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CHAPTER I 


Introduction 


1.1 	 Introductory Definition 

Stochastic approximation is a method dealing with 

algorithms converging to some sought value if, as a result 

of the stochastic nature of the problem, the observations 

involve errors. The methods of most interest and value are 

those that are self-correcting in the sense that a mistake 

tends to diminish to zero in the limit. The convergence to 

a desired value is of some specified nature, for example, 

mean-square convergence. 

1.2 	 Formulation of the Principal Problem in the Theory of 
Approximation 

The main problem in the theory of approximation can be 

stated as follows: suppose that two functions f(P) and 

F(P;A1 , ... ,An) of the point P£8 are d~1i~ed within a certain 

point set B in a space of any number of dimens.ions. Here 

F(P;A1 , ... ,An) depends on a certain number of parameters 

Ar, r=l, .•. ,n. It is to so determine the parameters 

A1 , ... ,An that the deviation of the function F(P;A1 , ... ,An) 

from the function f(P) in B will be a minimum. The distance 

between the function f (P) and F (P ;A1 ,. •__!_1 An) must be defined; 
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... -­ - ­

generally, the Euclidian metric is most convenient. Once 

the metric is defined it is desired to estimate the value of 

the Ar, r=l, ... ,n, parameters for which the expected value 

of the metric satisfies some condition, such as, taking on 

a minimum or maximum value, or equaling some fixed value. 

F ( P: 111 , ... , A ,.. ) 

e 
I 

Figure 1.1 Schematic Illustration of 
Principal Problem 

The statement of the problem is illustrated schematic­

ally in Figure 1.1. The unit vectors e 1 ,e2 , .•. ,en define a 
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space in the neighbourhood of the point sets. With P 

the function f(P) is defined; it remains to estimate Ar, 

r=l, ..• ,n so that the function F(P;A1 , .•. ,An) coincides 

with the function f(P) in this case. Here the Ar, r=l, ... ,n 

are the scale factors of the vectors er, r=l, ..• ,n. 

It is the function of the parameters Ar, r=l, ... ,n 

which is observable; however, there is a stationary random 

process Zr(t) (either tine-continuous or time-discrete) 

which contaminates the observations. Stochastic approximation 

can be used in a situation of this nature. 

1.3 Scone and Advantages of Stochastic Approxiriation Methods 

Stochastic approximation methods are applicable to any 

problem that can be fo~mulated as some form of regression 

proble~ in which repeated observations are made. To be 

specific, the use of these wethods is particularly appro­

priate a;nd advantageous when either one or both of two 

conditions occur. One condition is that the observation 

interval is so long tl]at_ conventional methods of estimation 

are impractical because of the computational problems 

associated with processing long intervals of the observed 

data. The other condition is that there is no detailed 

knowledge available concerning the statistics of the 

processes Zr(t). The limitation on stochastic approximation 

methods is that there must b.e a unique solution to the 

regression problen of interest. 
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Conventional estimation methods usually proceed in two 

steps: 

(1) the observed data are used to estimate inter­

mediate statistics; and 

(2) a set of (possibly nonlinear) equations relating 

the parameters of interest to these statistics 

are solved. 

Stochastic approximation nethods differ from this approach 

in two respects. First, the observation interval is divided 

into short subintervals of convenient fixed length (it can 

be of unit sample length also). Only the observations from 

a single subinterval are handled at a time, and after the 

data from a subinterval have been processed they are dis­

carded and not used again. Second, the two separate 

algorithms for estimating statistics and solving equations 

are combined into a single algorithm. 

In those situations in which stochastic approximation 

methods are applicable, their usage yields the following 

advantages: 

(1) 	 Only a small interval of data needs to be 

processed. 

(2) 	 Only simple computations are required, even when 

the actual functional dependence of the 

regression function on the parameters of interest 

is nonlinear. 
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(3) 	 The method may be employed in the absence of a 

priori knowledge of process statistics and in the 

absence of detailed knowledge of the relationship 

between the desired parameters and the observed 

data. In particular, the only requirement is that 

the regression function satisfy certain regularity 

conditions and that the regression problem have 

a unique solution. 

If sufficient a priori knowledge concerning the 

statistics of Zr{t) and the functional relationship between 

the parameters and observed data is available, the third 

advantage can be replacec1 by the following desirable 

property: the methods can be made asymptotically efficient. 

1.4 	 Major Contributions 

To the area of stochastic approximation there have 

been three major contributions. These have been.made by 

H. Robbins & s. Monro1 , J. Kiefer & J. Wolfowitz 2 and 

A. Dvoretzky3 • Essentially the Robbins - Monro procedure 

is a method for finding the root of regression function 

whose form is unknown but that can be observed and sampled. 

The Kiefer Wolfowitz procedure is similar in th..c1t it is 

a method for finding the extremum, maximum or minimum, of a 

regression function given only pertinent random observations. 

However, the basic idea of stochastic approximation is that 

any sort of iterative solution algorithm that is convergent, 
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based on direct observations of a regression function, can 

be adapted successfully to the case in which the observations 

are random. Dvoretzky formulates.the problem in this light 

and proves several theorems to this effect showing both 

convergence with probability one and in the mean square 

sense. As a result, the original results concerning the 

Robbins - Monro and Kiefer - Wolfowitz methods follow as 

special cases of his results. 

Although Dvoretzky's work represents a major contri­

bution to the mathematical structure of stochastic approxi­

mation theory, it is of less practical importance. The 

primary reason is that in applications, one is usually 

concerned with the rate of convergence and its dependence 

on the parameters of the recursive solution algorithm. 

These factors are best handled by focusing attention on the 

particular algorithm being used. 

__._____1.5 Algorithms 

In the area of control theory and specifically as 

pertains to the area of heuristic reinforced learning, two 

stochastic approximation algorithms have been developed 

and investigated by K. s. Fu4 • The exp~rience gained by 

studying the results of the first algorithm provided an 

insight into its advantages and disadvantages. The specific 

advantage desired in the algorithm was a faster rate of 
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convergence. This was the reason that led to the develop­

rnent of the second algorithm. It has all the advantages of 

a stochastic approximation algorithm as well as the feature 

of an accelerated rate of convergence. 

It is evident from Fu's paper that there is room for 

improvement of .the rate of convergence. In many situations 

a faster result is of great advantage. It means that less 

sampling is required, the number of computations is reduced 

and the overall time to get a result with a certain 

confidence level is less. 

The objective of this work is to show the development 

of a new algorithm with a faster rate of convergence than 

the two already developed. Essentially it is required to 

show that the new algorithm converges regardless of the 

starting point and that it converges to the true value. 

The conditions and limitations on the convergence will be 

made explicit in the proof. Having proven convergence, 

comparison will be made between the two existing algorithms 

and the new algorithm developed here. The feature of most 

interest is the rate of convergence. It is this then, which 

will be highlighted in the comparisons. 

1.6 Preview 

Since the area of stochastic approxi~ation is a 

relatively new field of study in mathematics and has been 
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applied to engineering only recently, it is essential that 

the theory as a whole be set in the proper prospecfive. In 

Chapter 2, a detailed outline of the historical sequence of 

contributions will be given along with a comprehensive 

review of the major blocks of theory presented in both the 

area of mathematical statistics and recently in electrical 

engineering. Chapter 3 contains an introduction to the 

relationship between the area of learning control systems 

and the area of stochastic approximation. ID addition, the 

fundamental form of the stochastic approximation algorithm 

is given along with an outline of the previous algorithms 

in the area of concern. The basic proof of the convergence 

of the algorithm under study is given in detail. Chapter 4 

contains an outline of the discrete maximum principle, an 

identification of the optimal control problem with the 

problem of optimization of the convergence rate of the 

algorithm, and a formulation and discussion of the optimi­

zation problem. Chapter 5 contains the results of computer 

simulations made using the new algorithm. A comparison of 

the sum of squared errors and sum of sample product squared 

errors for the new algorithm is made with similar error 

criteria for two previous algorithms introduced for 

comparison purposes. Chapter 6 contains an alternate proof 

for the new stochastic approximation algorithm using 

Dvoretzky's theorem. Chapter 7 follows with the conclusions 
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reached in this work and a bri~f review of the contents 

of this thesis. 



CHAPTER II 

Major Contributions to Stochastic Approximation: 
A His~orical Review 

2.1 Founding Contributors 

The area of stochastic approximation is a relatively 

new field of study in mathematics. It is essentially the 

fusion of two major areas in mathematics: the area of 

random or stochastic processes and the area of deterministic 

approximation theory. The first major contribution which 

put forth a block of theory suggesting such a union of 

subjectswas made by H. Robbins & S. Monro1 . Their work was 

monumental not only from the point of view of being of major 

significance but that it was a pioneering work. Never 

before had a theory for solving a regression function 

stochastically been put forth. Within a year of their 

publication, there appeared the work of J. Kiefer & 

J. Wolfowitz 2 who extended the work of Robbins and Monro 

and had applied it to the stochastic solution for the 

extremum, maximum or minir:mm, of a regression function. 

Both contributions were a new approach to an existing 

problem. It was not for some time afterwards that a gener­

alized approach was taken and formulated. A. Dvoretzky3 is 

credited with just such a contribution. His work was the 

·-10­
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major unifying theory to appear and to generalize the 

stochastic approximation problem. The Robbins - Monro 

technique and the Kiefer - Wolfowitz method are both 

special cases of Dvoretzky's Theorem. In addition to his 

theorem, Dvoretzky also provided a number of extensions 

and five generalizations thereby providing an all encamp­

assing theory. 

It is intended to present an outline of these three 

major contributions to the.theory of stochastic approxir:1ation. 

In addition, a review of application and extensions of this 

work will be given, in particular, those areas pertaining 

to electrical engineering. 

2.2 The Robbins - Monro Technioue 

Consider only the one dimensional Robbins - Monro 

technique for a scalar valued parameter a. Now, given a 

sequenc.e of random entities Zr,z 2 , ... , and a scalar valued 

function of Zand a, f(Z,a). Each of the quantities Z ,
n 

n=l,2, ..• , may represent one or more random variables or a 

random process of given duration observed at sequential 

time intervals. It is required to find the value of a for 

which 

m(a) = m0 
(2.2.1) 

where is a nominal value of the function m(a) and wherem0 

the function m(a) is defined by the equation 

m(a) = E{f(Z,a)} (2.2.2) 
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where the a which corresponds to this solution is called e. 

In the proof of their technique, Robbins and Monro.make a 

number of assumptions. These assumptions will be given 

along with the explanation rather than listing them arbit ­

rarily at the conclusion of· the description. The first 

assumption is that there exist constants k 0 and k~ 

(2.2.3) 

such 	that, 

k (a-e)2 < { m (a) -m0 } ( a -e) < k ' (a - e ) 2 (2.2.4)0	 - 0 

This simply says that m(a) must lie between two 

straight lines, one of positive slope k 0 , and the second 

of finite positive slope k~. A schematic illustration is 

given in Figure· (2. 2 .1) . 

Figure (2.2.1) Schematic illustration of first 
assumption for Robbins - Monro Technique 
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Now suppose that the function m(a) could be observed 

directly for choices of a. Then for a function m(a) 

satisfying this assumption, the following method could be 

used to find e. First choose a1 arbitrarily, and observe 

m(a1). If it is not equal to m0 , then add a correction to 

of the form -a1 {m(a1 )-m0 }. Then make an observation ata 1 

a2 = a 1 -a1 {m(a 1 )-m0 } (2.2.5) 

and again make a similar correction but this time weighted 

by a 2 • This scheme could be continued until one approaches 

arbitrarily close toe. 

Now consider a modification of this method to the 

situation where the function m(a) cannot be observed but 

only the random variable 

(2.2.6} 


whose expected value is m(a). In similar fashion, again 

select an arbitrarily, and generate a sequence ofa 1 

estimates an by the recursion relation, 

an+l =an+ an{YnCan}-mo} n=l,2, ... (2.2.7} 

alternately written as 

an+l =an+ an{f(Zn 1 a)-m0 } n=l,2, ..• (2.2.8) 

Here an is a sequence of non-stationary random variables 

converging toe under certain assumptions. 

More assumptions regarding the observable entities Zn 

and the sequence an are given as follows: 
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Assumption__?_: 

Assumption 3: 

The random elements Zn' n=l,2, ... , are 

identically distributed and statistically 

independent. . 

For all values of a the variance must 

be finite, that is, 

v a.IL { Y 
n 

(a } } = va.h. { f ( Z , a ) } < 
n -

cr 2 < co (2.2.9) 

Assumption 4: The sequence of weights an 

monotone decreasing with 

are positive 

00 

l 
n=l 

an= oo (2.2.10) 

and 

00 

l 
n=l 

a2 
n 

< 00 (2.2.11} 

The Robbins - Monro theorem states; based on the 

assumptions given, the sequence of estimates an approaches 

the true value e in the mean square sense. 

(2.2.12} 

Even though the results of this theorem appear simple 

the fact remains that set in the proper context, the work of 

Robbins ana. Monro is a near fundamental achievement. The 
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5criticism of LT. Wolfowi tz tends to bear this out. 

2.3 The Kiefer - Wolfowitz Method 

Consider the same formulation as in the Robbins - Monro 

formulation in the previous case, except that it is now 

desired to find the value of the scalar a which extremizes, 

minimizes or maximizes, the scalar valued function m(a). 

Denote this value e. In order for the recursive search 

procedure to be successful in this case, it is required 

that m(a) have only a single extremum and no flat spots 

where m' (a), the derivative of m(a) with respect to a, 

is zero other than at the extremurn. In short, it is 

required that m' (a), if it exists, be restricted as m(a) 

in the Robbins - Monro technique, that is, there exist 

constants and k~ wherek 0 

0 < k < k' < 00 (2.3.1)
0 0 

such that 

k 
O 

( a - e ) 2 < { m ' ( a ) -m 
O 

} ( a - e ) < k ~ (a - e ) 2 1 ( 2 • 3 • 2 ) 
e=O 

Essentially, m' (a) must lie between two straight lines, one 

of positive slope and the second of finite positive slope. 

(See Figure 2.3.1 for illustration of the derivative of m(a)). 

This problem could be reformulated as a Robbins - Monro 

problem and search for the solution of 
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"'ht(«) 

'n\(ot) 

Figure 2.3.1 Illustration of requirement on derivative of 
m(a) in the Kiefer - Wolfowitz Method 

Figure 2.3.2 Locus of ~(a) 
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m'(a) = O 	 (2.3.3) 

When possible, by all means, this is the best procedure. 

Often, however, this is neither possible nor feasible. The 

following two conditions state why: 

(1) 	 It may not be possible to assume that the function 

m(a) is everywhere differentiable. Furthermore, 

the random variable 

a f(Zn,a)aa 

may not be well behaved; particularly it may be 

impossible to guarantee thaf 

m' (a) 	 = E{~ f (Z ,a)} (2.3.4)aa n 

let 	alone generate it in practice. 

(2) 	 Although it may be quite simple to calculate or 

observe Z, and compute f(Z,a) the computation of 

the quantity 

O f(Z ,a)aa n 

may 	be very difficult. 
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If either reason is valid, the Kiefer - Wolfowitz 

method can be applied. 

Now consider at the nth step -of the search procedure, 

two observations of Z, z2n-l and z2n that are made and the 

two quantities 

(2.3.5) 


and 

(2.3.6) 


are calculated. The quantity 

= (Y2 -Y2 ) (2.3.7) 
n n-l 

2cn 

is taken as an estimate of the two-sided difference 

approximation tom' (a), namely, 

rn(a +c )-m(an-c) (2.3.8)
n n n 

The sequence of estimates an is then generated by picking 

arbitrarily and using the recursion equationa 1 

a = a - a x (a) (2.3.9)
n+l n n n n 

Here an has the same properties as in the Robbins - Monro 

procedure, that is, it is a sequence of positive monotone 
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~ecreasing weights with 

00 

(2.3.10) 


and 

00 

la~ < oo (2.3.11) 
n=l 

The condition on en in ~xpression (2.3.8) is that it 

approach zero as n becomes very large so that the sequence 

of differences approximate a derivative more closely. 

In addition, an assumption similar to Assumption 2 in 

the Robbins - Monro technique is made; that is, the random 

entities Z , n=l,2, ..• , are identically distributed and 
n 

statistically independent. 

Furthermore, on the function r,1 (a) , the following 

conditions are required: 

Condition 1: there exist positive Sand B such that 

la'-el + la"-el < S .lmpl.le.J.i lm(a')-m(a")I < B la'-a"I (2.3.]2) 

Condition 2:* there exist p and R such that 

la'-a"I < p .lmpl.le..6 lm(a')-m(a") I < R (2.3.13) 

Condition 3: for every o>O, there exists a positive 

ir(o) such that 

*Note condition 1 inplies condition 2 but not the converse. 
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la-er< o .lmpl.le..6 iht ·Jm(a+d-m(a-dl> n<o> (2.3.14} 
~o>e:>o e: 

Under these conditions it was shown by Kiefer and Holfowitz 

that for a weighting sequence an ~nd difference sequence 

en satisfying equation (2.3.10), equation (2.3.11} and the 

following set of conditions, namely, 

00 

a c < 00 (2.3.15)l n nn=l 

and 

00 

< 00 (2.3.16)l 
n=l 

that the sequence an converges toe in probability. 

2.4 The Work of A. Dvoretzky 

Having seen the two initial and particular examples 

of stochastic approximation, namely the Robbins - Monro 

technique for approximating the point where a regression 

function assumes a given value and the Kiefer - Wolfowitz 

Method which finds the extremum of a regression function, 

it is apparent that the need for a more general theory 

existed. Dvoretzky3 formulates the problem in this more 

general sense, that is, he considers a random element such 

as noise superimposedon a convergent deterministic scheme. 

In this light he formulated and proved the following theorem: 
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Theorem: Let a.n (P 1 , •.• Pn), an (P 1 , ... ,pn) and Yn (pl~···,Pn) 

be non-negative measurable functions of real variables p 
1

, 

p2 , ... ,pn, satisfying the condition that a.n (p 1 , ... ,pn) are 

bounded and that 

(2.4.1) 


for a sequence P1 ,P2,··· 

The sum of the series 

(2.4.2) 


is bounded and converges for any sequence P ,P 2 , ...1 

The series 

co 

l Yn (P1,···,Pn) = co (2.4.3) 
n=l ·----------- __________ _ 

diverges for any sequence P ,P 2 , ... , bounded in absolute
1 

value, that is, for any sequence P1 ,P 2 , ••• , such that 

(2.4.4) 


c being an arbitrary finite number. Let e be a real number, 

and T1r 2 , ... , be measurable transformations, satisfying the 

inequality 
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1 

for any real sequence P1,P 2 , ..•• Further let x1 and 

Y ,Y2 , ... , be random variables, and for n>l let 

where g Cr1,···,r) are measurable functions such that n n 
the series 

{2.4.7) 

uniformly converges and its sum is uniformly bounded for 

Let 

E {Ynlx1 ,x2 , ••. ,xn} = 0 (2.4.8) 

with probability 1. Let the series 

co 

l E { y2} < co (2.4.9) 
n=l n 

and let 

E { x 
1 

2} < co (2.4.10) 

Then as n+co 

.e.im p { woo x = e} = 1 (2.4.11)
n 

and 

.R.,[m 
E { ex -e >2} = 0 (2.4.12)

n+"° n 
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Along with this basic theoiem, Dvoretzky also proved 

an extension and five generalizations. 

2.5 Generalizations and Apnlications 

Having developed the theory to this level, the work 

begun by the three groups of researchers, namely Rohbins 

and r1onro, Kiefer and Holfowitz, and Dvoretzky, was extended 

and :modified by a number of people. An attempt will be 

made to give a survey of first, the generalizations ~iliich 

stemmed from the work outlined to this point and also sorG.e 

of the applications where this theory has been used. 

The first extension of the Robbins - Monro technique 

was made by Wolfowitz 5 • He showed that under weaker 

assumptionstha.n required by Robbins and ~1onro there was 

still convergence in probability to the root. -Further, 

Blurn6 showed that under still weaker conc1ition&--there was 

convergence in probability and even convergence with 

probability 1. In the same paper Blum showed that for 

weakened conditions in the Kiefer - Wolfowitz method con­

vergence could be strengthened to convergence with 

probability 1. In a concurrent publication, BluB?. extendecl. 

the Robbins - Monro and Kiefer - ':?olfowi tz teclmiques to 

the mul ticUrnensional case. He dealt vli th vector valued 

parameters a where the function of the vector could now be 

interpreted as planes in a hyperspace. 
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Another area .of exploration has been the rates of 

convergence and their dependence upon the sequence an in the 

Robbins~ Monro technique, and the sequence an and en in the 

Kiefer - Wolfowitz method. In addition to this,regularity 

properties of m(a) were investigated. The key figures'.in 

this area were Chung8 , Derman9, BurkholdcrlO, Sacksll and 

Dupac 12 • The work of these people has been diverse in 

nature and of major importance to the applications of 

f t h ins :i DupacRobb ' Monro Tec.nique s1m1 

Robbins - Monro and Kiefer - Wolfowitz methods. In particular 

Sacks11 indicates a method for selecting a weighting sequence 

h ' 12 ' ' 1 1an or e - ana . ar y 

suggests sequences for the Kiefer - ·wolfowitz method. 

The generalizations of Dvoretzky which were also 

extended to non-independent observations were further 

extended by Sakrisonl3. Essentially Sakrison's13 work was 

an attempt to formulate conditions that are more suitable 

for practical work. Driml and Nedornal4 worked in the same 

vein but tried to extend the one-dimensional scalar case of 

the Robbins - Monro Technique to the continuous time case. 

The most extensive atter,1pts to bring these wethods to 

practical applications have been made by Alberts and 

Gardner15 • They have attempted to.make practical choices of 

the weighting sequences an in the Robbins - Monro technique. 

As it became evident that stochastic approximation 

could provide a useful tool to the ensineer, attempts were 

http:figures'.in
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made to apply the techniques to physical problems. In the 

realm of electrical engineering, numerous applications were 

tried and documented. The Robhins -- Monro Technique was 

applied to the problem of parameter estimation in radar ind 

radio astronomy where signals involved bandwidths of from 

100 HZ. on up and the total observation time was quite long. 

As such,the amount of data to be processed was quite large 

and hence the stochasiic approximation technique chosen was 

quite appropriate. Sachrisonl6, 17 outlines the theoretical 

and practical details in two papers. Sackrison18 , 19 also 

looked at the optimization of filtersanc1 detectors. He 

applied the Riefer - Holfowitz method in order to ascertain 

two advantages 6ver conventional methods; 

(1) 	 The error weight could be more general than 

square error. 

(2) 	 The method combines the processes of measuring 

statistics and solving filter equations into a 

single compact algorithm. 

Similar work has been done by Kushner 20 who used the 

Robbins - Monro Technique in filter design considering mean 

square error, additive signal and noise. 

It is thus evident, that even though the theory of 

stochastic approximation is quite restrictive, requiring 

regularity conditions as well as bounds on weighting 

sequences, its implimentation to some areas of electrical 
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engineering has already begun. As the theory expands the 

future augurs well for the application of stochastic 

approximation techniques to engineering problems. 



CHAPTER III 


Development of a Stochastic Approximation Algorithm 


3.1 Background 

The problem of stochastic approximation has been 

mentioned by Sklansky21 within the framework of .teaJtning 

control systems. He has associated the term leaJtning 

control with the hierarchic arrangement of three feedback 

loops. The first loop contains a controller or "compensator" 

in a simple feedback configuration. The second or 

"adaptive" loop. contains a "system identifier" or pattern 

recognizer that adjusts the compensator in response to 

changes in the estimated dynamic parameters of the plant. 

The third loop or "learning" loop contains a teacher--a 

type of controller--which "trains" the "pattern recognizer" 

to make optimum or near optimum recognitions. Based on a 

stored set of past controls used in conjunction with a given 

recognition, a control is initiated by the teacher as either 

of two forms. If there is no previous record or "experience" of 

the given situation, then the adaptive loop performs an 

adaptive control procedure and stores the situation, control 

and results. If there had been record of a similar condition 

in its performance history, the teacher would have selected 

the corresponding control policy and initiated execution. 

·-27 -­
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This would haveal~viated the need for an adaptive control. 

Essentially, once an adaption in a given situation has 

been performed, there is no need to recompute it if the 

adaptor is a part of a learning system; the results of the 

first adaption, which have been stored, are applied to the 

same control situation when it re-occurs. 

The method by which the "teacher" associated the 

recognized situation of plant parameters and input signal-­

called control situation--with a given control successfully 

adapted at the previous occurence of the same situation is 

via reinforcement probabilities. These are probabilities 

that are assigned to all possible control possibilities for 

a given control situation and are up-dated ie. reinforced 

or penalized, based on the outcome of an executed control 

policy. 

There is an intimate relationship between stochastic 

approximation methods and the reinforcement learning 

technique just outlined. In fact, it can be shown* that 

the two are essentially the same and that the reinforcement 

learning process is an example of an application of 

stochastic approximation theory. In addition, stochastic 

approximation techniques can be used to estimate a cost 

function, plant parameters, :input signals and optimal 

control policies as pertain. to the particular area of 

*See Appendix A for proof of relationship of reinforced 
learning and stochastic approximation 
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control ~ited here. Further applications will be outlined 

later in this work. 

3.2 Convergence 

Direct reference has been made to the two algorithms 

developed by K. S. Fu et al. By way of introduction, the 

two algorithms will be presented and categorized. They are 

of the Dvoretzky type being a special class as concerns 

their proof**· 

Consider an algorithm of the form 

(3.2.1) 
n=l, 2 , ••• 

to be used in the presence of an ergodic process ~n' 
.,.. 

where xn is the nth estimate of x, 


where x is the true value of the parameter being 


_ ~stimated, 

rn is the nth sample taken and used to calculate, 

f(rn) a function of the samples, 

and y n is a gain sequence. 

It is required of the function f(rn) that 

E {f{rn)} = x {3.2.2) 

The form {3.2.1) has been used in two specific ways. The 

first algorithm of Fu uses 

f(r) = r n=l I 2 I (3.2.3)n n 

where the samples 

**see Appendix B for proof of first two stochastic approximation 
algorithms 
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r = x + E; E;n being a random component (3.2.4)n n of zero mean noise, 

and 

n:x:l, 2 I (3.2.5) 

where a is a constant. The selection of the constant a 

is arbitrary; but, if a pnlonl statistics are known and 

the process is known to be normally distributed then 

v2 
a = .:.Jl. (3.2.6)

o-2 

2where o is the variance of the distribution 

and V~ is the initial value of expected mean 

square error. 

Selecting yn and a as in (3.2.5) and (3.2.6) respectivel~ 

gives the form (3.2.1) the best convergence when using the 

function relationship (3.2.3) 

The second algorithm of Fu uses 

f(r) = 1 nl r. n=l, 2 , ••• (3.2.7)
n n i=l i 

where the samples 

again being a random (3.2.8) 

component of zero mean 

noise, 


and 
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n 
y 	 = n=l,2, ... (3.2.9)

n 	 n(n+l) + a 
2 

where a is a constant. The selection of the constant a is 

arbitrary; hut, when a phlohl stai~stics are known and the 

process is known to be norrna.lly t:Lstrihuted then 

v2 
a = 0 (3.2.10) 

02 

2where o is the variance of the distribution 


2
and v is the initial value of the expected mean 
0 

square error. 

Selecting y and a as in (3.2.9) an~ (3.2.10) res­
n 

pectively gives the form (3. 2 .1) the best convergence ;,,1~1en 

using the fnnct;i.011a1 relationship (3. 2. 7) • 

Now 	 the first algorithm of Fu 

A 	 I\ 

= xn + Yn+l {rn1l-xn} n=l,2, ... (3.2.11) 

. t' 	 .wi -11 Yn+l as in (3.2.5) anrl the seconC alc:;orithF: of Fu 

n=l, 2 I (3.2.12) 

with y as in (3.2.9) will he coMpared with the al0orithn
n+l 

to be developed here. 

3.3 	 Develonrient 

Consic:.er an alcrori thf'.1 of the DvoretzJ:y type of the forr1 

A A 	 . A 

xn+l - xn + Yn+l {f(rn+1>-xn} n=l f 2 / • • , (3.3.1) 

http:Consic:.er
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similar to (3.2.1). The algorithm (3.3.1) is to be used 

in the presence of an ergodic process sn, 

where~ is the nth estimate of x,n 

where x is the true value of the parameter being 

estimated, 

rn is the nth sarnple taken and used to calculate 

f(r) a function of the samples,
n 

and Yn is a gain sequence. 

It should be noted that the process of taking the samples 

r gives 
n 

(3.3.2) 

where the true parameter x that is being sought is con­

taminated by th~ zero mean eraoc1ic process , • 
11 

It is suggested that the function f be chosen as 

A !< 
f (r 1) = 1Rr ( Q,)] 2 (3.3.3) 

n+ n+l 

/\ 
where Rr (9-) is an estimate of the sample autocorrelation 

n+l 
function of the samples r 

1 
,r2 , ... ,rn+l with i-l<n. 

From the definition of autocorrelation 

R(9-) = E {r r +•} (3.3.4)---n n,., 

and if (3.3.2) is recalled 

r = x + sn _ n 

then combining these two equations gives 
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-
{3.3.5) 

Expanding the product of binomials and rearranging the 

expectation operator gives, 

Now since xis a constant and since~ and~+ are from n n 9., 

a zero mean ergodic process, then 

E {x~ } = x E {~n} --( 3 • 3 • 7) 
n 

and 

E = x E {3.3.8){xt; +-} { ~n+9..} n .2.. 

and these two terms vanish. Hence, if an estimate of 

the sample autocorrelation function is taken it gives 

-- -- -- -- ------- ---A. 2 A 
R (9..) = x + R~ (9..) (3.3.9}
rn+l ~n+l 

/\ 
where R~ ( 9..) is an estimate of the sample autocorrelation 

~n+l 

function of the random noise elements only. 

Hence {3.3.1) can be written as 

A A 2 ~ A 
x +l = x + y +l { [x +R~ (9..)] -x } n=l,2, •.. (3.3.10)n n n ~n+l n 

Now subtracting x from both sides and rearranging terms 

gives 

A."' (3.3.11)(xn+l-x) = (l-·yn+l) Cxn-x) + Yn+l Wn+l 
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where 
A 
R ( .e,) 

~ - x { (1 + ~n+l )~-1} (3.3.12)
n+l ~2 

If (3.3.11) is iterated then an expansion cnn be developed 

in terms of the initial mean square error. After the first 

iteration, the equation (3 .3.11) is of the form 

A A 

(xn+l-x) = (l-yn+l> (l-yn) (xn-1-x) + (l-yn+1>Yn~n + Yn+l~n+l 

(3.3.13) 

After the second _iteration (3.3.13) will appear as 

A A 
(xn+l-x) = (1-yn+l) (l-yn) (l-yn-1) (xn-2-x) 

(3.3.14) 


Repeating this procedure-n+l times gives the following 

general form: 

A. 

= (1-yn+l) (1-yn) ..• (l-y2) (1-y1) (xo··x) 

(3.3.15) 
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Now (3.3.15} can be rewritten into a closed form; 

A n+l A 1 n+l 

(x -x} = {TT (1-y.}}(x -x) + l Yi~iTT (1-y.)
n+l 	 01i=l i=n+l j=i+l J 

(3.3.16} 
- n=l,2,.~. 

where all void products are taken as unity. 

Changing the order of the first term and the limits of 

surruuation in the second term gives, 

A n+l n+l n+l 
= (x 0 -xHTT (1-y.)} + r y.~.TT c1-yJ.> (3.3.17) 

i=l 1 i=l 1 1 j=i+l 

n=l t 2 t • • • 

Squaring (3.3.17) gives; 

" 2 " 2 n+ 1 2 n+1 n+ 1 2

(xn+1-x) = (x 0 -x) {1T (1-y.)} + [ l yi~iTT (1-y.)] 


1=1 1 i=l j=i+l J 


n+l n+l"' n+l 
+ 2 (x -x) {TT (1-y.) } • [ r y.~.TT c1-y.>J0 , . 1 . 1 1 1 .• 1 J1=1 	 1= · ]=1+ ­

n=l,2, ... (3.3.18) 

Substituting from (3.3.12} for ~i gives, after some re­

arrangement; 

A 2 n+l 	 n+l n-f:_l 22 = ex -x> {TT c1-y.}} 
2 

+ x [ I y.n c1-y.>J 
o i=l 1 i=l 1 j=i+l J 

n+l A 1n+l 22+ 	 [ l y.1 (x +RF; (9..) )"21T (1-y .)] 
i=l i j=i+l J 

n+l n+l ~ kn+l 
+ 2 (x -x} {TT (1-y.)} [ l y, (x2+Rt. (9..)) 

2lT (1-y .)"}1 1
O i=l i=l ~i j=i+l J 
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A n+l n+l n+l 
2x(x -x){lT (1-y.)}[ l Y·lT (1-yJ.)]

1
O i=l i=l 1 j=i+l 

n+l n+l n+l A ~n+l 
- 2x{ l y ,1T (1-y,)}[ l y. (x2

+R (t)) 2TT (1-yJ·>] 
i=l 1 j=i+l J i=l 1 F.:i j=i+l 

n=l,2, ... (3.3.19) 

In general 

for coloured Gaussian noise. The wider the frequency 

spectrum the smaller the value of a and hence the smaller 
A 

the value of R( (t) for the same non zero value of i. As 
n+l 

the spectrum becomes ·wider---the noise approaches white-­

approaches zero and " (t) becomes an impulse,a RF,; 
n+l 

A 

RF,; . ( ,Q,) = o 2o ( ,Q,) (3.3.21) 
n+l 

and for tiO & t>l, 

(3.3.22) 

Now, if in (3.3.19) 
A 

/\ RF,; • ( ,Q,) ~ 
1 2(x2 + R ( t) ) ~ = x ( 1 + ) xiO (3.3.23)

F,;i x2 

is used as a substitution, (3.3.19) can be rewritten as 
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A n+l n+l n+l 
= _c x o - x > 

2 
= i 

2 
+ y i TT{ 1T1. 	 c i -y i > } x 2 [1·=I1 c i -y . >J2 

j=i+l J 
A 

n+l Rti(1) kn+l 2 
+ x2 	 [ l y. (1+-··---) "lT (1-y ·)]

1 2 .. l Ji=l x J=l.+ 

" A n+l n+l R~, (1) kn+l 
+ 2x (x -x){lT (1-y.)} [ l y, (l+---1.-) 2TT (1-y ·) J 

0 	 1 1 2i=l i=l x j=i+l J 

A n+l n+l n+l 
- 2x(x0 -x){1T (1-y,)}[ l y.TT (1-yJ.)] 

i=l l. i=l l.j=i+l 
A 

n+l n+l n+l Rt· (1) 1 n+l 
- 2x2{ l YilT (1-y ,) } [ l Yi (1+~->~TT. (l-yj)] 

i=l j=i+l J i=l x J=l.+l 

n=l,2, ... (3.3.24) 

For 	the case of white noise or even slightly coloured 
A i 

Gaussian nois~ substituting from (3.3.22) for Rt (1) in 
i 

(3.3.24) reduces it to the following form: 

2 A 2 n+l 2 
(~n+l-x). = (xo-x) qT (1-y,)} (3.3.25) 

. . .. .. ·1=1 . l. 

n=l,2, ... 

Therefore, for the mean square error to become zero, 

regardless of the starting value, and for the algorithm to 

converge, requires only that the following limit exist: 

(). n+l 

,t.A.m TT c1- > -+ o (3.3.26)

n+oo 	 • l Yi 

1=· 

The 	selection of a gamma sequence that satisfies 

(3.3.26) is arbitrary within the restrictions of the limit 

given 	above. 

The type of r-sequences used in the thesis are of two 
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basic types. These will be introduced, discussed and 

their effect on convergence illustrated. 

Hence, form (3.3.1) can be written as 

(3.3.27) 

and will converge to the true value being sought if the 

measurements, r , are of the form (3.3.2) and the r-sequence
n 

satisfies (3.3.26) 

3.4 Gamma Sequence 

The selection of the r-sequence for (3.3.27) essentially 

regulates the rate of convergence of the algorithm. The 

optimization of· this rate will be discussed in the next 

chapter. The present form of the r-sequences selected will 

be given and it will be shown how they satisfy (3.3.26) and 

~.heffce ___(3. 3. 27) converges. 

The first r-sequence is given by 

= _1_ \!. i = 1,2, ... } (3.4.1)
i+a 


for any non-negative arbitrary constant a. Hence, 


1(1-y,} = 1--­
1 i+a 

i+a-1 = -- :(3.4.2)
i+a 

Taking the continued product of (3.4.2) gives, 

n . 1 = TT i:a.:-_ 
i=r 1.+a 
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This expands to, 

n r+a-1 r+a n+a-2 n+a-1TT c1-r.) = c ) c ) ••• c ) c )

i=r 1 r+a r+a+l n+a-1 n+a 


which reduces to, 

n r+a-1IT c1-y.) = --{3.4.3)
1 n+ai=r 

Now if a limit is taken 

l.lm n l.lm r+a-1 
n+oo IT (1-y,) = 

n+oo n+a1i=r 
giving 

l.lm nIT Cl-y.) + o (3.4.4)
n+oo , 11=r 

Hence for a r-sequence defined by (3.4.1) the statement 

of the limit (3.4.4) satisfies (3.3.26) and hence the 

algorithm (3.3.27) using said definition converges to the 

true value being sought regardless of the starting value-­

provided that the starting value is finite. 

The second r-sequence is given by 

. r _= {y. e: r jy • =1--1. v i=l, 2, ••• ; p=l, 2, ••• } (3.4.5)
11 iP 

From this r-sequence 

(1-y.) = 1 (3.4.6)
1 ip 

Taking the continued product of (3.4.6) gives, 

IT c1-r.) 
n l 

(3.4.7) 
n 

IIr iP=i=r 1 
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Now if the limit is taken 

n n 
lbn TT· (1-y.) = .e..lm TT 1 
n-+oo • l. n-+oo i'pi=r i=r 

giving 

n 
t.lm TT c1-y.)-+ o (3.4.8)n-+oo • l. 

1=r 

Hence for a r-sequence defined by (3.4.5) the statement of 

the limit (3.4.8) satisfies (3.3.26) and hence the algorithm 

(3.3.27) using said definition converges to the true value 

being sought regardless of the starting value--provided 

that the starting value is finite. 

3.5 ~onsistency and Bias 

An estimator should not be considered bad simply 

because it can· assume a value that deviates considerably 

from the true value being --sou-g-ht-.--- But if the bulk of the 

values of the estimator deviate considerably from the true 

value, the estimator can be considered bad, particularly, 

if a large sampling has been taken. Hence, a desirable 

property is that there be a high probability that the 

estimator be near the parameter it is intended to estimate 

for large sample sizes. 
/\

By definition, an estimator xn of xis said to be 

a c..on.61..o:ten,t estimator, if for any positive numbers o__and e: 

there exists an integer N such that the probability that 

http:c..on.61
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is greater than 1-8 for all n>N; that is 

P{ l;n-xl < £} > 1-8 y n > N (3.5.1) 

The definition is similar to the definition of converg­

ence in the mathematical sense, except that here it is said 

that, given any small£, a sample size can be found large 

enough so that, for all larger sample sizes, the pll.obabi.ti:ty 
,.. 

that xn differs from the true value x more than£ is as 
,.. 

small as desired. In such a case xn eonve~ge-0 in p~obabifi:ty 
I\ 

to x. So convergence in probability means that xn is a 

consistent esti~ator of x. 

The criterion of consistency is not very practical 

sometimes, since- it has to do with a limiting property. 

There are two fundamental facts which pertain to this fact. 

First, samples have a finite number of observations while 

the <lefini tion of consistency requires an infinite nur.tber. 
• • I\ •

Second, when there is one consistent estimator xn of e, it 
I\ 

is possible to have infinitely many. For example, if xn 

is consistent, so is 

I\ 
n+a • Xn 
n+b 

for all fixed nudJers a!-n and h!-n. 

n 11Now if the restriction !! for large is renovecl, a 

selection from among all consistent estinators can he made 
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resu.ltin<J in a much smaller class by applying the definition 

of an unbiased estimator. 
I\ 

By definition, an estimat6r xn of xis unbiased if 

E {x}" = x (3.5.2)
n 

This definition applies for all n and x, and requires that 

the mean of the sarripling distribution of any statistic 

equal the parameter which the statistic is supposed to 

estimate. 

Now for the class of algorithms presented here, consider 

for a moment only the sample autocorrelation function given 

by 

(3.5.3) 

Recalling from (3.3.2) that 

and substituting in (3.5.3) for rk gives 

which can be rewritten as 

A x n-2 n-2 n-2 

R (£) = x 

2 
+ l F,;k + ~ l F,;k+2 + -

1 l F,;kF;k+n (3.5.4) 

rn n k=l k=l n k=l N 

Since F,;. is an element of zero mean Gaussian white noise,
J. 

then for large n, the first and second summation in (3.5.4) 
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tends to zero; that is, 

n-R. 
x l ~k-+ 0 

(3.5.5)n k=1 

n-R. 
->­x l t. 0 

(3.5.6)n k=l k+ Q, 

n-9. 

and 1 l t ~ -+ o(t) 


(3.5.7)n k=l k k+ R. 

Now if R.fO, then (3. 5. 4) reduces to 

" 2
Rr (£) = x ' n>>l (3.5.8) 

n 

Now recall (3.3.17) 

A A n+l n+l n+l 
cxn+1-x> = cx 0 -·x>{IT c1-yi>} + I y .iJiin- c1-y.) n=1,2, ... 

. i=l i=l 1 j=i+l J 

and (3.3.12) rewritten as 

(3.5.9) 

If, to the algorithm 

(3.5.lOJ 

written in the form (3.3.17) is applied the transformation 

II 
e = (x

A 
-x) (3.5.11)

n n 

then (3.3.17) can b~ rewritten as 

~ n+l n+l n+l 
= e {IT (1-y.)} + l y,iJ!.IT (1-yJ.) n=l,2, ... (3.5.12)

10 i=l J. i=l 1 j=i+l 

http:y,iJ!.IT
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which is a zero seeking algorithm. Substituting from 
A 

(3.5.8) for Rr (t) into (3.5.9) and substituting the result 
n 

in (3.5.10) for ~n gives, after taking expectations of 

both sides, 

l.,lm [ E {~ ~ = 0 (3.5.13)n~= n+l J 

Now applying the transformation of equation (3.5.10) in 
' 

reverse, gives 

(3.5.14) 

Herice, it can now be said the algorithm 

I\ 

x n=l,2, ...
n+l 

is unbiased for large n. 



CHAPTER IV 


Optimization of Convergence 


4.1 	 Preamble for Optimization 

The convergence of the algorithm of the form 

A A 	 A 

x 	 = x + y +l {f(r )-x} (4.1.1)
n+l n n n+ 1 n 

with 

A k 
f (rn+l> = (Rr (£,)) 

2 (4.1.2) 
n+l 

has been proven. in the previous chapter. The most 

important factor to be considered next is the rate of 

convergence of this algorithm. In this algorithm f(rn+l> 

has been chosen. Also, the r-sequence has been chosen to 

satisfy condition (3.3.26), a necessary condition. Beyond 

that the choice of the r-sequence is theoretically arbitrary. 

The theme, then, is to select the r-sequence so that the 

convergence of (4.1.1) is optimal in some sense and subject 

to the constraint (3.3.26) which is the requirement for 

convergence. In other words, choose a r-sequence --ro 

minimize a cost functional while still ret::tining a_convergent 

algorithm by satisfying condition (3.3.26). 

-46·­
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4.2 	 The Discrete Maximum Principle for__Q,E_timizati?n 


31

The discrete maximum principle formulated by Katz 

from the continuous maximum principle of Pontryagin, 

provides a method of obtaining an optimal solution for 

very general dynamical processes. It treats the optimization 

problem of minimizing or maximizing a functional subject to 

certain constraints. The beauty of this principle is that 

it is not restricted to dynamical processes. Any problem 

which can be formulated within the framework of state space 

and for which a cost function can be written in an analytic 

form can be approached with the maximum principle. For 

all problems a state space can be defined so that the 

equations describing it can be written in a standard form. 

It is often somewhat more difficult to write a cost function 

since this requires an intimate knowledge of the problem. 

In addition, a cost function must take into account the 

objectives to be achieved and the level of penalties to be 

given if the objectives are not pursued. 

In general, an optimum control probler.1 can be trans­

formed into the problem of minimizing a function such as 

an inner product 

M = (e_,~(tk )) (4.2.1) 
f 

subject to certain constraining functionals. The control 
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strategy which minimizes (or maximizes) this function is 

referred to as the optimum control strategy. In equation 

(4.2.1}, xis a state vector of the nth order process 

under consideration, and bis a column vector which depends 

upon t h e coorcina1 . t es t o b e minimize. . . d (or . . ") .maximize~ It is 

interesting to note that this class of problems is contained 

within the framework of the Mayer problem in the calculus 

of variations. A simple geometrical interpretation of the 

maximum principle is that the control vector u is chosen in 

such a way that the state vector ~{tk} moves "farthest" 
f 

in the direction of-~, and thus the scalar function M takes 

on a minimum value. 

Suppose that a process under consideration can be 

characterized by equation (3.2.2) 

•x - f k=l, 2 I • I kf {4.2.2)-k+l - * 

It is required to determine the control strategy u so 

that the scalar function given in (4.2.1) is minimized (or 

maximized). Frequently, the extremization of the scalar 

function Mis not easy to accomplish. If some simpler 

function can be found which is closely related to the 

scalar function and the process dynamics, and if it is 

easier to perform the optimization with respect to this 

simpler function, the solution to the optimization problem 

may then be obtained in a simpler manner. Intuitively, the 
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scalar function may be minimized by maximizing the energy 

or the pevmr in the system. This physical intuition leads 

to the speculation that there may exist an energy function 

such that its maximization implies the minimization of the 

scalar function. This function is the Hamiltonian. It is 

defined as the sum of the kinetic energy and the potential 

energy and is expressed as the inner product of the momentum 

vector and the coordinate vector of the system. The 

simplicity of the Hamiltonian function and its very nature 

tends to lead one to suspect that maximization of the 

Hamiltonian function may imply minimization of the scalar 

function, and that the use of the Hamiltonian may lead to a 

simple method for solving optimization problems. Pontryagin 

first discovered this fact for the continuous case and 

formulated his findings as the celebrated maximum principle. 

The maximum (or minimum) principle states that, if the 

control vector u is optimum, that is, if it minimizes (or 

maximizes) the scalar function M, then the Hamiltonian 

H(xk'~k'~k,k) is maximized (or minimized) with resp~~t 

to ~k over the control interval. This statement in51i_qates 

that maximum H implies minimum M and minimum H irnpJ.ie_'.? 

maximum M. 

To optimize a process, then, the Hamiltonian must be 

optimized with respect to the control vector u. This 

results in the derivation of differerice (or differential) 

http:irnpJ.ie
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equations which are solved as a boundary value problem. 

By way of summary*, if a system is given as described 

by equation (4.2.2) 

x-k+l 

and if for this process a cost functional can be written 

in the form 

(4.2.3) 

then the optimization of the trajectory xk can be achieved 

by defining a Hamiltonian II(xk'"k'~,k), using it to 

derive difference equations and solving theM as a boundary 

value problem. The definition of the namiltonian is given 

as 

(4.2.4) 

Taking partial derivatives of the Hamiltonian with respect 

to "k'~k and xk gives the follO"wing difference conditions: 

dlik 
x = ---- or xk+l = f(xk,~k,k), (4.2.4)
-k+l a1,k+l 

c)Hk ",i:T 


= 0 or a~k + (~)A = O, (4.2.5)
auk a~k a~.k -k+1.· 

and 

ank 
= or4 axk 

(4.2.6) 

*See Appendix C for proof of Pontryagin Maximum Pr1nciple 
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The boundary conditions, if not specified, can be 

obtained by using the following _transversali ty equations: 

aek ­
(4.2.7)-k -kn [" .,...., = o--~J 

0 0 °:'.;.k
0 

and 

= 0 (4.2.8) 


The application of the above conditions and the 

solution of the equations will yfeld an optimization. 

4. 3 Identification with O_p_!:inal Control Theory 

The basic problem of optimization as stated in the 

first section can be reformulated as a problem in optimal 

control. This enables one to identify the probleP'l with the 

state formulation of the optimal control problem. Once the 

identification is made, then the whole block of optimal 

control theory-·-Pontryac.:rin' s Maxirr,!J-P Principle as discretized 

by Katz--can be applied. Once applied, the resulting 

difference equations and transversality conditions can be 

used to solve the problem. 

Essentially, the problem is to identify the stochastic 

apprmdrnation- alg-ori th:rr, \·1i th the si:::at, €-equations of the 

discrete maximum formulation. Recall the algorithn fror'l 

cquation(4.1.1) 

A A 
= x + y { f (r ) -x }n n+l n+l n 
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Rewritting this in the following form 

" x n=l, 2 I • (4.3.1)
n+l • • 

Now identifyin<J this equation with (4.2.2) gives the 

following corresponcJ.ence: 

A 
corresponds with X Ixn+l -k+l 

"' corresponds with ~kxn 


corresponds with u
Yn -k I 

and n corresponds with k. 

The choice of cost function for the problem is the basic 

mean square error. 

n /\ 2 
(x. -x) (4.3.2)l 1i=l 

The problem can now be stated. It is desired to 

minimize the cost function Jn in equation (4.3.2) with 

respect to the r-sequence such that it satisfies (4.3.1) 

and subject to the convergence constraint stated in 

equation (3.3.26) 

n+l~i: lT c1-y.) ~ o 
. 1 11= 

The first step is to define a Hamiltonian function so 

that the discrete maximum. principle can be applied. Using 

the basic form of (4.2.4) gives the following equation: 

n=l, 2 I (4.3.3) 



53 

2where A(l) and A< > are Lagrangian multipliers, referred to 
n+l n+l 

as the co-state or adjoint variables of the system: 

Now applying condition (4.2.6) to the Hamiltonian (4.3.3} 

gives the first difference equation 

or 

(1) 
= 2 (~ -x) + (1-y } A (1} (4.3.4)An n n+l n+l 

Next, applying condition (4.2.5} to the Hamiltonian gives 

the second difference equation 

or 

n-1 
- A{

2 1>{TT (1-y,)}(l-y ) = 0 (4.3.5}
n+ i=l 1 n+l 

For large values of n the Hamiltonian becomes very close to 

zero. 

H = 0 n 

or 

A 2 ( A (2} n+l 
( x -x) + :>.. +l l) [ ( 1-yn+1 ) x +y +1f ( r ) ] +A + 1TT (1-y . ) = O ( 4 . 3 • 6 ) 

n n n n n+1 _n i=l 1 

From equation (4.3.5) substitute into the Hamiltonian (4.3.6). 

This gives the equation 
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(4.3.7) 

Now equations (4.3.4) and (4.3.7) are the two difference 

equations to be solved for the optimum r-sequence and the 

optimum estimation trajectory. But first there is a need 

for boundary conditions and some auxiliary conditions to 
~ 

eliminate x from these equations. 

Now first, recall the form of the algorithm given in 

equation (4.1.1) given here in a modified form 

A A 	 A 

xn 	= xrt-l:+ yn{f(rn)-xn_1} n=l,2, ••• (4.3.8) 

A 

Iterating this form to x
0 

gives 

" 	 I\ 
xn 	= (1-yn)xn-l+ynf(rn) 

= (1·-yn) (1-y 1 )x 
/\ 

2+(1-y )y f(rn_ 1 )+y f(rn)
n- n- n n-1 n 

/\ . 

= (l-yn) (l-yn-1> (l··yn--2)xn-3+(l·-yn) (l-yn-l)yn-2f(rn-2> 

+(l-yn)yn-lfCrn-1)+ynf{rn) 

Iterating n times gives, 

A 	 A 

xn 	= (l-yn) (l-yn-1) (l-yn-2) • • • (l-yl}xo 

+ (1-yn) (l-yn-1> ... (1-y2) ylf Cr1> 


+(1-yn) (l-yn-1) •. ·-~l-y3)Y2fCr2)+ •.• (4.3.9) 


+ (l-yn) (l-yn-1> Yn-2f (rn-2) 


+(l-yn)Yn-lf(rn-1) 


+ ynf{rn) 
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Writing this equation in closed form gives, 

A A n n n 

xn = x TT (1-y ·) + , l y. f (r.) TT (1-y.) (4.3.10)


0 1 1i=l 1=1 1 .j=i+l J 

n...1, 2 I , , , 

where the void product is taken as one. 


Also recalling the iterated form of the nean error from 


(3.3.17) 

"' n+l n+l n+l"' (xn+l-x) = Cxo-x>{TT (1-y.)}+ l y.ip.n- (1-y,) n=l / 2 / • • • 
1 1 . i=l i=l 1 j=i+l J 

and substituting from (3.3.17), and (4.3.10) for x and 
n .,,.. 

(xn+1-x) in (4.3.4) and (4.3.7) gives the difference 

equations to be solved sh:mltaneously for optinal r-sequence 

and optimal estimation trajectory. Equation (4.3.4) yields 

upon the substitution 

A n n . n. 

(1-y )). =).n-2{(x -x)IT (1-y,)+.I y,ip:Tf (1-y,) 


n+ 1 n+ 1 · 0 i=l 1 i=l 1 1 j=i+l J 


(4.3.11) 

Equation 	 (4.3.7) yields upon similar substitution 

A n n n2 2 	 2 
(x --x) {TT (1-y.)} + [ l y. ip. TT (1-y .)]

0 . 1 1 • 1 1 1. • +1 J1= 	 1= J=l 

A n n n 
+ 	2(x -x)!TC1-y.){ l y ,1JJ; TT (1-y.)} (4. 3 .12) -· 0 

i=l l i=l 1 -j=i+l J 

(1) A n n n 
= A + { x TT (1-y . ) + l y if (r . ) lT (1-y . ) } 

1 1 	 1n 	 °i=l i=l j=i+l J 
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In addition to equations (4.3.11) and (4.3.12), transversality 

equations are needed to solve these difference equations. 

Applying the transversality condition of equations (4.2.7) 

and (4.2.8) to the cost function in equation (4.3.2) gives 

).. ( 1) = 0 (4.3.13)n 
f 


).. ( 1) 
 = 0 (4.3.14)n 
0 

Now using the transversality conditions (4.3.13} and (4.3.14) 

with equations (4.3.11) and (4.3.12), the optimization of 

the rate of convergence of the algorithr:-1 (4.1.1) 

A A/\ 
x = xn + Yn+l {f(rn+l)-xn} n=l,2, ...

n+l 

having selected the function fas in (4.1.2), with respect 

to an optimum r-sequence, can be obtained by solving the 

boundary value problem formulated in this section. 

4. 4 Boundary Value Problem. 

It is evident from the non-linear nature of equations 

(4.3.11) and (4.3.12) that the boundary value problem 

formulated above is a discrete two point boundary value 

p:roblem ,;,·-1hich ii;:i_:the _general case ··cited here cannot be 

solved. Even if the mechanics of the mathematics would be 

tractable, the resulting solutions for the optirmm r--sequence 

and estimation trajectory are both dependent on the initial 

error 
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(4.4.1) 

consiuered as a constant in the boundary value problem. 

Since the optimality depends on the value of this constant 

it is not to one's advantage to use this approach to the 

problem. It is suggested that since the very essence of 

stochastic approximation is the basic simplicity of 

computations involved in the approximation, it would 

grossly hamper the efficiency of the algorithm if the 

boundary value problem had to be solved for a value of 

gamma for every step and between every iterated step. Tro1c1 

the present state of knowledge, it would appear to be wise 

to accept the penalty of having to take a few extra iterations 

of the algorithm rather than incurring the cost of trying ­

to obtain a closed form optimal r-sequence. It would appear 

that only when applications would require such a rapid 

convergence, based on a time limit allowed for a parameter 

approximation or a cost saving based on repeated application 

of this algorithm, that the effort be expended to solve the 

boundary value problem once and store the result for re­

peated usage. An alternative would be to solve a reduced 

problem of the same type for a closed form solution and 

then make use of this suboptimal r-sequence. This will 

probably have to be left to the engineering judgment of 

the individuals making the particular application. 
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4.5 Uniqueness of the Optimum Gamma Sequence 

For the stochastic approximation ~lgorithm given in 

equation (4.1.1} to converge optimally to solution requires 

a r-sequence dependent on the starting point and on the 

function in (4.1.2}. Renee, it can be said that no single 

r-sequence can give an optimal convergence from different 

starting points, and as such a single uniquer-sequence 

does not exist which can make the algorithm converge 

optimally every time. The best that can be expected is a 

suboptimal convergence that results in solutions somewhat 

more quickly than previous algorithms. This, in fact, 

will be shown in the simulation results. 



CHAPTER V 

Sirnulatioi-hesults 

5.1 Structure of the Simulations 

It has been proven that the stochastic approximation 

algorithm making use of sample autocorrelation as the sample 

information converges to the true value sought. This is 

achieved even in the presence of a random contaminating 

environment which interfer~fwith the sampling. The numerical 

sinulations and conparison of results have been designed to 

test this basic property, that is, the ahiJ.ity of the algorithm 

to converge to the sought value. In addition, it is desirable 

to investigate the rate of convergence of the algori th:r.1. 

This latter section of the investigation develops quite 

easily i~to a manifold investigation. Since it has_been 

shown that there does not exist a unique universal optimal 

r-sequence, the relative rerits of these sequences as compared 

to the state of the art algorithms and their corresponding 

sequences is left to be determined and evaluated through 

... _§}:-Pe:1'."J.ment and/or simulation. 

The basic concept behind the simulation has been the 

parameter identification made on samples which are a linear 

combination, that is, the sum of the parameter and noise 

conta.rninan.t. The sanples were constructed thus: 

-59-: 
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x 

r = x + ~ (5.1.1)
n n 

where as before 

rn is the nth sample 

is the true value sought 

and tn is an element of zero mean normally distributed noiset 

From the autocorrelation function and power spectrum of the 

random process, it can be seen that 

2
R (t ) = cr o (t ) (5.1.2) 
rn 

holds to a good approximation and that the power spectrum is 

crudely uniform. 

Recalling then the two existing algorithms, that is, the 

first and second algorithres (of Fu) from equations (3.2.11) 

and (3 . 2 . 12 ) 

/\ I\ I\ 

xn+l = xn + Yn+l{rn+l-xn} n=l,2, ... (5.1.3) 

and 

A I\ 1 n+l A 
(5.1.4)xn+l = xn + Yn+lfn+l i[l ri - xn} 

n=l,2, ... 

and comparing these with the new algorithrn developed 

I\ " ~ /\= x + y +l{ (R (£ ))2-x } n=l, 2 I • • ( 5 • 1 • 5) n n rn+l n 
• 

where 

*See· Appendix F for complete c1etails of the- ranc1orn process. 
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A -
Rr ( t) (5.1.6) 

n+l 

for the r-seguences as selected in equations (3.4.1} and 

(3.4.5) with p=l. nasicly, then, the r-sequences are 

Yn == 1/n n=l,2, ... (5.1.7) 

or 

yn=l·-1/n n=l,2, ... (~.1.8) 

Now in order to he able to nake some comparison of the 

relative merits of the three algorithms, some cr{teria had 

to be selected. In fact, two measures of error were used 

to establish not only Merit but consistent merit. They were 

the sample square error {S.S.F.) which is the discrete 

equivalent of the integral square error, and the time or 

interval sample square error (T.S.S.E.) which is the discrete 

equivalent of the time integral square error. More precisely, 

s.s.E. (5.1.9) 

and 
1 n • "' 2"J.(T.S.S.E. = l - X·-X )" (5.1.10) 
n i=l k 1 

·where k is siroply a scaling constant which is the san~e 

through this work. 

It was felt that two criteria would 1,e of definite 

benefit to this study. The S.S.E. is particularly sensitive 

to large errors particularly those ·which occur at the 
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beginning, that is, for small values of. n. The T.S.S.E. is 

sensitive to small errors which may persist after some tirne, 

that is, for large values of n. Hence, by using both 

indicators, a measure of initial or transient deviation as 

well as residual error after some time can be achieved for 

absolute or comparative purposes by using S.S.E. and T.S.S.B. 

respectively. 

5.2 Illustration of Simulation Results 

The method employee'!. for the simulations was simple. A 

sequence of rn's n=l,2, ..-., 200 was generated and stored for 

a given value of standard deviation, o, of the random component 

11 d'J (0, a 
2 

) • Each of the three algorithms based its sample 

information on these rn at every n and calculated an estimate 

xn. Along with this was computed the S.S.E. and T.S.S.E. at 

every n fot all three ~l~orithfus. 

In an actual simulation, the first estimate for each 

algorithm is taken to be the first sar.1ple rn. From this 

starting point, the approximation trajectory (A.P.), that 
I\

is, the successive estimates or approximations xn, for each 

algorithm is computed and normalized. This is done for a 

given A where 

·A - - (5.2.1)x 

is a measure of the noise content contaminant in the make-up 

of the sample rn as compared to the parameter being sought. 
2

For exanple, if the variance, o , of the noise is 16 and the 
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parameter, x, being sought is 2, then A=2. This is 

approximately equal to -6db signal to noise ratio. 

Now for a given A anc1 1, the approximation trajectory 

(A.P.), sum square errors (S.S.E.) and the time sum square 

errors (T.S.S.E.) are plotted as a function of n. Each of 

these contain three loci, one for each algorithm according 

to the following key: 

Algorithm 1 as in equation (5.1.3) 

Algorithm 2 as in equation (5.1.4) 

Algorithn 3 as in equation (5.1.5) 

Ei0ht sample sinulations will he illustrated first for 

various values of A and for 1=20 and y =1/n as shown in n 

Table (5.2.1) 

TARI.E (5.2.1) 

Graph no. 

(5.2.1) 1.50 
(5.2.2)' 1.75 
(5.2.3) 2.00 
(5.2.4) 2.25 
(5.2.5) 2.50 
(5.2.6) 2.75 
(5.2.7) 3.00 
(5.2.8) 3.25 



--

64 

4 

1\.P. 2 

•• , ,,,..,,,- - ft:rrO: -· 

0 .__~·1--~~~-.-~--,~--;,.--~-r-~.-~-.~-,,----, 

100 200 

100,000 


10,000 


1,000 


T.S.S.J~. 
J. 00 


10 


1 

Graph (5.2.l) A.P., s.s.r:., anc". T.s.s.r.. as a function of n. 

1,000 

100 - -
B.~.r. / ..---------- ­

10 

1 

-­ -­ - -
/ -­ ·- ­ - -- ­-

100 200 


A :::: 1.50 




65 

4 

A.P. 
2 


-,0 
100 200 


1~000 

100 -­ -
S.S.E. I/ -- - ­

10 

1~~-¥~--,-~-.-~-....~-,-~~~~~~~~~-, 
100 ·200 


10,000 

1,000 

100 
T-. S.S. r,. 

10 

l 

I/,, 
-­........­ ----- ­- - ­

--1-~-v--~-r~-.-~-,-~-.-~-~~--.-~--y---1-------. 

100 200 


Graph (5.2.2) A.P., s.s.r., an~ T.S.S.E. as a function of n 
A== 1.75 



--

66 

100 

10 

(5 .• 2.3) .. T)
1. \ • .L • I s.s.r~., 

~00 

as a function of 

.. l---4--.---r--.--.---,----,----,.---.---, 
100 200 

10,000 

1,000 

T.S.S.l~. 

n 

100 

cir1C. T • s. s. r. 
A:::: 2.00 

4 

A.P. 

2 

0 

1,000 

100 

s.s.r.. 

10 

100 200 

-::--:.;::......:;:=c.._.;c-=:;:.......::-=:.....;:..-=-:..__.:;-=-=--==--= 




- --

- -- - -----------

67 

--­

4 

A.P. 

2 

0 
100 200 

1,000 

100 --­S.8.F.. I ---------~ 
10 

1---~-'l-~-.--~-T""~-.-~-,-~-.-~-,..---,..~-,---. 
100 200 

10,000 

- -
1,000 

-
100 

T.s.s.:r.. 

10 

1 
100 200 

Grap~ (5.2.4) A.P., S.S.R., and T.S.S.B. 
A== 2.25 

as a function of n 



68 

---­ - -.,....,.­ - - ­- --------­
100 

10 

4 

A.P. 

2 

e,.,.,,. ­

0 ----1-1-~..--~..-~-.-~...---.~--.~--,.--~,----, 

100 ?.00 

1,000 

S.S.l~ .. 

100 - -

100 200 

10,000 

1,000 

T.s.s.:r.. 

100 200 


Graph (5.2.5) A."f'"' ~.s.r:., 1',:m 'I'.s.r;.r.. as a fnnction of n 
A == 7.50 



-- - -- - - -

69 

4 

1'.• p. 

2 

o--.~~~~~~--r----,---------.---.---.--,,. 
100 200 

1,000 

100 --::::=- - -:- - ­
~.S.Fi. 

10 

100,000 

10,000 

1,000 

·T.s.s.r'. 
100· 

10 

100 200 

--


1 I 
100 200 

r, ("' .,..,Gr2.ph (5.?.C) J\.P. I ,-:i.'-,.J:..i., as a funct:i.on of n 
A == 2.75 


http:funct:i.on


--

70 

100 

10 

- ---­
~- - -­- -- ­ - - -

4 

A.P. 

2 

0 

1,000 

100 

S.S.E. 

10 

1. 

100,000 

10,000 

1,000 
T~s.s."r~. 

,. ............ 
-
I 

100
I ' 

-
I.,, ----__-_-_-_--,---_-_-_­

100 200 


Graph (5.2.7) A.P., S.S.B., and T.S.S.E. as a function of n. 
A= 3.00 



------- - -- --- -

71 

A.P. 

100 200 

1,000 

100 

S . S . 1~. 

10 

1 ~----,----.----.----.----r---.----.-----,-----, 
100 200 

-
1,000 ,.,.....- - ­

T.s.s.r. 
100 

10 

l 
100 200 

.,., p mcrT"' function of n..L • \) s I) • .l J •Graph (5.~.P) l \. • ., • I 

A -- 3.75 



---

72 

In addition to the simulations that have been shown 

in Graphs (5.2.1) through to (5.2.8), a number of sample 

simulations using similar conditions but with the ~sequence 

as in equation (5.1.8). The format remains the sane, with 

A.P., S.S.E., and T.S.S.F. plotted on the same graph for 

all three algorithms. The actual noise conditions and, in 

particular, the value of 2 for the third algorithm is 

shown with the other inforr11ation on Table (5.2.2). 

Table 

(5.2.9) 
(5.2.10) 
(5.2.11) 
(5.2.12) 
(5.2.13) 
(5.2.14) 
(5.2.15) 
(5.2.16) 

( 5. 2. 2) 

A 

0.50 
0.75 
1.75 
2.00 
2.25 
0.25 
0.50 
0.75 

10 
10 
10 
10 
10 
20 
20 
20 
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Now a more convenient evaluation of the siMulation 

results can be Made to give a more complete picture and a 

truer comparison of performance. t·'hat is done in the first 

instance is to nlot the value of the sum of square errors 

(S.S.F..) after 100 iterations over the range of the A ratio 

as used in the sinulation (A is defined in equation (5.2.1)). 

Only the second algor_i th:rn of Pu is used since it is the 

better of the two to use for corparison purposes. The nm1 

al0orithD is thus evaluate~ for both r-seauences as defined 

in equations (5.1.7) and (5.1.8) in the following five 

graphs: ( 5 • 2 . 17) , ( 5 • 2 • 18) , ( 5 • 2 • 19) , ( 5 . 2 . 2 0) ancl (5 • 2 • 21) . 

It should be note~ that for hoth r-sequences there is 

a noise level, that is, a VAlue of the A ratio at which the 

new algorith~ has the saMe sum of square errors as the 

second algorithm of Fu. This value of the A ratio is called 

the value o:F en:ui-·utili ty ~or the two algori thr.is hein9 

cownarea. As it turns out, for all values of the A ratio 

below the value of equi-utilit~r, the new algorithn has a 

sroall sun of sauarad errors and also converaes faster than 

Fu's secon<l algorithr. For values of the A ratio above 

the value of equi-utility the new algorith~ is not better 

than the existing techni0ues. 

To r1a.ke an evaluation of the !)o:tnt of P<:ni--utili ty 

for hath r-sc0uences and ~oth error neasures, that is, 

S.S.E. and T.S.S.E., the value of the point of equi-utility 
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was plottea for a given r-sequ~nce an~ error indicator 

after 100 iterations as a function of the sa~ple auto­

correlation delay £. This is shm:m on the four graphs 

(5.2.22), (5.2.23), (5.2.24) and (5~2.25). It can be seen 

that if a lon0er sariple autocorrelation delay is taken, 

then the rancre of A ratio over which the new algorithr,1 is 

effective is increased. Doth error indicators S.S.E. and 
-

T.S.S.B. bear out these facts. 

5. 3 Sunri.ary _ of Results 

The si~ulation of the alcrorithrns has been so arranged 

as to test their relative P1erits and to establish that these 

r1eri.ts are cons~stent. T,·m error criteria, the suri of 

square errors S.S. F. and the tir~e su..r.i_ of square errors 

T.S.S.E. has been used. Inc"ependently, each error 

measure evaluates the relative I'1eri t5._ of each algori thr> .. 

Together they evaluate the consistent._r2erits of the 

algorithrs tested. 

It has been sh.rn,1n that over a ranc:_re of the A ratio, 

that is, A ~2.5, the new algorithm is of deci~ed value. It 

is consistently of more value for t'!:H:-s·rangc as verified :by 

the concurrence of both error r1easu±-€ls. It is to this end 

that the particular choice of error measures riac1.e here has 

been taken for evaluation ~urposes. 

http:r1eri.ts
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CHAPTER VI 

Alternate Proof of Convergence 

6.1 Alternate Approac~ 

The essence of the work to this point has been the 

proof of the convergence of an algorithm and the comparison 

of its basic convergence prop~~ty with two existing algorithms. 

During the course of the actual development work on the 

proof for convergence, it was desired by the author to have 

a different check on the theory developed. It is to this 

end that pursuit of another direction of proof was tried. 

To be a valid confirmation of the first proof of 

convergence as given in Chapter III the alternate proof had 

to take a different approach as well as make use of 

different techniques. It is with-these basic concepts that 

the author set out to develop an alternate or check proof 

for the basic convergence property of the algorithm. 

It was thought that since the algorithm presented was 

of the Dvoretzky type, it would be natural to use his theorem 

to illustrate the property of convergence. It would also 

follow, that if the algorithm p~~sente<l here does satisfy 

Dvoretzky's theorem, then all the properties associated 

with this class of algorithms is also true. 

--93· 
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First a statement of Dvoretzky's theorem will be made 

outlining the conditions and results of his theorem. Then 

a stage by stage proof will be given showing that the 

algorithm presented here satisfies all the requirements of 

Dvoretzky's theorem, and hence, the generality of his proof 

and the resultant properties apply. 

6.2 Statement of Dvoretzky's Theorem 

Dvoretzky's theorem on stochastic approximation pertains 

to methods for successive approximations of a sought value, 

when, because of the stochastic nature of the prob1em, the 

observations or measure~ents have certain errors. The 

essential idea is to think of the randoLl element as noise 

superimposed on a convergent deterministic scherr,e. Then 

the approxiwation procedure appears as an estiroation scheme 

in a noisy environment. 

Dvoretzky considered a general stochastic approximation 

procedure and proved a theorem, the statement of which 

follows below. 

Theorem.: Let an (p 11 ••• , p n) , 13 n ( p 1, ... , p n) and y n ( P1' .. · , P n) 

be non-·negative measurable functions of real variables p 
1

, 

P2 , P 3 , .•• , Pn satisfyinc_; the follm 1 i.ng condi t.ions: 

( 6. 2 .1) 
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for a sequence P1 ,P 2 , ... ,Pn· 

The sum of the series 

co 

l 1\ (p1,P2, • • ·Pn) < co (6.2.2) 
n=l 

is bounded and converges for any sequence p 1 ,P 2 , •.. 

co 

(6.2.3) 

uniformly diverges for any sequence p1 ,p 2 , ... , bounded in 

absolute value, that is, for any sequence p1 ,P 2 , ... such 

that 

i,u.p !Pnl < c (6.2.4) 
n=l, 2 I 

c being an arbitrary finite number. 

Let e be a real number, and T1 ,T2 , ... be roeasurable 

transformations, satisfying the inequality 

for any real sequence P 1 ,P 2 , .•. 

Further let x1 and Y ,Y2 , ... be random variables, and1 

for all n>l let, 

where gn(p 1 ,P 2 , ... ,pn) are measurable functions such that 

the sum of the series 

N 
l lgn(P1,P2,· .. ,Pn>I (6.2.7) 

n=l 



96 


uniformly converges and its sum is uniformly bounded for 

(6.2.8) 

with probability 1. The series 

ex, 

l E{Y~} < oo (6.2.9) 
n=l 

converges and 

< 00 (6.2.10) 

Then, as n> 00 

P{lim X =e} = 1 (5.2.11)n-+ 00 'n 

and 

(5.2.12) 

Extension: The theorem reMains valid if an, Sn and yn in 

(6.2.5) are replaced by non-negative functions anCP1,P 2 , ... ,pn), 

Sn(P 1 ,P 2 , ... ,pn) and yn(P 1 ,P 2 , ... ,pn), respectively, provided 

they satisfy the conditions: The functions an(P 1 ,P 2 , ... ,pn) 

are bounded and 

(6.2.13) 


uniformly for all sequences p1 ,P~,···,Pn· The function 

Sn(P 1 ,P2,···,Pn) are measurable and 
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co 

(6.2.14) 


is bounded and convergent for all sequences p1 ,p 2 , •.. ,pn 

and the functions yn(p 1 ,P 2 , •.. ,pn) satisfy, 

co 

l yn(p1,P2,···,Pn) = co (6.2.15) 
n=l 

uniformly for all sequences p1 , p 2 , ..• , Pn for ·which 

-.6 u.p Ip I < L (6.2.16) 
n=l, 2,. . . n 

L being an arbitrary finite number. 

In addition to this extension, :there are five general­

izations to the theorem*. Dy applying these generalizations 

and the theorem.with extensions, it will be possible to 

prove the convergence of the algorithm present in this 

work. 

6.3 	 Convergence using Dvoretzkr's Theorem 

Consider the algorithm presented here as 

/\ I\ ~ A" x 	 = x +y +1 { ( R ( £. )) -xn } n=1 , 2 , • • . ( 6 • 3 • 1 ) 
n+l n n rn+l 

where 	~n+l is the n+1th estimate of 

x the true value being sought 

Yn+l is a non-negative real number (gain-sequence) 

rn are the measurements from the distribution of x 
/\

and Rr (£.) is the sample a_qtocorrelation function. 
n+l 

*Proof of Dvoretzky's Theorem, his extension and general­
izations given in Appendix D. 
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Now subtracting x from both sides of (6.3.1) gives the 

following equation 

I\ 

(6.3.2)= (l-yn+l> (xn-x) + Yn+l~n+l 

n=l,2, .•. 

where as before 

" 1 ( 5l) ,Rt; 
~n+l = x{ (1+ n+2 )~-1} (6.3.3) 

x 

consider the transformation 

/\I\ 

(xn -x) = wn (6.3.4) 

and applying it to (6.3.2) gives the following result; 

J\ 

(6.3.5)(1-yn+1>Hn + Yn+l~n+l 

Equation (6.3.5) or its equivalent (6.3.2) is a zero 

seeking algorithm. Now consider the convergence of this 

transformed algorithm. 

Let a ,S ,y and n=l,2,3, ... be non-negative real 
n n n 

numbers satisfying condition (6.2.1) 

condition (6.2.2) 

(IQ 

< (IQl Sn (p1,P2, · · • ,pn)
n=l 

and condition (6.2.3) 
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00 

Making the selection for y as in (3.4.1), recall this as 
n 

1r = {y.£rly·=~- i=l,2, ••• } 

1 1 i+a 


and letting a=O, then an and Sn can be selected as 

A= {a.£Ala 1 ·=1/. Vi=l,2, .•. } (6. 3. 6)
1 l 

and 

Now let' us consider an as just defined. Since 

and 

l..lm l; + O (6.3.8)n+oo n I 

then by (6.3.8) the selection of an in (6.3.6) satisfies 

condition (6.2.1) of the theorem. 

Now consider the selection Sn in (6.3.7) and using 

Cauchy's integral test (see Appendix E for proof) , vrri te 

t{m ~r f...lm 
. 

[-y-1] t ...J,-=dy = t+oo t+co
~y2 1 

and hence 

£..lm lbn[ -y-1JT [l - !]= -r+co -r+co1 1 1" 
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anc1 thus 

Llm f,: 1,,
--<.1V = 1 (6.3.9)

"["-)-00 1 ...
y2 

This proves that the integral converges and h~nce by 

Cauchy's integral test the summation 

00 

is bounded. By further use of Cauchy's integral test the 

bounds on the summation can be established by applying 

k 
Jk+ll dy < l 1; 2 < Jk ldy + 1 (6.3.10)

1 yi n=l n 1y2 

Taking the limit ask becoMes very large and using result 

(6.3.9) gives the bounds on the summation as 

co 

1 < l l; 2 < 2 (6.3.11) 
n=l 

n 

Hence by result (6.3.9) and (6.3.11) the selection of 
n 

made in (6.3.7) satisfies condition (G.2.2) of Dvoretzky's 

Theorem. 

Now consider the choice of y as in (3.4.1) and recalled 
n 

previously. By applying Cauchy's integral test, the 

following integral can be written: 

lb,1 ln YI 1-r 
,:-->- 00 

and hence 

McMASTER UNIVERSITY LIBRARY. 
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..e..lm • 
,-+co ..e.n y 11 = 

and thus 

£.,lm f'1 d (6.3.12),-+co 1- . Y 
y 

Since the integral is unbounded, then by Cauchy's integral 

theorem the sum 
co 

y = co (6.3.13)- l 
n==l n 

is without bound; hence, by result (6.3.12) and (6.3.13) 

condition (6.2.3) of the theorem is satisfied. 

By the selection of the a-sequence, S-sequence and 

r-sequence as stated in (6.3.6), (6.3.7) and (3.4.1) 

respect.i.vely, all the members of all three sets satisfy 

condition (6.2.4) of the theorem simply by definition of 

the sets themselves. 

In the preamble to the generalization of Dvoretzky's 

theore~* it is stated that for a zero estimating scheme 

like (6.3.5), condition (D~4.1) is stronger than condition 

(6.2.5). Hence, by using condition (D-4.1) of the preamble 

instead of condition (6.2.5) in fact strengthens the 

generality of the theorem. To apply this condition, begin 

by 

" 
A 

and with w n 

(1-y )W
n+l n 

*See Appendix D 
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then 

is satisfied since 

/\ 1 /\.
I (l-yn+1H\ I = I (1--)W I 

n+l n 

and 

I\ 1 I\

I (l··yn+l)Wnl = (1---Jlw I for n=l,2,3, ... (6.3.15)
n+l n 

and 

A 

(l+f3 -y ) IP I = c1+1/n2-1/n) lwnlfor n=l,2,3, ... (6.3.16)
n n n 

Now 

n3 < n3 + l for n=l,2,3, ••. (6.3.17) 

But 

(n3+1) = (n+l) (n 2-n+l) (6.3.18) 

Hence 
3 2n < (n+l) (n -n+l) (6.3.19) 

Now, if both sides of (6.3.19) are multiplied by 1 Vn>O 
n2ln+l) 

the result is 

2 
n < n +1-n 

n+l n2 (6.3.20) 

If l;n+l is added and subtracted to the left hand side of 

(6.3.20)giving 
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2n 1 1 < n +1-n 
n+l + n+l - n+l n2 

and regrouping terms results in the following equation 

2(1-1/n+l) :< (1+1/n -1/n) 

I\ 

Multiplying both sides of equation (6.3.22) by lwnl gives, 

(6.3.23} 


Here the equality is introduced to include the case of 
- " lw I = O. Now since (1-1/n+l) is non-negative for all 

n 

n=l,2,3, ••. , it can then be taken within the modulus sign 

in equation (6.3.23) giving 

(6.3.24) 


This equation (6.3.24) satisfies equation (6.3.14) and hence 

satisfying the condition (D-4.1) of the theorem. If it 

should occur that 

(6.3.25) 


in equation (6.3.14), this condition and (D-4.1) holds by 

the result in equation (6.3.24). Alternately, if it should 

occur that 

a.n > (l+S -y }IP I (6.3.26}
n n n 

then (6.3.14} and (D-4.1) hold by virtue of (6.3.26} and 

result (6.3.24). Hence condition (D-4.1) of the theorem is 
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always satisfied. 

Now identifying condition (6.2.6) with equation (6.3.5) 

yields 

(6.3.27) 


where as defined in (3.3.12) and (6.3.3) 
I\ 

R (R,) 
.,. x{ (1+ ~n+l -) ~--1} (6.3.28)'l'n+l = 2 

x 

Also, since the expectation operator E{.} is linear, it 

commutes with the sununation operator "l" which is also 

linear. Hence the condition (6.2.9) 

co 

l E{Y~} < oo 

n=l 

can be rewritten as 

(X) 

E{ l < co (6.3.29) 
n=l 

combining the contents of equ;ition (6.3.28) with equation 

(6.3.27) gives 
A 

2 2 R~ ( Q,) 1 2
Y2 = x { (1+ n+l )~-1} (6.3.30)n Yn+l 2 x 

Squaring the contents of the brackets and multiplying through 

2by x gives the equation 

y2 
n 
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Applying equation (6.3.31) to condition {6.3.29) anc1 in­

vestigating term by term can be done by first investigating 

the 1st term of (6.3.31) 

ClO ClO 

2x2 t 2 2x2 l 1 (6.3.32)l Yn+l = n+ 1 _,.(_n_+~l..--)...,.2
n=l 

Applying Cauchy's integral test to (6.3.32) gives 

l,[m f T 1 
T-+oo 1 (l+y) 2 dy 

and hence 

l,lm lbn . -1 Tf ;_ (y+l) --2dy = - Cy+1> I"[-+OO "[-+ co 1 

resulting in 

l,lm -(y+l)-l!T l.lm 
= 

"[-+OO r-+oo [- 1-- ;]1 .+l + 

and therefore 

.tlm JT 1 _ c1v = !--; (6.3.33) 
"[-+OO lc1+y)2 .,_ ~ 

Thus, the series in (G.3.32) has a bounded and 

convergent sum. By further application of Cauchy's-integral 

test the bounds on the suri can be established. They are 

given by, 

k+1 1 ~ 1 Jk 1 1 ­ IJ ----=-- clv < l < dy + 
1 (y+l) 2 .,_ n=l (n+l) 2 1 (y+l) 2 (y+l) ,,-- y=l 

(6.3.34) 
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Taking the limit ask becomes very large and using 

result (6.3.33) gives the bounds as 

Llm k 1 
(6.3.35)

k+co nil 01~1) 2 < ~ + \ 

which when multiplied through by 2x 2 puts the bounds on the 

first term of (G.3.31) as, 

co 
3x2 

x2 < 2x2 l 1 < (6.3.36) 
n=l (n+1) 2 2 

Thus for any finite x the first term of (6.3.31) in (6.3.29) 

is finite. 

Consider the sum of the second term in equation (6.3.31). 

It can be written as 
A ,\ 

k R~ (t) } -.. - 1 R~ (£) l2 2 1 1
lim l 2 (1 , ~n+ )~ .e..lm 2x2 ----=-2 ( 1 +---2n±~) ·'i 
k+co x Yn+l ~ .,...----z--- = k+co l 

n=l - x n=l (n+l) x 
(6.3.37) 

where 

A n+l-t 
Re; (£) = 1 l (6.3.38) 

n+l n+l k=l 

Now since in all practical situations the upper value of 

a measured sample is limi tecl, hence one can \·,rite 

where Lis a large arbitrary, finite nurnber. Hence, the 

upper value of an element of noise is also limited and thus 

it can be written that 
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!cl < M (6.3.40)
1 

where 

M=L·-x (6.3.41) 

Hence, combining equation-(6.3.37) and equation (6.3.38) 

and using condition (6.3.40) gives 
A 

.e.· 2x2 k 1 RE;n+1C.t) !,, .e· 2 k 1 . (n+1P~2 ~ 
k -tm l ----i(l+--2----) . ~ k'.;~ 2x, l ---- 2(1+---·----).~oo n=l (n+l) x n=l (n+l) x 2 

(6.3.42) 

Applying Cauchy's integral..test to (6.3.42} gives the 

integral, 

2 2
.l,lm f, 2x (y+l} ~-1 ~ == f,lr,i • 1 2 2 ~ 

------ ( 1 +--·-------} -dv 2xf ---·2 (x + (y+l} M } ·a.y.~oo l(y+1)2 x2 - ____ .~oo 1 (y+l} ­
{6.3.43) 

Now consider an integral of the following form and integrate 

it by parts 

~·-- ·-· -· 


dx = ax_+b +~a . c1x 
(6.3.44}
-x ·­

Applying a tabulated integral* to eauation (6.3.44) gives 

the folJ.o·wing, 

. ··-·----- ;-- ;-·1 
lax+b a 1 ax+b - h(~ax;b dx = (6.3.45)

+ 2- [lb=---l.a.g lax~--=- IFx x 

Applying this result to Cauchy's integral. in equation (6.3.43) 

results in the following equation'. 

*#72 of Hano.hook of natheDatical Tahles and Forrimlas by 
R. S. Burington 

http:equation-(6.3.37
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00 

2 2] ~ 
lim ·2xf' l - [x 2+(y+l)M2]~·ay = lim {M2 log 

[ x + (y+l)M. ·-x 
T+ 1 (y+1)2 ,+oo [x2+ (y+l) M2] ~+x 

[x2+ (y+l)!12] ~} T 
(6.3.46) 

(y+l) 1 

Substituting the limits into equation (6.3.46) gives, 

lim 2 2 k
[x +(t+l)i1 ] 2 -x 

-[~2+ (.+1}!·12) !:i+x 

(6.3.47) 

which reduces to 

- [Jx2+ (T+l H-8 ~ (6.3.48)
t+l 

In the limit equation (6.3.49) becomes 

tim t 	 2 k [x2+2M2]~ .,2 { [x-2+1M:2]···i2+x }
1 2 2

,+oo 2x/ 1 2 [x + (y+l) r'I ] c1y = 2 -l+n log ~ 
. (y+l) { [x2+2!'12·J 2 -·x} 

(6.3.49) 
Hence for a finite M, the second term of (6.3.31) has a finite 

sum. 	 The bounds on the sum are 
A 

2 	 ( +l)r•2 ]. 2 k 1 R~n+l (t) 1 
- 2x Jk+l 1 (1+ Y 2 'l /2ay < 2x L (1+ 2 -) ':?

[ 1 (y+l)2 x 	 m=l (n+1) 2 x 

" l 	 2 1 2 RE; 2 ( i) k2 1< 2x J	~- ? (1+ (y+~llL) '2c1y + ~(1+----) 2 (6.3.50)
1 (y+l)~ x 2 x 2 
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Taking the limit in equation (6.3.50) ask becomes very 

large gives after using result (6.3.49) the following 

equation, 
I\ 

~ 2 {[x2+2M 2J~+x}] 
2x2 ex, 1 R( l(t)

- 1 + M l.og - - < l (l+ n+ ' ~ 
2{[x2+2M2]~-x} n=l (n+1) 2 x

2 2 1 
+ 	~(l+~) "2 (6.3.51)

2 x2 

Therefore, by result (6.3.50) and result (6.3.51), it can be 

seen that the second term 6f (6.3.31) has a finite and 

bounded infinite sum for a finite value of M. 

Considering the sum of the third term of (6.3.31) gives 

CIO 2 j\ 	 1 /\
l Yn+l RE; (t) = 

CIO

l --- RE; (t) 
h=l n+l n=l (n+l) 2 n+l (6.3.52) 

Applying Cauchy's integral test to (6.3.52) gives the 

integral 

where condition (6.3.38) and condition (G.3.41) are used 

in a substitution. Now the integration yields 

2
lim IT M M2 lim {- 1 T} {6.3.54)T+co 1 2 dy = T+co 1 

(y+l) (y+l) 

and after taking the limit 

l.im IT 1 A ( M2 
T+CIO l RE; t)dy < (6.3.55) 

(y+l) n+l 2 
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Therefore, for finite values of M, the infinite sum of the 

third term of (6.3.31) is bounded and convergent. The 

bounds can be given by further applying Cauchy's integral 

test resulting in 

"' k l " Jn 1 " M2ft+ l __l_R ( 9.,) dy < l ----R~ ( 9.,) < ----R ( i) dy+­
(y+l) 2 tn+l n=l (n+l) 2 n+l 1 (y+1} 2 tn+l 2 

(6.3.56) 

Taking k as it becomes very large in equation (6.3.56) and 

using result (G.3.55) yields 

00 

1 A 2l R (!) < M (6.3.5'7) 
n=l (n+1) 2 ·gn+l 

Hence, by result (6.3.57) the infinite sum of the third 

term of (6.3.31) is bounded and finite for finite M. 

Now considering (6.3.31), equation (6.3.34), equation 

(6.3.51) ana equation (6.3.57) it can be written that 

00 

c < l < D (6.3.58) 
n=l 

where 

( 6 • 3 • 5 9 ) - .. 


and 

3x2 [x2+2M2J ~ 2 { rx 2+2r1 2]!2+x} x~ ~,· 2 ,. 2 
-l+H - log l.J-. 2- 1 + -(1+~) ~+MD = -~~ 2 

{[x2
+2M J~-x} 2 x 

(6.3.60) 

Since C and Dare constant and finite, then taking 
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expectations of equation (6.3.58) giv~s 

(X) 

C < E { I· yn2} < D (6.3.61) 
n=l 

or considering equation (6.3.29), equation (6.3.61) can be 

rewritten as 

2c < I E {Y
n 

} < B (6.3.62) 
n=l 

and this satisfies condition (6.2.9) of Dvoretzky's theorem. 

Now with Y as in (6.3.27)
n 

y 
n 

and where 

as in equation (6.3.28). Hence 

2 I\ ~ 
Y = y +l { (x +n~ (1}) -x} (6.3.63) 

n n ~n+l 

Now for large 1 and/or n 

Rf;" ( 1) + 0 (6.3.64} 
n+l 

Hence, if expectations of (6.3.63) is taken, the result is 

E {Y} = 0 
--

(6.3.65)
n 

which satisfied condition (6.2.8) of Dvoretzky's theorem. 

Now provided that the condition (6.2.10) on the first 
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estimate is assured, then all the conditions for Dvoretzky's 

theoren have been satisfied and therefore, his theoreQ and 

results apply. Now it can he said that the algorithm 

presented in equation (6.3.5) converges with probability 1 

and in the mean square sense for all n=l,2,3, ..• 

such that 

(6.3.66) 

and 

"• A
P {~~m w = e-} = 1 (6.3.67)n-co n w 

where 6w = 0. Now since algori.th'f:1 (6. 3. 5) converges as 

stated, apply the reverse transformation of (6.3.4), that is, 

I\ A 
W = (x -x} (6.3.68)n n 

to algorithm (6.3.5) which gives, 

(6.3.69) 

This also converges with probability 1 and in the mean 

square sense such that 

R..lm 
n=oo F. { (~ -x) 2} = ··O (6.3.70)

n 

and 

{f..lm A 
p x =x} = 1 (6.3.71)n=oo n 
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for any finite, zero or non-zero x. 

6 . 4 Summar~/ 

In the previous section of this chapter, an alternate 

method of proof for the algorithm presented was given. 

Essentially, Dvoretzky's theorem was stated and the algorithr• 

presentec1 hE-}re was shown to satisfy all the requisite 

conditions of the theorem and hence the theorem applies. 

The theorem, then, is an alternate proof and guarantee 

that the algorithm is convergent and thus acts as an 

independent check on the theory put forth in Chapter III. 



CHAPTER V~I 

Conclusions and Future Work 

The work of this thesis has, on the whole, been extensively 

theoretical in terms of proving the convergence of the 

suggested algorithm. In an attempt to strike a closer balance 

between abstraction and reality, effort has been expended on 

indicating the practical ben~fits of stochastic approximation 

algorithms as opposed to conventional estimation techniques. 

Application of these techniques to various facets in electrical 

engineering has ~)een irnplied or ci tecl.. In particular, the 

area of learning control has made extensive utilization of 

the principles involved and applied stochastic approx-irnation 

techniques to the evaluation of transition and state prob­

abilities for the purpose of cost function prediction. In 

order to give the reader a proper intuitive feel for the topic 

and an appreciation for the results of this work on stochastic 

approximation, the subject has been introduced by giving 

specific pieces of theory in the hi~torical sequence .--in which 

these contributions have been made to the body of knmtledge 

on stochastic approximation. The review of the three major 

contributions serves to establish a frame-of-reference for 

this work as well as to set the theme for the work currently 

being done in the area of stochastic approximation. The more 

-114-· 
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-
recent algorithms have also been introduced to establish 

· guides for comparison in terms of convergence and overall 

performance. 

Essentially, then, the concept of sar1ple autocorrelation 

has been applied to the area of stochastic approximation 

involved in the area of parameter extraction for noisy 

environments based on no a p~io~i knowledge of process 

statistics. A pre-requisite before comparison of performances 

can be made is the establishment of convergence. Convergence 

was proved for the new algorithm in two ways, each method 

independent of the other. Chapter III contains a proof of 

convergence based on the concept that the mean square error 

of the algorithm. vanishes in the limit. Like·wise, Chapter VI 

proves converqence of the same algorithm in the mean square 

since based on the application of Dvoretzky's theorem. Both 

methods of proof concur on the convergent nature of the new 

algorithm. 

Having established convergence, evaluation of the 

relative performance of the three algorithms was made. The 

vehicle for comparison was the sum of squared error (S.S.E} 

and the time sum of squared errors (T.S.S.E.) which are the 

discrete equivalents of the integral of squared errors (I.S.E.) 

and the time integral of squared errors (T.I.S.E.) in con­

tinuous arn.lysis respectively. The simulation results in 

Chapter V verify the improved performance obtained in terms 
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of rate of convergence by the new algorithm as compared with 

the previous two algorithms. This has been achieved only 

over a limited range of noise conditions, which has been 

established, but has been done successfully with minimal 

computation time, using only simple calculations and with 

minimal computer rnemory requirements, thereby facilitating 

applications. 

These conclusions suggest a number of areas for future 

work in the area of stochastic approximation, particularly, 

to forward the contents of this work. One of the areas 

is the sensitivity of an optinal r-sequence as solved from 

equations (4.3.10) and (4.3.11). This is no easy task, since 

a two point nonlinear discrete boundary value problem has 

to be solved. From such a solution sensitivity with respect 
I\ 

to the initial error, E
0 

, and/or the first estimate x 
0 

, 

has to be determined. Since the problen is not traceable 

into a closed form, the solutions ~ust be obtained iteratively 

and then numerical analysis is the only recourse to the 

sensitivity problem. Along with this study, an analysis on 

the sensitivity of the rate of convergence to the above 

r-sequence can be evaluated. 

The sensitivity study would he of exceptional value in 

helping develop a strong intuitive feel for the convergence 

rate of the algorithr,1. \'7i th such a founded feeling, one 

could attempt a study of a family of closed form solutions 
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of a sub-optimal r-sequence obtained by solving a reduced 

form of the boundary value problem given in equations (4.3.10) 

and (4.3.11). This could then be used along with the algorithr.·: 

to calculate a value of y at every instant n as the estimation 
n 

is proceeding. Thi~ would keep the procedure very simple 

and allow a good sub-optimal convergence to occur. 

Another aspect is to make the r-sequence adaptive. There 

are essentially two basic ideas that could be utilized. First, 

a one-side difference can be e·stir.:ated. and used to regulate 

the r-sequence by some rule. To maintain convergence, 

restrictions and bounds would have to be developed on the 

elements of the r-sequence. Second, one could make use of 

any r-sequence and change the value of the successive terms 

only after the cU :!:ference betv.reen the san:ple in fornation 

and the latest estimate changes sign. If both ideas were 

merged, a very effective algorithm could be had with very 

little extra effort. 

In all the work to date, no mention has been made of 

the requirements or desireability of developing a reasonable 

and useful bound on the convergence. In some very recent 

work, Davisson* has developed a technique for developing a 

probability hound on the convergence of a stochastic approxi­

mation algorithm when only a finite number of iterations 

are taken. It would be interesting to do a study on the 

*Davisson, L. D . .)5 "Probabilitv nound for Stoc-=-J-1a-.s-.. -t_,,i_c_________---·-----·-­________,;. 

7\pproxination "-' Pci1aster University, DepartPent of 
Electrical Ensineering, Seminar Noverrher 11, 1969. 
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application of this technique to the algorithms developed in 

this thesis and those suggested in the above summary. 

In conclusion, it can be said .that with the suggested 

introduction of sample autocorrelation to stochastic 

approximation, an h rroved algorithm, from the point of view 

of convergence rate has been developed. Ii enjoys inproved 

performance over the two previously develope<l algorithms. 

It can be applied to any problem that can be forr::ulated as 

a regression problem with repeated observations. In 

situations ·where observation periods a.re long and '\.'!hen 

a pnlonl statistics are unknown, this and other stochastic 

approxination algorithms have advantages over conventional 

estimation procedures. Only short intervals of data need 

be processed at any one time and then discarded. Only 

. . " siP1ple computations and very little mernory space is requiren. 

Thus, stochastic arproximation algorithms permit estination 

in situations that are prohihitive to conventional esti~ation 

techniques. 
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LIST OF SY!mOLS 

Roman 

an a sequence of non-negative real numbers 

Ai scalar factors of a vector in a hyperspace 

D positive constant 

C arbitrarily large finite number 

en an element of a difference sequence; non-negative real 

D positive consta~t 

e, unit vector in a hyperspace
1 

E{·} expectation operator 
A 

E. mean ~ifference error x.-x 
1 1 

f(.,., ... ,.) a vector state function 

f{.,,)a bivariahle scalar random function 

a {. , . , ... , . ) measurable random rnul tiparar,1eter function 

H Hamiltonian 

J cost function 

i,j,k integer suhscripts 

K a positive constant 

t discrete argument of autocorrelation function 

L arbitrarily large finite number 

m inte0er subscript 

m(·) a scalar function of a scalar variahle 

m a nominal or arhitrarv scalar value
0 

M a positive constant 

-123·­
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M discrete equivalent of the scalar Pontryagin function 

n integer subscript 

p,q,k range limits on suhscfipts 

r saIT'.ples taken from. the distribution of x 
n 

R scalar constant 
/\ 
R ( t) discrete sa:rn.ple autocorrelation function 

rn 
S. control situation 

1 

t tine 

Tn(.,., ... ,.) a measurable transformation 

T sa1"'.lplinq interval 

ui control variable 

v2 exnected mean square error 
n 

/\ 
w a transform. snace defined hv Hn··n 

x true parameter ~eing sought 

"" x.r1 stochastic arnroxirn.ation genera.tea :bv the stochastic 

approxiration alaorith~s 

" X estirate of e in Dvoretzkv's theorem 
n 

v durnny inte0ration variable 

v a rando~ variable·"n 

Z, random entity or -elerent of a stochastic process
1 
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Greek 

a scalar parameter 

ak estimate of e in Kiefer - Wolfowitz method 

am estimate of e in Robbins - Monro Techniaue 

an non-negative measurable function - Dvoretzky's theorem 

Bn non-negative measurable function - Dvoretzky's theorer 

B positive constant 

Yn non-negative measurable function - Dvoretzky's theoren 

o,E arbitrarily sPall positive scalar members 

1T<·) a small positive scalar function 

~ Lagrangian multiplier 

n a scalar perturbation 

e a true scalar value 

I\ 
en transform of (xn-x) 

Btk terminal time cost term 
'f 

ew zero value sought by transformed algorithm 

t integrand of a cost function 

p scalar constant 

Pn a scalar variable 

~n the ran<lom component of rn 

o -instantaneous value of a cost function 

A sy~bol for estinated variahle 

a vector designation 

(·, ·) denotes an inner product 



APPENDIX A 

Relationship between Reinforced Learning
-----aiic1 Stochastic Apnroxirnation- ______f.:....:::.________ 

To begin with, an attempt will be made to give a 

physical an& intuitive feel for reinforced heuristic 

learning. It is felt that such an introduction is necessary 

before giving a more mathematical formulation of heurist.ic 

learning control. Once the formulation has been intro­

duced, the relationship to stochastic approximation will 

be developed. 

Consider what is often referred to in psychology as the 

T-maze rat experiment. A simple T-maze is constructed, as 

in Figure A-1 and a rodent such as a mouse or rat is 

placed at the starting point A. 

c B D 

A 

Figure A-1: T-naze Rat Experiroent 

-126­
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The maze is enclosed along the complete perimeter as out­

lined. At the beginning of each experiment food (cheese 

or grain) is placed in either one or the other arms of the 

maze at C or D. Say that the food is placed at C and the 

rat is let go. ~17hen the rat reaches point B, it must make 

a choice as to which way it will go. Call this a situation 

si or a "control situation", that is, a point in the rat's 

control sequence where a decision has to be made between 

alternatives in direction. Now assumina., the rat is not 

influenced by olfactory or visual sti~uli, chances are even 

that it will select one or other direction without any 

preference the first time. If a probability is assigned to 

indicate this, say P· · is the probability that in situationJ.J 

i a choice will be made to go to j, then there will be two 

such decisions or transition probabilities and each will be 

equal to one half. If the rat goes to D, it finds nothing 

and hence, it was negatively reinforced. In terms of 

probabilities, it Means that Pbd was reduced by o and Pbc 

was increased by o to keep the sum equal to one. If when 

the control situation Sb appears again and the rat remembers 

the previous experience it had, then it is more likely to 

try the direction C. This is, in fact, what the new 

transition probabilities say. Now, if in situation Sb the 

first time the rat had gone to C, then it would have been 

positively reinforced with the reward of food. In terms of 

probabilities Pbc would have been increased by o and Pbd 
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reduced 	by o to keep the sum unity. 

Now if the food is consistently placed at C, the rat 

will learn to go there when released from A. Similarly, 

the transition probability Pbc will approach 1 and Pbd will 

approach O if the experiment were repeated often. Then if 

one selects the direction or control choice corresponding 

to the highest transition probability, reinforced learning 

has been achieved. 

Consider a plant described by the differential equation 

of the form 

x = f(~ 1 u,V,N,t) 	 (A-1) 

where 	 xis a state vector defined in state space nx' 

u is the control or control choice, 

Vis the environment vector defined in nx space, 

N is the output disturbance vector including output 
measurement noise also defined in nx, 

and tis time. 

Now define a measurement vector Min space nM as 

T T. T 
M = (~ 	 : V ) (A-2) 

which is obtained from the plant and environment every T 

seconds, the sampling rate. 

The controller learns heuristically to drive the state 

vector x from any set of initial conditions to tho neigh­

bourhood of the origin in state space in such a way as to 
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optimize a pre-defined index of performance IP. The 

learning is accomplished by building a stimulus-response 

mapping between ele~~nt in the· space nM and n • To begin
.U 

with, the space OM is partitioned into convenient class for 

practical reasons and the best choice from the set n for a 
u 

given class in DM is considered the same for all members 

of that class. The problen then is to develop the relation­

ship that selects the best control choic~ for a given 

control situation. 

Now for a control situation Si, it is not a deterministic 

problem to select the best~choice 6f control from nu since 

the control choice at time nT is dependent on the system 

state at time (n+l)T. Let P,. be the probability that the 
J_ J 

jth element of nu is the best control choice for the situation 

s .. 
J 

Initially, all Pij = 1/k, j = l, ... ,k; i = l, ..• ,p, if 

no prior knowledge is given or assumed. As experiments are 

carried out, learning proceeds if a transition or subjective 

probability P •• approaches 1 for a pair uj, Si. If the
1J 

probability p,. exceeds a preset threshold T near O or 1
1J p 

then learning is complete and the mapping between nu and 

n 
m 

for a pair u.,
J 

S. is complete.
1 -

Otherwise, learning 

continues and for a given S. 
1 

the u.
J 

corresponding to the 

maxinum Pij is used. 

Now th~ probabilities P .. are adjusted ie. reinforced 
J_ J 
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positively or reinforced negatively based on the evaluation 

of the IP. The idea being that if a p .. results in a choice1J 

of U• that helps minimize the IP, it is added to, but if it
J 

hampers minimization, it is penalized. For this, two learning 

operators, L+ and L_, a positive and negative reinforcing 

operator respectively, are defined. 

For positive reinforcement 

Pij [(n+l)T] = L+ {Pij[nT]} 

= 	ePij[nT]+(l-e) for o < e < l(A-3) 

is used to correspond to a given uj. At the same time, the 

negative reinforcement operator is applied to all other 

choices of uq, q = 1, ... ;k; qi j. 

== 	 e Pij [nT] for o < e < l(A-4) 

· 	 where e is the learning parameter. A large e results in 

slow learning rate because the probabilities P,. change
1J 


slowly. The converse is also true. 


If one begins with some a ptc.-lotc.-l knowledge and/or has 


an intuitive idea of the direction of control based on 


experience, then the initial distribution of P,. need not
1J 

necessarily be uniform but could be adjusted to conform 

with this knowledge. In addition, a subgoal may be introduced 
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which helps direct d1e choice of control. It can take a 

number of forms, one being a cost function made up of 

estimates of expectations of Pij or.combinations thereof. 

It still remains to determine the conditions for 

convergence of (A-3) and (A-4), and their relationship to 

stochastic approximation. The basic problem still remains, 

select an optimal u* from the set of admissible actions, 

(A-5) 


such that an index of performance of the form 

I~ *} = m,lnE { l,; r1, U, (l\-6) 
- J Uj 

is minimized 

where E{z,;!N,u.} is the performance index for the action 
- J 


ujenu applied after the observation ~eaM. 


Mis the observed response of the plant 

and z,; is an instantaneous performance index evaluation of 

the action u. following an observation M. It is a 
. J ­

random variable dependent on the definition of a 

·· subgoal 

(A·-7) 


where M1enM is the response of the plant due to the action 

uj applied after M was observed. 

The control law is then specified as 
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P{u*IH} = 1 

that is, given all the observations, the probability is 1 

that the optimal control will be fo~nd. The reinforcement 

algorithm defined by equations (A-~ and (A-4) is such that 

following the (n+l)th observation of r1, if the estimate of 

the IP is such that 

(A·-9) 

then the transition probability corresponding to ui is 

positively reinforced according to equation (A-3} _and all 

others are negatively reinforced according to equation (A-4). 

Now equations (~n3) ,(A-4) and (A-9) can be rewritten as, 

(A·-10) 

for every control choice Un En where O<e <l for n=l,2, ... , 
N U n 

and, 

E {r,;!M,un} [Enj { r,; !M,uj} :uj E:nuJD.Q. - N (A-11) 
En .Q. { 1;; IH, u 9, } [Enj { z; 1£!,uj} :uj E:nuJ 

Now after (n+l) performance evaluations of the choices of u 

following the observations~, let 

P [E
11 

{r,;IM,u .} = min. [En.{r,;IM,u.}:'li,E:n ]] = q. (n+l) (A-·12)
i - 1 Uj J - J J U 1 --·· 

Then from equations (A-·10), {J\··11) and (A--12) for ui, 
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E {Pij(n+l)IPij(n)} = e Pij(n)+(l-e)qi(n+l) (A--13) 

Theorem* 1 

The sufficient conditions for (A-10) and (A-11) to yield 

P {Llm P··(n)I = l} = 1 (A-14)
n+ro 1J u=u* 

arc: 

(1) for every action uiEnu which is not optiMal 

according to (l1.··6) 

P {llm q· (n) = O} = 1 (A-15)
n+ro 1 

m 
P , R- (0) > 0 wl.th l Pit (0) = 1 (A--16) 

1 i=l 

and (3) for every n and ui defined by (A-9) 

P,. (n) = mo.x. {P .J. (n) :u .d1u} (l'-i.-·17)
J.J uj 1 1

Proof: Suppose (A-15) does not hold for at least one sub­

optiri.al control choice uidtu· The expression on the right 

hanc1 site of (l-1.-13) is positive then with probab.i.lity 1. 

This contradicts the assumption that u tu* as defined by
1

(A-6). The necessity of (A-15) is thus shovm. 

Condition (A.--15) can be restated thus: given any 

positive nunbers E and o, an integer }: exists such that, 

P {.6u.p {er, (n)} < E} >: 1-o (A--18)
n> 1: "'1 

*From the work of Nikolic and Fu· 

http:optiri.al
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In that case for any E >0 and 61>0 (O<E 1 <1 and 0<6 1 <1)1 

an integer K can be found such that 
I 

(A·-19) 


for the optimal control~*. Since ~he sequence 

{m~; IPij (n) :uj d2u I} is a monotonically increasing sequence 

and converges to 1 according to (A··lO) and (A·-17), for any 

62>0 an integer K2>K1 can be found such that 

{ino { en> I } }P P.. > 1-62.> 1-El {A-20)
n> k 2 l.J u=u* ·­

with El given in (A-19). The condition (A-16) is sufficient 

to assure P,. (n)>O for every n<oo and uJ.Enu. 
l. J 

Now if account is taken of the probability of the system 

being in a State i at time n, Written-.;.$ pn(j_) I then the 

algori th1,1 can be written as 

{A·-21) 

where an= 1-en 

and ).n (i) 

being the ratio of the number of tiP1es the system has bee.n 

in state i out of all n states it hasneen in that is 

).. (i)
n 

= ni/n (A-22) 

in fact, ). {i)
n 

is directly proportional to P,. (n).
l.J 

Now let 

*From the work of Nikolic and Fu22 
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00 

O<a 
n 

<l 	 lT a 
n 

= 0 (A-2 3) 
n=l 

and· 

200l (1-an) < oo (A-24) 
n=l 

If equation (A-21) is rewritten after subtracting P(i) from 

both sides and 	rearranging gives 

(A- 2 5) 

where P (i) 	= l.lm P (i) 
n-+oo n 

nn(i) = An(i)-P(i) 

E {nn(i)} = 0 

and E {[n· (i)] 2 }..: 1 
n . 

Hence, equation (A-25) is in the form of a stochastic 

approximation algorithm of the Dvoretzky type as outlined 

in Section (D-8) of Appendix D with 

T [P (i)] = a +1[P (i)_p(i)] 	 (A-26)n n n n 

Consequently, 

P {llm P (i) = 	p(i)} = 1 (A·-27)
n+oo n 

by Dvoretzky's 	theorem. 

In addition to the two learning algorithms shown to be 

of a stochastic approximation nature, other forms of learning 

can also be interpreted in a similar fashion. For example, 
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Fu 24 shows that the technique of Bayesian inference as used 

in the learning sense is an algorithm of the Dvoretzky form. 

Two.other works that Fu participated in also deal with 

similar areas. With McMurtry25, learning and stochastic 

approximation techniques were applied to a multi-model 

searching technique. 'Ni th MCLearen26 , they studied an 

application of stochastic automata to the synthesis of 

learning systems. 

Essentially, then, it can be said that stochastic 

approximation is a unifying theory for interpreting the 

various and diverse facets of learning control theory. 



APPENDIX B 

Proof of Two Stochastic Approximation Algorithms* 

For each of Fu's two algorithms, a proof of convergence 

will be given and a derivation of the inherent optimum 

properties will also be given. 

Consider an algorithm of the form 

A A 

= xn+Yn+l{rn+l-xn} n=l,2, ... (B-1) 

A 

where xn is the nth estimate of the true value sought 

x is the true value sought 

rn is a sample from a normally distributed random 

variable 

and Yn is a gain sequence 

Here rn is a linear combination of noise and parameter being 

sought, that is, 

(B-·2) 

where tn is an element of normal zero mean white noise of 

2variance 0 • The form of the gain sequence Yn is restricted, 

that is, 

1 
for n=l,2, .•• (B--3)= n+KY11 

where K is an arbitrary non-negative constant. For this 

definition of yn' the following conditions hold true: 

-137·­
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> 0 (B-4)Yn 

l-lm 
+ 0 (B·"S)n+co Yn 

co 

= co (B-6)l Yn 
n=l 

co 

l Yn 
2 

< Cl) (B-7) 
n=l 

These all fit nicely into the statement of Dvoretzky's 

theorem. Now combining equations (D-1) and (B-2) gives 

A A 

x" = xn + Yn+l{ (x+tn+l) - x~} n=l, 2, ..• (B-·8)
n+l 

Now subtracting x from both sides gives, 

A A 
(xn+l~x) = (1-yn+l>xn + Yn+l (x+tn+l)-x 

and after recornbing and factoring gives, 

,.. I\ 
(B--9)(xn+l-x) = (1-yn+l> (xn-x) + Yn+lsn+l 

Squaring both sides of equation (B-9) gives 

A 2 2 A 2 2 2 
(xn+l-x) = (1-yn+l> (xn-x) + Yn+l sn+l 

/\ (B-10) 
+ 2(1-y )y s (xn-x)

n n+1n+1 

Take expectations of both sides yields 

(B·-11) 

since 
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I\ . /\ 
E {2(1-y +l)y ~ Cxn-x)} = 2(1-yn+1>Yn+lE{~n+l}E{xn-x}n n+l n+ 1 

(D-12) 

because 

are independent and since 

E {~n+l} = 0 (B-13) 

then equation (B-11) holds true. 

Define 

(B-·14) 

Then equation (B-11) can be written as 

/\ I\ 

v 2 _ Cl- ,2v 2 + 2 O2 (B·-15)n+l - Yn+l n Yn+l 

where for a stationary process, 

2 2 2
on+l = E {~n+l} = o for all n=l,2, •.. (B-16) 

Now define a transformation 

A A A 
Tn Cx1,···,xn) = (1-Yn+l)xn + Yn+l (B-17) 

Then equation (B-8) can be written as 

Nm·1 
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A ~ A 
ITn{x1,···,xn>-xl = I {1-·yn+l>xn + Yn+1x-xl (B..::19) 

or 

(B-20) 

and by defining 

(B-·21) 

(B-22) 

Noting definition (B-21) and form (D-3) it can be shown 

that 

co ' 

TT F = 0 (B-23) 
n=l n 

In view of the transformation defined in equation {B-17), 

then identifying the remaining element of {B-18) with the 

form (D-2.5) of Dvoretzky's theorem gives 

(B-24) 

Hence since 

(B-25) 

Then condition (D-2.7) is satisfied. 

Now consider 

2 E{ 2 2}E{Y } =l l Yn+l F,;n+l
n=l n n=l 
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which gives 

00 00 

I E{Y 2 } = a 
2 I y~ (B-27)

n=l n n=l 

Recalling equation (B-7) and substituting into (B-27) gives 

00 

< 00 (B-28)l 
n=l 

Hence, Dvoretzky's theorem is satisfied and thus 

l.lm · "' 2 
n+oo E{ (xn+1-x) } = 0 (B-29) 

and 

P{l.lm x =x} = 1 (D-30)n+ 00 n+l 

In addition to the convergence property just proven using 

Dvoretzky's theorem, algorithm one has an optimum gamma 

sequence. To determine this sequence, which makes the mean 

square error as small as possible at each step, set all 
. 2

derivatives of V with respect toy equal to zero and n · n 

solve for Yn· 

(B-31) 

Equating the right hand side of (B-31) to zero gives 
···-­

dVn2 

dyn 

v . 2 
n-1 

(B-32) 

and solving for Yn gives 
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v 2 
n-1 _ (B-·33)

V 2+a2
n-1 

Now iterating a form of equation (B-15) 

(B-34) 


with equation (B-·33) to obtain the optimum V 2* and y * 
n n • 

To begin, let the initial expected mean square error be 

(B-35) 


Iterating vn 2 and Yn alternately, gives 

(B-36) 


and from (B-33) · 

v 2 
0 

(B-37)2 2
V +o

0 

or 

(B-38) 


where 

02 
K = (B-39) 

v 2 
. 0 

substituting from equation (B-38) into (B-36) for yl gives 

after slight simplification 

(B·-40) 

Now 
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V12 
Y2 = 2 (B~41)

2vl +o 

Substituting intq (B--41) for v1
2 from (B-40) and rearranging 

terms gives 

(B-·42) 

Now 

(B·-43) 


Substituting from equation (B-40) and (B-42) for v1 
2 and 

12 respectively, gives, after some manipulation, 

02 v 2 =- (B-44)
2 2+K 

Now assume V 2 is known, then by equations (B-33) and (B--32)
n 

Yn+l = 
(B--45) 

and 

(B·-4 6) 


Substituting for Yn+l gives 

(B-47) 


2using (B-46) and (D-47) are general terms for y and v

sequence can be extended by simple substitions. Hence 

1 
3+K 
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and 

a 2 
v 2 = 

3 3+K 

and so on. 

Hence, by inspection, it ·can be seen that the optimum gamma 

sequence is given as 

1 
(B-4 8)Y * = ·n n+K 

with the corresponding optimum expected mean square error 

(B-49)
n+K 

where K is defined as in equation (B-39). 

Nm,1 reconsider equation (D-15) but replacing the 

variance a 2 with an upper bound B, that is, 

2 
a < B 	 (B-50) 

Hence 

V 2 < 	 F 2v 2+y 2B (B-51)n 	 n n-1 n 

2Now iterating this back to v0 gives 

V 2 < 	 F 2p 2 
n n 	 n=l 

2 2 2 2+ Fn Fn-1 ... Fm+l Ym B+ .•• 

for n:._m:._l (B·-52) 
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If it is assumed that yn=l/n, then (B-52) can be rewritten 

as 

v 
n 

2 	
+ ..l:.Jn2 

(B-53) 
which reduces to 

V 2 	 < t (B-54)
n n 

Now instead of as in algorithm one given in ~guation 

(B-1), the sample mean 

1 	 n 
l r. 

n 1i=l 

is used as sample information instead of only r I then the 
n 

resulting algorithm is 

n=l,2, ... (B-55) 

For 	the moment, consider the random element of noise-~ as
11 

given in equation (D-2). Let 

n 
V m (B-56)I ~nn 	 i=l 

Then 

(B·-57) 

t~1ich can be expanded as 

n n 
~ .~ . (B·-5 8)l 	 l 

i=l 	j=l 1 1 

jti 
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or alternately 

n2 
vn 

2 
] + 2 l (B--59)= ![! Y ,i [! £ t;.] [! 

j=ln n i=l n i=l. 1 n 
j;li 

Since 

2 1 
n 

2 2 
on = l or on = F.{">..n2} (B-60)

J.n ' .i=l 

and for large n, 

n 


l c -+ 0 or B{C} = 0 (B·-61)

1 1i=l 

Using the first two conditions of (Il-60) and (B-61), and 

suhstituting into equation (B·-59) <Jives 

2 1 2 
'V (B-6 2) 

n = n °n 

Now taking expectations of this equation gives 

(B--63) 

Since ~1e random process is assumed to be stationary 

2 2 
E{ o } = o ,

n 

and hence 

E{v 2} = 1 o2 (B-·G 4)
n n 

If into equation (B···55) a substitution is made for r 
11 

frorn 

equation (D-2), the result after rearrangement is 

A A 
xn+l = (1-y )x + y x + y v n=l,2, ••• (B-·65)

n+l n n+l n+l n+l 
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Subtracting x from both sides yields 

A A 
(xn+l-x) = (l-yn+l) (xn-x) + Yn+lvn+i' (B-66) 

and squaring results in 

/\ 2 2 A 2 A 
(xn+l-x) = (1·-yn+l> (xn-x) + 2yn+lvn+l (1-·Yn+l> (xn--x) 

2 2 	 {B-·67) 
+ y 	 v 

n+l n+l 

Since the following 

I\ = 2y 	 (1-y )E{x -x}E{vn}(B-68)
n+1 n+l n 

vanish because E{vn} = 0 the expectation of equation (B-67) 

gives 

(B--69) 

or using the definition (B-14), equation (B-69) becomes 

2 
v 2 = Cl ,2v 2 2 a	 (B·-70)-yn+l n 	 + Yn+ln+l n 

2
Now if the 	upper bound on o is used, namely B, then 

v 2 (B-71)
n+l 

Iterating the above inequality back to V 2 gives 

V. 2 < F 2 	 F 2v 2 2 2 2B 
n - n 	 • • ·-·'1 o Fn ...Fn+2 Fm+l Ym ~··· 

2 2 D + 2D+ 	F y -- y - (B--72) 
n n-1 n-l n n 
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Assuming as hefore that Yn = 1/n then (B-72) can be written 

as 

2 
V 2 < B{~- + [3·-1=_] 1 + .•. +··.. [m] 2_l. 1:_ +. • • 

n - rt..:: n 22. n m2 m 

+ . 1 _l_ + __! !.}[n~ll 2 
2 2J (n-1) n+l n n (B-73) 

This reduces to 

vn2 
~- B {1+~+1/3+; .• +1/m+ •.. +-].-+!_} < B

2n n-1 n n {B-·74) 

Hence, it can be seen that the expected mean square error of 

algorithm two decreases faster than that for algorithm one. 

Again consider the optimum rate of convergence of 

algorithm two by.equating the derivative of equation (B-70) 

with respect to yn to zero. This gives 

22 a 
(B-·75)(l-yn+1>Vn = Yn+ln+l 

which when solved for yn+l' gives 

(B·-76) 

Let the initial expected mean square error be V
0 

2 
• Substituting 

into equation (B-76) gives, 

v 2 
y = --~- (B·-77)

1 v. 2+ 2 
o a 

Substituting this into equation (D-70) and solving for v1
2 

gives 

v 2 
n 
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02. 
= l+IZ 

where K is defined as in equation (B-39). 

Now 

v 2 
1 

and after substituting from 

2 

3+K 

Substituting for y2 and v in equation1 

v 2 _s2_ 
= 2 3+K 

2Now assuming V . is known then n 

v 2 
n 

Yn+l = 22v +-~ 
n n+l 

Substituting into equation (B-70) for 

02 
V = 

n+l {n+l)+~ 
v 2 

tlUsing these two forms repeatedly gives 

2and v , for example 

3 
=Y3 6+K 

and 

22 0 
=v3 6+K 

{B-70) gives 

yn+l gives 

a sequence for 

{B--7 8 

{B-79) 

(B-80) . 

{B-81) 

{B--82) 

(B·-83) 

y 

(B-84) 

(B-·85) 

and so on. 
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By observing the sequence one can now write the optimum 

forms; 

n 
y * = (B-86)

n n(n+l)+K 
2 

and 

22*v = (B-87)
n n(n+l) IK 

2 

Hence, it has been shown that both algorithw one anc 

algorithm two converge in the mean square sense in the limit, 

and that both possess an optimum gain sequence that_ generates 

the least expected mean square error at every step. 



APPENDIX C 

The Discrete Maximum Principle 

One of the fundamental problems in science and engineering 

is the optirniation of some function with respect to one or 

more parameters and usually subject to a nur.iber of constraints.­

The most useful single technique in system theory used to 

perform the extremization is the calculus of variations. 

Variational principles have been applied to physical problems, 

for example, such as wave propagation from the time of 

Hu~ens. The Hamiltonian formulation of the variational 

problem has existed since the early nineteenth century in the 

work of Hamilton; ,Jacobi and others. The most significant 

recent contribution was made by L. s. Pontryagin. His work 

(27,28) extended the variational method to include problems 

in which the control or driving function and the state vector 

are bounded. 

The same principle applied to continuous problems has 

been recently applied to problems involving discrete data 

systems (29). In reality, the maximum principle is not 

universally valid for the cas~-~f discrete systems (27). 

Because of restrictions on possible variations of the control 

signal, the naximum principle rnust be modified for the 

general discrete case. Jordan and Polak, in reference (30), 

discuss the limitations and derive a modified form of the 

-151-­
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maximur.1 principle, which is applicable to the general 

discrete problem. The difficulty is not of as much concern 

with the advent of digital controllers where now the range 

of control can easily extend beyond the "saturation" limits 

of the plant. 

The derivation of Pontryagin's maximum principle is done 

by using the Hamiltonian formulation and is applied to the 

discrete version of the Balza problem. Katz 31 was the first 

to establish the discrete version of the maximum principle 

that was valid not only for discrete time but also space. 

Given a discrete, nonlinear dynamic system with a state 

vector, ~k and an input vector, ~k' ~k is a "n" vector; 

~k is an "r" vector. The state of the system at the (k+l)th 

stage is related to the state at the kth stage by the 

relationship 

(C-1} 

The process begins at stage k 0 and terminates at stage kf. 

The probleT'1 is to find x,, and u such that the cost function 
-h -k 

k=kf kf-1 . 

J = [e (~k'k)] 
 + l ¢, (xk,~k,k) (C-2) 

k=k 0 k=k0 

is minimized subject to the constraint of equation (C-1}. 

Using the Lagrange multiplier, Ak' an equivalent cost 

function can be formulated as 
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Now define the Hamiltonian as 

(C-4)HI~k , ~k , ~k+ l , k I=Hk = ct, (~k , ~k , k) +~!+ l f. (~k , ~k , k) 

This gives the cost function 

I k=kf kf-1 T 
J = [e(x]_,k)] + l [Hk-~k+l~k+l] (C-5) 

h k=k k=k
0 0 

I
The cost function J · may be mini:rdzed with respect to xk and 

u by application of the perturbation methods of the calculus
-k 

of variations. Let independent perturbations be introduced 

into the state an<l input vectors such as 

x = :x*· + e: n (C-6)
-k -k -k 

= (C-7)* e: !lk+ 1 xk+l xk+l + 

u = + e: \)k (C-8)
-k. ~ 

Note that the perturbations at different stages are 

indepenc1ent; hence, !lk, !lk+1 , and ~k are all mutually inde­

pendent. 

Introducing the perturbations into equation (C-5) gives 

[ H(x~+e:nk,uk+e:v,.,A ,k)-x - · -­ -r, -k+l 
T [ ]]+ A x* +e:n

-k+l -k+l -}:+l 

(C··9) 
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It is known that for a minimum of Ji in (C-9) it is 

required that 

(C-10) 

and 

2 
J 1a (C-11)

-- < 0 
3£2 

for c=O, independent of the variations. In this development 

it will be assumed that the second derivative requirement is 

satisfied for all cost functions and systeMs of interest. 

Now equating to zero the first derivative, equation (C--10), 

requires that 

+ kf-1l 
k-k 

- ~o 

[cH\] T- \)
au* -k-k 

= 0 (C-12) 

Using the discrete version of integration by parts, the 

fourth term of equation (C-12) can be written as: 

or 

kf-1 
~ ,.T n =t=k -k+l-k+l 

0 
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Using this equation in (C-12), and combining term gives, 

= 0 (C-14) 

Since the indicated variables are mutually independent, 

equation (C-14) requires that 

clHk 
>. 
-k 

= -­
cl~k 

(C-15) 

~k 
auk 

= 0 (C·-16) 

>.
-·ko 

= 
aek 

cl~k 
or {[~o- ~k J = 

clxko 
0 (C-17) 

and 

(C-18) 

for the general case in which there are no prescribed 

constraints on the variables. If the value of any variable 

is specified, the corresponding variation vanishes, and the 

corresponding requirement in equations (C--15) through (C-18) 

does not apply. For example, if uk is a known, deterrriinistic 

function, then ~k=O and the requirement (C-16) does not 

pertain. Similarly, if any component of xk 
- 0 

or~­
-hf 

is specified, 

the corresponding boundary condition on ~k does not apply. 

Hence, solving the difference equations resulting from 

(C-15) and (C-16) with the boundary conditions given by (C-17) 
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and (C-18), assuring that the solution satisfies the state 

equations (C-1), results in an optimum trajectory that 

minimizes the cost function J. 



APPENDIX D 

Dvoretzky's Theorera on Stochastic Approximation 

D-1 Introduction 

Dvoretzky's theorem is a general theorem that enconpasses 

the works of Robbins - Monro, I~iefer -- 'i7olfm,,i tz and many 

others. It was the first unifying theory to appear in the 

area of stochastic approximation and still stands as the 

corner stone in its field. The basis of the approach to the 

problem was to consider a convergent determininstic scheme 

with a random element analagous to noise superimposed on the 

scheme. 

The approach to the theorem was such that Dvoretzky 

first proved a basic theorem according to strict conditions. 

Ile furthered the theory by adding an extension, six general­

izations, two resultant corallarys and a special case of his 

generalize0 theorem. This approach was taken to make the 

proofs clearer and more interesting without forsaking 

universal generality. 

A statement of most sections of the theorem will be 

given, however, since the proof is very lengthy and bears 

no i:mnediate relationship to the thesis, it will not be 

given here. For the details of the proof reference (3) is 

recommender:. . 

-157­
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D-2 Theorem: 

Let an, en' and yn' n=l,2, ... , be non-negative real 

numbers satisfying 

l,lm 
n=co an = 0 (D-2.1) 

00 

l 
n=l 

Sn < 00 (D··2.2) 

and 

00 

l y
n 

= 00 (D-2.3) 
n=l 

Let x be a real number and T , n=l,2, ... , be measurable 
n 

transformations satisfying 

(D--2.4) 

vfor all real p 1 , ... ,pn. Let anc.1 .:.n I n=l,2, ... , be randomx1 

variables and define 

(D·-2.5) 

r: 1 h h ' ' { }IOr n> . Tent e cond1t1ons E x1 
2

< co, 

00 

E{Y.:.} < 00 " (D·-2. 6)l nn=l 

and 

E{Y lx , ••• ,X} (D-·2. 7)
n 1 n 

with probability 1 of all n. Then 
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(D·-2. 8) 

and 

(D-2.9) 

This basic part of Dvoretzky's work assumes that the s~quences 

Bn, and y are independent of the ohservations n 

D·-3 	 The Extension: 

'rhe theoren renains valic1 if a , B , y in (D-·2. 4) are 
n n n 

replaced by non-negative functions an(p 1 , •.. ,pn), Bn{pL, •.. ,pn) 

an~ y {p 
1 

, ... ,p ) , respectively, provided they satisfy the 
n n 

conditions: 


The functions a {p , ••. ,pn) are uniformly bounded and 

n 1 

(D-3.1) 

uniformly for all sequences p1 , ..• ,pn,···7 the functions 

BnCP1,···,Pn) are measurable and 

(D-3.2) 

is uniformly hounded and uniformly convergent for all 

Sen.. •·1enc~s p
1 

, .... ,pn,···,· anc~ the cu~cti'ons y {p , .. ,p )-'" ~ ·' ·· ·' n 1 · n 

satisfy 

I y 	 {p1,···,P) = 00 {D-3.3)
n=l 	 n n 
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uniformly for all sequences p 1 , ... ,p 11 
, 

- !.,Up Ip I < L
n-1,2,... n 

L being an arbitrary finite nurnber. 

••• , for which 

(D·-3.4) 

D-4 

than 

Generalizations 

Particularization: 

the following, 

For x=O coridition (D-2.4) is weaker 

(D-4.1) 

with ci , f3 , and y still satisfying (D--2 .1) , -fD·-2. 2) and 
n n n 

(D-2.3) respectively. 

Generalization 1: The Extended Theorem remains vali<l 

if (D-2.7) is replaced by 
00 

or even by the condition that 

00 

l E{Y lx , ••• ,x} (D--4.3)
1n=l n n 

be unifornly bounded and uniformly convergent for all sequences 

x1,···,xn,··· 

Generalization 2: Conclusion (D. 2. 9) of the--Extenc:ed 

Theorem remains valid even without the restrictions on andx1 

if (D-2.5) is replaced by 

(D-·4.4) 
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with the random variables Y~, n=l,2, •.. , satisfyinq 

P{Y~ t Yn 6oh ln6lnltely many n} = 0 . (D·-4. 5) 

thus, in particular, when 

00 

l P{Y~ f Yn} < oo (D-4.6) 
n=l 

Generalization 3: If (D-2.1) is replaced by 

(D-4. 7) 

or more generally (D-3.1) by 

(D--4. 8) 

uniformly for all sequences p 1 , .•. ,pn,··· then the Extended 

Theoren remains valid provided (D-2.8) and (D-2.9) are 

replaced by 

(D--4.9) 

· and 

P i~m Ix I <a}= 1 respectively. (D. 4 .10)n=oo n = 

General i z a 
--

ti on 4: The Extendec'l Theore!'1 remains varid if 

the assumptions concerning an (p 1 , _•.• , p n) are replaced by-·the 

following: 

a 1 {:{1 ) is hounded with probahi li ty 1, 

(D-4.11) 
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with probability land 

(D-4.12) 


Special Case: If the transformations Tn of (D-2.5) 

satisfy 

(D-4 .13) 


for Fn' n=l,2, ..• , being a sequence of positive numbers 

satisfying 

1T Fn = 0 (D-4 .14) 
n=l 

then the basic theorem holds. 



l\.PPEHDIX E 


Cauchy's Integral Test 


Fundamental Principle of ?1onotone Convergence: If a 

sequence {Sn} satisfies Sn.:_ Sn+l .:_ M for each n, where Mis 

some constant, then lim Sr exists.
n->-oo 1 

In other words, every bounded increasing sequence has a 

limit. 

I 2 3 x 

Figure (B-1). Schematic Representation of Loc~s 
of f(x) 

-163·· 
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J

Theorem I: The irn.rroper integral 


oo 1 
c1x {E···I.1)


l n 
X"'" 

conver~es if, and only if, the constant p>l. 

Proof: Consider the integral 

lim lb ·-p= b x dx 
+oo 1 

which gives 

.e_,[r,1 lb -p lJ..m [xl-·p Ip]
b+oo -J_ x dx = b+oo 1) OIL pfl

1-p 1 

resulting in 

The question of convergence depends on the behaviour of 

b l-p bas ~ +oo. If the exponent 1-p is positive, b 1-P+ 00 and the 

integral is diver02nt. But if 1-p is nec_:rati·re I then p-1> 0 

and hence 

CL6 P +oo 

For this case only the integrc1.l converges to the value l/p-1. 

Theorer1 II: The infinite series I 
00 

1 converges if, 
k=l kp 

and only if, the constant p>l. 

This proof follows analogously from Theorem I. 
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Theorem III: For x~l, let f(x) be positive, continuous, 

and decreasing. Then the series 

00 

l f (n) (E--III. l) 
n=l 

and the integral 

f~ f(x)dx (I>-III. 2) 

both converge or both aiverge. In either case, the partial 

sums are bounded as follows: 

n+l nf f(x)~x < l f(k) < Jn f(x)dx + f(l) (E-III.3) 
1 k=l 1 

Proof: Suppose the terms of an infinite series Iak 

are positive and decreasing; that is, an>a +J>O for each n . 

positive integer n. In this case, there is a continuous 

decreasing function f(x) such that 

a = f (n) n=l,2, •.. 
n 

Each term a of the series may be thought of as representing
n 

the area of a rectangle of base unity ana height f(n) (cf. fig). 

The sum of the areas of the first n circumscribed rectangles 

is greater than the area under the curve from 1 to n+l, so 

that 

This shows that, if the integral f 00

f(x)dx diverges, the snm 
1 
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Lak also diverges. 

Alternately, the sum of the areas of the inscribed 

rectangles is less than the area under the curve, so that 

If the integral converges, since f(x)>O, then 

so that the partial sums are }5oundec1 independently of n: 

Sn= al+ a2 + ... + a 
n 

Sn< M + a 1 

Since each ak is positive, these partial sums form an 

increasing sequence. Hence, the fundamental principle 

ensures that Lak is convergent. 



APPENDIX F 


Noise, Spectra and Autocorrelation 


The element t of the random process considered in the 

theory can be thought of as noise. The noise to be of value 

in the simulation was required to be of Gaussian distribution, 

with stationary statistics and of wide bandwidth, ie, as 

close to white as possible. Essentially, what was used in 

the computer sirnulation was a pseudo·-random noise sequence. 

An outline of the basic process will be given. 

F . t sequence f pseuuo-ran~ d om pulse.s 32 ·that l's 1irs a o anc 

o~s were generated. These were interpreted in groups of 26 

(the hit length phosen) as integer numbers. It turns out 

that the basic property of pseudo-random numbers is that they 

are evenly distributed between O and 226 ··l. In fact, 2 26 ·-1 

numbers, excluding all zeros, will be generated before the 

sequence repeats. The resulting nur~1er was then converted 

to a real nurri..ber and scaled to the range 0--1. 0. IIence, 

pseucl.o-·randon numbers of uniform distribution between O and 

1.0 had been generated. 

To get a normal distribution, use was made of the central 

lir1i t theoren ancl. the uniform.lly c1istributec1 nur.iben; genera tec1 

above. An approxiFation was rnade by making use of the 

following forDula 34 , k 
I 

i=l 
.,v = (F-1) 

n 

-107­
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where 

is a normallv distribute~ nu~)er with variance ofYn ­

1 and mean of zero, 


xi are uniformly distributed 0 < X·
1 

< 1 

and k is the number of x. used. 
1 

This, in fact, is an approxination to nuMerical convolution. 

Adjustment for the required mean and standard aeviation 

is then 

y = crY +µ (F-2) 
ns n 

where Yns is a scaled normally distrihutec1 number of 

standard deviation cr 

and arithmetic mean µ 

In the actual simulation k was taken as 12 and this was 

found to be a good value not requiring much cornputation 

The theory presented in this thesis depends r:iuch on the 

fact that the noise is Hhite. To check for this property an 

autocorrelation was done on a large sample of data and the 

results shown on Graph (F-1) 

Along ,dth this, the power spectrurrt of the noise produced 

---· 
by the sub-routines was looJ~ed at. The fast Fourier transform 

technique was used and th~ calculated power spectra was 

plotted and shown in Graphs (F-2), (F-3), and (F-4). 
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