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ABSTRACT:

A new method for realizing linear, time-invaziant
digital filters is developed and demonstrated. The result
is based on the convolution integral. It is assumed that
the specifications of the filter are known and from these,
an appropriate analog filter is chosen. The properties
of this filter are then retained by the digital filter
after transformation. The behaviour of lowpass, highpass
bandpass and bandstop digital filters is investigated
in both the ffequency and time domains, for both cascade
and parallel structures. Based on these results, it is
evident that the parallel $tructure is superior for lowpass
and bandpass digital filters, and that the cascade struc-

~ture is superior for highpass and bandstop digital filters.
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PREFACE

This thesis has the purpose of developing a
simple but soundly based transformation for digital
filters. Since linear, time-invariant filters are
the main concern, the convolution integral is evi-
dently a suitable starting point. Inevitably, we
are faced with compromise between accuracy and-a
_ useable result, but the éxperimental results show
that the trade -is a good one. In fact, the method
developed here is shown to be the basis of another
transformation, the impulse invariant. From this
basis it is easy to understand the shortcomings of
this method, and the advantages of :the method which

is developed in this thesis.

The theory has been extenéively tested on a
large general-purpose digital computer. We have not
yet duplicated the arithmetic functions.and delays

on a laboratory-built special-purpose computer.
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Chapter 1 The Basic Ideas of Digital Filtering

1.1 Introduction

Without the availability of a large, fast digital
computer such as the CDC 6400, the following work on digital
filters would have remained a fruitless and in fact, a use-
less idea. The computer's ability to perform simple arith-
metic operations many thousands of times per second, and to
repeat such operations tirelessly is the key to the develop-

ment of digital filtering.

Throughout the investigations, it became evident,
although the only visible accomplishment was on paper
(i.e. printouts and several decks of computer program cards),
that the computer'was both a sophisticated laboratory instru-
ment which could display results graphically or digitally,
and an actual, physical realization of the particular digital
filter speéified in the instructions. The role of the deck
of computer cards was to carry infdrmation as to how the
available arithmetic functions should be "wired" together
to realize the filter. The ease and speed with which a pro-
gram could be altered was an important feature which allowed

-investigation of many details of the filter's behaviour.

The computer-human relationship in this project can be

portrayed as a feedback system where the computer is the



forward path element which does only what it is told to do.
The human is the summing device where the relevance of pre-

- vious output information is considered and combined with his
previous ideas and any new ones so as to alter the instruc-
tions to the computer. From the initial transient period,
where errors plague the program, to the steady state where
finally the program is debugged, thg feedback relationship
is an obvious one. Yet it provides the basis for an idea
which is important here: simply, it is that the parts of
the system are not in constant communication, but transmit
information to one anothér only at discrete times.  Exp1icit-
ly, there is an inherent time delay between thé discovery of
an error or improvement and its implementation into a new
program, and also a time delay before the new output is
available. The system may therefore be described by Figure
(1.1). The notion that the flow of information within a
system is not necessarily continuous as in the familiar
analog case, but that it may be discreté or sampled, is

basic to the following work on digital filters.

1.2 Digital Filters

So that the meaning of the term '"digital filter" 1is
clear, let us consider what is meant by both words individ-
ually. First, the term.filter can be applied to many input-

output devices whether they are primarily electrical, mechan-



ideas independént in the computer:

Previous and new ;:> Program processed

of computer output. inherent delay

‘ . o Delay due to

\_ thought; new ideas

may arise from O/P

Feedback Mechanism

Figure (1.1)



ical or whatever in nature. The choice of the word filter
over network or system implies that the frequency response

of the device 1s of major importance.

By the term '"digital" we mean that the input signal
to th? filter is a sequence of numbers which is fed into
the filter at a regular rate, called the sampling frequency.
Originally, this sequence may have been derived from a con-
tinuous voltage signal via an analog-to-digital converter,
or it may be the original form of some information. In any
case, the numbers of the input sequence are processed by the
filter one-by-one and each time a new number enters the fil-
ter, a new number appears at its output. For large filters
composed of several elementary filters:in cascade, the num-
bers in the original input sequence are transformed several
. times before appearing at the external output. Within the
filter, though, we require .that each internal input and out-

put sequence remain in synchronism. In Figure(1.2) we

illustrate the meaning of digital inputs and outputs.

Figure (1.2)

Input sequence Output sequence

t=0 DIGITAL FILTER

11 ;
t=0 '




1.3 Mathematical Description of Digital Filters

So as to make the mathematical description of linear,
time-invariant digital filters readily acceptable, we shall
draw a comparison with the more familiar description of
linear, time-invariant analog filters. Corresponding to
linear differential equations, Laplace .tranmsforms .and the
convolutien integral, there are linear difference equations,
Z-transforms and the convblution sum to characterize linear
digital filters. As was suggested in Section 1.1, the cal-
culation of each number in the output sequence of a linear
digital filter is limited to some linear combination of'bast
inputs, past outputs and the present input, if this is to be
a causal filter. Thus, if the "present'" is assigned the
discrete time parameter nT (where T is thé sampling period
‘and n is an integer), then the present inpuf and output
values are defined as x(nT)'gnd y(nT), respectively. Further-
more, both input and output sequences are defined only at
instants of time corresponding to n=0,1,2;3,... , so that
the previous input and output sequences which are available
are respectively, x(nT) , x(nT- T), x(nT-2T),.., x(O),' and
{y(nT-mT)} , where m=1,2,3,..n. The most general linear
input-outpdt relation must therefore be the difference
equation (1.1),

n

n
y(nT) = ) a;x(nT-iT) - )
i=0 i=

b y(nT-iT) 1.1
i=1 1

1

where the ai and bi are constant coefficients. If all the



b; are zero, then there is no dependence between the output
at time nT and all previous output values; in other words,
there is no feedback and the filter is non-recursive and
absolutely stable. Otherwise, the filter is recursive and
can be made unstable due to the feedback. It should be em-

phasized that in either case the filter is completely charac-

terized by the aj and the bi'

In a second description of the output sequence {y(nT)},
we assume that the digital filter is completely characterized
by its discrete impulse response,{h(nT)} instead of the
coefficients a, and bi' For example, in one realization, the

digital equivalent of a first order analog lowpass filter

responds to the input sequence {1,0,0,0,...} with an output
sequence-{e-nT/T}for n=0,1,2,.. . Thus the impulse response
of this filter is h(nT) = ¢ 0T/t Suppose now the input is

an arbitrary sequence of numbers. Each one of these numbers
-will cause the filter to generate a scaled-up or scaled-down
version of its unit impulse response, with the origin of each
output sequénge shifted in time by T seconds from the previous
one. Since we héve stipulated that only linear filters are
being considered, then the output is determined by superim-
posing the effects of each impulse response every T seconds.
This relationship between input, output and impulse response

sequences is conveniently described by the convolution sum

n
y(nT) = ) h(nT-iT)x(iT) 1.2
i=0



Figure (1.3) illustrates the meaning of this expression for

three equal samples at the input.

‘The ffequency domain properties of a linear system whose
differential equation is known, are determined by Laplace
transform techniques. In a similar way, we can operate on
linear difference equations using Z-transform techniques to
determine the frequency characteristics of the digital model.
Just as the operator s is interpreted as the time differ- =~ r-
entiator in the continuous time domain, the operator E'Iis the
unit delay in the di#screte time domain. For example, if X(z™ 1)
is the Z-transform of a sequence x(nT) then (z %+z-'+1)X(z" 1)
is directly recognizable as the Z-transform of x(nT—ZT) +
x(nT-T) + x(nT). We can use this technique to transform Eqn. (1.1)
and thereby determine the discrete transfer function H(z !)

as follows:

n n
y(nT) =} a;x(nT-iT) - §~biy(nT—iT)
g i=0 ' i=1 ’
n . n
Y(z71!) =} a.z72X(z7')- )} b z-1Y(z-')
i=0 1 i=1 1

Since the Y(z !) and X(z !) in the right hand terms are inde-
pendent of the parameter i, they can be removed from within the
summation signs to obtain the transfer function

¥ n .
. Y ( - g a.z 1
H(z 1) _ Y(z71) _ Pt |

X(z™1) 1+35b.z*
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'It is apropos at this point to mentien that the digital com=
putér's memory makes it a natural device for the solution of
difference equations because of the ease of realizing unit
delays.

1.4 Review of Established Methods for Realizing Digital Filters

The following example will illustrate how a digital filter can
be programmed on a general purpose digital computer. We start
with a specific first order, lowpass analog filter described by
. 1 ’ B . ]
His) = 5571 | |

or in the time domain by both dy +y = x

| t -

and y(t) = etf e Tx(t)drt '

This is in fact hog most digital filters are designed: an
analog filter is first fitted to the required specifications
(bandwidth, cutoff frequency,'etc) and then a transformation

from the s to z !

planes is carried out. The two most commonly
referred to are the impulse-invariant and the bilinear trans-
formations. The first simply requires that the impulse
response sequence of the digital fiiter [H(z"')] be identical
with the sampled impulse response of the analog filter [H(s)].
The bilinear method maps the left half s-plane onto the interior
of the unit circle in the z ! plane via the substitution

s =2(1 - z ). We shall use both to illustrate the implemen-

T( 1 + z-1)
tation of a digital filter.




10

Since the impulse response of H(s) = 1 is

s + 1
h(t) = et , then the impulse response sequence of the digital

filter is constrained to be {e-nT} , n=0,1,2,.. for the impulse

invariant transformation. Directly, the Z-transform of this

T _-nT_-n _ 1 = Y(z™1)
nZOe z 1 - e fz7" X(z-%)

difference equation to be incorporated ‘into a computer program

sequence 1is and finally, the

is y(nT) = x(nT) + e'Ty(nT-T) . A block diagram representing
the action of this algorithm{Figure (1.4)] and an actual

Fortran program follow:

YY=0.0 initial conditions
DO 10 M=1,500 500. iterations used
EM=M
X=8SIN(EM*T) input sequence is a sampled sine
Y=X+EXP(-T) *YY the algorithm of the filter
10 YY=Y the delay or memory

" ) S

The bilinear transformation involves algebraic replacement of

p 201 = z™ 1)

(L + z=1) ° so that the above

the Laplace variable s wit

ST + z71)
(T-+ 2) + (T - 2)z *

and its block diagram is shown in Figure (1.5).

. |
filter transforms to H(z )

'iBéch of thése transformations is limited to the realization
of only certain types of digital filters, and even in their
useable range care must be taken to aséure decent results.
Consider first the impulse invariant method. Filters derived

with it include an unexpected gain factor not present in the



Figure (1.4)
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a
s + a

discrete transfer function is H(z"!) = i - exg(-aT)Z'l

original analog filter, H(s) =

The corresponding

and its dc gain, found by setting z~! = exp(-jwT) =1,
w=0
a

S = exp(-aT);

for the case that |aT|<<1l, this gain factor

reduces to %, the sampling frequency and this is very large in

many filters[4]. Beside the above difficulty, a basic limi- Tg%
tation of this method is that it is not suitable for realizing .

highpass or bandstop digital filters. To see why, consider

the highpass filter H(s) = < f 1 which is transformed to
-1y - ) 1 - -exp(-T)z !
ke : 1 - exp(-T)z-* 1 - e_xp(—T)z‘1

As its pole-zerb diagram indicates [Figure (1.63)] the trans-

fer function lacks a zero near z'1=l;‘i.e.-near w=03 this zero
is an essential property for highpass filteré. The inability

of this method to realize highpass and bandstop filters is

explained in more physical terms in Chapter 4.

| Imaginary _ {Imaginary

—X-<—~Real
T
1D

z ~ plane

Figure (1.6)
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The bilinear transformation overcomes this difficulty by

introducing a zero at zero ffequency: [see Figure (1.6b) ]

H(z™1) = ( 2(1 - z° 1 )
(T +2) + (T - 2)Z

However, the bilinear transformation which crowds the whole

real frequency axis (0<w<x) onto the perimeter of the unit

! plane, causes frequency warping[5>4] . This

circle in the z~
is especially important to compensate for in filters which
have significant response near the Nyquist frequency, 7% hz.
Essentially, frequency warping means that the specifications
(e.g. centre frequency) of the analog filter, are changed

by the transformation to undesired values. As a result,a

compensating process called prewarping must be applied in

many cases.

1.5 Nature of a Hardware Realization

We can take.the physical realization of digital filters
a practical step beyond its present form of a Fortran program
in a éeneral purpose computer, if we consider building a
special purpose cémputer[s]. The essential functions which

/

are determined by inspection of either Figﬁre (1.4) or the

program, are adders, multipliers and unit delays. Now however,
we become much more intimately involved in the actual comput-
ing process: factors such as the number of bits used in the

arithmetic, the sampling rate of the A/D converter, and the
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precise interconnection of sub-filters for good economy and
performance become very important for a successful realiza-
tion. A block diagram of the basic filter is shown in Figure

(1.7), where the clock synchronizesAthe operation of the filter.

We have assumed Nrbits to represent the fractional
part of the digital input. Both registers, the adder-sub-
tracter, and the A/D converter are N-bit devices (exclusiwe
of the sign bit) which function in synchfonism with a pulse
sequence from the clock at the frequency % hz. A single
clock pulse causes the registers to shift out the N bits in
ﬁarallel, and after a small delay (<<T sec), to be loaded
again from the preceding section. The output, y(nT), thus
appears as a collection of N o's and 1's which are the

coefficients of the N bit binary approximation to y(nT).

1.6 Comparison of Digital and Analog Filters

The accelerating interest in digital filters is partly
derived from their several distinct advantages ovef conven-
tional analog filters [4]. Until much higher speed computers
are available, the realm Ef_impqrtance for digitél filters is
below about 1000 hz for real time use. In this range however,
analog filters require capacitors and inductors of increasing'
physical size as the frequency decreases. Furthermore, these
L's and C's are subject to variations as they age, and with
temperature changes, whereas the coefficients entered into

a register remain stable.
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Conversely, one can intentionally change the filter's
structure simply by entering new coefficients. Depending on
the capacity of the registers, the precision with which a
digital filter can be realized may greatly exceed that of an
ahalog filter built for the same purpose. The digital filter
has, naturally, no problems with leaky capacitors or pickup in
leads or inductors, although it does have a counterpart to
thermal noise in resistors. This '"numerical noise" (4] is
inherent in digital filtering because of roundoff (or trun-
cation) in the multiplications énd additions for each itera-
tion. These operations are performed in registers which can
approximate to within only 2 N(for N bit arithmetic) their
«*‘:} digital inputs. Furthermore, if A/D con§ersion has been used

K prior to the digital filter input, another error is incurred.

E N
To illustrate this noise, suppose that the multiplication

1.26x0.85 is to be performed.in 4-bit arithmetic. - Each num-
ber is truncated as follows: 1.2610 > 1.0102

0.85,, » 0.110,
and the product, truncated to its 4-bit equivalent is 1.000.
Since the exact product is 1.071, then it is evident that the

difference is due to a noise source superimposed on an exact

multiplier, as Figure (1.8) illustrates.

:l-0;071 [noise]

1,000
)—-

Exact Multiplier

Figure (1.8)
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I .7 Nature of this Thesis

Our work deals with a basic problem in digital filter-
ing;—-that of determining the coefficients of the difference
equation (1.1) for a specific filter. If we know the a;
and bi then the frequency response 6f the filter is fixed.
Although there:are useful methods which do this(Section 1.4)
in some circumstances, each has its own limitations. The
following work describes the derivation and implementation
of another method based on the convolution integral which
has its own useful aspects. As we indicated in Section (1.4),
the common transformations (impulsé invariant and bilinear)
are based on quite different criteria, neither of which is
related to the basic description of linear systems, the

convolution integral.



18

Chapter 2 Development of the Theory

2.1 Introduction

In this chapter we pursue development of both a cascade
and pafallel model for an Nth order linear digital filter.
A new tfansformation from the s to z-' plane is derived, and
it leads to a flexible method of realizing lowpass, bandpass,
highpass and bandstop digital filters, which is readily adap-

ted to programming on a digital computer.
2.2 Direct Formulation

It is a fact in digital filter theory, as in analog
filter theory, that a given transfer function can be realized
as a physical filter by more than one configuration. These
basic structures are the direct, parallel and cascade filters
and in digital work, they are by no means equivalent in their
performance. Kaiser[l] demonstrates that the direct realiza-
tion will be the most susceptible to instability as a result
of approximating thé.coefficients aifand bi in Equation (1.1)
by a finite number of bits in a digital computer. Furthermore,
because of the difficult or tedious work required to apply the
established transformations (Section 1.4) from the s to z7
planes, the direct form.of synthesis is ruled out. Finally,
we refer to Appendix I where we demonstrate that the direct

realization, derived by the same method which is used for the

cascade and parallel structures in this chapter, is cumbersome
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and not adaptable to a general computer program.

2.3 Cascade Realization

-Consider a linear, time-invariant, lowpass filter of

order N, with a transfer function of the form

- K
H(s) = — — (2.1)

s + aN;ls, oo tags +oag

where s is the complex frequency variable, K is a scale

factor, and a, to ay_p are positive, real constants. Express-

0
ing H(s) in its factored form, we have

H(S)=Kﬂ——i—=K

N N
j=15 * P. 111
11

Hi(s) (2.2)
where pi»defines the location of the ith pole and the Hi(s)
are the elementary-first order transfer functions making up
H(s). For convenience in analysis, we shall assume that the
poles are all simple: they may, however, be complex. As is
well known; Eqn (2.2) can be represented by the cascade con=
figuration shown in Figure (2.1). The variébles yl(t) to
yN(t) make up a set uf state variables of the filtér and ex-
cept for the input yo(t) and the output y(t) = yN(t), the

intermediate variables yl(t) to yN_l(t) are complex in general.

It is clear from Figure (2.1) that we have reduced the

filter to a cascade of N first-order sections, each of which has



yb(t)

H(S)

y1(t)

Ho(8)

| yalt) | Yi-1(t)

Hi(S)

(8 vy ()

General Cascade Structure

Figure (2.1)

Hy(s)
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a transfer function of the form

Y.(s)
H,(s) = 1 = 1 (2.3)

5+pi
LIRS

Assuming the network is initially relaxed, we may apply the
convolution integral to express the response of the ith Seg=

tion in the time domain as follows:
h
_ -pit piT
yi(t) = e e Yi_1(T)dT (2.4)

Now, since '"time'" on the‘digital computer is necessarily
discrete, in Equation (2.4) we may successively set t = nT
and t = nT-T (with T denoting the sampling period, and n an

integer) to obtain:

v (T
-p;nT PiT
yi(nT) = e e yi_l(T)dT ) ' (2.5)
0
and
T-T
-p; (nT-T) (M P3T
y;(nT-T) = e e T yy_y(1)de (2.6)
' 0
These two equations can be combined by multiplying (2.6)
-p.T . .
- by e . , and then subtracting the result from (2.5). The
result is
_piT
y;(aT) = e y; (nT-T)

+ B e yi_l(T)dT (2:7)

nT
-p;nT [ P;T
nT-T
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The exact evaluation of the integral requires an analytic
expréssion for the input yi_l(T) over the interval QT-T;T<nT;
however, we can proceed to an approximate result by assuming
-a Taylor expansion of the input over each interval T. In the
following derivations we have used the simplest expansion,
namely that the input yi_l(r) of the ith section remains
constant over nT-T<t<nT. The remaining integration is simple

and leads to a final difference equation:

-p.T -

1 1 piT " x5
y.(nT) = e y.(nT-T) + (1 - e ) v. ,(nT-T) (2.8a)
1 1 P. s |
$ | . 3 |
A [€;1 vy ;(nT-T) + | [Cp;] ¥;.1(T-T) (2.8Db)

Equation (2.8b) corresponds to the signal flow diagram shown
in Figure [(2.2].

The cascade realization of the digital filter in the
time domain consists of the tandem connection of N sections

of which the ith

is defined by Equation (2.8a). Thus, for the
complete digital filter we may write the following set of

difference equations:

y;(nT) = e y;(aT-T) + =—(1 - e =) y (nT-T)
P g
'PZT -p->T
yz(nT) = e yz(nT—T) ¥ l_(l - e ) yl(nT-T)
P2
(2.9)
-pNT 1 - NT
yyam = e oy @rm) +la-e Ny @1
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The output yN(nT) of the Nth section constitutes the output

of the complete filter. Equations (2.9) correspond to the sig-
nal flow diagram of Figure (2.3), where the C1i and C2i are

defined in Equation (2.8b).

2.4 Discrete Transfer Function of the Cascade Lowpass Filter

From the difference equation (2.8a), we find directly
that the discrete transfer function Hi(z“') corresponding to

Hi(s) of Equation (2.3) is

-1 '
B Yi(z™7) i o “p3T -1
H.{2™"]) & s = auld = € ) %
i ) P. , -p;T - (2.10)
Y; 1027 . 1 - e z *.
g -sT
where z = e . The sequence of steps leading to the for-

mulation of the discrete transfer function from the continuous

transfer function is presented concisely in Figure (2.4)

Using Equation (2.10) along with Equation (2.2), we can
express the discrete transfer function of the cascade form of
the digital filter as

N " ~P.T

kn L@a-e t)y ___z2

H(z 1Y)

I

N
= xqn | Cziz”! (2.11)
j=1l1 = Cpz2="
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Equation (2.11) allows us to determine the frequency res-
ponse of the filter simply by setting z ' = e.JwT and letting
w vary. Since z ! is a periodic function of wT then H(z ')
is also periodic. This is an imporfant departure from the

behaviour of the original H(s) which we will illustrate and

discuss in Chapters 3.and 4.

2.5 Parallel Realization

Another useful realization of a digital filter in the
time domain is obtained by expanding H(s) of Equation (2.1)
into partial fractions; thus we may write

N k;
H(s) = ) C

j=1 S * Pj

@.12)

where the residues,ki, are complex constants in general.
Equation (2.12) corresponds to the parallel configuration
shown in Figure (2.5) where the yi(t),representing another
set of state variables, are also complex, but their sum,

the output y(t), is real. Here again we see that the filter
has been reduced to the parallel connection of N compiex
first order sections, the ith_one having a transfer functipn
of the form ki/(s ¥ pi). Thus, proceeding in a manner sim-

ilar to that described in Section 2.3, we find that the

parallel form of digital filter is defined by the set of
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difference equations:

Pyt k "Byl
yl(nT) = e y1(nT-T) + 211 - e )yo(nTjT)
- P1
. -p.,T -p,T
Cy,(aT) = e 2y (aT-T) + a-e “y,mr-m
; | P2 |
(2.13)
..p T "p T
y ) =e ¥ y (ar-1) + N1 - e Ny (nT-m)
N- N Py 0
For the output of the whole filter, we have
N _
yinT) = } yi(nT) (2.14)
iZ1 |

Equations (2.13) and (2.14) cbrrespond to the signal flow

diagram of Figure (2.6).

Directly from the above two sets of equations, we

obtain the parallel form of the discrete transfer function:

-p.T | | -1

. N
H(z™!) = Kiag -e 1) z
izl By - . g g P
N [Czi]z_l
4 3y (2.15)
i=1 7 _ [c..1z7¢

Li
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2.6 Extensions of the Convolution Approximation Method

As evidenced by Equations (2.9) and (2.13), the struc-
ture of an elementary lowpass digital filter is basically the
same whether it is intended for cascade or parallel reali-
zations. In the following extensions of the convolution-
approximation (C-A) method , this elementary lowpass section
is transformed into elementary bandpass, highpass and bandstop
sections which,likewise can be used in either cascade or

parallel configurations.
. (a) Bandpass

Given the lowpass transfer function, the corfespon—
ding bandpass transfer function is obtained by replacing
s with (s + w,?)/Bs , where w, and B are its centre frequency
and bandwidth respectively. The transfer functien of the
simple lowpass section, given by Equation (2.3) thus modifies
to
Bs

Hi,0p8) © 7 Bp s 0,7 - (2418)

which is readily reduced to a difference of two simple
lowpass filters by a partial fraction expansion:
- r."! T.

= 1 _ 1 2417
Hi,bp(s) ( )
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where

r.' = ' and r:." =

it thus follows that the discrete transfer function corres-

ponding to the Hi b (s) of Equation (2.16) 1is:
p %

) P ~-ps'T 27!
H. . (zH) = *a-e ')
1:bp ) =P 'T
- 1 -1
p;' 1 - e z
‘(2.17a)
riu - _piuT z'l
_ (1 - e )
_pinT -
" _ 1
P; 1 e zZ
i} [CZi!] 7z 1 [Czi"] 7z 1
- 1 -1 . on 1
1 - [Gys'] = 1 - [C1;"] 2

The difference equations pertaining to a single bandpass
section (thé ith) are therefore (using the cascade configur-

ation):
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-p;'T T, -p.'T
y,'(nT) = e y;'(T-1) + 2 (1 -e * )y,  (nT-T)
Pj
_piuT rin _pinT
.n T = .n - - T_T
y;"(nT) = e y;"(nI-T) + : (1 - e ¥y o t0t=1)
' i
¥, (0T) =9, (aT) = ¥;"0TI " . (2.18)

The corresponding signal flbw diagram is shown in Figure (2.7).

Such blocks are connected in cascade to form the complete filter.
(b) Highpass

The lowpass to highpass transformation requires re-
placing s in the lowpass transfer function with w,/s, where
wo is the the desired cutoff frequency of the highpass filter.

Thus, Equation (2.3) becomes

H. (s) = s = 1 s ] 01
l,hp pis + Wy pl[s + UJ07P-] (2 9)

This expression can be separated into a "direct 1link" and a

parallel lowpass filter, by division:

>

wo/Piz Yi‘(S) i Yi”(S)

By npl®) =1 - T
b
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Figure (2.8a)illustrates.fhe direct link version of an analog

highpass filter.

It is clear that at any instant of time t, the input
yi-l(t) has an immediafe influence on both channel outputs,
yi'(t) and yi"(t). However, in moving from the s to z ! dbmain,
time is no longer continuous so that an input signal applied
at time nT cannot affect the output of the lower channel in
Figure (2.8b)until some finite time later; On the other hand,
in the case of the direct link from input to output, the effect
is still immediately observable at the output. It is evident
therefore that if we transform the lowpass link into an equival-
ent discrete transfer function and leave the constant term
as it is, the outputs of the direct and lowpass paths will not

be in the correct phase, and the filter response will there-

fore deteriorate. .

This problem may be overcome by introducing a compen-
sating delay in the direct 1inkp The size of this delay was
first deduéed from the experimental curves of Figure (2.9).
These are the frequency response curves for an arbitrarily
chosen tenth order bandstop filter with zero delay and unit
delay(T) in the direct link. Such a precise reversal of form
strongly suggésts that the optimum delay lies very near the
middle of the range [0,T] seconds; in fact, the experimental

results which follow vindicate the choice of T/2 seconds.
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The same conclusion can be derived theoretically by
determining the steady-state delay across the lowpass function
which is in parallel with the direct link. The discrete

transfer function for the lowpass section is

-1
C .]Z —pT
A vEy i
) = : , Where C1i = e s
1

1 - [cli]z'

and if lpiT|<<1, [which can readily be arranged by adjusting

the sampling rate], then C;; = 1 and H(z_l) = [C,;] ;1
1 & g™t
has a constant phase angle (B say),

The complex constant C2i

so that the transfer function becomes

-jwT -j[wT - B8]
H(e ) = C2i e
-jwT
L= &€
This quantity has a phase angle of ¢ = -[wT - B ]

+ tan-l[cot(wT/Z)]

and therefore the delay is -2% = T/2 sec.
ow

This result is valid for all transfer functions of the form

-1
of H(z ) above when B is independent of frequency, and

where |piT|<<1. Such a delay (T/2) corresponds to " z-l/2 ",

However, for H(z ) to be realizable as a linear digital

filter, it must be rational in z'l. It follows that a fur-

~ ther transformation, s+2s, is necessary; then,'z—1 (which
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_sT ) ’
equals e ) is transformed into z~ 2%, and 271/2 into z-'. of
course now, the cutoff frequency, centre frequency and band-
width must also be doubled before proceeding with the synthesis
if the desired values are to be achieved. Thus corresponding

to the highpass transfer function of Equation (2.18), we ob-

tain the discrete counterpart:

) A -2w,T/p.
H. (z7Y) =12z"'-[1 (1 -e L 31 =
i,hp 5— 57
i i
(2.20)
Z'2
'ZWOT/pi
l1 - e. z

(%

Although this transformation introduces nc new poles
or zeroes into the analog transfer function, it does introduce
both new poles and new zeroes into the discrete transfer func-
tion. Especially noteworthy is the new pole introduced near
the Nyquistlfrequency (1/2T hz) as indicated in Figure (2.9).
It is evident that the transformed highpass filter will not
be useable at frequencies near 1/2T hz because of the gain
introduced by the nearby pole. This effect will be illustra-
ted in Chapter 3. Finally, if Equation (2.20) is rewritten

as

=1 [CZi]Z-Z

1 - [C

=2
1412

then Figure (2.10) shows its signal flow diagram.
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We can write down the basic highpass difference equations

directly from Equation (2.20) “to match Figure (2.10)

y' (nT)

y" (nT)

Y (1T)

= 1y;.4(T-T)
Pi ,
-2woT/p. -2w,T/p;
=11[1-c¢e 1]y (nT-2T) + e y'" (nT-2T)
P. i-1
-
= y'(nT) - y"(nT) (2.21)

(c) Bandstop

The lowpass to bandstop transformation requires re-

placing s in the lowpass transfer function by Bs/(s 2+ wo?).

Thus Equation (2.3) becomes, after partial fraction expan-

sion,

o

Hi)bs(s) =

where

1
p.
i

1

el

(2:22)

—



To transform Equation (2.22) into a discrete transfer
function, we proceed in the same way as was done for the
highpass éase. Here again, the centre frequency and bandwidth
of the filter must be doubled before proceeding with the syn-
thesis. Also, as a result of the tfansformatidn, new poles
and zeroes are introduced into the z-1 plane around the Nyquist
frequency, and again the filter will not be useable in this

region because of high gains. The discrete transfer function

for a cascade bandstop filter is:

-1y o
Hi,bs(Z )

1o e 1y (2.23)

where

. p.
-p.'T . I‘.'[l - e"‘.l
gr, =g * and c!'. = 1 . etc.
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The difference equations for the basic bandstop digital
filter can be written down directly from the reduced form

of Equation (2.23):

y,(nT) = 1 y; ;(nT-T)
Pj

y*'(nT) Céi yi_l(nT—ZT) + C!. y'"(nT-2T)

1i
(z2.24)

y"(nT) = CZi yi_l(nT—ZT) + Cli y" (nT-2T)

yienT)= y, (@T) - y'(aT) + y"(aT) ]

Figure (2.11) shows the relationship of the various para-

meters.

257 Summary

In this chapter'we have developed a basic transfor-
mation from the analog to-digital domains, given by A
Equations (2.3) and (2.10) for the lowpass case. By transfor-
ming the factor 1/(s + p;) to a bandpass factor and then
reducing this to a combination of lowpass terms, the original

transformation can be used again, to obtain Equation (2.17a).

Further, in the case of highpass or bandstop filters,
we have determined that a second frequency transformation

is necessary [s =+ 2s] before we can realize the discrete



Yi_l(n T)

C2i

<
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transfer function as differende equations. In this case,

the lowpass terms are transformed as follows:

-p;T
1(1-e *)z2
1 . . P
s+ D, .
-P;T
1-e Y272
and a direct 1link is transformed to z ! , the unit delay.

Finally, it is important that the approximations invol-
ved in the theory be listed so that the limitations of the

method are clear:

(1) For low sampling rates, the approximation of the
convolution integral (Equation (2.4)) may produce ah insuffi-
ciently accurate filter. In this event, either the samﬁling
rate or the order of the approximation of x(71) shéuld be
increased. In this work, we have used only the zero order
approximation since it gave good results and led to the sim-

plest algorithms.

(2) The method was extended to highpass and bandstop
filters by introducing a delay of T/2 sec in the directrlink.
Only when the coeffitient e PiT can be well approximated by
unity is this the correct delay [Section 2.6] . In the exam-
ples done here, the magﬁitude of the exponent was no greater

than 0.1, so that the coefficient was less than 0.90.
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Chapter 3 Experimental Results

3.1 Introduction

- The theory develobed in the previous chapter was written
into the Fortran programs of Appendix II. Those programs are
the basic ones from which we obtained the magnitude vs frequen-
cy characteristics, and the_time domain behaviour of digital
filters. In this chapter, we present a variety of results to

illustrate the validity of our approach to digital filters.

3.2 Frequency Domain --- Narrowband Response

The filters considered were all derived from Butterworth
lowpass poles, orders five to ten, and the other pertinent para-
meters were  assigned the vélues shown in Table 3.1. These
were arbitrary except that tbe centre frequency, cutoff fre-
quency and bandwid£h were constrained to be less than the
Nyquist frequency, which is one-half the sampling frequency,

or 10m rad/sec for all our filters. As a result, a sine wave

Parameter Value which happens to have a frequency
SAMPLING 0.1 sec equal to the Nyquist rate is samp-
PERIOD ‘ '
) : led only twice per cycle and these
CENTRE 3.0 rad/sec .
FREQUENCY samples are not necessarily the
BANDWIDTH 1.0 rad/se; maximum value of the waveform.
CUTOFF .| 3.0 rad/sec Figure (3.1) illustrates the situ-
FREQUENCY

ation where, depending on the

Table 3.1 relative phase of the analog sig-
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nal and the éémpler, the input to the digital filter would
be ény sequence of the form {(*A)™} , n=1,2,3,.., where
0<A<Amax ' If, for example, the filter did not attenuate at
theiNyquist rate (e.g. a highpass filter), the output sequence
would be exactly the same as.the input sequence whatever the

value of A. Consequently, we should ensure that the highest

Figure (3.1)
frequency in the analog waveform will be sampled several
times per cycle.b This will provide ‘'satisfactory resolution
at the output[z] and in our investigations of the time domain

behaviour, no less than ten samples per cycle were used.

The basic magnitude vs frequency curves of these dis-
cretized Butterworth filters are shown in Figures (3.2)-(3.5)
and (3.7)-(3.10). The first set is derived from the cascade
structure and it 1is evident that [1] the -6N dB/octave slopes
and cutoff frequency for the Nth order lowpass and highpass
filters ére preserved over the range 1<w<7 rad/sec; [2] the

centre frequency and bandwidth of the bandstop and bandpass
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filters are preserved also*¥*,

.A feature of these bandstop filters worth noting is the
very large attenuations achieved in the stopband. Figure (3.6)
summarizes the variation of this maximum attenuation as the
order ofvthe filter varies. Recall that the original analog
transfer functions required a zero of transmission at the
centre frequency and this is approximated well by these filters

since -200 dB (e.g.) is(l part in 1010

at the output. The
small discrepancy is the result of using only seven decimal
accuracy poles, and of the'two approximations in the convolu-
tion integral (Section 2.2). Further reference will be made

in Section 3.3 concerning the conditions for actually'fealizing

such large attenuations.

The second set of characteristics[(3.7-3.10)] is based
on the same parameter values as the first set, but now the
parallel structure is used. The lowpass and bandpass filters
are very similar to the corresponding cascade filters, but in
general, the parallel versions are closer to the analog charac-
teristics, as the printout - -of “Tabte (3.2)) shows. It is a
portion of the frequency vs response (in dB) dafa around the
centre frequéncy of an 6th order bandpags digital filter, for
each realization. The 0.03 dB attenuation (i.e. 99.7% of the

signal is passed) is significantly better than 0.2 dB for the

**% The centre frequency for all filters was not exactly
3.0 rad/sec, but was 2.996 rad/sec.


http:characteristics[(3.7~3.10

BP
FR

EQe R/S MAGN, Pt
PARALLEL

1.20951-95.356381
1,38230-85.206611

—_T“SSqu_TS_TVH72T_

1,72788=65,012771
1.90066-54,310731
2.07345=42,673161

C 2.24624=29,.498281

L H9IB1

= 0941
2,76460 ~.028531
2,93739 =.031251
3.11018 =,035041
3.28296 =,041801
3,45575 «,631601

3,62854 =8, 00701

3,80133-18.885741

‘—#—63527—5

3.97411~28.007261
4,14690~35,574001
4,31969-42,009361
4,69248=47,593921
535051
4,83805- 56.952351
5,01084~60,948481
5,18363-64,596351
5.35642=67,951801
5,52920=7]1.058481

— 5, T0T99=T3aISTTOT

5,87478=76,657721
6. 04757 ~79.201281
6.22035—81.600811
6,39314=-83,872251
6,56593=86,029031

6,73872=8R, 087621
6,91150=90.042871

T7,08429-91,918281

T.25708=93,.716271
7.42987-95,443321
7.60265=97.,105)31

ToT1544=98, 7106751+

7.94823%00.25265+

PASSBAND

1

6th Order

FTable (3.2)

CASCADE

=95,712
=85.551

-75.530

- -65,329

-29.762

C=14,177

-1.101
-.226
-.204

e 181

-.159
-e119
-8.063
-18.909

=35.527

-41.925
-47.,476
-52,371
"56 (] 747
-60.699

"640302

'670610
-70.669
-73.512

=T76.167

~78.658

-810003

-83.218
-85.317
-87.312
-89.211

-91.02_4__

-92,759
-94.,420
-96.015
-97.548
"‘990 024

53a
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cascade filter. As well, the parallel transformation pre-
serves the centre frequency and bandwidth of bandpass filters,
and the cutoff frequency and -6N dB/octave slopes of the low-

pass filters.

The major differenée in performance between the parallel
and cascade structures shows up in the bandstop and highpass
filters. The bandstop characteristic [Figure(3.9)] exhibits
about -25 dB of attenuation in the stopband, a startling change
from the -280 dB for the cascade case. In terms of the per-
cent of the signal that is rejec;ed, the cascade filter stops
essentially 100% of the input, while the parallel filter re-
jects about 95%. Otherwise, the chéracteristics of the parallel
bandsfop filter are as good as those of the cascade Version;‘
both the centre frequency and bandwidth exhibit only small(1%)
deviations from their specified values. The worst performance
of all is the parallel highpass filter. The characteristics
_of these filters [orders 5-10] are shown in Figure (3.10), and
it is evident fhat they are completely unsuitable as highpass
filters. As well as exhibiting slopes which are much less than
+6N dB/octave, an& shifting the cutoff frequency significéntly,

they all have gains at higher frequencies.

33 Frequency Domain --- Wideband Response

Since the above two sets of frequency curves are limited
to the range 1<w<7 rad/sec, and since the Nyquist frequency

is 10w rad/sec, the wideband behaviour of the filters is not
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evident. Recall that we predicted in Section (2.2), on the
basis of pole-zero patterns, that there should be a deterior-
ation at higher frequencies in the résponse curves of band-
stop and highpass filters realized by the C-A method. This
is because the process of eliminating the '"half-delay" intro-
duces a pole near the Nyquist frequency. Figures (3.11) -
(3.14) show the wideband response curves for filters derived
from seventh order Butterworth poies usihg the cascade struc-
ture only. The effect of the unwanted poles is quite evident
although the gainbaﬁd occurs sﬁfficientiy close to the Nyquiét
freqﬁency so that the filters can still be considered
"wideband", i.e., useful over 70% or more of the Nyquiét
rangelll. In fact, all the curves remain at the 0 dB level

for about 80% of this range.

A second form of distortion (compared to the analog
responses) which is inherent to digital filtering, is illus-
—~trated by all four curves in Figures (3.11) - (3.14). Since
z ! = e_Ju~)T has a period of 2w, then the transfer functions
H(z;l) also repeat with the same period. Consequently, the
-6N dB/octave slopés of a lowpass filter cannot continué
-dindefinitely as the frequency increases, but must eventually
become flat at the Nyquist rate. In many cases however, the
attenuation reaches lafge enough values to cause no practical

problem (e.g. the 5th order lowpass filter attains a minimum

of -82 dB).
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The final investigation in the frequency domain was

to obtain the magnitude and phase characteristics for digital
éllEass filters. These filters pass all frequencies unattenu-
ated, but alter the phase of the output relative to the input,
as the frequency varies. They can therefore, be used to com-
pensate for phase distortion in another network[S]. This type
of filter has poles and zeroes which are mirror images of each

other across the jw axis in the complex frequency plane, and

therefore, has a transfer function of the form

H(s)

where p*i and pi are a conjugate pair of poles. The pole-
zero pattern for a 5th order allpass filter is shown in
Figure (3.19). It is more cénvenient hbwefer, to regroup
the poles and zeroes so that

2p.

N
H{s) = =1 |1 - t 1 (3.2)

==

i
+ + D
&% B, B

Application of the above theory to Equation (3.2) leads to the

discrete transfer function
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which is identical-in form to the H(z !) for a highpass

jw digital filter derived by the same
method, so that some gain is ex-
pected near the Nyquist frequency.

Both'the'magnitude and phase charac-

teristics for fifth and tenth order

allpass filters are presented in

Figures (3.16) and (3.17), along

with the corresponding results
Figure 3.18 based on the bilinear transforma-

tion.

The magnitude curves show that the bilinear charac—
teristic is perfectly flat over the total frequency range,
while the‘C-A characteristic is flat [<0.05 dB] for 94%
of the Nyquist interval. Centred about the Nyquist frequency
is a gainband with a péak gain of about 10N dB, where N is
the order of the filter. Based on this curve alone, our
realization is definitely inferior; the phase characteristics

however, possess a surprising property.

For both realizations, the phase curves are irregﬁlar
near w = 0.0 rad/sec . Past about 2 rad/sec, the bilinear
curves start to change monotonically from 0° to -360°

while the C-A phase curves decrease almost linearly over

86% of the Nyquist interval, the rate:increasing with the
order, N. The linear phase vs. frequency curves mean that
the delay, - 8¢ 1is constant over 2<w<27 rad/sec for each

. ow
order of filter.
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The delays derivéd from these curves were 0.6,
0.8 and 1.1 sec for the 5th, 7th and 10th order filters.
Evidently then, the delay will be about 1.1NT Where N is
the order and T 1is thg sampling period. This unique phase
‘chdracteristic which-éllows this filter to function as a
fixed delay element , is a result of the particular trans-

formation from analog to discrete domains.

3.4 Time Domain

The equations (2.8), (2.18), (2.21) and (2.24) ,‘
which are the fundamentél difference equations for the four
cascade filters, allow us to investigate the time-domain
behaviour of these digital filters. In particular; the
transient response can be determined and the steady state
response can be verified [the steady state magnitude and
phase are known from H(z-l)]. It is in the form of differ-
ence equations, naturally, that digital filters afé implemen-
ted to process a time sequence, since'they are the time-dom-

ain expression of the particular filter.

Seventh order poles were used to set up the difference‘
equations for a 14th order bandstop digital filter. (Fig-
ure (3.1) summarizes the particular values of parameters)
The cascade realizatioﬁ had seven blocks of the form of
Figure (2.7 ) and the input to the first block was a sampled
sine wave with a frequency of 1.0 rad/sec; the output of

the seventh block is shown in Figure (3.18) where it is
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evident that the system has settled to about the 0 dB level 70
after about nine cycles. A high frequency component [107 rad/
sec] gives the waveform a ragged appearance up to this time.
Note also the delay at the beginning, which is the finite

time taken for the signal to propagate through the filter.

It is simply the sum of seven delays each T second long, or

0.7 sec in this case.

Using the same bandstop filter, we changed the input
to a sampled sine wave with a frequency equal to the centre
frequency of the bandstop filter, 3.0 rad/sec. Figure (3,19)
shows the characteristic response for high order bandpass or
bandstop filters at their centre frequencies. To approach
the attenuation predicted by the frequency analysis for this
filter [-280 dB], the filter requires a delay exceeding
100 cycles. Even then there is evidence which suggests that
this 1level cannot‘be achieved without increased precision in
pole locations at least. The evidence is this: since the
input is a sequence of real numbers, the output must also be
real, regardless of the complex operations involved in the
intermediate stages. It has been found experimentally,
however, that the output does contain a steady state iﬁagin—
ary component with an rms value on the order of 3.0 x 10 '?®
for unity amplitude input. (Figure(3.20a)) Such a residual
value which must be présent also at the real output, is the
result of the seven decimal approximation of the poles loL%l

tions and also the approximation in the convolution integral

{Section 2.3). This effect, analogous to crosstalk in a



i - |

5 H

o il I J il I{J”" !E!l il Ll A 0 o
i i“u L L e




Real Output

Imaginary

=2+ 16249E=01
-1,33409€=-01

Sequence Output Sequence
=7.39318E~01 *1,11022E-13
~7.86034F=01 1.15463FE-13

C-8,54981F=01 =-8,08242E-14
-8,98393F-01 ~,03961E=14
~9,35449E=01 -1.19463F-14
=0, T4623F=01 ~4,20326F=14
“9,796245=01 1.17240F=13

" =1,00981E4+00 =1 .82965€-13
-0 87361F=01 2,37144E-13
=-1,00153F+00 -2 7444TE-13
~9,58957F~01 2.88658F-13
=9,50202F=01 =2.31553E=-13
-8,95034F=01 ?2.45137E=13

 =n,59022F=01 ~1.,82077E~-13
 =T7.96833F=01 9,59233E-14
| =7.33278g-01 1.24345FE=14
 =6,66726FE=01 =1.21680E=13
=5,7953%4FE=01 2.27594E-13
-5,08688F=01 -3,20188F=~13
=4 ,04840F~01 3,91687€-13
-3,28473F=01 -4,25215E-13

4,30767E~-13
=3.83582FE~13

-l 066RTE=02
6.81391F~02
1.75070E'01
2067444E'01
3»640345-01

 44,56042E-01

3,08864F=13
=2.00451E=13
7.27T196F=14
T H.19504E-14
-1.97620E=13
3.21076E=13

Figure (3.20a)

IMAGINARY

IMAGINARY
—— . -13
{0} ' . rms ~ 10
Input DIGITAL Output
, FILTER —— .
{x(nT)} — {y(nT) }
REAL REAL

Figure (3.20b)

L



73

two channel system, prevents output signals below about

-260 dB, unless greater precision is used as$ noted above.

To illustrate the behaviour of these digital filters
further in the time domain, we chose as input, a sampled sine
wave at the centre of the passband contaminated with band-
limited Gaussian noise. The filter used was a tenth order
Butterworth bandpass filter with a variable bandwidth. Figure
(3.21)shows the total input signal where the first numbers
to enter the filter are nearest the origin. Bandwidths of
0,5, 1.0, 5.0 and 10.0 rad/sec were used successively to
determine if the digital filter would perform like its.
analog counterpart. These four outputs are shown in Figures
(3.22) - (3.26). As the bandwidth decreases, the spectral
purity of the-output increases, but so do the rise time (TR)
and the delay (TD) across the filter. Figures (3.26a,b)
summarize the invérse relationships between each of these
times and the bandwidth, B. Although both curves are hyper-
bolas, the delay curve is asymptotic to 1.0 sec since there
is an inherent 1.0 sec delay across a 10th order filter,
regardleés of the Bahdwidth. Note that the rise time is
defined as the time for the envelope of the transient to rise
from ld% to 90% of its steady state value [compare with (8)],
and the delay is defined as the time taken for the envelope
of the résponse to rise to 50% of its steady state value.

The observed relation T « 1 is further evidence that the

B
digital filter functions in basically the same way as the
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analog counterpart.

Figure 3.27 shows the output of the same bandpass
filter [but using B = 0.2 rad/sec] for an input of bandlimi-
ted Gaussian noise only . Evidently, the filter has selec-
~tively passed only a small portion.of the frequency spectrum
of the noise, centred aroudd 3.0 rad/sec resulting in an output
which closely approximates a sinusoid of frequency 3.0 rad/sec.
Again, the filter functions as a good approximation to its
analog counterpart, so we can conclude that the basic trans-
formation is valid. Since fhe power [i.e. the mean square
value] of the random function is just the variance which was
chosen to be o = 1.0, then the pbwer asSociated with the
output signal should be just the fraction of the total band-
width which the filter passes [bounded by the 3 dB levels].

This is approximately

2 X 1.0

jos]
X
Q
N
I
o

)

1]

0.0064 [watts] ,

and hence, the rms value of the sine wave at the output is
0.08 [volts]. In comparison, the measured value 1is in the
range 0.075 - 0.085, the variation resulting from the small

but finite bandwidth of the filter.

There is a point to mention concerning the '"noise"

used in the above experiments. The computer subroutine

produces normally distributed numbers (p = 0, o% = 1)






: : %
whose autocorrelation function, .

+n ’
¢ (nT) = 1 ) £, (kT)f, (nT + kT)
2n + 1 k=-n
calculated over a few thousand samples, closely approximates
that for '"white'" noise. However, the sampler which operates

at a frequency 1 hz, effectively bandlimits this white noise

to 1 hz before the sequence enters the filter proper. The

2T _
filter then shapes the spectrum of this new noise input.

3.5 Summary of Results

From the experimental results, we have observed the

following points:about the convolution-approximation method:

'tl] the digital cascade realization provides very
good approximations to all the basic analog filter character-
istics, excepting.the gainbands in the highpass and bandstop
filters;

[2] tﬁe cascade realization is the only aeceptable
one for highpass aigital filters, and is definitely superior
to the parallel version, for bandstop filters;

[3] the parallel realization gives slightly better
results when applied to lowpass and bandpass filters, than
the cascade method,does;b |

[4] in many cases, these digital filters perform in

the same way that their analog counterparts do.
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Chapter 4 Extensions and Improvements
4.1 Introduction

In this concluding chapter, we make several suggest-
ions regarding improvements and extensions to this work. The
most important result is that the impulse invariant transfor-
mation (Section 1.5) can be derived as a special case of the
C-A method. Furthermore, the inability of the impulse invar-
iant method to produce satisfactory highpass and bandstop
filters is given a physical explanation. AA first order approx-
imation of the convolution integral and a consistent'"impulse

sequence'" for digital filters are also derived.

4.2 Derivation of the Impulse Invariant Transformation

The original approximation of the convolution integral
(Section (2.3)) has the effect of a zefo—ofder hold, so that
by the timé the sampled value is used in a calculation, it 1is
T seconds old; i.e. x(1) = x(nT-T) is used at time nT. It is
equally valid, and evidéntly more up-to-date to make the
approximation x(t) = x(nT) and to use this value immediately
at time nT.>Figure (4.1) shows the difference graphically.
Doing this, we find that the basic lowpass discrete transfer

function corresponding to H(s) = 1/(s + pi) is
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o ~p.T
H(z ') = [1 - e % 1
D.T
¥ 1 - e “a z 1
= Ki
T . , (4.1)
1 - e z 1

The only difference between Equations (4.1) and (2.10) is the

complex delay factor, z !

, in the numerator of Equation (2.10).
It is important to note that except for the constant Ki’ Equation
(4.1) is just the impulse.invariant_transform of 1/(s + pi).
Furthermore, we shall show in Section 4.3 that this constant
overcomes the difficulty of large gains usually encountered in

[4]

impulse invariant digital filters.

The response characteristics derived from Equation (4.1)
for lowpass and bahdpass filters are virtually identical with
those in Figures (3.2)and(3.3) and therefore they are not
included here. However, with the highpass and bandstop filters
we meet a pfoblem Whiéh is similar to that illustrated by
Figure (2.9). In that cése, we showed that a half delay in
the direct 1link led to useable highpass and bandstop charac-
teristics. In this case, we find both experimentally and from
theory that the solutionriéla half advance in the direct
link; but such a solution is not realizeable as a difference

i/2

equation (even after ridding the expression of z )since

future information is necessary to calculate the output at
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any instant. This restriction in the time domain complements

the restriction in the frequency domain (Section 1.4).

It is evident now, that although the impulse-invari-
ant and C-A transformation are closely related, the latter
has the distinct advantage of being able to realize highpass

and bandstop digital filters, as well as lowpass and bandpass.

4.3 First Order Approximation of the Convolution Integral

The accuracy of the convolution method can be increased

by improving the approximation of the integral,

nT p;T , '
e x(t)dt . So far we have approximated
nT~T

x(t) by the first term in its Taylor expansion, by setting
x(t) = x(nT-T); Figure (4.2) shows how the approximation can

be extended by using the first two terms to obtain: [Figure

(4.2) is on Page 52]

x(t) = x(nT-T) + {x(nT-T) ~ x(nT—ZT)}[T - (nf—T)]

(4.1)

The right'sfde of Equation (4.1) which indicates that x(t)

is now approximated as a ramp, can be inserted into the inte-
gral and the expression reduced as was done in Equations
(2.7) and (2.82a). The final form corresponding to Equation

(2.10) is:
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H(z *) = ¥Y(z %)
_ (4.2)
X{z 1)
__ *p.T _ _ =P T
= 7z 1leg ? +z 31 -2z YH(e * - [1 - piT]).
“P;T _ -p;T _
1=e * 270 (l-elzl)pizT

This form emphasizes that the effect of adding more terms to
the Taylor expansion of x(t) is to do the same to the discrete

transfer function H(z !).

Obviously, this approach can be extended to higher
order approximations only if the higher derivatives can be
calculated accurately enough. These.approximations involve
more and more of the past inputs, but only the immediate past
output explicitly. For example, we approximate the second

derivative as

x(nT-T) - 2x(nT-2T) + x(nT-3T)
' T

4.4 The Transition from Analog to Discrete

We have already seen in Chapter 2 fhat there are
important subtleties in the transition from analog to discrete
descriptions of filters. To assure ourselves that results
such Equation (2.10) or (4.2) are reasonable counterparts
of the original, 1/(s + pi) , without actually calculating

the response curves, a basic test is available.
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The best test of a result in the digital domain is
to see if it leads in the limit, as T » 0, to the corresponding
~result in the analog domain. For example, the Nyquist fre-

quency, , which 1limits the useable range of any digital

L

¥
filter, recedes toward infinity as T » 0. Thus in the limit,
a non-repeating response characteristic is attained, identical
to the analog characteristic. Of course, the input and out-
put signals are now continuous too. Further, the basic C-A
transformation (Equation (2.10)) bears out this idea: setting

~ST _
= e and applying 1'H6pital's rule, H(z !) reduces

7 1
exactly to the original H(s). However it is common in the
literature [2] to find that the digital equivalent to a unit
impulse is the sequence {1,0,0,0,...} . This is obviously
independent of T, the sampling period, so that there is no
continuity between the digital and analog expressions of the

unit impulse.

~To rectify this inconsistency, consider the difference

equation derived from Equation (2.10):

-p: T _ -p.T ¢ ;
y(nT) = [e ' ]y(aT-T) + [ 1 (1 - e * )]x(nT-T) .

Pi

Table (4.1) shows the response of this digital

filter to an input sequence

x(nT) = {A,0,0,0,..}



with all initial conditions assumed zero: 89

Output Input

Time y (nT) - x(nT)
0 0 A
_piT
T 1 (1-e 7 )A 0
p.
* —plT —piT
2T 1 (1 = & )e A 0
p. .
1 -p;T  -2p,T
3T 11 -e Je A 0
L ] pi L4
Table (4.1)
. '(n'l)PiT
The response has the form Kie . (4.3)
Now since both the real part of P; and T are small,
. . _p‘.T
the condition Re[pi]T << 1 holds and the constant (1 - e . )/pi

reduces to T for all poles p,. Equation (4.3) becomes

. -(n—l)piT
y(nT) = ATe . n>1 (4.4)

If the impulse response is to be the sampled version of the
impulse response of the corresponding analog filter, then it

is evident that the value of A is 1 , and the input sequence
T
corresponding to a unit impulse should therefore be

x(nT) = { 0, 0, ...} . Such a conclusion is also

1,
T

a _direct result of our assumption that x(t) is constant over
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-the sampling period T. Since the strength of.an impulse, §(t)
is determined bf the area integral f: §(t)dt , then the discrete
equivalent of a unit impulse over T seconds is just 1 . Further-

T
more, there is the continuity we sought, since

1im {

1, 0, 0, ...} = &(t)
T-0 T :

4.5 The Periodic Nature of the Discrete Transfer Function

The fact that the discrete transfer function H(z'l) is
periodic can lead to misunderstanding of the digital filfer's
capébilities. .To illustrate, suppose we have a (fictitious)
analog filter with an infinitely repeating characteristic, just
as a digital fiiter has (Figure 4.3). Depending on the period,
certain regularly spaced freqqencies in the analog input would
be attenuated in exéctly the same way, and these frequencies
would then appear at the output. The difference in the digital
case is that the frequency of a digital signal is determined
by its envelope, so that the maximum frequency which can be
represented unaﬁbiguously occurs when the samples are alternate-
ly positive and negative. In other terms, if at leést two
samples per cycle are taken (on the average), the original
analog fréquency is retained in the digital signal. However,
when'less than two samples per cycle are taken, the analog

frequency is lost. In fact, the digital frequency which is
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produced is less than the Nyqﬁist frequency by.an amount eqgual
to the difference between the frequency of the anaiog signal
aﬁd the Nyquist rate. (A proof of this is given in Appendix IIi)
For example, if the Nyquist rate is 10w rad/sec and the iﬁput
analog_signél has frequencies of 137w rad/sec and 7r rad/sec,
then the input and output digital signals will have a. frequeney
of 7m rad/sec .only Figure (4.4) illustrates the
'situation. "The important point to observe is that the output
digital signal is strictly limited to the baseband 0 - m
rad/sec regardless of the analog input frequency. -ThisTeffect

[1;2; 5] :

-

is known as aliasing

One straightforward use of this frequency shiftiﬁg
préperty of sampling is discrimination of an amplitude modu-
lated signal. For example, suppose we have an A.M. signal
with a carrier of 1000 khz and an audio spectrum from 100 to
7500 hz. Therefore, the sampling rate should be at least
15000 hz, but also 1000 khz sﬁould be an integer multiple of
the exact sampling rate. Simple considerations show. that
a sampling rate of 15.15 khz satisfies both constraints, and
the result is a sequence with frequencies in the
baseband 100 to 7500 hz. Digital to analog conversion would

then recover the original audio signal.
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APPENDIX I Formulation of the Direct Method

In this Appendix, we consider the direct formulation
of digital filters along the same lines as the parallel and
cascade which this thesis has developed. The direct approach
amounts to the conventional state-space description commonly
used in control systems. We outline the mathematics and find
that although the direct method is not suitable for our pur-
poses, the‘analysis does lead to the useful reduction of the

state-space which has been used in this thesis.

A transfer function of the form (2.1) leads to a vector

L 9
differential equation o]

At t A(t-1)
x(t) = e x(0) +J & Bu(t)drt
0

where éAt is the transition*matrix formed from the coefficients
of Equation (2.1). This equation can be diécrefized in'exactly
the same way as done in Equations (2.7) and (2.8) to obtain a
vector difference equation

' AT AT -1 '
x(nT) = e x(nT-T) + [e ~-IJA "Bu(nT) ; I is the unit

matrix.
In order to realize this equation as a digital filter,
the matrix coefficients must be evaluated. This involves
AT

a series approximation of e and it is a time-consuming

calculation especially for high order systems; furthermore,
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* b

_(N—l)z zeroes; a significant

Py

since any NxN A-matrix has
amount of calculation time is wasted manipulating them.
For example, a 10x10;A5matrix has 81 :zeroes.

Further cpmpiications arise in this approach when
we wish to descfibe other than lowpass systems. First,
it becomes a tediops job of algebraic manipulation to obtain
the analog transfer function for highpass, bandpass and
bandstop filters, sinqe'the calculation of the aj and bi
i% not readily programmablé for the general case. Secondly,
to obtain a vector difference equation of therabove form for
these filters requires four transformations.[g] Finally,
there is a difficulty which pertains to even the lowpass
formulation using the Direct method. To illustrate it, we
consider the expansion of the above vector difference equation

AT _ _
where the elements of e are defined as ¢ii and the elements

of [eAT—I]Ale are defined as zj

x; (nT) = ¢11X1(HT‘T)+-1¢1NXN(DTTT) + gru(al-T)

+

x,(nT) = ¢21X1(HT'T)+...¢2NXN(nT-T) z;zu(nT*T‘)

xN(nT) ¢le1(nT—T)+;}¢NNxN(nT-T) + gNyu(nT-T)

if now we apply the Z-transformation to each equation, the

result is:
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-1, -1 =1
xl(z ) z [¢11Xl + ¢12X2 + .o+ ¢1NXN ] # §1Z U
X (z-l) = 271 [d,-Xq + Dy5K,:+ o+ b, X ] + v~z-1U

2 2171 T Y2zttt v 2NN €2
X (z'l) s 5 (6. X + ¢ X, + + oo X ]+ 2"ty
N N1'1 N2"2 NN'N EN

Immediately, we see that if the discrete transfer function
: 1. . . . .
H(z ) is desired, a great deal of extra calculation is

necessary to extract Xl/U from these N equations.

All the above difficulties can be avoided if we set
N=1, i.e. so that there are ho zeroes in the A-matrix. This
amounts to reducing Equation (2.1) to a product of N first
order factors and treating each as an individual transfer

function, although they are complex.

*%*%%\ paper based on the material developed in this
thesis, has been accepted for publication in the Proceedings

of the Institute of Electrical Engineers.
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RUN(S)
SETINDF

PROGRAK TST(INPUT sOUTPUT s TAPES=INPUT s TAPE6=0OUTPUTsTAPE10)

THIS PROGRAM IS A DIGITAL FILTER BASED ON A MODIFICATION OF
STATE SPACE ANALYSIS. THE INPUT INCLUDES THE POLES COF A
LOWPASS FILTERe IF A TRANSFORMATION IS TO BE MADE TO HIGHPASS
BANDPASS OR oANDSTCOP THEN TriE BANDWIDTH AND CENTRE FREQUENCY
(OR. CUTCFF FREQUENCY) ARE ALSO REQUIRED. THE ANALYSIS USES
COMRLEX ARITHMETICe REGARDLESS OF THE ORDER OF THE LOWPASS
OR TRANSFORMED FUNCTIONs IT IS REDUCED TO A SET OF CASCADED
FIRST ORDER FILTERSe. EACH CASCAUED BLOCK MAY BE MADE UP OF
ONEsTWO OR THREE PARALLEL FILTERS, DEPENDING CN THE TYPEs

CASCADE

NONOOONNONNNOONONONON

DIMENSICN PLP(]UO)sCl(IO')sC?(lb”)eP(lOb)sp(lCC)aHT(IOO)
DIMENSION PLOTR(1C1)sT1(1CQ)

DIMENSICN Y(21C0U)sYY(100,)sYYY(100)

DIMENSION A(luv)9XX(lOO)9AXX(lCJ)

COMPLEX XsXXsXXX

COMPLEX YsYYsYYY

COMPLEX HTsCMTsRsPsPLPsC1sC2sGAMAsCCsCPsT1sF1sF2sF3
COMPLEX V1sV2

REAL LP

DIMENSION HPLOT(2C00s2)

PI=3.14159265

P2=2.0%P1 *

OM=P2/6.0

T':Otl

THE FOUR FILTER TYPES ARE READ IN.

aNeaNaANANS!

RCAD

59555) LPsBPsBSsHPsAP
555 FORMAT(1Xs5A2)

THE LOWPASS POLESs PLP(J)s ARE READ IN AND COUNTED.

aNaNe!

NPOLES=0U

GAMMA=1.0

DO 5 K=151CU

READ(557) PLP(K)

IF(PLP(K)e«EQel30040) GO TO 8

WRITE(697) PLP(XK)
7 FORMAT(1Xs2F15.8)

GAMMA=CGAMNMA*PLP (K)
5 NPOLES=NPOLES+1
WRITE(699) NPCLES
9 FORMAT(1Xs113)

NBLOX=NPOLES

(€]
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C
C
C THE TYPE OF TRANSFORMATION IS CHOUSENe IN ALL CASES THERE WILL BE
C INBLOXY CASCADED SECTIONSe WITHIN EACH SECTION THERE WILL BE ‘
C ONE(LP) s TWO(BP OR HP) OR THREE(BS) PARALLEL SUBFILTERS.
C THE NUMBER OF PARALLEL BRANCHES IS CALLED 'NPATHS!'.
.C ' '
C
C BlW IS THE BANUWIDTH OF THE bP OR 8S FILTERS. WO IS THE CENTRE
C FREQUENCY FOR BS AND BPs OR THE CUTOFF FREQUENCY FGR LP AND HPe
C
C s
NPOLES=NBLOX
READ(55557) TYPE
557 FORMAT(1Xs1A2)
WRITE(6s557) TYPE
WO=3.,0
BW=1e0U
IF(TYPELEQ.3P) GO TO 165
IF(TYPELEQ.BS) GO TO 166
IF(TYPELEQ.HP) GO TO 167
IF(TYPESEQeAP) GO TO 169
c . .
C THIS BLOCK DOES THE LP TO LP TRANSFORMATION.
C
DO 499 K=1sNBLOX
P(K)=PLP(K)*w0
R(K)=WO
CL(K)=CEXP(=P(K)*T)
499 C2(K)=(1e0U-C1(K))/P(K)
NPATHS=1
FACTOR=1eu A
GO TO 2222 ' ' ~
C .
C THIS SLOCK DOES THE LP TO BP TRANSFORMATION
C
165 DO 1010 I=1sNBLOX
12=2%T
121=12-1

T1(1)=8U*PLP(1)/2.0 -
P(I121)=T1(I1)+CSQRT(TL(1)#%2-10O%%2)
P(I2 )=T1(I)=CSQRT(T1(I)**2=-y0**2)
F1=3W*P(121)
F2=BW*P(12)
F3=P(121)-P(12)
R(121)=F1/F3

1010 R(I2)=F2/F3
NPATHS=2
FACTOR=1,0
NPOLES=2*NBLOX
DO 1013 I=1»NPOLES
C1(1)=CEXP(=P(1)%T)

1013 C2(I1)=(1.0=C1(1))/P(I)

GO TO 2222

C .

C  THIS BLOUCK DOES THE LP TO BS TRANSFORMATICN.
C

166 BW=BW%2.0


http:IF(TYPE.EQ.AP
http:IF(TYPE.EQ.HP
http:IF(TYPE.EQ.BS
http:IF(TYPE.EQ.BP

WO=WO%2 4«0
DO 1011 I=1sNBLOX
[2=1%2 '
121=12-1
T1(I)=BW/(2.CXPLP(I))
P(I21)=T1(I)+CSQRT(TL(I)**#2-y0O%*%2)
P(I2 )=T1(I)=CSQRT(TL(I)*%2-1O%%2)
CF1=(BW/PLP(I)%%2)%P(121)
F2=(BW/PLP(I1)%%2)%P(12)
F3=P(121)-P(12)
R(I21)=F1/F3
1011 R(I2)=F2/F3
NPATHS=2
FACTOR=2.,0U
NPOLES=2%NBLOX
DO 1014 1=1sNPOLES
Cl(I)=CEXP(=P(I)*T)
1014 C2(1)=(1eC=-Cl(I))/P(I])
GO TO 2222
C
C - THIS BLOCK DOES THE LP TG HP TRANSFORMATION.
@ .
167 BW=BW%*2.0
WO=W0%2.0
DO 1012 I=1sNBLOX
P(I)=WO/PLPI(I)
R(I)=WO/PLP(1)%%2
Cl(I)=CEXP(=P(I1)*T)
1012 C2(1)=(1ev=C1(I))/P(1])
NPATHS=1
FACTOR=2.,0
GO TO 2222
169 DO 1U1l5 I=1sNBLOX
C1(I)=CEXP(=PLP(I1)%T)
C2(1)=(1s0-C1(I))/PLP(I)
1015 R(1)=2.U%PLP(1]) )
NPATHS=1
FACTOR=240G

C
C . -
C THIS SECTION INCREMENTS THE FREQUENCY AND CALCULATES
C  THE RESPCNSE.
C
C
2222 CONTINUE
NFREQ=2
NF=FACTOR

NB=NBLOX+1

“NPB= IS THE NUMBER OF NON-DIRECT PATHS CONNECTING
INPUT TC OUTPUT. '

NONOONN

NPB=NPATHS*MNBLOX
DO 601 KK=1sNFREQ
READ(5s55) OMsCYCLE
WRITE(6955) OMsCYCLE



aNaNa!

NN OONON

55 FORMAT(1Xs2F156)
MM=CYCLE*(P2/0M) /T

THE SYSTEM IS INITIALLY RELAXEDS

DO 69 K=1sNB
XXX(K)=0e0
69 XX(K)=0.C

DO 44 I=1sNPB
YYY(I)=04U
44 YY(I)=0eU
DO 602 M=1sMM
EM=M
H=T*EM
X(1)=SIN(CH¥*H)
26 IF(FACTOR«EQe2.0) GO TC 71

=FACTOR= 1S5 A PARAMETER WHICH DETERMINES THt STRUCTURE
OF THE FILTER. IT TAKES THE VALUE 1.0 FOR BP AND LP»
AND THE VALUE 20 FCR BS AND HP..

DO 72 1=2sNB
IF(TYPE«EGeLP) GO TO 80
L=2%]1-3

GO TO 81

80 L=I-1

81 DO 70 JU=1sNPATHS
INDEX=NF+J
V1=Cl(L)*YY (L)
V2=R(L)*C2(L)*XX(I-1)
Y(L)=V1I+((—10)%¥XINDEX)*VZ

70 L=L+1
X(I)=Ue0
DO 72 K=1sNPATHS

72 X(I)=X(I)+Y(L-K)

GO TO 38

71 DO 76 I=2sNB
IF(TYPEEQeHP«ORTYPE.EQsAP) GO TO 82
L=2%]-3
GC TO 83

82 L=1-1
IF(TYPE.EQesAP) GO TO 84

83 X(I)=XX(I-1)/PLP(I-1)
GO TO 85

84 X(I)=XX(I-1)

85 DO 74 J=1sNPATHS
INDEX=NF+J
V1=Cl(L)*YYY (L)
V2=R(L)*C2(L)*XXX(I-1)
Y(L)=V1+((=1e40)*%XINDEX)*V2

T4 L=L+1
DO 76 K=1sKNPATHS

76 X(1)=X(I1)+Y(L=-K)

38 WRITE(6+96) X(NB)

96 FORMAT(1Xs 2E15.5)

100

McMASTER UNIVERSITY 1 1RBADY
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HPLQT(I;K<)-RLAL(X('3))

THIS BLCCK SHIFTS THE X AND Y VALUES BACK OMNE UNIT
IN TIMEe THIS IS THE MEMCRY.

aFalalalaNe!

37 DO 6LuU K=1sNB
XXX (K)=XX(K)

600 XX (K)=X(K)
DO 602 K=1sNPB
YYY(K)=YY(K) =

602 YY(K)=Y(K)

6U1 CONTINUE
CALL NAME
CALL PLCT(44U35409-3)
DO 124 KJ=1sNFREQ
CALL PLOT(845904C5s2)
CALL PLOT(UeUs=24553)
CALL PLOT(UeUs+2e592)
CALL PLOT(UeU3s0eCs3)
EMM=EN ;
DO 123 I=1sMi ‘ #
EM=1 .
X=EM%8 e 5/ EMM
Y=HPLOT(IsKJ)
CALL PLOT(XsueCs3)
CALL PLOT(XsY»2)

123 CONTINUE

124 CALL PLOT(154C350405=3)
CALL PLOT(GeuUsCeUs999)
STOP
END
SUBROUTINE NAME
CALL PLOT(les4es3)
CALL LETTER(14510590sles4es14HCARNEGIE AG107)
CALL PLOT(154UsCe55=3)

RETURN
END
' 6400 END RECORD
LPBPBSHPAP
061564345 «9876883
061564345 9876883
«4539905 «8910C65
« 4539905 -+8910065
« 7071068 «7071068
« 7071068 —«7071068
«8910065 4539905
8910065 -e4539905
«9876883 e15643245
«9876883 —e1564345
100040 Ce0
BS
300' 1}000
le0, 10.0

Cb TCT 0288
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APPENDIX II Description of the Programs

The description of the actual programs which were
used to illustrate the above theory will be carried out in
two parts: first, we present a simple flow chart to estab-
lish the general nature of the programs with a minimum of
complication; second, the actual programs, which are divided
into blocks by explanatory COMMENT cards, will follow. They

are written in Fortran 1V.

The flow diagrams for both time and freQuency domains
are shown below. They have a major section of calculations
in common, with only the last two blocks-différent. The
only major difference between the cascade and paraliel pro-
grams is the calculation.of the residues of the original
lowpass filter for the parallel case. Only the cascade

programs are included.

Flowchart:

READ IN THE LOWPASS POLES l

9

IF A PARALLEL REALIZATION
IS REQUIRED, CALCULATE THE
RESIDUES: OTHERWISE CONTINUE
: Y

CHOOSE THE TYPE OF FILTER
(i.e. LOWPASS, HIGHPASS etc)

1
CHOOSE THE CUTOFF FREQUENCY
OR THE CENTRE FREQUENCY AND
BANDWIDTH.

v
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CALCULATE THE POLES AND
RESIDUES OF THE TRANSFER FUNC-
TION OF THE FILTER.

¥
CALCULATE THE COEFFICIENTS,

Cl-1 and CZi'

TIME DOMAIN FREQUENCY DOMAIN

~.

FORM THE DIFFERENCE _ FORM THE TRANSFER
EQUATIONS. FUNCTION H(z )
] )
FEED THE INPUT SEQUENCE LET THE FREQUENCY
INTO DIFFERENCE EQUATIONS VARY_ AND EVALUATE
AND CALCULATE OUTPUT SEQU- H(z 1) AT EACH STEP
ENCE.

The results can then be accumulated and automatically

graphed (see the actual program for details) or printed out.
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APPENDIX ITI Basis of iFolding Effect
Consider for ease, the analytic continuous signal

jot
x(t) = e

A

which is sampled at the rate 1l hz, to obtain a sequence
: T A

jonT
x(nT) = e ,n=0,1,2,... AIII1

Suppose that the frequency w, is written as an

integral multiple of the Nyquist frequency, plus a fraction:
w = M, * Q 5 where Qx is the remainder, m an integer.

Substituting this into AIII1l we get:
jnTmwg * QXJ
2z
jk.m jQXnT
e e

1

x(nT) e

]

janT - :
=te , where k=mn an integer and wST = 27
It is obvious now that whatever the frequency of the
analog input, the frequency of the digital sequence is limited

to the baseband, i.e. Oéwéws

2
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