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ABSTRACT: 

A new method for realizing linear, time-inva~iant 

digital filters is developed and demonstrated. The result 

is based on the convolution integral. It is assumed that 

the specifications of the filter are known and fro~ these, 

an appropriate analog filter is chosen. The properties 

of this filter are then retained · by the digital filter 

after transformation. The behaviour of 16wpass, highpass 

bandpass and bandstop digital filters is investigated 

in both the frequency and time domains, for both cascade 

and parallel structures. Based on the~e results, it is 

evident that the parhllel ~tructure is sµpefior -for lo~pass 

and bandpass digital filters, and that the cascade struc­

ture is superior for highpass and bandstop digital filters. 
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PREFACE 

This thesis has the purpose of developing a 

simple but soundly based transformation for digital 

filters. Since linear, time-invariant filters are 

the main concern, the convolution integral is evi­

dently a suitable starting point. Inevitably, we 

are faced . with co~promise between accuracy and a 

useable result, but the experimental results show 

that the trade ~ is a good one. In fact, the method 

developed here is shewn to be the basis of another 

transformation, the impulse inva~iant. From this 

basis it is easy to understand the shortcomings of 

this method, and the advantages ~ tif ~the method which 

is developed in this thesis. 

-The theory has b~en extensively tested on a 

large general-purpose digital computer. We have not 

yet duplicated the arithmetic functions , and delays 

on a laboratory-built special-purpose computer. 

~ - . r., . ,' .. , .., 
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Chapter 1 The Basic Ideas of Digital Filtering 

1.1 Introduction 

Without the availability of a large, fast digital 

computer such as the CDC 6400, the following work on digital 

filters would have remained a fruitless and in fact, a use­

less idea. The computer's ability to perform simple arith­

metic operations many thousands of times per second, and to 

repeat such operations t~relessly is the key to the develop­

ment of digital filtering. 

Throughout the investigations, it became evident, 

although the only visible accomplishment was on paper 

(i.e. printouts and several decks of computer program card~), 

that the computer was both a sophisticated laboratory instru­

ment which could display results graphically or digitally, 

and an actual, physical realization of the particular digital 

filter specified in the instructions. The role of the deck 

of computer cards was to carry information as to how the 

available arithmetic functions should be "wired" together 

to realize the filter. The ease and speed with which a pro­

gram could be ·altered was an important feature which allowed 

investigation of many details of the filter's behaviour. 

The computer-human relationship in this project can be 

portrayed as a feedback system where the computer is the 
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forward path element which does only what it is told to do. 

The human is the summing device where the relevance of pre­

. vious output information is considered and combined with his 

previous ideas and any new ones so as to alter the instruc­

tions to the computer. From the initial transient period, 

where errors plague the program, to the steady state where 

finally the program is debugged, the feedback relationship 

is an obvious one. Yet it provides the basis for an idea 

which is important here: simply, it is that the parts of 

the system are not in constant communication, but transmit 

information to one another only at discrete times. '·Explicit­

ly, there is an inherent time delay between th~ discovery of 

an error or improvement and its implementation into a new 

program, and also a time delay before the new output is 

available. The system may therefore be described by Figure 

(1.1). The notion that the flow of information within a 

system is not necessarily continuous as in the familiar 

analog cas~, but that it may be discrete or sampled, is 

basic to the following work on digital filters. 

1.2 Digital Filters 

So that the meaning of the term ."digital filter" is 

clear, let us consider what is meant by both words individ­

ually. First, the term filter can be applied to many input­

output devices whether they are primarily electrical, mechan­
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Program processedPrevious and new 

in the computer:ideas independent _11-------­
inherent delayof computer output. 

l I Delay due to 1 
thought; · new ideas 

may arise from O/P 

Feedback Mechanism 

Figure (1.1) 

VI 
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ical or whatever in nature. The choice of ·the word ·filter 

over network or system implies that the frequency response 

of the device is of major importance. 

By the term "digital" we mean that the input signal 

to the filter is a sequence of numbers which is fed into 

the filter at a regular rate, called the sampling frequency~ 

Originally, this sequence may have been derived from a con­

~inuous voltage signal via an analog-to-digital converter, 

or it may be the original form of some information. In any 

case, the numbers of the input sequ~nce are processed by the 

filter one-by-one and each time a new number enters the 
..,. 

fil­

ter, a new number appears at its output. For large filters 

composed of several elementary filters ..i)1 cascade, · the num­

bers in the original input sequence are transformed several 

. times before appearing at the external out~ut. Within the. 

filter, though, ~e require .that e.ach internal input and out­
• 

put sequence remain in synchronism. In Figure(l.2) we 

illustrate the meaning of digital inputs and outputs. 

Figure (1. 2) 

t=O ji'r _n_I_G_I_r_A_1_F_·r_1_r_E_R_ t=O 

Input sequence Output sequence 
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1.3 Mathematical Description of Digital Filters 

So as to make the mathematical description of linear, 

time-invariant digital filters readily acceptable, we shall 

draw a comparison with the more familiar description of 

linear~ time-invariant analog filters. Corresponding to 

linear differential equations, t ·?place - t~ansforms .and the 

convolution integral, there are linear difference equations, 

Z-transforms and the convolution sum to characterize linear 

digital filters. As was suggested in Section l.~, the cal­

culation of each number in the output sequence of a linear 

digital filter is limited to some linear combination of past 

inputs, past outputs and the present input, if this is to be 

a causal filter. Thus, if the "present" is assigned the 

discrete time _parameter nT (where T is the sampling period 

·and n is an integer), then the present input · and output 

values are defined as x(nT) · and y(nT), respectively. Further­

more, both input and output sequences are defined only at 

instants of time corresponding to n=0,1,2,3, ... , so that 

the previous input and output sequences which are available 

are respectively, x(nT) , x(nT- T), x(nT-ZT), .. , x(O)~ and 

{y(nT-mT)} , where m=l,2,3, .. n. The most general linear 

input-output relation must therefore be the difference 

equation (1.1), 

n n 
y(nT) = l a.x(nT-iT) l b y(nT-iT) 1.1 

. 0 .l i:::: i=l i 

where the a. and b. are constant coefficients. If all the 
l l 
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bi are zero, then there is no dependence between the output 

at time nT and all previous output v~lues~ in other words, 

there is no feedback and the filter is non-recursive and 

absolutely stable. Otherwise, the filter is recursive and 

can be made unstable due to the feedback. It should be em­

phasized that in either case the filter · is completely charac­

terized by the a. and the b .. 
1 1 

In a second description of the output sequence {y(nT)}, 

we assume that the digital filter is completely characterized 

b~ its discrete impulse response,{h(nT)} instead of the 

coefficients a. and b .. For example, in one realization, the 
1 1 

digita~ equivalent of a first order analog lowpass filter 

responds to the input sequence {1,0,0,0, ... } with an output 

-nT/:r­sequence · {e }for n=0,1,2,.. Thus the impulse response 

of this filter is h(nT) = e-nT/T . Suppose .now the input is 

an arbitrary sequence of numbers. Each one of these numbers 

-· - ~wi 11 caus e the f i 1 t er to generate a · s ca1 e d - up or s ca1 e d - down 

version of its unit impulse response, with the origin of each 

output sequence shifted in time by T seconds from the previous 

one. Since we have stipulated that only linear filters ·are 

~eing considered, then the output is dete~mined by superim­

·pos ing the effects of each imp~lse response every T seconds. 

This relationship between input, output and impulse response 

sequences is conveniently described by the convolution sum 

n 
y(nT) = I h(nT-iT)x(iT) 1. 2 

i=O 
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Figure (1.3) illustrates the meaning of this expression for 

three ·. equal samples at the input . 

. The frequency domain properties . 6f a linear system whose 

differential equation is known, are determined by Laplace 

transform techniques. In a similar way, we can operate on 

linear difference equations using Z-transform techniques to 

determine the frequency characteristics of the digital model. 

Just as the operator ~ is interpreted as the time diffei ~ E£~r­

entiator in the continuous time domain, the operator ~- 1 is the 

unit delay in the discrete time domain. For example, if X(z- 1
) 

is the Z-transform of a sequence x(~T) then (z- 2 +z- 1 +l)X(z- 1 
) 

is directly recognizable as the Z-transform of x(nT-2T) + 

x(nT-T) + x(nT). We can use this technique to transform :Eqn. (1.1) 

and thereby determine the discrete transfer function H(z- 1
) 

as follows: 

n n 
= l a.x(nT-iT) - I · b.y(nT-iT) 

. 0 1 . 1 11= 1= · 

n ~ n + 
= I a.z- 1 xcz- 1 

)- I b.z - iY(z- 1
) 

i=O 1 i=I 1 

Since the Y(z- 1 ) and X(z- 1 ) in the right hand terms are inde­

pendent of the parameter i, they ca~ be removed from within the 

summation signs to obtain the transfer function 

n 
E a.z-i

H(z-1) = Y(.z-1). = · ·i=O · i 

n . 
X(z- 1 ) 1 + L: b.z- 1 

i=l l 



8 

. IN PUT OUTPUTj 

I 
x(O) IMPULSE RE~PONSE ' . h (nT)-x.(o)

I Ii- u ___J____J_ _.__._ , _ ___.__ _ _>1

' T : - . .4 T l" <'1 

...­- x(T) h (nT-T} "(I) 

.___..._...__ Lu..---__..___. ·-7 
T 

x(ZT) 

.,___,____________,.___ 
h (nT- 2T) X. (2T) . 

1. I I . 

Superposition of the Above Responses 

2 
-- ·-1 -- ~{nT- -kT)x (kT) 
n=O 

.I I ... 

Figure (1.3) 
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It is apropos at this point to menti0n that the digital com~ 

puter's memory makes it a natural device for the solution of 

difference equations because of the ease of realizing unit 

delays~ 

1.4 Review of Established M~thods for Realizing Digital Filters 

The following example will illustrate how a digital filter can 

be programmed on a general purpose digital computer. We start 

with a specific first order, lowpass analog filter described by 

1H(s) s + 1 

dy + y = x
or in the time domain by both 
~ t 

and y(t) = et/ e-TX(T)dT ~ 
0 

This is in fatt how most digital filters are designed: an 

an~log filter is first fitted to the required specifications 

(bandwidth, cutoff frequency, etc) and then a transformation 

from the s to z- 1 planes is cairied out. The _ two · most commonly 

referred to are the impulse-invariant and the bilinea~ trans­

formations. The first simply requires thai the impulse 

response sequence of the digital filter [H(z- 1 
)] be identical 

with the sampled impulse response of the analog filter [H(s)j. 

The bilinear method maps the left half s-plane onto the interior 

of the unit circle in the z- 1 plane via the substitution 

s = 2( 1 - z- 1 ). We sh~ll use both to illustrate the implemen­
T( 1 + z- 1 ) 

tation of a digital filter. 
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1Since the impulse response of H(s) = · is . . . s + 1 

h(t) = e-t , then the impulse response sequence of the digital 

filter is constrained to be . {e-nT} , n=0,1,2, .. for the impulse 

invariant transformation. Directly, the Z-transform of this 
00

\ -nT -n 1 = Y(z- 1 ) •sequence is l e z = _ e-lz-I X(z-l) and finally, the1n=O 
difference equation to be incorporated ~ into a computer program 

is y ( n T) = x ( nT) + e - Ty ( n T - T) . A b 1 o d~ diagram rep res en ting 

the action of this algorithm{Figure (1.4)] and an actual 

Fortran program follow: 

YY=O.O initial conditions 
DO 10 M=l,500 500 . iterations used 
EM=M 
X=SIN(EM*T) input sequence is a sampled sine 
Y=X+EXP(-T)*YY the algorithm of the filter 

10 YY=Y the delay or memory 

bilinear transformation involves algebraic replacement of 

2(1 - z-~)the Laplace variable s with so that the aboveT(l + z- 1 ) 

1 

filter transforms to H(z- ) = 1fl++zf-:)(T _ Z)z 

and its block diagram is shown in Figure (1.5). 

~ch of these t"ransformations is' limited to the realization 

of only certain types of digital filters, and even in their 

useable range care must be taken to assure decent results. 

Consider first the impulse invariant method. Filters derived 

with it include an unexpected gain factor not present in the 
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Figure (1.4) 
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L_ ...J 

Bilinear Version of Figure (1.4) 
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original analog filter, H(s) = a The correspondings + a 
= adiscrete transfer function is H(z- 1

) 1 - exp(-aT)z- 1 

and its de gain, found by setting z- .1 = exp(-jwT)I =l, 
w=O 

is a · for the case that laTl<<l, this gain factor
1 - exp(-aT)' 

reduces to -¥-' the sampling frequency and this is very large. in 

many filters[ 4l. Beside the above difficulty, a basic lirni- 1 
tation of this method is that it is not suitable for realizing 

highpass or bandstop digital filters. To see why, consider 

the highpass filter H(s) = s which is transformed to 
s + 1 

-·exp ( -T) z - 1 
H(z- 1 ) = 1 - 1 = 

1 - exp ( -T) z - 1 1 - exp(-T)z- 1 

As it~ pole-zero
i 

diagram indicates [Figure (l.6a}] the trans­

£er function lacks a zero near z-: 1==1,- ··i.e. -near w= 0 ; ' this zero 

is an ' essential property for highpass filters. The inability 

of this method to realize highpas s and bands~<>p filters is 

explained in more physical terms in Chapter 4. 
___..._,...-._Imaginary 

· - _;:'!)- ~iJ---+------- - ----- z- -T- ~ Rea 1 _____._--.............T~·=~ -

I 2 - i--..-:..--­

z-l plane cbJ 

Figure ( 1. 6) 
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The bilinear transformation overcome~ this difficulty by 

introducing a zero at zero frequency: [see Figure (l.6b) ] 

H(z-1) = ( 2(1 - z- 1) ) 
. ( T + 2 ) + ( T - 2 ) 'l1 

However, the bilinear transformation which crowds the whole 

real frequency axis (O~w< 00 ) onto the perimeter of the unit 

cir~le in the z- 1 plane, causes frequency warping[3,4] . This 

is especially important to compensate for in filters which 

have significant response near the Nyquist frequency, -z{ hz. 

Essentially, frequency warp~ng means that the specifications 

(e·. g. centre frequency) of the analog filter, are changed 

by the transformation to und~sired V3lues. As a result~a 

compensating process called prewarping must be applied in · 

many cases. 

1.5 Nature of a Hardware Realization 

We can take the physical realization of digital filters 

a practical step beyond its present form of a Fortran program 

in a general purpose computer, if we consider building a 

special purpose computer[ 5J. The essential functions which 
I 

are determined by inspection of either Figure (1.4) or the 

program, are adders, multiplie~s and unit delays. Now however, 

we become much more . intimately involved in the actual comput­

ing process: factors such as the number 0£ bits used in the 

arithmetic, the sampling rate of the A/D converter, and the 
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precise interconnection of sub-filters fo: good economy and 

perf6rman~e become very important for a successful realiza­

tion. A block diagram of the basic filter is shown in Figure 

(1.7), where the clock synchronizes the operation of the filter. 

We have assumed N bits to represent the fractional 

part of the digital input. Both registers, the adder-sub­

tracter, and the A/D converter are N-bit devices (exclusnve 

of the sign bit) which function in synchronism with a pulse 

sequence from the clock at ~he frequency ! hz. A single 
. . . T 

Clock pulse causes the registers to shift out the N bits in 

parallel, and after a small delay (<<T sec), to be loaded 

again from the preceding section. The output, y(nT), thus 

appears as a collection of No's and i's which are the 

coefficients of the N·bit bin~ry approximation to y(nT). 

1.6 Comparison of Digital and Analog Filters 

The accelerating interest in digital filters is partly 

derived from their several distinct advantages over conven­

tional analog fiiters [4). Until much higher speed computers 

are av(l_i~~b-~~-' -- ~h~--- ~ -~~~m ?f___~~P~~tance for digital filters is 

below about 1000 hz for real time use. In this range however, 

analog filters require capacitors and inductors of increasing 

physical size as the frequency decreases. Furthermore, these 

L's and C's are subject to variations as they age, and with 

temperature changes, whereas the coefficients entered into 

a register remain stable. 
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Conversely, one can intentionally change the filter's 

st~ucture simply by entering new coefficients. Depending on 

the capacity of the registers, the precision with which a 

.digital filter can be realized may greatly exceed that of an 

an~log filter built for the same purpose. The digital filter 
' 

has, naturally, no problems with leaky capac~tors or pickup in 

leads or in~uctors, although it does have a counterpart to 

thermal noise in resistors. This "numerical noise" [4 ] is 

inherent in digital filtering because of roundoff (or trun­

cation) . in the multiplications and additions f9r each itera­

tion. These operations are performed in registers which 
.: 

can 

approximate to within only 2-N(fbr N bit arithmetic) their 

digital inputs. Furthermore~ if A/D conversion has been used 

prior to the digital filter input, another error is incurred. 

To illustrate this noise, suppose that the multiplication 

l.26x0.85 is to be _performed .in 4-bit arithmetic. · Each num- · 

ber is truncated as follows: 1.2610-+ 1.0102 

;0.8510 -+ 0.1102 

and the product, truncated to its 4-bit equivalent is 1.000. 

Since the exact
1 
product is 1.071, then it is evident that the 

difference is due to a noise source superimposed on an exact 

multiplier, as Figure 

0.85 

1. 071 + 

[noise] 

. r~ 
..---~ 

ooo1. 26 

Exact Multiplier Figure (l.S) 

http:l.26x0.85
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1.7 Nature of this Thesis 

Our work deals with a basic problem in digital filter-

ing---that of determining the coefficients of the difference 

equation (1.1) for a specific filter. If we know the a. 
l 

and bi then the frequency response 6£ the filter is fixed. 

Although there ~are useful methods which do this(Section 1.4) 

in some circumstances, each has its own limitations. The 

following work desciibes the derivation and implementation 

of another method based on the convolution integral which 

has its own useful aspects. As we indicated in Section (1.4), 

the common transformations (impulse invariant and bilinear) 

are based on quite different criteria, neither of which is 

related to the basic description of linear systems, the 

convolution integral. 
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Chapter 2 Development of the Theory 

2.1 Introduction 

'In-- this chapter we pursue development -of -both a cascade 

and parallel model for an Nth order linear digital filter. 

A new transformation from the s to z-1 plane is derived, and 

it leads to a flexible method of realizing lowpass, bandpass, 

highpass and bandstop digital filters, which is readily adap­

ted to programming on a digital computer. 

2.2 Direct Formulation 

It is a fact in digital filter theory, as in analog 

filter theory, .that a given transfer function can be realized 

as a physical filter by more than one configuration. These 

basic structures are the direct, parallel and cascade filters 

and in digital work, they are by no means equivalent in their 

performance. -Kaiser[l] demonstrates that the direct realiza­

tion will be the most susceptible to instability as a result 

of approximating the coefficients a. aarid b . in Equation (1.1)
1 · 1 . 

by a finite number of bits in a digital computer. Furthermore, 

-because -0£ the difficult or -tedious work --required to -apply -the 

established transformations (Section 1.4) from the s to z- 1 

planes, the direct form of synthesis is ruled out. Finally, 

we refer to Appendix I where we demonstrate that the direct 

realization, derived by the same method which is used for the 

cascade and parallel structures in this chapter, is cumbersome 
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and not adaptable to a general computer program. 

2.3 Cascade Realization 

: ~C-0nsider a linear, time-invariant,. lowpass filter of 

order N, with a transfer function of the form 

KH(s) = (2.1)
N N-1 

s + + •. .. + ·a s +aN-1 s . aol 

where s is the complex frequency variab~e, K is a scale 

factor, and a to aN-l are positive, real constants. Express­
0 

ing H(s) in its factored .form, we have 

N N
1H (s) = K TI = K TI H. (s) (2.2)

i=ls + P. 
1 i=l 1 

where p. defines the location of the ith pole arid .the H,(~)
1 1 

are the elementary .first order transfer functions making up 

H(s). For convenience in analysis, we shall assume that the 

poles are all simple: they may, howevet, be complex. As is 

well known, Eqn (2.2) can be represented by the cascade con~ 

figuration shown in .Figure (2.1). The variables yi(t) . to 

yN(t) make up a ~et of ~tate variables of the filter and ex­

cept for the input y (t) and the output _y(t) = yN(t), the0
intermediate variables y1 (t) to yN_ 1 (t) are complex in general. 

It is clear from Figure (2.1) that we have reduced the 

filter to a cascade of N first-order sections, · each of which has 
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a transfer function of the form 

Y. (s)
1H. (s) = = 1 (2.3)

1 s + Pi 
Yi-l(s) 

Assuming the network is initially relaxed, we may apply the 

t . . 1 h f h . thconvo 1u ion 1ntegra to express t e response o t e 1 sec­

tion in the time domain as follows: 

(2.4) 


Now, since "time" on the digital computer is necessarily 

discrete, in Equation (2.4) we may successively set t .= nT 

and t = nT-T (with T denoting the sampling period, ~nd n an 

integer) to obtain: 

. .... TlnT .-pin -Pi T 
y. (nT) = e e'·' (2.5)

1 

0 
and 

-pi(nT-T)lnT-T .. PiT 
yi(nT-T) = e · e . _ Y{_ 1 (-r}dT (2.6) 

0 
These two equations can be combined by multiplying (2.6) 

-piT 
· bye and then subtracting the result from (2.5)~ The 

result is 

-p.T 
y. (nT) = e 1 y. (nT-T)

1 1 . 

(2.7) 
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The exact evaluation of the integral requires an analytic 

expression for the input y. (T) over the interval nT-T~T<nT; 
1- 1 

however, we can .proceed to an approximate result by assuming 

-- ~ Xaylor expansion of the input over each interval T. In the 

following derivations we have used the simplest expansion, 

namely that the input yi_ (T) of the ith section remains
1

constant over nT-T~T<nT. The remaining integration is simple 

and leads to a final difference equation: 

-p.T 	 -p·T 
y. (nT) = e 1 y. (nT-T) + 	 .!_(1 e i ) y. l (nT:.T) c2. sa)

1 	 1 p. 1­
1 

+ 	 + 

A [Cli] y.
1 

(nT-T) + [C2i] yi_ 1 (nT ... T) (2.8b)
c:::: 

Equation (2.8b) corresponds to the signal flow diagram shown 

in Figure (2.2). 

The cascade realization of the digital filter in the 

time ~omain consists of the tandem ~onnection of N sections 

of which the ith is defined by Equation (2.8a). Thus, for the 

complete digital filter we may write the following set of 

difference equations: 

-p .T -p T 

y l (nT) = e 1 y l (nT-T) -.... _!_c1 e i ) y (nT-T)


0P1 

-pzT -p2T 
Yz (nT) = e y 2(nT-!) + Lei e ) y1 (nT-T) 

Pz 

(2.9) 

-p T -p T 
e N e N ) y

N- 1yN(nT) ~N (nT-T) + 	 .!_(1 (nT-T) 
PN 



. • 

I - - · - - - - - - - - - l 

I 
c . I21~ 

I~ 
yi-l{~'Jl) I> [)/"~~-\.. }\~L) .. 1 >I yi(nT) 

I I 
I I 
I ~, I 
I c11 .
L _____________ J 

Convolution-Approximation Version of 

Nthe Basic Lowpass Digital Filter . . Fig~re (2.2) 
VJ 



24 
The output yN(nT) of the Nth section constitutes the output 

of the complete filter. Equations (2.9) co'rrespond to the sig­

nal flow diagram of Figure (2.3), where the c i and c i are
1 2

defined in Equation (2.8b). 

2.4 Discrete Transfer Function of the Cascade Lowpass Filter 

From the difference equation (2.8a), we find directly 

that the discrete transfer function H.(z-1 -) corresponding to 
1 

H. (s) of Equation (2.3) is 
1 

-p1·T z-1 
= Le 1 e )~~~~=-~ 

p. -p T (2.10)
1 - 11 1 - e z 

-sT 
where - z - 1 

= e The sequence of steps leading to the for­

mulation of the discrete transfer function from the continuous 

transfer function is presented concisely in Figure (2.4) 

Using Equation (2.10) along with Equation (2.2), we can 

express the discrete transfer function of the cascade form of 

the digital filte~ as 

N -p.T 

= K TI l_U e i ) 


-p Ti=l P. i - 11 1 - e z 

N ( c~. - i 1 (2.11)= K TI ~i z J 
i=l ,1 - Cli z~-r 
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Equation (2.11) allows us to determine th~ frequency res­
- jwT 

ponse of the filter simply by setting z 1 = e and letting 

w vary. Since z- 1 is a periodic function of wT then H(z- 1 
) 

is also periodic. This is an important departure from the 

behaviour of the original H(s) which we will illustrate and 

discuss in Chapters 3 . and 4. 

2.5 Parallel Realization 

Another useful realization of a digital filter in the 

time domain is obtained by expanding H(s) of Equation (2.1) 

into partial fractions; thus we may write 

N k· 
H(s) = l 

1 
(.2.12)

i=l s + pi 

where the residues,k., are complex constants in general. 
1 

Equation (2.12) corresponds to the parallel configuration 

shown . in Figure (2. 5) where the y. (t), representing another 
1 

set of state variables, are also complex, but their sum, 

the output y(t), · is real. Here again we see that the filter 

has been reduced to the parallel connection of N complex 
_th 

first order sections, the i one having a transfer function 

of the form k./(s + p.). Thus, proceeding in a manner sim­
1 1 

ilar to that described in Section 2.3, we find that the 

parallel form of di~ital filter is defined by the set of 
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difference equations: 

-plT -plT 
Y1 (nT) = e y1 (nT-T) + k1c1 e ) y 0 (nT-.T) 

Pl 

-p T -p2T 
y z(nT) = e 2 Y2(nT-T) + k?c1 - e )y0 (nT-T) 

·P2 

(2.13) 

-p T -p T 
yN(nT) = e N yN(nT-T) + kN (1 e N )y

0
(nT-T) 

PN 

.... 

For the output of the whole filter, we have 

N 
y(nT) = l y. (nT) (2.14) 

i=l 1 

.. 
Equations (2.13) and (2~14) correspond to the signal flow 

diagram of Figure (2.6). 

Directly from the above two sets of equations, we 

obtain the parallel form of the discrete transfer fun~tion: 

N. -p.T -t 
H(z- 1 ) = l ki(l e 1 ) _______z~---

i=l Pi -piT -1 
1 - e z 
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2.6 Extensi6ns of the Convolution Ap~roximation Method 

As evidenced by Equations (2.9) and (2113), the struc­

ture· of an elementary lowpass digital filter is basically the 

same whether it is intended for cascade or parallel reali­

zations. In the following extensions of the convolution-

approximation (C-A) method , this elementary lowpass section 

is transformed into elementary bandpass, highpass and bandstop 

sections which likewise can be used in either cascade or 

parallel configurations. 

(a)_ Bandpass 

Given the lowpass transfer function, the correspon­

ding bandpass transfer function is obtained by replacing 

s with (s + w 0 
2 )/Bs , where ~o and B are i~s centre frequency 

and bandwidth respectively. The transfer functi0n of the 

simple lowpass section, given by Eq~ation (2.3) thus modifies 

to 

H. b (s)
1, p 

= s2 
Bis 

+ Bp. s 
1 

+ Wo 2 
(2Jl6) 

which is readily reduced to a difference of two simple 

lowpass filters by a partial fraction expansion: 

r. ' r." 
H. b (s) = 1 1 (2.117) 

1, p s + p.' s + p."
1 l 



32 

where 
Bp. 

p.' 'p."::: 
·1 w0 2 

1 . 1 -z-

Bp.' Bp."
- 1 1r. ' and r." == 

1 1 

p.' - P." p.' - p."
1 1 1 1 

It thus follows that the discrete transfer function corres­

ponding to the H. (s) of Equation (2.16) is: 
1, bp . 

r.' -p. '' 'T 
H. b (z-1) ::: _1_. (1 e 1 ) 

]_' p ------­-p. 'T 
1 - 11 - e z 

~ (2.17a) 

·r." -p."T z- 1 

1 (1 - e 1 ) 
----~=----p-"T

1p." 1 - e z- 1 

1 

= 


The difference equations pertaining to a single bandpass 

section (th~ ith) are therefore (using the cascade configur­

ation): 
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-p. 'T r. ' -p. 'T 
1 1 1y.'(nT) = e y.'(nT-T) + (1 e )yi_ (nT-T)

1 1 j):"' 1 
1 

-p."T r ~ -p."T 
· y." (nT) = e 1 ·y . '' ( nT - T) + i ( 1 e 1 )y. (nT-T)

1 . 
' 1 p:" 1-1 

1 

y. (nT) = y. ' (nT) - y." (nT) (2.18)
1 1 1 

The corresponding signal ftow diagram is shown in Figure (2.7). 

Such blocks are connected in cascade to fo~m the complete filter. 

(b) Highpass 

The lowpas~ to highpass transformation requires re­

placing s in the lowpass transfer function with w0 /s, where 

.w0 is the the desired cutoff frequency of the highpass filter. 

Thus, Equation (2;3) becomes 

H. (s) = s = 1 [ (Z .19)1,hp P. 
1 

s + Wo pi s / wo/pi] 

This expression can be separated into a "direct link" and a 

parallel lowpass filter, by division: 

H. h (s) = 1 
1, p p. s + wo/p.

1 1 
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Figure (2.8a)illustrates the dirett link version of an analog 

highpass filter. 

·It is clear that at any instant of time t, the input 

yi_ (t) has an immediate influence on both channel 01itputs,
1 

y. '(t) and y.''(t). However, in moving _from the s to z- 1 domain,
1 l 

time is no longer continuous so that an input signal applied 

at time nT cannot affect the output of the lower channel in 

Figure (2.8~ until some finite time later. On the other hand, 

in the case of the direct link from input to output, the effect 

is still immediately observable at _the output.· It is evident 

therefore that if we transform the lowpass link into an equival­

ent discrete transfer function and leave the constant term 

as it is, the outputs of the direct and lowpass paths will not 

be in the correct phase, and the filter response will there­

fore deteriorate . . 

This problem may be overcome by introducing a compen­

sating delay in the direct link. The size of this delay was 

first deduced from the experimental curves of Figure _(Z.9). 

These are the frequency response curves for an arbitrarily 

chosen tenth order band~top filter with zero delay and _u~it 

delay(T) in the direct link. Such a precise reversal of form 

strongly suggests that the optimum delay lies very near the 

middle of the range [O,T] seconds; in fact, the experimental 

results which follow vindicate the choice of T/2 seconds. 
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The same conclusion can be d~rived theoretically by 

determining the steady-stat~ delay across the lowpass function 

which is in parallel with the direct link. The discrete 

transfer function for the lowpass section is 

- -1 ' 
[ c 2i] z 

where cli 

and if lp.Tl<<l, (which can readily be arranged by adjusting
1 

the sampling rate], then Cii ~ 1 and H(z- 1) ~ (C 2i] z-l 
-1

1 - z 

The complex constant c i has a constant phase angle (S say),
2

so that the transfer function becomes 

-jwT -j [wt - SJ 

H(e ) = e
c2i 

-jwT 
1 - e 

This quantity has a phase angle of <f> = -[wT - B ] 
-1 

+ tan [cot(wT/2)] 

and therefore the delay is -~ = T/ 2 sec. 
aw 

This result is valid for all transfer functions of the form 
-1

of H(z ) above when B is independent of frequency, and 
-1/ 2

where IPiTl <<L Such a delay (T/2) corresponds to " z " 
-1 

However, for H(z ) to be realizable as a linear digital 

1filter ., it mus-t be rational in z- . It follows that a fur­

-1
ther transf~rmation, s+2s, is necessary; then, z (which 
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-sT 

equals e ) is transformed into - 2 
z ' Of 

course now, the cutoff frequency, centre fTequency and band­

width must also be d~ubled before proceeding with the synthesis 

if the d~~ircid values are to be achieved. Thus corresponding 

to the highpass transfer function of Equation (2.18)y we ob­

tain the discrete counterpart: 

(1 -

(2. 29) 

z-2 l
-----zwol'/p. · [ 	 11- e . z - 2 

;; 

Although t his transformation introduces no new poles 

or zeroes into the analog transfer function, it does introduce 

both new poles and new zeroes into the discrete transfer func­

tion. Especially noteworthy is the new pole introduced near 

the Nyquist ~requency (l/2T hz) as indicated in Figure (2.9). 

It is evident that the transformed highpass filter will not 

be useable at frequencies near l/2T .hz because of the gain 

introduced by the nearby pole. This effect will be illustra­

ted in Chapter 3. Finally, if Equation (2.20) is rewritten 

as 

_-1
::: 	 z 


pi 


then Figure (2.10) shows its signal flow diagram. 
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We can write down the basic highpass difference equations 

directly from Equation (2.20) :~ to match Figure (2.10) : 

y' (nT) = 1 Yi _--1 (nT - T)-p.
1 

-2woT/p . . -2w 0 T/pi 
y" (nT) = 1 [l e . . i ]Y (nT- 2T) + e y"(nT-2T)- i-lP. 

1 

y .[ (1fft) = y' (nT) - y"(nT) (2.21)
1 .. 

(c) Bandstop 

The lowpass to bandstop transformation requires re­

placing s in the lowpass transfer function by Bs/(s 2 + w0 
2
). 

Thus Equation . (2.3) becomes, after partial fraction expan­

sion, 

r. ' r. " 
H. b (s) = 1 + 1 

1., s . ! ll 
( 

(2 ': 2 2)P. 
1 s + P. ' s + p.

1 
" 

l 

where 

p. ' p." = B - Wo 2 

1 ' 1 2p. ±1r~pir 
I. I 

r. :, = and r." = B i
•IIL[ Pi' 

1 

[ p 
1 1p. P·p•II j p•II j1 p.' l p. ' 

1 1 1 1 



42 
·To transform Equation (2.22) into a discrete transfer 

function, we proceed in the same way as was done for the 

bighpass case. Here again, the centre frequency and bandwidth 

of the filter must be doubled before proceciding· 0ith .the . syn­

thesis. Also, as a result of the transformation, new poles 
- 1

and zeroes are introduced into the z plan~ around the Nyquist 

frequency, and again the filter will not be useable in this 

region because of high gains. The discrete transfer function 

for a cascade bandstop filter is: 

r. ' -p. 'T 2
1 ­H. b (z-1) == 1 z-1 1 [1 e ]z

1, s -p. TP· 21 p.p! [1 - e 1 z ]
1 1 

r." -p."T 2 
1+ 1 [ 1 e ]z (2.23) 

-p."T _2 

p . p ~- [ 1 - e 1 z · · ] 
1 

-· c1
2iz 

-2 

' . 


+ 


where 
-p. 'T] 

-p. 'T r.'[l - e " 1 
1e i etc. 

p.p!
1 1 
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The difference equations for the basic bandstop digital 

filter can be written down directly from the reduced form 

of Equation (2.23): 

y~ (nT) = 1 y. 1 (nT-T)1­
P·1 


y ·' (nT) = Czi yi_ 1 (nT-2T) + cii y' (nT-ZT) 


(2.24) 

y"(nT) = C" y. (nT- 2T) + C" y"(nT-2T)2i 1-l li 

y:i '"~ nJ') = y t:. (nT) - y ' ( nT) + y" { n T) 

Figure (2~11) _shows the relationship of the various para­

meters. 

2.7 Summary 

In this chapter we have developed a basic transfor­

mation from the analog to digital domains, given by 

Equations (2.3) and (2. ·10) for the lowpass case. By transfer-

ming the factor l/(s + pi) to a bandpass factor and then 

reducing this to a combination of lowpass terms, the original 

transformation can be used again, to obtain Equation (2.17a). 

Further, in the case of highpass or bandstop filters, 

we have determined that a second frequen~y transformation 

is necessary (s ~ ·2s] before we can realize the discrete 
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transfer function as differende equations. In this case, 

the lowpass terms are transformed as follows: 

-p.T
.!. Cl . - e 1 )z- 2 

1 = P·1 
S . + P. 

1 -p T
1 -21 - e z 

and a direct link is transformed to - l the unit delay.z ' 

Finally, it is important that the approximations invol­

ved in the theory be listed so that the limitations of the 

method are clear: 

(1) For low sampling rates, the approximation of the 

convolution integral (Equation (2~4)) may produce an insuffi­

ciently accurate filter. In thii event, either the sampling 

rate or the order of the approximation of x·(T) should be 

increased. In this work, we have used only the zero order 

approximation since it gave good results and led to the sim­

plest algo~ithms . . 

(2) The method was extended to highpass and bands~op 

filters by introducing a delay of T/2 sec in the direct link. 

Only when the coefficient e~PiT can be well approximated by 

unity is this the correct delay [Section 2.6] . In the exam-

pl es done here, the magnitude of the ·exponent was . no ~ g;r_ea ter 

than 0.1, so that the coefficient was less than 0.90. 
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Chapter 3 Experimental Results 

3.1 Introduction 

·---·-The ·theory -developed -in the previ·ous ·chapter was written 

into the Fortran programs of Appendix II. Those programs are 

the basic ones . from which we obtained the magnitude vs frequen­

cy characteristics, and the time domain behaviour of digital 

filters. In this chapter, we present a variety of results to 

illustrate the validity of our approach to digital. filters . 

... 
3.t Frequency Domain Narrowband Response 

The filters considered· were all derived from Butterworth 

lowpass poles, orders five to ten, and the other pertinent para­

meters were :: assigned the values shown in Table 3 .1. These 

were arbitrary except that the centre frequency, cutoff fre-. 

quency and bandwidth were conitrained to be less than the 

Nyquist frequency, which is one-half the sampling frequency, 

or lOn rad/sec for all our filters. As a result, a sine wave 

Parameter Val.ue 

-SAMPLING 
PERIOD 

0.1 sec 

CENTRE 
FREQUENCY 

3.0 rad/sec 

BANDWIDTH 1. 0 rad/sec 

CUTOFF .. 

FREQUENCY 
3.0 rad/sec 

wh1ch happens to have a frequency 

equal io the Nyquist rate is samp­

led only twice per cycle and these 

·samples are not necessarily the 

maximum value of the waveform. 

Figure (3.1) illustrates the situ­

ation where, depending ori the 

relative phase of the analog sig-Table 3.1 
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nal and the sampler, the input to the digital filter would 

be iny sequence of the form {(±A)n} , n=l;Z,3, .. , where 

If, for example, the filter did not attenuate at 

the Nyquist rate (e.g. a highpass filter), the output sequence 

wbtild -be exa~tly the same as the ~nput sequence wh~tever the 

value of A. Consequently, we should ensure that the highest 

--T-­

Figure · (3.1) 

frequency in the analog waveform will be sampled several 

times per cycle. This will provide ·satisfactory resolution 

at the output[ 2] and in our investigations of the time domain 

behaviour, no less than ten samples per cycle were used. 

The ·basic magnitude vs frequency curv~s of these dis­

cretized Butterworth filters are shown in Figures (3.2)-(3.5) 

and (3.7)-(3.10). The first set is derived from the cascade 

structure and it is evident that [l] the -6N dB/octave slopes 

and cutoff frequency for the Nth order lowpass and highpass 

filters are preserved over the range l<w<7 rad/sec; [2] the 

centre frequency and bandwidth of the bandstop and bandpass 

http:3.7)-(3.10
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filters are preserved also**. 

A feature of these bandstop filters worth noting is the 

very large attenuations achieved in the stopband. Figure (3.6) 

-- summarizes the variation of this maximum attenuation as the 

order of the filter varies. Recall that the original analog 

transfer functions required a zero of transmission at the 

centre frequency and this is approximated well by these filters 

since -200 dB (e.g.) istl part in 10 10 at the output. The 

small discrepancy is the result of using only seven decimal 

accuracy poles, and of the two approximations in the convolu­

tion integral (Section 2.2). Further reference will ·be made 

in Sect1on 3.3 concerning the conditions for actually realizing 

such large attenuations. 

The second set of characteristics[(3.7~3.10)] is based 

on the same parameter values as the first set, but now the 

parallel structure is used. The lowpass and bandpass filters 

are very similar to the corresponding cascade filters, but in 

general, the parallel versions are closer to the analog charac­

t eris tics , as the · printout ·of ~ ~ · '.f: ~bi e ( 3 . Z) ) shows . I t i S· a 

portion of the frequency vs response (in dB) data around the 

centre frequency of an eth order bandpass digital filter, for 

each realization. The 0.03 dB attenuation (i.e. 99.7% of the 

signal is passed) is significantly better than 0.2 dB for the 

** The centre frequency for all filters was not exactly 
3.0 rad/sec, but was 2.996 rad/sec. 

http:characteristics[(3.7~3.10
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BP 
FREQ. R/S MAGN. P~ 

PARALLEL 

1~2095!-95.356381 
1.38230-85.206611 
1.5551)9-75.198721 
1,72788-65.012771 
l,90066-54.310731 
2.0734S-4i~67316l 
2.24624-2g.~9828l 
2.41903-13.933741 

---c;s-91a1 -.579421 
2,76460 •• 028531 
2,93739 -.o312sr 
3.llOlA -.035041 
3.28296 -.041 8 01 
3,45575 -.631~01 

-J--;ozes 4 - a • ol) roq.-r­
·3, so 133-1g.aus141 
'3.97411-28. 007261 
4.14690-3S.57400I 
4.31969-42.00936! 
4,49248~47.598421 
4.66527-52.535051 
4.83805-S6.95235I 
5,01084-60.94848I 
5,18363-64.596351 
5,35642-67.95} 8 01 
s.s2920-11.osa4BI 

-- 5 • ;o-t9 9 - 1 3 • 9 5 1 1 0 1 
s.01478-76.651121 
6,04757-79.201281 
6.22035-81.600 8 11 
6.39314-83.872251­
6,56593-86.029031 
6,73872-88.082621 
6.911so-9o.o42 A71 

_7,08429-ql.918281 
7,2570~-93.716271 

· 7,42987-95.443321 
7,60265-g7.l05131 
7.77544~98.706751+ 
7.94823*00.252 6 5+ 

FTa,ble 

CASCADE 
- • 4 • 

.,, , ,,,~:,,,95. ?.1,2 
' -85.551 
~ -75.530 

,,,,~--=6 ·s ··~ · 3 2 9" .. 
-54.611 
-42.956 
-29.762 ..,..,,,.,:14:f i1 

T 	 -1.101 
.;,:,226 

PASSBAND 	 -.204 
-.181 
-.159 
-.719 '"_J_ 

-8.063 
·-18.909 
-27.996 
-35.52-/ 
-41.925 
-47.476 
-52.371 
-56.747 
-60.699 
-64.302 
-67.610 
-70.669 
-73.512 

,,.,,~,,:.7 6. 167 

-78.658 
-81.003 
-83.218 
-85.317 

,,,.,,,,: ..~7.,;31 ,2 ' 
-89.211 

.. - -91.024 
-92.759 
-94.420 
-96.015 
-97.548 
-99.024 

6th Order 

(3. 2) 

http:5,35642-67.95
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cascade filter. As well, the parallel transformation pre­

serves the centre frequency and bandwidth ~£ bandpass filters, 

and the cutoff frequency and -6N dB/octave slopes of the low­

pass ·filters. 

The major difference in performance between the parallel 

and cascade structures shows up in the bandstop and highpass 

filters. The bandstop characteristic [Figure(3.9)] exhibits 

about -25 dB of attenuatio~ in the stopband, a startling change 

from the -280 dB for .the cascade case. In terms of the per­

ceht of the signal that is rejected, the cascade filter stops 

essentially 100% of the input, while the parallel filter re­

jects abbut 95%. Otherwise, the characteristics of the parallel 

band$top filter are as good as those .of the cascade version; 

both the centre frequency and bandwidth exhibit only small(1%) 

deviations from their specified values. The worst performance 

of all is the parallel highpass filter. The characteristics 

-~f ~hese filters [orders 5-10] are s~own in Figure (3.10), and 

it . is evident that they are complete~y unsuitable as highpass 

filters. As well as exhibiting slopes which are much less than 

•6N aB/octave, arid shifting the cutoff frequency significantly, 

they all have gains at higher frequencies. 

3,3 Frequency Domain --- Wideband Response 

Since the above two sets of frequency curves are limited 

to the range l~w~7 rad/sec, and since the Nyquist frequency 

is lOn rad/sec, the wideband behaviour of the filters is not 
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evident. Recall that we predicted in Section (2.2), on the 

basis of pole-zero patterns, that there shouid be a deterior­

ation at higher frequencies in the response curves of band­

stop and highpass filters realized by the C-A method. This 

is becaus e the process of e1 i minat i iig the "ha1f - de 1ay" intro ­

duces a pole near the Nyquist frequency. Figures (3.11) ­

(3.14) show the wideband response curves for filters detiv~d 

from seventh order Butt~rworth poles using the cascade struc­

ture only. The effect of the unwanted poles is quite evident 

although the gainband occurs sufficiently close to the Nyquist 

frequency so that the filters can still be considered 

"wideband", i.e., useful over 70% or more of the Nyquist 
[11 

range . In fact, all the curves remain at the 0 dB level 

for about 80% . of this range. 

A second form of distortion (compared to the analog 

responses) which is inherent to digital filtering, is illus­

· --~rated by all four curves in Figures (~.11) - (3.14). Since 
. -jwT 

z- 1 = e · has a period of Zn, then the transfer functions 

H(z- 1 ) also repeat with the same period. Consequently, the 

-6N dB/octave slopes of a lowpass filter cannot continue 

- 4ndefinitely as the frequency increases, but must eventually 

become flat at the Nyquist rate. In many cases however, the 

attenuation reaches large enough values to cause no practical 

problem (e.g. the 5th order lowpass filter attains a minimum 

of -82 dB). 
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The final investigation in the frequency domain was 

to obtain the magnitude and phase characteristics for digital 

' allpass filters. These filters pass all frequencies unattenu- . 

ated, but alter the phase of the · output relative to the input, 

as the frequency varies. They can therefore, be used to com­
[8] 

pensate for phase distortion in another network This type 

of filter has poles and zeroes which are mirror images of each 

other across the jw axis in the complex frequency plane, and 

therefore, has a transfer function of the form 

N -P\lH(s) = II 
i=l [: + Pi J 

where p*. and P. are a conjugate pair of poles. The pole­
1 1 

zero pattern for a 5th order allpass filter is shown in 

Figure (3.19). It is more convenient however, to regroup 

the poles and zeroes so that 

N 

H(s) = II s - P = ~ 
 ( 3 ,• 2) 

i=l i=l 
il [l 

[ 
s + P. 

1 

Application of the above theory to Equ~tion {~.2) l~ads to the 

discrete transfer function l2[1 - e -piT]z - 2N 
II 

i=l 
1 ­
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which is identical-in form to the H(z- 1 ) for a highpass 

Jw digital filter derived by the same 
A 

method, so thit some gain is ex­

pected near the Nyquist frequency. 

Both ·:·the magnitude and phase charac­

teristics for fifth and tenth order 

allpass filters are presented in 

Figures (3.16) and (3.17), along 

with the corresponding results 

Figure 3.1~ based on the bilinear transforma­

tion. 

The magnitude curves show that the bilinear charac­

teristic is perfectly flat over the total frequency range, 

while the C-A characteristic is flat [~0.05 dB] for 94% 

of the Nyquist interval. Centred about the ~yquist frequency 

is a gainband with . a peak gain of about ION dB, where N is 

the order of the filter. Based on this curve alone, our 

realization is definitely inferior; the phase characteristics 

however, possess a surprising property. 

For both realizations, the phase curves are irregular 

near w = 0.0 . ~ad/sec . Past about 2 rad/sec, the bilinear 

curves start to change monotonically from 0° to -360° 

while the C-A phase curves decrease almost linearly over 

86% of the Nyquist interval, the r~te ) increasing with the 

order, N. The linear phase vs. frequency curves mean that 

the delay, - ~ is constant over 2<w<27 rad/sec for each 
aw 

order of filter. 
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The delays derived from these curves were 0.6, 

0.8 and 1.1 sec for the 5th, 7th and 10th order filters. 

Evidently then, the delay will be ab~ut l.lNT where N is 

the order and T is the sampling period. This unique phase 

·	 -ch~racteristic which allows this filter to function as a 

fixed delay element, is a . result of the particular trans­

formation from analog to discrete domains. 

3.4 Time Domain 

The equations (2.8), (2.18), (2.21) and (2.24) , 

which are the fundamental difference equations for the four 

cascade filters, allow us to investigate the time-domain 

behaviour of these digital filters. In particular, the 

transient response can be determined and the steady state 

response can be verified [the steady state ~agnitude and 

phase are known f~om H(z-1)]. It is in the form of differ­

ence equations, naturally, that digital filters are implemen­

ted to process a _time sequence, since they are the time-dom­

ain expression of the particular filter. 

Seventh order poles were used to set up the difference 

equa~ions for a 14th ofder bandstop digital filter. (Fig­

ure (3.1) summarizes the particular values of parimeters) 

The cascade re~liiation had seven blocks of the form of 

Figure (2,1 ) and the input to the first bl6ck was a sampled 

sine wave with a frequency of 1.0 rad/sec; the output of 

the seventh block is shown in Figure. (3~18) where it is 
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evident that the system has settled to about the 0 dB level 

after about nine cycles. A high frequency component [lOn rad/ 

sec] gives the waveform a ragged appearance up to this time. 

Note also the delay at the beginning, which is the finite 

time taken for the sigrial to pr6pagate through the filter. 

It is simply the sum of seven delays each T second long, or 

0.7 sec in this case. 

Using the same bandstop filter, we changed the input 

to a sampled sine wave with a frequency equal to the centre 

frequency of the bandst9p filter, 3.0 rad/sec. Figure (3~19) 

shows the characteristic response for high order bandpass or 

bandstop filters at their centre frequencies. To approach 

the attenuation predicted by the frequency analysis for this 

filter [-280 dB], the filter requires a delay exceeding 

100 cycles. Even then there is evidence which suggests that 

this level cannot be achieved without increased precision in 

pole locations at least. The evidence is this: since the 

input is a sequence of real numbers, the output must also be 

real, reg~rdless of the complex operations involved in t~e 

intermediate stages_. It has been found experimentally, 

however, that the output does contain a steady state imagin­

ary component with an rms value on the order of 3.0 x 10- 13 

for unity amplitude input. (Figure(3.20a)) Such a residual 

value which must be present also at the real output, is the 

result of the seven decimal approximation of the poles lol~l 
tions and also the approximation in the convolution integral 

(Section 2.3). This effect, analogous to crosstalk in a 
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Real Output 

Sequence 


~7.39318E-Ol 
-7.86o34E~Ol 

-·'.-B. 5 49 81E-0 1 
-8.98393E-01 

· ~9.35449E-01 
-9.74623E-01 
-9.79624E-01 

·-1.00981E+OO 
-o.87361F-Ol 
·-l.00153E+OO 
-9.58957E-Ol 
-9.50202E-01 

. -8.9So34E-01 
-: . ·- R• 5 9 02 2 f. - 0 1 

-7.96833E•01 
-j.33278E-01 
-6.66726E-01 
~5.79534E-01 
-s.o8688E-01 
-4.04840E-01 
-3.28473E-Ol 
-2.16249E-01 
~l.33409E~Ol 
-2.06647E-02 

6.81391E-02 
l.7So7oE-Ol 
2.67444E:·o1 
3.64o34E-Ol 
~.56o42Ew01 ------·-­

Imaginary 
Output Sequence 

·i.llo22E~13 
l.15463E-13 

"'"8 .. 08 2 4 2E- 14 
6.03961E~14 

-i.15463E-14 
-4.26320~-14 

i.17240E-13 
•j.82965E-13 


2.37I44E-13 

~2.74447E~l3 

2.B~6S8E-13 


-2.BI5S3E-13 
2.45137E-13 

"" i •8 2 O7 7 E- l 3 
q.59233E-14 
i.24345E-14 

~i.216BOE-13 
2.29S94E-13 

-3.2018HE-13 
3.91687E-13 

-4.25215E-13 
4.30767E-13 

-3.83582E-13 
3.0B86~E-13 
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two channel system, prevents output signals below about 


-260 dB, unless greater precision is used as noted above. 


To illustrate the behaviour of these digital filters 

further in the time domain, we chose -as input, a sampled sine 

wave at the centre of the passband contaminated with band­

limited Gaussian noise. The filter used was a tenth order 

Butterworth bandpass filter with a variable bandwidth. Figure 

(3.2l)shows the total input signal where the first numbers 

to enter the filter are nearest the origin. Bandwidths of 

0;5, 1.0, 5.0 and 10.0 rad/sec were used successively to 

determine if the digital filter would peiform like its _ 

analog counterpart. These four outputs are shown in Fig~es 

(3.22) - (3.2~). As the bandwidth decreases, the spectral 

purity of the output increases, but so do the rise ·time (TR) 

and the delay (TD) across the filter. Figures (3.26a,b) 

summarize the inverse relationships between each of ~hese 

-~imes - and the bandwidth, B. Although both curves are hyper­

bolas, the delay curve is asymptotic to 1.0 sec since there 

is an inherent 1.0 sec delay across a 10th order filter, 

regardless of the bandwidth. Note that the rise time is 

-defined as the time for the envelope of the transient to rise 

from 10% to 90% of its steady state value [compare with (8)], 

and the delay is defined as the time taken for the envelope 

of the response to rise to 50% of its steady state value. 

The observed relation T ~ 1 is further evidence that the 
R B 

digital filter functions in basically the same way as the 
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analog counterpart. 

Figure 3.27 shows the output of the same bandj1,ass 

filter [but using B = 0.2 rad/sec] for an input of bandlimi­

ted Gaussian noise only . Evidently, the filter has selec­

- ·---- -tively passed -only a ·s·mall portion of the frequency spectrum 

of the noise, centred arourid 3.0 r~d/sec resulting in an putput 

which closely approximates a sinusoid of frequency 3.0 rad/sec. 

Again, the filter functions as a good approximation to its 

analog counterpart, so we can conclude that the basic trans­

formation is valid. Since the power [i.e. the mean s~uare 

value] of the random fun~tion is just the variance which was 

o 2chosen to be = 1.0, then the power associated with the 

output signal should be just the fraction of the total band­

width which the filter passes [bounded by the 3 dB levels]. 

This is approximately 

B x . 02 = 	 0.2 x 1.0 

101f
wNyquist 

~ 0.0064 [watts] 

and hence, the rms 	 value of the sine wave ~t the output is 

0.08 [volts]. In comparison, the measured value is in the 

range 0.075 - 0.085, the variation resulting from the small 

but finite ·bandwidth of the filter. 

There is a point to mention concerning the "noise" 


used in the above experiments. The computer subroutine 


produces normally distributed numbers (µ = O, o 2 = l) , 
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82 whose autocorrelation function, · 

+n 
¢ (nT) ::: 1 I f 1 (kT) _f 1 (nT + kT)

Zn + 1 k:::-n 

calculated over a few thousand samples, tlose}y approiimates 

that for '.'white" noise. However, the sampler which operates 

at a frequency 1 hz, effectively bandlimits this white noise 
r 

to 1 hz before the sequence enters the filter proper. The 
2T 

filter then shapes the spectrum of this new noise input. 

3.5 Summary of Results 

Fr0m the experimental results, we have observed the 

following points : about the convolution-approximation method: 

"[l] the digital cascade realization . provides very 

godd approximations to all the basic analog filter character­

istics, excepting the gainbands in the highpass and bandstop 

filters; 

[2] the cascade realization is the only acceptable 

one for highpass digital filters, and is definitely superior 

to the parallel version, fbr bandstop filt~rs; 

[3] the parallel realization gives slightly better 

results when applied to lowpass and bandpass filters, than 

the cascade method does; 

[4] in many cases, these digital filters perform in 

the· same way that their analog counterparts do. 
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Chapter 4 Extensions and Improvements 

4.1 Introduction 

In this concluding chapter, we .make several suggest­

ions regarding improvements and extensions to this work. The 

most important result is that the impulse invariant transfer­

mation (Section 1.5) can be derived as a special case of the 

C-A method. Furthermore, the inability of the impulse invar- . 

iant method to produce s~tisfactory highpass and bandstop 

filters is given a physical explanation. A- first o~der approx­

imation of the convolution iritegral and a consistent. ''impulse 

sequence" for digital filters are also derived. 

4.2 Derivation of the Impulse Invariant Transformation 

The original approximation of the convolution integral 

(Section (2.3)) has the effect of a zero-order hold, so that 

by the time the sampled value is use~ in a calculation, it is 

- T seconds old; i.e. ·x(T) = x(nT-T) is used at time nT. It is 

equally valid, and evidently more up-to-date to make the 

approximation ·x(T) = x(nT) and to use this value immediately 

at time nT. Figure (4~1) shows the difference graphically. 

Doing this, we find that the basic lowpass discrete transfer 

function corresponding to H(s) = l/(s + p.) is 
1 
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= 1 e -p 1~Tl 1 
p. -p.T

[ l _. 1 -11 - e z 

= K·1 

.- ·p. T (4.1)
1 ­

1 - e z 

The only difference between Equa tio:µs ( 4 .1) and ( 2.. 10) is the 

complex delay factor, 2~ 1 , in the numerator of Equation (2.10). 

It is important to note that except for the constant Ki, Equation 

(4.1) is just the impulse invariant transform of l/(s + p.). 
. . l 

Furthermore, we shall sho~ in Section 4.3 ~hat this constant 

overcomes the difficulty of large gains usually encountered in 

impulse invariant digital filters. [ 4] 

The response characteristics derived _from Equation (4 .1) 

for lowpass and bandpass filters are virtually identical with 

those in Figures (3.2)and(3.3) and therefore they are not 

included here. However, with the highp~ss and bandstop filters 

we meet a problem which is similar to that illustrated by 

Figure (2.9). In that case, we showed that a ~alf delay in 

the direct link led to u~eable highpass and bandstop charac­

teristics. In this case, we find both experimentally and from 

theory that the solution is a half advan~e in the direct 

link; but such a solution is not realizeable as a difference 

equation (even after ridding the expression of z 112 )since 

future information is necessary to calculate the output at 
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any instant. This restriction in the time domain complements 

the restriction in the frequency domain (Section 1.4). 

It is evident now, that although the impulse-invari­

ant and C-A transformation are closely related, the latter 

has the~ distinct advantage of being able to realize highpass 

and bandstop digital filters, as well as lowpass and bandpass. 

4.a iirst Order Approximation of the Convolution Integral 

The accuracy of the convolution method. can be increased 

by· improving the approximation of the integtai, 

nT P·T 

J e 1 x(T)d~ So far we have approximated 
nT-T 

x(T) by the fitst term in its Taylor expansi~n, by setting 

x(T) = x(nT~T); Figure (4.2) shows how the approximation can 

be extended by using the first two terms to obtain: [Figure 

(4.2) is on Page 52] 

x(1) = x(nT-T) + {x(nT-T) 
T 

x(nT·ZT)}[T (nT-T)] 

(4.1) 

The right side of Equation (4.1) which indicates that x(T) 

is now approximated as a ramp, can be inserted into the inte­

gral and the expression reduced as was done in Equations 

(2.7) and (2.8a). The final form corresponding to Equation 

. (2.10) is: 
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H(z- 1 ) = Y(z- 1 ) 

(4.2) 
X(z- 1 ) 

This form emphasizes that the effect of adding more terms to 

the Taylor expansion of x(T) is to do the same to the discrete 

transfer functi6n H(z- 1 ). 

Obviouslyj this approach can be extended to higher 

order approximations only if the higher derivatives can be 

calculated accurately eno4gh. These approximations involve 

more and more of the past inputs, but only the immediate past 

output explicitly. For example, we approximate the second 

derivative as 

x(nT-T) - 2x(nT-2T) + x(nT-3T) 

T 


4.4 The Transition from Analog to Disc~ete 

We have already seen in Chapter 2 that there are 

important subtleties in the transition from analog to discrete 

descriptions of filters. To assure ourselves that results 

such Equation (2&10) or (4.2) are reasonable counterparts 

of the original, l/(s + p.) , without actually calculating
l 

the response _curves, a basic test is available. 
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The best test of a result in the digital domain is 

to see if it leads in the limit, as T + O, to the corresponding 

result in the analog domain. For example, the Nyquist fre­

quency, n , which limits the useable range of any digital
T 

filter, recedes toward infinity as T + 0. Thus in the limit, 

a non-repeating response characteristic is attained, identical 

to the analog characteristic. Of course, the input and out­

put signals are now continuous too. Further, the basic C-A 

transformation (Equation (2.10)) bears out this idea: setting 
-sT 

z- 1 = e and applying l'H6pital's rule, H(z- 1 
) reduces 

exactly to the original B(s). However it _is common in the 

literature [2] to find that the digital equivalent to a unit 

impulse is the sequence {1,0,0,0, ... } . This is obviously 

independent of ·T, the sampling period, so that there is no 

continuity between the digital and analog expressions of the 

unit impulse. 

-~-ro --rectify -- this -incons is tenc y , -cons ider the .. difference 

equation derived from Equation (2.10): 

-p ·.T . -p. T . 
y(nT) = [e 1 ]y(nT-_T) + [ .!_ (1 e 

l 
)]x(nT-T)

. 

Pi 

Table (4.i) shows the response of this digital 

filter to an input sequence 

x(nT) = {A,O,O,O, •. } 
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89 with all initial conditions assumed zero: 

Output Input 
Time y(nT) x(nT) 

• ....o.n:c~· ~J::,.;jo - - ·--~ 

0 0 A 
-p-T 

T 1 (1 - e 
1 

)A 0 

Pi 
-p.T -p.T 

2T 1 (1 - e 1 )e 1 A 0-p.
l -p.T -2p.T 

3T 1 (1 - e 1 )e 1 A 0-p.
l 

Table (4.1) 

-(n-l)p.T 
The response has the form K.e l 

( 4. 3)
l 

Now since both the real part of p. and~ are small,
l -piT 

the condition Re[piJT << 1 holds and the constant (1 - e )/pi 

reduces to T for all poles p .. Equation (4.3) becomes 
l 

-(n-l)p.T 
y(nT) = ATe 1 

n > 1 (4.4) 

If the impulse response is to be the sampled version of the · 

impulse response of the corresponding analog filter, then it 

is evident that the value of A is 1 , and the input sequence 
T 

corresponding to a unit impulse should therefore be 

x(nT) = {l, O, O, ... } Such a conclusion is also 
T 

a 2direct result of our assumption that x(T) is constant over 
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· the sampling period T. Since the strength of an impulse, 6(t) 

is determined by the area integral r: o(t)dt ' then the discrete 

equivalent of a unit impulse over T seconds is just 1 Further-
T 

more, there is the continuity we sought, since 

lim {l, O, O, ... } = 6(t) . 

T~o T 


4.5 The Periodic Nature of the Discrete Transfer Function 

The fact that the discrete transfer function H(z- 1) is 

periodic can lead to misunderstanding of the digital filter's 

capabilities. To illustrate, - suppose we have a (fictitious) 

analog filter with an infinitely repeating characteristic, just 

as . a digital filter has (Figure f.3). Depending on the perio~ 

certain regularly spaced freq~encie~ in the analog input would 

be attenuated in exactly the same way, and these frequencies 

would then appear at the output. The difference in the digital 

case is that the frequency of a digital signal is determined 

by its envelope, so that the maximum frequency which can be 

represented unambiguously occurs wh~n the samples are alternate­

ly po~itive afid negative. In other terms, if at least twci 

samples per cycle are taken (on the average), the original 

analog frequency is retained in the digital signal. However, 

when- less than two samples per cycle are taken, the analog 

frequency is lost. In fact, the digital freque~cy which is 



• • • 

-£3 . -f -f . f 
. ' 2 ' 1 11 !f 2 . :£4 .

+·-----1- I . 
• l 

j
I . , 

,,.. . ___J 

l 
1 

! 
~ 

. -fOf +£ · +fFrequenc1es _ 
1

, .-
2

, -
3

, 

are all attenuated the same. 

Infinitely Repeating Gain Charactetistic 

Figure (4.3) 

•. 

· ~ 

1--i 



92 

produced is less than the Nyquist frequency by an amount equal 

to the difference between the frequency of the analog signal 

and the Nyquist rate. (A proof of this is given in Appendix III) 

For example, if the Nyquist iate is lOtr rad/sec and the input 

analog signal has frequencies of 13rr rad/sec and 7rr rad/sec, 

then the input and output digital signals will have a . ire~ueftey 

of 7rr rad/sec , _only _ Figure (4.4) · illustrates the 

situation. -The important point to observe is that the ou~put 

digital signal is strictly limited to the baseband 0 - rr 
T 

rad/sec reg~rdless of the analog input frequency. This effect 

is known as aliasing [l,Z, 3]. 
,; ...­

One straightforward use of this frequency shifting 

property of sampling · is disc·rimination of an amplitude modu­

lated signal. For example, suppose we have an A.M. signal 

~ith a carrier of 1000 khz and an audio spectrum from JOO to· 

7500 hz. Therefore, the sam~ling ~ate should be at least 

15000 hz, but also 1000 khz should be an integer · multiple of 

the exact sampling rate. Simple considerations show. that 

a sampling rate of 15.15 khz satisfies both constraints, and 

the restilt is a .se4uente with . frequenti~s in _the 

baseband 100 to 7500 hz. Digital ~o analog conversion would 

then recover · the original audio signal. 
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APPENDIX I Formulat~on of the Direct Method 

In this Appendix, we consider the direct formulation 

of digital filters along the same lines as the parallel and 

cascade which this thesis has developed. The direct approach 

amounts to the conventional state-space description commonly 

used in riontrol systems. We outline the mathematics ~nd find 

that althoOgh the direct method is not suitable !or our pur­

poses, the analysis does lead to the useful reduction of the 

state-spac~ which has been used in this thesis. 

A transfer function of the form (2.1) leads to a ve~tor 
. [ 9]

differential equation 

At t A(t-1") 
~(t) = e x(O) + f e Bu(-r)dT 

0 

At 
where e is the transition ·matrix formed from the coeffici~nts 

. of Equation (2.1). This equation can be di~cretized in exactly 

the same way as done in Equations (2.7) and (2.8) t6 obtain a 

vector difference equation 

x(nT) = 
AT 

e ~(nT-T) + 
AT -1[e -I]A Bu(nT) I is the unit 

matrix. 

In ·order to realize this . equation as a digital filter, 

the matrix coefficients must be evaluated. This involves 

AT 


a series approximation of e and it is a time-consuming 


calculation especially for high order systems; furthermore, 
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;,\ 

. ·:~~ ..,_ ... 2 
since any NxN A~m~ttix has (N-1) zeroes, a significant 

amount of calculation tlme is wasted m~nipulating them. 

For · example, a lOxlO A-matrix has 81 zeroes. 

Further _cfmp1ications arise in this approach when 

we wish to describe other than lowpass systems. First, 

it becomes a tedious job of algebraic manipulation to obtain 

the analog transfer function for highpass, bandpass and 

bandstop filters, sjnce the calculation of the a. and b. 
l l 

is not readily programmable for the general case. Secondly, 

to obtain ~ vector difference equation of the above form for 
(9] 

these filters requires four transformations. Finally, 

there is a difficulty which pertains to even the lowpass 

formulation using the Direct method. To illustrate it, we 

consider the expansion of the above vetfor difference equation 
AT 

where the elements of e are defined as ¢ .. and the elements 
ll 

of [ e AT - I ] A~ 1B , are def ine d as si :. 

If now we apply the Z-transformation to each equation, the 

result is: 
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-1 -1 + 
-1 

x1 (z ) = z [¢11Xl + <P1zXz + + <PlNXN ] ~ 1 z U 

' -1 -1-1 +x2( z ) = z [ <P 21x 1 + <Pzzxz .+ . . . + <PzNXN ] i;zZ U 
:. 

-1
XN ( z ) 

I~me4iately, we see that .if the discrete transfer function 

-1 


· H(z ) is desired, a great deal of extra calculation is 

necessary to extract X1/U from these N equations. 

All the abov~ difficulties can be avoided if we set 

N=l, i.e. · so that there are no zeroes in the A-matrix. Th·s 

amounts to reducing Equatio_n (2.1) to a product of N first 

order factors and treating each as an individual transfer 

function, although they are ·.complex. 

****A paper based on the material developed in this 

_thesis, has been accepted for publicatibn in the Prbceedings 

of the Institute of Electrical Engineers. 



REQUEST,TAPElG,HI. PLOTTER T.4PE 97
RUN(S) 
SETINDF. 
LGO. 

PROGRAM TST(INPUT,OUTPUT,TAPE5=I NPUT,TAPE6=0UTPUT,TAPE10) 

c 

c 
C THIS PROGRAM IS A DIGITAL FILTER BASED ON A M OOIFICATIO~ OF 
C STATE SPACE ANALYSIS. THE INPUT INCLUDES THE POLES OF A 
C LOWPASS FILTER. IF A TRANSFOR MA TION IS TO BE MADE TO HIGHPASS 
C BANDPASS OR 6ANDSTOP THEN Trl E BA~DWIDTH AND CE NTRE FREQUENCY 
C COR CUTOFF FRE QUENCY) ARE ALSO REQ UIRED. THE ANALYSIS USES 
C C0 MR LEX AR I TH f':i ET I C • REG ARD L ES S 0 F THE 0 RD E f~ 0 F THE L0 V,f PASS 
C 0 R THA NSF 0 F.( i·'; ED FU i\JC T I 0 t·~ , I T I S F~ ED lJ CED T8 A SET 0 F CA SC A 0 ED 
C FIRST ORDER- FILTERS. EACH CASCA DED 8LOCK MAY BE MADE UP OF 
C ONE,HJO OR Tl-l [~EE PARALLEL FILTEf~ S, DEPE NDING ON THE TYPE. 
c 
c 
c 
c 
C C A S C A D E 
c 
c 

DI MENSION PLP( J_(;Q) ,c1c 10 0 ) ,(2(1 00 ) ,f~{lOC) ,P(lCO) ,HT(lOO) 
DI MEN SION PLOTR(l01),T1(100) 
D I M E /\l S I 0 N Y ( 1 G 0 ) , Y Y ( 1 0 o.) , Y Y Y ( 1 0 0 ) 
DI MENSION X ( 1 iJ O ) , XX ( 1 0 0 ) , XX X ( 1 C0 ) 
COMPLEX x,xx,XXX 
C0>1P LEX y,yy,yyy 
C0 f'J, P LEX HT , Of'H , R , P , P L P , C 1 , C 2 , GA / 11 ...'1 ,0., , CC , C P , T 1 , F 1 , F 2 , F 3 
COMPLEX v1,v2 
REAL LP 
DI MENSION HPLOTC2CO Q,2) 
PI=3.14159265 
P2=2. 0*PI 
OM=P2/6.0 
T=U.l 

c 
c 
c 
C THE FOUR FILTER TYPES ARE READ IN. 
c 

READ(5,555) LP,BP,BS,HP,AP 

555 FOR MAT(lX,5A2) 


c 
C THE LO WPASS POLES, PLP(J), ARE READ IN AND COUNTED. 
c 

NPOLES=u 
Gti, ~11MA =1. 0 
DO 5 K=ldC U 

READ(5,7) PLP(K) 

IF(PLP(K).E Q.1 000 .0) GO TO 8 

WRITE(6,7) PLP( K) 


7 FOR~A TC1X,2Fl5.8) 
GA1\if..\ A=G/\i\H·J\-)~· PL P ( K ) 


5 NPOLES=NPOLES+l 

8 WRITE(6,9) NP OLES 

9 FOF~ M !-\T(lX,113) 


NBLOX=NPOLES 
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c 
c 
c THE TYPE OF TRANSFORMATION IS CHOSEN. IN ALL CASES THERE WILL BE 
c •NBLOX• CASCADED SECTIONS. WITHIN EACH SECTION THERE WILL BE 
c ONE(LP),TWO(BP OR HP) OR TH REE(BS} PARALLEL SU8FILTERS. 
c THE NU~BER OF PARALLEL BRANCHES 

. C 
c 
c BW IS THE BANGWIDT~.DF T~E bP .OR 
c FREQUENCY FOR BS AND BP, OR THE 
c 
c 

NPOLES=NBLOX 
READ(5,557) TYPE 

557 FORMAT(lX,lA2} 
WRITE(6,557) TYPE 

IS CALLED 1 NPATHS 1 • 

BS FILTERS. WO IS THE CENTRE 
CUTOFF FREQUENCY FOR LP AND HP. 

W0=3.0 
BV-f =1. O 
IF(TYPE.EQ.BP> 
IF(TYPE.EQ.BS) 
IF(TYPE.EQ.HP) 
IF(TYPE.EQ.AP> 

c 
C 	 THIS BLOCK DOES 
c 

GO TO 165 
GO TO 166 
GO TO 167 
GO TO 169 

THE LP TO LP TRANSFORMATION. 

DO 499 K=l,NBLOX 
P ( K } =P L P ( K ) -:(- 1,°"· 0 
R ( K} =~·JO 


Cl(K)=CEXP(-P(K>*T) 

499 	C2(K}=(l.0-Cl(K) }/P(K) 


NPATHS=l 

FACTOR=l.J 

GO TO 2222 


c 
C THIS BLOCK DOES THE LP TO BP Tf~ANSFOF~.i"-1/'i.TIOl\J. 

c 
165 DO 1010 I=l,NBLOX 

I 2 = 2~q· . 


121=12-l 

Tl( I )=8\'1-l<-PLP( I }/2.0 

P(I2l)=Tl(Il+CSQRT(Tl(l)**2-W0**2} 
P(I2 }=Tl(Il-CSQRT(.Tl(Il**2-W0**2l 
Fl=8\!J~f-P(I21) 


F 2 = B~·J *P ( I 2 } 

F3=P(121)-P(l2) 

RCI2l}=F1/F3 

1010 	-R (I 2) =F2/F3 

NPATHS=2 

FACTOR=l.O 

NPOL ES= 2-Yd.,~5LOX 


DO 1013 I=l,NPOLES 

C 1 C I } =CE XP (-P ( I ) * T) 


1013 	C2(I)=(l. C-Cl(I)1/P(IJ 
GO TO 2222 

c 
C THIS BLOCK DOES THE LP TO BS TRANSFORMATICN. 
c 

http:IF(TYPE.EQ.AP
http:IF(TYPE.EQ.HP
http:IF(TYPE.EQ.BS
http:IF(TYPE.EQ.BP
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VJ 0 =~11 0 -x- 2 .- 0 
DO -1011 I=l,NBLOX 
12=P-2 
121=12-l 

.Tl(I)=B W/(2. C*PLP(J)) 

P(I21J=Tl(I)+CS QR T(Tl(l)**2- W0** 2) 

P<I2 )=Tl(IJ-CSQRT(Tl(Il* * 2-W0** 2) 

F 1 = ( B1v.J/ P L P ( I ) -x- i<-2 ) i~ P ( I 2 1 ) 

F2 = ( BVJ I PL P ( I ) iHt 2 ) --,~p ( l 2 ) 

F3=P( 121)-P( 12) 

R(I2l)=Fl/F3 


1 0 11 R(I2J=F2/F3 

NPl\THS=2 

FACTOf~ =2. CJ 

NPOL ES= 2-x-Nt:3LO X 

DO 1014 I=l, NPO LES 

Cl(l)=C EXP(-P(IJ*T) 


10 14 C2(1)=(1. 0-Cl(l))/P(l) 
GO TO 2222 

c 
C THIS BLOC K DOES THE LP TO HP TRA NS FORMA TION. 
c 

1 6 7 	 E1 ~v =e\·J -x- 2 • 0 

t~J 0 =~~J 0 -x- 2 • 0 

DO 10 12 I=l,N BLOX 


1P ( I ) = ~\ 0 I P LP ( I ) 

R(IJ=WO/PLP(I)**2 

Cl(IJ=CEXP(-P(I)*T) 


10 12 	 C 2 ( I ) = (1. v-C 1 ( I ) ) IP ( I ) 

NPATHS=l 

F l\CTOR=2. CJ 


GO TO 2222 

169 	 DO 1015 I=l, NB LOX 


Cl(IJ=CEXP(-PLP(l)*T) 

C2(l)=(l. O-Cl(l) J/PLP(I) 


101.5 	 f..( (I) =2 . OitPLP (I) 

NPATHS=l 

FACTOR=2. G 


c 
c 
c ·THIS SECTION INCRE MEN TS THE FRE QUENCY AND CALCULATES ­
c THE RESPONSE. 
c 
c 

2222 	 CONTI NUE 

NFREQ=2 

NF=FACTOR 

NB= NB LOX+l 


c 
c 
C =NPB= IS THE NUMB ER OF NON-DIRECT PP. THS CO NNE CT I NG 
C INPUT TO OUTPUT. 
c 
c 

NPB=N PA THSi<- 1\JB LOX 

DO 601 KK=l, NFREQ 

READ(5,55) o~,cYCLE 


WRITE(6,55) QM,CYCLE 
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55 FOR~AT(lX,2Fl5.6) 

M~=CYCLE*(P2/0Ml/T 

c 
C THE SYSTE~ IS INITIALLY RELAXED. 
c 

DO 69 K=l,f'\B 
XXX(K)=O.O 

69 XX(K)=O.O 
c 

DO 41+ I =l ,NPB 
YYY(l)=CJ.U 

44 YYCI)=O.U 
D 0 6 0 2 M=1 , fv'tfV; 

EM=fv': 
H=T-~E M 

X ( 1 ) =S I N ( OM-:!- H ) 
26 IFCFACTOR.EQ.2.0) GO TO 71 

c 
· c 

C =FACTO!~= IS A PARA.HETER 'l!HIU-! DETER1viINES THC: SH<LJCTURE 
C OF THE FILTER. IT TAKES THE VALUE 1.0 FOR BP AND LP, 
C AND THE VALUE 2.0 FOR BS AND HP • . 
c 
c 

DO 72 I=2,NB 
IF<TYPE.EQ.LP) GO TO 80 
L=2*I-3 
GO TO 81 

80 L=I-1 
81 DO 70 J=l,NPATHS 

INDEX=NF+J 
Vl=Cl ( l )-:<-YY ( U 
V2=R(LJ*C2(L)*XX(I-1) 
Y(L)=Vl+((-1.0)**INDEXl*V2 

70 L=L+l 
-· xc I )=G.O 

DO 72 K=l,NPATHS 
7 2 X ( I > =X· ( I >+Y ( L ·- i< ) 

GO TO 38 
71 DO 76 I=2,Nt3 

IF(TYPE.EQ.HP.OR.TYPE.EO.AP) GO TO 82 

L=2-~I-3 

GO TO 83 
82 L=I-1 

IF(TYPE.EO.APJ GO TO 84 
83 X(I)=XXCI-1)/PLPCI-l) 

GO TO 85 
84 X( I )=XX( 1-1) 
85 DO 74 J=l,NPATHS 

INDEX=NF+J 
Vl=Cl ( L )*YYY CL) 
V2=R(L)*C2Cll*XXX(l-l) 
Y(L)=Vl+( (-l.O)**INDEX>*V2 

74 L=L+l 
DO 7 6 K =1 'NP J\ Tt-J S 

76 X(l)=X(l)+Y(L-i<) 
38 WRITEC6,96) XCNB) 
96 FORMAT(lX~ 2El5.5) 

McMASTER UNIVERSJTY UBR AR'f 
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HPLOT(M,KK>=REAL(X(NB)) 


c 

r . '­
C THIS BLOCK SHIFTS THE X AND Y VALUES BACK ONE UNIT 
C IN TI~E. THIS IS THE MEMORY. 
c 
c 

37 	 DO 6~0 K=J,NB 

XXX(K)=XX(K) 


60 0 .XX(K)=X(K) 

DO 6U2 K=l,NPB 

YY,Y ( K 1 = Y Y ( K ) 


602 	 YY(K)=Y(K) 
601 	 CONTINUE 


C.t\LL NAME 

CALL PLOT(4.j,5.0,-31 

DO 124 KJ=l,NFREQ 

CALL PLOT(S.5,0.0,2) 

CALL PLOT(U. u ,-2.5,31 

CALL PLOT(0. 0 ,+2.5,21 

CALL PLOT( 0 . 0 ,0.0,31 

EMM=Eivi 
DO 123 I=l,fv~v 


EM=I 

X= E >1 -,'t 8 • 5 I EM M 

Y=HP L0 T { I , f~ J ) 

CALL PLOT(X, u .c,3) 

CALL PLOT(X,Y,21 


123 cor·n rr,iuE 

124 CALL PLOT(l5. 0 ,u.o,-31 


CALL PLOT(G.G,c.0,999) 

STOP 

END 

SUBROUT If"..:E N1\ME 

CALL PLOT(1.,4.,3}

CALL LETTER(l4,1C,9 0 ,1~,4·,14HCARNEGIE A4107) 

CALL PLOT(l J . 0 ,0.5,-3) 

RETUFm 

END 

64 00 END RECOFW 

LPBPBSHPt..P 


0.1564345 .9876e83 

0.1564345 -.987682.3 

.4539905 .8910065 

.4539905 -.8910065 

• 7'.)71 068 .7071068 

.7071068 -.7071068 

.8910065 .4539905 

.8910065 -.4539905 

.9876883 • 15 64 3Lt 5 

.9876883 -.1564345 


100 0 .0 c.o 
BS 

l.O 

CD TOT 0288 
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APPENDIX II Description of the Programs 

The description of the actual programs which were 

· used to illustrate the above theory will be carried out in 

two parts: first, w~ . present a simple flow chart to estab­

lish the general nature of the programs with a minimum of 

complication; second, the actual programs, which are divided 

into blocks by explanatory COMMENT cards, will follow. They 

are written ·in Fortran IV. 

The flow diagrams for both time and frequency domains 

are shown below. They have a major section of calculations 

in common, with only the last two blocks different. The 

only major difference between the cascade and parallel pro­

grams is the calculation of the residues of the original 

lowpass filter for the parallel case. Ohly the cascade 

programs are included. 

Flowchart: 

-_..IREAD IN THE LOWPASS POLES 

J 

IF A PARALLEL REALIZATION 
IS · REQUIRED, CALCULATE THE 
RESIDUES: OTHERWISE CONTINUE 

l 
CHOOSE THE TYPE OF FILTER 
Ji. e. LOWPASS, HIGHPASS etc) 

j_ 

CHOOSE THE CUTOFF FREQUENCY 
OR THE CENTRE FREQUENCY AND 
BANDWIDTH. 

+ 
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CALCULATE THE POLES AND 
RESIDUES OF THE TRANSFER FUNC­
TION OF THE FILTER. 

CALCULATE THE COEFFICIENTS, 
c1i and c2i. 

DIFFERENCE 

TIME DOMAIN FREQUENCY__~ DOMAIN 

FORM THE FORM THE TRA~~FER 
EQUATIONS. FUNCTION H z 

FEED THE INPUT SEQUENCE 
INTO DIFFERENCE EQUATIONS 
AND CALCULATE OUTPUT SEQU­
ENCE. . 

LET THE FREQUENCY 
VARY AND EVALUATE

1H(z- ) AT EACH STEP 

The results can then be accumulated and automatically 

graphed (see the actual program for details) or printed out. 

l 
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i .. 
: .t ~APPENDIX III Basis of ~folding Effect 

Consider for ease, the ~nalytic continuous signal 

jwt:

· x ( t) == e 


which is sampled at the rate 1 hz, to obtain a sequ~nce 
T 

jwnT 
x(nT) == e n == 0,1,2, ... AI Ill 

Suppose that the frequency w, is written as an 
... 

integral multiple of the NyquiS~ frequency, plus a fraction: 

w ::: mws ± nx where n is the remainder, m an integer.
' x 


2 


Substituting this into AI Ill we get: 

j_nT{mws + S1 ] 

·. · x (nT) ::: e 

- x 

2 

j k ,7f jnxnT 

::: e 
 e 

jn nT 
=±e x where k=mn an integer and Cu T = 27T . s 

It is obvious now that whatever the frequency of the 

analog input, the frequency of the digital sequence is limited 

to the baseband, i.e. O<w<w· = = s 
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