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CHAPTER I

Introduction

1.1 Introductory Definition

Stochastic approXimation is a method dealing with
algorithms converging~to some sought value if, as a result
of the stochastic natﬁfé»of_the problem, the observations
involve errors. The methods of most interest and value are
those that are self-correcting in the sense that a mistake
tend; to diminish to zero inkthe limit. The convergence to

a desired value is of some specified nature, for example,

—

mean-sguare convergence.

1.2 Formulation of the Principal Problem in the Theory of
Approximation

The main problem in the theory of approximation can be
stated as follows: suppose that two functions f(P) and
F(P;Ay,...,A ) of the point Pe are defined within a certain
point set B in a space of any number of dimensions. Here
F(P;Al,...,An) depends on a certain nuggsy of parameters
An, r=1,...,n. It is to so determine fhe parameters
Al""'An that the deviation of the function F(P;Al,...,An)
from the function £(P) in B will be a minimum. The distance

between the function f(P) and F(P;Al,.,LlAn) must be defined;

i



generally, the Euclidién metric is most convenient. Once
the metric is defined it is desired to estimate the value of
the Ap, r=i,...,n, parameters for which the expected value
of the metric satisfies some condition, such as) taking on

a minimum or maximum value, or equaling some fixed value.

e, A

£

h ]
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Figure 1.1 Schematic Illustration of
Principal Problem

The statement of the problem is illustrated schematic-

ally in Figure 1l.l1. The unit vectors €1/€9s44s€p define a



space in the neighbourhood of the point set g. With P

- the function f(P) is defined; it remains to estimate Ar,
r=1,...,n so that the function F(P;Al,...,An) coincides

with the funcﬁion £(P) in this case. FHere the ALy r=l,...,n

are the scale factors of the vectors e

re r=1,...,n.
It is the function of the parameters Ar, r=1,...,n

which is observable; however, there is a stationary random

process Zr(t) (either éime"continuous or time-discrete)

which contaminates the observations. Stochastic approximation

can be used in a situation of this nature.

1.3 Scone and Advantages of Stochastic Approximation Methods
A Stochastic approximation methods are appiicable to any
problem that can be formulated as soﬁe form of regression
problerm in which reveated observations are made. To be
specific, the use of these methods is particularly appro-
priate and advantageous vhen either one or both of two
conditions occur. One condition is that the observation
interval is so long that conventional methods of estimation
are impractical because of the computational problems
associated with processing long intervals of the observed
data. The other condition is that there is no detailed
knowledoe available concerning théksfatistics of the
processes Z.(t). The limitation on stochastic approximation
methods is that there must bg a unique solution to the

regression probhlem of interest.



Conventional estimation methods usually proceed ig twvo
steps:

(1) the observed data are used to estimate inter-

| mediate statistics; and
(2) a set of (possibly nonlinear) equations relating

the parameters of interest to these statistics

are solved.
Stochastic approximation mnethods differ from this approach
in two respects. First, the observation interval is divided
into short subintervals of convenient fixed length (it can
be of unit sample length also). Only the observations from
a single subinterval are handled at a time, and after the
data from a subinterval have been processed they are dis-
carded and not used again. Second, the two separate
algorithms for estimating statistics and solving equations
are combined into a single algorithm.

In those situations in which stochastic approximation
methods are applicable, their usage yields the following
advantages:

(1) Only a small interval of data needs to be

processed.

(2) Only simple computations are required, even when

the actual functional dependence of the
regression function on the parameters of interest

is nonlinear.



(3) The method may be employed in the absence of a
priori knowledge of process statistics and in the
absence of detailed knowledge of thé felationship
between the desired parameters and the observed
data. In ?articular, the only requirement is that
the regression function satisfy certain regularity
conditions and that the regression problem have
a unique soiution..

If sufficient a priori knowledge concerning the
statistics of Z,(t) and the functional relationship between
the parameters and observed data is available,mthe third
advantage can be replaced by the following desirable

property: the methods can be made asymptotically efficient.

1.4 Major Contributions

To the area of stochastic approximation there have

been three major contributions. These have been made by

H. Robbins & S. Monrol, J. Kiefer & J. Wolfowit22

A, Dvoretzky3. Essentially the Robbins - Monro procedure

and

is a method for finding the root of regression function
whose form is unknown but that can be observed and sampled.
The Kiefer - Wolfowitz procedure i$ similar in that it is

a method for finding the extremum, maximum or minimum, of a
regression function given.only pertinent random observations.
However, the basic idea of stochastic approximation is that

any sort of iterative solution algorithm that is convergent,



based on direct observations of a regression fuﬁction,~can
be adapted successfully to the case in which the observations
are random. Dvoretzky formulates. the problem in this light
and proves several theorems to this effect showing both
convergence with probability one and in the mean square
sense. As a result, the original results concerning the
Robbins -~ Monro and Kiefer - Wolfowitz methods follow as
special cases of his results.

Although Dvoretzky's work represents a major contri-
bution to the mathematical structure of stochastic approxi-
mation theory, it is of less practical importance. The
primary reason is that in applications, one is usually
concerned with £he rate of convergence and its dependence
on the parameters of the recursive solution algorithm.

These factors are best handled by focusing attention on the

particular algorithm being used.

1.5 Algorithms

In the area of control theory and specifically as
pertains to the area of heuristic reinforced learning, two
stochastic approximation algorithms have been developed

and investigated by K. S. Fud

. The experience gained by
studying the results of the first algorithm provided an
insight into its advantages and disadvantages. The specific

advantage desired in the algorithm was a faster rate of



convergence. This was the reason that led to the deveiop—
ment of the second algorithm. It has all the advantages of
a stochastic approximation algorithm as well as the feature
of an accelerated rate of convergence.

It is evident from Fu's paper that there is room for
improvement of the rate of convergence. In many situations
a faster result is of great advantage. It means that less
sampling is required,‘the number of computations is reduced
and the overall time to get a result with a certain
confidence level is less, B

The objéctive of this work is to show the development
of a new algorithm with a faster rate of convergence than
the two already‘developed. EFssentially it is required to
show that the new algorithm converges regardless of the
starting point and that it converges to the true value.

The cohditions and limitations on the convergence will be
made egplicit in the proof. Having proven convergence,
comparison will be made between the two existing algorithms
and the new algorithm developed here. The feature of most
interest is the rate of convergence. It is this then, which

will be highlighted in the comparisons.

1.6 Preview : -

Since the area of stochastic approximation is a

relatively new field of study in mathematics and has been



applied to engineering only recently, it is essential that
the theory as a whole be set in the proper prospective. In
Chapter 2, a detailed outline of the historical sequence of
'contributions will be given along with a compféﬁénsive
review of thé major blocks of theory presented in both the
area of mathematical statistics and recently in electrical
engineering. Chapter 3 contains an introduction to the
relationship between the area of learning control systems
and the area of stochastic approximation. iﬁ?addition, the
fundamental form of the stochastic approxiqu}on algorithm
is given along with an outline of the previous algorithms
in the area of concern. The basic proof of the convergence
of the algorithﬁ under study is given in detail.“'Chapter 4
contains an outline of the discrete maximum principle, an
identification of the optimal control problem with the
problem of optimization of the convergence rate of the
algorithm, and a formulation and discussion of the optimi-
zation problem. Chapter 5 contains the results of computer
simulations made using the new algorithm. A comparison of
the sum of sguared errors and sum of sample product sqﬁared
errors for the new algorithm is made with simi¥§fnerror
criteria for two previous algorithms introduced for
comparison purposes. Chapter 6 contains an alternate proof

for the new stochastic approximation algorithm using

Dvoretzky's theorem. Chapter 7 follows with the conclusions



reached in this work and a brief review of the contents

of this thesis,



CHAPTER II

- Major Contributions to Stochastic Approximation:‘
A Hisvtorical Review

2.1 Founding Contributors

The area of stochastic approximation is a relatively
new field of study in mathematics. It is esseﬁtially the
fusion of two major areas in mathematics: the area of
random or stochastic processes and the area of deterministic
approximation theory. The first major contribution which
put forth a block of theory suggesting such a union of
subjectswas made by H. Robbins & S. Monrol. Their work was
monumental not only from the point of view of being of major
significance but that it was a pioneering work. Never
before had a theory for solving a regression function
stochaétically been put forth. Within a year of their
publication, there appeared the work of J. Kiefer &

J. Wolfowitz2 who extended the work of Robbins and Monro

and had applied it to the stochastic solution for the
extremum, maximum or minirum, of a regfession function.

Both contributions were a new approach to an existing
problem. It was not for some time afterwards that a gener-
3

alized approach was taken and formulated. A. Dvoretzky~” is

credited with just such a contribution. His work was the

~10~



11

-

major unifying theory to appear and to generalize the
stochastic approximation éroblem. The Robbins - Monro
technique and the Kiefer - Wolfowitz‘méthod are. both
sbeciél cases of Dvoreﬁzky’é Theorem. In addition to his
theorem, Dvoretzky also provided a number of extensions
and five generalizations thereby providing an all encomp-
assing theory.

It is intended té‘present an outline of these three
major contributions to the theory of stochastic approximation.
In addition, a review of application and extensions of this

work will be given, in particular, those areas pertaining

to electrical engineering.

2.2 The Robbins -~ Monro Technique

Consider only the one dimensional Robbins - Monro
technique fof a scalar valued parameter o. Now, given a
sequence of random entities ZITZ2,..., and a scalar valued
function of 2 and o, f(Z2,a). Each of the gquantities Zn’
n=l,2,.;., may represent one or more random variables or a
random process of given duration observed at sequential
time intervals. It is required to find the value of o for
which

m{a) = m, (2.2.1)
where m, is a nominal value of the function m(a) and where

the function m(a) is defined by the equation

m(a) = BE{£(Z,a)} T (2.2.2)
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where the a which corresponds to this sélution is called .
In the proof of their téchnique, Robbins and Monro.make a
number of assumptions. These assumptions wili be given
along witﬁ the explanation rather than listing them arbit-
rarily at the conclusion of the description. The first
assumption is that there exist constants k, and k]
0 < kg < k§ < ® ' (2.2.3)

such that, ) |

ko (0-8)2 < {m(a)-my} (a-8) < k¢ (a-0)? (2.2.4)

This simply says that m(a) must lie between two

straight lines, one of positive slope k,, and the second
of finite positive slope k!. A schematic illustration is

given in Figure (2.2.1).

ynle) h

'vn.Lo;)

2 Y

Figure (2.2.1) Schematic illustration of first
assumption for Robbins - Monro Technique
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Now suppose that the function m(a) could be obser&ed
directly for choices of o. Then for a function m(a)
satisfying this assumption, the following method couid be
used to find 6. First choose aj arbitrarily, and observe
m(ai). If it is not equal to m,, then add a correction to
ay of the form -aj{m(aj)-my}. Then make an observation at

ap = aj-ayim(a;)-my} (2.2.5)
and again make a similar correction but this time weighted
by aj. This scheme couid be continuéd until one approaches
arbitrarily close to 6.

Now consider a modification of this method to the
situation where the function m(a) cannot be observed but
' only the random variable

Yo(e) = £(2,,0) ' (2.2.6)
whose expected value is m(a). In similar fashion, again
select an aj arbitrarily, and generate a sequence of
estimates o, by the recursion relation,

@4y = 9%p + an{Yn(an)—mo} n=1,2,... (2.2.7)
alternately written as |

Ope] = Op F an{f(Zn,a)~mo} n=1,2,... (2.2.8)
Here o, is a sequence of non-stationary random variables
converging to 6 under certain assumptions.

More assumptions regarding the observable entities Z,

and the sequence o, are given as follows:

n
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Assumption 2: The random elements Zn' n=1,2,..., are

identically distributed and statiétically
independent.

Assumption 3: For all values of o« the variance must

be finite, that is,

var {Y_(a)} = var (£(z_,a)}< 0% < @ (2.2.9)

Assumption 4: The sequence of weights a_ are positive

n

monotone decreasing with

] a, == (2.2.10)
n=1
 and
J a2 < o (2.2.11)
n=1 o

The Robbins - Monro theorem states; based on the

assumptions given, the sequence of estimates o, approaches
the true value 6 in the mean square sense.
[ 2
E4m B{lap-0)%) = 0 (2.2.12)

Even though the results of this theorem appear simple
the fact remains that set in the proper context, the work of

Robbins and Monro is a near fundamental achievement. The
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¢riticism of J. Wolfowitz5 tends to bear this out.

2.3 The Kiefer - Wolfowitz Method

Consider the same formulation as in.the Robbins - Monro
formulation in the previous case, except that it is now
desired to find the value of the scalar o which extremizes,
minimizes or maximizes; the scalar valued>function ma).
Denote this value 6. In order for the recursive search
procedure to be successful in this case, it is required
that m(a) have only a sihgle extremum and no flat spots
~ where m' (o), the derivative of m(wo) with respect to o,
is zero other than at the extremum. In short, it is
. required that m'(a), if it exists, be restricted as m(a)
in the Robbins - Monro technique, that is, there exist

constants ko and kg where
< o (2.3.1)
such that

k, (@=8)2 < {m'(a)-m_}(a~8) < k! (a-8)2 (2.3.2)
- [o — [¢]
8=0
Essentially, m'(a) must lie between two straight lines, one
of positive slope and the second of finite positive slope.
(See Figure 2.3.1 for illustration of the derivative of m(a)).
This probklem could be reformulated as a Robbins - Monro

problem and search for the solution of
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mee) k

ay

me)

Figure 2.3.1 Illustration of requirement on derivative of
m(a) in the Kiefer - Wolfowitz Method

< m(e0)

Figure 2.3.2 Locus of m(a)
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m'(a) =0 (2.3.3)

When possible, by all means, this is the best'procedure.

Often, however, this is neither possible nor feasible. The

following two conditions state why:

(1)

(2)

It.may not be possible to assuwe that the function
m(a) is everywhere differentiable. Furthermore,

the random variable

.
5o f(Zn,a)

may not be well behaved; particularly it may be

impossible to guarantee that
_ 3 _ p{3
n' (a) = % E{£(Z),0)} = E{FE f(Zn,a)} (2.3.4)

let alone generate it in practice.
Although it may be quite simple to calculate or
observe Z, and compute f(Z,c) the computation of

the quantity

9
5= f(Zn,a)

may be very difficult.
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If either reason is valid; the Kiefer - Wolfowitz\
method can be applied.

Now consider at the nth step -of the search procedure,
two observations of Z, Zon-1 and Z, that are made and the

two quantities .
Yon-1 = £(Zgn90 @p=cn) (2.3.5)
and

Y

on = £(2,, o tep) (2.3.6)

are calculated. The quantity

x (o) = (an-an“l) ' (2.3.7)

ch

is taken as an estimate of the two-sided difference

approximation to m' (o), namely,

m(an+cn)~m(an~cn) (2.3.8)

2cp

The sequence of estimates o_ is then generated by picking

n

dl arbitrarily and using the recursion equation

L an xn(un) (2.3.9)

Here a, has the same properties as in the Robbins - Monro

procedure, that is, it is a sequence of positive monotone
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decreasing weights with
) a = (2.3.10)

and

<]

2 a_ < o™ (2.3.11)

2
n=1 n

The condition on S inngpression (2.3.8) is that it
approach zero as n becQ@es very large so that the sequence
of differences approximate a derivative more closely.

In addition, an assumption similar to Assumption 2 in
the!Rbeins - Ménrq technique is made; that is, the random
entities Zn' n=1,2,..., are identically distributéd and
statistically independent.

Furthermore, on the function n(o), the following

conditions are recquired:

Condition 1: there exist positive B and B such that

lat-8] + |a"-08]| < B implies |m(a')-m(a")| < B |a'~a"| (2.3.12)

*
Condition 2: there exist p and R such that

lat=a"| < p Amplies |mla')-m(a™)] < R (2.3.13)

Condition 3: for every 6>0, there exists a positive

1 {(8) such that

*Note condition 1 irplies condition 2 but not the converse.
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la-6] < & implies 4in{ |m(ote)-mla-e)]| , . (5) (2.3.14)
Lé>e>o e

‘Under these conditions it was shown by Kiefer and Wolfowitz
that for a weighting sequence ay, and difference sequence

Ch satisfying equation (2.3.10), equation (2.3.11) and the

following set of conditions, namely,

z ac < o« (2.3.15)
and

Z a2c7? < = (2.3.16)

that the sequence a_ converges to 6 in probability.

n

2.4 The Work of A. Dvoretzky

Having seen the two initial and particula;héxamples
of stochastic approximation, namely the Robbins - Monro
technique for approximating the point where a regression
function assumes a given value and the Kiefer - Wolfowitz
Method which finds the extremum of a regression function,
it is apparent that the need for a more general theory
existed. Dvoretzky3 formulates the problem in this more
general sense, that is, he considers a random element such
as noise superimposedon a convergent deterministic scheme.

In this light he formulated and proved the following theorem:
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Theorem: Let @ (pl,...pn), Bh (pl,...,pn) and Yo (pl}...,pn)
be non-negative measurable functions of real variables Py
Poressipps satisfying the condition that dn (pl,...,pn) are

bounded and that

LAim
e 0n (Pyseeaspg) > O (2.4.1)

for a sequence pl,pz;...

The sum of the series

-]

L Ba Gyreemg) < (2.4.2)
n= -

is bounded and converges for any sequence PyprPorees

The series

Yo (Ppreeespp) = (2.4.3)

et e i o i e e = 2

Z

n=1

diverges for any sequence P Poreeny bounded in absolute

b
value, that is, for any sequence PyePs..., such that

$48 el < (2.4.4)

¢ heing an arbitrary finite number. Let 8 be a real number,
and T1T2""’ be measurable transformations, satisf§€ﬁ§ the

inequality

ITn(pl,pz,...,pn)—el < max {an,(l+8n)lpn—8l—Yn} (2.4.5)
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for any real seguence PLrPoresee Further let Xl and

Yl,Yz;..., be random variables, and for n>l let

Xn+l = Tn (Xll°"lxn) + Yn + gn (Xl,-o.,xn) (2.4.6)

where gn (rl,...,rn) are measurable functions such that

the series

Z Ign (rlfrZI"’lrn)' (2.4.7)

uniformly converges and its sum is uniformly bounded for
any ry,ry, ...

Let
EAY X, X,000,%Xp) = 0 (2.4.8)

with probability 1. Let the series

) E‘{Yi} < w (2.4.9)
n=1
and let
E {xlz} <o (2.4.10)
Then as n»re
Lim
P{ 4w X =06}l=1 (2.4.11)

-and

i
(]

Lim E ‘{_"(Xn._e )2} (2.4.12) :

n—)oo
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Along with this basic theorem, Dvoretzky also proved

an extension and five generalizations.

2.5 Generalizations and Applications

Havinag developed‘the theory to this level, the work
begun by the three grouvs of researchers, namely Robbins
and Monro, Kiefer and Volfowitz, and Dvoretzky, was extended
and modified by a number of people. An attempt will be
ﬁade‘to give a survey of first, the generaiigations which
étemmed froﬁ the work outlined to this point and also some
of the applications where this theory has been used.

The first extension of the Robkbins - Monro technique
was made by Wolfowitzs. He showed that under weaker
assumptionsthan required by Robbins and Monro there was
still convergence in probability to the root. -Further,

6 showed that under still weaker conditions-there was

Blum
convergence in probability and even convergence with
probability 1. In the same paper Blum showed that for
weakened conditions in the Kiefer - Wolfowitz method con-
vergence could be strengthened to convergence with
probabhility 1. In a concurrent publication, Rlumz»extended
the Robbins - Monro and Kiefer - olfowitz techniques to
the multidimensional case. He,déélt with vector valued

paraneters a where the function of the vector could now be

interpreted as planes in a hyperspace. o
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Another area .0of exploration has been the rates of\

convergence and their dependence upon the sequence a, in the

Robbins - Monro technique, and the sequence a, and ¢, in the

n
Kiefer - Wolfowitz method. 1In addition to this,regularity
properties of m(q) were investigated. The key figures.in

this area were'ChungS, Dermang, Burkhqlderlo, Sacksll and
Dupaclz. The work of these people has been diverse in

nature and of major iﬁportance to the applications of

Robbins - Monro and Kiefer - Wolfowitz methods. In particular
Sacksll indicates a method for selecting ; weighting sequence

a,, for the Robbins - Monro Technique and Dupac12 similarly

n
suggests sequences for the Kiefer -~ Wolfowitz method.
The generaiizations of Dvoretzky which were also

extended to non-independent observations were further

13

extended by Sakrisonl3, Essentially Sakrison's work was

an attempt to formulate conditions that are mofé suitable
for préctical work. Driml and Nedomal? worked in the same
vein but tried to extend the one-dimensional scalar case of
the Robbins -~ Monro Technique to the continuous time case.
The most extensive attempts to bring these methods to
practical applications have been made by Alberts and
Gar&nerls. They have attempted to make practical choices of

the weighting sequences a,, in the Robbins - Monro technique. .

n

As it became evident that stochastic approximation

could provide a useful tool to the engineer, attempts were
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made to apply the technicques to physicai problems. In the
realm of electrical engineering, numerous applications were
tried and documented. The Robbinsg - Monro Teéhnique wés
applied to the problem of parameter estimation in radar and
radio astronomy where signals involved bandwidths of from
100 ¥Z. on up and the fotal observatiqn time was quiterlong.
As sudh,the amount of data to be processed was quite large
and hence the stochastic approximation technique chosen was

quite appropriate. Sachrisonl®, 17 outlines the theoretical

18, 19

and practical details in two papers. Sackrison also

loocked at the optimization of filtersand detectors. He
applied the Kiefer - Volfowitz method in order to ascertain
two advantages over conventional methods;

(1) The error weicht could be more general than

sgquare error.

(2) The method combines the processes of measuring
statistics and solving filter equations into a

single compact algorithm.

20

Similar work has been done by Kushner who used the

Robbins - Monro Technique in filter design considering mean

square error, additive signal and noise.

It is thus evident, that even though the theory of

stochastic approximation is quite restrictive, requiring

-

regularity conditions as well as bounds on weighting

sequences, its implimentation to some areas of electrical
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engineering has already begun.' As the theory expands the
future augurs well for the application of stochastic

approximation techniques to engineering problems.



CHAPTER III

Development of a Stochastic Approximation Algorithm

3.1 Background

The problem Qf stochastic approximation has been
mentioned by Sklansky21 within the framework of Learnding
control systems. He has associated the term Learndng
control with the hierarchic arrangement of three feedback
loops. The first loop contains a controller or "compénsator"
in a simple feedback configuration. The second or
"adaptive" loop. contains a "system identifier" or pattern
recognizer that adjusts the compensator in response to
changes in the estimated dynamic parameters of the plant.

The third loop or "learning" loop contains a teacher--a

type of controller--which "trains" the "pattern recognizer"

to make optimum or near optimum recognitions. Based on a

stored set of past controls used in conjunction with a given
recognition, a control is initiated by the teacher as either

of two forms. If there is no previous record or "experience" of
the given situation, then the adaptive loop performs an

adaptive control procedure and sﬁores the situation, control

and results. If there had been record of a similar condition

in its performance history, the teacher would have selected

the corresponding control policy and initiated execution.

27
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This would havéealkwiated the need for an adaptive conérol.
Essentially, once an adaption in a given situation has
been performed, there is no need to recompute it if the
adaptor is a part of a learning system; the results of the
first adaption, which have been stored, are applied.tb the
same control situation when it re-occurs.

The method by which the "teacher" associated the
recognized situation of plant parameters and input signal--
called control situation--with a given control successfully
adapted at the previous occurence of the same situation is
via reinforcement probabilitieé. These are probabilities
that are assigned to all possible control possibilities for
a given control situation and are up—-dated ie. reinforced
or penalized, based on the outcome of an executed control
policy.

There is an intimate relationship between sﬁéchaétic
approximation methods and the reinforcement learning
technique just outlined. In fact, it can be shown* that
the two are essentially the same and that the reinforcement
learning process is an example of an application of
stochastic approximation theory. In addition, stochastic
approximation techniques can be used to estimate a cost
function, plant parameters, input signals and optimal

control policies as pertain: to the particular area of

*See Appendix A for proof of relationship of reinforced
learning and stochastic approximation
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control  ci-ted here. Further applications will be outlined

later in this work.

3.2 Convergence

Direct reference has been made to the two algorithms
developed by K. S. Fu et al. By way of introduction, the
two algorithms will be presented and categorized. They are
of the Dvoretzky fype\being a special class as concerns
their proof**,

Consider an algorithm of the form

A _Nn . A )

Xpel = ¥ F Yhe1 {f(rn+l) ~ Xp} (3.2.1)
n=l,2,...

to be used in the presence of an ergodic process g,

A~ th .
where x is the n estimate of x,

where x 1is the true value of the parameter being
_estimated,

th

r. is the n sample taken and used to calculate,

n
f(rn) a function of the samples,
and vy, is a gain sequence.

It is required of the function f(r ) that
E {f(r )} = x (3.2.2)

The form (3.2.1) has been used in two specific ways. The

first algorithm of Fu uses

f(rn) = r n=1,2,... (3.2.3)

n

where the samples

x*xgee Appendix B for proof of first two stochastic approximation
algorithms



31

r = Xx + £ v En being a random component (3.2.4)
of zero mean noise,

and

1
Yn::m- n=l,2,o.- (3'2"5)

where o is a constant. The selection of the constant o
is arbitrary; but, if a padlord statistics are known and

the process is known to be normally distributed then

(] =‘§§- ‘3.2.6)
~where _02 is the variance of the disttibution
and Vg is the initial value of expected mean
équare error.
" Selecting Yn and o as in (3.2.5) and (3.2.6) respectively,
gives the form (3.2.1) the best convergence when using the

function relationship (3.2.3)

The second algorithm of Fu uses

ln
f(r) =57 x4 n=1,2,... (3.2.7)
. i=]
where the samples
r = x + £ ; & again being a random (3.2.8)
n n n
component of zero mean
noise,

and
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n ‘. ) -
= = .. .2.9
Yn n(ntl) + o n=1,2, (3 )

2
where ¢ is a constant. The selection of the constant a is

arbitrary;:; but, when ¢ pialord statistics are known and the

process is known to be normally Cistributed then
\72
o = M% . (3.2.10)
o
vhere 02 is the variance of the distribution
~and Vf is the initial value of the expected mean

sgquare exror.

Selecting T, and o as in (3.2.9) and (3.2.10) res-

-

pectively gives the form (3.2.1) the best convergence when
using the functional relationship (3.2.7).

Now the first algorithm of Fu R
n=l,2,... (3.2.11)

A A A
Xpe1 = ¥n F Tnad {Tpy1xp)

with y,,q as in (3.2.5) and the second algorithm of Fu
1 n+l A

A A .
St = Fn t el Gy L g

Rl gk Ti nt n=1,2,... (3.2.12)

with vy +1 as in (3.2.9) will be compared with the alcorithn
n

to be developed here.

3.3 Develonrent

Consider an alcorithm of the Dvoretzly tvpe of the form

>

. A R
X 41 n t Ypel {f(rn+l)mxn} n=1,2,... 1 (3.3.1)

>
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similar to (3.2.1). The algorithm (3.3.1) is to be used

in the presence of an ergodic process Enr

th

A : .
where Xn,is the n estimate of X%,

‘where X is the true value of the parameter being

\ estimated,
ro is the»nth
f(rn) a function of the samples,

and Yn 1s a gain sequence.

sample taken and us

ed to calculate

It should be noted that thé—process of taking the samples

Y gives
n S

ry = X +
n gn

(3.3.2)

where the true parameter X that is being sought is con-

taminated by the zero mean ergodic process Ent

It is suggested that the function f be

f(r.

A 5
n+1) - [an+1(m)]

A
where R (2) is an estimate of the sample
In+l
function of the samples rl,rz,...,rn+l with
From the definition of autocorrelation
R(2) = E_._{rn r ..}

and if (3.3.2) is recalled

then combining these two equations gives

chosen as

(3.3.3)
autocorrelation
2-l<n.

(3.3.4)
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R(2)

i

E {[x+g ] [X+€n+z]} (3.3.5)
Expanding the product of binomials and rearranging the
expectation operator gives,

R : _
R(2) = x + E {xan} + E {X€n+2} + E {gngn+2} (3.3.6)

Now since X is a constant and since gn and €n+z are from

a zero mean ergodic process, then

]

E {xf } = x E {£,} “13.3.7)

and

E {x£n+l} = x E {€n+2} (3.3.8)

and these two terms vanish. Hence, if an estimate of

the sample autocorrelation function is taken it gives —

T TR W 2, % (2) (3.3.9)
rn+l = X \En-{-l PR

A
where RE +l(2) is an estimate of the sample autocorrelation
n
function of the random noise elements only.
Hence (3.3.1) can be written as

A A
X = xXx_ +

2
n+l n Yn+1 {[X +R

L A u
€n+1(z)] -x } n=1,2,... (o.3f10)

[ N—

Now subtracting x from both sides and rearranging terms

gives

(x 417%) = (l“Yn+l)an-X) * Yne1¥ne1 (3.3.11)
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where

A
R€n+l(2))%

x?

) =x {(1 +

If (3.3.11) is iterated then an expansion can be developed
in terms of the initial mean squaré error. After the first
iteration, the equation (3.3.11) is of the form

A A

(xn+l;x) = (lNYn+1)(;—Yn)(Xn"l—X) + (l"Yn+l)Yn¢n + Yn+lwn+l
| (3.3.13)
After.thé second iteration (3.3.13) will appear as
A A
(x 17X = (Imv ) (Tovy) oy g) () 5=x)
+ (1- 1-
(1-v4q) ( Yn)Yn_lwn_l
oIyl Yp¥n P Y Vel (3.3.14)

Repeating this procedure n+l times gives the following
general form:

A A

(Xn+l-—x) = (1~Yn+1) (1-v,) oo (1-v5) (T-v7) (xo-x)
+ (l—Yn+l)(l“Yn)-'.(l—?z)Ylwl
+>kl—Yn+l)(len)"‘(l"Y3)Y2¢2

oo b (eypgn) =y )y g0 4

+

+

Yn+1¥n+l (3.3.15)
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Now (3.3.15) can be rewritten into a closed form;

A n+1l 1 n+l
(xn+l—X) {17 (1~ Y, )}(x —x) L vy TT (1-—yj)
: i=1 i=n+1 3 =i+l -
(3.3.16)
T ’ 7 n=1,2,... T

~ where all void products are taken as unity.

Changing the order of the first term and the limits of

summation in the second term gives,

N ' n+l n+l n+l «
(1) = Go=) ([T (v )} + [ vy, TT (-v;)  (3.3.17)
4 i=1 - i=1 =i+l
n=1,2,

Squaring (3.3.17) gives;

A 2 n+1l n+l 2
e {TT (1-v, e [ L Tivs TT (1-v,)]
, , =1 =i+l
' n+l n+l n+1 -
+ 20,0 (T ()} - (2 vavs]T vy
. i=1 : j=i+1 J. —

n=1,2,...(3.3.18)

Substituting from (3.3.12) for vy givés, after some re-

arrangement;
A 2 n+l 2 n+l n+1l 2
G002 = G0 2T 2 +2[ T [T, Q-r)]
i=1 , o i=1 j =i+l J
n+l LN+l —
# [ vy +Pa (W) AT (1-y, ]2 |
i=1 i j=i+l 3 —_—
n+l n+l 9 pnt+l
+ 20 =TT (v P[] vyix +Rg (2)) TT (1-v;)]
i=1 i=1 7 j=i+l ]
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n+l n+tl n+l

- 2x(x "x){TT (1-v., )}[ R TT. (l“Yj)]
=1 i=1 ] =i+l
n+l n+l n+l 2- n+l
-2l § o -y LT vy G5R (z))zTT (1-v4)]
i=1  Yy=i+l J i=1 J=i+1

n=1,2,... (3.3.19)

In general

A
R (1) = 2 -alt]

} =
6n-+-l

E {Ek k4 (3.3.20)

for coloured Gaussian noise. The wider the frequency
spectrum the smaller the value of o and hence the smaller
A
the value of RE (2) for the same non zero value of L. As
n+1l

the spectrum becomes w1der"—the noise approaches white--
a approaches zero and RE (2) becomes an impulse,

n+l
A 5 ' .
Rg (2) = 0“8 (1) (3.3.21)
n+l

and for 2#0 & 2>1,

o>

(2) - O (3.3.22)
n+l

Now, if in (3.3.19)
A
Rgj (2)

(x% + %E G =x 1+ 2L )

x#0 (3.3.23)
i %2

is used as a substitution, (3.3.19) can be rewritten as
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A n+1l n+l  n+l

2
(Rppyx)2 = (Xg=x) {TT'(l Ys )}2 ¥ x2[ Lowll -]
j=1i+1 J
2 n+l RE (2) /n+l ' 5
L] v; 2 M T (eyg)]
k j=i+1
© n+l n+l Rgl(z) &n+l
¥ 2x(x —x){TT (1-v, )}[ Z vy (L= 3T (A-v5)]
=] %2 j=i+1l
n+1 n+l n+l

2x (%, T Ay LL vIT vy

i=1 3 =i+1

n+l n+l n+l g (2) ¢ n+l
- 25?0 Y v, s (- v )30 Ioovg (b=t ZTT (1-v5)]
i=1 j=i+1 i=1 x2 j=1i+1

n=1,2,...(3.3.24)

For the case of white noise or even slightly coloured
Gaussian noise, substituting from (3.3.22) for ﬁg.(z) in
(3.3.24) reduces it to the following form: B

(Qn+1*X)2 = (x ~X) {?$l(l Y )12 (3.3.25)

n=1,2,...
Therefore, for the mean square error to become zero,

regardless of the starting value, and for the algorithm to

converge, reqguires only that the following limit exist:

Lim n+l
ATT (1-v,) > 0 (3.3.26)
i=1

n->oo

The selection of a gamma sequence that satisfies
(3.3.26) is arbitrary within the restrictions of the limit
given above.

The type of T'-sequences used in the thesis are of two
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basic types. These will be introducéd, discussed and
their effect on convergence illustrated.

Hence, form (3.3.1) can be written as

A

A A Wk A '
Xn+l = xn + Ynt1 {(Rr l(ﬂ,)) '-'Xn} n=1,2,... (3.3.27)

n+
and will converge to the true value being sought if the
measurements, r . are of the form (3.3.2) and the r-sequence

satisfies (3.3.26)

3.4 Gamma Sequence

The selection of the I'-sequence for (3.3.27) essentially
regulates the rate of convergence of the algorithm. The
optimization of'ﬁhis rate will be discussed in the next
chapter. The present form of the I-sequences selected will
be given and it will be shown how they satisfy (3.3.26) and

" “hence (3.3.27) converges.

The first I'-sequence is given by

P = {yjel|yy = iia Vi=1,2,...) (3.4.1)

for any non-negative arbitrary constant o. Hence,

1-_1

it+a

It

(l‘Yi)

s Lto-l (3.4.2)
1+a

Taking the continued product of (3.4.2) gives,

n .
+ oy -~
(1-y;) = JT el
r i=r 1t

=

=
Il



40

This expands to,

r+o-1 r+a n+a-2 n+a-1
( ) ( ) (

j=r it r+o r+o+l n+o -1 n+a

- which reduces to,

n r+a-1
II;(l-Yi) e | ~—(3.4.3)

i

wa if a limit is taken

2im B LAM rao-1
n*« T -y Nre  npto

giving
2L n v
“IT (1-y;) > 0 (3.4.4)
N>e =y

Hence for a r-séquence defined by (3.4.1) the statement

of the linmit (3.4.4) satisfies (3.3.26) and hence the

algorithm (3.3.27) using said definition converges to the

true value being sought regardless of the starting value--

provided that fhé"starting value is finite.

The second T'-sequence is given by
T.o= {y,el|y;=1-—X¥ i=1,2,...;p=1,2,...} (3.4.5)
1 1 ip

From this T'-sequence

(3.4.7)
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Now if the limit is taken

Lim T%r(l_ _ Lim R 1
n+00 ' Yi) - n->o -[—r T“
i=r i=x 1ip
giving
2im T _
nre n (l 'Yl) -+ 0 (3.4.8)
i=r

Hence for a TI'-sequence defined by (3.4.5) the statement of
the limit (3.4.8) satisfies (3.3.26) and hence the algorithm
(3.3.27) using said definition converges to the true value

being sought regardless of the starting valué~—provided

that the starting value is finite.

3.5 Consistency and Bias

--- - An estimator should not be consideréd bad simply
because it can assume a value that deviates considerably
from the true value beingmsought;m-dut if. the bulk of the
values of the estimator deviate considerably from the true
value, the estimator can be considered bad, particularly,
if a large sampling has been taken. Hence, a desirable
property is that there be a high probability that the
estimator be near the parameter it is intended to estimate
for_large sample sizes.

By definition, an estimatorwﬁn of x is said to be
a consistent estimator, if for any positive numbers §_and e

there exists an integer N such that the probability that
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|§n—x|'< €

is greater than 1-§ for all n>N; that is
P{IQn-xI < e} > 1-6yn >N (3.5.1)

The definition is similar to the definition of converg-
ence in the mathematical sense, except that here it is said
‘that, given any small €, a sample size can be found large
enough so that, for all largér sample sizes, the probability
that Qn differs from the true value x more than ¢ is as
small as desired. In such a case §n converges ALn probabllity
to x. So convergence in probability means that Qn is a
consistent estimator of x.

The criterion of consistency is not very practical
sometimes, since- it has to do with a limiting property.
There are two fundamental facts which pertain to this fact.
First, samples have a finite number of observations while
the definition of consistency requires an infinite number.
Second, when there is one consistent estimator Qn of 6, it
is possible to have infinitely many. For example, if Qn
is consistent, so is

nta | %
n+h
for all fixed numbers a#—n éhd’b#nn.

Now if the restriction "for large n" is removed, a

selection from among all consistent estimators can be made
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resulting in a much smaller class by applving the definition
of an unbiased estimator.

3 A
By definition, an estimator X, of x is unbiased if
A
E{x } =x - (3.5.2)

This definition applies for all n and x, and requires that
the mean of the sampling distribution of any statistic
equél the patameter which the statistic is supposed to
estimate.

Now for the clasé of algorithms presented here, consider

for a moment only the sample autocorrelation function given

by
R. (&) = = (r, r ) (3.5.3)
rn n o2y KTkt
Recalling from (3.3.2) that
rn = X + E;n

and substituting in (3.5.3) for Ty gives

A n-

R (z)=%

3
2 -,
r y£1 (xTHE x+Ey | oxHE By L)

which can be rewritten as

A ., h—4% h"l n
R () = x* + % J g + B
n : k=1

-2
- 1

) B L, ¥ = ) £.¢ (3.5.4)
k=1 X+ n k=1 k=k+y

Since Ei is an element of zero mean Gaussian white noise,

then for large n, the first and second summationvin (3.5.4)
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tends to zero; that is,

nil
X g, > 0 .
X k
n k=1 “r . - (3.5.5)
'2'2
X + 0
ool Ches o (3.5.6)
n-%
and D) £ > §(2)
D k=1 k k+e | - 3.5.7)

Now if 2#0, then (3.5.4) reduces to

A 2
Ry () = x7, n>>1 (3.5.8)
n .

Now recall (3.3.17)

n+l n+l n+1

A ‘ A -
(x_,.-x) = (x,-x){]] (1-y5)} + YU (1~y.) n=1,2,...
n+l R T 4 l§11+1 L

and (3.3.12) rewritten as

2 5
¥ = [x“4R (2)]°-x (3.5.9)
:n+l 5n+l
If, to the algorithm
% X R %4 (3.5.10
X4l = *ntne1 {(Arn+l(£)) "X} 3.5.10)

written in the form (3.3.17) is applied the transformation
A A
8 = (x_-x) (3.5.11)
n n

then (3.3.17) can be rewritten as

n+l n+l n+1

A A
6 = 0 {II (L-v.)} + z Y-W-II (l-v.) n=1,2,...(3.5.12)
n+l ° il i i=1 1 ij=i41 J
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which is a zero seeking algorifhm. Substituting from
A
(3.5.8) for R, (2) into (3.5.9) and substituting the result
n
in (3.5.10) for ¥, gives, after taking expectations of

both sides,

ﬁﬁﬂ> E {8n+lﬂ = 0 | (3.5.13)

Now applving the transformation of equation (3.5.10) in

reverse, gives

E A% 4} =% (3.5.14)

Hence, it can now be said the algorithm
% 2 (Ry ()% 2
X = x + ¥ Ry L)) °-x n=1,2,...
n+l n n+1l a1 n

is unbiased for large n.



CHAPTER IV

Optimization of Convergence

4.1 Preamble for Optimiiation

The convefgence of the algorithm of the form

A . A A

Xn+1 = X + Yo {f(rn+l)~xn} (4.1.1)

with

)
R, ()2 (4.1.2)

n+1l

f(rn+l)

has been proven. in the previous chapter. The most
important factor to be considered next is the rate of

)

convergence of this algorithm. In this algorithm f(rn+l
has been chosen. Also, the T'-sequence has been chosen to
satisfy condition (3.3.26), a necessary condition. Beyond
that the choice of the T-sequence is theoretically arbitrary.
The theme, then, is to select the TI'-sequence so that the
convergence of (4.1.1) is optimal in some sense and subject
to the constraint (3.3.26) which is the requirement for
convergence. In cher words, choose a T'-sequence-teo

minimize a cost functional while still retaining a convergent

algorithm by satisfying condition (3.3.26).

-46-
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4.2 The Discrete Maximum Principle for Optimization

The discrete maximum principle formulated by Katz31
from the continuous maximum principle of Pontryagin,
provides a method of obtaining an optimal solution for
very general dynamical processes. It treats the optimization
problem of minimizing or maximizing a functional subject to
certain constraints. The beauty of this principle is that
it is not restricted to dynamical processes. Any problem
which can be formulated within the framework of state space
and for which a cost funcfion can be written in an analytic
form can bhe approached with the maximum principle. For
all problems a state space can be defined so that the
equations describing it can be written in a standard form.
It is often somewhat more difficult to write a cost function
since this requires an intimate knowledge of the problem.

In addition; a cost function must take into account the
objectives to be achieved and the level of penalties to be
given if the objectives are not pursued.

In general, an optimum control problem can be trans-
formed into the problem of minimizing a function such as

an inner product
Mo=<b,x(tx ) (4.2.1)
£

subject to certain constraining functionals. The control
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strategy which minimizes (or maximizes) this function is
referred to as the optimum control strategy. In equation

(4.2.1), x is a state vector of the nth

order process

under consideration, and b is a column &ectbr which depends
upon the coordinates to be minimized (or maximized). It is
interesting to note that this class of problems is contained
within the framework of the Mayer problem in the calculus

of variations. A simble geometrical interpretation of the
maximum principle is that the control vector u is chosen in
such a way that the state vector x(ty ) moves "farthest"”

in the direction of -b, and thus the scalar function M takes
on a minirmum value.

Suppose that a process under consideration can be

characterized by equation (3.2.2)
X4l = £ (29 ,k) k=1,2,..,k¢g (4.2.2)

It is required to determine the control strategy u so
that the scalar function given in (4.2.1) is minimized (or
maximized). Frequently, the extremization of the scalar
function M is not easy to accomplish} If some simplex
function can be found which is closely related to the
scalar function and the process dynamics, and if it is
easier to perform the optimization with respect to this
simpler function, the solution to the optimization problem

may then be obtained in a simpler manner. Intuitively, the
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scalar function may be minimized by maximizing the energy
or the power in the system. This physical intuition leads
to the speculation that there may exist an energy function
such that its maximization implies the minimization of the
scalar function. This function is the Hamiltonian. It is
defined as the sum of the kinetic energy and the potential
energy and is expressed as the inner product of the momentum
veétor and the coordinate vector of the system. The
simplicity of the Hamiltonian function and its végy nature
tends to lead one to suspect that maximization of the
Hamiltonian function may imply minimization of the scalar
function, and that the use of the Hamiltonian may lead to a
simple method for solving optimization problems. Pontryvagin
first discovered this fact for the continuous case and
formulated his findings as the celebrated maximum principle.
The maximum (or minimum) principle sﬁates that, if the
control vector u is optimum, that is, if it minimi;és (ox
maximiies) the scalar function M, then the Hamiltonian
H(Ek’lk'gk’k) is maximized (or minimized) with respect
to u, over the control interval. This statement indicates
that maximum H implies minimum M and minimum H implies
maximum M. i
To optimize a process, then, the Hamiltonian must be

optimized with respect to the control vector u. This

results in the derivation of difference (or differential)
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equations which are solved as a boundary value problem.
By way of summary*, if a system is given as described

by equation (4.2.2)

5]{.;.]_ = ﬁ(Z‘_k 'Ek'k)

and if for this process a cost functional can be written

in the form

[ ] ey |
J = (6, (x,,k) T+ ) ¢ (x, ,1 ,k) (4.2.3)
L k= k=ko k K o

then the optimization of the trajectory X, can be achieved
by defining a Hamiltonian H(gk,xk,gk,k), using it to

derive difference equations and solving them as a boundarv
value problem. 'The definition of the Hamiltonian is given

as
M = 6 (50, k) + A f0g,u k) kekg, ... ke (4.2.4)

Taking partial derivatives of the Hamiltonian with respect

to Ak;gk and Xy gives the following difference conditions:

9Nk
vl 51;;; or sl = £(xy ruy .k, (4.2.4)
P Nea + b = . .
ouy ° o ayy (3Ek)ék+}‘ oo (825 o
. and
BHk aﬁ? -1 8¢P

*See Appendix C for proof of Pontryagin Maximum Principle
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The boundary conditions, if not specified, can be

obtained by using the following transversality equations:

aéko ~ _
My [A"O_E’i 0] =0 . (4.2.7)
and
aekf
ﬂkf[ikf~§§£;] =0 (4.2.8)

The application of the above conditions and the

solution of the equations will yield an optimization.

4.3 ITdentification with Optimal Control Theory

The basic problem of optimization as stated in the
first section can be reformulated as a problem in optimal
control, This enahles one to identify the problem with the
state formulation of the optimal control problem. Once the
identification is made, then the whole block of opntimal
control theory--Pontryvagin's Maximum Principle as discretized
by Xatz--can be applied. Once applied, the resulting
difference equations and transversality conditions can be
used to solve the problemn.

"Essentially, the problem is to identify the stochastic
approximation-algorithm with the state-equations of the
discrete maximum formulation. Recall the algorithm from

equation(4.1.1)
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Rewritting this in the following form

A

A
x = (lh‘Yn'i'l)xn + Yn+

£ =1,2,... 4.3.1
‘a1 (r_,.) n=1 - (4.3.1)

1 n+1l

Now identifying this equation with (4.2.2) gives the

following correspondence:

>

X corresponds with x '

n+l “k+1

A .

X, corresponds with Xy

Yn corresponds with oo
and n corresponds with k.

The choice of cost function for the problem is the bhasic

mnean square erxor.

n
'21 (&‘:i—x)2 (4.3.2)
i=

Jn =

5 [

The problem can now be stated. It is desired to
nminimize the cost functién Jn in eguation (4.3.2) with
respect to the T-sequence such that it satisfies (4.3.1)
and subject to the convergence constraint stated in

equation (3.3.26)

[.' n+l
wse |1 (1-v;) > 0
. i=1

‘The first step is to define a Hamiltonian function so
that the discrete maximum principle can be applied. Using

the basic form of (4.2.4) gives the following equation:

(1) (2)n+l

A 2 A : .
H o= (X -x) +>\n+l[(l-—Yn+l)xn+yn+lf(1n+l)]+>\n+lgl(l-vi)

n=1,2,... (4.3.3)
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where X(l) and A(Z) are Lagrangian multipliers, referred to
n+1l n+1
as the co-state or adjoint variables of the system.
Now applying condition (4.2.6) to the Iamiltonian (4.3.3)

gives the first difference equation

1 R
an :
or
1y _ A _ (1)
ln = 2(xn x) + (1 Yn+l)kn+1 (4.3.4)

Next, applying condition (4.2.5) to the Hamiltonian gives

the second difference equation

oy =0
ayn
oxr
‘2’{TT (1-y ) }(Ll~y ) = 0 (4.3.5)

+1

For large values of n the Hamiltonian becomes very close to

ZexXo.

or

+1
(x_-x) agpg L Yol Xty £ ) BER) n+lTT‘(1 v;) =0 (4.3.6)
From equation (4.3.5) substitute into the Hamiltonian (4.3.6).

This gives the equation
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R =) 262 [ (1- 2 - .
Gep=x) ka0 [y )by B (e, 9)] =0 (4.3.7)

Now equations (4.3.4) and (4.3.7) are the two difference
equations to be solved for the optimum T'-sequence and the
optimum estimation trajectory. But first there is a need

for boundary conditions gﬁd some auxiliary conditions to
43 ’

o

eliminate x from these equations.
Now first, recall the form of the algorithm given in
equation (4.1.1) given here in a modified form

A A A .
X, = Xn;1:+ yn{f(rn)—xn_l} n=1,2,...(4.3.8)

A
Iterating this form to x, gives

!

A A ’
Xp = -y )x _q+y flr))

it

(l"Yn)(1~Yn—l)§n~2+(l—Yn)Y Elrp )y, (xy)

n-1"
(L-vy) (Lmvp ) (v )R 4y ) (Loy vy E ()

-y )y Elrp-1) 4y £ (x)
Iterating n times gives,

A A
X = (l—yn)(1—Yn~1)(1—-Yn_2)...(1—-yl)xo

H(1-vp) (Lovpg) oo (Ivp) vy £(xy)
FQLey) (Lmy ) e Loy v, E () +e (4.3.9)

F(1-yp) (v )y pf(r )

-2
+(1"Yn)yn—lf(rn—l)

+ Ynf (rn)
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Writing this equation in closed form gives,
n

A n
x_ = x JT (-yj)+ J vyl )TT (1-v.) (4.3.10)
i=1 21 " =i+l 3

n=1,2,...
where the void product is taken as one.

Also recalling the iterated form of the mean error from

(3.3.17)

A A n+l n+1l n+l

(Xpp-%) = (x *X){TT'(l vy L v T =y n=1,2,
i=1 =i+l J

and substituting from (3.3.17), and (4.3.10) for ;n'and
(§n+1~x) in (4.3.4) and (4.3.7) gives the difference
equations to be solved simultaneously for optimal TI'-sequence
and optimal estimation trajectory. Eguation (4.3.4) yields

upon the substitution

‘; n n

(1-y_ Ix =2 ~2{(x-x) ] (1-y )+ § Yy ¢ TT (1-v.)

ntl’ ntl R ° Ti=1y i =1 iPij=iyr 3

(4.3.11)
Equation (4.3.7) yields upon similar substitution
Ge) ST =y 0¥ 2% [T vgey T vy)]
' A n n n
+ 2(x~x) [T(l-y){ | Yivs T (1-vy.)} , (4.3.12) ____
i=1 1 i=1 J=i+l L. -

(l) n
1~ £ l-vy.,
n+l TT (1~-v, )+121 vif(x, )311+l( Yj)}
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In addition to equations (4.3.11) and (4.3.12), transversality
equations are needed to solve these difference equations.
Applying the transversality condition of equations (4.2.7)

and (4.2.8) to the cost function in equation (4.3.2) gives

2o | (£.3.13)
£
At = o | (4.3.14)

o
Now using the transversality conditions (4.3.13) and (4.3.14)
with equations (4.3.11) and (4.3.12), the optimization of

the rate of convergence of the algorithm (4.1.1)

>

A

A
41 T Fn F Ynel (P02 ) n=l.2,.

n

having selected the function f as in (4.1.2), with respect
to an optimum T'-sequence, can be obtained by solving the

boundary value problem formulated in this section.

4.4 Boundaryv Value Problem

I£ is evident from the non-linear nature of equations
(4.3.11) and (4.3.12) that the boundary value problem
formulated above is a discrete two point boundary value
problem which ipxyhguggﬁeral case -¢ited here cannot bhe
solved. Even if the mechanics of the mathematicsiwould be
tractable, the resulting solutions for the optimum TI'--sequence
and estimation trajectory are both dépendent on the initial

erroxr
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E =% -x (4.4.1)

0 o)

considered as a constant in the boundary value problen.
Since the optimality depends on the value of this‘constant
it is not to one's advantage to use this approach to the
problem. It is suggested that since the very essence of
stochastic approximation is the basic simplicity of
computations involved in the approximation, it would

grossly hamper the efficiency of the algorithm if the
boundary value problem had to be solved for a value of

ganma for every step and between every iterated step; “Fron
the present state of knowledge, it would appear‘to be wise
to accept the penalty of having to take a few extra iterations
of the algorithm rather than incurring the cost of trying
to obtain a closed form optimal TI-sequence. It would appear
that only when applications would require such a rapid
convergence, bhased on a time limit allowed for a parameter
approximation or a cost saving based on repeated application
‘of this algorithm, that the effort be expended to solve the
boundary value problém once and store the result for re-
peated usage. An alternative would be to solve a reduced
problem of the same tvpe for a closed form solution and ——
then make use of this suboptimal TI'-sequence. This will
probably have to be left to the engineering judgment of

the individuals making the particular application.
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4.5 Uniqueness of the Optimum' Gamma Sequence

For the stochastic approximation algorithm given in
equation (4.1.1) to converge optimally to solution requires
a T'—-sequence dependent on the starting point and on the
function in (4.1.2). Hence, it can be said that no single
-sequence can give an optimal convergence from different
starting points, and as such a single unigue TI'-sequence
does not exist which can make the algorithm converge
optimally every time. The best that can be expected is.a
suboptimal convergence that results in solutions somewhat
more quickly than previous algorithms. This, in facf,

will be shown in the simulation results.



CHAPTER V

Simulation Results

5.1 Structure of the Simulations

It has been proven that the stochastic.approximation
algorithm making use of sample autocorrelation as the sample
information converges to the true value sought. This is
achieved even in the presence of a random contaminating
environment which interfereswith the sampling. The numerical
simulations and comparison of results have been designed to
test this basic property, that is, the ability of the algorithm
to converge to the souqght value. In addition, it is desirable
to investigate the rate of convergence of the algorithm,

This latter section of the investigation develops guite

easily into a manifold investigation. Since it has heen

shown that there does not exist a unigue universal opﬁimal
PmsequenCe, the relative merits of these sequences as compared
to the‘state.of the art algorithms and their corresponding
sequences is left to ke determined and evaluated through
_experiment and/or simulation. —

The basic concépt behind the simulation has been the

paraneter identification made on samples which are a linear

=

combination, that is, the sum of the parameter and noise

contaninant. The samples were constructed thus:

-59-
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r o= x 4 E | (5.1.1)

where as before

th sample

r, is the n
x is the true value sought
and & is an element of zero mean normally distributed noise?
From the autocorrelation function and power spectrum of the
random process, it can\be seen that

Tn

R (2) = 028 (1) (5.1.2)
holds to a cood approxiration and that the power spectrum is
crudely uniform.

Recallinag then the two existing algorithms, that is, the

first and second algorithms (of Fu) from equations (3.2.11)

and (3.2.12)

A A A )

Xnp1 = ¥, + Yn+l{rn+lmxn} n=1,2,... (5.1.3)
and

A A ‘ l n+l A

Xpey = X, 0t Yn+l{n+l izl o Xn} (5.1.4)

n=l1,2,...
and comparing these with the new algorithm developed

A

wD>

{ (R g
X 41 = X * Y el (an+l(2» ~Ln} n=1,2,...(5.1.5)

where

*See Appendix F for complete details of the random process.
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i‘ n-%
(2) = rir

(5.1.6)
n+l n-% 432

Il
Ry ite

for the T-sequences as selected in equations (3.4.1) and
b : q

(3.4.5) with p=1. Basicly, then, the rmsequenceé’are
Y, = 1/n n=1,2,...  (5.1.7)

or

¥o,=1-1/n n=1,2,... (5.1.8)

NMow in ordér to be able to make some comparison of the
relative nmerits of the three algorithms, some cfiteria had
to be‘selected. in fact, two méasures of error were used
to establish not only rerit but consistent merit., They were
the sample squaré error (S.S.F.) which is the discrete
equivélent of the integral sauare error, and the time or
iﬁterval sample square exror (T.S.S8.E.) which is the discrete

equivalent of the time integral sguare error. More precisely,

B R A 2
S.S.E. = & ] (%3-x) (5.1.9)
l::
and .
: 1 D5 oaA 2
T.5.8S.%. = H-izl = (xi~x) (5.1.10)

where ¥k is simplyv a scaling constant which is the same
through this work.
It was felt that two criteria would he of definite

benefit to this study. The S.S.E. is particularly sensitive

to large errors particularly those which occur at the



62
beginning, that is, for small values of n. The T.S.S.F. is

sensitive to small errors which may persist after some éime,'
that is, for large values of n. Hence, by using both
indicators, a measure of initial or transient deviation as
well as residual error after some time can be achieved for
absolute or comparative purposes by using S$.S.E. and T.5.S8.L.

e}

respectively.

5.2 Tllustration of Simulation Results

The method employed for the simulations was simple. 2
sequence of rn's n=1,2,..., 200 was generated and stored for
a given value of standard deviation, o, of the random component
%eN(O,o2). Tach of the three algorithms based its sample
information on these r, at every n and calculated an estimate
Qn‘ Along with this was computed the S.S.F. and T.S.S.E. at
every n for all three algorithms.

In an actual sirmulation, the first estimate for each
algorithm is taken to be the first sample r, .- From this
starting point, the approximation trajectory (A.P.), that

. . . . . A '
is, the successive estimates or approximations x for each

nl
algorithm is computed and normalized. This is done for a

given A where
o
A= o5 _ (5.2.1)

is a measure of the noise content contaminant in the make-up
of the sample r  as compared to the parameter being sought.

. . 2 . .
For examnple, if the variance, ¢ , of the noise is 16 and the



parameter, x, being sought is 2, then A=2, This is
approximately equal to -6db signal to noise raﬁio.

Now for a given A and g, the approximation trajectory
(A.P.), sum‘squére errors (8.S.F.) and the time sum square
errors (T.S.8.E.) are plotted as a function of n. Each of
these contain three loci, one for each algorithm aécording

to the following key:

Algorithm 1 as in equation (5.1.3)
Algorithm 2 as in eqguation (5.1.4)
Algorithm 3 as in equation (5.1.5)

Ficht sample simulations will bhe illustrated first for
various values of A and for 2=20 and yn=1/n as shown in

Table (5.2.1) e - S

TARLE (5.2.1)

CGraph lVo. A
(5.2.1) 1.50
(5.2.2)"° 1.75
(5.2.3) 2.00
(5.2.4) 2.25
(5.2.5) 2.50
(5.2.6) - . 2.75
(5.2.7) - 3.00

(5.2.8) o 3.25

63
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In addition to the simulations that have been shoﬁn
in Graphs (5.2.1) through to (5.2.8), a number of sample
simulatiqns using similar conditions but with the I-sequence
as in equation (5.1.8). The format remains the same, with
A,P., S.5.E., and T.S5.5.E. plotted on the same graph for
all three alcorithms. The actual noise conditions and, in
~particular, the value of % for the third algorithm is

shown with the other information on Table (5.2.2).

Tabhle (5.2.2)

Graph No. A L
(5.2.9) 0.50 10
(5.2.10) 0.75 10
(5.2.11) 1.75 10
(5.2.12) 2.00 10
(5.2.13) 2.25 10
(5.2.14) 0.25 20
(5.2.15) 0.50 20

(5.2.16) 0.75 20
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Now a more convenilent evaluation of the simulation
results can he made to give a more complete picture and a
truer cémparison of performance. Vhat is done in the first
instance is to plot the value of the sum of square errors
(S.S.ﬁ.) after 100 iterations over the rance of the A ratio
as used in the sirwlation (A is defined in equation (5.2.1)).
Oniy the second algorithm of Tu is used since it is the
better of the two to use for comparison purposes.  The new
algorithm is thus evaluaﬁed for both T-secuences as defined
in equations (5.1.7) and (5.1.8) in the followina five
agraphs: (5.2.17), (5.2.12), (5.2.19%), (5.2.20) and (5.2.21).

It should be noted that for hothirmsequences there is
a noise level, that is, a value of the A ratio at which the
new algorithm has the same sum of square errors as the
second algorithm of Tu. This value of the A ratio is called
the value of emui-utility for the two algorithms being
comnared. As it turns out, for all values of the A ratioc
below the value of equi-utilitv, the new alogorithm has a
small sum of sguared errors and also converces faster than
Pu's second alcorithm. For values of the A ratio abhove
the value of equi~utili£y the new algorithm is not better
than the existing technicues.

To make an evaluation of the voint of ecul-utility
for hoth I-secuences and hoth error measures, thaf is,

£.5.8. and T7.¢.S.E., the value of the noint of ecui-utilitv
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~was plotted for a given T'-secuence and error indicator
after 100 iterations as a function of the sample auto-
correlation delay 2.' This is shown on the four graphs
(5.2.22), (5.2.23), (5.2.24) and (5.2.25). It can be seen
that if a lonqer sample autocorrelation delay is taken,
then the rancge of A ratio over whiéh the new aigorithm is

effective is increased. Doth error indicators 8.5.FE. and

T.S.5.F. bear out these facts.

5.3 Summarv of Results

The sirulation of the alcorithms has been so arranged
as to test their relative mrerits and to estahlish that these
merits are consistent., Two error criteria, the sum of
square errors £.8.F, and the tire sum.of square errors
T.5.S.E. has heen used. Indernencdentlv, each error
measure evaluates the relative merits_of each algorithm.
Toagether they evaluate the consistent merits of the
algorithrs tested.

It has bheen shown that over a rance of the A ratio,
that is, A 2.5, the new algorithm is of decicded value. It
is consistently of more value for this-range as verified hy
the concurrence of both error rmeasures. It is to this end

that the particular choice of error measures nrade here has

been taken for evaluation nurnoses.
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as a function of sample autocorrelation delay
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CHAPTER VI

Alternate Proof of Convergence

6.1 Alternate Apnroach

The essence of the work to this point has been the
proof of the convergence of an algorithm and the comparison
of its basic convergence property with two existing algorithms.
During the course of the aétual development work on the
proof for convergence, it was desired by the author to have
a different check on the theory developed. It is to this
end that pursuit of another direction of proof was tried.

To be a valid confirmation of the first proof of
convergence as‘given in Chapter III the alternate proof had
to take a different approach as well as make use of
different techniques. It is with-these basic concepts that
the author set out to develop an alternate or check proof
for the basic convergence property of the algorithm.

It was thought that since the algorithm presented was
of the Dvoretzky type, it would be natural to use his theorem
to illustrate the property of convergence. It would also
follow, that if the algorithm prgéented here does satisfy
Dvoretzky's theorem, then all the properties associated

with this class of algorithms is also true.

~03.
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First a statement of Dvoretzky's theorem will be ﬁade
outlining the conditions and results of his theorem. Then
a stage by stage proof will be given showing that the
algorithm presented here satisfies all the requirements of
Dvoretzky's theorem, and hence, the generality of his proof

and the resultant properties applv.

6.2 Statement of Dvoretzky's Theoremn

Dvoretzky's theorem on stochastic approximation pertains
to methods for successive approximations of a sought value,
wvhen, because of the stochastic nature of the problem, the
observations or measurements have certain errors. The
essential idea is to think of the random element as noise
superimposed on a convergent deterministic scheme. Then
the approximation procedure appears as an estimation scheme
in a noisy environment.

Dvoretzky considered a general stochastic approximation
procedure and proved a theorem, the statement of which

follows bhelow.

Theorem: Let an(pl;...,pn), Bn(pl,...,pn) and Yn(pl,...,pn)
be non-necgative measurable functions of real variables Pyr

PorP3reeesPy satisfyving the folloving conditions:

e (p1eeerop) = O (6.2.1)
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for a sequence PyrPoreeesbye
The sum of the series

I B (pyspgsesepy) < = (6.2.2)
n=1
is bounded and converges for any sequence D10 rees

(o]

Z Yn(p rDAnr oo P ) = o (6.2.3)
n=1 172 n
uniformly diverges for any sequence pj,pgp,..., bounded in

absolute value, that is, for any sequence PYLrPoress such

that

sup lo | < e (6.2.4)

n=1,2,...
¢ being an arbitrary finite number.
Let 8 be a real number, and Tl,Tz,... be measurable

transformations, satisfying the inequality
| Ty (0ys0gseneippy)~ 0l< max [a , (1+8,) |0 ~0]-v ](6.2.5)

for any real sequence PP grees
Further let X1 and Yl,Yz,... be random variables, and

for all n>1 let,

Xn+l = Th(}:llle"'lxn) + Yn + gn (Xlllenntlxn) (6.2.6)

where gn(pl,pz,...,pn) are measurable functions such that

the sum ofvthe series

~

N

I lapleqgeogeeceron)l (6.2.7)
n=1
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-~

unifornly converges and its sum is uniformly bounded for

any pl,pz,;.. apd that
E{YnIXl,XZ,...,Xn} = 0 (6.2.8)

with probability 1. The series

I OB{Y2} < = (6.2.9)
n=1 :
converges and
2
E{Xl} < o (6.2.10)
Then, as n>e
p{im ¢ —o} =1 (5.2.11)
n+m \n . L]
and
Lim _ . .. 2 o
e BUX,-0) } =0 (5.2.12)

Extension: The theorem remains valid if ans Bn and Yq in
(6.2.5) are replaced by non-negative functions an(pl,pz,...,pn),
Br(pyspgre.os0,) and Y, (PysP5reavrp ), respectively, provided
they satisfy the conditions: The functions an(pl,pz,...,pn)

are bounded and

Lim

n=e an(pl,pz,...,pn) = 0 (6.2.13)

uniformly for all sequences PerPoresesPp. The function

Bn(pl,pz,...,pn) are measurable and
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Y Bnoqsipnrevesp.) < w (6.2.14)
n=1 172 "'n

is bounded and convergent for all sequences PpiPoreseiPy
and the functions Yn(pl,pz,...,pn) satisfy,

L Yn(pl’pz""'pn) = (6.2.15)

1
uniformly for all sequences PYiPorseesPy for which
sup o] <L (6.2.16)
n=1,2,... n .
L being an arbitrary finiﬁe number.

In addition to this extension, there are five general-
izations to the theorem*. By applying these generalizations
and the theorem with extensions, it will be possible to
prove the convergence of the algorithm present in this

work.

6.3 Convergence using Dvoretzky's Theorem

Consider the algorithm presented here as

A Vay
X = X +
nY

n+1l

N ;5/\
n+l{(Rr (2)) —xn} n=1,2,...(6.3.1)

n+l
where x is the n+1th estimate of

X the true value being sought

is a non-negative real number (gain-sequence)
r are the measurements from the distribution of x

and R () is the sample autocorrelation function.

*Proof of Dvoretzky's Theorem, his extension and general-
izations given in Appendix D.
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Now subtracting x from both sides of (6.3.1) gives the\‘

following equation

~ A A
(Xpp1mx) = oy ) (X =%) + oy G0 (6.3.2)
n=1,2,...
where as before
A
Rene1 (2) o
bppp = x5 1) (6.3.3)

X
consider the transformation
A ~
(x,=x) = W, (6.3.4)
and applying it to (6.3.2) gives the following result;

A

. A
Wl = oy )W + vppa¥ng (6.3.5)

Equation (6.3.5) or its equivalent (6.3.2) is a zero
seeking algorifhm. Now consider the convergence of this
transformed algorithm.

Let an’Bn’Yn and n=l,2,3,...'be non-negative réal
numbers satisfying condition (6.2.1)

£24im

—_— an(pllpzl°~'rpn) = 0

condition (6.2.2)
2 B (p 10 ey ) < o
ne1 n'v1lr¥2 n

and condition (6.2.3)
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z Y (p_IPZI--~ID ) = o
n=1 n 1 n

Making the selection for L as in (3.4.1), recall this as

r = {Y,sPlYi= 1 i=l1,2,...} ,
1 i+o
and letting o=0, then a, and B, can be selected as
= =1 s
A = {agerfay="/, ¥i=1,2,...} (6.3.6)
and .
= =1 -
B = {siealéi“— /;2¥i=1,2,...} (6.3}.7)

Now let usconsider o _ as just defined. Since

n

Lim o o Zdm 1,
nre N N>« n

and

L24im
Nn-»oo

l/n >0, (6.3.8)

then by (6.3.8) the selection of o in (6.3.6) satisfies
condition (6.2.1) of the theoren.
Now consider the selection Bn in (6.3.7) and using

Cauchy's integral test (see Appendix E for proof), write

Lim (TTIG. _ Lin p_-lyt
T>w f]_—;dy = e [_y ]l

and hence

2L -1497 n 1l 1l
Am [—y 1] - Lim [I B ~]
T

T 1 T->®
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and thus

Lim
T->00

[ttay =1 | (6.3.9)
15, |

This proves that the integral convérges and hence by

Cauchy's integral test the summation

is bounded. By further use of Cauchy's integral test the

bounds on the summation can be established by applying

k+1
/

X
Siay < [ 1/a < f§~ldy + 1 (6.3.10)

y2 n=1 y2
Taking the limiﬁ as k becomes very large and using result
(6.3.9) gives the bounds on the summation as
1< § 1y2 <2 (6.3.11)
n=1
Hence by result (6.3.9) and (6.3.11) the selection of
made in (€6.3.7) satisfies condition (6.2.2) of Dvoretzky's
Theorem.
Now consider the choice of Y, as in (3.4.1) and recalled
previously. Bv applying Cauchy's integral test, the

following integral can be written:
T
1 ay = Hn gy yll

and hence

McMASTER UNIVERSITY LIBRARY,
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Lim

T>o T

Ln yli = LM pp o

and thus

Linm
T>r

[f1ay » = (6.3.12)
l§ '

Since the integral is unbounded, then by Cauchy's integral

theorem the sum

. E Yy, = @ (6.3.13)
n==

is without bound; hence, by result (6.3.12) and (6.3.13)
condition (6.2.3) of the theorem is satisfied.

By the_selection of the awéé&ﬁence, B-sequence and
r-sequence as stated in (6.3.6), (§;}.7) and (3.4.1)
respectively, all the members of all three sets satisfy
condition (6.2.4) of the theorem simply by definition of
the sets themselves.

In the preamble to the generalization of Dvoretzky's
theorem* it is stated that for a zero estimatihg scheme
like (6.3.5), condition (D-4.1) is stronger than condition
(6.2.5). Hence, by using condition (D-4.1) of the preamble
instead of condition (6.2.5) in fact strengthens the
generality of the theorem. To apply tﬁis condition, begin
by ; P

A
identifying Tn(pl,pz,...,pn) with (lwyn_l_l)wn

. A
and with Wn

Pn

*See Appendix D
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then
ITn(pl,pz,...,pn)l < max [an,(1+sn~yn>|pn|ye.3f14)

is satisfied since

A 1 A
-— ,'..7 - —— X
l(l Yn+l).tn! I(l n+l)vynl
and
| (1-y_, yw. | = (1-—=9|w_| for n=1,2,3,...(6.3.15)
ntl® n n+l n '
and
1 A
(1+sn+yn)|pn| = (1+1/,2-%/0) |w |for n=1,2,3,...(6.3.16)
Now
n3 <nd +1 for n=1,2,3,... (6.3.17)
But
(n3+1) = (n+1) (n2-n+1) (6.3.18)
Hence
3 2
n < (n+l)(n " -n+l) (6.3.19)
Now, if both sides of (6.3.19) are multiplied by 1 ¥ n>0
‘ nZ (n+1)
the result is
n_ . n2+l—n ‘
n+1l n< T (6.3.20)

1f l/n+l is added and subtracted to the left hand side of

(6.3.20)giving
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n 1 1 n%41-n (6.3.21)

n+l + n+l 7 n+l n?

and regrouping terms results in the following equation.
(1-1/n+1) < (1+1/n°-1/n) (6.3.22)
I_ | - .
Multiplying both sides of equation (6.3.22) by [Wnl gives,
1 2
(1-—=—) |w_| < (1+1/n -1/n) || (6.3.23)
ntl B . ‘

Here the equality is introduced to include the case of
N ) o
lwnl = 0. Now since (1-1/n+l) is non-negative for all

n=1,2,3,..., it can then be taken within the modulus sign

in equation (6.3.23) giving
[(1-1/n+1)w | < (Q+1/n2-1/n) || . (6.3.24)

This equation (6.3.24) satisfies equation (6.3.14) and hence
satisfying the condition (D-4.1) of the theorem. If it

should occur that

on < (18 -v) e (6.3.25)

in equation (6.3.14), this condition and (D-4.1) holds by
the result in eguation (6.3.24). Alternately, if it should
occur that L

ay > (48 -y Ve | ~ (6.3.26)

then (6.3.14) and (D~4.1) hold by virtue of (6.3.26) and

result (6.3.24); Hence condition (D-4.1) of the theorem is
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always satisfied.
Now identifying condition (6.2.6) with equation (6.3.5)

yields

Y. = 1/ | (6.3.27)

n+l n+l
where as defined in (3.3.12) and (6.3.3)

A
REn+l ('Q')_) y

%2

= x{ (1+ -1} (6.3.28)

lPn+l

Also, since the expectation operator E{.} is linear, it
commutes with the summation operator "]" which is also

linear. Hence the condition (6.2.9)

) E{Y?} < =
n=1 n

can be rewritten as

L] ¥} < (6.3.29)
n=1

combining the contents of equation (6.3.28) with equation

(6.3.27) gives
2 (
R L)
2 2 2 En+l %
Yn = Yp41 X {(l+wm_;gwﬁw) -1} (6.3.30)

Squaring the contents of the brackets and multiplying through
by x2 gives the equation

A
R (%) A
En+1 5 2
5 ) +yn+len+l(£)(6.3.3l)

> _ .2 2.2 2
Yo o= 2Yn+l X 2Yn+l X7 (1+ ,

n
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Applying equation (6.3.31) to condition (6.3.29) and in-
vestigating term by term can be done by first investigating

the 15t term of (5.3.31)

2 o 9x2 )

Y (6.3.32)
n+l n+1 (n- Ij

2x2

i~ 8

n=1

Applying Cauchy's integral test to (6.3.32) gives

Lim I 1 _ Lim f (y+1)

>0 a 2dy
T 1 -(-i-:i/-*)—*z v T+

.and hence

T->© >

; T
Lo fl (v+1) "ZCL = L"m - (y+1) 1!;

resulting in

Lim £&m
» ~ (Yt l o |7 =L+l —
™ [ BR=s
and therefore
Ln Tt Ay = X (6.3.33)
(1+y)
Thus, the series in (6.3.32) has a bounded and

convergent sum. By further application of Cauchy's ‘integral

test the bounds on the sum can be established. ThéyAare

given by,

1 w+1)?2 7 n=1 (n+l)

k+1 k . _
-“l,~ Ay < 1 - < fk-£~»~ Ay 1

2 Tlgyen? (y+1) 2 1y=1

(6.3.34)
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Taking the limit as k becomes very large and using

result (6.3.33) gives the bounds as

k Mn;l
2
n=1l (n+l)

Lim

o <4+ % | (6.3.35)

l
3 <

2

which when multiplied through by 2x“ puts the bounds on the

first term of (6.3.31) as,
2

w2 ] A< 3 (6.3.36)
n=1 (n+l)* 2

Thus for any finite x the first term of (6.3.31) in (6.3.29)

is finite.

Consider the sum of the second term in equation (6.3.31).

It can bhe written as

A A
. < R (2) . k R (2)
LA y 252 2,., En+l Lo lim L2 1 Eral
Y (L+-—Fgme) ™ = 70 2% ] (1+
ke p=1 n+l x ko n=1 (n+1) X

where

A 1 n+l-2
Re (0) = —— | &fpy (6.3.38)

n+l n+l k=1
Now since in all practical situations the upper value of

a measured sample is limited, hence one can write
Auplril <L (6.3.39)

vhere L is a large arbitrary, finite number. Hence, the
upper value of an element of noise is also limited and thus

it can be written that
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wp lgil < M “ (6.3.40)

where
M=1-% | | (6.3.41)

Hence, combining equation-(6.3.37) and equation (6.3.38)

and using condition (€6.3.40) gives

A

Lim 2 ¥ 1 .R€n+1(2) Lo Lim 2 ¥ 1 (n+l)P
kow 2¥ 2(l. 5 )7 < ¥he 2% 2(34 5 )
v n=1l (n+l) '3 n=1 (n+l) X

- (6.3.42)
Applving Cauchy's intearal test to (6.3.42) gives the
intecoral,
Lim ¢t 2% 2 (V+1)I I i 1 2
. e (1 y 3 v = AT oy f ——(x +(v+l)M y " év

o 117 2 2 T>e
(v+1) X S & (y+1)
16.3.43)

Mow consider an integral of the following form and integrate

it by varts

y Yz c
plazth g o Yaxdh Ly o0 S (6.3.44)

x/ax+b
Applyving a tabulated intecral* to equation (6.3.44) gives

the following,

vax+h all /ax+b - /g
= -7 + 5 ——JQlog " , (6.3.45)

* /B /asib + VF

a\+b
f’

Aoplying this result to Cauchv's integral in equation (6.3.43)

results in the followina ecquation:

“of Handbook of Mathematical Tables and Forrmulas by
S. Burincgton
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3 ,
fjﬂ-zij [ 24 (y+1)1%] ay = £ﬁm 2 2og [X2+(Y+l)“ 1%
Liy+1)2 N [x +(y+1)H2]2+x
2 ,-‘2 ]
[x2+ (r+1)11 ]2}T (6.3.46)
(y+1) 1

Substituting the limits into equation (6.3.46) gives,

Lim
T->o

IX +(t+1) 1 ]2
[x +(T+l)“2} 4x

2xfl_

L (1
2[x2+(y+1)M2]2dy = sz {Mz[zog

- »ﬂog [X +2r‘l ] 2
[x~ +2r12] +x
[{X2+(T+l)h2}; .2|

,,X+
e 2 | (6.3.47)

which reduvces to

Lim T 21%
o 2Xf1?;"~7~[y +(y+1) 1) ey

= ﬂim'{ﬁ2go {[x +(T+l)”2]%~>} {[x2+2m2]%+x}
o ’ {[x +(T+l)’2]2+x} {[x +?M2]2 x}

4
T+l 5 (6.3.48)

[Lx2+(T+1)M2]% Ix2+2M2]%]}

In the limit equation (€.3.4°) becomes

[x2+2m2]% { [x?+2m?] ik}

2 2
- 2% L [x2+ (y+1)n ]1%ay = —————— -1+1"Log
T+ T ) 2 ‘ {[X +2,,?] %23
(6.3.49)
Hence for a finite M, the second term of (6.3.31) has a finite

sum. The bounds on the sum are

. A
) k R (2)
+1)V » 1
_ 2x2f§+1 1 9(l+(y ;L yiay| < 2x2 1 (14 En;l %
(y+1)“ X m=1 (n+1) X

i (1+(y+1)d yiay + 5”(1+w_§~»_)2 (6.3.50)
(v+1) 2 x 2 X
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Taking the limit in equation (6.3.50) as k becomes very

large gives after using result (6.3.49) the following

equation,
A
L L ©
x2+2M2 % 2, {[x2+2M2]2+x} A 2 1 Re e () o
{[x2+2M2]7nx} ' n=1 (n+1) X
[x2+212] % 2,021k 2 2
X 1 ! : 1
« -1 4 1 Rog {[X2+2”2JL+X} + X )% (6.3.51)
o {[x%+2M?] F-x) 2 x2

Therefore, by result (6.3.50) and result (6.3.51), it can be
seen that the second term 6f (6.3.31) has a finite and
bounded infinite sum for a finite value of M.

Considering the sum of the third term of (6.3.31) gives

[

T2 N
Yn+l
=

oo

2y = § —2
1

n=1 (n+1)2

>

g ()
n+ n+l (6.3.52)
Applving Cauchy's intearal test to (6.3.52) gives the

integral

. T 1 A i T 4,2

oy s Ry (ay < KT ay (6.3.53)
(y+1) n+l (y+1)

- where condition (6.3.38) and condition (6.3.41) are used

in a substitution. Now the integration yields

. 2 .
-t ay =2 B L (6.3.54)
(y+1) (y+1)
and after taking the limit
2ém 14 M
T ;—~—- R, (2)dy < — (6.3.55)
(y+1) n+1 2
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Therefore, for finite values of M, the infinite sum of the
third term of (6.3.31) is bounded and convergent. The
bounds can be given by further applying Cauchy's integral

test resulting in

A k A : A Mz
fk+l l’“’z_RE; (2)day < z 1 2RF, (2) < fg.l 1 ._..?_RE (2)dy+—
(v+1) n+l n=1 (n+1l) n+l (y+1)” “n+l 2
| (6.3.56)

Taking k as it becomeé very large in egquation (6.3.56) and
using result (6.3.55) yields o
ow oy s R < (6.3.57)
2 n=1 (n+1)? Cn+1
Hence, by result (6.3.57) the infinite sum of the third
term»of»(6.3.3l5 is bounded and finite for finite M.

Now considering (6.3.31), equation (6.3.34), equation

(6.3.51) and equation (6.3.57) it can be written that

2
c< I ¥ <bp (6.3.58)
n=1 D
where
' 2, om?%]* 242112] %y 12
c = x°- £5~i%¥~l— +1-M% Rog {[Xz ‘ZJL X _ - (6.3.59)
{ [x“+2M ]zfx} 2
and
2 [x2+2M2]% 24 0m21% 2 2
= 3X [y "'l+I‘~12 2o {[X +2n ] tx} + 25“‘(l’f‘r-““) ;i'!‘Mz
D = -5+ 5 g 2. . 2% 2
2 {[x“+2mM“] 2%} 2 X
(6.3.60)

Since C and D are constant and finite, then taking
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expectations of equation (6.3.58) gives

C<E{]}. Ynz} < D : © (6.3.61)

n=1
or considering equation (6.3.29), equation (6.3.61) can be
rewritten as
-] ‘ 2 i .
c< }] E{Y .} <mB : (6.3.62)
n
n=1

and this satisfies condition (6.2.9) of Dvoretzky's theorem.

Now with Yn as in (6.3.27)

Yo = Yoe1Vne1
and where
| R, (1)
R 2
_ Entl 00k
¢n+l = X {(l+“f’2“'"‘ ) "l}

as in equation (6.3.28). Hence

2/\ ;’1 s
Y o=y TR, () Fex) (6.3.63)
n n+l
Now for large g% and/or n
A
Rg () - O (6.3.64)
n+l

Hence, if expectations of (6.3.63) is taken, the result is
E{Y } = 0 (6.3.65)

which satisfied condition (6.2.8) of Dvoretzky's theorem.

Now provided that the condition (6.2.10) on the first
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estimate is assured, then all the conditions for Dvoreééky’s
theoren have been satisfied and therefore, his theorem and
results apply. WNow it can be said that the algorithm
presented in equation (6.3.5) con&erges‘with prohability 1

and in the mean square sense for all n=1,2,3,...

such that
ﬁih N 2 .
n=« E {(ﬁn—ew) } =0 | (6.3.66)
and o
Lim &
P {hze Vh =70, =1 (6.3.67)
where 8, = 0. Now since algorithm (6.3.5) converges as

stated, apply the reverse transformation of (6.3.4), that is,

A .
Wn = (xn*x) (6.3.68)

to algorithm (6.3.5) which gives,

A A A 1A
X1 = *n 7t vy 1Ry (2))7-x%,} n=1,2,3,...
n+l
(6.3.69)
This also converges with probability 1 and in the mean

square sense such that

££2 F {(Qn_x)z} = -0 (6.3.70)

and

Lim 2 _ - |
P {n=°° xn-x} = 1 (6.3.71)
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for any finite, zero or non-zero x.

6.4 Summary

In the previous section of this chapter, an alternate
method of proof for the algorithm presented was given.
Issentially, Dvoretzky's theorem was stated and the algorithnm
presented here was shown to satisfy all the requisite
conditions of the theorem and hence the theoreﬁ,applies.
The theorem, then, is an alternaté proof and guarantee
that the algorithm is convergent and thus acts as an

independent check on the theory put forth in Chapter III.



CHAPTER VII

Conclusions and Future VWork

The work of this thesis has, on the whole, been egtensively
theoretical in terms of proving the convergence of the -
suggested algorithm. In an attempt to étrike a closer balance
between abstraction and reality, effort has been expended on
indicating the practicél benefits of stochastic approximation
algorithms as opposed to conventional éstimation techniques.
Application of these techniques to various facets in electrical
engineering has been implied or cited. In particular, the
area of learning control has made extensive utilization of
the principles involved and applied stochastic approximation
techniques to the evaluation of transition and state probw
abilities for the purpose of cost function prediction. In
order to give the reader a proper intuitive feel for the topic
and an appreciation for the results of this work on stochastic
approximation, the subject has been introduced by jiviﬁg
specific pieces of theory in the historical sequence -in which
these contributions have been made to the body of knawledge
on stochastic approximation. The review of the three major
contributions serves to establish a frame-of-referencde for
this work as well as to set the theme for the work currently

‘being done in the area of stochastic approximation. The more

~114--
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recent»algorithms have also been introduced to establish
'gﬁides for comparison in terms of convergence and overall
performance.

Essentially, then, the concept of sample autocorrelation
has been applied to the area of stochastic approximation
involved in the area of parameter extraction for noisy
environments based on ho a priord knowledge of process
statistics. A pre—reqﬁisite before comparison of performances
can be made is the establishment of convergence. Convergence
was proved for the new algorithm in two ways, each method‘
independent of the other. Chapter III cog;éins a proof of
convergence based on the concept that the mean square error
of the algorithm.vanishes in the limit. ILikewise, Chapter VI
proves convercence of the same algorithm ig‘the mean square
since based on the application of Dvoretzky's theorem. BRoth
methods of proof concur on the convergent nature of the new
algoritﬁm.

Having established convergence, evaluation of the
relative berformance of the tﬁree algorithms was made. The
vehicle for comparison was the sum of sguared errxor (S.S.E)

and the time sum of squared errors (T.S.S.E.) which are the

——

discrete equivalents of the integral of squared errors (I.S.E.)
and the time integral of squared errors (T.I.S.E.) in con-
tinuous amlysis respectively. The simulation results in

Chapter V verify the improvéd performance obtained in terms
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of rate of convergencé by the new algorithm as compared with
the'previous two algorithms. This has been achieved only
over a limited range of noise conditions, which has been
established, hut has been done successfully with minimal
computation time, using only simple calculations and with
minimal computer memory requirements, thereby facilitating
applications. .

These conclusioﬂs‘suggest a number of areas for future
work in the area of stochastic approximation, particularly,
to forward the contents of this work. One of the areas
is the sensitivity of an optimal T'-sequence as solved from
equations (4.3.10) and (4.3.11). This is no easy task, since
a two point nonlinear discrete boundary value problem has
to be solved. From such a‘solution sehsitivity with respect
to the initial error, Egs and/or the first estimate Qo,
has to be determined. Since the problem is not traceable
into a closed form, the solutions musénbe obtained iteratively
and then numerical analysis is the only recourse to the
sensitivity probklem. Along with this study, an analysis on
the sensitivity of the rate of convergence to the above
I'-sequence can be evaluated.

The sensitivity study would bhe of exceptional value in
helping dévelop a strong intuitive feel for the convergence

rate of the algorithm. With such a founded feeling, one

could attempt a study of a family of closed form solutions
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of a sub-optimal T-sequence obtained by solving a reduced

form of the boundary value problem given in equations (4.3.10)
and (4.3.11). This could then be used‘along with the algofithm
to calculate a value of Yh at evéEy instant n as the estimation
is proceeding. This would keep the procedure very simple

and allow a good sub-optimal convergence to occur.

Another aspect is to make the r-sequence adaptive. There
are essentially two basic ideas that could’be utilized. First,
a one-side difference can bhe estimated and used to regulate
the TI'-sequence by some rule. To maintain convergence,
restrictions and hounds would ﬁ;Ve to be developed on the
elements of the I'-sequence. Second, one could make use of
any T'-sequence and change the value of the successive terms
only after the difference betweeﬁwthe‘sample in formation
and the latest estimate changes sign. If bhoth ideas were
merged, a very effective algorithm could be had with very
little extra effort. o

In all the work to date, no rmention has been nade of

the requirements or desireability of developing a reasonable
and useful bound on the convergence. In some very recent
work, Davisson* has developed a technique for devéigéiﬂé a
probability bound on the converégg;é of a stochastic approxi-
mation algorithm when only a finite numher of iterations

are taken. It would be interesting to do a study on the

*Davisson, L. D.°2 "Prokabilitv Dound for Stochastic
Avproxination™ MeMaster University, Departrent of
Electrical Engineering, Seminar YWoverber 11, 1969.
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application of this technique té the algorithms developé& in
this thesis and those suggested in the above summary.

In conclusion, it can be said that with the suggested
introduction of sample autocorrelation to stochastic
approximation, an irproved algorithm, from the point of view
of convergence rate has been developed. It enjoys improved
perforrnance over the two previously developed algorithms.

It can be applied to éﬁy problem that can be formulated as

a regression prohlem with repeated ohservations. In
situations where observation periods are long and vhen

a priord statistics are unknown, this and other stocﬂggéic
approxination algorithms have advantages over conventional
estimation procedures. Only short intervals of data need
be processed at aﬂy one time'and then discarded. Onljhﬁ'
simple computations and very little mermory space is required.
Thus, stochastic approximation algorithms permit estimation

in situations that are prohibitive to conventional estimation

techniques.
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LIST OF SYMBOLS

Roman

an a sequence of non-negative real numbers

Ay ~scalar factors of a vector in a hyperspaée

B - positive constant

C arbitrarily large‘finite nunber

c, an elerent of a difference sequence; non-negative real
D positive constant

ey unit vector in a hyperspace

E{:} expectation operator
. A\
Ei - mean difference error X, -X
- i
f(.,.,...,.) a vector state function
£f(.,.)a bivariahle scalar random function
al.,.,...,.) measurabhle random multiparameter function
H Hamiltonian

J cost function

i,j.:k intecer subscrints

it a positive constant

2 discrete argument of autocorrelation function
L arbitrarily larce finite number

m intecer subscript -

nm(+) a scalar function of a scalar variable
m, a nominal or arbitrarv scalar value

M a positive constant
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M discrete equivalent of the scalar Pontryagin function
n intecer subscriot

p.a,k range limits on suhscriots

H

samples taken from the distribution of x

o9

scalar constant

A
Rr (2)cdiscrete sample autocorrelation function
n

Si control situation

t tire

Tn(.r-r...,.) a measurahle transformation

T sampling interval

u; control wvariable

Vi exnected mean sguare error

A . A

Wn a transform svace defined by W, = (xn—x)

x true parameter heing sought

X, stochastic arproximation generated bhv the stochastic
approxiration alaorithms

Fal

Xn estirmate of 6 in Dvoretzkv's theorem

v durny intecration variahble

Yn a random variable

24 random entity or -element of a stochastic process
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o scalar parameter

oy estimate of 6 in Kiefer - Wolfowitz method

o estimate of g in Robbins - ﬁohro Technigque R
o non-negative measurable function - Dvoretzky's theorem
Bh non-negative measurable function - Dvoretzky's theorenrm
B positive constant

Yn non-negative measurable function - Dvoretzky's theoren

§,¢ arbitrarily small positive scalar members

TT(+) a small positive scalar function

Py Lagrangian multiplier L
n a scalar perturbkation
8 a true scalar value
A
en transform of (xn~x) R
eth terminal time cost term
I ~ zero value sought by transformed algorithm
¢ integrand of a cost function
o scalar constant
on a scalar variable .
gn the random component of ry
§  instantaneous value of a cost function e
A symbolifor estimated variable : R

- a vector designation

<',°> denotes an inner product



APPENDIX A

Relationship between Reinforced Learning
’ and Stochastic Approximation

Tb begin with, an attempt will be made to give a
physical and intuitive feel for reinforced heuristic
learning. It is felt that such an introduction is necessary
before giving a more mathematical formulation of heuristic
learning control. Once the formulation has been intro-
duced, the relationship tb stochastic approximation will
be developed. —
Consider what is often referred to in psychology as the
T-maze rat experiment. 2 simple T-maze is constructed, as
in Figure A-1 and a rodent such as a mouse or rat is

placed at the starting point A.

“al

Figure A-1: T-maze Rat Experiment
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The maze is enclosed along the complete perimeter as out-
lined. At the beginning of each experiment fépd (cheese

or grain) is placed in either one or the other arms of the
maze at C or D, Say that the food is placed at C and the
rat is let go. When the rat reaches pbint B, it must méke
a choice as to which way it will go. Call thi;'a situation
s; or a "control situation", that is, a point in the rat's
control sequence vhere a decision has to be made between
alternatives in direction. Now aésuming the rat is not
influenced by olfactory or visual stimuli, chahces are even
that it will select one or other direction wigggﬁt any
preference the first time. If a probahbhility is assigned to
indicate this, éay Pij is the probability that in situation
i a choice will be made to go to j, then thereM;Zii be two
such decisions or transition probabilities and eéch will he
equal to one half. If the rat goes ﬁo D, it finds nothinc
and hence, it was negatively reinforced. 7ITn terms of

probabilities, it means that P was reduced by § and Py

bd
was increased by § to keep the sum equal to one. If when

the control situation Sb appears again and the rat remembhers

the previous experience it had, then it is more likely to
try the direction C. This is, in fact, what tﬁ;M;éw
transition probabilities say. Now, if in situation Sy the
first time the rat had gone to C, then it would have been
positively reinforced with the reward of food.- In terms of

probabilities P would have been increased by § and Py 4

be
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" reduced by § to keep the sunm ﬁnity.
Now if the food is consistently placed at C, the rat

will learn to go there when released from A. Similarly,

the transition probabhility Py will approach 1 and P4 will
approach 0 if the experiment were repeated often. Then if
one selects the direction or control choice corresponding
to the highest transition probability, reinforced learning
has been achieved.

Consider a plant described by the differential equation

of the form

x = £(x,u,V,N,t) (a-1)
where x is a state Vecfor defined in state space Qp
u is the control or control choice,
V is ﬁhe environment vector defined in Q, space,
N is the output disturbance vector including output
measurement noise also defined in 9,
and t is time.

Now define a measurement vector !1 in space 2, as

T

T ’ V) (A-2)

M o= (x

which is obtained from the plant and environment every T
seconds, the sampling rate. B
The controller learns heuristically to drive the state

vector x from any set of initial conditions to the neigh-

bourhood of the origin in state space in such a way as to
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optimize a pre-defined index of performance IP. The
learning is accomplished by building a stimulus-response

" mapping between element in the’space Qy and Qu. To begin
with, the space 2y is partitioned into convenient class for
practical reasons and the best choice from the set Qu for a

given class in @ is considered the same for all members

of that class. The problem then is to develop the relation-
ship that selects the best control choice for a given
control situation.

wa for a control situation S5 it isvnot a deterministic
problem to select the best.choice of control from @, since |
the control choice at time nT is dependent on the system

state at time (ﬁ+l)T. Let Pij be the probability that the

jth element of 24 is the best control choice for the situation

S..
J

Initially, all P;. = 1/k, j = 1,...,k; i = 1,...,p, if

J
no prior knowledge is given or assumed. As experiments are

carried out, learning proceeds if a transition or subjective

If the

S,

probability Pij approaches 1 for a pair u i

jl

probability Pij exceeds a preset threshold T near 0 or 1
: p

then learning is complete and the mapping bhetween @, and

i s S,

Qm for a pair uj, i

continues and for a given Si the uj corresponding to the

is complete. Otherwise, learning

maxinum P is used.

1]

Now the probabilities,?ij are adjusted ie. reinforced
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positively or reinforcea negatively based on the evaiuétion

of the IP. The idea being that if a Pij results in a choice
of uy that helps minimize the IP, it is added to, but if it |
hampers minimization, it is penalized. For this, two learning
operators, L, and L_, a positive and negative reinforcing

operator respectively, are defined.

For positive reinforcement

1l

Pij [(n+1)T] = L {Pij[nT]}

= epij[nT]+(1~e) for 0 < 6 < 1(A-3)

is used to correspond to a given u At the same time, the

je
negative reinforcement operator is applied to all other

choices of uy, q = 1,...;k; a # 3.

L {Pij[nT]}

i

P 5 [ (n+1)T]
= 9 Pij[nT] for 0 < 8 < 1{(nr-4)

where 6 is the learning parameter. A large 6 results in
slow learning rate because the probabilities Pij change
slowly. The converse is also true.

If one begins with some a palioad knowledge and/or has
an intuitive idea of the direction of control based on

experience, then the initial distribution of need not

Pij
necessarily be uniform but could be adjusted to conform

with this knowledge. In addition, a subgoal may be introduced
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which helps direct the Ehoice of control. It can take~é
number of forms, one being a cost function made up of
estimates of expectations of Pij or combinations thereof.
It still remains to determine the conditions for
convergence of (A-3) and (A-4), and their relationship to

stochastic approximation. The basic problem still remains,

select an optimal u* from the set of admissible actions,

{uj;j = l,2,.oo’k} = Q (A”S)

such that an index of performance of the form

%1 = ML Iy \ Yetn. -
E {r,lgg,uj } 03 [E{z;lr_g,uj},ujgszu] (A-6)

is minimized

where E{c[ﬂ,uj} is the performance index for the action

ujenu applied after the observation MeQy,.

M is the observed response of the plant

and ¢ is an instantaneous performance index evaluation of
the action g following an observation M. It is a
random variable dependent on the definition of a

“subgoal

t = gy, (A=7)

vhere gleQM

uj applied after M was observed.

is the response of the plant cdue to the action

The control law is then specified as
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P{u*|n} = 1 | (A-8)

that is, giVen all the observations; the probability is 1

that the.optimal control will be found. The reinforcement
algéfithm defined by equations (A-3) and (A-4) is such that
follb&ing the (n+l)th observation of 11, if the estimate of

the IP is such that

: y = min 4 1. Ry . -
Eni{clu,uj} i [Enj{clu,uj}zujenu] | (A-9)

then the transition probability corresponding to uj; is o

positively reinforced according to equation (A-3) .and all
others are negatively reinforced according to equation (A-4).

Now equations (A~3),(A-4) and (A-9) can be rewritten as,

Pij (n+l) = 8n+l Pij (n) + (lfenﬂ) Zn+l(N_'I,u£) (A-10)

for every control choice u,eQ _ where 0<9_<1 for n=1,2,...,
£ n
and,

1 44 B {g[M,u,} = min (£, . {¢]M,ustusen,]
Zn+l(ﬁ'ui)b= e * pe R 3T (a1

0 4§ Ep tefiiug} # "G [Enj{clr_@,uj%ujenu]

Now after (n+l) performance evaluations of the choices of u

following the observations !i, let

——

. - Min [ " Yo - 2 -
P [Eni{cll_fg_,ui} = us [r,.nj{z;li_g,uj}.ujeﬂu]] = q; (n+l) (2-12)

Then from eqgquations (A-10), (Awll) and (n-12) for uy
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E {P;4(n+1) [Py (n)} = 0 Pys(n)+(1-0)qy (n+l) (A-13)

Theorem* 1

The sufficient conditions for (A-10) and (2-11) to yield

P { £/C m

e P17 )|u=;*1} =1 (n-14)

are:
(1) for every action uieQu which is not optimnal
according to (2A-6)

1

P {Zim a3 (n) = 0} =1 . | (A-15)

N>

(2) for every uyeQ,

) m
P, (0) > 0 with i£1 P,,(0) =1 - (A-16)
and (3) for every n and u; defined by (A-9)
- max ; ’ -
Pij(n) N {Pij(n),uiamu} (A-17)

]

Proof: Suppose (A-15) does not hold for at least one sub-
optimal control choice iRy . The expression on the right
hand side of (A-13) is positive then with probability 1.
This contfadicts the assumption that ui#u*vas defined by
(A~6). The necessitv of (A-15) is thus shown.

Condition (A-15) can bhe restated thus: giVen any

positive numhers e and §, an integer X exists such that,

P {igg {qi(n)} < e} > 1-8 : (A-18)

*Prom the work of Nikolic and Fu42
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In that case for any el>0 and 61>0 (O<sl<l and O<5l<l)

an integer X can be found such that
’

P {ﬁfél{q*(n)} > 1-€7} > 1-8, | (A-19)

for the optimal control u*. Since the sequence
(max

s lPij(n):u.eQul} is a monotonically increasing sequence
j A

J
and converges to 1 according to (A--10) and (A-17), for any

62>O an integer Rp>Ky cén_be found such that

P {ﬁféz {Pij(n)lu=u*} > 120y > 15 (A20)

with €y given in (A-19). The condition (A-16) is sufficient

to assure Pij(n)>0 for every n<« and ujenu.

Now if account is taken of the probability of the system

being in a state i at time n, written as Pn(l), then the

algorithm can be written as

_, p W

“n+l - %+l n +(l"°‘n+1))‘n(i) (A-21)

Fl

where a = 1-96

and 'An(l) |

being the ratio of the number of times the system has been
in state i out of all n states it has been in that is

AQ(i) = i /n — (A-22)

in fact, An(i) is directly proportional to Pij(n).

Now Jet

*From the work of Nikolic and FTuZZ
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0<a <1 , JJ e_=0 (A-23)

and -

) (l-ocn)2 < w . (A-24)
n=1
If equation (A-21) is rewritten after subtracting Pki) from

both sides and rearranging gives

Pryp ()-PU) = apyy Pr(d)-p(i) +(l-a )y (1) (8-25)

oy _ LAm .
where P(i) = o> o Pn(l)
ny (i) = A (1)-P (i)
E {nn(i)} = 0

and E {[n (1)]%) <1

Hence, equation (A-25) is in the form of a stochastic
approximation algorithm of the Dvoretzky type as outlined

in Section (D-8) of Appendix D with
i i .
v [p, 1] = oy [P, opia)] (A-26)
Consequently,
p (H4" p (1) = p(i)} = 1 (A-27)
N n

by Dvoretzky's theorem.
In addition to the two learning algorithms shown to be
of a stochastic approximation nature, other forms of learning

can also be interpreted in a similar fashion. For example;



136

-~

Fu?d sﬁows that the technique of Bayesian inference as used
iﬁ the learning sense is an algorithm of the Dvoretzky form,
Two other works thét Fu participated in also deal with
similar areas. With MCMurtry2d, learning and stochastic
approximaﬁion teéhniques vere applied to a multi-model

26, they studied an

searching technique. With MCLearen
application of stochastic automata to the synthesis of
learning systems. \ |

Essentially, then, it can be said that stochastic

approximation is a unifying theory for interpreting the

various and diverse facets of learning control theory.



APPENDIX B

Proof of Two Stochastic Approximation Algorithms*

For each of Fu's two algorithms, a proof of convergence
will be given and a derivation of the inherent optimum
properties will also be given.

Consider an algorithm of the form

A A N A
X 41 = xn+Yn+l{rn+l”Xn} n=1,2,... (B-1)
N h ' o :

where X, is the nth estimate of the true value sought

x 1is the true value sought -

r, is a sample from a normally distributed random

variable

and is a gain sequence

Yn

Here r is a linear combination of noise and parameter being

sought, that is,
r,= x4+ g, o (B-2)

wvhere gn is an element of normal zero mean white noise of

2

variance ¢“. The form of the gain sequence ' is restricted,

that is,

———

‘ Yn = n+¥ - . for n=1,2,... (B-3)

-]

where K is an arbitrary non-—negative constant. For this

definition of Y the following conditions hold true:

~137-
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~.

Yp > 0 _ (B-4)

SURIE )
I oy = O (e-6)
=1 "

I vy <o (B-7)

n=1
These all fit nicely into the statement of Dvoretzky's
theorem. Now combining equations (B-1) and (B-2) gives

A A
= X +

.
X+l n Yn+1{(x+an+1) - Xﬁ} n=1,2,...(B~8)

Now subtracting x from both sides gives,

A A ,
(Xn+l"X) = (mvpe)¥n + vy (5FE )%

and after recombing and factoring gives,

A A : ’
(% 7% = (mvpg) %)+ vpgq8n0 (P-9)

Squarinag both sides of equation (2-9) gives

A 2 _ 2 A 2 2 2
(x 7 X)7 = (Qovpgq) (X =207 + vy 84
A (B-10)
+ 2(l—yn)yn5n+l(xn~X)

Take expectations of both sides yields
A 2 A 2 2 2
-2} = - (% - 3 ;
E {(xn+l x) <3 1 Yn+l) B{(Xn x)7) + Yn+1 E{£n+l }

(B-11)
since
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) A ' . A -
E {z(l“Yn+1)Yn+1€n+1(Xn"X?} = 2 vpe1) Y FlE g 1By )
(p-12)
because
* a
Xn“% and &9
are independent and since
E{g 1 =0 (B-13)
then equation (B-11l) holds true.
Define
A 2y 2 -
E {(x 7% } =V.h (1} 14)
Then equation (B-~11) can be written as
Ao 20 2 2
2 - ixy 2 . .
Ve = (7¥pep) VSt v O (5-15)

where for a stationary process,
2 2 2 ‘
ont] = B {€n+l } =0 for all n=1,2,... (B-16)
' Now define a transformation
A A A )
Tn (xl,...,xn) = (l-vpq)x, + Yo+l _ : (B~17)
Then equation (B-8) can he written as
m /\ A
X = 4 (Xl,uc-,}\n) + Yn+l€n+l n—l,z,o-n(B"‘lg)

n+l n

Now
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A " : A -
|Tp (g s i) =x| = [y )% + vy xx] (B-19)
or
A v A A
[T Ry e e e o) =% ] = (Loy ) | (2 -%) | (B-20)
and by defining
Fre1 & (17¥p4q) (B-21)
A : AN A
I T (%, eeerxy) %] = Fn+1[(xn-x)| (B-22)

Noting definition (B-21) and form (B-3) it can be shown

that
T r =0 (B-23)
n=1 .
In view of the transformation defined in equation (B-17),

then identifying the remaining element of (B-182) with the

form (D-2.5) of Dvoretzky's theorem gives

Yn = Yn+18n4y (B-24)
Hence since
E{Y,} = E{Yn+1€n+l} =0 ' (B-25)
Then condition (D-2.7) is sétisfied.
Now consider
T oniv.2) = 7§ 2e B (B-26)

E{y £
n=1 n=1 n+l °*n+l
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which gives

T my 2
I B{Y %)

o 2 )
o 1 vi (B-27)
n=1 n=1 .

Recalling equation (B-7) and substituting into (B-27) gi&és
7 (Y %) < (B-28)
n=1 n

Hence, Dvorétzky's theorem is satisfied and thus

Lim . 2 2, _ \ |
e BU(X  4-%)7} =0 | (B-29)
and
p (HM o k) =1 (B-30)
nre “n+l

In addition to tﬁe convergence property just proven using
Dvoretzky's theorem, algorithm one has an optimum gémma
sequence. To determine this sequence, which makes the mean
équare_error as small as bossible at each step, set all

derivatives oan2 with respect to Y equal to zero and

solve for Yn-

an2 2 2
av,, = - 2(l—yn)Vn_l +2y,0 ‘ (B-31)

Equating the right hand side of (B-31) to zero gives
2 _ 2, 2 | 3
Voy? = Vo Tt i (B-32)

and solving for vy, gives
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Yy = n-1l _  (B-33)
noy

n-1

Now iterating a form of equation (B-15)

2
v % = (L) 2V, Py 2e? (B-34)

with equation (B-33) to obtain the optimum Vnz* and y *.

To begin, let the initial expected mean square error be

V.2 = B{ (%,-x) 2} (B-35)

Iterating Vn2 and ' alternately, gives

2 _ 2.2 2 2
Vl = (1—y1) VoSt Y170 (B-36)
and from (B-33)
V02 ,
’ V_ +o ‘
or
1 .
= —— B~
Y17 Iix (B-38)
where
02 .
K = —= _ (B-39)
v 2

(o]

substituting from equation (B~38) into (B-36) for Yy gives

after slight simplification
Vl = e (B"40)

Now
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2 .
RS .

V1 +0

.Substitutinq into (B-41) for Vl2 from (B-40) and rearranging

terms gives

R -
Y2 T 23K (-42)
Now
2 . 2 | |
VY = (1myy) V) 24y, %02 (B-43)

Substituting from egquation (B-40) and (B-~42) for Vl2 and

Yo respectively, gives, after some manipulation,
v = (B-44)

Now assume Vn2 is known, then by equations (B-33) and (B-32)

Y = Vn2 3
Ly 2462 (B-45)
and
v e ey v 2y 242 (B-46)
n+1 Yn+1’'n "¥n+ »
Substituting for Ynel gives
2
v 2 _ 02Vn
1% = =
n+l vn2+02 | . (B-47)

using (B-46) and (B-47) are general terms for y and V2

seguence can he extended by simple substitions. Hence



and

and so on.
Hence, by inspection, it can be seen that the optimum gamma

sequence is given as

1 ’ :
* = —— B-48
Yn n+X ( )

with the corresponding optimum expected mean square error

2
2% Y ‘
- B-49
Vn n+x ( )

where K is defined as in equation (B-39).
Now reconsider equation (B-15) but replacing the

variance 02 with an upper bound B, that is,

62 < B | C (e-50)
Hence
vn2 <F v % % (B-51)
N@w iterating this backkto Vo? gives
v2< Fnan;lz...Fl2vo?+Fn2Fn=12;..F22y123+...
# Pl 0% F LAY 2R
+ Fnzyn_lzB+Yn2B for n>m>3 (B-52)
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If it is assumed that Yn=1/n, then (B~-52) can be rewritten

as
| 2 2 2
v?<n 5+ ZLU e B e et R SE %—
n n : nj| m n (n——l)2 n
(B~53)
which reduces to -
vZ2<EB (B-54)
n —n

Now instead of as in algorithm one given in equation

(B-1), the sample mean

is used as sample information instead of only r o then the
resulting algorithm is e
n+l A

N\
X = x + y (1 Z r.-x_.} n=1,2,... (3-55)
n+l n n+l n+l i=1 *+ O ' -

A

For the moment, consider the random element of noisewgn as

given in equation (B-2). Let
, n
» V] e z E;n : . (B"‘SG)

Then

. .
Y (B~58)
#
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or alternately

n n n
2 _ 1)1 2 1 1
Yn T H{H .Z &3 } + 2 [ﬁ .El.gi}[n '21 Ei} (B-59)

l=l 1 J=
, 3#1
Since
2 _1 ¢ .2 2 2
on” == 1 ogy or o, = E{3,"} , (B-60)
i=1
and for large n,
n ‘
) £, >0 or E{g,} =0 (B-61)
i=1 % i

Using the first two conditions of (B-60) and (B-61l), and

substituting into equation (B-59) gives

v 7 o= % o~ (B-62)

l ) ]
E{v 2} == Flo 2} (B-63)
Since the random process is assumed to be stationary
E{on } =0,

and hence

) BElv %} = X o2 (B~64)

n n -
If into equation (B-55) a substitution is made for ry from

equation (B-2), the result after rearrangement is

A
X4l = (l“Yn+l)Xn + oy x + v n=1,2,... (B-65)

n+1 n+ln+1
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Subtracting x from both sides yields

A ' A
(g1 ™) = Qv ) =X+ vy Vg o (5-66)

and squaring results in

A 2 _ 4L 2,0 (2 _ A
G ™) = Qv " =)™+ 2y Loy yn+1)(xn )

2 2 (B-67)

+ v N v
n+l n+l

Since the following

. A , A
E{Zyn+1yn+l(lwyn+l)(xn—x)} = 27n+l(l“Yn+l)R{Xn~X}E{vn}(B~68)

vanish because I{v } = C the expectation of equation (E-€7)
gives
B 03 = ey 0 2(E 0%ty 2D (5e69)
B n+l B Y+l *n ¥ Tn+l n

or using the definition (B-14), equation (B-69) becormes

2
2 _ 2., 2 2 0
Vel = (=vpe1) Vo™ + v n (B--70)

s o 2,
Now if the upper hound on ¢ 1is used, namely B, then

2

2,2, . 2B

n n+l n

2

Iterating the above ineqﬁality back to V “ gives

2 2 . 2 L2 2., 2_ B 2 2 2 2
V.n < Fn ...I‘l Vo + I‘n ...F3 F2 Yll +...F Fn "'Fn+2 Fm+l Y
n n-1 n n
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it

Assuming as hefore that Tn 1/n then (B~72) can bhe written

. as
| {3-1]?% 1 Tal2 11
v 2 5_B{l7 e B P Ao
n n n 2% nm2m
n-1{2 1 3 11
+ n 5. +-—-2-’-}
(n-1)" n+l n“ n (B-73)
This reduces to
Vn2 < E%2~{1+35+1/3+;..+1/m+...+--—1---+}~}_< 2
n ' n-1 n n - (B-~74)

Hence, it can be seen that.the_expected mean square error of
algorithm two decreases faster than that for algorithm one.
Again consider the optimum rate of convergence of
algorithm two by, equating the derivative of equation (B-70)

with respect to Y, to zero. This gives

Qyne V™ = Y g (B-75)
which when solved for y , gives
n+l 9
Vn
Y = ) (B--76)
ntl oy 2407

P 2 . . .
Let the initial expected mean square error be V, . Substituting
into eqguation (B-76) gives,

v02
Y, o= e (B-77)
1 v 2+02
Substituting this into equation (B-70) and solving for Vlz

gives



and so on.

v,? = o2 (B-78
1 4K
where X is defined as in equation (B-39).
Now
V-L2
Y2' = 2- =z : (B-79)
Vl +9 -
2
and after substituting from (B-78)
2
Y, = 3:;(‘ (B-80)
Substituting for vy, and Vl in equation (B-70) gives
2 -
2 o
vV, = T B-8
2 3+K ( 1
Now assuming Vnz-is known then
Vn2
Yn+l = 2 0:? (B"'gz) .
Ve
n+l
Substituting into equation (B-70) for Yol gives “”
2
(¢)
v = (5-83)
ntl 1)+ 92
v 2
- Using these two forms repeatedly g?ves a sequence for y
and V2 , for example
3
= ——— B-84
T3 T 6+x ( b
and —
2 2
v = 2 (B~85)
3 6+K —
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By observing the sequence one can now write the optimum

forms;

T (B-86)
and

v (Bf87)

n n(n+l) FR

2
Hence, it has been shown that both algorithm one and
algorithm two converge in the mean square sense in the linmit,

and that both possess an optimum gain sequence that generates

the least expected mean square error at every step.



APPENDIX C

The Discrete Maximum Principle

One of the fundamental probleﬁs in science and engineering
is the optimiation of some function with respect to one or
more parameters and usually subject to a nunber of constraints.
The most useful single technique in system theory used to '
perform the extremization is the calculus of variations.
Variational principles have been applied to physical problems,
for example, such as wave propagation from the time of
Huygens. The Hamiltonian formulation of the variational
problem has existed since the early nineteenth century in the
work bf Hamilton, Jacobi and others. The most significant
recent contribution was made by L. S. Pontryagin. His work e
" (27,28) extended the variational method to include problems
in which the control or driving function and the state vector
are bounded.

The same principle applied to continuous problems has
been recently applied to problems involving discrete data
systems (29). In reality, the maximum principle is not
universally valid for the caSé_Bf discrete systems (27).

Because of restrictions on possible variations of the control =
signal, the maximum principle must bhe modified for the
general discrete case. Jordan and Polak, in reference (30),

discuss the limitations and derive a modified form of the

-151-
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maximum principle, which is applicable to the general

. discrete problem. The difficulty is not of as much concern
with the advent of digital controllers where now the range
of control caﬁ easily extend beyond the "saturation" limits
of the plant.

The derivation of Pontryagin's maximum principle is done
by . using the Hamiltonian formulation and is applied to the
discrete version of the Bolza problem. Katz3l was.the first
to establish the discrete version of the maximum principle
that was valid not only for discrete time hut also space.

Given a discrete, nonlinear dynamic system with a state

vector, Xy and an input vector, u is a "n" vector;

S I

vector. The state of the system at the (k+1

" "

Y is an )th

stage is related to the state at the xth stage by the

r

relationship
X4l = £l 0 ,k) (C-1)

The process begins at stage k, and terminates at stage ke
The problem is to find x, and Ek such that the cost function
k=kf kg1 .
J = [9 (2?_], Ik)] + z ¢ (2{__}{’}}_},1}{) ' (C-2)
o k=k, - k=k, .
is minimized subject to the constraint of equation (C-1).

Using the Lagrange multiplier, A\, an equivalent cost

function can be formulated as
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g = [e(x, ,x)] e r %f—l {4 "k AT‘ £ s\y }
= Xy v 1 £y ACS RIS W ROl
e} o .
(C-3)
Now define the Hamiltonian as
. | . |
) =} = -
H g om oA g ok =0 =0 Gg o k)40 £0g,0 k) (c-4)
This gives the cost function .
k=k kg1
I “f £ T

k=k, k=k,

!
The cost function J may be minimized with respect to Xy and
Ek by application of the perturbation methods of the calculus
of variations. Let independent perturbations be introduced

into the state and input vectors such as

s . = ke . ‘ -
X, = X toen (C-6)

—_ * —
X1 T Zke1 Ttk (c-7)

= uf -
v, ug + eV, (C-8)

Note that the perturbations at different stages are
independent; hence, Dpr Njgyr and vy are all mutually inde-

pendent.

Introducing the perturbations into equation (C-5) gives

!

J = 0(x§ +en, ,k_) - 6(xF +en X )
=k £ -k £ ' f ~k o -~k o s
kf“l, o
‘ 1(x* . N
+ £=k [H(§k+eﬂklgk+exk;lk+l,k) + Ak+1[§k+l+€nk+11]
o .

(C-9)
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It is known that for a minimum of J[ in (C-9) it is

required that

o¢e
and
2_,
33 o (C-11)
3¢2

for e=0, independent of the variations. In this development
it will be assumed that the second derivative requirement is
satisfied for all cost functions and systems of interest.
Now equating to zero the first derivative, equation (C-10),

requires that

20y |T 36y T Efél 3H) | T §f~1 m

e £l ny =]yl ony # | n,- A n
ax | ke [ox* | “ko o ax* | ko L, Tk+lTk+L
Mol | k=k, |°% k=k

(o)

+ z ”H* 2},
K=k, [%%| °

=0 (C-12)

Using the discrete version of integration by parts, the
fourth term of equation (C-12) can be written as:

kg1

-1 Ap,qn = - ?f Arn
K=k, 1Tkl kek 41 K
or
ke-1 Keel | o .
T £ T T T
=1 Aegqn . =17 Uagn | - Ap g 42 ony )
K=k, TR+ f=x, |7¥°k ke=ke "k 7k (C-13)
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Using this equation in (C-12), and combining term gives,

96y T .. | 36y 1T
5% I L B o Ny
ol TRe| T 3%k | TRo|TRo

k-1 [[8¥, 1T - ke=Ll rap17T |
+ Xf f“ﬁ "l: o * Xf atx Yy T 0 (C-14)
k=k 9%y T o k=k, %7k

Since the indicated variables are mutually independent,

equation (C-14) requires that

k
= c~15
k 3%y : ( )
oH
k
— = : -
2, | (C--16)
90y, T 38y
A Tame ﬂko[l'o" % } =0 (c-17)
™0
and
26 26
kf T
A, = oo or n, AL - TT = 0 (C-18)
e dxy, kf[ ke 3§kf]

for the general case in which there are no prescribed

constraints on the variables. If the value of any variable
is specified, the corresponding variation vanishes, and the
corresponding requirement in equations (C-15) through (C-18)

does not apply. For example, if u, is a known, deterministic

—%k
function, then‘3k=0 and the requirement (C-16) does not
pertain. Similarly, if any component of Xy, OF X% is specified,

~f

the correspending boundary condition on A, does not apply.

k
Hence, solving the difference equations resulting fron

(C-15) and (C-16) with the boundary conditions given by (C-17)
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-

and (C-18), assuring that the solution satisfies the state
equations (C-1), results in an optimum trajectory that

minimizes the cost function J.



APPENDIX D

Dvoretzky's Theorem on Stochastic Approximation

D--1 Introduction

Dvoretzky's theorem is a general theorem that encompasses
the works of Robbins - Monro, Kiefer - Wolfowitz and many
others. It was the first unifying theory to appear in the
area of stochastic approximation and still stands as the
corner stone in its field. The basis of the approach to the
problem was to consider a convefgent determininstic scheme
with a random element analagous to noise superimposed on the
scheme.

The approach to the theorem was such that Dvoretzky
first proved a basic theorem according to strict conditions.
lHe furthered the theory by adding an extension, six general-
izations, two resultant corallarys and a special case of his
generalized theorem. This approach was taken to make the
proofs clearer and more interesting without forsaking
universal generality.

A statement of most sections of the theorem will be
given, however, since the proof is very lengthy and bears
no immediate felationship to the thesis, it will not be

given here. For the details of the proof reference (3) is

recormended.
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D-2 Theorem:

Let Ly

numbers satisfying

L2im
n=e %n = 0
L By <
n=1 o
and
Xy=oo
n=1 =

158

Bn’ and Yy n=1,2,..., be non-negative real

(D-2.1)

(D-~2.2)

(D-2.3)

Let y be a real number and Tn, n=1,2,..., be measurable

transformations satisfying

lTn(pll"'l'pn)—xl h nax [anl(l'{’ﬁn)lpn"XI'-Ynj

for all real PrresesP - Let %4 and Yo

variables and define
X4y = Tn[xl,...,xn]+yn
' s 2
for n>1. Then the conditions R{Xl} < o,
[+
7 OBE{Y?} < =
"t n
n=1
and

oE S b S
r{mnlxl, /X

with probability 1 of all n. Then

n=1,2,...

(D-2.4)

he random

(D-2.5)

(bD-2.6€)

n-2.7)
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LAm ; 5 -
n=ow E{(Xn~x) } =0 (h--2.8)
and
peldm x oy =1 . (D-2.9)
n=e n .

This basic part of Dvoretzky's work assumes that the s&quences

'an, By and Y, are independent of the ohservations

D--3  The Extension:

The theorem rermains valid if o Bﬁ, v, in (D-2.4) are

replaced by non-negative functions un(pl,...,pn), Bn(plj“"pn)
and yn(bl,...,pn), respectively, provided they satisfy the
conditions:

The functions an(p ,...,pn) are uniformly bounded and

1

fiig Otn(pl,.-.,pn) = O (D"'3-l)

uniformly for all sequences PlrecsrPpreesi the functions

Bn(pl,...,pn) are measurable and

(<]

n:—};l Bn(pl,-.olpn) (D"‘3.2

is uniformly hounded and uniformly convergent for all
sequences PpresesP reesi and the functions Yn(pl,...,pnx

satisfy

Zl Yp(Pyreverp) = = (D-3.3)
n= o
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uniformly for all sequences PyreesrPpress, for which

Aup

n=1,2,... o

nl < I : (p-3.4)

L being an arbitrary finite number.

D-4 Generalizations L

Particularization: For x=0 condition (D-2.4) is weaker

than the following,
| (o eeeron) | g nax Loy, s -y ) o 1T (D~4.1)

with @ Bn’ and Yn still satisfyving (D--2.1), (D-2.2) and

(D~2.3) respectively.

Generalization 1: The Extended Theorem remains valid

if (D-2.7) is replaced by O

21 ég?...,xn IE{Ynlxlr---an}l < «(D--4.2)
n= )

or even by the condition that
} OP{Y |xy,e...x} (D~4.3)
n=1 n -l n
be uniformly bounded and uniformly convergent for all seqguences

Xl,...,Xn

A S .

Ceneralization 2: Conclusion (0.2.9) of the_Extended

Theorem remains valid even without the restrictions on Xq and

if (D-2.5) is replaced hy

X = Tn(Xn)+Y§ (D-4.4)

n+l.



with the random variables Y;, n=l,2,..., éatisfyinq

1t
o
—
o)

i
tb
wn
S

P{v} # Y for infinitely many n}
thus, in particular, when
D PUYE A Y ) <o (D-4.6)

n=1

Generalization 3: If (D~2.1) is replaced by

.
Laim

n=o an = o ) (D—4.7)

or more generallv (D-3.1) by

.Z»L'm (D"4. 8)

n=e

A
Q

Un(pll---rpn)

uniformly for all sequences PrrecerP rens then the Extended
Theorem remains valid provided (D-2.8) and (D-2.9) are-

replaced by

AT 2
ﬁiﬁ E{(Xn"x) } s a2 (D-4.9)
“and
p ﬁiz Ian <a}l =1 respectively. (D.4.10)

Generalization 4: The Extended Theorem remains valYid if

" the assumptions concerning aplpyse.spy) are replaced by the
following:

aq (Xl) is bounded with probability 1,

dn(xl,..'.,xn) ; O-n+l (Xl,...,xn,xn+l) (D~4oll)
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with probability 1 and

2im

P{n=m

ap(Xyseee,X) = 0} =1 . (D-4.12)

Special Case: If the transformations T, of (D-2.5)

satisfy

|TnCeyreverog) x| = Fplo x| (D-4.13)
for For 0=1,2,..., being a sequence of positive numbers
satisfying

T 7, =0 _ (D-~4,14)
n=1

then the basic theorem holds.



APPENDIX E

Cauchy's Integral Test

Fundamental Principle of Monotone Convergence! If a

- q * . G [$ y ~ Y L]
sequence {un} satisfies qn < 9n+1 < M for each n, where M is

some constant, then 24" &  exists.
n>e “n

In other words, every bounded increasing secuence has a

Y = 0o

0

~Y

] 2 3 ‘ ~h N+l

Piqure (N-1). Schematic Representation of Locus
of f£(x)
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Theorem I: The improper inteqgral

1

[>2]

1 ax ’ (F~T1.1)

'3

X
converges if, and only if, the constant p>1l.
Proof: Consider the integral

0 ; ¥ 1 8
f —= X = ﬁL“ f’ X pdx
1 Xp -> 00 l

which gives

2im
b fi x Pax

: l1-pip :
Lim |x
= on 1
resulting in
Kim [Xl”p P _ ,e,("m bl"'p-—l

= A
1 b l-p

b-)-co ‘ l"'p

The question of convergence depends on the hehaviour of
1P ag bsw., If the exponent l-p is positive, bl Pseo and the
integral is divergent. PRut if 1l-p is negative, then p-1>0

and hence

pl P = Lo a5 p o o
pP1

For this case only the integral converges to the value 1/p-1.

o]

' P . 1 .
Theorem II: The infinite series Z —= converges if,
,=l )\,—1.
A -

and only if, the constant p>1l.

- This proof follows analogously from Theorem I,
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Theorem IIT: For x>1, let f(x) be positive, continuous,

and decreasing. Then the series

[+ ]

21 £ (n) (E-III.1)
n=

and the integral
f°l° f(x)dx (C-TIT.2)

both converge or both diverce. In either case, the partial

' sums are bounded as follows:

n+l n n

fl f(x)ax < ) f£(k) < fi F(x)dx + £(1) (E-III.3)

Proof: Suppose the terms of an infinite series ZaP

are positive and decreasing; that is, a_>a

n n+1>0 for each

positive integer n. In this case, there is a continuous

decreasing function f(x) such that
a = f(n) n=1,2,...

Each term a of the series may be thought of as repnresenting
the area of a rectangle of bhase unity and heicght f(n) (cf. fig).
The sum of the areas of the first n circumscribed rectangles
is greater than the area under the curve from 1 to n+l, so

that " ‘ -
a; + a, + e a, > f?+lf(x)dx

This shows that, if the integral f:f(x)dx diverges, the sum
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Zak also diverges.
Alternately, the sum of the areas of the inscribed

rectangles is less than the area under the curve, so that

a, + az + ...+ a < f?f(x)dx
If the integral converges, since f(x)>0, then
f?f(x)dx S flf(x)dx =M

so that the partial sums are Bounded independently of n:

<
Sn M + al

Since each a, is positive, these partial sums form an
increasing sequence. Hence, the fundamental principle

ensures that Eak is convergent.



APPENDIX

Noise, Spectra and Autocorrelation

>

The element ¢ of the random process considered in the
theory can be thought 6f as noise. The noise to be of value
in the simulation was required to be of Gaussian distribution,
with stationary.statistics and of wide bandwidth, ie, as
close to white as possible. Essentially, what was uséd in
the computer simulation was a pseudo-random nolse sequence.
An'outline of the basic process will be given.

32

First a sequence of pseudo-random pulses that 1l's and

0's were generated. These were interpreted in groups of 26
(the bhit length chosen) as integer numbers. It turns out

that the basic property of pseudo-random numbers is that they

26 _

are evenly distributed between 0 and 2 1. In fact, 226~1

numbers, excluding all zeros,; will be ¢generated before the
sequence repeats. The resulting numher was then converted
to a real number and scaled to the range 0-1.0. Ilence,
pseudo-randomn numbers of uniform distribution between 0 and
1.0 had been generated.

To get a normal distribution, use was made of the central

linit theorem and the uniformlly distributed numbérs generated

above. An approxiration was made by making use of the
following formula34, X

L -

i

k12
~167~

N
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where

v is a normally distributed number with variance of

1 and ﬁean of zero, |

are uniformly distributed 0 < x; <1 -

and k is the number of X used.

This, in fact, is an approximation to numerical convolution.
Adjustment for the required mean and standard deviation

is then

yns = an+u (r-2)

where y_ . is a scaled normally distributed number of
standard deviation o

and * arithmetic mean u

In the actual simulation k was taken as 12 and this was

found to be a good value not requiring much computation

time.

The theory presented in this thesis depends rmuch on the
fact that the noise is white. To check for this propverty an
autocorrelation was done on a large sample of data and the
results shown on Graph (F-1)

Along with this, the power spectrum of the noise produégé
by the sub-routines was looked at. The fast Fourier transform

technicgue was used and the calculated power spectra was

plotted and shown in Graphs (F-2), (F-3), and (F-4).
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