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The optimization study of s pace frames has been consi de r ed 

in t wo a s pects in this project work . The first was to develop 

a suitable optimization t e chni que for a nonlinear programming 

problem including equality constraints, without any particular 

reference to structural optimization . The necessacity for 

the above requirement was due to the fact that almost all 

existing methods on optimization have some limitation. The 

second object of this study was to set up the necessary 

equations for the constraints on stress and on frequency for 

the structural model used, and then to use the developed 

technique to optimize the structural model tor minimum weight. 

A simple and effective strategy, which is a combina

tion of direct search and linear approximate programming is 

believed to have been developed for optimization of simple 

nonlinear type equations. 

The analysis of the space structure and the study of 

structural optimization revealed several difficulties in

herent in the evaluation of constraining equations for the 

stresses and frequencies, which makes the optimization very 

difficult . 

Vi 



INTRODUCTION 

This research programme has the general objective of 

establishing analytical techniques for analysis of indeter

minate spatial frames and shells under dynamic loading, 

and the design optimization of these structures under the 

constraints of dynamic loading. Although techniques 

developed should have wide applicability, emphasis will 

be placed, for experimental and illustrative purposes, on 

structural configurations common to machine structures. 

This present work relates to the third stage of this 

programme - the structural optimization problem with static 
39,40

and vibrational constraints. Related studies will examine 

the static and dynamic analysis of the structure. The 

overall programme is in its early stages, the examination 

of a simple discrete space frame with generalized 

characterstics. The following discussion reviews the over

all problem. 

Design systhesis essentially is an evolutionary spiral 

process involving a complex feed back interrelating the 

fields of creatiV1ty, past experience and tools of analysis. 

The role of the designer is to optimize the value of a 

synthesis on the basis of some criteria through a balanced-
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exploitation of the evergrowing information from all the 

three fields. The basic techniques and the criteria of 

evaluation themselves need refinement from time to time in 

the light of achievements in the foregoing areas. 

The process has been marked with a rather slow progress 

in the field of mechanical engineering structures, mainly 

due to their complex nature. These have not received the 

intensive investigation that c1Vil and aerospace engineering 

configurations have. Analysis of mechanical engineering 

structures has perhaps lagged behind because they are much 

more difficult to categorise than in the other fields where 

a few highly typical configurations can be recognised, 

modelled and studied in a concentrated way. · In addition, 

the analytical tools available until lately have had 

their own limitations. 

These methods can be broadly classified into two 

divisions, 1 
•
2 -

(1) Methods based on exact solution of the differential 

equations describing the structure. 

Apart. from the difficulties in setting up and solving 

the equations subject often to awkward boundary conditions, in 

thecase of complex structures the basic assumptions proved 

too restrictive for accurate solution. 

(2) Approximate methods involving mathematical approximations 
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can 	be subclassified into 

(a) 	 Those based on finite difference procedures. 

These are unsatisfactory in their formulation of 

boundary conditions and convergence characteristics, 

and 

(b) 	 Those which approximate the stress or displacement 

distribution by a series of analytical expressions 

and hence are unsuited for complex structures. 

The classical analytical tools are thus incapable of 

providing an integrated approach even for structures of 

moderate complexity. Hence it is not surprising that the 

practical design of mechanical engineering structures has 

relied more on past practical experience supported by 

rough analytical checks wherever possible, rather than on 

the analytical tools. 

The need for a tool well suited to complex configurations 

was most acute in the aircraft industry where the designer 

had to work within extremely narrow margins of practical 

expediency3. The extensive efforts over the years by numerous 

and often isolated workers culminated in the finite element 

approach which is a major breakthrough from the past. 

Based on structural as against mathematical approximation, 

the method essentially seeks to idealise the structure into 
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an assembly of a finite number of discrete elements connected 

at a finite number of points, and then proceeds to solve 

for the system response on an exact mathematical basis. It 

is the finite connectiv1ty which permits a complex continuous 

structure to be analysed by a system of algebraic equations 

and forms the basis of the technique. Although earlier 

work was restricted to the field of aeronautical engineering, 

recently results of applications to non~aeronautical problems4,5, 6 

and extensions to three dimensional discrete elements? have 

been reported. 

It is realised that, although the finite element 

technique is still developing, it provides a unified approach 

to the analysis of any type of structural assembly, from 

any field and with any combination of one, two or three 

dimensional elements of different characteristics4. It 

thus provides a reliable anlytical tool which is a pre

requisite for design systhesis. 

A rather limited amount of work appears to have been 

done on the general problem of elastic vibration of 

structure~ and the problem of optimization under vibrational 

constraints, although techniques for calculating the natural 

modes and frequencies of lumped mass spatial structures are 

fairly well established for essentially beam like aircraft 

structures, and to a lesser extent the rectangular frames 
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of civil engineering. The s i gnific ance of rotar y iner tia 

in spatial frames does not appear to have been s tudied. 

Archer8 ,9 has provided t wo useful new papers in this fi eld 

and has related it to the finite element stiffness matrix 

technique. Hurty 10 has developed a method for analysing 

complex structural systems that can be divided into inter

connected components. 

The concept of optimum design has registered a drastic 

change since the advent of high speed digital computers. 

Earlier, the magnitude of computation involved acted as a 

deterent and a feasible solution was accepted in lieu of the 

optimum. With computers to handle the arithmetic, 

systematic design synthesis has become a reality. 

Very many general techniques of optimization appear in 

the literature that might be applied to structural optimization. 

Most promising are the Direct Search Method first suggested 

by Hooke and Jeeves and further developed by Flood and Leon11 , 

the Method of Successive Linear·Approximation due to Griffith 

and Stewart12 , and the Random Method of Dickinson13. 

Minimization of weight, weight stiffness ratio, cost, 

volume for a homogeneous structure, etc. have been suggested 

as criteria for optimization of structures, but minimization 

of weight appears to have been accepted as the most satisfactory 

one even though the minimum weight design is not always the 
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minimum cost design. 

The optimization of a statically determinate truss 

subjected to single loading is a problem in analysis rather 

than synthsis. For strength design, member cross sections 

are proportioned to develop maximum allowable stress for the 

required failure mode. For optimum stiffness design based 

on minimization of weight per unit stiffness, stiffness 

being defined as the reciprocal of strain energy, the members 

should carry stresses proportional to the square root of the 

product of the modulus of elasticity and specific weight. 

The constant of proportionality is based on stiffness 

requirements 14. 

For a given determinate truss under multiple load condi

tion the problem essentially remains the same. All the 

member cross sections carry the maximum allowable stress, 

based on strength or stiffness design, at least under one 

load condition. The optimum design has come to be recognised 

as a fully stressed design. 

In the case of indeterminate trusses, for a given 

configuration, applied loading and allowable stress, the 

cross sectional area of the members and hence the weight of 

the structure are functions of forces in the redundant members. 

Sved15 has shown analytically that under single load conditions 

the minimum weight structure is always determinate. 
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Using the Lagrange multiplier technique, L.C. Schmidt16 

has shown that under alternative loads numerous fully 

stressed designs of an indeterminate truss exists. Due to 

the prohibitive nature of computations involved in arriving 

at the minimum weight he has suggested two complementary 

relaxation methods to arrive at a fully stressed design. 

The beginning of the present decade marked a radical 

departure in the approach to structural optimization. It 

came to be accepted as a problem in mathematical programming 

w~th Schmit17 as the pioneer. Utilising the joint force 

and displacement formulation of structural analysis as first 

proposed by Klein18 , he has op~imized a fixed configuration 

three bar truss subject to three alternate loads. He treated 

it as a problem in nonlinear programming by adopting a 

modified steepest descent method designated as the method of 

alternate steps. On encountering an inequality constraint, 

which must be convex, the search moves along a constant 

weight plane in the feasible region until the constraint is 

again contacted. It then steps back halfway, and then con

tinues to move along the steepest slope. On the basis of 

numerical results ..he concludes that in terms of design 

parameter space the minim~m weight design need not be a 

fully stressed design lying at the apex of constraint hyper

planes. 
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Subsequentlyl9 , 20 in collaberation with Mallett and 

Kicher he extended the above to the problem of selecting a 

suitable configuration and material for the three bar truss. 

Various optimum designs were compi led by changing the material 

or configuration, one at a time in discr~te steps. The best 

of all these design was chosen. 

21Dorn et ai have proposed a linear programming method 

which selects the optimum combination of configu~ation. and 

member cross section from wide classes of admissible trusses 

defined by a given number of admissible joints connected in all 

possible ways by linear members. The optimization is based 

on a modified simplex method capable of handling large numbers 

of equations. The results provide an interesting study in 

the behaviour of optima due to change in load and the height-

span ratio of the truss. The configuration remains the same 

for the load for a certain change in height-span ratio ol. , 

and then alters, as "'- continues to change. Thus a continuous 

spectrum is provided from which the value of rJ... giving the 

absolute minimum weight truss and the configuration itself 

could be selected. 

Best22 has optimized a contilever box beam by the steepest 

descent method. It has one unique feature. The parti ~l 

derivatives of stress and deflections with respect to the 

design parameters are calculated by the finite differen~e 

approximation using the stiffness matrix, which must be invert
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ed to obtain the defJ.. cc:ti:on.s . To avoid the time consuming 

process of inversion at every step he adopts an interative 

scheme to obtain the deflections. Only the incremental 

stiffness matrix for a given change in design parameter is 

calculated which, in conjunction with the previously inverted 

stiffness matrix, rapidly converges to the required displace

ments on iterations. Thia feature is said to substantially 

reduce the calculation time. Constraints on stresses and 

deflections are handled by a version of the reduced gradient 

method. His solution is a maximum stress solution, and thus 

forced to be on a boundary. 

The presentation of the structural synthesis as an uncon

strained minimization problem by Schmit and Fox23 is unique, 

It is based on the method of solving linear simultaneous 

equations by minimizing the sum of squares of the residuals to 

zero. This expression is set up for the equality constraints 

defining the stresses. To this is added penalty terms for 

violated inequality constraints, which are all simple upper 

and lower bounds. The actual quantity to be optimized, the 

weight, is treated as an inequality constraint, requiring that 

the weight be less than an arbitrarily defined draw down 

weight. The problem is now an unconstrained optimization 

problem solved by a gradient method. It is repeated using 

progressively lower draw-down weights until the optimization 

function cannot be made zero. This indicates that the draw
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·down weight is lower than the inherent minimum weight. The 

'Utethod thus actually requires a series of optimizations. It 

does not seem too applicable to complex problems, as the 

constraints must be expressed explicitly in order to set up 

:the residuals • The implicit matrix form of equality 

.constraints are ruled out. 

Razani24 has proposed an unconventional approach using 

an interative technique in which areas are changed by successive 

increments from an initial feasible solution so that each 

member is fully stressed in at least one of the several 

possible load conditions. This gives a . feasible solution 

forced to be on a boundary. The true minimum may not be on 

a boundary if the stress is indeterminate. 

The gradient projection technique has been successfully 

25adopted by Brown and Alfredo to optimize a portal frame and 

a two storey single bay frame. The search begins at a 

feasible starting point until constraints are encountered. 

At this point the constraint hypersurfaces are approximated by hy

perplanes and the · gradient of the objective function is 

projected on the line of intersection of these planes. After 

a move along the indicated direction a correction is indicated 

due to the nonlinearity of the constraint hypersurfaces. The 

authors have proposed the use of only one design parameter 

for a member as variable while the rest of the parameters for 
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the same member are expressed as functions of the selected one. 

As moment of inertia of the members has a predominant effect 

on the behaviour _of ~ _.. the structuz:e, other parameters are 

expressed as functions of moment of inertia. Inspite of this 

simplification the procedure seems too involved for complex 

structures. 

Young and Christiansen14 have provided the first known 

optimal structural design technique using vibrational 

constraints using an iterative technique. Adjustment of the 

member area to achieve a fully stressed design simultaneously 

with the required resonant frequency characteristic is the 

main feature. An application toa .pinjointed space truss is 

included. 

This present work has two phases - the first is to 

develop a suitable optimization technique for a non-linear 

programming problem including equality constraints. The 

second is to set up the necessary equations for the constraints 

on stresses and frequency for the spatial structural model 

and then to see if the optimization routine developed, could be 

used to optimize the structural model for minimum weight, 

subject to the stress and frequency constraints. 
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~ GENERAL CONSTRAINED OPTIMIZATION PROBLEM 

Definition Of The Problem 

The general formulation of the optimization problem defines 

an optimization function to be maximized or minimized. 

U(x1,x2 ,x3, .••. ,xn) =maximum or minimum •• (1) 

where U is a criterion varia·ble such as cost, weight or 

capacity. The x's are independent variables such as dimensions, 

stresses, material properties and frequency. The device or 

system being optimized is constrained or defined by a set of 

inequalities or equalities, such as 

f>1 (xl ,x2, ••••• ,xn) ~ o, i=l ,m (2) 

<jlj ( X1 , X2, • • ••• , Xzi) = 0, j=1 , k ... (3) 

In the case of structural problems, the function to be optimized 

is usually the weight of the structure and the constraint 

equations would be limitations on the geometry, stress, dis

placement and frequency. 

Review Of Existing Methods 

A number of methods have been developed to solve the 

constrained optimization problems. These include linear 

Jprogramming when both the functions to be minimized and the 
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constraints are linear26 • For a nonlinear optimization 

function and linear constraints the gradient projection 

27 28method by Rosen and the cutting plane method by Kelly 

have been proposed. The largest body of material in the 

literature is concerned with gradient methods of minimization, 

where measurement of the slope of the function is used as an 

indication of the direction towards minimum29,30. Intuitively 

these methods have considerable appeal. But they are less 

satisfactory to work with, because of the computational 

effort involved in calculating the gradients at each step. 

Also the computational feasability of some of the methods 
/ 

referred to are not thorougly explored. 

The direct search method is a sequential examination of 

trial solutions which are obtained by direct numerical 

functional evaluations. Each solution is compared with the 

best obtained up to that time, and there is a strategy for 

determining whatthenext trial solution will be. It is seen 

that the direct search procedure uses a numerical technique 

rather than an analytical one, and as such is very well 

adapted to any class of optimization problem. The repeated 

identical arithmetic operations with simple logic makes the 

problem extremely easy to solve by an electronic computer. 

Many direct search strategies have been proposed by 

a number of authors3l,ll,32 • A detailed description of one 
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direct search procedure is given in Appendix I. 

Several very similar methods of ~~ccessive ~1n~ar 

approximation have been proposed. The earliest is called 

the method of approximate programming or MAP12 • The 

linear programming algorithm is used repetitively in this 

differential technique, in such a manner that the solution of 

a linear problem converges to the solution of a nonlinear 

problem. Authors of this method claim that it has been very 

successful on nonlinear problems of fairly large orders. The 

procedure starts by linearizing the constraints and the objec

tive function in the region about a known point, by expansion 

as a Taylor's series. The higher order terms other than 

lin_ear ones are ignored. Then the problem is set up in such 

a way that it can be solved as a linear programming problem. 

The procedure is repeated with the new values of the variables 

as a starting point. A more detailed description is given 

in Appendix I. In practic·e, MAP is found to be a powerful 

but slow procedure. 

Monte Carlo methods consist.. of formulating a game of 

chance which produces a random variable whose expected value is 

the solution of a certain problem. They· can be applied to 

optimization problemsinvolving a large number of factors where 

other methods could not be applied because the number of trials 
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would be excessive. In thi s exploratory process , poi nt s are 

generated at random, certain points are picked over the whole 

range of variables, and the best result obtained is taken as 

optimum. One of these techniques, proposed by Dickinson13, 

is described in Appendix I. 

Constrained Optimization Problem 

Although the constrained optimization problem has been 

handled by most of the methods discussed previously, the 

efficiency of each in ~andling constraints seems to vary widely. 

A constraint may be a condition on the individual parameters 

like the lower and upper bounds on a design variable - or 

functions of the parameters. Before one writes the mathe

matical equations which leads to the computational algorithm, 

it is necessary to look into the requirements that the 

procedure is easy to program, guarantees convergence and 

presents no apparent problems with constraints. It is well to 

foresee the many alternate possibilities of expressing the 

problem. The inherent difficulty in handling the constraints 

is that they introduce discontinuities into the functions 

optimized. Some analysts have found it convenient to treat 

the constraints as absolute barriers. No bound variables or 

functions of them are allowed ever to transgress limits. The 

concept of the absolute barrier method is as follows. If a 

boundary violation occurs, the variables concerned with the 
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violation are set back to their limit values so that the 

constraint is satisfied. This leads to the argument that many 

variables will reach their limits and stay there and the 

supposed solution may not be the optimum solution. However, 

when properly programmed and used by those who understand the 

nature of the particular problem at hand, this method has been 

demonstrated to work satisfactorily. It is also found that 

if the constraints are functions of the variables, this method 

becomes very difficult to program and time consuming to execute36• 

Among the other methods of handling constraints, the 

potentially applied restraint method seems promising. Corres

ponding to each constraint, there is a weighting factor Wj • 

If the function to be optimized is u, the variables are 

x1 (i=1,n) and the constraints are 'fJ =O (j=1,m) then, a pseudo 

optimum function Uo is created by 36 

u
0 

= u + .... 

If the weighting factors w are large, the constrainted items3 
are indeed bound - not necessarily to the boundary limits; but 

the variables are artificially restrained from undergoing 

changes of significant magnitude. Boundary violations will 

occur if Wj is too small. The values of Wj will have to be 

reduced as the optimum point is approached. 
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It can be seen that the implementation of multivariable 

optimization problems with numerous constraints requires a 

reasonable degree of analysis before plunging into programming 

for a particular method of solution. There are no fast and 

sound rules which can apply with certainty to a new problem. 

lt is essential that the influence of the various variables on 

the constraints and that of the constraints on the computation 

be first studied, before assigning all decisions to a mechanized 

programmed control. Typically four or five runs per job36 on 

the computer may be necessary, for a human to review the progress 

and note whether or not an intervention is required - such as 

examining the boundary control procedure and making changes if it 

has not been satisfactorily executed. Thus in any meaningful 

constrained optimization problem, human intervention seems 

necessary. 

AN ALTERNATE SEARCH TECHNIQUE FOR THE CONSTRAINE.D OPTIMIZATION 

PROBLEM 

A generalized search technique, based on an alternation of 

a direct search code and linearization of the constraints and 

objective function, has been tried to provide a computationaly 

feasible method for the general constrained optimization problem 

discussed above. The direct search method of nonlinear 

optimization is quick and easy to formulate and operates very 

well when unconstrained. Although several versions of direct 
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31 11 32search have been proposed ' ' all of them appear to have 

some difficulty when equality or inequality constraints have to 

be satisfied. The search usually gets hung up on the fences 

created by the constraints as shown in Figure 1. If we assume 

that the search has reached 'A' in a two variable problem, then 

the one-step-at-a-time nature o.f direct search will not permit 

us to move without violating the constraint and the search .hangs 

up at that point. So it is necessary to turn the search 

parallel to the fence whenever one is encountered or constrain 

the search to a path ~f one must be followed. This is exactly 

what the alternate search technique, discussed below is 

programmed for. The program is written to treat difficult 

optimization problems involving as many as 20 variables, and 

has been successfully applied to several problems familiar in 

numerical analysis, formulated as peak finding problems. Among 

these problems were systems of linear equations, minimization of 

quadratic and cubic forms, and problems involving equality and 

inequality constraints. The results have been compared with 

those obtained by others. 

Description Of The Search Technique 

The alternate search technique consists essentially of two 

parts - a direct search in the region of the variables, including 

exploratory and pattern moves; and a linear approximation of 

the constraints and objective functions used when the direct 
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search hangs up on a constraint or on a valley. The direct 

search itself consists of exploratory and pattern moves, which 

are explained in detail later. The exploratory moves indicate 

a direction, and the larger pattern moves allow us to move 

from point to point within the space. Whenever the set of 

exploratory and pattern moves fail to indicate a better result, 

the linear approximation routine replaces the direct search. 

The direct search may stall on a ridge (or valley) or on a 

constraint. The linear routine determines a direction along 

which the next pattern move in the direct search should be made. 

The direction is found by solving a linear programming problem 

with the linearized equations of the constraints and objective 

function at the point where the direct search has failed. 

In effect the exploratory search step of the direct search method 

is replaced by the linear approximation step. The direct search 

pattern move is carried on in the direction indicated by the 

linearized step. The entire cycle is repeated until two 

consecutive linear approximation routines indicate the same 

optimum value, which is taken as the optimum point. A general 

flow chart is given in Figure 2. 

The optimization search process is initiated by picking up 

as a starting point an arbitary point - x=Cx1,x2 ,x3, .•••• ,xk) 

inside the region of feasibility. We are assuming minimiza

tion is the optimization criterion. 
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It is assumed that the problem has k independent vari

a bles, n equality constraints and m inequality cons traints. 

Symbolically the constraints may be written as 

¢J ~ 0 ( j = l ,n) Inequality ccm;t rai nts 

Y'J =0 (i=l,m) Equality constraints 

Since the equality constraints must be satisfied precisely for 

the direct search an artificial objective function is created, 

by adding weighted functional values of the equality constraints 

to the true objective function u. Thus, 

By doing so, a deviation of the optimization surface from the 

equality constraint paths is automatically penalized. Since 

the function U is to be minimized, the words success or 

failure have the following meaning when applied to the 

exploratory and pattern moves during the direct search. Beginn

ing at some starting point, if the value of one or more 

independent variables during the search is changed, and if no 

inequality constraint violation occurs and if the value of the 

function at the new point is better than that at the starting 

point, then the move is called a succe~s. Otherwise the move 

is a failure. 
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Direct Search Routine 

The starting point in the space of feasible solutions is 

designated as the initial base point. To determine proper 

increments for each independent variable, an upper and lower 

value for each variable is intuitively assigned. If Rimax 

and R1min are the estimated values for the upper and lower 

limits respectively of the 1th variable, then the increment 

for that variable is defined as 

~max - ~min .... (6) 
F 

where F is an arbitrary number. The value of the objective 

function U is determined at the initial base point. An 

exploratory search is now started at this point. Each 

independent variable is incremented or decremented by the 

amount Ax calculated as · above, while the remaining vari

ables are kept constant. After each variable is changed, the 

inequality constraints are evaluated to check against constraint 

violation. If there is no violation, the objective function 

is evaluated at the new point. These are called exploratory 

moves and the new value of the variables is 

• •. • 'x~) 


The direction indicated by the exploratory move is an approx:i

mation to the negative gradient vector of the objective function; 
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and since this direction has indicated a better optimum value 

there is some reason for trying further in the same direction. 

A larger step size is now used, moving all the variables 

simultaneously in that direction. The pattern move and the 

sequence of ~teps for the pattern move is defined as follows 

where, 

6xi = xi-x~ (i=l,k) 

H = An acceleration factor greater than 1 

J = An integer starting from zero and 

incremented by one for each successful 

pattern move • 

• 
After a pattern move the inequality constraints are checked for 

possible violations. Assuming there are none then the 

objective function is evaluated at the new point and this 

value is compared to the value at the initial base point. If 

the move is successful, the new point is designated as the base 

point. The value of J is increased by one which.makes the 

step size larger, and another move is made in the same direction 

with this larger step size. Each time a successful pattern 

move is made a new base point is designated and the step size 

is increased by increasing J. Thus, once a pattern has been 

determined it is not revised, as long as the direction yields 

better values of the objective function and does not violate 
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any constraints 11 . Once a large step (say when J:5) fails, 

the preceding base point (at which J:4) is kept and a new 

sequence is started from this point with J=O, in the same 

direction as the previous moves. This procedure is repeated 

until even the smallest step size (with J:O) fails. At this 

point a set of exploratory moves are made again to indicate a 

new direction for a pattern move. If a new direction can be 

found, pattern moves are made in this direction, in a manner 

described above. The procedure is explained clearly in 

Figure 3. 

The search process thus consists of a series of pattern 

moves, of varying sizes. The computation for the series of 

pattern moves is far simpler than for the exploratory moves. 

Each set of exploratory moves may require up to 2k optimization 

function evalutions in the k variable problem, and with n 

constraints as many as 2nk constraint evaluations. The 

evaluation of the constraints may be the most time consuming 

portion of the search in a complicated problem. Keeping the 

number of exploratory searches to a minimum contributes to the 

efficiency of the search technique. 

If, after a succession of successful pattern moves, a 

pattern move and the following exploratory move fails, then it 

could be expected that the region of search is in the 
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neighbourhood of the optimum or hung up on a constraint or a 

valley. At this point, the linear approximation routine is 

effected. 

Linear Approximation Routine 

At the point where the direct search technique has failed, 

a new direction vector is found for the pattern move by solving 

the linear programming problem after linearizing the objective 

function and the constraints. The approach is identical to 

the method of approximate programming proposed by Griffith and 

Stewart12· and is also explained in Appendix I. The lineariza

tion is carried oµt by expanding the functions about the base 

point by Taylor's series, and neglecting the terms above 

linear. By suitably assigning limits to the change in the 

variables, the linear programm~ng results are prevented from 

making the linearization hopelessely invalid. Once a dire~tion 

has been found by this routine, the direct search routine comes 

into effect and pattern moves are carried out in this direction 

just as before, after which the sequence of exploratory and 

pattern moves is again used. When the linear approximation 

routine fails to indicate a direction in which to continue the 

search, the search halts and it is assumed that the optimum 

value is reached. 
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Description of 	the General Code 

The optimization technique described above has been 

programmed in FORTRAN IV of the IBM/7040 computer. The 

programme has the following principal parts. 

I Main Programme 

II Sub-routines 

a. Subroutine MATRIX 

b. Subroutine ORDER 

c. Subroutine SIMPLE 

d. Subroutine SEARCH 

e. Subroutine REALU 

f. Subroutine CONST 

g. Subroutine ENEQ 

The following variables and parameters are read in by the main 

programme. 

NPROB 	 Number of problems that are to be solved in one 

run. The programme is designed for a maximum 

number of five problems to be solved in one run. 

K 	 Number of real variables. 

NUM,NUMR 	 Number of equality constraints. 

NEQ 	 Number of inequality constraints. 

NMAX 	 Maximum allowed number of iterations in a simplex 

cycle. 

INDEX! 	 Indicator for phase I or II of the simplex cycle. 

P,H 	 Acceleration constant in direct search, 

It has a value greater than 1. 

F 	 Arbitrary constant used in finding search increment. 
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G - Arbitrary (small) constant representing the 

smallest increment size in direct search· 

TES - Criterion for optimum 

The following variable names represent the parameters used in 

the search code. 

IMM 

IM 

M 

Z(I) ,X(I) . 

BB(I) ,B(IL... . 
'\ -, 

STEPX(I) 

RMAX(I) 

RMIN(I) 

III(I),II(I) 

WATE(I) 

NCYCLE 

UR 

u 

- 2K - Number of equations, representing constraints 

for the upper and lower limits for the linearized 

step size in successive linear approximation. 

This value is stored in memory of the computer, 

for repeated use. 

- IMM + NEQ 

- Total number of constraints for the simplex 

solution. 

- Variable name. 

- Controlled step size for the variables during 

Simplex operation. 

- .A small increment for each variable. 

- Approximate maximum value a variable is likely 

to have. 

- Approximate minimum value that a variable might 
have. 

- Subscript of the variables in basis. 

- Weighting factor for each equality constraint. 

- Counter for the number of simplex and direct 

search cycle. 

- Real optimum value. 

Pseudo optimum value. 
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A(I,J) - Simplex Matrix. 

c,s - Co-efficients in the objective function. 

DELX(I) - I~crements during direct search. 

PSI - Equality constraint function. 

PHI - Inequality constraint function. 

Starting from an initial feasible solution, the procedure of 

optimization goes through the following subroutines. 

Subroutine SEARCH 

The smallest increment TEST(!) for each basic variable is 
( 

generated by, 

RMAX(I) - RMIN(I)
TEST(I) = 

F 

Each variable is incremented or decremented by an amount TEST(!) 

and the best direction for a move is found. The best direction 

means that the inequality constraints are not violated and that 

it is likely that a better optimum can be obtained in that 

direction. Once a direction is established, the pattern move 

starts. The increments are given as follows. 

X(I) = X(I) % DELX(I) * HJ {8) 

During each step, the constraints are checked for a violation 

by calling subroutine ENEQ, which evaluates the constraints 

for each X(I). 
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Once the direct search is not able to show any further 

improvements, the routine switches to the linear approximation 

procedure. 

Subroutine MATRIX 

This routine sets up the simplex matrix from the linearized 

quantities. At the point where the direct search has stopped, 

the constraints and the objective function are evaluated by 

calling the subroutine ENEQ, CONST and REALU. The values 

rA 0 0 0 are represented by Y' j, 'f j, and U • Now a small increment 

STEPX(I) · is given to each variable one at a time, and the new 

values for the equality, inequality and objective functions 

'P ~ , (;> ~ and U1 are calculated at the new point. The partial 

derivatives of the equations are evaluated by the simplest 

numerical approximation given in Appendix I, and the entire 

matrix is set up with the slack variables included. To check 

against any of the B(I)s becoming negative, subroutine ORDER is 

called, to arrange the equations properly and include artifical 

variables if necessary. 

Subroutine ORDER 

This subroutine is called by the routine MATRIX, checks 

against any of the B(I)s becoming negative. If any B(I) 

becomes negative it means that a constraint is being violated. 



29 

This subroutine arranges the violated inequality constraint in 

such a manner that the violated constraints are inclu1ed in 

Phase I of the simplex program. 

Subroutine SIMPLE 

This is a standard simplex routine with Phase I and Phase II. 

This subroutine is used only to find a new direction to proceed 

with, when the optimization procedure hangs up on a constraint 

or a valley. 

Subroutine REALU 

This routine calculates the true optimum value UR and the 

pseudo optimum value u, from the objective function. The 

relation between U and UR is given by 

u =UR+ IPSI(I)I * WATE(I) ... 

Subroutine CONST 

this routine and their values are computed whenever it is called. 

The expressions for the equality constraints are given in 
' . 

The expressions are denoted by the variable name PSI(I). 

Subroutine ENEQ 

This subroutine evaluates the inequality constraints. 
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The values are represented by ~HI(I), (I=l,NEQ) and 	the sub

routine is called by routines MATRIX, SEARCH and also the 

main programme. 

Application Of The Programme 

The programme has been successfully applied to solve 

several problems commonly used by workers in this field, as 

an instructive exercise and necessary testing phase in the 

development of the technique. The results are compared.. 
below, for six problems. 

Glass And Cooper's Problem.r 	 2 21 
~ 
~ 

Minimize U = - L:5.0 - (x1-5) -<x2-5) J 

Subject to 2 
- 4x2 ~ox1 


(x2-6) 2 - 4Cx -3) ~ O
1

Since it is obvious that the optimum point will be at the inter

section of the two constraints, both the constraints were 

treated as equality constraints. 

Author's method Our method 

Starting point : 

Optimum point x, 	 = 3.99998 

= 3.99985x2 

Optimum value u = -4.796 u =-4.79580 

·True Optimum point 
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J.E. Kelley's Problem 

Minimize u = 

Subject to 

Author's method Our method 

Starting point x1 = 2, = 2 x, = 2, x2 = 2x2 

Optimum point x1= -0.073, x2=.929 x, =o, x2 = 1.0 

Optimum value u = -1 u = -1 

True optimum point x1 = o, x2 = 1.0 

Dickinson's Problem 

Minimize u = 1+f1f 2 

Where, f 1= 11 - 6x1 - 4x2 + x~ + 2x~ 

0Starting point . x, = 5, x2 = 2.0 x, = 5, x2 = 2.0 

Optimum point x1= 3.085, x2= .942 x, = 3.00019 

x2 = 0.99999 

Optimum value .. 1. 115 1.0 

True optimum 1.0, 3, x2 = 1.0xl = 
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Rosenb;eook -.. Problem 

Minimize U = 100(x2 - x~) 2 + ( 1-x1) 2 

Author's method 

Starting point .. X · = o, = O1 x2 

Optimum point .• x, = 1.00100 

1.0020x2 = 

Optimum _value : 0 

True optimum point .. x, = 1.0 

Quadratic Programming Problem By Leon 

Minimize U = 

Subject to 2x1 + = 10
x2 

Author's method 

Starting point: x = o, x =O1 2 

Optimum point = 3.69, =2.304x1 x2 

Optimum value : 20.868 

True Optimum result: 

u =19.0 

Our method 


x, = o, x2 = 0 


x, =0.99946 


0.99902
x2 = 
0 

1.0x2 = 

Our method 

=o, x = Ox1 2 

= 3.802, = 2.395x1 x2 
19.002 



33 

Fiacco And Mccormic Problem 

2
Minimize u x3 - 6x + llx + x= 1 1 1 . 3 


2Subject to x, + x 2
2 
2 

+ X3 = 4 


2 2 

xl + x~ ~ X3 


X3 ~ 5 


Author's metho.d Our method 

Starting point : 

Optimum point .: x1=o, x2=1.4142 x1=o.o, x2=1.4142 

x3.:1.4142 x3:1.41423 

u =1.4142 u = 1.41423 

True optimum result: 

The computer programme for the alternate search routine is given 

in Appendix 2. 
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STRUCTURAL OPTIMIZATION WITH VIBRATIONAL AND STRESS CONSTRAINTS 

The optimization criterion in the optimum design of structures 

is usually minimum cost or weight. The minimum weight design 

is an arrangement of the structural elements where all the design 

requirements such as stresses, deflections and geometrical 

constraints are satisfied and the total weight of the structure 

is minimized. The procedure could be set up as a mathematical 

programming problem i.e. to determine A ,A ,A , ••• Am in s11ch a1 2 3 
manner so as to minimize 

..... . (10) 

A1, A2 , ••• Am are the areas of cross section of them members 

of the structure, f~their densities and L. their lengths. U re
1 

presents the weight of the structure, subject to geometrical 

constraints, strength constraints, stability constraints, 

displacement constraints, frequency constraints and dynamic 

stress and displacement constraints. A rather limited amount 

of work seems to have been done on the general problem of 

optimization of spatial structures with vibrational constraints. 

Probable Techniques For Structural Optimization 

Very many techniques of optimization analysis appear in the 

literature and a brief reference to many of them has been made 
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previously while discussing the entire project. It will be 

appropriate to review some of the unique techniques used in 

structural optimization at this stage. 

Schmit and Mallet19 used an unique approach to formulate 

the constraints while optimizing a simple pin jointed three bar 

planar truss. The parameters that identify the design were 

the material density for each member of the truss, the cross 

sectional area, and the angle representing the geometric layout 

of the truss. These parameters were designated by the quantities 

0 A and n respectively. The distinctively unique feature\m' m · ~m 

of this work was the treatment of the design parameter defining 

the material i.e. E'm as a continuously varying quantity. 

This is achieved by using the interpolated materials concept which 

contends that there exists a continuous spectrum of materials 

between existing materials. It is assumed herein that the 

pertinent mechanical properties may be expressed as continuous 

functionsof weight density. The modulus of elasticity E, the 

yield stress a-y and the coefficient of thermal expansion ol.. 

of a representative class of structural alloys were plotted 

versus density and then curve fitted. The load conditions were 

taken to be independent of the design parameters and the optimi

zation routine was designed to include five distinct load 

conditions. 

. . 
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It was stipulated that the tension yield stress was not to 

be exceeded in any load condition, that the compressive yield 

stress was not be exceeded and that the x and y displacement 

components of the nodal point where the three members join 

together were not to exceed specific limits. The stresses in 

the three truss members and the displacement components for the 

different loading conditions are designated as behaviour vari

ables. The relation between the behaviour variables, the 

design parameters and the applied loads are readily formulated as 

= 

where Cij is the configuration matrix, the elements of which 

contain the design parameters and constants; Bkj is the behaviour 

matrix, the elements of which represent the stresses in the 

members and displacement of the nodes; and Aik is the applied 

load matrix, the elements of which re~resent the loads at the 

node in x and y directions and also the temperature variation in 

each member. 

The following bounding constraints are imposed on the design 

parameters. 

a. 	An upper and lower limit on em to avoid other than struc

tural metals. 

b. 	A lower limit on A to avoid negative areas. 
m 

c. 	Upper and lower limits on ~m to avoid a trivial multiplicity 

of design points for a single configuration. 
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The optimization technique was essentially a gradient method. 

On.reaching . a constraint, the search moves along a constant 

weight plane and again the gradient method is used. The method 

is repeated until an optimum weight is obtained. 

It could be easily seen that the optimization of the planar 

frame with pin jointed members does not have a very complicated 

form of constraining equations. The stresses in the members are 

uniform throughout their lengths. The size of the matrix 

for the behaviour variables is entirely dependent upon the 

number of loading conditions considered. The constraint 

evaluation is not difficult because of these reasons. 

Razini24 optimized a structure under multiple loading 

conditions on the basis of each member being fully stressed in at 

least one loading condition. If the analysis showed that a 

certain member is overstressed in a critical load condition, the 

design method increased the area of that member sufficiently to 

remove the overstress. It does the opposite if the member is 

understressed. The method of fully stressed design is thus an 

iterative process that usually converges to a final design. 

Starting with an initial design where the area of its members·1s 

given a matrix A0 
, the forces in each member for each loading 

condition is found by using the combined method of analysis 

which leads to the following matrix form., 

CY =P 
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whe r e Y is the behavi our matrix cont aining the member forc es 

and dis placements. c is the configuration matrix and P is 

the applied load matrix. Matrix y is found by inverting 

matrix C. 

y c-lp= 

The area of the 1th member 0 because of the redesign becomesAi' 
Al 

' 
or, 

0i 

; Fi 
i = 

<T1 

where, F~ is the ith member force for a pa r.ticular loading 

condition and o-i is the allowable stress for the member during 

that loading condition. The difference between the area of 

the successive designs is 

'Because of this change in the member areas, the configuration 

matrix C and hence the behaviour matrix Y will be changed and a 

new set of critical areas are found by reanalysis or by using an 

equivalent force method38• This process of iteration converges 

within a reasonable number of cycles. The inversion of the 

matrix C during every iteration is eliminated in the equivalent 

force method. 

- 23
Schmit and Fox reported results of a new approach to 

structural synthesis which made it possible to find an optimum 

design without engaging in the evolution of a large number of 
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intermediate trial desiGn8. The problem was formul a ted so thnt 

optimum designs can be found by the application of any technique 

for seeking the unconstrained minimum of a function of m~~y 

variables. For example, suppose that the equations represent

ing the analysis of a structural system are 

a,, = 
( 11) 

= 

and it desired to find a; and CJ2 where aij' c1 and P1 are known. 

The value of and that satisfy equation (11) are 

those that make 

8, ( a;' 02) = ca,, cr,+a,2 

Therefore the problem reduces to the minimization of e1("J') or 

to the finding of that stress 01 and Ui. for which e1<a;' 02) = 0 • 

If aij are assumed to be design variables and 8,is a function 

of 81 but with the aij variable, then the problem could be 

modified such that 02 ( a;, 02' aij)-ro. Any solution of this 

problem will be a design, but it is obvious that the number of 

sets of values of aij' Oj for which = 0 is infinite. Ife2 

there are inequality constraints on the acceptable values of 

aij and the 03' penalty terms are added to 62 ( Oj,aij) for 

violating these constraints as follows. 
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UB and LB are the upper an~ lower bounds respectively on a 

given variable. The weight of the structure is expressed ~s a 

function of the design variables and an additional constraint is 

incorporated such that 

where W the draw-down weight, is a goal weight for a particular
0 

draw-down cycle. It is required that the weight of the struc

ture should be less than the draw-down weight. The function is 

minimized using a gradient method of minimization. It is repeated 

using progressively lower draw down weights until the function 

cannot be made zero. At ·this point the value of W is taken as 

the optimum weight of the structure. Using this approach 

Schmit et al optimized a 3 bar pin jointed planar frame. This 

procedure obviously requires that the related functional expressions 

should be in the form of explicit equations of the variables. 

This method does not seem to handle constraints other than the 

simple types shown. 

Formulation of Constraints for Structural Model 

For the first stage of the project ; Tiwari3~ - and Raghava40 

examined a simple four bar frame without symmetry and with fixed 

member ends illustrated in Figure 4. The four bars are welded 

at the base to a half inch thick aluminium alloy plate at a 24" 
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square spacing. The top ends of the bar are brought clos e 

together and welded to another half an inch thick aluminium 

plate at a square spacing of 2t". The formulation of the 

stress and frequency optimization constraints are obtained by 

the static and dynamic analysis of the model structure shown 

in Figure 4. It was decided to treat only the member areas 

as the variable from the optimization point of view, while the 

configuration is not changed. The constraint equations are 

given below as obtained from the analysis39. 

Stress Constraint 

The theoretical analysis of the structure was done using 

the finite element - matrix approach4. For the optimization 

analysis, a relationship between the external loads and the 

resultant forces on the member ends was required. The external 

loads were to act at the apex of the structure. Hence only 

one node at the top plate was needed. The structure was 

therefore idealised into four flexible members integral with a 

short rigid element contributed by the top plate. The 

stresses s in the 1th member are obtained by transforming the1 
forces Pi at the free end of each element by a general 

transformation matrix R. Let s be a column vector of axial1 

stress Sxi and transverse shear stresses Sx:yi and Sxzi' where 

x,y,z refer to member co-ordinates. Then it is shown39 that 
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where 

= 3 x 1 matrix giving the three stresses in the ith leg 

of the 4 bar structural model 

[RJ = 3 x 6 matrix relating the stress and loads in which 

all elements are known 

= 6 x 6 element stiffness sub matrix in member co-ordinates 

in which all the elements are known 

=	6 x 6 transformation matrix to system co-ordinates 

with all elements known 

= 6 x 6 equilibrium matrix 

= 6 x 6 structural assembly matrix in which the elements 

are functions of unknown areas and the matrix is to 
/ 

be inverted each time before multiplying with other 

matrices 

= 	6 x 1 applied external load matrix 

The exact nature of the terms in matrix R will depend on the 

member cross-section. The elements of this matrix for a 

hollow circular cross-section is given elsewhere. 

Frequency Constraint 

The dynamic analysis of the model structure gives the 

> 40equation for the natural frequency of the structure as, 

where, 

· (m] = 54 x 54 mass matrix involving unknown member areas 

(k] 54 x 54 structural stiffness matrix involving unknown 

member areas 
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{ x} = 54 x 1 eigenvectors. 

The sizes of the matrices depends on the number of finite ele

ments used, in this case three per leg. The limits for the 

cross sectional area and displacements could be treated as the 

other constraints of the problem. The objective function 

will be to minimize the weight of the structure and will include 

the lengths and cross sectional areas of the members. 

Optimization of the Structural Model 

The equations for the stresses and the natural frequency 

of the structural model, respectively shown in the form of 

equations (12) and (13), reveal their complex nature. These 

high order matrices have to be multiplied each time constraints 

must be evaluated. It is also necessary that the maximum 

stress in each member must be limited to a safe value for a 

particular loading condition. The exact nature of the elements 

in the transformation matrix R will depend on the member cross 

section. For hollow circular cross section it is given by, 

1-A 

0 

-1 R Cos e·
0 

Iz 

-MAzSin e 

-1 R Sin e 
0 

Iy 

MAySin e 

0 R Sin e 
0 

Iy 

-R0 Sin e 0 

-1-l Cos 
0 

Iz 

0 

e 

Izt Iyt Ix 

0 MAzCos e 

Izt 

-MAyCos e 

Iyt 

R
0 

Cos 

Ix 

e 0 0 
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where the significance and the sign conventions for the elements 

in [R] are given in Figures 5 and 6. [R] defines the 

stresses only for previously selected locations along the 

length and across the cross section of each member. As such 

there is no way of predicting directly from these stress cons

traints, where the maximum stress occurs in a member of the 

structure. It seems necessary that for a particular loading 

condition the stresses in a number of cross sections along the 

length of a 'member must be analy zed before finding the maximum 

stress in that member, which is to be limited to a safe value 

during the optimization procedure. Moreover, the stress 

equation has a 6 x 6 matrix to be inverted each time the 

stresses are evaluated. The equation for the natural frequency 

of the model structure also does not seem less complex, in 

terms of the computing time necessary for the evaluation of the 

frequency. 

It might be worthwhile to View the optimization of the 

structural model in light of the unique techniques found in the 

literature and which have already been discussed. In the 

planar pin jointed three bar truss problem of Schmit and Mallet19 

the stress and displacement constraints are of a simple form, 

and the size of matrices involved are of 5 x 5 or less. The 

stresses were uniform along the length in each member and hence 

the constraint evaluation did not pose much of a problem. 

There were no equality constraints which are to be satisfied 
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precisely. We can generally assume that the number of 

constraint evaluations necessary before an optimum weight is 

reached to be the same in the gradient method of Schmit as it 

will be in the alternate search routine developed for this 

project. However, the gradient evaluation is more time 

consuming. From these observations, it is believed that the 

structural synthesis method of Schmit et al, will have the 

same difficulty in handling the optimization of our structural 

model. 

In a second approach23 Schmit et al used a technique based on 

the method of solving linear simultaneous equations by 

minimizing the sum of the square of the residuals to zero. It 

is easily seen that this method of solution requires that the 

constraints must be in explicit equation form. Hence the 

applicability of this approach to optimize the structural model, 

where we have the constraints in implicit complex matrix form 

is ruled out. 

Razini 1 s 24 method of fully stressed design is analysis-

oriented. There is no apparent relationship between his concept 

and a minimum weight optimum design which can be set up as a 

mathematical programming problem. His analytical iterative 

approach does not make use of any conventional procedure of 

mathematical programming, as it was not the objective of his 

paper. However, he observes that for structures with a lar.ge 
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number of members, the dimensionality of the problem becomes 

so large that the application of existing optimization methods 

becomes impractical. Under such circumstances, the iterative 

fully stressed design is helpful. 

/ 
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DISCUSSION OF RESULTS AND CONCLUSIONS 

Alternate Search Routine 

The alternate search routine for optimization of nonlinear 

problems has been developed and programmed for the I&~ 7040 

Computer. The method has been successfully applied to solve 

several problems familiar in optimization analysis. Among 

these problems were systems of linear equations ·and the ininimi ·zat i an 

0£ quadrat ic and cubic forms, involving equality and inequality 

constraints. The program has been designed to treat problems 

involving as many as 20 variables. The result,s obtained have 

been compared with those obtained by others. 

The general behaviour of the method in handling inequality 

constraints is of interest. If we are on an inequality cons

traint just after a linear approximation routine, the subsequent 

pattern move in the direction indicated by the ·linear approxima

tion routine will inevitably go off feasibility quite badly. 

This is avoided by making the pattern move a constrained one. 

In other words, the variables are always checked against the 

violation of constraints at the time during the pattern or 

exploratory moves. If a violation occurs, the move causing 

the violation is abandoned, and a new direction for the move is 

determined either by an exploratory search, or by a linear 

approximate routine when the former fails. This approach is 



48 


somewhat unsatisfactory, since it may degenerate into a pure 

linear successive approximation technique. However, the 

analysis of the results of the several simple problems indicates 

an initial and rapid movement by a series of exploratory and 

pattern moves until the first inequality constraint is reached, and 

then a series of 'Successive ·linear steps i s effected. But there is 

usually again a period of direct search pattern moves, ending 

at the optimum with two successive linear approximations. This 

is somewhat similar to the approach of Glass and Cooper35. 

Optimization Of The Structural Model 

The extremely complex nature of the constraining equations 

makes the optimization of the structural model very difficult. 

The multiplication of the high order matrices each time a 

constraint must be evaluated is a very time consuming operation 

even for electronic computers. The predetermination of the 

location of maximum stress in a member is not possible, and this 

necessitates the evaluation of the stresses on a number of cross 

sections of the member for a particular loading condition. 

Obviously the whole matter is an enormously time consuming 

operation, considering the number of times the constraints have 

to be evaluated before the optimum point is reached. Although 

there is no way of predicting the number of steps of solution 

between the initial starting value and the final optimum in an 

optimization problem, experience of the previous workers could 



be taken as a guide. Schmit23 assumed 2000 cycles as the 

criterion to abandon the optimization process of his three bar 

truss if there was no convergence. This value seems some 

what large, but might be necessary if the initial starting 

value ~s poor. Although no data is available on the computa

tion time for the evaluation of the stress constraint, it is 

found that it takes at least 17 minutes of the IBM 7040 Computer 

time for one evaluation of the frequencies from equation 13 

The magnitude of the problem could be realized if it is 

necessary to compute the stresses and frequencies ~ more than 

about100 times. The enormity of the problem cannot be 

lessened to any great extent, even after _maldng allowance for 

such defects as inefficient programming. Hence no attempt was 

made to employ the alternate search technique to optimize the 

structural model. 

It is necessary to point out here that the structural model 

is relatively a small one, and most real spacial structures 

will be much more complex•. · · Optimization of such 

structures will be very difficult unless there is some way of 

eliminating the complexities associated with the static and 

dynamic constraints. 
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APPENDIX I 

A Direct Search Code 

1lThe authors of this direct search code claim that this 

method has been successfully applied to many of the peak finding 

problems of linear and nonlinear equations with complicated and 

also ill-behaved functions, that cannot effectively be handled 

by other methods. 

The search has two main phases: first a one variable-at-a

time search and then a pattern move. The one variable at a 

time search gives the most promising direction for the pattern 

move. The optimization process is initiated by picking up a 

arbitrary starting point, R • Then the independent variables 

are changed one at a time in an order ~elected initially. Let 

xi be the variable first under study. This is first i~cremented 

by an amount equal to A 1 , holding the other variables at their 

initial value. If F(x1,x2 , ••• ,~+Jl,i ••• :xzn)>F(x1•• xi •• xm) 

there is some reason for trying further in the same direction. 

Now the step size is increased to )\ i Ai> ( )\; >1) and if a better 
2.

functional value is obtained, a new step length of ~j A ,; is 

tried.The Search is kept going until no further improvement is 

~.+,1A;·obtained. If a step size " was unsuccessful, we return 

...,,.'V\.to the point " 1 .6.i a.nd a new sequence with initial step size 

equal to A-i is started at this point, following the same scheme 

as before. If an increment in the positive direction is not 
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snccessful, t he whole oper a t i on is tried i n t he neeat i ve 

directi on. Final l y we r each a point where no improvemen t is 

variables tried and the best temporary functional value F 

obt ained by moving var iable x. 
1 

either 6i or -.0.i . This 

i s a best point for ·x 
i 

temporarily. In the same way all the 
I 

are 

i s found, after moving all variables x to
1 

.Pattern Move 

If F i s better than F! there again i s a reason to believe 
I

that moving in the direction F~ F will g:}.ve .a better result. 

So a pattern move is made in that direction, incrementing the 

co-ordinates of the point xi by an amount proportional to the 

change experienced for co-ordinates in going from F to F~ This 

rate of change will be greater than 1. The pattern move will be 

If the functional value F
II 

after the pattern 

move happens to be better than F I , a new pa ttern move with 

step lene; th )\p.~ P, (/:J. P > 1) is taken in the same direction. 
2. 3 

The process is continued with s~ep lengths AP .6P, AP . .6.P etc. 

until no further improvement is achieved. As done previously. , 
a new sequence of pattern move with initial step size equal toAP 

is started after a failure to improve, and if a positive direction 

is not a success, the negative direction is tried. Finally 

• Ill 
we reach a point F at which no improvement is reached by a 

pattern move in either direction. 

If F is better than F , a new set of 'one variable at a 
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time' search is attempted and the process is kept going until 

no better points are found. The end of the process will 

always be the starting point of a new 'ona· variable at a time' 

search. 

Dickinson's Random Strategy37 

An upper limit {upper xi) and a lower limit (lower xi) are 

specified for each variable xi. Then we calculate a certain 

number of optimum values for points selected at random by using 

the expression 

r is a random number between O and 1. It is different for 

each setting of each independent variable. From the optimum 

values, a best few (a certain number) are selected and examined 

to determine a new and reduced range for each variable. A 

second group of optimum values are evaluated using the new 

upper and lower limits of the independent variables. As before 

a certain number of best values are selected, and these, 

together with the previous best values are examined to determine 

a new improved range for each individual independent variables. 

The whole process is repeated as often as is necessary to 

obtain a sufficiently small range for the variables. 
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Mrthod of Approximate Pro crnmmtnG12 

The r1e thod of ;1.pproxim o. te programming (MAP), is a 

differenti al tec hnique which utilized the linear programmine 

al gorithm repetitively in such a way that the solution of a 

linear problem converges to the solution of a nonlinear problem . 

This method has given subs tantial success in the petroleum 

industry where the authors have solved problems . with 7 nonlinear 

variables, BO linear variables involving 45 constraints out of 

which 10 were nonlinear . The method is not rir,orous and 

e ives good results for well hehaved functions. We hri ve as 

before the functions. 
/ 

u = U ( x
1

, x , • • • , xn ) Minimize
2 

... (A)= d. j = 1, m(JJ j ( x1 ' x2 ' • • • ' xn ) J 

k = , '1<P k ( x 1 ' x2 ' • • • ' xn ) bk 

The conr-traints may be linear and nonltnear. We start by 

linearizinc in the region about the point x 0 , by expansion as a 

Taylor's series and ignorine higher orders other than linear. 

Equation (A) become, 

. 0 0 n o 
U = U(x1 , ••• ,xn) + L,<x.-x.) C> U ( x~ , • . • , x~ ) 

. l l
l=1 ------~x~------

~~J~2l~~::~:~2_= dj 

oxi 
1'\ 

"' ·( 0 0 ) + "' ( x. -xo. ) °"'}I. dJ ( 0 0 ) ./ b 
Y' k x, ' • • • 'xn i;;. 1 i ~~!;-~!~:::~~~- ~ k 

oxi 

http:1.pproximo.te


6L~ 

Now let, 

OU(x~, ... ,x0 
) = c. a constant 

J.. n J.. 
------ax~------

u0 = U ( x~ , ••• , x~) ~~ =V'i ( x~ , ••• , x~) 

vki = O</; k ( x~ , • • •• , x~ ) 
-------c5x~------

~xi = xi - xi 
0 

From the above equations we can write 

n 
u - uo = Le. 6x. minimum 

. 1 1. l.1: 
n 

2:, uij 6xi = dj - VJ~ 

j::.j 

n

'2: vk. 6x. ~ bk -¢> ~ 
. 1 1. 1.
'::: 

The problem has been set up in such a way that it can be solved 

by a linear programming problem. However, since 6xi are not 

always positive, we let when and 

Thus we introduce a standard substitution that makes 6 xi+ and 

6 x~ positive quantities all the time during linear 

programmingo If the above system of equations is solved 

and if we get ( hxi
+ 

. - · 6x~) 0 for every i = 1,2, ••• ,n, 

we have solved the problem. Before starting the linear 



1~:ro~rammj_nc, we alF0 l i.mi t the chanees in x . to a cmr.i.J.l 
l 

a11oun t' to prevent the lincari zatj_on from be co v·1ini::i; invalid ' i. t; . ' 

T~e value of m. is chosen by trial or by intution. 
J_ 

/ 
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APPENDIX II 


ALTERNATE SEARCH ROUTINE 


'J. 77 
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$JOB 003723 V GURlJNATHAN 100 010 030 
SISJOB DECK 
$ I 8FT C MAIN 

DIM::NSION Z(?.0) ,sTEPX(2Q) ,X(40) ,,S(l+O) ,DELXC/'1), .A(4Q,4()) , B(40)' 
1RB ( 4 0 ) !IC< 4 0 ) , I I ( 40 ) , I I I C 40 ) , V C 2 0 ) 'RM AX C 2 0 ) , RM IN ( ? 0 ) , XU P C ? 0 ) , 
2XL0(20) ,PSI (20) 
COMr~lON NPR tWATE(lO) 

c 
C READ IN AND STORE THE PROBLEM VARIABLES IN COMPUTER MEMORY 

READ (5,300) NPROB 
NPR = 0 

15 	 NPR=NPR+l 
\IJR I T E ( 6 , 1 0 0 ) NPR 
READ(5,2oo>K,NUM,NEQ,N~AXtINDEXI 
READ(5,20l}P,F,GtTES 

IMM=2*K 

IM=IMM+NEQ 

IN=IM+IMM 

M = I M+NUM 

READ(5,202)(Z(!),I=l,K) 

READ(5,203)(88(!),I=1,IMM) 

READC5,205) CSTEPXCI> ,I=l,K> 

READ(5,206)( RMAX(I)d=ltKl,(R""IN(IltI=l,K> / 

READC5,204>CWATE<I>,I=l,NUM) 

DO 5 I= 1, M 


5 III(Il=IMM+I 
c 
C . TRANSFER INITIAL VALUES FROM STORAGE TO WORKING LOCATIONS 
c 

NCYCLE = 0 
1 	 ~~ = I N+NUM 

MM= IMM 
NUMR =NUM 
INDEX = INDEX! 

c 
C START DIRECT SEARCH ROUTINE 
c 

c 
DO 2 I= 1, M 

2 IICI)=IIICI) 
c 
C SET UP THE MATRIX FOR· LINEAR APPROXIMATION 
c 

c 
C CALCULATE INITIAL OPTIMUM VALUE 
c 

CALL REALUCUR,z,uI> 
\AIR IT E C 6, 110 > U I 
NCYCLE = NCYCLE + 1 
WRITE(6,208) NCYCLE 

c 
C START LINEAR APPROXIMATION ROUTINE 
c 
C SIMPLEX OPERATION 
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c 

c 
C CALCULATE NEW VALUES FOR BASIC VARIABLES 
c 

DO 31 I= 1, K 
Z(l) = Z(Il +X(2*I-l)-XC2*I) 
DELXCI) = XC2*I-1) -XC2*I) 

31 	 CONTINUE 

WRITEC6,104) CZCI),I=l,K) 


c 
C CHECK FOR FINAL OPTIMUM VALUE 
c 

CALL REALUCUR,z,uPJ 

CALL CONSTCPS!,Z) 

WRITE(6,209)CPSICJ),J=l,NUM> 

VJ R IT E < 6 , 111 ) UP 

IFCABSCUI-UP).LT.TES ) GO TO 1000 


c 
GO TO 1 

1000 	WRITEC6,107l 

WRITE(6,l08) UP,UR 

WRITE(6,109) CZC!l,I=l,K) 

IF<NPR.LT.NPROB) GO TO 15 


100 FORMAT(///,2X,12HPROBLEM NO. ,I3,//) 

104 FORMAT(/,2X,8HV MATRix,1,c2x,8Fl2.5>) 

107 FORMAT(/,2X,19HFINf>..L OPTIMUM VALtJE) 

108 FORMATC1,2x,1BHARTIFIC!AL O~TIMUM,2x,F15.s,2x,12HREAL OPTIMu~, 


12X,Fl5.5) 

109 FORMAT(/,2X,15HVARIABLES VALUE,/,(2X,8F12.5>l 

110 FORMAT(/,2X,21H!NITIAL OPTIMUM VALUE,2X,F15.5) 

111 FORMAT(/,2x,27HOPTIMUM VALUE AFTER SIMPLEx,2x,Fl5.5> 

200 FORMATC8I3) 

201 FORMATC5Fl0.4) 

202 FORMATC8Fl0.5) 

203 FORMAT(8F10.5)

204 FORMAT(5Fl0.4) 

205 FORMATCBFl0.5> 

206 FORMATC8Fl0.5) 

208 FORMAT{/,2X,13HSIMPLEX CYCLE,2X,I4,/) 

~09 FORMAT(/,2X,9HPSI VALUE,1,2x,aF12.4) 

300 FORMAT<I2J 


STOP 

END 


$IBFTC SUB 1 
SUBROUTINE MATRIX(A,9,gg,z,sTEPX,c,NUMR,N.MtMM,x,s,1r,K,NEQ) 
DIMENSION Z(2Q),STEPXC20>,xc40>,psrc20>,pHIC50),p5rNc20>,PHINC20) 

1AC40,40> ,8(40) ,BBC40) ,C(40) ,IIC40> tSC40l 

COMMON .NPR,WATEClO> 


c 
C SET UP INCREMENTS AND THE MATRIX 
c 
C SET UP COEFFICIENTS OF OBJECTIVE FUNCTION 
c 
c 

DO 5 I= 1, M 
DO 5 J=l'N 

5 A(!,J) = O.O 



CALL REALU CU , z , lJK ) 

IF CNUMR . NE . 0 ) CALL C 0NS T( P~I , z ) 

CALL ENEQ (PHI , 7 ) 

DO 10 I =l , K 

Z ( l ) = Z ( I ) + STEPX(I) 

CALL REALU CUN , z , UK ) 

IJ = 2~q-1 


S CIJ) = CUN - LJ )/STEPXCI) 

S ( IJ+ l) = - .S (IJ) 

I F CNUMR .N E.O) CALL CONSTCPSIN,zl 

CALL ENEQ CPHI N,z) 

DO 9 J=l, NEQ 

JI = J+MM 

A(JI,IJ) =-CPHIN(Jl-PHI(J))/STEPX(I) 
A(JI tIJ+l) = -ACJI ,IJ) 

9 	 CONTINU E 

IF<NU~ R.EQ.0) GO TO 11 

DO 6 J=l,NUMR 

JI =J+ MM +NEQ 

A(J!,IJ)=(PSINCJ)-PSICJ)l/STEPX(I> 

A(JI,IJ+l) = -A(J!,IJ) 


6 CONTINUE 

11 CONTINUE 


ZCI) = ZCI) - STEPX(I> 
10 CONTINUE / 

c 
C SET UP EQUATIONS FOR UPPER AND LOWER LIMITS 
c 

MM K = MM-1 

j = 0 

DO 12 I=l,MMK,2 


j = J+l 

jj = 2*J-1 

ACI,JJ) =l.O 

A(I+l,JJ l =-1.0 

ACI+l,JJ+l) = l.O 


12 	 A< I ,JJ+l) =-1.0 
c 
c SET UP B<r>•s 
c 

DO 20 I=l,MM 

20 8(!) = 88(!) 


MP=MM+l 

MEQ = MM+NEQ 
DO 19 I=MP,MEQ 

J = I-MM 

IFCABS(PHICJl).LE.O.OOl)PHICJ> = o.o 

19 	8(!) = PHI(J) 

IFCNUMR.EQ.0) GO TO 16 

MEQI=MEQ+l 

DO 21 I=MEQI tM 

J=I-MEQ 


21 BCI) = - PSI (J) 


16 CONTINUE 

c 
C SET UP SLACK VARIABLES 
c 

DO 	 2 2 I= 1, M 
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DO 15 J=MP,N 
S( J) = O.O 

15 A(I,J) =O .O 
MI =~· H· 1 + I 

22 ACI,MI) = 1.0 
c 
c 
c 
C CHECK FOR NEGATIVE VALUES OF B AND REARRANGE IF NECESSARY 
c 

c 
C SET INITIAL FEASIBLE BASIS 
c 

DO 	 30 I =l,MM 
30 	 X{I) = O.O 

DO 3 5 I= 1, M 
MMI =MM+I 

3 5 	 X (MM I ) = B ( I ) 
RETURN 
END 

SIBFTC SUB 2 
SUBROUTINE ORDER CA,B,NNN,N,M,MM,K,LL) 
DIMENSION A(40,40),BC40),KL(20),LL(20) 
COMMON NPR,WATEClO> 

c 
C ROWS WITH SLACKS CHECKED 
c 

NK = 0 
KN = M-NNN 
DO 21 I = l,KN 
IFCBCI).GT.C-l.OE-06)) GO TO 21 

c 
C STORE NEGATIVE B ROWS 
c 

NK =NK+l 
KL(NK> =I 

21 CONTINUE 
c 
C IF ALL B'S ARE POSITIVE CHECK THE ROWS WITHARTIFICIAL VARIABLES 
c 

IFCNK.EQ.Q) GO TO 25 
ML=KN-NK+l 
ND=O 
DO 22 I=ML,KN 
ND=ND+l 

c 
C CHECK IF INTERCHANGE OF ROWS IS NECESSARY 
c 

0023 J=l•NK 
23 IFCKLCJl.EQ.I) GO TO 24 

c 
C INTERCHANGE ROWS AND ALTER THE SIGNS OF A•S AND B1 S 
c 

IE = KLCND) 

DO 26 JJ=l,MM 

TEMP=A(I,JJ) 

ACI,JJ) = -A(IEtJJ) 
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26 

c 
c 
c 

24 
29 

c 
c 
c 

27 

2' 2 

c 
c 
c 

25 

c 
c 
c 
c 

33 

32 
31 

40 
c 
c 
c 

c 
c 
c 

36 

35 

50 

A(IE,JJ) =TEMP 
TE MP =B(I) 
B (I) =- R (!El 
R (IE) = TEMP 
GO TO 27 

INTERCHANGE OF ROWS NOT NECESSARY, CHANGE SIGNS OF A'S AND s•s 

DO 29 JK=l,MM 
ACI,JK) =-A(I,JK) 
8(!)=-8(1) 

SHIFT THE NOW NEGATIVE SLACKVARIABLEOUT OF BASIS 

MD=M~HND 

A(I,MDl=-1.0 
CONTINUE 
IF(NNN.EQ.0) GO TO 40 

CHECK THE ROWS WITH ARTIFICIAL VARIABLES 

MP=KN+l 
DO 31 I=MP,M 
IF(BCI>.GE.(-1.0E-06>> GO TO 32 

B IS NEGATIVE, 
ARTIFICIAL ONES 

D033 J=ltMM 
A<I,J)=-A(I,J) 
B(Il=-B(l) 
GO TO 31 
IF(B(I>.LT.O.O> 
CONTINUE 
CONTINUE 

CHECK IF CHANGE 

If (NK.EQ.O) GO 

CHANGE THE BASIS 

DO 35 I= 1, M 
MMI=MM+I 
ACI,lv1MI> =O.O 
DO 36 J=ltNK 
NJ=N+J 
ACI,NJ) =o.o 
MIL=MMI+NK 
LLCI>=MIL 

AC I ,MIL) =1.0 
CONTINUE 
N=N+NK 
NNN=NNN+NK 
MM = MM+NK 
CONTINUE 
RETURN 
END 

/ 

ALTER THE SIGNS .OF BAND ALL A'S EXCEPT THE 

BCI>=O.O 

IN BASIS IS REQUIRED 

TO 50 
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$IBFTC SU8 3 

SUBROUTINE SIMPLECA,~,c,NN,N,M,MM,rNDEX;x,NMAXtII,s> 

DIMENSION 5(40) . 
DIMENSION AC40,40) ,gc40) ,C(40) ,rr <5o> ,X(L1-Q) 
CO MMON NPR ,~·!ATE C10) 

c 
c 
C PHASE 1 OR 2 OF LINEAR PROGRAMING STANDARD SIMPLEX 

NCYCLE = 1 
C INDEX =O FOR PHASE 2 INDEX =l FOR PHASE 1 

IF (INDEX.NE.1> GO TO 8 
c 
C CALCULATION OF ALLCCJ) FOR VARIABLES NOT IN BASIS 
c 

MM=N-M 
MMM=M+l-NN 
DO 5 J=lt"1rv1 
C(J)=O. 
DO 5 I=MMMtM 

5 C(J)= CCJ)-A(J,J) 
c 
C SET CCJ) = 1.ElO FOR VARIABLES IN BASIS 
c 

MA=MM+l 
D04 J=MA,N 

4 CCJ)=l.ElO 
c 
c CALCULATE INITIAL uo 
c 

UO=O. 
DO 6 I=MMM,M 

6 UO=UO+B(I) 
GO TO 9 

8 MB=M+l 
DO 12 J= 1, N 

12 C(J) =S(J) 
uo=o.o 

c SELECT SMALL c ( J) WHICH IS CCL> 
c 

9 SMALL=C(l} 
L=l 
DO 10 

IF ( 
I=2,N 
ccr>.GE.SMALL) GO TO 10 

SMALL=CCI) 
L=I 

10 CONTINUE 
c 
C TESTING FOR OPTIMUM NOTE ALLOWANCE FOR ROUND OFF ERROR 

IFCCCLl+l.E-5.GE.O.) GO TO 100 
c 
c •TESTING FOR FINITE OPTIMUM ALLOWANCE FOR ROUND OFF ERROR 
c 

DO 15 I= 1, M 
IFCACI,L>.GT.1.E-5) GO TO 16 

15 CONTINUE 
WRITEC6,210> 

GO TO 101 
c 
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c SELECT SMALLcST RATIO FOR WHIOI AC I ,L) Gr.o. GIVING EO N. (LL) 

c I N WHICH VARIA BLE rs DROPPED 

c 


16 SMA LL = +l.OE+lO 

LL=l 

DO 18 I = 1 , M 


IF CACI,L>.LE.1.E-5) GO T018 

IF(BC I )/A( I ,L) .GT.SMALL) GO TO 18 

SMALL=BCI)/A(!,L) 


LL=I 

18 CONTINUE 


c 
C 	 BRINGING CCK) BACK TO 0 BEFORE CONVERTING TO NEW CANNONICAL FORM 

K = !l(LL) 
CCK)=O. 

c 
C CONVERTING TO NEW CANONICAL FORM 
c 

BCLL>=BCLL>/A(LL,L) 

UO=UO+BCLL)*CCL) 

DO 30 J=l,N 

IFCJ.EQ.L) GO TO 30 

ACLL,J>=A(LL,J)/ACLL,L) 

CCJ>=CCJ)-A(LL,Jl*C(L> 


30 	 CONTINUE 

ACLL,L)=l. 

DO 33 I=l,M 

!F(I.EQ.LL) GO TO 33 

Y=ACI,L) 

BC!)= BCI)-B(LL)*A(I,L> 

DO 31 J=l,N 


31 AC I,J)=AC I ,J>-A<LL,J>*Y 

33 CONTINUE , 


c 
C 	 SWITCH BASIS TAGS ON LL EON. 
c 

CCL) =1.ElO 
KK= II (LL> 
IICLL>=L 

c 
C SETTING OLD VARIABLE IN BASIS =O 

XCKK)=O. 
c 
C RECORD NEW VALUES OF X IN MEMORY. VARIABLES NOT IN BASIS ARE 
C ALREADY 0 IN MEMORY 
c 

DO 40 I=l,M 

K=IICI) 


40 XCK)=BU> 
c 
C ITERATION COMMAND 
c 

NCYCLE = NCYCLE + 1 

IFCNCYCLE.EQ.NMAX) GO TO 110 

GO TO 9 


c 
C OUTPUT 

100 CONTINUE 

http:F(I.EQ.LL


----
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IF(INDEX.NE.1) GO TO 101 
c 
c CALCUL ATION OF CANONICAL FORM OF OPT. EQN. FOT INITIAL FEASIBLE B 

102 	 N = l\l -N N 

MC= M+l 

DO 94 J=MC,N 


94 	s (J) = 0. 0 

DO 95 J = l,N 


95 	 CCJ) = SCJ) 
UO=O. 

DO 90 I=l,M 

K=II(I) 

Q=CCK) 

UO=UO+BCI}*Q 

DO 90 J=l,N 


90 	 CCJ)=C(J)-A{I,J)*Q 

INDEX = 0 

DO 91 I= 1, M 

K = II(!) 


91 C(K) = 1.ElO 

GO TO 9 


101 RETURN 

110 WRITE(6,211) NCYCLE 


111 STOP 
20 0 FOR MAT(2X,4HUO= ,Ell.5) 
201 FOR MATC2X,8HA ~ATRix,1,c1x,10F11.s>> 
202 FOR MATC2Xt22HVARIABLES IN BASIS ARE,/,(2Xt30I3) 
206 FORMAT(2Xt28HPHASE II OF SIMPLEX SOLUTION,//) 
208 FORMATC2Xt8HC MATRIXt/,{2Xt8El3e5>) 
210 FORMATC2Xt17HNO FINITE OPTIMUM) 
j11 FOR MATC2Xt30HPRQCESS DID NOT CONVERGE AFTER,2x,E12.s,2x.6HCYCLES) 

END 
$IBFTC SUB 4 

SUBROUTINE SEARCH cx,N,Ht RMAX,RMIN,F,G,DELX,NEQ,NUMR,NCY) 
DIMENSION XC2Q),RMAXC2Q>,RMINC20>,TEST(20>, 

lDELxc20>,xoc20>,pHrc20> 
COMMON NPRtWATEClO) 

c 
c 
C 	 GENERATE DELX(I} AND TEST<!> 

DO 20 I = ltN 
TESTCI> =CRMAXCil-RM!NCI))/F 

20 	 CONTINUE 

M = 0 

CALL REALUCUOtXtUR) 

WRITE C6tll) Mt uo, ( xcr>, I=ltN ) 


c 
C MAKE SEARCH BY PATTERN MOVE 
c 

J 	 = 0 
IFCNCY.EQ.0) GO TO 6 


1 DO 2 I = 1, N 

2 X < I ) =X C I > + DELX CI ) *H**J 


CALL ENEQCPHitX) 

DO 3 JJ = ltNEQ · 


3 	 IFCPHICJJ).LT.o.o> GO TO 5 

CALL REALUCU tXtURl 

IFCU.GT.uo> GO TO 5 


http:IFCU.GT.uo
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uo = u 
j = J+l 
M = M + 1 
GO TO 1 

c 
C REDUCE STEP SIZE AND MAKE PATTERN MOVE 
c 

5 DO 4 I = 1,N 
4 XCil =XCI) 

IFCJ.EQ.O) 
- DELXCI>*H**J 
GO TO 6 

j = 0 
GO TO 1 

6 CONTINUE 
c 
C PATTERN MOVE FAILS, MAKE EXPLORATORY SEARCH 
c 

DO 7 I = l•N 
7 XO ( I ) = X C I ) 

DO 9 I= 1, N 
XCI) = X<I>+TEST(l) 
CALL ENEQCPHI,X) 
DO 10 JJ=l,NEQ 

10 IFCPHICJJ).LT.o.o> GO TO 12 
CALL REALU(U ,x.uR> 
IF(U.GT.uo> GO TO 12 / 

uo = u 
GO TO 9 

12 XCI> = XCI)-2.*TEST<rl 
CALL ENEQCPHI,X> 
DO 13 JJ=l,NEQ 

13 IFCPHI(JJ).LT.o.c> GO TO 14 
CALL REALU{U ,x,uR> 
IFCU.GT.UO> GO TO 14 
uo = u 
GO TO 9 

14 X(!) = xc1> +TEST(!) 
9 CONTINUE 

NN = 0 
c 
C FIND THE DIRECTION FOR PATTERN MOVE 
c 

DO 15 I= 1, N 
DELXCI) =X<I>-XOCI> 
IFCABSCDELX(!)).LT.G) NN=NN+l 
IFCNN.EQ.N> GO TO 17 

15 CONTINUE 
c 
C MAKE SEARCH BY PATTERN MOVE 
c 

GO TO 1 
17 CONTINUE 

c 
C REDUCE STEP SIZE AND MAKE EXPLORATORY MOVE 
c 

DO 18 I= 1, N 
TESTCI) =TEST(I)/4. 

c 
C DIRECT SEARCH FAILS 
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c 
IFCABSCTESTCIJ>.LT.G) GO TO 19 

18 CONTINUE 
GO TO 6 

19 CONTINUE 
CALL ENEQCPHI,X) 

WRITE(6,8lM,UO,(X(Il,I=l,N) 
WRITEC6,l06) CPHICI),I=l,NEQ) 

8 FORMATC2X,19HRESULT AFTER SEARCH,1,2x,rs,E20.5,/,(2X,6E20·5)) 
106 FORMAT(/,2x,c1.2x,9F10.4)) 

11 	 FORMAT ( 1x, y5, E20.5, I ( 1x, 6E20.5 ) ) 

RETURN 

END 


$I8FTC SUB 5 
SUBROUTINE REALucu,x,uR> 
DIMENSION xc20>,PSic2ol 
COMMON NPR,WATEClO) 

c 
C EXPRESSIONS FOR OBJECTIVE FUNCTION 
c 

GO 	 TO c10,20,30,40,50,60l,NPR 
10 CONTINUE 

c 
c ROSENBROCK 1 S PROBLEM 
c 

NUMR = 0 
UR=lOO.O*(X(2)-XC1>**2)**2+(1.0-X<l>)**2 
GO TO 100 

20 CONTINUE 
c 
C LEON'S PROBLEM 
c • 

NUMR = 1 
UR=l83.0-44.0*XC1>-42.0*XC2)+8.0*XC1>**2-12.0*XCl>*X(2>+17.0*X<2> 

1**2 
GO TO 100 

30 CONTINUE 
c 
C FIACCO AND MCCORMIC•S PROBLEM 
c 

NUMR = 1 
UR=XC1>**3-6.0*XC1>**2+11.0*XCl)+XC3) 
GO TO 100 


40 CONTINUE 

50 CONTINUE 

60 CONTINUE 


100 	CONTINUE 

CALL CONSTCPsr,x> 

U = UR 

DO 1 I=ltNUMR 

U=U +ABSCPSICI>>*WATECI> 


1 	 CONTINUE 

RETURN 

END 


$IBFTC SUB 6 
SUBROUTINE CONSTCPsr,x> 
DIMENSION X(20),PSIC20> 
COMMON NPR 
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c 
C EXPRESS IONS FOR EQUALITY CONSTRAINTS 
c 

GO TO c1 0 ,20, 30,40,50,60),NPR 

1 0 CON TI NUE 


c 
C RO SENB ROCK'S PROBLEM 
c 

PS I Cl)= O.O 

GO TO 100 


20 CO NTINUE 
c 
C LEO N'S PROBLEM 
c 

PSI Cl) = 2.0*X<l>+xc2>-10.o 

GO TO 100 


30 CO NTINUE 

c 
C FIACCO AND MCCORMIC•S PROBLEM 
c 

PSI(l) = X<l>**2+X<2>**2+XC3>**2-4eO 
GO TO 100 


40 CONTINUE 

50 CO NTINUE 

60 CONTINUE 	 / 

100 	CONTINUE 

RETURN 

END 


$lBFTC SUB 7 
SUBROUTINE ENEQ(PHI,X) 
DIM ENSION XC20),PHI(20) 
COMMON NPR 

c 
C EXPRESSIONS FOR INEQUALITY CONSTRAINTS 
c 

GO TO c10,20,30,40,50,60>,NPR 
10 CONTINUE 

c 
C ROSENBROCK•S PROBLEM 
c 

PHIC1'=XC1> 

PHI(2)=X(2) 

GO TO 100 


20 CONTINUE 
c 
C LEON'S PROBLEM 
c 

PHICl)=X(l) 

PHIC2>=X(2) 

GO TO 100 


30 CONTINUE 
c 
C FIACCO AND MCCORMIC•S PROBLEM 
c 

PHI<l> =XCl) 
PHI C2)=X(2) 
PHl(3)=XC3) 
PHI(4) = 5.0-XC3) 
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PHI(5) = X(3)**2-X(ll**2-XC2)**2 
GO TO 100 


40 CONTINUE 

50 CONTINUE 

60 CONTINUE 


100 	CONTINUE 

RETURN 

END 


$ENTRY 
3 

2 0 2 99 1 
1.5 40.0 0.000001 0.00001 
o.o o.o 
0.0001 0.0001 0.0001 0.0001 
0.00001 0.00001 
4.0 4.0 o.o o.o 

2 1 2 99 1 
1.5 40.0 0.000001 0.002 
o.o o.o 
0.01 0.01 0.01 0.01 
0.00001 0.00001 
4.0 4.0 o.o o.o 
10.0 

3 1 5 99 1 I 

1.5 40.0 0.000001 0.00001 
o.o o.o o.o 
o.os o.o5 0.10 0.10 0.05 o.os 
0.00001 0.00001 0.00001 
4.0 4.0 4.0 o.o o.o o.o 
10.0 
$lBSYS 
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SUBROUT I ~JES FOR THE OBJECT I Vt FUNCTIONS AND CONSTRAI NT 
EQUATIONS FOR THRFE SOLVED PRORLEMS 


$IBFTC SUU S 

SUBROUTINE REALU (U,X,UR) 
DI~ENSION X(20),pSJ(20) 
COM MON NPR ,WATE<lOJ 
GO TO <10,zo,30,40,50,6n),NPR 

10 C0NTINLJE 
c 
C GLASS AND COOPER'S PROBLEM 
c 

NUMR=2 
UR=-SQRT (25.0-(X(l)-5.0)**2-(X(2)-5.U)**2) 
GO TO 100 

20 CONTINUE 
c 
C J.E. KELLEY'S PROBLEM 
c 

NUMr-< = 1 
UR=X(l)-X(2) 
GO TO 100 

30 CONTINUE 
c 
C DICKINSON•S PROBLEM 
c 

Fl=ll.0-6.0*X(J)-4.0*X(?J+XC1)*X(l)+2.0*XC?)*X(2) 
F2=17.0-8.0*X(l)-6.0*X(?)+2.0*XCl)*XCl)+XC2)*X(2) 
UR=l . O+Fl*F2 
GO TO 100 

40 CONTINUE 
50 CONTINUE 
60 CONTINUE 

100 CONTINUE 
CALL CONSTCPSI,X) 
U = UR 
DO 1 I=l,NUMR 
U=U +ABSCPSICI))*WATECI> 

1 CONTINUE 
RETURN 
END 

SiIBFTC SUB 6 
SUBROUTINE CONSTCPSJ,X) 
DIMENSION X(20),PSI<20)
COMMON NPR 
GO TO <10,zo,30,40,50,60),NPR 

10 CONTINUE 
c 
C GLASS AND COOPER'S PRORLEM 
c 

PSI(l)=X(l)*X(l)-X(2)*4.0 
PS!(2)=(X(2)-6.0)**2-4.0*(X(l)-3.0) 
GO TO 100 
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?0 CO NT I NLJF 

c 

C J . E. KELLEY ' S PROnL E~ 


c 
PSI(l ) =3 . 0*X (l)*X(ll-2.*X(l)*X(2)+X(2)*X(2)-1.0 
C10 TO 100 

30 CONTINUE 
PSI ( U=O.O 
GO TO 100 

L+O CONT I NUE 
5 0 C 0 N T I ~JU E 
60 CONTINUE 


100 CONTINUE 

RETURN 

END 

$l8FTC SUR 7 
SUBROUTINE ENfQ(PHI,X) 
DIMENSION X(20),PHI(20) 
COMMON NPR 
GO TO (l0,20,30,40,50,60) 'NPR 

10 CONTINUE 
c 
c GLASS AND COOPER•S PROBLEM 
c 

PHI(l)=l.O 
PH1(2)=1.0 
GO TO 100 

20 CONTINUE 
c 
c J.E. KELLEY•S PROBLEM 
c 

PHI{l)=X(l) 

PHI(2)=X(2) 

GO TO 100 


30 CONTINUE 
c 
c DICKINSON'S PROBLEM 
c 

PHI(l)=X(l) 

PHI(2)=X(2) 

GO TO 100 


1+0 CONTINUE 

50 CONTINUE 

60 CONTINUE 


100 	 CONTINUE 

RETURN 

END 


C DATA FOR THE THREE PROBLEMS 
$ENTRY 

3 
2 2 2 99 1 

1 • 5 40.0 0.000001 0.0001 
7.0 1.0 
i.o 1. 0 0.5 Q.5 
0.00001 0.00001 
4.0 	 o.o o.o'~. 0
io.o 10.0 



tH 
? 1 2 () () 1 

1 • 5 4C.u 0 . 000001 0 . 0011 
1.0 2 . 0 
0 . 05 
o. nooc1 

() . 0 s 
0 . 00001 

0 .1 o.i 

4.0 4 . 0 o.o o.o 
10 . 0 

? 0 2 ()0 1 
1 • 5 40 . 0 0 .000001 0 .0 001 
~ .o 2 . 0 
o. oooJ 0 . 0001 0 .0001 0.0001 
0 . 00001 0.00001 
4 . 0 4.0 o.o o.o 

SIRSYS 


	Structure Bookmarks

