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INTRODUCTION

The major results of this work concern perfect ideals of
ordered vector spaces, and a representation theory for ordered vector
spaces. Perfect ideals are characterized by the property that their
annihilators in the order duai are ideals.' We obtain a number of
conditions for an ordered vector space whiéh.are equivalent to the
intersection of the set of perfect maximal ideals being 0. We also
obtain conditions which permit an ordered vector space to be represented
as a subspaée of the sections of a vector bundle. This generalizes |
the representation theory for ordered vector spaces with unit.

Let E be an ordered vector space (0VS), and let ® be
a set of order ideals of E. The map <,> :EX0 > LJOE/I, defined
by <a,I> = a; € E/I, for a e E, I € 0, where a; is the image of
a in E/I, for the natural projection E - E/I, induces a canonical
representation of E into a subspace of the product of the family of

ovs (E/I)I . A map q:\_)GE/I + F, where q restricted to each

0
E/I is an order isomorphism of E/I, and an OVS F, is called a
trivialization of L_’OE/I. Clearly, for'LJ OE/I to have a .trivial-
iiation, it is necessary that all the E/I be isomorphic. If q 1is
a trivialization of \_JGE/I, then the ﬁap a » qa, for a ¢ E, defines
a representation of E as a subspace of ']:(G,F) the set of functions
from 0 to F. More precise representations of an OVS E may be
obtainéd from a system, <,> :EX 0 UOE/I if © and UOE/I can-

be topoldgized, and if U E/I has continuous local or global trivial-

o

izations.
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Let E be an Archimedean OVS with an order unit e. The
intersection of Q(E) the set of maximal ideals of E is 0. The
0OVS E/M is order isomorphic to R the OVS of real numbers, for

any M in Q. Since e is not in any M, e generates E/M as a

M

vectof space. E 1is order isomorphic to a subspace of HQE/M by the

natural representation., The unit e may be used to trivialize lJQE/M.

The map _qe:LJQE/M -+ R, defined by. qe(xM) equal the unique real

number A such that Xy = AeM, is a trivialization. Since Q may be

given thé wéakest topology such that the functions gi:Q -+ R, for a € E,

are continuous, E may be represented as a subspace.of the space.of

continuous functions from  to k. The_set Q2 , endowed with this

topology is topologically isomorphic to Be’ the set of positive linear

functiogals on E for which h(e) = 1, endowed with the weak topology

of the order dual of E. This approach to the well known representation

theory of Archimedean OVS with units forms the basis of our generalization.
An ideal I of an OVS E is called modular if E/I has an

order unit, and a positive element a of E is called a mod unit of

I if ay is a unit of E/I. The representation theory for OVS with

units may be generalized to OVS which'have sufficiently many modular

ideals. These ideals will be used to construct local trivializations

of U éE/M.
If. <E,F> 1is a dual system of (reél) vector spaces, where E

and F are ordered, and if <x,y> 2 0, for any positive x in E, and

any positive y in F, we call <E,F> a dual system of OVS, If

<E,F> 1is a dual system of OVS, énd I 1is an order ideal of E, we

(vii)



obtain a number of lemmas relating the order dual of E/I to Io, the

annihilator of I in F, Preservation of order and topological
properties by quotients of. OVS is disclosed.

The annihilator of an ideal of an OVS E is not necessarily
an ideal of E#, the order dual of E. We study a class of ideals
which are called perfect. These were introduced by Bonsall for OVS
with units in (1) and by KistVfor directed OVS in (8). We
characterize perfect ideals of directed OVS as those whose annihilators
~in the order deai are ideals. The annihilators of perfect maximal
ideals are one-dimensional ideals in the order dual. If an OVS E
has a unit e, then this fact may be used to correspond perfect maximal
ideals of E to the extreme points of the set Be of E*, If E Iis
an Archimedean OVS with a unit e, then <E,E*> is a dual system
of normed OVS, The Krein-Milman Theorem may be applied to assert
that 'Be is the weak-closure of the convex hull of the extreme points
of B. We show that this assertion is equivalent to the perfect
maxiﬁal ideals of E having O intersection, and this is proved without
using the Krein-Milman Theorem. When <E,E*> is a dual system of OVS
iﬁ which E has a weakly closed cone, we obtain conditions on E and
E* which are equivalent to the perfeet maximal ideals of E having
O intersection. This generalizes the results for thé case that E is
Archimedean with a unit., If E is an Archimedean lattice OVS with
unit, fhen the HK-closure on the set of perfect maximal ideals is shown

to be a topological closure.

(viii)
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The first chapter will introduce the basic terminology and
contain the definitions and results from the theory of topological
vector spaces which will be needed in future chapters. Use of the
contents of Chapter I willbsometimes be made without explicit
reference.

The second chapter will introduce the basic concepts of the
theory of ordered vector spaces, and develop the algebraic aspect of
the representation theory. Although most of the results of this
chapter are known, our development of the theory permits thg simplification
of many proofs.

In the third chapter we will intrpduce a type of OVS E, called
an absolute OVS, whose order is induced from a map ||:E > E, which
satisfigs some of the properties that fhe map x > [x| =xV-x 'in a
lattice OVS E satisfies. For absolute  0VS we have natural definitions
of homomorphisms and ideals. An absolute ideal is called prime if
XA y=0 dimply x or y is in P. The hull-kernel closure generated
by the prime ideals is a topological closure.

Chapter four will contain the results concerning dual systems

of OVS, those concerning perfect ideals, and the representation theory.
t
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CHAPTER I

PRELIMINARIES

This chapter introduces the basic terminology and contains
the definitions and results from the theory of topological vector

spaces which are needed in future chapters.

j 74 Terminology

Let X,Y be sets, We use.the standard notations x € X,
x¢X, XCcY, X=Y, XNY, XUY,and {..:....}. For sets
X and Y, the set {x e X : x ¢ Y} will be denoted by X“Y. The
empty set will be denoted by @; the power set of a set X by 7U(X);
and the set whose elements are ordered pairs of elements of X and Y
by XY, If AC XXY, then A_l will denote the sef {(y,x)
e YXX : (x,y) € A}.

A function or map between sets X and Y will be denoted
by f:X - Y. The notation x =+ F(x) may be used sometimes to define
functions.v If f:X > Y 1is a function, then A > f(A)) = {f(x) e Y :
x‘e A}, fér A C X, specifies a function. The notation (xi) .

iel’

"where xi € X will also be used sometimes to denote a function from

I to X and when it is used,the function is called a family.
If (Xi) iel is a family of sets, LJ.IXi will denote the

set {x : x e X, for some 1i e I} and F1IX1~ will denote the set

i
{x : x¢€ Xi’ for all i.e I} o . If (Xi)

iel is a disjoint family
= @, for any i # j, then there

of sets, that is, such that Xi(\ Xj

is a natural surjection p:U IX + I defined by p(x) = i, for the

i



unique i € I, such that x € X,.

surjective map, then.

sets., If (Xi)

iel

2 |

i

is a family of sets, then (Xi>< i ie

h

Conversely, if p:X >+ 1 is a

X, = p'l(i)) 4 ¢ 7 1s adisjoint family of

I

is a disjoint family,and UJ Xy = U XX (i} is called the

disjoint union of the family ‘(Xi)

: Al - I i

The set

9.6

g ™ {f:1 »

U Xy pf:I *-CJIXi > 1 is the identity map on I} is called

the product of the

family (X,)

1" 4. 1°

If S 1is an equivalence relation on a set X, the set of

equivalence classes,called the gquotient set of X by S ,will be

denoted by X/S, and (x)S, or briefly, x

equivalence class which contains

x e X.

will denote the

A set X endowed with reflexive,. transitive antisymmetric

relation is called

For any:. a,b € X, [a,b]

and lJa,b[ will

from PX) to P (X)

an ordered set,

denote the set

is a closure operator.

Let

will denote the set {x e X :
{x e X :ac<zx<bl,

defined by A » [A] = U {[x,y]

(X,<) be an ordered set.

a< x < b}

The map

: X,y € A}

An ordered set D is said to be directed (up) if,for any

a,b € D, there exists an upper bound of the set {a,b}. A function

(@) 4 e p

A subnet of a net
té some subset D~
of a net (ai) i€

each 1 € D there

Let X be

(@) 5 ep

of D which is also directed.

D

is an 1* & DE

an ordered set,

such that 1° > 1.

A net

(@) 5 ep

A subnet (

from a directed set D to a set A is called a net.

is the restriction of the function

2;) 5§ ¢ p-

is confinal if D” is confinal in D, i.e., for

in X 1is said



to order converge to a limit a € X if a = \/i A P13y
2 » -
/\i \(j>i aj, and we write a, *a,or o'lém a a, If

i
(ai) is an o-convergent net in X, then any cofinal subnet

1e€l

also converges to the same limit. A net (a.)

i i eD is increasing

(decreasing) if the function is monotone (antimonotone). We write

for an increasing net in X and for

(8t 4 e (a4 4 ¢ p
a decreasing net in X. An ordered set X is called conditionally #

(conditionally + ) complete if any bounded increasing (bounded
decreasing) net in X converges.

Let S and T be ordered sets. A pair of antimonotone
maps 0:S > T and 1:T -+ S such that x‘< TG(x); for any x € S,

and y < ot(y), for any y € T, is called a Galois connection
) ’ g

between S and T. Let A and B be sets, and let ¢ be a subset
of A)(‘B. The maps A DV >v' = (beB: (a,b) € ¢, for all a e V},
B E}If-+ U" =f{acA: (a,b) e ¢, for all b € U} define a Galois
connection between 1FQA) and 1°(B) called a polarity. The maps
i :'1°(A) > 1°(A) and 97 70(B) - 70(3) are closure operators.,
The sets {Ve 2() : V= (V)"} and {Ue 2B : U= @)% are
the closed sets of f’(A) and fa(B) respectively. The closed sets
form complete lattices in the ordering by inclusion,in which greatest
lower bound means intersection,and the lattices are dually isomorphic.
Let X be a set and «f a coliection of subsets of X. The
maps
(1) XU->HEOU) = {Ied: UCI} and

(2) JOVK(W) =N{Zed: IeV}



define a polarity between ‘P(x) and 7’(.9 ) ,called the hull-kernel
polarity generated by the collection . in X. If ! is closed under
intersectiéns, then the elements of ! are KH-closed in P(x). The

A
‘are called HK-open sets. The sets Ua’ a € X, are a basis for the

sets in /)(.Q) of the form U, = {I e :A¢I},‘ for Ae W(X),

HK-open sets in the sense that U, = VU U . The HK-closed sets
A ae Aa

A® for some A C X, since "UA =

H(A) = HKH(A) 1is closed,and conversely, if V is HK-closed, then

may be expressed in the form ~U

V=HK(V) = {ITed :RK(V)CI}= g vy
A HK-closure generated by a set X and a collection of sub-

sets Wl of X is a topological closure if,for any I e, U, VCJ,

K(U) N K(V) € T implies that either K(U) €I, or K(V) € I. It

suffices to show that for any U,VC {, HK(UU V) = HK(U) U HK(V).

If I ¢ HK(U), then K(UU V) C K(U) C I, which implies I ¢ HR(U U V).

If I e HR(UU V), then K(U)N K(V) = K(UU V) € I. Hence K(U) C I,

or K(V) C1I.

2. Vector Spaces

All vector spaces considered in the following will have the

real numbers as scalar field. All unquantified small Greek letters

r

will be real numbers, R will be the vector space of real numbers,

e

and +R' the set {x e R : x 2 0}.

Let E be a vector space. A vector subspace (briefly, subspace)

of E is a non-empty subset M of E closed under addition and scalar

multiplication, that is, such that M+ MCM and RM C M.The set of

all subspaces of E 1is closed under arbitrary intersections. If A is



a subset of E, the linear hull of A is (A), the intersection of
all subspaces of E that contain A; (A) is also called the subspaée
of E generated by A and can be characterized as the set of all
linear combinations of elements of E.

If M  is a subspace of a vector sﬁace E, the relation
Xy if x -y eM is an eéuivaience.relation on ﬁ. The quotient
set will be denoted by E/M, and (XM), or briefly, Xy will denote
the equivalence class generated by x € E, which is the set x + M.
The set E/M becomes a vector space by the definitions Xy + Yy =
(g + y)M, AxM = (Ax)M.

Let E,F be vector spaces. A functién f:E > F is called
a linear map if f()\lx1 + Azxz) = Alf(xl) + sz(xz),for X1s Xy € E.
The.set L(E,F) of all linear maps of E into F, becomes a vector
space with the &efinitions (f1 + f2) (x) = fl(x) + f2(x) and Afl(x) =
fl(lx), for f f, e L(E,F), x ¢ E. The vector space E# = L(E,R)

172

is called the linear dual of E,and its elements are called linear forms

(linear functionals) on E. The vector spaces E and F are called

(1inearlz)‘isomorphic if there exists a linear bijection f:E - F; such

a map is called an isomorphism of E onto F.

1

If f:E > F is a linear map, the subspace ker(f) = £ 7(0)

of E 1is called the null space (kernel) of f,andf defines an isomorphism
£- of E/ker(f) onto im(f) = f(E). If p is the quotient map
E > E/ker(f) and q is the inclusion map Im(f) » F, then qf“p is

called the canonical decomposition of f.

Let E be a vector space. A subset MC E 1is called a linear



—
R— e

yariety (flat) if M = xo'+ Mc” where M(; is a sui)space of E and

x € E. A variety H of E is called a hyperplane of E if

H=x+ H" where H” is a maximal subspace of_ E. For any h ¢ E#,

h # 0, and any A € R, the set h-l(A) is a hyperplane of E. Conversély,
for any hyperplane H in E, there exists h ¢ E#, h#0, and X ¢ R,

such thét H = h_l()\), and' H is a subspace if and only if X = 0,

-1 -1 - s
If H= hl ().1) = h2 (Az), for hl’hz e E, h1 # h2, then there exists
TR l;,u # 0, such that h1 = uh2 and Al = ulz.

Let E be a vector space. For any x,y € E, the set xy =
{ax + By € E: a,B >0, a + 8 =1} is called the segment between

x and y. An open segment is a segment with its end points deleted.

A set S CE is called convex if, for any X,y e S, the segment xy

is contained in S. The intersection of a family of convex sets is

convex. Hence each subset S CE is contained in a smallest convex

set conv(S), called the convex hull of S. For a non-empty convex set

CCE, aset SCC is called extreme in C if C # ¢ and each

segment in C having an interior point i.e., a point of the open

segment, in S is contained in S. A variety M of E 1is called

a supporting variety for C, a convex set in E, if M N C “is extreme.
Let E be a linear space. A‘sgt ACE is called circled

(balanced) if [-1,1]JA € A. The intersection of any family of circled

sets is circled. The set Cir(A), intersection of all circled sets

containing a set A C E, is called t_he circled hull of A, If sets

A,B are contained in  E, A absorbs B if there exists o > O such

that B € )A for ) 2 o , equivalently, there exists o > O such

that,for any wu,u #0, if v s a, then MBCA. Aset ACE is



absorbing (radial) if A absorbs each finite subset of E. The set
of absorbing subsets of E is closed under finite intersections; _A
set ACE is a radial at a point " xeE if and only if A7x
absorbs each set {y}, y e E. Let h:E > F be a linear map, A a
circled subset of E, and B a circled subset of F, theﬁ h(A) and
h_l(B) are circled. If C .is an aﬁsorbing subsét of F, then h-l(C)
is absorbing. If A is an absorbing subset of E and h 1s surjective,
then h(A) is absorbing. A circle set ACE is absorbing if and only.
if for any x € E, there exists @, # O, such that @x e A.

Let E be a vector space. A function p. from E to R is
called subadditive if p(x + y) < p(x) + P(y), for all x,y in E;

p is positive homogeneous if p(ix) = Ap(x), for A >0 and x in E;

p 1is sublinear if it is both subadditive and positive homogeneous;

p: 1s absolutel§ homogeneous if p(ix) = A p(x), for all A and all
ﬁ € E; p 1is a semi-norm if it is both subadditive and absolutely
homogeneous. A seminorm p is a norm if p(x) = 0, if and only if,
x =0, for x € E., If p:E >R is sublinear, then p(0) = 0 and
-p(-x) < p(x). If p:E >R is a semincrm, then p(x) 2 0, for all x
in E, and ker(p) ={x € E : p(x) =0} ‘is a linear subspace of E.
There is a bijection between the set vaseminorms on E and the set
of subsets of E which_are convex, circled, absorbing and contain O,
This correspondence is given by p * Mp = {x€E:p(x) £1} and
by M +APM(X) = inf{a e R : @ > 0, 1/ax € M}. The seminorm Py is
called the (Minskowski) gauge determined by the set M.

Let p:E > R be a sublinear functional on a linear space E



and let Kp = {h ¢ E# : h(x) < p(x), for x e E} , then the set

Ex(Kp) of extreme points of Kp is nonempty and,for each x € E,
there exists h ¢ Ex(Kp) such that h(x) = p(x). This is a result
of F. Bonsallwhich in part,contains the result of Banach that l(p

is nonempty.

3. Topological Vector Spaces

Let E be a vector space., A topology WL on E is called

a vector topology for E if:

(VTl) the map +:E X E = E, defined by (x,y) > x + y,is
continuous, and »- |

(VTZ) the map +:RXE »> E, defined by (A,x) = Ax, is
continudus where B ie endowsd with Y, and EXE
and RXE are endowed with the product topologies.

The pair (E, W) 1is called a topological vector space (TVS) and

is denoted by Eq. If W is a vector topology for E, then O
possesses a neighborhood base 13 satisfying

(1) for each V € P, there exists U € B such that

u+ugy,

(2) every Ve B is circled an absorbing.
A filter base 3 in E satisfying (1)’and (2) is a neighborhood
base of 0O for a unique vector topolc')gy W on E, and will be called
a base for a topology on E. A TVS Eae is a Hausdorff space if and
only if NB = {0}, where B is any neighborhood base of O in E,

equivalently, if,for any x € E, x # 0, there exists a neighborhood.

U of 0 such that x ¢ U. A subset B of a TVS Euis bounded



I

if it is absorbed by all neighborhoods of O in E.

A TVS Eq, 1is called locally convex (l.c.) and U is called

a locally convex (vector topology) if the convex neighborhoods of O

form a base at 0. If E is a linear space, a filter base B in E
consisting of radial, convex, circled sets satisfying, K V ¢ B implies
1/2v e B, is a bgse for a unique 3oty toﬁology.; A family (pi) fe1
of seminorms on E determines a 1l.c. tbpology on E as follows:
the collection 13 = {I/nU}, for n, a natural number,and for U, an
intersection of finitely many Ui w {xeB 2 pi(x) < 1}, is a base
for a l.c. topology on E, the topology generated by (pi) {1
Conversely, every l.c. topology on E 1is generated by a family of
seminorms; iﬁ suffices to take the gauge functions of a family of
convex, circled, neighborhoods of O whose positive multiples form
a subbase at 0. Every member of a family (pl:E -+ R) té T of
seminorms is continuous in the topology generated by tﬁe family, and
the topology is Hausdorff if and only if,for any x ¢ E, x # O, there
exists 1 ¢ I such that pi(x) 2.0,

Let E;WL’ For be TVS, A linear map h:E * F 1is continuous
if and only if,it is continuous at O iﬁ E. 71If the topolégies u.,v

are l.c. and is a family,of seminorms generating W ,

() e
then h is continuous if and only if,for each continuous seminorm
q:F > R, there exists a finite subset NC I and A > O such that
q(h(x)) < Xsupri(x), for all x €E.

Let E‘LL be a. TVS. The vector space Ezt of all continuous

linear functionals on E is called the topological dual of E.
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Let E'LL be a TVS, N a (vector) subspace of E. The quotient
topology W for E/N is the finest topology on E/N for which the
projection p:E » E/N is continuous. This is a vector topology and

(E/N) o "is called the quotient space of E over N. A base for 'ZL

may be given by ’BN = { vy = V+N:VeB) where B is a base for
W . The projection p "is an ope'n map. If Fv. is a TVS, a linear
map h:E/N + F 1is continuous if and only if, h:E + F is continuous on
E. The quotient topology a is Hausdorff if and only if, N is closed

in E and W is 1l.c. if U is l.ec.

4, Dual Systems of Sets

A pairing of sets A,B to aset C is amap <,> :AXB~>C
which satisfies the separation properties‘:
(1) for any a;sa, € A, there exists b € B such that
. <a1,b> # <a2,b> and
(2) for any bl,b2 € B, there exists a € A such that
<a,b1> # <a,b2 |
A pairing <,> :AXB > C will be denoted by <A,B;C> and will

>.

also be called a dual system of sets or a d.ualitz.

Let <A,B;C> be a duality, let ¥ (A;C) be the set of all
functions from A to C, and let 'F(B';C) be the set of all functions
from B to C. The map A > F(B';C) defined by a(b) = <a B>,

for a e A, b ¢ B, is an injection called the canonical representation

of A determined by the duality <A,B;C>. The canonical represent-

ation "~:B » F(A,C) is defined analogously. The images of A and
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B will be denoted by A and ﬁ, respectively.

If <A,B;R> 1is a dual system of sets paired to R, the
set of real numbers, we}abbreviate <A,B;R> to <A,B>, The sets
¥ (A;R) and  P(B;R) are vector spaces and have an order relation
under the pointwise definition of these operations and relations.
The order relation may be 3ubduced,.£y restrictioﬁ, to A and é
from QF(B;R)V and “¥ (A;R), respectively. Similarly the linear
operations may be subduced to at least partially defined operations
on A and lg Since the maps “:A > Ag_ F(B;R) and ~:B >
l;S 'F(A;.R) are bijections, the structure on A and l; may be_
transferred to A and B, respectively. The pairing funétion
<,>:tAX B » R is bilinear with respect to‘ these induced operations,
whenever they are defined.

JLet <A,B> be a dual system of sets (péired to R). The

.weak topology (w(A,B)) for A, determined by <A,B>, is the weakest

topology on A for which the functions in B are continuous. A
neighborhood base for a point a ¢ A in the w(A,B)-topology is

given by N(a,W,)) = {a” ¢ A : | <a”,b,> - <a,bi>l <A, b, e W},

i i

for every finite subset W of B, and for every X ¢ R. The topology

w(A,B) is Hausdorff, since, for any a;»3, £1X, a; # a,, there exists
b € B such that <al,b> # <a2,b>; lgt A= |<a1,b> —'<a2,b>| /2, then
N(al,b,l)l\ N(azb,k) = @, A net (ai) § in A converges to an

element a € A in the ﬁ(A,B)-topology if and only if, <ai,b> converges
to <a,b> for each b.t B,
Polarities arise naturally in dual systems of sets. Let

<A,B;R> be a duality ,and let 1°(A), 7°(B) be the power sets of A



12

-
- -

and B respectively. The maps o:1D(A) -+7O(B), defined by U ~» v° =
{beB: <a,b> =o0, for a e A}, and °. ) -*ﬁ(A),defined anal-

ogolously, are a polarity, the polarity of annihilation, and U° is

called the annihilator of U.

5 Dual Systems of Vector Spaces -

A duality <E,F> is called a dual system of linear spaces

if E and F are linear spaces and <,>:EX F +> R is a bilinear
functional. If <E,F> is a linear duality, the 'imége_ of E under
the canonical representation is a subspace of F#, and the image of

F 1is a subspace E#. 'i‘he w(E,F)-topology on E 1is a 1l.c. Hausdorff
vector topology. A linear map f:E + R is w(E,F)—continuous if and
only if,'there exists y € F such that fl(x) _ER T for all x¢E.

as a. TVS.

Thus is isomorphic to

Ry (F,E) B (E,F)
If E'll. is a 1l.c. Hausdorff TVS, then, as a consequence

of the Banach Theorem, E;‘ separates points of E. Thus the bilinear

map <,>:E, X Ey > R defined by <a,h> = h(a), for any a ¢ E,

h € E° is a natural pairing of Eq and Eq,. If <E,E™> isa

dual system of linear spaces, then W is a 1l.c. Hausdorff‘topology,
since W is finer than w(E,E”) and . w(E,E”) is 1.c. Hausdorff.
Let <E,F> be a dual system of linear spaces. The maps
®: () > P(), defined by U>U® = {b e F: |<a,b>|sl, if a e U},
e s

and s P(F) > 1(E), defined analogolously ,are a polarity between
f’(E) and f)(F). The polar U® of a subset UCE is a w(E,F)-
closed convex subset of F containing 0. If N is a subspace of

o

- E, then Nf =N° and N° is a subspace of F. The following
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results are consequences of the Banach Theorem. For any subset
U C E, the bipolar U*® is the w(E,F)-closed, convex hull of

) is

UV {0}). This is.called the Bipolar Theorem. If (U {e1

1

a family of w(E,F)-closed convex subsets of E, each containing
0, then the polar of U = N Yy is the w(E,F)-closed convex hull

°°  if and only

of \J IUi' If N is a subspace of E, then N =N
if, N is w(E,F)-closed. The map N - N® is a dual isomorphism
of the lattice of w(E,F)-closed subspaces onto the lattice of
w(F,E)-closed subspaces of F, the lattice operations being defined
1\/ N2=ﬁ11§;; Q—closure of Nl + N2.
Let IElL be a 1l.c. Hausdorff TVS, let N be a subspace

b? Nll\ N2 = N1f1 N2 gnd N

of E, and let p:E > F = E/N be the projection map. The linear map
(E/N);L-r ﬁo C E, defined by g - gp, is a linear isomorphism and
w(F,FE)_ is the quotient topology of w(E,EQ).

Let Fl& be a 1l.c. Hausdorff TVS, let M\P be a subspace
of F endowed with the topology inﬂuced from FiL’ and let q:M > F
be the canonical injection map. The linear map FZ‘->Mir, defined
by f -+ fq, induces a linear isomorphism between Mi, and F;,/Mo,
and ?he w(M,M”) topology is the topology induced from FW(F,F' y*

Let <F,G> be a dual system‘of,linear spaces, A 1l.c.
topology W on F is EQEEiiEEEE.With the duality if the dual of
F is G. A topology oﬁ F consistent with <F,G> is finer than
w(F,G), hence Hausdorff. The closure of a convex subset C'E_F is
the same for all 1l.c..topologies on F consistent with <F,G>. The

families of bounded subsets of F are identical for all 1l.c. top-

ologies on F consistent with <F,G>. There exists a finest 1l.c.
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topology én F consistent with <F,G> which is called the Mackey-
topology on f with respect to <F,G>.

Let E‘lL be a 1l.c. Hausdorff TVS. The convex hull of a
finite family of compact, convex subsets is compact. The Krein-Milman
Theorem asserts.thatbeach compact, convex set A in E coincides
with the closed convex hull of tﬁe sét Ex(A) df-extreme points of A,
Furthermore, if K is a compact subset of E whose closed convex hull
C 1is compact, then every extreme point of C is in K,

Let <E,F> be a dual system of vector spaces,and if A 1is
a convex, circled set in E containing O, then A® is w(F,E)-compact

In: < Fs

6. Normed Vector Spaces

Let E be a linear space with a norm p. The pair (E,p) is

called a normed vector space. The topology generated by a norm is 1l.c.

and Hausdorff. A complete normed space is called a Banach space. A

~ TVS E“whose topology can be generated by a norm is normable. Two
norms p aﬂd q on E are equivalent if they generate the same top-
ology. It is necessary and sufficient for p and q to be equivalent
that there exist o,B € R such that q(x) < Gp(x) < Bq(x), for all
x € E. The set {x € E : p(x) < 1} is(called the unit sphere of a
normed space - E with norm p. ;

The quotient space of a normable (and complete) TVS E‘t( over
a closed subspace N of E 1is normable (and complete). If p 1is a

norm which generates W , then' Xy -> E(xN) winf [(p(x) :t x € xN} is

a norm which generates thé quotient topology on E/N.
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If E is a normea space with a norm p, and WU is the
topology generated by p, then h + q(h) = sup{ [h(x)| ¢ p(x) s 1}
is a norm on Ea‘, and EJ, 1is complete in this norm. The unit
sphere of ~ (E7,,q) is the polar S® of the unit sphere S in

(E,p), and s® is w(E”,E)-compact.
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CHAPTER II

ORDERED VECTOR SPACES

This chapter is concerned with the general properties of
ordered vector spaces,and With the algebraic aspects of their

- ideal and representation theory.

y A Basic Definitions

Let E be a linear space. A set KCE is called a
wedge if:
| (Cl) 0 e K,
‘(cz) K+ KCEK,

(C,) XX <K, for all 1 > 0,

3
A wedge. K is called a cone if
(c,) K N -x = {0},

A cone K in E induces an order £ on E by a £b if

b - a € K. Moreover, this order satisfies

(01) a b implies 2Aa 5 b, for X > 0, and Ab < )a,
for all X <0,
(02) as<b and ¢ £ d impiy .a+c¢c &b+d.

An order < on a linear space E which satisfies (01) and (02)

is called a vector ordering for E. If < is a vector ordering on

E, then K= {x € E : 0 £ x} is a cone in E, A pair (E,+E), where
E is a linear space and +E is a cone in E, is called an ordered

vector space (OVS).
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(1.1) Lemma: For any a,b in an OVS E, awv b exists if and only

if ,there exist ¢ € E such that (a + +E) N (b + +E)= c + +E.

| ' +
Proof: Suppose there exists c¢ € E such that (a + +E) N (®+ E) =
c + +E. We show that ¢ = aw b, Since c e c + +E, we have ¢ € a
++E and ceb++E. . This itﬁpl-ies c=a+x=b+y, for some

X,y € +E, which implies ¢ 2 a,b. If u 2 a,b, then u =a + (u - a)
=b + (u - b), which implies u e a + +E and ueb+ +E, which
implies u e ¢ + +E, which implies u = c¢ + w, fof some W € +E.

Thus, ¢ = a v b, Conversely, if awv b exists,we show that

@+ mEYN®G+TE)=avb+TE. If ucavb+TE, then u=awvhb

+ w, for some w 2 O, which implies u > a+w and u > b + w. Hence,

C 4 ” f ” ”~ +
u=a+w+w and u=b+w+tw , for suitable wiw in E.

Thus, ue (a+ EYAGB+TE). If ue (a+ TE)N @ + TE), then

u=a+z=>b+ z; which implies u > a,b, which implies u > awv b,

which implies u=awvb+ 2”7, for some z°7 ¢ +E. Thus, ueawvhb

+ g,

The following identities are valid in an OVS E, if the
required meets and joins exist on one side of the identity:

(1) (aAab)+c=(a+c)Aan (b+c)i(avb)+c=1(a+¢c)V

4

(b +¢c),

(2) A(anDb)=2raA b; A(aw b) = dawv Ab, for A > O,

(3) -(aA b) = -awv-b; -(awvhb)

-a A\ -bc

Furthermore, if aw b exists, then aA b =a+ b -(awv b) since,

a+b-(avb)=a+b+ (-aA-b) =(a+b=-a)A(a+b=-b)= anhb,
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Let E be an OVS. For any subset AC E, we have [A] =
U {Ix,y]: x,y e A} = (A+"E)YN (A - YE). A subset BCE 1is

called (order) saturated if B = [B]; it is immediate that,for any

ACE, [A] is the intersection of all saturated sets containing A, and

[A] is called the saturated hull of A. Furthermore, [A] 1is convex

if A is convex and [A] is circled if A is eircled. If ¥ is a
filter base in E, then {[F].: Fe¥lis a filter base in E, the
corresponding filter will be denoted by [¥F].

Let K be a cone in a linear space E., If E = K + (-K),
then K is called reproducing. The order induced by K is directed
if and oniy if, K 1is reproducing. To show that a vector ordering is
directed ,it suffices to show that any x € E has a positive upper

bound. A vector ordering is called almost Archimedean if whenever

x,y € E; are such that =-Ay ¢ x £ Ay, for all X > 0, then x =0,
A vector ordering is called Archimedean if,whenever x,y ¢ E are
such that 0 <y and x < Ay, for all A >, then x < 0. Every

Archimedean ordering is almost Archimedean.

2 Order Ideals

If F is a linear subspace of an OVS E, then F becomes an
OVS when it is paired with the subduced cone +F = +E nF.
A subspace I of an OVS E, which satisfies any of thé

following equivalent conditions ,will be called an (order) ideal of

E'

(1) I=1[1]ie., x,z€e I and y ¢ [x,z] imply y ¢ I,

2) x¢ +I, y € [-x,x] imply y e I,
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3) x¢ +I, y ¢ [0O,x] imply vy e I.
The proofs that (1) implies (2), and (2) implies (3) are trivial,
To see (3) implies (1), suppose x,z € I and y e [x,z]. Thus,
OSy—x‘sz-—x and z—xe+I,whichimplies y~-x¢e I, and .
so y=(y-x)+x is an e;lement of I.

%5 = lo} end

An OVS E, is trivially ordered if and only if
E is fully ordered if and only if, E = "EU (-'E).
Subspaces of an OVS E , which are trivially ordered in the

subduced order are clearly ideals.

(2.1) Lemma: (Edwards (4 )). A linear subspace I, of an OVS E,

g.

is an ideal if and only if, I N Y is extremal, or I n *x

Proof: If I 1is an ideal of E, then A =1 N TE is convex and
_contains' zero. Suppose x € A where x = )}p + (1 -1\)q, for p,q € +E,
and O < )X < 1. We have O < Ap £ x, which implies Ap € I, and so
pelINn +E. Similarly, q € I ﬂ+E. Since A 1is convex, the segment

pq 1is contained in A; thus, A is extremal., Conversely, suppose

I (\+E = A is extremal. If O < x <.y, for y e I, then 1/2y =

1/2(y - x) + 1/2x and 1/2y¢ I ﬂ+E.. Since A is extremal, x e IN +E,

T

and so I is an ideal.

3. Order Homomorphisms

Let 'E and F be OVS, and let L(E,F) be the vector
space of linear maps from E to F. An element h in L(E,F) is

called o-bounded if for any order interval [x,y] in E, h ([x,y]) is
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contained in sdﬁe order interval in F; h is called positive

(an order homomorphism) if h(+E) C +F. The map h is positive

if and only if ,h is isotone. If h is positive, then h is
o-bounded;siﬁce h([x,y]) = [h(x),h(y)]. Amap h is called an
embedding if h is an injection anq h(x) 2 0, for x e E, implies
x 2 0, An order isomorphism is a linear bijectioﬁ h:E » F such
that h and ,h-l are positive.

A map h:E > F, in the category of OVS and positive (linear)
maps ,is a monomorphism if and only if,it is injective. First,we know
that since h may be regarded as a map in the category of linear
spaces and linear maps, h is injective if and only if, ker(h) = {0}.
If g:E“ > E and f:E” » E are maps such that hf = hg, and’if h
is injective, then h(f(x) - g(x)) =0, for x € E{ and since ker(h)
= {0}, we have f(x) - g(x) =0, for all xe¢ E, i.e., f =g. Con-
versely, if h is monomorphic, then ker(h) is an OVS. The zero
map and the injection map from ker(h) to E are positive maps and
hO = h inj. Thus,since h is monomorphic, O = inj ana so ker(h) = {0}.

Surjective maps in the category of OVS .and positive maps
aée epimorphisms, If h:E + F is a surjective positive map,and if
j:F > G and k:F > G are positive maps éuch that jh = kh, then
j(x) = k(x) for x € h(E) = F. and so j = k.

A map in the category of OVS and positive maps may be both
an epimorphism and a monomorphism without being an isomorphism. If
E has a non-trivial cone +E, then the identity map i: (E,{O}) » (E,+E)

is bijectiﬁe, hence it is both a monomorphism and an epimorphism,
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However ,it is not an isomorphism.

Let E and F bé- 0VS. The kernel of a positive map
h:E = F is an ideal,because ker(h) is a subspace and if
b 4 - ker(h), 0<x, y-e [0,x], then O = h(0) < h(y) £ h(x) = 0,
which implies vy ¢ ker(h). If I 1is an ideal of E, then the

quotient E/I can be given a vector ordering so that the projection

E + E/1 1is positive. We show that E; = {x+I1eE/I:xc¢ +E}

is a cone in E/I. It is clearly a wedge. If a + I = -b + I, for
some a,b ¢ +E; then a+b =1 for some i ¢ I. Hence, a and
b. are in [0,i], which implies a,b € I, which implies a + I =

" b+1I=1, Thus; +EI(1 (—+EI) = 0. We have that x. > 0 if and

I

only if there exists a y e x, such that y > 0. If E is directed,

i X
then E/I is also directed, for any ideal I in E, for if x + I ¢ E/I,
then x+ I = y-z+I1I=y+1<2z+1I for some y,z € +E, and so
x+ I and 2z + I are positive.

Let E and F be O0OVS, 1If é positive map h:E -+ F 1is sur-
jective and if h('E) = *F, then the map h-:E/ker(h) - F, defined by
h;(xI) = h(x), is an order isomorphism. We have that h” is a linear

bijection. If X; € +EI’ then there exist vy ¢ Xp such that vy e +E

. and h'(xI) = h(y) € +F. If z.e +F,(then there exists x € +E

+

such that h(x) = z, and so h?fl(z) = XI € B 1

;- Hence, h® and h
are positive.

Let h:E > F be a positive map between OVS E and F. if I
is an ideal in F, theh h—l(I) is an ideal in E, since h_l(I) is

a subspace,and if x ¢ +E; y € +(h—l(I)), and x sy, then h(x) < h(y)
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implies h(x) is in I and so y ¢ H_l(I).

Let h:E > F be a positivemap between OVS E and F. 1If
I is an ideal of E which is contained in ker(h), then there exists
a unique ﬁésitivé map h*:E/I » F obtained by composing the projection
E/I > E/ker(h) and the map h”:E/ker(h) - F.induced by h. |

| Lét E and F be. bvs; and let +H(E,F) be the set of positive

linear maps in L(E,F). The set +H is always a wedge in L(E,F).
However, in general +H is not ; cone., .If E is directed, then +H

is a cone., To verify that +H n - +H = {0}, suppose that h s.+H(\ - +H.

+F, —h(+E) c +F, and so h(+E).='0. Since E is.

We have h(+E) e
directed, évery x ¢ E is in some [-a,a], for a ¢ +E. Hence h(x) = 0,
for all x € E. Thus +H is é cone. 7
Let _E and F be O0VS, suéh that +H(E,F) is a cone in L(E,F).
This provides a'natural order for L(E,F). If F 1is Archimedean, then
ény subspace M of L(E,F) 1is also Archimedean in the subduced ordering.
Suppose f e M, g € +M and f < Ag, for all X > O, then for any
X € +E, we have f(x) < Ag(x), which implies f(x) < 0: thus, f < O.

If E is a directed OVS, then the directed OVS E* = +H(E,R) +

(-+H(E,R)) is called the order dual of E.

[ 4

4, Direct Products and Sums of Ordered Vector Spaces
. - I
Let (Ei) ie1 be a family of OVS. The set IEi becomes
an OVS with the linear structure defined by the pointwise operations,
and with the cone +(HIE1) = {f ¢ HIEi s B (L) € +Ei for i e I}. The

projections Py * IIIEi - Ei’ for i e I, defined by pi(f) = f(i), are
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positive maps. The subspace @ IEi ={fel Ei : £(i) = 0, for all

I
but finitely many i ¢ I}, with the subduced ordering is an OVS.

The injections q; * Ei-+ C)IE defined by [qi(x)](j) equals x

i’
if i = j; and equals 0 if i # j, are positive maps. The OVS

I and @ IEi are called the (order) product and (order) sum

|

respectively,of the family of OVS (Ei) { Clearly, finite sums

e I°

and products are isomorphic.

(4.1). Lemma: If an OVS E, is the sum @AEi of a family (Ei) 1eA

of O0VS, then the family (Ii) § kb where I, = qi(Ei)’ Fhe canonical

i

image of E, in E, is a disjoint family of ideals of E, and E.=

i
I,, and +E = z +I Conversely, if (I,) is a disjoint
ATi’ A 71T 4 i i e A
family of ideals of an O0VS E, such that E = Z'I and +E = Z +I

ATi A 7i°
then E is isomorphic to (B AIi'

Proof: Suppose f,g ¢ +E, g € Ii s and £ € g; for i” € A, then
£(i) < g(i), for all 1 e A, and g(i) = 0, for i # 17, implies

f(i)

0, for i #1ij andso fe I Clearly I, NI, = {0}, for

i’ 3
i#3j. 1f f e E, then f = EN qipi(f), for a finite subset N of A,

where Py ¢ @AEi > Ey and q * E; —»@AEi are the natural project-

ions and injections; furthermore if f € +E, then q (f) € +I

iPi i

since the composition of positive maps is positive. Conversely, if

(1.) i is a disjoint family of ideals of an OVS E, for which

i € A

al; and +E = ZA+Ii’ then each f in E has a unique decomposition

€ ;i and N is a finite subset of A. The map

E

L}
e T et |
L]

h
n
h
)
=
]
Iad
o
Fh

f >f where f(i) = £f,, for f ¢ E, 1 € A, is a vector isomorphism

i’
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between E and @AIi, and since f € +E, if and only if, f = ZNfi
+

where fi > Ii’ this mapping is an order isomorphism.
5. Projective and Injective Limits of Ordered Vector Spaces
A projective (inverse) family of OVS 1is a net (Ei) ieD

i
of OVS together with a family of positive @aps -(hiEj -+ Ei) 1, ¢ D’

i5 9 which satisfies.

(1) h, is the identity map on E for 1¢ D,

- hih?:Ek > E, for 1<j <k in D

A morphism of a projective family of OVS, (hi:E

(2) n

e s

37ED) 496D 1 <9

is a family of positive maps (gi:H > Ei) Fopin which satisfies

-l :
gy = hig,, if 1s 4.

: 3
A qujectlve limit of a projective family, (hiEj > Ei) 1,jeD, i< 3

is a mogphism pi:proj limDEi <h Ei for which, given any morphism

(gi:H o Ei) {ieD there exists a unique positive map g”:H - proj limDEi

such that pig’= By for all i e D.

3. :
.If (hi'Ej 3 Ei) 1,3 DL & 4

then the projective limit of this family may be constructed as follows.

is a projective family of OVS,

~The set E = {a € IIDEi : a(d) = hi(a(j)); whenever i ¢ j}  is a linear

subspace of HDEi’ because, if a,b ¢ E: then wa(i) + tb(i) = hi(ua(j)) +

hi(rb(j)) = hi(ua(j) + t(j)), for i < j, implies wa + tb ¢ E. With

v

the subduced order, E is an OVS. The maps pi:E > E, defined by

1
pi(x) = x(i) are positive and pi(x) = x(i) = hi(x(j)) = hipj(x), if

Fosid. . If (gi:F > Ei) is a fémily of positive maps which satisfy

ieD
8y = higj,‘for i £ j, then the map g:F * E defined by g(x)(i) =

gi(x), for i € D, for x € F, is positive, and pig =8 since, for
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x e F, Pi(g(X)) = g(x)(1) = g, (x). The map g:F +E is unique, for
if f:F > E satisfies pif =8y then, for x e F, pi(f(x)) = gi(x),
hence , f(x) (i) = gi(x) and so f = g. Hence, E = proj limDEi'

We note further that g:F - proj limDE is an isomorphism

1
if and only if:
‘(a) if gi(b) = gi(b’), for.all 1 €. Dy B,b’ e F, then
b=b",
(b) for any a'e proj IimEEi, there exists b € F such
that gi(b) = a(i), for all i ¢ D,
(c) for any a ¢ +(proj limDEi)’ there exists b e +F

such that gi(b) = a(i).

An injective (direct) family of OVS is a net (Ei)i e D
3.
of OVS together with a family of positive maps (hi i Ej) i,5€eD
1 g 4 which satisfies:
(1) hi is the identity map on Es for i ¢ D,
2) bl = b d.g for 1 <j <k in D.

§1° i k’
A morphism of an injective family of OVS is a family of positive maps

+ H) , which satisfies :

(g;°E; i€D

g = g.hj 151255 4,
. 7 i j) i,jeD 1 <3’
is 'a morphism qi'Ei > inj 1imDEi for which, given any morphism

An injective limit of an injective family, (h

qi:Ei + H, 1 € D, there exists a unique positive map g~”:inj limDEi + H

such that g’qi = 8y for all :i-e Ds

If (hj :E, > E.) is an injective family of OVS,

I | 1" 13 e Dt x5 3

then the injective limit of the fémily may be constructed as follows.

The relation ~ in the disjoint union, \JJ defined by x

D i’ i - yj, where
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X, € Ei’ yj € Ej’ if there exists k € D such that i,j £ k and

ht(xi) = h?(yj), is an equivalence relation. The set E of equivalence
classes may be given the structure of a linear space. If x,y € E,

then, for ‘any x; € X and yj € y, there exists k > i,j such that
k

k k k
hi(xi)’ hj(yj) € Ek and hi(xi) £ X, hj

(yj) €y, and so TX + py =

(Th?(xi) + uhlj((xj))~ defines linear operations on E. The set +E =
{x € E : there exists X € X with X 2 0} is a cone in E. If
X, Y€ +E, then there exist xi'e X, yj €y with xi,yj > 0, and there
iy k k .
exist k € D such that X, = hi(xi) and " " hj(xj) are positive,
hence, x + y = (h:(xi) + hl:;(xj))~ € +E. If x. ¢ +E f\-+E, then
there gxist xi,xj € x such that x; € +Ei, xj € —+Ej, and there exists
. k + k + K
k € D with k > h - =
e D wit i,j such that hi(xi) € Ek’ hj(xk) € Ek’ and hi(xi)
h?(xj) = 0; hence, x = 0, Clearly O € *g and *rtE g;+E. The maps
ui:Ei + E, defined by composing the canonical injections Ei -+ ) DEi >

. - - i .
U pEi/ are positive and uy ujhi’ if i < j. Suppose fi'Ei > F

; i,
is a morphism of (hi.Ei > Ej) $ 4 DY e A If X yj € x, then

there exist k € D with k > i,j and hi(yj)= h§(yj); hence, fj(yj) =
k k ’ .

fkhj(yj) = £, h (x)) fi(xi)' For x e E, there exist x, € E, such

that ui(xi) = x. The correspondence x + f(x) = fi(xi) is a map,

since fj(xj) = fi(xi)’ for any other ¥j e X, and f is positive,

since x ¢ +E implies there exists X, €X with X, € +Ei and
fi(xi) = f(x) 2 0. If f(ui(xi) = fi(xi)’ then fui = fi' If gu, = fi’

then g(ui(xi) = fi(xi) and so g(x) = £(x). Hence, E = inj limDEi'

)

(5.1) Lemma: If an OVS E = U By where (E is a family

i1 eD

of subspaces of E, each ordered with the ordering subduced from FE,
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I

and D is directed and ordered by i < j 1if Eig Ej’ then the family
' j

3. : v :
(qi'Ei > Ej) 1,9 D 1sj is an injective family, where q; are
is the injective

the canonical inclusion maps and (qi:E + E) i

1 e D

limit of this family.

> E) satisfies q = ‘qjhfL if 153,

Proof: The family (qi:Ei

hence, there exists a unique positive map f : inj 1imDEi + E for which
1 is the injection ui:Ei
implies there exists i € D such that x = qi(xi) = f(ui(xi)), f is a

fui =4, where u 2 inj_limDEi' Since x € E
surjection, and furthermore, if x € +E, then ui(xi) € +(inj limDEi).
We have f 1is an injection, since f(x) = 0 implies f(ui(x)) =

qi(xi) = 0 and qi(xi) = 0 if and only if, g = 0, which implies

x = 0, Hence, f 1is bijective, f_l is positive, and so f is an

isombrppism.

6. The Lattice of Order Ideals

Let E be an O0OVS. The cpmplete lattice of KH-closed sets
on 7O(E) determined by the polarity generated by ~2(E), the set
of ideals §f E, coincides with ol (E),_since E is an ideal and
the intersection of any family of ideals is an ideal. We write O
for {0} the least element of J(E). "and, for any set S CE, (s) =

KH(S) is called the ideal generated by S.

(6.1) Lemma: For any set S contained in an OVS E, we have {S) =

[(s)].

.

Proof: Clearly, (S) € {S)» and [{S}»] = <s8) imply [(S)]C (S).
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To show equality, it suffices to show [(S)] is an ideal, and for this
it suffices to show [(S)] 1is a linear subspace. If x,y € [(S)],
then x ¢ [a,b] andb y ¢ [¢c,d], for some a,b,c,d 1in (S). We have
that x ¥'y e [a+¢c, b+d], -x € [-a,-b], and Ax € [Aa,.kb]. These
intervals are contained in [(S)] and hence x +y, -x, and Ax are
in ()], |

\ In particular, if a € E i§ not comparable to O, then (a) =
(a), and if a ¢ +E, tﬂen {a) =AL£ 0 [-Xa, Xa]l. An element e ¢ +E

is called a unit of E if E = {a) . E is directed if and only if,
E=¢¥E) since (*e) = 1*B)1 = (YE - YE) = YE-- &,
(6.2) Theorem: If E is a directed OVS, then E is the injective

limit of the family (q‘;: Lo - S0 TR (S
B 3 s - e

Proof: 'Since E 1is directed, E = {UJ {a) and