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SCOPE AND CONTENTS: 

Prototypes of the recently developed periscopter, a flying 

platform tethered to a ground station, are presently extremely 

difficult to fly. Tests conducted by the Defence Research Board of 

Canada in Valcartier, Quebec, and by Westinghouse of Canada near 

Hamilton, have led to several crashes. Possible causes for the lack 

of flying qualities are: · unbalanced aerodynamic forces and moments; 

inadequate controls; and poor inherent stability characteristics. 

In this investigation, the system of counter-rotating lifting 

rotors used in the present periscopters is examined with a view to 

improvement of the flying qualities. The aerodynamic theory of 

helicopter rotors is considered as a background. 

The blades of the present periscopter rotors neither flap nor 

feather. The feasibility of .using either articulated (flapping) blades 

or rigid feathering blades is examined. It is found that flapping 

blades are not :feasible mainly because of associated stability and 
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control problems. Also the two counter-rotating rotors would tend to 

strike against each other. A rigid rotor system featuring feathering 

blades is found to be feasible. Such a system is therefore examined 

in detail by computing all relevant aerodynamic parameters. It is 

shown that the feathering system can provide all required control 

moments. Its introduction would therefore eliminate the present bail 

mechanism. 

An analysis of the stability characteristics of a periscopter 
\ 

featuring a. rigid feathering rotor system is developed. However, 

when hovering in still air, such a periscopter is shown to be unstable. 

The possibility of rendering it stable by the use of rotor controls 

is demonstrated. No attempt is made to suggest a specific design 

for the control system to be used. 

The effect of various operational parameters on the flying 

qualities of the periscopter is investigated. 
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le INTRODUCTION 

Periscopter is· the trade name of an unmanned flying platform 

tethered to a ground vehicle. The platform is kept aloft by two elec­

trically driven counter-rotating rotors (propellors). The periscopter 

is jointly developed by the Defence Research Board of Canada and by 

Westinghouse of Canada. The system is designed to accommodate a 

television camera that can overlook a limited ground area of military or 

other interest from a height of up to 600 feet. 

Several periscopter prototypes have been built and tested in 

recent years. Some have crashed. None has as yet performed to the full 

sat1.sfaction of the research and development teams, and no commercial 

production has so far been contemplated. The purpose of this research 

is to investigate the aerodynamics and dynamics of the periscopter types 

now in existence, and to gain some understanding through theoretical 

analysis of the causes for the crashes. . Suggestions are made for 

design changes. A simultaneous investigation of an advanced test pro­

gram for the periscopter is in progress at McMaster University. 

The tether cable of the periscopter system connects the flying 

platform to a ground vehicle. The design of the cable consitutes a 

formidable engineering problem. The cable must perform three functions. 

It must hold the platfonn in the air much like the string of a kite 

prevents the kite from escaping. Therefore the cable must be light 

and strong. Its tension is the aerodynamic lift minus the weight of 
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the platform. The cable must c~ntain electrical leads of sufficiently 

good conductivity and insulation for powering two electric motors 

developing each up to five horsepower Finally, the cable must 

contain additional electrical leads to serve both the control system 

and the electronic devices (television camera) of the platform. 

Research toward development of a better cable is necessary but has not 

been included as part of this investigation. 

The flying platform and the tether cable have a combined weight 

of the order of 100 pounds. The required aerodynamic lift is generated 

by a system of two coaxial counter-rotating rotors approximately four 

feet in diameter. In still air the rotors move in two horizontal planes 

whose design distance is approximately three inches apart. The rotor blades 

are made of light rigid material. There occurs, nevertheless, some 

in-flight blade flexing. This flexing is currently held responsible for 

the collisions that have occurred between the two rotors and that have 

caused the crashes during test flights. 

A simple platform lifted by two counter-rotating rotors is 

capable only of hovering in still air. If there is an incident wind of 

constant velocity, or if there are random gusts, the simple tethered 

hovercraft becomes completely unstable and will crash. Control devices 

are therefore used to render the periscopter aerodynamically and 

dynamically stable within a wide range of wind conditions. The 
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following control moments are essential: A yaw moment must be 

available for the case when the reactions of the counter-rotating 

propellors do not fully compensate. This condition occurs when there 

is non-zero win~ ~elocity resulting in non-identical upstream flows 

for the two rotors. A pitch moment and a roll moment must be avail­

able when, because of winds or gusts, the rotors develop unbalanced 

pitch and roll. These moments also serve to manoeuver the platform 

within the constraints of the tether cable. 

In the existing periscopter models control moment for yaw is 

generated by increasing or decreasing the speed of one rotor with 

respect to the other rotor. This changes the net reaction torque 

which must be zero. The control mechanism consists of a sensing device 

that controls the speed of the two electric generators in the ground 

vehicle supplying the power for the rotor motors. (The motors are of 

the induction type so that their speed changes with the frequency of 

the electric power and therefore on the generator's rpm.) The yaw 

control is thus fully automatic. It involves considerable ground 

equipment. 

The control moments in pitch and roll are presently generated 

by torquing the platform against a bail mechanism. In the latest 

periscopter prototype, Skyhook IV, at the Canadian Armaments Research 

and Development Establishment (GARDE) the bail is six feet long and 

carries at its lower end a weight of about four pounds. The upper 

end of the bail is hinged near the centre of gravity of the peri­

scopter. Torquing is produced by two direct current servo motors, 
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one for pitch and one for roll. The torquing motion of the bail is 

constrained by the tether cable whose tension is in the order of 

thirty pounds. Because of this tension the bail deflections are very 

small. 



2. HELICOPTER DYNAMICS AND AERODYNAMICS 

To our knowledge, no analysis of periscopter type aircraft has 

as yet been published. Our analysis of the aerodynamics of the 

periscopter rotors is an extension of the known aerodynamics of the 

helicopter rotor. For this reason. some relevant , facts of the dynamics 

and aerodynamics of helicopter rotors are reviewed in this section. 

We specifically mention single-rotor aerodynamics and the calculation 

of a rotor induced velocity field. Rotor types used in modern 

helicopter designs are discussed. 

SYMBOLS USED 

r radius of the rotor 


b number of blades 


c blade elemental chord 


x non-dimensional radius r/R 


.fl rotational speed of the rotor (radians/second) 


~ blade azimuthal angle measured from downwind position 


vi induced velocity 


V wind velocity 


V' resultant velocity at the blade element 


UT velocity component in the plane of the rotor 


Up velocity component perpendicular to the plane of the rotor 


V climb velocity
c 


u rotor disc incidence 


9c collective pitch setting 
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downwash angle (U~Up) 

blade elemental angle of attack 

µ tip speed ratio (U~R) 

Up/.aR inflow . ratio 


vi/.nR 


factor for longitudnal variation of induced velocity 


p air density 

T thrust 

H H-force 

y Y-force 

p disc loading (T/nR2) 

2.1 Rotor Aerodynamics 

f 

No complete .analysis exists for the aerodynamics of helicopters 

rotors. The flows encountered, especially in forward flight, are 

very complex. They are non-linear and unsteady (time-periodic). 

Consequently, a manageable analysis must rest on some simplifying 

assumptions. 

Figure 1 (see Appendix 1) shows the effects of a hovering 

rotor in still air. A pressure difference ~p develops across the 

plane of the rotor. The pressure difference causes the air above the 

rotor to accelerate and to pass through this plane. The induced 

velocity v1, also called the rotor downwash, is defined as the velocity 

of the air when passing through the rotor plane. Downstream of the 

rotor plane the air is further accelerated until it reaches a distance 
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of about one rotor diameter. In forward flight, this distance reduces 

to as much as one rotor radius. 

The forces and moments acting on the helicopter rotor blade 

can .be investigated by analyzing the flow past a rotor blade. Figure 2 

shows the top view of a blade that rotates counter-clockwise. R and ~ 

are respectively the rotor radius (blade span) and the time-dependent 

azimuthal angle of the rotating blade.Il is t~e angular speed. 

Figure 3 shows the elemental section of the blade at a typical distance 

r from the center. As the blade rotates, the elemental section moves 

through the air with velocityJ1r. Dr is the component of the incident 

flow velocity vector that lies in the plane of the rotor. The 

component perpendicular to this plane is the induced velocity v1• The 

resultant velocity is denoted by V'. The angle between the direction 

of the resultant velocity and the direction of the chord of the blade 

element is the angle of attack i. The angle of attack is the difference 

between the angles 9 and ~. where 9 is the angle between the chord 
c c 

and the rotor plane and <P is the angle between the flow velocity 

vector and the rotor plane. One therefore has, since p is small, 
up 

(2.1.1) 

Considering now the helicopter in motion, one defines three 

planes for the purpose of introducing a suitable coordinate system. 

These are the rotor plane, the longitudinal plane, and the lateral 

plane. The origin is at the rotor center. The rotor plane is already 

well defined. The z-direction is chosen to be perpendicular to the 

http:blade.Il
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rotor plane. The longitudinal plane is then defined by the z-direction 

and the direction of the flight velocity V. The x-direction is 

chosen to be perpendicular to the z-direction and in the longitudinal 

pla~e. The y-direction is perpendicular to the longitudinal plane. 

Thus, the xy-plane is the rotor plane, the xz-plane is the longitu­

dinal plane, and the yz-plane is the lateral plane. The aerodynamic 

force vector (rotor force) in general does not coincide with any of 

the three coordinate directions. One therefore has the x-component 

of the rotor force which is usually termed the H-force, the 

y-component of the rotor force which is termed the Y-force, and the 

z-component of the rotor force which is identified with the rotor 

thrust. The thrust is to be distinguished from the lift: if a fourth 

plane is defined by the directions of the flight velocity and the 

rotor force, then. by definition, the lift lies in that plane and is 

the component of the rotor force perpendicular to the flight direction; 

the drag is defined as the component of the rotor force parallel to 

the flight direction. 

The blade loading is a function of the blade span variable r 

and the azimuth angle 'i'. The total aerodynamic force developed by a 

blade for a given 'i' is therefore calculated by integration with 

respect to r. Since 'i' is a function of time, the time average of 

the aerodynamic force developed by the rotor is then found by inte­

gration with respect to 'i' from 0 to 2rc. 

The thrust produced by a rotating blade generates a moment 

about an axis in the rotor plane. This axis is perpendicular to the 
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blade span, passes through the rotor hub, and rotates with speedD..~ 

If at a given azimuth angle ~ the thrust loadings of each blade of a 

two-blade rotor are identical, the two moments will exactly cancel. 
L 

In that case the resultant moment at the rotor hub is zero. This 

ideal condition prevails only if the helicopter hovers in still air. 

The thrust, and therefore the moment, due to an elemental section of 

the blade, actually depends on the angle of attack i and on the 

magnitude of the resultant flow velocity V'. These quantities:· in 

turn depend on the induced velocity vi' which in general is not 

unifonn throughout the rotor plane. 

If the helicopter is Jin forward flight, then the advancing 

0blade (~ = o to 180°) experiences an increased resultant air flow 

velocity and an increased angle of attack, c.f. Fig. 3. This increases 

the thrust loading on the advancing blade. On the retreating blade 

(~ = 180° to 360°) the thrust is decreased. Consequently, the moments 

are no longer balanced. The resultant unbalanced moment at the rotor 

hub is largely a roll moment (about the x-axis). Unless neutralized, 

this moment causes the helicopter to roll over. There is also a 

pitch moment (about the y-axis due to a variation of the induced 

velocity in the longitudinal plane). An additional pitch moment may 

be caused by blade flexing. Again, the helicopter will pitch over 

unless the pitch moment is neutralized. 

2.2 Induced Velocity 

The calculation of the distribution of the induced velocity in 
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the plane of the rotor (rotor disc) is difficult, especially in 

forward flight. Its determination is nevertheless essential for an 

analysis of the helicopter's performance, stability, and control. 

This is because the distribution of the induced velocity determines 

the distribution of the blade incidence (distribution of the angle of 

attack along the blade span). The distribution of the blade incidence 

in turn affects the thrust and the moments, which are the most 

relevant parameters of the analysis. No accurate theory but 

approximations based on simplifying assumptions are available. 

The calculation of the induced velocity is simple when the 

helicopter is hovering in still air (Ref. 3, 10, 11). It follows 

closely well proven propellor theory. Propellor theory is based on 

the law of conservation of momentum. Despite its simplicity it gives 

surprisingly good results. The rotor disc with its more or less 

complicated radial distribution of incidence, loading, etc., is 

replaced by a thin actuator disc. The actuator disc is assumed to 

produce a uniform pressure difference across its plane. It thus 

accelerates the air flow uniformly. In this approximation the 

induced velocity is calculated as 

v. = T = ....!? (2.2.1)
1 22PrcR 2P 

This expression is of course independent of the blade span variable 

r 
x =ii• 
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A more accurate calculation of the induced velocity takes the 

dependence on the spanwise load distribution into account. The 

calculation is based on conservation of momentum at a blade elemental 

section. Its result is the more complicated expression 

v cr::_a!lR 2(9 xnR - v ) 
x ) cv. = ( c + + (-1 + + 

c ) (2.2.2)
1 

2 16 lt-V ~ a.{11:? 
( c + v + x ) 

c
a-a(li{ 16 

x 

Equation 2.2.2 is a function of the span variable x and is very 

accurate for hovering in still air. It can also be derived by more 

sophisticated vortex theories. Equation 2c2.2 gives a constant value 

for the induced velocity over the blade span if o-x and ecx are 

independent of the blade span variable x. This implies that the blades 

are untapered and linearly twisted. For such twist and taper one can 

therefore use the simple momentum theory (Reference 10). 

Considering now forward flight, an approximation of the induced 

velocity that is uniform over the rotor disc is given by Glauert's 

formula 

T (2.2.3) 
2PV'A 

Here V' is the assumed unifonn resultant velocity of the air flow 

through the disc. Equation 2.2.3 is justified only in that it reduces 

to the momentum equation 2.2.l when V' = v., which is the hovering
1 

condition. (It also reduces to the expression one finds for the 

induced velocity of an elliptically loaded wing with the same total 
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lift and the same span, when v• is taken as the flight speed v.) 
Glauert's formula is largely empirical. It is regarded in the 

helicopter literature as a realistic estimate of the mean induced 

vel~city for any forward flight condition (Ref. 3, 11, 20). 

In a more refined analysis of the induced velocity in forward 

flight it is necessary to take the spanwise and the azimuthwise 

variation into account. The induced velocity is after all -a function 

of the local blade loading. It also depends on the forward speed and 

on the disc incidence. The fact that the induced velocity depends on 

both the blade span variable and the azimuth angle affects the aero­

dynamic characteristics of the rotor. Several theories are available. 

One approach takes the longitudinal variation of the induced 

velocity across the rotor disc into account. As the air is accelerated 

toward the rotor disc, air particles entering the upstream portion of 

the disc have experienced the influence of the rotor for less time 

than air particles entering the downstream portion of the rotor. As 

a result, the deflection of the air particles toward the rotor 

increases from the upstream portion to the downstream portion. Thus 

the induced velocity, being the velocity component -perpendicular to 

the disc, also increases from the upstream portion to the downstream 

portion. This generates a nose up pitch moment. The effect actually 

becomes negligible at high flight speeds, say above 60 mph, and is 

therefore usually ignored in performance and stability calculations. 

In 1926 Glauert suggested that the increase of the induced velocity 

in the longitudinal plane is linear. He proposed the 
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formula 

(2.2.4) 

where v is the mean induced velocity given by equation 2.2.3. The 
0 

calculation of K is difficult. One approach is to determine inde­

. pendently the distributi?n of v in the longitudinal plane K is then1 


adjusted so that Equation 2.2.4 best fits these data. A theoretical 


calculation of v in the longitudinal plane for a rotor that is
1 


uniformly loaded was given by Castles and deLeeuw (Ref. 2). Based on 


their calculations, K is approximated by the relationship 


4µ µ
K = - -/(1.2 + -) (2.2.5) 

3 A. A 

The tip speed and inflow ratios µ and X are defined in the table of 

symbols. Payne points out that the value of K calculated from Equation 

2.2.5 agrees better with experimental results than values of K 


calculated by other methods (Ref. 20). 


Mangler in 1953 published an analysis of the distribution of the 

induced velocity in the rotor plane, based on linearization of Euler's 

equation of motion. He thus assumed that everywhere in the rotor plane 

the induced velocity is small compared with the flight velocity. He 

expanded v. in terms of a Fourier series in the azimuth angle ~. The 
1 

advantage of Mangler's approach is that it relaxes the assumption that 

the load distribution is uniform; it thus permits the calculation of 

v1 to be based on a more realistic load distribution (Ref. 16). It 

is shown later, however, that Mangler's approach cannot be applied to 

the rotors of the periscopter because there the induced velocity is of 
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the same order of magnitude as the wind velocity. 

A very accurate though involved method for the calculation of 

the induced velocity in the plane of a rotor consists of replacing 

the rotor wake by a suitably chosen vortex system. This method has 

received .increased attention in recent years (Ref. 3, 5, 26, 27). 

Much computational work is involved. The vortex method is useful in 

the calculation of the time variation of the induced velocity. Such 

studies are necessary if one wishes to analyze vibrations or flutter, 

or for a general aeroelastic analysis. Vortex theories are not used 

for regular performance and stability calculations. 

2. 3 Rotor Types 

Broadly, there are two helicopter ·rotor types. These. _are the 

flapping rotor, also called the fully articulated rotor; and the 

cyclic-pitch rigid rotor, whose blades are capable of feathering. 

The Flapping Rotor 

Each blade of a flapping ro.tor is hinged near the hub axis so 

that it can freely flap up and down (Fig. 4). A second set of hinges 

allows the blades to move through a small angle in the plane of the 

rotor. Thus the design of the flapping rotor provides one flappinghinge 

and one so-called drag hinge for each blade. By this design no 

moments (except a negligibly small blade pitch moment) can be trans­

ferred through the hub to the helicopter. Figure 5 shows a flapping 

rotor. AA is the initial rotor plane. The blades OC and OC' are 
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flapped up through the flapping angle ~. Ea.ch blade experiences three 

forces: the thrust which is nearly perpendicular to the blade span; a 

centrifugal force which at all times is perpendicular to the rotor 

sha~t; and an inertia force. 

The flapping ang~e ~ varies as the rotor rotates and is a 

function of the azimuth angle ~. ~ is detennined by the dynamic balance 

of the three forces and can be approximated by a three-term Fourier 

series in 'l'. A discussion of the dynamics of flapping blades is 

given in Ref. 10. Thus 

~ = a - a.. Cos~ - b Sin'l' (2.3.1)
0 l. , 1 

Because of the negative signs in Equation 2.3.l the Fourier constants, 

which are termed flapping coefficients, all become positive. The a1 ­

flapping produces a backward tilt of the rotor tip path plane; it is 

due to the aerodynamic forces that are sine functions of 'l'. a1 is 

independent of aerodynamic damping and of the mass of the blade. The 
I 

b -flapping produces a starboard tilt of the rotor tip path plane if1 

the rotor, as seen from above, moves counter-clockwise; it is due to 

aerodynamic forces that are cosine functions of 'l'. In Section 4.1 it 

is shown that b depends on the coning angle a and on the longitudinal1 0 

variation of the induced velocity. When the helicopter hovers in still 

air, both a and b
1 

are zero, and the blades then have a constant1 

flapping angle which is the coning angle a • 
. . 0 

Flapping of helicopter blades for the purpose of eliminating 

aerodynamic moments about the rotor hub was first introduced in 1919 
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by Juan de Cierva . (Ref. 7). The flapping motion of the rotating 

blades in early helicopter models resulted in large periodic in-plane 

Coriolis forces. Drag hinges were introduced to reduce the resulting 

per~odic in-plane stresses in the blades. Despite this precaution 

helicopters still crashed. It was found that the presence of the drag 

hinges led to what is termed ground resonance, an unstable oscillation 

of the blades about the drag hinges. The problem was eventually solved 

by the introduction of in-plane damping. Nevertheless, the centrifugal 

forces experienced by each blade must be borne by sturdy flapping pins 

which render the rotor hub heavy and of complicated design. Thus, the 

heavy hub, the in-plane hinges, and the in-plane dampers, all contri­

bute to a structurally complicated design of the flapping rotor. Such 

helicopters are controlled by tilting the hub, which results in 

tilting the thrust vector. Their stability and flying qualities are 

poor and they are structurally complicated. It is possible, however, 

to improve the stability and flying qualities by moving the flapping 

hinges away from the hub through a certain fraction of the blade span. 

Such rotors are termed offset hinge rotors. Many helicopter types 

currently in use are of the offset type. (For a detailed discussion 

of offset type rotors see Ref. 19 and 20.) 

The Rigid Rotor 

Only recently have designs featuring a rigid rotor been given 

serious attention (Ref. 6, 7, 14). So-called cyclic pitch, or 

feathering, of the rotor blades is employed to relieve the unbalanced 

moments produced in forward flight. The blade angle of attack is 
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varied in a controlled mode by varying the geometric pitch setting 

as a function of the azimuth angle~. This is made possible by the 

use of a swash plate mechanism (Fig. 6). · The geometric pitch setting 

as a function of ~ is 

9 = 9 - A Cos1' - B Sin~ (2.3.2)c 

where 9 is termed the collective pitch setting. 9 can be varied c - c 

during flight. A and B are the feathering coefficients; they may be 

positive or negative. A forward tilt of the swash plate results in a 

negative value for the feathering coefficient A. producing a nose-

down pitch moment. Similarly, a backward tilt of the swash plate 

produces'a nose-up pitch moment. Roll moments are produced by tilting 

the swash plate to the right or left. This varies the feathering 

coefficient B. The collective pitch setting 9 can be increased or 
c 

decreased by respectively raising or lowering the entire swash plate. 

Helicopters of the rigid rotor design are easily controlled by 

varying their collective and cyclic pitch. The stability and control 

characteristics of the rigid rotor helicopter are different from those 

of flapping rotor helicopters. The more recently developed rigid rotor 

helicopters have definite advantages over the flapping rotor types. 

They have a better stability. can be manoeauvered more easily, have a 

wide center of gravity range. are easy to fly. can be flown by 

instruments, have high maximum speedsf and are altogether mechanically 

simpler. 
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Distinguishing Features of the Periscopter 

When analyzing the periscopter for performance, control and 

stability, it is necessary to clearly bear in mind those features of 

the periscopter that distinguish it from the helicopter. These are: 

(1) The periscopter is tethered to the ground by a cable restricting 

its freedom of motion. The cable's tension constitutes an additional 

force that does not exist for the helicopter. The limited freedom of 

motion and the cable tension may significantly affect the periscopter's 

stability and control. Helicopter stability and control theory can 

for this reason not be directly applied. 

(2l The aerodynamic efficiency of the periscopter is of secondary 

importance. Instead, flying qualities must be given first priority. 

(3) The close coexistence of counter-rotating blades complicates the 

aerodynamics. Ineteference affects cannot be taken fully into theore­

tical account. 

(4) Flexing, flapping, and feathering, of counter-rotating blades, 

pose formidable mechanical design problems. 

(5) The periscopter has no forward flight. Nevertheless~ flying in a 

steady wind is aerodynamically equivalent to the forward flight 

condition of the helicopter. 



3. STATEMENT OF THE PROBLEM 

The design of the periscopter is complicated. This is because 

the aerodynamic characteristics of the counter-rotating rotors, ' the 

characteristics of the control system, and the stability character­

istics, are strongly interrelated. The flying qualities of the peri­

scepter depend on these characteristics. Their improvement amounts 

to an optimisation of these three factors. For example, the rotor 

system should be optimised to develop the required lift with a min­

imum of power. This however becomes a minor consideration. The 
, 

major concern is the improvement of the flying qualities. There are 

significant unbalanced forces and moments that depend on the rotor 

aerodynamics. The control system must balance these forces and 

moments. Its design must therefore take the rotor aerodynamics into 

account. Furthermore, in a rigid rotor design employing cyclic pitch 

the rotor itself would provide the control. The design of the control 

system must also take the periscopter's stability characteristics 

into account. The stability characteristics in turn depend among 

other things on the rotor aerodynamics. 

It follows that the investigation of the periscopter must 

follow a course that begins with the aerodynamics of the rotor system, 

followed by an understanding of the control and stability problem. 

This leads to a theoretical prediction of attainable flying qualities. 

The periscopter rotor systems employed in current designs do 

19 
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not feature blade flapping or feathering. These systems have caused 

considerable trouble (including the crashes) when flight-tested. The 

upper and lower blades tend to flex and strike against each other. 

The effect must be studied in terms of the rotor aerodynamics. The 

periscopter flying qualities have been . very unsatisfactory at wind 

speeds as low as 10 feet per second. At speeds in the order of 20 

feet per second it is almost impossible to fly the present models. 

It is clear . that the control and stability characteristics of the 

present models are inadequate in relation to their aerodynamics. 

The feasibility of replacing the periscopter's present simple 

sy~tem of rotors by more elaborate alternative systems is examined. 

Blade flapping and feathering are specifically investigated. Since 

one is ultimately interest ed in the flying qualities of the peri­

scopter, a combination analysis of the aerodynamics of the rotor 

system, the control system, and the stability, is carried out. It 

is shown that the introduction of blade flapping is not feasible, 

but that the introduction of blade feathering promises a significant 

improvement of the flying qualities. 

3.1 The F1.apping Rotor 

In the case of a fla~ping rotor system, no aerodynamic moments 

produced by the rotor would be transferred through the hub to the peri­

scopter. Nevertheless, the incident wind would cause the rotor tip 

path plane to tilt backward and sideways. This is because of the 

existence of the a -flapping and the b -flapping discussed in
1 1
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Section 2.2. The tilt of the rotor tip path plane causes a tilt of 

the thrust vector. This means that the thrust vector no longer passes 

through the center of gravity of the periscopter. Moments would 

therefore be created about the center of gravity, and the control 

problem would thus still exist. Control could be achieved in two ways. 

One could use a bail mechanism. The present bail mechanism would have 

to be redesigned because the performance of the systems used in 

current periscopter models has not been found satisfactory in flight 

tests. Alternatively, the hub could be tilted. This would result 

in a tilt of the rotor tip path plane. Tilting of the hub is 

accompanied by mechanical difficulties. This is true for helicopters, 

and would be even more severe for the counter-rotating system of the 

periscopter with its two distinct tip path planes. 

Flapping blades would create another serious problem. The 

b1-flapping would cause one rotor to tilt in one rolling direction 

and the other rotor to tilt in the other rolling direction. This means 

that on one side the rotor blades would come much closer together than 

is provided for by the design distance of the two rotor planes. 

Therefore they would tend to strike against each other. 

Some calculations of b -flapping have been made. They show 1

that the b -flapping of each rotor can be as large as six degrees,
1

giving each blade a tip deflection of about three inches. To this 

must be added an allowance for possible vibrations or flutter of the· 

blades. Thus, in order that the perilous interference of the two 

rotors be completely eliminated, their present distance of three 
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inches would have to be considerably increased, say to eight inches. 

Eight inches would not be a small distance compared with the rotor 

diameter. 

Moving the rotor discs ~part to a relative distance that is 

comparable, or almost co.mparable, to the disc diameter would compli­

cate the aerodynamics of the system. Theoretical analysis of such a 

configuration seems impossible. It should of course be feasible to 

conduct wind tunnel tests. 

In a configuration featuring a safe distance between the two 

rotors, the air flow occupying the space between the two rotors would 

be 
0 

accelerated under the influence of both rotors. This would result 

in a higher induced velocity at the lower rotor so that the difference 

in the induced velocity at the two rotors could no longer be neglected. 

The inflow conditions at the lower rotor would be influenced by the 

skew angle of the wake of the upper rotor, and also by the wake's 

interaction with the incident wind. It would thus be imperative to 

employ a different design for each rotor. The design of each rotor 

would have to be based on the aerodynamic effect, to be determined 

experimentally, of the distance between the two rotors. 

The b -flapping depends on the coning angle a and on the
1 0 

longitudinal distribution of the induced velocity. The coning angle 

could be kept small by the use of heavy material for the blades and by 

choosing a suitable load distribution over the blade span. However, 

the major caus e for the b -flapping is the longitudinal variation of1
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the induced velocity. This effect cannot be eliminated through design. 

For high wind speeds, however, the slip stream is almost ··horizontal, 

and the longitudinal asymmetry of the induced velocity is negligible. 

But for the transition range of_wind speeds (10 to 50 feet per second), 

the induced velocity decreases as the wind speed increases, and the 

longitudinal asymmetry of the induced velocity increases. This results 

in increased b -flapping.
1

A flapping rotor design would involve significant mechanical 

problems. There would have to be a heavy hub to accommodate each 

rotor's flapping pins, in-plane hinges, and the in-plane dampers, (see 

also Section 2.3). 

Finally, flapping rotors have very poor stability character­

istics (Ref. 10). Despite the design possibilities mentioned, it is 

therefore unlikely that the introduction of flapping rotor blades 

would improve the periscopter's flying qualities. 

It follows from this discussion that the adoption of a flapping 

rotor system for the periscopter is not promising. For similar reasons 

one should also reject the adoption of off-set flapping hinge rotors, 

sea-saw rotors, and stiff-hinged flapping rotors. 

3.2 The Rigid Rotor 

It was said in Section 2.3 that the unbalanced moments ex­

perienced by the periscopter and caused by winds and gusts could be 

effectively neutralized if the blades were given a suitably chosen 
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cyclic pitch (feathering) as they rotate in azimuth. Not only could 

the aerodynamic ~oments in this way be neutralized, but any desired 

control moments could be produced by the use of cyclic pitch. Bail 

mechanisms could therefore be completely eliminated. It should also 

be possible to use the collective pitch for yaw control. This would 

result in the elimination of some of the ground equipment currently 
( 

needed for yaw control. 

The history of the rigid rotor with feathering blades began · 

as recently as 1957. At that time the Lockheed Company encouraged a 

research and development group consisting of non-conformist aero­

------·dynamicists --to -investigate the design feasibility of an air vehicle 

that could take off and land vertica.lly, should be relatively quiet, 

should have low downwash velocity, and could be mass produced. Heli­

copters were found to be the answer. But at that time helicopters 

were very complicated in design and had poor flying qualities. Flapping 

blades were still used. The Lockheed group began to search for a new 

helicopter concept featuring both a simpler ~echanical design and more 

satisfactory flying qualities. The principal problem was to find 

improved means for producing control moments. The concept of a rotor, 

whose blades do not flap 1.::Jut whose incidence changes as a function of 

azimuth, was adopted as a result of the research. Such rotors are the 

now kn6wri -figid feathering rotors. Lockheed thus revived a concept 

that had been abandoned as impractical during the early years of the 

helicopter. The promise shown by the rigid rotor concept - with its 

potential for hands-off stability - led to an extensive development 

program. The advantages of the rigid rotor helicopter were found to 
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be a much simpler mechanical design, improved inherent stability, and 

better control and manoeuverability (Ref. 13). The improvement in 

stability is accomplished by a control gyro mounted above the blades. 

The first two Lockheed 286 helicopters were certified in 1967. They 

were the first rigid rotor vehicles certified by the Federal Aviation 

Administration of the United States. 

Adoption of the rigid rotor concept for the periscopter appears 

very promising. Some mechanical problems would of course have to be 

overcome. Each rotor would have to be feathered by an individual 

swash plate mechanism. 

'To establish the suitability of a rigid rotor system for the 

periscopter, a theoretical analysis of the aerodynamics of counter­

rotating rigid rotors with feathering blades, and of the relevant 

stability and control problem, has been carried out. The analysis is 

presented in Section 4. 



4. THE RIGID ROTOR SYSTEM 

A rigid f~athering rotor system is investigated. The system 

consists of two coaxial and counter-rotating rotors. The rotor 

design of the existing periscopter models is considered. Each rotor 

has two identical blades which are tapered but not twisted. The 

diameter of each rotor is 52 inches and their design speed is 3000 rpm. 

The distance between the two rotor planes is three inches. The total 

available power is approximately 8.5 horse power, and both rotors 

produce a total thrust of 95 pounds. 

4.1 Aerodynamic Analysis 

ADDITIONAL SYMBCLs ·usED 

c root chord 
0 

c blade elemental chord 


t taper integral of order n 

n 

mean induced velocity 

v Ai.R 
0 

V sin a. 
n.R 

"-01+Xo2 

mean drag coefficient for blade section 


H mach number 


x2-x effective blade radius1 


A' effective rotor disc area 
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Y ~pa C Sl2_ bR3 (b = 4)
0 

YM Y R/2 

CT coefficient of thrust (thrust/Y) 


CMR coefficient of roll moment (roll rnoment/YM) 


CMP coefficient of pitch moment (pitch moment/YM) 


CQ coefficient of torque 


In this section, a mathematical model is considered for the 

computation· of the aerodynamic forces and moments developed by two 

counter-rotating rigid feathering rotors, such as could be employed 

in a periscopter. Since every mathematical model constitutes a 

. compromise between the complexity of the live configuration it is to 

describe, and the requirement that the computations be manageable, it 

is necessary to go through some preliminary speculations as to what 

effects, if any, can be neglected. Such considerations lead to a 

set of simplifying assumptions. 

To obtain average values, the forces and moments developed 

by an elemental section of a blade must be intesrated over the blade 

span and over the azimuth angle (see Section 2.1). In order that 

integration in closed terms be possible, such variables as the chord, 

the twist, the induced velocity, etc., must be reasonably simple functions 

of the blade span variable x and of the azimuth angle~. Assumptions 

are formulated not only for the purpose of simplification but also 

because of lack of information, for example, assumptions are made 

about the unexplored aerodynamic interaction between two co-axial 

rotors, about the induced velocity distribution, and about tip losses. 
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The assumptions made and their justifications are listed in the 

following items (1) to (13). Some remarks on computational procedure 

are also made. 

Assumptions 

(1) Wind data. A wide. range of wind velocities is considered. 

Computations are made in steps of 10 feet per second from zero 

(hovering in still air) to 60 feet per second. The wind incidence 

is. varie. d . t eps f t en d f rom -20° t +20° •in s o egrees o 

(2) Blade chord taper. In most simplified helicopter analysis the 

blade chord is assumed to be uniform along the blade span. However, 

in 
c 

the present analysis the spanwise variation of the chord is taken 

into account. Th~ blades are linearly tapered. If c is the chord 

length of the elemental section at the span station x, then 

c =C (1-t* x) (4.1.1)
0 

t* = root chord - tip chordwhere root chord • 

The varying chord is easily taken into consideration by the 

use of taper integrals which are defined as 

2 

tn =4 [ (1-t* x) xn-l dx (4.1.2) 

1 

where n =1, 2, 3 ••.. 

(3) Blade twist. The periscopter rotor blades have zero twist. 

Nevertheless, for the sake of generality a linear twist can be intro­

duced into the analysis. Thus 
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where a er is the total twist from root to tip. 9 er is set equal to 

zero in all computations. 

(4) Tip loss factor and effective disc area. Some spillage of air 

from the lower surface of a blade to its upper surface occurs at 

each rotor blade tip. This results in a reduced thrust near the tip. 

The effect is known as the tip loss. Experience shows that the tip . 

loss can be taken into account by introducing an effective blade span 

(Ref. 10). One thus has the dimensionless effective outer radius 

of the blade 

x = (l _ tip chord) 
2 2R 

for the 	existing periscopter rotor blades x2 = 0.96. 

Because of the existence of a hub and an aerodynamically 

ineffective blade root, there exists an effective inner radius of 

the rotor, whose dimensionless value for the present periscopter is 

The effective disc area is then 

= nR 
2 

e 	 (4.1.4) 

where e 	= 0.92. 

It is important to note that the tip loss factor is relevant 
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for the calculation of the forces and moments, but is not relevant 

for the calculation of the power consumed. Thus, for the calculation 

of the power consumed, x2 must be set equal to one. One therefore 

has two taper integrals. One in which x =1.0 and which is used2 

for power calculations , the other in which x2 = 0.96 and which is 

used for the calculation of all other aerodynamic parameters. 

(5) Blade feathering. The rotor blades are allowed to feather. 

The geometric angle of incidence 9 is a function of the azimuthal 

angle '¥. Thus 

9 = 9 - A Cos ~ - B Sin ~ (4.1.5)
c 

(6) Induced velocity. There are two co-axia l rotors whose planes 

are three inches apart. Each rotor disc has a diameter of 52 inches. 

The distance between the discs is therefore about one-seventeenth of 

the diameter. The air is somewhat accelerated in the region between 

the rotors. The induced velocity is therefore higher at the lower 

rotor than it is at the upper rotor. The effect can be expected to 

be negligible as long as the distance between the rotor planes is 

small compared with the rotor diameters. This is considered to be 

the case in the present configuration. For computation p..trposes, 

both rotors are therefore assumed to be in the same plane, and the 

induced velocity is thus calculated as if the system of two two-blade 

rotors were replaced by a single rotor that has four blades. 

Equation 2.2.2 is used for the calculation of the induced 

velocity distribution in still air. The distribution is shown in 

Figure 7. However, for further calculations the induced velocity 
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shown in Figure 7 is replaced by a linear distribution 

vi = H + Gx 

where it is estimated. (from Figure 7) that G =36 feet per second and 

H =15 feet per second. With these values, 

v. = 36x + 15 • 	 (4.1.6)
1 

Equation 4.1.6 is used for the calculation of the thrust developed 

in still air. The thrust obtained is 96.1 pOunds. From this value 

one can calculate the average induced velocity from simple momentum 

theory (Equation 2.1.1). One obtains 39.03 feet per second. This 

is very nearly the value given by Figure 7 for x = 2/3. It is in 

agreement with the general practice of using the value of v. given
l. 

by blade element theory (Equation 2.2.2) for x = 2/j. The value 

obtained in this way is usually considered as representative of the 

average induced velocity. 

In steady ·winds, the calculation of the induced velocity is 

more complicated. The various procedures available were discussed 

in Section 2.2. Equation 2.2.4 is simple and suitable for present 

purposes. Thus 

v. = v (1 + Kx Cos ~)
1 0 

where 	 (see Equation 2.2.5). 

The lateral variation of the 	induced velocity over the disc is ignored 

- 16e µ 3 
as the relevant quantity k = is very small in the present

ao-R t4 
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analysis (Ref. 20). 

The average value of the induced velocity v over the disc is 
0 

T 
v =--- (Glauer t's Formula).

0 2ApeV' 

One can also write 

(4.1.7) 

Thus v is known in terms of the thrust T. But T depends on the 
0 

dimensionless induced velocity A according to01 

which can be rewritten as 

(4.1.8) 

If Equation 4-.1.8 is substituted into Equation 4.1. 7, one obtains 

after division by (nR) 2 

4 23
alA.ol + alol + a3"-01 + a4~\1 + a5 = 0 (4.1.9) 

where 1.0al = 

a2 = 2A.o2 

2 2 2 
a - (YYY)t2 (4.1.10)= A. 02 + µ
3 

=2(xy) (YYY)ta4 2 

2a ~(YYY) (xy)
5 

2 

and (YYY) [ Y ]


= (2 PAe) {QR)2 • 
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Equation 4.1.9 is solved numerically, using Bairstow's method and a 

digital computer. Computations are carried out for each relevant 

value of the wind velocity V and the wind incidence a. A is given
01 

by the positive real root of Equation 4.1.9. Results are shown in 

Appendix 1, Table 1. The Fortran IV program for the calculation of 

X
01 

is also presented in Appendix 1. 

(7) Flexing of blades. Blades are never perfectly rigid and there­

fore flex under an aerodynamic load. The effect of flexing can be 

approximated by introducing a constant coning angle a into the 
0 

analysis. The value of a is a function of the blade stiffness. a 
0 0 

effects only the pitch moment. (The effect on the down wash angle ~ 

is negligible.) The relation between the pitch moment and a is 
0 

linear; c.f. Equation 4.1.17. Since a is not known for the present
0 

periscopter blades, it is set equal to one degree for the purpose of 

all calculations. This is justified in view of Equation 4.1.17 

whose terms not involving a turn out to be very predominant.
0 

(8) Lift as a function of incidence. The lift coefficient is 

assumed to depend linearly on the incidence. The slope of the 

straight line representing CL against i is taken to be 6/radian. (The 

b~de section is NACA 0012 for most of the blade span.) This value 

is ajopted for all calculations. 

(9) Region of reversed flow. In the vicinity of ~ = 270°, there is 

an angular region near the hub where the wind velocity exceeds the 

linear velocity of the in-board blade elements. This results in a 

relative air flow from the blade trailing edge to the blade leading 

edge. Some negative lift is therefore created. The boundary of this 



reversed flow region can be estimated by setting the equation for 

the in-plane velocity (Equation l+.1.11) equal to zero. One obtains 

x =-µSin~. The maximum value occurs when¥= 270°, so that then 

x =µ • But µ never exceeds the value 0.1. Since the minimum value 

of the blade span variable is ~ = 0.15, the effect of reversed flow 

on the total lift can then be neglected. 

(10) Compressibility effects. The compressibility effects increase 

both the thrust developed and the power consumed. A maximum air flow 

velocity of the order of 700 feet per second is encountered at the 

blade tips. Thi~ however, decreases linearly along the span of the 

blade to zero feet per second at the centre of the hub. As a first 

engineering approximation, one can use Prandt-Glauert's relation to 

account for compressibility effects. Thus the lift curve slope, a, 

is to be increased by the factor 1Jl-H2, .where Mis a representative 

macb number for the blade span (say at x = 2/3). The factor is thus 

approximately 1.1. This is considered in taking a = 6/radian. 

(11) The dovmwash angle ti> is of the order of five degrees. All 

calculations are therefore based on the substitution Cos cp = 1, and 

sin cp = cp. 

(12) Some rotational acceleration of the air ta.l<es place when it 

passes through the rotor discs. This effect is small for one disc 

and becomes entirely negligible when there are two discs with counter-

rotating blades. 

(13) The component of the flow velocity along the blade span (radial 

component) is neglected. 
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Numerical Computation of Aerodynamic Characterists 

All computations of this section have been carried out with the 

CDC 6400 electronic digital computer at McMaster University. The 

Fortran IV program used is presented in Appendix 1. 

The following aerodyna~ic parameters are of interest: the 

thrust; the power consumed; the moments in pitch and roll; and the 

blade elemental angle of attack as a function of the blade span variable 

x and the azimuth angle '1'. All these parameters depend, among other 

variables, on the distribution of the induced velocity. For the 

derivation of the various relevant formulas the reader is referred to 

Ref. 20. 

The aerodynamic parameters are computed, and their errors 

estimated, in terms of the possible error in the induced velocity. 

The notation of Section 2 is used. The resultant velocity 

vector V' at the blade elemental section is resolved into two 

components. The tangential component UT lies in the plane of the rotor, 

while the component Up is perpendicular to that plane. The components 

are given by 

UT 
- = x + µ Sin '!' 


..OR 

(4.1.11) 

= A + a µ Cos ~ + 
0 
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Collective Pitch Setting 

The thrust and the power are computed for a number of values of 

the collective pitch setting G in still air. Equations 4.1.12 and . c 

4.1.15 are used. It is found that 9 = 8. 5° gives a thrust of 96.1 c 

pounds and that this requires 8.66 hp. This is just above the 

required thrust of 95.0 pounds. The value 8.5° is therefore adopted 

for the entire analysis. 

Thrust 

The average value of the thrust is 

(4.1.12) 

or T .. Y CT 

This expression is used to compute the thrust for wind speeds up to 

60 feet per second and incidences from -20° to +26°. The results are 

shown in Appendix 1, Table 1. 

Expect for a = 200 , the thrust is seen to increase with 

increasing wind velocity. At a =20° the thrust decreases to just 

below the hovering value of 95 pounds. A change in the collective 

pitch setting would be needed to keep the thrust above the hovering 

value. This would somewhat increase the required power. 

*In this analysis, p. does not exceed 0.1; 8 is zero; and B is very 
small (which is shown later). Equation 4.1~f2 can therefore be simpli­
fied to 

T =YC = Y ( 9 t - ~t )
T cR 3 2 

This expression can be used for a rapid calculation of the thrust under 
all wind conditions. 
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From Equation 4.1.12 it is seen that the thrust depends on the 

mean induced velocity ;\01 .as calculated from Glauert's formula. The 

thrust is thus not affected by the lonsitudinal variation of the 

induced velocity. If the mean induced velocity calculated from 

Glauert's formula is not correct, then there will be an error in the 

calculated thrust. It is of interest to see, therefore~ what 

percentage error in thrust results from a one percent error in the 

mean induced velocity. Thus one has from Equation 4.1.12, 

Percentage variation in thrust (4.1.13)= 
Percentage variation in mean induced velocity CT 

Equ~tion 4.1.13 can be used for all relevant wind conditions. The 

maximum value (which occurs at zero wind velocity) is -1.5. The 

percentage error in thrust is therefore up to 1. 5 times the percentage 

error in the mean induced velocity. 

Power Required 

The power required is given by 

= CQ • Y • R • 
H.P. 	 (4.1.14) 

550 

where CQ is the torque coefficient. The power required consists of two 

parts: the induced power and the profile power. (The induced power 

is usually about 70 percent of the total power). Thus 

CQ = C~A + ot4 (4.1.15) 
a 

Strictly, o varies along the blade span because the airfoil (cross­



sectional shape) and the downwash angle ~ are in general not constant. 

However, a constant average value can be assumed. This value is 0.007. 

Equations 4.1.14 and 4.1.15 are used for the computation of 

the .required power under various wind conditions. The results are 

shown in Appendix 1, Tab~e 1. It is seen that the variation of the 

required power with wind velocity and incidence is small. The highest 

calculated value is 8.79 hp. 

Roll Moment 

The average roll moment developed by both rotors is 

(4.1.16) 

or Roll moment = YM CMR 

A positive value indicates a roll to the left. Equation 4.1.16 is 

used to calculate the roll moment in various wind conditions with no 

feathering (B:O). Results are shown in Appendix 1, Table 2. The roll 

moment increases with increasing wind velocity. The wind direction 

has little effect. 

The sign of the roll moment produced by one rotor is opposite 

to the sign of the roll moment produced by the other (counter-rotating) 

rotor. The resultant moment may therefore be zero, or it may be a 

small moment to the left or right. 

Pitch Moment 

The average pitch moment developed by both rotors is 
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1 b 2-4 1 2
Pitch moment= -gPaC 2n.'-R (K(;\ t 4) + a (µt ) + A(t 4 + lt µ t)

0 01 0 3
(4.1.17) 

A positive value indicates a nose-up moment. Since both rotors 

develop nose-up moments, the resultant pitch moment is twice the value 

obtained ·fora single rotor. The first term in Equation 4.1.17 is the 

pitch moment produced by the longitudinal variation over the rotor disc 

of the induced velocity. The second term is the pitch moment produced 

by the coning angle a • The third term is the pitch moment produced by
0 

feathering. The third term depends on the feathering angle A. The 

three terms constitute independent contribution to the total pitch 

moment. 1.'he first two terms are separately computed for the various 

- -- · --- ----wind - conditions~ - - "The- :re·sults are shown in -Appendix 1, Table 2, and 

in Figure 8. The third term is a control moment; it is discussed in 

Section 4. 2. 

It is seen that the contribution to the pitch moment from the 

coning angle (which is assumed to be one degree) is very small compared 

with the contribution by the longitudinal variation of the induced 

velocity. The coning angle is not expected to exceed three degrees. 

Its contribution to the total pitch moment therefore remains below 7-8 

per cent. For this reason, the effect of the coning angle on the pitch 

·--:-- moment is ·-from here -on-neglegted. 

For a given value of the wind velocity, the pitch moment is 

0low if the wind incidence is +20 • As the wind incidence decreases, 

the pitch moment increases and reaches a maximum at a wind incidence 
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of -200 • The piteh moment is zero in still air. As the wind velocity 

increases, the parameter K increases asymptotically to the maximum 

value 1.33. At the same time the induced velocity decreases. At low 

speeds the increase in K dominates over the decrease 'in the induced 

velocity, so that the pitch moment KA01t 4 increases with wind velocity. 

Having reached its maximtirn, the pitch moment then decreases with 

increasing wind velocity. Figure 8 clearly indicates this behaviour. 

The periscopter operates in the range of wind velocities in which the 

pitch moment is large and therefore critical. 

An examination of Equation 4.1.17 reveals that the calculated 

value of the pitch moment is sensitive to both the calculated value of 

K and to the calculated value of the mean induced velocity A- •
01

It follows t"hat for zero or negligible coning angle at every 

wind condition 

Percentage variation of Pitch moment = 1.0 (4.1.18) 
Percentage variation of K 

The mean induced velocity affects both the value of K and the pitch 

moment. One has, 

( 4/3 µ )= 
(l.2A + µ) 

K2 
=-0.9 ­

µ 
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and 
Percentage variation in Pitch moment 


Percentage variation in A
01 

A 	 I 

= (1- o.9K 01
) (4.1.19) 

µ 

This ratio has been calculated and is found to be zero near the still 

air condition. It reaches the value 0.6 at a wind velocity of 60 feet 

per second. 

Blade Stalling 

A check has been made on the possibility that stalling occurs 

on any po,rtion of the blade at some azimuth angle. It is assumed that 

the stall angle is 12 degrees. It was shown in Section 2.1 that the 

blade elemental angle of at tack is e - <I>, ·so that for no stall 
c 

(9 - <I>) (12° or <I> )-3.5°(Since 9 = 8.5°). But 
c 	 c 

Up A + a u Cos'!' + X l Kx Cos'!' <I>= 	-- =_____o__· __________o____~-, 


UT x +µ Sin'Y 


o0
<I> is calculated for 'Y = , 90°, 180°, and 360°, at the blade points 

x = 0.33, o.66, and 1.0, for all wind conditions. It is seen that 

. 	 0 
~never goes below -3.5 • One may therefore conclude that no blade 

stalling occurs. The lowest computed value of <I> is -1.50 ; it occurs 

at <I> = 180°, x -= 1.0, V = 60 feet per second, and ex. =-20°. It is also 

seen that the most critical region for blade stall, if it should ever 

occur, is near~ = 180°. This is on the upstream side of the rotor. 

The stalling would first begin at the rotor tips. 
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4. 2 The Control Proble1n 

Three modes of control are provided in a periscopter. These are 

control in pitch, in roll, and in yaw. A rigid feathering rotor should 

be capable of providing all three controls: pitch and roll control by 

applying ~yclic pitch to the blades, and yaw control by varying the 

collective pitch setting of one rotor with respect to the other. In 

this section the question is investigated whether the adopted rigid 

feathering rotor system can provide the control moments required to 

neutralize the unbalanced aerodynamic moments, under all relevant wind 

conditions. In addition, the control power is determined that remains 

availabl~ for manoeuvering, under any wind conditions. 

Roll and Pitch Control 

The correct feathering angles A and B, for any wind conditions, 

can be determined by requiring that the net pitch and roll moments 

developed are both zero. A and B are therefore obtained by setting 

Equations 4.1.16 and 4.1.17 equal to zero. One obtains 

KXolt4 + ao µ t3 
A = - 1 2

t4 + 4µ t2 

(29ct - Xt 2)
3B = ­

t4 + t µ 
2
t2 

t4 
(4.2.1)

(2_ect - M 2)3
B = ­

t4 
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Equations 4.2.1 show that the control angles A and B are respectively 

proportional to the unbalanced pitch and roll moments. The proportion­

ality constant is the same for A and for B. It was shown in Section 4.1 

that the roll moments are almost negligible conpared with the pitch 

moments. The feathering angle B required for roll control is therefore 

very small compared with ·the feathering angle A required for pitch 

control. Thus, if a feathering mechanism is adequate for pitch control, 

it is also .adequate for roll control. For this reason, it is necessary 

only to examine the rotor system for pitch control. 

The feathering angle A for pitch control has been computed 

from Equ~tion 4.2.l for wind velocities up to 60 feet per second. The 

results are sho~n in Appendix l, Table 2, and in Figure 8. Except for 

a difference in ordinate scale, Figure 8 is the same graph as that 

obtained for the pitch moment. 

The feathering angle A, and therefore the control power, cannot 

be increased beyond a certain limit. The limit is determined by the 

beginning of blade stall at the downstream half of the rotor disc. 

Application of the feathering angle -A results in an increase of the 

blade elemental angle of attack in the downstream half of the rotor 

disc and in a decrease of the angle of attack in the upstream half. 

Maximum increase occurs at the azimuth position ~ = 00 and 

is equai to the angle A. Maximum decrease occurs at~ = 180°, and is 

equal to the angle -A. Acontinuous increase in the feathering angle 

-A can give rise to two effects. In the upstream half of the disc, the 
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blade elemental angle of attack decreases and may become negative, 

thus causing the local thrust to become negative. This is not harmful 

because such negative thrust in the upstream half of the disc provides 

a desired nose-down pitch moment. In the downstream half of the disc 

the blade elemental angle of attack may exceed the blade section stall 

angle. Such stall would ·be accompanied by diminished thrust, increased 

required power, and by vibrations or flutter. Blade stall should 

therefore be avoided. This imposes the limitation on the feathering 

angle A. 

If both rotors are provided with individual feathering mechan­

isms, then each rotor blade must be given feathering angles A as 
" 

listed in Appendix 1, Table 2. Once the feathering angle A has been 

selected, the blade elemental angle of attack i can be calculated, for 

all relevant wind conditions, from the expression 

i = (9 - ACos iy ) - <P c 

A + a µ Coe'¥ + >-. KxCos 'i' 
0 01= 9 - ACos'¥ (4.2.2)

c x + µ Sin'l' 

Equation 4.2.2 shows that maximum i occurs at x ~ 1.0. One can there­

fore detennine the beginning of stall by computing i at x = l.O. 

Nevertheless, i is a complicated function of 'l' so that it is difficult 

to predict the value of 'l' at which stalling begins. Calculations show 

that i reaches its maximum in the interval -5°( 'l' (5°. One can there­

fore check for stall without introducing any appreciable error by 

calculating i at 'l' =o0 
• Results are shown in Appendix 1, Table 3. 



It is seen that i never exceeds 8°, a value much lower than 12°, the 

stalling angle for the blade section used in the present periscopters. 

A rotor system with both rotors feathered may therefore be safely 

used for producin~ the required control moments in pitch and roll. 

Providing each rotor with its own feathering mechanism will 

present prohibitive mechanical problems. Providing only one rotor with 

a feathering mechanism, and leaving the other rotor rigid .and 

unfeathered, could be accomplished by a much simpler design. In such a 

design the feathered rotor must provide sufficient control power to 

neutralize the unbalanced moment produced by both rotors. This would 

require feathering angles twice as large as those given in Appendix 1, 

Table 2. Again, the limitation . for these angles is the occurance of 

blade stall. Calculations have been made, for ·the blade elemental 

angle of attack under all relevant wind conditions, for the case when 

only one rotor is feathered (Appendix 1, Table 3). It is found that 

no stall occurs for any wind conditions considered. (See Appendix 1, 

Table 3, and also Figure 8.) 

ThuR it is possible to neutral~se the unbalanced pitch and 

roll moments developed due to winds by employing only one feathered 

rotor for control in a periscopter. Mechanical considerations would 

suggest that the lower rotor should be .the one that is feathered. 
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Yaw Control 

Yaw control is easily achieved by varying the collective pitch 

setting of one rotor. This can be done regardless whether both rotors 

are feathered or only one rotor is feathered. 



Additional Control Power Available for Manoeuvering 

An increase of the feathering angle A beyond the value 


required for neutralizing unbalanced pitch moments will give an 


additional moment. This moment can be used for manoeuvering the 


periscopt~r. The limitation is again that the blade elemental angle 

of attack must not increase beyond the stall angle at any point on the 

rotor disc. One thus requires, 

A = (12° - i . ) (4.2.3)m . max 

where the angle A gives the manoeuvering for a configeration in which 
m 

- only one rotor is feathered, for all relevant wind conditions. The 

values of' A are tabulated in Appendix 1, Table 3. As one might expect
m 

-

the manoeuvering power has a maximum for hovering in still air. It 

decreases rapidly as the wind velocity increases. 
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4.3 Stability Characteristics 

The flying qualities of an aircraft largly depend on its 

inherent stability characteristics. Ideally, an aircraft should be 

both statically and dynamically stable. Static stability implies that 

a disturbance of the flight condition is accompanied by forces and 

moments that tend to return the aircraft to its undisturbed trim state. 

Static stability does not suffice. The restoring motion may be 

followed by divergent oscillations. For dynamic stability, these 

unstable oscillations must be sufficiently damped. Conventional · 

helicopters are dynamically very unstable and are therefore difficult 

to fly. ~Their flying qualities are usually improved by the use of a 

suitably designed automatic control system. 

Many sources are available dealing with the stability problem 

of the helicopter, especially those equipped with articulated (flapping) 

rotors. (Ref. 10, 13, 17, 18, 20, 22, 23.) Helicopter stability 

analysis cannot be applied to predict the stability characteristics 

of the periscopter. The stability and control analysis of the 

periscopter is effected by the fact that the periscopter is tethered 

to its ground vehicle. (The cable introduces an a~ditional force, the 

tension of the cable, and restricts the freedom of motion of the 

periscopt er. ) 

In this section, an analysis is presented of the periscopter' s 

static and dynamic stability. Certain dynamic instabilities are 

theoretically predicted, and it is investigated how these instabilities 
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are affected by the various design and flight parameters of the 

periscopter. An attempt is made to determine whether the periscopter 

can be rendered stable with the help of controls. No attempt is made 

to suggest any specific design for the control system. 

The analysis can also be used to predict the effect of various 

design and flight parameters on the flying qualities of the periscopter. 

Of part~cular interest is the effect of the tension of the . tether cable. 

An optimum value for this tension can be estimated. This has an 

important bearing on the total thrust to be developed by the rotor 

system. The effect on the stability characteristics of the following 

additional parameters is discussed: the flight altitude; the distance 

between the centre of gravity of the flying platform and the point 

where the cable is ~ttached to it; the height of the rotors above the 

centre of gravity of the periscopter; the blade tip speed. 

The mathematics of dynamic stability is very complex if applied 

rigorously. Suitable simplying assumptions are therefore made and 

justified at various stages. Only the motion in the longitudinal plane 

is considered. This implies that the motion in the lateral plane and 

the motion in the longitudinal plane can be assumed to be uncoupled$ 

In helicopters, such coupling is believed to be weak and is therefore 

ignored in simplified analysis. However, Price has shown that this 

coupling can be important, {Ref. 22). In pericopters, there is ample 

justification for the assumption that the coupling is weak. The forces 

and moments produced by the two rotors in the lateral plane are 

opposite and equal. It can therefore be expected that a longitudinal 
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motion will not create any appreciable lateral motion. The periscopter 

has only two degrees of freedom in the longitudnal plane. Two 

equations of motion must therefore be set up and solved. These 

equations are formulated and linearized. Linearization implies the 

assumption that a~l . the : perturbations about the trim position are 

small. Vertical hovering is taken to be the trim position. The 

resulting linearized ordinary differential equations are analyzed for 

stability behaviour. The analysis is general, i.e., no particular 

solution is· sought for a particular set of parameters. 

ADDITIONAL SYMBOLS USED 

A dot on 
, 
a variable indicates its time derivative. 


A variable subscript indicates derivative with respect to that subscript. 


A subscript '0' · refers to initial trimmed values. 


oxyz set of body axes 


u, x, w velocities in x, y and z-directions 


OXYZ set of fixed axes 


lagrangian coordinates for the centre of gravity 

of periscopter 

y Cci> - e) 

moment of inertia of the periscopter about y-axix 

m mass of the periscopter 

w weight of the periscopter 

constants defined in Appendix 2.2 

cable tension 

D body drag 
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M pitching moment 

CM control moment 

B stability matrix 

time to double the amplutudeTD 

Tp time period of oscillations 

t_?.p speed (n R) .Vt 

Equations of Motion in the Longitudinal Plane 

Figure .9 (Appendix 2) shows the model of a periscopter. The 

model is used for the analysis. The flying platform whose centre of 

gravity lies at the point o, is attached to the ground by a cable of 

length tr The cable is assumed to be stra:i.ght and is attached to the 

platform at a distance £ below the centre _of gravity. The cable
2 

exerts a force P on the periscopter platform by virture of its tension. 

Both rotor planes are assumed to be at a distance £ from the centre of
3 

gravity o. Thrust is along the rotor shaft and hence perpendicular 

to the rotor plane. Since the H -forces of the two rotors amplify each 

other (rather than cancel) they are included in the analysis. The 

rotors develop also a pitch moment M about the centre of gravity o. 

It is assumed that there is a control moment CM apout the centre of 

gravity o. Further, there is body drag D acting on the platform at a 

distance £4 below the point o. Figure 9 shows all the forces and 

moments considered. 

Two sets of axes are used. OXYZ is the axis system fixed in 

space. Point 0 is at the ground where the cable is attached (see 
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Figure 9). oxyz is the set of body axes, with ox along the rotor 

shaft. <I> and 9 are two independent lagrangian coordinates for the 

centre of gravity o with respect to the fixed coordinate system OXYZ 

(see Figure 9). 

The equations of motion are now written by considering the 

equilibrium of the centre of gravity. One obtains 

for x-forces, F + T - W Cos <P - P Cos Y = 0 
xi 

for z-forces, F + W Sin <I> + P Sin Y + D + H = 0 (4.3.1)z. 
l. 

for moments, M. - M + CM + PR Sin Y + t 4D - Ht3 = 0 
l. 2 

where F and F are inertia forces in the x and z directions. Mi x. z. 
1. l. 

is the inertia moment. These are evaluated as follows. Considering 

the motion of the centre of gravity with respect to the fixed 

coordinate system OXYZ one obtains 

• b
X = ---(£1 Sin _g + £ Sin ¢)

2bt . . 
= £ 9 Cosa + ,e cp Cos cp (4.3.2)

1 2

. . . 
Z = -(£ 9 Sin9 + t <P Sin cp)

1 2

• 

The motion of the centre of gravity with respect to the body axes oxyz 

is given by • • 
u = x = X Sin <P + z Cos <P 

• # 

tJ} = z = X Cos <t> Z Sin <P 

• 

q = -<P 
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Or, using Equation 4.3.2, 

• 
u = t 1e Sin Y 


~ = t e 
• 

cos r + £2¢ 
• 

(4.3.3)

.1 

• 

q = -<t> 


The inertia forces are given by 

• 
F = -m (u + -~q)
xi 

• 
F = -m (w - uq)

zi 

•
M. = - Iq

1 

or, using Equation 4. 3. 3, 

•• ·2
F = -m (~8 Sin Y - £ 0 Cos Y - £ ;2)

1 2xi 

• • ·2 •• 
F = -m (£19 Cos Y + £

1
9 Sin Y + £2¢) (4.3.4)

zi .. 
= I<PMi 

Using Equation 4.3.4, the equations of motion (Equation 4.3.l) reduce to 

1¢ + (-M + P£ Sin Y + t 4D ~ Ht ) + CM =02 3

The first equation is used to eliminate P from the other two. One 
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obtains 

+ W(Sin cp - Cos cp ~an Y) + D ~ H = 0 

(4.3.5) 

The two equations (Equation 4. 3. 5) together determin.e the motion of the 

periscopter at any trim position given by e and cp. The equations are 

extremely non-linear and are not used as such in the analysis. 

Equations of Perturbed Motion 

Equations 4.3.5 are linearised by assuming small perturbations 

/j9 and ~cp, about the trim values 9 and cp. Thus 

e = a + h.9 

Since the perturbations are small all second and higher order quantities 

can be neglected. Thus the aerodynamic quantities appearing in 

Equation 4.3.5 are expanded a Taylor series and only the first order 

terms are retained. For example, 

T =To + 	oT~g + 5T~cp + ~g + .§!~¢ 
oe, oct> cpe oct> 

The trigonometric functions in Equation 4.3.5 are expanded as follows 

Cos (cp + dcp) = Cos cp Sin cp Act> 

Sin (cp + dcp) = Sin cp + Cos cf> Ii~ 
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2Tan ( <l> + d<l>) = ['an <l> + Sec Acp 

• • ·2 ·2 2 • • 
(<l> + Acp) Tan (cp + ~<l>) = cp !an cp + ~ Sec <l> + 2cp ~an cp dcp 

' .' 

Tan (Y + dY) Sin (y + dY) = Tan Y Sin Y + (Tan Y Sec Y + Sin Y) AY 

.. . 
(9 + bG) Sin (Y +· dY) = g Sin Y + 9 Cos Y AY +Sin Y ~9 

Using these relations, the equations of motion (Equation 4.3.5) reduce to 

-m£ (Cos Y +Tan Y Sin Y) ~g + (T Tan Y + D + H)g ~g1

+ (-Ml,;9· Sin Y + m/,;9· Tan Y Sec Y + ,e,~9 Sin Y -m/,2·; 2 Sec2r 

+ T9 Tan Y - T Sec2r + W Sec2r Cos<!> + D9 + H9) ~9 
0 

·+ (,e ) ~cp + (2m:P ,e Tan Y + T; Tan y+ n; + H;) ~cp
2 2 
• • . • • • • 2 • 2 

+(m,e 9 Sin Y -m£19 Tan Y Sec Y - m£1e Sin Y + m£2 Sec Y <l>1

+ Tep Tan Y + T Sec2Y + W Cos ¢ - W Sec2r Cos cp
0 

and (4.3.6) 

•• ·2 
+ ((-M + ,e4n - ,e, H + CM)cp - mt1,e2e Cos Y - m£1,e2 9 Sin Y + ,e2~cp Tan Y 3

2+ i T Sec2r + w,e,2 Sin <!> tan Y - w,e2 Cos <l> Sec Y) ~<.P2 0 . 
+ (-m,e ,e Sin y) 6,9 + ((-M + ,e4n - ,e

. 

H + CM)g + 2m£ £ 9 Cos Y 
1 2 3 1 2. . .. 

+ ,e, T Tan Y) /18 + ((-M + ,e,4n - ,e H + CM) 9 + m,e1,e2g Cos Y
2 9 3

·2 2. 
- m,e1,e2e Sin Y + ,e T9 Tan Y - ,e T Seer2 2 0 

+ w,e Cos <P Sec2r) A<P = O.
2 
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Since one is interested in analyzing the case where the 

periscopter is hovering in vertical altitude. the trim conditions can 

be written as, • • • 
g = e = g = o, 
<I> = cp = <P = o. 

so that Y = O. 

For th~se trim conditions. the equations of perturbed motion as given 

by equation 4.3.6 simplify to 

(m£2) A<P + (-D - H)• ~~ + (-W - P - D - H ) ~<P 
<P 0 <P <P 

+ (mt
1 

) 6,9 + (-D - H) e/).9 + (P
0 

- Dg - .HG) h..9 = 0 


and 
.. . 
I il<P + (-M + CM + t 4D - t H)$ ~<P + C<-M + CM - t H + t 4D)<P + t P ) li4>

3 3 2 0 

+ (0) ~g + (-M + CM + £4D - £3H)9l9 + ((-M + CM - £3H + £4D)e - £2Po) A8 =0 

or, on introducing of symbols for the coefficients, .. . .. . 
a ~<P + b 64> + c A<P + a 69 + b ~8 + c A9 = 01 1 1 2 2 2 

and 

a 2 ~A> + b
3 

~<P + c A<P + a4 ~e + b4 69 + c4 /39 = o
3 

The coefficients a
1

, b
1

, c
1

, a
2

, b
2

, c
2

, a
3
, b

3
, c

3
, a4• b4, c4 are 


functions of various stability derivatives. These are derived in 


______p.pp_~~_dic~? . 2.1 and 2. 2. The coefficients of Equation 4. 3. 7 are 

evaluated in Appendix 2.3. 

Equations 4.3.7 are written in ·matrix form as 

ll<P 

h9 

~<P 

• 
/l9 

=B 


~<P . 

~.e .. 

fl<!> 

6,9 
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where B is the 4 X 4 matrix 

0 0 1 0 


0 0 0 1 


.- c3 - c4 - b3 - b4 

B (4,3.9)a3 	 a3 a3 a3 

alc4 c2 	 alb4 b2t1b3 - bl)(---) 	 (--­
a2a3 a2 a2a3 a2 a2a3 a2 

The characteristic equation of B is 

(4.3.10) 

where 

a 	= 1.0 


b3 alb4 b2 
 -1b = (- - - + -) Sec 

a3 a2a3 a2 


(4.3.lOa) 

The problem of finding the stability cha.racteristics of the periscopter 

is now reduced to finding the nature of the roots of the polynomial 

Equation 4.3.lOi which is usually referred to as the stability 
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polynomial. The system is stable if the real parts of all roots of 


the stability polynomial are negative. Necessary and sufficient 


conditions for the real part of the roots to be negative are: 


(a) the coefficients a, b, c, d, e must be positive; and (b) Routh's 


determinants R and R must be positive where,

1 2 

= (be - ad)R1 

R2 
2= d(bc - ad) -b e. 

-
However, the static stability actually depends only on the sign of 


the coefficient e, for static stability e must be positive• 


. The analysis so far developed is sufficient for finding the 

--stability characteristics of any periscopter design operating under any 

wind conditions. Given the design parameters and operating and 

conditions, Appendix 2 can be used to evaluate the coefficients in the 

equations of motion, Equation 4.3.?. Once the coefficients are 

known, it is easy t ·o evaluate the coefficients of the stability 

polynomial, Equation 4.3.10, and from this Routh's determinants R
1 

and R • The calculation determines whether the periscopter is stable.2


If _a digital computer is used, one can find the actual roots of the 


polynomial, Equation 4.3.10, as given by the eigenvalues of the matrix 

B. One can then evaluate the damping (given by the time to double or 


half the amplitude of unstable or stable oscillations, respectively) 


and the frequency of the oscillations. In addition, it is easy to 


vary any selected parameter, say the cable tension P , and study the 

0 

effect on the stability behaviour. However, the interaction of various 
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parameters is sufficiently complex to render such broad generalizations 

rather dangerous. 

In order to gain some physical insight into the problems and 

attempt to obtain some broad generalizations for the stability 

behaviour, one has to deal with the problem analytically. This is not 

a very inviting proposition in view of the extensive compleA;.ties 

involved. A certain amount of simplification results for zero wind 

conditions. In the following pages, the probiem is analyzed for zero 

wind conditions. 

Stability in Zero-Wind Conditions 

For the periscopter hovering in still air (i.e. V = O), the 

coefficients of the stability polynomial, Equation 4.3.10, simplify to 

(see Appendix 2.4) 

,e +e k -~k 
(A • - 2 , 3 ) 5 ~3 3 )

<I> £ Ag + I Acp
1 
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e = ­

(4.3.11a) 

Muqh simplification results by assuming k =o. This implies that
3 

I 

the coning angle is zero. The assumption does not modify the 

stability characteristics of the periscopter when flying without 

controls, since k.3 appears only in the control terms of Equation 4.3.11a. 

Equation 4.3.11a reduce to 

a = 1.0 
1 I k5 ,e2 


b = IOR <; kl + ,e3(k2 + ,e3kl) ) + y- (A~ - ,el Ag) 


2 

,e2 ,e2 1 1 ,e2 + ,e? • 


c =Po(r- + Itl + m!l) + ImQR (klk5(A$ - ,el AG) 
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and 

=be - adR1 

=d(bc - ad) - be
2 

, (4.3.11)R2 

Static stability: In order that the periscopter be statically 

stable in the absence of controls, one must have 

e ) 0 

or 

or 

Thus if the cable is attached at a point above the centre of gravity 

of the periscopter, the machine is statically stable. It may still 

be dynamically unstable. On the other hand, if the cable is attached 

at a point below the centre of gravity, the periscopter is both 

statically and dynamically unstable. Static stability can always 

be obtained by making a proper choice of the positional controls 

Dynamic stability: In order that the system be dynamically 

stable, the coefficients a, b, c, d, e, and also R and R2, must be1 
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positive. One first investigates the system for the case where no 

controls are used. For c and e to be simultaneously positive, it 

can be shown that the inequallty must hold 

1
---(t (0me 2 2 

1 

Since t 1 is of the order of 100 to 600 feet, £2 must for all practical 

purposes be zero. For R ) o,1 

be - ad ) 0 

or 

or 

Since inequality 4.3.13 is never satisfied in practice, R1 is always 

negative, and hence the periscopter is always dynamically unstable. 

It seems possible, nevertheless, to make the system stable 

by a suitable choice of controls, i.e., by a suitable choice of 

Ag, A~, A9 and A~. In fact, many combinations of Ag, A~, A9 and A~ 

can render the system stable. One such combination is of interest. 

One has 



and 

These controls can be achieved with the help of suitable rate and 

displacement gyros. Need for positional control is minimised by 

letting either t or P ·approach zero. Such gyros can be suitably
2 0 ­

coupled to the swash plate. Thus, it seems possible to achieve 

hands-off stability with a swash plate - gyro combination. With 

these controls (Equation 4.3.14), the coefficients become 

a = 1.0 
kl 

b = mQR 0.01 Sec-1 

p 
0 -2 c 0.01 Sec= rn£1 

d = 0 

Hence, the system is always stable. Equations-4.3.15 represent only 

2one mode of long period (the t.ime period is :) oscillations which is 

. t f h . Ln 2) Ivery poor1y damped ( t h e time o hal t e amplitude is --b- • - t can 

be shown that Equations 4.3.14 are compatible with the physics of 

http:Equations-4.3.15


• • 

the problem. Let dA be the value of the control angle used, dV be 

the hori~ontal velocity of the rotor tip path plane. Then 

- k dA = - control moment = - k5(dA$ d~ + dA0 d9)5 

= unbalanced moments produced due 
• 

to finite 9 and ~ 

Similarly 

- k5 dA = - control moment 

= unbalanced moments produced due to 

finite Y. 

Effect of P _,_& and ·i 2 : An analysis is made to evaluate the 
-0 -1 ­

effect of P , ,e1 and .e2, ori the stability characteristics of the 
0 
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periscopter when flying without any controls. 

According to Equations 4.3.11, £ and £ influence only the1 2 

coefficients c and e (the effect on d is smaller by at least two 

orders of magnitude). P also influences c and e. It also 
0 

influences, in additio~, the coefficient d. The influence is of the 
p 

order W-0 and should therefore not be ignored. 

One should be able to study the effect of £1 , £ and P , on2 0 

the stability behaviour by studying the behaviour of the roots of 

the stability equation (Equation 4.3.10) when c and e are varied 

while a, b and d, are kept constant. For normal ranges of the various 

variables, one can take a =1.0, b = 0.75 and d = 20.0. (A check 

made shows that the general nature of th~ stability behaviour does 

not change with a small variation in the assumed values of b and d.) 

With these values of a, b and d, the coefficients c and e are both 

varied from -3 to +3. This includes a wide range of P , ,e1 and /e2 • 
0 

Roots of the stability equation, Equation 4.3.10, have been computed 

using the digital computer. Two roots are real, representing a uni­

form convergence or divergence of motion. The other two roots form 

a complex pair, representing an oscillatory motion. There are thus 

three distinct modes of motion. As a measure of the rate of diver­

gence or convergence of each mode, the time to double or half the 

Ln 2 )amplitude is calculated ( TD = The time period of thereal part • 

oscillatory mode has also been computed (Tp = 2~/ imaginary part ). 

The results are presented in the form of graphs (Appendix 2, Figures 

10, 11, 12). 
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The first mode is a uniform rapid convergence. Time to half 

the amplitude varies between 0.2 and 0.28 seconds, so that this mode 

dies our rapidly. 

The second mode is shown in Appendix 2, Figure ~O. It uni­

formly c_onverges or div~rges depending on whether ,e is negative or
2 

positive. The time to double the amplitude is greater than 15 

seconds for normal operating values of P and ,e (e ~ - 0.5). However,
0 1

for a combination of high P <~ 25 pounds), low flight altitude 
0 

( ~ 50 feet), and moderately positive ,e2(~ 1 foot), the oscillation 

diverges very rapidly (TD~ 1 second). This could be one reason 

why the,periscopter test models have been so difficult to fly. 

(They were flown at a height of 50 feet). The rapid divergence can 

be avoided by letting either t or P approach zero.
2 0 

Figures 11 andl2 give TD and Tp for the unstable oscillatory 

mode. The time period is fairly large(~ 3 seconds), but the diver­

gence is very rapid (TD~ o.6 seconds). The general character of 

the unstable oscillations does not change with the variation in 

The magnitude of P has a direct influence on the effect that 
0 

.el and ,e have on the character of the oscillations. For very low
2 

p ( 0 to 5 pounds), the magnitudes of c and e are only marginally 

affected by ,e and ,e , and hence ,e and t do not appreciably alter
1 2 1 2 

the character of the oscillations. This should, of course, be ex­

pected even from a physical point of view. Increase in P has the 
0 

0 
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effect of amplifying the effect of ,-e and ,e •
2 1 

£1 has no appreciable effect on the oscillatory mode. On the 

other hand, ,e seems ~o strongly effect both the frequency and the
2 

rate of divergence, except at very low magnitudes of P • At moderate 
0 

values of P <~ 20 pounds), a variation of ±1 foot in ,e results in 
0 . 2 

a variation of ±4 in the coefficient c. This means that as the cable 

junction is moved up, the frequency decreases and the rate of diver­

gence increases (see Figures 11 and 12). This suggests a large positive 

Evaluation of the influence of P , when t and £2 are kept
0 1 

constant, must also include the variation of d. Ignoring as a first 

approximation any large variation of d, an increase in P results 
0 

in an increase in frequency and in TD for positive t 
2

, and a decrease 

in frequency and in TD for negative ,e (see Figures 11 and 12).
2 

b c 
Effect of tip speed (Vt ::: fi R); ·solidity ratio (er= ltRols_ 

and ,e : According to the Equations 4.3.11, these three parameters
2

influence only the coefficients b and d. One should thus be able to 

study the effect of these parameters on the stability characteristics 

by keeping a, c and e, constant and letting b and d vary. 

Two sets of values are adopted for a, c and e: a= l.o, · 

c = +2 .o, e = -1.0 (for positive ,e ); and a = l.O, c = -2 .o2

e = 1.0 (for negative ,e ). The coefficient b is varied from 0.5
2 ., 

to 1.1. The coefficient d is varied from 12.0 to 24.o. This includes 

a sufficiently wide range of working parameters. Equation 4.3.10 
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has been solved numerically. The resulting four roots represent three 

modes of motion. TD and Tp have been computed. The results are 

shown in Figures 13 and 14 for the oscillatory mode. 

The first mode is a uniform rapid convergence with a half 

time of about 0.25 seconds. The second mode is a uniform conver­

gence or divergence depending upon whether t is negative or positive,
2 

respectively. For the values of coefficients considered, the time 

to double the amplitude in divergence does not exceed 8 seconds. 

The third mode is an unstable oscillatory mode. TD and Tp 

are shown in Figures 13 and 14. Tp is of the order of 3 seconds. 

TD 
0

is of the order of 0.75 seconds. Variation in tip speed, solidity, 

or .e , does vary the values of Tp a.nd TD' but the variation is not
3

large enough to change the general character of the oscillations. 

The value of b is strongly affected by the value of t • On
3

the other hand, d is a weak function of ,e • An increase in the
3

value of t thus results in an increase in TD' while the frequency
3 

of oscillation remains unchanged. Thus increasing .e has a desirable
3 

influence on the stability characteristics. 

The tip speed Vt and the solidity influence the values of 

the coefficients b and d in an identical manner. According to Figure 

14, an increase in these parameters is associated with an increased 

frequency of oscillation. On the other hand, increasing b increases· 

TD, while increasing d decreases TD. It nevertheless appears from 

Figure 13 that the effect of increasing d is more pronounced. One 



should therefore expect that TD increases with increasing Vt and er-. 



5. DISCUSSION 

The foregoing analysis has demonstrated the feasibility of 

adopting a rigid feathering rotor system for the periscopter. The 

rigid feathering system in a periscopter results in improved aerody­

namics, controls, and handling. · Also, general principles for the 

analysis of periscopter rotors have been deve~oped. 

For a periscopter, the most critical operational parameter is 

the unbalanced aerodynamic pitch moment generated in the rotor system. 

Parameter,s such as thrust, power, rolling moments, etc., have little 

importance. According to Section 4.1, the pitch moment is almost 

entirely a consequence of the variation of .induced velocity in the 

longitudinal plane. Thus, the estimation of this asymmetry of the 

induced velocity in the longitudinal plane should be the major concern 

of any aerodynamic analysis perfonned for the periscopter rotors. In 

the present analysis, a linear distribution as suggested by Glauert, 

has been used (Equation 2.2.3). The distribution may not actually be 

linear, especially at the lower rotor. This longitudinal variation 

of the induced velocity is a function of the wind· velocity and incidence 

and of the load distribution over the rotor disc (and .hence the blade 

geometry). Theortical evaluation of these factors is difficult. 

There is therefore a need for experimental determination of the induced 

velocity in the longitudinal plane for the configeration of two coaxial 

counter-rotating rotors. 
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If the distribution of the induced velocity is assumed to be 

linear, it can be represented by the parameter K(see Equation 2.2.4). 

Equation 4.1.18 shows that the pitch moment is sensitive to the value 

of ~. One must therefore excercise caution when choosing a particular 

formula for K. Evaluation of the induced velocity in the longitudinal 

plane has not received much attention intheliterature. This is under­

standable because for an aerodynamic analysis of helicopter rotors the 

longitudinal asymmetry of the induced velocity is of little concern. 

The pitch moment is a weak function of the mean induced velocity 

(see Equation 4.1.19). Equation 4.1.9 should therefore suffice for 

the calculation of the mean induced velocity. The same mean induced 

velocity should also suffice for the calculation of thrust, power, etc. 

The wind direction has an appreciable influence on the magnitude of the 

pitch moment produced, especially for wind velocities greater than 30 

feet per second (see Figure 8). It would therefore be erroneous to 

base the analysis only on the horizontal wind conditions. 

Since the interference effects associated with the separation 

of the two rotorsarenot well understood, it is desirable to keep the 

separation as small as possible. This is especially important if no 

experimental determination of the pitch moment is planned. The 

assumption that the two discs lie in the same plane leads to n 

conservative estimate of the thrust. This is because the induced 

velocity has a maximum when the two discs coincide. 

The analysis has also shown that such factors as coning angle, 
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rolling moment, lateral variation of the induced velocity, area of 

reversed flow, etc., have no appreciable aerodynamic significance. 

These quantities can thus be ignored in the analysis for periscopter 

rotors. 

Controls: A ver~ simple control system consisting of a swash 

plate mechanism for the lower rotor only, is adequate for 

balancing the unbalanced moments in pitch and roll. The bail 

mechanism of the present periscopter models, therefore can be dispensed 

with. This may result in a reduction of the periscopter's weight. 

Yaw control is also attained by the swash plate, and ground equipment 

currentl~ used for yaw control can be dispensed with. In such a design, 

one would not be able to use collective pitch control for thrust control. 

Thus it is desirable to incorporate some means of varying the power 

consumed by the upper rotor, so that the collective pitch could then be 

successfully utilised for ascending, decending, and also for the control 

of the tension in the cable. This would be very useful because the 

cable tension is expected to influence the flying qualities. 

The control power of the rotor is limited by the onset of 

stall at the blade tips at ~ = o0 
• One should thµs be able to increase 

the control power in the following ways: (a) by twisting the blades, 

so that the geometric angle of incidence is reduced towards the blade 

tips. This has also the desirable influence of making the load distri­

bution over the blade more uniform; (b) by using an airfoil with better 

stalling characteristics; (c) the control moment is given by YMAt 4, 

for the tapered blades · considered t 4 = 0.58, for untapered blades 
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= o.84. Thus untapered blades would give higher control moment pert 4 

degree of feathering angle A. (Untapere:d blades would require a lower 


C , thus YM is decreased. But the increase in t 4 dominates). However,
0 

tap_ering of the blades has no influence on the feathering angle required 

- to balance the unbalanced moments. For a rigid feathering rotor• it 

is desirable to have blades that are twisted but untapered. On the 

other hand, if the bail mechanism is used .for control, one wants to have 

minimum pitch moment developed. Thus the blades are required to be 

tapered. It is of interest to note that the blade geometry is to be 

determined by the considerations of controls, rather than by the 

considerations of aerodynamic efficiency. 

In the control system suggested, the stall docs not occur at 

any wind condition._ In fact, the incidence angle i - never exceeds ten · 

degrees. Thus any error in the computed value of pitch moment (due 

to the lack of theoretical knowledge of longitudinal distribution of 

induced velocity) ~ay not affect the periscopter's performance. 

Using feathering of blades, rather than a bail mechanism, 

gives a complete freedom in the choice of the cable tension and of ..e •
2 

These two factors have important influence on the flying qualities, 

and hence should not be constrained by the requirements of bail 

mechanism. The present bail mechanism~ in Skyhook IV, requires a 

cable tension of "30 pounds. This is in spite of the fact that this 

prototype is not designed to fly in wind velocities higher than 40 

feet/second. A high tension is undesirable for reasons mentioned 

later in this section. Moreover, since the bail is to be torqued ~t 
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the upper end~ the effective cable junction is therefore constrained 

to be at the lower end of the bail, which in Skyhook IV is six feet 

below the centre of gravity of the periscopter platform. 

Cable Tension: An increase in cable tension means- an increase 

in thrus~ required,_ or a penalty in the weight of the periscopter. An 

increase in the thrust is accompanied by an increase in power. Thrust 

can be increased in two ways only. Either the collective pitch 

setting e is to -be increased. -This results in reduced control power
c 

available in the rigid feathering rotor. Alternatively, the constant ­

y ( =~rac01L2R3 ) is to be increased. This increases YM; and hence 

the unbalanced moments. This would be undersirable if the bail 

mechanism is used for control. The value of the feathering angles 

r-equired -to balance the unbalanced moments. are, however, not affected. 

Moreover, an increase in thrust is accompanied by an increase in 

induced velocity. An increase in induced velocity increases unbalanced 

moments, and also the feathering angle A required to balance the 

unbalanced pitch moment (A'-" KA. ). Thus the considerations of power
01

required. the control power available, the unbalanced moments produced 

and also the strength of the cable itself, lead to a low valu-e of the 

cable tension. In section 4.3 it was shown (for the case of zero wind 

flights) that the low value of the cable tension surpresses the 

undesirable flying characteristics at low altitudes and for positive 

values of £ • In fact, a zero -cable tension results in static stability,2

elimination of positional controls. elimination of the divergent mode 

for all values of £2• (No results have been obtained for non-zero wind 
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conditions. But at least for low wind conditions one can expect 

similar results). 

The analysis developed in Section 4.3 · should enable one to 

compute the stability characteristics of the periscopter for all 

wind conditions. The analysis is not limited to periscopters using 

rigid feathering rotor systems. For zero winds, the stability character­

istics have been obtained an~lytically. The results show that, without 

controls, the periscopter is always dynamically unstable. Static 

stability can be obtained by attaching the cable at a point above the 

centre of gravity of the periscopter. Dynamic and static stability 

ca~ be obtained by the use of controls. It should be possible to 

achieve inherent stability by coupling the swash plate to suitable 

gyros. It is interesting to note that the controls involve all the 

three parameters, i.e., ,e1 , ,e and P , which distinguish a periscopter
2 0 

from a helicopter. The analysis also reveals a possible cause for the 

poor flying qualities of the test models: this is .the rapid diver­

gent mode, appearing at low flight altitude, high tension and positive 

,e2· 
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FOR11RAN PROGRtJ-1 

c INDUCED VELOCITY DISTRidUTION IN STILL AIR 
c 
c ROTOR DATA 

R=26.0/12.v 
N=314 
CR=51.0/(16.0*12.0) 
T R =RI ( 2G • u -* C R ) 
P=U.149 
Xl=0.15 
XZ=U.96 
X3=1.0 
B=4.u 
A=6.U 
DRCOEF=O.UG7 
r~o=o. 0023 78 
VC=O.O 

c 
-P I t:: =2 2 • u I 7 • u 
RAOIAN=l8u.O/Pit 
Q=i'l 
X=G.o 

2 CONTINUE 
S=~*CR*(l.0-TR*X)/(R*PlE) 

A/\=S*A7--'-Q-~-R/ 16. v 
AB=AA+VC/2.u 
B8=(4.0*VC*VC/(l6.0*AA) )+VC+AA 
CC=Z.U*( (P*X*O*Rl-VCl/bb 
VIC=Ae*(-1.v+SQRT(l.0+(()) 
WRITE(6,41) x,vic· 
X:.: X+U. 1 
IF(X.GT.l.L) GO TO 1 
GO TO 2 

41 FORMAT(lGX,2HX=,F4.2,l~X,17HIND0CED VELOCITY=,FlU.3/) 
1 CQ,'H If'-ll.J t: 

··-·-··STOP 
END 

CD TOT U036 
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FORTRAN PROGRAM 

c CALCULATION FOR INDUCED VELOCITY' THRUST, H.P, MOMENTS, 
c FEATHERING ANGLES, ANGLE OF ATTACT 

DIMENSION AA(9), XX(9)' CC(9) 'T(9),T2(9),ATT(9) ,sAT(9),AM(9) 
c 
c ROTOR DATA 

R=26.0/12.U 
N=31L+­
CR=5l.U/C16. 0* 12. U) 
TR=R/ ( zu. u~~cr~ > 

P=Ll.149 
Xl=0.15 
X2=0.96 
X3=1.0 
B=4.0 
A=6.CJ 
DRCOEF=u.vU7 
R0=0.002378 
G=36.0 
H=l5.0 
FA=O.O 
FB=O.O 

c 
c PRELIMINARY CALCULATIONS 

PIE=22.u/7.0 
RAD I AN= 1Bv. UIP IE 
S=N 
TIP=(X2**2.U-Xl**2•G> 
Y=RO*A*CR*S**2.U*R**3.0*G/8.G 
YY = R-*S 
Y M =0 • 2 5 -* r~ ~t Y 
Y Y Y = ( YI ( 2 • u-* R 0 ~i- P I E ~- W~- R ~;- Y Y * Y Y ~q I P ) ) ~H~ 2 • 0 
WRITE(6,ll)Y, yy, YM, YYY 

c TAPEi~ un [Gl~ALS 
DO 1 M=l,5 
D=M 
T(M)=4•*( (X2**D-Xl**Dl/D)-4.*TR*(X2**CD+1.l-Xl**CD+l.))/CD+l.J
T2(M):::4.-x-( (X3~-~*'D-Xl~**D)/DJ-4.*TR-*(X3*-~'"(D+l• )-Xl-)H<-(D+l.) )/(D+l•) 

WRITEC6,12) D,T(MJ 
1 CONTINUE 

V./RITEC6,13J 

CD TOT 0040 



r 

90 

2 

7 

61 

62 


VARY THE WIND VELOCITY FROM O.O TO 60.0 F.P.S. 
DO 5 J=l,4U 
Z=J 
STEP=lO.O 
V=-STEP 
V=V+S TEP-X-Z 

....... 	 VARY THE DIRECTION OF WIND FROM -20TO +20 DEGREES 
D03 JJ=1,4u 
ZZ=JJ 
STEP/\L=P IE/ 18. 0 
AL=-3. G-:(-s TE PAL 
AL=AL+ZZ*STEPAL 

INDUCED VELOCITY 
U=V~-CO.:) (AL) /YY 
DC2=CV*SIN(ALJ' }/YY 
XY=P*T(3)+.5*U*U*T(l}*P-T(2l*DC2-FB*U*T(2) 
Ni\l=4 
AA ( 1 ) =1. u 
AA ( 2 ) =2. U~(-DC 2 
AA(3)=(DC2*DC2+U*U-YYY*T(2)*T(2)) 
AA(4)=2.v*XY*YYY*T(2) 
A A ( 5 > = - Y Y Y 1r XY~- XY 
IFCJ.EQ.l) GO TO 2 
CALL BAIRST (AA,xx,cc,NN) 
GO TO 7 
COiH I i~UE 
IFCJJ.GT.l> GO TO 4 
G=G/YY 
H=H/YY 
CT=P*T(3)-G*T(3)-H*TC2) 
THRUST=CT-x-Y 
YAY=SQfH ( YYY) 
XX(l)=(-YAY*T(2)+SQRT( (YAY*T(2) )**2+4.*YAY*XY) )/2.0 
DCl=XX(l) 
DC=DCl 
WRITE(6,15) THRUST 
AL=O.O 
RM =O.O 
ATT(2J=u.0 
CMR=v.u 
CMPVK=O.u 
ACON =li.u 
GO TO 63 
CONTINUE 
POSITIVE REAL ROOT GIVES THE INDUCED VELOCITY 
DCl=XX(l) 
IF(CC(l).GT.U.U) GO TO 61 
GO TO 62 
DCl~XX(3) 
CONTINUt: 
DC=DCl+DC2 

CD TOT 	 li052 
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K-FACTOR FOR LI NEAR VARIATION OF INDUCED 
UDC=U/DC 
VK=(l.333*UDC)/(l.2+U0() 

c 

VKVSV0=-(3.6*VK*DC1)/(4~G*U) 

..... THRUST 
63 	 CONTINUE 

CT=(P*T(3J+P*U*U*T(l)*0.5-DC*T(2)} 
THRUST=CT-i<-y 
TVSVO=-( T ( 2 )-*DCl/CT) 

H.P. REQUIRED ~ 

CQ= CT*DC+DRCOEF*(T2(4)+C.5*T2(2)*U*U)/A 
HP=CQ*YY~'-Y /55u. 0 
IF(J.E Q.l) GO TO 8 

ROLLING MQ1\IEN T 

CMR= 2. 0*U* P*T(3)-U*DC*T(2) 

F<M=CMR-:<-Y M 


PITCHING MOMEN T 

FO=l.O/RADIAN 

CMP CON=F 0-KU1*-T ( 3) 

CMPVK= DCl*VK*T(4) 


FEATHERING COEFFICIENTS 

FB=RADIAN*CMR/T(4) 

FA=-RADIAN*(DCl*V~I 
ACON= CFO *U*T(3)/T(4) )*RADIA N 

BLADE ELEMENTAL ANG LE OF ATTACK 
X=l.J 
DO 31 L=l,4 
PHI=u. u 
ZL=L 
SIE=-Pll/18. U+ PIE*ZL/36~ 0 
uT= x+u-i<-s IN ( s I t_) 


UP=DC+FO*J*COS(SJE)+Dll*VK*X*COS(SIE) 

PHI =F.(ADIA J\l?(-LJ P/UT 

/'~TT ( L) =P~-RADIAi\l-PHI-2.G-*FA*COS( SI E) . 


S/\ T ( L } =P -~- r..( AD I 1-\ N- P H I - 1 • 0 -:~ F A -h- C 0 S ( S I E ) 

AM(L)=(l2.U-ATTCLJJ 

IF(L.EQ.2) GO TO 32 


31 CONTINUE 
32 CONTINUE 

VELOCITY 


CD TOT 0051 
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8 CONTINUE 
PRAD=P-X-FU\D I AN 
OCl=DCl~-yy 

DAL=AL~-f,ADIAN 

WRITE(6,14J V,DAL,DCl,(T,THRUST,HP, RM,CMPVK,FU,fA,ACON,ATT(2} 
WRITE(7,24JDAL,DC1,CT,THR0ST,HP 
WRITE(7,25) DAL,fB,C~PVK, FA, ACON 
WRITE(?,26) DAL ,PHI' ATT<ZJ,SAT(2J,AM{2) 
FA=O.O . 
FB=O.O 

ST==PIE/18.u 
IF<AL.GT.STJ GO TO 4 

3 CONTINlJE 
4 CONTINUE 

IF(V.EQ.60. 0 J GO TO 6 
5 CONTINUt: 
6 C01'H I NUE 

11 FO RMA TC18X,2HY=,Fl 0 .4,7X,3HYY=,Fl0.4,7X,3HYM=,Fl0.4,6X,4HYYY=' 
3 F6.4////) 

12 FOi~r/iJ\ T(4uX, 2H f\i =' F4•l' 15X, 15HTAPEI~ INTt:G1:<AL=, Fl0.6//) 
13 FORNAT(7X,~HV,6X,5HALPHA,4X,2HIV,1ux,zHCT,4X,6HTHR0ST,7X,3HH.P, 

4 7 X ' 2 H f-< 1'- l ' 1 .J X , 3 H C J'ii P ' 1 2 X , 1 H t3 ' 8 X , 1 H A ' 6 X , 4 H /\ C 0 i\1 ' 5 X , 1 H I I ) 
14 FOR MA T(5X,F5.1,3x,r5.1,3x,F6.2,5X,F6.3,3x,F6.2,6X,F6.3,JX, 

5 F6.2,6X,F6.3,4X,F6.2,3X,F6.2,3x,F6.2,3x,F6·2//} 
15 F 0 R ~Ii f\ T ( 1 5 X , 3 4 HT HR u ST US I h! G GLADE EL Efv'1E i'H THE 0 RY ::: , F 6 • 2 ) 
25 FO R~AT(2uX,F6.2,5X,F5.2,5x,F5.3,5x,F5.2,5X,f5.2) 

26 FORMAT<2~X,F6.2,5x,f5.2,5x,f5.z,5x,Fs.2,5x,F6.2) 

STOP 
END 

CD TOT J031 
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TABLE l 

Thrust using blade elemental theory(in still air) = 96.1 pounds 

Power using blade elemental theory(in still air) = 8.66 hp. 

a. v (ft/sec)-:o CT T(pounds) h.p. 

' 
~·JI ND VELOCITY=OO.C FT/SEC. 

o.oo 38.43 .049 93.16 8.35 
WIND VELOCITY=lv.i..; FT/SEC· 
-2u.oo­ 40.55 .0 52 97.99 8.46 
-:-lU.UO 39.32 .0 51 96.35 8·43 

o.oo 38.07 . 050 94.54 g.39 

10.GO 36.86 .049 92.61 8.35 
2 0 . 00 . 35.70 .048 90.64 s.29 

WIND VELOCITY=20.J FT/SEC. 
-20.uo 41.98 . 056 105.54 8.59 

-10.00 39.50 .054 102.31 8·55 
u.oo 37.06 .0 52 98.48 s.48 

10.CO 34.74 .05 0 94.23 8.40 
zu.oo 32.:;s .047 89.76 8.28 

vJ I ND VELOCITY=30.0 FT/St.C. 
-20.00 42.71 • 061 · 115.81 8·68 
-10.00 · 39.06 . 058 110.10 8e66 

o.oo 35.56 . 055 lU4.39 8e60 
10.00 32.29 . 051 97.24 8.48 
20.00 29.27 .047 89.67 8.30 

WIND V~LOCITY=4U.i.J FT/SEC• 
-2U.O(; 42.82 .06 8 128.47 8e66 
-10.ou 38.15 .064 120.96 8.72 

o. uo 33.77 .o~9 111.53 s.10 
10.CO 29.71 . 053 100.86 s.58 
2u.uo 25.99 .047 89.62 8.32 

~-JI ND VELOCITY=5v.0 FT/SEC. 
-20.00 4 2. 1r6 .075 1'+3.01 3.45 
-10.00 36.96 .070 132. t+ 1 8·66 

u.uu 31.87 • 063" ]:19.22 3.77 
10.00 27.18 .055 104•45 8.67 

20.ou 22.88 .o47 89.08 8.33 

~v I ND VELOCITY=6U.U 
-2U.GO 41.79 

FT/SEC. 
• 084 158.84 a.oo 

-10.00 35.65 . 076 144.48 3.49 
o.oo 30.00 .067 126.96 g.79 

10.00 24.80 .057 107.63 8.75 
20.00 20.03 .046 87.75 8.33 
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TABLE 2 

Moments and Feathering Anp;les 

* 
0 

a.· Bo 
CMP 

ltJ!ND VELOCITY=OO.O FT/SEC. 
o.oo o.oo 0 000 

WIND VELOCITY=lO.O FT/SEC. 
-20.00 .24 .008 
-10.00 .25 .008 

o.oo .25 .008 
10.00 .24 .001 
20.00 .23 .001 

'-!JI ND VELOCITY=20.0 FT./ SEC. 
-20.00 .49 .015 
-10.00 .so .014 

o.oo .51 .013 

io.oo .49 .012 

20.00 .46 .011 

WIND VELOCITY=30.0 FT/SEC • 
-20.00 • 75 • 020 
-10.00 .11 .019 

o.oo .77 .011 
10.00 .74 .015 
20.00 .69 .012 

WIND VELOCITY=40.0 FT/SEC. 
-20.00 1.03 • 025 
-10.00 1.06 .022 

o.oo 1.05 .019 
10.00 1.00 .016 
20.00 .92 .013 

WIND VELOCITY=50.0 FT/SEC. 
-20.00 1.34 • 029 
-10.00 1.37 .025 

o.oo 1.34 .021 
10.00 1.26 .017 
20.00 1.15 .013 

lt.'I ND VELOCITY=60.0 FT/SEC. 
-20.00 1.68 .033 
-10.00 1.69 .021 

o.oo 1.64 • 021 

. 20.00 1.37 .012 

10.00 1.53 .017 

** 
Ao 

o.oo 

-.79 
-.79 
-.77 
-.73 
-.67 

-1.45 
-1.39 
-1.29 
-1.11 
-1.04 

-2.01 
-1.85 
-1.65 
-1.44 
-1.22 

-2.49 
-2.19 
-1.88 
-1.58 
-1.29 

~Z.89 

-2.46 
-2.03 
-1.63 
-1.27 

-3.23 
-2 .6 5 
-2.10 
-1.21 
-1.62 

ACON° 

o.oo 

.02 

.02 

.02 

.02 

.02 

.04 

.04 

.04 

.04 

.04 

.06 

.06 

.06 

.06 

.06 

.08 

.08 

.os 

.os 

.08 

.10 

.10 

.10 

.10 

.10 

.12 
- .12 
.13 
.12 
.12 

* 
 Rolling Moment 

** Pitching Moment== YMtl~A foot pounds 

\ 
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TABLE 3 

Angle of Incidence 
. \ 

<!yo .o* 
1 

.o 
1 

** 

WIND VELOCITY=OO.O FT/SEC. 
o.o 3.51 

WIND VELOCITY=IO.O 
-20.00 3.93 

5.00 
FT/SEC. 

6.19 

5.00 

5.39 

7.00 

5.81 
-10.00 3.97 6.15 5.36 5.85 

o.oo 3.99 6.08 5.31 5.92 
10.00 3.99 6.00 5.27 6.00 
20.00 3.98 5.89 5.23 6.11 

WIND VELOCITY=20.0 FT/SEC. 
-20.00 4.44 1.00 5.55 5.00 
-10.00 4.45 6.86 5.47 5.14 

o.oo 4.44 6.67 5.38 s. 33. 
lO.oo 4.42 6•Lt-6 5.29 5.54 
20.00 4 • . 39 6.23 5.19 5.77 

WIND VELOCITY=30.0 FT/SEC. 
-20.00 4.79 7"77 5.76 4.23 
-10.00 4.74 7.49 5.64 4.51 

0~00 4.69 7.14 5.50 4.86 
10.00 4.64 6.77 5.33 5.23 
20.00 4.59 6.39 5.16 5.61 

WIND VELOCITY=40.0 
-20.00 5.00 

FT/SEC•
a.s2 6.03 3.48 

-10.00 4.88 8e04 5.85 3.96 
o.oo 4.78 7.51 5.63 4.49 

10.00 4.72 6.96 5.39 5 • l>L+ 

20.00 4.68 6.42 5.14 5.58 
WIND VELOCITY=50.0 
-20.00 5.10 

FT/SEC• 
9.22 6.33 2.18 

-10.00 4.91 8.54 6.08 3.46 
o.oo 4.78 1.ao 5.78 4.20 

10.00 4.72 1.01 5. 4l~ 4.93 
20.00 4.71 6.37 5.10 5.63 

WIND VELOCITY=60.0 FT/SEC. 
-20.00 s.10 9.89 6.66 • 2.11 
-10.00 4e86 8.97 6.32 3.03 

o.oo 4.72 8.02 5.92 3.98 
10.00 4.67 1.10 ·5. 48 4.90 
20.00 4.70 6.24 5.04 5.76 

* With only one rotor feathering 

** With both rotors feathering 
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APPENDIX 2 

2.1 Evaluation of Stability Derivatives 

Various stability derivatives are evaluated at the trim conditions 

0 = <P = 0 

and 

• e =$ = 0 • 

One obtains 

V Cos a.-w+ q ,e7. 
= .n.R 

V Cos a. - ,el9 Cos y - l2q> - <Pl2 
= .n R 

The derivatives are 

. 
e = 

£
1 

Cos 

.!l R 

y 

= 
.el 

-nR 

l2 + ,e2 ,e2 + ,e3 
. . = ­= Jl R .0.R 

(1)• ,e 9 Sin y 
= 1 = 0nR 

V Sin V Sin a. = - = ­.0. R nR 

Also 
•

V Sin a + ,e 9 Sin Y
· V Sin a. + u = 1 

--~~~~-=-~~~A.o2 = D.. R . .Q. R 


t Sin y

1 

= 0A.o2 e= .O.R 

A.o2 $ = 0 = 0 

103 
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(2)=0 

•
V Cos a + ,e 9 Cos Y 1 V Cos a 

Ao2 cp = .!l. R =AR • 

Equation 4.1.9 gives for the induced velocity 

The derivatives are 

But 

One obtains, after simplification, 

2(Constant) CT ( t 9c µµ •) (">.,, l-Lµ •)
A • 1 e ol e 

Similarly, 

A2 2 2Const C 9 µ µ •

ol e = 

T c ol $ 

and, 
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The factor K for longitudinal variation of induced velocity is given 

by 

!± µ/A 4 

K = + µ;D =--,l-?-2-/..._+_µ_)(1:2 

The derivatives are 

tJ-L· - µAg4 	 e )K• = <3 x 1.2) 	(e 	 2
(1.2). + µ) 

A_ll· - l i A_· 
( <I> <p )K• = <34 

x 1.2) 2Cl> 	 (1.2/... + µ) 

)J1 -µA.4 ( g 8 )Kg = <3 x 1.2) 	 (4)
2

(1.2/... + V-) 

= o.o 

Equation 4.1.17 for the pitching moment M gives 

(5) 

The derivatives are 

(6) 
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The control moment is 

The derivations are 

The H-force is 

H = y ((H). d d + (H) r·1)in uce pro 1 e 

The derivatives are 

(?) 


(8) 
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Similar expressions for H$, H9 and H<P can be written, 

l . 1 • 1 ·+ (--t '\ ) B • t A At K• )2 2 ~ <P + 2ao 3 <P + 2ao 3 ~ 

The aerodynamic drag and its derivatives can be approximated by 

2 2 2
D = Constant V Cos a. = Constant µ 

µ •n· = Constant
9 e 


µ •
n· = Constant 
<P <P 


De = Constant µ G 


=Constant .D<I> µ <P 
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2.2 Aerodynamic Derivatives for Zero-Wind Condition 

Aerodynamic derivatives for zero-wind condition are easily obtained 

by putting V =0 (or µ = O) in Equations 1 to 9 of Appendix 2.1. One 

obtains 

£1 
µe• = -­.OR 

£2 + ,e~ 
µ~ = n R 

(la) 

µ <P =0 

(2a) 

µ.
4 e-x. = e 3 x 1.2. A.01 

µ. 
K• 4 ...:.2. (4a)= <P 3 x 1.2 A.01 

= K<t> = 0K9 

Pitch moment M 

MQ = YM (aot3µ g + 1.24x 3 t4 \t,j) 

= y•I (aot3 + 1.2 \ 3 t 4) µ G 



µ.k= 2 9 

4 
where k2 = YM (aot3 + 3 x 1.2 t4) 

~ Boo 

Control 	moment CM 

H-force 

(6a) 

(?a) 

= klµ e	+ k3 Ae 

t2 ° 1 1 2 1 4 
where kl 	= y (-a--- + 2hol 9ctl + 2aot2 + 2ao 1.2 x 3 t3) 

z 20 to 50 
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1
and k = Y C2a t )

03 3
::1 (20 to 50) 

Similarly, 

(8a) 

Drag D 

(9a) 

2.2 Coefficients of the Equations of Hotion (V = O) 

bl = - (D$ + H$) = - (k1 µ$ + k? A~) 

c = - W - P - D -· H = - W - P - k Al - . 0 <I> <I> 0 3 <I> 

Ia3 = 

b? = M~ + C~~ - £? H~ + t 4 D~ 

= (k2 - £3kl) µ ~ + (k5 - £3k3) A~ 
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= (k2 - ,e3kl)µ g - (k5 - R,3k3) Ae 


c4 = - £2Po + (k5 - £3k3) Ag 


. 2.4 Evaluation of Coefficients of Stability Eguation {4.3.10) 

Wi~h the help of Equation 4.3.10 and the aerodynamic derivatives 

derived in Section 2.2 of the Appendix, one calculates the coefficients 

of the stability Equation 4.3.10 as follows 

a =1.0 

b:z .a1 b4 b2
b = c~ - + -)


a3 a2 ~ a2 


= f ( (- .k2 - ,e-5'1) µ $ + (k5 - £3k3) A$) - ;~I ( (- k2 - £3kl) µ Q 
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+ 	(klµ~ + k3 A~)(- k2 - ,e3kl) µ e + (k5 - ,e3k3) Aa) ) 

t 2P - l?k? - k? A9 ,e2k5 	 P0 
+ -r + l A<I> + mll - £11 (- £2Po + (k5 - £3~) Ag) 

2
£2 1 £2 A• 

= Po("""f + mll + £11) + ~ (kl (k5 - £3k3) + k3(k2 + £3kl)) 

Ag(£2+,e3) 
+ 	ImnR ,e1 <- k3 (k2 + e3k1) - k1<k5 - t3k1)) 



ll3 

1 ,e2 + i, 
+ ImOR (kl(k5 - £3k3) + k3(k2 + £3kl)) (A~ - ,el Ae) 

p (k2 + £3kl) (£2 + £3) £2(£2 + £') 
=m~ (t2kl + ll + (k2 + t3kl) + tl kl 

, 1 £2 + .e, 
+Im R (kl(k5 - £3k3) + k3(k2 + l3k1)) (A$ - ,el Ae) 

wp £ p 

e = - I~l 2 + Im~l ( (k5 - t3k3 - l2k3) (Ag + A~) + ~o (k5 - l3k3) Ag) 
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