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INTRODUCTION 

Our study has its origins in one of the most funda

mental results of functional analysis, the Open Mapping and 

Closed Graph Theorem of Banach. Over the years, there have 

been many efforts to generalize this theorem for various 

classes of topological vector spaces and for topological 

groups. 

This research has taken at least two distinct but 

supplementary lines. First and more obviously, broader 

classes of spaces have been sought for which a theorem of 

this type holds. Second, given a class of spaces in which 

an open mapping theorem is assumed to be true, what infor

mation does this yield about the spaces concerned? In par

ticular, what does this assumption imply about the existence 

of a closed graph theorem in this class? 

One fruitful observation in this connection is that 

every linear mapping of a metrizable topological vector 

space onto a Banach space is almost open; this is an impor-. 

tant step in the proof of the classical Open Mapping Theorem. 

Presumably, then, by assuming the ma·pping to be almost open 

and continuous, one can obtain more general forms of the 

open mapping theorem and possibly of the closed graph theore~. 

This was the avenue first explored by Ptak [15, 16], 

who defined a locally convex topological vector space E to 
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be B-complete if every continuous and almost open linear 

map of E onto a Hausdorff locally convex space F is open, 

and Br-complete if every such mapping which is also one-to-one 

is open. This work has been pursued further by Husain (91, 
Baker (1], and A.P. and w. Robe~tson [11]. A comprehensive 

bibliography of papers in this field can be found in (9]. 
There is also a "classical" open mapping theorem 

for topological groups, which states that a continuous homo

morphism from a locally compact, . <r -compact .topological group 

onto a locally compact, Hausdorff group is open [14J Theorem 12]. 

Efforts have also been made to extend this result, principal 

among which is the paper of Pettis L13], in which he strives 

to reduce the restrictions on the groups by placing additional 

ones on the mappings. 

Extending Ptak' s idea, Husain (8] has .defined a B ( ~ ) 

groups if ~ is a class of Hausdorff top~logical groups, 

G is said to be a B ( ~ ) group if every continuous and almost 

open homomorphism from G onto a group from ~ is open, a 

Br(~) group if every one-to-one homomorphism with these pro

perties is open. The symbol a is reserved for the class of 

all Hausdorff topological groups. All these classes of groups 

figure prominently in what follows. 

Chapter O contains those definitions and results from 

topology and analysis which are fundamental to later chap

ters. Included are a discussion of uniform spaces and the 

statement and proof of the classical Open Mapping and Closed 



Graph Theorem for Banach spaces. 

Chapter 1 concerns itself primarily with B ( fl.. ) and 

Br(tJ..) groups, their internal properties .and permanence 

properties as a subcategory of all topological groups. 

Husain [8; Theorem 31.3] has shown that every complete me

trizable gTOUp is a B( a_) group; we show that locally com

plete metrizable groups also have this property. L.J. Sul

ley ,( 22] has established a criterion relating the presence 
' . 

of the B('a ) property on an Abelian group with its presence 

on the completionJ we extend this criterion to all comple

table groups. A condition on the group topologies of G 

equivalent to the B ( a..) property is then given. 

We explore the perm~~ence properties of the categories 

of B(tZ) and Br(~) groups, establishing that both categories 

are closed under retracts and open central·subgroups, and 

supplying counterexamples for various other possible closure 

properties. An example of a B ( ~ ) group which is not a B(a ) 

group is also produced, for the case where ~ is the category 

·of first countable, Hausdorff groups. 

In Chapter 2, we consider closed graph · theorems in 

which Br(~ ) gr·oups appear as codomains of the homomorphisms, 

where ~ is a category of Hausdorff groups having. an addi

tional permanence property. Investigations of this type 

have been carried on by Baker lt) and Husain [a, 10]. 

Baker's permanence p. ~operty fo1· ~ is somewhat intri

cate, involving inductive limit topologies; moreover, he con
/ 

cerl1s himself entirely with Abelian groups. This line will 
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· . not be pursued in the sequel. For details, see [1]. 

Husain's assumption on ~ is that if G is a i.coup 

in ~ and f 1 G -> H is a continuous, 8:1most open 

homomorphism into a Hausdorff group, then H is in ~. 

We retain Husain's assumption on -(,, using the ter

minology, after Isbell [11], that ~ is right fitting with 

respect to continuous, almost open homomorphisms. We re

place Husain's assumption [10] that the codomain of the 

homomorphism be Abelian with the requirement either that 

the range of the homomorphism lie in the centre of the co

domain or else that the codomain have equal left and right 

uniform structures. We also prove a closed gra.ph theorem 

of this type, where ~ is right fitting with respect to 

homomorphisms whose range is dense in the codomain. A list 

of important subcategories of Hausdorff groups having these 

right fitting properties is ·also developed. 

In addition, we discuss an extension of the ultra

barrelled property to groups, introduced by s.o. Iyahen [12]. 

We note a flaw in Iyahen•s work, and prove a corrected ver

sion of his results, as well as certain extensions. 

In Chapter 3, we consider topological semigroups 

with the property of being embeddable as an open ~ubset in 

a topological group. This class of semigroups has been 

inv~stigated by Rothman [18], who developed an inter~al 

characterization for them • .After defining a property for 

semigroups analagous to tlle B(tZ) property, we proceed 
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to prove several versions of the open mapping and closed 

graph theorem for this class of semigroups . 



CHAPTER 0 

PRELJMINARIES 

!..!. !.,p,P9lofil.9!ll ..§..emigroups, groups, and vector spaces 

A topological group G is a group endowed with a to

pology such that the multiplication map m 1 G x G ~ G 

given by (a,b) r--> ah . and the invers~on map i 1 G --> G 
1given by · a\--> a- are continuous. Equivalently, G is a 

topological group iff the map t 1 G x G -> G given by 

(a,b) ~ab-1 is continuous. 

A topological semigroup S is a semigroup with a to

pology such that the multiplication is a continuous map 

of S x S into s. 
A topological vector space E is a vector space with 

underlying field K, either the reals or the complex numbers, 

with a topology such that the addition is a continuous map 

from E x E to E, and the scalar multiplication is a con

tinuous map from K x E to E. 

In practice, we shall frequently omit the adjective 

.. topological" from the above phrases, if the noun is other

wise qualified. For instance, a "locally compact group" 

6. 



will be understood to be a topological group whose topology 

makes it a locally compact topological space. 

In a topological semigroup s, the symbol ?/(SJ x) 

will denote the set of all subsets B of S such that x E U 

and USB, for some set U which is open ins. The colleo-· 

tion ?/(SJ x) will be known as the neighbourhood filter of 

x in s. The same notation will be used in groups and in 

vector spaces. The unit or identity element of a group G 

will be denoted by eG or simply by e, if no confusion is 

likely to arise. We shall also denote 'Zl\GJ eG) as ?f(G). 

The neighbourhood filter of the unit has certain 

properties which will be used frequently in the sequel. 

In particular, a filter Von a gr_oup G is the unit neigh

bourhood filter for a topology which is compatible with 

the group structure of G (i.e., with respect to which m and 

i are continuous maps) iff 1/ satisfies the follot1ing three 

a.Xiomsi 

(GV1) Given any U€ l/; there exists VE 11 such that 
2v ~ UJ 

1(GV2) Given any U~ '//, we ·have u- E ?/",. 
(GVJ) For all a~ G and all Ve V-, we have {a Va-t) E 1/. 

The above axioms appear in Chapter III, Section 1.2 

of [2]. It follows at once from these that, if UE 11"', 
1there exists V~ if such that V~ U and V = v- • Such 

a neighbourhood V is said to be symmetric. 

For a subset A of a topological group G, we shall 
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denote the topological closure of A by ClGA. If G has a 

topology, say, denoted by u, and if we wish to emphasize 

that the closure is taken with respect to this topology, 

we shall denote this set by CluA• The same notation will 

be used in semigroups. 

Similarly, if A~G, then IntGA will .denote the 

interior of A in the topological space G, and the boundary 

of A, defined as (ClGA)(\(ClG ~A), will be denoted by 

BdyGA. 

If G is a topological group and A s.G, then 

ciGA = n{AU I u E y'(G)} = n{uA I UE 1/(G)}. 

It follows from this that, for Ue (f(G), ClGU~U2 • Hence, 

by ( GVl) , for every U E 1/( G) , there exists V€ "VC G) such 

that · ClGV~U. 

2. §et-Theor etic ~~ TopoloeJ-cal .In.clusions 

We present here a series of inclusions of a set

theoretic and topological nature which will be used repeat

edly in later chapters. 

Let f t X ~ Y be any map of sets, and let 

{Bi i i E: r} be a collection of subsets of x. Then 

f((\{Bi iEI}> c (\{r(Bi) i~I)I I 

1re U[Bi 1 in}> = U{r<Bi) i o }· 



If { Aj 1 j E J} is a collection of subsets of Y, then 

-1 {f (" Aj I j EJ}) = r\{r-1 (Aj) 1 j E J}J 

f
1 

<U{Aj I j EJ}) = U{t-1 
(Aj) 1 j E JJ, 

If X and Y are topological spaces and f is a continu

ous map from X to Y, then, for any AG X and B c Y, we have 

f(ClxA) c Clyf(A) , 

and Clxf-l (B) S :t1 (ClyB) • 

Since multiplication in a topological group G is continuous, 

it follows, for subsets C and D of G, that 

·(ClGC) (ClGD) ~ ClG{CD). 

If f X ~ Y is an open map, then, for A c.;;x,1 

f(IntxA) c Intyf(A). 

If f a G ~ H is a homomorphism of topological 

groups, then, for subsets A and B of H, 

f-l (A) f-l ( B) ~ f-l (AB) , 

whence (ClGf-l (A) ) ( ClGf-l (B) ) <;;. ClGf-l (AB) • 

Finally, it is convenient at t~is time to introduce 

some notation borrowed from universal algebra. If a map f 

from G to H is one-to-one, we may denote this by f 1 GI~ H, 

and, if f is onto, by f a G ~> H. If this notation is 

·used, no further explicit mention of the injectivity and/or 

surjectivity of f will be made. 
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.l!. Q!liform Spaces, ComEle1!.,ons, and Uniformities 

on TQJ?..ological Groups 

2If Y is any set, denote Y x Y by Y , and let 
2 -1

VS.Y • Then ·V will denote the set of pairs (a,b) such 

that (b,a) EV. If u., V are subsets of Y2, then UV will 

denote the set of pairs (a,b) EY2 such that (a,c)E U 

and (c,b) EV for some c E Y. The set {Ca,a) s a E: Y} will 

be called the diagonal. 

We define a uniform space to be a pair (X, 42.(), where 
2X is a set and ~ is a filter on x which satisfies the 

following three properties• 

(Ul ) Each UE 'U_ contains the diagonal J 

(U2) If UE: ~ , then U-l E: 1,,{_ J 

(UJ) For each U.E U, there exists V £ U such that 

v2 s-: u. 
The filter 1(. is known as a uniformity on x. 

A topological group G has two natural uniformities, 

which we now describe. For UEV'{G), define 

L(U) = {ca,b) E- G x G i a-1b Eu} I 

1R ( u) = { (a'b) ~ G x G I ba- E u1 • 
It is then easy to show that { L(U) 1 U ~ 'll(G)} is a base 

fol' a uniformity on G, and similarly for · {R(U) a UE if(G)}. 

The uniformities genera:ted by these two collections are 

known as the left and right uniformities on G, respectively. 

In general, these two unifoi~nities, which are denoted by ~ 
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and 	 '7f, are distinct. If ~=~ then G is said to have 

equal left and 	right uniformities, or simply to have equal 

uniformities. 

Groups with this property have another interes ting 

feature, namely that they are completable. To elucidate 

this property, we must first define an auxiliary concept. 

A :f'ilter 5 on a uniform space (X, 'U..) is said to be 

a Cauchy filter if, for every U E 1{ , th.ere exists FE J such · · 

that F x F su. The uniform space (X, 'll) is said to be 

complete if every Cauchy filter on it converges. 

We define a topological group G to be complete if 

(G,cK) and (G,.,() are complete uniform spaces. We then 

say that a topological group G is completable if it is iso

morphic to a dense subgroup of a complete group G*, and G* 

will be known as the c9mpletion of G. 

Without attempting a proof, we stat~ the following 

exceedingly useful result, which will find many applications 

in the sequel. 

Theorem 0.1 For a topological group G, the following 

l ,mpliOl!lti~ns )told s ( 2) 9>( 1 } , ( 2)~ ( J)~ ;> (4) • 

(1) 	 G is completableJ 

(2) 	 G has equal uniformitiesJ 

(J) 	 For every U E tf(G), there exists VE 1.f (G) such 

1that xvx- c u· for every x E GJ 

(4) 	 There exists a fundamental system of unit neigh

bourhoods in G which a.re fixed under all inner 
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automorphisms of G. 

Statements (1)-(J) are an amalgam of Theorem 3.1, 

Chapter III of [2] and Section 4.14. of (6]. Statement (4) 

is trivially equivalent to (J), and is stated separately 

·only because this is the form which has proved most useful 

in the sequel. Several other equivalent statements are 

knownJ we state only those used in later chapters. 

Properties~of HoJilom~rphisms 

We define a pair of properties for a homomorphism 

f s G __,. H of topological groups which are weaker than 

continuity and openness, and which will be important in 

all that follows. 

We say that f is almost continuous if, for every 

VE 7/(H), we have C1Gf-1 (V)E 'l/(G), and that f is almost 

open if, for every U E V°(G), v1e have ClHf(U) e 7/{H). 

Much of the work which follows will be directed 

toward determining conditions on G, H and f which will 

force f to be ·continuous or open. We state the following 

condition for an almost open homomorphism of topological 

groups to be open, which is new to the best of the author' s 

knovrledge. 

P:r;:,op_osi~ion Oe1 Le;·; f i G -~ H be an almost open 
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homomorphism. Then f is open iff, for each VE 'l((G), 

there is B f: 'l/(H) such that Bf\ BdyHf(V) = ~ • 

Proof 1 The " only if" part is trivial. For the "if" 

part, first let V6 2/(G), and let B £ V-(H) such that 

Bf'\BdyHf(V) = r/J • Since f is almost open, there exists 

DE 'l/(H) such that DSClHf(V). Now, 

ClHf{V) = f(V) V BdyH:f'(V) , 

whence Df'\ B ~ .(f(V) V BdyHf(V)) (\ B S: f(V) • Since Dt\B E if (H), 

it follows that f is open. 

In a virtually identical manner, one may prove the 

followings 

Proposit~on_o.2 Let f a G ~ H be an almost 

continuous homomorphism. Then f is continuous iff, for 

each Vf V°(H), there is BE 1/(G) such that 

Bf'\ BdyGf-! {V) = ¢ • 

A map f : A ·~ B of topological spaces will be 

said to have the closed graph .property or simply to have 

closed graph if the set R(f) = { (a,f{a)) 1 a fE A} is a 

closed subset of A x B. Such maps are called "closed" by 

some authors [12, 17]• .As this abbreviated terminology 

may cause confusion, we shall call a map f closed iff the 

image under f of each closed set is closed. 
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Q~otient.....Qr.oups 

Given a topological group G and a normal subgroup H 

of G, let n a G ~) G/H be the natural map. The quotient 

topology on G/H is the topology consisting of all images 

under n of open sets from G. Unless specified otherwise, 

a quotient group will always be assumed to be endowed with 

this topology. 

Let f i G ~ K be a ho~omorphism of topological 

groups, n 1 G ~) G/Ker f the natural map, and 

g 1 G/Ker f ll---> K the unique homomorphism such that f = gn. 

We then have the following results 

. Prgpo=sition 0.3 For f, g as defined aboves 

(a) f is continuous iff g isJ 

(b) . lf f is almost continuous, then g isJ 

(c) f is open iff g isJ 

(d) f is almost open iff g is. 

The above is Proposition 30.3 of [a1. The proof is. 

omitted. 

Baire Categori£ Theorem 

In a topological space x, we say that a subset A of X ·. 

is nowhere dense if Intx(ClxA) = f5 • A subset of X which 

http:Q~otient.....Qr


is a countable union· of nowhere dense sets is called a first 

category setJ any subset of X which is not a first category 

set is said to be a second category set or to be of second 

category. If X is a second category subset of itself, .it 

is said to be a Baire space~ 

This leads to the following important result from topo

logy, known as the Baire Category Theorem• 

,llleorem 0.2 Every complete metric space and every 

locally compact Hausdorff space is a Baire space• 

For proof, see [a, P• 4), (6; p. 42], or [26; p. 200]. 

The following deep.result from functional analysis , 

duG originally to Banach, -has been the starting point for 

many generalizations. Becaus~ it is interesting and instruc

tive to compare the methods used in topological vector 

spaces with those in topological groups~ we prove this theorem 

in its entirety. 

In this theorem, and throughout the dissertation, 

the symbol li will be reserved for the natural numbers. 

~ Let E and F be Banach spaces. Then 

any linear mapping f t · E ~ F with closed graph is 

continuous. 

Proof a We first show that f is almost continuous. 
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Let r >O, and consider the set Sr = {y E F : II yII ~ r}, where 

l\•••l\ denotes the norm of F. Then 

F = U{nsr s n E li} , 
1 1

whence E = U { f-. (nSr) 1 n £ !:!} = V lnf- (Sr) n E !:! } • 

By Theorem 0.2, there exists kc N such that 

IntE(ClEkf-1(Sr)) f p, 
whence IntE(ClEf-1 (Sr)) 'f ¢ • 

Since r was an arbitrary positive number, it follows that, 


for some p E ClEf-1 (S!r) and some q >O, 


p + Tq = {P + x 1 \\xll ~ q) ~ C1Ef-
1 

(sir>• 

Then Tq c (C1Ef-
1 (sir)) - p 

~ (ClEf-1 (Sir)) - (ClEf-1 (Sir)) 

c::::_ 2(C1Ef-1 (sir)) s; C1Ef-1 (sr) • 

Hence, C1Ef-1 (sr)E- Z/(E), and f is almost continuous. 

We now show that f is continuous by showing that 

T!q G f-l (Sr)• Let x E Tiq • Then x E ClEf-l (Sr)• whe11ce 

there is x1 E f-l (S~r) such that Ux - x1n~ ~q. Now, this 

implies 

Then there exists x 2 E f 
-1 (S~r) such that llx - - x2 1J ~q/8.x1 

Proceeding inductively, we obtain a sequence (xn) in E such 

Then the partial sums of 



(f(xn)) form a Cauchy sequence in F, for 

11 re~> + • • ~ + rcxp> l\ ~ /[rcxm>I/ + • • • + II rc9 U 

~ r( 2-m + ••• + 2-P) , 

and this tends to zero if p? m and m increases. Since 

F is complete, 

has a limit, say Y• By the same sort of limit considera- · 

tion, we have 

Oo 

x,= L xi• 

i = 1 

Then (x,y) € ClE x FR(f), whence y = f(x), for R(f) 

is closed by hypothesis. Now 

r • 

-1Hence, y E Sr , whence Therefore, Tiq~f (Sr), 

and f is continuous. QED 

The other part of the argument, the classical open 

mapping theorem, follows as a corollary• . 

C~rol}a_rx If ~ and F are Banach spaces, any conti

nuous linear mapping f 1 E ~ F is open. 
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Proof a It is clear that Ker f is a closed subspace 

of E, and that E/Ker f is a Banach space. Let n denote 

the natural map E ~ E/Ker f, and g a E/Ker f ~) F 

be the unique one~to-one map such that f = gn. It follows 

from Proposition O.J that g is continuousJ hence, its graph 

R(g) is closed. Since g is one-to-one, its inverse 

g-1 a F ~> E/Ker f exists, and R(g-1 } = R(g), which is . 

closed. Hence, g-1 is continuous, by Theorem 0.3, and ·so 

g is open. Therefore, by Proposition 0.3, f is open. QED 

·~ep;ories 

We include this section not because categorical con

siderations play a large role in what follows, but rather 

to ·explain that categorical notions have provided a conve- . 

nient language in which to phrase certain results, and to 

point out certain abuses of orthodox categorical terminology. 

A concrete category ~ consists of a class 6L of 

sets, called the objects of -C, and, for each ordered pair 

(X, Y) of objects in ~, a set Hom(X, Y) of functions f a X ~ Y 

called morphisms , such that 

(a) the identity function on each object is a morphism J 

(b) every function which is a composition of morphisms 

is a morphism. 

This definition is essentially that of [11J P• ix1• 



In our work , the adjective " concrete" will be uni

formly omitted, and such an entity will be called merely 

a category. Since all the categories considered will have 

as their objects topological groups or semigroups, and as 

their morphisms, continuous homomorphisms, we will also 

frequently commit the heresy of identifying a category 

with the class of its objects, and neglecting any mention 

of the morphisms. 



CHAPTER 1 

B(tl) AND Br(_g.) GROUPS 

1. Q.efinition and Elementary Propet~ties 

Definition If ~· is a category of Hausdorff topo

logical groups, then .G is said to be a B( ~) group if every 

continuous and almost ·open homomorphism from G onto a group 

H in ~ is open, a Br(~) group if every one-to-one homo

morphism with these properties is open. 

If -& 1 S ~ as classes of Hausdorff groups, then2 

every B ( C2) group is a B ( ~ l) group, and similarly for 

the Br( ~ i) · groups . Letting (,{_ represent the class of all 

Hausdorff topological groups, we then see that a B(Cl) (or 

Br( ti.)) group is a B( ~) (or Br(~)) group, for every class 

~ of Hausdorff groups. 

The following result gives us one broad class of 

B( C{) groups. 

l..l\,e9pem 1~! Every locally compact group is a B(t{_) 

group. 

Proof 1 Let G be a locally compact group, H a Hausdorff 

20. 
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group, and f 1 G ~) H a continuous and almost open homo

morphism. Let V be a compact unit neighbourhood in G. Then 

f(V) is compact, and so is closed in H. But ClHf(V)E ?f(H), 

so f(V)E V(H). Hence, f is open. 

We then obtain the following corollary at once. 

Corollar:y; Every compact group is a B(a_) group. 

ExamR..le~ (1) Let R denote the additive group of 

real numbers. Then Rn, for any finite n, is locally compact 

and so a B ( C{ ) group. 

(2) The tori, Tn, are compact and so are B(t{) groups, 

for any cardinality n. 

(3) Let K be the field of real or complex numbers. 

Then the additive group of n x n matrices with entries from · 

K, denoted by Mn(K), is locally compact, by Proposition 

27.8 of [a], and so is a B(C{,) group. 

(4) The invertible elements of Mn(K), denoted by 

Gn(K), form an open subset of Mn(K), by Proposition 27.9 

of [8], and so are a locally compact group. Hence, Gn{K) 

is a B ( t() group. 

(.5) Let C denote the field of complex numbers. 

Then the orthogonal groups On(R) and On(C) are closed 

in Mn(C), and so are locally compact. Similarly, the uni

tary group. Un is locally compact. Hence, all of these are 

B( t{) groups. 

(6) All discrete groups are locally compact, and 

are therefore B(tl_) groups. This case is particularly 
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trivial, however, fo~, if there is an almost open homomor

phism from a discrete group onto a Hausdorff group, then 

the codomain must also be discrete. 

The following section gives another class of groups 

which has the B(~) property. 

J:,o.qall:y Complete Metrizable Groups 

It is shovm in Theorem Jl.J of [a] that every com

plete metrizable topological group is a B( ~) group. We 

now show that a slightly broader class of topological groups 

has this property. It is sufficie11t that each point of the 

group have a neighbourhood which, in the relative topology 

induced by the group,.is a complete metrizable space. While 

not profound in itself, this generalization is useful in 

proving certain results in Chapter J• 

~-fjnitiQU A topological space X is said to be 

locally complete metriza.ble if every point of X has a fun

damental system of neig~bourhoods which are complete met

rizable spaces in the relative topology induced by x. 

~orem 1.2 Every locally complete metrizable 

topological group is a B ( C{ ) group. 

Proofa Let G be a locally complete metrizable 

group, H a Hausdorff group, and f 1 G ---~~ H a continuous, 

http:group,.is
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almost open homomorphism. Let U~ Zf(G), and, without loss 

of generality, we may assume it is a complete metric space, 

closed, and symmetric. We then select a fundamental sequence 

{un} of complete metric, closed, symmetric neighbourhoods of 
2 .• 2 

eG such that u1 s: U and Un+l c;. Un' for each n, and such 

that f'\ Un = {eG}. To find ~uoh a sequence, we first observe 

that, since U is a metric space, there exists a countable, 

fundamental system of closed unit neighbourhoods Zvn) in U 

such that· Vn+i c;;Vn for ea.ch n. Let {Yn1 be a sequence of 

closed unit neighbourhoods in G such that Yi ~U and 

Y;+l s Yn , for each n. Let 

it is then easy to check that the resulting sequence has all 

the desired properties. 

Let Wn = ClHf(Un)• We now show that /'\Wn ={eH} • 

Let y ~ (\ W
11 

J then V = V-1 = ClHV in 1/(H) implies 

there exists ~EUn such that f(~)E yV, for each n. 

Since lun} is a fUndamental sequence of neighbourhoods of 

ea in u, we ~onclude that {xn} converges to eG. By the 

continuity of f, {f(xn>} then converges to f(eG) = eH • 

Since V is closed ru.~d { f ( ~)} ~ yV, we have eH E yV ~ whence 

y EV, by the symmetry of V. Now, V was a..'tl arbitrary 

closed syrnmetric set from 'l/(H), and since such neighbour

hoods form a fundamental syt ,tem of unit neighbourhoods in 

a topological group, it follows from the Hausdorff property 
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of' H that yE(\ VCH) = teH}• Hence, y = eH' and our asser

tion is proved. 

We now show that, for every k, Wk+l c;:: f(Uk). Let 

y<£. Wk+1 J then, since f(Uk+i) is dense in Wk+l , the~e exists 

x1 € Uk+l such that f(x1 ) € yWk+2 • Then y-1:r(x1 ) E Wk+2 , 

whence f (x1 ) -1 
y E. Wk+2, and so there is a point x 2 € Uk+2 

Proceeding inductively, we construct a sequence ~ 

such that 1 

(a) ~ E Uk+n , for each n, and 

(b) f(x1x2 ••• ~)E yWk+n+l • 

ter product _is a subset of Uk+n-i , by the initial condi

tions on the sequence {un1. Thus, for p ;;i>O, 

Since the \un1 are _a fundamental sequence of neighbourhoods, 

it follows that, for any V~ 'l/(G), we can find n
0 

E-N such 

that, for p ~ O and n ~ n
0

, we have xn • • • "n+p EV. 

a Cauchy s equenceJ moreover, letting n = 1 in (a), we 

see that Sn E. Uk , for all n. Therefore, {sn} converges 
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to some x
0 

E Uk , since Uk is a complete meti·ic space. 

The proof is now concluded by showing that y = f(x ). 

First, observe that lim f(x1.) • • • f(xn) = f(x ). No\v,
0n -)CD 

for m~n , . we have 

Y-1f(x1x2 • • • ~) = y-lf(xl ••• ~)f(~+1> ••• f(~) 

Then, lim y-1f(x1 ••• xm) E Wk+n-l , ·since the latter is 
n -.+co 

closed. Then 

y-1 • lim f(x1 ••• ~)6 n{wk+n-1 I nEli} = {eH) • 

·m ~co 


Thus, y-1f(x ) = eH , whence y = f(x ) E f(Uk). Hence,
0 0 

f is open. 

Corollatl Every complete metrizable group is a 

B ( t{) group. 

Proofa This is a special case of Theorem 1.2, since 

every complete metrizable group is locally complete metri

zable. 

Theorem 1.2 is a true generalization of the corollary, 

as the following example shows. Let ..fL denote the first 

uncountable ordinal, and let G be that subset of R(o,Jl] 

consisting of those elements which are non-zero in at most 
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countably many entries. For each ordinal g,, denote by G(!!) 

·the subgroup of G consisting of those elements (xb) such 

that B.~~ and B. f i).. implies xB. = o. Since every count

able subset of [o,ll) has an upper bound [41 P• 54, Theo

rem 9.1] , it follows that G = U { G(!!;) : !\ E [o ,Jl.)}. Let G 

be endowed with the subgroup topology induced by the G(~)J 

clearly this is a group topology. Moreover, each G(~) is 

a complete metric space, by Theorem 2.5, P• 295 of (4], 
since it is isomorphic to R~+i. However, G is not first 

countable, and hence not metrizable. 

The above corollary is Theorem 31.) of [a]. This 

shows that every Banach space, for example, is a B(a.) 

topological group. One should note that this observation 

does not follow from the classical open mapping theorem, 

for not every homomorphism of a complex vector space need be 

a linear map. For instance, suppose a complex Banach space A 

has a basis {bi) • Then each element x EA has a unique rep

resentation 

, 

where t 1 E C. Define a map f 1 A --> A by 

I 



the bar indicating ccmplex conjugation. It is then trivial 


to check that this map is a homomorphism, but is not a 


C-linear map • 


.h h_ General.!.!filJ.on of a Cri terJi>.D of L. cLl_ Sul,lex 

Further discoveries which added to the list of known 


B(~) groups were made by.Sunyach (23] and Sulley [22]. 

The latter found criteria for dense subgroups of Abelian 


· B ( t{ ) and Br( tt ) groups to inherit the respective property. 

Theorems l.J - 1.6 are generalizations of Sulley's criteria 

to arbitrary completable groups. We must first prove the 

following two lemmas. 

Lemma 1.1 Let E be a Hausdorff group, G a dense 

subgroup of E, H a closed normal subgroup of E, q a E -» E/H · 

the natural map. Then· the restriction of q, r 1 G -~q(G)/H 

is continuous and almost open.· Furthermore, r is open if£ 

H('\G is dense in H. 

Proof a Clearly, r is continuous. To see that it 

is almost open, we first observe that 

Clq{G)r(Uf\G) = q(G)f\ClE/Hq(U/\G) , 

by Theorem 7.2, Chapter III of [4]. 
Now, q-1 (clE/H[q(U()G.)]) is closed in E, and is 

a unit neighbourhood, since it contains ClE(Uf"\G). Then 

ClE/H[q(UflG)]E Z((E/H) , since q is open, and so 

http:General.!.!filJ.on
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Clq{G)[r(Uf\G)}E 'l/{E/H) • Thus, r is almost open. 

Next, suppose r is open. Let U E- ?/(E), and select 

v2V £ V(E) such that V is symmetric and t,;. u. Then 

r(Vf\G) = q(Vf\G) is in 'l((q(G)). Then there exists Wl V(E/H) 

such that Wr\q(G) ~ q(Vf\G), so that 

q - 1 (W) (\ GH ~ q - 1 ( q ( V() G)) = (VA G) H • 

Let h E HJ then there exists g E G such that g ce (V () q-1 (W} )h, 

since G is dense in H, so that gh-l E q-i (W) ('\ ( GH) ~ (Vrl G)H. 

Then there exists x € V(\ G, k EH such .that gh-l = xk, 

1 1whence h = k- x- g = k ... 1 (x-1g). Now, .hEII, k£H together 

imply 	that x-1g E: H; then x E' G, g E G imply x-1g E Gfl H. 

k-1 1-Thus, = h(x-1g}-1 = (hg... 1 )x is an element of v- v = v2 ~u. 

Therefore, h = k-lx-1gEU(Gl\H), and so (Gf\H) is dense in H. 

Conversely, suppose Gl'l H is dense in H, U E 1/(E), 

and VE t/(E) such that V is symmetric and v2 ~u. Then 

H cs=(G(\H)V. We show V f\(GH) s;,(UAG)H. Let x e V, g E G, 

1hEH 	 such that x = gh. Then h = g- x; . but h <E(GnH)V, 

by assumption, so h = ky, where k E G()H, y E. V. It then 

1follows that x = gh = gky, and y = k- h EH. Also, gk ~ G, 
1 2and gk = xy-1 E. vv- = v s u. Therefore, x = gh = (gk) (k-1h), 

and this last is a point of (U1'G)HJ hence, Vf\(GH) <;;(UflG)H. 

Thus, VH(\GH. C:.(Ur\G)H2 = (UnG)H J i.e., 

q-1(q(V))(\q-1 (q(G)) c q-1 (q(Uf'\G)). Then, applying q to 

both sides, we obtain q(V)(\q{G)~ q(U(\G) = r(UflG). Thus, 

r is open. QED 
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The second lemma is proved in slightly greater gener

ality tnan is necessary for our immediate purposes. The 

full strength of this lemma will, however,. be invoked in 

Chapter 2. 

Lemma 1.2 If G is a group with equal uniformities 

and f 1 G ---:) H is a continuous, almost open homomorphism 

such that f(G) is dense in H, then H has equal uniformities. 

Proof a The sets of the form ClHf(U) , for UE 1/(G), 

generate the topology of H, and it is enough to consider 

such sets. We show that f'\{bqlHf(W)b-1 s b E. H} is in V(H), 

for any WE: if(G). 

Clearly, for a E G, f(a)ClHf(W)f(a)-1 = ClHf(awa-1 ) 

= ClHf(W), since G has equal uniformities. Now let b EH, 

W( i'(G), and choose VE V-(G) such that V is symmetric and 

v'3sw. Since f{G) is dense in H, there exist y~ClHf{V) 

and a E G such that by = f(a). Then, 

b(ClHf{W) )b-1 2 b(ClHf(VJ) )b-1 2b(C1Hf(V) )Jb-t 

'2byC1Hf(V)y-lb•l = f(a)ClHf(V)f{a)-l 

Thus, n{bclHf(W)b-1 
I b EH} 2,ClHf(V), and so this inter

section is again a unit neighbourhood. Therefore, H has 

equal left and right uniformities, by Theorem 0.1. 
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Theorem 1!.l ·Let G be any Ha1i1~(QJ!:~f, gr())Ap, wi:tl( .''equal 

unifermities_~ ,_ E__v i~ll 'Hausd~rff - co~pletion. 

(a) If Eis a B(a..) group and, for each closed normal 

subgroup H of E, Hl\G is dense in H, then G is a B( t{) 

group. 

(b) If E is a Br_{ t{) group and the only closed normal 

subgroup H of E for which Hl\G = le} is {e} , then G is 

a Br( tl) group. 

Proof 1 (a) Let f 1 G -->> F be a continuous, almost 

open homomorphism. G has equal uniformities, 

and it follows from Lemma 1.2 that F also has this property. 

Hence, F has a completion, say F*, and f extends to a con

tinuous homomorphism f* a E --;>F*, by Proposition 3.5, 

Chapter III of (2]. 
Now let U E 'lf(~) J then ClF*f*(U) 2 ClF.*f (U f"\ G) 

= ClF*(clFf(Uf'\G)]. Since f is almost open, Clpf(Uf'l G) E V(F), 

whence its closure is in 'lf(F*), by Proposition 4. 7, Chapter 

III of [2]. Thus, f* is almost .open, and, since Eis a 

B ( t{ ) group, f* : E --7') ftt(E) is open. 

Let H = Ker f*, and define q, r as in Lemma 1.1. 

Let f 1 : E/H ___, f*(E) be the unique map such that f 1q = f*. 

Then f 1 is open, since f* isJ since f 1 is one-to-one, its 

restriction f 2 to q(G) is open onto f 1q(G) = f*(G). But 

f = r2r, so f is open. 

(b) Let f, F, f*, pit- be as in (a), but further 

assume that f is one-to-one . It follows as in (a ) t:hat 
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f* : E ~) f*(E) is almost open. Now Ker f* is closed, 

and G()Ker f* =Ker f = {e}; then Ker f* = {e), by hypo

thesis. Hence, f* is open, since E is a Br( a._) group. 

It then follows that f is open onto f(G) = F. 

Theorem 1.4 Let G ·be a dense subgroup of the Haus

dorff topological group E. 

(a) If G is a B( t{) group, -then Hf'\ G is dense in H 

for every closed normal subgroup H of E. 

(b) If G is a Br{ t.l..) group, then the only closed nor

mal subgroup H of G such that Hf'\G = {e} is {e} • 
Proof: Let H be a closed normal subgroup of E, 

and let q and r be defined as in Lemma 1.1. By this lemma, 

r is continuous and almost open. 

(a) If G is a B( t{) group, then r is open, and so, 

again by Lemma 1.1, HI\ G is dense in H. 

(b) If Hf'\G = {e}, then r is one-to-oneJ then r is 

open, since G is a Br{ a.) group, whence GAH = { e} is 

dense in H • . But this implies H =le} , since Eis a Haus

dorff group. 

Theorem 1.5 Let G be a dense subgroup of the 

topological group E. 

(a) If G is a B{ t{_) group, then so is E •. 


{b) If G is a Br{tl) group, then so is E. 
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Proof a (a) ·Let G be a B( ~) group, and let 

f 1 E --->) F be a continuous, almost open homomorphism. 

Let v 1 G ~> f(G) be the restriction of f. We claim 

v is almost open. Let U E 11 (E), so that 

Clf(G) v{Ur\ G) = [c1Fv(Uf"\ a>]n v(G) J 

this follows from The.orem 7.2, Chapter III of [4]. Since f 

ia continuous, f-
1 [c1Fv(U(\G)1 is closed in EJ denote this 

set by V, and note that V2U()G. Then VE 'lf(E), since G 

is dense in E. Now ClFf(V)E 'l/(F), since f is almost openJ 

moreover, ClFf(V) ~ ClFv(Ur"\G), so the latter is in l((F). 

It then follows that Clf(G)v{UnG)~ 1/(f(G)), and that v 

is almost open. Since G is a B(t{_) group, vis open. 

Now we show f 	 is open. Let U E c/(E), and choose 
2VE 'V(E) such 	that v ~u. Then f(V)2 Wll f(G), for some 

open W in 7/{F), since. v = flG is open. Thus, 

f-1 (f(V)) ::::> f-1 (W()f(G)) 2 f-1 (W)/'lG, 

and so r-1 (f(V) )V 2 c1E [f-1 
(f(V) B"2 ClE f!-1 

(W) f\G]. 

-1 ( ) • • . .Now f W is open in G, and G is dense in E, so 

f-! ( f (V)) V2f-i (W). Hence, f(U) 2 f(V2 ) 2 f{V) 2 

1= f[r- (f(V))v] 2 f(f-1 (.w)), and this l ast is equal tow, 

since f is onto. Thus, f is open and (a) is proved. 

(b) The proof is almost identical with (a ), with 

certain simplifications resulting from the additional assump• 

tion that f is one-to-one. 

We remark that Theorems 1.4 and 1.5 do not require 



that the group G be completable. 

The following theorem summarizes our results for 

completable groups. 

~rem 1e6 Let G be any liau@_IE!rff greup with:-~ual 

unifQrmities,"'E- its Haufl,dorff completion. 

(a) G is a B ( tl.. )- group iff E is a B ( «..) group and, 

for each closed normal subgroup H of E, Hl\G is dense in H. 

(b) G is a Br( C{) group iff E is a Br( Gt) group and 

G has non-trivial intersection with each non-trivial closed 

normal subgroup of E. 

We conclude this section with a few applications 

of this criterion. 

(a) The group Q of rational numbers under addition 

with the relative topo~ogy from R is not a Br(tt) group. 

To see this, let b be an arbitrary irrational number. 

Then Zb = { nb : n E z} , where Z represents -the group of 

integers, is a subgroup of R which is discrete and there

fore closed. Furthermore, R is the completion of Q, and 

Qf\Zb = {o}. Then, by T_heorem l.4(b), Q is not a Br(tl.) 

group. 

(b) Let p be a fixed prime number, and let Z be 

endowed with the group topology having a~ its unit neigh

bourhood filter {pnz a n EN} • This group is totally 

bounded, and so has a compact completion, which we shall 
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denote by Zp• Now ZP is compact, and therefore a Br( a.) · 

group. Furthermore, the only non-trivial closed subgroups 

of ZP are the groups {pnzp t n E ~} , a fac:t we shall not 

prove here. Since, for all n, p?l.zp n Z ;l loJ , we conclude 

from Theorem l.4(b) that Z with the topology described 

above is a Br.( a..) group. 

(c) Let U be the group of roots of unity, the tor

sion subgroup of the group T of complex numbers with unit 

modulus. Now, T is the completion of U, and, furthermore, 
proper 1 

everylclosed subgroup of T is also a subgroup of U [141 P• 246J• 

Since T is compact, it is a. B( Cl) group, and it follows 

from Theorem 1.3(a) that U is a B( t{) group. 

Sulley and Sunyach both appeal to this example to 

show that a B ( C1.) group need not be topologically complete. 

(d) The following example is due to Sulley [22], 

and shows that a Br( t{) group need not be a B( a.) group. 

Let G be the subgroup of those elements of U which have 

squarefree order. Since every integer has some squarefree 

divisor, G intersects every non-trivial closed subgroup of 

T in a non-trivial mann~r. Hence, G is a Br(({) group, 

by Theorem 1.6(b)~ However, letting T2 and T4 represent 

the groups of elements of T of order 2 and 4, respectively, 

then G(\T4 = , and this is not dense in T4• Hence,T2 

by Theorem_1.6(a), G is not a B(~) group. 

(e) Finally, we disvlay an example of a precompact 

group which is not a Br( l{) group. For a fixed prime p, 



let Up denote the -group of all p-power order roots of unity. 

The completion of UP is T. Now, if q is a prime distinct 

from p, then the group Tq of all q-th roots of unity is a 

closed subgroup of T which has trivial intersection with up. 
It follows from Theorem 1.6(b) that UP is not a Br( CZ) group. 

Some further applications of Sulley•s exceedingly 

useful criterion occur in Section 5. 

Internal Characteriz~ion of B ( a. ) Gro,glll!, 

The definition of a B ( a ) group .is entirely an ex

ternal characte~ization of the objects in question, in that 

it concerns only the mappings defined on a group and makes 

no direct mention of the elements, substructures, or topology 

of the group itself. One internal characterization of B ( a..) 

groups is provided in this section. 

We first develop some notation. Let G be a topolo

gical group with topology u. If we write v <,; u, then v is 

a group topology on G such that every v-open s.et is u"'"open. 

If v is another group ~opology on G, then v(u) will denote 

the group topology whose unit neighbourhood filter is 

lClvU I u E if(u) • 

The following result is Theorem J1.4 of (a]. Its 

proof is included here for ~ompleteness. 
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kemma 1.;, If (G,u) is a B( Q.) group, then.J. for 

any Hausdorff group topology v on G, vs u and v(u} = v 

together imply u = v. For Br(tl) groups, this condition 

is both necessary' and sufficient. 

Proof a Let v be such a group topology; and 

consider the identity map j a (G,u) ~ ('G,v). Since vsu, 

j is continuous, and, since every v(u)-open set contains a 

v-open set, j is also almost open. The map is clearly onto, 

and so it is open, since G is a B( C{_) group. Thus, u c;v, 

and we conclude u = v. 

Clearly, the above argument is also valid if G has 

the Br(t{} property, for j is a one-to-one map. 

Conversely, let f 1 (G,u) n-->> (H,w) be a contin

uous and almost open homomorphism. Let v denote the group 

topology generated on G by {r-1 (w) a WE 7/(w)}. Since w 

is Hausdorff and f is one-to-one, it follows that v is 

Hausdorff. Furthermore, v s;u, and, letting f 
0 

be the map 

which goes from (G,v) to (H,w) and coincides with f point-

wise, we see that f 
0 

is continuous and open. Now, v ~u 

implies v ~v(u)J we then show v(u) ~ v by demons trating 

that U0 E Zf(u) implies there exists V € V-(v) such that 

v ~ c1vu
0

• 

Now, ClVUO =n{uor-1 (W) I wE. 'l((w)} 

=(\ {r-1 [rcu r-1 
(w) >] a wE 7/(w)}

0 

= (\ {r-1 [rcu
0 

)w] 1 wE. '/f(w)} 



= r-1 [n{rcu
0 

)w , wqf<w>}] 
-1= f (Clwf(U

0 
)) • 

But, Clwf(U ) E Cl (w), so ClvUo € 7/(v). Thus, v(u) = v.0 

By our hypothesis, u =v, and so f = f • Therefore, f is 
0 

open, and (G,u) is a Br( a,) group. 

Since v ~ u implies vc:= v(u), by Proposition 31.8 

of (a), we can partially recast Lemma 1.3 as follows. 

L.,emma. 1.4 (G,u) is a Br(ti) group iff, for every 

Hausdorff group topology v on G, v(u) c:; v ~u implies 

v =u. 

For a topological group G, let ?CCG) denote the set 

of closed normal subgroups of G. 

Lemma 1._2 G is a B(q') group iff G/H is a Br(t{) 

group for every HE: ?l_ (G) • 

Proof a The "only if" direction follows at once 

from Proposition 31.7 of [a]. 
Conversely, let f : G --)) A be a continuous, 

almost open homomorphism. Then f factors as f =f*n, 

where n is the natural map G ->> G/Ker f and f* is 

the unique one-to-one map G/Ker f -r> A which satisfies 

the above equation. By Proposition OoJ, f* is continuous 

and almost open. Since (Ker f)€ ?{_(G), G/Ker f is a 

Br( C{) group, and so f* is open .-. Again by Proposition 0.3, 
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f is open. Hence, G is a B( a.) group. 

Now, we may apply the condition of Lemma 1.3 to the 

quotient groups G/H. For each H e.?l(G), let uH denote 

the usual quotient topology on G/H, nH the natural map 

G ---:::,> G/H. Lemmas 1.4 and 1.5 can then be rewritten asa 

(G, u) is a B ( ~.> group iff, :for each H E ?z.(G) and for 

every Hausdorff group topology w on G/H, w(uH) c;; w<;;uH 

implies w = uH. 

For w, a group topology on G/H, let nH1 (w) denote 

the group topology on G generated by the inverse images 
-1under nH O·f w-open sets. We let uH = nH (u H), the group 

topology generated by all sets of the form tUH 1 UE 1f(u)}. 

Writing the above criterion in terms of neighbour

hoods, and taking inverse images with respect to nH , we 

obtain the following, for each HE ~(G) 1 if, for every 

UE 'l/(u), there is a W~ V(w) such that nj{1Cw)~nji1 CclwnH(U)), 

and if, for every WE V-Cw), there exists U E zt(u) such 

that UH ~nH1 (w), then w =UH. We claim that 

To show the first equality, we ·first observe that 

njf1 (ClwnH(U)) = nji1 ( (\ { nH(U)W : W~ ZI (\v)}) 

= n{nj!1 <1i£<u>w> • we ?fCw>} 

2 ti l(llli)nif1 (W) \'l E ir (w))I 
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We need now show only the· reverse of the inclusion to have 

proved the first equality. 

Let p be a poi11t of nj{1 (nH(U)W), for each W~ 1f (w). 

Then nH(p)EnH(U)W, whence, for each such w, there exists 

t E nj{1 (W) ~ Thus, p E nj/ (nH(xt)) = :xtH = (xH)(tH) ~ UHn}{1 (W). 

This proves the first equality. 

The second equality is merely a reflection of the fact 

that H is a subset of every nji1 (w)-neighbourhood of the u:nit. 

We now prove a result which enables us to dispense 

·completely with references to topologies on the quotient 

groups G/H. 

Lemma 1~6 The group topologies on G coarser than 

uH are precisely the inverse images under nH of group 

topologies on G/H coarser than uH. 

Proof i If w is a group topology on G coarser than uH, 

then nH(w) is coars.er than nH(uH) = uH • Then the unit 

neighbourhood filter of njf1 (nH(w)) is lWH : W€if (w)} • 

But each WE 1/'(w) is of the form W= YH, where YE if (u), 

since w is coarser than uH. · Let ~ = \YE 1} (u) 1 YH =w, 

some W E 71 (w)J • Then, 

http:coars.er
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\wH w~ ?!Cw>} = \YH2 
1 YE y} = {YH Y(V} = '/f(w).1 	 1 

Hence, 	 w = nH1 (~(w)) • 

ConverselY.1 if wH is a group topology on G/H coarser 

than uH , its inverse image under nH is clearly a group 

topology on G which is coarser than uH. QED 

This lemma can now be combined with the equalities 

derived above to obtain the following condition for a 

topological group (G,u) and a closed normal subgroup H of G. 

P(H) a 	 If w is a group topology on _G such that, for each 

WEY(\V), there exists UE '!F(u) such that UH~W, 

and, for each U E 'lf(u), there exists WE 1f (w) 

such that W~ClwU' then w = uH. 

Combining the above results, we have proveda 

!!leorem 1. 7 G is a B( C{) group iff P(H) is satis

fied for every HE. 7t_ (G) • 

.i!. Permanence Properties of _].( tt_l and Br(g) Groups, 

In this section, we examine B ( t(_) groups and Br( Cl..) 

groups as subcategories of the category of all topological 

groups and continuous homomorphisms. We investigate the 

closure properties of these subcategories under the forma

tion of products, subobj ects , retracts, projective limits, 

and other categorical operations. 
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These categories are quite poorly behaved with res

pect to such "permanence" properties. We shall first prove 

theorems of a positive nature concerning retracts and a 

special case .of s.ubgroups, followed by several cf)unterex

amples to a number of attractive conjectures. 

Definition A subgroup H of a topologi~al group G 

is said to be a retract of G if there is a homomorphism 

r a G --7) H such that r(H is the identity; r is then 

said to be a retraction. 

A subgroup H of a topological group G is said 

to be a topological direct factor of G if there is a 

subgroup H' of G such that the multiplication map 

m t H x H' --?>) G is an isom9rphism. 

We now state the following result, which, to the 

best of the author's knowledge, is unpublished and due 

to B. Banaschewski. 

Lemma 1.7 If H is a subgroup of G, then the follow

ing are equivalents 

(1) H is a topological direct factor of GJ 

(2) H is normal in G and a retract of GJ 

(J) H is the kernel of a retraction. 

Proofs (1)=9 (2) Let f a G ~ H x H• - be the 

inverse of the multiplication map, and let p 1 H x H' ---:)H 

be the projection. Then pf : G --? H is a homomorphism 
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whose restriction to H is the identity• . Hence, H is a re

m[f(a) f(h) f(a)- ] m[Cx,y) (h, e)(x-1 1 >] = m(xhx-1 ,e) 

tract of G. Now, to see that H is normal in G, let h E"H, 

a E G, and note that a can be expressed uniquely as a product 

a = xy , x EH, yE. H'. Then aha-1 = mf(aha-1 ) = 
1 = ,y

= xhx-1 EH. 

(2)::9 (3) Let H be normal in G, f • G ~ H the 

retraction. Then s E" Ker f, t e H implies sts-1 EH, 

whence sts-1 = f(sts-1 ) = f(s)f(t)f(s)-l = f(t) = t. 
-1Hence, ts= st. Define g 1 G ~Ker f by x~ xf(x) • 

Then, g(xy) = xyf{xy)-1 = xyf(y)-1f(x)-1 , and, since f(x)EH 

and yf(y)-1 € Ker f, it follows that g(xy) = xf(x)-1yf(y)-l 

= g(x)g(y). Hence g is a homomorphism; since it is the 

composition of continuous maps, it is itself continuous. 
1

Then g(gCx>) = g(xf(x)-1 ) = xf(x)-1f(x)t[:rCx)-1
] = xf(x)- , 

since r[rcx>] = f(x). Hence, gg = g, and so g is a re

traction. 

Now x E Ker g iff g(x) = e iff x = f(x) iff' x EH. 

Hence, H is the kernel of the retraction. 

(J)~(l) Let H :;:: Ker g, · g a retraction, g 1 G ~ H'. 

As above, sEH, tEH' implies ts= st, and it follows from 

this that the multiplication map m 1 H x H' ___,. G is a 

homomorphism. 

Define h : G --~ H x H' by h(x) = (xg(x)-1 ,g(x)). 

Since x ~ xg(x)-1 is a continuous homomorphism, it fol



lows that h is ·a continuous homomorphism. 

Then (mh)(x) = x, and (hm)(s,t) = h{st) 

= (stg(st)-1,g(st)) = (stg(t)-1g(s)-1,g(s)g(t)) = (stt-1e,et) 

= {s,t). Them m is invertible, and so is an isomorphism. 

With the above result established, we prove the 

f ollowingi 

Theorem 1.8 If G is a Br(a.) group and if His 

a normal subgroup of G and a retract of G', then H is a 

Br( a.) group. 

Proofs By the definition and Lemma 1.7, the mul

tiplication map m s H x H' ~ G is an isomorphism, and 

so m has an inverse j which is also an isomorphism. Let 

f i H ___,, A be continuous, almost open, one-to-one, and 

onto. Define h 1 G --7 Ax H' by h(s) = (f x idH,)(j(s)), 

so that this diagram commutes& 

m 
Hxff'< · > G 


f x 
idH'l / 
A x H' • 

Clearly, h is one-to-one, onto, and continuous. Further

more, (f x idH,) is almost open, for 

ClA x H'{f x idH 0 )(V1 x V2) =ClA x H'(f(V1 ) x v2) 

/, 
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Since j is open, h = (f x idH,)j is almost open. Since 


G is a Br(~) group, his an open mapping. Now, 


(f x idH') = (f x idH') jm = hm, but m is open, so (f x idH') 


is open. It follows that f is open, and so His a Br(a_) 


group. 


Theorem 1.9 If G is a B(tl) group, and H is a 

normal subgroup of G and a retract of G, then H is a 

B(a.) group. 

Proofs Same as above, dropping the assumption that 

f be one-to-one. 

Remark The above results also hold for B ( ~ ) and 

Br( f,) groups, where / is any full subcategory of ~. In 

particular, in the case of Abelian groups, the normality 

assumption is also subsumed. 

We now proceed to our second permanence property. 

Notation We shall denote the centre of a topolo

gical group G by Cent G. 

Theorem 1.10 Let (G,u) be a Br( C{} group, and 

H an open subgroup of G such that HS Cent G. Then H is 

a Br( c1 } group. 

Proof 1 Let u/H denote the relative topology on H 

induced by u, and let w be any Hausdorff group topology 

such that w ~ u\H and w(u(H) =w. By Lemma 1.3, it 

suffices to show that w = uf H. 

Define a new topology w1 on G by t aking 7J<w1 ) = z,!(w), 



recalling that H is open in G. Since H is in the centre . 
1of G, we observe that xvx- = V for every VE ?/(w) and 

x E GJ it follows that conjugation is conti:p.uous at e. The 

other axioms for a group topology follow trivially. Also, 

w1 is Hausdorff, since w has this property and the unit 

neighbourhood · ~ilters coincide. 

Now, w1 <: u, because H is open, and so w1 <;;; w1 (u), by 

Proposition 31.a of [a]. We show w1(u) ~w1 • Let U E 'if(u), 

so U(\H€t((u\H). Since w(u\H) = w, there is some WE7/(w) 

such that WSClw(Ui\H). But this latter is precisely the 

w1-closure of Uf\ H, so wsci,, (Uf\H) sclw u. 
1 1 

Since G is a Br( t{) group, this implies = u. Thenw1 

w = w1\H = u]H, and so His a Br(~_) group, by Lemma 1.3. 

By a similar method, we obtain an analagous perman

ence property for B(~) groups. 

Theorem 1o11 If (G,u) is a B(~) group and K is 

an open subgroup of G such that K~Cent G, then K is a 

B ( t{) group. 

Proofa · We use the internal characterization of 

Theorem 1. 7. Let HE. ~(K). Since K is open in G, it is 

also closed; hence, H is closed in G. Since H~C~nt G, 

it is a normal subgroup of G. Therefore, H~ ?L (G). 

Let ·w be a group topology on K such that the two 

conditions of P(H) are satisfied (on K!). Let w1 be the 
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group topology on G generated by 'lf(w) as unit neighbourhood 

filter. We show that w1 satisfies the two conditions of 

P(H) on G. 

First, if WE7/(w1 ), then there exists Vtf: ?/(w) 

such that V sw, whence there exists U E 1/ (K) such that 

UH~ V. But U€ ?f(G), since K is open, and so the first 

condition is satisfied. 

Secondly, if u~ V(G), then Uf\KE i'CK), and so there 

exists WE V(w) such that W£Clw(Uf\K). Then W£ 7fCw1 ) and 

the second condition is satisfied. 

Since G is a B(~) group, it follows from Theorem 1.7 

that .u = w1 • Hence, the relative u-topology on K equals 

the relative w1-topology on K, but the latter is precisely ,w. 

Therefore, K is a B( tl) group, by Theore~ 1.7• 

We then have the _following join~ corollary of Theor

ems 1.10 and 1.11, which follows immediately from these 

theorems. 

Corollarz If G is an Abelian Br(C{) (resp., B(~)) 

group and H is an open subgroup of G, then H is a Br{ C() 

(resp. B( C{)) group. 

Several counterexamples follow, the first of which 



shows that, given a group G with two topologies, with res

pect to each of which G is a B(t{) group, then G need not 

even be a Br( t() group ., wh'f.l;;:endowed ..witlli ":,the j:o.i:rL,o:r ,. th''e" .~ 

~tw«> __ top'C>l.~gi~es,• 

Example 1.1 Let {R,u) denote the reals with the 

usual topology, g a discontinuous automorphism· of the reals 

[27J p. 49], and (R,g(u)) the reals, endowed with the topo

logy consisting of the images under g of u-open sets. 

We claim the identity map j 1 (R, u V g( u)) _,,. (R, u) 

is continuous and almo·st open. The continuity is clear. 

To see that j is almost open, it is sufficient to show that 

the image under g of any u-open set is u-dense in R, for 

then, if A,B are u-open sets, it follows that CluA = Clu(Ang(B)). 

To demonstrate this fact, we first observe that the 

image under g of any u-open set is unbounded. If not, then 

g(V
0 

) is bounded for some open set V
0 

• Without loss of gene

rality, we may assume V
0 

= (-a,a), and that g(V
0

) ~ (-1,1). 

Let peg-1 (-1,1), and let t be a rational number such that 

O~ t ~ imin{1 - g(p), 1 + g(p)}. Then g{p + (-at, at)) 

= g(p) + tg(-a,a) ~ g(p) + (-t,t) c. (-1,1). Thus, 

g-1 (-1,1) contains a u-neighbourhood of each of its points, 

and so is u-open. But this implies g i (R,u) ~ {R,u) is 

continuous, a contradiction. Hence, g(V) is unbounded for 

every u-open set v. 

We now show that g(V) is dense in R, with respect to 
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the u-topology. Assume o EV, and that V is connected. 

Then, for each x EV, { kx a O~k' 1, k rational} £. V, whence 

{ kg(x) s O~ k ~ 1, k rational} c g{V). For each x, the 

above set is u-dense in [o,g(xJ. But g(V) contains arbi

trarily large real numbers. Thus, g(V) is u-dense in R. 

Hence, j is continuou~ and almost open, but it is obviously 

not open. 

Now, (R,u) is locally compact, and so is (R,g(u)), 

since it is the continuous, open image of (R,u). Hence, 

both are B( ~) groups, but (R,u v g(u)) is not a Br( l{) 

group, for we have constructed a continuous, almost open, 

one-to-one homomorphism from this group onto a Hausdorff 

group, which is not an open map. 

Remark The above example also shows that the join 

of two locally compact· group -topologies need not be locally 

compact, for, if R with the join topology were locally 

compact, it would be a Br(tZ.) group. 

Our next example shows that a finite product of B(~) 

groups need not be a Br(.tJ...) group. 

~ple 1.2 Let R be the reals with the usual 

topology, U the group of complex roots of unity. The lat

ter was proved to be a B ( C{) group in Example ( c), Seotlon 

1.3, and, of course, R is locally compact. However, R x U 

is not a Br( C() group. 



To see this, observe that the completion of R x U 

is R x T, where T is the circle group. Since R x T is 

locally compact, it is a B(lt) group. Let b be an arbi

trary irrational number, and let 

H = { ( n, exp ( 2nb tr i) ) n € Z} •1 

Then H is a discrete subgroup of R x T, and so is closed. 

However, Hf) (R x U) = {co,1)J, and so R x u is not a Br( CZ) 
group, by Theorem 1.6(b). 

Remark Since products are trivial projective limits, 

we have also shown that B( t?) and Br( t?) groups are not 

closed under projective limits. However, this is not a 

directed system, and the question of whether our categories 

are closed with respect to limits over such systems is still 

open. 

Our next example concerns inductive limits. 

~xample 1!..l Let (R,u) · and (R,d) denote the reals · 

with the usual and discrete topologies, respectively. Let 

= {R,u) x (R,d), = (R,d) x . (R,u), and let f 1 ~G1 G2 a1 G2 

by (x,y) ~ (y,x). Let this system be ordered by 1 ,2.
in the category of topological spaces

Its inductive limit/is then R endowed with the topology 

(u x d) A (d x u). It has been proved in [ 19J, however, 

that this is not even a group topology, although the groups 

involved are locally compact and so B(tt) groups. 
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Finally, we consider the question of quotients of 


groups in our category. 

Example 1.4 Let G, T, T2, be defined as inT4 
Section ,1.3, Examples (c) and (d). It is shown in (d) that 

G is a Br((!_) group which is not a B{ t{) group. Let n be 

the natural map T ~) T/T4 , ma G ~) n(G) its restric

tion. Then Ker m = Gf"\Ker n = G/'\T4 = T2 • We claim G/T2 

is not a Br( t{_ ) group. 

Suppose it is. Then, by Lemma 1.1, m is continuous 

and almost open, whence its factorization m* a G/T2 ~)n(G) 

also has these properties. But, if G/T2 is a Br(~) group, 

it follows that m* is open, whence m is also open, by Pro

position 0.3. However, Lemma 1.1 also states that m is open 

iff G()T4 is dense in T4 , a condition which is clearly 

not satisfied. This contradiction proves that G/T2 is not 

a Br(~) group. 

Remark This counterexample shows that the portion 
' 

of Proposition 31. 7 of [ 8) which refers to Br( t( ) groups 

is false. Further reference to this fact will be made in 

Chapter 3· 

i:. B ( "' ) Groups Which are not B ( t{ ) Grouns 

Several references have been made so far to B ( ~ ) 
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groups, but no example has been produced to show that a 

B( .P) group, for some class -t of Hausdorff groups, need 

not be a B ( ~ ) group. This defect will now be remedied by 

displaying such a class and such a group. 

~~ section only, -C wi~l represent the cate

gory of first countable Hausdorff groups. 

Lemma 1.8 A continuous map of a countably compact 

space into a first countable Hausdorff space is closed. 

Proof: Let f a X ~ Y be such a.map, A·a closed 

subspace of x. Then A is countably compact, and so is f(A), · 

by Theorem .3.6, Chapter XI of [4]. By the same theorem, 

a countably compact subspace of a first countab~e space is 

closed, so f(A) is closed in Y, whence f is a closed map. 

Theorem 1.12 A continuous, almost open homomorphism 

f of a countably compact topological group G into any group 

H in ~ is open. 

Proof: Let B be a closed unit neighbourhood in G., 

Then f(B) is closed, by Lemma 1.8; i.e., f(B) = ClHf(B). 

But ClHf(B) is a unit neighbourhood .in H, since f is almost 

open. Hence, it follows that f is open. 

Corollarx Every countably compact topological group 

is a B( ~) group. 

This is merely the special ca~e of Theorem 1.12, 

where f is onto. 
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Remark The above rei::ults also hold if G is taken 

to be locally countably compact, a slight gain in generality. 

To show that B ( # ) groups, as a class, are strictly 

larger than B( ({,) groups, we consider an example given by 

Pontryagin [i4; -P• 127-8]. 

Example 1.5 Let A be any uncountable set, and let 
Abelian 

G be any non-trivial,compact,Hausdorff/group. Let G* = GA, 

and define 

P = {<xa) I Xa f e for at most countably many a EA}• 

Pontryagin shows that P is countably compact, but is also 

dense in the compact Hausdorff group G*, and so is not 

compact. 

Furthermore, P is not a Br( t{) group. For each g-.: G, 

let (g) be that element Cxa) of G* such that xa = g for 

every aE A. Let H denote the "diagonal" subgroup of G* 

given by H ={Cg) a gE-GJ. It is easy to see ~hat His 

closed, and that H/\P = {Ce)). It then follows from 

Theorem 1.6{b) that P is not a Br(tl) group. 

1.!. An Open Mapping Theorem for Non-surjective Homomorphisms 

All our"discussions up to this point have, directly 

or indirectly, been concerned with surjective homomorphisms. 

This brief section gives one example of an open mapping 



theorem in which this condition is at least slightly relaxed. 

Theorem 1.1j Let G and H be locally compact groups, 

H Hausdorff, and let f i G ~ H be a continuous, almost 

open homomorphism. If f(G) is dense in H, then f is open. 

Proof. Let f 1 i G ~) f(G) be the corestriction of f. 

Now f 1 is almost open, since, for UE 'l)(G), 

Clf{G)f(U) = f(G)() ClHf(U) E 'VCf(G)), 

by Theorem 7.2, Chapter III of [4]• It then follows from 

Theorem 26.4 of [a] that f{G) is locally compact. 

Now, G is· a B('l) group, so is open. · Furthermore,f 1 

by Exercise ·6.95 of [2_7),f(G) is open in H. Hence, the 

natural injection j a f(G)H--~ His open, and so f = jf1 
is open. 



CHAPTER ·2 

THE CLOSED GRAPH THEOREM FOR TOPOLOGICAL GROUPS 

PreliminariesL. 

We seek to generali~e the classical closed graph 


theorem to appropriate classes of topological groups. 


Since the classical result depends. heavily on the fact 


that any linear mapping of a Banach space into a metrizable 


topological vector space is almost continuous, we ask for 


what classes of groups must a homom9rphism which is almost 


· continuous and has a closed graph be continuous. We also 

iJ?.vestigate how th.e B( ~) and Br(~) groups of the last 

chapter are involved in studies of this nature, and what 

other conditions on the homomorphisms may imply continuity. 

Baker (1] and Husain [a, 10] have extended the closed 

graph theorem for BC-t> groups, where ~is a category of 

Hausdorff groups which is assumed to have some additional 

permanence property. Baker imposes a condition involving 

inductive limit topologies on his groups, all of which are 

assumed to be Abelian. We shall not deal with this particular 

type of category here; for details, see (1]. 

54. 
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Husain's condition is somewhat simpler, but, since 

we depart from his terminology, we must first state a defi

nition, which is an adaptation from Isbell · [11 J P• 11;J. 

Definition If..% is a category, 71' a subcategory 

of ..%' ' and ,,1, a class of morphisms in z' then r is said 

to be right fitting with .respect ·to ;(, if YE y, X E ..X. and 

f 1 Y ~ X in { together imply X E ~ • 

Throughout this chapter, the symbol ~ will be re

served for the class of morphisms in ~. the category of 

all Hausdorff topological groups and continuous homomorphisms, 

which are almost open. Similarly, tf will denote those 

morphisms in a., the image of whose domain is dense in the 

codomain. 

Husain's condition is then that~ be right fitting 

with respect to~. We shall extend Husain's results, and 

also consider categories of groups which are right fitting 

with respect to ti, as well. 

In addition, Husain (10) requires that the codomains 

of his maps be Abelian. We weaken this condition in two 

ways. First, we may simply r e.quire that the image of the 

domain group be contained in the centre of the codomain. 

Our results in this case are strict generalizations of those 

of Husain. Second, w~ may assume that the left and right 

uniform structures on the codomain coincide. Besides 
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commutative groups, this embraces precompact and compact 

groups, as well as locally compact groups whose quotient 

group modulo th~ centre is compact [25]. In this second 

case, we must add some conditions to our maps, so these 

results extend, but do not strictly generalize, those of 

Husain. 

Closed G~aph Theorems 

We first embark on an examination of a technique 

which will appear _repeatedly in proving various versions 

of the closed graph theorem, namely the construction of 

a new topology on the codomain. 

Consider a homomorphism f a G---+ H • For UE 'lf'(H), 

let a= f(C1Gf-1 (u))' U* = uG' and ~= {u* I UEV(H)}. 

Let ?Y°be a subbasis of open neighbourhoods of eH , and form 

a topology for -the whole group by taking all translates of 

the sets in this subbasis. This topology will be denoted , 

throughout this chapter by w. 

Lemma 2.1 If f(G) ~ Cent H, then w is a group 

topology. 

Proofa We show that ~satisfies the three axioms 

(GV1) - (GV)) for a group topology given in Section 0.1. 

For (GV1), let UE ?f{H) and let VE V(H) such that 



v2 c;;u. Then (V*) 2 = (vV)
2 = V(Vv)V = V2(V) 2 , since f(G) 

commutes with every element of Hand ~~f(G). Now, 

(v)
2 = (f [c1Gr-1 cv>] >2 = f( [c1Gr-1 cv>] 2) 

~ f(Cla [r-1 (V) 2] ). s;; f(ClG [:r-1 cv2 >]) 

S f(ClG (r-1 (u)]) = 6 • 

Hence, 	 (V*) 2 ~ v2u~ uU = U*. 

As for (GV2), UE: if(H) implies u-1E V(H), and 

-1(~)-1 	 ~ = U U , since U s;;cent H, 

-1cU-1>~ , .= U by elementary calculations, 

m cu-1)* • 

Therefore, ·(u-1 )* = (U*)-1 , . and the latter is ind.eed 

in~ 

. Finally, for cav:n, let UEV{H) andaeH. Pick 

V ~ 7/(H) such that ava-1 Eu, and let Y = Vf"\ u. Then 

/\ 
= 	 YC:SCent H, 

/\ 
<:; UU = U* • 

Therefore, w is a group topology for H. 
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Lemma 2.2 If H has equal left and right uniformities, 

f(G) is dense in H, and f is 8.l.most open, then _w is a group 

topology• 

.Proofs By Theorem 0.1, H h~s a fundamental system Zl 
ot unit neighbourhoods which are fixed under all inner auto

morphisms of H. We now invoke the three axioms from Section 

0.1 again. · 

Because of the property of ?,(__mentioned above, (GVl) 

and (GV2) follow easily, in a manner similar to that of the 

previous lemma. 

To prove (GVJ), we first show that, if U ~ U.., then U* 

is also invariant under all inner automorphisms of H. . We 

begin by showing that 6 is invariant under conjugation by 
elements of f(G). 

Let t E G, tJ E 'U.. • Then 

ti= t[claf-1 Cu)] = r[c1Gr-1 (f(t)Uf(t)-1 >) 
a f[c1a<tr-1 cu>t-1] · 

=> f(t)f [c1Gr-1 cu>J r(t)-1 

=fCt>ut<t>-1
• 

Now, similarly, U2 f(t)-1Uf(t). Therefore, 

1(j 2 f(t)~f(t)-1 2 f(t) l_:r(t)-1U:r(t)} f(t)- = ~ , whence 

U= f(t)Gr(t)-1• It then follows easily that U* is invari

ant under conjugation by elements of f(G). 
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Now let a be an arbitrary element of H. Since f(g) 

is dense in H and since f is almost open, there exist y E G 

and VE '//'(G) such that a E ClGf{yV). Given U EU, pick a 

symmetric WE U such that (W*)J ~ U*. Then (Wa) f\f(yV) t I 1 

and a= x-1f(yt), where xE-W and t e.v. Hence, 

aW*a-1 	 = x-1f(yt)W*f(yt)-1x 


= x-1w*x, by our previous observations, 


~ WW*W , since Wis symmetric, 


~(W*):3 	~ U* • 

Therefore, (GV1) - (GVJ) being satisfied, w is a group 

topology. 

Lemma 2.J If w is a group topology and if f has 

closed graph, then w is a Hausdorff topology. 

Proofs Let R(f) be the graph of f, considered as 

a subset of G x H. We show that (\ {u* a UE lf(H)} = {eH}. 

Let yE /'\U*. Let U€ 'V(H), and let WE Zf(H) such 

that w is symmetric and ·w2 E..u. Then yEW*, whence y = xf(a), 

where x ~ W and a E ClGf-1 (W). Such a point a can be rep

resented as a = tz, where f( t) ~ W and z EV, V being an 

arbitrary unit neighbourhood in G. Then az·1 = t e f -1 (W), 

and so f (a) f(z )-1 E W. Since Wis symmetric, we have 

1 2?(z) E Wf(a) = wx- y ~ w y c::, Uy • 

It follows that (z,f(z)) E (V x Uy)() R(f). Since 
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U, V were arbitrary unit nei~~bourhoods, it then follows 

that (eG,y) E ClaxHR(f). Therefore, (eG,y) E R(f), since 

the latter is closed by hypoth.esis, and so y = f(eG) = eH. 

It then'· follows from Theorem 21.4 of [a] that w is a Haus

dorff topology. 

We now proceed to various forms of the closed graph 

theorem, having these properties of the w-topology in hand. 

Theorem 2.1 Let ~ be a category of Hausdorff 

groups which is right fitting with respect to ~. Let G E ~ , 

H be a Br( 1') group, and f i (G,v) ~ (H,u) be an almost 

continuous, almost open homomorphism with closed graph. 

If w is a group topology, then f '- L. 
Proofs By Lemma 2.:h {H,w) is a Hausdorff topolo

gical group, and so is a TJ topological space. We now 

apply Proposition :;1.9 of (8} by showing that w(u) =w. 

Clearly, wsu, so w~w{u)s.u, by Proposition J.1.8 of ~a). 

Hence, it remains only to show that wsw(µ). 

Let uE 'lf(H), and let VE VCH) such that v2 C:. u. 
We claim V*~C1wU• Let yEV*. Then y = sf{x), where sEV 

-1 )and x E ClGf (V • Now, for any symmetric Wt: V(H), 

-1 ) -1x E f (V ClGf .(W), whence 
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I\
sf(t) E: sf(x)W = yW ~ yW*. 

Also, sf(t)~v2 ~u, whence sf(t)E-U/\yW* :/ f• Since w 

was arbitrary, y EC1wU , so V*c;ClwU• Therefore, w(u) = w. 

Then the identity map j a (H,u) ~ (H,w) is con

tinuous and almost open. Furthermore, the map 

ga (G,v) ~ (H,w) which coincides with f pointwise is 

continuous, for g-1 cu*)2g-1 Cr[c1Gf-1 (u)]) 2 C1Gf-1 (u), 

which is a unit neighbourhood since f is almost continuous. 

Hence, g = jf~~. Therefore, (H,w)E~, since 4 is right 

fitting with respect to,,{,. But then j is open, since 

(H,u) is a Br(~) group, and it follows that w = u. But we 

have proved that g : G ~ (H,w) is in £. Therefore, 

f = g and f E,,l • 

Corollary 1 Let ,4 be as' above. Let G E 4, H be 

a Br(~) group, and f I G ~ H be an almost continuous, 

almost open homomorphism with a closed · graph. If f(G) is 

contained in Cent H, then f E ,,{ • 

Proofa By Lemma 2.1, w is a .group topology, and 

so it is Hausdorff, by Lemma 2.3~ It then follows from 

the above theoi:em that f EL. 

Corollary 2 Let~ be as above. Let H be a Br{~) 
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group, GE,(,, and assume H is Abelian. Then any homomor

phism f a G ~ H which is almost open and almost conti

nuous and has a . clo.sed graph is continuous. 

Proof a This is an immediate consequence of Corol

lary 1, for H = Cent H if H is Abelian. 

Corollary 2 is Theorem 1 of [1oJ • The following, 

however, is new. 

Corollary 3 Let ~ be as above. Let G~ ~ , H be 

a Br{~) group, and assume that H has equal uniformities. 

Let t 1 G ~ H be almost continuous and almost open, and 

have a closed graph. If f(G) is dense in H, then t E ,,/.. 

Proofa By Lemma 2.2, w is a group topology, and 

Hausdorff by Lemma 2.3. It then follows from the theorem 

that ff..,/,. 

We now consider closed graph theorems for the partic

ular case of Br( t{) groups. 

' Theorem 2.2 Let G be a ·Hausdorff group, Ha Br(LZ_) 

group. Let f a G ~ H be an almost continuous homomor

phism with closed graph. If f(G) <:;;; Cent H, then f is 

continuous. 

Proof a By Lemmas 2.1 and 2.3, w is a Hausdorff 

group topology on H. Hence, (H,w)E ()_, and the rest of 

the proof follows identically with ~heorem 2.1. 
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Corollary 1 Let G be a Hausdorff group, H an Abe

lian Br( a_) group. Then any almost continuous . homomorphism 

f a G ~H with closed graph is continuous. 

The above corollary is Theorem 2 of [10]. 

Remark The category ~ is right f~tting with res

pect to ,,l by definition. However, even the continuous, 

open homomorphic image of a Hausdorff group need not be 

Hausdorff. For example, the group R/Q with its quotient 

topology is indiscrete, although the canonical map 

R ~ R/Q is both continuous and open. 

Theorem 2.J Let G be a Hausdorff group, Ha Br(tl) 

· group with equal uniformities. Then an almost continuous, 

almost open homomorphism fa G ~-H with closed graph 

is in L if f(G) is dense in H. 

Proofs It follows from Lemmas 2.2 and 2.3 that w 

is a Hausdorff group topology, whence (H,w)E t1.. • The re

sult then follows identically with Theorem 2.1. 

By strengthening the conditions on G, we can prove 


still another closed graph theorem for Br( tl"> groups. 


We must first state the following proposition. 


Proposiiion 2.1 If G is a Hausdorff topological 

group with the Baire property, H a separable (or Lindelof) 
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topological group, then any homomorphism f a G ~ H is 

almost continuous. 

This is Proposition J2.11(b) of [a]. The proof is 

easy and is omitted. 

Theorem 2.4 Let _G be a Hausdorff group with the 

Baire property, and H a separable (or Lindelof) Br( Cl) 

group. Then a homomorphism f: G -..+H with closed graph 

is continuous if (a) f(G) ~ Cent H, or (b) H has equal uni

formities, f(G) is dense in H, and f is almost open. 

Proofa By Proposition 2.1; f is almost continuous. 

Then f is continuous by Theorem 2.2 in case (a) and 2.3 in 

case (b). 

We could now draw more corollaries of the tY.Pe· found 

in Section 32 of [a]. However, the presence of the assump

tions (a) or (b) makes such corollaries weaker than known 

results. See, for example, Section 6.R of (261. 
The foregoing considerations do enable us, however, ' 

to prove a form of the open mapping theorem for B ( Cl) 

groups. 

'rheorem 2. 5 Let G be a B( t() group with equal uni

formities, H a Hausdorff group. Then any almost continuous, 

almost open homomorphism g a G ~> H with closed graph 

is open. 



Proofs Ket K = Ker-g; by Proposition 30.2 of [a], 
K is a closed normal subgroup of G. Let n 1 G ~ G/K 

be the natural map. Now, G/K is a Br( a_) group, by Lemma 

1.4. Let f s G/K~> H be the unique map such that g = fn. 

We claim that R(f) is closed in {G/K) x HJ let F = (G/K) x H. 

Let (z ,y) E ClFR(f). Then (UxV) f'\ R(f) 'I ¢ , for every 

neighbourhood UxV of {z,y) in F. Now, z = n(t) for some 

t ~ G, so for every neighbourhood W of t in G, 

(n(W) x V)(\R(f) # p• 
Hence, there exists a E W such that (fn) (a) = g(a) EV. 

Since v,w were arbitrary, this means (WxV)nR(g) ·r ¢, 
whence (t,y)' E: ClGxHR(g) = R(g). Hence, y = g(t) = fn(t) 

= f ( z ) , and so (z , y) E R ( f) • 

Now, by Proposition 0.3, f is almost open and almost 

continuous, since g has these properties; since f is one-to

one, its inverse r-1 is def-ined and-is also almost open and 

almost continuous. Furthermore, R(f) = R(f-1 ), and so this 

set is clesed. Also, by Lemma 1 .•2, G/K has equal unifor

mities. Hence, r-1 is continuous by Theorem 2.3, and f is' 

open• It then follows from Proposition O.) that g is open. 

We now turn to the other class of maps mentioned in 

Section 1, the class It of morphisms f a G ~ H in rJ.... 

for which f(G) is dense in H. 
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Theorem 2. 6 Let 4 be a subcategory of fl_ which 

is right fitting with respect .· to Jt . Let GE ~ , ,and let 

H be a Br(~} group with equal uniformities. Then an 

almost continuous, almost open homomorphism f a G ---'1 (H,u) 

with a closed graph, such that f(G) is dense in H, is in U. 
Proof a By Lemmas 2.2 and 2.3, (H,w.) is a Hausdorff 

topological · group. Now let j a (H,u) ~ (H,w) be the 

identity map. It follows as in Theorem 2.1 that the map 

g = jf a G~ (H,w) is continuous. Furthermore, since 

w ~ u, g(G) is dense in (H,w). Hence, g E. Jt, and (H,w) E: 4. 
The fact that j is continuous and almost open follows as 

in Theorem 2.1. Hence, j is open, since (H,u) is a Br(-t'°) 

group, and so w = u. Therefore, g = f, and so f is conti

nuous and in 1J • 

Remark The above theorem subsumes the results 

analagous to corollaries 1 & 2 of Theorem 2.1. If a homo

morphism f has the properties that (1) f(G)s;;ce~t H, and 

(2) f(G) is dense in H, simultaneously, then H is Abelian,, 

for Cent H is closed [81 Proposition 23.9], and so it 

must be the whole group. Of course, an Abelian group 

has equal left and right uniformities. 



;h ~- and If- ·Right Fitting Subcategories or_tl 

To indicate the breadth of application of the main 

results of Section 2, we establish in this section that 

some important subcategories of tl_. are right fitting with 

respect to the classes of maps we have considered. 

Tpeorem 2.7 The following categories of Hausdorff 

groups are right fitting with respect to ~. 

(a) locally compact groups 

(b) locally precompact groups 

(c) .first countable groups 

(d) locally connected groups 
l .·. \ ,....,,.. ' ..... .. . ~ . .. 
;·~ ~;.: i ·c.. ~ ·.· ' ·.-~ _, 

Proofs (a) Let G be locally compact, H be Hausdorff, 

f ·a G ~ H in ,,,C_, and V a compact neighbourhood of ea• 

Then f(V) is compact, and so closed in HJ i.e., f(V) = ClHf(V). 

But the latter is a neighbourhood o~ eH' since f is almost 

open. Since the neighbourhoods of eH of the form ClHf(U)~ 

where UE:l/"'(G), are a fundamental system in 1/(H), it fol

lows that H is locally compact. 

(b) Let V be a precompact neighbourhood of eG' f 

and 	H as in {a). Then f(V) is precompact, and ClHf(V) is 
2in V(H). Let UE t/(H), and w€ Z/(H) such that w ·<:. u. 

Then . f(V) :=xw, for some finite subset X of H, whence 
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ClHf(V) S f(V)W ~ XW2 6 XU. Hence, ClHf(V) is totally 

bounded, and so precompact. Hence, H is locally precompact. 

(c) Let G be first countable, {ui} its countable 

fundamental system of unit neighbourhoods, f and H as 

before. Let V be a closed set in V(H). Then 

V 2 ClHf [f-l (V)] :Z ClHf(U j), 

for some j. But ClHf(Uj)~ V\H), since f is almost open. 

Hence, {clHf(Ui)J is a countable local base at eH' and H 

is first countable. 

(d) Let G be locally connected, V a connected unit 

neighbourhood in G, f and H as before. Then f(V) is con

nected, and so is ClHf(V), by Theorems 1.4 and 1.6, Chap

ter V of [ 4). But ClHf(V) is in lf(H), whence H is locally 

connected. 

We point out that Theorem 2.7(a) has appearea as 

Theorem 26.4 of [a]. Its proof is included for completeness. 

The above theorem enables us to state one f~rther 



result of the same type as in Section 2. 

Corollary 4 to Theorem 2.1· Let G be a first count

able group, Ha _countably compact group. If f a G ~ H 

is almost continuous and almost open, and has a closed 

graph, and if either of the following two conditions is 

satisfied: 

(a) f(G) ~ Cent HJ 

(b) f(G) is dense in H and H has equal uniformities, 

then f is continuous. 

Proof• By Corollary 1 to Theorem 1.12, H is a 

Br( I) group, where ~ is the class of all first countable, 

Hausdorff groups. By Theorem 2.?(c), -I is right fitting 

with respect to ~ • By Lemma 2.1 or 2.2, w is a group 

topology on H, so f is continuous by Theorem 2.1. 

Before moving on to the next theorem, we recall from 

Section o.8 that, for two Hausdorff groups A and B, we 

define Hom(A,B) to be the set of continuous homomorphisms 

with domain A and codomain B. This set is always non-empty; 

ff it consists of only the map whose kernel is all of A, 

we say Hom(A,B) is trivial. 

Theorem 2.8 The following categories of Hausdorff 

groups are right fitting with respect to ita 
(a) compact groups 

(b) precompact groups 

(c) Abelian groups 
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(d) 	connected groups 

(e) 	separable groups 

(f) 	groups G such that Hom(G,A) is trivial, for some 

fixed A Ea_. 

Proofs (a) is trivial, for if G is compact and 

f(G) is dense in H, then f(G) = H and H is _compact. 

(b) · Let G be precompact, f: G ~ H in ,6', H Er<._. 

Then f(G) is precompact, and so is ClHf(G), as in Theorem 

2.7(b). The latter set, however, is H. 

(e) Let G be Abelian, f and H as before. Define 
. -1 	-1 • . q I H x H ---;>H by q (a,b ) = aba b • Then q is eontinu

ous, and f(G) x f(G) ~ Ker q. Hence, 

H x H = ClHxH(f(G) x f(G)) c;: Ker q, 

whence H is Abelian. 

(d) Let G be connected1 f and H as before. Then 

f(G) is connected, and so is its closure, as in Theorem 

2.7(0). Therefore, His connected. 

(e) Let G be separable, X its countable dense sub

set, f and H as before. Then, 

H = ClHf(G) = ClHf(ClGX) <;;. ClH(ClHf(X)) = ClHf(X) • 

The reverse inclusion is trivial, so H =ClHf(X). Hence, 

f(X) is dense in H, and this set is at most countableJ 

therefore, H is separable. 
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(f) Let G~a_ such that Hom(G,A) is trivial, f and 

H as before. Let t E. Hom(H,A). Then tf E: Hom(G,A), ·whence 

tf is trivial. Thus, f(G) s;. Ker t, and it follows that 

Ker t = ClHf(G) = H. Hence, t is trivial, and H has the 

required property. 

Before proceeding ·to the next theorem, we first 

state the following result without proof. The proof may 

be found in [6J p. 62, Theorem 7.7] or [aJ Theorem 26.7]. 

Lemma 2.4 Let G be a compact, zero-dimensional 

group. Then every neighbourhood of the identity contains 

a compact open normal subgroup. The converse also holds. 

:fheorem 2.9 The following categories of Hausdorff 

groups are right fitting with respect to L(\ ,!t 1 

(a) 	 second countable groups 

(b) 	 compact, zero-dimensional, Abelian groupsJ i.e., 

Abelian profinite groups 

(c) 	 groups with equal left and right uniformities~ 

Proofs (a) Let G be second countable, HE tl.., 

f 1 G ~ H in ~ /\ Jt, {u1} the countable neighbourhood 

base for the topology of G. Then a E-H, V = ClHV E 1/"(H) 

together imply f-1 (aV) :/ ~ and contains some Uj. Then 
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a neighbourho~d base for the topology of H, whence H is 

second countable. 

(b) · Let G be compact, zero-dimensional, and Abelian, 

f and H as in (a). By Theorem 2.8, H is compact and Abelian. 

Let N be an open subgroup of G; then ClHf(N) is an open 

subgroup of H. Moreover, every unit neighbourhood in H 

contains one such, :f'or, if B (ti (H) and A E ifcH) such that 

ClHA S:. B, then it follows that :r-1 (A) E V°(G) •· Hence, f-1 (A) 

contains some open subgroup N, by Lemma 2 •. 4. Then ClH:f'(N) 

S ClHf [f-1 (A~ S ClHA C: B_. Hence, H is compact, zero-· 

dimensional and Abelian, by Lemma 2.4. 

(c) This has already been proved in Lemma 1.2. 

Remark Certain important categories of Hausdorff 

groups behave very. badly in this connection; in particular, 

totally disconnected groups and metric groups are not right 

fitting with respect to ~"ft and with respect to 11, res

pectively. As a counterexample to the first, one need only 

consider the natural injection of the rationals Q into the 

reals R. In the second case, let A be any uncountable set, 

and let (QA)d be the indicated pr~duct with its discrete 

topology. This is a metric space with the trivial metric. 

Consider the injection (QA)dn-~-~RA, where the reals have 

the usual topology. This map is clearly in ft, but RA is 

not a metric space, since it is not normal [6; Theorem 8.12.J. 



Ultrabarrelle1 GrouE.,s 

In an effort to extend the 	notion of an ultrabarrelled 

locally convex space (see [9], for example) to topological 

.groups, S~ O. Iyahen [12) has defined a g-ultrabarrelled 

group. From this, he derives an op~n mapping and closed 

graph theorem which appears to generalize Corollary 32.4 _ 

of la) and our Theorem 2.4. 

Unfortunately, Iyahen•s proof contains a flaw which 

renders his result doubtful, although no counterexample is 

yet known. In this section, we point out the nature of 

this defect and suggest one cor~ected version. 

Definit!.Qn If (G,u) is a topological group, let V 

be a u-closed symmetric subset of G for which there exists 

a sequence {vn} of .u-closed, symmetric sets such thats 

(i) vf <.; V and vi+1 ~vn, for each nJ 

(ii) 	 for any x EG and integer n, there exists an inte
-1 c uger m sueh that xVmx -	 'n • 

If, under the group topology v having {vn} as a base of 

neighbourhoods, the group G is separable, then V is said 

~o be a group ~ltrabarrel in {G,u), and {vn} is said to be 

a defining sequence for v. If (G,u) has the property that 

every group ultrabarrel is 	a neighbourhood of identity, . 

then {G,u) is said to be a 	g-ultrabarrelled group. 

http:Definit!.Qn
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Iyahen then proves that every topological group of 

second category in itself is g-ul~rabarrelled, and provides 

a counterexample for the converse. Hence, the g-ultrabar

· relled groups include the locally compact and complete 

metrizable groups. 

Iyahen claims to have proved the following a any 

closed group homomorphism (i.e., having closed graph) from 

a Hausdorff g-ultrabarrelled §pace (1i. e., group) E into 

a separable, complete metrizable topological group F is 

_continuous, and any closed group homomorphism from F onto 

E is open. 

The first statement depends on his assertion, not 

proved in (12_], that any group homomorphism from a 

g-ultrabarrelled group E into a separable group F is· almost 

continuous. It is here that the flaw mentioned above oc

curs. If one attempts to prove this statement by the 

straightforward method of taking an arbitrary symmetric 

unit neighbourhood U in F and ·a sequence_{un} of symmetric 
. 2 2unit neighbourhoods such that u1 SU and Un+l ~Un for 

each n, and claiming that C1Ef-1 (u) is a group ultrabarrel 

with {c1Ef-1{un>} as defining sequence, one quickly dis

covers that condition (Ii) for a group ultrabarrel is evi

dently not satisfied without some further hypothesis on 

the groups. For example, if E is Abelian, condition (ii) 

is trivial, and ~1Ef-1 (u)- is indeed a ·group ultrabarrel 



and so a unit neighbourhood. As another a~ternative, we 

prove the result for the case where F is separable and _ 

has equal left and right unifo·rmities. 

Lemma 2.5 Every group homomorphism from a Haus

dorff g-ultrabarrelled group G into a separable group 

(H,u) with equal uniformities is almost continuous. 

Proof a Let U be a symmetric unit neighbourhood 

in H which is fixed under the inner automorphisms of H. 

Since the set of all such neighbourhoods is fundamental 

in V(H), we can· select a sequence of neighbourhoods 

{ un} having this property such that uf c::u and U~+l c,; Un 

for each n. Let v be the group topology on H having {un} 

as its unit neighbourhood basis. Since (H, u) is sep_arable, 

so is (H,v), since vs u. Clearly, (H,v) is first countable, 

and so it is second countable. Hence, every subspace of 

(H,v) is separable, by Theorem 7.3, Chapter VIII of [4]. 
In particular, f(G) is separable in the relative topology 

of (H,v). 
' 
We now show that Claf-

1 
(U) is a group ultrabarrel 

on G with {Claf-1 (un>} as defining sequence. First, all 

Claf-1 (un) ·are closed and symmetric, since the Un have 
2this property. Secondly, (ClG~-1 <un))~ ~ClG f-1 cun) 

-1 ( 2) -1 ( )~ ClGf Un <;;; ClGf un-1 • Finally, since the Un 

are fixed under the inner automorphisms of H, for any 
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integer n and a€ G, we have 

1 1 1 1a[c1Gf-1 (un>J a- = C1Ga[ <un)a- s c1Gr-1 (r(a)Unf(a)- ] 

=ClGf-l (Un)• 

Similarly, a-1 [Claf-1 (un)]a ~ Claf-1 (un>• Hence, 

-1Therefore, Claf (U) is 

a group ultrabarrel on Gs moreover, {claf-1 (un~is a basis 

for a group topology, say w, on G. 

Since (f(G) ,v) is separable·, there is a countable 

set XSG such that f(X) is v-dense in f(G)J that is, 

f(G) = f(X)[Umf\:f'(G~, for each integer m. Taking inverse 

images of both sides, we obtain 

G = r-1 tt<a>) = r-1 [rcx> cumf'\ f(G) )j 
= (X)(Ker f)(f-1 (um)) 

6 Xf-1 (um) 2 , since Ker fS:f-1 (um) for all m, 

1s xr- Cum-l ) • 

Hence, G= x[c1,f-1 <um~' for any m, and it follows that 

(G,w) is separable. Since G is a g-ultrabarrelled group, 

it follows that Claf-1{U)E V-(G), and so f is almost 

continuous. 

The proof of the following is along -lines-.dual to 

the above. 
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Lemma 2.6 Every hom~IJlorphism from a separable group 

(H,u) with equal uniformities onto a Hausdorff·g-ultrabar

relled group G is almost open. 

With these results in hand, we can now state the 

following modified version of Iyahen's result. 

Theorem 2.10 Let G be a Hausdorff g-ultrabarrelled 

group, H a separable locally compact or complete metrizable 

group with equal uniformities. Then any homomQrphism 

f 1 G --7'H with a closed graph is continuous, and any 

homomorphism g 1 H ~) G with closed graph is open. 

Pr.oof 1 This follows at once from the two lemmas 

above, and from (26J P• 213, R(a) and R(c)]. 

Finally, we · can apply-our owri earlier results to 

obtaina 

Theorem 2.11 Let G be a Hausdorff g-ultrabarrelled 

group, Ha separable Br(a_) group with equal uniformities. · 

If f 1 G ___,. H is almost open and has a closed graph, and 

if f(G) is dense in H, then f is continuous. 

Proofa By Lemma· 2.5, f is almost continuous. 

The result then follows from Theorem 2.; • 

. 
Theorem 2.12 Let G be a B( a> group with equal 

uniformities, H a Hausdorff g-ultrabarrelled group.



78. 

Then any homomorphism f a G---> H with a closed graph 

is open. 

Proofs By Lemma 2.6, f is almost open, and the 

result follows from Theorem 2.5. 



CHAPTER J 

THE OPEN MAPPING AND CLOSED GRAPH THEOREM 


FOR EMBEDDABLE TOPOLOGICAL SEMIGROUPS 


1. Introduction to Embeddability 

In this section, we consider the properties of a 

particular class · of Hausdorff topological semigroups, 

namely those which can be embedded as an open subspace of 

a topological group. The question of when such an embed

ding exists has been investigated by a number of authorst 

Gelbaum, Kalisch and Olmste~ [5) , Christoph [J] , and 

Rothman [1a). The last-named author gives a concise 

statement of the relevant elementary facts which will 

be quoted verbatim. 

·"An outline of the embedding of a commutative semi

group with .cancellation in its group of quotients follows. 

Let S be such a semigroupJ then the set S x S ·is again · 

such a semigroup when tile· binary operation is defined 

coordinatewise. In S x s, define (a,b)R(c,d) , where 

(a,b), (c,d) ES x s, iff ad = be. It follows easily that 

R is a congruence relation on S x S (the symbol R will be 

used to denote this relation). Let G be the collection 

79. 
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of equivalence classes modulo .RJ then, G is a group and is 

called the group generated bys. Let tra S x · s ___.., G be 

the natural mapping which assigns to each (a,b)ES x S 

the equivalence class in G containing the element (a,b) (t). 

It is easy to see that 1r is a homomorphism. For b, any 

element of s, define P a S ~ G by P(x) · = 11"(xb,b). 

It follows that P is a well defined isomorphism of S into 

G and is independent of the choice of b. The function P 

is the embedding of S into the group generated bys•••• 

"When S is a commutative (topological) semigroup 

with cancellation, let S x S have the product topology, 

and the group generated by S the quotient topologyJ that 

is, O is open in G iff 7r-1 (o) is open in S x s. The semi

group S is said to be embeddable in G iff G is a Hausdorff 

topological group and Pis a homeomorphism onto P(S), with 

the relative topology induced by G." 

Several other concepts introduced by Rothman merit 

mention here. First, he obtains an internal characteriza-' 

tion for a semigroup to be embeddable in a topological 

group in the manner described above. 

Definition A topological semigroup S is said to 

have Property P. if x,y ES and V an open set containing x 

together imply there is an open set W , · with y E W, such that 

xyE. ·f\\vy• a y• E. w} and yxEf'\{y'V a y• E w}. · 
{*) The unit of G is eiearly the image under "It' of 

the diagonal of S x s. 

http:modulo.RJ
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His fundamental result is the followinga 

Theorem J.1 Let S be a commutative topological 

semigroup with cancellation. A necessary and sufficient 

condition that S be embeddable as ari open subset of G, the 

group generated by s, is that S have Property F. 

The proof is complicated, involving several lemmas, 

and will not be reproduced here. For details, see ·(18}. 
Finally, the open mapping and closed graph theorem 

for complete met~ic, separable, commutative semigroups with 

cancellation and a further convergence property was consi

dered in L5J Theorem 17), and Rothman has also proved a 

theorem in this direction. Because he constructs a map 

which is of great importance in what follows, we state and 

prove the following result, which is Theorem 4.1 of [18]1 

Theorem 3.2 Let S,T be commutative, cancellative 

topological semigroups, embeddable in the topological 

groups G,H, respectively. Assume that S is locally compact 

(locally complete metrizable) and separable, and that T 

is a second Qategory sub'set of H, a topological (metric) 

group. If t 1 S ~> T is a continuous homomorphism, then 

f is open. 

Proofa Let 11""1 be the natural map of S x S onto 

G, the group generated by s, and let 1r2 a T x T ~ H 
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. ( ) -1 ( )be defined by Tr2 tl, t2 = ttt2 • Define £ x f from 

S x S to T x T in the natural way, and consider the 

diagram 

hG----.> H 

1l'1l h2 
sxs ·fxf>T x T 

in which h(x) = tr2(f x f)7ri1 Cx). This is, of course, 

an abuse of notation, in that 1r' i1{x) is .an equivalence 

class of the elements of S x s. However, it is easy to 

check that the choice of a representative from within this 

class is immaterial, and that h is indeed well-defined. 

It then follows that h is a continuous homomorphism, and 

h(G) contains T, a second category subset of H. By Theo

rems 5 and 6 of (13], his open. But Sis open in G, and 

it follows that f is also open. 

Notation We pause to make certain notational con-' 

ventions. Throughout this chapter, the letters S and T will 

denote commutative, cancellative topological semigroups 

which are embeddable in the Hausdorff topological groups 

G and H, respectively. The extension of the semigroup . 

homomorphism f 1 S ___,. T constructed above will be denoted 

as h a G ~ H. These assumptions underlie all the results 



which follow, unless the contrary is stated, and no further 

explicit mention of them will be made. 

!.!. B-Completeness and Preliminary Results 

Definition A topological semigroup S will be called 

B-complete if every continuous and almost open ·homomorphism

from S onto a Hausdorff topological semigroup T is open, 

Br-complete if every such map which is also one-to-one is 

open. 

The following result shows that the property of 

B-completeness is possessed by a wide class of topological 

semigroups, namely those which are locally compact. 

Theorem 3.3 Let X be a loca·lly compact topological 

space, Ya Hausdorff space, fa X -~> Y a continuous, 

almost open mapping. Then f is open. 

Proof 1 Let x Ex, N be a compact neighbourhood of x. 

Then f(N) is compact, and so is closed in Y. Then 

f(N) =Clyf(N), but the latter is a neighbourhood of f(x), 

since f is almost open. Hence, f is open. 

The fact that a locally compact ~emigroup is B-complete 

then follows, as a special case. 

Another class of semigroups, those which are locally 

complete metrizable, are also B-complete. To show this, 
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however, we must first establish some results of a technical 

nature. 

We first show that certain useful properties of the 

homomorphism f a S ~ T are inherited by its extension 

h a G ---) H. 

Lemma 3.1 Let f ·• S ~·T be a homomorphism. 

If f is (a) continuous, (b) open, (c) almost continuous, 

(d) almost open, (e) one-to-one, (f) onto, or (g) endowed 

with the closed graph property, then h 1 G ___,. H has 

the same property. 

Proofa (a) This is embodi~d in the proof of 

Theorem 3.2. 

(b) Let V ~ 'lf (G) J then, for any s 0 E S, we have 

(s Vf\S) E 7/(SJs ), whence f(s V"S) ·1s open in T and 
0 0 0 

contains f(s 0 ). Now, f(s 0 Vl'\S) is open in H, since T is, 

and h(V) 2 f(s )-
1f(s Vf\S). Hence, h(V) E tf(H), and it

0 0 

follows that h is open. 

(c) Let x E- G, BE V(HJ h(x)). Then h(x) = h(s1s21 ) 

= f(s )f(s2)-1 , where s 1 , s 2 Es. Hence, there are neigh1 

bourhoods c1 , c2 of h(s1 ), h(s2), respectively, such that 
-1c1c2 6B. Then 

-1 -1 ( -1 ) -1 ( } -1 ( } -1ClGh (B) 2 ClGh 2 ClGhc1c2 c1 h c2 

;;2 Clcf•1 Cc1 )(C1Gh-l(c~))-1 



as. 


Since f is almo~t continuous, Clsf-1 (Cir\T) is a neigh

bourhood of si ins, for . i = 1, 2, and so a neighbour

hood of s1 in G. Henc~, C1Gh-1 (B) . contains a neigh

bourhood of x = s1s21, ~nd so h.is almost continuous. 

(The converse is also true, for x.::s, VE. V(TJ f(x)) implies 
1 1Clsf- (v) = Sf'\Clah- (V)E 7/(SJ x).) 

(d) Let VE 7((G). Then ClHh(V) = qlHh(a".""1aV), . 

for any a Es, whence ClHh(V) = h(a-1 )ClHh(aV), and this 

in turn contains h(a-1 )ClTf(aVl\S). But ClTf(aVI" S) is 

in V(TJ f{a)), whence h(a-1 )ClTf{aV() S) is in 'l((H). 

Furthermore, h(a-1 )C1Tf(aVl"\S) ~ClHh(V), so his almost 

open. 

( e) Let f be one-to-one, and let x, y E G. Then 

h(s1a2) = f(s1a2) = f(a1s2 ) =h(a1s 2)• Since f is 

one-to-one, = , whence s21 = a21 , and x = Y•s1a2 a1s2 s1 a1

Hence, h is one-to-one. 

(f) . This is trivial, for s, T generate G, H 

algebraically. 
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(g) Let f have the closed graph property, and let 

R(f) and R(h) be the graphs of f and h, respectively. Then 

R(f)ES x T, R{h)SG x H, and R{f)SR(h). 

Let {a1y) E ClGxHR(h). Then,_ :for any U x V in 

· 'Z/(G x H), (au x yV) ()R(h) :/ ¢ • Now let s E SJ then
0 

(s U x h(s a-1 )yV)/"\ R(h) 'I jJ , for (s,f(s)) E (au x yV) im
0 0 

Since Sis open in a,· we can assume that · u = s;1B, 

, where BE. V-(s; s )J similarly, we may assume that
0 

V = f(s
0 
)-

1c, where CE. Y(T; f(s 0 )). Then, for any such 

B and c, 
(s0 s~1B x h(s a-1 )yf(s )-1C)rtR(h) :/ p,

0 0 

whence (B x h(a_1.)ye )AR( f) :/ <f ~ · Then for each B x C 

in 1/(SJ s0 ) _ x 1((TJ f(s 0 )), there exists sBxC EB such 
-1

that f(sBxc> E. h(a) yC. This yields a net 

{3 = l SBxC I B x c ~ vcs. so) x ?/(TJ f(so))}. 

where f(sBxC)E: h(a)-1yc. .Since r'\ t[(TJ f(s )) =tf(s )},0 0 

. . 1 
we have f('(3) converging to h(a)- yf(s0). Clearly, --8 

converges to s
0 

, and so f(s
0 

) =h(a) -1yf(s
0 
), since R(f) 



is closed. Then y = ·h(a), and so R(h) is closed. 

Remarks (1) Since all our semigroups are pre

sumed commutative, the associated groups are also .commuta

tive , .,,.or.L , if s1 , Es , th· en -1 -- -1 -- ,s2 s1 s2s1 s1 s1 s 2 s 2 

whence 

it follows that G is Abelian. 

(2) A~ for topological properties, we will wish. 

to consider those of a certain...natureJ namely, if S is 

a topological semigroup with property (P) and if S is 

embeddable in a topological group G, then G also has pro

perty (P). 

It suffices that the category of topological semi

groups with property (P) be right fitting with respect to 

continuous, open mappings and closed with respect to finite 

products. Many su.ch properties are of a "local" natures 

first countability, local metrizability, . local connected

ness, local compactness. Others include compactness, 

connectedness, second countability, . and separability. 

()) There is some inconsistency in the use of the 

term "topological invariant" with respect to complete 

metric spaces. Some authors, [7J P• 81) and [211 P• .140), 
cite counterexamples to show that a homeomorphism does 

not preserve the complete metric pro.Party. Others .[20; . p. J?J 
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and (4J P• 29.51, for example, maintain that this property 

is indeed a topological invariant• The latter author is 

more explicitJ we paraphrase his Theorem 2.5(1), Chapter XIVa 

if X is a complete metric space, Y ~ topological space, 

and there is a homeomorphism from X onto Y, then there is 

a metric on Y which generates the topology of Y and with 

respect to which Y is a complete metric space. Fortunately, 

this sense is sufficient for our purposes, and it is in 

this sense we shall use the term. 

(4) Pursuant to Remark (2), it is evidently not 

the case that B-completeness is transmitted from a semi

group to its associated group, i~ general. This will 

necessitate the addition of certain assumptions to 

subsequent theorems. The best we can state in this direc

tion is the following, whose proof is a trivial consequence 

of Lemma 3.1. 

Lemma 3.2 Let S be a B-complete semigroup, T a 

Hausdorff semigroup, f a S ~> T a continuous, almost 

open homomorphism. Then the induced map h a G ~> H is 

open. 

Having established· these preliminaries, we proceed 

to prove that another large class of semigroups has the 

property of B-completeness. 
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Theorem 3.4 A locallj complete metrizable semi

group is B-complete. 

Proofs Let S be such a semigroup, subject to the 

conventions outlined in Section 3.1. Since S is embeddable 

in its associated group G, it is open therein. Then, 

for any s
0 

E·S and any complete metrizable neighbourhood 

V in t((SJ s
0 
), s~lv is a complete metrizable unit 

neighbourhood in G, since translations are homeomorphisms 

[181 Lemma 3.1} and complete metrizability is a topological 

invariant in the sense described in Remark (3) above. 

Then G is a locally comp~ete metrizable group, and so a 

B(tl) group, by Theorem 1.2. 

Let f a S ~) T be a continuous, almost open homo

morphism. It follows from Lemma 3.1 that the induced map 

h 1 G ~ H is continuous, almost open, and onto. Hence, 

h is open. Since s, T are open in G, H, respectively, 

and b\s = f, it follows that f is open, and that S is 

B-complete. 

In a manner analagous to groups, we may define a 

condition weaker than · that of B-completeness for semi

groups. If 4 is a category of (embeddable!) topological 

semigroups, we say that S is a B(,t) or Br(~) semigroup 

if every continuous and almost open homomorphism from S 

onto a semigroup in 4 is open. The following result 

illustrates this idea. 
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Theorem j.S Let ~ 1 be t~e category of first 

countable semigroups. Then every locally countably 

compact, and hence every countably compact, semigroup is 

a B(4 1 > semigroup. 

Proof a Let S be a locally countably compact, T 

a first countable semigroup, f I ·s ~> T a cont_inuous, 

almost open homomorphism. Let x ( s, and let V be a 

countably compact neighbourhood of x. Then f (V) is a 

countably compact subset of T, and so it is closed in T~ 

by Theorem 3.6, Chapter XI of [4]. · But ClTf(V)E if(TJ f(x)), 

since f is almost open. Then f(V)E 'Z/"(TJ f(x)), and so f 

is open. 

The above result is true, of course, even without 

our embeddability assumptions. 

1!,. Open Mapning and Closed Graph Theorems 

We now prove a result analagous to Theorem 1 of [10], 

which we will apply in a variety of . situations. Let P be 

a property which is transmitted from an embeddable topolo

gical semigroup to its associated topological group. Let 

~ be the category of Hausdorff topological semigroups with 

property P, and 1* that of topological groups with the 

same property. Further assume that ....(, * is right fitting 
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with respect to continuous, almost open homomorphisms • 


. 

Theorem J.6 Let SE-t and T be a Br(~) semigroup. 

Then if H is a Br(~*) group and f a S ~ T is almost 

continuous, almost open, and has a closed graph, then .f 

is continuous. 

Proof• By Lemma 3.1, the extension of f, the homo

morphism h • G ___,.His also almost continuous, almost 

open, and has closed graph. By the assumptions above, 

GE~ *. Then, by Theorem 1 of [1o], h is continuous, and 

so is its restriction hls = r. 

Theorem J.7 Let S be. any Hausdorff semigroup, 

T a Br-complete semigroup. If H is a Br(a_) group and if 

ta S ~Tis almost continuous and has closed graph,· 

then f is continuous. 

Proof a By Lemma 3.1, h is almost continuous and 

its graph is closed. Then h is continuous, by Theorem· 2 

of [10], and so f is continuous. 

Remark It has already been demonstrated by means 

of a counterexample (Example 1.4) that the portion of 

Proposition 31.7 of [81 which pertains to Br(~) groups 

is false. Theorems 32.8 and J2.9, which depend on this 

proposition, must therefore be amended. It suffices to 

make the slightly stronger assumption that E be a B ( t{) · 

group; this category is closed under quotients, and the 
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arguments of [a] become valid. 

Theorem J.8 Let S be a B-complete semigroup, T any 

Hausdorff semigroup. If f a S ~> T is almost open and 

has a closed graph, and if G is a B( ~) group, then f is 

open. 

Proofs Since H is Hausdorff and h 1 G ~) H is 

almost open and has a closed graph, it follows from the 

amended version of Theorem .32.a of [8] that his open. 

Therefore, f is open. 

Before proceeding to open mapping and closed graph 

theorems of a more specialized ·type, we first· establish 

some further preliminary results. 

Lemma j.J If a topological space X has the proper

ty that every point has a neighbourhood which is a Baire 

space, then X is a Baire space. 

·Proofs Suppose the contrary. Then, for some 

countable closed covering lAn a n E.1!} of X, Intx~ = ¢ , 
for all n. Let x

0 
E x, and let B be. a neighbourhood of x

0 

which is a Baire space. Then {~f"\B 1 n £!!)is a closed 

cover for B of the required cardinality. However, 

IntB (An(\ B) =BI'\ Intx~ = '/J , for all n. This contra

dicts the assumption that B is a Baire space. Hence, X is 

a Baire space. 



The above is found in (4], Chapter XI, Exercise 10.4. 

The proof is included for completeness. From this, we ob

tain the following very easily. 

Lemma J.4 If S is a Baire semigroup, then the asso

ciated group G is also endowed with the Baire property. 

Proo.fa Since S is open in G, for any x E G, s ~ S, 

we see that xs-1s is a neighbourhood of x which is a Baire 

space, since Baire spaces are invariant under continuous, 

open surjections. By Lemma 3.3, G is a Baire space. 

Proposition 3.1 Any homomorphism f of a separable 

topological semigroup S onto a Baire semigroup T is almost 

open. 

Proofa Since separability is preserved under finite 

products and continuous images, .G is separable. · By Lemma 3.4, · 

His a Baire group. Then, by Proposition J2.11 of [8], 
his almost open. Now, if BE 'l/(SJ x

0 
), then ClTf(B) 

= TA ClHf(B) E V(TJ f(x0 )). Hence, f is almost · open. 

Proposition 3.2 Every homomorphism f of a Lindelof 

topological semigroup S onto a ·Baire semigr~up Tis almost 

open. 

J>roofa Let B€ Y(SJ x0 ). Then x~1B E 'lf (G), and 

so s = U{sf\sx~1B a s~s}. Since sis a Lindefof space, 

there exists a countable subset {s1 a i~li} of S such that 
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s = U { sn six~1B a i 'li} . Hence, T = U{rCsf"\ six~1B) a 'i Eli} . 

s=U{Tf\h(s1x~1B) 1 iEli~· Since the reverse inclusion is 

trivial, equality holds. Because T has the Baire property, 

· ClT(Tf'\ h(snx~1B)) has non-void interior, for some n ~1i· 

contains an open set. Therefore, f is almost open. 

Proposition 3.3 Let S be a Baire semigroup, T a 

separable semigroup, and fa S ___,._T a _homomorphism. Then 

f is almost continuous. 

J>roof 1 By Lemma ;.4, G is a Baire group; H is 

separable since T has this property. Hence, ha G ~H 

is almost continuous, by Proposition 2.1. Now, if 

BE V(T; f(x0 )), then c15r-1 (B) = Sl1C1Gh-1 (B), and the 

latter _is i~ 7/(ss x ). Therefore, f is almost continuous.
0 

Proposition J.4 Every homomorphism f of a Baire 

semigroup S into a Lindelof s~migroup T is almost continu

ous. 

Proofa Let a~ s, BE: if (T J f(a)). Then f(a)-1B E- V(H). 

Let VE V(H) such that v-1v~f(a)-1B. · Since T is Lindelof, 

it follows that ClTf(S) also has this propertyJ now, 

ClTf(S) = Tf"\ClHf(S) 

= Tf'\ f\{f(S)W a WE. 7f (H)} 



= n{r cs >w('\ T • we. VeH>} • 
In particular, ClTf(S) ~ f{S)V()T. Since ClTf(S) is Lin

delof, it follows that 

ClTf( S ) C:. U { f ( s i) Vf'\ T a i E !i1 , 
for some eountable subset {si} of s. 

Then s ~U{f-1 [fCsi)Vf\T1 a iEN}, and it fol

lows from the fact that S has the Baire property that, for 

some n EN_, 

Int5c18r-1 (r<sn)Vf\ T) :/ ¢ . 
Hen.~e, there exists p E. S such that 

1
Clsf- (r<sn)Vf\ T] E 'l((SJ p) ' 

whence there is some open UE ?f"(G) such that 

us; p-1c15r-1[r<sn)VAT]. 

1 1Then u ~ (c15r- (r<sn)V('\T]>-
1 Cc15r- [r<sn)Vf"\T]) 

s c15[cr-1 [rCsn)Vf'\ T] )-1 cr-1 
[f(sn)Vr\ T1 >] 

s;Clah-l (Cf(sn)V/'\T)-l (f(sn)VAT)1 

S:Clah-l (V-1V) S Clah-l (f(a)-lB]. 

Now, (au(\ s) ~ 1/'"(S; a), and 

. aU(\S c: (aC1Gh-1 (rCa)-1B])f\S . 

s;. (ClGh-1 [ f(a) f {a)-1B)) (\ s 



This shows that f is almost continuous at the point a. 

Since this point was chosen arbitrarily, f is almost 

continuous. 

We now turn to some versions of the open mapping 

theorem. 

Corollary 3.1 Let s be a separable (or Lindelof) 

B-oomplete semigroup, T a Baire semigroup~ Then any 

continuous homomorphism f a S ---=>) T is open. 

Proofs By Propositions J.1 and .;.2, such a homo

morphism is almost open, and so is . open, since Sis 

B-complete. 

Corollary J.2 Let s be ·separable (or Lindelof) and 

locally complete metrizable, T a Baire semigroup. Then 

any continuous homomorphism f a S ......:.,.) T is open. 

Proofs This is a consequence of Corollary .;.1, 

since every locally complete metrizable semigroup is 

B-oomplete, by Theorem .;.4. 

Corollary 3.3 Let S be a separable (or Lindelof), 

l~cally complete metrizable semigroup, T locally complete 

metrizable. Then any continuous f 1 S ~> T is open. 

Proof: Since a complete metrizable space is a 

Baire space, by Theorem 0.2, T is locally a Baire space, 

and so is itself a Baire space, by Lemma 3.3. The result 



then follows from Corollary J.2. 


Corollary J.4 Let S be a locally compact, second 

countable semigroup, T a Baire semigroup. Then any con

tinuous. homomorphism f a S ----=>)T is open. 

Proofa Every second countable space is Lindelof J 

hence, f is almost open, by Proposition 3.2. Then f is 

open, since every locally compact semigroup is B-complet~, 

by Theorem 3.3. 

Corollary j.5_ Let Sand T be locally compact semi

groups, with S second countable. Then any homomorphism 

f 1 S ~> T which is continuous is also open. 

Proof: A locally compact space is a Baire space, 

by Theorem 0.2. This result then follows from Corollary 3.4. 

Corollary 3.6 Let S be ·a se.parable (or Lindelof) 

B-complete semigroup, T a locally compact Hausdorff semi

group. Then any continuous homomorphism f 1 S ~> T is 

open. 

Proofa This follows at once from Corollary J.1, . 

since T is locally compact and hence Baire. 

Corollary 3.7 Let S be a separable (or Lindelof), 

locally complete metrizable semigroup, T a locally compact 

Hausdorff semigroup. Then any continuous homomorphism 

t 1 S ~> T is open. 
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Proofs This follows at once from Corollary J.6 

and Theorem J.4. 

Corollary 3.8 Let S be a Baire semigroup, T a sep

arable (or Lindelof) semigroup such that H is a Br( a) group. 

If f s S ~Tis a homomorphism with closed graph, then 

f is continuous. 

Proofa Since S is a Baire space, so 
- . 

is G, and H 
-

is 
-

separable since T has that .property. Then h a G --7' H is 

almost continuous, by Propositions 3·3 and 3.4. Then, by 

Theorem J.?, h is continuous, and ~o f is continuous. 

Corollary 3.9 Let S be a Baire semigroup, T a sep

arable (or Lindelof), locally complete metric semigroup. 

Then any homomorphism f s S ~ T with a closed graph is 

continuous. 

Proof a Since T is locally complete metric, H has 

this property, and so is a B(t:J..) group, by Theorem 1.2. 

The result then follows from Corollary 3-.a. 

Corollary ;.10 Let s and T be locally complete 

metrizable semigroups, with T separable (or Lindelof). 

Then any homomorphism f s S ___, T with closed graph is 

continuous. 

Proof: A locally complete metrizable ~pace has the 

Baire property. Hence, this follows from Corollary 3.9. 



.· Corollary 3.11 Let S be a Baire semigroup, T a 

locally compact, second countable semigroup. Then any homo

morphism. f a S ~ T with a closed graph is continuous. 

Proof' a Since T is locally compact, so is H, whence 

H is a B(Cl ) group. Furthermore, every secon.d countable 

space is separable. It then follows from Corollary 3.8 

that f is continuous. 

Corollary J.12 Let S be a locally compact semi

.group, T locally compact and second countable. Then any 

homomorphism f =· S ~ T with a closed graph is· continuous. 

Corollary 3.1; Let S be a locally compact semi

group, T a separable semigroup such that H is a Br( fl.. ) 

·group. Then any homomorphism f a S --+ T with closed 

graph is continuous. 

Proofs of Corollaries J.12 and 3.131 These 

results follow from Corollaries J.11 and J.8, respectively, 

since every locally compact space is a Baire space. 

Remark These results have essentially followed 

the pattern of Section J2 of (a]. However, our results 

gain nothing· in generality by proceeding to consider the 

compact case, for a compact, cancellative topological 

semigroup is a topological group [24). 
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