
..... 

REPRESENTATION THEORY 


. OF 


PARTIALLY ORDERED VECTOR SPACES 


/· 


By 

WILLIAM HEN ON GRAVES, B. Sc. 

A Thesis 

Submitted to 

in Partial Fulf i Requirements 

for the Degree 

Doctor of Phiiosophy 

McMast r University 
~ 

. (Sept rnber) 1968 

the F culty of Graduate Studies 

\ 




DOCTOR OF PHILOSOPHY McMASTER UNIVERSITY 
(Mathematics) Hamilton, . Ontario. 

TITLE: Representation Theory of Partially Ordered Vector-Spaces 

AUTHOR: William Henson Graves, B. Sc. (Tulane University)· 

SUPERVISOR: Professor G. Sabidussi 

NUMBER OF PAGES: 

SCOPE AND CONTENTS: The major results of this work concern perfect 

ideals of ordered vector spaces,. and a representation theory 

for ordered vector spaces. Perfect ideals are characterized 

by the property that their annihilators in the order dual 

·are ideals. We obtain ·a number of conditions for an ordered 

vector space which are equivalent to the intersection of the 

.set of perfect maximal ideals being O. We also obtain 

condi~ions which permit an ordered vector space to be represented 

as a subspace. of the sections of a vector bundle. This 

· generalizes the representation theory for odered vector spaces 

with unit. 

(ii) 



- _....,, 

ACKNOWLEDGEMENTS 

The author wishes to express his sincere gratitude to 

his supervisor Professor G. Sabidussi for his assistance and 

patience in the preparation of this thesis. The author would also 

like to express his gratitude to the Government ~f Ontario for 

financial support. The author feels that· this work has been 

enhanced by the quality of the typing, and wishes to express his 

appreciation of the patience and fortitude of his typist, Miss 

Charlotte Orawski. 

{iii) 



TABLE OF CONTENTS 


Acknowledgements . (iii) 


Table of Contents .(iv) 


Introduction ................................... ~ ........... (vi) 


CHAPTER _I PRELIMINARIES 

1. . Terminology 

2. 	 Vector Spaces 4 

Topological Vector Spaces 

4. 	 Dual System of Sets 10 

5. 	 Dual Systems of Vector Spaces 
....... " . 	 12 


6. 	 Normed Vector Spaces 14 

CHAPTER II ORDERED VECTOR SPACES 

·l. Basic Definitions 16 

1 

8 

2. 	 Order Ideals ......................................... 18 


3. 	 Order Homomorphisms 19 


4. 	 Direct Products and Sums of Ordered Vector Spaces 22 


5. 	 Projective and Injective· Limits of Ordered Vector 

Spaces 24 


6. 	 The Lattice of Order Ideals 27 


7. 	 Fully Ordered ovs 28 


8. 	 Maximal Ideals and Modular Ideals 29 


9. ovs with Units ..................................... 30 


with Bases .....................................
. 10. ovs 32 


11. Extremal. Ideals 	 34 


12. Algebraic Representation Theory 	 35 


(iv) 



CHAPTER III RIESZ ORDERED VECTOR SPACES AND ABSOLUTE ORDERED 


VECTOR SPACES 

1. . Join Ideals 40 


2. Riesz ovs 41 


3 •. Absolute ovs .. • ........•............. ·.......... . 43 


CHAPTER IV DUAL SYSTEMS OF ORDERED VECTOR SPACES 

1. Ideals and Positive Linear Maps 53 


2. .Dual Systems of ovs 55 


3. Topology and Order 59 


4. Archimedean ovs with Units t • I I I I e I e . I e I I I I I I I I I I I I 62
I 

s. Perfect Ideals I I e I I I I I I I I I I I • I I I I I I I I I I I t I I I I I a I I I I 65
I 

6. Fields of ovs 73 


Bibliography I I I I I I I I I I I I I I I a I I I I I I I I t I I I I I I I I I I I I I I I 77I 


(v) 



INTRODUCTION 

The major re~ults of this work concern perfect ideals of 

ordered vector spaces, and a representation theory fa.r ordered vector 

spaces. Perfect ideals are characterized by the property that their 

annihilators in the. order dual are ideals. We obtain a number of 

conditions for an ordered vector space which are equivalent to the 

/intersection of the set of perfect maximal ideals being O. We also 

obtain conditions which permit an ordered vector space to be represented 

as a subspace of the sections of a vector bundle. This generalizes 

the representation theory for ordered vector spaces with unit. 

Let E be an ordered vector spac~ (OVS), and let e be 

a set of order ideals of E. The map <, > :EX -8 -+ U 
0
E/I, defined 

by <a,~> = a £ E/I, for a £ E, I £ 0, where is the image of
1 

a in E/I, for the natural projection E -+ E/I, induces a canonical 

representation of E into a subspace of the product of the family of 

OVS (E/I) £ • A map q: U E/I -+ F, where q restricted to each
1 0 0

E/I is an order isomorphism of E/I, and an OVS F, is called a 

trivialization of U 
0
E/I. Clearly, for ·u 

0
E/I to have a ctrivial­

ization, it is necessary that all the 
~ 

be isomorphic. q isE/I If 

a trivialization of U E/I, then the map a -+ qa, for a e: E, defines 
0

a representation of E as a subspace of ~· (0,F) the set of functions 

from 0 . to F. More precise representations of an OVS E may be 

obtained from a system. <, > : Ex·0 -+. U 
0
E/I if 0 and LJ 

0
E/I can­

be topologi~ed, and if U E/I has continuous local or global trivial­
0

izations. 
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Let E be an Archimedean OVS with an order unit e. The 

intersection of · Q(E) the set of maximal - ideals of E is O. The 

OVS E/M is order isomorphic to R the OVS of real numbers, for 

any M in n. Since . e is not in any M, eM generates E/M as a 

vector space. E is order · isomorphic to a subspace of ITnE/M by the 

natural. representation. The unit e may be used ~o · trivialize Us-l/M. 

The map qe: LJnE/M 4 R, defined by qe(~) equal the unique real 

number .A such that ~ = AeM, is a trivialization. Since n may be 

given the weakest topology such that the functions ga:n 4 R, for a £ E, 

a~e continuous, E may be represented as a subspace of the space of 

continuous functions from Q to R. The set n endowed with this 

topology is topologically isomorphic to B , the set of positive linear 
e 

functionals on E for which h(e) = 1, endowed with the weak topology 

of the order dual of E. This approach to the well known representation 

theory of Archimedean OVS with units forms the basis of our generalization. 

An ideal I of an OVS E is called modular if E/I has an 

order unit, and a positive element a of E is called a mod unit of 

I if . a is a unit of E/I. The repre~entation theory for OVS with
1 

units may be generalized to OVS which have sufficiently many modular 
f' 

ideals. These ideals will be used to construct local trivializations 

If <E,F> is a dual system of (real) vector spaces, where E 

and F are ordered, and if <x,y> ~ O, for any positive x in E, and
• 

any positive y in F, we call <E,F> a dual system of OVS. If 

<E,F> is a dual system of OVS, and I is an order ideal of E, we 

. (vii) 



0obtain a number of lemmas relating the order dual of E/I to I , the 

annihilator of I in F. Preservation of order and topological 

properties by quotients of OVS is disclosed. 

The annihilator of an ideal of an OVS E is not necessarily 

an ideal of E*, the order . dual of E. We study a class of ideals 

which are called perfect. These were introduced by Bonsall for OVS 

with units in · (1) and by Kis€ for directed OVS in (8 ). We 

characterize perfect ideals of directed OVS as those whose annihilators 

in the order deal are ideals. The annihilators of perfect maximal 

ideals are one-dimensional ideals in the order dual. If an OVS E 

has a unit e, then this fact may be used_to correspond perfect maximal 

ideals of E to the extreme points of the set B of E*. If E is 
e 

an Arch~medean OVS with a unit e, then <E,E*> is a dual system 

of normed OVS. The Krein-Milman Theorem may be applied to assert 

that · B is the weak-closure of the convex hull of the extreme points
e 

of B. We show that this assertion is equivalent to the perfect 

maximal ideals of E having 0 intersection, and this is proved without 

using the Krein-Milman Theorem. When <E,E*> is a dual system of OVS 

in which E has a weakly closed cone, ~e obtain conditions on E and -

E* which are equivalent to the perfect maximal ideals of E having 

0 intersection. This generalizes the results for the case that E is 

Archimedean with a unit. If E is an Archimedean lattice OVS with 

unit, then the HK-closure on the set of perfect maximal ideals is shown 

to be a topological closure. 

(viii) 



The first chapter will introduce the basic terminology and 

contain the definitions and results from the theory of topological 

vector spaces which will be needed in future chapters. Use of the 

contents of Chapter I will sometimes be made without explicit 

reference. 

The second chapter will introduce the basic concepts of the 

theory of ordered vector spaces, and develop the algebraic aspect of 

the representation theory. Although most of the results of this 

chapter are known, our development of the theory permits the simplification 

of many proofs. 

In the third chapter we will introduce a type of OVS E, called 

an absolute OVS, whose order is induced from a map I I :E -+ E, which 

satisfies some of the properties that the map x -+ Ix I ~ xv - x · in a 

lattice OVS E satisfies. For absolute ·ovs we have natural definitions 

of homomorphisms and ideals. An absolute ideal is called prime if 

xA y = 0 .imply x or y is in P. The hull-kernel closure generated 

by the prime ideals is a topological ~losure. 

Chapter four will contain the results concerning du~l systems 

of OVS, those concerning perfect ideals, and the representation theory. 
~ 

(ix) 



CHAPTER I 

PRELIMINARIES 

This chapter introduces the basic terminology and contains 


the definitions and results from the. theory of topological vector 


spaces which are needed in future · chapters. 


1. Terminology 

Let X,Y be sets. We use the standard notations x £ X, 

x i x, x ~ y , x = y , x n y, x u y, and { •• : •••• } • For sets· 

X and Y, the set {x £ X : x t Y} will ·be denoted by x-Y. The 

empty set will be denoted by </J; the power set of a set X by -f'<x); 

and the set whose elements are ordered pairs of elements of X and Y 

A-1by xx y. If ASX X Y, then will denote the set {(y,x) 


E> Y XX : (x,y) £ A}. 


A function or map between sets X and Y will be denoted 

by f :X 4 Y. The notation x 4 F(x) may be used sometimes to define 

functions. If f :X 4 Y is a function, then A 4 f (A) = {f(x) £ Y : 

x £A}, for A _c X, specifies a function. The notation (x )
i i £ I' 

· where £ X will also be used sometimes to denote a function fromxi 


I to X and when it is used, the funetion is called a family. 


If (Xi) i £ is a family of sets, lJ_1xi will denote the
1 


set {x : x £ xi for some i £ I} and n 1xi · will denote the set 


{x x £ x., for all i £ I} If (Xi) is a disjoint family
1 i £ I 


of sets, that is, such that xin x. = </J, for any i :f j, then there 

J 


is a natural surjection p: U 1xi 4 I defined by p(x) = i, for the 


1 




2 

unique i E I, such that X E X. • 
1 

Conversely, if p:X + I is a 

surjective map, then_ -1 = p (i)) i £ I is a disjoint family of 

sets. If (Xi) i E 1 is a family of sets, then (X1 >< {i}) i E 1 

is a disjoint family ,and l:J xi = U x X {i} is called the
1 1 1 

disjoint union of the family . (X ) The set rrx = {f :I + 
i i E !• i . 

: pf:I+l:J x + I is the identity map on I} is calledU !Xi 1 1 

the product of the family (Xi) i £ r 
If s is an equ~valence relation on' a set X, the set of 

equivalence classes,called the quotient set of X ~ S,will be 

denoted by X/S, and (x) 
8 

, or briefly, will denote the 

equivalence class which contains x E X. 

A set X endowed with reflexive, - transitive antisymmetric 

relation is called an ordered set. Let (X,s) be an ordered set. 

For any· a,b EX, [a,b] will denote the set {x EX : as x ~ b} 

and ]a, b [ will denote the set {x E X : a < x < b}. The map 

from "P (X) to .P (X) defined by A + [A] =U {[x,y] x,y c A} 

is a closure operator. 

An ordered set Dis said to be directed (up) if ,for any 

a,b ED, there exists an upper bound of the set {a,b}. A function 

. (a~) i 
from a directed set D to a set A is called a net. 

E D 

A subnet of a net (ai) is th~ restriction of the functioni E D 

to some ·subset D"" of D which is also directed. A subnet (ai) i E D"" 

of a net (ai) is conf inal if D"" is confinal in D, i.e., for
i E D ' 

each i E D there is an i"" £ D"" such that i"" ~ i. 

Let X be an ordered set. A -net (a ) in X is said
i i £ D 
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to order converge to a limit a £ X if = a = Vi /\ j>i a. 
J 

/\i V j>i aj, and we write ai S. a or o-lim a = a. If
' - D i 

(a.) is an a-convergent net. in x, then .any cofinal subnet 
1 i £ I 

also conv.erges to the same limit. A net (a ) is increasing
i i £ D 

(decreasing) if the function is monotone (antimonotone). We write 

(ait) i £ D for an increasing net in X and (ai~) 1 £ D for 

a decreasing net in X. An ordered set X is called conditionally i. 

~~<?nditionally ~ ) complete i '.f any bounded increasing. (bounded 

decreasing) net in X converges. 

Let S and T be ordered sets. A pair of .antimonotone 

maps o:S ~ T and T:T ~ S such that x < Tcr(x) J for any x £ s, 

and y < crT(y) 
1 

for any ye: T, is called a Galois connection 

between S and T. Let A and B be sets, and let t be a subset 

of A)( B. The maps A:> V ~ v0 = {b £ B : (a,b) £ t, for all a£ V}, 

B :> U ~ UT = {a £ A (a,b) £ t, for all b £ U} define a Galois 

connection between "P(A) and "{J(B) called a polarity. The maps 

Tcr : j')(A) ~ - f'J(A) and OT: ~(B) ~ '{'J(B) are closure operators. 

The sets {Ve: {J(A) . : v = (V0 )T} and {U e: (J(B) : u = (UT) 0
} are 

the closed sets of fO (A) and '/'(B) respectively. The closed sets 

form complete lattices in the ordering by inclusion,in which greatest 
~ 

lower bound means intersection,and the lattices are dually isomorphic. 

Let X be a set and J a collection of subsets of X. The 

maps 

(1) X d U ~ H (U) = {I £ J UC:: I} and 

(2) · J ~ V ~ K(V) = () {I ~ ~ I e: V} 



4 

' 	 define a polarity between f'J(X) and 1'<J) ,called the hull-kernel 

polarity generated by the collection .J.. in X. If .J is closed under 

intersections, then the elements of J are KH--closed in (J(x). The 

sets in f> (~) of the form U A = {I e: .J : A <J. I},· for A ~ {J(X), 

are called HK-open sets. The sets U , a e: X, are a basis for the 
a 


HK-open sets in the sense that UA=U AU. The HK-closed sets 

a e: a 


may be expressed in the form -uA, for some A£ X, since -u = 

A 


H(A) = HKH(A) is closed,and conversely, if V is HK-closed, then 


V =·HK(V) = {I e: ~ : K(V) C I} = ... UK(V). 

A HK-closure generated by a set X and a collection of sub­

sets J of X is a topological closure if ,for any I e: ...I , U, V s_.J, 

K(U) 0 K(V) C I implies that either K(U) £ I, or K{V) ~ I. It 

suffices to show that for any U, V ~ J, HK{U U V) = HK(U) U HK(V). 

If I e: ·HK(U), then K(U U V) S K(U) 5 I, which ·implies I e: HK(U U V). 

If I e: HK(U U V), then K(U) n K(V) = K(U U V) ~ I. Hence K(U) ~ I, 

or K(V) C I. 

2. Vector Spaces 

All vector spaces considered in the following will have the 


real numbers as scalar field. All unquantified small Greek letters 

r 

will be real numbers, R will be the vector space of real numbers, 

+R · the set {x e: R : x ~ O}. 

Let E be a vector space. A vector subspace (briefly, subspace) 

of E is a non-empty subset N of E closed under addition and scalar 

multiplication, that is, such that M +MC M and RMC M.The set of 

all subs~aces of E is closed under arbitrdri intersections. If A is 
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a subset of E, the linear hull of A is (A) , the intersection of 

all subspaces of E that contain A; (A) is _also called the subspace 

of E generated by A and can be characterized as the set of all 

linear combinations of elements of E. 

If M . is a subspace of a vector _space E, the relation 

x-y if x - y E M is an equivalence relation on E. The quotient 

set· will be denoted by E/M, and (~), or briefly, ~ will denote 

the equivalence class generated by x E E, which is the set x + M. 

The set E/M becomes a vector space by the definitions ~ + yM = 

Let E,F be vector spaces. A function f :E + F is called 

The set L(E,F) of all linear maps of E into F, becomes a vector 

space with the definitions (f + f ) (x) = f (x) + f (x) and Af (x) = 
1 2 1 2 1

£ (Ax), for f f E L(E,F), x EE. The vector space E# = L(E,R)
1 1 2 

is called the linear dual of E,and its elements are called linear forms 

(Jinear functionals) on E. The vector spaces E and F are called 

(linearly) isomorphic if there exists a linear _bijection f :E + F; such 

a map ·is called an isomorphism of E onto F. 

-1
If f :E + F is a linear map, the subspace ker(f) = f (0) 

of E is called the null space (kern~l) off ,andf defines an isomorphism 

f' of E/ker(f) onto im(f) = f(E). If p is the quotient map 

E + E/ker(f) and q _is the inclusion map Im(f) + F, then qf 'p is 

called the canonical decomposition of f. 

Let E be a vector space. · A subset MC: E is called a linear 
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variety (flat) if M = x 
0 

+ w· 
0 

where M"' 
0 

is a subspace of E and 

x · e: E. A variety H of E is called a hypeq~lane of E if 
"/ 

H = x + H ... where H ... is a maximal subsp~ce of E. For any h £ El! , 

h :; o, and· any A £ R, the set h-\A) is a hyperplane of E. Conversely, 

for any hyperplane H in E, . there exists h £ Ell, h #: 0, and A £ R, 

such that H = h-l().), and · H is a subspace . if and only if A= O. 

If H = h~l (). ) = h;l (A ), for , h ,h e:· E9, h :I h
2

, then there exists
1 2 1 2 1 

µ £ R,µ ; 0, such that h = µh and
1 2 

Let E be a vector space. For any x,y e: E, the set xy = 

{ax+ By £ E : a,S > O, a + B = l} is called the segment between 

x and y. An open segment is a segment with its end points deleted. 

A set S ~ E is called convex if ,for any x,y £ S, the segment xy 

is contained in S. The intersection of a family of convex sets is 

convex. Hence each subset S f; E is contained in a smallest convex 

set conv(S), called the convex hull of S. For a non-empty convex set 

C C E, a set S C C is called extreme in C if C # 0 and each 

segment in C having an interior point,i.e., a point of the open 

segment, in S is contained in s . . A varie~y M of E is called 

a supporting variety for C, a convex set in E, if M 0 C 
0 

is extreme. 

Let E be a linear space. A ·set A C E is called circled, 

(balanced) if [-1,l]A ~A. The intersection of any family of circled 

s·ets is circled. The set Cir_(A), intersection of all circled sets 

containing a set A S E, is called the circled hull of A. If sets 

A,B are contained in • E, A absorbs B if there exists a > 0 such 

that B C AA for A ~ a , equivalently, there exists a > 0 such 

that,for any µ,µ ; O, if µ ~ a, then µn C A. A set A C E is 
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absorbing (radial) if A · absorbs each finite subset of E. The set 

of absorbing subsets of E is closed und~r finite intersections. A 

set A C E is a radial at ~ point x £ E if ·and only if A-x 

absorbs each set {y}, y £ E. Let h:E-+ F be a linear map, A a 

circled subset of E, and B a circled subset of F, then h(A) and 

h-1 (B) are circled. If C is an absorbing subset of F, then h-1 (C) 

is absorbing. If A is an absorbing subset of E and h is surjective, 

then h(A) is absorbing. A circle set ACE is absorbing if and only , 

if ,.for any x £ E, there exists cx,a. :/:. o, such that a.x £ A. 

Let E be a vector space. A function p . from E to R is 

called subadditive if p(x + y) $ p(x) + P(y), for all x,y in E·
' 

p is positive homogeneous if p(Ax) = Ap(x), for A > 0 and x in E·
' 

p is sublinear if it is both subadditive and positive homogeneous; 

p is absolutely homogeneous if p(Ax) = A p(x), for all A and all 

x £ E; p is a semi~norm if it is both subadditive and absolutely 

homogeneous. A seminorm p is a norm if p(x) = O, if and only if, 

x = O, for x e: E. If p:E -+ R is sublinear, then p(O) = 0- and 

-p(-x) ~ p(x). If p:E-+ R is a semincrm, then p(x) ~ 0, for all x 

in E, and ker(p) = { x e: E : p (x) = 0 } is a linear subspace of E. 

There is a bijection between the set of rseminorms on E and the set 

of subsets of E which are convex, cLrcled, absorbing and contain O. 

This correspondence is given by p -+ M = {x e: E : p(x) ~ l} and 
. p 

by M -+ .PM(x) = inf {a. e: R : a. > O, l/ax e: M}. The seminorm is 

called the (Minskowski) gauge determined by the set M. 

Let p:E -+ R be a sublinear functional on a linear space E 
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and let K = {h £ E# : h(x) ~ p(x), for x e: E} , then the set 
p 

Ex(K ) 	 of extreme points of K is nonempty and,for each x e: E, 
p p 

there exists he: Ex(K) such that h(x) = p(x). This is a result 
p 

of F. Bonsallwhich in part,contains the result of Banach that K 
p 

is nonempty. 

3. 	 Topological Vector Spaces 

Let E be a vector space. A topology 1.l on E is called 

a vector topology for E if: 

(VTl) the map +:EXE ~ E, defined by (x,y) ~x+ y,is 

continuous, and 

(VT ) the map •:RX E ~ E, defined by . (.A,x) ~ AX, is
2

continuous where E is endowed with 1.l , and EXE 

and · R X E are endowed with the product topologies. 

The pair (E, U) is called a topological vector ~pace . (TVS) and 

is denoted by Eu· If 1.t is a vector topology for E, then 0 

possesses a neighborhood base 13 satisfying 

(l~ for each V e: 11, there exists U e: '13 such that 

U + U ~ V, 

(2) every V e: 23 is circled an absorbing. 

A filter base 73 in E satisfying (1) and (2) is a neighborhood 

base of 0 for a unique vector topol~gy 1.l on E, and will be called 

a base for a topology on E. A TVS EU is a Hausdorff space if and 

only if n 1.3 = { 0}, where 13 is any neighborhood base of 0 in E, 

equivalently, if ,for any x e: E, x I O, there exists a neighborhood 

U of 0 such that x ¢ U. A subset B of a TVS E\Lis bounded 
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if it is absorbed by all neighborhoods of 0 in E. 

A TVS EU is called locally convex (1. c.) and U is called 

a locally convex (vector topology} if the convex neighborhoods of 0 

form a base at O. If E is a linear space, a filter base 13 in E 

consisting of radial, convex, · circled sets satisfying, VE lJ implies 

l/2V £ 'Yl., · is a base for a u·n1·que l.c. topology A family (p ) 
IJ • i i E I 

of seminorms on E determines a l.c. topology on E as follows: 

the collection 13 = {1 /nU}, for n, a natural number,and for U, an 

intersection of finitely many Ui = {x EE : pi(x) ~ l}, is a base 

for a l.c. topology on E, the topology generated by {pi) i £ . 1 . 

Conversely, every l.c. topology on E is generated by a family of 

seminorms; it suffices to take the gauge functions of a family of 

convex, circled, neighborhoods of 0 whose positive multiples form 

a subbase at O. Every member of a family (p :E ~ R) i £ of
1 1 

seminorms is continuous in the topology generated by the family, and 

the topology is Hausdorff if and only if ,for any x c E, x # O, there 

exists i £I such that pi(x) > O. 

Let E i.t., Fy be TVS. A linear map h: E ~ F is continuous 

if and only if, it is continuous at 0 in E. If the topologies U, -Y-

are 1.c. and (p ) is a family· rof seminorms generating U ,
i i £ I 

then h is continuous if and only if ,~or each continuous seminorm 

it 

q:F ~ R, there exists a finite subset NC I and A > 0 such that 

q(h(x)) ~ :\supNpi(x), for all x EE. 

Let . E U be a . TVS. The vector space E' of all continuous 

linear func~ionals on E is called the topological dua~ of E. 
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Let be a TVS, N a (vector) subspace of E. The guotientE'\.l 

-
toEology u for E/N is the finest topo~ogy on E/N for which the 

projection p:E ~ E/N is continuous. This is a vector topology and 

(E/N) ·[l is called the guotient SEace of E over N. A base for ~LL 

may be given by 13 N = { VN = · V + N : V £ /j} where 13 is a base for 

u The projection p is an open map. If is a TVS, a linearF1"° 
map h:E/N ~ F is continuous if and only if, h:E ~ F is continuous on 

E. The quotient topology U is Hausdorff if and only if, N is closed 

-in 	 E and 1J, is 1.c. if ti is 1.c; 

4~ Dual Systems of Sets 

A pairing of sets A,B to a set C is a map <,> :A XB + C 

which satisfies the separation properties: 

(1) 	 for any al,a2 e: ·A, there exists b e: B such that 

<a ,b> :/: <a ,b> and
1 2

(2) 	 for any bl,b2 e: B, there exists a e: A such that 

<a,b > :/: <a,b >.
1 2

A pairing . <,> :AX B + C will be denoted by <A,B;C> and will 

also be called a dual system of ~ or a duality. 

Let <A,B;C> be a duality, let 'l'! (A;C) be the set of all 

functions from A to C, and let ~(B;C) be the set of all functions 

from B to C. The map ":A ~ ~ (B;c) defined by 

for a e: A, be: B, is an injection called the canonical representation 

of A determined by the duality <A,B;C>. The canonical represent-

at ion ":B ~ 'Y(A,C) is defined analogously. The images of A and 
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B will be denoted by A and B, respectively. 

If <A,B;R> is a dual system of sets paired to R, . the 

set of real numbers, we abbreviate <A,B;R> to <A,B>. The sets 

~(A;R) and ~(B;R) are vector spaces and have an order relation 

under the pointwise definition of these operations and relations. 

The order relation may be subduced, by restriction, to A and B 

from 7-(B;R) and ~(A;R), respectively. Similarly the linear 

operations may be subduced to at least partially defined operations 
,.., 

- on A and B. Since the maps "':A 4 - A~ '°f(B;R) and A:B-+. 


B ~ ~(A;R) are bijections, the structure on A and B may be 


transferred to A and B, respectively. The pairing function 


<,>:AX B _4 R is bilinear with respect to these induced operations, 


whenever they are defined • 


.Let <A,B> be a dual system of sets (paired to R). · The 

.weak topology (w(A,B)) for A, determined by <A,B>, is· the weakest 


topology on A for which the functions in B are continuous. A 


neighborhood base for a point ~ £ A in the w(A,B)-topology is 


given by N(a,W,A) = {a~ £ A : <a,, b. >­
1 

for every finite subset W of B, and for every A £ R. The topology 

w(A,B) is Hausdorff, since, for any a1 ~a2 £A, a ~ a
2

, there exists
1 

b £ B such that <a b> ~ <a b>· let A= l<a b> - · <a b>I /2 then
l' 2' ' , . l' 2' ' 

· -- -N(a ,-b,A) n N(a b,:\) = </J. A net (ai) i £ D in A converges to an1 2

element a£ A in the w(A,B)-topology if and only _if, <ai,b> converges 

to <a,b>, for each b .£ B. 

Polarities arise naturally in dual systems of sets. Let 

· <A,B ;R> be a duality ,and let f' (A), fJ (B) be the power sets of A 
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0 0
and B respectively. The maps : f' (A) -+ f (B), defined by U -+ u = 

{b £ B : <a,b> = o, . for a£ A}, and 0 
: PCB) -+ f'CA) ,defined anal­

0ogolously, are a polarity, the polarity of annihilation, and u is 

called the annihilator of U. 

5. Dual Systems of Vector Spaces · 

A duality <E,F> is called a dual svstem of linear spaces 

if E and F are linear spaces and <,>:E )( F-+ R is a bilinear 

functional. If <E,F> is a linear duality, the image of E under 

the canonical representation is a subspace of FU, and the image of 

F is a subspace EU. The w(E,F)-topology on E is a l.c. Hausdorff 

vector topology.· A linear map f :E + R is w(E,F)-continuous if and 

only if ,-there exis ts y e: F such that f (x) = <x, y>, for all x e: E. 

Thus F'f (F, E) is isomorphic to E,; (E, F) as a . TVS. 

If Ei.t. is a l.c. Hausdorff TVS, then, as a consequence 

of the Banach Theorem, E.U separates points of E. Thus the bilinear 

map <,>:E 14X Eic.-+ R defined by <a,h> = h(a), for any a e: E, 

h e: E... is a natural pairing of Eu and E~. If <E,E ... > is a 

dual .system of linear spaces, then 1t is a 1. c. Hausdorff ' topology, 

since U is finer than w(E,E ... ) and. w(E,E') is Le. Hausdorff. 

Let <E,F> be a dual system of linear spaces. The maps 

• ~(E)-+ f'(F), defined by U + u• ={be: F :_ j<a,b>j~l, if a e: U}, 

and • ('(F)-+ f.>(E), defined analogolously,are a polarity between . .f' (E) and f.>(F). The polar U of a subset UCE is a w(E,F)­

closed convex subset of F containing O. If N is a subspace of 

E, theri N• = N° and N° is a subspace of F. The following 
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results are consequences of the Banach Theorem. For any subset 

UC E, the bipolar u•• is the w(E,F)-closed, convex hull of 

U U {O}. This is called the Bipolar Theorem. If (Ui) i E 1 is 

a family ~f w(E,F)-closed convex subsets of E, each containing 

O, then the polar of U = ('\ ui is the w(E,F)-closed convex hull1

of U 
1

ui. If N is a subs.pace of E, then N = . N°0 if and only 

if, N is w(E,F)-closed. The map ·N + N° is a dual isomorphism 

of the lattice of w{E,F)-closed subspaces onto the lattice of 

w(F,E)-closed subspaces of F, the lattice operations being defined 

by N /\ N = N ('\ N and N V N =N1+N2 , w-closure of N + N •
1 2 1 2 1 2 1 2

Let EU be a 1. c. Hausdorff TVS, let N be a subspace 

of E, and let p:E + F = E/N be the proj~ction map. The linear map 

(E/N)~+ N° ~ E~ defined by g + gp, is a linear isomorphism and 

w{F, Ff) . is the quotient topology of w(E, Ek}. 

Let Fit be a 1. c. Hausdorff TVS, let M\I"' be a subspace 

of F endowed with the topology induced from . FU, and let q :M + F 

be the _canonical injection map. The linear map FU+ MY. , defined 

by f -+ fq, induces a linear isomorphism between MY. and FY /M0 
, 

and the w(M,M~) topology is the topology induced from Fw{F,F~)· 

Let <F,G> be a dual system of , linear spaces. A l.c. 

topology U on F is consistent with the duality if the dual of , 

F -is G. A topology on F consistent with <F,G> is finer than 

w(F,G), hence Hausdorff. The closure of a convex subset CC F is 

the same for all l.c. ,topologies on F consistent with <F,G>. The 

families ot bounded subsets of F· are identical for all 1.c. top­

ologies on F consistent with <F,G>~ There exists a finest 1.c. 
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topology on F consistent with <F,G> which is called the Mackey­

topology on F with respect to <F,G>. 

Let E"U- be a l.c. Hausdorff TVS. The convex hull of a 

finite family of compact, convex subsets is compact. The Krein-Milman 

Theorem asserts that each compact, convex set A in E coincides 

with the closed convex huli of the set Ex(A) of extreme points of A. 

Furthermore, if K is a compact subset of E whose closed convex hull 

C is compact~ then every extreme point of C is in K. 

Let <E,F> be a dual system of vector spaces,and if A is 

a convex, circled set in E containing O, then A• is w(F,E)-compact 

in F. 

6. Normed Vector Spaces 

Let E be a linear space with a norm p. The pair (E,p) is 

called a normed vector space. The topology generated by a norm is l.c. 

and Hausdorff. A complete normed space is called a Banach space. A 

TVS E\l.whose topology can be generated by a norm is normable. Two 

norms p and q on E are equivalent if they generate the same top­

ology. It is necessary and sufficient . for p and q to be equivalent 

that there exist a, B e: R such that q (x) ~ exp (x) :5 Bq (x) , for all 

x e: E. The set {x e: E : p{x) <I} is called the unit - ~here of a 

normed space · E with norm p. 

The quotient space of a normable (and complete) TVS E "L(. over 

a closed subspace N of E is normable (and complete). If p is a 

norm which generates 1.l then ~ ~ p(x
N

) = inf { p(x) x £ XN} is 

a norm which generates the quotient topology· on E/N. 
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If E is a normed space with a norm P, and 1.l is the 

topology generated by p, then h ~ q(h) =sup{ jh(x)I p(x) s l} 

is a norm on El.t, and E1.,c is complete in this norm. The unit 

sphere of (E~,q) is the polar s• of the unit sphere S in 

(E,p), and s• is w(E',E)-compact. 

• 0 
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CHAPTER II 

. ORDERED 	 VECTOR SPACES 

This chapter is concerned with. the general properties of 

ordered vector spaces,and with the algebraic aspects of their.. 

ideal and ~epresentation theory. 

1. 	 Basic Definitions 

Let E be a linear space. A set KCE is called a 

wedge if: 

(Cl) 0 	 e: K, 

(C2) K + K ~ K, 

(C3) )..K ~ K, for all ).. > o. 

A wedge. K is called a cone if 

(C4) K ('\ -K = {o}. 

A cone K in E induces an order ~ on E by a$ b if 

b - a £ K. Moreover, this order satisfies 

Aa ~ Ab, for ).. > O, and )..b ~ ).a, 

for all A < O, 

(02) a~ b and c s: d imply ~a+ c ~ b + d. 

An order < on a linear space E which satisfies (01) and (02) 

is called a vector ordering .for E. If ~ is a vector ordering on 

E, then K = {x £ E : 0 ~ x} . is a cone in E. A pair (E, +E), where 

E is a linear space and +E is a cone in E, is called an ordered 

vector space (OVS). 
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. ~ 

(1.1) Lemma: For a~y ~,b in an OVS E, av b exists if and only 

if ,there exist c £ E such that (a + +E) ("\ (b + +E)= c + +E. 

Proof: S~ppose there exists c £ E such that (a+ +E) fl (b + +E) = 
+ + c + E. We show that c =av b. Since c £ c + E, we have c e: a 

++ +E and c e: b + E. . This implies c = a+ x = b + y, for some 

x,y ·E +E , which implies c i a,b. If u ~ a,b, then u = a + .(u - a) 

= b + (u - b), which implies u £ a + +E and u £ b + +E, which 

implies u E: c + +E, which implies u = c + w, for some w £ 
+E. 

av b exists,we show thatThus, c = av b. Conversely, if 

+If u e: a v b + E, then u = a v b 

+ w, for some w ~ O, which implies u .?! a + w and u ~ b + w. Hence, 

u 	 = a + w + w' and u = b + w + w" for suitable w;w'' in +E. 

. + +
Thus, u £ (a + E) (\ (b + E). If u £ (a+ +E) n (b + +E), then 

u = a + z = b + z; which implies u ~ a,b, which implies u .?! a \I b, 

which implies u =av b + z'', for some z'' e: +E. Thus, u £a\/ b 

+ +E. 

The following identities are valid in ari OVS E, if the 

required meets and joins exist on one side of the identity: 

( 1) (a /\ 	b) + c = (a + c) A (b + c) ; (a v h) + c = (a + c) V 

(b + c), 

, 


(2) A(a" b) = Aa A Ab; A(av b) = Aa v Ah, for A > O, 

(3) -(a A b) = -a v -b; -(av b) = -a/\ -b. 

Furthermore, if a Vb exists, then a I\ b = a+ b -(av b) since, 

a + b -{a v b) = a + b + (-a " -b) = (a + b -a) /\ (a + b -b) = a/'\ b. 
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Let E be an OVS. For any subset A~ E, we have [A]= 

U { [x,y ] : x,y e: A} . - (A + +E) 1 " 1 (A - +E) • A subset B C E is 

called (order) saturated if B = [B]; it is immediate that,for any 

ACE, [Ar is the intersection of all saturated sets containing A, and 

[A] is called the saturated hull of A. Furthermore, [A] is convex 

if A is· convex and [A] is circled if A is circled. If ~ is a 

filter base in E, then { [F]: F e:-~ } is a filter base in E, the 

corresponding filter will .be denoted by [ ~]. 

Let K be a cone . in .a linear space E. If E = K + (-K), 

then K is called reproducing. The order induced by K is directed 

if and only if, K is reproducing. To show that a vector ordering is 

directed,it suffices to show that any x e: E has a positive upper 

bound. A vector ordering is called almost Archimedean if whenever 

x,y e: E~ are such that ~Ay s x ~ Ay, for all l > o, then x = o. 

A vector ordering is called Archimedean if ,whenever x,y e: E are 

such that 0 ~ y and x $ J.y, for all A > o, then x ! o. Every 

Archimedean ordering is almost Archimedean. 

2. 	 Order Ideals 

If F is a linear subspace of. an OVS E, then F becomes an 

ovs when it is paired with the subduced cone 

A subspace I of an OVS E, ~hich satisfies any of the 

following equivalent conditions~ill be called an (order) ideal of 

E. 

(1) I= [I] i.e., x,z e: I and ye: [x,z] imply ye: I, 

(2) x e: +I, y e: [-x,x] imply y e: I, 



19­

~3) x E +I, y E (0,x] imply y E I. 

The proofs that (1) implies (2), and (2) implies (3) are trivial • 

... To see (3) implies (1), suppose x,z EI and y E [x,z]. Thus, 

+ - ­
0 s y - x $ z - x and z - x E I, which implies y - x E I, and 


so y = (y - x) + x is an element of I. 


+E
An ovs E , is trivially ordered if and only if, = {O} and 
. \ 

E is fully ordered if and only if, E = +EU (-+E). 


Subspaces of an OVS E , which are trivially ordered in the 


subduced order are clearly ideals. 


(2.1) Lemma: (Edwards (4 )). A linear subspace I, of an OVS E, 


is an ideal if and only if, I('\ +E is extremal, or I() +E = 0. 


Proof: If I is an ideal of E, then A = In +E is convex and 

contain~ zero. Suppose x E A where x =· AP + (1 -A)q, for p,q E +E, 

and 0 < ). < 1. We have 0 $ Ap $ x, which implies ).p c I, and so 

p EI('\ +E. Similarly, q EI ()+E. Since A is convex, the segment 

pq is contained in A; thus, A is extremal. Conversely, suppose 

I () +E = A is extremal. If 0 < x < y, for y E I, then l/2y = 

1/2 (y - x) + 1/2x and l/2y c I fl +E. Since A is extremal, x c I () +E, 

and so I is an ideal. 

3. Order Homomorphisms 

Let ' E and F be OVS , and let L (E, F) be the vector 


space of linear maps f;om E to F. An element h in L(E,F) is 


called o-b6unded if for a~y order interval [x,y] in E, h ([x,y]) is 
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contained in some order interval in F; h is called positive 

(an order · homomorphism) if h(+E) ~ +F. The map h is positive 

if and only if , h is isotone. If h is positive, then h is 

o-botinded;since h([x,y]) = [h(x) ,h.(y)]. A map h is called an 

embedding if h is an injection and h '(x) ~ O, for x e: E, implies 

x ~ O. An order isomorphism ·is a linear bijection h:E + F such 

-1that h and h are positive. 

A map h:B + F, in the category of OVS and positive (linear) 

maps,is a monomorphism if and only if ,it is injective. First,we know 

that since h may be regarded as a map in the category of · linear 

spaces .and linear maps, h is injective if and ·only if, ker(h) = {O}. 

If g:E ... + E and f :E ... + E are maps such that hf = hg, and if h 
I 

is injective, then h(f (x) - g(x)) =O, for x e: E; and since ker(h) 

= { 0} , we have f (x) - g (x) = O, for all x e: E , i.e. , f = g. Con­

versely, if h is monomorphic, then ker(h) is an OVS. The zero 

map and the injection map from ker(h) to E are positive maps and 

hO = h inj. Thus,since h is monomorphic, 0 = inj and so ker(h) = {O}. 

Surjective maps in the category of OVS and positive maps 

are epimorphisms. If h:E + F is a surjective positive map,and if 

j:F + G and k:F + G are positive map~ such that jh = kh, then 

j(x) = k(x) for x e: h(E) = F and so J = k. 

A map in the category of OVS and positive maps may be both 

an epimorphism and a monomorphism without being an isomorphism. If 

E has a non-trivial cone +E, then the identity map i: (E,{O}) + (E,+E) 

is bijective, hence it is both a monomorphism and an epimorphism • 

• 
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j 

However,it is not an isomorphism. 

Let E and F be· CVS. The kernel of a positive map 

h:E + F is an ideal,because ker(h) is a subspace an~ if 

x e: ker(h), 0 ~ x, y e: [ O,x], then 0 = h(O) ~ h(y) s h(x) = O, 

~hich implies ye: ker(h). If I is an ideal of E, then the 

quotient E/I can be given a vector ordering so that the · projection 

E + E/I is positive. We show that EI = {x + I e: E/I x £ 

is a cone in E/I. It is clearly a wedge. If a + I = -b + I, for 

some a,b e: +E, then a + b = i for some i E: I. Hence, a and 

b . are in [ O, i] , which implies a ;b e: I , which implies a + I = 

b+I=I. Thus, We have that xI ~ 0 if and 

only if,there exists a y £ XI such that y ~ o. If E is directed, 

then E/I is a~so directed, for any ideal I in E, for if x + I e: E/I, 
. 

then x+ I = y - z + I = y + I .... z + I, for some y,z £ +E, and so 

x+ I and z + I are positive. 

Let E and F be CVS. If a positive map h:E + F is sur­

jective and if h(+E) = +F, then the map h':E/ker(h) + F, defined by 

h'(x ) = h(x)~ is an order isomorphism. We have that h' is a linear
1

+Ebijection. If XI £ 
+ 

EI, then there exist y e: XI such that y E: 

+ t
and h' (x

1
) = h(y) e: +F. If z . £ F, then there exists x £ +E 

+ '-1such that h(x) = z, and so h :-~1cz) ~ xI £ . EI. Hence, h' and h 

are positive. 

Let h:E + F be a positive map between CVS E and F. If I 

1is an ideal in F, then h- (I) is an ideal in ~ since h-1 (1) is 

a subspace,and if x s y, then h(x) ;S h(y) 
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We have 

. -1 
implies h(x) is in I and so y e: H (I). 

Let h :E'-+ F be a positive map between OVS E and F. If 

I is an ideal of E which is contained in ker(h), then there exists 
. . 

a unique positive map h*:E/I -+ F obtained by composing the projection 

E/I -+ E(ker(h) and the map h"': E/ker (h) -+ F. induced by h. 

Let E and F be ovs, and let +H(E,F) be the set of positive 

+ · 
linear maps in L(E,F). The set H is always a wedge in L(E,F)· 

+H +HHowever; in general is not a cone. .If E is directed, then 

is a cone. To verify that +H n - +H = {O}, suppose that h e: . +H n - +H. 

+ .
h( E) . = O. Since E is . 

directed, every · x e: E is in some [-a,a], for a £ Hence h(x) = O, 

for all x £ E. Thus a cone. 

Let E and F be OVS, such that +H(E,F) is a cone in L(E,F). 

This pr6vides a natural order for L(E,F). If F is Archimedean, then 

any subspace ~1 of L(E, F) is also Archirnedean in the subduced ordering. 

Suppose f e: M, g £ +M and f $ Ag, for all A > O, then for any 

x £ +E we have f(x) ~ Ag(x), which implies f (x) ~ O; thus, f s. o.
' 
If E is a directed OVS, then the directed OVS E* = +H(E,R) + 

(-+H(E-,R)) is called the order dual of E. 

4. Direct Products and Sums of Ordered Vector Spaces 

Let (Ei) i £ i be a family of OVS. The set 

an OVS with the linear structure defined by the pointwise operations, 

and with the cone for i £ I}. The 

projections pi : n E -+ E
1

, for i E I, defined by pi(f) = f(iX are
1 1 
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positive maps. The subspace 6) 1Ei = {f £ TIIEi : f (i) = O, for all 


but finitely many i £I}, with the subduced ordering is an OVS. 


The injections qi E -+ @ E
1 

, defined by [qi (x) l(j) equals x

1 1


if i = j; and equals 0 if i # j, are positive maps. The OVS 


IT Ei and G) IEi are called the (order) product and . (order) sum
1


respectively,of the family · of OVS (Ei) i £ • Ciearly, finite sums

1 

and products are isomorphic. 

(4.1) Lemma: If an OVS E, is the sum ffi AEi of a family (E1) i £ A 

of · OVS, then the family (Ii) i £A' where Ii= qi(Ei), the canonical 

image of in E, is a disjoint family of ideals of E, and E.= Ei 

.- +
l 

A1i' and E - l + Conversely, if (Ii) is a disjoint- A Ii.· i £ A 

family of ideals of an OVS E, such that · E=lAii and +E = l +I · 
A i' 


then E is isomorphic to 
 GJ A1i. 

Proof: Suppose f ,g £ g £ I~ , and f .$ g, for f"'.' £ A, then 
l. 

f(i) ~ g(i), for all i £ A, and g(i) = O, for i # i", implies 

~(i) = O, for i ~ i~ and so f £ I • Clearly I () Ij = {O}, for1 1 

i # j. If f £ E, then f = lN q p (f), for a finite subset N of A,
1 1 

where pi : Cl) AEi -+ Ei and qi : Ei -+ (9 AEi are the natural project­

ions and injections; furthermore,if f £ +E , then 
t 

since the composition of positive maps is positive. Conversely, if 

(I.). _,,. A is a disjoint family of ideals of an OVS E, for which 
1 1 £ 

+ '+
E = lAii and E =LA Ii, then each f . in E has a unique decomposition 

f = lNfi' where f i £ fi and N is a finite subset of A. The map 
,., 

f -+ f where f (i) = _f i, for f £ E, i £ A, is a vector isomorphism 
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+ · where 	 f. e: Ii, this mapping is an order isomorphism.
l. 

5. 	 Projective and Injective Limits of Ordered Vector Spaces 


A Ero;ective (inverse) famil:l of ovs is a net (Ei) e: D
i 


of ovs together with a f?mily of positive maps . (hiEj -+ E ) 

i i,j e: D~ 

which satisfies:
i ~ j 

(1) 	 hi 
i · 

is the identity map on Ei' for i e: D, 


k j k
(2) hi= hihj:Ek-+ Ei, for i ~ j ~ k in D. 

A morphism of a projective family of ovs, (h{:Ej -+ E ) 
i i,j e: D' i s j 


is a family of positive maps (gi:H-+ Ei) which satisfies

i e: D 

- hj .f i j. gi - i gj' l. . .$ • 


A projective limit of a projective family, (hjE -+ E ) 
 . 
i j i i,j e: D, i $ j' 


is a mo~phism pi:proj lim E1 -+ Ei for which, given any morphism 
0

(gi:H-+ Ei) i e: D' there exists a unique positive map g':H-+ proj limDEi 

such that pig'= g., for all i e: D.
l. . 

If (hi:Ej -+ Ei) i,j £ D' i ~ j' is a projective family of OVS, 

then the projective limit of this family may be constructed as follows. 

The set E = {a e: TIDEi : a(i) = hi (a(j)) ,· whenever i ~ j} is a linear 

subspace of TIDEi, because, if a,b e: E~ then µa(i) + Th(i) =hf (ua(j)) + 

h~(Th(j)) = hf(ua(j) + Tb(j)), for i ~ j, implies µa+ the: E. With . 

the . subduced order, E is an OVS. The maps p :E-+ Ei defined by
1
 

p (x) = x(i) are positive and pi(x) = x(i) ·= h~(x(j)) = h{pj(x), if

1


i .$ j. If (g .. : F -+ E.)., D is a family of positive maps which satisfy

l. 1 ~ e: 


g = higj, ·for i ~ j, then the map g:F-+ E defined by g{x)(i) = 
1 


gi(x), for i e: D, for x e: F, is positive, and pii = g1 ~ since,for 
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x e: F, p.{g(x)) = g(x)(i) = g.(x). The map · g:F-+ E is unique, for 
1 	 1 

' 
if f :F -+ E satisfies pif = gi, then, for x e: F, p1 (f(x)) = gi(x), 

hence, f(x)(i) = gi(x) and so f = g. Hence, E = proj limDEi. 

we· note further that g:F -+ proj limDEi i.s an isomorphism . 

if and only if: 

(a) 	 if gi(b) = gi_ (b ')' for all i e: D, b,b' e: F, then 

b = b ... ' 

(b) 	 for any a e: proj limEEi' there exists b e: F such 

that gi(b) = a(i), for all i e: D, 

(c) 	 for any a e: +(proj limDEi); there exists b e: +F 

such that gi(b) = a(i). 
r 

An injective (direct) family of OVS is a net (Ei)i e: D 

of OVS together with a family of positive maps (hji:Ei -+ Ej) i . D',J £ 

which satisfies:
i s 	j 

(1) 	 h~ is the identity map on Ei, for i £ D,
1 

j -	 k j . . (2) 	 hi - hjhi.Ei -+Ek, for i < .j ~ k . in D. 

A morphism of an injective family of OVS is a family of positive maps 

(gi:Ei-+ H) i e: D' which satisfies: 

gi = gjhi if is j. 

An injective limit of an injective family, (hl:Ei-+ Ej) i,j e: D' i $ j' 

is ·a morphism q1 :Ei-+ inj li~Ei fo~ which, given any morphism 

qi:Ei-+ H, i e: D, there exists a unique positive map g':inj li~Ei-+ H 

such that g'qi = gi, for all i e: D. 

j •If 	 is an injective family of OVS,(hi:Ei-+ Ej) i,j e: D' is j 

then the injective limit of the family may be constructed as follows. 

The relation in the disjoint union, \:.} DEi' defined by xi yj, where 
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xi e: E., y. EE., if there exists k e: D such that i,j ~ k and 
1 J J 

k kh (xi) = hj(yj), is an equivalence relation. The set E of equivalence
1
 

-

classes may be given 	the structure of a linear space. If x,y e: E, 

then, for ·any xi e: x and e: y, there exists k :!:. i,j such thatyj 

k k k
k . 

hi(xi), h. (y .) e: Ek and hi(xi) e: x, h. (y.) e: y, and .so TX + µy = 
J J J J 


k k 
 +E(Th (x ) + µhj(xj))_ defines linear operations on E. The set = 1 1

{x e: E : there exists xi e: x with x ~ O} is a cone in E. If
1 

x,y .e: . +E, then there exist xi· e: x, yj e: y with xi,yj -> 0 , and there 

k 	 kexist k £ D such that = hi(xi) and yk = h.(x.) are positive,~ J J 
k khence, x + y = (hi(x.) + h.(x.))_ e: 

+ 
E. 

. 
If x e: +E {'\ _+E, then 

1 J J 
+ · +there exist x. ,x. e: 	 x such that x. e: E.' x. e: - E.' and there exists 

1 l.~ J. 	 J J 
k + k + kk e: D.with k > i,j su.ch that hi(xi) e: 	 and hi(xi) =Ek, h/xk) e: - Ek' 

h.
k 

(x.) = O; hence, x = o. Clearly 0 e: +E and +R+E S, +E. The maps
J J 

ui:Ei ~.E, defined by composing the canonical injections E ~ \.:) DEi ~ 
1 

Suppose f. :E. ~ F 
1 l. 

is a morphism of (h~:E . ...- E ) D, If xi, yj e: x, then 
l. 	 l. j i,j e: 1 s r 

k kthere exist k e: D with k > i,j and hi(yj)= hj(yj); hence, f j (yj) = 

k k 
fkhj(yj) = fkhi(xi) == f i (x.) • For x £ E, there exist xi e: E. such 

·1 	 l. 

that u. (x.) = x. The correspondence x _.. f(x) = fi(x ) is a map,
1 1 1

since f j (xj) = fi(xi), for any other e: x, and f is positive,f j 

. + 


since x e: E implies ·there exists ~i e: x with .xi ·e: 
+ 

Ei and 

fi(xi) = f (x) ~ o. If f(u1 (xi) = fi(xi)' then fui = fi. If gui = fi' 

then g(ui(xi) = f.(x.) and so g(x) = f(x). Hence, E = inj limDEi.1 1 

(5.1) Lemma: If an OVS E = lJ DEi' where (Ei) i e: D is a family 

of · subspaces of E, e·ach ordered with the ordering subduced from E, 
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and D is directed and ordered by i $ j if E. C: E., then the family
1 - J 

(qj·E ~ E ) · is an injective family, where q~ are
i. i j i,j c D' i $ j 1 

the canonical inclusion maps and (q ·E ~ E) is the inJ·ective
i 

0 

i i E D 

limit of this family. 

. j
Proof: The family (q. :E .- ~ E) satisfies qi = q.h. if i s j'1 1 J 1 

hence, there exists a unique .positive map f inj limDEi ~ E for which 

fui =qi, where ui is the injection ui:Ei ~ inj li~Ei. Since x EE 

implies there exists i c D such that x = qi(xi) = f(ui(xi)), f is a 

surjection, and furthermore, if x £ 
+E, then u. (x.) E +(inj limDEi).

1 1 

We have f is an injection, since f (x) = 0 implies f (u. (x)) = 
1 

qi(xi) = 0 and qi(xi) = 0 if and only if, x. = O, which implies
1 

-1 x = O. Hence, f is bijective, f is positive, and so f is an 

isomorp~ism. 

6. The Lattice of Order Ideals 

Let E be an OVS. The complete lattice of KR-closed sets 

on -{>(E) determined by the polarity generated by ....Q(E), the set 

of ideals of E, coincides with ~ (E), since E is an id~al and 

the intersection of any family of ideals is an ideal. We write 0 

for {O} the least element of ...J. (E) and, for any set SS E, (S)t = 

KH(S) is called the ideal generated by s. 

(6 .1) Lemma: For any set S contained in an OVS E, we have ( S) = 

[(S)]. 

Proof: Clearly, (S) C <S> and [ <S) ] = ( S ) imply [ (S)] C ( s) 
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To show equality, it suffices to show [(S)] is an ideal, and for this 

it suffices to show [(S)] is a linear subspace. If x,y £ [(S)], 

then x £ [a,b] and y e: [c .,d], for some a,b,c,d in (S). We have 

that x + y £ [a+ c, b + d], -x £ [-a,-b], and AX£ [Aa, Ab]. These 

intervals are contained in [(S)] and hence x + y, -x, and AX are 

in . [ (S)]. 

In particular, if a £ E is not comparable to 0, then ( a) = 


(a), and if a £ +E the.n 
 An element e £ +E
' 

is called a unit of E if E = (a) • E is directed if and only if, 

E = ( +E) since ( +E) = [ (+E)] = [+E - +E] = +E ·- ·+E. 

( 6. 2) Theorem: If E is a directed OVS, then E is the injective 


limit of the family (q
b 

: (a} -+ (b) ) + 
a a,b £ E; a ~ b. 

Proof: 'Since E is directed, E = U+ (a) and ((a) )a£ +Eis directed 
. E 

by inclusion,as a+ b ~ a,b; thus, (a+ b) ~ (a),(b). Thus, the 

- result follows from (5.1). 

7. Fully Ordered OVS 

(7.1) Lemma: An OVS E, is fully ordered if and only if, E contains 

no non-trivial trivially ordered ideals: 

Proof: If E is fully ordered and I is a trivially ordered ideal of E, 

then x £ I is comparable to 0, only when x = o, and so I = {O}. 

Suppose E is not fully ordered, then there exists x £ E such that
• 


. X t +EU - +E • If x is incomparable to o, then so is any scalar 


multiple of x. Henc.e, (x) () +E = {O}. and so (x), the vector subspace 


spanned by x, is a trivially ordered ideal. 
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An OVS E, is called simple if E ~ 0 and E has no non­

trivial ideals. 

{7. 2) The.orem: (Bonsall ( 3 ) ) • If E is a simple OVS, then 

either E is isomorphic to R, or E _is isomorphic to (R,O). 

Proof: If E is not linearly ordered, there exists an x £ E such 

+that not both . x and -x are in E. Hence, (x) ={x) and E 

simple, implies E = (x); that is, E is isomorphic to (R,O). If 

E is linearly ~rdered, there exists an x >- O; hence, +E ~ o. 

Any e e: +E is a unit of E. The map Pe :E ~R .defined by p(x) = 

inf {ex £ R x $ ae} is finite valued,since any x e: E is in 

[-Ae, Ae], for some A > O. If x ~ p(x)e, then y = (p(x)e - x) ~ O. 

If y > 0, then <y) = E; hence, there exists ). e: R such that 

y > ).e. · Thus, p(x)e - x ~ ).e. But (p(x) - ).)e 2 x contradicts 

the definition of p; hence, y = O, for each x e: E. Thus, p:E ~ R 

is an isomorphism. 

8. Maximal Ideals and Modular Ideals 

Let E be an OVS. An ideal M · of E is called maximal 

if E/M is simple. A proper ideal ·I of E is called modular if 

there exists an a in + E such that ( a } = E/I. Such an element
1

+ 
a e: E is called a mod unit of I. If a is a mod unit of an ideal 

I, then a I:. I, for a e: I implies al = OI' which implies E/I = ( OI} 

this contradicts the propriety of I. If M is a maximal ideal, then 

any a i I,. a > O, is a .mod unit of M. Thus,if E is a directed ovs,. . 

all maximal ideals are modular. If M is a maximal ideal and M is 



30 

modular, then E/M is isomorphic to R, otherwise E/M is trivially 

ordered. 

( 8,1) Lennna: If I is a modular ideal of an OVS E, with mod unit 

a, if J is an ideal of E for which at J, and if I is contained 

in . J, then a isamodunitfor J. 

Proof: 	 If there exists E/j such .that thenXJ £ XJ i <aJ) ' 

p 
-1

(xJ) is not contained in _p-l( ( aJ) ) , where p is the projection 

-1 -· 
of E/I to E/J. But p ((aJ)) = E/I. Hence, there does not 

exist an xJ £ E/J such that xJ' i ( aJ) . • 

(8.2) Lemma: (Bonsal ( 2)). Each modular ideal of an OVS E is 

contained in a maximal ideal which is modular. 

Proof: If I is a modular ideal and a is a mod unit of I, then 

the set {I~ c '1CE) : I~~ I, a¢ I} is inductive. Hence, there 

exists M c .J which is maximal with respect to I C M and a i M. 

If E/M is not simple, then for any non-zero ideal N in E/M,p-1 (N), 

the inverse of N, under the projection map p:E ~ E/M, is an ideal in 

E. Since is a unit of E/M, aM t N, and so a ¢ p 
-1 (N). Also 

p-1 (N) ~· M. This contradicts the maxim~lity of M. 

9. 	 . OVS with Units 

Let E be an OVS £or which e e: E is a unit of E. The map 

P:E ~ R defined by pix) = inf {A > 0 -A e < x < Ae} is a seminorm, 

and a norm .if and only if, E is almost Archimedean. If Eis 
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I 

Archimedean, then [-e,e] is {x £ E : p(x) < 1}. The maps µ:E + R 

defined by u (x) = inf fo £ R a.e > x} and .t:E + R defined by 

t(x) = sup {S £ R : Se « x} are sublinear functions,and if E is 

almost Archimedean, then, for x e: E, .x :JO; u(x) and .t(x) are 

not both o. These facts are :well known and their verification is 

routine. 

(9 .1) Lemma: (Giles ( 6 ) ) • Let E be an OVS with a unit e. 

A subspace I of E ·is ·a non~trivially ordered ideal if and only if, 

supports [O,e]. 

Proof: If I is an ideal of E such that I() +E # O, then 


I() [O,e] # </J. If x = a.y + (1 - a.)y ... , where x e: In [O,e], y,y ... £ 


[O,e] and 0 < a. < 1, then 0 $ a.y, (1 - a.)y ... ~ x imply y,y ... £ I. 


Thus I· supports [O,e]. Conversely, suppose I sup~orts [O,e], 


x,y e: +I, x ~ y. 'Without loss of generality y ~ e. Since l/2y = 


1/2x + l/2(y - x), where x, y - x e: [O,e], and I supports [O,e], 


we have x e: I. Thus I is an ideal of E. 


The following lemma is proved in (7 ) under the additional 

assumption that E is Archimedean. 

(9. 2) . Lemma: (Kadison (7)):. Let E be an almost Archimedean ovs 

with a unit e. For any x .£ E, x :; o, there exists an ideal · I of 

E such that = u(x)e or = .t(x)e in E/I. In part, xI orXI XI1 1 

-xI is a unit for E/I. 

Proof: If x e: E, x # o, then either .e,(x) or u(x) is not zero. 
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Suppose . u(x) # O. If x e: I = ( u(x)e - x) , then there exists >.. e: +R 

such that x ~ >..(u(x)e - x). Thus, (1 + /..)x = x + >..x s. >..u(x)e, which 

implies x ~ (>../l + >..)u(x)e < q(x)e, and since (>../l + >..)u(x) < u{x), 

this contradicts the ·definition of u(x); hence, x t (u(x)e - x) and 

i(x) # 0," and x e: ( i(x)e - x)= I, then there 

exists 	 >.. ~ 0 such that ->..( i(x)e - x) ~ x. Without loss of generality 

>.. ~ 1. Hence we have ->..i (x)e ~ <+ - >..)x which implies i(x)e < 

(->../1 ·- >..) i(x)e ~ x. This contradicts the definition of i (x) ; hence_, 

x i (Hx)e - x) and so 

(10. 3) . Theorem : (Kadison ( 7 ) ) • If E is an almost Archimedean ovs 

with a unit e, then, for any x e: E, x :/: o, there exists a (modular) 

maximal ideal M such that = u(x)eM or = i(x)eM in E/M.~ 	 ~ 

Proof: 'By the preceding lemma, for any x £ E, x # O, there exists an 

ideal I of E such that = u(x)e , or XI = (x)er The setXI 1 

...J 
1 

= {J e: ..J (E) : J :::> I, x t J} is inductive; hence by Zorn's Lemma, 

...! 
1 

has maximal elements. If M is a maximal element of .J.. 
1

, then 

E/M is simplc,for otherwise,if there exist ideal N in E/M, N # O, 

-1 .
then p (N), where is the projection map, is an ideal in 

E which contains M , and since xM t N r, because eM is a unit for 

E/M and ~ = >..eM, for _some >.. e: R, ,we have x e: p-1(N). This con­

tradicts the maximality of M in ...,J. • Thus M is a maximal ideal
1 

of E. 

10. 	 ovs with Bases 

Let E be an OVS with -a non-trivial cone +E. A nonempty 
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convex subset B of . +E is called a base for +E if each nonzero 

element x E +E has a · unique representation x = Ab, for b £ B,A > O. 

The element 0 is not in a base B, for if 0 £ B, we have Ab c B, 

for b £ B, and 0 < A < 1, since B is convex, and this implies that 

the representation for elements of +E is not unique." 

The following two lemmas are well known and their proof may be 

found in (Peressini ( 9 ) ) • 

(10.i.) Lennna: If B is a base for the cone .of an OVS E, and if 

lniA.b. = O, for b. £ B, A. £ R,i = l, •• ,n, then IniAi = o. 
l.l. 1 l. 

(10.2)· Lemma: A subset B of an OVS E is a base for if and 

only if, there exists a strictly positive linear functional e:E ~ R 

such that e-1 (1) () +E = B. The representation of elements of +E 

by elements of B is given by a= e(a)(a/e(a)), for a£ +E. Further­

more if E is directed, then e is unique. 

(10. 3) Lemma: (Edwards ( 4 ) ) • If F is an OVS with a base B 

for +F, then a linear subspace I of F is an ideal if and only 

if, I supports B, or In B = ¢. 

Proof: -Suppose I is an ideal of E . and If\ B # ¢. If h £I() B, 

h = ab + (1 - a)b"", for 0 < a < 1· bsb ... E B, then ab ~ h and
' 

(1 - a)b '"" s h imply b ,b ... E· I. Thus I supports B. If rnB = ¢,. 

then I is a trivially ordered ideal of E. If I . supports B and 
+ . 

x ·,y ~ F , · x ~ y, y £ r· then there exist b £ InB and A > 0 such
' 

that 0 ~ Ax ~ b, furthermore AX = llb, for 0 < µ < 1 and b - ~x = 
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oh ,for 0£ R;b ,h EB. Since e(b) = e(µbl) + e(o b ) where e is
1 2 2


a strictly positive functional induced by B and I supports B, we 


have bl £ I which implies x £ I. Thus I is an ideal of E. 

(10.4) 	 Lemma: (Edwards (4 )). Let F be a directed OVS with a 

+ .base B for F. The convex set conv(B u · -~) is circled and 

absorbing and the Minskowski gauge g of · conv(BU -B), restricteq 

+to F, coincides with the strictly positi.ve functional e: F ~ R 


induced by B. Hence g is additive on +F and g(B) = 1. 


Proof: We have S = conv(BU -B) = {A.b - A.'b' 


A + A.' = I}. Since 0 E s, Ab E s, for any b £ B, 0 < A < 1, we have 


s = {A.b - A. 'b' h,b' £ B, A.,A.' > o, A. + A.' < ll.. Clearly s is 


circled. Any x e: E has a representation x = A.b - A. 'b' where 


A., A. ... > d and so (l/A. + A')x E s. Thus, S is absorbing. If x E 
+F, 


· then x = e (x)b , which implies g{x) = inf {a > 0 : l/a.x £ S} = e(x). 

11. 	 Extremal Ideals 

Let E be an CVS. An element x e: +E is called indecomposable 

if it satisfies the following equivalent ~onditions : 

+ · (1) if y E E, y < x, then x = A.y, for some A. > o, 
. t 

(2) if y,z e: 
+E, x . = y + z, then y,z E <x) ' 

(3) ( x) is a one dimensional subspace of E. 

An ideal I of E is called indecomposable (extremal) if it is a one 

dimensional subspace of E. 

(11.1) 	 Lemma: If E is ·an CVS with a base B, then x e: B · is 

http:positi.ve
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indecomposable if and only if, x is an extreme point of B. 

Proof: 	 Suppose x e: B is indecomposable and x = ax + (1 - a)x2 ,1 


where xl'·x e: B, and 0 < a < 1. Since 0 < ax < x, we have

2 1 

x = Ax
1

, for some A > 0 and by the uniqueness of the representation 

of x by elements of B, we have >.: = 1. Thus x · is an extreme 

point of B. Conversely, if x is an extreme point of B and 

0 < x < x, then x = (x - x ) + x1 . Let e be the positive functional1 1


induced by B. Hence, h(x) = 1 = h(x - x ) + h(x ), x = h(x - x )
1 1 1

(x - x ) /h(x - x ) + h(x ) x /h(x ), and (x - x )/h(x - x ), x /h(x ) £
1 1 1 1 1	 1 1 1 1

B. Since x is an extreme point of B, x = x1 /h(x ) and so x is1


indecomposable. 


12. 	 Algebraic Representation Theory 


'Let E be an OVS, let 0 be a set of ideals of E, and let 


HK and KH be the closure operators of the polarity induced by e. 

· There is a ~anonical positive map of E into rr 0E/I, the product of 

the family ~/I) 1 e: 0 , defined by a-+ i(I) = a e: E/I, for any a £ E,1 


I£ 0. The image of E, E(X), is an OVS in the subduced product 


ordering. For any a £ E, s(a) = {I £ 0 : a(I) ~ O} is called the 

SUJ?port of a., We note that s(a) = u· r= {I £ 0 : a ¢ I} , for a e: E. 
a 

If HK is a topological closure on e, then clearly its open sets are 

those generated by {s(a) : a£ E},and HK is sometimes called the 

Zariski topology determined by E. 

If U and V are sets of ideals of an OVS E such that 


v c u., then the restriction map -~~:E(U) -+ E(V)' defined by x -+ x.Iv' 
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for x £ E(U), satisfies: 

(1) E(0) = o, 

(2) 
u is the identity map if v = u,rv 

u v u
(3) if w c v ~ u, then rw = rwrv. 


Let E be a directed ovs, let e be a set c>f proper ideals 


of E, and let HK be the closure operator generated by e. The set 

'tl = {Ua 
. 
: a . e; 

+ 
E } of HK ·basic. open sets, covers e, since, for 

any proper ideal I, there exists x e: E, x t I, and there exists 

a e: :+E, a ~ x with a i I. Hence I £ U ~ Furthermore, 1L is 
a 

directed by inclusion, since, for any a,b e: +E, a+ bi a;b and 

(12.1) Lemma: Let E be a directed ovs and let e be a set of 

ideals of E.. Then 
b

(r :E(Ub)a + E(U ))a a b, e: +E, a ~ b is a 

projective family of ovs and (r :E(e)a 
+ E(U ))a a £ +E · is the -

projective limit of this family. 

Proof: Clearly (r::E(Ub) ~ E(Ua)a,b E +E, a Sh~ is a projective 

family of OVS. The family of positive maps (ra:E(X) + E(Ua))a E +E 

if a Sb~ hence, there exists a unique positivesatisfies 

map g:E(0) + proj lim+ E{U ). We ver!fy that g is an isomorphism.
a

E ,..+ .
If r (b) = r (b'), for b,b' £ E(0),for all a E E, we have blu = a a a ,.. 


blu , for all a E 
+E, and since 1.L = {u a E +E} covers 0, b{I) = 


a a 

b'(I), for all IE e, thus b = b'. For x E proj lim+ E (U ) , there 
E a 

exists x E E(0) such• that r (x) = x(a) = xlU , for all a E +E, 
a a 

x{a) E +E{U ), for 
a 
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+all a £ +E and so x £ E(0).
' 

Let E be an OVS, let 0 be a set of ideals of E and 

let HK and KR be the closure operators generated by 0. For any 

set S ~ E, the kernel of the map A:E + E(H(S)) £ rrH(S) ·E/I is 

KH(S), since xI = 0, for all I£ H(A), if and only if, x £ KH(I). 

Furthermore, in the canonical (linear) decomposition ":E g E/KH(S) + 

E(H(S)) 1 H(S)E/I, the linear bijection "'':E/KH(S) + E(H(S)) is 

positive. Suppose xKH(S) £ E/KH(S) and xKH(S) ~.O, then there 

exists y e: x + KH(S) such that y ? O, and so y e: x + I, for ail 
A 

I e: H(S). This implies xI ~ O, for all I£ H(S), thus x' ~ O. 

(12.2) Lemma: Let 0 be a set of ideals of an OVS E for which 

E/I is almost archimedean, for any I £ 0, then E/J is almost 

archimedean, for any KR-closed ideal J in E. 

Proof: The OVS E(H(J)) is almost archirnedean in the induced product 

order and the canonical map E/KH(J) + E(H(J)) is a bijection. If 

-).y ~ x ~ ).y, for x,y e: E' ). > 0, then -).y ~ XI S. ).yI' for allI 

I £ H(J). Since E/I is almost archimedean, for any I, we have 

x = O, for all I e: H(J). Thus, x is O, which implies x is O,1 

which implies E/KH(J) is almost archimedean. · 

The set n (E) of modular ma~imal ideals of an OVS E may 

be used to induce a polarity between ~(E) and f"'Jcn ). The 

HK-closure on n will not in general be a topological closure. 

Singleton. sets of n are closed because HK( {M}) = {M' e: n : M' ~ M} = 

{M}. 
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(12~3) Lemma: If an OVS E has a unit e, then . Q is a_compact 

element in the family of open sets of n • . 

Proof: Suppose UA , for some familynsiY1 (u A ) i e: I 
i i 

of open sets. Since we have n = u C {M e: nU IUA = U U !Ai, a-i 
(U IAi)ct M}. If a t(U 1Ai) then the set of ideals { J e: J (E) 

a i J, ( U Ai} c; I} is non-empty,. and so the set is inductive.
1

Because E has a unit, all ideals are modular. _ Hence, this set 

contains a maximal element which is a maximal modular ideal. This 

contradicts the fact that if a i M, then U1A ~ ?:f. Hence,1 

a e: ( U 1Ai) • Thus, a e: ( U 
1
nAi) , for some finite subfamily of 

I. If a e: ( U 
1

nAi} , then u = 
a 

(12.4) Theorem: For a modular ideal I of an OVS E, E/I is 

almost Archimedean if and only if, I is KH-closed,where KH is 

the closure operator generated by the set Q of modular maximal 

ideals of E. 

Proof: By a preceding lemma, if I is KR-closed, then E/I is 

almost Archimedean. Suppose E/I is almost Archimedean. If x e: E, 

x t I, then XI :f 0 in E/I, and sirtce E/I is almost Archimedean 
. r 

with a unit ·, there exists a maximal ideal M in E/I such that 
-1 , 

XI i M. This implies x i p (M), where p:E ~ E/I is the natural 

projection, and p-1 (M) is a modular maximal ideal in E. Hence, 

xi KH(I) . and so I= KH(I) • 
• 

(12.5) Corollary: Let E· be an OVS, if the intersection of the set 
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. (E) , ideals of E which are modular and for which _E/I. is almost 


Archimedean is O, then the intersection of Q(E) is O. 


Proof: For any x e: E, there exists an ideal I for which x ¢ I 


and E/I is almost Archimedean. Furthermore, there exists a maximal 


ideal M of E/I such that i M, hence, p 
-1 

(M) is a maximal 
~ 

ideal in E and x i p 
-1 

(M), where p:E + E/I is the natural projection. 

Let (E.) be a disjoint family of ovs such that isEi1 i e: x 


isomorphic to E., for any i,j e: X, and let p: f; = UXEi + X be the
J .. 


natural projection . . A map h:£ + E, where hlE is an isomorphism

1 


of E. with an OVS E, is called a trivialization of p:f: + X. If 

1 

h: f; + E is a trivialization of p: ~ + X, then the map from ITXEi 


to Ex, the set of all functions from X to E, defined by f +hf, 


for f ~ ITXEi, is an isomorphism. 


Let X be a set of modular maximal ideals of· an OVS E. The 


family (EI E/I)I e: X is disjoint and EI is isomorphic to R, for 


+any I e: x. For any al e: EI' al # o, the map p :E + R,a I1 

defined by Pa (XI) = inf {a e: R : x

I 
< aa

1
}, for XI e: EI' is an 


I 

isomorphism. For any set ACE such that (U ) covers x and 
a a £ A 

such that al = bl, for any I e: Ua('\ ~b' and for any a ~ ·b e: A, the map 

· pA:f; = UXEI + R, defined by pA(xI) =Pa (xl), for .XI e: ~ and for 
I . 


a t A, is well defined, since pa (xl) = Pb (xI) whenever I £ u n ub,
aI I 

and is a trivialization of p: t; + x. In particular, if E has a 


unit e, then is a trivialization. Since a trivialization 


of p: £: + R induces an isomorphism between ITXEI and RX it induces

' 

a rep~~sentation of E into Rx. 
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CHAPTER III 

RIESZ_ Q_@~REif.VECTOR SPACES AND ABSOLUTE ORDERED VECTOR SPACES 

The present chapter introduces OVS, which satisfy the Riesz 


·decomposition property, and OVS E, ~hose order is induced from a map 


I :E -+ E, which is called an absolute valuation • 

. 1. Join Ideals 

An ideal I of an OVS E is called a join-ideal ( V -ideal) , 

if whenever a V b exists, for a ,,b E I, then a vb E I. · The set 

of all V-ideals of E is a complete lattice in the ordering by 

inclusion. A linear map h:E -+ F between OVS E and F is called 

strongly positive if whenever av h exists, for a,b E E, then 

h(a) V l}(b) = h(a vb), or equivalently, if whenever a Ab exists, 

for a,·h E E, then h(a" b) = h(a) I\ h(b), since a/\ h = a + b - (av b). 

Clearly,a strongly positive map is positive. 

A linear map H:E -+ F between OVS is strongly positive 


if a/\ b = O, for a ,h e: E, implies .h(a) /\ h(b) = O. To see that 


this is sufficient, suppose a Ab exisis, for a~b E E, then 


(a-:- (a/\ b)) /\ (b - (a Ab))= 0, and so (h(a) - h{a f\ b))I\ (h(b) ­
. r 

"h{a /\ b) = O, which implies h(a) I\ h{b) = h(a f\ b) = O. 

If h:E -+ F is a strongly positive map between OVS, then 


ker{h) is a v-ideal, because, if a,b E ker{h) and av b exists, 


then 0 = h(a) A h(b) -;- h(a" b) = h(a) + h(b) - h(a v b), and 


h(a) + h(b) = O, imply h(a vb) = O, and. so av b E ker(h). 
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If I is a V-ideal of an OVS E, then the projection E-+ E/I 

is strongly positive, because if avb exists, for a~b £ E, then 

(av b) + c = {a + c) v (b + c) implies a1 v b = (av b) •
1 1

If E is an ovs, J:f (E) will be the set of ideals of E 

which are directed in their order. _Direct~d idea~s are strongly 

positive so the canonical projection preserves meets and joins for 

directed ideals. There is a bijection between JJ(E) and .J. (+E) = 
+{K C +E : K is a cone,and if x,y £ E, x $ y, y £· K, then . x £ K} 

the set of ·semi ideals of +E. The correspondenc~ is given by 

I -+ I n+E and K -+ K - K. 

2. 	 Riesz OVS 

· A directed OVS E satisfies the Riesz decomposition property 

if: 

(D) if a, bl, •• ,bn £ 
+E, a ~ b +•.+ b then there exist

1 n' 

a. £ 
+E, such that a = al + •• + an and a. s bi' for 

l. 	 1 

i=l, •• ,n, 

and E is called a Riesz OVS. 

(2.1) 	 Theorem: (Fuchs ( 5)). For a directed OVS E these conditions 

. r 

are equi~alent: 

(1) E is a Riesz OVS, 

(2) if a,b e:: 
+E, then [O,a] + [O,b] = [O,a + b], 

. 
then there exist c £ E such that ~ c ~ bj. The proof of theira1 

equivalence is routine. 
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A lattice OVS is a Riesz OVS. Let E be a lattice OVS, 

·+ . 
£ E. Clearly, [O,a] + [O,b] S. [O,a + b]. If c £ [O,a + b], let 

u = c I\ a and v = c - u • . Since V = c - (c I\ a) = c + (-c v - a) = 

0 V (c - a) ~ 0 'v (a · + b - a) = b. Thus, c = u + v where u e: [O,a] 

and v e: [ 0 , b ] • 

(2.2) Lemma: (Fuchs ( 5)). If I · is a directed ideal of a Riesz 

OVS E, then E/I is a Riesz OVS. 

Proof: Since E is directed, E/I is a directed ovs. For this 


proof we write a for the coset where a e: E. If ~l:a2,bl,b2 £ E/I,
C\i' 
ai < b· for i = 1,2; j = 1,2, there exist b. such that - j' bji £ 

J 

ai ~ b .. , for i = 1,2 j = 1,2. The co.sets mod I are directed, hence 
J l. 

there are £ b. such that ~ b. ~ b., for j = 1,2.bj bjl and bj2J J J 

Hence ,there exists c e: E ·SUCh that ai s c $ b.' for all i ,j' and 
J 

so ai s c ~ b.' for all i ,j.
J 

(2.3) Theorem: (Fuchs ( 5)). The set of directed ideals of a Riesz 

OVS E is a distributive sublattice of the lattice of all vector 

subspaces of E. 

Proof: To prove that I(') J is a directed ideal, for directed ideals 

I and J of E, we need only to show that I() J is directed. If 

x,y e: I fl J, then some a £ I, b e: J satisfy x,y ~a and x,y ~ b. 

By the interpolation property (3) of (2.1), there exists c e: E, such 

. 
that x ~ c s a and y s c ~ b. Renee, c is an upper bound for {x,y} 

in I() J. 
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The subspace . I + J is directed in the subduced order. To 

prove that I + J is an ideal, suppose 0 ix $ a+ b, where x E E, 

a e: +I, b £ +J. By (2.1) there are a',b' £ E such that 0 ~ . a'~ a; 

0 ~ b' ~ b and x =a'+ b', hence x EI+ J. 

To verify the distributive . law I (l (J + L) = (I n J) + (I(\ L) 

for directed ideals I,J,L of E, it suffices to prove the inclusion 

c only, and ·even this,only for the positive elements of Ill (J + L), 

in view of the bijection between directed ideals of E, and semi-ideals 

·+ 	 +of · E. Let a = b + c, where a E I and b £ J, c E L. By the 

directedness of J and L, there are positive elements b and c
1

,
1 

such that b ~ b and c s c • Since 0 s a ~ b2 + c1 , there exist1 1

b2,c2 with 0 $. b2 ~bl . 0 :s c2 s...cl and a = b2 + c2. Furthermore,
' 

since 	 b2 £ J, c2 e: L and ~ a, we have e: I() J andb2' c2 	 b2 

e: I r\L. Thus, a e: (I n J) + (I() L), as desired.c2 

3. 	 Absolute ovs 

Let E be a linear space. An absolute valuation on E is a 

map l!:E-)-E satisfying: 

(Al) II a II = la!, 


(A2) !al = 0 if and only if a 
r 

= o,

. 

(A3) 	 IA 1 lal = I1.a I, for all A e: R, 

..;.(A4) lal + lbl I lal + Ib 11, 
(AS) a= lal = -a, if and only if, a = o, 


(A6) llal - ~I = !al - a and I lal +al = !al + a, 


(A ") la+ bl ~ l~I + lbl.
7 
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The set + 
E = {a £ E : a= lal} is clearly a cone in E 

and (A6) implies a, - a < !al. Define a+= <lal + a)/2 and 

-a = (!al. - a)/2. Since a ~ I a I , we have that . 0 ~ I a I - a and 

+hence that a-= (jal - a)/2 is positive. Similarly, a is 

positive. We have also that: 

+ ­(1) 	 !al = a + a , 


+ ­(2) 	 a = a - a , 


- +
(3) a = (-a) • 

In particular +E is reproducing. 

Since lxl = l<x - y) +YI~ Ix .+ YI+ I-YI = Ix+ YI+ 

IYI, we also have: 

(4) I lal - !YI I ~ Ix+ YI· 

A linear space E, together with an absolute valuation I I, 

will be ·called an absolute ordered vector space (AOVS). 

Let E be an AOVS. The binary relation 1 in E defined 

by a 1 b, if and only if, I a I A Ib I = 0 satisfies: 

(5) a 	1 b, if and only if, b 1 a, 

(6) a 1 a, if and only if, a = O, 


. (7) 
 a 1 b, if and only if, !al V !hi = !al + lb I, . 
. r 

(8) 	 alb and lbl ~ I c 1, imply a 1 c. 


+
Let 	 E be an AOVS. If av '0 = a whenever av 0 exists, 

then whenever av 0 exists, we have av b = (b + 0) V ((a - b) + b) = 

((a - b) V 0) + b = (a - b)+ + b. We also have 

(A8~ x 1 Y ir:iplies I IY I -:- lxl I =!YI+ lxl, 

since .lxl + IYI = !xi V IYI = lxl + <IYI Ix!)+= lxl + 1/2{1 IYI 
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Ix 11 + IYI - Ix I 1 = i12 { 11 YI - Ix 11 + IYI + Ix IL 
If E is a lattice OVS, then with the map a-+ !al =av -a, 

E is an AOVS. 

Let E be an AOVS. A sequence in E(av) v = 1, 2, ..•. 

converges to an absolute limit a in E, if there exists a sequence 

( R, ) in E decreasing to 0 in E and an increasing
v v = 1,2, .•. 

sequence of natural numbers such that la :, al < R, ,
1,2,~ •• ~' µ v 

for every µ ~ µv' v = 1,2, •.• , and this is denoted by ab - lim 
00 

a =a. v -+ v 

An absolute limit a £ E is uniquely determined if it exists. This 

follows, because, if there exists b £ E, a sequence (k )
v v = 1,2, •••• 

decreasing to 0 . in E, and an increasing sequence of natural numbers 

(5 ) such that ·la - bl $ ·k for every µ ?! v = 1,2, ..• ,0 ' v v = 1, 2' .•.. µ v' v 

then, ·for every µ > maximum { µ , .Q } we have la al ~ R, and-v v µ v 

la - b r =: and so we have la - bl = la -a - a + bl < la - al + 
. µ kv' µ µ µ 

00 

r - a +bl < R, +k, for every v = 1, 2, ••• Since R, + k v 
.J. 

= 1 o,
1J - v v v v 

we have la bl = 0 and so a = b. Clearly, ab-lim a = a, if 
00v -+ v 

and only if, ab-lim la - al = O.v -+ 00 v 

Also,if ab-lim a = a, then ab-lim = a, for 
00v -+ 00 v v -+ 

any subsequence (a )
µv v = 1, 2, •... • . 

(3.1) Lemma: If a sequence (a ) in an AOVS E increases 
v v = 1, .••. 

or decreases to a £ E, then ab-lim a = a. v -+ v00 

Proof: If ·(a ) increases or decreases to a, then 
v v = 1,2, ..• 


(a - a ) • or (a -a) to O. Thus Iaµ - a I ~ 

. v· v . = 1,2,.... v v = 1,2 .•. 


fa - al, for all µ ~ v, v = 1,2,.~ .. and so (a) converges
v v v = 1 ,2 , •• 
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abso.lutely to a. 

(3.2) Lemma: If a sequence (a ) in an AOVS E is 
v v = 1,2, •• 

increasing (decreasing) and ab-lim a = a, then v ~ 00 v 

increases (decreases) to a. 

Proof: If ab-lim a = a, then there exists a sequence (1 )
v ~ 00 v v v = 1,2, .•• 

in E decreasing to 0, and a sequence of natural numbers (µ )
v v = 1,2, .. ~. ' 

such -that la - al S 1 , for every µ ~ µv' v = 1,2, .•. , Renee. 
µ v 

a - a ~ la - al < R, and a - a ~ !"a - al s R, imply a - R, ~ µ µ v µ µ v 

a ·s a+ R, for every v = 1, 2,. •. •. Since (a )
µ v' 

µ a µv' v v = 1, 2, ••. 

increases, we have a .s a+ R, for every v = 1,2, ..• , and so µ v' 

a ~ (a + 1 ) If x ~ for every = 1,2, .•. , then 
µ /\ v: 1 v = a. aµ' µ 

x a ·- R, for every v = 1,2, .•. , and hence, x (a - R, ) = a.?. v' ~ v v: 1 v 

Therefore, (a ) increases to a. The case where (a )
v v = 1,2, ••• . v v = 1,2, .. 

decreases may be derived similarly. 

(3.3) Lemma: If ab-lim a = a . and ab-lim b = b, for 
v ~ 00 v v ~ 00 v 

sequences '(a ) and (b ) in an AOVS E, then,v v = 1, 2••. v v = 1, 2' ••• 

for any a, 8 e: R, ab-lim (aa + Bb ) = aa + Bb. v 4- 00 v . v 

. t 

Proof: By assumption, there exist (1 ) and (k )
V . V = 1,2... V V = 1,2 ... 

in E decreasing to O, _and _ {µ ) _ ' ,(8 } , such that 
v 1 , 2 v ,v- • • • v=1 2 ••• 

laµ al ~ 1v' for all µ ~ µv' v 1,2, .•.• , and 

lbµ bj ~ kv, for all µ ~ µv' v = 1,2, •••. 

If x = maximum {µ ,8 } , then 
v v v 


l<aa +Sb)~ {a~+ ~b)j ~ lal1 + ~ lslk ,

µ µ v v 
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for every µ ~ x 'v = 1,2, ... v 

A linear subspace I of an AOVS E is called an absolute 

ideal (ab-ideal) if lxl ~ IYI, and y e: I imply x e: I. Absolute 

+ideals are directed order ideals as both x , x are in I if x e: I. 

(3.4) Lemma: The set a(E) of all ab-ideals of an AOVS E ordered 

by inclusion is a complete lattice. 

Proof: If I = n Ali where I. e: a, for i £ A., !xi s. IY,, and 
1 

y e: I, then y e: I.' for all i e: A, so that x £ I.' for all i, which 
1 1 

implies x £ I. If I. 
1 

e: Q for i £ A, then VAri = nu e: a:
' 

J ~ LJ AI.}. 
- l. 

(3.5) Lemma: Let E be an AOVS, then, for any subset A~ E, IA! , 

the ab-ideal generated by A is the set I = {x e: E : Ix I < L~ I>.. I I ai I,
1 1 

for some i e: A}. 

Proof: Suppose lxl ~ l~ l>-il !ail and IYI ~ l~ IA. r Ia. I , then 
1 1 

Ix+ YI !>..Ila.I. Clearly, -x, AXS. !xi + IYI s. l~ IAi II ai I + l~ 1 1 
e: I' 

if x £ I. If !xi < !YI and y e: I' then !xi . ~ !YI ~ !~ !Ail !ail 

implies x e: I. Thus, I is an ab-ideal which contains A and is 

clearly contained in every ab-ideal which contains A. 

Let E,F be two AOVS. A linear map h:E -+ F is called an 

absolute map (ab-map) if h( Ix I) = !h(x) I, for x e: E. Hence, h · is 

an order homomorphism for the induced orders on E and F. 

(3.6) Lemma: The kernel of an ab-map h:E ~ F is an ab-ideal. 
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Proof: Suppose Ix! < !YI and ye: ker(h), then 0 S h(!xl) ~: 

h(lyl) = !h(y)I = 0 implies lh(x)I = h(lxl) = O, which implies 

h(x) = 0. 

(3.7) Lemma: Let E be an · AOVS and let I be an ab-ideal of 

E, then the projection E ~ .E/I is an ab-map. 

Proof: We show that E/I is an AOVS with absolute valuation 


II :E/I ~ E/I, defined by x +I~ Ix+ II = lxl + r ·. Then,by definition, 


the projection is an ab-map. 


(A1 ) 11 x + I 11 = 11 x I + I I = 11.x 11 + I = I x I + I = I x + I I 

(A ) Ix+ II = 0 +I, if and only if, !xi+ I= 0 +I, if
2

~ 

and only if, Ix! e: I if and 9nly if x . e: I, if and 

only if, x +I =. O +I. 

(A3) IAI I x + rl = IAI lxl +I= IAxl +I= !Ax+ II 
7 

(A4) 	 Ix+ II + IY +II = !xi +I+ IYI +I= lxl + !YI +I= 

I !xi + IYI + I = I lxl + IYI + II = I lxl + I+ IYI + II· 

(A ) 	 x +I= Ix+ II= -x +I, if· and only if, 2x +I=
5

0 + I , if and only if , x +. I = 0 + I. 

(A6) 11 x + I I - x + I I = 11 x I + I I - x + I I = 11 x I - x + I I = 
. r 

I Ix! - xi +I= Ix! - x +I= lxl +I+ (-x +I). 

CA7) 11 x I + I + I Y I + I - Ix' + YI + I I = 11 xI + · I Y I - Ix + Y I+ 

I I = 11 x I + Iy I - .1x + y I + I = I x I + I y I - Ix + y I + I • 

(3. _8)_ Lemma: For any .subset A in an AOVS E" A 1 = {x e: E : x 1 a, 

for any a - ~ A} is an ab-ideal of E . . 
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Proof: Suppose that x,y £ Al and a £ A. To show that x + y l a, 

it suffices to show · <lxl + IYI) A lal = 0. The set {Ix! + IYI, la!} 


is bounded below by 0. If 0 ~ u :£ Ix I + Iy I , I a I , then u ~ (Ix I + I YI) I\ 


( Ix I + I a I ) = Ix I + ( I Y I /\ I a I ) = Ix I . Thus, u ~ Ix I /\ I a I = 0 and 


so Clxl + IYI) /\ !al = O. For any · a £ R, there exists an integer n, 


such that n 2: I a I • Thus, Iax I /\ I a I = (I a I .Ix I)/\ Ia I ~ n Ix I /\ n I a I = 


n( Ix I A I a I) = O~ Hence, Al is a linear subspace of E. Since 


lxl ~ IY I and yla clearly imply that x _l a, Al · is an ideal of E. 


(3.9) Lemma: Let E be an AOVS which satisfies (A8). If M is 

a linear subspace of E such that E = M + M1, then M = M1 1 and 

and E is the order direct sum of M and M1. 

Proof: Since M fl M 1 = {O}, it follows . that E is the linear direct . 

0 

sum of M and M1. Suppose z £ M11 but z t M, then z = x + y 

where . x £ M, y £ M 1. For any .w £ M 1 , we have 0 = Iz I /\ lw I = 

Ix+ YI/\ lwl ~ llxl - IYI I/\ lwl = <lxl + IYI) /\ lwl ~ Ix - YI I\ I,.,,, 

since x 1 y; hence, x - y £ M11. It follows that y EM 11, since 

x + y £ M 11. This contradicts the definition of y; hen~e, M = M11. 
If z £ E and z = z + .y where x £ M, y £ M1, then lzl = Ix+ YI ~ 

fxl + jy[. Also lzl = Ix+ YI ~ I lxl - ~ IYI I = Ix· + YI, since x 1 y; 

hence lzl = lxl + IYI· 

'(3.10) Lemma: Let E be an AOVS. The map 1 : 1J (E) -+ fJ(E) defines 

a polarity. Hence, pl (E), the closed sets in fJ (E) form a complete
• 

lattice with least element. 0 = {O} and greatest element E. The map 
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A -:+ A 1 in f.J 1 (E) is a complementation. Furthermore, A A B = 

A n B in fJ 1 (E) • 

Proof: Since the relation 1 on E is symmetric, the map A ~ A 1 
in fJ 1 (E) is an involution, -that is, A 11 = A, (A /\ B>° 1 = 

Al V B 1 and (AV B)l = A 11\ BJ. The fact ·that x 1 x implies 

x l y, for all y £ E, implies A/\ A 1 = {O} and AV A 1 = E. 

These facts hold for arbitrary polarities and may be found in 

(Birkhoff (11)). To show that A() B = (A (l B) 11, it suffices to 

show that (A () B) 11 ~ A () B • For any x e: (An B) 11,- we have 

x 1 y, for any ye: (AnB) 1, which implies x .1 b, for any b £ B 1, 

and x 1 a, for any a e: A 1, which implies x e: B 1 1 = B and 

x e: A 11 = A. Thus , x £ A n B. 

An AOVS E is called prime if x,y e: E, x l y implies x = O, 

or y = o. 

(3 .11) Lemma; A prime AOVS E is fully ordered, if and only if, for 

-any a £ E, a+/\ a = o. 

Proof: If E is fully ordered, then a = a + , or a= a which implies 

a+/\ a - = o. Conversely~ if a+/\ a - = o, then a + , or a = o, which 
.. r 

implies a = a 
+ , or .a= a . Thus, E is fully ordered. 

(3.12) Lenuna: E is a prime AOVS,if and only if, for any I,J e:CC(E), 

In J = {O} implies I = O, or J = O. 

Proof: Suppose E is prime and In J = 0. If I ¥ O, there exists 

McMASTER UNIVERSlTY LlBRAR'l 
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x £ I such that x :/: 0, and x 1 y, for any y £ J. This implies 

y = 0 and so J = o. Conversely, if x,y £ E, x 1 y, then (x) () (y) = 

o. Hence, ( x) or (y} is o~ and so x or y is o. 

An ab-ideal P of an AOVS E is called prime if x,y £ E, x 1 y 

implies x or y £ P. 

(3.13) Lemma: An ah-ideal P of E is prime,if and only if,for 

I, J e: 0 (E) , I () J = 0 implies I C P or J <; P. 

Proof: Suppose P is prime, I n J = 0, and I fl: P, then there exists 

a£ I such that a i P. Since I() J = O, a 1 b, for any b £ J, and 

a { P, we have JC P. Conversely, if x,y £ E, x 1 y, then (x) n <y) = O, 

which implies x or y £ P. Thus P is · prime. 

(3 .14) Corollary: The set IT (E) of prime ab~deals of an AOVS E is 

a topological space under the HK-operator. 

Proof: The p~oof follows immediately from (3.13). 

(3.15) Lemma: Let E be an AOVS, I anab-ideal of E. Then E/I 

is prime,if and only if, I is prime. 

Proof: We note that since I is a directed o-ideal, the projection 

E ~ E/I preserves meets and joins. 1 Suppose E/I is prime, a 1 b 

and a i I. Since 0 + I = Ia I A lb I + I = (I a I + I) I\ ( jb I + I) and 

!al +I:/: 0 +I, then lbl +I= 0 +I, which implies b £ I. Conversely, 

-<!al + ·.I) l\ <lb I + I) = 
.

0 + I implies Ia I " lb I + I = 0 + I, VJhich 

implies la! /\ lb I £ I, which implies !al o.r · lb I is in I, which 

implies !al + I or lbj +I is 0 + I. 
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CHAPTER IV 

This chapter is concerned with dual systems <E,F> of OVS, 

and with the relations between the ideals of E and those of F. 

S~veral results concerning the preservation of topological and order 

properties by quotients of OVS are given~ A cl~ss of ideals, called 

perfect ideals, introduced by Bonsall in -( 1 ) and by Kist in ( 8 ) , 

is discussed. Perfect ideals are characterized by the property that 

their annihilators in the order dual are ideals. The anniliators of 

perfect maximal ideals are one dimensional ideals in the order dual • 

. If an OVS E has a unit· e, then this fact may be used to correspond 

+perfect maximal ideals of E to the extreme points of B = {h e: E* 
e 

h(e) = l}. If E is an Archimedean OVS with a unit e, then <E,E*> 

is a dual system of normed OVS. The Krein-Hilman Theorem may be 

applied to assert that B is the w(E*,E) - closure of the convex hull 
e 

of the extreme points of Be· We show that this assertion is equivalent 

to the perfect maximal ideals of E having 0 intersection, and this 

is proved without using .the Krein-Milman Theorem. When <E,E*> is 

a dual system of OVS where E has a weakly closed cone, we obtain 

conditions on E and E* which are equivalent 
. r 

to the perfect maximal 

ideals of E having 0 intersection. This generalizes the results for 

the case that E is Archimedean with a unit. If E is an Archimedean 

lattice OVS with unit, then . the HK-closure on the set of perfect 

maximal ideals is shown to be a topological closure. 

If · E is an Archimedean OVS with a unit, then it is well 
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known that E is isomorphic to a subspace of a space G(x) of 

continuous real valued functions on a compact Hausdorff space. This 

representation depends on choosing a unit e of E. Then the space 

X is B , endowed with the w(E*,E)-topology, or some subspace of 
e 

B • In a roundabout way this representation may be obtained as 
e 

follows: Since the intersection of n(E) the set of maximal ideals 

of E is O, E . is isomorphic to a subspace of ITnE/M by the subdirect 

representation. The map pe: U nE/M ~ R, defined by ~ ~ p\t(~),1 
where Pe :E/M ~ R is the isomorphism induced by the unit e of

M' M 

E(M, trivializes p: LJ nE/M ~ n Hence, the map · x ~ p x, for x £ E,
e 

represents E as a subspace of functions from n to R, which may be 

given the weak topology. This is the same representation as choosing 

X to be B , since there is a bijection between Be. and n(E). We 
e . 

generalize this approach to represent OVS which do not necessarily 

have units. If the intersection of n(E) is O, for an OVS E, then 

we have the subdirect representation A:E ~ ITnE/M • . If (Ia) a£ A is 

a family of weakly closed modular perfect ideals of E, then they may 

be used to give ITnE/M ~ n a vector bundle structure. Hence E is 

-represented as a subspace of the OVS of sections of this hundle • 

. t 

1. Ideals and Positive Linear Maps 

(1.1) Lemma: Let E be a directed OVS. There is a bijection 

between n(E), the set of (modular) maximal ideals of E, and the 

one-dimensional rays contained in +E* given by M ~ M0 
() +E*, 

where , M 0 = {h £ E*: h(x) = 0, for any x £ M}. 
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Proof: For any M £ n, M0 11 +E* is non empty, since for any unit 

~ £ E/M, the projection map E -+ E/M, composed with p :E/M -+ R, 
~ 

is a positive linear functional on E with kernel M. Clearly 

M
0 n +E* is a ray. Conversely, if H is a ray in +E*, then M = H0 

is a maximal ideal in E. 

(1.2) Lemma: For any ideal I of an OVS E, there is a bijection 

between +Io in E* and +(E/I)* • 

.Proof: For any h £ +I0 
, ker(h) ~I. Hence, there exists a unique 

positive map h:E/I-+ R such that h(x) ~ h(xI), for x £ E. If 

h ~ h for h ,h £ +I0 
, then there exists x £ E, xi I such that

1 2 1 2 

h (x) ~ h2(x). Hence, h (x ) ~ h (x ). · For any h £ +(E/I)*, the1 1 1 2 1


projection E -+ E/I composed with h, defines a positive functional 


h' on _E, such that ker(h') 2 I and h'(x) = h(x ), for x £ E.
1

(1.3) Lemma: If I is a directed ideal of an OVS E, then 1° is 


an ideal in E*. 


+ 0Suppose h,g £ I , h ~ g, then for any x £ I, we have 

0 $ h(x.)~ g(x.) = 0, for i = 1,2.
l. l. 

Thus, h(x) = h(x1) ~ h(x2) = O; hence ·n £ I 0
• 

(1.4) Corollary: If M ·is a maximal ideal of E which is directed, 

0then M is a one-dimensional ideal in E*. 

+(1. 5-) - Lemma: Let E ·be a directed OVS. For any a £ E, there is 

a bijection between U = {M £ n(E) : a i .M} and V = {h £ +E*: h(a) = 1},
a a 
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arid if V is nonempty, then it is a base for a cone in E*. In 
a 

particular, if a is an order unit of E, then v is a base for 
a 

+E*. 

Proof: For M £ Ua, let hM . be .the positive linear functional 

on E, which is the composition of the pro]e~tion . E ~ E/M and 

p :E/M ~ R, where P~ (~) = inf{a £ R : · ~Sa~}. Since 1\t(a) = 
8M 1 

p'\i (8M) = 1, we have ~ £ Va. If h £ Va, then ker(h) £ Ua and 

h = hM' since the canonical linear isomorphism h:E/M ~ R induced by 

h, is since h, (8M) = 1. If Ml,M2 e: Ml :/: M2, then therep<\i, ua ' 

exists an x in Ml, x t hence hM (x) = 0 and ~ (x) :/: 0 andM2' 
1 2 

so Thus, the map M ~ ~ is a bijection. Suppose that~ :/: ~ . 
1 2 

v is nonempty. Let K be the cone {h e: +E*: h(a) > 0 or h = O}
a a 

and let E* = (K ) be the linear space in E* generated by K . 
a a a 

The map a:E* ~R defined by a(h) = h(a) is strictly positive on a 

E* a-1 (1) = v and so v is a base for E*.a' a' a a 

2. Dual Systems of OVS 

.(2 .1) Let <E,F> be a dual syitem of linear spaces. If 

+E is a cone in E, then the set +E*· = {he: F <a,h> ~ O, for all 
. r 

is a wedge in F. Furthermore, +E* is a cone if and only 

if' 
. E = +E - +E where +E ... +E is the w(E,F)-closure of +E - +E.

' 
+ .· 

We verify that · E* is a cone when +E - +E = E. Suppose h £ +E* n _+E*, 

then h(x) = o, for anY. x £ 
+E. Hence, for any x £ E = +E - +E. To 

verify the converse, suppose +E* is a cone in F. If there exists 
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, .. E x .1. +E - . +E, then there exists h £ F, such that h(x) # c, · x £ ' " 

and ker(h) ::> 
+E - +E. Hence, h £ +E* () - +E* and h # c. Thus, 

by way of contradiction, we have E = 
+E - +E. Also, +E* = (-+E) •, . 

+Eand so is w(F,E)-cfosed. From the Bipolar theorem, is 

The following lemma is well known, and its proof ·follows from 

the observations in the preceding .paragraph. 

(2.2) Lemma: Let <E,F> be a dual system of linear spaces where 

E is an CVS. Then: 

(a) +E is closed for a topology 1..t consistent with <E,F> 
' 

if and only if, x £ 
+E precisely when <x,f> ~ c, for 

+ *all f £ E • 

(b) the 'Lt -closure +E of +E is a cone in E, if and only 

0 

1 f , +Ex - +E* is w(F,E)-dense in F. 

A dual system of CVS is a dual system of linear spaces <E,F> 

where E and F are . CVS, and where <x,f> ~ C, for any f £ +F 

and for any x £ 
+E. If <E,F> is a dual system of CVS, then the 

canonical representations E ~EC F# artd F ~ FS Eu, are positive 

maps, where Ff! and E# are ordered by the cones +F* 
. t 

respectively. Furthermore, if E and F are directed, 

and 

then 

+E* 

EC E* 

and F CF*. 

(2.3) Lemma: If is a dual system of directed CVS, then 

E and F are almost Archimedean. 

" Proof: If x £ [-Ay, Ay], for x £ E, y £ +E, A> C, then x(f) = 



57 

+<x,f> = O, f~r all · f E F, since R is Archimedean. Since F is 

directed, x(f) = O, for all f £ F. Thus, x .= O, since the kernel of 

E ~ E C F* is O • 

. (2. 4) A dual system of directed ovs may be . obtained from 

+· +a dual system of sets pair.ed to R. Let <A,B; R > be a dual system 

of sets. The linear space E = (A), generated by A in ".fr (B , R) , 

and the linear space F = (B)' generated by B in ~ (A,R), form a 

linear duality~ . .E and F are directed ovs when endowed respectively, 

with the cones +E = {a £ E : a = I~ A. .a., for some A.i ~ o, a. £ A}
1 1 1 1 

and +F = {h F : h =I n for some b. £ B, A.. ~ o}. For g £ E,£ i\,Jibi' 1 1 

g = t A..a. where >..i £ R, a. e: A, let -· 
p be the set of indices 

1 1 1 1 

for which A.. > o, and let N be the set of indices for which < O; 
1 Ai 

-+then g,= gl - g2 where gl = lp A.iai, and g2 = LN-A.iai. If g e: E, 

then g = }).a. where A. > o, ai e: A, and so <g,b> = <LAiai 'b> = 
1 1 1 

- + 
If f e: F, then f = lµ.b. where 

1 1 

\Ji ? O, bi e: B, which implies 

Thus, <E,F> is a dual system of directed OVS. 

A dual system of OVS <E,F> is said to be full if +E and 

+F are w-closed. By (2.2), x e: +E ifrand only if <x,h> ~ O, for 

·+ all h e: F. If <E,F> is a full dual system of OVS, then the 

canonical representations . E ~ FU and F ~ EH are embeddings. 

(2.5) Lennna: If <E,F> is a full dual system of OVS, then E and 

F are Archimedean ordered. 
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Proof: If x,y E: E, 0 < y' and x ~ >.y, for all >. > o, then <y ,h> ~ o, 

and <x,h> ~ :\ - <y ,h> for all A > 0 and for all h E: 
+

F • Since
' 

R is Archimedean, we have <x,h> ~ o, for all h £ +F. This implies 

x ~ o, since E -+ E is an isomorphism. 

(2.6) Lemma: Let <E,E*> be a full dual _system of OVS. If I 

is an ideal of E, then +(E/I)* = +(E/I)~(E,E*). 

Proof: Clearly, +(E/I)~(E,E*) = {h E: (E/I); : h(x) ~ O, for all 

x E +(E/I)} is contained in +(E/I)*. We show that +(E/I)* C +(E/I)~.
- w 

If u:E/I -+ R is a positive linear map, then up:E -+ E/I -+ R is a 

positive linear map; hence up is w(E,E*)-continuous. Since w is 

the inductive topology induced by the projection p:E -+ E/I, u is w­

continuous on E/I. Thus, +(E/l)"~ = +(E/r);(E,E_*). 

(2.7) Lemma: Let <E,F> be a full dual system of OVS. If I is 

0 an ideal of E, then r , with the subd~ced ordering, is isomorphic to 

I 0((E/I);(E,F)' (E/I); (l +(E/I)*), and =+Io - +Io, the w(F,E)-closure 

0of +Io - +r • If I is w-closed, then <E/I, (E/I)~> is a full 
w 

dual system of OVS. 

Proof: Let p:E-+ E/I be the natural . projection and let G = E/F. 

Io is linearly isomorphic to H = G~, = c;(G,H)' by the correspondence 

h _-+ hp E I 0 , for h E H. We show that this correspondence and its 

inverse are positive maps. If , g £ ~I0 = r 0 /l +F, then ker(~) is an 

ideal containing I. Thus, g':E/I -+ E/ker(g) -+ R, the inverse of g 

d 1 . . h. i . +(E/I)-' (E/I)-' () +(E/I) ........un er ·t he inear isomorp ism, s in = 
w w n 
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+ ~ """-1
If h e: +G~ w' then hp:E 4- E/I 4- R is in E1c n F. Thus hp , the 

functional in F corresponding to hp is positive since F 4- F is an 

+G +Eisomorphism. The cone is w(E,F)-closed, since is w(E,F)­

+G_.closed and the projection is an open surjection. Since is the w 
·- . +dual cone of +G , G~w is the w-closure of G~ - +G~ by (2.1).

w . w ' 

If I is w~closed, then clearly <E/I,(E/I).:.>
w 

is a full dual system of OVS. 

3. Topology and Order 

An order seminorm on an OVS E, is a seminorm p:E ~ R for 

h . h .ff . +E hw 1c , ~ x,y e: , x s y, t en p(x) $ p(y). The ,kernel of an 

order seminorm is an ideal of E. 

(3.1) Let E be an OVS. A vector topology 1.l for E is 

called order normal, if it satisfies the following equivalent conditions: 

(1) V= [ -Y-l, where v-· is the neighborhood filter of O • . 

(2) U -has a base /.3 such that V e: )3 implies [V n +E] C V. 

(3) 1.t is generated by a family of order seminorms. 

For a proof of the equivalence of these conditions see (10} page 215. 

(3.2) Theorem: (Krein) If E is a directed OVS with an order norm 
. r 

E ...topology 1.l , then u is directed. 

Proof: For the proof see (10) ~age 218. 

The following .theorem may be found in ( 10) page 219. However, 

the · proof given here is more algebraic. 
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(3.3) Theorem: If E is a directed OVS with a Hausdorff order 

normal topology U , ·then E' is directed, and hence <E E' > isu 'U 

a dual system of directed OVS. 

Proof: Let f> be a family of order seminorms generating 11.. If 

he:E', thenthereexists · ·A· >o and pi€1?, for i=l, •• ,n, such 

that lh(x) I < ASup.p.(x). Furthermore, p = ASup.p. is an order 
1 1 1 1 

seminorm on E, and the OVS E/ker(p) is order normable with 

x + p(x) = p(x), for x e: x; x e: E/ker(p). Since ker(h) 2 ker(p), 

there exist a unique linear functional h:E/ker(p) + R, such that 

h = hq where q:E + E/ker(p) is the natural projection. Thus, h 

is bounded by p; hence, continuous. By _(3.2), h = h - h where1 2 

E' is directed.
it 

(3.4) Theorem: Let <E,E*> be a dual system of directed OVS. 


Then is order normal.
Ew(E,E*) 

Proof: For the proof see ( 10 ) page 220. 

(3.5) Lemma: Let E be a Riesz OVS and I a directed ~deal of E. 

If 1! is an order normal topology for .E, then U the quotient topology 

· for E/I · is order normal. 
• r 

Proof: - Let 13 be a base of -U such that v e: 13 implies [V() 
+
E]~V. 

The set { :V e: 13} is a base for U in E/I. If £ [ VI n + (E/I)],VI XI 


then 0 for . some y e: v n. + 
E, where x .£ +E. Hence, x + m ~ 
~ XI . $ Yr' 


Y + n, for ·some m,n e: I, which implies x ~ y + m - n ::;. y + p, for some 
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p £ +I 
' 

since I is directed. Since E is a Riesz ovs, x = x
1 + x2 

where x
1 

S y, x2 ~ p. Hence, x2 

-
£ I, . which implies (xl)I = xl, and 

x
1 

£ V. Thus, 
•. 

XI £ VI' and so u is order normal. 

The set Eb of all linear functionals on an. OVS E which 

are bounded on the order intervals of E, with the subduced ordering, 

is .an OVS called the order bounded dual of E. It is clear that 

E* C Eb. 

Let E,F be OVS. The order topology ?J._ for E is the 
0 

finest locally convex topology U, for which .every order bounded set 

is il-bounded. A base for ~ is given by the collection of all 
0 

convex circled sets which absorb all order bounded sets. If h:E ~ F 

is an order bounded linear map, then h is continuous for the respective 

order topologie~ on E and F. -The dual of E coincides with 

Eb the OVS of order bounded linear functionals on E. If Eu is 
. ' 0 

Hausdorff, then 'tl. is the Mackey topology of the duality <E,E""' > • 
0 	 0 

(3.6) Theorem: (Riesz) If E is a Riesz OVS, then E* =Eb~ 

Proof: For a proof see Perressini (9) page 24. 

(3.7) 	 Theorem: Let <E,E*> be a fullrdual system of OVS, where E 

I 0is a Riesz OVS, and let I be a directed ideal of E. Then in 

E* · -is (order) isomorphic to (E/I)*, and the quotient topology on E/I 

of the order topology 1l on E is the order topology of · E/I.
0 

Proof: Th~ quotient topology on E/I of the w(E,E*)-topology is 

normal by (3.5). Thus (E/I)~ = (E/I)* by (2.6) and (2.7), and so . w . 
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1° is isomorphic to . (E/I)*. The quotient topologies w(E,E*) and 

1t , and the order topology on E/I all determine the same duality. 

Thus -U is coarser than the ·order topology on E/I. Since the,
0 

projection p:E ~ E/I is continuous with respect to the order topologies 

on E and E/I, and the quotient topology is the finest l.c. topology 

for which the projection is continuous, the quotient topology U is · 
0 

finer 	than the order topology. Thus, they coincide. 

4. 	 · Archimedean OVS with Units 

(4.1) Let E be an Archimedean OVS, and let e £ E be a unit. The 

norm p(x) = inf{A > 0 : x £ [-Ae, Ae]} is clearly an order norm. 

Hence E... is directed. Any · positive linear map h:E ~ R is norm 
p 

continuous,since lh(x) I S h(e), for any x £ [-e,e]. Hence , E... = E*. 
p 

The order unit norm topology is the order topology 11. • The order 
0 

topology is finer than the norm topology, since the norm topology is 

L c. and [-e, e] absorbs order interva_ls, and the norm topology is 

finer than 11 , since [-e,e] i _s U -b~unded. . The base B = 
0 	 o e 

. + 
{h £ E* : h(e) = l} of +E* is w(E*,E)-compact, since B is the 

intersection of the w-closed hyperplane {h £ E* : h(e) = 1} and the 

. r 	 + 
w-compact set [-e, e] •• Suppose x £ E, h(x) ~ 0, for all h £ E*. 

There exists a positiye functional h"' £ +E*, such that h ... (x) = u(x) = 

sup{A 	 £ R : Ae $ x} , which implies u(x) ~ o, which implies x ~ o. 

+EThus is w(E,E ... )-closed, and so it follows that < E,E* > is a full 

dual system of directed OVS. 

(4.2) Lemma: Let E be an Archimedean OVS, with an order unit e. 
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The polar [-e,e]• in E* is conv(B U -B) where B is the base 


in E*, induced by e:E* + R, defined by e(h) = h(e) • 


Proof: L~t S = conv(B lJ -B). First, .we show S• = [-e,e]. If 

X E S0 , then I < x ,b>_ I ~ 1, for any b e: B. This implies 

<x,b> I $ <e, b>, for . any b E ·B, which implies I <x,h> I ~ 
<e, h>, for any h e: 

+E*, which implies . x e: [-e,e]. If x e: [-e,e], 

then for h = ab a~b"' e: s, where Cl + Cl"'= 1, we have <x,h> = 

Cl <X,b> - a"'<x,b"'> .~ Cl - Cl .... Thus I <x,h»~ .$ 1, and so x e: s•. 

The Bipolar theorem implies that s•• is the w(E*,E)-closure of s. 


However, since B and -B are w-compact, convex sets, the convex 


hull is compact, and so s = s••. 


(4.3) Lemma: Let E be an Archimedean OVS, and let e e: E be a 


unit of· E. Then E** = E*"'· 


Proof: A linear functional h:E* + R is in E*"' , if and only if, 


there exists B > 0, such that lh(x) I ~ Sg(x), for all x e: E*, where 


+
g is the Minskowski gauge of conv(B U -B). If he: E*~, x e: E*, 

· then -B < e,x>= - Bg(x) ~ h(x) ~ Sg(x) = S <e,x> , which implies 
,. 


h E [-Se, Se]. Thus h e: E*~'c. If h E E**, then h = hlB is 

. t 

continuous in the w(E*,E)-topology on B. Since B is w(E*,E)-compact, 

h is bounded; that is, there exists >. > 0 such that lh<b)I 5. >. = 

.he(b) , for b e: B. To show h e: E** is norm bounded, it suffices to 

show that lh(x) I is bounded on the unit sphere conv(B U -B) = {x e: E* : 

g(x) $ l}. · If g(x) s 1, then ax= b1 + (1 - a)b 2 , for b1 ,h2 e: BU -B. 

Hence~ lh(x)I = lah(b1) + (1 - a)H(b )1 Sa>.+ (1 - a)>.=>..2
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(4.4) Theorem: Let E be an OVS and I a modular ideal of E. 

Then E/I is archimedean if and only if, · E/I is isomorphic to 

E(H(I)),where H(I) = {M £ n I CM}. 

Proof: If E/I is isomorphic to E(H(I)), then E/I is Archimedean, 

since E(H (I)) is Archimede.an. If E/I is Archimedean, then 

I = KH(I) and the canonical map A~E/I + E(H(I)) is a bijective 

homomorphism. Thus, it suffices to show is an embedding. If 

a£ +E(H(I)), then h(a ) ~ 0, for all h £ +(E/I)*. Since E/I is
1
 

Archimedean, and has a unit, <E/I, (E/I)*> is a full dual system. 


Thus, a £ +(E/I), and so E/I is isomorphic to E(H(I)).1 

(4.5) Corollary: (Kadison) Let E be an Archimedean ovs with a 


unit e. Then E is isomorphic ·to E(Q). 


(4.6) Theorem: Let <E,E*> be a full dual system of OVS, for which 

E* =Eb. If I is a modular ideal of E; then E/I is Archimedean, 

if and only if, I is w(E,E*)-closed. 

Proof: If I is w(E,E~)-closed, then _ <E/I,(E/I);(E,E)~ is a full 

dual system, by (2.7), which implie~ E/I is Archimedean. Conversely, 
. t 

if E/I is Archimedean and has a unit, the order topology of E/I is 

a 1.c. Hausdorff topology. The projection p:E + E/I is continuous 

for the respective order topologies. This implies that the quotient 

topology ~ on E/I is finer than the order topology, which in turn 
0 

' implies · th~t the quotient topology is Hausdorff. Thus I is close~ 

in the quotient topology and hence in the w(E,E*")-topology. 

http:Archimede.an
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S. Perfect Ideals 

Let E be an OVS. For any linear subspace V of E, and 


for any a £ +E, let H (V) = {x £ E for each A > O, there exists 

a 


VA £ V, for which -C\a + v>..) < x < >..a + vA}. An ideal I of E is 


perfect, if I~ Ha(I), for some a E +E. 


Verification of the following two lemmas is routine. 


(5.1) Lemma: If v is a subspace of an OVS E, then H (V) is an 
a 


ideal of E, for any a E 
+E. 


(5. 2) Lemma: If V is a· subspace of an OVS E, and V C H (V),
- a 


for some a E +E, then H (V) is a perfect ideal of E. 

a 

(5.3) Lemma: If M is a maximal ideal of an OVS E, and V is a 

+subspace of N, then H (V) CM, for any a E E. a ­

Proof: Let h:E ~ R be a positive linear functional with M = ker(h). 

If x E Ha(V), then for any A> O, there exists vA £ V, such ·that 

_-(>..h(a) + h(v>..)) ~ h(x) $ >..h(a) + h(vA). This implies ->..h(a) $ h(x) 5 

Ah(a), for any A> O, which implies h(x) = O. Thus H (V) CM. 
a ·­

(5.4) Theorem: Let E be a directed .OVS. An ideal I of E is 
. r 

I 0perfect, if and only if, is an ideal of E*. 

Proof: Suppose I is a perfect ideal of E, and . IC H (I), _for some 
- a 

+ + 0 
-a e:: E. If h,g £ E*, g s h, h £ ~ , and x £ I, then, for any >.. > O, 

there exists 

lg(x)I 5 g(>..a + y>..) ~ h(>..a + yA) = ">..h(a), for all A> O, and so g(x) = O. 
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Thus, g e: Io. 

Suppose Io · is an ideal of E*. For any f e: +Io, for any 

x e: E, let qf (x) = inf { f (y) : y e: +E y ~ x}. Since E is directed,
' 

qf (x) e: R. ·It is easily verified that qf :E -+ R satisfies the properties: 

(1) qf is sublinear, 

(2) for any x,y e: E, if x ~ y, then qf(x) ~ qf(y), 

(3) qf (x) ~ O, for all x e: E, 

(4) if x e: +E then
' 

(5) for any x e: E, q_jx) ~ f(x), 

+(6) if x e: E, then qf(x) = f(x). 

Let H = {h e: Ell h(x) S qjx), for all x £ E • The Banach Theorem 

+implies qf (x) = sup {h (x) : h £ H}, for · x e: E. If h e: H, x 	 e: E, then 

I 0h(-x) < q(-x) = 0 implies h(x) ~ O, thus 0 $ h ~ f. Since is an 

I 0ideal or E*, h e: • Thus, we have 

(7) qf (x) = O, for any x e: I. 

+There exists f £+Io, such that f # O, and so there exists a e: E, 

such that f (a) = 1. For any x £ I, and for any ">.. > O, there exists 

e: 
+ 

E' such that x $ and B = f (yA) ~ ">../2, since qf {x) = o.YA YA 


If v' = y - Ba, then f (vi) = 0, and so v' £ I. Moreover, vi + (A/2)a ~
A .A A 

vi + Ba = yA. Similarly, there exists . tvi' £ I, such that vi' + ("A/2)a 

is in +E and is greater than, or eqnal to, -x. Thus, ~ x ~ Aa + vA, 

where v.A = v~ + vi' • Thus IC H (I), i.e., I is perfect.- a 

(5.5) Corollary: If E is a directed OVS, any directed ideal is perfect. · • 

Proof: If I is a directed ideal of E, then 1° is an ideal of E*. 
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(5.6) Corollary: Let E be a directed OVS. A maximal ideal M of 

E is perfect, if and only if, · M0 is an · indecomposable ideal of E. 

Proof: Since M0 is a 1-dimensional subspace of E* , M
0 is an 

ideal, if and only if, it is indecomposable. 

(5~7) Theorem: Let E be a lattice OVS. If an ideal of E is 

perfect and w(E,E*)-closed, then it is an absolute (lattice) ideal. 

Proof: Let I be a perfect w-closed ideal of E. For any x €: I, 

+Eand for any A > 0, there exis.t a c and c I, such thatXA 

= x ~ XA + :\a. Hence 0 $. Ix I -
< x

A 
+ :\a. If h e: I 

0 
, then 

0 $ h(jx!) ~ h(xA + Aa) = ).h(a), for all A > o. Thus, hC Ix I) = o, 

and, since I is w-closed, !xi €: I. This shows that I is an 

absolute ideal, ·for, suppose Ix! ~ IYl,ycl, then -IYI $: x ~ IYI 

1mplies y €: I. 

(5.8) Corollar~: If E is a lattice OVS, a maximal ideal of E 

is perfect, if and only if, it is a lattice ideal. 

Proof: Perfect maximal ideals of E are w(-E,E*)-closed • 

. t . 

(5.9) Theorem: Let E be a ·directed OVS, for which E* is a lattice 

OVS. If I is a perfect, w(E*,E)-cldsed ideal of E*, then it is an 

absolute ideal. 

Pioof: The proof is a9alogolous to (5.7). 

(5 .10) Theorem: (Bonsall ( 1 ) ) • Let E . be an OVS with a unit e. 
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If E has no nontrivial perfect ideals, then E is isomorphic to R. 

Proof: The map u:E ~ R, defined by u(x) = inf {A Ae a x}, 

satisfies~ 

(1) u is sublinear, 

(2) u(e) = -u(-e) · = 1, 

(3) u(x) $ 0 whenever x ~ O. 

Given x £ E, let y = u(x)e - x. By the Banach Theorem, there exists 

a lin·ear functional h:E ~ R, such that h(x) = u(x), and h(z) ~ u(z), 

for z £ E. It follows from (2) and (3) that h is positive and 

h(e) = 1. Also, h(y) = u(y) - h(x) = O. ·By definition of u, we have, 

for each A > O, (Ae/2) + y ~ O. Thus - _(Ae + y) $ v 
~ -< Ae + y. Hence, 

Y = (y) CH (Y), H (Y) is a non zero perfect ideal and H (Y) C ker(h).
- e e e ­

Thus, H (Y) is proper. Thus, y = O, x ~ u(x)e and u:E ~ R is the 

e 

desired isomorphism. 

(5.11) Lemma: If I is a perfect ideal of an OVS E, and if J is 

a perfect ideal of E/I, then p-l(J) is perfect. in E, where p:E ~ E/I 

· is the natural projection. 

Proof: Since I£: p-l(J), (p-l(J)) 0 ~. f 0 
• If h £ +(p-l(J)) 0 and 

0 ~ g ~ h, then h,g £+Io, which implies g corresponds to a unique 


g £ +(E/I)* and h corresponds to a unique h £ +No C +(E/I)*. Thus, 


J 0
since g ~ . h and is an ideal of (E/I)* ,g £ J 0 
, and so g £ (p-l(J)) 0 

• 

(5.12) Lemma: Let E be an Archimedean OVS which has a unit e. For 

any x £ E, there exi~ts ~ perfect ideal I ~ of E, such that xI is a 
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unit of E/I. 

Proof: The ideal (u(x)e - x) , or the ideal ( R.(x)e - x) is 

directed, ·(II. 9.2) hence, perfect. 

c-,/\_. 

(5.13) Theorem: Let E be an Archimedean OVS which has a unit e. 

The intersection of the set ~(E) of perfect maximal ideals of E 

is O. 

Proof: For any x £ E, x # O, there exists an ideal I of E, such 

that xI = u(x)eI, or xI = R.(x)eI . in E/I, by Kadison's Lemma. 

Furthermore, since I = ( u (x) e - x ) or I = ( R. (x) e - x ) , I is 

directed, hence, perfect. The set {J £ j (E) : J 2 I, x i J'°r = 

and J is perfect} is inductive, for if (J.). is a chain in 
1 ]. £ c 

Jo._g I' then x i J = U CJi and Jo =n is an ideal in E* hence,c i 	 ' 
J is perfect. Thus, J I has maximal elements. If M is a maximal 

element of ~ I , then ~ or is a unit of E/M and so is 

not in any perfect ideals of E/M. If N is . a perfect ideal of E/M, 

then p-l(N) is a perfect ideal in E, by (S.11). This contradicts the 

maximality of · M. Thus E/M has no proper perfect ideals and so E/M 

is isomorphic to R, by (5.10). 
. t 

(S.14) 	 Lemma: Let <E,F> be a f uli dual system of directed ovs. 

IoIf I is a perfect ideal of E, then and 1
00 are ideals. 

IoProof: The proof that is an ideal of F is analogolous to---	 . 
00+E 	 +Io.(5.4). If ' x,y £ x ~ y, y £ 1 , then <x,h> = o, for any h £

' 
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0 IoThus <x,h> = O, for any h e: I , since is the w(F,E)-closure 

of 	 +Io - +Io (2.7). Thus 1°0 is an ideal of E. 

(S.15) C.orollary_: Let <E,F> be a full dual system of directed ·avs, 

let ~J~ (E) = {I e: ~(E) Io is an ideal of F} and let J--(F) · = 

0
{I e: ._J (F) Io is an ideal of E}; The annihilation maps I -+ r are 

a Galois connection between J ,.(E) . and ~-- (F). 

(5.16) Lemma: Let <E,E*> be a full dual system of directed OVS, 

let KH . be the closure generated by 6(E), ·the set of perfect maximal
1 

ideals of E, and let Kn be the closure generated by the w(E,E*)-closed
2 

modular perfect ideals of E. Then KH and KH coincide.
1 2 

Proof: For any set S ~ E, we have KH (s) ~ KH (s). If x £ KH (s),
2 1 1 

then x £ M, for any M £ 6 such that S C M. Suppose there exist 

·p e H (s), such that xi P. E/I has a unit, x :f 0 and by (4.6)
2 1 

E/I is Archimedean. Hence, by (5.13) there exists a perfect maximal 

ideal M of E/I, such that x i M and by (5.11) p-1 (M) is a perfect
1

maximal ideal in E which does not contain x. This contradicts the 

fact 	that x e: · KH1(s). Hence, KH (S) = KH (S).1 2

(S.17) Theorem: Let <E,E* > be a foil dual system of directed OVS. 

These conditions are equivalent: 

(1) 	 The intersection of the set of w(E,E*)-closed modular 

perfect ideals of E is O. 

(2) 	 The intersection of the set of perfect maximal ideals 

of E is O. · 
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(3) 	 The w(E*,E)-closure of the convex hull of the union 

extremal ideals of E* is E* • 

(4) 	 The w(E*,E)-closure of the sum of the annqators 

of perfect ideals of E is E*. 

Proof: (1) implies (2) •. ·This fo1lows from (5 .. 16). The proof of 

(2) 	 implies (3) follows from the Bipolar theorem. The proof of 

(3) 	 implies (4) is obvious. The ·proof of (4) implies (1) . follows 

from	 -the Bipolar theorem. 

(5.18) 	 Theorem: Let E be an Archimedean Riesz ovs · with a unit e. 

I 0
If 	I ,J are directed ideals of E, then (I(') J) 0 

= + J 0 
• Hence, I n J is perf1 

Io JoProof: We have and are w(E,E*)-closed directed ideals of 

E* by (III. 2.3) and by (3. 7). Thus, Io + Jo is a directed 

ideal of E*. From the Bipolar theorem, we have (If\J)o = (Io+ Jo), 

1o + Jothe w-closure of Io + Jo• Thus, it suffices to show that 

Iois w-closed. Since is w-closed, I 0 n s is w-compact where s 

is the unit sphere of E*. Since I is a directed OVS with a base 

norm (restricted from E*), each h E I 0 · ha~ a representation h = ).s 

I 0	 I 0 +where s £ () S, the unit sphere of , and ). 	 E R • Analogous 
. r 

0 
statements hold for J 0 

• Clearly, conv((I0 rt S) U (J~() S)) f (I
0 + J ) (\ S. 

If 	h E (Io + J 0 
) .n S, then h = A' 

1
s

1 
+ 'A ~here s

1 
E I 0 f\ S, J n S,2s 2 , s 2 E 

and ). E +R. Since q (h) = q (s ) = q (s ) = 1, where q :E* -+ R is the base
1 2

norm, we have ).l + ). 2• = 1, and so h E C = conv(I0 n S) U (J
0 n S)). 

Thus, C = (I 0 + J 0
) () S. Furthermore, C is w(E*,E)-compact, since the 
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convex hull of two compact convex sets is compact. Every element of 

the directed normed ideal r 0 + J 0 is in some scalar multiple of 

(1° + J 0 
) () S. Thus, 1° + J 0 

. is w(E*,E)-closed. Hence, (I(\ J) 0 
= 

Io + J 0 and I () J is perfect. 

Let E be a directed OVS, and let KH be the closure on 

-{J(E) generated by ~'(E) the set of perfect ideals of E. If 

~ '(E) is closed under intersection, then ._l .. (E) coincides with 

the ~et of KR-closed elements of f (E), and. hence is a complete lattice. 

(5.19) Theorem: Let E be an Archimedean lattice OVS with a unit 

e. The set of perfect ideals of E is closed under intersection. 

Proof: Let (Ii) i £ A be a family of perfect. ideals of E. We have 

00that Ii , for i E A, are w-closed perfect ideals by (5.14) and that 

r~0 ' for i £ A, are absolute ideals by (5 I 7). Thus' n Ar~0 is an 

absolute ideal and so ( nAii)o = ( nAI~0 ) 0 is an ideal in E*. Thus 

()Ari is perfect. 

(5.20) Theorem: Let E be an Archimedean Lattice OVS with a unit e. 

The HK-closure generated by 6(E), the ·set of perfect maximal ideals 

of E, is a topological closure. 
. t 

Proof: T.o show HK is a topological, closure, it suffices to show that 

for any M E 6, for any u' v ~ b, if K(U) () K(V) ~ M, then K(U) C M, 

or K(V) CM. Since the set of perfect ideals is a complete lattice, 

I = K(U) and J = K(VJ are w{E,E*)-closed perfect ideals. Hence, 

+~...o 0 0Mo~ Io + Jo. Suppose h· £ h = h1 + h.2 , . where h e: I , h2 £ J ,·,
l ' 1 
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Io Jo 	 h; + h; +Jo,Since are directed ideals, there exist £ I, £
1 2' 

h; 	 h; + h;such that 	 . Thus, h ~ . Since E* ishl ~ hi' h2 ~ 2 1 2 
h;; +Io h;; +Ioa Riesz ovs, h = h;; + h2;' where 	 £ • Since h

£ ' · 2 
· 

1 	 1 
h ;; 	 o

is indecomposable, = ah2;, for some a E R. Thus, h:; £ I , or
1 1 

h~; £ J 0 • A similar argument applies to h £ - +Mo. Thus Mo f Io or 
1 

Mo C Jo. Thus, M ~I, or M ~ J. 

6. Fields of OVS 

A field of OVS is a surjective topological map p: E: 4- X, 

where E = p-1 (x), the fiber over x e: X is an OVS. The space X 
x 

is called . the base space, and the space f; is called the total space 

of the 	field. Since p is a surjection, (E ) is a disjoint
x x £ x 

family. A section of p: ~ 4- x is a continuous map f :X 4- g, such 

that pf :X 4- x is the identity. For any subspace u <; x, the 

restriction of p to ~ lu = p-l(U) is a field which we denote by 

p: e1u-+U. The set r (U) of all sections of p: e1u-+U inherits 

the 	structure of an OVS in .a natural way. 

A field of OVS p: ff -+ X is called an ordered real bundle (ORB), 

0 

if every x £ x has a neighborhood u, such that e 1u is trivial; 

i.e., there exists a map g: t: jti -+ UX R, called a trivialization, 
. f 

which is ·a topological isomorphism of 6 ju with the topological 

product U X R, and gjE -+ R is an (order) isomorphism, for any x e: U. 
x 

If e., U is trivial, then r(u) is isomorphic to G(U), the OVS 

of all 	continuous maps from x to R. If g: 6 ju 4- UXR is a
• 

trivialization of p: g ju 4- u and p
2

:UXR-+R is the natural 


projection, then f -+ p2gf, for f £ r(U) is an isomorphism of r(U) and C: (U). 
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(6 .1) Ordered real bundles may be obtained by the following construction. 

(1) Let (Ex) x £ X be a disjoint family of OVS, each of which is 

isomorphic to R, and let p: ~ = U XEx ~ X be the natural projection. 

(2) Let (ga : Xa ~ X) a £ A be a family of injections where (Xa) Aa £ 

is a family of topological spaces, for which, (a) the family (X = 
a 

ga(Xa)) a E A is a cover of X, and (b) for any a,b £ A, the topology 

on Xa('\ ~'induced from X , coincides with the topology on 
a 

,.. ,.. 

induced from ~' and Xafl ~ is closed in Xa and in ~· (3) Let 

(ha ;xax R ~ f: IX) a E A be a family of injections where XX R is 
a 

,.. 
endowed with the product topology, and, for any x E x , h I{x} x R ~ e Ix a a . a 

is an isomorphism of R onto E . It is easily verified that 
x 

satisfies conditions (a) and (b). 

Thus, X and S may be endowed with the inductive topology 

determined respectively by the families (g :X ~ X) £ A and a a a 

(h :X . E ~ e) A" This is the finest topology on X for which each 
a a a . £ 

is continuous. It is characterized by the property that a topologicalga 


map f:X ~ Y is continuous, if and only if, fg :X ~ Y is continuous,

a a 

for each a £ A. Analogolous statements hold for g. For each x £ X, 

x is in for some a £ A, since (X ) covers x, andxa' a a E A 
,...-1 

: e1x ~xx R is a trivializatiort of x . Thus, p: S ~x endowedga a a a 

with the respective inductive topologies is an ordered real bundle. 

(6.2) Theorem: Let E be a directed OVS, such that the intersection 

of Q(E) the set of all maximal ideals of E is O. Any family (Ia) a E A 

of w(E,E*)-closed ~odular perfect ideals of · E, for which, given any 

M £ n, there exists a E A, such that I C M, induces an ordered vector a­
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bundle structure on the natural projection p: f; = U nE/M -+ n, and 

E is isomorphic to~ subspace of r(n). 

Proof: Without loss of generality, we may suppose each a £ A is a 

{h £ +Iomod unit for I . The sets B = : h(a) = l}, for a £ A,
a a a 

are w(E*,E)-compact and the maps ga :B -+ n., defined by g (h) = ker(h),
a a 

for h £ B . are injections with images g(B ) = B = {M £ n : I C M} = a' a a 

{M £ n I£ M, a i M}, by (1. 5) • The family (B ) . covers n,
a a £ A 

since for any M £ n, there exists a £ A, such that I C M and since 
a-

A 

a is a mod unit for I , a i M. The maps k : B >< R -+ eIB ' defined 
a a a a 

by k (h,A) = ACL are injections and -k is{h} X R -+ Eker(h)a Ker(h)' a 

an isomorphism, for any a e:: A, h £ B • The sets B , for a £ A, 
a a 

endowed with the w(E*,E)-topology are . topologically isomorphic to 

i = {~ £ (E/I )*: ~(a ) = l} endowed with the w((E/I )*, E/I )-topology.
a · a I a a 

Furthermore E/KH(I ) is order isomorphic to E(B ) = E(H(I )),a a a 
" ,., 

for a e:: : A. We have that . E(Ba () Bb) is an OVS with units a and 

b, for any a,b £ A. Hence, a and b induce equivalent order norms 

Hence, the topology on Ban Bb, induced from Ba ' 

coincides with the topology induced from . Bb, and Ba() Bb is closed 

in Xa and in Xb' for any atb £ A. '. rhus, p: e -+ n endowed with 

the respective inductive topologies is an ordered real bundle, by (6.11). 

(6.3) Let E be a directed ovs with a family (I ) of 
· a a £ A 

modular perfect w(E,E )-closed ideals of E indexed by mod units 

as above, which induces
• 

a field structure on p :. t: =U nE/M -+ n. I£ 

every M £ n contains all but finitely many a£ A, then g:g-+ nx R 

on 
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\ -1defined by g(xM) = lAgo., (~) is a (global) trivialization of 

0 -1p: ~ ~ n . . Since gQ... (~} = O, for all but finitely many a £ A, 

g 	 is well defined, and glEM ~ R is an isomorphism,since glEM = 

is the sum of a (finite) set of isomorphisms. 

. r 
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