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INTRODUCTION

In {147, P. Scherk introduced order characteris-
tics for the interior differentiable points of arcs
in projective n-space. The characteristic of a
differentiable point p of an arc was a certain n-tuple
of integers defined by the intersection and support
properties of various families of osculating hyper-
planes through p. It was shown that the sum of these
numbers was associated with the order of the arc in a
small neighbourhood of p. Later, in {81 and [97,
Lane and Scherk developed an analogous theory of charac-
teristics for differentiable points in the conformal
plane. A similar discussion was carried on in [107,
{11} and [12], [15] by Lane and Singh in the case of
parabolically and conically differentiable points in
the real affine plane and in the projective plane,
respectively. These papers, Popoviciu's discussion of
polynomial convexity in [137] and 0. Haupt's work on
higher convexity in [17] - [57] naturally led to the study
of characteristic and order for polynomially differen-
tiable points of arcs.

In the following, the term "polynomial" will also
be used to denote the point set {(x, f(x))]xe® 1},

where f is a polynomial over 9 , i.e., the graph of a
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polynomial function will also be called a polynomial.

In Chapter I, polynomials are regarded as sub-
sets of the plane and a notion of pointwise convergence
is used to obtain certain kinds of degenerate polynomials.
The set of all non-degenerate polynomials of degree at
most n will be denoted by & and the union of J2 with
the set of degenerate ones will be denoted by ;5 . An
orientable polynomial and orientable pointwise convergence
is defined. Multiple point, multiple component and a
notion of multiplicity pointwise convergence is also
introduced. The concept of support and intersection of

an orientable polynomial of 25 with respect to a poly-

nomial of J& is defined and discussed.

In Chapter II, three topologies qy 1° e} 2
and C9—3 are introduced, each finer than the preceding
one, and it is shown that the (% 1 Q)’Z and q, 3
convergences are equivalent to pointwise, orientable
pointwise and multiplicity pointwise convergences

respectively.

Chapter III contains a discussion of some
families of polynomials of 42 and particularly of
the family ¢, It is shown that the three converg-
ences introduced in Chapter I and Chapter II are

equivalent on'Eh.



In Chapter IV, arcs are introduced and poly-
nomially differentiable points of an arc are defined.
Also the intersection and support properties of the
various osculating polynomials at a differentiable

point of the arc are discussed.

Chapter V is concerned with the definition of a
characteristic of a polynomially differentiable point
of an arc iﬁ the real affine plane. Examples of the
different types of points which are differentiable with
respect to the family of polynomials of degree at most
n are given. We use a sequence of characteristics for
an infinitely polynomially differentiable point to

construct an infinite characteristic for that point.

In Chapter VI it is shown that the polynomial
order of a differentiable interior point p of an arc
A is at least as great as sum of the digits of the

characteristic of p.



CHAPTER 1

Polynomials and Pointwise Convergence

1.1. Notation. Let G denote the real affine

plane. The letters p, q, Q, .... usually denote the
points in the plane, with the small italics indicating
points of arcs. Gothic letters Jf 09_ , .... denote
lines. ;ﬂ‘ﬂ\ w indicates that f and W are not
parallel. ;f Q, \q.) will denote the line parallel
to a line WQ/ through a point Q.
Let & denote the family of polynomials
(i.e., polynomial curves) K of degree < n which can be

represented by an equation of the form
ay = ag * a; X + ... +ax,

where a # 0 and a, aieﬁz ; i=0,1, ..... cereey N,

We shall denote the line corresponding to x = 0

by A and put L @ = L @ W).

1.2. Pointwise convergence. A neighbourhood

of a point P is the interior of an ellipse which contains

p in its interior.



A sequence of points {P;} is defined to be

convergent to a point P if every neighbourhood of P

contains ]?-1 for all but a finite number of 1i.

A point P is defined to be an accumulation

point ['a limit point’}of a sequence {S;} of sets S;

if every neighbourhood of P contains points of Si for

infinitely many i [ for all but a finite number of i].

In particular, this holds when each Si is a polynomial
Ki [}

A sequence {S;} of sets [{K;} of polynomials ]

is defined to be pointwise convergent if it has at

least one accumulation point and every accumulation

point is a limit point.

1.3. The set 25?25 polynomials. Let & denote

the set of all polynomials of K together with the
limit sets of convergent sequences of polynomials of cﬁf .

Let XKe JJ be the limit set of a pointwise

convergent sequence {Ki} of polynomials of JE’.

1.3.1. If PeK and N is a neighbourhood of P

with the boundary B(N), then

B(N) N X # 8.



Proof. Since PeK, K, will have points in N
for all sufficiently large i. Thus Ky has points in
common with B(N) for all large i. These points
will have an accumulation point in B(N) (\ K, i.e.,

B(N) (W K # 9.

Remark. The above statement and a similar proof is
valid even if K is just a non-empty set of accumulation
points of {K;}and {Ki} is not a convergent sequence,
thus the set of accumulation points of a sequence

does not have an isolated point.

1.5.2. Suppose P,;€K and P,eK are separated
by a line £ % ':1\9/ . Then the intersection of X with

the closed strip bounded by Jﬁ (Pl) and ;ﬁ (Pz) contains

a Eoint g£ K.

Proof. Choose neighbourhoods N, and N, of

P, and P, respectively, such that

Since P, and P, are in K, K, has points P,y and P.,

in Ny and N, respectively, for all but a finite number
of i; i.e., K, has points on both the sides of ;ﬁ .
Since each Ki is a centinuous function, it intersects

;6 at a point between the linus ;f (Pil) and ;f (Piz).



Therefore these points of intersection are bounded on

I, and they have an accumulation point on K N ji
which lies between ji(Pl) and Sﬁ (Pz) oT on Zﬁ (Pl)
or ]i (Pz). ’

Corollary. If PieK, Pyek and ¥ (P)) = L (7)),

then the segment P; P, belongs to K.

1.3.3. Let {K;} be a pointwise convergent
sequence of polynomials of (2" . Let K be the set of
limit points of {K;}.

Now each Ki can be represented by an equation

of the form
n,
(1.3.3-1) ajy = ag; *ag; X+ ..o +a X

a; # 0 and a,, aj;e M ; j =0, ..., n. Hence we can
associate with each Ki the point (ai, agir 3140 v ani)
of the real projective n + 1 space. Let (b, b, ey b))
be an accumulation point of the sequence {(ai, agis ccc
It can be easily seen that if PeK, then the coordinates

of P satisfy the equation

n
(1.3.3-2) by b0 + b1 X + ... + bnx .

a

ni

}}.



Thus if K' is the solution set of the equation (1.3.3-2),

then X € X',

1.3.4. The set K is either a polynomial of

J2 or it consists of at most n components each of which

—— —— ————————————— —  —

Proof. (i) Let b # 0 in (1.3.3-2). Let Pek',
say P = (xo, yo). Then we wish to show that PeK and

therefore XK' < K.

Let P, = (xo, yi), where Yi is defined by

aiYi = ag; * alix0>+ ces * anixg.

Then PieKi and Y3 tends to Yo s i tends to infinity Suitably.
Thus P is a limit point of the sequence {P;} and there-
fore of the sequence {Ki}. Hence PeK. Therefore K'< K.

Also by 1.3.3, K< K'. Hence if b # 0, then
K = K' is a polynomial of 5 .

(ii) Let b = 0. Then K' consists of at most
n components, each of which is a line parallel to ﬂ?/.
Therefore each component C of XK is a line parallel
to ﬂg' or a (connected) component of such a line,
Suppose C is a segment or an isolated point. Then there

exists an eilipse B(N) containing C such that



(NUBMN)) NKN\C = .

This is impossible by 1.3.1. Hence every component
of K is a line or a ray, parallel to ng .
Also, by the Corollary of 1.3.2, no two

disjoint rays of K lie on the same line parallel to

'1.3.5. Since each Ke Jﬁ' can be obtained as

the limit set of a sequence {K;} of polynomials of £§ ,

we could have defined Zi to be the family of limit

sets of pointwisé convergent sequences of 55 .

If Ké éz is a polynomial of degree m,

0 <m<n, we call it an m-regular polynomial.

If Ke Ja'\<£z , i.e., if every component of

K is a line or a ray, then we call K a degenerate

Eo_lynbmial .

Remark. Since the members of JZ are also
subsets of G, the notion of pointwise convergence 1is

valid for sequences of degenerate polynomials. We

JU——

note that if a sequence {K;} of polynomials of &2
converge to a regular polynomial, then, for sufficiently

large 1, Ki are also regular polynomials.

1.3.6. A regular polynomial Kl supports

[intersectst]a polynomial K of 55, at a point QeK1
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if for a sufficiently small neighbourhood N of Q,
K NN is decomposed by Q into two disjoint open sets
which lie in the same region | in different regions 7]

bounded by Kl'

Remark. Above definition of support and inter-

section is symmetric in K and Kl; cf. 1.8.2,

1.3.7. Let K1 and K, be two regular poly-
‘ n

nomials given by the equations, say f;(x) = ) aix1

n .
and f,(x) = 7} b.x' respectively. Then K; and K,
i=Q !

meet each other at least (exactly) r times or meet with

multiplicity r if the equation £f,0(x) - fz(x) = 0

has at least (exactly) r real roots. In particular,

Kl and K, have at least (exactly) r-point contact at

Q = (xy, yy) if x5 is a root of f3(x) - f£,(x) = 0 of at
least (exact) multiplicity r, equivalently, if f1 and
fz have same derivatives at Q up to the (r - 1)-th
order.

We note that the number of roots of a poly-
nomial equation f(x) = 0 between a and b counted
according to their multiplicity is odd or even according

as f(a) and f(b) have opposite or like signs.



The above discussion and 1.3.6 yields the
following result.

Let X and L be two regular polynomials which

————

have exactly r-point contact at Q. Then K supports

[intersects] L at Q if and only if r is even [odd].

1.3.8. Let {Ki} converge to K, Ke ﬁz\\éi' and
let C be a component of K. Let stC; Nj be a neigh- '
bourhood of Qj such that (K N Nj)\\C = f, and let

e 5 W) be a line through Qy; j =1, 2. Then K;
meets both f L NN, and £, NN, with an even

multiplicity or both of them with an odd multiplicities.

Proof. Let B(N) be an ellipse containing
Ny and N2 in its interior N such that (N N K)\C ; p.
Let B(M) be a convex quadrilateral inscribed in N
such that two opposite sides are parallel to ‘W} and
Q4 and Q2 are interior points of the other two sides
which are segments of ‘;ﬁ 1 and x g+ Let P be a
point on C between Q and Q2 and let NOCZ M be a neigh-
bourhood of P. Then Ny contains points of K, for alli
sufficiently large i. Now l(i will meet B(M) with even
multiplicity and for sufficiently large i, the points

of B(M) \ K; will lie on the sides of B(M) through

Q, and Q,. Moreover, the accumulation set of {sqM) N K,

is {Qq, QZ}. Hence egither K; meets both :fl N Ny and
jﬁ 5 N\ N, with an even multiplicity or both of them

with an odd multiplicity.

11

}
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1.3.9. Let {K;} converge to Ke N\ 4L and

—p—

let a component C of K be a ray. Let QeC and N, be

a sufficiently small neighbourhood of Q such that NOF\K/C =

#. Then for any line x W q‘? through Q, Ki meets

1 (I Ny an even number of times.

Proof. Let P be the vertex of C and let Q # P:
Again construct an ellipse B(N) containing P and N0
in its interior N such that NAKN\C = g, Let B(M)
be a quadrilateral in N with two sides parallel to

CH} and such that one of the other two sides is a

segment of i: containing Q in its interior and P lies
in the interior of B(M). Then for a sufficiently large
i, X; A BM) = K; N L O Nyp. Hence K, and L (N,
meet with an even multiplicity for Q # P.

By 1.3.8, this K; and a line through P will
also meet with an even multiplicity in a small neigh-
bourhood of P.

—

1.4. Orientations of polynomials of cﬁf .

1.4.1. A regular polynomial K divides G into
1

two disjoint regions denoted by K~ and K'l. Each of the
ordered pairs (Kl, K'l) and (K'l, Kl) is called an

orientation of K.

1.4.2. Let Ke 25. be the limit set of a

convergent sequence {K;} of polynomials of /2 . Let



P¢K. Then P¢Ki
can then choose

the orientation
(1.4.2) K
Now, it

either QsKg for

cf. (1.6.3-1).

for all sufficiently large 1. We
a fixed ce{l, -1} and assign to K,

&
such that Pek, for all large i. Define
= {Q]Q¢X and QeKz for all large i}.

can happen that for each point Q¢K,
all large i, or QeK{“‘for all large i;

In such a case, every point in the plane
1

belongs to one of the three sets K, K1 and K °. We

then say that K

is orientable and call each of *he&

ordered pairs (Kl, K'l) and (K'l, Kl) an orientation

of K.

one of k! and k7! may be void. For example,

let Km be given by

Then the sequence {Km} converges to the double ray

il- 0, y >0, cf. 1.6.2. If we take (1, O)CKr;1 for

all large m, then k'l = p.

1.4.3,

Let {K;} be pointwise convergent to K.

Let L® be the set of limit points of the sequence

{Kg} , a =% 1,

Then

1* = ¥* U K; cf. 1.4.2.

13



Proof. (i) Let PeK. Then every neighbourhood
N of P is met by K; for all large i. Let QeN K..
Then for any neighbourhood Ni of Q, Nic: N there are
points Q; eN; N Kg, @ = *1, Thus every neighbourhood
N of P contains points Qia of K?. Hence P is a limit

point of Kg, a = t1,

(1i) Let Pek®*. Thus PeK] for all large
i and P4K. Hence P is a limit point of {K{}. Thus
kv k* < L%,

(iii) Let PeL®, P¢K. Let N be a neigh-
bourhood of P such that NN K =@, Then NN K; = §
for all large i and N meets K? for all large i. Also
P¢K implies that P¢K; for all large i. Hence PeK? for
all large i. Thus PeKd. Therefore X* VK 2 L_.

a

1.5. Orientably pointwise convergence. A

sequence {Ki} of oriented polynomials of Az is

———

orientably pointwise convergent to Ke R, if {K;}

is pointwise convergent to K and K is also orientable;

1

, i
-1 . -

PEK, for all large i; cf. 1.4.2, For example, the

i.e., for all P¢K either PeK:; for all large i or

sequence in (1.6.3-1) is orientably convergent.

1.5.1. Let {K;} be orientably convergent to

K. Then {fi} is a convergent sequence of sets Ki

and the limit set is Ka\J K; cf. 1.4.3; i.e.,

14
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lim K§ = XK* U K = L%,
10
Proof. Let P be an accumulation point of
{K?}, P¢K. Then PEK? for infinitely many i. Since
{Ki} is orientably convergent, PsK? for all large 1i.

Hence P is a limit point of {Ki} and PeL® = K* U X.

1.5.2. Let {K;}, Kje 42 ., be orientably

convergent to Ke Zf\.éi' . Then each component C of

K is associated with a multiplicity m(C), m(C) = 1

or 0 (mod 2); i.e., each K; will meet a line £ N
with an even multiplicity for all large i or with an odd
multiplicity for all large i in a sufficiently small

neighbourhood of L nc.

1.5.3., A component C of an orientable polynomial

K, Ke 353\ J » is decomposing [non-decomposing’] if

for PeC and for any sufficiently small neighbourhood
N of P such that NN K\C = §, neither(exactly one]of the
sets K1 A N and K1\ N is void.

1.5.4. Ifm(C) =1L = 0] (mod 2), then C is

a decomposing [ non-decomposing’] component.

Proof. Let PeC and let N be a neighbourhood
of P such that NN K\C = §. Let B(N) < N be an ellipse
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containing P in its interior Nj. Let { be a line

through P, L t C. Let B(Ng) N L = {Q;, QZ}.

Then to prove the statement, it suffices to show

that the line segments ;f (p, Ql)\\{P} and ;f (p, QZ)\{P}
lie in different sides Ton the same side ] of K.

Now each K; and £ meet in N, with an odd Ueven)
multiplicity for all large i. Hence Q and Q, lie on
different sides Lon the same side) of K, for all large
i. Thus if m(C) =1 [= 0] and QleK? then QZeK;a

YQzng']for large i.

1.6. Multiplicities

'1.6.1. Let {K;} be a sequence of regular

——

polynomials converging to Ke é§ . Let L bea line,

;ﬁ H C)J} , through a point PeK. Then 7 meets K

at P at least r-times if there exists a sequence

{ ¥ i} of lines converging to f, such that :ﬁ i
and K. meet r times in a sufficiently small neighbourhood
of P.
If f meets K at least r-times at Q and does
not meet it at least (r + 1)-times at Q we say that

I meets K exactly r-times.

It can be verified that the above definition

implies the one given in 1.3.7.




The following statement is an immediate

consequence of the above definition.

Let a sequence {K;j} of polynomials of d?

~

converge to Ke . Let P. and Q. converge to P;
.__._...___.;g__..__.. — 1 1 g —

P,eK,, QjeKys Py # Q4 (thus PeK). Then the line P. Q

converges to a line which meets K at P at least

twice and is the tangent of K at P.

1.6.2. Let {Ki} be convergent to a degenerate

polynomial K. A point P of K has multiplicity r

m(P) = r, if there exists a line f, , of e ‘)g

through P which meets K at P exactly r-times and no

such line through P meets K, (r + 1)-times at P.

If all but a finite number of points of a com-
ponent C of K are counted with the same multiplicity

r, then C is counted r times; cf. (1.6.3-1) for r = 1.

1.6.3. We look at the multiplicities of the

components of several'degenerate polynomials K, for
n=23, i.e., when the sequence {Ki} consists of cubics.
In the following, let m: be a positive integer.

We consider the sequence of cubics given by

(1.6.3-1) y = mxs.

17



Let m tend to infinity. Then the limit set K is the

line given by x3 = 0, which by our definitions in

1.6.2 is a single line on ‘q} . The multiplicity of
the origin, however, is three.
On the other hand, if we examine the limit

set K of a sequence given by
(1.6.3-1) y = -m2 X + m4 X

as m tends to infinity, then K is again a line given
by x3
i.e., a line counted three times on qg,.

Again we consider the sequence given by
(1.6.3-3) y =Qm3 x2 + m4 x3,

and let m tend to infinity. The limit set K is still

given by x3

= 0, but the points (0, y) withy > 0
[with y < 0] have the multiplicity three [one].
We interpret K as the union of Ggy with a double ray

on GH} with the vertex at the origin.

Now consider the sequence given by

(1.6.3-4) y = mx% + mx>.

18

= 0, but we interpret it as a triple line on GE) ,
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Let m tend to infinity. Then the equation (1.6.3-4)
tends to the equation x3 + xz = 0 and the limit set K
consists of a double ray on Cg} with vertex at the
origin and the line given by x = -1,

If the sequence is given by

2 3

2 2 - m)x>,

(1.6.3-5) y = -m+m” x° + (m
the limit equation is again x3 + xz = 0, but now the

component of K through the origin is a double line.

If the sequence is given by

(1.6.3-6) y = 3m2 x2 + 2m3 x3,

the limit equation is x3 = 0, Here K consists entirely
of points of Gyg , these points being counted three
times between y = 0 and y = 1 and once elsewhere. In

this example, K may be interpreted as the union of
CQ} and a double segment on Q§,'

1.7. Multiplicity pointwise convergence. A

sequence {K;} of polynomials of & is multiplicity

——

pointwise convergent to Ke JJ if {K;} is orientably

pointwise convergent to K and each point PeK has a

multiplicity m(P); cf. 1.6.2.
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1.7.1. Let iKiﬁ be a sequence of regular poly-
nomials which is multiplicity pointwise convergent
to Ke £\ & . Thus Ki has equation of the type

(1.3.3-1) and K an equation

(1.7.1-1) b0 + b1 X+ ... +bx =0

of the type (1.3.3-2) with b = 0. At least one of
bl’ +evy by, say bh’ is not zero and therefore aih 0
in (1.3.3-1) for all large i. Hence we can normalize

(1.3.3-1) and (1.7.1-1) by taking bh =a;, " 1.

Let P = (c, d) be a point on K. Suppose that
a line £ y = mx + e through P meets K, at r distinct

points Pj(xij’ yij) which converge to P; j =1, ...,r.

Then the equation
2
(1.7.1-2) anixn oo b anxt o+ (ali—m.ai)x +(aoi-e ai)-o

contains the factor

(1.7.1-3) (x - xil) ees (x - xir)'



As i tends to infinity (1.7.1-2) tends to (1.7.1-1)
and the factor (1.7.1-3) tends to (x - c)r; Thus if
PeX, P = (¢, d) and m(P) = r, then (x - c)r is a factor

of (1.7.1-1). Hence we have the following lemma.

Lemma. Let Xe & N\ & , K= CUC, U ... UCy,

Ci a component of K, 1 <2< n, be a limit set of a

— - ———————— ————  ——— —

multiplicity convergent sequence. Let P.eCys 1<ic<t.

—

'3
Then X m(Pi) < n. In particular, if ¢ = n, then for
— 1 An 1 then

any PieCi, m(Pi) =1. If a Ci is a ray, then 2 < n - 1.

1.7.2. The sections 1.3.8 and 1.3.9 yield the

following result.

Theorem 1. Let Ke & \ 2 be the limit set of

a multiplicity pointwise convergent sequence. Then a

component of K is one of the following types.

(i) a line parallel to QQ/ on which all the

points are counted with the same multiplicity mod 2,

21

(ii) a ray parallel Eg.<1% on which all the points

are counted with an even multiplicity.

1.8. Support and Intersection,

1.8.1. Let Klé Q. Let K,e % be an orientable

polynomial. Then K, intersects [ supports’) K1 at a

point P if for a sufficiently small neighbourhood N of P
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neither [one] of the sets Kl(\ N F\K§1 is eppty; cf.
1.4.2,

Since a regular polynomial is always orientable,

the above definition with K2€¢Z' is equivalent to that

given in 1.3.6.

We note that if K, is degenerate and the compon-
ent of K, through P is decomposable [non-decomposable],

then K, intersects [ supports] K, at P; cf. 1.5.3.

1.8.2. Let Ky and K, be two regular polynomials,

Then the definition in 1.8.1 is equivalent to saying

that Ky and K, intersect [support] each other at a

point P if none [ exactlylone] of the sets Kil N'N N K§1

is empty, for every sufficiently small neighbourhood

N of P.

Proof. We wish to verify that

(1) Kl<{HN N K% # #, for botha =1 and a = -1

) .

(2) none of the four sets Kil N NO K§1 is void

and

(3) Kl(\NF\Kgaﬂ, for either 8 = 1 or B = -1

1; 1

(4) exactly one of the four sets K1 N NOQO Ktl is void.

2

Claim (i). (1) implies (2) and (4) implies (3).
Suppose that



K% N NN Kg = § for some a« and B in {1, -1}.
Then

2] -
(5) Ky NN C (K{*U K NN,

Taking the interiors of the sets in (5) and noting that

Kg N N is an open set in G, we have
kKE AN < k%N,
Hence
K,NKEANc k, nK%N N=p
1 2 1 1 *

Claim (ii). (2) implies (1). Also (3) implies
that at least one of the four sets Kilzﬂ N N K;l is

void.

Suppose, e.g., that.
B
K, N N(\‘Kz p.
Then

Kk AN ¢ U KHNN= (Ktﬂ SEVECERI LY

23
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Since K%f\ N is connected and Ki N N and Kil A\ N are

disjoint, we obtain

K5 NN <k} NN for either o = 1 or a = -1.
Hence

KON KEnm < k%0 & aN =g

Claim (iii). (3) implies (4). It remains to

prove that only one of the four sets Kilr\ NN Kél

can be void. Assume, for example
K A NN K> = g =K NNN K;l' a = *]1 L |
1 2 1 2 =l ¥y == 4
Then by claim (i)
K, A NAOK: =g =K nNnK!
1 2 1 2
Hence

Nk < NN U KH AN = Nk,

Since N N K; N K, = {P}, this is impossible.



(3) =

More precisely,

Kg NN N K? = f§ for exactly one a = %1;

Késf\Nf\Kc{ # 9 for o = 1, -1.

25



Chapter II

e

Topologies on cﬁf

2.1, Introduction. In this section our goal is

to introduce three topologies %?1, eyz and e}s

on the set ), each finer than its predecessor. We

shall do this by introducing a neighbourhood filter at
each polynomial Keczf. The neighbourhood system in

€} 5 will enable us to distinguish between a .: line
associated with an odd multiplicity and a line associated
with an even multiplicity; cf. 1.5.2. The topology C§,3
will allow us to distinguish between a multiple line

[ray] and a single line [ray].

2.2. The space ( Cﬁf, 93 1).

2.2.1. A base for a neighbourhood filter of a

regular polynomial. Let Kje 6&{- Let S, and S, be

two finite subsets of the plane separated by K,.

Pefine

(2.2.1) N(Ky)=N(Ky3S;,5,)={Ke 4Z |S; and S, are

separated by K}.

- 26 -



Let (K%, KB}) be an orientation of K,. Then each

KeN(KO) can be oriented such that if

-a

o
SleK0 and SzeK0 ,

then
Slng and SZEK'G; ae{l, - 1}.
Put

UKO = {N(Ko; Sy Sz)},
where S1 and S2 run over all pairs of finite subsets
of the plane which are separated by Ko
It can be easily verified that UK is a filter

0
base.,

2.2.2. A base for a neighbourhood filter of

a degenerate polynomial. Let Koecgi\\éﬁf be the

limit of a pointwise convergent sequence {Ki} of
polynomials of cﬁf. Suppose that K, has k distinct
components, say Al’ I k < n. Thus each
AA is a ray or a line parallel to 2%'.

Let { 97Y,;} be a finite set of closed line
segments 3zz—xj each of which meets A, , does not

pass through the vertex of AA if Ax is a ray and
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is not parallel to lg A =1, ..., k. Also let
Nxs N WLy = FiE 5 # 2. Let {TCy) ve a finite
set of closed line segments ‘}?}jﬂ~rq} , none of which

meets any AA; x =1, ..., k. Define

(2.2.2)  N(Kp) = N(Kp3 {0%,5}, { ¥Lyp)

be the set of all those polynomials of dﬁ'which meet each
agzxj and do not meet any of the 7TC}V

Let U denote the family of all such N(Ko).

K
0
Then it can be easily shown that UK is a filter base.
0

2.2.3, For each Ke J? let eny be the filter

generated by UK; cf. 2.2.1 and 2.2.2., Then it can be
easily verified that for all Ve nyx there is a

We efvx such that W V and Ve ef?K' for each K'eW,
Hence there is a topology €721 on f such that of,

Ke di , 1is ﬁrecisely the neighbourhood system of K
with respect to the topology 2?1; cf. [6].

2.2.4. The space ( ;é?, Q}l) has the follow-
ing property.
( ZE:, Cg/l) satisfies the first axiom of

countability. We can verify this by determining the

sets and segments involved in the UK's by a finite

collection of rational numbers.
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2.2.5. A sequence {K.;} of polynomials of

"

0@? is globally convergent or Cg,l-convergent to

a polynomial K in AL if and only if every neighbourhood

of K contains all but finitely many Ki‘

2.2.6. The following results are standard;
cf. Le].

(i) If K is an accumulation polynomial of a sequence

{Ki} of polynomials in 55-, then there is a subsequence
of {Ki} cbnverging to K.

(i1) ¢ 5571 le ) is a Hausdorff space.

2.3. Equivalence of pointwise and global

or C?/l-convergence.

2.3.1. Let a sequence {K,} of polynomials of

J? be pointwise convergent to K,. Then {K;} is

globally convergent to KOf

Proof. (i) Let KO be regular. Then it has a

normalized equation of the form

y = b0 + blx + ...t bnxn.

Since K0 is regular, Ki are regular for all large i;
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cf. Remark 1.3.5. If the equation of K; is of the form

Y = a;q * 239X + ...+ a, X,
then
1lim a1j = bj; j=0,1, .,., n;
1 & o

Let Q¢K0 and let (x4, y,) be the coordinates
of Q. Then

n
b0 + blx0 + ...+ Db Xy - Yo ¥ 0.

Suppose, for instance, that

. n

bo + ble * 0. + bnxo - yO > 0.

Then, for all sufficiently large i,

n

+ ... * ainxO - yO > On

250 * 341%0

From this it follows that if two points P and Q are

separated by K;, then they are also separated by
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K, for all large i. HenceS,Kig is globally convergent

to KO.

(ii) Let Kye & N . Let N(Ky; { L .}, { ¥ 1)

Aj
be a neighbourhood of Ko; cf., 2.2.2,

The curve Ki cannot meet the closed segment
¥t 4 for all large i, otherwise {K;} would have a

limit point on %1}f

Let P = ankj‘qAx‘ Let N be a neighbourhood
of P in G such that JTLAj decomposes N into two
disjoint regions. Choose Q; and Q, in Ax{\ N on
opposite sides of gr{kj. Then there exist points
.QIA and Q,, in Kj (N lying in opposite sides of

d¥Lyj- Hence X; meets ]atxjfﬂ N.

2.3.2. A sequence {K;} of polynomials of

——

dz which is globally convergent to a polynomial

——

Koe & 1is also pointwise convergent to K,.

Proof. (i) Let Kye & ; PeK,. Let N(P)
be a neighbourhood of P in G. Choose a neighbourhood

N(KO) = N(KO; Sl, SZ) of KO in Ji‘such that

N(P) NSy # # and N(P) N S, # 8.
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Then all KieN(KO) meet N(P). Hence P is a

limit point of the sequence {Ki}'
Next, suppose that Q#KO. Then there is a
neighbourhood N(Q) of Q in G such that

N@Q) N\ K, = 8.

Now the points of Ky, satisfy a normalized equation of

the form

(2.3.3) ag + a;x + ...+ anxn -y - 0.

Since Q#KO, the coordinates of Q say, (xo, yo) do

not satisfy the equation (2.3.3). Thus, say,
an + a;x, + + a_x . Yo =670
¢ 170 T n"o 0 '

Hence there is a 61 > 0 such that

n
ag * agxXy * ...t a Xy -y > 61

for (xl, Y1) = 0,eN(Q) if N(Q) is sufficiently small.

Choose points P,, ..., P, on K, and neighbour-

hoods N(PO), cens N(Pn). Choose points Rj and Tj
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in N(Pj) such that R, and Tj are separated by KO and

J
all the points Rj lie on the same side of Ko; j =0,..., n,

Put
Sl==UR.,SZ'-\j}Tj.

Then K,eN (KO; Sy Sz) for all large i. Hence Ko will
meet each N(Pj).
By choosing N(Pj) sufficiently small we can

ensure that the coefficients

aio, ¢ s 0y ain
in the normalized equation for K, will be close to
ao, .I., a

respectively. Hence

n

e *ag Xy -y

ajg * 3319 > 0.

Thus the points of N(Q) do not lie on Ky for
sufficiently large i. Hence Q is not an accumulation
point of {K;}. Thus any accumulation point of {Ki}

belongs to Ko and therefore is a limit point.
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(ii) Let Kje AN EZ . Let PeK,, P not a
vertex of a ray of Ky. Let N(P) be a neighbourhood of
P. Consider a neighbourhood N(Kg; { 9Ttkj}, { m,hH
of Ky such that one of the 3rtxj passes through P and
is contained in N(P). Since {Ki} is globally convergent
to K, K, meets this 7W11j and therefore N(P) for all

large i, Hence P is a limit point.

Now, let K be the set of all accumulation
points of {Ki} . Then K is the union of limit sets
of all convergent subsequences of {K;}; cf. C7].
Also any convergent subsequence of {Ki} converges
pointwise to a degenerate polynomial. For if some
subsequence of {Ki} converges pointwise to a regular

polynomial X', then by 2.3.1, it converges globally to

K'. Hence a component of K is a line parallel to

?% or part of such a line; cf. 1.3.4. We wish to
show that K = KO.

Let QeK‘\KO. Then there is a neighbourhood
N(Q) of Q such that N(Q) N K, = #. Let N(K,; {ij}'
{ ¥ 1}) be a neighbourhood of K, such that one of the
T™n is contained in N(Q).‘ Then Ki does not meet
this U4, for all large i. Hence K does not have
points on both the sides of 7Y( , in H(Q). Therefore

Q cannot be an interior point of the component of K
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through Q. Thus all the interior points of the compon-
ents of K belong to K, hence are limit points of
{k,;}.

Since K and K, do not have isolated points
(cf. Remark 1.3.1), end-points of components of K and
K, are also limit poinfs of {K;},

Thus {K;} converges to Ko pointwise.

2.4. The space (}ii g?z).

2.4.1. Let K0 be the 1limit of an orientably
pointwise convergent sequence {Ki} of polynomials.
Let the component Al of K0 be assigned the multiplicity
m, = m(AA)‘E 0 or 1 (mod 2); cf. 1.5.2.
If Ky is degenerate we replace (2.2.2) by the

set

(2.4.1) N(Kg) = N(Ko3 { t,5), my, {0 T 4D

which consists of Ky and those polynomials of ;Ef which
meet each ax{xj with a multiplicity = my (mod 2)
and which do not meet any of the ¥ ,.

If KO is regular, N(KO) is still defined by
(2.2.1).

Let Cg 5 be the topology with respect to the
neighbourhood basis in (2.4.1). Then the statements

in sections 2.2.3 up to 2.2.6 still hold if C? 1
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is replaced by q; 7°

Remark. Clearly qg ,-convergence implies

?9 j-convergence. Hence 99 , is finer than Cgfl.

2.4.2. The proof of the following statement
follows directly from 2.3 and the definitions of

Cg,z-convergence and orientably pointwise convergence.

A sequence {K.} of polynomials of K is

Qg'z-convergent to X, if and only if {Ki} is orientably

pointwise convergent to K.

2.5. The space ( 233, '€§3).

2.5.1. Let K, be the 1limit of a multiplicity
pointwise convergent sequence of polynomials of ‘Z%r}
cf. 1.7. Thus any point Q of Ko has a multiplicity
m(Q). If Q and Q, are points of the same component
C of KO, then m(Ql) = m(QZ)(mod 2); cf. 1.7.2,

Theorem 1.

If X, is degenerate,then we define a set
(2.5.1)  N(Kq) = N(Kg; “’xj}’ My { e, h; my m(PU),

which consists of K, and all those polynomials of Eir

which meet a suitable closed line segment ¢ A
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through ij, kﬁilj‘ﬁ.ﬂg/ , with the multiplicity
™ and do not meet any of the closed line segments
]rzh; cf., 2.2.2.
If Ky is regular, then N(KO) is still defined
by (2.2.1).

Again the family of all such N(K;) form a
filter base and induces a topology q; 3 on &~ such

that the statements in sections 2.2.3 to 2.2.6 still

hold if we replace Cg‘l by Cg 5

Remark. Clearly Cg,s-convergence implies

gy ,-convergence, i.e., Q}/S is finer than CE}Z.'

2.5.2., The following statement can be easily

verified with the help of 1.7 and 2.4.2.

A sequence {K;} of polynomials of R is
qg z-convergent to K, if and only if it is multiplicity

pointwise convergent to Ko+

2.5.3. It may occur to the reader that the

neighbourhood system which has been introduced in
this chapter could be replaced by the topology defined
by regarding the polynomials

n

ay = ag + ajx + ... + ax



as points of a projective (n+1l)-space:
(a, agy e an) # (0, 1, 0, ..., 0).

This correspondence however, does not take care of the
double rays, for instance. 1In particular, as a

tends to zero the points (a, 0, 0, 1, 0, ..., 0)

in the projective (n+l)-space converge to the unique
point (0, 0, 0, 1, 0, ... 0) which we might normally
associate with the double line x2 = 0, On the other
hand, if a tends to zero, a > 0, then the parabolas

2

ay = x2 converge to the double ray x” = 0, y > 0, but

38

if a tends to zero, a < 0, they converge to the opposite

double ray x2 =0, y <0.

—

2.6, Two lemmas. Let Kle y be an orientable

polynomial and K, be a regular polynomial. Then the
following two lemmas can be easily verified with the

help of the neighbourhood system described earlier.

2.6.1, Let K1 intersect K at a Eoint P;

cf. 1.8.1. If K; and K, are sufficiently close to K,
..

and K, respectively, then Ky interseets K; at a

point P' close to P.

2.6.2. Let K; intersect[support]K, at a point

P. Then any K sufficiently close to K, meets Kzlﬁ N
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with an odd multiplicity [with an even multiplicity

or does not meet at all’] for a sufficiently small

neighbourhood N of P.

2.7. Continuous orientation. Let 0L = (JE?, S 2)

be a family of polynomials with no isolated members.

We call (U continuously oriented at Kse OL if for

every Png, a =1 or -1, we have Pek® for all Ke OL

sufficiently close to KO. The family (Ot 1is continuously

oriented if (L is continuously oriented at every Ke Ol .

Thus the oriented family N(Ky) defined in

(2.2.1), (2.4.1) and (2.5.1) is continuously oriented
at Koa



CHAPTER III

Some families of polynomials of Jﬁ .

3.1. The family d2,(P).

3.1.1. Let jfl(P) denote the family of all

the polynomials of 2 through a fixed point P,

The ngl-closure of the family Ja'l(P),
denoted by Elcp), is obtained by adding to 42 ,(P)
all its limit polynomials. Clearly Zé?l(P) is

ngl-closed. We note that P is a limit point of every

sequence of EE'I(P); cf. 1.2.

Now, since ;gl(P) is closed, by the Generalized
Bolzano-Weierstrass theorem %E_can be seen that every
sequence of polynomials of 45-1(P) contains a convergent

subsequence whose limit belongs to ﬁZI(P); cf. U71.
Hence Zsl(P)'is”a‘countably compact set of ( 35, Cyl).

3.1.2. Let P, Ql’ ceey Qp be mutually distinct
points. If no two of them lie on the same line parallel
to Q% , then there is a unique regular polynomial of
degree < m of éfl(P) through them. It will be denoted

by K(P, Qq, -+, Qp)-

- 40 -



If a degenerate polynomial K is the limit of
a sequence of m-regular polynomials, then K is called

a degenerate polynomial of degree m.

If exactly two of them + 1 distinct points
P, 0y, ..., Q. lie on the same line parallel to 09 ,
say 5{ (Qm-l’ Qm) \\‘l%, then there is exactly one

degenerate polynomial of éﬁ 1(P) of degree m through

them, namely

L@ ULepU..... U L@.p-

If the set { L (P), & (Q), -.--.» X (Q)}

consists of fewer than m mutually distinct lines, then
there are infinitely many degenerate polynomials of

degree m of & 1(P).

3.2. The family ?h(P). Put

Yy, = Jz' and V¥

- Jilm.

0 1

Then for any polynomial KOEW1 we define

to be a family of ?1 which consists of KO and all those

41
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regular polynomials which have at least h point contact

with Ky at P. Thus a polynomial Kewh(KO) of degree

< m is determined by m - h + 1 of its points all of which

are distinct and different from P, say Ql’ N Qm-h+1'

Such a polynomial will be denoted by K = K(Wh; Ql, ‘e m-h*l)'

3.3. The family o, (P).

3.3.1. Let KO be a polynomial of ¢£51(P).
Let Q, ..., Om-h be m - h points such that the lines

£ ), e Q) «vvy Z (Q,.p) are mutually distinct.
Let

d’h = Qh(P, Qly v ey Qm-h)

be the family of those polynomials of ?h(KO) which pass
through the fixed points P, Qs +oes Qm-h and have degree
< m. The family ¢h has the property that through each
point of G\ {P, Qs oevs Qm-h} there is at most one member

of ¢y,- Such a family will be called a one-family.

Let P be the origin and let the equation of
X (@) bex -b,=0,i=1, ..., m-h. Let K; be
the unique polynomial of Wh(KO) of degree < m - 1 through
the points Qps e Qm-h' Suppose K1 has the equation
gl(x) = azxz + e e + am_’lxm-l,

thus, the x-axis is taken along the tangent of K, at P.
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Define
g,(x) = x"(x - b)) ... (x - b ).
Then the family 2N is given by
fx, X)) = gy (X) + g, (x); -» < A < =,

3.3.2. Let y = mx + c be a line X 1? .

Then we shall show that for sufficiently large X the

equation
(3.3.2) f(x, \) ~-mx - c =20

does not have more than one root in a sufficiently small
neighbourhood of any of the b, 's.
Suppose that (3.3.2) has more than one root near

b.. Then the equation
f'(x, A\) ~m=20

has at least one such root. It can be easily seen,

however, that for any m # 0 we can choose a Ao such that

£'(x, A) - m # 0 for all [x| > [x,].
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[y

Thus the equation (3.3.2) has at most one root close to

i=1, ..., m - h for sufficiently large A.

3.3.3. Next, let us consider the roots x > 0

of the equation (3.3.2) in a neighbourhood of the point
R(0, ¢), ¢ # 0, say c > 0. Let N be a sufficiently small
neighbourhood of R. If (x, y)eN N f , then x is small
and f(x, A) is close to c.

Now for x small gl(x) is small and hence f(x, 1)
is close to kgz(x) which is close to Axh(—bl)...(—bm_h).
Hence Xxh(—bl)...(-bm_h) is close to c¢. Therefore the
dominating term of f'(x, A); i.e., of lgé(x), which is
thh'l(-bl)...(-bm-h) is large for sufficiently small x.

Hence
f'(x’ >‘) 'm#o

for (x, y)eNN ¥ , x > 0. Thus the equation (3.3.2)
has at most one root x > 0 with (x, y)eN n £

Similarly, it has at most one root x < 0,

(x, JeNN 2

Remark 1. If h is odd and x is small, then
Axh(-bl) “en (-bm_h) cannot be close to ¢ for both x > 0

and x < 0. Hence for an odd h the equation (3.3.2) has

at most one root x with (x, y)eN. However, if h is even and

Axh(-bl) ce (-bmwh) is close to ¢ for x > 0 then it is so

for x < 0.
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By applying Descarte's rule of signs we obtain

the following.

Remark 2. If for a sufficiently large Ag > O
[sufficiently small i, < 0] the equation (3.3.2) has one
root x > 0, then it will have exactly one such root for

all X > Ag[x < 2,7,

3.3.4, Let h > 2, First we wish to show that

the multiplicity of P with respect to the lines through
P different from the tangent "} of K; is at most three.
Let £ :y=mx, m# 0 be any line through P.

We consider the non-zero roots of the equation
(1) f(x, \) -mx = 0,

Division by x yields

m-1

i-1 h-1
izz a; x + AX (x - by) vo. (x - b 3) -m =0,
\
Now for x > 0 [x < 0},x close to zero, XXh'l(x-bl)...(x-bm_h)
m-1 .
is close to Axh'l(-bl) veo (-by_4) and m - 22 aixl"1

i-
is close to m., Hence for x close to zero Axh'l(-bl)...(-bm_h)

is close to m. Therefore f'"(x, A) which is close to

2a2 + Ah(h - 1)xh'2(-b1) ces (-bm_h) when x is close to zero
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(and thus X is sufficiently large), is close to 2a, +mh(h-1)/x

i.e., for sufficiently large A, f"(x, A) # 0 for x # O,
x close to zero. Hence f'(x, \) = m = 0 has at most.
one positive root [at most one negative root7] near zero
for sufficiently large A. Thus the equation (1) has
at most one positive (negative) root near zero for suff-
iciently large . Thus by Remark 2 of 3.3.3, we conclude
that the point P has multiplicity at most three with
respect to lines different from = .

Next, we wish to show that K, meets “3 outside
P at most once on each side of the origin in a sufficiently
small neighbourhood of P.

We may assume that a; # 0 for some i < h, where

m-1

aixl. Let a. be the first non-zero coefficient

~1

gy (x) = Ly

in gl(x). Hence the non-zero roots of f(x,\) are precisely

the roots of the equation

h-
a, *a qXx *+ ... *a X + AX r(x -h)y ... (x - bm-h) = 0,

Now for x sufficientlyclose to zero, x ¥ O,Xxh'%x - bl)"’

(x - bm-h) is close to xxh'r(-bl) co (—bm_h) and a_ +

m-r-1

a X+ ... + a X is close to a. and hence

r+l m-1

Axh'r(-bl) ... (-bm_h) is close to a Therefore for x

r
close to zero (and thus for sufficiently large 1)
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1£(7* ) (x, )| which is close to | (R+1)ta_,, *+ Ah(h-1) ...

(h-r)xh'r'l

(-by) ... (-bm_h)| is large.

Now, suppose that f(x, A) = 0 has two positive
roots near zero, say X, and Xje Then f'(x, A) has a
positive root xé between xl and X, and f'(x, 1) has also
a positive root xi between 0 and Xg. But £'"(0, A) = 0.

Hence f'"(x, A) has a positive root xy between 0 and X

Since
T g Ay = ... = £1(0, A) = £(0, A) = 0,

we can continue in this fashion and deduce that f(r)(x,X) a (
has two positive roots close to 0.- Hence f(r‘lkx, A) = O
has a positive root close to 0; a contradiction.

Again by 3.3.3, Remark 2, the point P has multi-

plicity.

3.3.5., The discussion in 3.3.2 to 3.3.4 shows

that if K is a degenerate polynomial of Eh’ then each
point Q of K has a multiplicity m(Q) and m(Q) = 1 if
e L (Q;), 1 <i<m-hand m(Q) =1 or 2 for QeC(P),
0 # P according as h is odd or even.

Also, let {X,} be Cg j-convergent to K. Let
R = (x4, ¥g)>» R¢K. Then (xq5 y0)¢Kk for sufficiently
large A, i.e., f(xo, A) # 0 for sufficiently large A.
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Now if f(xy, Ay) > 0 ff(xo, Ag) < 071 for one sufficiently
large i, 1.e.,JAO\>‘§ET§ET\ then f(xo, A) >0 [f(xo, A) < 0]
for all |x| > | xy|. Hence {K,} is Q} ,-convergent to K.
Thus it follows that if {K,} is C} 1-convergent

to K, then it is in fact 0 z-convergent to K. Therefore

the e}l-closure'sh of °h is actually the Cgs-closure. Hence
all the three topologies ?}1’ i}/z and <a,3 coincide on

Eh’ therefore from now on we can simply say that a sequence

of Eh is convergent without referring to a topology

D10 Gaor G-

-Also, we note that'sh is a closed subset of

—

R 1 (P) and ézl(p) is 99 1 -compact, therefore'sh is

—

CQ 1 -compact, hence'ah is compact; cf. U 7].

3.3.6. Let K be a degenerate polynomial of'ah.

Then

K=CP) U L QU ... v Q)

where C(P) is the single line Jf (P) or a double ray

with vertex P according as h is odd or even and Q;)

are single lines, 1 < i <m - h.

Proof. Let {K;} be a sequence of polynomials

of ¢, which converge to a degenerate polynomial K.
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First we show that if h is even, then the
component C of K through P is not a line or a ray of
which P is an interior point. Suppose that C = Jf (P)
or such a ray. Let K; be the unique polynomial of
Wh(KO) of degree < m - 1 through the points Ql’ N
Opn-h Since P is an interior point of C, we.have, for

any neighbourhood N of P in G,
*1
CAN K1 N N # g,
Therefore, for sufficiently large i,
t]

Hence K, intersects Ki at P. But K1 and Ki belong to
?h(KO) and h is even, Thus we obtain a contradiction; cf.
1.3.7. Hence C is a ray with the vertex P and there-
fore a double ray; cf. 3.3.5.

Now we shall show that if h is odd, then the
component C of K through P is not a ray. Suppose that
C is a ray. Define K1 as above. Then K supports Kl
at P; cf. 1.8.1. Hence for sufficiently large i, Ki

meets K, an even number of times in a small neighbourhood

N of P in G; cf. 2.6.2., Since h is odd, Ki and K1 meet

at least once more in N. Thus for sufficiently large i,
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Ki and Kl have at least m - h + 1 points in common out-

side P, hence they coincide. Therefore K = K,; which is

1>
impossible. Thus if h is odd, then the component through
P is the line £ (P). By the Remark 1 of 3.3.3,

L (P) is a single line. Again by 3.3.2Z the components
of X through Q;, ..., Q _; are single lines ba (Q)s +ves

L @Q,.4)-
3.5.7. Let N be a small neighbourhood of P in

(i) If h is even, then K1 decomposes 2% into
two disjoint subfamilies, say ® 1 and ¢y 1 such that
b 9
any member of ), o Dasses through N n K?, a =1, -1,

Furthermore, 2N o is bounded by K1 and the degenerate

polynomial through P, Ql’ ceny Qm-h whose component

through P is a double ray passing through N N K?.

Thus ¢, is homeomorphic to a real closed interval and

is bounded by two degenerate polynomials,

(ii) If h is odd, then Ky decomposes 12N into two
disjoint families ¢, , and ¢, _, such that any member of
’ ’

¢h,a passes through
N ZP*nkHVU N n L@ % K%,

for suitable orientations of Y (P) and Kl‘



Here each ¢ is bounded by K, and

h,4

K= L ® U ZQIVU... UZLI@Q.):

Thus h is homeomorphic to a circle.




CHAPTER 1V

Polynomial Differentiability of an Arc

4.1, Arcs.

4.1.1. An arc A is defined as the one-to-one

continuous image in the real affine plane G of a real
parameter interval. Thus if a sequence of points of
the parameter interval converges to a point p, the
corresponding sequence of image points is defined to
be convergent to the image of p. The same letters,
p, t, ... denote the points of the parameter interval

and their images on A. The end-points (interior points)

of A are the respective images of the end-points

(interior points) of the parameter interval:-.

A neighbourhood of p on A is the image of a

neighbourhood of the parameter p on the parameter
interval. If p is an interior point of A, this neigh-
bourhood is decomposed by p into two (open) one-sided

neighbourhoods.

4.1.2., A polynomial Kg éz meets A at p at

least r-times i1f there exists a sequence {Ki} of poly-
nomials of 4 converging to K such that each k; and
A have r mutually distinct points in common which

converge to p.
- 52 -
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A polynomial Ke 2 meets A at p exactly
r-times if K meets A at p at least r-times but not at

least (r + 1)-times.

4.1.3. The JZ -order. If no polynomial of

& meets an arc A in more than a finite number of

points, then A has finite polynomial order or finite

jz -order. If the least upper bound of these numbers

is finite, it is called the G -order of A. If A

has finite & -order and for any given integer m

there is always a polynomial K of J2 which meets A

in more than m points, then the [ -order of A is unbounded.
The S -order of a point p of A is the & -order

of a sufficiently small neighbourhood of p on A.
From now on we shall assume that the point p

of the arc A has finite polynomial order.

4.1.4. Support and intersection. An orientable

polynomial Ke S intersects {supports’] the arc A at a

point peA if for every sufficiently small neighbourhood

Nofpin6g
NNANK= {p}

and neither [one’] of the sets A AN F\Ktl is empty;
cf. 1.4.2.
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In particular, if p is a point of a ray of a
polynomial Ke }E , then one of the sets N N I(i1 is
void if N is small. Hence K supports A at p if

NNANK-= ip}| when N is sufficiently small.

4.2. Tangent polynomials of an arc.

4.2.1. Let p be a point on the arc A. Since
A is a 1-1 continuous image of a real interval, the
line K(p, s) will be uniquely determined if s # p,

se A. From now on the point s will always be assumed

to lie on A and be different from p.

—— —— ——

The arc A is called once polynomially differen-

tiable at p if the following condition is satisfied.

Condition 1. The line K(p, s) converges if

s tends to p, i.e.,

1im K(p, s) exists.
S+p
We shall call this limit K(p2) or © . It is the

ordinary tangent of A at p.

Remark. It can be easily verified that if p is
an end-point of an arc A of finite order, then A

satisfies Condition 1 at p; cf. [97.
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4.2.2, Let peA. If :ﬂ (p) has infinitely

many points in common with A, then a line ¥ sufficiently
close to ;ﬁ ™, LN ﬂg , also has infinitely many
points in common with A. Since p has finite 35 -order,

s¢ Y, (p) for s sufficiently close to p.

et L@, L@, ..., Q) be mutually
distinct and for se A\{p}l let

K(s) = X(p, s, Ql’ ceey Qm_l); 1 <m<n,
be a unique polynomial of degree < m of Sg‘l(p).
Since p has finite 35 -order, K(s) is not a regular
polynomial of degree < m and also from the above it is
not degenerate of degree <« m for s sufficiently close
to p. Thus for s sufficiently close to p, K(s) is

m-regular.

In the next three sections K(s) will mean the
m-regular polynomial K(p, s, Ql’ ceey Qm-l)‘ Now
K(s)edy (p, Qps -vvs Q) = &;. Since 31 is compact,
any sequence {K(s)} has an accumulation polynomial in

L and if it has only one accumulation polynomial K,

then it converges to K.

4.2.3. Let K(s) and K(p, s) converge to K

and f respectively. Here we let s range through a

certain sequence of points converging to p. Then K is

s ———




regular if and only if ¥ 1t Wg .

Proof. If m = 1, then clearly above statement

is true. Hence letm > 2.

Suppose that ji'ﬂ~ﬂ9/ and X is degenerate.
Thus K consists of the single lines Y, (p), jL(Ql) ,
- ‘i(Qm_l); cf. 3.3.6. Hence K intersects £, at p

and at m - 1 other points, say Ry, ooy R Therefore

m-1°
for s sufficiently close to p, K(s) will meet the line

K(p, s) at p, s and m - 1 other points close to

R R respectively; cf. 2.6.1. Therefore

1’ ...’
K(s) = K(p, s); a contradiction, because K(s) is m-

m-1

regular, m > 2.
Next, we observe that if K is regular, then

ji will be tangent of K; cf. 1.6.1. Hence 1:1+ﬁg .

4,2.4, The arc A satisfies Condition 1 at

p if and only if the unique polynomial K(s), of. 4.2.2 ,

converges as s tends to p.

Proof. (i). Let A satisfy Condition 1 at p.

Let K be an accumulation polynomial of the K(s).

If Q}TLQQ/ , then K is the unique regular
polynomial of degree < m which has two point contact
with 4 at p and passes through the points Qs +oes
Qm-l; cf. 4.2.3.

If ﬁ*\\ﬁ? , then K is the unique degenerate

56
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polynomial consisting of the lines ;} , ]ﬁ (Ql), ceey
L@,.{)-

(ii). Let K = 1lim K(s). Then we shall show
that A satisfies Conditigﬁ 1 at p.

If K is regular, then the line K(p, s) converges
to the tangent T of K at p; ¢f. 1.6.1. If K is
degenerate, then the line K(p, s) converges to :ﬁ (r),

by 4.2.3.

4.2.5., Let A satisfy Condition 1 at p. The

limit polynomial of the K(s) will be denoted by
2
K(p~, Qs +vvs Qm-l)'
Let ﬁﬁ 2(p) be the set of all polynomials
which can be obtained as a limit of the polynomial

of the type

K(S) = K(p’ S, Ql: sy Qm-l)

for any m, 1 < m < n,
By 4.2.3, if K(pz) is regular, i.e., if
q}*ﬂ\ﬂﬁx, then izz(p) consists of regular poly-

nomials. Thus in this case

& ,(p) = ¥,(X(0%); cf. 3.2.
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If K(pz) = ii(p), then ﬁzz(p) is the set of
degenerate polynomials each member K of which consists

of m lines parallel to ﬂg exactly one of which is

I (p); 1 <m < n,

By 3.3.6 each of the components of K is a
single line; i.e.,a line counted once. The members of

ji ,(p) will be called tangent polynomials of A at p.

4.2.6. Let p, Q, ..., Qm-l be mutually distinct

points such that

Lo, L, ..on L@ = L@

are mutually distinct. By 4.2.2 we have, for s close to

P,
s¢ LU Z@IU... UILQ,,)-

Hence there is a unique degenerate polynomial of degree

m , namely

K(S) = K(p, s, Ql’ ev ey m_l)
= L v ZGIU L QI v Qe Zqlp).

Hence any accumulation polynomial K of the K(s) as s
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tends to p consists of the double line through p, and

m - 2 other lines, all parallel to qg/.

4.2.7. Let p be an interior point of the arc
A. Suppose that A satisfies Condition 1 at p. Then

A satisfies the following standard lemma; cf. [10].

The lines different from % through p either

all support A at p or all of them intersect A at p.

4.2.8, The non-tangent polynomials K of A

at p either all support A at p or all of them intersect

A at p.

Proof. If K is regular, this lemma is the special
case of 4.56.1 in which h = 1,

If K is degenerate it follows from 4.2.7.

4.2.9. Let A satisfy Condition 1 at the interior

point p.

Then A has a cusp at p if the non-tangent

polynomials of A through p support A at p. It is a

cusp of the first kind if the tangent “§ of A at p

intersects A at p and it is a cusp of the second kind

if % supports A at p.
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4.3, Osculating Polynomials.,

4.3.1. Suppose that the arc A is once differ-
entiable at p. Let %} = K(pz) be the tangent line of
A at p, C&-T¥~ﬂ§, . Then s¢ = if s sufficiently
close to p, cf. 4.2.2. Hence by 4.2.5, there is a unique
tangent 2-regular polynomial K(pz, s) (i.e., an ordinary
tangent parabola of A at p through s).

We say that the arc A is twice differentiable

at p, if the following condition holds.

Condition 2., The polynomial K(pz, s) converges

as s tends to p, i.e.,

lim K(pz, s) exists.‘
s+p

We denote this limit by K(p>) and call it the

osculating parabola of A at p. If K(p3) is degenerate,

then, by 3.3.6, it is a double ray with the vertex p.

4.3.2., Remark. If the osculating parabola

K(ps) happens to coincide with the tangent 3 of A at
p, this is of no special significance in our theory.
For a suitable non-linear transformation of the plane
will map the family of the regular tangent parabolas of

A at p into the same set of curves such that the



new osculating parabola will be 2-regular. This will
not affect the intersection and support properties of

these curves at p with respect to the arc A.

4.3.3. Let 9}\\ﬁ9/ . Since p has finite

& -order, s¢ § for s sufficiently close to p.

By 3.1.2 and 4.2.4, the unique degenerate tangent poly-

nomial K(pz, s) of degree 2 of A at p through s
consists of the pair of distinct single lines I and

<£ (s). As s tends to p, K(pz, s) converges to the

double line on ng. Thus in this case Condition 2 is

automatically satisfied. This limit polynomial will

also be denoted by K(ps).

4.4. The h-osculating polynomials.

4.4,1, Suppose that the differentiability of
the arc A with respect to polynomials of ¢ has been

defined up to the order h - 1 and A is h - 1 times
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differentiable at p. Thus the family &2 (p) of (r - 1)-

osculating polynomials has been defined and exists;
1 <r <h. In particular, K(p¥, s) has been defined

and exists when s is sufficiently close to p and

1im K(pr, s) = K(pr*l) exists; 1 <r < h - 1,
S=+p - T
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Suppose that K(pr, s) is r-regular for 1 < r <h - 1.

4.4,2, Let us assume at first that K(ph) is
regular. Thus K(pr) is also regular; 1 <r <h - 1.
Define jﬁ h(p) to be the family Wh(K(ph)) of the (h - 1)-

osculating polynomials of A at p; cf. 3.2. Then for s

sufficiently close to p, there is a unique regular
polynomial K(ph, s) of di h(p) of degree < h through s.
In fact, K(ph, s) is h-regular, otherwise it would
coincide with K(ph), which leads to a contradiction of
the assumption that p has finite polynomial order.

We say that the arc A is h times differentiable

at p if the following condition holds.

Condition h. The h-regular polynomial K(ph, s)

converges as s tends to p; i.e.,

lim K(p®, s) exists.
S<+p

We denote this limit polynomial by K(ph+1)

and call it the h-osculating polynomial of A at p.

If K(ph+1) is degenerate, then by 3.3.6, it
is one of the two double rays with the vertex p [ the

line £ (p) )| if h is even Vodd].
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4,4.3, We return to 4.4.1 and assume now that

K(ph'l) is regular but K(ph) is degenerate, 3 < h < n + 1,
Define the family Q ,(p) of (h - l)}osculating poly-
nomials of A at p to be the set of the degenerate poly-

nomials

koM U L@ U ... UZQy)

where 1, f, Q) «-es I (Q,.}) are mutually

distinct and h < m < n. In particular, the unique
polynomial K(ph, s) of ai’h(p) consists of a double ray
on Y (p) with vertex p [ the single line X, (p)
and L (s) if h is odd [even]; cf. 3.3.6. Hence as
s tends to p, K(ph, s) converges to this double ray
together with the line £ (p) [ the double line on

L (p) ) if h is odd [evenl. Thus Condition h is
satisfied automatically in this case.

More generally, if K(ph) is degenerate but
K(ph'l) is regular, then all the Conditions h, h + 1,

., n are satisfied automatically.

If h is odd, then K(pr), r > h, consists of a
double ray on I:(P) with the vertex p together with
the line 7, (p) counted r - h times. If h is even,
then K(pr) consists of the line r (p) counted r - h + 1

times.
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4.4.4. The members of . ;(p) will be

called h-osculating polynomials of A at p.

As in 4.4.2, we note that if K(ph+1) is regular,
then % ., (p) is the family ¥, (K(p™*1)); cf. 3.2
h+1'\P Y The1RP » CR. 2a2.
Thus each Ke dﬁ'h+1(p) will have at least h + 1 point
contact with K(ph+1) at p. If Kis an m-regular
polynomial of Jilh+1(p) and if Q;ekK, Q #p, Q4 ¥ Qj’
i#$¥j,1<i<m-h,1<j<m-h, then K will be

denoted by K(ph+1

» Qps wves Qup)-

4.4.5. Suppose that the arc A is h - 1 times
differentiable at p and suppose that K(ph) is regular.
Suppose the straight lines Jf(p), L QY, «-vs

;f(Qm) are mutually distinct; 0 <m <n - h. Then
for s suffiéiently close to p, there is a unique regular

polynomial

K(s) = K(p", s, Qp, «vvs Qp)

of degree‘i m+hin B n(P). Since A has finite
polynomial order, K(s) is(m + hyregular. Also .
K(s)ed, (p, 0y, «.., Q) and & is compact; cf. 3.3.5. Hence any
sequence {K(s)} has an accumulation polynomial and if it
has only one accumulation polynomial K, then it converges

to K.
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4.4.6. Let A satisfy Condition h at p. Then

K(s) converges to a polynomial K' such that

Kevy,, KOMHLk = ko™ UL pu ... ULyl
if K(ph+1) is regular [degenerate].

Proof. Let K' be an accumulation polynomial
of the K(s). Let {s;} be a subsequence of {s} converging

to p such that K' is the limit of K(s;).

(i) Let K(ph*l) be regular. If K' is degenerate
then it intersects K(ph+1) in m points, say Rl’ ceny Rm;
Rie ;ﬂ (Qi), 1 <i<m. Hence K(ph,si) and K(si)
will intersect each other at m points close to the
Ri's, for S5 sufficiently close to p; cf. 2.6.1. Thus
K(ph, sij) and K(si) meet altogether m + h + 1 times,
hence they coincide. Therefore K(ph+1) = K', which is

impossible. Clearly K'e‘l’h+1(K(ph+1

). Also K' is a
unique regular polynomial of degree «m + h, hence K(s)

converges to K'.

(ii) Let K(ph+1) be degenerate. First, we shall
show that K' is degenerate by using induction on m.
Clearly the statement is true for m = 0, Assume that
we have already proved that if K(ph, s, Ql’ ceey Qm—l)
converges then it converges to a degenerate polynomial Ko
Let Q4K(p", s, Qp, +.., Qu.q)and Qué & () UL (Q))
V...VL(Qy.q). Let
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K(ph, Sy, Qps vees Qm-l’ Qm) converge and suppose that it

converges to a regular polynomial K. Then Ky supports

[ intersects] X at p, if h is even [o0ddl; cf. 1.3.7.

Let N be a sufficiently small neighbourhood of p in G.

Then for s'eN sufficiently close to p on A, K(ph, s', Ql’
. Qm-l) and K(ph, s', Q15 «vns Qm) will meet each

other in N with an even [odd] multiplicity, if h is

even [odd]; cf. 2.6.2. Hence K(ph, $'y Qs +eey Qpq)

and K(ph, s', 015 «-e) Qm) will meet once more in N

and therefore they will coincide. Hence QmeK(ph,S:Ql,...,Qm_l);

a contradiction. This proves that an accumulation poly-

nomial K' is degenerate if K(ph+1) is degenerate,

Next, we shall show that

Kt = K(p*!

) VIEZ@Q)U... UZ@Q).

If h is odd it is clearly true by 3.3.6. Now let h

be even., If {SZi} and {521*1} are two subsequences

of {s} converging to p such that K(SZi) and K(52i¢1)
converge to K, and KO respectively, then S74 and Soi+1
must lie on the same side of K(ph, Ql’ ceey Qm), other-
wise K(ph, SZi) and K(ph, sZi+1) will converge to two
different degenerate polynomials lying on opposite sides
of K(ph, Ql, ceey Qm), Thus the double ray K(ph+1)

belongs to both X; and K, and hence
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Ky = K, = k™) U L@y ... UL Q).

Thus K(s) converges to its unique accumulation poly-

nomial X'.

4.4.7. Let K(s) converge to a polynomial K

as s converges to p. Then A satisfies Condition h,

i.e., K(ph, s) converges.,

Proof. Let K' be any accumulation polynomial
of the K(ph, s). Let {s;} be a subsequence of {s} such

that K' is the limit of K(ph, si).

If X' is degenerate, then as in 4.4.6, K is also
degenerate and K' is the component df K through p.
Hence XK' is the only accumulation polynomial of
K(ph, s). Thus K(ph, s) converges to K' which is the
single line ;ﬂ (p) or a double ray with vertex p

according as h is odd or even.

If XK' is regular, then so is K. Also K' is a
polynomial of degree < h and has (h + 1)-point contact
with K. Hence K' is unique. Thus again K(ph, s)

converges to X'.

4.4.8., Theorem 2. Let the arc A hg h times

differentiable at p. Suppose that K(ph) is regular.




Then ﬁihﬁl(p) is one of the following subsets of
&J h(p)'

(a) &2 ,,{(P) is a family ¥, .; cf. 3.2,

by £ he1(P) consists of those degenerate

polynomials of ;ﬁ whose component through p is the

double ray belonging to K(ph+1) with the vertex p

[ the line £ (p)1if h is even [odd].

4.4.9. Remark. The following example shows

that Condition h does not imply Condition h + 1.
Consider the arc A given by

y = x2 + xh+1 sin %.

Then A satisfies Condition h, but not Condition h + 1
at the point p = (0, 0).
In this éxample, the polynomial order of p is

not finite.

4.4,10. We call the arc A (J - differentiable

at the point p if it is n times differentiable there.

4.5. Support and intersection properties of

the polynomials of éz'h(p); 1 <h<n+1,

68
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In this section let A be m-times differentiable

at an interior point p, 1 < m =< n. From now on we

put &i= ézi(p)-

4.5.1. Theorem3. The polynomials of

éill N R hel’ h < m, either all support A at p or

all intersect A at p.

Proof. Since p has finite ¢ -order, any
polynomial Ke 5{ h either intersects or supports A

at p. Let K, and K, be two-polynomials of .
1 2 h\ & hel

(i) Let K(ph) be regular. Thus K1 and Kz are

regular.

Suppose that K1 intersects and Kz supports A
at p. Let N be a sufficiently small neighbourhood of
p in G such that

K, 0 K, NN = {p}
and

ANNNK = {p} = ANNONOK,.

Let Kz be oriented such that
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AONC KTy (ph

Suppose at first that K1 and K2 have n - h
points, say Ql’ ceey Qn-h in common outside p. Consider
the one parameter family of polynomials of ﬁi}l
through Ql’ ey Qn-h; cf. 3.3. Let seAM N and Let
K(s) be the member of this family through s. Then

K(s) has no points in common with K1 and K2 outside p,

01, . eny Qn—h and
K(s) N K, A N = {p} = K(s)N K, N N.
Since Kl intersects A at p, we have
ANKIN N# B cf 414,

Also if h is odd [evenl, then K(s) intersects [ supports]

Ky and K,; cf. 1.3.7. Hence if h is odd [even] and

seA N NN Kl, then
W k) AN < ®agh uaitng u e nghu o).
Similarly if seA n N NK]', then

) k)N N < &P aKhu b a k) u et agh ]



Let s tend to p. By "T"L.lyeb6, K(s) converges to

h+1
Ko = K™%, 005 ey Qe By

From (1) and (2)
KO(\ N C K1U KZ.

Since Ky and K, are regular, K0 cannot be degenerate

and thus Ky is also regular. Hence either
1 OT KO = KZ'

Therefore either Kl or K, is a polynomial of 55 hel®
a contradiction.

Next suppose that Ky and K2 have fewer than
n - h points in common outside p. Choose n - h + 1

distinct points Rl’ co such that their

’ Rn-h+1
x-coordinates are in increasing order of magnitude and
such that R, and Rj+1 lie on opposite sides of both

]
Kl and KZ; 1 <j<n-nh. Let

h
Ky = K(p, Ris vosy Rn-hfl)'
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Then Kl and K3[fK2 and K31 intersect each other at
n - h points outside p. Hence, from the above, K1
and K5 [ K, and K37 either both support or both inter-

sect A at p.

Thus either both K, and K, intersect A at p or

both of them support A at p.

(ii). Let X(pT) be degenerate. Then it is clear

that for h > r the degenerate polynomials of

R n\ Rpe1 = 55h

either all intersect A at p or all of them support A

at p.

4.5.2. Let K(pi) be regular and let K(pi+l)
be degenerate; 1 > 1. Let h > i,

Then the component of Ke Ji H\ 51 hel through
p is the line Ji (p) counted h - i times if i is odd
and a double ray with vertex p together with the line

L (p) counted (h - i = 1)-times if i is even; cf. 4.4.3.

In particular, if A has a cusp at p, then

Ke JI]{\ Xi hel always supports A at p and if A has
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no cusp at p, then Ke &2]1\ 55 h+l will intersect

[ support ) A at p if h is even [odd]; 1 < i < h.

Let K(p2) = L@, h>4. If A has a cusp of the first
kind at p, then Ke ézylintersects or supports A at p
according as h is even or odd. If A has a cusp of the N

second kind, then Ke éi’h always supports A at p.

4.5.3. Let h < m be an even integer. If K(ph)

is regular, then all the polynomials of &i};\ = h+l

support A at p. If K(ph) is degenerate, then Ke Xi}I

supports or intersects A at p according as A has or does

not have a cusp at p, if K(pz) #)fu¢

Proof. Lbt K(ph) be regular and let Ke 2i}0\2§h+1;
Let Ql’ ceey Qn-h be n - h mutually distinct points on
K all different from p. Suppose that XK intersects A

at p. Let

K(s) = K(p™, s, Qqs «vvy Q_p)

be the unique regular polynomial of &Zh through s, s
sufficiently close to p on A. Since p has finite order,
we can choose s so close to p, that s¢K and K(s) is
n-regular, Also, since K and K(s) have exactly h-point

contact and h is even, they will support each other at p;



cf. 1.3.7. Hence if N is a sufficiently small neigh-

bourhood of p in G and seA N N N\ Kl, then
K(s) NN < (x} U {p}) N N..
Let s tend to p and put

K, = lim K(s) = K(p"*!

’ O y e ey € .
o 1 Q.)€ Ry

Hence

KgN N < (Klp K) N N.
Similarly, for seAN NN K1,

K(s)N Nc (Ktu {phH n N.

Hence

lu © AN

Ko N N (K
Thus

KN N < KN N.

74
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Since K is regular, K, = K. Hence Ke & hel’ contra-

diction.

If K(ph) is degenerate, and K(pz) ¥‘17(p) then

the assertion follows from 4.5.2.

Corollary. Let i be even. Let K(pi) be regular

but K(pi+1) be degenerate. Then K(pi) supports A at p.

4.5.4. Let h <m be an odd integer. Let

h
K(p

or intersects A at p according as A has or does not have

a cusp at p.

+1) be regular. Then each Ke 5@1{\ éi,h+1 supports

Proof. If h = 1, then the statement is true

by the definition of a cusp; cf. 4.2.9. Hence let h > 2.

Let A have a cusp Lno cuspJat p. Thus £ = £ (p)
supports [intersects] A at p. Let Ke Eé};\ 55:h+1‘ Let
015 cvvs 04y be mutually distinct points on K, all

different from p. Let

K(s) = K", s, Qs «vs Q)

be the unique regular polynomial of 35 h through s,
Qs voes Qn-h' Then for s sufficiently close to p,

s¢K and K(s) will be n-regular.
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Suppose that K intersects [supports] A at p.
Let N be a sufficiently small neighbourhood of

p in G such that
K(s) N XN\N = {p}
and
ANYE N N={p}=ANKNN.
Now K and K(s) are both regular, hence
Kn L =Oh=xis)n L .
Let L, [K )be oriented such that
anN ¢ lumhanyc xlu ).
Since K and K(s) have exactly h-point contact at p and
h is odd, they will intersect each other at p; cf. 1.3.7.
Also £ intersects K(s) at p. Hence if

seAdN N L nxiseany nxln xi),

then we have
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kKs)ANec Kiln & Hua aghvip

[l n gHhuva n g™ vk
Similarly, for

seAnN n &ty xtseaan n g tpxt)
we have

kHANc i oL Hveta ehyip
Tl nzgbHua nghv e

Let s tend to p and put

. h+1
KO = ii’; K(s) = K(p ’ Qly vy Qn-h)e ﬁ h+l®

Then we conclude that
KN N < XV £ .

Since K0 is regular, KO N N < K and therefore Ko = K; a
contradiction. _

. h, . h+1

Remark. In 4.5.4 if K(p') is regular but K(p )

is degenerate, then the assertion need not be true; cf. 5.2.4,

4.5.5. Let the arc A have a cusp at p. Suppose
h+1)

that Ke ji};\ 2 h+1 intersects A at p. Then K(p

is degenerate. Thus if K(pm+1) is regular, then

Ke ﬁh\ﬁh-ﬁl supports A at p; 1 < h < m.
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Proof. By 4.2.9, h > 2 and by 4.5.3, h is odd.

Suppose that K(ph*l) is regular. Since h is

odd and p is a cusp, we have, by 4.5.4, Ke ﬁh\&’ hel

supports A at p; a contradiction to the assumption.

4.5.6. Let A have a cusp of the first kind at

p. Let K(pi) be regular but K(pi+1) be degenerate.

Then K(ph) = ﬁ% for 2 <h <iand i is either odd or

equal tom + 1,

Proof. We first prove that K(ph) = 04 for
h=2,3, ..., i. This assertion is trivial for h = 2.

Suppose it has been proved up to h; h < 1i.

Let & = &, be the one-parameter family of regular

polynomials of degree < h which have h-point contact with

Y - K(p) at p; cf. 3.3.

If h is even ¢ is decomposed by & into two
disjoint subfamilies %, CZ“}—a bounded by % and

a double ray with vertex p; o = *1; cf., 3.3.7. If
SE ":lf %, then

K(ph, s)e@a.

Hence
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lim K(p®, s) = k(p™1) = F .
S+p

If h is odd, then K(p™) = F and £ = X (p)
decompose ¢ into two disjoint families ¢d’ o = %1,
each of which is bounded by K(ph) and f . 1If
S4€ A N 1% 0L 1 then

kK, sp e (P ayeh oottt n g huoe,
ke, s ) c( FEPALIHho g n L hHu el
Hence

K(ph+1) = 1im K(ph, s) c%_\) L
s+p

Since h < i, we have K(ph+1) = :} .

Now, suppose that 1 <m + 1 is even. Let

K(s) = K(pi, s)

be the unique i-regular pblynomial of éi i through
s, s sufficiently close to p. Since i is even K(s)

supports “ at p. Hence if s e C*-a then

K(s)) < ‘23-1 U {p} and K(s_;) < '\%'-1 V {p}.
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i+l
keptth = T
a contradiction.

4.6. The degeneracy index. The degeneracy

index I(p) of a differentiable point p is defined as
follows.

(1) I(p) =i, 1 < i < n, if and only if i is
the smallest integer such that K(pi+1) is degenerate;

or equivalently, such that & consists of degener-

i+l
ate polynomials.

(2) I(p) = n + 1, if K(p™1) is regular.

4.7. Relationsbetween the families JE h

and ﬁ hel® Define

R ; = &, U B, o,

The following diagram shows how the families

L 1» +++» 2 peq are Telated.

We observe that

éz}l N j{j = g if j > h > I(p).

» » * »
R Ry A
£ — gz_,ﬁé_,.........,a,gq,&_,, ..... o5 —~ 5



CHAPTER V

A Characteristic of a Polynomially Differentiable Point

5.1. Characteristics. With each interior

differentiable point p of type i, i = I(p), 1 < i <n + 1,

of the arc A, we associate a characteristic

(ao, Ay, ey Ap; i).

The numbers aj are equal to 1 or 2; 0 < j < n. We
define them inductively as follows:

h-1

} a, is even [odd 7}

20 ]

J
if the polynomials of ﬁ h \ ﬁhﬂ all support [intersect ]
A at p; 1 <h <n. Thus ag is even, i.e., ag = 2,if

and only if A has a cusp at p. The number

n
) a; is even Lodd]

j=o0

if the polynomial K(pn+1) supports [intersects] A at p.

- 81 -
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5.2. Characteristics of non-cusp points.

Throughout this section we assume that A does not have

a cusp at p.

5.2.1. Let I(p) =i, 1 =i <n., Ifi is even,

then a; = 2 and a; = 1 for j # i. Let i be odd.

Then a; = 2 and a; =1, j # 1 fai-l = 2 and aj =1,

— )

j#1-1]4if Ke ji i intersects [supports] A at p.

Proof. If 1 < h < i, then by 4.5.3 and

4.5.4)Ke ﬁ h\ & h+l supports or intersects A at p

according as h is even or odd. Hence a, ; = 1 for

h=1’ I..,i‘l.

Now by 4.5.2,

(1) J a;=h-1(mod 2) if i <h<n+ 1,
j=0

This yields, in particular,

i i-2
it a; = 320 a; +a; g *a;= (i -1)+a;, ;+a;=1i (med 2),

(2) i.e., a; +a; = 1 (mod 2).

If i is even, then 4.5.3.still yields a; ; = 1 and there-

fore (2) implies that
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a; = 0 (mod 2), i.e., a; = 2.

If i is odd, then by (2), either a; 4 = 1 and

a; = 2ora; ; =2and a; = 1. Obviously a; ; = 2[a; ; = 1]

if Ke gﬁi supports [ intersects?] A at p.

Now it can be easily seen that for both i even

and i odd (1) implies that

5.2.2, If i =1, then 4.5.2 implies that the

characteristic of p is
(1, 1, 2,1, ... 2; 1) or (1, 2,1, ...., 1; 1)
according as Q} supports or intersects A at p.

5.2.3,. If i=mn+ 1, then 4.5.3 . and 4.5.4

imply that ag = a; * ....=a ;= 1. Thus p has

characteristic
(r, 1, ...., 1, 2; n+1)or (1, 1, ...., 1; n + 1)

according as K(pn+1) supports or intersects A at p.
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5.2.4. The following examples show that for

i=n+1and for each odd i, 3 < i < n, both of the
types of differentiable non-cusp point discussed in

5.2.1 and 5.2.3 exist, and that there exists a diff-

erentiable non-cusp for each even i, 2 < i < n,

In these examples, we take the point p given by

s = 0 on the indicated arcs. Consider

Here § >0 is sufficiently small. The indices k, &, m
are positive integers such that k > 1, m > &, k is

odd, (i - 1) k < 2 < ik.

If i is even and 2 < i < n, let & be even.

Then p has the characteristic (1, ..., 1; a. = 2,1,;..,1;1).

1

If i is odd and 3 < i < n, then p has character-

istic

or
(1, ..., 1, a; 1 *® 2, 1, ...., 1; 1)

according as & is odd or even.
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If i =n+ 1, we obtain examples of the

characteristics
(a, ...., 1, 2; n+1)or (1, ...., 1; n + 1)
by letting 2 = kn.

5.2.5. From 5.2.1, 5.2.2 and 5.2.3, we

obtain the following result.

If A does not have a cusp at p, then the charac-

s . 3 3n + 5
n’ i) of p is one of »n + 2{———7——

different types if n is even [odd].

teristic (ao, A1y 0., 8

5.3. Characteristics of cusp points. Throughout

this section we assume that A has a cusp at p.

5.3.1. Let I(p) = i, 1 <« i < n. Then the

characteristic of p is

(2, 2, ...y, 25 1)

if i is even. If i is odd, then the characteristic of

pis

(2, 2, «ouy 2,1, 1,2, ouuy 25 4), 8, ¢ =8, =1
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or
z, 2z, ..., 25 1),

according as K(pl) intersects or supports A at p.

Proof. For 1 < h < i, by 4.5.3 and 4.5.4,

Ke R p\& ne1

all support A at p. Hence
a; =2, 0<j<i-2,

By 4.5.2, Ke J3 , supports A at p if i < h <n + 1,
h =

Therefore,

) a; = 0 (mod 2).
0 J

If i is even, then by 4.5.3, Ke &2 § supports

A at p. Hence

i
= 0 (mod 2).

o1
]
wa
H

Thus if i is even, then a; = 2, 0 <j <nand p has the

characteristic
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If 1 is odd, then by 4.5.2

or~—3 -
o
tHi

j aj_ 1 *ta; = 0 (mod 2).

Thus

a; 1 =a; =1or 2.

i-1
Obviously, a; ; = 1 if and only if ) a; is odd;
0 .
i.e., if and only if A is intersected by K(pl).

5.3.2. The following examples show that for

odd i, i > 1 both types of differentiable

the second kind exist.

cusp of

Let the arc A be given by

(5.3.2) x = 5 ya st gl

where k and 2 are even, m is odd, m > &, and (i - 1)k < & < ik,

3 <1i<n, The point p is the origin.

If £ = (i - 1)k, then the characteristic of p is

(2, 2, voey 2,1, 1,2, ouuy 25 4), 8,y =a; =1,
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otherwise it is

5.3.3. The following result is an immediate

consequence of 4.5.2.

If I(p) = i = 1, then the characteristic of

p is (2, 1,1, ..., 1; 1) or (2, 2, ..., 2; 1) according

as p is a cusp of the first or second kind.

5.3.4. The next statement is a corollary of

If I(p) = n + 1, then a cusp point p has char-

acteristic

(2, 2, «ov, 2; n + 1) or (2, 2, «.., 2, 1; n + 1)

n+1)

according as K(p Supports or intersects A at p.

Examples of both types are given by (5.3.2)

with nk < &, k and 2 even, m odd and m > &.

5.3.5. From 5.3.1, 5.3.2 and 5.3.4, we

obtain the following result.
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Let p be a cusp of the second kind. Then the

characteristic of p is one of é% +1 féﬂL%}JE] different

-

types if n is even [odd; n > 1].

5.3.6. Let p be a cusp of the first kind.

If 1 <i=1I(p) <n, then the characteristic of p is

2, 2, .oy 2,1, 1,2, ..., 25 1),

where a; ;= a; = 1. Ifi=mn+ 1, then p has the

characteristic (2, 2, ..., 2, 1; n + 1).

Proof. By 4.5.6, K(pi) = ‘:} and 1 is odd for

1 <1i<n. Now '%— intersects the arc A at p. Hence
if 1 < i < n, then by 5.3.1, the characteristic of p

is (2, 2, ..., 2,1,1, 2, ...., 2; 1).

If i = n + 1, then again by 4.5.6, K(Pn+1) = 3.

Hence by 5.3.4, the characteristic of p is (2, 2, ...., 2, 1,;n+l).

Remark. Examples of these types are given by
the arc in (5.3.2) if k is even, & is odd, m > £ and

(i - Dk <2 < iklik < ¢]if i <n[i = n + 17.

5.3.7. Let n =1, i.e., the polynomialsof JfJ
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are straight lines. If A has & cusp of the first kind
at p, then the characteristic of p is (2, 1; 1) or
(2, 1; 2). If p is a cusp of the second kind, then p has

the characteristic (2, 2; 1) or (2, 2; 2).

5.3.8. From 5.3.1 to 5.3.7, we obtain the

following.

Let A have a cusp of the first kind at p.

Then the characteristic of p is one gf“; + 1 [EL%}JQ]

different types if n is even [ odd].

5.3,9. From 5.2.5, 5.3.5 and 5.3.8, the

number of types of differentiable points is 1% + 4 [Zﬂ—%-ll

if n is even [odd].

5.4. Infinitely differentiable points.

5.4.1. We shall define a characteristic

of a point p of an arc A which is n times differentiable
at p with respect to the family of polynomials of degree

at most n for all positive integers n.

The family R of regular polynomials of degree
at most n shall be denoted by Jﬁ(n) and the families

R M), 1<hen+1, by &M a1so, the
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characteristic (ao, 31, «eey Ap; i) shall be denoted

by (a(n) {n), ceeey aén); i

n)

We observe that di(n)-differentiability
implies éé(n‘l)-differentiability._ Thus if A is n-times
differentiable at p, it is also (n - 1)-times differen-

tiable at p and has a second characteristic

(n-1)
n-1

(n-1)
(ag

y eee, @

) .

|
Each 42 ﬁn) is the union of Séh(n'l) with a family
(p; 0y, -.vy O
h =1, ..., n. This readily yields

n-he1) Of polynomials of degree < n;

o8 &(n 1)\&(11 1)<_5cn)\§(n) 1, ... n -

h+1°

However, the one curve of éi én-l) may be equal to the

#£(n) : (e i (n) (n)
curve of# .. Thus it need not lie in 55]1 \ &én+1 .
Hence by 4.5.1,

but not necessarily for h = n - 1. Also
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Now let A be n times differentiable at p for

eachn =1, 2, ... . Then we have an infinite sequence

1), 2). 3).;
(ag, a{ ), i), (ag, aq, a§ ), i), (ag, a1, a,, a§ );13),.---
. (ao, Bys sees 85 0, 34 15 agn); in)’ cee

of characteristics of p.

If there exists a least integer m such that

1, <m+ 1,

then

s S
i i for all n > m,

and we define

(aO, A1y eees im)
to be the characteristic of p with respect to all polynomials
and call im the index of p.

If however,

i, = n+ 1 for all n,



then the characteristic of p shall be denoted by
(ao, A1y evey Bp, e ),

5.4.2. Examples. (i) Consider the arc A given

x = Sk’ y = Sk+2

where k > 1 and 2 are odd integers. Let (i - 2)k < & < (i-1)k.

Then the point p = (0, 0) has finite index ii for

i=2, ..., n +#1, Moreover, p has the characteristic

(ao, ceey an;‘ii) where a; = 2 and aj =1, ¢ 1i

[éi-l = 2 and ay = 1, j #i -11if i is even Lodd 1.

(ii) The point p = (0, 0) on the arc

-
es s#0



CHAPTER VI

The Order g£ a Differentiable Point.

6.1. Introduction. ‘Recall that the 55 -order

of a point p of A is the d2 -order of a sufficiently

small neighbourhood of p on Aj; cf. 4.1.3.

In this chapter our aim is to prove the follow-

ing theorem.

Theorem 4. Let p be an interior differentiable

point of the arc A. Let p have the characteristic

(ag, ag, o ay; i). Then the A& -order of p is not

less than J a..
j=0 )

6.2. Certain pencils Aj in Zf. It will be

convenient to introduce certain pencils Aj in £ ;

j =n+1, n, s s 0 9 I)O'Let

Put

n+l .
K(p ) o= Kn+1'

- 94 -
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Since the order of p is finite, there is a neighbour-

hood N, of p on A such that

Kn+1(1 N, = {pl}.

Recall that s always denotes a point on A\ {p};

cf. 4.2.1., Also since A is differentiable at p,

K(p™, s) exists if seN_ and

K(p", s)e R N\ (K, ).

Let
_ n
A = {K(p7, s)] seNn}
and put
(2) K", s) = K(x_, s)
n p H n’ .

Then, for seN , we have

(3) s¢K and thus K(An, s) # Kn+1

n n+1

(4) lim K(A_, s) = K

s+p n+l?’
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_ n

(5), = K", s)[s N Y K A\ & -
Choose

(6)n sneNn and put K(ln, sn) = Kn.

Again, since the order of p is finite, there is a

neighbourhood M_ _, of p on A such that

K,NM _;=1{1.
Choose
(1), 4 ek, N L ().
Thus
(7, Ky = KOy, Qp) = K", Q).

By 4.4.5, for a sufficiently small neighbourhood

Mn-l

of p on A and seM;_l, there exists a unique

polynomial

k(p" L, s, 0y)e R n-1°



Let
Nn-l = Mn_lf\ Mﬁ_lr\ Nn.
Let
Ao = K™, s, o)) |seN ;)
Put

(2),.; K", s, 0p) = KA _;, ).

Then for seNn_l, we have

(3),-1 skxn and thus K(A__;, s) # K,
(4)n_1 lim K(An_l, s) = Kn,
s*p
(5),.1 Ay = (KO, s)IseN 1) & N R,
Choose
(6)n_1 sn_lan_1 and put Kn-l = K(An_l, sn-l)

Let j <n - 1. Assume we have already defined

97
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the neighbourhoods

Nn 3 Nn_l D LI ) D Nj

of p on A, the points Ql’ ceey 0

d-j the families

Aps eves Aj, the points Spr cees Sy and the curves
Kis ooes Kj such that the following conditions are

satisfied:

(1)j L (), Z (07), ..., Jf(Qn-j) are mutually distinct

and for h=n, n -1, ..., j

(2)y, KAy, $) = K", s, Qq, «oty Q_p)
if seNh
(3)y K(Ay» s) # Kpyg

(4)h 1im K(Ah, s) = Kh

s+p *l

(), Ay = KOy, s)seN} € RN E .
(6)h sheNh, Kh = K(Sh, sh).

Then we define;lj_1 as follows.
Since the order of p is finite, there exists

a neighbourhood Mj-l C Nj of p on A such that



Kj N Mj_1 = {p}.

Choose Qn—j+1 on Kj Such that (l)j-l is satisfied..
Thus
(7); Ky = K0, Qpy eves Qugap)e

By 4.4.5, there exists a neighbourhood Nj-lth-l

such that K(pJ'l, Sy Qus vves Qn-jyl)e Azj-l

is unique for each seNj_l. Define xj_l through

(z)j_1 and the left half of (S)j_l. Then (S)j_l-(S)j

will hold true. Define S5.1 and Kj-l through (6)j-1'

6.3. A lemma, The main tool which we shall

use to prove our theorem is the following lemma.

Lemma. Let M be any neighbourhood of p on

A. Then Aj contains polynomials K arbitrarily close
to Ky

points; 0 < j < n.
The proof is given in 6.3.1-6.3,3.

which intersect M\ {p} i&_not less than aj

6.3.1. Clearly, if j < I(p)Lj > I(p)], then

all the polynomials of Xj and the polynomial Kj+1

are regular [ degenerate]. If j = I(p) then all the

polynomials of xj are regular but Kj+1 is degenerate,

99
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By (2)j and (4)j’

Py Qs -++s Q31 e KN Ky, for all KElj.
Actually, we have equality for j < I(p). For if
j < I(p), then K and Kj+1 are distinct, have
Ql’ cony Qn-j in common and have j-point contact with
each other at p. If j = I(p), then a regular poly-
nomial K of Aj has a point in common with each of the

components of the degenerate polynomial K.

j+1°
If j > I(p), then the components of K and
Kj+1 through Ql’ veay Qn—j are identical. Mowever,

the component of Kj+1 through p is K(pj) U & ),

while K contains f (s) which does not belong to Ky s

6.3.2. The case j > I(p) is straightforward,

since then the families sz+1(p) and aﬁ'j(p) are

both degenerate. We recall that aa'j(p)(\ 2§j+1(P) -

o d

and 72 J+1(P) N 0% j+2(p) =§.
By (2)5,1, (6)5,; and ()5,

Kj"'l = K()‘j+1, Sj"‘l)

= k(pl*!
K(p ’ Sj+1’ Ql! LR | Qn_j_l)

j*+1
’

K™, 0, veny 0 y)

100
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e R,

If s is sufficiently close to p on A, then

- K(p) '
K(}‘j’ s) K(p’, s, Ql’ s ey Qn-j)

=KPH) L L) VEQPU ..U B )

€ sz(p).

We observe that K(Aj, s) and Kj+1 cannot both inters
ect A at p. The following statements can be verified

directly.

aj = 1[0 aj = 2]

$

One of K(Aj, s) and Kj+1 intersects A at p, while the

other supports EK(Aj, s) and Kj+1 both support A at p].

!

L (p) intersects [supports] A at p.

)

K(Aj, s) intersects A close to p in at least one [ two)

points.

‘101
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6.3.3. Let j < I(p). Choose a neighbourhood
(G) . §G) (3)
N N;°7 U {pr }\)N2
of p in M N Nj such that
(3) .
Kj"‘lr\ N - {p}o

() 4 =
Let SE Na , 1, 2 and put

= . (3),. -
Uy, {K(Aj, sa)lsaeNa }; a 1, 2.

Now the family

Up UK, U U © A5V K )

is homeomorphic to a closed interval (cf. 3.3.7).

Hence there exists an end-polynomial Ca of Ua other
than‘Kj+1. We may assume that Ca does not meet N{j) or
N,

We may assign a continuous orientation to the
one parameter family Y {Kj+1} U U,. Then the poly-
nomials of Ua all pass through the open set Ea of
points in G, defined by

-1

1

1 o i
VRGNl S
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In the case where j = n = I(p) and n is even,

K is a double ray and hence one of the open sets

n+l

-1 ..
Koe1 and K,+1 is empty. Therefore, one of the sets

1
je1!

1 -1 -1
{Ca N Kj+1} and {Cg N X
in each Ea is empty; a = 1, 2.

We have
NG) ¢ B U IV E,.

Now let N(Kj+1) be a neighbourhood of Kj+1‘
Then for s sufficiently close to p, we have

K(A;, s)eN(Ki, ).

j j

Hence'there is an interval Va - Ua N N(Kj+1). Let
eaeNgJ) be such that K(xj, ea) is the end-polynomial
different from Kj+1 of Ya. As s, moves continuously
and monotonically on Néj) from e, top, then K(Aj, sa)
moves continuously in Ua from K(Aj, ea) to Kj+1'
Hence the polynomials K(Aj, sa) omit none of the poly-

nomials of Va, i.e., every polynomial of Va meets Néj).

Let KeVa. Thus K lies between K(Aj, ea) and

K in Va. Since p has finite order, there is a

j+1 . _
neighbourhood N' of p in Néj) such that if qmeN&(\ N'

is sufficiently close to p, then saeK and K will
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also lie between K(kj, ea) and K(Aj, Sa) in Va'
Since e eK and {Sa’ ea}cN(J)c.Ea, they will be separated
by K. In particular, at least one point of K N Néj)

is a point of intersection of K and Néj); cf. 4.1.4,

Now, if aj = 1, then one of the polynomials

K and Ca intersects N(j) at p, while the other

j+1

supports N(3) there. Hence Ngj%¢ E;; C; and C, lie

1
on opposite sides of Kj+1 in Aj; and U; and U, are
disjoint.

.If aj a 2, then Kj+1 and Ca either bot? inter-
sect N(J) at p or both support N(j). Hence NgJ)C: E1
and Cl’ C2 lie on the same side of Kj+1 and one of U1
and U, will be contained in the other.

Thus the polynomials K(Aj, sl) in Vlc: U1
and the polynomials K(Aj, sz) in V2 C U2 lie on the
opposite sides of Kj+1 or the same side of Kj+1
according as aj =1 or aj = 2, This proves the lemma.

6.4. We can now complete the proof of our
Theorem 4. We first approximate K(pn+1) by a poly-

nomial Kn in A

n» then X by a X _, in 2

n-1 and so on

until we finally approximate K1 by a KO in XO. Thus
K, does not pass through p.
Let M, be a neighbourhood of p on A. By

Lemma 6.3, there exists a Kn in A_ close to Kn+1

n
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which intersects Mn‘\{p} in at least a_ points, say
Sy

In the sequel, we put j = n -1, ..., 0,
in turn. In Mj+1 we construct neighbourhoods Aj+1

of the S541 and Mj of p which are all mutually disjoint.
By Lemma 6.3, there exists a polynomial Kj of Aj

close to Kj+1 which intersects Mj \ {p} in at least

aj points sj and which also intersects each of the

n

A

a, arcs Aj+1’ cees AL

k=3+1 ) n+1
Altogether, Ky is close to K(P ) and
intersects M_\ {p} in at least ag +t a; +t ... ta,

distinct points, all of which are different from p.
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