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INTRODUCTION 

In [14], P. Scherk introduced order characteris­

tics for the interior differentiable points of arcs 

in projective n-space. The characteristic of a 

differentiable point p of an arc was a certain n-tuple 

of integers defined by the intersection and support 

properties of various families of osculating hyper­

planes through p. It was shown that the sum of these 

numbers was associated with the order of the arc in a 

small ne1ghbourhood of p. Later, in [8) and [91, 

Lane and Scherk developed an analogous theory of charac­

teristics for differentiable points in the conformal 

plane. A similar discussion was carried on in [101, 

[111 and (12], [15] hy Lane and Singh in the case of 

parabolically and conically differentiable points 1n 

the real affine plane and in the projective plane, 

respectively. These papers, Popoviciu's discussion of 

polynomial convexity in L13] and O. Haupt's work on 

higher convexity in [11 - [51 naturally led to the study 

of characteristic and order for polynomially differen­

tiable points of arcs. 

In the following, the term "polynomial" will also 

be used to denote the point set {(x, f(x)) lxc'IR }, 

where f is a polynomial over '1K, i.e., the graph of a 
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polynomial function will also be called a polynomial. 

In Chapter I, polynomials are regarded as sub­

sets of the plane and a notion of pointwise convergence 

is used to obtain certain kinds of degenerate polynomials. 

The set of all non-degenerate polynomials of degree at 

most n will be denoted by &' and the union of J?i with 

the set of degenerate ones will be denoted by Ji . An 

orientable polynomial and orientable pointwise convergence 

is defined. Multiple point, multiple component and a 

notion of multiplicity pointwise convergence is also 

introduced. The concept of s~pport and intersection of 

an orientable polynomial of J:J., with respect to a poly­

nomial of Jr is defined and discus·sed. 

In Chapter II, three topologies f)L 1 , Of.-ti' -d 'l. 

and OJ-- 3 are introduced, each finer than the preceding 

one, and it is shown that the OJ, 1 , C} 2 and £.?>, 3 
convergences are equivaient to pointwise, orientable 

pointwise and multiplicity pointwise convergences 

respectively. 

Chapter III contains a discussion of some 

families of polynomials of ~ and particularly of 

the family ~h. It is shown that the three converg­

ences introduced in Chapter I and Chapter II are 

equivalent on -~h. 
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In Chapter IV, arcs are introduced and poly­

nomially differentiable points of an arc are defined. 

Also the intersection and support properties of the 

various osculating polynomials at a differentiable 

point of the arc are discussed. 

Chapter Vis concerned with the definition of a 

characteristic of a polynomially differentiable point 

of an arc in the real affine plane. Examples of the 

different types of points which are differentiable with 

respect to the family of polynomials of degree at most 

n are given. We use a sequence of characteristics for 

an infinitely polynomially differentiable point to 

construct an infinite characteristic for that point. 

In Chapter VI it is shown that the polynomial 

order of a differentiable interior point p of an arc 

A is at least as great as sum of the digits of the 

characteristic of p. 



CHAPTER I 

Polynomials and Pointwise Convergence 

1.1. Notation. Let G denote the real affine 

plane. The letters p, q, Q, ..•. usually denote the 

points in the plane, with the small italics indicating 

points of arcs. Gothic letters . ... denotet ~ '' 
lines. Ji~ 1Jy indicates that 'i and are not ~ 
parallel. t (Q' '\!}· ) will denote the line parallel 

to a line ~ through a. P?int Q. 

Let !Ji denote the family of polynomials 

(i.e., polynomial curves) K of degree~ n which can be 

represented by an equation of the form 

where a; O and a, aiEtfR. i • O, 1, •••••••••• , n. 

We shall denote the line corresponding to x • 0 

by ~ and put '£ (Q) = f (Q, ·G)f}) · 

1.2. Pointwise convergence. A neighbourhood 

of a. point Pis the interior of an ellipse which contains 

pin its interior. 

- 4 ­
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A sequence of points {Pi} is defined to be 

convergent to a point P if every neighbourhood of P 

contains Pi for all but a finite number of i. 

A point Pis defined to be an accumulation 

point [ ~ 1 imi t point"] of a sequence {Si} of sets Si 

if every neighbourhood of P contains points of Si for 

infinitely many i [for all but a finite number of il. 

In particular, this holds when each s1 is a polynomial 

K. •
1 

A sequence {s1} of sets [{Ki} of polynomials] 

is defined to be pointwise convergent if it has at 

least one accumulation point and every accumulation 

point is a limit point. 

1.3. The set (Q' of polynomials. Let & denote 

the set of all polynomials of & together with the 

1imi t sets of convergent sequences of polynomials of Ji . 
Let KE Jl. be the limit set of a pointwise 

convergent sequence {Ki} of polynomials of J:£. 

1.3.1 • .!£ PEK and N is~ neighbourhood of P 

with the boundary B(N), then 

B (N) (\ K t, ~. 



6 
Proof. Since PEKJ K. will have points in N 

1 

for all sufficiently large i. Thus Ki has points in 

common with B(N) for all large i. These points 

will have an accumulation point in B(N) {\ K, i.e., 

B(N) (\ K ,; f). 

Remark. The above statement and a similar proof is 

valid even if K is just a non-empty set of accumulation 

points of {Ki} and {Ki} is not a convergent sequence, 

thus the set of accumulation points of a sequence 

does not have an isolated point. 

1.3.2. Suppose P1~K and P2£K !!!. separated 

Then the intersection of j_ with 

the closed strip bounded£!. ;f., (P1) and ~ (P 2) contains 

~ point of K. 

Proof. Choose neighbourhoods N1 and N2 of 

P1 and P2 respectively, such that 

Since P1 and P2 are in K, Ki has points Piland Pi 2 
in N1 and N2 respectively, for all but a finite number 

of i; i.e., Ki has points on both the sides of ~ 

Since each Ki is a ccntinuous function, it intersects 

i at a point between the lines ;f (Pi 1) and 't (Pi 2). 
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Therefore these points of intersection are bounded on 

J., and they have an accumulation point on Kn i, 
which lies between -£ (P1) and t (P 2) or on '£ (P1) 

or f (P ).2

Corollary. If P1e:K, P2e:K and iv (P1 ) • 'i (P 2), 

then the segment P1 P2 belongs to K. 

1.3.3. Let {Ki} be a pointwise convergent 

sequence of polynomials of <fj"'. Let K be the set of 

limit points of {Ki}. 

Now each Ki can be represented by an equation 

of the form 

(1.3.3-1) a.y • a 0 . + a 1 . x + ••• + a .xn;
1 1 1 n1 

a. ~ 0 and a., a .. e: 1R. j • O, ••. , n. Hence we can 
1 1 Jl 

associate with each Ki the point (ai, aOi' ali' ••. , ani) 

of the real projective n + 1 space. Let (b, b0 , ... , bn) 

be an accumulation point of the sequence {(ai, aOi' ... , ani)}. 

It can be easily seen that if PeK, then the coordinates 

of P satisfy the equation 

(1.3.3-2) 
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Thus if K' is the solution set of the equation (1.3.3-2), 

then K c K'. 

1.3.4. The set K is either~ polynomial- of 

Ji ~ it consists of at ~ n components each of which 

is a line ~ a ray parallel to '\1)' . 

Proof. (i) Let b, 0 in (1.3.3-2). Let PcK', 

say P = (x 0 , y 0). Then we wish to show that PcK and 

therefore K' ~ K. 

a.y. = a 0 . + a1 .x0 + ••• 
1 1 1 1 

Then PicKi and yi tends to y 0 as i tends to infinity suitably. 

Thus Pis a limit point of the sequence {Pi} and there­

fore of the seqfience {K.}. Hence PcK. Therefore K' c. K. 
1 ­

Also by 1.3.3, K<;;. K'. Hence if b ~ O, then 

K = K' is a polynomial of cfi' . 
(ii) Let b • O. Then K' consists of at most 

n components, each of which is a line parallel to ~. 

Therefore each component C of K is a line parallel 

to ')JJ' or a (connected) component of such a 1ine. 

Suppose C is a segment or an isolated point. Then there 

exists an ellipse B(N) containing C such that 
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(N U B (N)) (\ K '\. C = ., • 

This is impossible by 1.3.1. Hence every component 

of-K is a line or a ray, parallel to~ 

Also, by the Corollary of 1.3.2, no two 

disjoint rays of K lie on the same line parallel to 

~· 

1. 3. 5. Since each Ke: J2 can be obtained as 

the limit set of a sequence {Ki} of polynomials of f2, 
we could have defined 5J. to be the family of 1imi t 

sets of pointwise convergent sequences of S2 . 

If Ke: ~ is a polynomial of degree m, 

0 < m < n, we call it an m-regular polynomial.-
If Ke: Jl\ Ji i.e.' if every component of

' 
K is a line or a ray, then we call K a degenerate 

polynomial. 

Remark. Since the members of J!i are also 

subsets of G, the notion of pointwise convergence is 

valid for sequences of degenerate polynomials. We 

note that if a sequence {Ki} of polynomials of Ji 
converge to a regular polynomial, then, for sufficiently 

large i, Ki are also regular polynomials. 

1.3.6. A regular polynomial K1 supports 

[intersects 1 a polynomial K of & at a point Qe:K1 
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if for a sufficiently small neighbourhood N of Q, 

Kn N is decomposed by Q into two disjoint open sets 

which lie in the same region fin different regions J 

bounded by K1 • 

Remark. Above definition of support and inter­

section is symmetric in Kand K1 ; cf. 1.8.2. 

1.3.7. Let K1 and K2 be two regular poly­
n . 

nomials given by the equations, say f 1 (x) • l a.x 1 

i:O 1 

n . 
and f 2 (x) = .I bix 1 respectively. Then K1 and 

1• 0 
K2 

meet each other at least (exactly) r times or~ with 

multiplicity r if the equation f 1 (x) - f 2(x) • 0 

has at least (exactly) r real roots. In particular, 

K1 and K2 have at least (exactly) r-point contact!.!. 

Q = (x 0 , y0) if x0 is a root of f 1 (x) - £2 (x) • o of at 

least (exact) multiplicity r, equivalently, if f 1 and 

£2 have same derivatives at Q up to the (r - 1)-th 

order. 

We note that the number of roots of a poly­

nomial equation f(x) = 0 between a and b counted 

according to their multiplicity is odd or even according 

as f(a) and f(b) have opposite or like signs. 
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The above discussion and 1.3.6 yields the 

following result. 

Let Kand L be two regular polynomials which 

have exactly r-point contact~ Q. Then K supports 

[ intersects J L at Q if and only if r is ~ t~). 

1 . 3 . 8 . Let {Ki} c onv erge ~ K , KE Ji , ;fi and 

let C be! component of K. Let QjEC; Nj be! neigh­

bourhood of Q. such that (K I\ N.) '-. C = ~, and let 
----- J -- J -­
t j )\.. '\%- be ! line through Qj; j • 1, Z. Then Ki 

meets both i, l (\ N, and '/.., z n Nz ~ !.!!. ~ 1

multiplicity£!.. both of them~!.!!. odd multiplicities. 

Proof. Let B(N) be an ellipse containing 

N1 and Nz in its interior N such that (N n K)'-.C ~ ~. 

Let B(M) be a convex quadrilateral inscribed in N 

such that two opposite sides are parallel andto '\fJ 
Q1 and Oz are interior points of the other two sides 

which are segments of i 1 and i 2· Let P be a 

point on C between 01 and Q2 and let N0 C M be a neigh­

bourhood of P. Then No contains points of Ki for all 

sufficiently large i. Now Ki will meet B(M) with even 

multiplicity and for sufficiently large i, the points 

of B(M) A Ki will lie on the sides of B(M) through 

Q1 and Q2. Moreover, the accumulation set of {B(M) (\ Ki} 

is {Q1 , Oz}. Hence sither Ki meets both 'i, 1 (\ N1 and 

i, 2 ~ N2 with an even multiplicity or both of them 

with an odd multiplicity. 
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1. 3. 9. Let {Ki} converge to KE Jf.'\ fr and 

let!. component C of K be!. ray. Let QEC and N0 be 

!. sufficiently small neighbourhood of Q such that N0 ('\ K/C • 

l'. Then for any 1ine 't i\, ~ through Q, Ki meets 

t n N0 ~~ number of times. 

Proof. Let P be the vertex of C and let Q ~ P. 

Again construct an ellipse B(N) containing P and N0 
in its interior N such that N ~ K, C • ~. Let B(M) 

be a quadrilateral in N with two sides parallel to 

G\J} and such that one of the other two sides is a 

segment of f, containing Qin its interior and Plies 

in the interior of B(M). Then for a sufficiently large 

i, Ki (\ B(M) • Ki ('\ i'. n No. Hence Ki and 'f.. (\ N0 
meet with an even multiplicity for Q ~ P. 

By 1.3.8, this Ki and a line through P will 

also meet with an even multiplicity in a small neigh­

bourhood of P. 

1.4. Orientations of polynomials 2f J[. 

1.4.1. A regular polynomial K divides G into 

two disjoint regions denoted by K1 and K- 1 • Each of the 

ordered pairs (K1 , K- 1) and (K- 1 , K1) is called an 

orientation of K. 

1. 4. 2. Let KE Ji be the 1imi t set of a 

convergent sequence {Ki} of polynomials of JJ:. Let 
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P~K. Then P~Ki for all sufficiently large i. We 

can then choose a fixed c;.£{1, -1} and assign to K. 
1 

rJ.. 
the orientation such that Pe:Ki for all large i. Define 

(1.4.2) Ka = {QIQ¢K and Qe:K~ for all large i}. 

Now, it can happen that for each point QtK, 

either Qe:Ki for all large i, or Qe:K1a,for all laxg~ i; 

cf. (1.6.3-1). In such a case, every point in the plane 

belongs to one of the three sets K, K1 and K- 1 • We 

then say that K is orientable and call each of •he 

ordered pairs (K1 , K- 1) and (K- 1 , K1) an orientation 

of K. 

1 -1 b .One o f K and K may e void. For example, 

let Km be given by 

2 
y = mx ; m • 1, Z, ....•. 

Then the sequence {Km} converges to the double ray 
l -1 x • O, y ~ O, cf. 1.6.2. If we take (1, O)e:~ for 

all large m, then K~ 1 • ~. 

1.4.3. Let {Ki} be pointwise convergent~ K. 

Let La be the~ of limit points of the sequence 

{K~} , a = +- 1 • Then
1 
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Proof. (i) Let PtK. Then every neighbourhood 

N of Pis met by Ki for all large i. Let QtN 0 Ki. 

Then for any neighbourhood Ni of Q, Ni c. N there are 

(ii) Let PtK. Thus PtKi for all large 

po ints Q. E:N · 
lex l 

(\ Kex. ,
1

a • -:. 1. Thus every neighbourhood 

N of P contains points Qiex of K1. Hence Pis a limit 
Clpoint of K.,
l 

ex• "!.l. 

ex 

and P~K. Hence Pis a limit point of {Ki}. Thus 

K V Ka S La. 

(iii) Let PtLex, PffK. Let N be a neigh­

bourhood of P such that N (\ K • ~. Then N (\ K·1 . ' 

for all large i and N meets ~ for all large i. Also 

PfK implies that P~Ki for all large i. Hence PEI{~ for
1 

().
all large i. Thus PEK. Therefore ti UK ;:? La• 

1.5. Orientably pointwise convergence. A 

sequence {Ki} of oriented polynomials of ~ is 

orientably pointwise convergent to Kt J?l. , if {Ki} 

is pointwise convergent to Kand K is also orientable; 

i.e., for all P~K either PtKi for all large i or 

P£Ki 1 for all large i; c:f. 1;4.2 For example, the• 
1 

sequence in (1.6.3-1) is orientably convergent. 

1.5.1. Let {Ki} be orientably convergent to 

K. Then{~} is a convergent sequence of sets~ 

and the limit set is If U K; cf. 1.4.3; i.e., 
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lim 
i+oo 

Proof. Let P be an accumulation point of 

{Ki}, P~K. Then PcI: for infinitely many i. Since 

{Ki} is orientably convergent, PcKi
(j.. 

for all large i. 

Hence Pis a limit point of {K:} and PeLa = Ka UK. 

1.5.2. Let {Ki}, Kie.~ ., be orientably 

convergent to Kc J,t, Ji Then each component C of 

K is associated with a multiplicity m(C), m(C) = 1 

or O (mod 2); i.e., each Ki will meet a line 

with an even multiplicity for all large i or with an odd 

multiplicity for all large i in a sufficiently small 

neighbourhood of ~ ~ c. 

1.5.3. A component C of an orientable polynomial 

K, Kt~"- 8J, , is decomposing [~-decomposing1 if 

for PeC and for any sufficiently small neighbourhood 

N of P such that N (I K \ C • 0, neither [exactly one] of the 

sets K1 (\ N and K-l ~ N is void. 

1.5.4 • .!i_m(C) = 1 [ = o] (mod 2), then C is 

~ decomposing [~-decomposingl component. 

Proof. Let PeC and let N be a neighbourhood 

of P 'such that N (\ K, C • 0. Let B(~ c. N be an ellipse 
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containing Pin its interior N0 • Let t be a line 


through P, i. if. c. Let B(No) (\ t = {Ql, Q2}. 


Then to prove the statement, it suffices to show 


that the line segments i (P, Q1), {P} and t (P, Qz)'-.{P} 


lie in different sides [ on the same side 1 of K. 


Now each Ki and i meet in N0 with an odd Ceven) 

multiplicity for all large i. Hence Q1 and Q2 lie on 

different sides [on the same sideJ of Ki for all large 

i. Thus if m(C) = 1 [= o) and Q1£K~ then Q2£Kia 

[ Q2e:K~ 1 for large i. 

1.6. Multiplicities 

1.6.1. Let {Ki} be a sequence of regular 

polynomials converging to Ke: J2 . Let i be a line, 

t~~ , through a point P£K. Then t meets K 

at P at least r-times if there exists a sequence 

{ i i} of 1 ines converging to f such that t.
1 

and Ki meet r times in a sufficiently small neighbourhood 

of P. 

If i meets Kat least r-times at Q and does 

not meet it at least (r + 1)-times at Q we say that 

meets K exactly r-times. 

It can be verified that the above definition 

implies the one given in 1.3.7. 

l 
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The following statement is an immediate 

consequence of the above definition. 

Let ~ sequence {Ki} of polynomials of J2 
converge to Ke 

,.....,
dJ Let P. and Q.

--1--1 
converge to 

-
P; 

P-eK., Q1·eK,;
1 1 l 

P. 
1 

~ Q. (thus P£K).
1 

Then the line P. 
--­ l 

Q.
l. 

converges~~ line which meets Kat Pat least 

twice and is~ tangent of Kat P. 

1.6.2. Let {Ki} be convergent to a degenerate 

polynomial K. A point P of K has multiplicity r 

m( P) = r, if there exists a line ;f , J, 'tt- ~·· 
through P which meets Kat P exactly r-times and no 

such line through P meets K, (r + 1)-times at P. 

If all but a finite number of points of a com­

ponent C of Kare counted with the same multiplicity 

r, then C is counted r times; cf. (1.6.3-1) for r • 1. 

1.6.3. We look at the multiplicities of the 

components of several degenerate polynomials K, for 

n = 3, i.e., when the sequence {K1} consists of cubics. 

In the following, let m,· be a positive integer. 

We consider the sequence of cubics given by 

(1.6.3-1) y • mx 3 • 
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Let m tend to infinity. Then the limit set K is the 
3line given by x = 0, which by our definitions in 

1.6.2 is a single line on '\fJ' . The multiplicity of 

the origin, however, is three. 

On the other hand, if we examine the limit 

set Kofa sequence given by 

2 4 3(1.6.3-1) y = -m x + m x

as m tends to infinity, then K is again a line given 

by x3 = 0, but we interpret it as a triple line on 6lp 
i.e., a line counted three times on G\.l}. 

Again we consider the sequence given by 

(1.6.3-3) 

and let m tend to infinity. The limit set K is still 
3given by x = O, but the points (0, y) with y ~ 0 

[with y < o1 have the multiplicity three [one]. 

We interpret K as the union of G)JJ,, with a double ray 

on~ with the vertex at the origin. 

Now consider the sequence given by 

2(1.6.3-4) y = mx + mx 3 • 



19 

Let m tend to infinity. Then the equation (1.6.3-4) 
. 3 2tens tote equation x 

consists of a double ray on~ with vertex at the 

origin and the line given by x = -1. 

If the sequence is given by 

d h + x = O and the limit set K 

(1.6.3-5) y = -m + m2 ~2 
+ (m 2 - m)x 3 , 

3 2the limit equation is again x + x = O, but now the 

component of K through the origin is a double line. 

If the sequence is given by 

= 3m 2 2 zm3 3(1.6.3-6) y x + x , 

the limit equation is x3 • O. Here K consists entirely 

of points of G)%, these points heing counted three 

times between y • O and y = 1 and once elsewhere. In 

this example, K may be interpreted as the union of 

, and a double segment on ~. 

1.7. Multiplicity pointwise convergence. A 

sequence {Ki} of polynomials of fl is multiplicity 

pointwise convergent to KE ft if {Ki} is orientably 

pointwise convergent to Kand each point PeK has a 

multiplicity m(P); cf. 1.6.2. 
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1.7.1. Let lKi\ be a sequence of regular poly­

nomial!. which is mul ti,:,lici ty peintwise convergent 

to KE:. ii.'-\ 12, • Thus Ki has equation of the type 

(1.3.3-1) and Kan equation 

(1.7.1-1) 


of the type (1.3.3-2) with b = O. At least one of 

b1 , ... , bn, say bh, is not zero and therefore aih, 0 

in (1.3.3-1) for all large i. Hence we can normalize 

(1.3.3-1) and (1.7.1-1) by taking bh • aih • 1. 

Let P • (c, d) be a point on K. Suppose that 

a line £ y • mx + e through P meets Ki at r distinct 

points Pj(xij' yij) which converge to P; j • 1, ••• ,r. 

Then the equation 

(1.7.1-2) 

contains the factor 

(1.7.1-3) 
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As i tends to infinity (1.7.1-2) tends to (1.7.1-1) 

and the factor (1.7.1-3) tends to (x - c)r. Thus if 

PEK, P = (c, d) and m(P) = r, then (x - c)r is a factor 

of (1.7.1-1). Hence we have the following lemma. 

Lemma. Let KE Iii."&.' K. C1UC2 u .... u ct, 
Ci ~ component of K, 1 .::, t.::, n, be ~ 1 imi t ~ of !. 

multiplicity convergent sequence. Let PiECi; 1 < i ~ t. 
t 

Then r m(P.) < n. In particular, if t • n, then for 
-- 1 1 - - -­

any PiECi, m(Pi) = 1. If a Ci!_!.~ ray, then t.::, n - 1. 

1.7.2. The sections 1.3.8 and 1.3.9 yield the 

following result. 

Theorem 1. Let KE Jl; '- Ji be the limit set of 

a multiplicity pointwise convergent sequence. Then a 

component of K is~ of the following types. 

(i) a line parallel to '1lJ' ~ which !.!.!. the 

points are counted~ the~ multiplicity mod 2, 

(ii) ~ ray parallel to "% ~ which !!.! the points 

are counted with~~ multiplicity. 

1. 8 • Support and Intersection.-·­

1.8.1. Let K1E &i. Let K2E ~ be an orientable 

polynomial. Then K2 intersects [supports] K1 ~ !. 

point P if for a sufficiently small neighbourhood N of P 
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neither [one] of the sets K1 (\ N n K~l is etppty; cf. 

1.4.2. 

Since a regular polynomial is always orientable, 

the above definition with K E' d2: is equivalent to that
2 

given in 1.3.6. 

We note that if K2 is degenerate and the compon­

ent of K2 through Pis decomposable [non-decomposable], 

then K2 intersects [supports] K1 at P; cf. 1.5.3. 

1.8.2. Let K1 and K2 be~ regular polynomials. 

Then the definition in 1.8.1 is equivalent!£. saying 

that K1 and K2 intersect [support] each other at a 

point P if ~ Lexactly"~~] of the ~ K~l (\ .N It K~l 

is empty, for every sufficiently small neighbourhood 

N of P. 

Proof. We wish to verify that 

(1) K1 (\ N (\ K~ ~ ~, for both a • 1 and a • -1 

i 
(2) none of the four sets K±l ~ N n K±l is void

1 2 

and 

(3) K1 (\ N (\ K~ •~'for either 8 • 1 or 8 • -1 

i 
(4) exactly one of the four sets K~ 1 n N ~ K~ 1 is void. 

Claim (i). (1) implies (2) and (4) implies (3). 

Suppose that 
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Kr n N n K~ =~for some a and e in {1, -1}. 

Then 

Taking the interiors of the sets in (5) and noting that 

K~ n N is an open set in G, we have 

Hence 

Claim (ii). (2) implies (1). Also (3) implies 

that at least~ of the four~ Kf 1 (\NI\ K~1 is 

void. 

Suppose, e.g., that 

Then 
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Since K~ (\ N is connected and Ki n N and Ki 1 (1 N are 

disjoint, we obtain 

K~ n N c. K~ ~ N for either a= 1 or a= -1. 

Hence 

Kia (\ (K~ ('\ N) C Kia (\ (K~ (\ N) • ~. 

Claim (iii). (3) implies (4). It remains to 

prove that only one of the four sets K±l ('\ N {'\ K~ 1 

can be void. Assume, for example 

Then by claim (i) 

Hence 

Since N n K1 n Kz = {PJ, this is impossible. 
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More precisely, 

(3) 	~ ) K~ n N n K1 = ~ for exactly one a • ±1; 

lK-s(\ N (\Ka; ~ for a• 1, -1.2 	 1 




Chapter II 

Topologies on dJ 

2.1. Introduction. In this section our goal is 

to introduce three topologies ~ 1 , 9}'2 and <?J- 3 
on the set c£2, each finer than its predecessor. We 

shall do this by introducing a neighbourhood filter at 

each polynomial K€ cQ . The neighbourhood system in 

c;J, 2 will enable us to distinguish between a .t line 

associated with an odd multiplicity and a line associated 

with an even multiplicity; cf. 1.5.2. The topology SJ, 3 
will allow us to distinguish between a multiple line 

[ ray] and a single line [ray]. 

2. 2. The space ( 'Ji, ca l) . 

2.2.1. ~ base for~ neighbourhood filter~! 

regular polynomial. Let Kot tfl.. Let s1 and s2 be 

two finite subsets of the plane separated by K0 • 

Define 

separated by K}. 

- 26 ­
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Let (K~, K01) be an orientation of K0• Then each 

Ke:N(K0) can be oriented such that if 

then 

Put 

where s1 and s2 run over all pairs of finite subsets 

of the plane which are separated by K0 • 

It can be easily verified that U is a filter . Ko 
base. 

2.2.2. A base for~ neighbourhood filter of 

a degenerate polynomial. Let K0e: & ". !.[ be the 

limit of a pointwise convergent sequence {Ki} of 

polynomials of cf2. Suppose that K0 has k distinct 

components, say A1 , •.• , Ak; 1 < k < n. Thus each 

AA is a ray or a line parallel to 'Y' . 
Let { 'oat"Aj} be a finite set of closed line 

segments each of which meets , does notdo'l">.j AA 

pass through the vertex of AA if AA is a ray and 
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is not parallel to '\lJ' ;A= 1, ... , k. Also let 

'J1l Aj ("\ art At = 0· if j r R,. Let { o'lh} be a finite 

set of closed line segments IC h~ 1 , none of which 

meets any AA; A= 1, ... , k. Define 

(2.2.2) 

be the set of all those polynomials of~ which meet each 

dafAj and do not meet any of the o'l h. 

Let UK denote the family of all such N(K0).
0 

Then it can be easily shown that UK is a filter base. 
0 

2. 2. 3. For each Ke: ~ let JK be the filter 

generated by UK; cf. 2.2.1 and 2.2.2. Then it can be 

easily verified that for all Ve: ~K there is a 

We:~ K such that We: V and Ve: ~K' for each K'e:W. 

Hence there is a topology c:J- 1 on Ji such that ef" K, 

Ke: cJ:r, is precisely the neighbourhood system of K 

with respect to the topology CJ 1 ; cf. [ 6 ]. 

2.2.4. The space (Ji, ~ 1) has the follow­

ing property. 

( di: ~ 1) satisfies ~ first axiom of 

countability. We can verify this by determining tie 

sets and segments involved in the UK's by a finite 

collection of rational numbers. 
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2.2.S. A sequence {Ki} of polynomials of -cff_ is globally convergent or DJ- 1-convergent to 

~ polynomial K in cfl if and only if every neighbourhood 

of K contains all but finitely many Ki. 

2.2.6. The following results are standard; 

cf. [6]. 

(i) If K is!!!. accumulation polynomial of a sequence 

{Ki} of polynomials in~ then there is a subsequence 

of {Ki} converging to K. 

(ii) ( cff , CJ
1 

) is ~ Hausdorff space. 

2.3. Equivalence of pointwise and global 

or ~ 1-convergence. 

2.3.1. Let~ sequence {Ki} of polynomials of 

J2 be pointwise convergent to K0 • Then {Ki}!!_ 

globally convergent!.£. K0 . 

Proof. (i) Let K0 be regular. Then it has a 

normalized equation of the form 

Since K0 is regular, Ki are regular for all large i; 
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cf. Remark 1.3.5. If the equation of Ki is of the form 

then 

lirn 
i ~ 00 

cf. 1.3.3, 1.3.4. 

Let Q¢K0 and let (x 0 , y 0) be the coordinate• 

of Q. Then 

Suppose, for instance, that 

Then, for all sufficiently large i, 

From this it follows that if two points P and Qare 

separated by K0 , then they are also separated by 
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Ki for all large i. Hence l Ki~ is globally convergent 

to K0 . 

(ii) Let Kot J2'..cfi. Let N(K0 ; { dnAj}' { ol' h}) 

be a neighbourhood of K0 ; cf. 2.2.2. 

The curve Ki cannot meet the closed segment 

a'l h for all large i, otherwise {Ki} would have a 

limit point on ch h" 

Let P • 1a'6{, A j (\AA. Let N be a neighbourhood 

of P in G such that mAj decomposes N into two 

disjoint regions. Choose 01 and Q2 in AA(\ Non 

opposite sides of or[ )d. Then there exist points 

Q1A and Q2A in Kin N lying in opposite sides of 

do1.Aj• Hence Ki meets 'oatAj n N. 

2.3.2. ~ sequence {Ki} of polynomials of 

~ which is globally convergent to~ polynomial 

K0t cft is also pointwise convergent to K0 • 

Proof. (i) Let KoE It ; P£Ko. Let N(P) 

be a neighbourhood of Pin G. Choose a neighbourhood 

N(K 0) = N(K0 ; s1 , s2) of K0 in Jr such that 

N(P) (\ s1 ; ~ and N(P) n s 2 ; 0. 
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Then all KiEN(K0) meet N(P). Hence Pis a 

limit point of the sequence {Ki}. 

Next, suppose that Q¢K0 . Then there is a 

neighbourhood N(Q) of Qin G such that 

N (Q) n K0 = 0. 

Now the points of K0 satisfy a normalized equation of 

the form 

(2.3.3) 

Since Q1K0 , the coordinates of Q say, (x 0 , y0) do 

not satisfy the equation (2.3.3). Thus, say, 

Hence there is a > 0 such thato1 

a + a X + + anxnl - Y1 > ~l0 1 1 · · · u 

for (x1 , y1) = Q1EN(Q) if N(Q) is sufficiently small. 

Choose points P0 , ... , Pn on K0 and neighbour­

hoods N(P 0), .•. , N(Pn)· Choose points Rj and Tj 
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in N(Pj) such that Rj and Tj are separated by K0 and 

all the points Rj lie on the same side of K0 ; j • 0, •.• , n. 

Put 

sl = \.) RJ. ' Sz .. v TJ.• 

J j 


Then KiEN (K0 ; s1 , s2) for all large i. Hence K will
0 

meet each N(Pj). 

By choosing N(Pj) sufficiently small we can 

ensure that the coefficients 

in the normalized equation for Ki will be close to 

respectively. Hence 

Thus the points of N(Q) do not lie on Ki for 

sufficiently large i. Hence Q is not an accumulation 

point of {Ki}. Thus any accumulation point of {K1} 

belongs to K0 and therefore is a limit point. 
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(ii) Let K0e: dl\ dz . Let Pe:K0 , P not a 

vertex of a ray of K0 . Let N(P) be a neighbourhood of 

P. Consider a neighbourhood N(K0 ; { 3N.. ).j}, { or h}) 

of K0 such that one of the ~).j passes through P and 

is contained in N(P). Since {Ki} is globally convergent 

to K, Ki meets this ol't).j and therefore N(P) for all 

large i. Hence Pis a limit point. 

Now, let K be the set of all accumulation 

points of {Ki} . Then K is the union of limit sets 

of all convergent subsequences of {Ki}; cf. [7]. 

Also any convergent subsequence of {Ki} converges 

pointwise to a degenerate polynomial. For if some 

subsequence of {Ki} converges pointwise to a regular 

polynomial K', then by 2.3.1, it converges globally to 

K'. Hence a component of K is a line parallel to 

"tj- or part of such a line; cf. 1.3.4. We wish to 

show that K • K0 • 

Let Qe:K, K0 . Then there is a neighbourhood 

N(Q) of Q such that N(Q) r'\ K0 • ~. Let N(K0 ; { 4otxj}, 

{ o'( h}) be a neighbourhood of K0 such that one of the 

4"'th is contained in N(Q). Then Ki does not meet 

this if!h for all large i. Hence K does not have 

points on both the sides of 'o'( h in S(Q). Therefore 

Q cannot he an interior point of the component of K 
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through Q. Thus all the interior points of the compon­


ents of K belong to K0 , hence are limit points of 


{Ki}, 


Since Kand K0 do not have isolated points 

(cf. Remark 1.3.1), end-points of components of Kand 

K0 are also limit points of {Ki}, 

Thus {Ki} converges to K0 pointwise. 

-
2.4. The space CJ[, °} 2). 

2.4.1. Let K0 be the limit of an orientably 

pointwise convergent sequence {Ki} of polynomials. 

Let the component Ax of K0 be assigned the multiplicity 

=mA = m(AA) 0 or 1 (mod 2); cf. 1.5.2. 

If K0 is degenerate we replace (2.2.2) by the 

set 

(2.4.1) 

-which consists of K0 and those polynomials of j.[ which 

meet each oo1'.xj with a multiplicity = mA (mod 2) 

and which do not meet any of the ?((. h' 

If K0 is regular, N(K 0) is still defined by 

(2. 2. 1)'. 

Let OJ 2 be the topology with respect to the 

neighbourhood basis in (2.4.1). Then the statements 

in sections 2.2.3 up to 2.2.6 still hold if OJ 1 
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is replaced by SJ 2. 


Remark. Clearly ~ 2-convergence implies 


~ 1-convergence. Hence q}- 2 is finer than 

2.4.2. The proof of the following statement 

follows directly from 2.3 and the definitions of 

OJ- 2-convergence and orientably pointwise convergence. 

~ sequence {Ki} of polynomials of J:i is 

~ 2-convergent to K0 if and only if {Ki} is orientably 

pointwise convergent to K0 • 

2.5.1. Let K0 be the limit of a multiplicity 

pointwise convergent sequence of polynomials of J:r ~; 
cf. 1.7. Thus any point Q of K0 has a multiplicity 

m(Q). If Q1 and Q2 are points of the same component 

C of K0 , then m(Q1) = m(Q 2)(mod 2); cf. 1.7.2, 

Theorem 1. 

If K0 is degenerate,then we define a set 

(2.5.1) 

which consists of K0 and all those polynomials of ~ 

which meet a suitable closed line segment 1rt Aj 
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through PXj, oo'lxj'tt ~ , with the multiplicity 

mXj and do not meet any of the closed line segments 

hh; cf. 2.2.2. 

If Ka is regular, then N(Ka) is still defined 

by ( 2. 2 .1) . 

Again the family of all such N(K0) form a 

filter base and induces a topology c:J, 3 on if: such 

that the statements in sections 2.2.3 to 2.2.6 still 

hold if we replace ~ 1 by CJ 3 • 

Remark. Clearly OJ, -convergence implies
3

CJ 2-convergence, i.e., c;r- 3 is finer than ~ 2 . 

2.5.2. The following statement can be easily 

verified with the help of 1.7 and 2.4.2. 

~ sequence {K~} of polynomials of jj. is 

~ 3-convergent to K0 if and only if!.!.~ multiplicity 

pointwise convergent to Ka· 

2.5.3. It may occur to the reader that the 

neighbourhood system which has been introduced in 

this chapter could be replaced by the topology defined 

by regarding the polynomials 



38 

as points of a projective (n+l)-space: 

(a, a 0 , ... , an) ~ (O, 1, o, ... , O). 

This correspondence however, does not take care of the 

double rays, for instance. In particular, as a 

tends to zero the points (a, O, 0, 1, 0, •.• , O) 

in the projective (n+l)-space converge to the unique 

point (0, 0, O, 1, O, ••. 0) which we might normally 

associate with the double line x2 • O. On the other 

hand, 	 if a tends to zero, a> 0, then the parabolas 
2 2ay = x converge to the double ray x = O, y ~ O, but 

if a tends to zero, a< 0, they converge to the opposite 
2double ray x = O, y < O. 

2.6. Two lemmas. Let K1E Ji. be an orientable 

polynomial and K2 be a regular polynomial. Then the 

following two lemmas can be easily verified with the 

help of the neighbourhood system described earlier. 

2.6.1. ~ K1 intersect K2 ~!point P; 

cf. 1.8.1. If K1 
I and I 

~ sufficiently close~ K1K2 

and K2 respectively, then Ki interseets K~ at! 

point P1 close to P. 

2.6.2. Let K1 intersectfsupport]Kz !il ! point 

P. ~ any K sufficiently close to K1 meets K2 (\ N 
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with an odd mul tipl ici ty (with !!!. ~ multiplicity 

~ does not ~ at all 1 for ~ sufficiently small 

neighbourhood N of P. 

2.7. Continuous orientation. Let()Lf=_ (J,t:, ~ 2) 

be a family of polynomials with no isolated members. 

We call Ol, continuously oriented ~ K0e: Ol. if for 

every Pe:K~, a• 1 or -1, we have Pe:Ka for all Ke: Ot 

sufficiently close to K0 • The family Ot is continuously 

oriented if OL is continuously oriented at every Ke: OZ 

Thus the oriented family N(Ko) defined in 

(2.2.1), (2.4.1) and (2.5.1) is continuously oriented 

at K0 . 



CHAPTER III 


Some families of polynomials of d2,. 

3.1. The family ~ 1 (P). 

3 .1 .1. Let ;i. 1 (P) denote the family of al 1 

the polynomials of Ji. through a fixed point P. 

The O} 1 -closure of the family Ji 1 (P), 
-


denoted by & 1 (P) , is obtained by adding to ~ 1 (P) 
-


all its limit polynomials. Clearly Ji, 1 (P) is 

C,.- 1 -closed. We note that Pis a limit point of every-

sequence of Z. 1 (P);___::. 1. 2. 

Now, since Jz 1 (P) is closed, by the Generalized 

Bolzano-Weierstrass theorem it can be seen that every 

sequence of polynomials of Ji (P) contains a convergent1 

subsequence whose limit belongs to 82. 1 (P); cf. t7J. 

Hence &" (P) · is a countably compact set of ( ~, "J 1).
1 

3.1.2. Let P, Q1 , ... , Qm be mutually distinct 

points. If no two of them lie on the same line parallel 

to 'll}, then there is a unique regular polynomial of 

degree~ m of J2 1 (P) through them. It will be denoted 

by K(P, Q1 , ••• , Qm) • 

- 40 .. 
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If a degenerate polynomial K is the limit of 

a sequence of m-regular polynomials, then K is called 

a degenerate polynomial of de~ree m. 

If exactly two of them+ 1 distinct points 

P, 01' ... , Qm lie on the same line parallel to ') , 

say £ (Qm-l' Qm) \ I ~, then there is exactly one 

degenerate polynomial of ~ 1 (P) of degree m through 

them, namely 

't (P) U [ (Ql) U · · · · · 

If the set { ;t (P), ,:t (Q1), ..... , 

consists of fewer than m mutually distinct lines, then 

there are infinitely many degenerate polynomials of 

degree m of ~ 1 (P). 

3.2. The family ~h(P). Put 

~ 0 • ii, and ~ 1 • ~ 1 (P) . 

Then for any polynomial K0£f1 we define 

to he a family of 1 1 which consists of K0 and all those 
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regular polynomials which have at least h point contact 

with K0 at P. Thus a polynomial KE,h(K0) of degree 

<mis determined hy m - h + 1 of its points all of which 

are distinct and different from P, say Q1 , ... , Qm-h+l· 

Such a polynomial will he denoted by K • K('h~ Q1 , ..• , Qm-h+l). 

3.3. The family 4>h(P). 

3. 3 .1. Let K0 be a polynomial of Ji. 1 (P) • 

Let Q1 , ••. , Qm-h be m - h points such that the lines 

:£ (P) , ;;c CQ1 ) , ••• , ;t (Qm-h) are mutually distinct. 

Let 

be the family of those polynomials of Vh(K 0) which pass 

through the fixed points P, Q1, ... ' Qm-h and have degree 

< m, The family 4>h has the property that through each 

point of G\.{P, Ql, there is at most one member... , Qm-h} 

of ~h. Such a family will be called a one-famill· 

Let p be the origin and let the equation of 

;/, (Q.) be x - b .• 0' i • 1' ..., m - h. Let Kl be
1 l 

the unique polynomial of vh(K0 ) of degree < m - 1 through-
the points Q1 , .•. , Qm-h' Suppose K1 has the equation 

m-1• • • + am-1 x ' 

thus, the x-axis is taken along the tangent of K at P.1 
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Define 

Then the family ~his given by 

3.3.2. Let y • mx + c be a line 'i 1'1-- 'lJ 
Then we shall show that for sufficiently large A the 

equation 

(3.3.2) f(x, A) - mx - c = O 

does not have more than one root in a sufficiently small 

neighbourhood of any of the bi's. 

Suppose that (3.3.2) has more than one root near 

hi. Then the equation 

f' (x, A) - m • O 

has at least one such root. It can be easily seen, 

however, that for any m ,; 0 we can choose a AO such that 

f'(x, A) - m,; O for all IA! > IA 01. 
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Thus the equation (3.3.2) has at most one root close to 

bi, i = 1, ... , m - h for sufficiently large X. 

3.3.3. Next, let us consider the roots x > O 

of the equation (3.3.2) in a neighbourhood of the point 

R(O, c), c r O, say c > O. Let N be a sufficiently small 

neighbourhood of R. If (x, y) e:N n ~ . , then x is small 

and f(x, X) is close to c. 

Now for x small g1 (x) is small and hence f(x, X) 

is close to Xg 2 (x) which is close to Xxh (-b1) .•• (-bm-h). 
hHence Xx (-b ) ... (-bm-h) is close to c. Therefore the1

dominating term off' (x, X); i.e., of Xgi(x), which is 

Xhxh-1 
(-b1) ..• (-bm-h) is large for sufficiently small x. 

Hence 

f ' (x , X) - m r O 

for (x, y)e:N 0 ~ x > O. Thus the equation (3.3.2) 

has at most one root x > 0 with (x, y)e:N (I$ 

Similarly, it has at most one root x < 0, 

(x, y)e:N (\ ;t 

Remark 1. If his odd and xis small, then 

Xxh (-b1) ... (-bm-h) cannot be close to c for both x > O 

and x < 0. Hence for~ odd h the equation (3.3.2) has 

at mos't:_ ~ !'oot x with (x, y)e:N. However, if his even and 

>..xh(-b1 ) .•• (-bm··h) is close to c for x > 0 then it :i.s so 

for x < O. 
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By applying Descarte's rule of signs we obtain 

the fcallowing. 

Remark 2. If for a sufficiently large Ao> 0 

[sufficiently small Ao< O] the equation (3.3.2) has one 

root x > 0, then it will have exactly one such root for 

al 1 ).. > ).. O[A < ).. O"] . 

3.3.4. Leth> 2. First we wish to show that 

the multiplicity of P with respect to the lines through 

P different from the tangent ';\,- of K1 is at most three. 

Let Z · y • mx, m ;, 0 be any line through P. 

We consider the non-zero roots of the equation 

(1) f (x, ).. ) - mx • 0. 

Division by x yields 

Now for x > O [x < O],x close to zero, AXh-1 (x-b1) ••• (x-bm-h)
m-1 .h-1 1 1is close to AX (-b1) •.. (-bm-h) and m - }: a x ­
.• 2 i1 h-1is close tom. Hence for x close to zero AX (-b1) ••. (-bm-h) 

is close tom. Therefore f"(x, A) which is close to 

2a 2 + Ah(h - l)xh-2 (-b1) ... (-bm-h) when x is close to zero 

m-1 

.l
1=2 

- m • O. 
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(and thus A is sufficiently large), is close to 2a2 +m~(h-1)/x 

i.e., for sufficiently large>.., f"(x, >..) ~ 0 for x ~ 0, 

x close to zero. Hence f'(x, >..) - m = 0 has at most 

one positive root [at most one negative root] near zero 

for sufficiently large>... Thus the equation (1) has 

at most one positive (negative) root near zero for suff­

iciently large>... Thus by Remark 2 of 3.3.3, we conclude 

that the point P has multiplicity at most three with 

respect to lines different from ~. 

Next, we wish to show that Kx meets ";\, outside 

Pat most once on each side of the origin in a sufficiently 

small neighbourhood of P. 

We may assume that ai; 0 for some i < h, where 

g 1 (x) 
m-1 

= l 
i=2 

. 
aix 1 

• Let ar be the first non-zero coefficient 

in g1 (x). Hence the non-zero roots of f(x,>..) are precisely 

the roots of the equation 

Now for x sufficientlYclose to zero, x ~ O,>..xh-tx - bl) •.• 

(x - bm-h) is close to >..xh-r (-b 1) .•• (-bm-h) and a + r 
m-r-1 .ar+lx + ••• + am_ 1x 15 close to ar and hence 

h-r . ~x (-b1) ... (-bm-h) 15 close to ar. Therefore for x 

close to zero (and thus for sufficiently large 1) 
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!f(r+l)(x, A)I which is close to I (i+l)!ar+l + Ah{h-1) ... 
h-r-1(h-r)x (-h1) ... (-bm-h) I is large. 

Now, suppose that f(x, A)• 0 has two positive 

roots near zero, say x1 and x 2 . Then f'{x, A) has a 

positive root x2 between xl and x 2 and f'(x, A) has also 

a positive root xi between O and x1 • But f"{O, A)• O. 

Hence f"(x, A) has a positive root x1 between O and xi· 

Since 

f(r-l) (0, A) = •••• = f' (0, A) • f(O, A) • O, 

we can continue in this fashion and deduce that f(r)(X,A) • 0 

has two positive roots close to O. Hence f(r+l\x, A)• 0 

has a positive root close to O; a contradiction. 

Again by 3.3.3, Remark 2, the point P has multi ­

plicity. 

3.3.5. The discussion in 3.3.2 to 3.3.4 shows 

that if K is a degenerate polynomial of th, then each 

point Q of K has a multiplicity m(Q) and m(Q) • 1 if 

()e: £, (Qi), 1 < i < m - hand m(Q) • 1 or 2 for QcC(P),-
Q ; p according ash is odd or even. 

Also, let {KA} be OJ. 1 -convergent to K. Let 

R = (x 0 , y0), R4K. Then (x 0 , y0)4KA for sufficiently 

large A, i.e., f(x 0 , A) ; 0 for sufficiently large A. 
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Now if f(x 0 , Ao) > 0 [f(x0 , X ) < 01 for one sufficiently
0

gl Cxo) \ 
large A0 , i.e. ,JXo\ >\ gzCxoJ then f(x 0 , X) > o [ f (x 0 , A) < o] 

for all !Al~ I Aol. Hence {KA} is OJ- 2-convergent to K. 

Thus it follows that if {KA} is OJ, 1 -convergent 

to K, then it is in fact OJ, 3-converg~nt to K. Therefore 

the <} 1 -closure ~h of ~h is actually the ~ 3 -closure. Hence 

all the three topologies OJi, ~ 2 and ~ 3 coincide on 
-~h' therefore from now on~~ simply~ that~ sequence 

of ih is convergent without referring to a topology 

°J 1 ' c:J 2 or DJ- 3 • 


Also, we note that ~his~ closed subset of 


~ 1 (p) and ii. 1 (p) is ~ 1-compact, therefore th is 


~ 1 -compact, hence"'ih is compact; cf. (71. 


3.3.6. Let K be~ degenerate polynomial of th. 
Then 

where C(P) is the single line '/: (P) ~~double ray 

with vertex P according as h is odd ~ ~ and ;t' (Qi) 

are single lines, 1 < i < m - h. 

Proof. Let {Ki} be a sequence of polynomials 

of ~h which converge to a degenerate polynomial K. 
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First we show that if his even, then the 

comnonent C of K through Pis not a line or a ray of 

which Pis an interior point. Suppose that C • ;;t (P) 

or such a ray. Let K1 be the unique polynomial of 

~h(K0) of degree~ m - 1 through the points Q1 , ..• , 

Qm-h" Since Pis an interior point of C, we have, for 

any neighbourhood N of Pin G, 

C (\ K±l (\ N -' Ill1 T P• 

Therefore, for sufficiently large i, 

Hence K1 intersects Ki at P. But K1 and Ki belong to 

~h(K 0) and his even, Thus we obtain a contradiction; cf. 

1.3.7. Hence C is a ray with the vertex P and there­

fore a double ray; cf. 3.3.S. 

Now we shall show that if his odd, then the 

component C of K through P is not a ray. Suppose that 

c is a ray. Define K1 as above. Then K supports Kl 

at P; cf. 1.8.1. Hence for sufficiently large i ' Ki 

meets K1 an even number of times in a small neighbourhood 

N of Pin G; cf. 2.6.2. Since his odd, Ki and K1 meet 

at least once more in N. Thus for sufficiently large i, 



so 

Ki and K1 have at least m - h + 1 points in common out­

side P, hence they coincide. Therefore K = K1 ; which is 

impossible. Thus if his odd, then the component through 

P is the line X (P). By the Remark 1 of 3.3.3, 

';t; (P) is a single line. Again by 3.3.2 the components 

of K through Q1 , ... , Qm-h are single lines ~ (Q1), ••• , 

cC (Qm-h). 

3.5.7. Let N be a small neighbourhood of Pin 

G. 

(i) !i his~' then K1 decomposes th into 

two 	 disjoint subfamilies, say ~h 1 and ~h _1 such that 
' ' 

any member of ~h passes through N n K~, a• 1, -1. 
'a. 

Furthermore, ~h,a. is bounded by K1 and the degenerate 

polynomial through P, Q1 , ... , Qm-h whose component 

through Pis a double ray passing through N n K~. 

Thus ~his homeomorphic~~~ closed interval and 

is bounded !?I_~ degenerate polynomials. 

(ii) If his odd, then K1 decomposes th into two 

disjoint 	families ~h land ~h -1 such that any member of 
' ' 

~h passes through
'a. 

for suitable orientations of J: (P) and K1 • 
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Here each ~h ~ is bounded by K1 and 
' 

Thus ~his homeomorphic to a circle. 



CHAPTER IV 


Polynomial Differentiability of~ Arc 

4.1. Arcs. 

4.1.1. An arc A is defined as the one-to-one 

continuous image in the real affine plane G of a real 

parameter interval. Thus if a sequence of points of 

the parameter interval converges to a point p, the 

corresponding sequence of image points is defined to 

be convergent to the image of p. The same letters, 

p, t, ... denote the points of the parameter interval 

and their images on A. The end-points (interior points) 

of A are the respective images of the end-poi~ts 

(interior points) of the parameter interval·. 

A neighbourhood of p on A iS the image of a 

neighbourhood of the parameter p on the parameter 

interval. If pis an interior point of A, this neigh­

bourhood is decomposed by pinto two (open) one-sided 

neighbourhoods. 

4.1.2. A polynomial Kt fz meets A!!_ pat 

least r-times if there exists a sequence {Ki} of poly­

nomials of tft converging to K such that each K. and 
1 

A haver mutually distinct points in common which 

converge top. 

- 52 -
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A polynomial KE if meets A~ p exactly 

r-times if K meets A at pat least r-times but not at 

least (r + 1)-times. 

4.1.3. The Ji -order. If no polynomial of 

j[ meets an arc A in more than a finite number of 

points, then A has finite polynomial order or finite 

if, -order. If the least upper bound of these numbers 

is finite, it is called the Jr-order of A. If A 

has finite Ji -order and for any given integer m 

there is always a polynomial K of Ji which meets A 

in more than m points, then the ca-order of A is unbounded. 

The Ji -order of~ point p of A is the Jr -order 

of a sufficiently small neighbourhood of p on A. 

From now on we shall assume that the point p 

of the!!.£ A has finite polynomial order. 

4.1.4. Support and intersection. An orientable 

polynomial KE ~ intersects [supports] the arc A at a 

point ptA if for every sufficiently small neighbourhood 

N of pin G 

N n A~ K • {p} 

and neither [one] of the sets A AN n K±l is empty; 

cf. 1.4.2. 
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In particular, if pis a point of a ray of a 

polynomial K£ fl , then one of the sets N n K±l is 

void if N is small. Hence K supports A at p if 

N n An K = \p \ when N is sufficiently small. 

4.2. Tangent polynomials of~!.!£· 

4.2.1. Let p be a point on the arc A. Since 

A is a 1-1 continuous image of a real interval, the 

line K(p, s) .will be uniquely determined ifs~ p, 

5£ A. From now on the points will always be assumed 

to lie~ A and be different from p. 

The arc A is called~ polynomially differen­

tiable at p if the following condition is satisfied. 

Condition 1. The line K(p, s) converges if 

s tends top, i.e., 

lim K(p, s) exists. 
s+p 

We shall call this limit K(p 2) or "f­ It is the 

ordinary tangent of A at p. 

Remark. It can be easily verified that if pis 

an end-point of an arc A of finite order, then A 

satisfies Condition 1 at p; cf. [9]. 



---
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4. 2. 2. Let PEA, If 1., (p) has infinitely 

many points in common with A, then a 1ine 't sufficiently 

close to [ (P), 1, 1\- 'lg also has infinitely many 

points in common with A. Since p has finite if -order, 

s¢ i (p) for s sufficiently close to p. 

Let 'i (P) , ... ' 1,CQm-l) be mutually 

distinct and for sE A'{p} let 

K(s) = K(p, s, Q1 , ... , Qm_ 1); 1 < m < n 

be a unique polynomial of degree ~ m of :ii, 1 (p). 

Since p has finite 35, -order, K(s) is not a regular 

polynomial of degree< m and also from the above it is 

not degenerate of degree~ m for s sufficiently close 

top. Thus for s sufficiently close top, K(s) is 

m-regular. 

In the next three sections K(s) will mean the 

m-regular polynomial K(p, s, Q1 , ... , Qm_ 1). Now 

K(s)&~1 (p, Q1 , .•. , Qm_ 1) = t 1 . Since i 1 is compact, 

any sequence {K(s)} has an accumulation polynomial in 

~land if it has only one accumulation polynomial K, 

then it converges to K. 

4.2.3. Let K(s) and K(p, s) converge~ K 

and £ respectively. Here we lets range through a 

certain sequence of points converging top. Then K is 



56 

regular if and only if 'J, 1\- '"\JJ, 

Proof. If m = 1, then clearly above statement 

is true. Hence let m > 2. 

Suppose that i '\'\-'LI}- and K is degenerate. 

Thus K consists of the single lines ~ (p)' 

... ' 'tCQm_ 1); cf. 3.3.6. Hence K intersects'£ at p 

and at m - 1 other points, say R1 , •.. , Rm-l· Therefore 

for s sufficiently close top, K(s) will meet the line 

K(p, s) at p, sand m - 1 other points close to 

R1 , ... , Rm-l respectively; cf. 2.6.1. Therefore 

K(s) = K(p, s); a contradiction, because K(s) ism-

regular, m ~ 2. 

Next, we observe that if K is regular, then 


i will be tangent of K; cf. 1.6.1. Hence 


4.2.4. The arc A satisfies Condition 1 at 

p if and only if the unique polynomial K(s), of. 4. 2. 2: , 

converges~ s tends top. 

Proof. (i). Let A satisfy Condition 1 at p. 

Let K be an accumulation polynomial of the K(s). 

If '} 1\-- Ci)J}- , then K is the unique regular 

polynomial of degree< m which has two point contact 

with ,- at p and passes through the points Q1 , ••• , 

Qm _1 ; c f . 4 . 2 . 3 . 

If i'" \\' , then K is the unique degenerate 
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polynomial consisting of the lines 1- , 
';J (Qm-1) · 

(ii) . Let K = lim K(s). Then we shall show 
s+p 

that A satisfies Condition 1 at p. 

If K is regular, then the line K(p' s) converges 

to the tangent ~ of Kat p; cf. 1.6.1. If K is 

degenerate, then the line K(p, s) converges to ~ (p), 

by 4.2.3. 

4.2.S. Let A satisfy Condition 1 at p. The 

limit polynomial of the K(s) will be denoted by 

K(p2, 01, ••• , Qm-1). 

Let J:z 2 (p) be the set of all polynomials 

which can be obtained as a limit of the polynomial 

of the type 

K(s) = K(p, s, Q1, ... , Qm_ 1) 

for any m, 1 < m < n. 

By 4.2.3, if K(p 2) is regular, i.e., if 

i- ~ ~ , then Ji 2 (p) consists of regular poly· 

nomials. Thus in this case 

fi 2 CP) • v (K(p 2)); cf. 3.2.2 
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If K(p 2) = t (p), then Ji 2(p) is the set of 

degenerate polynomials each member K of which consists 

of m lines parallel to ~ exactly one of which is 

't (p) ; 1 < m < n. 

By 3.3.6 each of the components of K is a 

single line; i.e.,a line counted once. The members of 

JI zCP) will be called tangent polynomials of A!..! p. 

4.2.6. Let p, Q1 , ••• , Qm-l be mutually distinct 

points such that 

are mutually distinct. By 4.2.2 we have, for s close to 

p, 

Hence there is a unique degenerate polynomial of degree 

m , namely 

K ( s ) • K(p , s , Ql , • • • , Qm _l ) -• 't (p) V ;t (s) U ;!; CQ1) \J · · · · · · V .t (Qm-2) t iQl (p) • 

Hence any accumulation polynomial K of the K(s) ass 
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tends top consists of the double line through p, and 

m - 2 other lines, all parallel to "t-. 

4.2.7. Let p be an interior point of the arc 

A. Suppose that A satisfies Condition 1 at p. Then 

A satisfies the following standard lemma; cf. [10]. 

The lines different from ~ through p either 

all support A at p ~ all of~ intersect A!..!_ p. 

4.2.8. The ~-tangent polynomials K of A 

at p either all support A!..!_ p ~ all of them intersect 

A at p. 

Proof. If K is regular, this lemma is the special 

case of 4.5.1 in which h = 1. 

If K is degenerate it follows from 4.2.7. 

4.2.9. Let A satisfy Condition 1 at the interior 

point p. 

Then A has~ cusp at p if the non-tangent 

polynomials of A through p support A at p. It is a 

cusp of the first kind if the tangent 't of A at p 

intersects A at p and it is a cusp of the second kind 

if ~ supports A at p. 
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4.3. Osculating Polynomials. 

4.3.1. Suppose that the arc A is once differ­

entiable at p. Let 1- • K(p 2) be the tangent line of 

A at p, '"\-"h--~ Then s¢ ~ if s sufficiently 

close top, cf. 4.2.2. Hence by 4.2.S, there is a unique 

tangent 2-regular polynomial K(p 2 , s) (i.e., an ordinary 

tangent parabola of A at p through~· 

We say that the arc A is twice differentiable 

at p, if the following condition holds. 

Condition 2. The polynomial K(p 2 , s) converges 

ass tends top, i.e., 

lim K(p 2 , s) exists. 
s+p 

We denote this limit by K(p 3) and call it the 

osculating parabola of A at p. If K(p 3) is degenerate, 

then, by 3.3.6, it is a double ray with the vertex p. 

4.3.2. Remark. If the osculating parabola 

K(p 3) happeni to coincide with the tangent "1--- of A at 

p, this is of no special significance in our theory. 

For a suitable non-linear transformation of the plane 

will map the family of the regular tangent parabolas of 

A at pinto the same set of curves such that the 
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new osculating parabola will be 2-regular. This will 

not affect the intersection and support properties of 

these curves at p with respect to the arc A. 

4. 3. 3. Let ~ \\ ~ . Since p has finite 

Ji -order, s¢ ',- for s sufficiently close top. 

By 3.1.2 and 4.2.4, the unique degenerate tangent poly­

nomial K(p 2 , s) of degree 2 of A at p through s 

consists of the pair of distinct single lines ~ and 

J.. (s). Ass tends top, K(p 2 , s) converges to the 

double line on CUJ,. Thus in this case Condition 2 is 

automatically satisfied. This limit polynomial will 

also be denoted by K(p 3). 

4.4. The h-osculating polynomials. 

4.4.1. Suppose that the differentiability of 

the arc A with respect to polynomials of ii has been 

defined up to the order h - 1 and A is h - 1 times 

differentiable at p. Thus the family fi2 r (p) of (r - 1)­

osculating polynomials has been defined and exists; 

1 < r < h. In particular, K(pr, s) has been defined 

and exists whens is sufficiently close top and 

lim K(pr, s) • K(pr+l) exists; 1 < r < h - 1. 
s+p 
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Suppose that K(pr, s) is r-regular for 1 ~ r ~ h - 1. 

4.4.2. Let us assume at first that K(ph) is 

regular. Thus K(pr) is also regular; 1 ~ r < h - 1. 

Define (ji., h (p) to be the family 'l'h (K (ph)) of the (h - 1) ­

osculating polynomials of A at p; cf. 3.2. Then for s 

sufficiently close top, there is a unique regular 

polynomial K(ph, s) of ~ h(p) of degree 6. h through s. 

In fact, K (p h , s) is h-regular, otherwise it would 

coincide with K(ph), which leads to a contradiction of 

the assumption that p has finite polynomial order. 

We say that the arc A is h times differentiable 

at p if the following condition holds. 

Condition h. The h-regular polynomial K(ph, s) 

converges ass tends top; i.e., 

lim K(ph, s) exists. 
s+p 

We denote this limit polynomial by K(ph+l) 

and call it the h-osculating polynomial of A at p. 

If K(ph~l) is degenerate, then by 3.3.6, it 

is one of the two double rays with the vertex p [the 

line f (p) J if h is even t..odd]. 
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4.4.3. We return to 4.4.1 and assume now that 

K(ph-1) is regular but K(ph) is degenerate, 3 < h < n + 1. 

Define the family Si, h (p) of (h - !}osculating poly­

nomials of A at p to be the set of the degenerate poly­

nomials 

where t (p)' .t'(Qm-h) are mutually 

distinct and h < m <- n. In particular, the unique 

polynomial K(ph' s) of Ji h (p) consists of a double ray 

on i (p) with vertex p [ the single line ;t.. (p) J 
and :l (s) if his odd [even1; cf. 3.3.6. Hence as 

s tends top, K(ph, s) converges to this double ray 

together with the 1ine ';!., (p) [ the double 1ine on 

£ (p)l if h is odd [evenl. Thus Condition h is 

satisfied automatically in this case. 

More generally, if K(ph) is degenerate but 

K(ph-l) is regular, then all the Conditions h, h + 1, 

... , n are satisfied automatically. 

If his odd, then K(pr), r ~ h, consists of a 

double ray on i (p) with the vertex p together with 

the line l (p) counted r - h times. If his even, 

then K(pr) consists of the line l:- (p) counted r - h + 1 

times. 
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4.4.4. The members of <R h+l(p) will be 

called 	h-osculating polynomials of A at p. 

As in 4.4.2, we note that if K(ph+l) is regular, 

then fj_ h+l(p) is the family fh+l(K(ph+l)); cf. 3.2. 

Thus each KE Jr h+l(p) will have at least h + 1 point 

contact with K(ph+l) at p. If K is an m-regular 

polynomial of J1 h+l(p) and if QiEK, Qi, P, Qi, Qj, 

i; j, 1 2 i < m - h, m - h, then K will be1 2 j 2 
denoted by K(ph+l, Q1 , ... , Qm-h). 

4.4.S. Suppose that the arc A is h - 1 times 

differentiable at p and suppose that K(ph) is regular. 

Suppose the straight lines i'CP), ;/, (Q 1J, ..., 
;/, (Qm) are mutually distinct; 0 2 m 2 n - h. Then 

for s sufficiently close top, there is a unique regular 

polynomial 

K(s) 

of degree 2 m + h in 4:2. h(p). Since A has finite 

polynomial order, K(s) is(m + h~regular. Also 

K(s)E~(p, n1 , .•. , Qm) and ~his compact: cf, 3.3.S. Hence any 

sequence {K(s)} has an accumulation polynomial and if it 

has only one accumulation polynomial K, then it converges 

to K. 
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4.4.6. Let A satisfy Condition hat p. Then 

K(s) converges to~ polynomial K' such that 

K'E'l\+l (K(ph+l)[ K' = K(ph+l) ·u t (Q1) U • • • 

if K(ph+l) is regular [degenerate], 

Proof. Let K' be an accumulation polynomial 

of the K(s). Let {si} be a subsequence of {s} converging 

top such that K' is the limit of K(si). 

Ci) Let K(ph+l) be regular. If K' is degenerate 

then it intersects K(ph+l) in m points, say R1 , ••• , l\n; 

RiE ! (Qi), 1 < i < m. Hence K(ph,si) and K(si) 

will intersect each other at m points close to the 

Ri Is' for si sufficiently close top; cf. 2.6.1. Thus 

K(ph , s i) and K(si) meet altogether m + h + 1 times, 
h+lhence they coincide. Therefore K(p ) • K' , which is 

impossible. Clearly K'E~h+l(K(ph+l)). Also K' is a 

unique regular polynomial of degree :$ m + h, hence- IC(s) 

converges to K'. 

(ii) Let K(ph+l) be degenerate. First, we shall 

show that K' is degenerate by using induction on m. 

Clearly the statement is true form• O. Assume that 

aready prove hwe have 1 d tat l.f K( ph , s, Q
1 , • • • ' Qm-1) 

converges then it converges to a degenerate polynomial K0 • 

Let Qm¢K(ph, s, Q1 , ••• , Qm_ 1 ) and Q'ffl.f £., (p) U~ (Q1) 

V • • • \) ~ (Qm _1) • Let 
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K(ph, s, Q1 , ... , Qm-l' Qm) converge and suppose that it 

converges to a regular polynomial K. Then K0 supports 

[intersects] Kat p, if his even [odd]; cf. 1.3.7. 

Let N he a sufficiently small neighbourhood of pin G. 

Then for s'£N sufficiently close top on A, K(ph, s', Q1 , 

... ' 
other in N with an even [odd] multiplicity, if his 

even [odd1; cf. 2.6.2. Hence K(ph, s', Q1 , ... , Qm_ )1

and K(ph, s', Q1 , ..• , Qm) will meet once more in N 

and therefore they will coincide. Hence QmEK(ph,s:Q1 , ••• ,Qm-l); 

a contradiction. This proves that an accumulation poly­

nomial K' is degenerate if K(ph+l) is degenerate. 

Next, we shall show that 

KI = K (ph+ 1) v '-f' (Q ) udv 1 ... 

If his odd it is clearly true by 3.3.6. Now let h 

be even. If {s 2i} and {szi+l} are two subsequences 

of {s} converging top such that K(s 2i) and K(szi+l) 

converge to and K0 respectively, then s 2i and szi+lK1 

must lie on the same side of K(ph , Q1 , ••• , Qm), other­

wise K(ph, s 2i) and K(ph, s 2i+l) will converge to two 

different degenerate polynomials lying en opposite sides 

of K(ph, Q1 , •.• , Qm). Thus the double ray K(ph+l) 

belongs to both K and K2 and hence
1 
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K 1 = K 2 = K ( p h +1) U 'f; (Q1) V • . . . U':t (Qm) . 

Thus K(s) converges to its unique accumulation poly­

nomial K'. 

4.4.7. Let K(s) converge to a polynomial K 

ass converges top. Then A satisfies Condition h, 

i.e., K(ph, s) converges. 

Proof. Let K' be any accumulation polynomial 
hof the K(p , s). Let {si} be a subsequence of {s} such 

that K' is the limit of K(ph, si). 

If K' is degenerate, then as in 4.4.6, K is also 

degenerate and K' is the component of K through p. 

Hence K' is the only accumulation polynomial of 
h

K (p ' s) . Thus K(ph, s) converges to K' which is the 

single line i (p) or a double ray with vertex p 

according ash is odd or even. 

If K' is regular, then so is K. Also K' is a 

polynomial of degree< hand has (h + 1)-point contact 

with K. Hence K' is unique. Thus again K(ph, s) 

converges to K' . 

4.4.8. Theorem~. Let the arc A be h times 

differentiable at p. Suppose that K(ph) is regular. 
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Then !if, h+l (p) is~ of the following subsets of 
·­
~ h (p). 

(a) ~ h+l(p) is~ family ~h+l; cf. 3.2. 

(b) Ji h+l(p) consists of those degenerate 

polynomials of ji whose component through p is the 

double ray belonging to K(ph+l) with the vertex p 

[the line t (p)]if his_~ fodd]. 

4.4.9. 	 Remark. The following example shows 

that 	Condition h does not imply Condition h + 1. 

Consider the arc A given by 

Y • x 2 + xh+l sin 1 
x· 

Then A satisfies Condition h, but not Condition h + 1 

at the point p = (0, 0). 

In this example, the polynomial order of pis 

not finite. 

4.4.10. We call the arc A Si- differentiable 

at the point p if it is n times differentiable there. 

4.5. Support and intersection properties of 

~ polynomials of Ji h (p); 1 ~ h ~ n + 1. 
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In this section let A be m-times differentiable 

at an interior point p, 1 ~ m ~ n. From now on we 

put SJ, i = Ji i(p). 

4. S .1. Theorem "j. The polynomials of 

&: h '-... fji h+l; h ~ m, either all support A at p or 

all intersect A at p. 

Proof. Since p has finite Ji: -order, any 

polynomial Ke Ji h either intersects or supports A 

at p. Let Kl and K2 be two polynomials of Jz h"' J2 h+l' 

(i) Let K(ph) be regular. Thus Kl and K2 are 

regular. 

Suppose that K1 intersects and K2 supports A 

at p. Let N be a sufficiently small neighbourhood of 

pin G such that 

and 

A(\ N (\ K1 • {p} •A('\ NI\ K2• 

Let K2 be oriented such that 
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A () N c:: K2
1 \) {p}. 

Suppose at first that K1 and K2 haven - h 

points, say Q1 , ..• , On-h in common outside p. Consider 

the one parameter family of polynomials of Ji h 

through Q1 , ... , Qn-h; cf. 3.3. Let s£A n N and Let 

K(s) be the member of this family through s. Then 

K(s) has no points in common with K1 and K2 outside p, 

o1 , •.. , Qn-h and 

K ( s) (\ Kl n N = { p} .. K ( s) n Kz (\ N. 

Since K1 intersects A at p, we have 

±1 
A('\ K1 (\ N ':/ f'; cf. 4.1.4. 

Also if his odd [evenl, then K(s) intersects [supports] 

K1 and K2; cf. 1.3.7. Hence if his odd [even] and 

s~A n N n Ki, then 

Similarly if s£A n N (\ Ki 1 , then 
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Let s tend to p. By ·:,- Lt., l4;, 6, K(s) converges to 

KO "' 
h+l 

K ( p ' O1 ' • • • ' Qn - h) G 
c;:;; 
~ h + 1 • 

From (1} and (2) 

Since K1 and K2 are regular, K0 cannot be degenerate 

and thus K0 is also regular. Hence either 

Therefore either K1 or K2 is a polynomial of Ji h+l; 

a contradiction. 

Next suppose that K1 and K2 have fewer than 

n - h points in common outside p. Choose n - h + 1 

distinct points R1 , ... , Rn-h+l such that their 

x-coordinates are in increasing order of magnitude and 

such that Rj and Rj+l lie on opposite sides of both 

K1 and K2 ; 1 < j < n - h. Let 

K3 • K(ph, Rl, • •.' Rn-h+l). 
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Then K1 and K3 [ K2 and K3l intersect each other at 

n - h points outside p. Hence, from the above, K1 

and K3 [K 2 and K31 either both support or both inter­

sect A at p. 

Thus either both K1 and K2 intersect A at p or 

both of them support A at p. 

(ii). Let K(pr) be degenerate. Then it is clear 

that for h > r the degenerate polynomials of 

either all intersect A at p or all of them support A 

at p. 

4 • S • 2 • Let K(pi) be regular and let K(pi+l) 

be degenerate~ i > 1. Let h > i. 

Then the component of Ke: through~ h" ~ h+l 

p is the line t., (p) counted h - i times if i is odd 

and a double ray with vertex p iogether with the line 

~ (P) counted (h - i • 1)-times if i is even; cf. 4.4.3. 

In particular, if A has a cusp at p, then 

Ke: Ji h \ ai h+l always supports A at p and if A has 
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no cusp at p, then Ke: ~ h \ ~ h+l will intersect 

[support) A at p if his even fodd1; 1 < i < h. 

Let K(p 2) .:: ;!, (p), h "> 1.. If A has a cusp of the first 

kind at p, then Ke 5r. h intersects or supports A at p 

according ash is even or odd. If A has a cusp of the 

second kind, then Ke: fji h always supports A at p. 

4.5.3. Leth~ m be~~ integer . .!! K(ph) 

is regular, then all the polynomials of &, h\. i-£ h+ 1 

support A at p. !..f K(ph) is degenerate, then Ke R.h 

supports~ intersects A at p according~ A has~ does 

not have ~ cusp at p, if K(p 2) 'I ;tCP)· 

Proof. Let K(ph) be regular and let Ke: ~ h \ ~ h+l .' 

Let Q1 , ... , Qn-h be n - h mutually distinct points on 

Kall different from p. Suppose that K intersects A 

at p. Let 

be the unique regular polynomial of ~h through s, s 

sufficiently close top on A. Since p has finite order, 

we can chooses so close top, that stK and K(s) is 

n-regular. Also, since Kand K(s) have exactly h-point 

contact and his even, they will support each other at p; 
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cf. 1.3.7. Hence if N is a sufficiently small neigh­

bourhood of pin G and sEA n N ~ K1 , then 

K(s) (\ N C (K1 \J {p}) (\ N. · 

Lets tend top and put 

Hence 

Ko (\ N c (K
1 v K) n N. 

Similarly, for SEA('\ N (\ K- 1 , 

K(s) I\ N c (K-l U {p}) n N. 

Hence 

Ko ('\ N C (K-l U K) n N. 

Thus 

K0 (\ N c K (\ N. 
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Since K is regular, = K. Hence Kt Ji h+l; contra­K0 

diction. 

If K(ph) is degenerate, and K(p 2) r} ;f (p) then 

the assertion follows from 4.5.2. 

Corollary. Let i be~· Let K(pi) be regular 

but K(pi+l) be degenerate. Then K(pi) supports A!!. p. 

4.5.4. Leth~ m be an odd integer. Let 

K(ph+l) be regular. Then each Kt S?;, h \ Jl h+l supports 

or intersects A at p according as A has£.!_ does~ have 

a cusp at p. 

Proof. If h = 1, then the statement is true 

by the definition of a cusp; cf. 4.2.9. Hence let h > 2. 

Let A have a cusp [no cusp] at p. Thus t • "iL (p) 

supports [intersects"] A at p. Let Kt ~ h'\ Si.h+l • Let 

Q1 , ... , Qn-h be mutually distinct points on K, all 

different from p. Let 

K(s) = K(ph , s, Q1 , ... , Qn-h) 

be the unique regular polynomial of ~ h through s, 

... ' 0 h. Then for s sufficiently close top,·n­

s4K and K(s) will be n-regular. 
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Suppose that K intersects [supports] A at p. 

Let N be a sufficiently small neighbourhood of 

pin G such that 

K(s) (\ K (\ N = {p} 

and 

A (\ ~ (\ N = {p} • A (\ K (\ N. 

Now Kand K(s) are both regular, hence 

K ('\ i ... {p} = K(s) f'\ ~ • 

Let 'l [ K1be oriented such that 

A(\ N C :f, - l U { p} [A ll N C K- l U { p }l . 

Since Kand K(s) have exactly h-point contact at p and 

his odd,they will intersect each other at p; cf. 1.3.7. 

Also ;{ intersects K(s) at p. Hence if 

then we have 
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K(s) (\ N c (K-l (\ ~ -l) V (K1 (\ Z 1 ) U {p} 


[ (K-1 ('\ ;/ 1) \J (Kl (\ ~ -1) U {p}l. 


Similarly, for 

v, -1 1 [ I\ "' -1 " K-1 1s E.A 	 (\ N ('\ otJ /'\ K se:A (\ N 1 , dv 1 1 
J 

we 	 have 

K(s) ('\ N C (K1 (\ tf -l) V (K-l ('\ ';t 1) U {p} 

[ c K-1 .n ~ -1) u c Ki n ~ i) u { P}J . 

Lets tend top and put 

Then we conclude that 

K0 (\ N C K V '£:, • 

Since K0 is regular, K0 (\ N c K and therefore K0 • K; a 

contradiction. 

Remark. In 4.5.4 if K(ph) is regular but K(ph+l) 

is degenerate, then the assertion need not be true; cf. S.2.4. 

4.5.5. Let the~ A have~ cusp at p. Suppose 

that KE ii_ h'\ &, h+l intersects A ~ p. Then K(ph+l) 

is degenerate. ~ if K(pm+l) is regular, then 

KE. 	 ~ h" fj, h+l supports A~ p; 1 < h < m. 
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Proof. By 4.2.9, h ~ 2 and by 4.5.3, his odd. 

Suppose that K(ph+l) is regular. Since his 

odd and p is a cusp, we have, by 4. 5. 4, Ke: Ji h \ ~ h+l 

supports A at p; a contradiction to the assumption. 

4.5.6. Let A have~ cusp of the first kind~ 

p. Let K(pi) be regular but K(pi+l) be degenerate. 

Then K(ph) = '1- for 2 < h < i and i is either odd~ 

equal tom+ 1. 

Proof. We first prove that K(ph) = '1,- for 

h = 2, 3, ... , i. This assertion is trivial for h = 2. 

Suppose it has been proved up to h; h < i. 

Let~= ~h be the one-parameter family of regular 

polynomials of degree< h which have h-point contact with 

1" = K(ph) at p; cf. 3. 3. 

If his even~ is decomposed by ~ into two 

disjoint subfamilies ~ Cl c r Cl bounded by ~ and 

a double ray with vertex p; a• ±1; cf. 3.3.7. If 

se: ~a., then 

Hence 
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lim K(ph, s) = K(ph+l) = ~. 
s+p 

If h is odd, then K(ph) • ',-­

decompose~ into two disjoint families 

each of which is bounded by K(ph) and 

s a£ A f"'\ i- a n Z l , then 

Hence 

Since h < i, we have K(ph+l) = 1­

Now, suppose that i < m + 1 is 

K(s) = K(pi, s) 

be the unique i-regular polynomial of 

s, s sufficiently close top. Since i 

supports ~ at p. Hence if sa£ ~ a 

and 't, = 'f. (p) 

ta, a= ±1, 

~ . If 

even. Let 

fi i through 

is even K(s) 

then 



Hence 	 80 

a contradiction. 

4.6. The degeneracy index. The degeneracy 

index I(p) of a differentiable point pis defined as 

follows. 

(1) I(p) = i, 1 ~ i ~ n, if and only if i is 

the smallest integer such that K(pi+l) is degenerate; 

or equivalently, such that ii_ i+l consists of degener­

ate polynomials. 

(2) I(p) = n + 	1, if K(pn+l) is regular. 

4. 7. Relations between the families fi_ h 

and Ji. h+ 1 • Define 

~~- -e:: ~ ~ J ~j U ~j+l; j • 1, •.. , n. 

The following 	diagram shows how the families 

CY are related.1 ' ... , d6 n+l 

We observe that 

j.ih (\ dlj=fifj>h>I(p). 



CHAPTER V 

A Characteristic of a Polynomially Differentiable Point 

5.1. Characteristics. With each interior 

differentiable point p of type i, i • I(p), 1 < i < n + 1, 

of the arc A, we associate a characteristic 

( a O, a1 , ••• , an ; i) . 

The numbers aj are equal to 1 or 2; O < j < n. We 

define them inductively as follows: 

h-1 

l a. is even [odd J


Jj •O 

if the polynomials of ~ h '\. fiJ h+ 1 all support [ intersect J 

A at p; 1 2 h < n. Thus a 0 is even, i.e., a 0 • 2,if 

and only if A has a cusp at p. The number 

a·
J 

is even '[odd J 

if the polynomial K(pn+l) supports lintersects1 A at p. 

- 81 ­
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5.2. Characteristics of ~-cusp points. 

Throughout this section we assume that A does not have 

~ cusp at p. 

5.2.1. Let I(p) • i, 1 ~ i < n. If i is~, 

then a· = 2 and a. • 1 for j 11- i. Let i be odd,
1 J 

Then ai = 2 and aj • 1, j; i [ai-l • 2 ~ aj • 1, 

j ~ 	 i - 1] if KE ~ i intersects [supports] A at p. 

Proof. If 1 ~ h < i, then by 4.5.3 and 

4.5.4JKE ~ h\ ~ h+l supports or intersects A at p 

according ash is even or odd, Hence ah-l = 1 for 

h = 1, ... , i . 1. 

Now 	 by 4.5.2, 

h-1 
(1) 	 l a. 

J 
- h - 1 (mod 2) if i < h < n + 1. 

j•O 

This yields, in particular, 

i i-2 

l a. 

J 
• l aJ. + ai-l + ai = (i - 1) + ai-l + ai = i (mod 2),


j=O j•O 

(2) i.e., ai + ai-l - 1 (mod 2). 


If i is even, then 4.5.3.still yields a. 1 • 1 and there­
1­

fore (2) implies that 
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ai - 0 (mod 2), i.e. , a. == 2. 
1 

If i is odd, then by ( 2) ' either ai-l = 1 and 

a. 
1 

= 2 or a.
1- 1 = 2 and ai = 1. Obviously a.1- 1 = 2[ai-1 = 1] 

if Kc ~i supports [intersects] A at p. 

Now it can be easily seen that for both i even 

and i odd (1) implies that 

a i +1 • . . . . • = an "' 1 • 

5.2.2. If i"' 1, then 4.5.2 implies that the 

characteristic of pis 

(1, 1, 2, 'l, .... 2; 1) or (1, 2, 1, ..•. , 1; 1) 

according as q. supports or intersects A at p. 

5.2.3. If i"' n + 1, then 4.5.3.and 4.5.4 

imply that .... • an-l • 1. Thus p hasa 0 = a 1 • 

characteristic 

(1, 1, .... , 1, 2; n + 1) or (1, 1, .... , 1; n + 1) 

according as K(pn+l) supports or intersects A at p. 
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5.2.4. The following examples show that for 

i = n + 1 and for each odd i, 3 ~ i ~ n, both of the 

types of differentiable non-cusp point discussed in 

5.2.1 and 5.2.3 exist, and that there exists a diff­

erentiable non-cusp for each even i, 2 < i < n. 

In these examples, we take the point p given by 

s = O on the indicated arcs. Consider 

x = -o < s < 6. 

Here 6 >0 is sufficiently small. The indices k, t, m 

are positive integers such that k > 1, m > t, k is 

odd, Ci - 1) k < t < ik. 

If i is even and 2 ~ i ~ n, let t be even. 

Then p has the characteristic (1, • • . ' 1 ' a. • 2,1, ... ,l;i).
1 

If i is odd and 3 < i < n, then p has character-

is tic 

(1, .... , 1, ai = 2, 1, •..• , 1; i) 

or 

(1, .... , 1, ai-l • 2, 1, .... , l; i) 

according as tis odd or even. 
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If i = n + 1, we obtain examples of the 

characteristics 

(1, .... , 1, 2; n + 1) or (1, •... , 1; n + 1) 

by letting t = kn. 

5.2.5. From 5.2.1,_S.2.2 and 5.2.3, we 

obtain the following result. 

If 	A does not have a cusp at p, then the charac­
3teristic (a 0 , a 1 , ••• , an; i) of pis one of~+ 2[ n i 5 1 

different types if n is even [odd1. 

5.3. Characteristics of cusp points. Throughout 

this section we· assume that A has~ cusp~ p. 

5,3.1. Let I(p) • i, 1 < i < n. Then the 

characteristic of pis 

(2, 2, ... , 2; i) 

if i is even. If i is odd, then the characteristic of 

pis 

(2, 2, ... , 2, 1, 1, 2, ... , 2; i), a _ • ai • 11 1 
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or 

(2, 2, ••. , 2; i), 

according~ Ktpi) intersects£.!_ supports A!! p. 

Proof. For 1 < h < i, by 4.5.3 and 4.5.4, 

K € fi h" ~ h+l 

all support A at p. Hence 

a. == 2, 0 < j < i - 2.
J 

By 4.5.2, KE ~ h supports A at p if i < h < n + 1. 

Therefore, 

h-1 

6 aj - O (mod 2). 

If i is even, then by 4.5.3, ·KE J;i. i supports 

A at p. Hence 

i-1 
~ aj - 0 (mod 2). 

Thus if i is even, then aj • 2, 0 < j < n and p has the 

characteristic 



(2, 2, ••• , 2; i). 
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i 
'i'5 

If i 

a . = 
J -

is odd, then by 4.5.2 

a . 1 + a . - 0 (mod 2) • 
1­ 1 

Thus 

a. 11­
= a.

l 
= 1 or 2. 

Obviously, ai-l = 1 if and only if 
i-1
l a. is odd; 
O J . 

i.e., if and only if A is intersected by K(p 1
). 

5.3.2. The following examples show that for 

odd i, i > 1 both types of differentiable cusp of 

the second kind exist. 

Let the arc A be given by 

(S.3.2) 

where k and tare even, mis odd, m > t, and (i - l)k ~ 1 < ik, 

3 < 1 < n. The point pis the origin. 

If l • (i - l)k, then the characteristic of pis 

(2, 2, ... , 2, 1, 1, 2, •.. , 2; i), ai-l • ai • 1, 
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otherwise it is 

(2, 2, •.. , 2; i). 

5.3.3. The following result is an immediate 

consequence of 4.5.2. 

!i I(p) = i • 1, then the characteristic of 

pis (2, 1, 1, ... , 1; 1) ~ (2, 2, ..• , 2; 1) according 

~pis~ cusp of the first~ second~­

5.3.4. The next statement is a corollary of 

4. 5. 5. 

!i I(p) • n + 1, then~ cusp point p has char­

acteristic 

(2, 2, ... , 2; n + 1) or (2, 2, ... , 2, 1; n + 1) 

d . K ( n+l) . Aaccor 1ng as p supports~ intersects ~ p. 

Examples of both types are given by (5.3.2) 

with nk < t, k and t even, m odd and m > t. 

5.3.S. From 5.3.1, 5.3.2 and 5.3.4, we 

obtain the following result. 
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Let p be~ cusp of the second kind. Then the 


h · · f · f 3n 1 [ 3n +2 
3 1 d · ff t
c aracter1st1c £.__ p ~ ~ £.__ -z + 1 eren 

types if n is~ [odd; n > 1). 

5.3.6. Let p be~ cusp of the first kind. 

If 1 < i = I(p) < n, then the characteristic of pis 

(2, 2, ..•. , 2, 1, 1, 2, .... ' 2; i) , 

where ai-l • ai • 1. If i = n + 1, then p has the 

characteristic (2, 2, . . . ' 2, 1; n + 1). 

Proof. By 4. 5.6, K(pi) • ~ and i is odd for 

1 < i < n. Now 'i-- intersects the arc A at p. Hence 

if 1 < i < n, then by 5.3.1, the characteristic of p 

is (2, 2, •.. , 2, 1, 1, 2, ....' 2; i) . 

If i = n + 1, then again by 4. 5.6, K(pn+l) • ~. 

Hence by 5.3.4, the characteristic of pis (2, 2, •••. , 2, l,;n+l). 

Remark. Examples of these types are given by 

the arc in (5.3.2) if k is even, tis odd, m > t and 

( i - 1) k < t < i k [ i k < t 1 if i < n [i • n + 11. 

5. 3. 7. Let n = 1, i.e. , the polynomials of JJ 
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are straight lines. If A has a cusp of the first kind 

at p, then the characteristic of pis (2, 1; 1) or 

(2, 1; 2). If pis a cusp of the second kind, then p has 

the characteristic (2, 2; 1) or (2, 2; 2). 

5.3.8. From 5.3.1 to 5.3.7, we obtain the 

following. 

Let A~! cusp of the first kind!_! p. 

Then the characteristic of p is ~ of ~ + 1 [ n i 3 ] 

different types if n is ~ [odd1. 

5.3.9. From 5.2.5, 5.3.S and 5.3.8, the 

number of types of differentiable points is ~ + 4 [ 7n i 11 ] 

if n is even [odd). 

5.4. Infinitely differentiable points. 

5.4.1. We shall define a characteristic 

of a point p of an arc A which is n times differentiable 

at p with respect to the family of polynomials of degree 

at most n for all positive integers n. 

The family Ji of regular polynomials of degree 

at most n shall be denoted by JJ, (n) and the families 

cR. ~n) (p) , 1 ~ h < n + 1, by rR. ~n) • Al so, the 
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characteristic (a 0 , a1 , .•. , an; i) shall be denoted 
(n) (n) (n) .by , , ...• , an ; 1n) • (a 0 a1 

We observe that J2:Cn)_differentiability 

implies J2, (n·l) _differentiability. Thus if A is n-times 

differentiable at p, it is also (n - 1)-times differen­

tiable at p and has a second characteristic 

(a (n-l) (n-1). . )

0 ' ···' an-1 ' 1n-1 · 


Each f-2. ~n) is the union of ~ (n-l) with a family 

~(ph; 01 , ... , Qn-h+l)of polynomials of degree< n; 

h = 1, ... , n. This readily yields 

R (n-1) \ ~ (n-1) c C'(n)'\ C'(n).(1) h. 0~h+l ~h ~h+l' h • l, ···, n - 1 • 

However, the one curve of ~ (n-l) may be equal to the 

of d~~i. 
n 

8i !n) \ R!~~ .curve Thus it need not lie in 

Hence by 4.5.1, 

(n-1) (n)
ah • ah • ah, say, for h • 0, 1, ... , n - 2, 

but not necessarily for h = n - 1. Also 

i n-1 = 1n if in-l < n - 1. 
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Now let A be n times differentiable at p for 

each n = 1, 2, .... Then we have an infinite sequence 

of characteristics of p. 

If there exists a least integer m such that 

im < m + 1, 

then 

in• im for all n ~ m, 

and we define 

to be the characteristic of p with respect to all polynomials 

and call im the index of p. 

If however, 

in• n + 1 for all n, 
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then the characteristic of p shall be denoted by 

... ' 

5.4.2. Examples. (i) Consider the arc A given 

by 

k k+t 
x = s ' y = s ' 

where k > 1 and tare odd integers. Let (i - 2)k < t < (i-l)k. 

Then the point p = (O, 0) has finite index ii for 

i = 2, ... , n + 1. Moreover, p has the characteristic 

(a 0 , ... , an; ii) where ai • 2 and aj • 1, j ~ i 

[a i _ 1 = 2 and a j = 1 , j f, i - 1J if i is even [ odd J. 

(ii) The point p • on the arcco' O) 

l 
;~1 

e s i 0 

x = s' y • 
0 s - 0 

has the characteristic of the type (a 0 , a1 , •.. , an, ... ' CIO) • 
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CHAPTER VI 

The Order of a Differentiable Point. 

6.1. l"ltroduction. ·Recall tliat the ~ ·order 

of a point p of A is the Ji -order of a sufficiently 

small neighbourhood of p on A~ cf. 4.1.3. 

In this chapter our aim is to prove the follow­

ing theorem. 

Theorem 4. Let p be~ interior differentiable 

point of the arc A. Let p have the characteristic 

(a
0

, al, ... ·, an; i) . Then the Ji. -order of p is not 
n 

less than a ..r-- Jj =O 

6.2. Certain pencils Aj in j!_. It will be 

convenient to introduce certain pencils Aj in Ji 
j = n + 1, n, ••. , 1,o. Let 

0:: n+l
An+l = (}<, n+l • {K(p )}. 

Put 

K(,.,n+l) K 
t' = n+l' 

- 94 ­
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Since the order of pis finite, there is a n•tghbour­

hood Nn of p on A such that 

Recall thats always denotes a point on A" {p}; 

cf. 4.2.1. Also since A is differentiable at p, 

K(pn, s) exists if SENn and 

Let 

and put 

nK(p , s) • K(An' s). 

Then, for seNn, we have 

(3) 
n 

lim K(>.n, s) = Kn+l's+p 
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Choose 

Again, since the order of pis finite, there is a 

neighbourhood M 1 of p on A such that n-

Choose 

Thus 

Ry 4.4.5, for a sufficiently small neighbourhood 
I I 

Mn-l of p on A and s£Mn-l' there exists a unique 

polynomial 

n-1 c;
K(p , s, 01)£ Q-.t, n-1· 
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Let 

N l = M l n M' 1'1 Nn.n- n- n-

Let 

A
n-1 

Put 

n-1 1
K(p , s, 0 1 ) = K(rn-l' s). 

Then for sEN 1 , we have n­

lim 
s+p 

Choose 

Let j < n - 1. Assume we have already defined 
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the neighhourhoods 

of p on A, the points Q1 , ••. , Qn-j' the families 

An' ... , Aj, the points sn, •.. , sj, and the curves 

Kn, ... , Kj such that the following conditions are 

satisfied: 

(1) . ~co .) are mutually distinct
r,l.. -n-JJ 

and for h = n, n - 1 , ••• , j 

h+l' 

Then we define.).j-l as follows. 

Since the order of pis finite, there exists 

a neighbourhood Mj-l c.. Nj of p on A such that 
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K. (\ M. 	 l = {p}.
J J ­

Choose Q . on K. Such that (1). 1 is satisfied •.
n-J+1 J 	 J-

Thus 

By 4.4.S, there exists a neighbourhood N. 1cM.
J - J - 1 

j-1such that K(p , s, Q1 , ... , Qn-j,+l)e: Jrj-1 

is unique for each se:N. 1 . Define A· 1 through
J - J ­

(2)j-l and the left half of (S)j_ 1 . Then (3)j_ 1-(S)j-l 

will hold true. Define sj-l and Kj-l through (6)j-l" 

6.3. A 	 lemma. The main tool which we shall 

use 	to prove our theorem is the following lemma. 

Lemma. Let M be any neighbourhood of p £!!. 

A. Then Aj contains polynomials K arbitrarily close 

to Kj +l which intersect M'\. {p} in not less than aj 

points; 0 ~ j < n. 

The proof is given in 6.3.1-6.3.3. 

6.3.1. 	 Clearly, if j < I(p) [j > I(p)'], then 

all the polynomials of Aj and the polynomial Kj+l 

are regular [degenerate"]. If j = I (p) then all the 

polynomials of Aj are regular but Kj+l is degenerate. 
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By ( 2) j and ( 4) j , 

Actually, we have equality for j ~ I(p). For if 

j < I(p), then Kand Kj+l are distinct, have 

Q1 , ... , Qn-j in common and have j-point contact with 

each other at p. If j • I(p), then a regular poly­

nomial K of Aj has a point in common with each of the 

components of the degenerate polynomial Kj+l" 

If j > I(p), then the components of Kand 

Kj+l through Q1 , •.. , Qn-j are identical. However, 

the component of K. 1 through p is K(pj) U ~ (p),
J+ 

while K contains ,t (s) which does not belong to Kj+l" 

6.3.2. The case j > I(p) is straightforward, 

since then the families ilj +l (p) and Ji j (p) are 

both degenerate. We recall that & j (p) ('\ ~ j +l (p) • J 

and JJ:. j+l(p) (\ R j+zCP) -~. 

By ( 2) j + 1 , ( 6) j +1 and ( 7) j + 1 , 
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E ~ j+l(p). 

Ifs is sufficiently close top on A, then 

We observe that K(Aj' s) and Kj+l cannot both inters 

ect A at p. The following statements can be verified 

directly. 

One of K(Aj' s) and Kj+l intersects A at p, while the 

other supports [ K(Aj, s) and Kj+l both support A at p). 

~ 
';t (p) intersects (supports"] A at p. 

K(Aj, s) intersects A close top in at least one [two) 

points. 
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6.3.3. Let j < I(p). Choose a neighbourhood 

of pin M ~ Nj such that 

K. "'N(j) = { } J+l I I P • 

U = {K(A·· s )Is £N(j)}· a• 1, 2. 
a J' a a a ' 

Now the family 

is homeomorphic to a closed interval (cf. 3.3.7). 

Hence there exists an end-polynomial Ca of Ua other 

than Kj+l· We may assume that C does not meet N(j) or 
(l 1 

(j)
N2 • 

We may assign a continuous orientation to the 

one parameter family u1 U {Kj+l} U u2• Then the poly­

nomials of Ua all pass through the open set Ea of 

points in G, defined by 
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In the case where j = n = I(p) and n is even, 

Kn+l is a 	 cbuble ray and hence one of the open sets 
-1 ..

Kn+l and Kn+l 1s empty. Therefore, one of the sets 

1 -1 -1 1
{Ca (\ Kj +l} and {C ~ ('a Kj +l} 

in each E is empty; a= 1, 2. 
(l 

We have 

Now let N(Kj+l) be a neighbourhood of Kj+l" 

Then for s sufficiently close top, we have 

Hence there is an interval Va c Ua n N(Kj+l). Let 

eaEN~j) be such that K(Aj' ea) is the end-polynomial 

different from Kj+l of Va. Assa moves continuously 

and monotonically on N!j) from ea top, then K(Aj' sa) 

moves continuously in Ua from K(Aj' ea) to Kj+l" 

Hence the polynomials K(Aj' sa) omit none of the poly­

nomials of V, i.e., every polynomial of V meets N(j).a 	 a a 

Let KEVa. Thus K lies between K(Aj' ea) and 

Kj+l in Va. Since p has finite order, there is a 
(j) . 

neighbourhood N' of p in N'· such that if sa ENJ ('\ N' a a 

is sufficiently close top, thens EK and K will 
a 
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also lie between K(Aj, ea) and K(Aj, sa) in Va. 

Since e EK and {s , e }cN(j)~ E , they will be separateda a a a 
by K. In particular, at least one point of Kn N!j) 

is a point of intersection of Kand N(j); cf. 4.1.4. 
a 

Now, if aj = 1, then one of the polynomials 

Kj+l and Ca intersects N(j) at p, while the other 

supports N(j) there. Hence N~j)¢. E1 ; c1 and c2 lie 

on opposite sides of Kj+l in Aj; and u1 and areu2 
disjoint. 

If aj = 2, then Kj+l and Ca either both inter­

sect N(j) at p or both support N(j). Hence N~j)C E1 

and c1 , c2 lie on the same side of Kj+l and one of u1 

and u2 will be contained in the other. 

Thus the polynomials K(Aj' sl) in v1 c u1 

and the polynomials K(A j , Sz) in v2 C Uz lie on the 

opposite sides of Kj +1 or the same side of Kj+l 

according as a. = 1 or a. • 2. This proves the lemma.
J J 

6.4. We can now complete the proof of our 

Theorem 4, We first approximate K(pn+l) by a poly­

nomial Kn in An' then Kn by a Kn-l in An-land so on 

until we finally approximate K1 by a K0 in A0• Thus 

K0 does not pass through p. 

Let Mn be a neighbourhood of p on A. By 

Lemma 6.3, there exists a Kn in An close to Kn+l 
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which intersects Mn\ {p} in at least an points, say 

In the sequel, we put j • n - 1, ... , O, 

in turn. In Mj+l we construct neighbourhoods Aj+l 

of the sj+l and Mj of p which are all mutually disjoint. 

By Lemma 6.3, there exists a polynomial Kj of Aj 

close to Kj+l which intersects Mj '-. {p} in at least 

aj points sj and which also intersects each of the 
n r ak arcs Aj+l' ... , An. 

k•J+l 
Altogether, Ko is close to K(~n+l) and 

intersects Mn, {p} in at least a 0 + a1 + .•• + an, 

distinct points, all of which are different from p. 
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