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CHAPTER l 

__ INTRODUCTION 

l.l Foreword 

Creep of concrete has many important effects in engineering 

structures. This is _particularly true in cases in which the concrete is 

subjected to a non-unifonn stress distribution (i.e. when the concrete 

is subjected to a stress gradient) since such cases are commonest in 

practice. Some practical examples of cases where stress gradients 

arise are given in section 1.4. The important point about creep in such 

cases is that it brings about a redistribution of stress. In view of 

the importance that these effects can have~ it is somewhat surprising 

that comparatively little has been published on creep of this type. The 

purpose of the investigation described in the following pages was to 

analyse this particular type of creep, and to devise and test methods of 

predicting its effects. 

This first chapter is intended as an introduction to the topic, 

and as an outline of background material. 

1.2 Definitions 

Only a few definitions are required at this stage and these 

appear -below; other terms will be defined or explained as they arise. 

Creep:- Hhen concrete is loaded it undergoes two kinds of deformation 

(i) immediate defonnation 

(ii) time-dependent defonnati on which begins at once and 

continues for years, though at a decreasing rate. This second type of 

deformation is known as creep. 
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11True 11 or ···Basic" Creep:- True or basic creep of concrete is creep 

which occurs under conditions which prevent moisture movement to or from 

the surrounding medium. 

"Specific" Creep:- The specific creep at a given time is the creep 

strain at that time per unit of applied stress. (Typical units of 

specific creep would thus be inches per inch per p.s.i.). 

Elastic Strain of Concrete:- The term "elastic" strain is used in this 

report to me~n that strain which occurs immediately on application of 

stress. The term does not necessarily mean that all such strains will 

be recovered Gn Temoval of the applied stress. It is used to distinguish 

such instantane6us ·strains from the creep strains defined above. Note 

also that this definition does not necessarily imply a linear stress­

strain relation. Values of elastic strain used in this report were 

taken from short-term cylinder tests. 

1.3 · The Nature of Cr~ep 

A short des·cri pti on of the theories of creep, and of factors 

affecting creep, is given. The purpose of this brief review is to 

provide a background against which the McMaster investigation can be 

described. For a complete list of references describing creep and 

related topics, the reader is referred to the excellent Bibliographies 

published by the American Con~rete Instit.ute 1 and the Cement and 

Concrete Association2. 

1.3.l The Structure of Concret~ 

Since any description of the mechanism of creep presupposes 

some knowledge of the structure of conc~ete, a brief outline will be 



3 

given here. 

Our interest is principally centred on the physical nature of 

the products of the hydration of cement. 

Fresh, h~rdened cement paste is mainly composed of various 

hydrates (known as "gel"), of crystals of calcium hydroxide, and of 

particles of unhydrated cement. These components form a firm matrix which 

serves to connect the aggregate particles. This matrix, however, also 

contains various s~a~es in which water resides. 

The largest spaces are tenned capillary pores; they are 

minute chanriels in the paste whose diameter has been estimated3 to be 

of the order of ·5 x 10-5 inches. Permeability studies suggest that 

they form an interconnected network within the paste. 

The fact that such . pores exist is important in the hydration 

process. Hater supplied to the concrete (e.g. by we~ting its surfaces) , 

can pass along these tiny channels, allowing the hydration process to 

continue in the interior regions of the concrete mass. In time, the 

formation of hydration products often b 1 ocks up capi 11 ary pores, 

caµsing them to become segmented and discontinuous. 

Interstitial voids between the fibrous particles of the gel also 

contain water. · These voids are termed gel pores. They are much smaller 

than capi 11 ary pores, having a diameter of betv.ieen 15 and 20 Angs tram 

units. 

1.3.2. Theories of Creeo 

/\ great many "theories" of creep have been proposed, most of 

them being hypotheses which fit sane known facts and are in disagreement 

with others. It seems likely that a composite theory will ultimately 
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emerge from the individual hypotheses outlined below. 

(i) Plastic Theory of Creep 

This theory ho1ds that creep of concrete is due to crys ta11 i ne 

flow. That is, creep is due to slipping along certain preferred planes 

in the crystal lattice, and to local rupture of the cement p-aste. 

·it may be ndted that, while in metals undergoing plastic 

deforn1ation, the Volume change experienced is fairly slight, a fairly 

large decrease in volume occurs as concrete creeps. In addition, if this 

theory \\lere comp1ete ly true, creep of concrete would be wholly irrecoverable. 

This is not the -case in practice. 

~ Thus, plastic flow cannot be wholly responsible for creep. 

(ii) Viscous Theories of Creep 

In these theories , creep ·is ass urned to be a vis cous fl ow, 

or movement of · particles over each other. 

Thomas 4 considers the concrete to consist of two parts: 

(a) cement gel, which behaves in a viscous manner when loaded, and 

(b) aggregate particles, which do not flow under load. 

On loading the concrete, the natural tendency of the cement gel to 

flow is impeded by the relatively rigid aggregate particles. The latter 

then experience an increase in stress owing to their resistance to the 

gel flow. Meanwhile, the st~ess on the gel decreases, giving a 

corresponding decrease in flow (i.e .. a decrease in the rate of creep). 

Using this theory, researchers have attempted to conclude that 

the rate of creep will depend onfue cement gel properties, but will be 

independent of the properties of the aggregate, which is considered to 
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be rigid. It has been pointed out * , however, that the amount and rate 

of creep defonnation also depend on the aggregate's elastic .modulus 

and porosity. 

It should be noted that if creep were due entirely to viscous 

flow, the volume of the concrete would remain constant. The fact that 

this is not even approximately true has already been mentioned. 

(iii) Delayed Elastic Theory 

The cement gel is assumed to consist of both elastic and 

viscous phases which can interact causing delayed elasticity. That 

is, under the action of an external load, flow of the viscous phase takes 

place, thereby throwing an increasing percentage of the load on the 

elastic phase. This results in an increase in elastic deformation with 

time. 

Creep of concrete, however, exhibits such behaviour only to a 

limited extent. This theory cannot explain the observed influence of 

moisture exchange on creep. 

(iv) The Seepage Theory of Creep 

The seepage theory suggests that the equilibrium of the concrete's 

solid phase with the external load is determined by the vapor pressure of 

the gel water. This vapor pressure equilibrium is disturbed by the 

application of any load increment. The applied stress is considered as 

forcing sheets of cement gel together, and thus putting pressure on the 

* See section 1. 3. 3 11 Factors Affecting Creep:. 
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gel water. Equilibrium is gradually restored ~s moisture seeps through 


pores in the concr_ete to the member.' s surface. The process involves · a 


, 	 loss of water from the gel pores. Adjacent surfaces in the pores are 

now closer to each other and are attracted by stronger van der Waal's 

forces. This increased attraction can cause some defonnation of the 

matrix. Surface tensions may also play a small part in the defonnation, 

since surface menisci . exert a force on the surrounding material. 

Objectors to this theory hav,e stated that the 1oss of 


moisture during creep straining should be similar to that experienced 


during shrinkage of the same magnitude . . Experiments · have shown that this 


14is not so • Powers 5 , however, pointed out that the water loss during 

creep is likely to be about one-hundredth of that which would occur 

under equal shrinkage. The follo\f.iing example, used by Powers, illustrates 

this: 

The following expe~imental data refer to the shrinkage of a 


mortar specimen drying from the saturated state to a _state approximately 


equilibrium at 50 per cent relative humidity: 


Item Notation Quantity 
water/cement ratio w/c 0.47 by weight 
drying shrinkage 6L/Lo 880 x 10-6 i~/in 
volumetric shrinkage 6V/Vo 2640 x lo-6 . in3/in~ 
amount of water lost 6w/Vo ~ 103 c.c. per c.c. of 

specimen 

Consider an identical · specimen in a totally saturated state, and ·subjected 

to uniaxial compression without drying. Let the load be such that the 

measured creep strain amounts to 880 x 10- 6 in/in. By the seepage theory, 

water wi 11 tend to re 1 i eve the stress on itself by moving out of a 
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stressed region. Since the specimen is sat0rated, this means that 

water must move out of the specimen. For the given conditions, the 

amount of water lost will be virtually equal to the reduction in 

volume of the specimen. (Otherwise some water in the specimen wi 11 

remain under compressive stress, and the specimen's dimensions wi 11 

depend partly on the stress). 

Let µ = Poisson's ratio 

Then A V/Vo = (1 - 2µ) t:,L/Lo = Aw'/Vo 

where AW' = water lost due to creep 

Thus 6w' can be c~lculated for any value of µ. Taking µ = 0 will give 

the greatest value of Aw', viz 

t:,w' . 
. 
-·-.

Vo 
- = t:,L/Lo = 880 x 1 o-6 c. c . 

880 1Thus, I 

/),\'/ / !:M = 103 ,000 = 117 

Hence, the creep strain requires less t~an one-hundredth the loss of 

water for equivalent drying shrinkage. Povters also pointed out that 

water should still be lost even if the creep prism was not initially 

saturated. 

A further objection to this theory is the fact that concrete 

exhibits creep even when no moisture exchange with the surrounding 

medium is possible. There is, however, a body of opinion which holds 

that in this case water seeps from regions of high pressure to regions 

of lower pressure within the concrete. 

Creep recovery can also be explained in terms of this theory. 

Removal of the applied load al lm,ts an instantaneous recovery of -elastic 
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strai·n, following which moisture may slowly return to the areas from 

which it was previ~usly expelled. The water molecules act against the 

cohesive forces holding the gel particles closely together. ~ The gel 

particles . are thus forced further apart. A similar mechanism accounts 

for the swelling of concrete when immersed in water. 

The seepage theory is attractive in _that it can explain many 

of the observed features of creep of concrete. 

Of the various theories, it appears that the seepage theory, 

although not yet universally accepted, best accounts for observed creep 

behaviour. 

·1.3.3. Factors Affectino Creen.·of Concrete 

A great mariy investigations have been carried out in order to 

ascertain the effects of individual variables on the magnitude of creep. 

The following section represents a summary of the results of many test 

programs. 

(i) Magnitude of Applied Stress 

Creep depends first of all on the magnitude of the applied 

stress. The relationship is generally taken to be linearly proportional 

for stresses up to about 50% of the crushing strengthJ although th~ 

exact 1imit of proportionality is disputed, and has been estimated to 

be considerably lower10• 

At stresses higher than this limit, creep increases at an 


increasing rate with stress, as shown qualitatively in Fig. 1.1. It 


is known that at stresses of about 40 to 60% of the crushing strength 


internal micro-crackino of the concrete begins. This change in the 
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l·O 

Fig. 1.1. 

concrete's internal structure may partially account for the increasing 

. slope of the CREEP v. STRESS/STRENGTH curve at high stress levels. 

For a uniforn1ly applied stress higher than about 80% of the 

concrete strength, creep will lead to failure of the concrete. 

(ii) 	 Mix Proportions 


The type, quantity, and maximum size of the aggregates used 


in.fl uence creep. 


The aggregate acts as reinforcement for the cement paste; as 

such it tends to restrain the paste's volume changes • . The amount of 

restraint which the aggregate can offer is principal~y detennined by 

(a) the 	amount of aggregate present in the mix 

(b) the Young's Modulus of the aggregate. 


Experimental evidence7 has confirmed that high aggregate content and 


an aggregate with a high Young's Modulus both lead to lower creep. 


In addition, highly porous aggregates have been connected with 

comparatively high creep, and this has lent some weight to theories of 

creep based on the movement of moisture within the concrete (see 
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section 1.3.2. (iv)). The situation is not clear, however, since highly 

porpus aggregates frequently have a low Young's Modulus. Th~s, the 

high creep might be at least partly caused by the low value of "E". 

Concretes made \vith ~i fferent types of cement and subjected to 

the same applied stress at the same early age will exhibit different creep 

characteristics. This is because the various types of cement differ in 

the fineness to which they have been ground, and a1so in the propor_tions 

of the cement compounds which they contain. Therefore, they have 

different rates of hydration and unequal strength gains for similar 

degrees of hydration. Their creep characteristics are functions of 

degree ·af hydration and strength. 

In general, concrete containing Type IV (Low Heat) cement will 

creep more than that containing Type I (Ordinary Portland) cement, which 

will in turn creep more than that containing Type III (Rapid-Hardening) 

cemento (i.e. for the same age at loading, the lower the strength of 

the concrete, the higher the creep). The differences are small, however, 

if the concrete is loaded at a considerable age after pouring. 

The amount of creep increases with. increased water/cement ratio 

(aggregate/cement ratio being constant). The relationship is not clearly 

defined. This increase is evident only above a certain minimum percentage 

of water, but does apply for the range of water/cement ratios normally 

used in practice. 

(iii) Age of Concrete 

The age of concrete at loading is known to influence creep. 

The degree of hydration and strength of concrete normally increase with 

age and thus reduce creep. If no significant variation in the degree of 
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hydration occurs with time; the age at loading does not influence 

creep. For matu're· dry-cured concrete, the age at which the 1oad is 

applied has a comparatively small effect on creep. In addition, for 

other concretes, the ~ate of creep at later ages is largely independent 

of the age at loading. 

If, however, hydration is allowed to proceed, the gel matrix 

becomes progressively stiffer with time, due to the addition of more gel. 

In practical cases, therefore, when load is applied to wet-cured concrete 

at a fairly early age, the age at the time of loading is an important 

factor. 

(iv) Ambient Relative Humidity. 

It has been demonstrated12 that creep increases with a decrease 

in ambient relative humidity. Fig. 1.2. illustrates this effect 

qualitatively. The numbers on the plots refer to the ambient relative 
I 

humidity. 

---------­ -------­_J_Q-~ 

CREEP 

---·­
--'-_L _____l ____I __L__ _.L 

'3'0 '\'El\RS
l1!'-'1 E- (LOG. SC.ALE ) 

Fig. 1.2. 

If, in accordance with the seepage theory of concrete creep (described 

in section 1.3.2.), cr~ep can be described as a sort of stress-induced 
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shrinkage, the influence of lm·1 relative humidity in aiding the process 


can easily be visualized. 


Itmay be noted that alternating the relative humidity of the 


· surrounding medium beti;11een two' limits will yield higher creep than that 

observed at some constant value of relative humidity between these limits 13 . 

Ali and Kesler14 , have explained this phenomenon in the following way. 

Let the tenns shrinkage and swe11 i ng denote vo1ume changes due to egress 

and ingress respectively of gel water with or without applied load. In 

the absence of app 1 i ed 1 oad, such vo 1ume changes wi 11 be termed free 

shrinkage and free swelling. Ali and Kesler then stat~ the following 

rules describing concrete's behaviour under various conditions of 

moisture exchange and applied load. 

(a) Free shrinkage is less than shrinkage under an applied 


com~ressive stress. 


(b) Free swelling is more than swelling under an applied 


compressive stress. 


Now creep is usually defined as the difference between the 


time-dependent deformations of a loaded specimen and an unloaded 


'control specimen. According to this definition and ·the behaviour 


described in (a) and (b), creep would be expected to increase with 


moisture exchange, irrespective of the direction of th~ moisture movement~ 


(v) Temperature 

Creep is known to increase with increasing tempe~ature, the 


greatest increases taking .Place in the range of 70°F to 180°F. The 


seepage theory of concrete creep (see section 1.3.2.(iv) suggests that 


creep involves seepage of gel water. This water, existing within the gel 
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in layers only a fe\•J molecules thick, has quite different properties from 

larger volumes of water. Its viscosity, for example, is several thousand 

times that normally exhibited by water5• It is possible that high 

temperatures may produce increased creep by reducing the viscosity of the 

gel water, thus making it more mobile. 

(vi) Curing Conditions 

The curing conditions for the concrete affect its creep behaviour, 

preswnably through their effect on the concrete's degree of hydration 

and on its internal structure. That is, curing conditions affect both 

the strength of the concrete and the permeability of the gel. The latter 

· factor is important if creep takes place by seepage of gel water, as the 

seepage theory (section 1.3.2. (iv)) suggests. 

In this connection, it may be noted that creep of high-pressure 

steam-cured concrete is known to be comparatively low7. It is also known 

that such curing produces concrete with a vastly different internal 

s~ructure, as indicated by specific surface measurement. 3 

· (vii) Member Size and Shape 

Size and shape affect the shrinkage characteristics of a concrete 

member. 

Mattock and Hansen8 have made the assumption that their 


influence on creep is confined to , that creep which is accompanied by 


moisture exchange with the surroun.ding mediUm, (i.e. 'Basic Cr~ep' is 


unaffected by member size and shape). 

. I : 

. Fig. 1. 3. ;· s taken from their work, and i 11 us trates the 


relatiOnships derived from their test program . . 
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Fig. 1.3. 

The vertical axis gives values of Ec/Ec00 where 

Ee = creep strain 

Ecoo =ultimate value of creep strain (i.e. creep at time t = oo) 

predicted from the fonnula of Ross (see Chapter 3). 

11 V/S 11 stands for the volume/surface area ratio of the various 

members tested. It is seen that a lower p~oportion of the ultimate 

creep is attained at a given time for higher values of this variable. 

Consideration of the foregoing section should indicate the 

difficulties involved in comparing data compiled in different research 

programs . . Many, if not a 11, of the variables mentioned above wi 11 have 

different values in any two sets of tests. A meaningful compariso~ will 

thus require much knowledgeable and skilled work. Because of the lack of 
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complete and accurate documentation, such comparison may have to be only 


qualitative r!ti.ther · than quantitative. 


For similar reasons, results of creep tests perfonned in the 


laboratory cannot be blindly applied in the field. For example, 


1aboratory ·tests performed at constant re1ati ve humidity would often 


under-estimate creep under conditions of exposure to the elements. 


For any large test program, it is desirable to have a high 


degree of similarity between the various test conditions. 

/ 

1.4. 	 Creep Effects in Engineering Structures 

Creep of concrete has important effects in engineering structures, 

. affecting the stresses and deflections of structural me1i1bers. 

Some of the effects of creep may be considered benefi ci a 1 , as 


when creep brings about .a relief of stresses caused by concrete shrinkage. 


Some other effects, however, are less desirable, and examples of these 


are not hard to find. 


Steel reinforcement in compression areas of beams or columns 

may undergo major stress increases Hhen creep, sometimes in conjunction with 

shrinkage, causes a transfer of stress from the concrete. In addition, 

the ultimate or long-term deflections of reinforced concrete beams may 

be several times the initial deflections, with the difference being 

largely due to cr~ep effects. 

In prestressed members, creep causes a gradual loss of prestressing 

force. Although this effect can be partially offset by using a higher 

initial prestress, it is nonetheless an important factor, and one which 

cannot be neglected. 
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Creep effects in statically indeterminate structures are 

sometimes helpful to the designer. If, for example, there is some 

movement 	 of the abutments of a two-hinged arch, creep in the concrete 

will tend to offset its effects and partially restore conditions to 

those calculated by the designer. 

In other cases, the creep effects can constitute an additional 

complication which the designer must take into account. In a prestressed 

portal frame, for example, creep shortening of the beam changes the 

horizontal reactions at the column bases, giving rise to secondary 

moments. In the case of an eccentri ca lly-1 oaded 1ong co 1umn, creep 

deflection of the co1urnn wi 11 add to the eccen tri city of the 1 oad. The 

addi tiona 1 moment, although secondary in name, may be of prime ·importance . 

in effect. 

It may be noted that most of the cases mentioned above involve 

creep of concrete where there is a stress gradient across the member in 

question. An important feature in calculating the effect of creep 

where there is a strain gradient is that, due to the -non-linearity of creep 

versus stress, there is a redistribution of stress. That is, the elastic 

portion of the total strain is no longer linear, and, therefore, the 

shape of 	the stress block is changed. 

1.5. 	 Creep of Concrete under a Stress Gradient 


As the previous section indicates, the creep of concrete under 


·a 	stress gradient has practical effects which can be of considerable 

importance in engineering structures. In practice, it may be necessary 

to ·compute the redistributions of stress and strain caused by creep of 

the concrete. These redistributions will be investigated here for the . 
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case of a member having no reinforcing steel. 

A plain concrete prism of rectangular cross-section is subjected 

to an external load P applied parallel to the prism's length, and with 

11 e11eccentricity from one axis of _symmetry of the prism's cross-section. 

The concrete will experience initial stresses f.l, and initial strains 

E.t, as indicated in Fig. (a). 

1 
1 

-
. ,. 

CS1RESS 

STRAIN 

STRESS 

S1R AIN 

., 


The stress distribution may have both linear and non-linear portions, 

while the strain distribution \\/ill be linear (in order to satisfy the 

condition that plane sections remain plane). 

Let each element across the cross-section now creep independently 

of the others during a time interval, due to its portion of the applied 

load. The stress distribution will be unchanaed, but the strain 

distribution will alter to some fo rm such a.s that shown 1in Fig. (b). 

The additional (creep) strains will be referred to as Ee. 
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Fiq. (C) 

It is apparent that the usual condition that "plane. cross-sections 

shall remain plane" has been violated. Therefore, forces Fi must be applied 

to the individual fibres of the prism to bring them into position and. 

so satisfy this requirement. Figure (c) shm·ts the new strain and stress 

distributions after application of FL The additional stresses are f', 

and the added strains are E'. 

Having restored the various fibres to a bonded state, the 

forces . Fi are· nm"/ removed to satisfy statics (a process equivalent to 

applying a force system -F,[ to the bonded cross-section). The stresses 

f 11induced by this last step are , the corresponding strains being· E11 
·• 
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The final stresses and total strains appear in Fig. (d). The elastic 

strain distribution is no longer linear, due to the change in the stress 

distribution. 

Thus, the final total strain is Et, given by 

Et = E.i. + Ee + E' + E" 

and the final stress is ft, given by 

ft . : f ,{_ + f I . + f II 

It will be convenient to remember the four main stages of the 

solution: 

(i) determination of elastic strains. 

(ii) deterrni nation of 1
' free 11 creep (each fibre a11 owed to creep . 

under its portion of applieq load). 

·(iii) restoration of p 1 ane section (apply a force system F-l 

to the individual fibres). 

(iv) satisfy statics (apply a force system -F-t to the bonded 

cross ... section). 

Step (ii) is carried out assuMing that the stress and elastic 

strain distributions remain constant, or nearly constant, during the 

chosen time interval. 

The details involved in calculating the values of the 

component stresses and strains wip be co_nsidered more fully in Chapter 3. 

,. 
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CHAPTER 2 

THE TEST PROGRAM 
. ,,...·"!:.;;-~ ..;;:~:--::-'-'-:;:~ .;.-..~~~-::-_-j:-~ _._ ;-" ........ '";· -~. 


:·. ~ ·... -· . .. :. . 

2.1. Introduction 

-- ·- -·in order ·to -obtain creep-irifonnation f6~r~co'-nc:ret ·e·""subje~ctecr~t6--' 

unifonn sustained stresses' four concentric creep· te:sts ·wefe 'c'ar'ried out. 

x 611 x 22 11 _These tests involved loading 611 plain _c'c)n~rete p·risms. - The 

stresses applied were 750 p.s.i., 1500 p.s.i., 225'6_p·~-s ':;., and -3000 p.s.i. 
-~··-:--=-··; ~-~--;: 	 . 

These applied stresses were chosen to provide creep_data -. for -t-he -range 

of stresses which would be found in four additional e-~-~entrica1iy:..· loa -ded · 
· ~- ----.- , .. ~"""" ·· -; -..'•'--·"··-:=-·· , .. .... - ·· -· .., •. 

-·::- --:-- ..- :..:.-.;.- ·. ···-:-:: ·:_ ·:·- __ ..._ ........ -.- ... 

creep test specimens. - - ~. ·";.- . 

The eccentric- load tests were performed on prisms of the ·same 

dimensions as those used in -fhe-concentri c -tesfs. For the eccentric---~--.-- ­
. -- .· --_.__,._..........--..-:------- ---------b .
--~----s..;-~

tests, the load was applied on one -axis of symmetry of the prism's . 

cross-section, and at a distance of 3/4" from the other axis of syr.rnetry. 

The average stresses (= load/area) appli~d in the eccentric tests were 

------ --- ----75-0 -p. s. i. , -tooo -p. s. i. , --1soo--·p. s ~ i. , --and -1750---p. s. i. ~- -­

The creep specimens were given identification numbers which 

11 C11consisted of either the 1etter - (denoting concentric 1oad) or the 

letter "E" (denoting eccentric load) followed by a number equal to the 
--~- ____ , ______ ___ _____ __ -- -- --·- ------·---------·---· ..--· --·--·--·------------- -- -·-··----- .... - - .--·~_.....,..__.,,.___ 

average stress applied to the specimen in p.s.i. Thus E-750 identifies 

the prism loaded eccentrically to an average stress of 750 p.s.i. 

The creep test prisms were kept under sustai!leq load for 

•· 	 . 137 days. The only exception to this was the 1,000 ps.i. eccentrically­

loaded prism which was kept under load for only 67 days. This came about 

because one eccentrically-loaded prism was inadvertently overloaded at 

the time of application of the load, and failed by crushing of the concrete. 
- . ____ __ ...,_ •.,,... ........ ... ' · """ ­ ·-~!it-......-,.~~~-

-- ---------- -----------__ --------~-o 
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The prism E-1000 was cast and made ready at a 1 a ter date as a 

replacement; hence, its period under load had, of necessity, to be 

somewhat 	shorter than .those of the other specimens. 

All the creep prisms were sealed with wax at the age of 31, 

32, or 33 days, and all were loaded at the age of 36 days. The wax 

sealing was intended to eliminate the influence of varying atmospheric 

humidity during the . test period. 

A record was kept of the prisms' length changes from the age 

of one day up to the time of loading. A record was also kept of the length 

changes of companion unloaded prisms which had been cured and sealed 

in the same way as the creep prisms. These prisms were also stored in 

the test area. 

The concrete's crushin~ strength and stress-strain 

relationship were obtained from cylinder tests. Such tests were 

perfonned at various ages of the concrete in order to determine how the 

concrete's strength and stress-strain properties altered with time. The 

cylinders were waxed at the same age, and in the same manner as the 

creep prisms. 

2.2. The Concrete Mix 

22 11: -· In ·the initial concrete pour, ten x 611 x 611 prisms, seven 

12" x 611 x 611 prisms, .and twelve 12 11 x 611 diameter cylinders were· cast. 

In a second pour, 11 weeks after the first, three 22 11 x 611 x 6" prisms". 
and six cylinders were cast. 

2.Z.1. 	 The Concrete Mix Proportions 

The weights and percentages of the constituent materials are 
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tabulated below (Ta.ble 2.1.). 

..· TABLE 2.1. 


CONCRETE MIX CONSTITUENTS 


Material Weight per batch Percentage 
( 1bs.) by weight 

Ordinary Portland 
Cement, Type I 63.6 14.0 

3/811 Maximum Size 
Crushed Limestone 135. 5 29.9 

. Concrete Sand 
(washed sand of fineness 
modulus = 2.74) · 212.2 ·46.4 

Water 44.0 9. 7 . 

TOTAL 455.3 lbs 100.0 

The volume of each batch was approximately . 3 cubic feet. 

The aggregates ·used were subjected to a moisture analysis. 

The weights in the abo~e table were obtained using the results of this 

analysis. Thus, the . "Hater" entry is the sum of the actual weight of 

water added and t~e weight of .water present in the sand and crush~d stone. 

2.2.2. Mixing and Pouring Procedure 

A "butter'' batch equal to roughly one third of a regular batch 

was first made in order to condition the 4 cubic foot capa~ity 

horizontal-drum mixer~ The concrete from this batch was thrown away. 

In the first pour, three regular batches were then made. The 

various fonns and cylinders were filled in three layers, each layer being 

composed of the concrete from one batch. Each layer was vibrated using a 
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·a hand-he 1 d poker-type vi brator. The poker was not a11 owed to penetrate 

...any further than just into the surface of the preceding layer. 

cln the second pour, only one batch was required. The forms 

were-·fiTled and vibrated in three stag es as before. 

Since it was cons~dered desirable to make the concrete in the 

cylinders as much like that in the prisms as possible, the cylinders from 

both pours were also mechanically vibrated. 

The slumps for the three batches of the initial pour were 

_3 1/8 in., 3 3/4. in., and 3 in. The slump of the second pour was 3 in • 

. In each case, after the last layer of concrete had been placed 

in the fonns, excess concrete was trowelled off the upper face. A 

smoothly-trowelled surface was obtained without addition of water or 

excessive working which would cause migration of water to the upper 

surface. One half-inch diameter brass gauge points, each with a number 

60 reference hole in its centre, were set in the exposed face of each of 

- ·-tour·-of -the -1 arge prisms ·from the- first pour. ·-The points were p 1 aced on 

a 10 in. gauge length. After about 7 hours, initial readings were . 

taken from these points using a "Soiltest" mechanical _strain indicator 

(see s~c~ion 2.2.3. for a description of this gauge). 

At the age of about 8 hours, all of the test specimen were 

covered w~th wet burlap. At the age of one day, all the prisms and 
I . 

cylinders were removed from their forms or molds. This procedure was 

' , . adhered t f for both pours. 

The prisms were cast in wooden forms \th i ch were 1 i ned with 

polyethylene plastic sheet in order to give the concrete a smooth finish. 
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J 

The dimensions of the fonns were carefully checked for accuracy, and 

all dimensions were correct to within 1/32 of an inch. 

2.2.3. Curing of the Concrete and Preparation of the Test Prisms 

The specimens were cured under moist burlap for 21 days. From 

this time until they were put under load at the age of 36 days, the 

prisms stood in the Concrete Laboratory of the Engineering Building. 

During this period for the first pour, the atmospheric temperature was 

maintained at near 70°F and relative humidity varied approximately from 

50% to 70%. For the second pour, the range of temperature during this 

period was 70°F to 80°F, the relative humidity varied between approximately 

60% and 80~~. 

In the five-day period from 29 days to 33 days, the cylinders 

were capped, and 11 Demec"t gauge points were affixed to the creep 

prisms. The arrangement of the gauge points on the creep prisms is 

shown in Fig. 2.1. 

p 

+ + t t 

l.,11! ! ;,
J..1'4 1 :2~' ~i I 

I. · 11 1 
I . 

!+ + + t 

It? 

~·1 

~ -p? 

Ec.<.ENTRlC.. 'PRl~~\S CoNCENTRIC. PR\~t\S 

Fig. 2. 1. Arrangement of Gage Points on Creep Prisms 

t 	The "Demec" is a demountable mechanical strain gauge described in 
se.cti on 2. 3. 3. 
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Points were a 1 so affixed to several of the cy 1 i nders in order that the 

-·concrete's stress-strain curve could be obtained during tests for 

compressive strength. 

The set-in gauge points on the prisms which were to serve as 

--- -Shrinkage control specimens were augmented by further sets of points 

glued on to the other three faces of the prisms. 

A11 points were glued to the concrete using a two-part epoxy · 

glue. 

Next, all of the concrete test specimens were coated with 

Esso microvan 1400 wax, in order to prevent further loss of moisture. 

The coating \'las achieved by blowing air from a hot-air gun onto a large 

slab of the wax, and allowing the molten wax to flow evenly onto the 

concrete surface. The melting point of this wax is 140°F. 

2.2.4. Concrete Properties 

(a) Strength and stress-strain relationship. 

As has been mentioned previously, a number of the concrete 

cylinders were fitted with gauge points in order that the concrete's 

stress-strain curve might be detennined. 

Each such cylinder had two . sets of points attached, the sets 

being diametrically opposed . .At the .age of 36 days (i.e. at the same 

time as the creep tes~s commenced) one of. these instrumented cylinders 

was tested. The test procedure was standard, except that loading was 

stopped for a few seconds at various load levels in order that the 

concrete's strain might be determined. ·strain readings were taken up to 

a stress of roughly 90% of the concrete's ultimate strength. 
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TABLE 2.2. 

STRESS-STRAIN DATA FOR CONCRETE AT AGE 36 DAYS 

. ~ .· - ·_..;: 

. - . ..--- .. - -·--·~POUR 

FIRST 


Stress (KSI) 

0.0 

. 0. 354 


0.886 

1.240 

1. 770 


- -- ---2.-656 

3~-540 

\, . 

~·. 

~ 

Strain (in/in x 104 

o.o 
1.812 

2.880 
5.063 
7.750 

---- -- -ll .-625 - ---­

. --18. 875 

ULTIMATE STRENGTH = 4.09 KSI 

.­

--· --­

-SECOND 


Stress (KSI) 

0.0 
0.352 

0.850 
1.200 
1~760 

-2-.--120 

-·2.480 

2.830 

3.010 
3.180 
3.350 
3.520 

3.690 

UL.TI MATE STRENGTH 

Strain (in/in x 1Q4 

0.0 
0.800 
3.900 
6.800 
8.600 

-----9 .--800 


·11.400 


13.100 

14.600 
16.000 
18.000 
20.100 

22.500 

= 3. 86 KS I 

-"- ·----­
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The difference in strength of the instrumented cylinder from 

one loaded continuously to failure at the same age was fairly small . . 

(.28 KSI, or about 6%). It was, therefore, concluded that the effect 

of stopping the cylinder test at various stages in order to take strain 

readings \\las slight". ft. comparison of many more tests performed by 

Dry_sdale 11 also indicated that no strength reduction occurred. ­

The points ootained in this way appear on the stress-strain 

graph Fig. 2.2. The stress-strain readings are entered in Table 2.2. 

Strain was obtained as the u.verage of the two values given by the two 

sets of gauge points. A cylinder from the second pour was similarly 

tested at 36 days, and the points obtained are also plotted on Fig. 2.2 

and entered in Table 2.2. 

The ~train readings obtained from the two sets of points on 

each cylinder were nonnally fairly close (within 10%). A maximum 

difference of 24~~ for the fi na 1 reading y1as, hm<1ever, recorded. This 

discrepancy could have been due to the onset of failure on one side of 

the cylinder; it might also indicate that the cylinder was subjected 

to some slight eccentricity of 1 oad. 

A least-squares fit of the stress-strain data was undertaken 

by computer. This allov.Jed the stress-strain to be expressed as a 4th 

degree curve (curve l on Fig. 2.2) and also as a 2nd degree curve 

(curve 2 on Fig. 2.2.). These formulations were used in the analyses 

outlined in Chapter 3. The average deviations of points obtained by 

measurement from those given by the least-squares plots are indicated on 

Figure 2. 2. 
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TABLE 2. 3. 


CONCRETE STRENGTH AT DIFFERENT AGES 


• -'"'~g-e ­ -- ---- --·--"Pour --No. 1 
(days) Individual Cyl. 

Strengths (KSI) 
·­

7 2.73 

28 -

36 4.09 
4.37 

87 -

5.15105 
- 1 -- ·~·-··· -

4.89 

142 
-­

4.52 
4.48 
4.36 

5.09 

--178 ­ -- -4. 74 
5. 16 

Average 
Strengths (KSI) 

. 2. 73 

-

4.23 

-

5.02 


4.6i 


4.95 

Pour No. 2 
Indi vi dua1 Cyl. 
Strengths 

Average 
Strengths 

-
3.65 

3.57 

3.92 

3.86 

4.68 
4.38 

-

-
3.58 

3.89 

4.53 

-

- -

-
.. 

-

~-
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.-- It may be noted th-at the points obtafoea-fromfhe--two--cylinders -· 

---- ---·-··-------------are very _siml.lar for stresses below about__3._25 _K.5-..L~In~.addi:tion, _ it ___ ___ -----·----­

can be seen that the stress-strain relationship is very nearly linear up 
- ····~ ·····-· 

to a stress of 2.25 K.S.I. It appears that the strain at ultimate 

strength was about .0026 in/in. in both cases. 

Table 2.3. contains the results of cylinder tests at various 

ages of the concrete. As indicated, the average strength at the time of 

loading the creep prisms (36 days after pouring) was 4.253 K.S.I. The 

gain in strength with time is evident from the Table 2.3., and is 

illustrated by Figure 2.3. It can be seen that the points in Figure 2.3. 

· ·show considerable scatter. 

The concrete strength is expressed as a function of_time by _ 

the formula 

f' = 4.253 (1 + 2(t ~ 36)/103)c 

for ages 	 greater than 36 days. 

f~ is in K.S.I. and tis the age of the concrete in days. 

It was recognized that this formula did not give a perfect 

fit of the experimenta 1 data; at no point, hmvever, did the cylinder 

strength given by the fonnula differ from the average . value measured at 

that time by more than m~. 

It was assumed that the stress-strain relationship of the 

1 concrete was linearly dependent on strength. If over a given period the 

11 n11concrete cylinder strength had incre,ased to times its 36-day value, 
-

it was assumed that the ordinates (i.e. the stress values) on the 

stress-strain curve had also increased to "n" times their fonner values·. · 
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TABLE 2.4. 


SHRINKAGE STRAINS OF UNLOADED PRISMS (in/in x 1Q6) 


··- ---·- ·- - ----· --- - - ·- - --- -- -- -·- - - - --- - - - -- - - -- -- - - - - -------- ·------ ------· - ----- - -----­. -.- .--­

Age - Pour 1 
(days) No. 1 

0 ·o 
5 - 80­

6 -110 
8 -160 
10 -
12 -180 
15 -
20 -
21 -270 

--------·­

25 

26 
29 

33 

36 ·­

40 

41 
47 
53 

55 
73 . 

75 
-­

88 
... 125 

.i 
142 

-
-240 
- 60 

- 10 

- 10 
s·-

- 5 
-12.5 

- 5 

-
- 10 

·­

-
- 15 

-12.5 
- 10 

No. 2 

0 

- 60 


-120 

-140 


-

. -120 

-
-

-180 

-
-120 
- 80 

- 40 

- 20 

- 15 
+ 10 
+ 2.5 

0.0 

- ---- ··­

- 5 

-
- 10 

- 5 

- 5 

-- Pour 2 
No. 1 

0 

- .'. 30 

-
-

- 80 

-
-100 

-190 

-
- 80 

-
-

- 20 

-
-
-
-


.. - 30 -----­

-

- 25 

--- ­

-

-

-


-·­

Storage
Conditions 

Under 

Moist 

Burlap 

In Air 

------ --- · -·--· 

\~ax-

Coated 

- ~------- --------~- ---· ---- --- - -·---- ____ __ _. ____ _____ ··---·- --- _ _____ _ _____ ------ - - -- - - __;._ -·------------------ -------------------------~-_ _________ __ - __ -----~-___ ___ ,. 
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- - - ft-was -known that -this --assumpti.on was not --comp~etely --accurate. 

. 	 . 

Comparison of a stress-strain curve obtained from an instrumented 

' 	 cylinder loaded at the age of 142 days with one computed from the 


36-day curve using the .above assumption · showed that the maximum error 


iri the range of stress of interest_(up to 3KSI) was 9%. Both of the 


curves appear in Fig. 2.2. 


__ No attempt was made to trace the stress-strain relationship for 

strains beyond that at the ultimate stress. For the tests under consideration, 

.- stresses were always well below the ultimate strength. 

(b) . Concrete Shrinkage 

A record of the length changes occurring 'in two unloaded prisms 

identical to the creep prisms was kept for the duration of the test 

period. A third prism, taken from the second pour was also used to check 

length changes. The recorded strains are plotted again~t time in Fig. 2.4. 

The shrinkage strain readings at various ages are entered in Table 2.4. 

----- ---- -yt can be seen-·tn-at·--after v1ax-coating, pracfically no further strains 

occurred. It was, therefore, unnecessary to apply any correction to the 

creep strain 	readings to account for non-load-induced strain. 

___________________2. 3. 1. The Loadi n~ Frame 
---~~~~~~~..,__~~ 

- _Eight identi<:al load frames were used in the test program. The 

-features of a load frame are shewn in Fig. 2. 5. It is basically an 

assembly of four identical steel plates, four steel rods, and four steel 

springs. The creep prism is loaded ,by jacking off plate (1) down onto 
I ­
\ 

plate (2). The four rods are thus placed in tension, while the springs 

and the creep specimen are placed in compression. When the compressive 

http:assumpti.on
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1oad on the concrete, as indicated by the 1 oad ce 11 , has reached the 

-~ties ired 1eve1 , the nuts above p 1 ate (2) are screwed down irito contact 

with_ (2). The jack force can now be released and the jack removed. 

~he :load would fall off quite drastically due to the concrete's 

--~--defonnations if the springs were -not incorporated in the ·apparatus. 

The use of springs restricts the loss of load in a given time to 

--~.approximately 4 x (deformation of concret~) x (spring constant). 

The spring characteristics a re as fo 11 ows : 

Free length = 9" Spring constant = 13.5 k/in. 
. - ---, ~- - -- -·-. 

611Solid length = Weight = 50.5 lbs. 


No. active turns = 1.69 Rod diameter = 1 5/8" 


Outside diameter = 9" Inside diameter = 5 3/4 11 


The load was applied to the concrete prism through load seats, 

which are also shown in Fig. 2.5. The load seat at the top of the prisms 

used on arrangement of a ball set between two plates, while the lower 

seat used a roller bearing. It was felt that a ball seat was necessary 

at one end in order to reduce the possibility of applying the load with 

an eccentricity in a direction at right angles to that intended. 

____T __ load seat p_latg$ were ___;;_:he ~~tached ~Q_:!:he __p_rl$l!l~_using plaster 

- -----~----------- --- - ----of _f~_rJ~ .._____H_~~_n__~_h_~_C!PP] _ied _ loaq J_~__f_~i_!:]Y 10~1 {_b~lo_w 54 kips_, say) it 

is possible to adjust the load by moving the nuts above plate (2) with a 

wrench. At high loads, the friction between plate (2) and the nuts is 

too great to pennit such a method of adjustment. To change the load in 

such cases, the jack must be used. 



The rods were designed as tension members. The plates were 

designed for bending, considering them to be 1 oaded over an area i.n 

the center, and simply supported at the rods.' 

·A 60 ton capacity hydraulic "Simplex" jack was used to apply 

the loads. 

A photograph of an assembled load frame, with the creep prism 

and the jack in position appears . in Fig. 2.6. 

L2.3.2. The Load Cells 

The loads applied to the various creep prisms were determined 

by the use of load cells. 

The dimensions of these components appear in Fig. 2.8. The 

steel used was "Ultamo 611 
, which is a high yield steel with good creep 

charact1eristics. Four Budd C6-181-B 11 Metafilm 11 electrical resistance 

strain gauges were attached to each cell using GA-5 heat-cured epoxy 

cement. The arrangem.ent of -two. gauges positioned vertically and two 

horizontally (with-·members of like pairs being diametric'c~lly opp-osite) 

constituted a full bridge. 

The load cells \'Jere calibrated in the 120 kip capacity Tinius 

Olsen testing machine. For the calibration, the strain readings indicated 

by the gauges on th~ cells at various loads were recorded. The 

calibration procedure involved loading and unloading cycles for each 

cell. - This process was carried out at least three times. If the calibration 
~-

curve and zero load reading continued to vary after severa 1 eye1 es of 

loading, the strain gauges were replaced. The calibration curves 

(graphs of strain versus load) were plotted for all the cells. In all 

____.. 



- - 38 


Fig. 2.6. Assembled l:.oad Frame 

Fig. 2.7. The 11 Soiltest 11 (top) and 11 Dernec 11 gauges. 
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cases, the graphs were very nearly linear. The calibration units : .• ' , ..rif!.. il ,. 

(lbs~nicroinch/inch) for the load cells were found to be as follows: 

Specimen C-1500C-750 C-2250 C-3000 E-750 E-1000 E-1500 E-1750 
- .· 

Load cell 42.0 55.047.5 45.0 30.0 37.0 45.0 50.0 
Calibration 
Units 

For the creep tests, the _eight 1oad cells were connected to 


a Budd SB-1 portable switch-and-balance unit. This unit was connected 


in turn to a Budd portable strain indicator. 


After the creep tests had been completed, the load cells 

were removed from the load frames and ~e-calibrated as a check on their 

accuracy over the test _period. The recalibration procedure was as 

follows: 

(1) Each load cell was loaded until the indicated strain was 

-that which had originally represented the applied load for its specimen. 

The load for this strain reading was then noted. 

(2) The load was released, and the strain r~ading for zero 

load noted. 

It was found that none of the 11 at load" strain readings had altered 

significantly. The greatest error obtained for the sustained load level 

was 1.6% of the applied load. The load cell used for specimen E-1000 

was found to be unserviceable 60 da~s after the commencer.ient of loading. 
1 

Until this time, the cell had given no indication of being defective, 

and it has been assumed that the readings over this period were accurate. 
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-A check on the loaq at 60 days was made .by measuring the length of the 

springs in the load frame. The values of spring deflection multiplied 

by spring constant, although only a rough guide, indicated that the 

load was at approximately the correct level. 

-- - - - ~2~ 3;3. -- The noemec 11 -- and "Soiltest" Strain Gauges 

A photograph of these two strain indicators appears as 

Fig. 2.7. The "Demec''. gauge was used to take all creep and elastic 

strain measurements. It is a demountable mechanical strain gauge of 

British manufacture. The smallest division on the scale repreients a 

strain of 10 microinches per inch. The gauge has an 8-inch gauge 

___l_ ~f_lQ_~_h. It was found possible t_o__~~P.~-~~ _readings to one half of a 

--=---·-di vis-ion. 

The 11 Soiltest 11 gauge is also of the demountable mechanical 

type. Again, the smallest division is equivalent to a strain of 

10 microinches per inc~. The gauge has a lO~inch gauge length. It was 

used to measure some of the shrinkage strains. Gener_ally, it did not 

consistently repeat the readings taken to within less than one 

division. 

_ ___________________________ - SQth gauges wer~_JJ_sediJL_t.h~~9m_~ _ ~a.l. Two readings were 

__ _________ ___ ---~~-~~-"! LO_D~ f_r9n!__9.: _st_?n_d_~r_d __i_nva!' __!:>_~r, and one frOTlL the points glued to­

the concrete's surface. Any change in the difference between these 

two readi~gs indicated a cha~ge in the strain of the concrete. _, 

The errors involved in using these gauges are discussed in 

Chapter 4. 
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2.4. Experimental Procedure 

The load frames were assembled lying on their sides and were 

hoisted into position using a 2,000 lb. capacity workshop crane. Plate 

(3) 	was held up initially by means of temporary clips. 


The polished ball-and roller-bearings in the load seats were 


well-coated with grease. 


The creep specimens with their load seats and load cells were 

then aligned in the fraMes, and held vertically by means of short 

lengths 	of wood. Next, the ter1porary clips restraining plate (3) \\lere 

slackened, allowing the weig~i of plates (2) and (3}, plus that of the 

springs, 	to bear on the specimen and hold it in place. 

Initfal 	readings \'.1ere then taken with the 11 Demec 11 gauge. 

The specimens were 1oaded 36 days a.fter casti.ng, and 

measurements of the strains \·Jere taken immediately after loading. 

Further measurements of strain were made in the next few 

days. The frequency of taking readings decreased as the experiment 

proceeded, until 37 days elapsed between the last two se~s of readings. 

The 1 oad 	 on ·each specimen \'/as checked every few days, and a 

record kept of fluctuations. The loads on all specimens tended to 

. diminish with 	time, and in each case, the load \·tas brought back up to 

the desired level once a \veek, or as necessary to prevent the load from 

dropping by as much as 5~la below its initial value. Actually, the loads 

se1dom departed by more than 3~~ from their nomi na 1 va1 ues. The 

variations in load for each of th~ test specimens are illustrated in 

the graphs in Figs. 2.9. and 2.10. Increased .~deformation of the springs 

with time under load indicated creep in them.· This did not change 

http:casti.ng
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the recorded values O~ · load•. One of the original ~ight creep pris~s 

was accidentally overloaded at the time of first loading, and this led 

to crushing of the concrete, as mentioned in the Introduction. The 

prism was replaced by one taken from the second pour which became 

prism E-1000. \ 
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CHAPTER 3 


PREDICTION OF THE EFFECTS OF CREEP IN A MEM8ER SUBJECT TO A STRESS GRADIENT 

AND PRESENTATION OF CONCENTRIC CREEP DATA. 

3. 1. 	 Introduction 

The general method of calculating the strains and stresses in 
.. 

a plain concrete prism subjected to a long-tenn eccentric load was . 

described in Chapter 1. It will be recalled that the method had four 

distinct stages: 

{1) Determination of the initial elastic strains necessary to 

. produce resisting stresses equal to the applied load and moment. 

{11)° Determination of "free" creep correspondina to the 

distribution of-stress across the section • 

. (111) Restoration of plane sections. The creep strain plus 

"elastic" strain must result in a linear distribution · of total strain. 

{lV) Alteration of total strains in order that the "elastic" 

portion satisfies statics. 

These four ·basic steps are common to the bm methods of analysis 

pre~ented here, although each method tackles these steps in its own way. 

·the first method, called the "element" method, is essentially numerical . 

in character. The strains at various points across the member cross­

section are detennined in a computerized process. The element method 

considers the prism to be riade up of a number of sma 11 er concentrically­

1oaded prisms, held togethF.l,r in such a way that plane cross-sections 

remain p_l ane. 

46 
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The second method, called the "continuous" method, seeks to 

find mathematical functions which describe the creep strain and total 

strain distributions across the member. It differs from the "element" 

method in that it considers the member cross-section as one unit, rather 

than as an assembly of smaller elements. 

Both methods require certain data to be represented by 

convenient formulae. The data required consist of creep results from 

concentric load tests, shrinkage results of unloaded prisms, the 

concrete stress-strain relationship, and the way in wh-ich this .and the 

concrete strength vary with time. The treatment of all but the creep 

results has been considered in Chapter 2. The fonnulation of this data 

wi 11 now be cons i dere~ before the tvm methods are described. 

3.2. Representation of Creep by Standard Formulae 

The two methods of presenting creep data used in the analyses 

will be described. noth fonnulae v1ere devised empirically to fit 

observed creep results. 

3.2.1. 	 The Method of Ross 9 

The 	 equation suggested by Ross has the form 


C = ti (a + bt) 


11 b11where c = creep strain t days after -app1i cation of 1oad, and "a 11 and 

are constants. The units of "a" are those of time, while "b" is dimensionless. 

Any factor which affects the creep observed at a given time will also 

affect the values of "a" ·and "b". Jhus both constants are functions of 
\ 

the magnitude of the applied load. That is, "a" and "b" may be expressed 

as functions of stress or of initial elastic strain. both of which are 
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measures of the magnitude of the applied load. 

The above relation may be rearranged to give 

t/c = a + bt 

A plot of t/c against t is a straigth line, as shown in Fig. 3.1. The 

11 b11·constant "a" is 	then the intercept on the t/c-axis, while is the 
-

gradient of the line. 

The fonnula 	.of Ross is frequently used for predicting creep • . 

Having established the constants from a relatively short sustained load 

test, long 	 tenn creep strains can be conveniently extrapolated. It may 

be noted that at 	time t = 00 c = l/b. Thus, Ross is stating that creep, 

tends to a 	finite limit. 

3.2.2. 	· The Semi-Loaarithrn Method ­

In this method, creep strain is expressed by a formula of the 

type 

C = A + B log (T) 

where 	C = creep . strai~ T days after application of load, and A, B are 

11 A"constants. Both and "B" have units of strain. 

Thus, a plot of creep strain (to a natural scale) against time 

(log scale) should be a straight line, as in Fig. 3.2. Logarithms to any 

11 811base may be 	 used. The values of "A" and for a particular test are 

easily obtained from such a plot. Again, these creep constants are both 

11 811functions of the level of the appli.ed load. Thus, "A" and can both 

be expressed as fur:ictions of either stress or initial elastic strain. 

The use of the Ross and Semi-log formulae in this investigation 

is discussed in section 3.3. 
•. 

http:appli.ed
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Fig. 3.1. Graph of t/c v. t, showing Ross creep constants. 
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Fig. 3.2. Graph of C v. log (T), showi~g the Semi-log Methoa 
creep constants. 
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( . 

3.2.3. Presentation of Experimentally-obtained Concentric Creep Data 

The concentric creep results are plotted to natural scales .of 


creep strain and time in · Fig. 3.3. The strain at a given time was 


calculated by taking the average of the strains indicated by the eight 


sets of gauge points fixed to each prism. It was thought that this 


-practice would minimize the effects of any uni ntent i ona1 eccentricity in 

the applied load. 

"Creep strain" is here taken to mean a change in s·train after 


the instantaneous or "elastic" strain. The creep strain readings taken 


from the concentri ca lly-1 oaded pri srns appear in Tab1e 1 of Appendix II I . . 


Creep proportionality is shown by the results for prisms 

C-750 and C-1500; at any time, creep strain .of the 1at.ter is roughly 

twice that of the fonner. That is, the ratio of creep is approximately 

equal to the ratio of stress. This relationship does not extend to the 

results for prisms C-2250. and C-3000. This is illustrated by the graph 

Fig. 3.4., which shows the relati_onship between applied stress and creep 

·strains measured at various times after application of the load. Linear 

proportionality is seen to hold approximately at least up to a stress/initial 

strength ratio of .353. 

In order to attempt to predict the creep behaviour of the 


eccentrically-loaded prisms, it was necessary to express the creep data 


from the concentric tests in the fonn of standard equations. Both the 


Ross and Semi-log methods were tested to gauge their usefulness in this 


regard. 
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A comput~r subroutine, DLESQ, available at the McMaster 


Uinversi ty Computer Centre, was used to give a leas.t-squares fit of the 


data for the various straight line plots, which appear as fig. 3.5. (Ross 


11 e 11· plots) and Fig. 3.6 . . (Semi-log plots, using logs to the base ). Both 

methods were found to give a reasonable fit of the concentric creep data. 

In order to interpolate the creep data and apply it to intermediate 

stress levels, it was necessary to express the creep constants from both 

formulae as functions of the applied load. To this end, these constants 

were plotted against initial "elastic" strain, this being a convenient 

11 a 11measure of the 1eve1 of the applied 1 oad. Th us, the Ross cons tan ts, 


and "b", were plotted against initial elastic strain, EE, as were the 


11 811
Semi-log constants, "A" and Again, the computer subroutine DLESQ• 

was used, this time to fit a curve of second degree in EE through the 


experimentally-obtained points. These plots and t~e equations of the four 


curves appear in Fi gs. 3. 7. and 3. 8. Second degree curves were used 


firstly because they gave a sufficiently good fit of the data, and 


secondly because use of higher degree functions would increase the 


complexity of the analysis described in the next section. The· plot of 


the semi-log constant "A" against "elastic" ·strain shov1s the worst 


scatter of points. This constant, however, is always numerically less 


important than the term Blogc{t), especially for high values of 11 t". 


· It should be possible to accurately predict the creep of an 


identical prism subjected to a unifon:i stress of, say, 1000 p.s.i., by 

\ 

picking the corresponding elastic strain off the stress-strain curve, 


and using this to obtain the values of the creep constants. It would then 
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be -a simple matter to compute the predicted creep strain at any time. A 

procedure similar to this was used in applying the concentri-c creep data 

to the prediction of the creep of the eccentrically-loaded prisms, as 

detaile~ in the next section. 

· 3.3. Methods of Predicting Eccentric Creep Effects 

Both of the methods described below were used in conjunction 

with the IBM 7040 comr>Uter at the Mc.''1as ter Computer, Centre to pre di ct the 

total strains of the eccentrically-loaded creep prisms used in the 

experimenta1 prograrn. 

3.3. 1. The "Element" Method 

An "element" method .was presented . ~y R.G. Drysdale11 and used 

by him in a study of sustained loading effects on long, slender columns. 

Some of the refinements incorporated in the original method were not used 

in the .present analysis. 

The basic purpose of the method, as used here, is to compute 


the creep of an eccentrically-loaded plain concrete prism from the 


following data: 


(i) · the member's cross-section properties 

(ii) the concrete.'s stress-strain relationship, and the effect 

of increasing age in the stres~-strain curve 

(iii) the app 1i ed 1oad and its eccentricity 

(iv) the results of concentric creep tests covering the same 

stress range 

The total strain as distributed between creep strain and 

elastic strain, and the stress distribution after some time under load are 

the unknowns of interest. 
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. · ... · 

The infonnation from (iv) is U?ed by expressing the creep 

constants as functions of the initial elastic strain, as described in 

the previous section. The Ross creep fonnu'la was used initially. Later, 

the Semi-1 og method was incorporated in order to compare the accuracy of · 

results obtained using · t~e two creep fonnulae. 

· The method is a computerized proc~ss, and the main components 

of the program a re: ,· 

(i) computation of creep .and new tota1 strains 

(ii) adjustment of strains to satisfy external loaq and moment 

conditions. 

The member cross-section is divided into a number of elements 

or strips, as shown in the sketch below. 

The number of strips used in this case was 20. The n·umber of strips 

chosen represents, essentially, a compromise between accuracy of solution 

and amount of computer time and storage used in the calculation • . (The 

m.rnber was not found to be critical, and little gain in accuracy was 

obtained by using a larger number of strips than 20. A discussion of 

the effect of the number of elements is contained in reference 11). 

The stages of the element method can easily b~ identified with 

the main features of the basic approach outlined in Chapter 1. 
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{i) Determination of Elastic Strains 

Initial "trial" values of elastic strain are read in as data, 

and are adjusted by two subroutines, ALOAD and XMOM, until they are 

compatible with the external load and moment conditions. This process 

may be described as follows. 

Since the elastic strains bn all elements are initially known 

as some proportion of the assumed strains at the extreme fibres of the 

prism, the forces on the elements may b·e calculated using the concrete's 

stress-strain -relationship. The forces from all strips may be summed 

to give the calculated force, PCAL. (The stress resulting from the strain 

·at the <;entroid of each strip i=s assumed to be constant over the width 

of the · strip). 

PCAL is comrared with the known applied load, P. If PCAL differs 

from P by more than a pre-set allowable error, the strain distribution 

~cross the section is adjusted. The strain -in the extreme fibres are · 

either increased or decreased by an amount dependent on the size and sign·· 

of the error term (P - PCAL). 

If, for example, the elastic strain distribution initially read 

in has the form shown in Fig. 3.9., and the equivalent resultant force 

PCAL is greater than P, then the extreme fibre strains, UC and UT, are 

both reduced by an amount UP, which is dependent on the magnitude of the 

discrepancy. 
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Fig. 3.9. 

A similar process is applied in the moment-balancing 

sub-program. Using the new elastic strain distribution, the moment 

contribution of each strip is calculated, and all such . contributions 

are summed. (The force ·in each strip is assumed to act at its centroid). 

The calculated moment is then c0111pared to the known applied moment in 

a similar way to that in which PCAL is . compared to P. Here, however, 

th~ strain correction applied is such as to alter the position of the 

resultant force. That is, the strain correction is added at one extreme 

fibre and subtracted at the other. 

For example, consider a case where the calculated moment, 

BMXCAL, is greater than the known app 1i ed moment.. This error is 

equivalent to haying the correct 1oad at too great an eccentricity. The 

correction, UM, is accordingly added to UT, and subtracted from UC, as 

shown in Fig. 3.10. 
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Fig. 3.10. 

If either PCAL or BMXCAL is in error by more than a preset amount 

(usually 1%) the process was repeated. The strains converged 

monotonically in an asymptotic manner on their "correct" values. A 

typical series of load- and moment- balance cycles is shown in Fig. 3.11. 

The figure illustrates the way in which PCAL converges on P from one 

side. 
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Fig. 3. 11. 
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(ii) Detennination of Free Creep 

For each element, and for the given time increment, creep 

is computed from the Ross equation, with the constants "a" and "b" 

taking values dependent on the elastic strain at that element. This 

·creep 	strain is now added to the elastic strain to give the value of 

the total strain in each element. 

The creep for an element ·subjected to a change in strain over 
1~ 

the previous time increment w--as- ca1cul ated by a superposition method, which 
°) .''. 

may be illustrated by the following- example. 

Fig. 3.12. 

Consider an element initially subjected to an elastic strain EEl. At 

the end of one time increment, totot1, the elastic strain is found to 

have changed to ~E 2 . 

The creep for a subsequent time interval, t 1tot2, is found as 

the sum of two terms: 
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(a) the creep that would have occurred in the time interval 

t 1 to t 2 as if 'E2 had been on the element from t to t 1• (i.e. Ac' in
0 

the figure) 

(b) the creep due to the strain difference (e:E 2 - e:E 1), 

assuming this increment to have been newly applied. (i.e. the first 

part of the creep curve for this strain increment is used). 

Thus, the creep strain increment AC is given by 

= AC 11~;C + Ac' 

as shown in Fig. 3.12. Step (b) was omitted for e:E 2 < e:El, owing to a 

lack of sufficient data on creep recovery. 

Thus, the assumed total strain distribution is as shown in 

the sketch Fig. 3.13. 

It may be noted that this distribution is known to be 

incorrect; it is, however, kno\'m to be reasonably close, and a convenient 

first . trial is thus provided by using the total strains at the extreme 

fibres. 
p 

Fia. 3.13. 



65 


(iv) Satisfying Statics 

The new elastic strain distribution is given by 

Since e:t is the result .of the assumption made in (iiiL the elastic strain 

distribution will not generally be compatible with the applied load and 

moment. The load-balancing process, as used in (i) is brought into play ­

again; this time, however, the corrections UP and UM are applied to the 

total strains, rather than to the elastic strains. 

When the load balance has been completed, the new total strains 

-at the end of the time interval are known, as are the new elastit strains, . 

given by 

e:E = e:t - EC 

Thus, the creep for the next time interval can be computed on the basis 

of the new elastic strain distribution. 

The process can be carried on for any des ired number of time 

intervals. 

For further information on the workings of the "element" 

method, the reader is referred to reference 11. The program used in 

this investigati6n appears in Appendix I. A comparison of the creep 

predicted by this method with that observed in the laboratory is contained· 

in Chapter 5. 

3.3.2. The "Continuous" t-1ethod 
; 

The "element" method, while 
\ 

pm•1erful in that it is able to 

handle complex problems which necessitate the use of many time intervals, 
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is relatively extravagant in its use of computer time and storage. 


It is necessary, for example, to compute and store values of 


elastic strain a.nd creep strain for each individual element. In 


addition, in the load-balancing process, the stress- on each element must 


. be computed separately~ the to ta1 1 oad and moment befog found by sumilli ng 

the contributions of all the elements. 

The continuous method was evolved in an attempt to save 

computer time and storage. This method considers the whole member 

cross-sectitin as one unit, and represents elastic, creep, and total strains 

as continuous functions of position on the cross-section . 
•The general form and degree of these functions can be found. 

The actual crnnputation is then reduced to a relatively simple and fast 

procedure which calculates the co-efficients of the terms in these 


functions: 


The method goes through the stages explained in the general 


approach to the problem in section 1.5. 


The first step is to choose axes and identify the member 


dimensions. Take the x~axis as shown in Fig. 3.14., ~o that the load 


P is applied at some point along its length. The prism's cross-section 


is r~ctangular, of area w x t. Note that at the point of application of 


P, 

x = w + e

2 x 

~here ex denotes eccentricity of the load in the x-direction. 

(i) Determination of Initial Elast1c Strains 

The initial elastic strain distribution may be expressed as a 


linear function of x. 
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s-treiin. ­

Fig. 3.14. 

Thus, £E = ax + b 
11 11where e:E denotes elastic strain, and a and "b" are constants.* . The 

11 a11 11 b11constants and may be found by S?l vi ng directly the equations for 

resultant load and moment. This is a somewhat lengthy procedure which 

is especially tedious if stress is a function of a high degre_~ in strain. 

Instead of this, an iterative procedure, rather similar in principle to 

that ~mployed in the element method, was used, and will be described. 

Suppose that the stress-strain relation of the concrete can 

be represented by a second degree curve of the type 

a =·c, e:~ + c2e:E 

where a= stress, and c1, c2 are constants with units of stress. (This 

was done in Chapter 2). 

* 11 a11 11 b11
and have no connection with the Ross constants. 
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ax + b 

a c (a2x2 + 2abx + b2) + c (ax + b)
1 2

---- ----- ··- -; -·- (cl·a-2 Yx ·+ -(2ahc +c a)x +- (b 2-c + bc )
1 2 1 2

= k1x
2 + k2x + k3 

= ·-· 2c1a ; = 2abc1 + c2a; = b (bc1· + c )k2 K3 2

The resultant force, PCAL, say, is gi"ven by 

PCAL .= t f 
\~I
' a.dx

0 . 

11 0 11Similarly, the resultant moment of the concrete stresses about is 

BMCAL, where 

BMCAL = t Jwa.x.dx
0 

= t(k1w4/4 + k2w3/3 .+ k3w2 /2) 
Thus, the type and form of the functions for resultant load and moment 

are known and the constants k1, k2, k3 can be calculated fof any values 

of a, b, c1 , c 2. 

Then, taking any likely values of a and b as a first trial, 

the eq ui val ent load and mrnl!ent can be easily computed. 

The consta.nts a and b can now be modi fi e·d by error terms 

dependent on the magnitude and sign of the differences (P - PCAL) and 

(BM - BMCAL), where BM = P (w/2 + ex). These error terms ·can be 

applied in the same way as in the 11 elernent 11 method. Values of kl' k2 , k3 

can be recomputed. This process is repeated until satisfactory .convergence 

is . achieved. 

http:Jwa.x.dx
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(ii)" Detenni n'at ion of Free Creep 

Consider the time interval from T = O_to T = T · · The _ Semf~lo~1. 

creep express ion 

C = A + B log e(t) 

will be used here in preference to Ross·•s formula, since the latter 

leads to greater mathematical complexity in this case. 

A and B can both be expressed as second degree functions of 

elastic strain (see section 3.2.3.)• 

Thus, A= CE~+ dEE + e 

B = f£~ _ + 9EE + h 

where c, d, e, f, g, h, are constants. 

Since EE = ax + b, we -may substitute to obtain 

in 	which . u2 = ca 2 = fa 2v2 

u = a(2bc + d), = a(2bf + g)vl1 . 

u 	 = cb2 + db + e, v = fb 2 + gb + h . 00 

Thus~ after ~ome time T under load, the creep strain will be1 

£c = x2 (u 2 + v2 log r 1) t x(u 1 + v1 log r 1) 

+ 	(u + v log T )
0 0 1

The total strain at _time T1 is then given by 

Et 	= EC + E:E 

= x2 (u2 + v 1og T ) + x ( a + u v1 l 9_g T 1)2 1 1 + 

+ 	(b + u0 + v log ·r )
0 1
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.._ 

If 	 K4 = u2 + v2 log Tl 


K5 = u, + vl log Tl 


K6 = uo + VO log r 1 


Then 	 Et may be rewritten 

Et = k4X2 	 + (k 
5 

+ a)x + (k6 + b) 

(iii) 	 Restoration of Plane Sections 

The sar.1e assufn pti on as \·Jas r.iade in the 11 el ern ent" method about 

the 	new total strain will be made here. 

· Thu~, Ei, the new total strain~ will be linear in x. 

i.e. 	 E' = a'x + b' _, sayt 

Pit ·its .extremities, this line coincides with the line representing 

i.e. 	 at x = 0 


b' = k6 + b 


. Similarly, for x 	=w 

a'w + b' = w2k4 + w(k5 + a) + k6 + b 

i.e. 	 a' = wk4 + k5 +a 

(iv) 	 Satisfying Statics 

To "satisfy statics" it is necessary to find the stress 
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distribution across. the section, and to evaluate the equivalent load and 

moment. Statics will then be satisfied by altering the total strain . 

distribution until equilibrium is achieved. This load-balancing process 

will be similar to that carried out for the initial elastic strains. 

Now 

Put k = a' ­7 . k5 

k = b'8 

Thus 

Suppose that at time r1, the ·concrete stress-strain relationship is 

given by 

( c3 and C4 wi 11 differ ·from c1 a.nd c2 owing to the concrete's gain in 

streng~h over the period T = 0 to T = r 1). 

Th us a = C (- k 4x2 + k7x + k8)2 + C4(- k4x2 + kl + k8)3 

leading to a = p x4 + p x3 + p x2 + p4x + p5. 1 . . 2 3 

where Pi = k 4~c~ 

= -2C3k4k7 .p2 

~ c3(-2k4k8 + k2
7) ­p3 c4k4 


P4 ~ 2C3k7kg + k7C4 


Ps ~ k8{C3k8 + c4) 
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PCAL, the load equivalent to this stress distribution is_ given by 

PCAL 

Also, BMCAL = t0J~.x.dx, . again taking moments about 0. 

i.e. BMCAL = t(w6p1/6 + wsp2/5 + w4p3/4 + w3p /3 + w2p5/2)4

Iterating as before will bring PCAL and BMCAL to the desired 

values by altering the values of a' and b' . _ 

Knowing the final va1ues of a 1 and b' penni ts the fi na 1 tota1 

strain distr.ibution, and hence the new stress distribution to be 

calculated. This completes the calculation .for one time interval. 

It will be apparent, however, that the free creep is determined 

assuming that the initial elastic strain distribution remains constant 

throughout ~he time interval. For many practical problems, this means 

that the time period of interest will have to be broken into two or 

more time intervals. 

The calculation for a second time interval is identical in 

principle, but involves more lengthy algebra. The process is outlined 

below: 

Recall that C= A + B log e(T) 
• 

de=~ 
dt T 

(i) Determination of Free Creep · 
• 

This is the first step in ·this case, as the initial elastic 
\ 

strain distribution is known (It is that given by the last part of the 
. 4 

calculation for the first time interval). 

http:t0J~.x.dx
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If the second time interval is AT, and T2 = T1 + 6T, then the 

increment of creep taking place, AC, is given by 

= B. y , say. 

Note that y may be approximated to by 6T/(T2 - 6T/2)+ 

Recall that 

B =·f£ 2 + 9£ + hE E 

Thus 

in which = 	 r - 2fk ·k = gk·r 1 fk 4 . 4 - 8 7 7-· 

= 2.fk4k7 = fk~ + gk8 + hr 2 r 5 

= 2k4k8f .- kJ.f + gk4r 3 

- q x4- 1 

where q.L = y.r,l 

(ii) Restoration of Plane Sections 

£tn 	= New total strain = e~' +· AC 

= a'x + .b' + qlx4 - q2x3 - q3x2 + q4x + q5 

+ For AT = 10 and T2 = 10, the approximation is within 3% of the correct 
value. For higher values of T2, the approximation is .better. For example, 
for T2 = 90, 6T = 10, the error is .1%. · 
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In the same way as before, we choose new trial values of total 
strain which have the same value as e:tn at x =0 and x = w; · as before, 
the distribution is linear between those values. 

Let new total strains be e:'tn = a"x + b" 

At x = 0, e:t'n = e:tn, leading to b" = q5 + b' 

Simi l arily, conditions at x = w give 

a"w + b" 	 = qlwt+ q2w3 q3w2 + w(q4 + a I) + b" 

i.e. a" 	 = qlw3 q2w2 q3w + q4 + a' 

(iii) 	 Satisfying Statics 

Elastic strain = Total strain - creep in 2nd time interval 

- creep in 1st time interval. 

The equations for these three strain distributions are known. Thus 

e: E = aII x + bII - q1x'+ + q2x 3 + q3X 2 - q4X - q5 

k - k x ­4x2 
p k6 

or 	 e:E =_-q1x4 + q2x3 + s1x2 + s2x + s3 

where 

S3 = b" -	 q5 - k6 

If the concrete's stress-strain relationship is given by 

it can be 	 shown that 
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.. · 
' <. 

in which: 

·y2 = -2c5qlq2 
{­

Y3 = C5 (q~ - 2qlsl) 

Y4 = C5 (2q2sl - 2qls2) 


Y5 = C5 (-2qls3 + 2q2s2 + sy) - C6ql 


y6 = C5 (2sls2 + 2q2s3) + C6q2 

= (2s 1s3 + s~) + _cv7 c5 6s1 

= (2s 2s3) + cv8 c5 6s2 

= c5s~ + c6s3Y9 

Therefore, PCAL = t~/wa.dx 

=_ t(Y w9/9 + v w8/8 + v w1;7 + v w6/6 + v ws;5 ·+ v v.J'+/41 2 3 4 5 6

+ Y7w3/3 + v8w2/2 + v9w) 

Also, BMCAL = t Jwa.x.dx
0 

= t(Y1w10110 + Y2w9/9 + v w8/8 + v w'/7 + v w6/6 + v ws;s3 4 5 6

+ Y7w~/4 + v8w3/3 + v9w2/2) 

A final iterative process will balance the load and moment, 

and supply final values of the constants which define the stress and 

strain distributions.· 

The method may be extended to include a third time interval. 

The working for this additional sta~e appears _ in Appendix II. 

http:t~/wa.dx
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· , 

The principle drawback of this approach should now be apparent . 

... -5i nce._the express i_on for creep 

C = A(EE) + B(eE) loge T 

is of second degree in elastic strain, the degree of the elastic strain 

___..__dis~r.ttg~tj_O.!Li~_ doubl_ed for .~~ch additional time increment. (The 

way in which this occurs is explained fully in section 3.3.3.). Thus, 

for the second time interval the calculation is noticeably more 

laborious than for the first. A similar increase in complexity and in 
I 

the degree of the functions describing creep , and elastic strains is 

apparent in the third interval calculation, (see Appendix II) • . For 

·-·- _____ ___ suQ_~_g_qu_gnj: _j:i_n:ie_ jnt~rvals, the calculation become$ so _lengthy that 

another method, such as the "element" method, would be more practical. 

For problems in which it is desirable to consider a large 

number of time intervals, the following procedure was adopted. This 

procedure avoids the problem raised by thi progressive increase in 

complexity of the basit method. 

The degree of complexity is limited to that obtained by the 

·end of the second time interval. That is, eE is of fourth degree in x. 

----·- --- -- --- To do this a second degree curve is fitted through the elastic strain 

distribution. Hence, the elastic strain distributio~ at the end of 

the second time interval, known to be of fourth degree ·in x is evaluated 

at several values of x. A second degree curve is then fitted through these 

points. The library subroutine DLESQ+ accomplished this part of the 

procedure. He may now cor.ipute creep for the third time interval in the 

same way as for the second time interval, since elastic strain is of 

-+ D[ESQ -g --a-··subroutine which uses a 1 east-squares fit technique to fit a 

curve of any desired degree through a given set of points • . 
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second degree in x, as it wa~ at the start of the se~ond interval. In 

this case, ~he ~alues of the co-efficients replacing k , ·k
7 

.and k4 8 

(which define the elastic strain distribution) are obtained from DLESQ. 

This procedure may be repeated for any desired number of time intervals. 

Note, however, that when finding the new elastic .strain at the end of a 

. time interval, we now have 

E = anx + bn -	 r~CE 

-where an, bn describe the new total strain distribution, and r~C represents 
I 

th~ sum of the creep increments occurring ;in all previous time intervals. 


'- Thus, wher~ the co-efficient ~ ql was used for the caltulation for 

~.. 

·~the second time 	 interval, for the "nth" time interval we use instead 

n 

t 

i;l qln = q12 + 	ql3 •••····· + qln 

where the second subscript denotes the number of the time interval. 

A superposition 	method for calculating creep, similar to tha~ 

used in the element method, can be incorporated in the continuous method. 

For the second and subsequent t1me intervals, the change in elastic strain 

distribution is 	plainly of fourth degree in x. 

i.e. e:E 2 - e:El = -:k4x + (k7 - a)x +· (~8 - b) .­

for the s~cond time interval • . For any later interval, from Tn to Tn + 1, 

e:En - e:En. - l = (-k~ + k~ -l)x2 + (k~ - k~ - l)x + (k~ - k~ - ' 1) 

e = k _: a 	 for the second time interval.2 7 

03 = kg - b 
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Let e.1 =-kn+ kn - · 1 . 4 . 4 

e = 1<" - kn - 1 for ·any later time interval, Tn2 7 7 


_ ,,n kn - 1 
 toTn+l.e3 - 1\8 - 8 . 

.(k~ denotes the value of k7 after the time interval tn _ 1 to tn, etc.) 

Thus, the change in elastic strain, EE', say, is given by 

EE• = e1x + e2x + e3 

for any time interva 1 after the first. 
/

The creep strain due to this elastic strain. change, AC 11 
, say, 

is then 

As before, A = CE~ +. dEE + e 

B = f EE + 9EE + h 

It can be shown that 

11 4 23tiC = s1x. .+ f3 2x + s3x + s4x + B5 

where = e12(c + f loge (At))s1 


= 2e1e2 (C = f loge (At))
s2 

= (e~ + 2e 1e3) (C + f loge (6t)) + e2(d + g loge (At~s3 

~ 2e 3e2(c + f loge (At)) + e2(d + g 16ge (At))s4 


s5 = ej ( C + f 1og e (At) ) + ~ 3( d + g 1 o~ (At)) + e + · h 1og e (tit) 

I . 

\ 
Thus the total creep during any time interval is 

+ AC 11.llC = AC' 
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This is a similar expression to that already .used in the analysis. Thus, 

to include the effect of the change in elastic strain, it is only 

necessary to modify the values of q-l by adding or subtracting s,[ • . In 

this case, it can be seen that the complete superposition method is 

used for both increasing and decreasing stress. This is equivalenf to 

assuming that the magnitude of creep strain under a relief of stress is 

the same as that for an increase in stress. Expressed in another way, 

this means that creep recovery is assumed to be; of the same magnitude as 
! 

creep, but of opposite sign. It is known that~his assumption will lead 

to an overestimate of creep recovery. 

It wi 11 be rec a 11 ed that in the e 1 ement method the creep t.C" 

was not included for decreasing stress. Using the same procedure with 

this method would require solving the equation for ~E·. That is, the 

values of x at which et' = 0 would be found. Then the ranges in which 

elastic strain had decreased would be known. The "e's" would not be 

applied to the "q's" in these regions. This refinement would be 

desirable in cases in which major relief of stress was thought likely. 

For the plain concrete prisms used in the experimenta~ program, however, 

large scale transfer of stress within the test period was thought .to be 

unlikely. 

A computer program was written to carry out the ca lcul ati ons for 

the continuous method. Superposition was included in the program, which 

was used to predict the creep of the eccentrically-loaded _prisms used in 
\

the experimenta 1 program. The program, with an exp1 anatory introduction, 

is reproduced in .l\ppendix II. The results obtained using .the program are 

compared with those observed in the experimental program, in Chapter 5. 
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3.3.3. 	 The Progressive Increase in Complexity of the Unmodified Continuous 

· ·Method 

In many cases it would .be desirable to extend the method so ~ 

that several time intervals might be considered. If, for example, creep . 

was being computed fo~ a member which was to undergo variations in 

applied load and moment (the latter perhaps due to creep itself), it 

might be necessary to consider a large number of short time intervals. 

This is because the elastic s~rain distributio~ is implicitly ass~ed to 

be constant over any chosen time interval (although some allowance for 

variation can be made, as in the superposition method). 

The difficulties which arise in trying to consider large 

numbers of time intervals by the continuous method will be considered. 

First Time Interval 

It will be recalled that the initial elastic strain 

dis tri buti on . is 1i near, and was represen.ted by the equation 

11 811"A" and , the constants in the equation 

ec =A+ B logeT ••...•.•..• (l) 

are of second degree in EE· Hence, so is Ee' computed for any time 

-interval T = Oto T = T • Since EE is linear in x, ec is of second degree1

in x. 

The 11 new 11 total strain (i.e. the total strain for T = T1) is 

linear in x, being represented by 

£ = a'x + b't 
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The new elastic strain distribution, given by (e:t - e:c), is .thus seen to 

be of second degree in x. 
. "'o 

Second Time Interval 

Let the second time interval be of length 6T =T - T1• It may
2 


·be recalled that the creep occurring during this interval wa's found 

'-..,_ 

--using the equation 

AC= 12 ~ 61/2 • AT .•..•....• (2) 

The additional creep, AC, is thus of second degree in elastic strain, 

since B is of the form 

z 


B = fe:E + ge:E + h 


The equation for e:E, however, is nov1 of second degree in x. Thus, 6C is 

of fourth degree in x. 

Again the total strain distribution, e:t'n, will be linear in x. 

Hence, the elastic strain at time T 
2 

will be ·given by 

£ = Etn' - e: - ACE . C 

and will be of fourth degree in x. 

6C for the third and subsequent time intervals will be 

calculated using the relation (2). Using similar reasoning to the above, 

it can be ·seen that AC for the third time interval will be of degree 

eight in x. Thus, the elastic strain distribution at th~ end of the 

third interval will also be of eighth degree in x. It can then be seen 

that iC for the fourth time interval will be of degree sixteen in x, 

and so on. 

,/ 
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•. 

Thus, the degree and length of the equations for creep strain 

and elastic strain increase \'tith the number of the time interval. In 

fact, these equations become so complex and involve such lengthy computations 
rJ 

that for a large ·number of time intervals, the continuous method loses 

any advantage which it has over the element method. 

It had been hoped that a method could evolve which would allow 

the same calculation to be carried out~ for each time interval. This would 

be especially well adapted to solving problems on the computer. 

Accordingly, efforts were made to overcome the problem presented by the 

progressive increases in complexity outlined above. These efforts are 

detailed below. 

{i) Attempts to represent the creep constants "A" and "B" as 

linear functions of elastic strain~ 

The cause of the continual escalation in the degree of the 

functions for creep and elastic strain is the fact that both A and B are 

of second degree in elastic strain. If they were linear in elastic 

strain, cpmputed creep would be line~r, and hence no increase in 

comp 1 exity would arise .. 
11 A11 11 811It \'Jas thought that t~e plots of both and against elastic 

strain might be taken as made up of two li"near segments, rather than of 

one second degree curve. Thus 

B 

"B=cEe+c\ 

EE. 




83 

In this case, howev~r, one is confronted by the problem of defini_ng at 

what value of x on the member cross-section the "break" between the two 

portions of the line occurs. Equations can be devised which superficially 

appear to get round this difficulty. Such equations hold good for any 

value of e:E. 
\ 

e.g. for the case sketched on the preceeding page \ 

will give the correct value for B for any e:E • 

.Since, however 

Iax + bI = + [ (ax + b ) 2] 2 
I 

it becomes evident that B is still represented by an equation containing 

.powers of e:E. These powers will cause increases in complexity as before. 

(ii) Attempts to simplify the creep equations by neglecting terms which · 
') 

are 11 sma11 11 compared to the othe.r terms. 


An analysis was made of the magnitudes of the various terms · 


in the creep occurring during the third time i nterva 1. It was hoped 


7
that the terms involving high powers of x (x8 , x , etc.) would prove to 

11 l1 11be sma- compared to the others, and that they could thus be neglected. 

It was also thought that similar high powers might be negligibl.e for 

subsequent time intervals, and that the degree of the terms which had 

to be considered \l/Oul d thus tend to some 1imit. 
\ 

The analysis of terms for the third interval creep, hoVJever, 


showed that, for typical numerical values found from the experimental 


program, the tenns an 1ay in the same -rang~ (bet\·reen •01 and 1) ~ There 
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was no apparent justification for neglecti.ng some terms and retainin$ 

others. 

These efforts having failed, the modified continuous method, 

incorporating the least-squares fit of a second degree curve to data 

obtained from a fourth degree function, was adopted~· Ih this. modified 
. ~ 

form, the continuous method can be applied to problems requiring the 

consideration of any numher of time intervals. The modified continuous 

method is described fully in section 3.3.2. 

The strains predicted by the "element" and "continuous" 

methods are co~pared with those observed in the experimental program in 

Chapter 5. The effects of certain errors on the accu~_acy of the 

predicted strains are considered in Chapter 4. 

_/ 

http:neglecti.ng
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CHAPTER 4 


ACCURACY OF THE COMPUTATIONAL METHODS AND POSSIBLE INACCURACIES IN THE 

EXPERIMENTAL PROCEDURE 

4. 1. Introduction 

The approximate analysis of the errors in the computational 

methods, which is described in the next section 1 was not intended to be 

rigorous. Its purpose was to indicate the likely acc~racy of the 

computational method. A completely rigorous treatment of the 

uncertainties discussed in section 4.2. was not justified since the 

effects of some of the possible sources of error could not be 

mathematically e·valuated. Hence, it was decided that a combination of 

rigorously obtained statistical error data with rationally estimated 

values from other variables could rnis·rep~esent the overall accuracy. 

Secti6n 4.3. contains a discussi-0n of errors whose effect 
{ 

could ~ot be estimated quantitativeJy, but which would nevertheless 

affect the accuracy of the solutions obtained using the computational 

methods. 

Th~ various possible inaccuracies in the experimental procedures 

are discussed in section 4.4. 

4.2. Approximate Quantitative Analysis of Errors in the Comouted Solutions· 

The purpose of this analysis is to obtain an estimate of the 

probable accuracy of the values of total strain obtained by the two 

computationa1 methods. To arrive· at this estimate, differences between 

compt1ted and measured strains due to the following factors are considered: 
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(i) errors arising from the scatter of points about the 

"least-squares 	fit" plots of concentric creep data according to the Ross 

and Semi"-1 og methods. 

(ii) errors · occurring in the experimental measurement of 


strain 


(iii) errors arising due to the scatter of points about the 

least squares fit curve repr~senting the concrete's stress-strain relation. 

It will be recalled from section 1.S. that the total strain 

ct• at any time t, is given by 

Looking first at the tenn e:C, and consiclering the creep computation carried 

out by the ,e 1ement method, e:C is found using the Ross fonnu 1 a, 

. t 
£c = a + bt 

11 a11 11 b11It wi 11 a 1 so be rec a 11 ed that both and were expressed as functions 

of initial elastic strain. 

The error arising from the use of this expression is derived · from two 


sources: 


(a) the original Ross plots, obtained from the concentric 
-t. . . creep bests, give rise to an error due to the deviation of the points 


f.rom the best straight line drawn through them. 


(b) errors also arise from-the fact that "a 11 and "b" are both 
I 

expressed as functions of elastic strain. Again, there is some scatter of 

11 b11the values of "a" and about the line given by a least-squares fit. 
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The effect of these errors on the value of Ee mus~ now be__ 

\ calculated. The general method for estimating the uncertainty in a 

value which is a function of several variables will be used; 

For any function z = f(x,y), the error in z, called oz, is 

given by 

~z = df ax + df oydx dy ­

where ox, oy are the errors (assumed to Se---s-inall) in x and y respectively*. · 

Th us , oC = C, say , = f (a , b , t,) 

~ - af + af 1:.·b + Mt J:.-tuc - CJa o·a Qb u UI.. u 

The last i tern obviously drops out, s i nee time is known exactly. 

Now 

af -t 
ra= {a+ bt)2 
df -t2and Ob= {a + bt)2 

whence 

!:_ - -t J:_a· + J:.b -t2 ...•.•.•..•.•. (1)
°C - (a + bt)2 u· u (a+bt}2 

The above equation may be evaluated for any set of values, a,b,t of 

interest. 

A similar procedure may be used to compute the uncertainty in 

Ee in the continuous method. 

* This formula may be found in any text on error analysis. See, for 

example, D.C. Baird's "Experimentation", Prentice Hall, 1962. 
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In this case Ee is calculated from the Semi-log expression 

. £c = A + B log t 

11 A11 11 811with and being functions of elastic strain. 
/ 

Again 
. df df 

.oc =dA (oA) + dB oB 


Here 


and %f = log t 


giving 


oc = oA + oB log t 


Again, oc can readily be obtained for given values of oA, oB, and t. 


The remaining three tenns in the equation for total strain all 

· involve the same error. That is, all result from the uncertainty of 

values of strain obtained from the concrete's stress-strain curve. If 

the error in a point obtained from this·curve is oE 
5 

, then the total 

error in Et may be written 

O£t = oC + 3oES + ~q ............... ( i i ) 


For this approximate analysis, oEs was taken to be the maximum deviation 

of an experimentally-obtained point from tha least-squares curve of 

stress versus strain. 6q is the term due to all other inaccuracies 

in the computational methods. ~q could not be evaluated quantitatively. 

(The factors included in this term are discussed in the remainder of this 

chapter.) 

The term oc was evaluated by taking values of oa and ob from 

11 a11the least-squares curves of and "b" against elastic strain for the 
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range of stress of interest. Again, the deviation of an experimentally~ 

obtained point from the least-squares curve was assumed to give an 

approximate measure of the error involved. Using these values of oa 

an~ ob, oc was compute~. for specific values of a, b, and t. 

The equation for oEt represents an estimate of the maximum 

poss.i b 1e difference between the 11 true" tota1 strain and ~he computed 
. . 

value. In this case, however·,- the "true" total strain is not kno\1n. 
"---~ 

!~stead, the computed total st~ain is compared with the corresponding 

measured strain. If oEt is to repr~sent the difference between these 

values, further tenns must be added to the right ha~d side of (ii). 

The measured strains were obtained as differences. A reading 

was taken from a standard invar bar (si, say), and a second reading was 

taken from the gauge points fixed to the concrete (s2 say). The 

difference between the t~o readings (s2 - s1) was recorded. The change 

between this value of (s2 - s1) and one recorded at a later date indicates 

the magnitude of add1tional strain. 

If each reading is taken to be accurate to one half of one 

division on the scale, o0, . then it is apparent that 

s, - s2 = s, ± OD - s2 ± OD 

Hence the maximum possible error in the quantity (s 1 - s2) is ± 2o0, 

or one division. The strain at any time is obtained as the difference 

between (s1 - s2) and some "base" value {i.e. the reading obtained from 

the concrete before any load was applied}. This "base" value is also a 

· difference, and is also subject to a maximum errior of 2o0• Therefore 
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the maximum error in a measured strain is ±400, or two divisions. 

Thus 

\ 

As mentioned earlier, ~q . represents the effects of those factors which 

could not be evaluatf.~.numerically. Considering only the remaining • ... 
· tenns in the equati o.n_; values of oet were ca1cul ated for ~each 

eccentrically-loaded prism. Error lines representing the deviatio~ of 

strains computed by the 11 e1 ement" method (using Ross• s creep f onnu 1a) 

from those measured in the laboratory were drawn. {The values of oet 

were co11puted .for four points across the section. These points were then 

joined up to give an error "band"). These error lines appear in 

Figures 5.5 and 5.6 The error lines do not take into account all factors 

which affect the computed total strain values. While the values used 

for oe
5 

and oec are only approximations to the maximum possible errors 

involved, it is thought that the error lines do serve a u~eful prupose 

in· indicating the probable degree-of accuracy of the element me'thod . . 

The fonnulations of test data used in computing the predicted_ 


strain.s are discussed in the next section. 


4.3. 	 Uncertainties in the Predicted Strains due to the Methods of 


Presenting the Data used in the C1omputed Solutions. 


4.3.1. Variat~on of Concre~~ - strength and Stress-Strain Relation with Time 

The concrete stress-strain relation obtained from instrumented 

cylinder tests perfonned at the time of first . loading the creep prisms, 

was assumed to vary with time in the manner explained in Chapter 2. 
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This method . is equivalent to "scaling-up" the ordinates (or stress values) 

on the stress-strain curve. All stress .values are multiplied by the . 

same factor for a given age of concrete. For example, for concrete at 

an age of 136 days (that is, after 100 days under load) the stress 

values are all multiplied .bY t~e factor .1.2. Therefore, the stress. 

corresponding to any given strain at 136 days is 1.2 times the ~~ress 

corresponding to the same strain at 36 days. A comparison of the 

elastic strain .recovery of the concentric cr~~p prisms (measured on 

off-loading) with the elastic recovery predicted using the above 

assunptions, showed that , in all cases, the predicted recovery was 

greater than that measured. The percentage error was not always the 

same, and increased with increasing stress. (The measured and computed 

strains appear in Table A-3-2 of Appendix III). This indicates that use 

of one factor for the entire stress strain curve is not completely 

- re a1i st i c • 

It is thought that a more accurate modification of the concrete 

stress-strain curve to account for increased age and strength could be 

devised. To do this, instrumented cylinders would be tested at various 

ages. An analysis of the changes in the shape .of the stress-strain curve 

as a function of time could then be made. These changes could then be 

formulated in an equation which expressed the change in stress for a given 

strain as a function of strain and time. This equation would probably 

not be linear in elastic strain. (It is assumed in Chapter 2 that the 

relation is linear in elastic strain). A second degree function of 

elastic strain would probably be applicable~ It is also likely that the 
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equation would not be linear with time, as was assumed in Chapter 2. 

Data from a larger number of cylinder tests would allow fonnulation of 

a more 	 realistic relationship. 

The effect of sustained load on the "elastic" stress-strain 

relationship is more difficult to evaluate, although it is generally 

recognized that it will cause some change. 

4.3.2. 	 The Relationship of the Creep .Constants to the Initial Elastic 


Strains. 


Both the continuous and element methods require that the creep 

constants(from either the Ross fonnula or the Semi-log fonnula) be expressed ­

as continuous functions of the initial elastic strain due to the applied 

11 a11load. For the Ross constants, and "b", this requirement was satisfied, 


since the relationship -could be approximated fairly closely by a curve 


11 811of second degree in elastic strain. The Semi-log constants, "A 11 and , 

were not so suitable, as Fig. 3.8. shows. The constant "A" is especially 

unsatisfactory. Because of the scatter of the points, and because data 

for only four points was available, it was very di ff i cu1t to express A 

realistically as a function of initial elastic strain. For elastic 

strains 	below that corresponding to a stress of 750 p~s.i., the shape 

of the 11 A11 versue elastic strain curve is open to conjecture. Two 

. choices are avail ab1 e. 

(i) as EE approaches zero, the trend for A to decrease 


algebraically, shown by the experimentally-obtained points, continues. 

. 	 . \ 

(ii) as EE approaches ~ero, A also approaches zero. 

Theoretically, there should be zero creep at any time for zero applied stress. · 
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i.e. for .zero applied stress 

C =A + B 1og (T) = O , ·for any T. 

Therefore, A= -B log {T) for any T. Since A and B are not themselves 

functions of time, this implies that both A and B are zero for zero 

stress {i.e. £E = 0). This indicates that {ii) is the correct assumption 

to make. 
-

The Semi-log formula, however, is not a theoretical law. It 


is an empirical formula devised to fit experjrnental data. It -does not 


necessarily reflect observed creep behaviour perfectly at all levels of 


applied st~ess. _ In addition, ·it was found in a previous analysis 11 th~t 


the experimentally-obtained points did not appear to indicate that 


the values of A and Bat EE= 0 should nece$sarily be .zero. Accordingly, 


the secon~-degree curve used in the analysis was that which gave a 


least-squares fit of the four experimentally-obtained points. That is, 


· the point A = 0 at EE =·o was not included in the least-squa~es fit of 

the data. It is recognized that the values of A given b,y this equation 

for strains corresponding to stressed below 750 p.s.i. are thus doubtful. 

Owing to the lack of experimental data in this range, however, no other 

assumption could be made. As a check on the influence which this might 

have on the strains predicted by the continuous method, the e 1 ement method · 

had the Semi-log fonnula incorporated in it. The strains predicted by the 

three methods: 

{i) continuous method using Semi-log formula 

(ii) element method using Ross formula 

(iii) e 1 ement method using Semi -1 og formula. 
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are compared and di.scussed 'in Chapter 5. It is recommended that in 

future work, at least six concentric creep tests be performed in the 

range of stress of interest. This should give sufficient data to plot 

realistic curves of the creep constants .against initial elastic strain. 
,· · 

4.3.3. ·' The Method of Computing Creep under ·a ·Relief of Stress 

An additional source of error in both methods is the way in 

which creep for varyi~g stress is computed. 

In the continuous method, it is 'assumed that creep under 

a relief of stress is of the same magnitude as creep under a stress 

increase. In actual fact, it is known to be markedly less. It would 

thus be expected that the creep recovery of those parts of the prisms 

undergoing a relief of stres.s would be overestimated by the continuous 

method. 1n other words, the total creep strains of parts undergoing 

relief of stress would be underestimated. 

The superposition .method of creep calculation used in the 

element method was known to overestimate creep for decreasing stress by 

ignoring creep recovery. 

4.3.4. Other Factors Affecting the Computational Methods 

(i) Number of Strips used in the Element Method. 

Twenty strips were used in obtaining the computed strains. 

Previous studies involving the "element" method indicate that the errors 

incurred in dividing the member cross-section in this way are slight11 • 

(It was found that very little difference in the ,computed answers was 

obtained by greatly increasing the number of elements). In the present 

investigation, solutions were obtained initially using twelve strips. 
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The differences in the to ta 1 strains computed in this way compared to 

those obtained using twenty elements, were all in the region of one half 

of one percent. 

(ii) The Effect of Assuming Conditions to Remain Constant over Finite 

Time Intervals. 

Both creep and the concrete strength are continuous functions 

of time. In both methods of analysis, it is assumed that the elastic 

strain distribution across the member remains constant over the time 

interval considered. 
~ 

In view of these factors, it is apparent that more accurate 

answers will result from the use of shorter time intervals. Ten-day 

intervals were used for both the element and continuous methods. A 

determination of the strains for prism E-1500 by the element method and 

using five-day intervals indicated that little gain in accuracy would 

result from consideration of shorter time intervals. 

(iii) Errors Due to -Computer Convergence Tolerances. 

In both methods, strains were adjusted until the calculated 

and applied values of load and moment were within 1% of the known values. 

Owing to the assumption made regarding a first trial of total strain, the 

calculated loads and moments approached the "true" values from above, in 

each case. Thus, the acce~~ed values of strain at the end of each time 

interval were slightly higher than the true values. This in turn would 

lead to high values of computed creep for th~ succe~ding time interval. 

Trial runs of both programs with the convergence limit increased to 5% 

gave surprisingly little loss of accuracy (about 3% of the computed strains). 
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(iv) Error in Eccentridty of Eccentrically-loaded Prisms 

It was assumed that the eccentricity of the applied loads did 

not vary with time due to creep deflection of the prisms. A calculation 

carried out to estimate roughly the deflection that would occur indicated 

that such deflection would be negligible. (The value for the prism under 

the greatest load was approximately 1% of the intended eccentricity. This 

error would not be equi va1en t to a 1%difference in the computed creep)_. 

4.4. Discussion of Errors in Test Results Arising from Inaccuracies in 
'\ 

Experimental Set-up. 

There were several factors which, by nature of the experimental 

procedure, could influence the results obtained. It was not found to be 

feasible to make any numerical estimate of the discrepancies which these 

factors caused, since, unlike the errors involved in the computational 

process, their effects were difficult to evaluate realistically. Since 

the results of the various tests indicate consistent trends, and since 

the predicted creep va1ues differ from those ohserved. by· a margin no 

greater than that which might reasonably occur due to computational 

error, it is thought that these factors, which are detailed below, 

probably had little effect on the test results. 

(i) Accuracy of Forms 

The fonns used for casting the prisms were constructed so 

that eac~ dimension was correct to a 1/32 of an inch. The breadth measured 

to the trowelled surface of some of the prisms was found to be in error 

by slightly more than this (the worst measured value was 1/20 of an inch). 
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The non-trowe 11 ed faces a11 had smooth regular surfaces. 

(ii) Positioning of Load Seat Plates on Ends of Prisms 

The seat plates were attached to the ends of the creep prisms 

using plaster of Paris. A straight edge ~nd spirit level were used to 

help align the plates properly on the prism ends. The plates were 

6 inch ± .003 in. square. It was thought that the effect of any 

unintentional eccentricity would be partly or wholly eliminated by the 

practice of averaging the strain readings. This does not apply, however, 
.'\_ 

to misalignment of the load in the direction of the intended eccentricity. 

The maximum error in this case was likely to be 1/32 of an inch (the 

same as the accuracy of the fonns). 

(iii) Load Fluctuations and Load Ce11 Accuracy 

It had been noted that the loads were not allowed to drop more 

than 5% below their intended value. The practice of applying an initial 

slight overload was adopted in order that the "time-average" load should 

be approximately correct. 

After the terr.ii nation of the .tests, the load cells were recalibrated 

in the 120-kip capacity Tinius Olsen testing machine, as described in 

Chapter 2. The maximum error at working load was found to be 1.6% of 

the ~orking load in the worst case. None of the loads, however, was 

indicated as being more than 3% from its nominal ·value during the last 

90 days of the 137 day tests. In addition, any change in the "at load" 

readings of the load .cells would most probably occur during this last 

portion of the test period. Thus, the total deviation of each load from 

its nominal level would be, at the worst, equal to (1.6 + 3)%, i.e. 

within the prescribed 5%. 
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The case of the load cell for the specimen E-1000 has been 

discussed in Chapter 2. It appears that this cell functioned satisfactorily 

until at least 40 days after the initial application of load. The 

analysis by both prediction methods was, therefore, restricted to this 

period. 

{iv) Changes in Ambient Relative Humidity and . Temper~ture. 

The wax. coating of the concrete specim_en was intended to 

eliminate the effect of changes in atmospheric humidity during the best \ . . . 

period. No allowance was made for the effect of changes in the 


atmospheric temperature. During the test period, t _he · temperature in the 


test area varied only between 70°F and 80°F. · 


{v) Effect of Di fferenti a 1 Drying of the Specimen between the Ages of_ 


21 and 33 Days. 


Drying out of the surface 1 ayers of the concrete between the 

time moist-curing ceased and the time of wax-coating could have set-up 

stresses in the concrete which might have influenced measured strains. 

It is thought that this was unlikely. In all cases, shrinkage and 

swelling of the unloaded prisms approximately cancelled each ~ther out. 

It thus seemed unlikely that any· major residual stresses remained. 



CHAPTER 5 


PREDICTED AND MEASURED CREEP OF THE ECCENTRICALLY-LQ,ODED CONCRETE- PRISMS . 

5.1. 	 ·introduction 

- ·. In this chapter a comparison between test results and those 

calculated using the two prediction methods is presented. The 


redistributions of stress c.alculated . by the two methods are also discussed. 


The two methods arre compared and poss i b1e extensions of them are 


discussed. 


5. 2. 	 The Results fonn the Eccentric Creep Tests 
\

The test procedure for the eccentrically-loaded concrete prisms , 

is discussed in Chapter 2. 

Strain readings w~re taken from the gauge points located on 

the creep prisms. From each set of readings, a total strain distribution 

across the member was plotted. Such a sttain distribution was obtained 

by fitting a best straight ·1ine through the experimentally-obtained 

points (i.e. through the points- obtained from both sides of the specimen, 

as well as those from the tension and _compression faces). 

· The total strain distributions obtained in this way are shown 

in Figures 5. 1. and 5.2. for various times after application of the load. 

The extreme fibre strains given by these "best straight lines" were used 

1n preference to actual measured values, since they should define the 

total s~rain more accurately. The actual readings of strain taken from 

the four . e~centrically-loaded creep prisms appear in Tables A-3-3 and 

A-3-4 	of Appendix III. 

Figures 5. 1. and 5.2. show that in all cases the strain 

gradient across the member increases with time. In addition, the 

QO 



100 

lO\f\L ~Tl<f'.\N (1N\\N X \OS) 
0 

?
--t1 

\ 

\0 . ?..o '30 40 60 70 '20 C\0 \00 \\0 

\O\~L ~\Rl\\N (1Nl\t,~ x \O~q 
0 

. -p 
- · -t> 

10 20 ,30 50 GO 70 ~ o q o Io·o 11 o 

McMASTER .l)NIVERSJIY LIBRAR't 



101 

ToTA\.. S1RA1N (1N/1N x\o5) 
0 

•'·-· --­ - . ___..,..._ ,_...._ -­

150 /'?.O '240 270 30-0 330 360 

.. --1 
I 

--~----- 1­
-­ . 2J t> f\'lS---+--­. I 

! 

T<:>TAL $TRAIN (\N{IN x\oS) 
0 

'P 
--··-·.... 

· 30 

I 

I .---+-- -· 
! 
I 

i 

l'l>O 2\0 210 300 3~0 3<;.0 

• I I I 

--- -~-------L--. ~-..:_,___. 
i 
r I 

--­ -­ ;___ .l ..:............ _ __.:.____.__, --­· -: ------t---- !_ -··--­ . 
I I t •• 

\__:~~-j . !. . E-1~00 ; i 

-- --1 . --­.;·- -- ~----- 1---~- -1 -·-····· ---·­ ----:-----------,-: -.- ·--. 

I 

Vf\R\OU~ PE.R.\Ci!)S VN!>E:R lOPiD, 



102 

r·ate of increase of strain gradient is higher for h_igher values of average 

·s-tress. 

5.3. Prediction of Effects of Eccentric Creep ··-·--·--- --'· ·------------'__________.......___ 


Initially, two methods were used to predict the. effects of 

creep of th~ _fQur eccentrj_~aJJy_:-_lQ_~g~9__p_r_i_sms. Tb~~~l'lere ( i) the 

·element method, incorporating the Ross creep fonnula, and (ii) the 

continuous method, incorporating the Semi-log creep fonnula. Later 

in order to detennine the effect on accuracy of using the Semi-log 

fonnula, it was also used in the element method in place of the Ross 

fonnul a. In this second form, ·the element method is referred to as 

the "element (ii)" method. In its original fonn, the element method is 

referred to as the "e 1 ement (i) 11 method. A11 three methods adopted a 

standard ten day i nterva1 for prediction of the creep effects. It is 

therefore ir.ipl i citly assumed that the el as tic strain distribution is 

constant over each ten day period. 

5.3.1. Predicted Strains 

The extreme fibre creep strains predicted by a11 three methods 

are shown in Figures 5.3. and 5.4. These values we~e obtained as output 

from the FORTRAN computer programs run for each method. The observed 

-extreme -fibre creep strains are also shown, for comparison purposes. 

The four sets of total strains are tabulated in Tables ~ 5. 1. and 5.2. 

The abbreviations used in this table are as follows: 

"O" 	 denotes observed strains (from the "best straight lines" 

mentioned in 5.1.) 
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"E (i _) ~· -· denotes strains predicted by element (i) method 
"E(ii)" · denotes strains predicted by element (ii) method 

-~'cTs •.n --- -denotes strains predicted by the continuous method 
"C" denotes maximum compression fibre strains 

. --~ '" ""T" ·---denotes minimum compression fibre strains 

The element (i) method gives the best agreement with the 
observed strafns __ Jn all but two of .the plots. For\ the minimum compression 
fibre of specimen E-750, the predicted creep strain is so close to that 
obtained from the experimental results, that the two plots practically 
overlap. From the other plots, it appears that the margin of error at 
the maximum com pres si on fibre stays" constant or diminishes s1igh tly from 
about 50 days onward. 

The creep strains at the maximum compression fibres predicted 
by the continuous method, although generally lower than those obtained 

~ _ - --using the element (i) method, are reasonably close to those observed. ­
f-or the' maximum comp_re~ s~on fibre of E-750, ·; n fac~, fhe continuous method 
gives a particularly good p~ediction of creep strain. For the minimum 
compression fibres, however, the continuous method always gives the 
lowest predicted strains_. For E-750 and E-1000 in particular, these 
predicted strains are much l~ower - than those observed. It was thought 

-- -th~t th i-s discrepancy \~ras dJe to the uncertainty of the Semi -1 og cons tan ts 
11 A11 ~nd 11 811 for low values ol. elastic strain. This su~picion was 

~ ---~-confi nned by the results of 
1
the e1ement (ii) method, which show 
!

similarly low values of minimum compression strain. 
I 

_ ·_ the- total strain distributions predicted by the element (i) 

and continuous methods .for the prisms E-750, E-1500 and E-1750 after 
100 days under load, and for E-1000 after 30 days under load, are 
plotted in Figures 5.5. and 5.6. The element (ii) method strain 
distributions are omitted for the sake of clarity. The error bands for 
the element (i) -method have been included in the graphs. _ (The derivation 
of these error bands is described in Chapter 4). It can be seen 
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the distributions given by the continuous method fall outside the error 
bands, indicating the lower general accuracy of this method. Because of 
the difficulty in assigning a realistic value to the errors in the -\ 

11 811Semi-log constants, "A" and , no error bands were included for the 
continuous method. 

5.3.2. Predicted Redistribution of Stress 

The redistribution of stress, which accompanies creep of 
concrete under non-unifonn stress, is of interest. Both the element and 
continuous methods can be used to obtain the stress distribution across 
a member at any given time after initial application of the load. The 
continuous method computes the coeffici~nts which define the equation of 
the stress distribution as a part of its load balancing procedure. The ~ 

element method computes the elastic strain on each element, and this 
value is easily converted to stress within the program. 

. ' 

The stress distributions at the time of first load, as computed 
by the element method, are shown for all specimens in Figures 5. 7. and 
5.8. The stress distributions computed by - both the e.lement (i) and 
continuous methods for s'pecimens E-750, E-1500 and E-1750, after 100 
days under load are also shown in the figures. For the specimen E-1000, 
the initial stress dJstribution, and the distribution after 40 days 
under load ~re shown in Figure 5.8. Both of these distributions were 
coniputed by the continuous metood. (In this case, the computed 
redistribution is slight by both methods, and the element (i) method 
solution is omitted for clarity). 

In a11 cases , the trans fer of stress from the extreme fibres 
into the interior of the prism is evident. 

5.4. 	 Discussion of the Prediction Methods 

Both the continuous and element methods can effectively carry 
out the same calculation for total strain and stress distributions of a 
member subjected to sustained non-unifonn stress. The discrepancies in 
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-certain values of strain predicted by the continuous method appear to be 

.---largely due to uncertainty of the values of the Semi-l_og creep constants 
~ . 11 811"A" and. , for low values of elastic strain. Thus, this lack of 

accuracy is not a defect of the continuous method, but merely an indication 

11 A11that more concentric creeo data is needed to accurately express and "B" 
l - --·- - ----- - - - ----· - ·-- ·-·· __ _ _/__ _._ - . 

as functions of elastic strain. · 

Both the continuous and element methods posse-ss useful 

flexibility in that they can handle any number of time intervals. This 

means that variations in applied load and moment can be dealt with easily. 

The new va1ues of 1oad and moment are simply i den ti f~·ed at the des ired 

. ti~e, and ·the cr_eep and elastic strains are ·altered accordingly in the 

subsequent time interval. 

It had been intended to take into account the initial overload 

_..of the pri s~. ~ -1750. The ·Ross and Semi -1 og p1ots, however, only give a 

good fit of the creep data for periods of ten days or more under load. 

Thus . the effect of the i nit ia1 overload, fo 110~1ed by 1oad reduct ion 

four days later, could not be predicted by either of the two methods. 

If a major change in applied load or moment had occurred at some 1ater 

time, it ·could.have .been taken into account quite eas.ily by either ·method. 

Another. useful feature of both methods is that a member's 

c~oss-section properties can be altered in the course of the analysis. 

In the elef'.lent method, t~e process is especially simple, since comput,3tions 

are carried out for each individual element. If the strain distribution 
'1 

\ 
across the member indicates that a particular element is in tension, then . 

the force and moment contributi9ns of that element can be set to zero . 

. . . ' 
. - ~· .• . 
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- {Or if it is assumed that the ·concrete can take some tension, an appropriate 

val u~ of ~ens i] e force cat~_ be us~d_). . fc;?r - ~~~ £<?_Q_ti_,~~~o~_? ____met!~od L __J~ \'~(.)_u] ~ __ 

be necessary to solve the equation for elastic strain (i.e. find at v1hat 

value of x, xy say, elastic strain was zero). If the concrete can take 

no tension, the calculation will then proceed as before, but with a new 
~·~ • • - ¥ .••.• • ---- -· ---· 

section width, equal to (w - xy) instead of w. 

This ability to deal with varying section properties would be 

useful when considering members under-going sustained loadi~g to failure, 

since their cross-sections frequently develop cracks. It is cautioned, 

however, that the rr.ethod of assuming a "first trial" value of the total 

strain at the.end of a time interval would need to be changed for problems 

i nvo l vi ng members approaching failure. As c;i l ready noted in Chapter 3, 

this fi rs.t approxi mation gi ve·s a computed 1oad which is greater than 

the true value. Under near-failure conditions, the computed load would· · 

fail to converge in the load-balancing procedure. In such cases, it 

is necessary to change. the first assumed value of total strain so that 

the computed load is· less than the known applied load. The simplest way 

of ·doing this is to use as a first trial the total strain distribution 

from the previous time interval. For either method, this modification 

is quite simple. For the plain concrete prisDs considered here, however, 

this assumption would cause a waste of computer time, since it represents 

a bad 11 fi rs t t ri a 111 v a 1 u e • Thi s , i n turn , n e c es s i tates mo re 1 o ad-b a 1 an c e 

cycles before convergence is obtained. 

Both methods can be adapted to handle proble~s involving 

members vJith steel reinforcement. Such a version of the element method 

____ _is__ already in existence. _ (_see _reference 11) 
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In the continuous method, knowing (or assuming) a. strairi 

distribution across a reinforc-ed concrete member permits the strain at 

the level of the steel to be detennined. Hence, the stress · in the steel 

can be computed. PCAL .and BMCAL would then include terms representing 

respectively the 1oad and moment contributions of the reinforcing s tee 1. 

The simple modifications · necessary to take account of 

reinforcing steel are therefore not extensive. 

The FORTRAN computer programs for both methods were run on the 

IBM 7040 computer at the McMaster Computer Centre. Typical times for 

the two programs, vdth each using ten time intervals,- were as follows: · 

"Element" method 2 min. 41 sec. 
11 Continuous 11 method 2 min. 58 sec. 

The continuous method, however, was more economical in storage 

space than the element method. In a typical run, the continuous method 

used 3402 locations, corilpared to 4'036 locations for the element method. 

\ 
i . 



CHAPTER 6 


CONCLUSION 


6.1. Introduction 

An investigation was conducted into the effects of creep of 

concrete under non-unifonn stress. An important feature of creep in 

such cases is that due to the non-linearity of the creep-stress relation, 

a redistribution of stress takes place. This effect is important ·in 

practice. 

The purpos~ of the investigation was to devise and test methods 

of predicting the time-dependent strains and stresses in members subjected 

to sustained non~uniform stresses. The investigation included ~oth 

experimental and theoretical work. 

6.2. The. Experimental Program 

.In the experimental pro~ram, four plain concrete prisms were 

subjected to different sustained concentric loads. This set of tests 

was used to provide data for use in the application of t~e theoretical 

approach. Four identical prisms were subjected to different sustained 

eccentric loads. It was intended that the strains of these prisms be 

compared with those predicted by the theoretical approach. 

A record was kept of the prisms' strai'ns over a period of 

.four and a half months. Additional infonnation was required for use in 

the theoretical approach. This infonnation consisted of 

(i) the concrete stress-strain relationship ~ · 

(ii) the concrete strength 

(iii) the manner in which (i) and (ii) changed with time 

116 
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(iv) non-load induced strain changes produced in the prisms 

(i), (ii), and (iii) were provided by tests of standard concrete cyl.i nders, 

some of which were instrumented in order that the concrete's stress-strain 

curve might be obtained. 

(iv) was obtained by measuring the strains on unloaded prisms (identical 

to the creep prisms) placed in the test area. 

In view of the many factors which can influence the measured 

creep of concrete, efforts were made to ensure similarity in the concrete 

test prisms and cylinders, and consistency in the test procedure. To 

this end, all of the concrete specimens were made using the same concrete 

mix. All the creep test prisms and the companion unloaded prisms had 

the same dimensions. Fonns were carefully checked for ac~uracy. To 

eliminate the effect of varying atmospheric humidity on the test results, 

all of the concrete specimens were sealed by wax-coating at the same age. 

6.3. Theoretical Approach 

The purpose of the theoretical approach was to devise a 

procedure by which the distributions of total strain and of stress' across 

a plain concrete prism subjected to sustained eccentric load could be 

predicted. Such a procedure would provide the basis for a method which 

could provide the same information for reinforced concrete members. Two 

methods were presented: 

(a) an "element" method, which considers the eccentrically­

loaded member as an assembly of ~maller concentrically-loaded elements, 

held together according to the condition that plane cross-sections must 

remain plane. This method was a modification of a technique already in 

existence. 
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{b) . a "continuous" method, which deals with the member cross­


secti on as one unit. this method considers the mathematical functi oris 


representing stress, creep strain and total strain distributions. To 


the author's knowl~dge, such a method had not been presented before. 


Both methods used the data listed in (i) to (iv), plus the 

· results of the conce..ntric creep tests, to arrive at a solution. For each 

method, a computer program was written to calculate the strain and .stress 

distributions of the eccentrically-loaded prisms at any time after the 

application of the · loads. In both cases, the predicted total strains 

were reasonably close to the measured values. A lack of accuracy in 

some of the solutions given by the continuous method was found to be due 

to a method of representing the creep data. This, in turn, was caused by 

a lack of sufficient data for creep under low stresses . .., 

6.4. 	 Uses of the Prediction Methods and Suggestions for Further Research 


Both of the 
. . . 

methods possess useful flexibility in that they 


can deal with fairly complex problems involving variations of the applied 


·load and/or moment with time. In addition, both can be modified fairly 

easily to dea·l with members having stee1 rei nforcemerit. It is cautioned, 

however, that the method of formulating the data used by both methods 

affeCts the accuracy of the computed answers. In order that such formulations 

be as realistic as possible, an extensive range of back-up tests is 

requfred. In particular, a comprehensive set of concentric cr~ep tests, 

covering the stress range of interest is required. 

In order to make results obtained from one test program applicable 
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to other ·situations, it would be necessary to detenn.i ne quantitatively 


the effect of such -variables as member size and shape, and atmospheric 

' 	 )
\_

conditions. In addition, some more accurate method of predicting creep ~-

recovery would be desirable, since present methods are known to be only 

approximate. ·Research along these lines would allow a wider application 

of the two prediction methods presented here. 

6.5. Resume 

The problem of predicting the .stresses and strains in a plain 

concrete m~mber subjected to sustained non-uniform stress was investigated. 

Two theoretical approaches, using experimentally-obtained data, were 

. applied to the problem. Both were found to give. satisfactory answers, 

and both can be easily modified for use with reinforced concrete members. 

A fairly large amount of test data is required for both methods. This 

includes infonnation on the concrete's strength, stress-strain relation, 

· 	and shrinkage characteristics, as well .as results from creep tests 

under uni-fonn stress. The methods are at pre~ent applicable only to 

situations in which such data are available. 



APPENDIX I 

THE FORTRAN PROGRAM FOR THE ELEMENT METHOD 

Names of Variables: 

The meanings of the va~iables named in the program are listed 

below. Any other variables are either defined in Chapter 3, or by the 

_context in which they appear. 

BAX 

BMXCAL 

CYL 

ISEC 

M 

p 

PCAL· 

CPEEP (J) 

U{J) 

SUBROUTINES: 

ALOAD · 

CREEP 

XMOM 

FUNCTIONS: 

CONCF 

A, AA, 
B, BB 

Applied bending moment 

Calculated bending manent 

Concrete cylinder strength 

Iteration limit for load-balance cycles 

Number of elements 

Applied load 

Calculated load 

Total creep on a particular cross-section element 

Times defining an increment of time 

Extreme fibre strains 

Total strain on a particular cross-section element 

.Calculation of the internal force on a cross-section 

Calculation of creep during a time interval 

Calculation of internal bending moments 

Concrete stress-strain formula 

Ross creep co-efficients 
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$JOB 1JA TFOR 0 0 3 3 3 6 Gr~ A Y D C\

:DIBFTC 
c PROG f-<Ai,·; FO !~ Pf·~ ED I CT I ON 0 F CRE F.P OF CO MCRE TE UN DEi~ 
c A STRESS GRAD I ENT 
c MODIFIE D VERSIO N OF PROG FOR SUST AI NED LO AD I NG OF LO NG 
c COLU~ NS DEVELOPED OY DR DRYSDALE 

DI MENSION DEL X(~ Q l,DX(~ Q J,U(4 Q l, UU (l 0 ,4 Q ),CPE EP (4 Q J, PFEP (l0,4 0 l 
I UE1(4Ql, UUE 1(1 0 ,4 0 ) · 

401 REA D(5,4 02 1 p,D PP,CYL,XCECC,iSE(, M,UC, LJ T 
WRITE(6,4 0 2)P, D PP,CYL,XCECC,ISE(, ~ ,uc,uT 

402 	 FO RMA T (4FlQ. 3 ,z13, 2 F12.5l 

READ(5,5 04) TI MIT 


504 	FOR ~ AT(Fl 0 .3) 


cor\' 1V ON UC' UT 

FCII=CYL 

TO=O.O 

Tl= O.O 

T2=0.0 

N=l 

DOL+6 J=l, M 

PEEP( N,J} =O. O 


46 CO NTI NU E 

D 0 Li- 8 j =1 ' >1 


CPE EP (JJ= O ~ O 


4 8 C 0 1\! T I t'~ U E 

GO TO 436 


711 P=P+ DPP 

VJRITE (6,7 07l P 


707 FOR ~ AT (5X,Fl 0 .2l 


GO TO 436 

. .....-· 702 READ(5,7 0 3 l T2, P , DE CI DE 


70 3 FOW ·1A T(3Fl 0 . 2 ) 

WR ITE(6,7 04 l Tl,T2,P 


704 	 FOR MAT(lQX,2F1 J .2,1 o x ,F1 0 .21 
CALL CR E E P ( T 0 , T 1 , T 2 , U , JU , CPEE P ' P E E P ' r·1 l 
IF (T2-12 0 .) 1 0 ,1 0 ,11 

1 1 C Y L =F C I I ~ (- 1 • 1 5 

GO TO 436 


IO CYL=FCII*<l. 0+0 .15*T2/12 0 •l 

436 ZX= C. O 


LP= J · 

L+ 3 1' 	 L P = LP + l 

CALL AL OAD(LJ(,UT,PC AL,P; M,CP EEP ,T2, u ,cvLJ 
CALL X ~O~ ( U( , U T,R M XCAL,q ~X ,XCECC,zx,p, M , CPE[P ,T2, u ,c~L) 
PE RROR =A 3S ( P- PCA LJ/P 
X B~ER = ASS ( QA X-B ~ XC~ Ll/ BA X 

IF(PE RROR ~G . 0 5) 206,2 06·,z o s 

2 0 6 IF(X aMER - 0 .1 0 ) 18 0 ,1 88 ,2 0 5 

205 !F(LP-I SE CJ 43 7,2 01,2 0 7 

20 7 CO NTI NUE 


~'JRITE (6,4 04) 

404 FOR MAT(l 0 X,17H NO GO-P TOO LAR GE// 


GO TO 699 
1 80 WR ITE( 6 , 10Q } XCECC ,PC A L~P, G~ XCAL , BAX , uc , u T 

190 FO RMA TCF1 0 .3,4F1 0 .z, 2F9 .3) 
GO TO 43 

6 9 9 \·!R I TE ( 6 ' 7 0 C J 
7CO F OR~AT(l Q X,23HC R EEP BUCKLING OC CU RRED //) 



WRITE (6, 800 ) PCAL 

800 FOR MAT(6H PCAL=,Fl0.3) 


WR ITEC6,8 0 ll T2,LP 

801 	 FOR MA T(4H T2=,F5.l,4H LP=,I3) 


GO TO 4 0 1 

43 IF CT2-TI MIT) 715,13,13 


715 GO TO 7 U2 

. 13 GO TO 401 


END 
$lBFTC f\LOAD 

SUB R 0 UT I f'l E AL 0 AD ( UC 'UT ' PCJ\ L 'P ,.1'C PEEP ' T ~ , U ' CY L l 
DI MENS IO N U(40),CPEEP(4 0 l 
DM=M 
PCAL=O.O . 

DO 2UG J= l , ~li


( . DJ=J 
U ( J ) =UC - ( DJ - 0 • 5 ) I D M if ( lJ C- U T l 
W=U(J)-CPEEP(JJ ~ 

~'./ R I T E ( 6 , 4 0 l J , ~1J 

40 FOR MAT(I OH FOR EL NO ,IZ,14 ~ ELAStIC STRN=,F9.3) 
2 0 3 PC AL = PC AL+ 3 6 • ID r. ,1~~ C0 i'K F ( \'! , CY L l c 	 200 CO NTI NUE 
141 UP =A BS (UC- UT )*(P-PCAL)/(8. *P ) 
140 UC=UC+L.;Pc UT= UT+UP 

'v.JR I T E C 6 ,-2 0 l 
20 FOR M AT(l3~ ALOAD CALLEO)

(~ WRI TE(6, 30 ) PCAL 
30 FOR NATC6H PC AL=, Fl 0 . 3 ) 

RE TUR1\Ic END 
$I BFTC Xf'l.0 1•1 

SU BRO UT I N E X..,.O~:i ( U C ' U T , [3 ... ~ X C A L ' a1\ X ' XCECC , ZX ' P ' ~,. ' CP E E P ' T 2 , J ' CY L l c DI MENS I ON U(40l,CPEEP(40l . 
Dr'-1 =fvi 

(
-, BM XCAL= v . 
,,.,. DO 21 0 J=l, M 

DJ=J 
(" U(J):::UC-( DJ- 0 .5)/ DM* (UC-UT) 
,. --~ 1.~ =U ( J l - C P E E P ( J l 

IF (W-1.) 209 ,z1 3 ,z13 
209 GO TO 210 
213 8MXCAL= BM XCAL+16•/DM* (1.-( D J~Q .5J/ D~*6 .l *CON C F ( ~ , CYL ) 

.W RITE(6,55J BM XCAL 
,-. . 5 5 F0 R~,; /, T ( 81-l E:H< XCAL= ' F 1 2 • 3 ) 

210 CO NTi i\lU E 
BAX_=Pi(-XC ECC 

1 7 1 	 Uj...'1 X= A 8 S ( U C - U T ) i( ( B /\ X - l:3 h X C 1-\ L l I ( 8 • ~( E3 .6.. X ) 
158 	 UT=UT- UM X 


UC=UC+ UMX 

RE TU R!'1 


.\ 
Er'W I 

'.£IBFT C CREEP 
suBR 0 uT If'·l E c Rc Er' ( T 0 ' T 1 ' T 2 ' u ' u u ' c pr::- F: p ' p c Er ' ~ ~ ) 
DI ~ EN S I ON U(4 Q), UU (] J ,4 0 ), PEEP(l094Q ),C PEFP (4 Q), Uf l(40 ), 

1 UUEl(l 0 ,4 0 ) . 

CO MM ON uc,~T 


IF (Tl} 61,61,62 




c 

c 

c 

c 


,,.,...... : 

61 DO 52 J=1, M· 
CLU=U(J) .. . 

64 CPEEP(JJ=T 2 /(A(CLUJ+ 8 (CL UJ*T2J 
. , 

58 UEl(JJ =CLU 
U(J)=CL U+CP EEP (J) 


5 2 CO NT I i'! UE 

GO TO 55 


6 2 DO 5 4 J = 1 ' i"-'l 

CLU=U(J)-CPE FP (J) 


66 OLDU=CLU-UEl(J) 

IF <OL DU J 96 ,96,97 


96 CROLD=O.O 

GO TO 98 

97 CROL~=(TI-T O J/tAA(OL DU J+ E~ ( OLDU J * (Tl-TOJ) 
Q8 CPEEP(JJ=C PEEP (J)+(T?-T1 }*A (CL U)/( A(CL UJ+ P (CL UJ*TlJ **2 • 

l+CROLD 

59 UF::l(J)=CLU 

54 LJ(JJ=CLU+C PEcP (J) 

55 TO=Tl 


Tl=T2 

UC=U(l)- 0 .5*(U(2J- U(l)J 

UT= U(l2J+0 .5 * ( U(l2J-U(ll) J 

RETU FH-l 

END 


§!E3FTC CO NCF 

FUN CTIO N CONCF( U,CYL) 


c QU =ST RA I ~ I N IN/IN*l0**-4 
0 U = V.! I 1 0 • 0 ?~- ->~- 2 • 
CO NCF= (CYLl4. 253 )*(- 0 . 3Aq48 / 10 . 0**? .+ 0 . 25°5 7*QU-C0. 76875/10 . 0** 

1 *OU**2.-CC.24895/10.0**3•)*0U**3 .+( 0 . 4C15 7/1 C. 0**5 .) *0U**4 .l 
RETUR N 
END 

<£IBFTC A. 

FUNCTION ACCLUJ 

FL=CLU/1 00 · 


A=.79 890- 0 .125 68* FL+. 49846 /l OJ .*fL*FL 

A=A/lu. 

RETUl~N 

END 

$lBFTC 8 


FU NCT I Ct'~ P. (CLUJ 

FL=CLU/1 00 . 


B =0 • 4 2 3 9 L~ - 0 • 5 R 0 9 9 E - C 1 ~- F L +0 • 2 'l 3 L~ 5 E - C 2 i:-FL-~- F L 

B=C/1 00 . 

RETURN 

END 


$IBFTC BB · 

FU NC TI ON BB ( OLDU J 

FL= OLD U/ 1 :-)0 . 

BB =0 . 42394 - 0 .S 809°E - Ol*FL+0.?1345E-O?*Fl*FL 

BB= QB /l OC . . 

RETURN ·\ 

END 


. SIBFTC f\A 
FU NCTION AA COLDU J 
FL= OLDU /1 00 . 
AA=.79 890 - D .1256 8* FL+.4 9846 /1 0 0 . *FL*~ L 
AA=AA /1 0 . 



RETURN 
END 

$ENTRY 

CD TOT 0177 

........,­

c 

( 

c 

·o 

·c 



AP~ENDIX I I 

THE CONTINUOUS METHOD 

2A-l Extension of the Unmodified Continuous Method to Three .Time Intervals 

The following continues from the working for the first two 

time intervals described in section 3.3.2. 
. . I 
Recall that at the end of thl second time interval the 

elastic strain distribution was given by 

- £E = -qlx4 + q2x3 + slx2 + s2x + s3 

As for the second time interval, the creep for the third 

time interval is given ·by an expression of the type 

~C = By 

where y = loge T3 - loge T2, in which T3 is the time at the end of 

the third intefval. 

Since B = fE~ . + 9EE + h, and putting z1 =-q1, it can be 

shown that 

4>i = s1g +. 2s 3s2 

4> 2 = s~f + sfs 1s3 + s1g 

~ =q2g + 2fs 3q2 + 2s 2s1f3 

. <:> 4 = 2fs 3z1 + 2fs 2q2 + fsy + gz1 

<l>s =2fs 1q2 + 2fs 2z1 

125 
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~ = 2z1s1f + q~f6 

<f>7 = 2fzlq2 


<f>g = fzl 


Let the new total strain at the end of the third interval be given by 

£ : all IX + b' II 
t 

I 

The elastic strain at the end of the third interval is thus 

£E = a11 'x + b"' - ~C (_2nd i nterva 1) 

- ~C(3rd interval) - £c(lst -interval) 

= a•11x + b,;, - ( ~ <f>iX,t) - ("qlx4 - q2x3 - q3x2
i=O ~ 

or 

in which 

P2 = <f>3 - q2 

P3 =q2 - q3 + k4 

b111+ + kP5 = <f>o . q5 6 ­

Let the concrete's stress-strain relationship at time r 3 ~e given by 

a =C7(£E)2 + Ca(EE) 
16 .l= E a.x 

,i=O 
.(. 
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in which. it can be shown that 
. ~ 

ao = C7P5 - C3P5 


al = 2C7p 4p 5 ­ C8p4 

=C7 (2p 3p5 + p~) ­a 2 C8p3 

a3 = 2C7(P2P5 + P3P4) - C8p2 

a4 = C7(P~ + 2P P4 ~ 2P1P5) · - t8~1 

a~ ='2t7(P3P2 +_P1P4 + W5P5) - Ca¢5 

a6 = C7(P~ + 2P1P3 + 2W5P4 + 2w6p5) - Ca¢6 

a? = 2C7(P1P2 + cf>5P3 + cf>5P4 + $7¢&) - C3cf>7 

= c7(py + 2¢ 5p2 + 2¢ 6P3 + 2¢ 7P4 + 2¢8p5) - Cgcf>ga8 

ag = 2C7(¢5P1· + cf>5P2 + cf>7P3 + cf>sP4) 

alO =C7(¢5 + 2cf>6Pl + 2cf>7P2 + 24>3P3) 

all = 2C7(cf>3P2. + cf>7P1 + cf>5¢5) 

. al2 = ~7(¢~ + 2 cf>7~5 + cf>3P1) 

al3 = 2C7(cf>5cf>7 + <P5cf>g) 

al4 = C7(cf>J + 24>54>3) , 

al5 = 2C7¢7cf>3 


al6 = C7cf>~ 


The force equivalent to this distribution is PCAL, given by 

PCAL = t Jwo.dx . 
0 .l +· 1 

16 a.w = t t _..{.___ 

.l=O .l + 1 
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wAlso, 	 BMCAL = t/ cr.x.dx 

i. + 2 
16 · a.w = t I: _..(,___ 


-i.=O -i. + 2 


Load-ba 1 ancing iterations, as ap~ lied b'efore, w~ 11 bring PCAL and BMCAL 

a111to the correct va1ues by adj u·s ting and b'" ,. which define the tota 1 

strain distribution. The a-i. defining the distribution of stress will 

then also be known. 

2A-2 	 Fortran Program to Predict the Effects of Creep of Plain Concrete 

Prisms under Sustained Eccentric Load 

{i) Nomenclature: 

Generally, variable nam~s consisting of on~ letter, or a letter 

and a: mm1ber, .or a letter and one or more subscript .{~); :are (iquivalent to 

the corresponding lower case symbols used in Chapter 3. 

e.g. 	 E in the program denotes "e" from Chapter 3 

P3 in the program denotes p3 from Chapter 3 

· Y(3) in the program denotes y 
3 

from Chapter 3 

Q(l,3)in the progra~ denotes q13 from Chapter 3, etc. 

Exceptions to this rule and other names are listed below along with the 

equivalent symbol from Chapter 3. 

BR(I) 

RCAL BMCAl/H 


BET(!) 
 S.t ­

EL(N) EE evaluated at x = n 

.; 
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PERR(21~ 22) 	 Fun ct ion subprogram t.o .calculate the 

fractional difference iri z1, z2 . 

G.F(T 1' T ) 	 Function subprogram to compute
0 

I... 
\ 

concrete's gain in strength ; in 

:.. period T 1, 	T
0 

NO ·(Number of time interval} -1 

TIM IT Period- under load of interest 

CONl, CON2, etc. · k1, k2 etc. 

W, DEP Section dimensions w; t 

XEC pX, load eccentricity 

DELT 

Other .variable names are either defined by the context they appear in 

or else have the same meaning as in the 11 element 11 method program. 

(ii) 	 Introduction to the Program 

The program goes thr_ough the procedure descri.bed in Chapter 3. 

The various co-efficients which define the distributions of stress, and 

· creep, elastic and total strains are computed in the same 
~ 

order as in 

Chapter 	3. 

The program is split into two main components: 

(a) a main program 

(b} 	 a subroutine, GRAFT, in which the working for the 
11 Q11co-efficients is carried out. · In this subroutine, the superposition 

11 Q11terms BET (I) , corresponding to s-i., are computed and app 1i ed to the 

values. 



$JOB · 003336 GRAY D C 
$l8JOB 'NOD ECK 
SI BF TC 
c *-X-P ROGRt-\ 1\l FOR CTS t•: ETHC D OF CALCUL AT I i'lG FFF ECTS OF 
c ECC~NTRIC CREEP IN PLAI N CO NCRE TE PRIS ~ S 
c ***CAN BE USED FOR ANY NO . OF TI ~E I N T ~RVA L S 

c **INCLUDES SUPERPOSITION METH JD FOR CR E~ P UNDER VA RYI NG ST~ES~ 
6 READ(5,10) A, B,c1,c2, w,p, xE C 


10 FOR MATC2Fl2.2,2E12.4,3F10.2)
- - -'­
~·~. WR ITEC6,1 0 ) A,s,c1,c2, w,p,xEC 

READ(5,5Q) c,o, E'F'G'H 
50 	 FOR MAT<6El2.5) 


WR ITE(6,5 C) c, o ,f,F, G,H 

READ{5,60J TO,DELT,I SE C 


60 	 FOR MAT(2Fl0.2,rs> 

WR ITE(6,6 0 ) TO,D ELT,ISEC 

READ(5,7'o> DE P 


70 	 FOR f'l1ATCF10.2JC' READ(5,70J TI MIT 

LP= O 

BM = P -x~ ( XEC + '•! I 2 • J
c 437 	 LP=LP+l 

CONl=Cl* A.1<-A 

CO N2=<2•* B* Cl+C2)*A" 
c CO N3 = (C2+C l -l~-r3 J -l*- Q 
PCAL= W*(CON 3+~ *(CON 2/2.+W *CON1/3.)) 

PCAL=DEP*PC AL ~ 
UP=ABS(A* W)* (P-PCAL)/(8.*P) 
B=B+UP 
CO N2 =( 2 . *B*Cl+CZ>*A 
CON 3= C CZ+Cl ~-8 ) 1HJ 
8 MC A L = (C 0 N 3 / 2 • HJ ~- ( C 0 N 2 I 3 • + 'v·J _,,~ C 0 fH I 4 • ) ) -:~ d -'k ~': 

BMC AL= DEP-l~-Bivi C A Lc U M =ABS (A* W ) * ( BM - BMCAL1/( 8 · *B~ J 

B = B -U :"~ 


A=A+ 2 • -i~ UM I ~! 


UC= .A-lq.../+B 

P~RR=ER ROR C P , P CAL) 

8.\'i ERR= ERl·WR ( BM , E3f 1:C.A. L) 
IF CPER R- 0 . 0 5) 206 ,2 06,2 0 5 

206 IF ( BMERR - 0 . 05) 18 0 ,1s 0 ,2 o s 
205 IF CLP-IS ECJ 437,z o7 ,z o7 
2 0 7· \-.,' f~ I T E ( 6 , 2 0 J I S E C 

2 0 F 0 R ~~ A T ( 1 9 H N 0 N C 0 NV E R GE r---1( E I i\l - ' I 3 ' 7 H CY C L F. S ) 
CALL EX IT 

lR.0 WR ITE(6,3 0 ) p,p(AL,B,LJC 
30 FOR MAT(2FI 0 .5,2Fl2.5) 

C I N I T I I\ L . E LAS T I C ST R,A I NS NO\'J KN 0\'1N 
Tl=TO+ DE LT 

U2=C-*A-* A 

Ul= ( 2. * B ~-C+D J-*A 

UO= (C-* B+D) -x- R+E • 

V 2 =F ~:-A~~ A 

V 1 = ( 2 • -)i- 8 ~~ F +G ) ?:- A. 

V 0 = ( F ~*" B+G ) ~:- B +H 

CO N4 =U2+V2 *ALO G(TlJ 

.CO N5 =Ul+Vl *ALOG (TlJ 

CO N6=UO+V O*A LOG (TlJ 


http:BMERR-0.05
http:CPERR-0.05
http:FORf'l1ATCF10.2J


c NEXT VALUES OF A'B GIVE POST-CRE~P VALUES~----------­
c BEFORE LO AD BA LAN CE 


A=V..J-*CO N4 +COl\l5+A. 

B=B+CON6 

C3=C11~-G F ( T 1 , T 0 ) 

C4=C2*GFCT1,T0) 


.LP=O 

537 LP=LP+l 


\~RITE < 6' 8 2 ) C 3 

82 FOR~AT<4H ~ C3=,Ell.4J 


' . .-J· R I T E ( 6 , 8 3 ) C 0 "-l 4 

83 	 FOR MATC6H COM4=,Ell.4) 


CON7=A-CON5 

CON8=8-CO N6 

P 1=C3-*CON 4-:(-( ON4


0 	 P2?-2•*Cb N4* CON7*C3 
P3=C3*CCON7*CO N7-2.*CON4*CO N8 )-C4*CON4 
P4=CON7*C2.*C3*CO N8+C4) 
P5=CON8*CC3*CO N8 +(4) 
~·J R I T E_( 6 , 8 1 ) P 1 , P 2 , P 3 , P ti- , P 5 

81 FORi,\AT (l3H Pl TO PS Ar~E,6Ell.4)c PCAL=W* (P5+W *(P4/2.+W*CP3/3.+~*(P2/4.+W*Pl/5.l) JJ 
P CA L=DE P-* PC .6. L 
WRITE(6,3 0 J p,pcALc . 	 UP=ABSCA* W)*(P-PCAL)/(8.*PJ 
B=B+UP ~ 

CON8= B-CO N6 
P3=C3~- ( CO N 7~~cotn-2. *CO N 4 -~- co n s) -C41(-(0 Nli­
P4=CO N7* ( 2. *C3*CO N8+(4) 
P5=CON8*(C 3* CON8 +C4)c 	 8 MC A. L = -, P 5 I 2 • + ~~; * ( P 4 I 3 • + ·:·, 1(- ( P 3 I 1+ • +1:H:- ( P 2 I 5 • +ii}* P 1 I 6 • ) ) ) ) -~'- ~-J 1<- ':: 

BMC AL = DEP1:-G tK/~L 

UM =ABSCA* W )*( H~ - BMCAL)/(8·* 8 M ) 

B=B-U M 
. A= A+ 2 • *U MI VJ 


UC= t, ~- \.1J + B 


PERR=ERRO R(P,PCALJ 

BMERR=ERROR( B~ , B ~ CAL) 

IF CPERR- 0 .05) 306,306,305 

306 IF (B ~ ER R -C.05) 280,280,3 0 5 

305 IF CLP-ISECJ 537,307,3 0 7 

307 l\!RITE(6,2 0 J ISEC


0 CALl EXIT 
280 .WR ITE(6,3 G) p,pcAL,s,uc 

C THIS IS END OF CALC N FOR lST TI ~ E INTERVAL 
c THIS rs CAL( FOR 2ND TI ME I NTERVAL 

DIMENSION Zl(9),Z2(9) 

\ READ(5,70J OELT
C../ T2=Tl+DELT 


NO=O 

(~-. 	 co~~ O N / G L 0K l/F,G'H'DELT,~3,(4,y(9),T2, W ,LP, NO , Q ( 5 ,1 2 J/ B L OK2 / 
,_, 1 CON 7,CON8 ,C~ D ' E ' BR (3), 5l , S2 ,S3 

-DO 4 I=l,5 
4 QCidJ=O.O 

99 	 /\IO= NO+l 

C 3 =Cl 1(-G F ( T 2, T0) 

C4=C2 ~-GF . ( T2, TO) 

LP=O 


http:B~ERR-C.05
http:C3=,Ell.4J
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' IFCN0-:-1) 63,63,64 
63 	 BR(l)=-CON4 


BRC2)=CON7-A 

8R(3)=CON8-F3 


64 	 CO NT I "-:UE 
637 	 LP=LP+l 

CALL GRAFT CA, 8 ,CO N4,CO N5 ,C ON6 J 
DO 2 I= 1, 9 
A2=I 

2 	 Zl(Il=Y(l)/(10.-A2) 
PCAL= DEP*W* CZ1(9)+W* CZ1C8)+ W*CZ1(7)·+~*CZIC6l+W*EZ1(5) 

1 .+~·J ?(- ( l 1.( L+ ) + \/i * (Z 1 ( 3 ) + 1/J ·~ ( l 1 ( 2 ) + ~·f ?\- Z ]. ( 1 ) ) ) ) ) ) ) ) )c ~JR I TE C6 , 7 0 ) PC AL 
UP=A R SCA*~ )*(P-PCAL)/(8 ·.*P) 

R=B+UP 
LP=Lf+l 
CA L L GR AFT CA , R , C0 N4 ' C0 ~l 5 ' C0 f'"6 ) 
DO 3I=l,9 
A2=I 

3 	 Z l ( I > =YCI ) i (·1 1 • - .A2 ) 
RC A.L =DE P-~..1~f -i(- ( Z 1 ( q ) H Ji(- ( Z 1 ( R ) + 1.·J?<- ( Z 1 ( 7 ) +'i.' ?\- CZ 1 ( 6 ) + 1.·W ( Z 1 ( 5 )( ) 1 +l/J * (l 1 ( L~ ) + ',· !-* { l l ( 3 ) + t·f-l(- ( l 1 { 2 ) + :,-,' * l 1 ( 1 } ) ) ) ) ) ) ) ) 
Bflli CAL =\·'f *RCAL 
WRITE(6,3 8 l B~ , B M CALc UM=ABSCA*~ ) * ( B~- B~CAL)/{8.* B M ) 

WR ITEt6~51) GM , UP 
5 1 F0 RMI\ T C'4 H Ui..~ = ' E1 2 • 5 , t~ H UP =, E1 2 • 5 lc B=D-U M 


A= A+ 2. 1'<-U i·11I t·J 

UC=A*l 111+9 

\~JR I TE ( 6 ' .~ 4 ) A, UC 


8 4 	 F 0 R . ·~ AT ( 3 H A =, F 1 0 • ~ , 4 H UC= , F 1 0 • 5 ) 
PERR =ERRO R{? , PCAL )c BM ER r~ = ERR 0 R ( B>l , 8 .'KA L ) 
IF CPE RR~ 0 . 0 5) . 406,4 0 6,405 

C~. 406 IF CBMERR -0. 0 5> 380,38 0 ,4 05 
{ 

4 05 IF CLP-IS EC) 637? 407 , 407 
4 0 7 VJ RI TE ( 6, 2 0 > IS EC 

CALL EXITc 380 WR IT E(5 ,3 Q) p,p(AL,B, UC,T2 
C NE XT PAR T IS FOR THIRD AND SU BSEQ UENT T·I ME I NTERVA LS 

DOU BLE PRECISION X(6) ' EL( 6 ) ,Al(8) , g 1(3)r 'i. 
\..._,l M=NO+l 


DO 5 I=l,6 

XCIJ=I
c. 

5 	 E L ( I ) = S 3 + X( I }-::- ( S ? + X( I ) .;(- ( S 1 + X ( I ) -l(- ( Q ( ? , f '~ ) - X( I ) .; (- 0 ( 1 ' ~1 t ) ) ) 
CALL DLESO(Al, Bl,X,EL,2,6) 
~v R I T E ( 6 ' 9 8 l 0 1 ( 1 > ' B 1 ( 2 ) , 9 1 C3 ) 

98 FOR YAT(l2 H COEFFS ARE ,3Fl 0 .5) 
IF ( N0-2) 61,62,62 

6 2 8 R ( 1 ) =- B l ( 3 ) + C0 NLv 

BR ( 2 ) =B1 ( 2 ) - C0 i''-17 
Bl~ ( 3 ) =Bl ( 1 l-C Ol'-18 

6 1 C0 Nt+ =- 8 1 ( 3 ) 
CO N7= 8 1(2) 
CO N8 =Bl(l) 

IF (T2-TI MIT) 97,96,96 


97 READC5,7Q) DELT 
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I' '_ .. 

( 

c: 

C' 

c 


c 

(.. 

c 

96 

$IBFTC 
. 

1 

96 

97 

52 

34 

3 5 

1 

2 

$l8FTC 

T2=T2+DELT 
Tl=Tl+DELT 
GO TO 99 
GO TO 6 
END 

GRAFT 

SUBROUTI NE GRAFT(A,8,CON4,CON5,CON6) 


co~~ON /BL 0K l/F,G'H'DELT,c3,(4,Y(9),T2, W ,LP, NO ,Q(5,1211sLOK2/ 
CON7,C0 NR ,c,o,f.,RR(3),5l,S2,S1 

DI MENS ION R(5),9ET(5),T(5J 
IF<N0-1> 96,96,97 . 
CON7=A-CO N5 
COf\l8=B-CO N6 
CONTI NU E 
WRITE(6,52} CON7,CON8 
FOR MA T (6H CON7=,El2·5,6H CO N8 =,El2·5) 
R ( 1) =F~-C0 f\14-l~ CON4 

RC2>=2.*F*CO N4* CO N7 
RC3J=F*C2.*CON4*CON8-CON7*CO N7J+G*CO N4 
R(4)=(2.*F*CON8+GJ*CON7 
RC5J=CO N8*<F*CO N8 +G)+H 
IFCLP-21 34,35,35 
B=B+R(5l*DELT/CT2-DELT/2.J 
A=A+{R(4J+W* (-R(3)+~* (-R(2)+W*R (l)) tJ *DE LT/(T2-DELT/2.) 
C 0 NT HIU E 
M=NO+l ~ 
DO 1 I= 1, 5 . 
() C I ' ~1 ) =R ( I ) ~*" D E L T I ( T 2 - D E L T I 2 • ) +G < I , N n > 

FAC=C+F*AL OG ( DE LT> 
GAC=D+G*ALOG(DELT) 
BET(l)= BR <ll* BR (l)*FAC 
BETC21=2·*BRCll*BR<2l*FAC 
BET(3)=(8R(2l* BR (2J+2. *RR (l1 *BR C3 J J* FAC+ BR (?)*GAC 
BET(4)=2.*RR(3l*BR(2J*FAC+ BR<21*GAC 
BETC5)=QR(3J*BR(3)*FAC+oR(3)*GAC+E+H*ALOGCDFLTJ 
DO 2 I= 1, 5 
T ( I ) = 0 ( I ' ~ ..1 ) 
T ( 1 ) =T ( l ) +!:3 ET ( 1 ) 
TC2>=TC2J-BETC2) 
TC3)=TC3J-BETC3) 
TC4J=T(6.)+ 8E T(4) 
T ( 5} =T ( 5) +f::3 ET ( 5 ) 
Sl=TC3)-C 0f\l4 
S 2 =A- T ( Li- ) -C 0 N 5 
S3= B-TC5J-CO N6 
Y(l)=C3*TCl)*T(l) 
Y(2)=-Z·*C3 *T (l}*T(2) 
YC3}=C3*(T(2)*T(2J-2.*T(l}*Sl) 
YC4J=C3*2•*(T(2J*Sl-TC1J*S2) 
Y(5J=C3*C-2.*T{l)*S3+?.*T(21*S?+Sl*SlJ-C4*T(l} 
Y ( 6 ) = C? ~~ ( ? • ~:- S 1 ~:- S 2 + T ( 2 ) -x- S1 +S 3 ~*"T ( 2 ) > +C 4 *T ( ? ) 

Y(7l=C3*(2. *Sl*S3 +S2*S2 )+C4*Sl 
y ( 8 ) =s2 ~- ( 2 • ~- s3 ~*" c3 +c4 ) 
Y(9J= S3* (C4+C3*53) 
RETU i-< f\J 
END 

ERROR 
FUNCTION ERR OR (Zl,Z2> 



...... ·· 

ERROR=A BSCZ1-Z2)/Zl 
RETUR N 
- END 

SIBFTC GF 
FUNCTIO N GF{Tl,T O_) 
GF=l.+(Tl-T 0 )*~0015 

RETURN 
END 

CD TOT 0240 

(-:•. 
__,. 

C> 

c; 

C ' ./ 

c 

c 

c. 

c 

( ) 

,,,·-\ 



APPENDIX III 

TABULATION OF EXPERIMENTAL RESULTS 

The readings of strain for the concentrically-loaded creep 

prisms are entered in Table A-3-1. The readings of elastic recovery 

of these prisms, measured immediately on off-loading after 137 days 
-~ 

under 
( 

· load, are entered in Table A-3-2. The elastic recovery strains predicted 

using the assumptions described in Chapter _2 are also tabulated for 

comparison purposes. 

Tables A-3-3 and A-3-4 contain the strain readings taken from 

the various locations on the member cross-setions. These locations are 

identified below. f 
@ 

'? ®© 

I 
l 

c 

: 1 11 ! 

J 

I 

f3/t/' 
I 

-~ . 0 

.When no strains are recorded for one location on a particular prism, it 

is because the gauge points at that location proved defective. (That 

is, it was not possible to repeat the readings to within one half of a 
11 211 11 311division). The readings entered · under the headings 11 l", , , 

11 411and are normally averages of the readings at these locations on 

opposite faces. The readings under "T" and "C" are readings from single 

sets of gauge points. 

The strains entered in the "elastic recovery" section are 


those measured immediately after off-loading at 137 days. 
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136 

Time 
-···· · · · - .. , . . _Creep Strains x 105 (in/in} - . .... . . .. . . - ..Since 

Loading '. 
_(_days) ­ C-1500C-750 C-2250 C-3000 

15. 0 45.07.0 97.04 
49.07.8 17.55 122.5 

.7 10.0 22.5 63.0 150.0 
13. 0 30.9 90.010 210.0 

16.8 36.2 103.014 235.0 
40.4 118.617.5 250.018 

45.821 19.8 122~8 256.0 

28 22.8 49.2 130.0 267.5 
38 53.9 137.224.8 276.0 

135. 7 283.746 25.8 57.5 
58.631. 3 14L554 289.0 

66 33.0 63.8 151. 5 291.0 
82 33.3 152.064. l 291. 7 

33.5 64.5 154.5 295.0100 

67.0137 34.5 160.5 306.0 

TABLE A-3-1 Creep of the Concentrically-Loaqed Prisms 

S_p_ecimen C-750 C-1500 C-2250 C-3000 
Recovery 
(137 days) 

18.5 35.3 58. 5 66.5 

Predicted 
Recovery 

23.5 47.0 75.0 102.0 

TABLE A-3-2 Measured and Predicted Recovery Strains 



TABLE A-3-3 Strains of Prisms E-750, E-1500 

Specimen 

Location T · 1 
Time 
Since 
Loaded 

4 - 2.0 
5 - 4.0 
7 - 6.0 

10 - 7.0 
14 - 9.0 
18 - 12.0 
21 - 12.0 
28_.. . - 15.0 
38 - 17.0 
46 - 17.0 
54 - 18.0 
66 - 18. 0 
82 - 19.0 

100 - 20.0 
137 - 21.0 

Initial 
Elastic - 8.0 
Strains 

Elastic - 4.0 
Recovery 

E-750 

2 ] 3 4 c T I 1 J 2 

C RE E P S T R A I N S (I N I I N X 1 0 5) 

4.0 5.0 7.0 -· 5.0 4.5 18. 5 
5.0 6.0 10.0 - 5.0 4.5 22.5 
6.0 9.0 14.0 - 7.0 5.5 29.5 
9.0 12.0 17.0 - 9.0 8.0 40.0 

14.0 17.0 20.0 - 10.0 8.5 46.5 
15.0 19.0 22.0 - 11.0 9.5 52.5 
16.0 20. o I 24.0 I - I 12. o . 11. 0 60.5 
18.0 24.0 . 29.0 . - i 14. 0 12.5 66.0 

22.0 26.0 33.0 - i 15.0 13.5 70.5 
22.5 27.0 35.0 - / 17 .o 15.0 73.5 
24.5 28.0 36.5 - 119. 0 18.5 82.5 
26.0 29.0 39.0 21.0 22.5 89.0 
27.0 30.0 40.5 - 23.0 24.0 97.5 
28;·0 ' 32.0 42.0 - 25.0 26.0 98.5 
29.5 34.0 44.5 - 25.0 27.0 101.0 

25.0 41.0 55.0 - 8.0 9.0 34.0 

15.0 28.5 41. 0 5.0 5.5 21.0 

E-1500 

3 J 4 
-. 

39.0 48.0 
43.5 49.0 
55.5 63.0 
74.0 89.0 
85.0 106.0 
95.0 117.0 

105.5 128.0 
117 .o 139. 0 . 

123. 5 158.0 
129.0 167.0 
133.5 187.0 
140.5 194.0 
145.0 198.0 
150.0 201.0 
154.0 203.0 

77.0 92.0 

42.5 62.0 

I c 

53.0 
58.0 
73.0 
97.0 

114.0 
123.0 
139.0 
148.0 
162.0 
168.0 
184.0 
193.0 
200.0 
203.0 
205.0 

94.0 

63.5 
__, 
w 
"'-J 



.. . , ' 

.f ;·~ .:. . 
.. ~ .. " 

. ·.·.• . ··! . I 

··.( . · -· "... .... :(·· ' ... · 

... 
.... ; / ... ·TABLE A-3-4 Strains of Pri~ms E-lobo~ E~l75Q ·' 

. ' .· . 

- ' 

·.'. ' 

,. 
i 

',\ .' ;i 
' • ! ~ •. }~ 
··fi 
, .;i I 

;1 .. 

.· J ) 

~ . i 

·~ 

I 

Specimen 

Location T 
,. 

l 

Time 
Since 
Loaded 

3 - ---

4 1.0 
5 2.0 
6 - -

" 

7 . 3.0 

10 - -
·14 . : 7. 0 

l8 . ' 8. 0 

21 9~0 

28 " 9.0 
' . 30 . - . -

38 
. . 10.0, ' 

46 16.0 
54 18.0 
66 28.0 

.. ' ~ \ 
·32 30.0 
100 . ' / ... - 32.0 

n3z .. 34.0 
Ini ti a-T 
Elastic - 18. 0 
Strain -
trasti c . 7. 0 Recovery . -

E- 175·0 E-1 o oo 

r 2 I 3 I 4 I- c ] T I l I 2 3 4 c 
; 

·, 

S T R A I N S · (I N I I N X 1 0 5)· C R E E P 

- ~ - - 4.0 - 7.0 1:0 10.0 11.0.. 
14.0 24.0 50.0 48.0 - - . - - - -
16.0 27.0 56.0 50.0 - - - - - -

- - - - 9.0 - 12.5 15.5 17 .o 19.0 
20.0 . 41. 0 72.0 68.0 9.0 - 12~5 . :13. 5 '. . 17. 5 . 19. 0· 

.. . 
10.0 13.5 17.0 21. 5 . ' 23~0 .- - - - -. . 

41.'0 85.0 134. 0 . 125.0 I . 9. o ..; " 13.5 ·17 ~o 24.0 23.0 
46.0 94.0. 143.0 1 s8. o I - - . . - - - -

I 15.·a 
. . .. 

53. 6· no.a 165.o 

.119. 0 l
1 

175.0 - 23.5 25.5 .. 31.5 . 33.0I . 

56.0 180. 0 195.0 1s.·o ' . - . 27.0 27.5 33. 5. 37,.0 
... 130~0 1 195~0 . 

. - 19.0 ' - 28.0 .28. 5 . .35. 5 39.0 

61.0 ·· 200. 0 21.0 - 30.0 ·32.5 ·'38.0 41.0* 
67.0 129. 0 194.0 180.0 *40 Day_· Strains· . ' 

. 68.0 125.0 189,. 0 198.0 . . - . . 
73.0 146. 0 199.0 204.0 

78.0 156.0 202.0 . 210.0 .· .. . . ,. 

79.0 . '158. 0 209.0 217.0 
.. ... ". 

80.5 161.0 211.0 . 220. 0 I . ' . . 

56.0 98.0 154.0 '158. 0 12. 0 . - ' 30•. 0 54.0 70.0 . 72.p. , 

27.5 50.5 61.0 62.0 8.0 - 19.0 ·32.0 . 40. 0 42.0 

__, 
w,· co 

· t 

' . i 

-~ 
·~ 'I 

i 
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