determined.

3e3%02¢ Theorem. lLet p be an end-point of an open arc A

3
of cyclic order three. Then A3 U P is strongly differentiable at p.

Proofe Let K3 =1 15 AB‘J e, and p,q,rys,u,e be mutually
distinct points on 33 in the indicated order. We may assume that
e € C(p)*. Thus

Ay C C(p)* O\ C(r,e),.

As q rmoves continuously and monotonically from p to v on AB’

C(q,rys) moves continuously and monotonically from C(p,r,s) to

C(r,s,v). We orient C(q,r,s) continuously, Thus

(3.3~1.) C(q,r,s)(:[b(p,r,s)*r\C(r,s,v);}Ldb(p,r,s)* C(r,s,v):]
Ur U s
and

(3.3-2.) C(q,r,s), D Clp,r,s), N\ Clr,s,v),

68
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Since p is an end-point of A 3\) p is conformally differentiable

34
at p. It suffices to show that p satisfies Condition II', in
particular
lim Cla,rys) = Clp);
qsY S —> P

cf. Lemma 2.4.2.

Letting r —s p in the relation (3.3-1.) we have
C(a,r,s)C [C(T,s)*(\ C(p,s,v)gﬁ&)[§(T,s)*lw C(p,s,v);E UDP U s.

Let Dy denote an accumulation circle of the circle C(q,p,s). By

choosing a suitable subsequence of the sequence q,r,s we may assune

that 1im C(p,q,s) = Dl'
qyS—>D

Hence

p.c [op), N clr,ve] U [c(Im N o)) USmIU ).

This holds for every choice of v on A, \J e while D, is independent

- i
of ve Letting v—p we obtain
= Vs
Dy C(p)
Thus
lim C(p,q,s) = C(p).
QsS —» P
Hence

lim C(p,r,s) = C(p).
q;5 =P

As in the relation (3.3-1.)

C(q,r,v)C_ Y_C(Paqav)* N C(Q»Sa")*] U [C(paflav)* ﬂ C(q,s,r);]
Ua Y ve


http:assur.ie

Let D2 be an accumulation circle of the C(q,r,v) as q and r tend to

p. Hence

70

p,c [clr, )N elps,m*] U [clr,m)* U clpys,m), | U el MU Clp,s,0).

vhile D is independent of s.

3 2
Letting s D we have D2<:.C(T,v). Since D passes through p and v

This holds for every choice of s on A

we have

D2 = C(T,V).

Hence also

lim C(I‘,S,V) = C(T’V)o
T'yS =D

Let D be an accumulation circle of the circles C(q,r,s).
By choosing the suitable subsequence of the sequences q,r,s, ve may
assune
lin c(q,r,s) = D.

qQsTyS —>DP

By letting r and s tend to p in the relation (3,%-1) and recalling

that
lim C(v,s) = 1lim C(p,r,s) = C(p),
) A EE
and
lim C(p,s,v) = 1lim C(r,s,v) = C(T,v),
S—»p r,s—»p

we obtain

L CONLICROMIVE (LS I CRON VECHRVELICROP

But
c(p), < C(r,v),,

therefore C(p)‘(\.C(T,v)* = s
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Hence D lies in the closure of [C(p)* (\C(T,v)é] « In particular,

D lies in the closure of C(T,v)*. Since p € D we have D e T,

From the relation (3.3%-2.)
D, D C(p), N c(r,v), .

Let v — po
Jf C(p) # p, then D £ p and D = C(p).

If C(p) = py, then D

it}

P

This implies that D = C(p), whether C(p) = p or not.

Bede e Liet Te denote’the pencil of tangent circles of A

3

Lerma. Let p and e be the end-points of an open arc A

3§

thus K3 =P L)AB\J e. YWe mav assume that e € C(p)*. Then

c(q,r,s), 2¢(p), N C(P,Te)*y

where q,r,s € A, in the indicated order.

3

Proof. DBy our assumptions, we have

A3C c(p)* N clr,e), N c(p,re)*ﬂ cle),.

If x moves continuously and monotonically on A, from p to e, the

5

circle C(x,r,s) moves continuously and monotonically from C(p,r,s)

to C(r,s,e). Hence for any choice of x on A_ we have

3
(3.3-3.) Clx;ry8), D Cp,rin) N Clraie)

Hence putting x = q, we have

at e.
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(3.3=4.) C(q,r,s),> C(p,r,s), N C(r,s,e),

Let r —> p and then put x = r in (3.5—3;). This yields
(%.%=5.) C(r,p,s), 2 C(t,s), N C(p,s,R),

Sinilarly let r.—=. e and replace x by r. Then
(3.3-6.) Clrye,s), 2 Clp,e,ys), N C(S’_Te)*

using (3.3-5.) and (3.3-6.) we have'/ from (3.3-4.)

Clgyr.s), 2 [C(‘r,s)* N C(p,s,e)au [C(p,s,e)*ﬂc(s'ore)_?,
or

(3.3-7.) C(q,r,s), D C(1,s), N C(p,s,e), N C(S'Te)* .

Let r and s both tend to » in (3.3-3.) and then take x = s.

Then

(3.3-8.) c(t,s8), >C(p), N C(r,e),.

Let r p, s »>e in (3.3-3.) and then put x = s. Ye obtain

(3.3-9.) Cls,pye)y 2 Clrye), N Clp,7 ),
Let rys = e in (3.3-9.) and put x = s. Then we have
(3.3-10.) C(s,re)*tD C(p,Te)*f\ Cle),

Using (3.3-8.), (3.3-9.) and (3.3-10.) in (3.3-7.) we get

C(g,rys), D [C(p)* 0 C(T,e);](\ (C(T,e)* N C(p:"e):} ﬂ‘[c(pa"e)* 0

cle) ],
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or

(3.3-11.) Clqyrys), D Cp), O Clr,e), N C(p,re),,ﬂ Cle), .

Since C(p),C C(7,e), and C(p,7 ), Cle),, relation (3.3-11.) reduces
to

C(q,rys), @ C(p), O C(p,Te)*.

3.4, Tet q ¢ A Let A, = B, U q U B! such that if p and

3° . e 3
e are the end-points of AB’ then B3 is bounded by p and q and Bé
by q and e. Let C denote a general osculating circle of A3 at q
and C(q) and C'(q) the unique osculating circles of B3 and B%

at q respectivelye.

3.4.1. Lemma. If C(q),c C, then B, € C(q), and symmetrically

3
if C(q)* < C* then B, C C(q)* (Fig. 28).

)

Proof. Since both C and C(q) are general osculating cirlces

of A3 by Lemma 3%.2.10,
B(\C.—_B (\C(Q)r(}o

3 3

Also by lemma 3.2.2, C and C(q) both intersect AB at g, The general

tangent circles of A, at q form a pencil Tq (cf. Lemma 2.3.1 and

3
2.4.1); thus C € Tq, C(q) € Tq, where Tq denotes the family of tangent

circles of A, at q.

3

Suppose that B, C C(q)*. Then

3

(3.4-1.) B3<: Cla)* v Cu3

othervise, C(Tc,s) could not converge to C(q) as s tends to q on B

3.



FIGURE 28
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Now (3.4-1.) implies that C(q) and C cannot both intersect A3 at qe.
Thus B3 < C(p)* °

The following theorem is a consequence of the above lemms,

3.4.2. Theorems If q is an interior point of A3’ then any

general osculating circle of A3 at q lies between the two one-sided

osculating circles of A

at q in the pencil Tq.

3
Proof. Let C(q),C C,. Then B3 ¢ c(q),< C,. Since
k, intersects both C(q) and C at q, we obtain

3

BY C c* < C(q)*.

By Lemma 3.4-1 applied to Bé, if C(q), C C,, then

Bé C C'(q)*c C*'

where C'(q) is the osculating circle of Bé at q, (Fig. 29). This is

a contradiction. Hence C'(g)*C C*. Ve note that then

Bé c C*(g)*s

Thus

B, C(q), and B% & Gt (q)*

and we obtain C(q),< C, C C'(q),.

3.4.,3, Theorem. If A, satisfies Condition II at an interior

—
point q, then A3 satisfies Condition II' at qe Thus if A3 is

differentiable at an interior, then it is strongly differentiable there,
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Proofs Let q ¢ A3 and let A3 satisfy Condition II at q.
Then from Theorem 3.4.2 any general osculating circle of A3 at q

satisfies

c(q), € €, < C'(q),.

But C(q) = C'(q). Hence C = C(q) = C*'(q). Thus there is a unique

general osculating circle of A, at q. Therefore Condition TI' holds

3
at (e

Z.4.4, Theorem. Two general osculating circles at distinct

points of AB have no points in comrione.

Proof. Let q,r € A3 and B3 be a subarc of A3 such that q

Thus B, has uniquely defined osculating

3 3

circles C(q) and C(r) at q and r,respectively. We may assume that

and r are énd—points of B

C(q) # q and C(r) # r. Let Tq and ¥ denote the families of tangent
circles at q and r, respectively, cf. Theorem 3.3.1. Let s,t,u be
mutually distinct points on A, in the indicated order. Let B, C C(q),.

% )
Thus

c(t _,r), € C(q), and C(t_,q)*C C(r)*.
(3.4-1.) 1 5

BBC clq), N C(Tq,r)* 0 C(Tr,q),, I €)™,
Since C(To,r) A C(Tr,q), C(Tr,q) intersects C(Tq,r) at q and r.
Hence C(Tr,q) also intersects C(q) at q and at another point. Similarly,

C(Tq,r) intersects C(r) at r and one other point, R, say. The points

r and R deconpose C(r) into two arcs C' and C", such that



c' C C(q,’t’r)* N C(rq,r)*
while

c" C(q,'l‘r)* N C(Tq,r)*( Fig. 30.)
Since C(Tq,r)*(: C(q),, we obtain
Gt & Glodgs

Suppose C'" meets C(q); thus C" meets C(q) () C(q,Tr)*.

Then C" decomposes the region
Clady O ClasT e (0 Clr ,m)*,
into three disjoint regions. Two of these lie in the set
C(q,Tr)*(W c(r)* N C(q),. = S say,

and their boundaries have at most a single point in comrion which lies
on C(q). The region of S whose boundary includes an arc of C(Tq,r),

contains points of B3 close to q, and the repgion of S whose boundary

includes an arc of C(Tr,q) contains points of B, close to r. But

3

then the continuity of B, and the relation (3.4-1.) imply that these

3
two regions are connected. Hence C" ¢ C(g),, and the whole of
c(r) = C' Y Cn L){r,RE lies in C(q), .

Thus C(q) and C(r) do not meete.

Remarks The following alternative method of proving that
C"c C(q), is shorter and direct, but it requires the full Jordan

curve theoren.

As above C" C.C(q,Tr)* 0 C(Tq,r)*.
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Since C(r) does not meet AB' C'" even lies in the region in C(q’Tr)*

bounded by A, and C(Tq,r). Hence C'" C C(q),.

3

3.,4,5. Theorem. All but a countable number of points of

A, are strongly conformally differentiable.

3

Proofs Let p and e be the end-points of A If C(p) = p

3.

and C(e) = e, (cf. Remark at the end of this subsection) we can decompose

A3 into two subarcs B3 and Bé such that A3 = BB\J q \)B%, and consider

B, and B! separatly. Thus thereis no loss of generality if we assume

3 3

that C(p) # p and A, C C(p),. By taking the point at infinity in

3

C(p)*, we can introduce a local coordinate system keeping A, C C(p),

3

and use the standard metric function d on RZ; thus if a = (al,az)

: o2 J 2 2
and b = (bl’b2) are points in R%, then d(a,b) = (al-bl) + (az-bz) .
By choosing this coordinate system suitably, we may even assume that
C(p) is =2 circle of area 1. In fact, a suitable translation will

move the origin to the centre of C(p) and if C(p) has radius r, then

x' = %/rjﬁ, y' = %/rJﬁ will transform the equation of C(p) into the
form x2 + yZ = 1/n.
Let s € A, be a point at which A

3
differentiable; then A

is not strongly conformally

3

" does not satisfy Condition II at s (c¢cf. Theorem

3
3e443.). Let C(s) and C'(s) be the one-sided osculating circles of
AB.at s. We may assume that C(s),C C'(s),. Let f(s) be the area
between C(s) and C'(s) (Fig. 31). By Theorem 3.4.4, the regions

C(s)* N C'(s), and C(t)* N C'(t), are disjoint if s £ t, and they lie
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in C(p),. Since the area of C(p) is 1,

(i) the class of points s for which

ik
'é ]

L > i)

has at most 2 memberse.

(ii) The class of points s for which,

£h il

: . 2
has at most four i.e., 2  members.

(iii) The class of points s for which,
1 y 1
= f(s) >%

has at most eight i.e., 23 members.

Thus in general, the class of points for which

—5 > f(elys (n=1,2,3..)

gl 2

n
does not have more than 2 memberse.

Since every point s ¢ A

3

.one of these classes, there is only a countable set of points s with

£is)-> O,

Remark. There are arcs of cvclic order three which have

with f(s) > 0 is included in exactly

point-osculating circle at both the end-voints.

For example consider the open arc A given by

x=t,y=1t7,
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for 0 <t < ®, with (0,0) and ®as the end-points p and e respectively,

(Fig. 32).

First we show that the arc A is of cyclic order three. Let
2 2
(3 l4-2.) X" +y +2px+2fy +¢c =0

be any circle. Then the points of A which are common with a circle

(3.44=2.) are the roots of the equation

6 L 3

(3.4-3.) 9 5t w28« 2ut% 4 o =

Now there can be at most three variations in the signs of the
coefficients in the equation (3.4-3.). Hence by Descarte's rule it
can have at most three real positive roots. Thus any circle meets
the arc at most three times. Hence A is of cyclic order three.

The £angent circle of A at p through a point (52,53) is given
by

2 + y2 - (s—sB)y = O.

ks 8-> 0 this circle tends to the point-circle

X BNy = O

Thus C(p) = p.
The circle C(t,u,e), t,u € A, which is a straight line, is

given by




AYy-axis

FIGURE %2

Ny

X=2X18
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As u—>e (i.e., as the parameter u-—»co ) this becomes a st, line

through the point t and parallel to the y-axis,
(5.14"5) x=£% >
Thus the circle C('ue,t) is given by (3,4-5), Hence

lim C(Te,t) = Cle) = oo, fus C(e) is also a point-circle,
t—>e i



CHAPTER IV

UNION AND EXTENSION OF ARCS OF CYCLIC ORDER THREE,

4,1. TUnion of Arcs of cyclic order three.

Let A, and A! be open arcs of cyclic order three with a common

5 5

end-point p, and let e, e' be the other end-points respectively.. Put

K': ¢ Al K:eUA
3 =TT O L
e A=A UpPpUAl; R=e'"UAve.
3 2
Let T,Te denote the pencil of tangent circles of A3 at p and e and
Tgte, of A% at p and e's Assume that K3 and Ké are also of cyclic

order three.
Thus

C(p,Te) Z C(r,e) and C(p,re') ZC(tt,e'),

Let C(p) and C'(p) denote the osculating circles of A3 and Aé
respectively at p. Ye may assume that e € C(p)*.
If A has cyclic order three, the following conditions will

hold.

(i) A satisfies Condition I at p (cf. Theorem 3.3.1.).

Thus the two pencils T and 7' coincide. Ve denote this common pencil

by T.

86



87

(i1) c(r,e'), CC'(p),C C(p), T C(r,e),.
Thus

A%C C'(p),C C(p), and A, C C(p)*< C'(p)* (Fig. 33).

3
(iii) A3 ‘jAé] does not meet C(p,Te') [?(p,re;] (Fig. 34).

(iv) A UD [Aék)p] does not meet C(Te',e) [C(ev,tejj "

3
(Fig. 35).
Our goal is to show that Conditions (i) - (iv) are not only
necessary but are also sufficient for A to have cyclic order three.
We observe that A will also have cyclic order three if we

add the condition

Clrye') £ C(v_, e,

L,2, Remark. It is clear that Condition (ii) implies

Condition (i). However Conditions (ii), (iii) and (iv) are independent

as we shall now prove,

L,2-1. Conditions (i), (ii) and (iii) do not imply Condition (iv).

Proof. Let e' (-1,0) and q(1,0) be the end-points of the open

arc B of the lemniscate
>
(x*+y%)— - y2 = 0,
consisting of the origin and the subarcs A! and B, vhich lie in the

2 -

third and first qudrant respectively. Then B is of cyclic order three

(cf. Remark on Theorem 3.2.2.). Clearly A! and B, are of cyclic

2 3

order three,


http:Rem:?.rk
http:necessa.ry

Cc(p)

Ct(p)

FIGURE 33

C{¥,e)
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Now, we show that C(q), the oscnlating circle of B! at q is

3

not a point-circle. The radius of curvature R of the lemniscate in

the polar coordinates is given by

B gmlo
(ho2-1.) R = le“_..r,_g)_,___ ¢
r+2r! spr!
At q, R = %‘- Since R £ 0 at q, C(q) # q. Hence B3 can be extended

through q to a larger arc of cyclic order three (cf. Theorem 4.6-5.).

Let B3 be extended through q to e such that the closure A, of the open

3

arc A, with the end-points p and e is also of cyclic order three.

3

Let A = A' {y pUA_,
% 5

curvature at p is infinite and hence C(p) is a straight line. Ve may

By (4.2-1.) we see that the radius of

take the direction of C(p) such that e € C(p)*.
Since A is conformally differentiable at p, Condition (i)
automatically holds. Also e'€ C(p), hence C(p) separates C(T,e)
and C(7,e'), i.e., C(1,e"'), C C(p), ¢ C(1,e),, where T denotes the
family of tangent circles of A at p. Thus Condition (ii) is satisfied.
Now C(p,fe') does not meet the right half-plane x > 0, hence
dces not meet AB. Since C(p,Te) will lie in the union of the right
half plane, the upper half plane, and.C(P)*, C(p,Te) does not meet
Aé. Hence Condition(iii) also holds.

But we see that Condition (iv) does not hold. Because

e € C{q)* (cf. Theorem 4.6.), C(Te',q) = C(Tq,e') we obtain

C(Te,,e)*CZ C(Te.,q)*

and hence C(Te,,e) intersects A3 (Fie. 36),
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4,2,2, If A has a cusp at p, then the Conditioms (i), (ii),

_and (iv) do not imply Condition (iii),

Consider A! to be the arc of the lemniscate

5
(x2+y2)2 -2xy = O,

in the half-plane x = y ):O, with end-points p = (0,0) and e' =
1
(= ).

b}

V2 vz

Let A5 be the arc of the lemniscate

(x2+y2)2 +2xy = 0
in the half-plane x + y > O with end-points p = (0,0) and (-l—,- i

=z
Put
A = A5U pl}Aé.

Then A has a cusp at p (Fig, 37),

Obviously C(p), the osculating circle of A at p is the straight
line x = 0, Let ec¢ C(p)* and hence e'€ C(p),. Thus C(p) separates
Clx,e') and C(v,e), Hence Condition (ii), and therefore Condition (i)

holds,

Now the equation of C(?e',e) = C(Te,e') is

Up or A' U p, Therefore Condition (iv)

3

which clearly does not meet A

3

is satisfied,
But shall see that Condition (iii) does not hold, The circle
C(p,t%,) is given by the equation

x2 + y2 T X - e ¥ =9,

/2 E
. 2 ) 1ies on the line y. = x, and the radius
2V2 2yz2

is % . Also C(p,:%,) being a non-tangent circle, supports A at the

cusp point p, Since

Thus the centre (
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FIGURE %7
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A3(: C(p,Te) while e € C(p,Te)*,

we obtain that C(p,Te,) meets A3 at some point. Thus Condition (iii)
is violated.

L4,2,3, Conditions (i), (iii) and (iv) do not implv Condition (ii).

Let A, be the arc of the ellipse

3
o .
(o221 55 + 15 o Vv iRl B
a b

with end-points e(0,b) and p(a,0); and A! be the arc of the same

3
ellipse with end-points e'(0,b) and p(2,0). Thus let

A:%UPUN,WM.%L

First of all we show that A, and A! are of cyclic order three.

> 3

The circle C(p,Te) has the equation

2 2

(h,2-3,) x2 + y2 + 2;.?;31_ y - a2 = 0.

Clearly this is not a tangent circle of A3 at p, which shows
that K3 is of cylcic order three.

The circle (4.2-3.) and the ellipse (4.2-2.) meet at two
points (#2,0) and touch at (0,b). Hence they do not meet elsewhere.
Thus C(p,Te) does not meet Aé. Similarly C(p,Te,) does not meet AB'
Thus Condition (iii) holds.

Since p is a conformally differentiable point of the ellinse

(and hence of 4), Condition (i) is satisfied.
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FIGURE 38



Finally, C(Te,e') — C(Te,,e) is given by

x2 + y2 = b2.

Now C(Te,e') does not meet A since a £ b. Hence C(Te,e')
does not meet A, Thus Condition (iv) holds.

From symmetry with respect to the x-axis

C(r,e) = C(r,e").
This implies that Condition (ii) does not hold,

4,3. Lemma. Assume Conditions (i), (ii) and (iv). Then

Condition (iii) is eguivalent to A having no cusp 2t p.

Proof, The following discussion is easiest to follow if we
designate p as the point at infinity.
By (ii)
A3 T cp)* () ¢(rye), and A% cc'(p), N Cclr,e)*.
Thus

A3 U A% C.C(v,e), N C(r,e')* = R say.

Since C(Te,p) # C(t,e) they intersect at e. Hence C(Te,e')

97

also intersects C(t,e) at e. Furthernore, since C(Te,e') does not meet

& 3

C(t,e') at e'. Symmetrically C(Te',e) intersects C(7,e') at e' and

C(r,e) at e.

A} y p and since A! is of cyclic order three, C(Te,e') will intersect



Orient C(T ,e!) [C(T ,,e)) such that Al CZC(Te,e')*

3
LA cclr ,,e).\

Thus

Aé & C(Te,e')* (1 Clr,e')*C' (p),

and

aycclr y,e)*nclr,e), NClp)*

Hence A, U A! has no points in common with

3 2

C(Te’e')* n C(Te',e)*(\R 4 RO Say.

The boundary of Ro decomposes R into three disjoint regions

of which Ro is one., Let Rl and R2 be the other two; thus

" t
A3 U ABC R1U R2.

Case I: A has a cusp at p;

- ' S i i .
Then A3 and A3 both lie in Rl or both of them lie in R2,

say in Ri' In this case, both e and e' will lie on the boundary

of Ri. Since C(p,Te) and C(e',Te) are tanpgent circles at e,

C(p,Te) vwill decompose Ri into two disjoint regions and A% will have
points in both of them. Hence C(p,Te) will intersect A} (Fig. 39).

3

Case IT: A has no cusp at p.

Here A, lies in Rl’ say, and A! lies in R.. Thus e[ e'] lies

2 3 2
on the boundary of Rl‘[Ré] « Then the circular arc C(p,Te) N\ R lies

in Rl and the arc C(Te,,p)ﬂ R lies in R Hence C(p,Te) [Q(Te,,pjl

e
S o \' '..l ar .
does not meet f3 \AB! (Fig 40 and 41)

98
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FIGURE 41



102

Corollary. Conditions (i) - (iv) imply that A has no cusp

at p.

Remark. We observe that if the Conditions (i), (ii) and

- (iv) hold and A has a cusp at p, then C(Te,e') will have to coincide

“’ith C(Te' ’e)‘

Thus Conditions (i), (ii), (iv) and C(Te,e') A C(Te',e) imply

Condition (iii), and hence that A has cvclic order three,
e e e 3

L, L, Lemma, If Conditions (i) - (iv) hold and

o [0 I - AB’ gt ast € Aé then

Al Y e'cC(q,rys), and A,V eCC(q',r',s')*.

3 2

These results remain valid if two or all of q,r,s, coincide with one

another or with p or e.

Proof. Since e € C(p)*, Lemma 3%.3.3 implies fhat
6(q,r,5), DC(p), O Cp,T, ),

Since A = AB\)p\jA% satisfies Conditions (i) - (iv), A has no

cusp at p (cf. corollary of Lemma 4.1.1). Also C(p,Te) ¢,T. Hence

C(p,Te) intersects A at p. Now A C,C(p,Te)* and by Condition (1ii)

k.

Al does not meet C(p,Te). Condition (iv) implies that e"¢ C(p,Te).

e

" Thus Aé U e' does not meet C(p,Te). Hence

A% k)e'(:—C(PsTe)*'
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By Condition (ii), C(p) separates C(t,e) and C(r,e'). Also

e € C(p)*. Hence e' € C(p), and A% Ue'cC(p),. Altogether,

Ay Y e‘(:lé(p)* (iC(p,Te);k:AC(q,r,s)*

4,5, Theorem. Conditions (i) -~ (iv) are not only necessary

but are also sufficient for A to have cyclic order three,

Proof. Let t,u(?ABU Py B ute AéL)p. Using the Lemma k.4,
we prove successively that C(Te,,t) and symmetrically C(t‘,Te);

Ce',t,e) and C(e',t',e); Cle',t',t) and C(t',t,e); Cle',t,u) and

Cle,t'yu'); C(t',t,u) do not reet A elsewhere.

C(T,,t) 1

cle',t,e)

n

Ci(t)= 1C(tY,t,e) if i

Clezt' sut)

w & W

o] £ AN Y

Now Ci(p) does not meet A again., If t moves continuously
on A3 from p to e, Ci(t) cannot pass through p, cannot increase the
miltiplicity with which it meets e or e', and cannot suvport AB\JA'

)

at a new point. Hence Ci(t) does not meet A elsevhere,
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4,6, Extension of an arc of cyclic order three.

In this section we wish to prove that an open arc A, can

3

be extended through an end-point p to a larger arc of cyclic order

three if and only if C(p) # p and A, the closure of A,, is of cyclic

D4 3
order three.

Let e be the other end-point of A3 and let T and ¥ denote
the family of tangent circles of A3 at p and e respectively.

L,6.1. Ve know that a reflection in a circle followed by
a reflection in an orthogonal circle is a conformal transformation
which leaves both these circles invariant; cf. section 1.6. Let A,
be an open arc of cyclic order three with an end-point p, such that

C(p) # p and A, is also of cyclic order three,

3

: T C(p,Te) Z Clr,e).

Let D be any circle through p and orthogonal to C(p), such that D

/

3

in C(p) and then reflecting the resulting arc in the circle D. Then

does not meet AB\;e. Ve construct an arc A, by first reflecting Ag

we choose a suitable subarc B,CA, with image Bé(; Aé, and take

b,

A= Bé'u‘ P UAB, (Fig. L2).

To achieve our goal we show that the arc A is also of cyclic
order three. It suffices to show that Conditions (i) — (iv) of

section 4.1 hold for A.
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FIGURE 42
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k,6,2. Since both reflections leave C(p) invariant, the

arc A is conformally differentiable at p. Thus Conditions (i) and

(ii) will hold.

3, and B!

Let eye',f and f' be the end-points # p of A3’Aé’ 13 3

respectively. Ye may assume that e € D*. Thus

AsUe c c(p)* n D*,

and
A% Ve'cC(p), 0D,

L,6.3, Condition (iii) is satisfied.

Let F bhe the circle orthogonal to the family of circles, T,

through p and any pointof A Let F' be its image under the reflection

&z

3'
in C(p) followed by the reflection in D. Thus

P CD,CFRe

Choose

B, A  Ihe

g i R E
and =

B3 - pUBBU e LelP;
thus

B! Al ! Bl e 1 Vo P oL P,
3(;3(\,,‘za.nd3 pUBBUf,fC

Since ABCZC(p)* O D*, while

C('rf. ) C[C(‘r,f')*\,i RL Xy 0 uﬂc.C(p)* VDU p,

A3 does not meet C(Tf,,p) (Fig. 43).
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3

C(Te,,p)*) we can assume that B} does not meet C(p,Te), (Figo 4ly), .

By shortening B! if necessary, (e.g., choosing B3 in

4,6.4, Condition (iv) also holds for the arc A,

In the following it is convenient to take e as the point at
infinity. If B! is chosen small enough, then C(f',re) will be close

3

to C(p,Te), while a circle through e and two points of §§ will he

close to C(t,e). Since C(p,Te) Z c(1,e), hence, C(f',Te) does not

neet BY y pe Ve may assume that

3

t } = 1 %
B3 U pC C(f ,'re) .

Next, C(f',p,e) is close to C(7v,e), while a circle which
meets ﬁ; againe. Since

fr € C(r,e)*ﬂC(p,Te)u
we have
6(s7,pye) € 007,00, 11 0(p,7 )] U [ 0Cr,00% i oyt ) ] up Ues
(Fig. 45, L6). |

But

A3 ch(T,e)*(q C(p,Te)*,

therefore C(f',p,e) does not meet A Ve may assume that

3.
A3 C C‘(f' Sp’e)*;
thus

B%C Clf! ypye)*s
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FIGURE 4k
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N
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FIGURE 45
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FIGURE 46
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Now C(Tf,,e) is close to C(T,e), while C(Tf|,p) is close
to C(p). Hence
C(Tf,,e) P C(Tf,p).
Since

B% C C(f',p,e)* ()Y C(£? ,'re)*,

we obtain
C(%y40) T [C(f' pre)*C(EY 7 ) U [C(f' pae), O clee ,re)]
U (e, ).

ABC, c(£',pse), N C(£ ,re)*,

we obtain C(Tf|,e) does not meet AB‘U De

L4,6.,5. Combining the subsections from 4.6.1 to 4.6.5 we
obtain the following Theorem.

Theorem. An onen arc A, can be extended through an end-point

3

p to a larger arc of cyclic order three if and only if C(p) # p and

A, is of cyclic order threeo.

3
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