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CHAPTER 1

INTRODUCTION

1.1 Foreword

Creep of concrete has many important effects in engineering
structures. This is particularly true in cases in which the concrete is
subjected to a non-uniform stress distribution (i.e. when the Eoncrete‘
is subjectéd to a stress gradient) since such cases are commonest in
practice. Some practical examples of cases where stress gradients
arise are given in section 1.4, The important point about creep in such
cases is that it brings about a redistribution of stress. In view of
the importance that these effects can have, it is somewhat surprising
that comparatively little has been published on creep of this type. The
purpose of the investigation described in the following pages was to
analyse this particular type of creep, and to devise and test methods of
predicting its effects.

Thié first chapter is intended as an introduction to the topic,

and as an outline of background material.

1.2 Definitions

Only a few definitions are required at thisistage and these
appear below; other terms will be defined or explained as they arise.
Creep:- lhen concrete is loaded it undergoes two kinds of deformation

(i). immediate deformation

(i1) time-dependent defonnqtion which begins at once and
continues for years, though at a deereasing rate. This second type of

deformation is known as creep.



"True" or "Basic" Creep:- True or basic creep of concrete is creep

which occurs under conditions which prevent moisture movement to or from

the surrounding medium.

"Specific" Creep:- The specific creep at a given time is the creep
~strain at that time per unit of applied stress. (Typical units of
specific creep would thus be inches per inch per p.s.i.).

Elastic Strain of Concrete:- The term "elastic" strain is used in thié

report to mean that strain which occurs immediately on application of
stress. The term does not necessarily mean that all such strains will

be recovered oh-remova] of the applied stress. It is used to distinguish
such instantanedus "strains from the creep strains defined above; Note
also that this definition does not necessarily imply a linear stress-
strain ré]ation. Values of elastic strain used in this report were

taken from short-term cylinder tests.

1.3 The Nature of Creep

A short description of the theories of creeﬁ, and of factors
affecting creep, is given. The purpose of this brief review is to
provide a background against which the McMaster investigation can be
described; For a complete list of references describing creep and
related topics, the reader is referred to the excellent Bibliographies
published by the American Concrete Instifute] and the Cemeﬁt and

Concrete Associationz.

1.3.1 The Structure of Concrete

Since any description of the mechanism of creep presupposes

~ some knowledge of the structure of concrete, a brief outline will be



given here.

Our interest is prihcipa]]y centred on the physical nature of
the products of the hydration of cement. |

Fresh, hardened cement paste is mainly composed of various
hydrates (known as "gel"), of crystals of calcium hydroxide, and of
particles of unhydrated cement. These components form a firm matrix thch
serves to connect the aggregate particles. This matrix, however, also
contains various spaces in which water resides.

The largest spaces are termed capillary pores; 'they are
minute channels in the paste whose diameter has been estimated3 to be
of the order of:5 x 10"5 inches. Permeability studies suggest that
they form an interconnected network within the paste. |

The fact that such pores exist is fmportant fn the hydration
process.. Water supplied to the concrete (e.g. by wetting its surfaces) . _
can pass along these tiny channels, allowing the hydration process to
continue in the interior regions of the concrete mass. In time, the
formation of hydration producté often blocks up capi11afy pores,
causing them to become segmented and discontinuous.

Interstitial voids between the fibrous particles of the gel also
contain water. These voids are termed gel pores. They are much sma]]ér
than capillary pores, having a diameter of between 15 and 29 Angstrom

units.

1.3.2. Theories of Creen

A great many "theories" of creep have been proposed, most of
them being hypotheses which fit some known facts and are in disagreement

with others. It seems 1likely that a composite theory will ultimately




emerge from the individual hypotheses outlined below.
(i) Plastic Theory of Creep

This theory holds that creep of concrete is due to'crysta11fne
flow. That is, creep is due to slipping along certain preferred planes
in the crysta] lattice, and £0 local rupture of the cement paste.

‘It may be noted that, while in metals undergoing plastic
deformation, the volume change experienced is fairly slight, a fairly
large decrease in volume occurs as concrete creeps. 1In addition, ff this
theory were completely true, creep of concrete would be wholly irrecoverable.
This is not the case in practice.

Thus, plastic flow cannot be wholly responsible for creen.

(i1) Viscous Theories of Creep

In these theories, creep is assumed to be a viscous flow,
or movement of particles over each other.

Thomas4 considers the concrete to consist of two parts:

(a) cement gel, which behaves in a viscéus manner when loaded, and

(b) aggregate parti¢1es, which do not flow under load.

On loading the concrete, the natural tendency of the cement gel to

flow is impeded by the relatively rigid aggregate particles. The latter
then experience an increase in stress owing to their resistance to the
gel flow. Meanwhile, the stress on the gel decreases, giving a
corresponding decrease in flow (i.e. a decrease in the rate of creep).

Using this theory, researchers have attempted to conclude that
the rate of creep will depend on the cement gel properties, but will be

independent of the properties of the aggregate, which is considered to



be rigid. It has been pointed out*, however, that the amount and rate
of creep deformation a]éo‘depend on the aggregate's elastic.modulus
and porosity. |

| It should be noted that if creep were due'entire1y to viscous
flow, the volume of the concrete would remain constant. The fact that
this is not even appfoximate]y true has already been mentioned.

(iii) Delayed Elastic Theory

The cement gel is assumed to consist of both elastic and
viscous phasés which can interact causing delayed elasticity. That
is, under the action of an externa] load, flow of the viscous phase takes
place, thereby throwing an increasing percentage of the load on the
elastic phase. This results in an increase in elastic deformation with
time.

Creep of concrete,‘however,;exhibits such behaviour only to a
limited extent. This theory cannot explain the observed influence of
moisture exchange on creep.

(iv) The Seepage Theory of Creep

The seepage theory suggests that the equilibrium of the concrete's
solid phase with the external load is determined by the vapor pressure of
the gel water. This.vapor pressure equilibrium is disturbed by the

application of any load increment. The applied stress is considered as

forcing sheets of cement gel together, and thus putting pressure on the

*
See section 1.3.3 "Factors Affecting Creep:.




gel water. Equilibrium is gradually restored as moisture seeps through
pores in the concrete to the member's surface. ‘Thé process involves a
]oss of water from the gel pores. Adjacent surfaceé in the pores are
now closer to each other and are attracted by stronger van der Waal's
forces. This increased attfaction can cause some deformation of the
matrix. Surface tensions may also play a small part in the deformation,
since surface menisci exert a force on the surrounding material.
Objectors to this theory have stated that the 1osslof
moisture during creep straining should be similar to that experienced
during shrinkage of the same magnitude. Experiments have shown that this

]4. Powers5

is not so » however, pointed out that the water loss during
creep is 1ikely to be about one-hundredth of that which would occur
under equal shrinkage. The following example, used by Powers, illustrates
this:

The following experimental data refer to the shrinkage of a
mortar specimen dryinj from the saturated state to a state approximately

equilibrium at 50 pef cent relative humidity:

- Item Notation Quantity
water/cement ratio ' w/c 0.47 by weight
drying shrinkage AL/Lo 880 x 1076 in/in
volumetric shrinkage AV/Vo 2640 x 1076 in3/n3
amount of water lost Aw/Vo .103 c.c. per c.c. of

specimen

Consider an identical specimen in a totally saturated state, and subjected
to uniaxial compression without drying. Let the load be such that the
measured creep strain amounts to 830 x 107® in/in. By the seepage theory,

water will tend to relieve the stress on itself by moving out of a



stressed region. Since the specimen is saturated, this means that
water must move out of the specimen.. For the given conditions,lthe
amount of water lost will be virtually equal to the reductfbn in

volume of the specimen. (Otherwise some water in the specimen will
remain under compressive stress, and the specimen's dimensions will

depend partly on the stress).

Let u = Poisson's ratio

Then A V/Vo = (1 - 2u) aL/Lo = aw'/Vo

where Aw water lost due to creep
Thus aw' can be calculated for any value of p. Taking p = 0 will give

the greatest value of aw', viz

A = -6

Vo AL/Lo = 880 x 107° c.c.
880 _ 1

103,000 117

Thus, aw'/aw =

Hence, the creep strain requires less than one-hundredth the loss of
water for equivalent drying shrinkage. Powers also pointed out that
water should still be Tost even if the creep prism was not initially
saturated.

A further objection to this theory is the fact that concrete
exhibits creep even when no moisture exchange with the surrounding
medium is possible. There is, however, a body of opinion which holds
that in this case water seeps‘from regions of high pressure to regions
of Tower pressure within the concrete.

Creep recovery can also be explained in terms of this theory.

Removal of the applied load allows an instantaneous recovery of elastic



strain, following which moisture may slowly return to thé areas from
which it was previdus]y expelled. The water molecules act against the
cohesive forces holding the gel pgrtic]es closely together. The gel
particles. are thus forced further apart. A similar mechanism accounts
for the swelling of concrete when immersed in water. '

The seepage theory is attractive in that it can explain many
of the observed features of creep of concrete.

0f the various theories,'it appears that the seepage theory,
although not yet universally accepted, best accounts for observed creep

behaviour.

1.3.3. Factors Affectina Creep of Concrete

A great many investigations have been carried out in order to
ascertain the effects of individual variables on the magnitude of creep.
The following section represents a summary of the results of many test
programs.

(i) Magnitude of Applied Stress

Creep depends first of all on the magnitude of the applied
stress. The relationship is generally taken to be linearly proportional
for stresses up to about 50% of the crushing strength, although the
exact 1imit of proportionality is disputed, and has been estimated to
be considerably 1ower10.

At stresses higher than this Timit, creep increases at an
increasing rate with stress, as shown qualitatively in Fig. 1.1. It

is known that at stresses of about 40 to 60% of the crushing strength

internal micro-cracking of the concrete begins. This change in the
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Fig. 1.1,

concrete's internal structure may partially account for the increasing
.slope of the CREEP v. STRESS/STRENGTH curve at high stress levels.

For a uniformly applied stress higher than about 80% of the
concrete strength, creep will lead to failure of the concrete.
(i1) Mix Proportions |

The type, quantity, and maximum size of the aggregates used
influence creep.

The aggregate acts as reinforcement for the cement paste; as
such it tends to restrain the paste's volume changes. = The amount of
restraint which the aggregate can offer is principally determined by

(a) the amount of aggregate present in the mix

(b) the Young's Modulus of the aggregate.

Experimental evidence7

has confirmed that high aggregate content and
an aggregate with a high Young's Modulus both lead to lower creep.

In addition, highly porous‘aggregates have been connected with
comparatively high creep, and this has lent some weight to theories of

creep based on the movement of moisture within the concrete (see
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section 1.3.2. (iv)). The situation is not clear, however, since highly
porous aggregates frequently have a low Young's Mbdu]us. Thus, the
high creep might be at least partly caused by the low value of "E".

Concretes made with different types of cement and subjected to
the same applied stress at the same early age will exhibit different creep °
characteristics. This is because the various types of cement differ in
the fineness to which they have been ground, and also in the proportions
of the cement compounds which they contain. Therefore, they have
different rates of hydration and unequal strength gains for simi]ar
dggrees of hydration. Their creep characteristics are functions of
degree of hydration and strength.

In general, concrete containing Type IV (Low Heat) cemént will
creep more than that containing Type I (Ordinary Portland) cement, which
Cwill din turn creep more than that containing Type III (Rapid-Hardening)
cement, (i.e. for the same age at loading, the lower the strength of
the concrete, the higher the creep). The differences are small, however,
if the concrete is loaded at a considerable age after pouring.

The amount of creep increases with increased water/cement ratio
(aggregate/cehent ratio being constant). The relationship is not clearly
defined. This increase is evident only above a certain minimum percentage
of wéter, but does apply for the range of water/cement ratios normally
used in practice.

(iii) Age of Concrete

The age of concrete at loading is knowﬁ to influence creep.

The degree Qf hydration and strength of concrete normally increase with

age and thus reduce creep. If no significant variation in the degree of
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hydration occurs with time; the age at loading does not iﬁf]uence
creep. For maturg'dry—cured concrete, the age at which the load is
applied has a comparatively small effect on creep. In addition, for
other concretes, the rate of creep at later ages is largely independent
of the age at loading.

If, however, hydration is allowed to proceed, the gel matrix
becomes progressivg]y stiffer with time, due to the addition of more gel.
In practical cases, therefore, when load is applied to wet-cured concrete
at a fairly early age, the age at the time of loading is an important
factor. |

~(iv) Ambient Relative Humidity.

It has been demonstra’ced]2

that creep increases with a decrease
in ambient relative humidity. Fig. 1.2. illustrates this effect
qualitatively. The numbers on the plots refer to the ambient relative

humidity.

CREEP

30 YeARs

TiME (LOG. SCALE)

Fig. 1.2,

If, in accordance with the seepage theory of concrete creep (descfibed

in section 1.3.2.), creep can be described as a sort of stress-induced
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shrinkage, the inf]uence of Tow relative humidity in aiding the process
can easily be visua]fzed.

It may be noted that alternating the relative humidity of the
- surrounding medium between §w0'1imits will yield higher creep than that
observed at some constant value of relative humidity between these 1imits]3.
Ali and Kes]er]4, have explained this phenomenon in the following way.
Let the terms shrinkage and swelling denote volume changes due to egress
and ingress respectively of gel water with or without apnplied load. In
the absence of applied load, such volune changes will be termed free
shrinkage and free swelling. Ali and Kesler then stéte the following
“rules describing concrete's behaviour under various conditions of
moisture exchange and applied load.

(a) Free shrinkagé is less than shrinkage under an applied
compressive stress.

(b) Free swelling is more than swelling under an applied
compressive stress.

Now creep is usually defined as the difference between the
time-dependent deformations of a loaded specimen and an unloaded
control specimen. According to this definition and -the behaviour
described in (a) and (b), creep would be expected to increase with
moisture exchange, irrespective of the direction of the moisture movement.
(v) Temperature

Creep is known to increase with increasing temperature, the
greatest increases taking place in the range of 70°F to 180°F. The
seepage theory of concrete creep (see section 1.3.2.(iv) suggests that

creep involves seepage of gel water. This water, existing within the gel
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‘in layers only a few molecules thick, has quite different properties from
larger volumes of water. Its viscosity, for example, is several thousand
times that normally exhibited by water5. It is possible that high
temperatures may produce increased creep by reducing the viscosity of the
gel water, thus making it more mobile.

- (vi) Curing Conditions

The curing conditions for the concrete affect its creep behaviour,
presunably through their effect on the concrete's degree of hydration
and on its internal structure. That is, curing conditions affect both
the strength of the concrete and the permeability of the gel. The Tatter
- factor is important if creep takes place by seepagé of gel water, as the
seepage theory (section 1.3.2. (iv)) suggests.

In this connection, it may be noted that creep of high-pressure
steam-cured concrete i§ known to be comparatively 1ow7. It is also known
that such curing produces concrete with a vastly different internal
structure, as indicated by specific surface measurement.3
(vii) Member Size and Shave

Size and shape affect the shrinkage characteristics of a concrete
member.

Mattock and Hansen8 have made the assumption that their
influence on creep is confined to,that creep which is accompanied by
moisture exchange with the surrounding medium, (i.e. 'Basic Creep' is
unaffecfed by member size and shape).

. Fig. 1.3. is taken from their work, and illustrates the

relationships derived from their test program.
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Fig. 1.3.

The vertical axis gives values of Ec/Ece where

Ec = creep strain

ultimate value of creep strain (i.e. creep at time t = )

Ecw
predicted from the formula of Ross (see Chapter 3).

"y/S" stands for the volume/surface area ratfo of the various
members tested. It is seen that a lower proportion of the u1timaté
creep is attained at a given time for higher values of this variable.

Consideration of the foregoing section should indicate the
difficulties involved in comparing data cbmpi]ed in different research
programs. Many, if not all, of the variables mentioned above will have
different values in any two sets of tests. A meaningful comparison will

thus require much knowledgeahle and skilled work. Because of the lack of
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conplete and accurate documentation, such comparison ﬁay have to be only
qualitative rather than quantitative.

For similar reasons, results of creep tests performed {n the
laboratory cannot be blindly applied in the field. For example,
laboratory tests performed at constant relative humidity would oftén
under-estimate creep under conditions of exposure to the elements.

For any large test program, it is desirable to have a high

degree of similarity between the various test conditions.

/

1.4. Creep Effects in Engineering Structures

Creep of concrete has important effects in engineering structures,
~affecting the stresses and deflections of structural members.

Some of the effects of creep may be considered beneficial, as
when creep brings about a relief of stresses caused by concrete shrinkage.
Some other effects, ho&ever, are less desirable, and examples of these
are not hard to find.

Steel reinforcement in compression areas of beams or columns
may undergo major stress increases when creep, sometimes in conjunction with
shrinkage, causes a transfer of stress from the concrete. In addition,
the ultimate or long-term deflections of reinforced_concrete beams may
be several times the initial deflections, Qith the difference being
Targely due to creep effects.

Ih prestressed members, creep causes a gradual loss of prestressing
force. Although this effect can be partially offset by using a higher
initial prestress, it is nonetheless an important factor, and one which

cannot be neglected.
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Creep effects in statically 1ndeterminate-structures are
sometimes helpful to the designer. If, for example, there is some
movement of the abutments of a two-hinged arch, creep in the concrete
will tend to offset its effects and partially restore conditions to
.those calculated by the designer.

In other cases, the creep effects can constitute an additional
complication which the designer must take into account. In a prestressed
portal frame, for example, creep shortening of the beam changes the
horizontal reactions at the coluan bases, giving rise to secondary
moments. In the case of an eccentrically-loaded long column, creep
deflection of‘the colunn will add to the'eccentricity of the load. The
additional moment, although secondary in name, may be of prime importance
in effect.

‘It may be noted that most of the cases mentioned above involve
creep of concrete where there is a stress gradient across the member in
question. An important feafure in calculating the effect of creep
where there is a strain gradient is that, due to the non-linearity of creen
versus stress, there is a redistribution of stress. That is, the elastic
poftion of the total strain is no longer linear, and, therefore, the

shape of the stress block is changed.

1.5. Creep of Concrete under a Stress Gradient

As the previous section indicates, the creep of concrete under

~a stress gradient has practical effects which can be of considerable
importance in engineering structures. In practice, it may be necessary
to compute the redistributions of stress and strain caused by creep of

the concrete. These redistributions will be invéstigated here for the
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case of a member having no reinforcing steel.

A plain concrete prism of rectangular cross-section is subjected
to an external load P applied parallel to the prism's length, and with
eccentricity "e" from one axis of symmetry of the brism's cross-section.
The concrete will experience initial stresses f4, and initial strains

E<, as indicated in Fig. (a).

STRAIN E:

STRESS |

STRAIN

Fig. (a)

The stress distribution may have both linear and non-linear portions,
while the strain distribution will be Tinear (in order to satisfy the
condition that plane sections remain plane).

Let each element across the cross-section now creep independently
of the others during a time interval, due to its portion of the applied
load. Thelstress distribution will be unchanged, but the strain
distribution will alter to some form such as that shown 'in Fig. (b).

The additional (creep) strains will be referred to as Ec.
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It is apparent that the usual condition that "plane cross-sections
shall remain plane" has been violated. Therefore, forces F{ must be applied
to the individual fibres of the prism to bring them into position and
so satisfy this requirement. Figure (c) shows the new strain and stress
distributions after applicatidn of Fi. The additional stresses are f',
and the added strafns are E'.

Having restored the various fibres to a bonded state, the
forces F{ are now removed to satisfy statics (a process equivalent to
applying a force system -F{ to the bonded cross-section). The stresses

induced by this last step are f", the corresponding strains being E".

e e I'jf\”

\ ]E'

== X
T



The final stresses and total strains appear in Fig. (d). The elastic
strain distribution is no longer Tinear, due to the change in the stress
distribution.

Thus, the final total strain is Et, given by

Et = E{ + Ec + E' + E"

and the final stress is ft, given by

ft=fi+ f' + f"

It will be convenient to remember the four main stéges of the
solution:

(i) determination of elastic strains.

(ii)‘determination of "free“.gréep (each fibre allowed to creep
under its portion of applied Tload). ‘

(111) restoration of plane section (apply a force system Fi
ﬁo the individual fibres).

(iv) satisfy statiCSb(app1y a force system -F{ to the bonded
cross-section). |

Step (i1) is carried out assuning that the stress and elastic
strain distributions remain constant, or nearly constant, during the
chosen time interval.

The details involved in calculating the values of the

component stresses and strains wi%l be considered more fully in Chapter 3.

{



CHAPTER 2

THE TEST PROGRAM

2.1. Introduction e T

“In order to obtain creep information for concrete subjected to
uniform sustained stresses, four concentric creep'tfetsawereréarried out.
These tests involved loading 6" x 6" x 22" plain concrete prisms The
stresses applied were 750 p.s.i., 1500 p S.i., 2259%p 8s1s ; and 3000 p.s.i.
These applied stresses were chosen to provide creep data for the range
of stresses which would be found in four additipqa}ﬁegeentricaliy—]daded

creep test specimens.

The eccentric-load tests were performed on prfsms of the same

dimensions as those used in the concentric tests. For the eccentr1c
tests, the load was applied on one axis of symmetry of the prism's
cross-section, and at a distance of 3/4" from the other axis of symmetry.

The average stresses (= load/area) applied in the eccentric tests were

~— — 7750 p.s.i., 1000 p.s.i., 1500 p.s.i., and 1750 p.s.i. e
The creep specimens were given identification numbers which
consisted of either the letter "C" (denoting concentric load) or the
letter "E" (denoting eccentric load) followed by a nuhber equal to the

average streéstapp11ed to the spec1men in p.s.i. Thus E-750 identifies

the prlsm Toaded eccentr1ca11y to an average stress of 750 p.s.i.

The creep test prisms were kept under sustained load for
137 days. The only exception to this was the 1,000 ps.i. eccentrically-
Toaded prism which was kept under load for only 67 days. This came about

because one eccentrically-loaded prism was inadvertently overloaded at

the time of application of the 1oad, and failed by crqshjgg_ofmtbe concrete.

20




21

The prism E-1000 was cast.and made ready at a later date as a
replacement; hence, its period under load had, of necessity, to be
somewhat shorter than those of the other specimens.

A11 the creep prisms were sealed with wax at the age of 31;
32, or 33 days, and all were loaded at the age of 36 days. The wax
séa]ing was intended to eliminate the influence of varying atmospheric
hunidity during the test period.

A record was kept of the prisms' length changes from the age
of one day up to the time of loading. A record was also kept of the length
changes of companion unloaded prisms which had been cured and sealed
in the same wéy és the creep prismé. These prisms were also stored in
the test area. ‘

The concrete's crushing strength and stress-strain
relationship were obtained from cylinder tests. Such tests were
performed at various ages of the concrete in order to determine how the
concrete's strength aﬁd stresé;sfrain properties altered with time. The
cylinders were waxed at the saﬁe age,Aand in the same manner as the

creep prisms.

2.2. The Concrete Mix

~In the initial concrete pour, ten 22" x 6" x 6" prisms, seven
12" x 6" x 6" prisms, and twelve 12" x 6" diameter cylinders were cast.
In a second pour, 11 weeks after the first, three 22" x 6" x 6" prisms

and six cylinders were cast.

. 2.2.1. The Concrete Mix Proportions

The weights and percentages of the constituent materials are



22

tabulated below (Table 2.1.).

TABLE 2.1.
CONCRETE MIX CONSTITUENTS J

Material - Weight per batch Percentage
(1bs.) by weight

Ordinary Portland '
Cement, Type I o 63.6 14.0

3/8" Maximum Size
Crushed Limestone 135.5 29.9

Concrete Sand
(washed sand of fineness '
modulus = 2.74) - 212.2 y 46.4

Water - 44,0 0.7
TOTAL ' 455.3 1bs 100.0

The volume of each batch was approximately 3 cubic feet.

The aggregates used were subjected to a moisture analysis.
The weights in the above table wefe obtained using the results of this
analysis. Thus, the "lWater" entry is the sum of the éctua] weight of

water added and the weight of water present in the sand and crushed stone.

2.2.2. Mixing and Pouring Procedure

| A "butter" batch equal to roughly one third of a regular batch
was first made in order to condition the 4 cubic foot capacity
horizonta]erum mixer. The concrete from this batch was thrown away.
In the first pour, three‘regu1ar batches were then made. The
various forms and cylinders were filled in three layers, each Iayer being

composed of the concrete from one batch. Each layer was vibrated using a
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a hand-held poker-type vibrator. The poker was not allowed to penetrate
any fufther.than just into the surface of the preceding layer.

In the second pour, only one batch was required. The forms

~were filled and vibrated in three stages as before.

Since it was considered desirable to make the concrete in the
tylinders as much 1ike that in the prisms as possible, the cylinders from
both pours were also mechanically vibrated.

The slumps for the three batches of the initial pour were
31/8 in., 3 3/4 in., and 3 in. The slump of the second pour was 3 in.

In each case, after the last layer of concrete had been placed
in the forms, excess concrete was trowelled of% the upper face. A
smoothly-trowelled surface was obtained without addition of water or
excessive working which would cause migration of water to the upper
sﬁrface. One half-inch diameter brass gauge points, each with a number
60 reference hole in its centre, were set in the exposed face of each of

“four of the large prisms from thé'first pour. The points were placed on
a 10 in. gauge length. After about 7 hours, initial readings were
taken from these points using a "Soiltest" mechanical strain indicator
(see section 2.2.3. for a descr1pt1on of this gauge).
s At the age of about 8 hours, all of the test specimen were
‘covered with wet burlap. At the age of one day, all the prisms and
cylinders were removed from their forms or molds. This procedure was

adhered to for both pours.

The prisms were cast in wooden forms which were lined with

polyethylene plastic sheet in order to give the concrete a smooth finish.
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The dimensions of the forms were carefully checked for accuracy, and

all dimensions were correct to within 1/32 of an inch.

2.2.3. Curing of the Concrete and Preparation of the Test Prisms

The specimens'were cured under moist burlap for 21 days. From
this time until they were put under load at the age of 36 days, the
prisms stood in the Concrete Laboratory of the Engineering Building.
During this period for the first pour, the atmospheric temperature was
maintained at near 70°F and relative humidity varied approximately from
50% to 70%. For the second pour, the range of temperature during this
period was 70°F to 80°F, the relative humidity varied between approximately
60% and 80%.

In the five-day period from 29 days to 33 days, the cylinders
were capped, and "Demec"t+ gauge points were affixed to the creep
prisms. The arrangement of the gauge points on the creep prisms is

shown in Fig. 2.1.
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Fig. 2.1. Arrangement of Gage Points on Creep Prisms

+ The "Demec" is a demountable mechanical strain gauge described in
section 2.3.3.
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Points were also affixed to several of the cylinders in order that the
concrete's stress-strain curve could be obtained during tests for
compréssive strength.

The set-in gauge points on the prisms thch were to serve as
~shrinkage control specimens were augmented by further sets of points
glued on to the other three faces of the prisms.

All points~were glued to the concrete using a two-part epoxy
glue.

Next, all of the concrete test specimens were coated with
Esso microvan 1400 wax, in order to prevent further loss of moisture.
The coating was échieved by blowing air from a hot-air gun onto a large
slab of the wax, and allowing the molten wax to flow evenly onto the

concrete surface. The melting point of this wax is 140°F.

2.2.4. Concrete Properties

(a) Strength and stress-strain relationship.

As has been mentioned previously, a number of the concrete
cylinders were fitted with gauge point§ in order that the concrete's
stress-strain curve might be determined.

Each such cylinder had two sets of points attached, the sets
being diametrically opposed. At tHe age of 36 days (i.e. at the same
time as the creep tests commenced) one of these instrumented cylinders
was tested. The test procedure was standard, except that loading was
stopped for a few seconds at variéus load Tlevels in ofder that the
concrete's strain might be detefmined. Strain readings were taken up to

a stress of roughly 90% of the concrete's ultimate strength.
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 _TABLE 2.2.
STRESS-STRAIN DATA FOR CONCRETE AT AGE 36 DAYS

¥ " POUR
FIRST "SECOND
Stress (KSI) Strain (in/in x 10% Stress (KSI) | Strain (in/in x 10%
0.0 0.0 0.0 0.0
0.354 1.812 0.352 0.800
0.886 2.880 0.850 3900
1.240 5.063 1.200 6.800
. 1.770 7.750 1.760 8.600
| -2.656 - 11.625 — -2.120 9,800
3.540 ~18.875 "2.430 ~11.400
ULTIMATE STRENGTH = 4.09 KSI 2.830 13.100
' 3.010 14.600
3.180 16.000
3.350 18.000
3.520 20.100
3.690 22.500
ULTIMATE STRENGTH = 3.86 KSI
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The difference in strength of the 1nstruhented cylinder from
one loaded continuously to failure at the same age was fairly small. .
(.28 KSI, or about 6%). It was, therefore, concluded that the effect
of stopping the cylinder test at various stages in order to take strain
feadings was slight. A compérison of many more tests performed by
Drysda]e]] also indicated‘that no strength reduction occurred.

Tﬁe points obtained in this way appear on the stress-strain
graph Fig. 2.2. The stress—straiﬁ readings are entered in Table 2.2.
Strain was obtained as the average of the two values given by the two
sets of gauge points. A cylinder from the second pour was similarly
tested at 36 days, and the points obtained are also plotted on Fig. 2.2
and entered in Table 2.2.

The strain readings obtained from the two sets of points on
each cylinder were normally fairly close (within 10%). A maximun
difference of 24% for the final reading was, however, recorded. This
discrepancy could have been due to the onset of failure on one side of
the cylinder; it might also indicate that the cylinder was subjected
to some slight eccentricity of load. . _ |

A least-squares fit of the stress-strain data was undertaken
by computer. This allowed the stress-strain to be expressed as a 4th
degree curve (curve 1 on Fig. 2.2) and also as a 2nd degree curve
(curve 2 on Fig. 2.2.). These formulations were used in the ana]ysés
outlined in Chapter 3. The average deviations of points obtained by
measurement from those given by the least-squares plots are indicated on

Figure 2.2.
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TABLE 2.3.

CONCRETE STRENGTH AT DIFFEREMT AGES

30

1 --Age ==4Paur<fo. 1] Pour No. 2
(days) | Individual Cyl.| Average Individual Cyl.| Average
Strengths (KSI) | Strengths (KSI) Strengths Strengths
7 2.73 2.73 - -
28 - - 3.65 3.58
3.57
36 4.09 4.23 3.92 3.89
4,37 3.86
87 ~ - 4.68 4,53
‘ 4.38
105 | 5.15 5.02 = 2
4.89
142 4.52 4.61 - -
4.48
4.36
5.09
178 - 4,74 4,95 - -
5.16 ‘




. It may be noted that the points obtained from the two cylinders

e are very similar for stresses below about 3.25 K.S.I. _In addition, it _ _ _

can be seen that the stress-strain relationship is very nearly linear up
to a stress of 2.25 K.S.I. It appears that fhéysf;;in at ultimate Y
strength was about .0026 in/in. in both cases. .

Table 2.3. contains the results of cylinder tests at various
ages of the concrete. As indicated, the average strength at the time of

loading the creep prisms (36 days after pouring) was 4.253 K.S.I. The

gain in strength with time is evident from the Table 2.3., and is

illustrated by Figure 2.3. It can be seen that the points in Figure 2.3.

-show considerable scatter.

The concrete strength is expressed as a function of time by

the formula
fi = 4.253 (1 + 2(t - 36)/10%)

for ages greater than 36 days.

fé is in K.S.I. and t is the age of the concrete in days.

It was recognized that this formula did not give a perfect
fit of the experimental data; at no point, however, did the‘cylinﬁer
strength given by the formula differ from the averagé'va1ue measured at
that time by more than 8%. |

It was assumed that the stress-strain relationship of the
concrete was linearly dependent on strength. If over a given period the
concrete cylinder strength had increased to "n" times its‘36-day value,
it was assumed that the ordinates (i.e. the stress yalues) on the

stress-strain curve had also increased to "n" times their former values.
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| TABLE 2.4. |
SHRINKAGE STRAINS OF UNLOADED PRISHS (in/in x 108)

Age Pour 1 - Pour 2 Storage
(days) No. 1 No. 2 No. 1 Conditions
0 0 0 0
5 - 80 - 60 - 30 Under
6 -110 -120 - |
8 -160 A -140 - Moist
10 - - - 80
12 -180 -120 - Burlap
15 - - =100
20 - - -190
. 2 -270 -180 -
25 - - - 80
26 -240 -120 - In Air
29 - 60 - 80 -
33 - 10 - 40 - 20
% - 10 - 20 - i
40 =B . - Wax-
41 - + 10 -
47 -12.5 + 2.5 - Coated
53 PR - 0.0 - ‘
55 - - - 30
73 - 10 -5 -
75 - s - 25
88 - 15 - 10 -
125 -12.5 -5 -
142 - 10 -5 -




34

—It-was known that this assumption was not completely accurate.

Comparison of a stress-strain curve obtained from an instrumented

cylinder loaded at the age of 142 days with one computed from the

36¥day curve using the .above aSsumption showed that the maximum error

in the range of stress of interest (up to 3KSI) was 9%. Both of the

curves appear in Fig. 2.2.

\ No attemnt was made to trace the stress-strain relationship for
strains beyond that at the ultimate stress. For the tests under consideration,
-stresses were always well below the ultimate strength.

(b) Concrete Shrinkage

A record of the length changes occurring in two unloaded prisms

identical to the creep prisms was kept for the duration of the test

period. A third prism, taken from the second pour was also used to check
length changes. The récorded strains are p]otted}against time in Fig. 2.4.

The shrinkage strain readings at various ages are entered in Table 2.4.

It can be seen that after wax—coating, practically no further strains

occurred. It was, therefore, unnecessary to apply any correction to the

creep strain readings to account for non-load-induced strain.

 2.3.1. The Loading Frame

Eight identiéa] load frames wefe used in the test program. The
-features of a load frame are shown in Fig. 2.5. It is basically an 4
assembly of four identical steel plates, four steel rods, and four steel
springs. The creep prism is loaded by jacking off plate (1) down onto
plate (2). The four rods are thus placed in tension, while the springs

and the creep specimen are placed in compression. Yhen the compressive
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load on the concrete, as indicated by the load cell, has reached the
“desired level, the nuts above plate (2) are screwed down into contact
wjth (2). The jack force can now be released and the jack removed.
The load would fall off quite dfastica]ly due to the concrete's
-~-deformations if the Spring§ were not incorporated in the apparatus.
The use of springs restricts the loss of load in a given time to
.approximately 4 x (deformation of concrete) x (spring constant).

The spring characteristics are as follows:

Free length = 9" ' Spring constant = 13.5 k/in.
Solid Tength = 6" | Weight = 50.5 Tbs.

No. active turns = 1.69 Rod diameter = 1 5/8"
Outside diameter = 9" : Inside diameter = 5 3/4"

The load was applied to the concrete prism through load seats,
which are also éhown in Fig. 2.5. The load seat at the top of the prisms
used on arrangement of a ball set between two plates, while the lower
seat used a rolier bearing.‘ It wasi%e1t that a ball seat was necessary
at one end in order to reduce the possibility of applying the load with
an eécentricity in a direction at right angles to that intended.

The load seat plates were attached to the prisms using plaster

_of Paris. YWhen the applied load is fairly low (below 54 kips, say) it
is possible to adjust the Toad hy moving the nuts above plate (2) with a
wrench. At4high loads, the friction between plate (2) and the nuts is
too great to permit such a method of adjustment. To change the Toad in

such cases, the jack must be used.
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The rods viere designéd as tension hembers. The plates were
designed for bending, considering them»to be Toaded over an area in
the center, and simply supported at the rods.

A 60 ton capacity hydraulic "Simplex" jack was used to apply
the loads. '

A photograph of an assembled load frame, with the creep prism

and the jack in position appears in Fig. 2.6.

2.3.2. The Load Cells

The loads applied to the various creep prisms were determined
by the use of load cells.

The diménsions of these components appear in Fig. 2.8. The
steel used was "Ultamo 6", which is a high yield steel with good creep
characteristics. Four Budd C6-1é1-8 "Metafilm" electrical resistance
strain gauges were attached to each cell using GA;S heat-cured epoxy
cement. The arrangement of two. gauges positioned vertica]]y and two
horizontally (with members of 1iké pairs being diametrically opposite)
constituted a full bridge.

The load cells were calibrated in the 120 kip capacity Tinius

791§enrpestingrmaghineiwrfor the calibration, the strain readings indicated Lt

by thergauges on the ce}1s at various loads were recorded. The
ca]ibrafion procedUre involved loading and unloading cycles for each
cell.  This process wés carried out at 1eést three times. If the calibration
curve and zero load reading continued to vary after several cycles of
loading, the strain gauges were replaced. The calibration curveé

(graphs of strain versus load) were plotted for all the cells. In all
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Specimen Cell C-750; E-750; E-1500 C-2250 C-3000
Used With E-1000 C-1500 E-1750
d2 'l 3/8" '] 1/4" ~|n 3/411
d 2 174" 2 1/4" 2 172" 2 172"
Fig. 2.8.

Load Cell Dimensions
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cases, the graphs were very nearly linear. The calibration units

(1bs/microinch/inch) for the load cells were found to be as follows:

Specimen C-750| C€-1500 | C-2250| C-3000 | E-750 | E-1000 ‘E-ISOO E-1750
Load cell 47.5 42.0 | 45.0 55.0 30.0 37.0 45.0 50.0
Calibration

Units

For the creep tests, the eight Toad ée]]s were connected to
a Budd SB-1 portable switch-and-balance unit. This unit was connected
in turn to a Budd portable strain indicator.
After the creep tests had been completed, the load cells
were removed from the load frames and re-calibrated as a check on their
accuracy over the test period. The recalibration procedure was as
follows:
(1) Each load cell was loaded until the indicated strain was
-that which had originally represented the app]fed load for its specimen.
The load for this strain reading was then noted.
(2) The load was re]eésed, and the strain reading fér zero
load noted.
It was found that none of the "at load" strain readings had altered
significantly. The greatést éfror obtained for the sustained load level
wasA].G% of the applied load. The load cell used for specimen E-1000

was found to be unserviceable 60 days after the commencement of loading.

Until this time, the cell had given no indication of being defective,

and it has been assumed that the féadingé over this period were accurate.
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A check on the load at 60 days was made by measuring the length of the
springs in the load frame. The values of spring deflection multiplied
by spring constant, although only a rough guide, indicated that the

~ Toad was aiugpéFGXimgfely the correct level.

~-2.3.3.  The "Demec" and "Soiltest" Strain Gauges

A photograph of these two strain indicators apbears as
Fig. 2.7. Tﬁe "Demec” gauge was used to take all creep and elastic
strain measurements. It is a demountable mechanical strain.gauge of
British manufacture. The smé]]est division on the scale represents a
strain of 10 microinches per inch. The gauge has an 8-inch gauge

length. It was found possible to repeat readings to one half of a

==—~division.

The "Soiltest" gauge is also of the demountable mechanical
type. Again, the smallest division is equivalent to a strain of
10 microinches per inch. The gauge has a 10-inch gauge length. It was
used to measure some of the shrinkage strains. Génera]]y, it did not
consistently repeat the readings takeh to within less than one
division. |

Both gauges were used in_the same way. Two readings were

_ taken, one from a standard invar bar, and one from the points glued to

the concrete's surface. Any change in the difference between these
two readings indicated a change in the strain of the concrete.
The errors involved in uéing these gauges are discussed in

Chapter 4.
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2.4, Experimental Procedure

The load frames were assembled lying on their sides and were
hoisted into position using a 2,000 1b. capacity workshop crane. Plate
(3) was held up initially by means of temporary clips.
| The polished ball-and roller-bearings in the load seats were
well-coated with grease.

The creep specimens with their load seats and load cells were
then aligned in the frames, and held vertically by means of short
lengths of wood. Next, the temporary clips restraining plate (3) were
slackened, allowing the weight of plates (2) and (3), plus that of the
springs, to bear on the specfmen and hold it in place.

Initié]lreadings vere then taken with the "Demec" gauge.

The specimens were loaded 36 days after casting, and
measurements of the strains Qere.taken immediately after loading.

Further measurements of strain were made in the next few
days. The frequency of taking readings decreased as the experiment
proceeded, until 37 days elapsed between the last two sets of readings.

he Toad on each specimen was checked every few days, and a
record kept of fluctuations. The loads on all specimens tended to
~diminish with time, and in each case, the load was brought back up to
the desired level once a week, or as necessary to prevent the load from
dropping by as much as 5% below its initial value. Actually, the loads
seldom departed by more than 3% from their nominal values. .The |
variations in load for each of the test snecimens are i]]ustrated in
the gfaphs in Figs. 2.9. and 2.10. Increased ‘deformation of the‘springs

with time under load indicated creep in them. " This did not change
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the recorded values of-load. .One of the original &ight creep prisis

was accidentally overloaded at the time of first loading, and this led
to crushing of the concrete, as mentioned in the Introduction. The
prism was replaced by one taken from the second pour which became
prism E-1000. \

The specimen E-1750 was subjected to an initial overload as
shown in Fig. 2.10. E-1750 was subjected to an average stress of 2250 p.s.i.:
at first. The stress was reduced to 1750 p.s.i. after four days.

A1l the creep prisms were unloaded on the same day; the
specimen E-1000 had then been under load for 61 days, and the other
specimens for 137 days. To unload a specimen, plate (2) was first
Jjacked downwards in order to free the nuts immediately above it. These
nuts were then screwed up well clear of the plate, so that when the
jack force was released and the jack removed, plate (2) was pushed up
freely by the springs. Only the weight of plates (2) and (3) plus that
of the springs remained on the specimen at this stage. Plates (2) and
(3) the springs were then raised a fraction of an inch using the workshop -
crane. This allowed the load cell and the creep prism to be removed.
Strain readings were taken immediately after the removal of the prisms
from the Ioad'frames.

Inaccuracies in the experimental set-up and their effect on the
resuits are considered in Chapter 4, Chapter 4 also considers the effects
of the scatter of points in the various least-squares plots. Chapter 3
contains the results from the concentric creep tests. Chapter 5 contains

results from the eccentric creep tests.
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CHAPTER 3 »
PREDICTION OF THE EFFECTS OF CREEP IN A MEMBER SUBJECT TO A STRESS GRADIENT
AND PRESENTATION OF CONCENTRIC CREEP DATA.

3.1. Introduction

The general method of calculating the strains and stresses in
a plain concrete prism subjected to a long-term eccentric load was
described in Chapter 1. It will be recalled that the method had four
distinct stages:

(1) Determination of the initial elastic strains necessary to
produce resisting stresses equal to the applied load and moment.

(my betermination of "free" creep corresponding to the
distribution of stress across the section.

.(111) Restoration of plane sections. The creep strain plus
"elastic" strain must result in.a linear distribution of total strain.

(1v) .A]teration of total strains in order that the."elastic"
portion satisfies statics.

These four basic steps are common to the two methods of analysis
presented here, although each method tackles these steps in its own way.
The first method, called the "efement" method, is essentially numerical .
in character. The strains at various points across the member cross- -
section are determined in a computerized process. The e]ement method
considers the prism to'be made up of a nuﬁber of smaller concentrically-
loaded prisms, held togethar in such a way that plane cross-sections

remain plane.

46
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The second method, called the "continuous" method, seeks to
find mathematical functions which describe the creep strain and total
strain distributions across the member. It differs from the "element"
_.method in that it considers the member cross-section as one unit, rather
than as an assembly of smaller elements. | .

Both methods require certain data to be represented by
convenient formulae. The data required consist of creep results from
concentric Toad tests, shrinkage results of unloaded prisms, the
concrete stress-strain relationship, and the way in which this and the
concrete strength vary with time. The treatment of all but the creep
results has been considered in Chapter 2. The formulation of this data

will now be considered before the two methods are described.

3.2. Representation of Creep by Standard Formulae

The two methods of presenting creep data used in the analyses
will be described. DBoth formulae were devised empirically to fit
observed creep results.

3.2.1. The Method of Ross’

The equation suggested by Ross has the form
C=t/(a+ bt)
where ¢ = creep strain t days after application of load, and "a" and "b"
are constants. The units of "a" are those of time, while "b" is dimensionless.
Any factor which affects the creep observed at a given time will also
affect the values of "a" and "b". Thus both constants are fﬁnctions of
the magnitude of the applied load. fhat is, "a" and "b" may be expressed

as functions of stress or of initial elastic strain, hoth of which are
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measures of the magnitude of the applied load.

The above relation may be rearranged to give

t/c = a + bt

A plot of t/c against t is a straigth line, as shown in Fig. 3.1. The
constant "a" is then the intercept on the t/c-axis, while "b" is the
gradient of the line.

The formula of Ross is frequently used for predicting creep.
Having established the constants from a relatively short susfained load
test, long term creep étrains can be conveniently extrapolated. It may
be noted that at time t =, c=1/b. Thus, Ross is stating that creep

tends to a finite limit.

3.2.2. The Semi-Logarithm Method -

‘In this method, creep strain is expressed by a formula of the

type : i |
C=A+8B 109 (T)

where C = creep strain T days after application of load, and A, B are
constants. Both "A" and "B" have units of strain.

Thus, a plot of creep strain (to a natural scale) against time
(log scale) should be a straight line, as in Fig. 3.2. Logarithms to any
base may be used. The values of "A" and "B" for a particular test are -

easily obtained from such a plot. Again, these creep constants are both

functions of the level of the applied load. Thus, "A" and "B" can both
be expressed as functions of either stress or initial elastic strain.
The use of the Ross and Semi-log formulae in this investigation

is discussed in section 3.3.
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3.2.3. Presentation of Experimentally-obtained Concentric Creep Data

The concentric creep results are plotted to natural scales of
creep strain and time in Fig. 3.3. The strain at a given time was
calculated by taking the average of the strains indicated by the eight
sets of gauge points fixed to each prism. It was thought that this
“practice would minimize the effects of any unintentiona} eccentricity in
the applied load. o

"Creep strain" is here taken to mean a change in strain after
the instantaneous or "elastic" strain. The creep strain readings taken
from the concentrically-loaded prisms appear in Table 1 of Appendix III.

Creep ﬁroportiona]ity is shown by the results for prisms
C-750 and C-1500; at any time, creep strain of the latter is roughly
twice that of the former. That is; the ratio of creep is approximately
equal to the ratio of stress. This relationship does not extend to the
results for prisms C-2250 and C-3200. This is illustrated by the graph
Fig. 3.4., which shows the relationship between applied stress and creep
'strains measured at various times after application of the load. Linear
proportionality is seen to hold approximately at least up to a stress/initia]
strength ratio of .353.

In order to attempt to predict the creep behaviour of the
eccentrically-loaded prisms, it was necessary to express the creepAdata
from the concentric tests in the}fonn of sfandard equations. Both the
Ross and Semi-log methods were tested to gauge their usefulness in this

regard.
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A computer subroutine, DLESQ, available at the McMaster
Uinversity Computer Centre, was used to give a least-squares fit of the
~data for the various straight line plots, which appear as Fig. 3;5. (Ross
plots) and Fig. 3.6._(Sémi-log plots, using logs to the base "e"). Both
methods were found to give a reasonable fit of the concentric-creep data.
AIn order to interpolate the creep data and apply it to intermediate

stress levels, it was necessary td express the creep constants from both
formulae as functions of the applied load. To this end, these constants
were plotted égainst initial "elastic" strain, this being a convenient
- Measure of the level of the applied load. Thus, the Ross constants, "a"
and "b", were plotted against initial elastic stréin, €p» aS were the
Semi-Tlog constants, "A" and "B". Again, the computer subroutine DLESQ
~ was used, this tfme to fit a curve of second degqree in € through the
experimentally-obtained points. These plots and the equations of the four
curves appear iﬁ Figs. 3.?. and 3.8. Second degree curves were used
firstly because they gave a sufficient]y good f{t of the data, and
secondly because use of higher degree functions would increase the
cqmplexity of the analysis described in the next section. The plot of
the semi-log constant "A" against "elastic" strain shows the worst |
scatter.of points. This constant, however, is always numerically less
important than the term Blogelt), especially for high values of "t".

" It should be possible to accurately predict the creep of an
identita] prism subjected to a uniform stress of, say, 1000'p.s.i., by
picking the corresponding elastic strain off the stress-strain curve,

and using this to obtain the values of the creep constants. It would then
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be a simple matter to compute the predicted creep strain at any time. A
procedure similar to this was used in applying the concentric creep data
to the prediction of the creep of the eccentrically-loaded prisms, as

detailed in the next section.

3.3. Methods of Predicting Eccentric Creep Effects

Both of the methods described below were used in conjunction
with the IBM 7040 computer at the McYaster Computer Centre to predict the
total strains of the eccentrically-loaded creep prisms used in the

experimental program.

3.3.1. The "Element" Method

T and used

An “element" method was presented by R.G. Drysdale
by him in a study of sustained.loading effects dn long, slender columns.
~ Some of the refinements incorporated in the original method were not used
in the present analysis.

The basic purpose of the method, as used here, is fo compute
the creeb of an eccentrica11yf1oaded plain concrete prism from the
following data: -

(i) - the member's cross-section properties

(fi) the concrete‘s.stress-strain relationship, and the effect
of increasing agé in the stress-strain curve

(iii) the applied load and its eccentricity

(iv) the resuits of concentric creep tests covering the same
streés range .

The total strain as distributed between creep strain and

elastic strain, and the stress distribution after some time under load are

the unknowns of interest.
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The information from (iv) is used by expressing the creep
constants as functions of the initial elastic strain, as deéﬁribed ih
the previous section. The Ross creep formula was used initially. Later,
the Semi-log method was incorporated in order to compare the accuracy of
results obtained using'the two creep formulae.

| The method is a computerized'process, and the main components
of the program are: | |

(i) computatibh of creep and new total strains

‘(ii) adjustment of strains to satisfy external load and moment
conditions.

The member cross-section is divided into a number of elements

The nunber of strips used in this case was 20. The number of strips

chosen represents, essentially, a compromise between accuracy of solution
and amount of computer time and ;torage used in the calculation. (The
nunber was not found to be critical, and Tlittle gain.in accuracy vas
obtained by using a larger number of strips than 20. A discﬁssion of
the effect of the number of elements is contained in reference 11).

>The stages'of the element method can easily be identified with

the main features of the basic approach outlined in Chapter 1.
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(i) Determination of Elastic Strains

Initial "trial" values of elastic strain are read in as data,
and ére adjusted by two suBroutines,'ALOAD and XMOM, until they are
compatible with the external load and moment conditions. This process
may be described as fo]]dws.

Since the elastic strains on all elements are initially known
as some proportion of the assuﬁed strains at the extreme fibres of the
prism, the forces on the eiements may be calculated using the concrete's
stress-strain relationship. The forces from all strips may be summed
to give the calculated forée, PCAL. (The stress resd]ting from the strain -
at the centroid of each strip.is assumed to be'cbnstant'over the width
of the strip). : ‘

PCAL is compared with the knan applied load, P. If PCAleifférs
from P by more than a pre-set allowable error, the strain distribution
across the section is adjusted. The strain in the extreme fibres are
either increaéed or decreased by an amount dépéndent on the size and sign-
of the error term (P - PCAL). v

If, for example, tﬁe elastic strain distribution inifia]]y read
in has the form shown in Fig. 3.9., and the equivalent resultant force
PCAL is greater.than P, then the extreme fibre strains, UC and UT, are
both reduced by an amount UP, which is dependent on the magnitude of the

discrepancy.
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/COQRECTED ELASTIC STRAINS
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TRIAL ELASTC STRAINS

Fig. 3.9.

A similar process is applied in the moment-balancing
sub-program. Using the new elastic strain distribution, the moment
contribution of each strip is calculated, and all such contributions
are summed. (The force in each strip is assumed to act at its centroid).
The ca]culated moment is then compared to the known app]ied moment in
a similar way to that in which PCAL is;compared to P. Here, however,
the strain correction applied is such as to alter the position of the
resultant force. That is, the strain correction is added at one extreme
fibre and subtracted at the other. |

Fo} example, consider a case where the ca]cu]ated'moment,
BMXCAL, is greater than the known app]ied.moment. This error is
equivalent to having the correct load at too great an eccentricity. The
correction, UM, is accordingly added to UT, and subtracted from UC, as

shown in Fig. 3.10.
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If either PCAL or BMXCAL is in error by more than a preset amount
(usually 1%) the process wag repeated. The strains converged
monotonically in an asymptotic hanner on their "correct" values. A
typical series of load- and moment- balance cycTes is shown in Fig. 3.11.

The figure illustrates the way in which PCAL converges on P from one
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(ii) Determination of Free Creep
For each element, and for the given time increment, creep
is computed from the Ross equation, with thg constants "a" and "b"
taking values dependent on the e1a§tic strain at that element. This
creep strain is now added to the elastic straih-to give the value of
the total strain in each element. |
The creep for an element subjected to a change in strain over
the previous time increment Qa5wca1cu1ated by a Superposition method, which

may bé illustrated by the following example.

A S SR

Cree '
Creep A

_CPEQP ?or (EE’L' 651)

~ Creep for €e, * \ | opplied ok g,
* P
Es 4 b
time
2 } fg
Fig. 3.12.

Consider an element initially subjected to an elastic strain €pqe At

the end of one time increment, totot], the elastic strain is found to

have changed to €eo-

The creep for a subsequent time interval, t]totz, is found as

the sum of two terms:
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(a) the creep that would have occurred in fhe time interval
t] to t, as if €0 had been on the element from to fo ty- (i.e. ac' in
the figure)

(b) the creep due to the strain difference (eE2 - EE])’
assuning this increment to have been newly applied. (i.e. the first
’part of the creep curve for this strain increment is used).

Thus, the cfeep strain increment Ac 1is given by

Ac = Ac" + Ac'

as shown in Fig. 3.12. Step (b) was omitted for €Ep< €E12 owing to a
lack of sufficient data on creep recovery.

Thus, the assumed total strain distribution is as shown in
the sketch Fig. 3.13.

It may be noted that this distribution is known to be
incorrect; it is, however, known to be reasonably close, and a convenient
first trial is thus provided by using the total strains at the extreme

fibres.

assumed total strains

L~

Strain,
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(iv) Satisfying Statics

The new elastic strain distribution is given by

€ =‘et = B |

Since €4 is the result of the assumption’made in (iii), the elastic strain
distribution will not generally be compatible with the applied load and
moment. The load-balancing process, as used in (i) is brought into play
again; this time, however, the corrections UP and UM are applied to the
total strains, rather than to the elastic strains.

When the load balance has been completed, the new total strains

-at the end of the time interval are known, as are the new elastic strains,

given by
5g T Bp T Eg

Thus, the creep for the neXt time interval can be computed on the basis
of the new elastic strain distribution.

The process can be carried on for any desired number of time
intervals.

For further information on the workings of the "element"
method, the reader is referred to reference 11. The program used in
this investigation appears in Appendix I. A comparison of the creep

predicted by this method with that observed in the laboratory is‘contained~

in Chapter 5.

3.3.2. The "Continuous" Method

The "element" method, while powerful in that it is able to

handle complex problems which necessitate the use of many time intervals,
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is relatively extravagant in its use of computer time and storage.

It is necéssary, for example, to compute and store values of
elastic strain and creep strain for each individual element. In
addition, in the load-balancing process, the stress on each element must
-be computed separately, the total load énd moment being found by summing
the contributions of all the elements.

The continuous method was evolved in an attempt to save
computer time and storage. This method considers the whole member
cross-section as one unit, and represents elastic, creep, and total strains
as continuous functions of position on the cross-section.

The general form and degree of these functions can be found.
The actual computation is then reduced to a relatively simple and fast
procedure which calculates tﬁe co-efficients of the terms in these
functions. |

The method goes through the stages explained in the general
approach to the problem in section 1.5.

The first step is to choose axes and identify the member
dimensions. Take the x-axis as shown in Fig. 3.14., so that the load
P-is applied at some point a]ong'its length. The prjsm's cross-section
is rectangular, of area wx t. Note that at the poinf of application of

P,
==+
X e

=

where ey denotes eccentricity of the load in the x-direction.
(i) Determination of Initial Elastic Strains
‘The initial elastic strain distribution may be expressed as a

linear function of x.
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Strain, |
3 1,,
—'kxl-'—
Fig. 3.14.

Thus, eg = ax + b
where ep denotes elastic strain, and "a" and "b" are constants.* The
constants "a" and "b" may be found by solving directly the equations for
resultant load and moment. This is a somewhat lengthy procedure which
is especially tedious if stress is a function of a high degree in strain.
Instead of this, an iterative procedure, rather similar in principle to
that employe& in the element method, was used, and will be described.

Suppose that the stress-strain relation of the concrete can
be represented by a second degree curve of the type

o =ﬂC] eg + Crep |

where ¢ = stress, and Cy» Cop are constants with units of stress. (This

was done in Chapter 2).

*
"a" and "b" have no connection with the Ross constants.
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'Since ep = X +b
= c](azx2 + 2abx + b2) + bz(ax-+ b)

(c]a2)k +'(2abc] + cpa)x + (b2cy + bcy)

Q
!

2 ,
k]x + k2x + k3 .
R TRk : B :
where k] ca%; k, 2abc1 +.c2a, Ky b(bc] + c2)
The resultant force, PCAL, say, is given by
PCAL = t Mo.dx
i.e. PCAL = t(kyw3/3 + kw?/2 + kow)
Similarly, the resultant moment of the concrete stresses about "o" is

BMCAL, where

BMCAL tofwc.x.dx

_ t(k]w”/4 + k2w3/3_+ k3w2/2) ,
Thus, the type and form of the functions for resultant load and moment

are known and the constants k], k2, k3 can be ca]cd]ated for any values
of a, b, Cys Coe | |
Then, taking any likely values of a and b as a first trial,
the equivalent load and moment can be easily computed.
The constants a and b can now be modified by error terms
dependent on the magnitude and sign of the differences (P - PCAL) andA
(BM - BMCAL), where BM = P (w/2 + ex). These error terms can be
applied in the same way as in the "element" method. Values of k], kos ko
can be recomputed. This process is repeated uhti] éatisfactory convergence

is achieved.
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(i) Determination of Free Crecp
Consider the time interval from T = 0 to T = T]."The Semi-log

creep expression

C ='A + B log e(t)
will be used here in preference to Ross's formula, since the latter
leads to greater mathematical complexity in this case.
A and B can both be expressed as second degree functions of

elastic strain (see section 3.2.3.)¢

Thus, A Ceé + ch + e

B = fs%_+ gep * h

where ¢, d, e, f, g, h, are constants.

Since ep = ax + b, we may substitute to obtain

= 2 + +
A UoX Uy + Uy

= 2+ +
B v2x v]x v0

in which u, = ca? , v, = fa? .
u; = a(2bc +d), vy = a(2bf + g)
u, = cb? + db + e, v, = fb2 + gb + h

Thus, after some time T] under load, the creep strain will be

Ee ™ x2(u2 + V2‘]°g T]) + x(u] + vy log T])

+ (uo .0, log T])
The total strain at time T1 is then given by

€4 = €c + ep

]

xz(g2 + vy Tog Tq) + x(a + up + vq log )

+ (b + ug + v, log Tq)



If K4

Kg

Ke

Then ey Mmay be rew

Ct_

(iii) Restoration

Uy + v, log T]

Uy + vy log T]

]

n

Uo + v0 log T1

ritten

= kgx2 4 (ke + a)x + (ke + b)

A 5

of Plane Sections
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The same assumption as was made in the "element" method about

the new total stra

‘Thus, e}, the new total strain, will be linear in x.

i

At its extremities, this line coincides with the line representing

2 Et.

b' = kg +

Similarly, for x
a'w + b'

{:8: a'

(iv) Satisfying

To "satisfy statics" it is necessary to find the stress

in will be made here.

<84 e% =a'x +b', say

I

K

o Et

W

2 Pt
W k4 + w(!\5 + a) + k6 + b

"

wk4 + k5 +a

tatics

Jore
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distribution across.fhe section, and to evaluate the equivalent load and
moment. Statics will then be satisfied by altering the total strain
distribution until equilibrium is achieved. This load-balancing process
will be similar to that carried'out for the initial elastic strains.

Now eE = e'E - g

G
=a'x +b' - k4x2 - kex - kg
='-k;1x2 + x(a' - k5) + (b' - k6)
Put k, = a' - Ke
k8 = b' - k6
Thus 7 .eé = -k4x2 + kox + kg

Suppose that at time T], the concrete stress-strain reﬁationship is
given by

= 2
o C3 ef * C4EE

(C3 and C, will differ from C] and C2 owing to the concrete's.gain in

4
strength over the period T =0 to T = T,).

Thus o C3(-k4x2 + k7x + k8)2 + C4(—k4x2 + k7x + k8)

leading to o p1x“ + p2x3 + p3x2 +pgX + g

where  p; = k4?C3

= -2C3kqkq

o
n
I

’ N 2 -
03( 2k4k8 + k 7) C4k4

o
w
U

Py = 2C3kskg + kyCq

Ps = kg(Cskg + Cy)
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PCAL, the load equivalent to this stress distribution is given by

PCAL tofwd.dx

t(w5p1/5 +wtp,y/A + widpa/3 4+ w2p,/2 + Wpg)
Also, BMCAL = tofg.x.dk, again taking moments about 0.

e  BMCAL = t(wSp,/6 + wp,/5 + w'pa/4 + wip,/3 + w2pg/2)

Iterating as before will bring PCAL and BMCAL to the desired
values by altering the values of a' and b'.

Knowing the final values of a' and b' permits the final total
strain distribution, and hence the new stress distribution to be
‘calculated. This completes the calculation for one time interval.

It will be apparent, however, that the free creep is determined
assuming that the initial elastic strain distribution remainsAconstant
throughout the time interval. For many practical problems, this means
that the time period of interest will have to be broken into two or
more time intervals.

The calculation for a second time interval is identical in
principle, but involves more lengthy algebra. The process is outlined
below: | |

Recall that C= A + B log e(T)

dc
dt

B
T

(i) Determination of Free Creep
' , [y
This is the first step in this case, as the initial elastic
strain distribution is known (It is that given by the last part of the

calculation for the first time interval).
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If the second time interval is AT, and T2 “ T] + AT, then the
increment of creep taking place, AC, is given by
8C=C,-Cy =8 (1oge T, - log, T])
= B.y , say.
Note that y may be approximated to by aT/(T2 - AT/2)+
Recall that
B ='fs§ + gep +h
_ g
and that €p k4x + k7x + k8

Thus

> = y o 3 _ 2
B r]x rzx r3x + r4x + r5

in which 5 e fk4 _ _ Py = 2fk8k7 = gk7
= , = 2
rs 2fk4L7 | rs fk8 + gk8 + h
- - 2
rs 2k4k8f k7f + gk4

b oy oy3 g 2
Hence aC (r1x rox3 -rax2 +orux + rg)y

q]x“ - q2x3 - q3x2 + X + q5)
‘where q; = y.rd :

(ii) Restoration of Plane Sections

etn = New total strain = et' + AC
=a'x +b' + q]x“ E q2x3 - q3x2 * QX+ qg
f.e. etn = qux* - X3 - qux2 + X(q4 +a') + (g5 + b')

+ For AT =10 and T,
value. For higher values of T,, the approximation is better. For example,
for T, = 90, 4T = 10, the error is .1%. -

= 10, the approximation is within 3% of the correct
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In the same way as before, we choose new trial values of total
strain which have the same value as etn at x = 0 and x = w; as before,
the distribution is Tinear between those values.

Let new total strains be ¢'tn = a"x + b"
At x = 0, et'n = etn, Tleading to b" = q; + b’
Similarily, conditions at x = w give
a'w + b" = q]w“ - q2w3 - q3w2 + w(q4 +a') +b"

ie. a" = q]w3 - Qw2 - Qg + qq t+a'

(iii) Satisfying Statics
Elastic strain = Total strain - creep in 2nd time interval
- - creep in Ist time interval.
The equations for these three strain distributions are known. Thus

ep = a"x + b" - q]x“ + q2x3 + q3x2 - QX - Qg

- k4x2 - k5x - k6
or e =‘—q1x“ + q2x3 + s]x2 tSoX + sy
where S1 =03 - k4
s " -
Sp =2 -Gy - kg

LY

If the concrete's stress-strain relationship is given by
= 2 ]
o CSEE + C6EE at time T2’
it can be shown that

a = Y4xB ¢ Y 57 + ¥

1 2 3 8

6 5 L 3 2
X0- ¢ Y4x + Y5x + Y6x + Y7x + Y x +Y

9



Y . . = 2
in wh1¢h. Y] qu]

Y, = -2C5q]q2

Y3 = Cg (a3 - 2q151{

Yy = C5 (2055, - 2q55,)

Yo = Cg (-Zq]s3 + 29,5, + s%) - Ceay
Tg = Cg {255 +2q84) + Coly

Y, = Cg (25133 + s%) + Css]
Y8 = Cg (25253) +‘Css2

= 2
Y C553 + C653

Therefore, PCAL tofwc.dx

t(Y]w9/9 + Y2w8/8 + Y3w7/7 + Y4wé/6 + Y5w5/5'+ Yew“/4

+ Y7w3/3 + Y8w2/2 + ng)

Also, BMCAL tofwo.x.dx

t(Y]w10/10 + Y2w9/9 + Y3w8/8 + Y4w7/7 + Y5w5/6 + Y6w5/5
+ Y7w“/4 + Y8w3/3 + Y9w2/2)

A final iteratfve process will balance the.1oad and moment,
and supply final values of the constants which define the stress and
~strain distribﬁtions.’

_“The method may be extended to include a third time interval.

The working for this additional stage appears in Appendix II.

75
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~——  The principle drawback of this approach should now be apparent.
Since the expression for creep |

C = Aleg) + Bleg) Tog, T

is of second degree in elastic strain, the degree of the elastic strain

__distribution is doubled for each additional time increment. (The

way in which this occurs is explained fully in section 3.3.3.). Thus,
for the second time interval the calculation is noticeably more
laborious than for the first. A similar increase in complexity and in
the degree of the functions describing creep gnd elastic strains is

apparent in the third interval calculation, (see Appendix II). For

subsequent time intervals, the calculation becomes so lengthy that

another method, such as the "element" method, would be more practical.

For problems in which it is desirable to consider a large
nunber of time intervals, the following procedure was adopted. This
procedure avoids the problem raised by the progressive increase in
complexity of the basic method.

The degree of complexity is limited to that obtained by the
‘end of the second time interval. That is, e is of fourth degree in x.
To do this a second degree curve is fitted through the elastic strain
distribution. Hence, the elastic strain distribution at the end of
the second time interval, known to be of fourth degree in x is evaluated
at seVera] values of x. A second degree curve is then fitted through these
points. The library subroutine DLESQ+ accomplished this part of the
procedure. We may now compdte creep for the third time interval in the

same way as for the second time interval, since elastic strain is of

+ DLESQ is a subroutine which uses a least-squares fit technique to fit a
curve of any desired degree through a given set of points.
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second degree in X, as it was at the start of the second interval. In
this case, the_va]ués of the co-efficients replacing k4,'k7,and k8
(which deffne the elastic strain distribution) are obtained from DLESQ.
This procedure may be repeated for any desired number of time intervals.
Note, however, that when finding the new elastic strain ét the end of a
.time interval, we now have

e = a"x + bn - zAC

where a" . b" describe the new total strain d1str1but1on and zAC represents
the sum of the creep increments occurring in all previous time intervals.
- Thus, where the co-efficient qd was used for the ca1cu1at]on for

the second time interval, for the "nth" time interval we use instead
n

T ; |
=1 Mn T2 P Q3 e o ¥ Gy

where the second subscript denotes the number of the time interval.

A superposition method for catculating creep, similar to that
used in the element method, can be incorporated in the continuous method.
For the second and subsequent time intervals, the change in elasfic strain
dlstr1but1on is plainly of fourth degree in x. |

i.e. € = €p1 © -kax + (k - a)x + (k kg - - b)

for the second time interval. For any later interval, from Tn to Tn + 1

= (k) + K} Nx2 + (KD “ Iye % (K} - K8 -1y

€n ” SEn -1
Let 9] = '!{4

0, = ko, - a for the second time interval
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= N n -1
Let e] - k4 + k4
o, = K- kN -1 for ‘any later ti : t 1, T
2 5 S y er time interval, T
o5 = kg - k3 ] LU )

(k; denotes the value of k, after the time interval t —_ 1 to to, etc.)
Thus, the change in elastic strain, eE', say, is given by
| S
EE = BTX + 62X + 63
for any time interval after the first.
The creep strain due to this elastic strain. change, aC", say,
is then
aC" = Ale'p) + B(e'p) Tog, (at)

As before, A= Ce2

E+_deE+e

o
]

-f€E+g€E+h

It can be shown that

noo Y 3 2
AC e]x + Bzx + 33x + B4x_+ 35 -

where gy = 9,2(C + f 1ogé (at))
B, = 206, (C = f log, (at))
By = (63 + 20485) (C + f log, (4t)) + o,(d + g Tog, (at))
By = 2648,(C + f Tog, (at)) + 6,(d + g Tog, (at))
By = e% (c+f Tog, (at)) + g3(d + g ]0%(At))+ e +h log, (at)

Thus the total creep during any time interval is
AC = AC' + aAC"

= x*(qq + By) + x3(8, - qy) + x2(8g - q3) + x(q, + By) + (Bg + a5
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This is a similar expression to that already used in the analysis. Thus,
to include the effect of the change in élastic strain, it is only
necessary to modify the va]ués of qi by adding or subtracting gi. In
this case, it can be seen that the complete superposition method is

used for both increasing and decreasing stress. This is equiva1enf to
assuming that the magnitude of creep strain under a relief of stress is
the same as that for an increase in stress. Expressed in another way,
this means that creep recovery is assumed to bexof the same magﬁitude as
creep, but of opposite sign. It is known that Ehis assumption will lead
to an overestimate of creep recovery.

It will be recalled that in the element method the creep aC"
was not included for decreasing stress. Using the same procedure with
this method would require sclving the equation for eE'. That is, the
values of x at which eé' = 0 would be found. Then the ranges in which
elastic strain had decreased would be known. The "g's" would not be
applied to the "q's" in these regions. This refinement would be
desirable in cases in which major relief of stress was thought likely.
For the plain concrete prisms used in the expefimental program,-however,
large scale transfer of stress within the test period was thought to be
unlikely.

A computer program was written to carry out the ca]cu]aﬁions for
the continuous method. Superposition was included in the program, which
was used to predict the creep of the eccentrically-loaded prisms used in
the experimental program. The prog;am, with an explanatory introduction,
is reproduced in Appendix II. The results obtained using the program are

compared with those observed in the experimental program, in Chapter 5.
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3.3.3. The Progressive Increase in Complexity of the Unmodified Continuous

" Method

In many cases it would be desirable to extend the method so
that several time intervals might be considered. If, for example, creep
was being computed for a member which was to undergo variations in
applied load and moment (the latter perhaps due to creep itself), it
might be necessary to consider a large number of short time intervals.
This is because the elastic strain distribution is implicitly assumed to
be constant over any chosen time interval (although some allowance for
variation can be made, as in the superposition method).

The difficulties which arise in trying to consider large
numbers of time intervals by the continuous method will be considered.

First Time Interval

It will be recalled that the initial elastic strain
distribution is linear, and was represented by the equation
ep = X + b
"A" and "B", the constants in the equation

€p ™ A+B 1ogeT ........... (1)
are of second degree in ep- Hence, so is €c> computed for any time

interval T=01to T = T]. Since e is linear in x, e, is of second degree

c

in x.
The "new" total strain (i.e. the total strain for T = T]) is

linear in x, being represented by

R a'x + b’
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The new elastic strain distribution, given by (et - ec), is thus seen to

be of second degree in x.

Second Time Interval

Let the second time interval be of length AT = T2 - T]. It may

be recalled that thé creep occurring during this interval was found

using the equation

AC:—.._._.._.__..._.
T

The additional creep, AC, is thus of second degree in elastic strain,
since B is of the form
= feo + ge. + h
B . €E gEE i

The equation for €ps however, is now of second degree in x. Thus, AC is

of fourth degree in x.
Again the total strain distribution, et'n, will be linear in x.
Hence, the elastic strain at time T2 will be given by

e = etn' - €c - AC

and will be of fourth degree in x.

AC for the third and subsequent time intervals will be
calculated using the relation (2). Using similar reasoning to the abové,
it can be seen that AC for the third time interval will be of degree
eight in x. Thus, the“e1astic strain distribution at the end of the
third interval will also be of eighth degree in x. It can then be seen
that AC for the fourth time interval will be of degree sixteen in x,

and so on.
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Thus, the degree and length of the equations for creep strain
and elastic strain increase with the number of the time interval. In
fact, these equations become so complex and involve such lengthy computations

—~

that for a large number of time intervals, the continuousvmethod loses
any advantage which it has over the element method. *

It had been hoped that a method could evolve which would allow
the same calculation to be carriedidut_for each time interval. This would
be especially well adapted to solving problems on thelcomputer.
Accordingly, efforts were made to overcome the problem presented by the
progressive increases in complexity outlined above. These efforts are
detailed below.

(i) Attempts to represent the creep constants "A" and "B" as
linear functions of elastic strain.

The cause of the continual escalation in the degree of the
functions for creep and elastic strain is the fact that both A and B are
of second degree in elastic strain. If they were linear in elastic
stréin, computed creep would be 1ine§r, and hence no increase in
complexity would arise.

It Was thought tha£ the plots of both "A" ahd "B" againgt elastic
strain might be taken as made up of two-linear segments, rather than of

one second degree curve. Thus
R

B= a€e+b
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In this case, however, one is confronted by the problem of defining at

what value of x on the member cross-section_the "break" between the two

portions of the line occurs. Equations can be devised which Superficia11y

appear to get round this difficulty. Such equations hold good for any

value of ep
K

e.g. for the case sketched on the preceeding page

[lep *ep) * lep, - ella ; [leg - ep) + leg - gplle

2 2

will give the correct value for B for any eg-

Since, however
I
|ax + bl =+ [(ax + b)2]?

it becomes evident that B is still represented by an equation containing

powers of eg- These powers will cause increases in complexity as before.

(ii) Attempts to simplify the creep equations by neglecting terms which
are "small" compared to the other terms.

| An analysis was made of the magnitudes of the various terms-
in the Ereep occurring during the third time interval. It was hoped

that the terms involving high powers of x (x8, x7, etc.) would prove to

be "small" compared to the others, and that they could thus be neglected.

It was also thought that similar high powers might be negligible for
subsequent fime intervals, and that the degree of the terms which had
to be considered would thus tend to some 1imit.'

The analysis of terms for %he third interval creep, however,
showed that, for typical numerical values found from the experimental

program, the terms all lay in the same range (between .01 and 1). There

+b
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was no apparent justification for neglecting some terms and retaining
others. '

These efforts Having failed, the modified continubus method,
incorporating the least-squares fit of a second degree curve to data
obtained from a fourth degree function, was adopted. In this modified
form, the continuous method can be applied to problems requiriﬁg the
consideration of any ﬁuhher of time intervals. The modified continuous
method is described fully in section 3.3.2.

The strains predicted by the "element" and "continuous"
methods are compared with those observed in the experimental program in
- Chapter 5. The effects of certain errors on the accuracy of the

predicted strains are considered fn Chapter 4.
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. CHAPTER 4
ACCURACY OF THE COMPUTATIONAL METHODS AND POSSIBLE INACCURACIES IN THE
' EXPERIMENTAL PROCEDURE

4.1. Introduction

The approximate analysis of the errors in the computational
methods, which is described in the next section,waé not intended.to be
rigorous. Its purpose was to indicate the Tikely accuracy of the
computational method. A completely rigorous treatment of the
uncertainties discussed in section 4.2. was not justified since the
effects of some of the possible sources of error could not be
mathematically evaluated. Hence, it was decided that a combination of
rigorously obtained statistical error data with rationally estihated'
values from other variables could misrepresent the overall accuracy.

Sect16n14.3. contains a discussion of errors whose effect
- could ﬁot be estimated quantitatively, but which woh]d nevertheless
affect the accuracy of the solutions obtained using the comp&tationa]
methods.

The various possible inaccuracies in the expefimenta] procedures

are discussad in section 4.4.

4.2. Approximate Quantitative Analysis of Errors in the Compnuted Solutions

The purpose of this analysis is to obtain an estimate of the
probable accuracy of the values of total strain obtained by the two
computational methods. To arrive at this estimate, differences between

computed and measured strains due to the following factors are considered:
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(i) errors arising from the scattér of points about the
"least-squares fit"-plots of concentric creep data according to the Ross
and Semi-log methods.

(ii) errors occurring in the experimental measurement of
strain

(iii) errors arising due to the scatter of points about the
least squares fit curve representing the concrete's stregs-strain relation.

It will be recalled from section 1.5S. that the total strain

—

egs at any time t, is given by
€4 = € + €c + '+ "
Looking first at the term ecs and considering the creep computation carried

out by the element method, £c is found using the Ross formula,

- t
€c ~ @ + bt

It will also be recalled that both "a" and "b" were expressed as functions
of initial elastic strain.

f.e. a=fle) 5 b=gle)

The error arising from the use of this expression is derived'from two
sources: .
' (a) the original Ross plots, obtained from the concentric
creepAéests, give rise to an error due to the deviation of the points
from the best straight line drawn through them.
(b) errors also arise from the fact that "a" and "b" are both
expressed as functions of elastic sfrain. Again, there is some scatter of

the values of "a" and "b" about the line given by a least-squares fit.
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The effect of these errors on the value of €c must now be,_
calculated. The general method for estimating the uncertainty in a
value vhich is a function of several variables will be used.

For any function z = f(x,y), the error in z, called &z, is
given by

_df ., df \

where §x, &y are the errors (assumed to be small) in x and y respectively*.

ThUS, = Cs say, = f(a,bst>)

af df af

Y faty 5‘b+a—t- 6t

The last item obviously drops out, since time is known exactly.

S¢

8¢

Now
of N -t
da  (a + bt)2
and df = "t2
db ~ (3 + bt)2
whence

e -t2
¢ = (¥ bo)z %8t ob (FE L)

The above eqdation may be evaluated for any set of vé]ues, a,b,t of

interest.

A similar procedure may be used to compute the uncertainty in

e in the continuous method.

* This formula may be found in any text on error analysis. See, for

example, D.C. Baird's "Experimentation", Prentice Hall, 1962.
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In this case e, is calculated from the Semi-Tog expression

e T A+ B log t

with "A" and "B" being functions of elastic strain.

Again : 3
_df f
8¢ = aﬁ-(aA) + g 6B
Here
%£~— 1 and ; g§-= log t
giving

6¢ = SA+ 6B log t
Again, §c can readily be obtained for given values of 6A, 6B, and.t.

The remaining three terms in the equation for total strain all
involve the same error. That is, all result from the uncertainty of
values of strain obtained from the concrete's stress-strain curve. If
the error in a point obtained from this curve is Segs then the total

error in ey May be written

Sep = 8¢+ 38eg tAQ il L(i1)

For this approximate analysis, §eg Was taken to be the maximum déviation

of an experimentally-obtained point from the least-squares curve of

stress versus strain. Aq is the term dué'to all other inaccuracies

in the computational methods. Aq could not be evaluated quantitatively.

(The factors included in this term are discussed in the remainder of this

chapter.) '
The term &

¢ Was evaluated by taking values of 8, and 8, from

the least-squares curves of "a" and "b" against elastic strain for the
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range of stress of interest. Agafn, the deviation of an experimentally-
obtained point from the least-squares cdrve was assumed to ine an -
approximate measure of the error involved. Using these values of S,

and 8> 6. Was computed for specific values of a, b, and t.

The equationtfor Sey représents an estimate of the maximum
possible difference between the "true" total strain and the computed
value. In this case, however, the "true" total strain is not knowﬁ.
Instead, the computed total strain is comp;}ga with the corresponding
measured strain. If Sey is to reprégent the difference Sétween these
values, further terms must be added to the right hand side of (ii).

The measured strains were obtained as diffefences. A reading
was taken from a standard invar bar (si, say), and a second reading was
taken from the gauge points fixed to the concrete (s2 say). The
difference between the two readings (52 - s]) was recorded. The change
between this value of (52 - s]) and one recorded at a later date.indiéates
the magnitude of additional strain. '

If.each reading is taken to be accurate to one half of one

division on the scale, GD,>then it is apparent that

Sy = Sp =Sy tép-s,t 8
Hence -the maximum possible error in the quantity (s] - 52) is ¢ 260,
or one division. The strain at any time is obtained as the difference
between (s] - 52) and some "base" value (i.e. the reading obtained from

the concrete before any load was app1ied). This "base" value is also a

difference, and is also subject to a maximum error of ZGD. Therefore



90

the maximum error in a measured strain is t4GD, or two divisions.
Thus

Sep = (38eg + 8eq + 48p) + 4q

As mentioned earlier, Aq. represents the effects of those factors which
could not be evaluatgé,numerica]]y. Considering only the remaining

terms in the equatié%,:values of Sey vere calculated for each
eccentrically-loaded prism. Error lines representing thé deviation of
strains computed by the "element" method (Using Ross's creep formula)
from those measured in the laboratory were drawn. (The values of Sey
were computed for four points across the section. These points were then
joined up to give an error "band"). These error lines appear in

Figures 5.5 and 5.6 The error lines do not take into account all factors
which affect the computed total strain values. While the values used
for beg and Sec are only approximations to the maximum possible errors
involved, it is thought that the error lines do serve a useful prupose

in indicating the probable degree of accuracy of the element method.

The formulations of test data used in computing the predicted

strains are discussed in the next section.

4.3. Uncertainties in the Predicted Strains due to the Methods of

| Presenting the Data used in the Camputed Solutions.

4.3.1. Variation of Concrete Strength and Stress-Strain Relation with Time
The concrete stress-strain ré]ation obtgined from instrumented
cylinder tests performed at the time of first.loading the creep prisms,

was assumed to vary with time in the manner explained in Chapter 2.



This method is equivalent to "scaling-up" the ordinates (or stress values)
on the stress-strain curve. All stress_values are mu]tiplfed by the
same factor for a given age of concrete. For example, for concrete at
an age of 136 days (that is, after 100 days under load) the stress
values are all multiplied by the factor 1.2. Thereforé, the stre§s
corresponding to any given strain at 136 days is 1.2 times the stress
corresponding to the same strain at 36 days. A comparison of the
elastic strain recovery of the concentric creep prisms (measured on
off—]oéding) with the e]astié recovery predicted using the above
assumptions, éhowed that , in all cases, the predicted recovery was
greater than that measured. The percentage error was not always the
same, and increased with increasing stress. (The measured and computed
strains appear in Table A-3-2 of Appendix III). This indicates that use
of one factor for the entire stress strain curve fs not completely
realistic. |

It is thought that a more accurate modification of the concrete
stress-strain curve to account for increased age and strength could be
devised. To do this, instrumented cy]inders would be tested at various
ages. An analysis of the changes in the shape of the stress-strain curve
as a‘function of time could then be made. These changes could then be
formulated in an equation which expressed the change in stress for a given
strain as a function of strain and time. This equation would probably
not be linear in elastic strain. (It is assumed in Chapter 2 that the
relation is linear in elastic strain). A second degree function of

elastic strain would probably be applicable: It is also Tikely that the



equation would not be linear witﬁ time, as was assumed in Chapter 2.
Data from a larger number of cylinder tests would allow formulation of
a more realistic relationship.

The effect of sustained load on the "elastic" stress-strafn
relationship is more difficult to evaluate, although it is generally

recognized that it will cause some change.

4.3.2. The Relationship of the Creep Constants to the Initial Eléstic

Strains.

Both the continuous and element methods require that the creep
constants(from either the Ross formula or the Semi-log formula) be expressed
‘as continuous functions of the initial elastic strain due to the applied
load. For the Ross constants, "a" and "b", this requirement was satisfied,
since the relationship could be approximated fairly closely by a curve
of second degree in elastic strain. The Semi-log constants, "A" and "B",
were not so suitable, as Fig. 3.8. shows. The constant "A" is especially
unsatisfactory. Because of the‘scatter of the points, and because data
for only four points was available, it was very difficult to express A
realistically as a function of initial elastic strain. For elastic
strains below that corresponding to a stress of 750 p.s.i., the shépe
of the.“A" versue elastic strain curve is open to conjecture. Two
. choices are available.

(i) as ep approaches zero, the trend for A to decrease
algebraically, shown by the experimenta]ly—obtained pointé, continues.

(ii) as eE’approaches zero, A also approaches zero.

Theoretically, there should be zero creep at any time for zero applied stress.
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i.e. for zero applied stress
C=A+B1log (T) =0, for any T.

Therefore, A = -B iog (T) for any T. Since A and B are not themselves
functions of time, this implies that both A and B are zero for zero
stress (i.e. e =‘0). This indicates that (ii) is the correct assumption
to make.

The Semi-log formula, however, is not a theoretical law. It.
is an empirical forﬁuia devised to fit experimental data. It does not
necessarily reflect observed creep behaviour perfectly at all levels of

M that

applied stress. In addition, it was found in a previous analysis
the experimenfa]iy—obtained points did not appear to indicate that |
the values of A and B at € = 0 should necessarily be .zero. According]y,'
the second-degree curve used-in fhe analysis was that which gave a
least-squares fit of the four experimentally-obtained points. That is, °
“the point A = 0 at e = 0 was not included in the least-squares fit of
the data. It is recognized that the values of A given by this equation
for strains corresponding to stressed below 750 p.s.i; are thus doubtful.
Owing to the lack of experimental data in this range, however, no other
assumption could be made. As a check on the influence which this might
have on the strains predicted by the continuous method, the element method °
had the Semi-log formula incorporated in it. The strains predicted by the
three methods: | |

(i) continuous method using Semi-log formula

(ii) element method using Ross formula

(iii) element method using Semi-log formula.
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are compared and discussed in Chapter 5. It is recommended that in |
future work, at least six concentric creep tests be performed in the
range of stress of interest. This should give sufficient data to plot

realistic curves of the creep constants against initial elastic strain.

4.3.3. The Method of Computing Creep under é Relief 6f Stfess

An additional source of error in both methods i§ the way in
which creep for varying stress is computed.

In the continuous method, it is assumed that creeb under
a relief of stress is of the same magnitude as creep under a stress
increase. In ac;ua] fact, it is known to be markedly less. It would
thus be expecéed that the creep recovery of those parts of the prisms
undergoing a relief of stress would be overestimated by the continuous
method. In other words, the total creep strains of parts undergoing
relief of stress would be underestimated.

The superposifion method of creep calculation used in the
element method was kndwn to overestimate creep for decreasing stress by

ignoring creep recovery.

4,3.4. Other Factors Affecting the Computational Methods

(i) Number of Strips used in the Element Method.

Twenty strips were used in obtaining the computed strains.
Previous studies involving the "e]eﬁent" method indicate that the errors
incurred in dividing the member cross-section in this way are s]ight]].
(It was found that very little difference in the computed answers was
obtained by greatly increasing the number of elements). In the present

investigation, solutions were obtained initia]]yAusing twelve strips.
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The differences in the total strains computed in this way compared to
those obtained using twenty elements, were all in the region of one half
of one percent.
(ii) The Effect of Assuming Conditions to Remain Constant over Finite
Time Intervals.

Both creep and the concrete strength are continuous functions

of time. In both methods of analysis, it is assumed that the elastic

strain distribution across the member remains constant over the time

Ne—

interval considered.

In view of these factors, it is apparent that more accurate
answers will result from the use of shorter time intervals. Ten-day
intervals were used for both the element and continuous methods. A
determination of the strains for prism E-1500 by the element method and
using five-day intervals indicated that little gain in accuracy would
‘result from consideration of shorter time intervals.

(iii) Errors Due to Computer Convergence Tolerances.

In both methods, strains were adjusted until the calculated
and applied values of load and moment were within 1% of the known values.
Owing.to the assumption made regarding a first trial of total strain, the
calculated loads and moments approached the "true" values from above, in
each case. Thus, the accepted values of strain at the end of each time
interval were slightly higher than the true values. This in turn would
lead to high values of computed creep for the succeéding time interval.
Trfa] runs of both programs with the convergence limit increased to 5%

gave surprisingly little loss of accuracy (about 3% of the computed strains).
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(iv) Error in Eccentricity of Eccentrically-loaded Prisms
It was assumed that the eccentricity of the applied loads did
not vary with time due to creep deflection of the prisms. A calculation
“carried out to estimate roughly the deflection that would occur indicated
that such deflection would be neg]igib]e.' (The value for the prism under
the greatest load was approximately 1% of the intended eccentricity. This

error would not be equivalent to a 1% difference in the computed creep).

4.4, Discussion of Errors in Test Results Arisina from Inaccuracies in

Experimental Set-up.

There were several factors which, by nature of the experimental
procedure, cod]d influence the results obtained. It was not found to be
feasible to make any numerical estimate of the discrepancies}which these
factors caused, since, unlike the errors involved in the computational

process, their effects were difficult to evaluate realistically. Since ,
-the results of the varidus tests indicate consistent trends, and since
the predicted creep values differ from those observed by a margin no
greater than that whfch might reasonably occur due to computational
error, it is thought that these factors, which are detailed below,
probably had little effect on the test results.

(i) Accuracy of Forms

The forms used for casting the prisms were constructed so
that each dimension was correct to a 1/32 of an inch. The breadth measured
to the trowelled surface of some 6f the prisms was found to be in error

by slightly more than this (the worst measured value was 1/20 of an inch).
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The non-trowelled faces all had smooth regular surfaces.
(ii) Positioning of Load Seat Plates on Ends of Prisms

The seat plates were attached to the ends of the creep prisms
using plaster of Paris. A straight edge apd spirit Tevel were used to
help align the plates properly on the prism ends. The plates were
6 inch + .003 in. square. It was thought that the effect of any
unintentional eccentricity would be partly or wholly eliminated by the
practice of averaqing the strain readings. This does not apply, however,i
to misalignment of‘the load in the direction of the intended eccentricity.
The maximum error in this case was likely to be 1/32 of an inch (the
same as the accuracy of the forms).

(iii) Load Fluctuations and Load Cell Accuracy

It had been noted that the loads were not allowed to drop more
than 5% below their intended value. The practice of applying an initial
slight overload was adopted in order that the "time-average" load should
be approximately correct.

After the termination of the tests, the load cells were recalibrated
in the 120-kip capacity Tinius Olsen testing machine, as described in
Chapter 2. The maximum error at working load was found to be 1.6% of
the working load in the worst case. None of tHe loads, however, was
indicated as being mere thén 3% from its nominal value during the 1a$t
90 days of the 137 day tests. In addition, any change in the "at load"
readings of the load cells would most probably occur during this last
portion of the test period. Thus, the total deviation of each load from
its nominal level would be, at the worst, equal to (1.6 + 3)%, i.e.

within the prescribed 5%.
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The case of the load cell for the specimen E-1000 has been

discussed in Chaptef 2: It éppears that this cell functioned satisfactorily

until at least 40 days after the initial application of load. The

analysis by both prediction methods was, therefore, restricted to this

period.

(iv) Changes in Ambient Relative Humidity and'Tempergture.

The wax coating of the concrete specimen was intended to
eliminate the effect of changes 1in atmospheric}humidity during the best
period. No a]]owaﬁte was made for the effect of changes in the _
atmospheric temperature. During the test period, the temperature in the
test area varied only between 70°F and 80°F.

(v) Effect of Differential Drying of the Specimen between the Ages of
21 and 33 Days. .

Drying out of.the surface layers of the concrete between the
time moist-curing ceased and the time of.;ax-coating could have set-up
stresses in the concrete which might have influenced measured strains.
It is thought that this was unlikely. In all cases, shrinkage and
swelling of the unloaded prisms approximately cancelled each cher out.

It thus seemed unlikely that any major residual stresses remained.



CHAPTER 5
PREDICTED AND MEASURED CREEP OF THE ECCENTRICALLY-LOADED CONCRETE PRISMS

5.1. Introduction

In this chapter a comparison between test results and those
calculated using the two prediction methods is presented. The
redistributions of stress calculated by the two methods are also discussed.
The two methods are compared and possible extensions of them are

discussed.

5.2. The Results form the Eccentric Creep Tests

The test\procedure for the eccentrically-loaded concrete prisms
is discussed %n'Chapter 24

Strain readings were takén from the gauge points located on
the creep prisms. From each set of readings, a total strain distribution
across the member wés plotted. Such a strain distribution was obtained '
by fitting a best straight Tine through the experimentally-obtained
points (i.e. through fhe points. obtained from both sides of the specimen,
as well as those from the tension and compression faces).

" The total strain distributions obtained in this way are shown
in Figures 5.1. and 5.2. for various times after application of the load.
The extreme fibre strains given by these "best straight lines" were used
in preference to actual measured values, since they should define the
total strain more accﬁrate]y. The acthai readings of strain taken from
the four eccentrically-Toaded créep prisms appear in Tables A-3-3 and
A-3-4 of Appendix III. |
| Figures 5.1. and 5.2. show that in all cases the strain

gradient across the member increases with time. In addition, the

[o]0]
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rate of increase of strain gradient is higher for higher values of average

stress. v —

B2 3, Prediction of Effects of Eccentric Creep

Initially, two methods Qere used to predict the effects of
ﬁreep of the four eccentrically-loaded prisms. These were (i) the
element method, incorporating the Ross creep formula, and (ii) the
continudus method, incorporating the Semi-log creep formula. Later
in order to determine the effect on accuracy of using the Semi-log
formula, it was also used in the element method in place of the Ross
formula. In this seéond form, ‘the element method is referred to as
the "element (ii)" method. In its original form, the element method is
referred to as the "element (i)" method. A1l three methods adopted a
standard ten day interval for prediction of the creep effects. It is
therefore implicitly assumed that the elastic strain distribution is

constant over each ten day period.

5.3.1. Predicted Strains

The extreme fibre creep strains predicted by all three methods
are shown in Figures 5.3. and 5.4. These values were obtained as output
from the FORTRAN computer programs run for each method. The observed
“extremé fibre creep strains are also shown, for comparison purposes.

- The four sets of total strains are tabulated in Tables-5.1. and 5.2.
The abbreviations used in this table are as follows:
"o" denotes observed strains (from the "best straight lines"

mentioned in 5.1.)
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"E(i)"  denotes strains predicted by element (i) method

"E(ii)" ~ denotes strains predicted by element (ii) method
"CTS." ~denotes strains predicted by the continuous method
c" - denotes maximum compression fibre strains

eror i denotes minimum compression fibre strains

The element (i) method gives the best agreement with the
observed strains in all but two of the plots. For the minimum compression
fibre of specimen E-750, the predicted creep strain is so close to that
obtained from the experimental results, that the two plots practically
overlap. From the other plots, it appears that the margin of error at
the maximum compression fibre stays constant or diminishes slightly from
about 50 days onward.

The creep strains at the maximun compression fibres predicted
by the continuous method, although generally lower than those obtained
-——using the element (i) method, are reasonably close to those observed.
For the maximum compression fibre of E-750, in fact, the continuous method
gives a particularly géod prediction of creep strain. For the minimum
compression fibres, however, the continuous method always gives the
lowest predicted strains. For E-750 and E-1000 in particular, these
predicted strains are much Tower than those observed. It was thought
that this discrepancy was dJe to the uncertainty of the Sem1 -log constants
"A" and "B" for Tow values o# elastic strain. This susp1c1on was
_.confirmed by the results of_the element (ii) method, which show
similarly low values of miniﬁum compression strain.

____The total strain distributions predicted by the element (i)
and continuous methods for the prisms E-750, E-1500 and E-1750 after
100 days under load, and for E-1000 after 30 days under load, are
plotted in Figurés 5.5. and 5.6. The element (ii) method strain
distributions are omitted for the sake of clarity. The error bands for
the element (i) method have been included in the graphs. (The derivation
of these error bands is described in Chanter 4). 1t can be seen



E-750 E-1000

Time Face wei | Face "T" Face "C" Face "T"

(days) 0 T E(A)| EQIJ [ CIST 0 1 E() [ E(I) | CIS|[ 0 T EG) ] EGI) [ CIS| O E(3) [ E(iJ | CIS

0 54.0| 53.6/ 53.6 50.7|.4.0| ‘8.2 | 8.2 8.9 69.0| 72.0f 72.0 | 66.2|12.0f 11.3 | 1.3 | 91
10 72.0( 74.0| 77.8 | 71.6| 10.0| 15.8 | 9.5 9.1]| 92.0| 103.6| 103.6 | 104.3| 21.0| 16.7 | 14.0 |\ 9.7
20 80.0| 85.1| 88.5 | 81.2] 15.0| 21.1 | 10.4 10.3({101.0| 120.8| 124.5 | 115.0| 26.0| ~21.4 | 16.1 | 10.8
30 | 85.0f 92.2| 94.6 85.8( 19.0{ 23.9 | 11.3 11.11[111.0| 129.2| 128.2 | 121.0| 31.0{ 24.1 | 17.6 |. 11.5
40 190.0f 95.7[ 97.1 89.0( 21.0| 25.6 | 12.1 | 11.6/[113.0{ 135.1| 131.8 | 123.8]| 33.0| 25.6 | 18.7-| 11.7
50 92.0| 97.8] 98.7 91.1] 23.0| 26.7 | 12.3 | 12.0 ~ |
60 © | 94.0| 99.0| 100.3 91.9| 24.0| 27.4 | 12.4 12.0 ER

70 95.0| 100.1| 101.0 92.2| 24.0| 27.9 | 13.1 12.1

80 | 96.0{ 100.7| 101.6 | 92.9| 25.0| 28.2 | 13.4 12,3

90 96.0{ 101.1| 102.3 | 92.7| 25.0| 28.4 | 13.9 12.4
100 97.0| 100.6 102.5. | 93.1| 25.0| 28.9 | 14.3 | 12.5

5

Strains in in/in x 10

TABLE 5.1. COMPARISON OF OBSERVED AND PREDICTED TOTAL STRAINS FOR E-750 and E-1000

0L



E-1500

E-1750

Strains in in/in x 10

TABLE 5.2. COMPARISON OF OBSERVED AND PREDICTED TOTAL STRAINS FOR E-1500 and E-1750

Time Face " Face "T" Face "C" Face "T"
(days) 0 E(T). E(11) CIS 0 (1) £(11) ClS 0 E(T)f £{(11) CIS 0 E(1) E(11) CTng
0 |101.0| 110.1]110.1 [ 107.0 |, 6.0 | 15.5 | 15.5 | 11.2||145.0| 134.5| 134.5 | 129.9 [14.0 | 14.8 | 14.8 | 12.3|
~10 188.0| 201.5 | 189.7 | 211.0 |- 16.0 | 23.6 19.8 15.1]1 257.0( 251.0| 242.3 | 257.9 {21.0 | 25.7 21.4 7] 15.2
20 232,0 237f4 229.8 | 226.1 | 23.0 | 24.7 25.5 17.0] 292.0|.282.5| 276.9 | 296.9 |26.0 | 34.0 26.8 N\ 19,2
30 252.0| 248.2 | 250.9 | 231.4 | 28.0 | 33.0 26.6 118.3/] 326.0| 304.1| 291.8 | 304.9 {28.0 | 41.0 32.0 .1.20,9
40 1270.0| 253.9 | 257.1 | 234.1 | 29.0 | 34.1 27.4 18.6|| 343.0| 314.7| 302.9 | 306.9 |31.0 | 50.6 37.1 1 224
50 +279.0] 259.2 | 259.5 | 239.0 | 30.0 | 35.0 28.7 19.6(| 353.0| 321.6| 311.4 310.9 (33.0 | 54.7 0.1 | 22.4
60" - | 289.0| 262.4 | 259.7. | 241.2.| 32.0 | 35.8 29.3 21.5(1358.0( 328.6| 317.3 | 311.9 [34.0 | 61.8 44.2 23.0
70 295.0( 263.5 259.8 | 242.6 | 32.0 | 36.0 30.4 22.411361.0| 333.4] 321.6 | 312.8 |35.0 | 65.6 47.9 24.9
80 298.0| 265.5 | 259.9 .} 245.1. 33.0 | 36.6 30.6 23.7||363.0| 338.4| 324.4 322;] 36.0 | 72.3 49.6 25,2
90 299.0| 266.6 | 260.2 | 247.3 | 34.0 | 36.9 | 31.6 25.411364.0| 342.1| 326.3 | 323.2 |38.0 | 75.9 | 51.7 | 25.4
100 300.0| 267.3 | 260.9 | 249.2 | .35.0 | 37.2 | 33.1 25.71)372.0| 346.2| 328.5| 323.3 [39,0 | 82,2 52.9 71 25,8

5

L0l
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the distributions given by the continuous method fall outside the error
bands, indicating the lower general accuracy of this method. Because of
the difficulty in assigning a realistic value to the errors in the
Semi-log constants, "A" and "B", no error bands were included for the
continuous method.

5.3.2. Predicted Redistribution of Stress

The redistribution of stress, which accompanies creep of
concrete under non-uniform stress, is of interest. Both the element and
continuous methods can be used to obtain the stress distribution across
a member at any given time after initial application of the load. The
continuous method computes the coefficients which define the equation of
the stress distribution as a part of its load balancing procedure. The
element method computes the elastic strain on each element, and this
value is easily converted to stress within the program.

The stress distributions at the time of first load, as computed
by the element method, are shown for all specimens in Figures 5.7. and
5.8. The stress distributions computed by'both the element (i) and
continuous methods for specimens E-750, E-1500 and E-1750, after 100
days under load are also shown in the figures. For the specimen E-1000,
the initial stress distribution; and the distribution after 40 days
under load are shown in Figure 5.8. Both of these distributions were
computed by the continuous metood. (In this case, the computed
redistribution is slight by both methods, and the element (i) method
solution is omitted for clarity).

In all cases, the transfer of stress from the extreme fibre§
into the interior of the prism is evideht,

5.4. Discussion of the Prediction Methods

Both the continuous and element methods can effectively carry
out the same calculation for total strain and stress distributions of a
member subjected to sustained non-uniform stress. The discrepancies in
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certain values of strain predicted by the cohtinﬂous method appear to be
—targely due to uncértainty of the values of the Semi-log creep cqnstants
"A" and "B", for low values of elastic strain. Thus, this lack of
accuracy is not a defect of‘the continuous Method, but merely an indication
that more concentric creep data is needed to accurate]y/express "A" and "B"
;; functions of elastic stf;iﬁ:W“”/7- e S o

Both the continuous and element methods possess useful
flexibility in that they can handle any number of time intervals. This
means that variations in app1ied load and moment can be dealt with easily.
The new‘values of Toad and moment are simply identified at the desired
.tiae, and ‘the creep and elastic strains are altered accordingly in the
subsequent time interval.

It had been intended to take into account the initial overload
~ of the prfsm_5—1750. fhe Rbss and Semi-log plots, however, only give a
good fit of the creep data for periods of ten days or more under load.
Thus the effect of the initial overload, followed by load reduction
four days later, could not be predicted by either of tﬁe two methods.
If a major change in gpp]ied load or moment had occurred at some later
time, it cou]d'h&&evbéén*iaken into account quite easily by either method.
i Another_ useful feature of both methods is that a member's
cfosé;section properties can be altered in the course of the ana1ysis._
In the é1emént method, the process is especially simple, since computations
are carried out for-each individual g]emént. If the strain distribution
across the member indicates that a pérticu]ar element is in tension, then

the force and moment contributions of that element can be set to zero.
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: (Or if it is assuned that the concrete can take some tension, an appropriate
value of tensile force can be used). For the continuous method, it would
be necessary to solve fhe equation for elastic strain (i.e. find at what
valué of X, Xy say, elastic strain was zero). If the concrete can take

no tension, the calculation will then proceed as before, but with a new
section width, equal to (w - xy) inétead of w. '

This ability to deal with varying section properties would be
useful when considering members under-going sustained loading to failure,
since their cross-sections frequently develop cracks. It is cautioned,
however, that the method of assuming a "first trial" value of the total
strain at the ‘end of a time interval would need to be chanjed for problems
involving members approaching failure. As already noted in Chapter 3,
this %irst approximation givés a.computed load which is greater than
the true value. Under near-failure conditions, the computed load would ~
fail to converge in the load-balancing procedure. In such cases, it
is necessary to change the first assumed value of total strain so that
the computed load is less than the known applied ]oad. The simplest way
of doing this is to use as a first trial the total strain distribution
from the previous time interval. For either method, this modification
is quite simple. For the plain concrete prisms considered here, however, *-
this assumption would cause a waste of computer time, since it represents
a bad "first trial" value. This, in turn, necessitates mofe 1oad;ba1ance
cycles before convergence is obtained.

Both methods cah be adapted to handle problems involving
members with steel reinforcement. Such a version of the element method

is already in existence. (see reference 11)
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In the continuous method, knowing (or assuming) a strain
distribution across a reinforced concrete member permits the strain at
the level of the steel to be determined. Hence, the stress in theAstee1
can be computed.. PCAL and BMCAL would then include terms representing
respectively the load and momént contributions of the reinforcing steel.

The simple modifications necessary to take account of
reinforcing steel are therefore not extensive.

The FORTRAM computer programs for both methods vere fun on the
IBM 7040 computer at the McMasfer Computer Centre. Typical times for
the two programs, with each Qsing ten time intervé]s; were as follows:

"Element" method 2 min. 41 sec.

"Continuous" method 2 min. 58 sec.

The continuous method, however, was more economical in storage
space than the element method. In a typical run, the continuous method

used 3402 1locations, compared to 4036 locations for the element method.



CHAPTER 6
CONCLUSION

e

e o B be Introductioh.

An investigation was conducted into the effects of creep of
concrete under non-uniform stress. An important feature of creep in
such cases is that due to the non-linearity of the creep-stress relation,
a redistribution of stress takes place. This effect is important in
practice. -

The purpose of the inVestigation was to devise and test methods
of predicting the time-dependent strains and stresses in members subjected
to sustained non-uniform stresses. The investigation included both

experimental and theoretical work.

6.2. The Experimental Program

In the experimental program, four plain concrete prisms were
subjected to different sustained concentric loads. This set_of tests
was used to provide data for use in the application of the theoretical
approach. Four identical prisms were subjected to dffferent sustained
eccentric loads. It was intended that the strains of these prisms be
compared with those predicted by the theoretical approach.

A record was kept of the prisms' strains over a period of
four and a half months. Additional information was required for use in
the theoretical approach. This information consisted of |

(i) the concrete stress-strain relationship -

(ii) the concrete strength

(iii) the manner in which (i) and (ii) changed with time

116
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(iv) non-load induced strain changes produced in the prisms
(i), (ii), and (iii) were provided by tests of standard concrete cylinders,
some of which were instrumented in order that the concrete's stress-strain
curve might be obtained. | e

(iv) was obtained by measuring the strains on unloaded prisms (identical

to the creep prisms) placed in the test area.
In view of the many factors which can influence the measured
creep of concrete, efforts were made to ensure similarity in the concrete
test prisms and cylinders, and consistency in the test procedure. Td
this end, all of the concrete specimens were made using the same concrete
mix. A1l the creep test prisms and the companion unloaded prisms had
the same dimensions. Forms were carefully checked for accdrécy. To
eliminate the effect of varying atmospheric hunidity on the test results,

all of the concrete specimens were sealed by wax-coating at the same age.

6.3. Theoretical Approach

procedure by which the dﬁstributions of total strain and of stressi across
a plain concrete prism subjected to sustained eccentric load could be
predibted. Such a procedure Qou1d provide the basis for a method which
could provide the same information for reinforced concrete members. Two
methods were presented:

(a) an "element" method, which considers the eccentrically-
loaded member as an assembly of smaller concentrically-loaded elements,
held together according to the condition that plane cross-sections must
remain plane. This method was a modification of a technique already in

existence.
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(b) a "continuous" method, which deals with the member cross-
section as one unit. This method considers the mathematical functions
representing stress, creep strain and total strain distributions. To
the author's knowledge, shch a method had not been presented before.

Both methods used the data listed in (i) to (iv), plus the
results of the concentric creep tests, to arrive at a solution. For each
method, a computer program was written to calculate the strain and stress
distributions of the eccentrically-loaded prisms at any time after the
application 6f the Toads. In both cases, the predicted total strains
were reasonably close to the measured values. A lack of accuracy in
some of the solutions given by the continuous method was found to be due
to a method of representing the creep data. This, in turn, was caused by

a lack of sufficient data for creep under low stresses.

6.4. Uses of the Prediction Methods and Suggestions for Further Research

Both of the methods possess uéefu] flexibility in that they
can deal with fair]y'comp1ex problems involving variations of the applied
'1oadnand/or moment with time. In addition, both can be modified fairly
easily to deal with members having steel reinforcement. It is cautioned,
however, that the method of formulating the data used by both methods
dffects the accuracy of the computed answers. In order that such formulations
be as realistic as possible, an extensiye range of back-up tests is
required. In particular, a comprehensive set of concentric creep tests,
covering the étress Eange of interest is required;

In order to make results obtained from one test program app]icabTe
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to other situations, it would be necessary to determine quantitatively

the effect of such variables as member size and shape, and atmospheric

N\

conditions. In addition, some more accurate method of predicting creep
recovery would be desirable, since present methods are known to be only
approximate. Research along these lines would allow a wider application

of the two prediction methods presented here.

6.5. 'Resume

The problem of predicting the stresses and strains in a plain
concrete member subjected to sustained non-uniform stress was investigated.
Two theoretical approaches, using experimentally-obtained data, were

~applied to the problem. Both were found to give satisfactory answers,
and both can be easily modified for use with reinforced concrete members.
A fairly large amount of test data is required for both methods. This
includes information on the‘concrete's strength, stress-strain relation,
- and shrinkage characteristics,'és well as results from creep tests |
under uniform stress. The methods are at present applicable only to

situations in which such data are available.



APPENDIX I

THE FORTRAN PROGRAM FOR THE ELEMENT METHOD

Names of Variables:

The meanings of the variables named in the program are listed

below. Any other variables are either defined in Chapter 3, or by the

context in which they appear.

BAX
BMXCAL
cYL

ISEC

M

P

PCAL
CPEEP(J)
L PRY
uc, Ut
t(J)

SUBROUTINES:

ALOAD
CREEP
XMOM
FUNCTIONS:
CONCF

A, AA,
B, BB

Applied bending moment

Calculated bending moment

~ Concrete cylinder strength

Iteration 1imit for load-balance cycles

Number of elements

Applied Toad

Calculated load A

Total creep on a particular cross-section element
Times defining an incremgnt of time

Extreme fibre strains

Total strain on a particular cross-section element

Calculation of the internal force on a cross-section

Calculation of creep during a time interval

Calculation of internal bending moments

Concrete stress-strain formula

Ross creep co-efficients
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WATFOR 003336 GRAY D C

$JOB
SIBFTC

C PROGRAN FOR PREDICTION OF CREEP OF CONCRETE UNDER

C A STRESS GRADIENT

C MODIFIED VERSION OF PROG FOR SUSTAINED LOADING OF LONG
C COLUMNS DEVELOPED BY DR DRYSDALE o

401
402

504

46

43
711
707

702
703

704

11

10
436

437

DIMENSION DELX(40)sDX(40)sU(40)sUU(10540)sCPEEP(40)sPFEP(10+40)
1 UEL1(40)sUUEL1(10540)
READ(59402) PsDPPsCYLsXCFCCsISFCaMsUCIUT
WRITE(69402)PsDPPsCYLsXCECCsISECsMaUCIUT
FORMAT (4F10e2921392F1245)
READ(54504) TIMIT
FORMAT(F1043)
COMMON UCsUT
FCII=CYL
T0=0,0
T].:O.O
T2=O.U
N=1
D046 J=1sM
PEEP(NsJ) =040
CONTIMNUE
DO 48 J=1sM
CPEEP(J)=Cae0
CONTINUE
GO TO 436
P=P+DPP
WRITE (6+707) P
FORMAT(5XsF1042
GO TO 436
READ(5s703) T2sP+sDECIDE
FORMAT(2F1042)
WRITE(69704) T1sT2sP
FORMAT(1NX92F10e2910XsF10e2)
CALL CREEP(TQsT1sT2sUsUUsCPEEPSPEEP M)
IF (T2-120.) 10510511
CYL=FCII%*1lel5
GO TO 4356
CYL=FCII#(1e0+0415%T2/120s)
ZX=040
LP=0
LP=LP+1
CALL ALOAD(UCIUTsPCAL P oMsCPEEPsT2sUsCYL)
CALL XMOMI(UCsUT sRMXCAL sRAX s XCECCsZXsPsMaCPEFEPsT29UsCYL)
PERROR=ABS(P-PCAL) /P
XBMER=ABS [BAX=BMXCAL) /BAX
IF(PERROR=04(5) 20692069205
IF(XBMER=0e10) 18051809205
IF(LP-ISEC) 437207207
CONTINUE
WRITE (69404)
FORMAT(10Xs17HNO GO-P TOC LARGE// )
GO TO 699
WRITE(69190)XCECCoaPCAL P s 3MXCAL s BAXsUCLUT
FORMAT(F10e394F106292F%9,.3)
GO TO 43
WRITE(6570C)
FORMAT (10X s23HCREEP BUCKLING OCCURRED//)




r,‘\

WRITE (64800) PCAL
800 FORMAT(6H PCAL=9F10.3)
WRITE(6+801) T2sLP
801 FORMAT(4H T2=9F54194H LP=9s13)
GO TO 401
43 IF (T2=TIMIT) 7159139173
715 GO TO 7u2 :
.13 GO TO 401 °
END
$IBFTC ALOAD }
SUBRQUTINE ALOAD(UCIUT sPCAL P s CPEEPsT2sUsCYL)
DIMENSION U(aQ),CPEED(QO)
DM=M
pCAL=OoO )
DO 2UC J=1+M
DJ=J
U(J)=UC-(DJ=-0. 5)/DP*(UC uT)
W=U(J)-CPEEP(J) -
WRITE(6s40) JoW A :
40 FORMAT(10H FOR EL NQsI2s14H ELASTIC STRN=9F943)
203 PCAL=PCAL+26. /[)!‘.‘,J,:-('ONCF(\\!,CYL)
200 CONTINUE .
141 UP=ABS(UC-UT)*(P~- DCAL)/(B.vP)
140 UC=UC+LP
T=UT+UP
WRITE(6+20)
20 FORMAT(13H ALCAD CALLED)
WRITE(56+30) PCAL
30 FORMAT(6H PCAL=9F10.3)
RETURN
END
$IBFTC XMOM
SUBROUTINE XOM(UCsUT oaRMXCALIBAXIXCECCsZX 9P sMsCPEEPsT29JsCYL)
DIMENSION U(40)+sCPEEP(40)
DM=M
BMXCAL=Ue
"DO 210 J=1.M
DJ=J :
U(J)=UC=(DJI=0e5)/DM*(UC-UT)
w=U(J)-CPEEP (J) )
IF (W=1e) 20992139213
209 GO TO 210
213 BMXCAL=BMXCAL+38¢/DM*(3.=-(DJ=0e R)/“'*é.)"CC“C‘(',CYL)
WRITE(6s55) EBMXCAL
55 FO 'AT(PH BMXCAL=9F12e3)
210 CONTIN
BAX=P% XC;CC
171 UMX=ABS(UC=UT)*(BAX-BMXCAL)/(8«%BAX)
158 UT=UT=UMX
UC=UC+UMX
RETURN ;
END i
BFETC CREEP ;
SUBROUTIME CRFEP(TOsT1sT2sUsUUsCPFERsPEER M)
DIMENSICN U(l40)sUU(10947)sPEEP(10s40)+sCPEFP (40 ),UF1(40);
1 UUE1(10+40)
COMMON UCsUT
IF (T1) 61961962




O

,4 _"h
R i

61 DO 52 J=1+1"
CLU=U(J)
64 CPEEP(J)=T2/(A(CLUI+B(CLU)*T2)
58 UEL(J) =CLU i S AR
' U(J)=CLU+CPEEPRP(J) L A o e N ¢
52 CONTINUE
GO TO 55
62 DO 54 J=1sHM
CLU=U(J)-CPEEP(J)
66 OLDU=CLU-UEL(J)
IF (OLDU) 96996497
96 CROLD=Ce0
GO TO 98
97 CROLD=(T1-TC)/(AA(OLDU)+RPB3(OLDUY*(T1-T0))
Q8 CPEEP(J)—CPEFD(J)+(T7 T1)I*A(CLU) Z(A(CLU)+R(CLU) %T1)*%2,
1+CROLD . '
59 UE1(J)=CLU
54 U(J)=CLU+CPEEPI(J)
55 TO0=T1
T1=T2
UC=U(1)=0e5%(U(2)=-U(1))
UT=U(12)40e5%(U(12)-U(11))
RETURN
END
SIBFTC CONCF
‘ FUNCTION CONCF(WsCYL)
G QU=STRATIN TN IN/IN¥]10¥*x%-
QU=W/10e0%%2,
CONCF=(CYL/44¢253)%(=Ce28848/1060%%24+0425257%QU=(0676975/1040%%
1 ¥QUH*H24=(Ce24895/1040%%24)%QU¥X344+(0440157/10Ca0%%5,)#QU*%L,)
RETURN ) '
END
$IBFTC A
FUNCTICN A(CLU)
FL=CLU/100.
A=eT79890-0e12568%FL+e42846/100«%*FL*FL
A=A/10C.
RETURN
END
$IBFTC B
FUNCTICN P(CLU)
FL=CLU/10C. ]
B=0e42394-0458009FE-C1*¥FL+0421345E-02%FL*FL
- B=B/100.
RETURN
END
$IBFTC BBr
NCTION BB(CLDU)
FL““LDU/I'O.
BB3=0e42394-0458090E~ 01“”L+0 21345E-02%FL*FL
BB=BB/1CCe. ; '
RETURN \
END
SIBFTC AA
FUNCTION AA(CLDU)
FL=CLDU/10C0.
AA=e79890-04,12568%FL+.49846/100 4 *FL*FL
AA=AA/10. : :




0., 0

$ENTRY

RETURN
END

B

CD TOT

0177



APPENDIX II
THE CONTINUOUS METHOD

2A-1 Extension of the Unmodified Continuous Métﬁdd-fbufﬁréé”Time Intervals

The following continues from the working for the first two
time intervals described in section 3.3.2.

Recall that at the end of thg"éecond time interval the
elastic strain distribution was given by

ep = =Gx* + X3 4 5x2 45X + 54

As for the second time interval, the creep for the third
time interval is given by an expression of the type
AC = By
where y = 'Ioge T3 - 1oge T2, in which T3 is the time at the end of
the third intefval.
Since B = fe% * geg + h, and putting zy = -qy, it can be

shown that _
8

aC = y(z ¢L'XL)
£=0
where ¢g = s%f + 550+ h

91 “5q8 +,25352
bp = s%f + sfs]s3 540

¢3 = 4,9 + 2fs3q2 + Zszs]f

2
KX 2fs3z] + 2f52q2 + fs.I + gz]

2fs + 2fs Z4

192 2

125



= 2
¢6 22151f + qu

2fz

-
~
n

1%
¢g = f2§
Let theAnew total strain at the‘end of the third interval be given by
ey = a"'x + b'"
The e]astic-strain at the end of the third interval is thus

g = a"'x + b"' - aC(2nd interval)

- AC(3rd interval) - eC(1st~interva1)

. g P
a'"x + b"' - (_,ZO ¢4:XL) - (q_lxu o q2x3 B q3x2
L‘.:

tgux t q5) - (k4x2 + kex + ke)

or e = —¢8x8 - ¢7x7 - ¢6x5- ¢5x5 - p]x“ - p2x3 - p3X2
= pgX - P
in which Py = ¢4 * Oy
Pp = 93~ 0y
p3 = 4y - 93 * Ky
Ry = ¥y by kg = 2"
pg = 9 * 95 * kg - BV

Let the concrete's stress-strain relationship at time T3 be given by

C7(5E)2 + CS(EEj

0=
16 .
A
= X
X aL

=0

126
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in which it can be shown that

ag = €785 = Cgog

ay:= 2Cqpgog = Cgpy

ap = C7 (o305 + 03) - Cgeg
ag = 2C5(py05 + p3,) - Cgoy
ag = C7(03 + 20 py * 20q05) - Cooy
a5'—'2C7(p302 t ot W505) - Cgoc
' ag = C;(p3 + 20405 + 2ugp, + 20gpg) - Cgoc
ag = 2C;(pgpp + dgp3 + ¢grg * d705) - Cgéy
ag = Co(p§ + 2650, + 20gp3 + 2090, + 20gpc) - Cgog
g = 2y (egoq * 4oy * 493+ dgpg)
a1g = Cxlos + 2069y * 20705 * 20gp3)
aqy = 2700gep * 007+ ¢gé5)
ay2 = C(6F + 26765 + 4g0y)

ar3 = 20;(6g07 + ¢500)

= 2
orq = C7(6F + 2060g)
ay5 = 2074760

= 2
a6 = C793

The force equivalent to this distribution is PCAL, given by

PCAL tofwo.dx
s L+
by

=0 i+
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" Also, BMCAL

W
tof o.X.dx

(L +
e “LWL i
& weriins
450 . 4+ 2

Load-balancing iterations, as apb]ied before, will bring PCAL and BMCAL
to the correct values by adjusting a'" and b"', which define the total
strain distribution. The o defining the distribution of stress will

then also be known..

2A-2 Fortran Program to Predict the Effects of Creep of Plain Concrete

Prisms under Sustained Eccentric Load

(i) Nomenclature:

Generally, variable names consisting of one letter, or a letter -

and a nunber, .or a letter and one or more subscript(s)) are eqiivalent to
the corresponding lower case symbols used in Chapter 3. ’
e.g. E inbthe'program denotes "e" from Chapter 3
P3 in the program denotes P3 from Chapter 3
Y(3).in the program denotes Y3 from Chapter 3
Q(1,3)in the program denotes 943 from Chapter 3, etc.

Exceptions to this rule and other names are listed below along with the

equivalent symbol from Chapter 3.

. BR(I) ‘ 0,
RCAL - ~BMCAL/M
BET(I) : 8

EL(N) e evaluated at x = n
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PERR(21, 22) Function subprogram to calculate the

fractional difference in 215 2,

GF(Tl, To) Function subprogram to compute

concrete's gain in strength in
/

period T], To

NO (Number of time interval) -1
TiMIT = o Period under load of interest
CONT, CONZ, etc. k], k2 etc.

W, DEP _ Section dimensions w, t

XEC . - pX, load eccentricity

DELT AT

Other variable names are either defined by the context they appear in

or else have the same meaning as in the "element" method program.

(ii)  Introduction to the Program
A The program goes through the procedure described in Chapter 3.

The various co-efficients which define the distributfons of stress, and
creep, elastic and total strains are computed in the same order as in
Chapter 3.

The program is split into two main components:

(a) a main program

(b) a subroutine, GRAFT, in which the working for thé
co-efficients "Q“.is carried out. In this subroutine, the superposition
terms BET(I), corresponding to B;s are computed and applied to the "Q"

values.



$J0OB * 003336 GRAY D C
$IBJOR NODECK
$SIBFTC )
& *¥%¥PROGRAM FOR CTS METHCD OF CALCULATING FFFFCTS OF
C ECCENTRIC CREEP IN PLAIN CONCRETE PRISMS
c #¥*CAN BE USED FOR ANY NCo, OF TIME INTERVALS
c ¥*INCLUDES SUPERPOSITION METHOD FOR CREEP UNDER VARYIMNG STRES!
6 READ(5910) AsBsCleC2sWePsXEC ;
10 FORMAT(2F12e292E12e¢493F10e2)
WRITE(6910) AsBsClsC2sWePsXEC
READ(545C) CsDsEsFoeGseH
50 FORMATI(6E1245)
WRITE(AsEC) CoeDsEaFsGeH
- READ(5960) TCesDELTsISEC
60 FORMAT(2F1042915)
WRITE(6360) TOsDELTsISEC
READ(5.70) DEP
70 FORMATI(F10a42)
READ(5+7C) TIMIT
LP=0 '
BM=P* (XEC+W/2.)
437 LP=LP+1
CON1=Cl1#*A%*A
CON2=(2¢#B*CL+C2)*A
CONZ2=(C24C1#*i3)*B
PCAL=W*(CON3+W*(CON2/2 e+"W*CON1/324))

PCAL=DEP*PCAL ~
UP=ABS (A%W)* (P=PCAL) /(84%P)
B=B+UP

CON2=(24%B*C1+C2)*A
CON3=(C2+C1*B)*B :
BMCAL= (CON3/2e+W* (CON2/3e+WH*CON1/Go ) ) ¥uI*W
BMCAL=DEP*B3MCAL
UM=ABS (AxW) % (BM—BMCAL) / (8«%BM)
B=B-UM
A=A+2 o ¥UM/ W
UC=A%Y4+B
PERR=ERROR (P sPCAL)
BMERR=ERROR (B8M ¢ Bi“CAL)
IF (PERR=Ce05) 20692064205
206 IF (BMERR-0eU5) 1805180+205
205 IF (LP-ISEC) 43792074207
207 WRITE(69203) ISEC
20 FORMAT(19H NON CONVERGENCE IN sI397H CYCLFS)
CALL EXIT : '
180 WRITE(6s30) PsPCALBSUC
30 FORMAT(2F1Ce592F1245)
C INITIAL ELASTIC STRAINS NOW KNOWN
T1=TC+DELT
U2=C*A*A
Ul=(2e*B*C+D) %A
UO=(CH*B+D)*B+FE -
V2=F3*A%A ’
V1i=(2*B*%F+G) *A
- VC=(F#*B+G)*B+H
CON4=U2+V2+%ALOG(T1)
CON5=U1+V1¥*¥ALOG(T1)
CON6=UC+VO*ALOGI(TL1)
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R 0N w3

537
82

83

81

306
305
307

280

NEXT VALUES OF AsB GIVF POST-CREEP VALUFS————————meee
BEFORE LOAD BALANCE

A=W*CON4+CONS+A

B=B+CON6

C3=C1l*GF(T1sT0C)

C4=C2*¥GF(T1sT0)

LP=0

LP=LP+1

WRITE(6982) C3

FORMAT(4H-C3=9E1144)

WRITE(6+83) CON4

FORMAT(6H CON4=9E11e4)

CON7=A-CONb5

CON8=B-CCON6

P1=C3*%CON4*CON4

P2==2 4 %CON4*CONT*C3

P3=C3*(CONT*CONT—2«*¥CON4*CONB)-C4*CON&

D4=CONT*(2e*C3*%CON8+C4)

P5=CON8* (C3*CON8+C4)

WRITE(6981) P1sP2+P3sP44P5

FORMAT(13H P1 TO PS5 AREs6E1le4)
PCAL=W*(PS5+W*(P4/2 e +W¥(P3/3e+u*(P2/4 +‘*P1/5.))))

PCAL=DEP*PCAL

WRITE(6+30) PsPCAL

UP=ARS (A*W) ¥ (P=PCAL)/ (84%P)

B=B+UP Ry

CCN8=B-CON6

P3=C3% (CONT7*CONT—2¢*CON4*CONB)—-C4*CON4

P4=CONT*(2e*(C3%CONB+C4)

P5=CON8* (C3*CON8+C4)

BMCAL=  (P5/2.4W#(P4/3+u (P3/4o+ii* (P2/5.+5%P1/64)) ) ) #UHN

BMCAL=DEP*BMCAL
UM=ABS (A% )% (BM=BMCAL) / (8 e#BM)

B=8-UM
A=A+2 o ¥UM/ !
UC=A*W+B

PERR=ERROR (P sPCAL)
BMERR=ERROR(BMsBMCAL)

IF (PERR-0G«05) 30693065305

IF (BMERR-C.05) 280,280,305

IF (LP-ISEC) 53752079307
WRITE(6,20) ISEC

CALL EXIT

MWRITE(6+3C) PsPCALB,UC

THIS IS END OF CALCN FOR 1ST TIME INTERVAL
THIS IS CALC FOR 2ND TIME INTERVAL
DIMENSICN Z21(9)+Z22(9)

READ(5s70) DELT

T2=T1+DELT

NO=0

COMMON/BLOK1/FsGoHo» rLT9C39C49n(9)9T29W9LD§N01Q(5’12)/9LCK2/

1 CON7sCCON89CsDsE 9%”(3)9%195?’g3
DO 4 I=1+5

4 Q(I+1)=C4C

99

NO=NO+1
C3=Cl*GF(T2+T0)
C4=C2*GF(T2+T0)
LP=0
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63

64
637

51

84

406
405
407

wn

98
62

61

97

IF(NO=1) 63363+64

BR(1)=-CON4

BR(2)=CON7-A

BR(3)=CON8=R

CONTINUE

LP=LP+1

CALL GRAFT (AsRsCONLG4sCONS59sCONG)

DO 2 I=1,9

A2=1

Z1(I)=Y(I)/(10a=A2) '
PCAL=DEP*W*(Z1(9)+W*(Z1(8)+Wx*x(Z1(7)+W*(Z1(6)+W*(Z21(5)
1 +W(Z1(4)+Y x(Z1(3)+”Vv(Zl(?)+' *¥Z101)))))))))
WRITE(6s70) PCAL

UP=ABS(A*W)* (P=PCAL)/(84%P)

BR=B+UP

LP=LP+1

CALL GRAFT (AsBsCON4sCON5sCONE)

DO 3I=1+9

A2=1

21(1)=Y(I1)/(11e-A2)
RCAL=DEP#W*(Z1(Q)+W*k(Z1(8)+Wx (71(7)+“v(Zl(6)+H~(Z1(=)
1 AW (Z1(4)+% (22 (3)+WH(Z21(2)+w%Z21(1))))))1))) '
BMCAL=W*RCAL

WRITE(6+30) BMsBMCAL

UM=ABS (AxW) % (BM=-BMCAL) /(8 e¢%EBM)

WRITE(6s51) UMsUP

FORMAT (4H UM=9E12e5904H UP=9E12e5)

B=B-UM

A=A+2 ¢ #UM/W

UC=A%W+R

WRITE(6984) AsUC

FORMAT(3H A=9sF10e594H UC=39F10e5)

PERR=ERRCR (P sPCAL)

BMERR=ERROR (2MsBMCAL)

1:F (PERR—U.OB) 40694069405

IF (BMERR-0«05) 38043804405

IF (LP=-ISEC) 6373407407

WRITE(6+20) ISEC

CALL EXIT

WRITE(6930) PsPCALIRsUC,T2

NEXT PART IS FOR THIRD AND SUBSEQUENT TIME INTERVALS
DOUBLF PRECISION X(6)9-L(6)9A1(8)5Q1(3)

=NO+1

DO 5 I=1s6

X{I)=1
EL(T)=S3+X(I)#(S24+X(T)#(S1+X(I)¥(Q(211)=X(T1)#*D(1sM))))
CALL DLESO(A19B1aXsELs246)

WRITE(6998) B1(1)sB1(2)481(2)

FORMAT(12H COEFFS ARE $3F10.5)

IF (NC=-2) 61462462

BR(1)=-81(3)+CON4

BR(2)=B1(2)-CON7

BR(3)=81(1)~-COMS8

CON&4=-B1(3)

CON7=R1(2)

CON8=B1(1) 4

IF (T2=TIMIT) 97996 96

READ(5+70) DELT
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96

T2=T2+DELT ;
T1=T1+DELT ;

GO TO 99

GO TO 6

END

$IBFTC GRAFT

96

97

34

35

SUBROUTIMNE GRAFT(AsB 9CO“49CON5 CON&)
CON\ON/BLnKl/FQGQH’DrLT9C39C4,Y(9)9T?9u9LP9“O9Q(5912)/RLOK2/
1 CONT79CONBsCsDsF9BR(3)951952+53

DIMENSION R(5)sBET(5)sT(5)

IF(NO-1) 9695697

CON7=A-CON5

CON8=B-CON6

CONTINUE

WRITE(6952) CON7sCONS

FORMAT (6H CON7=9E12e596H CONB8=9E1245)
R(1)=F*CON4#CON4

R(2)=2¢*F*CON&*CON7
R(3)=F*(2+*CON4*CON8-CONT*CONT)+G*CON4
R(4)=(2%F*CONB+G)*CONT7

R(5)=CON8*(F*CON8+G)+H

IF(LP-2) 34935435

B=B+R(5)*DELT/(T2-DELT/2.) v
A=A+ (R(4)+WH¥ (=R(3)+W*k(=R(2)+W*R (1)) ) IX*DELT/(T2=-DELT/24)
CONTIMUE

M=NO+1 —

DO 1 I=1+5 )

QEIoM)=R(I)*DELT/(T2-DELT/2«) +Q(TsND)
FAC=C+F*ALOG(DELT)

GAC=D+G*ALOGI(DELT)

BET(1)=BR(1)*BR(1)*FAC

BET(2)=2e*BR(1)*¥BR(2)*FAC
BET(3)=(BR(2)#BR(2)+2*¥RR(1IXBR(3))*¥FAC+RR(2)*GAC
BET(4)=2e%BR(3)*¥BRR(2)*FAC+BR(2)#GAC
BET(5)=RR(3)%BR(3)#FAC+RR(3)*GAC+E4+H*¥ALCG(DELT)
DO 2 I=1+5

T(I)=Q(IsM)

T(L)=T(1)+BET(1)

T(2)=T(2)-BET(2)

T(3)=T(3)-BET(3)

S T(4)=T(L)+BET(4)

T(5)=T(5)+BET(5)
S1=T(3)-CON&4
S2=A=T(4)=CONS
$3=3-T(5)-CONG
Y(1)=C3%T(1)#T(1)

CY(2)==2.%C3%xT(1)%T(2)

Y(3)=C3%(T(2)*T(2)=2+%T(1)*S1)
Y(4)=C3%2e%(T(2)%¥51-T(1)%52)
Y(5)=C3%(=2e%T(1)%S3+24%T(2)%52+51%51)=Ca*T (1)
Y(6)=C23#(26#S51%S2+T(2)%53+53%T(2))+C4¥*T(2)
Y(T7)=C3%(24%51%53+52%52)+C4%S1
Y(8)=52%(2«%53%C3+C4)

Y(9)=53%(C4+C3%53)

RETURN

END

$IBFTC ERROR

FUNCTION ERROR(Z1s22)
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ERROR=ABRS(Z21-22)/21
RETURN

END

$IBFTC - GF

FUNCTION GF(T1sT0O)
GF=14+(T1-T0)%*40015
RETURN

END

CD TOT

0240



APPENDIX III
TABULATION OF EXPERIMENTAL RESULTS

The readings of strain for the concentrically-loaded creep
prisms are entered in Table A-3-1. The readings of elastic recovery
of these prisms, measured immediately on off-loading after 137 daysuunder
load, are entered in Table A-3-2. The elastic recovery strains predicted
using the assumptions described in Chapter 2 are also tabulated for
comparison purposes.

Tables A-3-3 and A-3-4 contain the strain readings taken from

the various locations on the member cross-setions: These locations are

identified below. éi
0} ® "
' ! i ‘
| €
b 1P, 1

When no strains are recorded for one location on a particular prism, it
is because the gauge points at that location proved defective. (That
is, it was not possible to repeat the readings to within one half of a
division). The readings entered under the headings "1", "2f, 3%
and "4" are normally averages of the reédings at these locations on
opposite faces. The readings under "T" and "C" are readings from single
sets of gauge points.

The strains entered in the "elastic recovery" section are

those measured immediately after off-loading at 137 days.

155



136

Time o A et
Since Creep Strains x 10™ (in/in)
Loading v
(days) C-750 C-1500 C-2250 C-3000
4 7.0 15.0 45.0 97.0
5 7.8 17.5 29.0 122.5
-7 10.0 22.5 63.0 150.0
10 13.0 30.9 90.0 210.0
14 16.8 36.2 103.0 235.0
18 17.5 40.4 118.6 250.0
21 19.8 45.8 122.8 256.0
28 22.8 49.2 130.0 267.5
38 24.8 53.9 137.2 276.0
46 25.8 57.5 1357 283.7
54 3.3 58.6 141.5 289.0
66 33.0 63.8 151,56 291.0
82 33.3 64.1 152.0 291.7
100 33.5 64.5 154.5 295.0
137 34.5 67.0 160.5 306.0
TABLE A-3-1 Creep of the Concentrically-Loaded Prisms
Specimen C-750 C-1500 C-2250 C-3000
Recovery 18.5 J9+3 58.5 66.5
(137 days)
Predicted 23.5 47.0 75.0 102.0
Recovery
TABLE A-3-2 Measured and Predicted Recovery Strains



TABLE A-3-3 Strains of Prisms E-750, E-1500

Specimen E-750 E-1500
Location 1 2 | 3 4 c T | 2 3 4 c
ije
ol CREEP STRAINS (IN/INXT10P)
4 2.0 4.0 | 5.0 7.0 - 5.0 4.5 18.5 | 39.0 | 48.0 53.0
5 4.0 5.0 6.0 | 10.0 - 5.0 4.5 22.5 | 43.5 | 49.0 58.0
7 6.0 6.0 9.0} 14.0 - 7.0 5.5 29.5 { 55.5 | 63.0 73.0
10 7.0 9.0 {12.0 | 17.0 - 9.0 8.0 40.0 | 74.0 | 89.0 97.0
14 9.0} 14.0(17.0{ 20.0 - 10.0 3.5 46.5 | 85.0 | 106.0 114.0
18 12.0} 15.0]19.0| 22.0 - 11.0 9.5 | 52.5 | 95.0{117.0 | 123.0
21 12.0| 16.0|20.0| 24.0 - (12,0 111.0 | 60.5|105.5|128.0 |139.0
28 . 15.0| 18.0 | 24.0 | 29.0 . - 14.0 | 12.5 66.0 | 117.0 | 139.0 | 148.0
38 17.0| 22.0|26.0 | 33.0 - |1 15.0 |13.5 | 70.5|123.5|158.0 | 162.0
46 17.01 22.51 27,0 35.0 - 17.0 | 15.0 73.5 { 129.0 | 167.0 ‘| 168.0
54 18.0| 24.5| 28.0| 36.5 - 19.0 | 18.5 82.5 | 133.5| 187.0 | 184.0
66 18.0| 26.0| 29.0 | 39.0 - |1 21.0 |22.5 | 89.0140.5| 194.0 | 193.0
82 19.0| 27.0( 30.0| 40.5 - 23.0 | 24.0 97.5 { 145.0| 198.0 | 200.0
100 20.0| 28:0| 32.0| 42.0 - 25.0 | 26.0 98.5 | 150.0| 201.0 | 203.0
137 21.0| 29.5( 34.0 | 44.5 - 25.0 | 27.0 | 101.0 }154.0] 203.0 | 205.0
Initial
Elastic 8.0 25.0{ 41.0] 55.0 - 8.0 9.0 4.0 77.0( 92.0 94.0
Strains
Elastic 4,01 15.0| 28.5| 41.0 5.0 5.5 21.0{ 42.5] 62.0 63.5
Recovery -

LEL



© TABLE A-3-4 Strains of Prisms E-1000, E-1750

Specimen £-1750 E-1000
Locat on O 1) A O | B PR T T T
Time ,
i "CREEP STRAINS (IN/INX10?7)
3 e T - - 4.0 | - 7.0 70 | 10.0 [ 11.0
1 1.0 | 14.0| 24.0| 50.0 | 48.0 _— . - . -
5 2.0 | 16.0| 27.0| 56.0 | 50.0 O - - 5 X
6 T - - - - || 90| - | 125|155 | 17.0 | 19.0
7 3.0 | 20.0| -41.0 72.0 | 68.0 || 9.0 | - | 12.5]| 13.5:] 17.5 | 19.0-
10 T (S : . 2000 | <5 85 a0 21,5 230
14 7.0 | 41.0| 85.0134.0 | 125.0/| 9.0 | - | 13.5| 17.0 | 24.0 | 23.0
18 .8.0 | 46.0| 94.0]343.0 | 158.0{] - | - - - - | -
21 9.0 | 53.0] 110.0 ! 165.0 | 175.0{| 15.0 | - | 23.5| 25.5 | 31.5 | 33.0
23 9.0 | 56.0| 119.0 180.0 | 195.0{| 18.0 | - | 27.0| 27.5 | 33.5 | 37.0
30 4 n - & - 11-19,0 |5 | ‘28.0.| :28.5 {/35.5 | 39.0
38 10.0 | 61.0 130.0] 195.0 | 200.0/|_21.0 |. - | 30.0! 32.5 | -38.0 | 41.0*
26 16.0 | 67.0| 129.0( 194.0 | 180.0 *10 Day Strains ‘
54 18.0 | 68.0| 125.0/ 189,0 | 198.0 x
66 28.0 | 73.0| 146.0| 199.0 | 204.0
i 30.0 | 78.0| 156.0| 202.0 | 210.0
1100 32.0 | 79.0| 158.0| 209.0 | 217.0
137 34.0 | 80.5| 161.0] 211.0 | 220.0
Initial ; : :
Elastic 18.0 | 56.0| 98.0| 154.0 | 158.0/| 12.0 | - | 30.0| 54.0 | 70.0 | 72.0
Strain ’ :
g;ﬁ;ﬁ;ﬁy _ 7.0 | 27.5| 50.5 61.0 | 62.0| 8.0| - | 19.0| 32.0 | 0.0 42.0

e
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