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INTRODUCTION

Our study ﬁas its origins in one of the most funda-
mental results of functional analysis, the Open Mapping and
Closed Graph Theorem of Banach. Over the years, there have
been many efforts to generalize this theorem for various
classes of topological vector spaces and for topological
groups. o

This research has taken at least two distinct but
supplementary lines. First and more ob#iously, broader
classes of spaces have been sought for which a theorem of
this type holds. Second, given a class of spaces in which
an open mapping theorem is assumed to be true, what infor-
mation does this yield about the spaces concerned? In par;
ticular, what does this assumption imply about the existence
of a closed graph theorem in this class?

One fruitful observation in this comnection is that
every linear mapping of a metrizable topological vector
space onto a Banach space is almost open; this is an impor-
tant step in the proof of the classical Open Mapping Theorem.
Presumably, then, by assuming the mapping to be almost open
and continuous, one can obtain more general forms of the
open mapping theorem and possibly of the closed graph theorem.

This was the avenue first explored by Ptak [15, 16],
who defined a locally convex topological vector space E to

1.



2.

be B-complete if every continuous and almost open linear
map of E onto a Hausdorff locally convex space F is open,
and B ~complete if every such mapping which is also one-to-one
is open. This work has been pursued further by Husain [9].
Baker [1], and A.P. and W. Robertson [1i]. A comprehensive
bibliography of papers in this field can be found in [9].

There is also a "classical" open mapping theorem
for topological groups, which states that a continuous homo-
morphism from a locally compact, ¢ -compact topological group
onto a locally compact, Hausdorff group is open le; Theoremn 12].
Efforts have also been made to extend this result, principal
among which is the paper of Pettis LlB], in which he strives
to reduce the restrictions on the groups by placing additional
ones on the mappings.

Extending Ptak®s idea, Husain [8] has defined a B(%)
groupt if ¥ is a class of Hausdorff topological groups,
G is said to be a B(#) group if every continuous and almost
open homomorphism from G onto a group from % is open, a
Br(}ﬁY ) group if every one=-to-one homomorphism with these pro-
perties is open. The symbol & is reserved for the class of
all Hausdorff topological groups. All these classes of groups
figure prominently in what follows.

Chapter 0 contains those definitions and results from
topology and analysis which are fundamental to later chap-

ters. Included are a discussion of uniform spaces and the

statement and proof of the classical Open Mapping and Closed
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Graph Theorem for Banach spaces.

Chapter 1 concerns itself primarily with B( 4 ) and
Br(cl) groups, their internal properties’and perhanence
properties as a subcategory of all topological groups.

Husain [8: Theorem Bl.i] has shown that every complete me=-
trizable group is a B(A) groups we show that locally com-
plete metrizable groups also have this property. L.J. Sui-
ley [22] has established a criterion relating the presence
of the B(Q) property on an Abelian group with its presence
on the completions we extend this criterion to all comple=-
table groups. A condition on the group topologies of G
equivalent to the B(A) property is then given.

We explore the permanence properties of the categories
of B(Z) and Br(Q) groups, establishing that both categories
are closed under retracts and open central subgroups, and
supplying counterexamples for varioﬁs other possible closure
properties. An example of a B(¢ ) group which is not a B(AQ)
group is also produced, for the case where 15 is the category
of first countable, Hausdorff groups.

In Chapter 2, we consider closed graph theorems in
which 3r(€ﬁ groups appear as codomains of the homomorphisms,
where § is a category of Hausdorff groups having an addi-
tional permanence property. Investigations of this type
have been carried on by Baker Ll] and Husain [8, 1Q].

Bak;ar's permanence p.‘operty for f is somewhat intri-
cate, involving inductive limit ‘opologies; moreover, he con-

cerns himself entirely with Abelian groupse This line will
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not be pursued in the sequel. For details, see [1].

Husain®s assumption on § is that if G is a group
inf and £: G6—>H is a continuous, almost open
homomorphism into a Hausdorff group, then H is in ‘ﬁ.

We retain Husain®s assumption on ‘é » using the ter-
minology, after Isbell [11], that ‘ﬂ is right fitting with
respect to continuocus, almost open homomorphisms. We re-
place Husain®s assumption [10] that the codomain of the
homomorphism be Abelian with the requirement either that
the range of *l:'ne‘ homomorphism lie in the centre of the co=-
domain or else that the codomain have equal left and right
'uniform structures.s We also prove a closed graph theorem
of this type, where % is right fitting with respect to
homomorphisms whose range is dense in the codomain. A list
of important subcategories of Hausdorff groups having these
right fitting properties is also developed.

In addition, we discuss an extension of the ultra-
barrelled property to groups, introduced by S.0. Iyahen [12].
We note a flaw in Iyahen®s work, and prove a corrected ver-
sion of his results, as well as certain extensions,

In Chapter 3, we consider topological semigroups
with the property of being embeddable as 2an open subset in
a topological group. This class of semigroups has been
investigated by Rothman (_18], who developed an internal
characteriiation for them. After defining a property for

semigroups analagous to the B({ ) property, we proceed



to prove several versions of the open mapping and closed

graph theorem for this class of semigroupse.

Se



CHAPTER 0
PRELIMINARIES

1. Topological semigroups, groups, and vecltor spaces

A topological group G is a group endowed with a to-
pology such that the multiplication map m:: GXG—>G
given by (a,b) > ab and the inversionmap i : G —> G

1 are continuous. Equivalently, G is a

given by a t—> a”
topological group iff themap t : G x G —> G given by
(2,b) > ab™! is continuous.

A topological semigroup S is a semigroup with a to-
pology such that the multiplication is a continuous map
of S xS into S. | |

A topological vector space E is a vector space with
underlying field K, either the reals or the complex numbers,
with a topology such that the addition is a continuous map
from Ex E to E, and the scalar multiplication is a con=-
tinuous map from K x E %o E.

In practice, we shall frequently omit the adjective

"topological” from the above phrases, if the noun is other-

vilse qualified. For instance, a "locally ccmpact group"

6
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will be understood to be a topological group whose topology
makes it a locally compact topological space.

In a topological semigroup S, the symbol %(S; x)
will denote the set of all subsets B of S such that x€U
and U<B, for some set U which is open in S. The collec=-"
tion ¥(S; x) will be known as the neighbourhood filter of
X in S. The same notation will be used in groups and in
vector spaces. The unit or identity element of a group G
will be denoted by eq or simply by e, if no confusion is
likely to arise. We shall also denote ¥1(G; ey) as ¥/(G).

The neighbourhood filter of the unit has certain
properties which will be used frequently in the sequel.

In particular, a filter & on a group G is the unit neigh-
bourhood filter for a topology which is compatible with
the group structure of G (i.e., with respect to which m and
i are continuous maps) iff ¥ satisfies the following three
axiomss :
(GV1) Given any Ue€ ¥/, there exists Ve ¥ such that
st Us
(gv2) Given any ve , we have Unlé Z/}
(GV3) Tor 211 acG and all Ve ¢/, we have (aVa—")e v.

The above axioms appear in Chapter III, Section 1.2
of [2]. It follows at once from these that, if Ue ¥/,
there exists Ve ¥ such that VEU and V = V-1. Such
a neighbourhood V is said to be symmetrice

For a subset A of a topological group G, we shall
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denote the topological closure of A by ClGA. If G has a
topology, say, denoted by u, and if we wish to emphasize
that the closure is taken with respect to this topology,
we shall denote this set by Cl,A. The same notation will
be used in semigroups.

Similarly, if A<G, then IntGA will denote the
interior of A in the topological space G, and the boundary
of A, defined as (ClzA)N\(Cl;$A), will be denoted by
BdycA.

If G is a topological group and A<G, then

1A =N{AU : Ue V(G)} = N{va : ve V()]
It follows from this that, for Ue U/ (@), 01GU§U2. Hence,
by (GV1), for every Ue€¢ U/(G), there exists Ve U (G) such

that Cl.,V<U.

G

2. Set=Theoretic and Topological Inclusiong

We present here a series of inclusions of a set-
theoretic and topological nature which will be used repeat-
edly in later chapters.

Let £+ X——>Y be any map of sets, and let
{Bi : ieeI} be a collection of subsets of X« Then

2N {3y + icIp = N{e(s;) + ie1)

f(U{Bi t e I}) = U{f(Bi) : iel}.
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If {Aj : jéJ} is a collection of subsets of Y, then

1&"’1(r\{Aj : jeJ}) r\{f"l(AJ.) t jegts

f"l(u{Aj ' jeJ}) U{f'l(Aj) : jeJ}.
If X and Y are topological spaces and f is a continu-
ous map from X to Y, then, for any AcX and B<Y, we have
f(Cle) <= ClYf(A) ’
and | Cle-i(B) = f’l(c1YB) .
Since multiplication in a topological group G is continuous,
it follows, for subsets C and D of G, that
(ClGC)(ClGD) = ClG(CD).
If £ 1 X—>Y is an open map, then, for A<X,
f(IntxA) < In‘tYf(A).
If £ : G —>H is a homomorphism of topological
groups, then, for subsets A and B of H,
et = s ,
whence (Clf™r(A))(c1ef™1(B)) < cage™ (as) .

Finally, it is convenient at this time to introduce
some notation borrowed from universal algebra. If a map f
from G to H is one-to-one, we may denote this by f : Gl—> H,
and, if £ is onto, by f :+ G —» He. If this notation is
~used, no further explicit mention of the injectivity and/or

surjectivity of f will be made.
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3. Uniform Spacés, Completions, and Uniformities

on_Topological Groups

If Y is any set, denote Y x Y by Yz, and let
VEY?, Then V™' will denote the set of pairs (a,b) such
that (b,a)€V. If U, V are subsets of Y2, then UV will

2 such that (a,c)e€ U

denote the set of pairs (a,b) €Y
and (c,b)€V for some c €Y. The set {(a,a) s aeY} will
be called the diagonal.
We define a uniform space to be a pair (X, %), where
X is a set and X is a filter on x? which satisfies the |
following three propertiess .
(U1) Each U€? contains the diagonals
(U2) If Ue%, then U te s
(U3) For each Ue?% , there exists Ve such that
VZS;U.
The filter U is known as a uniformity on X. ’
A topological group G has two natural uniformities,
which we now describe. For Ue 2/(G), define
L(v) = {(a,m)ec x 61 a~tvev},
R(U) = {(a,p)ea x 6+ va~teul.
It is then easy to show that {L(U) t Ue ’V(G)} is a base
for a uniformity on G, and similarly for {R(U) t Ue 7/((})}.
The uniformities generated by these two collections are

known as the left and right uniformities on G, respectively.

In general, these two uniformities, which are denoted by &
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é.nd 7€, are distinct. If o‘(=7€ then G is said to have
equal left and right uniformities, or simply to have equal
uniformities.

Groups with this propertj have another interesting
feature, namely that they are completable, To elucidate
this property, we must first define an auxiliary concept.

A filter F on a uniform space (X, ) is said to be
a Cauchy filter if, for every U€ %, there exists Fe £ such
that F x F=U. The uniform space (X, ) is said to be
complete if every Cauchy filter on it converges.

We define a topological group G to be complete if
(G, ) and (G, ) are complete uniform spaces. We then
say that a topological group G is completable if it is iso-
morphic to a dense subgroup of a complete group G*, and G¥
will be known as the completion of G.

Without attempting a proof, we state the following
exceedihgly useful result, which will find many applications

in the sequel.

Theorem 0.1 For a topologicai group G, the following
implications hold : (2) =>(1), (2)<=>(3)<>(4).
(1) G is completables;
(2) G has equal uniformitiess |
(3) For every Ue€ 7/(G), there sxlats Ve Y (G) such !

that xvx~!

€U for every x €G3
(4) There exists a fundemental system of unit neigh-

bourhoods in G which are fixed undex all inner
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automorphisms of G.

Statements (1)=-(3) are an amalgam of Theorem 3.1,
Chapter III of [2] and Section 4.14 of [6]. Statement (%)
is trivially equivalent to (3), and is stated separately
-only because this ig the form which has proved most useful
in the sequei; Several other equivalent statements are

knowns we state only those used in later chapters.

b, Properties of Homomorphisms

We define a pair of properties for a homomorphism
f:+ G—>H of topological groups which are weaker than
continuity and openness, and which will be important in
all that follows.

We say that £ is almost continuous if, for every
Ve V(H), we have CLLE™ (V)¢ ¥/(G), and that £ is almost
open if, for every U€ ¥ (G), we have Clyf(U)e ¥ (H).

Much of the work which follows will be directed
‘tcward determining conditions on G, H and f which will
force £ to be continuous or open. We state the following
condition for an almost open homomorphism of topological
groups to be open, which is new to the best of the author's

knowledge.

Propogition 0.1 Le* f 3+ G —> H be an almost open




13.

‘homomorphism. Then f is open iff, for each Ve ¥ (a),
there is Be& ¥(H) such that BNBdyyf(V) = ¢ .

Proof: The “only if" part is trivial. For the "if"
part, first let Ve 7°(G), and let B€ ¥ (H) such that
Bf\deHf(V) = @, Since f is almost open, there exists
D€ ¢/ (H) such that DSClf(V). Now,

Cle(V) = f(V)\JdeHf(V) ’
whence DNAB < (£(V)UBdyuf(V))NB < £(V). Since DNBe U (H),
it follows that f is open.

In a virtually identical manner, one may prove the
followings

Proposition 0.2 Let £ 3+ G—>H Dbe an almost

continuous homomorphism. Then f is continuous iff, for
each Vé€ ¥/ (H), there is B¢ ¥/ (G) such that

-1 ~
BNBdy.f (V) = &4 .

Amap f : A —> B of topological spaces will be
said to have the closed graph property or simply to have
closed graph if the set R(f) = {(a,f(a)) t a€ A} is a
closed subset of A x Bs Such maps are called "closed" by
some authors [12, 17]. .As this abbreviated terminology
may cause confusion, we shall call a map f closed iff the

image under f of each closed set is closed.
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5. - Quotient Groups

Given a tqpological group G and a normal subgroup H
of G, let n: G —»>G/H be the natural map. The quotient
topology on G/H is the topology consisting of all images
under n of open sets from G. Unless specified otherwise,

a quotient group will always be assumed to be endowed with
this topology.

Let £+ G—>K bea homomorphism of topological
groups, n ¢+ G —»G/Ker £ the natural map, and
g 3+ G/Ker fl—> K the unique homomorphism such that f = gn.

We then have the following results

Proposition 0.3 For f, g as defined aboves

(a) £ is continuous iff g iss;

(b) if £ is almost continuous, then g iss
(¢) £ is open iff g isj

(a) f is almost open iff g is.

The above is Proposition 30.3 of {ﬁl. The proof is

omitted.
6, Baire Category Theorem

In a topological space X, we say that a subset A of X

is nowhere dense if Intx(01XA) = ., A subset of X which


http:Q~otient.....Qr

15,

is a countable union- of nowhere dense sets is called a first
category sets any subset of X which is not a first category
set is said to be a second category set or to be of second
category. If X is a second category subset of itself, it
is said to be a Baire space.

This leads to the following important result from topo-

logy, known as the Baire Category Theorems

Theorem 0.2 Every complete metric space and every

locally compact Hausdorff space is a Baire space.

For proof, see {83 o l.L], '[6; Tis 42}, or [26: Do 200:].

7. The Classical Open Mapping and Closed Graph Theorem

The following deep.result from functional analysis,
due originally to Banach, -hag been the starting point for
many generalizations. Because it is interesting and instruc-
tive to compare the methods used in topological vector
spaces with those in topological groups, we prove this theorem

in its entirety.

In this theorem, and throughout the dissertation,

the symbol N will be reserved for the natural numbers.

Theorem 0.3 Let E and F be Banach spaces. Then

any linear mapping f ¢+ E —3» F with closed graph is
continuous.

Proofs We Tirst show that f is almost continuous.
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Let r >0, and consider the set Sr B {yeF : “y\lér}. where
leeell denotes the norm of F. Then

‘F=U{nSr:neﬁ}, 1

= =1 = 3 :
whence E = U{f (ns..) :ne‘I_\I_}‘-— U{nf (8,) @ né_b_{} .
By Theorem 0.2, there exists keN such that
-1
Inty(Clke™(s)) # £,

=]
whence Inty(Cl£™"(s,)) # B .
Since r was an arbitrary positive number, it follows that,

for some p €ClEf-1(S%r) and some q> 0,
- "
p + Tq = {p + x 3 “X“Sq} = ClEf (S_%_r).

Then T, < (Clgt™(Sy)) - p

= (01557 (s3,)) - (C1pet(sy))
< 2(ClEf-1(S%r)) = clgi(s,) .

Hence, ClEf"1 (Sr)é V(E), and f is almost continuous.
We now show that f£f is continuous by showing that

T3, € £71(S,)e Let xeTy . Then x<&Clgf™ (S,), whence

Q
there is xlé f'"1 (S:%:r) such that |lx = xiué%q. Now, this

. ° ' -1 -1
implies (4x - l.«x1)€qu<_;C1Ef (Sr)’ whence (x - xl) EClEf (S%r)'
Then there exists xzéfnl(s%r) such that [x - Xy - le] < q/8.
Proceeding inductively, we obtain a sequence (xn) in E such-

that [[x = %) = °o° = x (€ Z"n-lq. Then the partial sums of
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(f(xn)) form a Cauchy sequence in F, for

l£0xy) + ooe + 2G| &l + <00 + 2t

£ r( 2™ 4 oo 4 27P
and this tends to zero if p>m and m increases. Since
F is complete,

m .
K E 2lx,) ) ney
n=1

has a limit, say ys By the same sort of limit considera-

tion, we have
X.= xi °

Then (x,y)€ Clp 4 F_R(:t‘), whence y = f(x), for R(f)
is closed by hypothesis. Now

Iyl < E [ELE] | E ;

Hence, y€S, » whence xeg? (S.)e Therefore, T%qs'-_fnl(sr),'

and £ is continuous. QED

The other part of the argument, the classical open

mapping theorem, follows as a corollary. -

Corollary If E and F are Banach spaces, any conti=-
nuous linear mapping £ :+ E—~—> F 1is open.
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Proofs It is clear that Ker f is a closed subspace
of E, and that E/Ker f is a Banach space. Let n denote
the natural map E —> E/Ker f, and g 3+ E/fKer £ —) F
be the unique one-to-one map such that £ = gn. It follows
from Proposition 0.3 that g is continuouss hence, its graph
R(g) is closed. Since g is one-to-one, its inverse
g"1 t P —» E/Ker £ exists, and R(g’l) = R(g), which is

closed. Hence, g~! is continuous, by Theorem 0.3, and so

g is opens Therefore, by Proposition 0.3, f is open. QED

8. Categories

We include this section not because categorical con=-
siderations play a large role in what follows, but rather
to explain that categorical notions have provided a conve=-
nient language in which to phrase certain results, and to
point out certain abuses of orthodox categorical terminology.
A concrate category ¥ consists of a class & of
sets, calléd the objects of %, and, for each ordered pair
(X,Y) of objects in ¥, a set Hom(X,Y) of functions £ t X —> Y
called morphisms, such that
(a) the identity function on each object is a morphism;
(b) every function which is a composition of morphisms
is a morphism.

This definition is essentially that of [;13 Do ii].
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In our work, the adjective "concrete" will be uni-
formly omitted, and such an entity will be called merely
a category. Since all the categories considered will have
as their objects topological groups or semigroups, and as
their morphisms, continuous homomorphisms, we will also
frequently commit the heresy of identifying a category
with the class of its objects, and neglecting any mention

of the morphisms.,



CHAPTER 1

B(Q) AND B (A) GROUPS

1. Definition and Elementary Properties

Definition If ‘5' is a category of Hausdorff topo-
logical groups, then G is said to be a B(f ) group if every
continuous and almost open homomorphism from G onto a group
H in ¥ is open, a Br(é) group if every one-to-one homo-

morphism with these properties is open.

If ﬁi = 52 as classes of Hausdorff groups, then
every B(£,) group is a B('él) group, and similarly for
the Br( ;{i) groups. Letting 4 represent the class of all
Hausdorff topological groups, we then see that a B(4) (or
B..(4)) group is a B(¥) (or B.(%)) group, for every class
¢ of Hausdorff groups.

The following result gives us one broad class of

B(4 ) groups.

Theorem 1.1  Every locally compact group is a B(Q)
group.
Proofs Let G be a lccally compact group, H a Hausdorff
20,
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-~ groupy, and f :+ G —» H a continuous and almost open homo=-
morphisme. Let V be a compact unit neighbourhood in G. Then
£(Vv) is compact, and so is closed in H. But Cle(V)é V (H),
so f(V)e UV (H)» Hence, £ is open.

We then obtain the following corollary at once.

Corollary Every compact group is a B(A) group.

Examples (1) Let R denote the additive group of
real numbérs. Then R, for any finite n, is locally compact
and so a B(4 ) group.

(2) The tori, ", are compact and so are B({ ) groups,
for any cardinality n. '

(3) Let K be the field of real or complex numbers.
Then the additive group of n x n matrices with entries from
K, denoted by Mn(K), is locdlly compact, by Proposition
27.8 of [8], and so is a B(A ) group.

(4) The invertible elements of Mn(K), denoted by
Gn(K), form an open subset of M, (K), by Proposition 27.9
of [8], and so are a locally compact group.. Hence, G,(K)
is a B(4) group. : '

(5) Let C denote the field of complex numbers.

Then the orthogonal groups 0,(R) and 0,(C) are closed
in Mn(c), and so are locally compact. Similarly, the uni-
tary group. Un is loecally compact. Hence, all of these are
B(A) groups.

(6) All discrete groups are locally compact, and
are therefore B(L4 ) groups. This case is particularly
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trivial, however, for, if there is an almost open homomor-
phism from a discrete group onto a Hausdorff group, then

the codomain must also be discrete,

The following section gives another class of groups

which has the B(¢ ) property.

2. Locally Complete Metrizable Groups

It is shown in Theorem 31.3 of [8] that every com-
plete metrizable topological group is a B(A) group. We
now show that a slightly broader class of topological groups
has this ppeopertys, It is sufficient that each point of the
group have a neighbourhood which, in the relative topology
induced by the group, is a complete metrizable space. Whilé
not profound in itself, this generalization is useful in

proving certain results in Chapter 3.

Definition A éopological space X is said to be

locally complete metrizable if every point of X has a fun=-
demental system of neighbourhoods which are complete met-

rizable spaces in the relative topology induced by X.

Theorem 1.2 Every locally complete metrizable

topological group is a B(({ ) group.
Proof: Let G be a locally complete metrizable

group, H a Hausdorff group, and f ¢« G ~—» H a continuous,
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almost open homomorphism. ILet Ue€ ¥ (G), and, without loss
of generality, we may assume it is a complete metric space;
closed, and symmetrice. We then select a fgndamental sequence
{Un} of complete metric, closed, symmetric neighbourhoods of
eg such that U €U and US,, €U, for each n, and such
that MU = {eG}. To find such a sequence, we first observe
that, since U is a metric space, there exists a countable,

fundamental system of closed unit neighbourhoods {Vn} inU

such that’ Vn+1§vn for each ne Let {Yn} be a sequence of

closed unit neighbourhoods in G such that sz_ €U and
YﬁﬂsYn » for each n. Let

- -1
U, = (LAY NNV T s

it is then easy to check that the resulting sequence has all
the desired properties,

Let W, = Clyf(U,). We now show that MW, = {e;} .
Let yeNW, s then V= vla ClyV in V/(H) implies
there exists x,€U, such that f(xn)e yV, for each n.
Since {Un} is a fundamental sequence of neighbourhoods of
eq in U, we qonclude that {xn} converges to eqe By the
continuity of f, {_f(xn)} then converges to f(eg) = ey o
Since V is closed and {f(xn)}:‘—_yv, we have ey € yV, whence
y €V, by the symmetry of V. Now, V was an arbitrary
closed symmetric set from 7/(H), and since such neighbour=

hoods form a fundamental sy. tem of unit neighbourhcods in

a topological group, it follows from the Hausdorff property
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of H that ye/\ U(H) = {eH}. Hence, y = ey, and our asser-
tion is proved.

We now show that, for every k, Wy ,q S£(Uy). Let
Y€ Wyyq 3 then, since f(Uk-i-l) is dense in W, ., , there exists

Xy €Uy, such that £(x;) € yW,pe Then y 12(x,) €Wy, »

whence f(xl)-ly €Wy ,p» and so there is a point x, €U, .,

such that £(x,) € £(x;) My, o Thus, 2(xy%;) €Y,y o

Proceeding inductively, we construct a sequence X,
such that @
(a) x,€Ug,, » for each n, and

(v) f(x1x2 oo xn)e YWian+1 °

Now X Xn+1 °°° X, +p & Uk +nUk +nt+l e Uk +nip ? but the late

ter product is a subset of Up,,_ 4 » by the initial condi-
tions on the sequence {Un}. Thus, for p =20,

Xn¥n+r °°° xn+p € Uin-1 *

Since the {Un} are a fundamental sequence of neighbourhoods,
it follows that, for any V¢ U/ (G), we can find n el such

that, for p2>0 and | n;no, we have X, :51_,,1) €Ve.

Then, letting S, = X3x5°°°* X, , We see that {Sn} forms

a Cauchy sequencej moreover, letting n =1 in (a), we

see that S, &U, , for all n. Therefore, {Sn} converges
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to some X, éUk » since Uk is a complete metric 'space.

The proof is now concluded by showing that y = f(xo).

First, observe that 1im f(xl) see f(x ) = f(xo). Now,
N e=)® ' &

for m2>n , we have

y-lf(xlxz so e )Sn) = y-lf(xl esve xn)f(xn_*_i) 000 f(xm)

S Wieint1 T (Ugangq) 00 $(Uxyp)

SE W1 T (Ugin) S Clpf(Uppnq) = Wppy o

Then, 1lim y'lf(x1 *e° x ) €W, 4 » Since the latter is
N =) co

closed. Then

y"j" 1 f(x1 - lﬁn)e n{wk+n-1 : ne_r_{} = {eﬂ} .
M e 0o

Thus, y"lf(xo) = ey » whence y = f(xo) ef(Uk). Hence,

f is open.

Corollary | Every complete metrizable group is a
B(4) group.

Proof: This is a special case of Theorem l.2, since
every complete metrizable group is locally complete metri-

zable,

Theorem 1.2 is a true generalization of the corollary,
as the following example shows. Let 0 denote the first
snourteble opdinal, and et @ be that subset of L0+

consisting of those elements which are non-gero in at most
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countably many entries. For each ordinal a, denote by G(a)
~the subgroup of G consisting of those elements (x,) such
that b»a and b # (), implies X = 0o Since ev;ry counte
able subset of [0,.(2.) has an upper bound [LP; Pe 54, Theo-
rem 9.1] » it follows that G = U{G(g) : a€ [0,.{).)). Let G
be endowed with the subgroup topology induced by the G(a)s
clearly this is a group topology. Moreover, each G(a) is

a complete metric space, by Theorem 2.5, p. 295 of [4],

atl

since it is isomorphie¢ to R="". However, G is not first

countable, and hence not metrizable.

The above corollary is Theorem 31.3 of [8]. This
shows that every Banach space, for example, is a B(Q@Q)
topological group. One should note that this observation
does not follow from the classical open mapping theoren,
for not every homomorphism of a complex vector space need be
a linear map. For instance, suppose a complex Banach space A

has a basis {bi} « Then each element x € A has a unique rep-

X = :>: tibi ’

where t;€C. Define amap f ¢+ A —> A by

:>: tyhy, = E Tyby

resentation
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the bar indicating complex conjugation. It is then trivial
to check that this map is a homomorphism, but is not a

C=linear map.

3. A _Generalization of a Criterion of L. J. Sulley

Further discoveries which added to the list of known
B(A) groups were made by Sunyach [23] and Sulley [22].
The latter found criteria for dense subgroups of Abelian
"B(Q) and Br(d) groups to inherit the respective property.
Theorems l.3 - 1.6 are generalizations of Sulley®s criteria
to arbitrary completable groups. We must first prove the

following two lemmas.

Lemma l.1 Let E be a Hausdorff group, G a dense
subgroup of E, H a closed normal subgroup of E, q ¢+ E —)E/M
the natural map. Then the restriction of q, r ¢+ ¢ —q(G)/H
ié continuous and almost open. Furthermore, r is open iff
HNG is dense in H.

Proof: Clearly, r is continuous. To see that it
is almost open, we firsf observe that

Clq(G)r(Uf\G) » q(G)f\ClE/Hq(Uf\G) >
by Theorem 7.2, Chapter III of [#4].
Now, q"l(ClE/H[q(Uf\G)]) is closed in E, ond is

a unit neighbourhood, since it contains ClE(Uf\G). Then

ClE/H[q(UﬂG)]é VY (E/H) , since q is open, and so
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Clq(G)[r(Uf\G)]e VY (E/H) « Thus, r is almost open.

Next, suppose r is open. Let Ué¢ ¥ (E), and select

2

ve Y (E) such that V is symmetric and V®<U. Then

r(VvNG) = q(vNG) is in ¥(q(G)). Then there exists We¢ ¥V (E/H)
such that WNq(G) = q(VAG), so that
"tNeH =9 a(vn®)] = (vNG)H .

Let hEH; then there exists geG such that g ¢(VNgq L (w))n,
since G is dense in H, so that gh-lé q-1 (W)N (GH) (VN G)H.
Then there exists x €VNG, k €H such that gh™! = xk,
1_-1
x g

whence h = k_ = »kﬂl(x-lg). Now, heH, k€H together

imply that x'lgeH; then X€G, g€CG imply x'lgEGﬂH.

Thus, k™F = h(x'"]'g)m1 = (hg"l)x is an element of vly = v2<u,

Therefore, h = k'lx'lgéu(cf\}{), and so (GNH) is dense in H.
Conversely, suppose GNH is dense in H, Ue€ V¥V (E),

and V€ /(E) such that V is symmetric and V2£U. Then |

H<(GNH)V. We show VN(GH) <(UNG)H. Let XEV, g€G,

h€H such that x = ghe Then h = g"tx; but h €(GNH)V,

by assumption, so h = ky, where k&€GMNH, yeV. It then

follows that x = gh = gky, and y = k" "h&€H. Also, gk €G,

leww™ = vB<u, Therefore, x = gh = (gk)(k"th),

and gk = xy

and this last is a point of (UNG)H; hence, YVN(GH) S(UNG)H.
Thus, VHNGH S (UNGHZ = (UNG)H 5 i.e.,

a a(M)Na™(a(6)) € a7 (a(UNE)). Then, applying q to

both sides, we obtain q(V)Ngq(@)<a(uNaG) = r(UNG). Thus,

r is open. QED
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The second lemma is proved in slightly greater gener=-
ality than is necessary for our immediate purposes. The
full strength of this lemma will, however, be invoked in

Chapter 2.

Lemma 1.2 If G is a group with equal uniformities
and f 1+ G —> H is a continuous, almost open homomorphism
such that £(G) is dense in H, then H has equal uniformities.

Proof: The sets of the form Cl,f(U) , for U€ ¥(G),
generate the topology of H, and it is enough to consider
such sets. We show that f\{leHf(W)b-l s beH} is in V{(H),
for any We ¥ (G). |

Clearly, for a€G, f(a)Clyf(w)s(a)™! = ci f(awa!)
= Cl,f(W), since G has equal uniformities. Now let b¢H,
Wwe ¥(G), and choose Ve % (G) such that V is symmetric and
VBSW. Since.f(G) is dense in H, there exist yéCle(V)
and a€(G such that by = f(a). Then, .

b(c1,£(W))d™L 2 (o1 £(v3))p™t 2u(cE(v))

;2byCle(V)Y,1b’1 = f(a)Cle(V)f(a)-l

Thus, A{pClr(W)o™! 1 b€} 2C142(V), and so this inter-
gection is again a unit neighbourhood. Therefore, H has

equal left and right uniformities, by Theorem O.1.
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Theorem 1.3 ‘Let G be any Hausdorff group with equal

uniformities, E_its Hausdorff completion.

(a) If E is a B(Q) group and, for each closed normal
subgroup H of E, HNG 1is dense in H, then G is a B( )
group.

(v) IfEis a Br(e()'group and the only closed normal
subgroup H of E for which HANG = {e} is {e} » then G is
a Br(dl) group.

Proof: (a) Let f : G —>»> F De a continuous, almost
open homomorphism. o & ‘ . G has equal uniformities,
and it follows from Lemma 1.2 that F also has this property.
Hence, F has a completion, say F#%, and f extends to a con-
tinuous homomorphism f* 3 E ——» F¥*, by Proposition 3.5,
Chapter III of [2].

Now let U € U(E)s then Clpyf*(U) 2 Clpxf(UNG) |
= Clpx[C1£(UNG)]. Since £ is almost open, CL,f(UNG)€ V(F),
whence its closure is in Y (F#), by Proposition 4.7, Chapter
III of [2]. Thus, £* is almost open, and, since E is a |
B(4) group, £* :+ E—>» f#(E) is open.

Let H = Ker f*, and define q, r as in Lemma 1.1,
Let fy :+ E/H —> £*(E) be the unique map such that f;q = f£*.
Then f; is open, since f* is; since f, is one=to=one, its
restriction f, to q(G) is open onto f,a(G) = £*(G). But

f=1f,r, sof is open.

(b) Let f, F, £*, F¥ be as in (a), dbut further

assume that £ is one-to-one. It follows as in (a) that
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f* ¢ E —3» f#*(E) is almost opens Now Ker f* is closed,
and GAN\Ker f* = Ker f = {e}; then Ker f# = {e}, by hypo-
thesis. Hence, f* is open, since E is a Br(Q) group.

It then follows that f is open onto f(G) = F.

Theorem 1.4 Let G be a dense subgroup of the Hause

dorff topological group E.

(a) If G is a B(A) group, then HNG 1is dense in H
for every closed normal subgroup H of E.

(b) If G is a B.({) group, then the only closed nor=-
mal subgroup H of G such that HNG = {e} is {e} .

Proof: Let H be a closed normai subgroup of E,
and let q and r be defined as in Lemma 1.1. By this lemma,
r is continuous and almost open.

(a) If G is a B({) group, then r is open, and so,
again by Lemma 1.1, HNG is dense in H. |

(b) If HNG = {e}. then r is one-~to-one3 then r is
open, since G is a B( @A) group, whence GNH = {e} is
dense in H. But this implies H = {_e} » since E is a Haus=

dorff group.

Theorem l.5 Let G be a dense subgroup of the

topological group E.
(a) If ¢ is a B(4) group, then so is E.
(b) If G is a Br(Q) group, then so is E.



32.

Proof: (a) -Let G be a B(4) group, and let
f + E—~—> F be a continuous, almost open homomorphism.
Let v : G —3 £(G) be the restriction of f. We claim
v is almost open. Let U€ ¥/ (E), so that

Cle(qyv(uNG) = [crvune)]nvie) |
this follows from Theorem 7.2, Chapter III of [1#]. Since f
ig continuous, g1 [Cva(Uf\G)l is closed in E3 denote this
set by V, and note that V2UNG. Then V€ ¥ (E), since G
is dense in E. Now ClFf(V)E VY (F), since f is almost open;
moreover, ClFf(V) < Cva(Uf\G), so the latter is in UV (F).
It then follows that Clg(q)v(UNG)€ V' (£(G)), and that v
is almost open. Since G is a B({ ) group, v is open.

Now we show f is open. Let U€ VU (E), and choose

2SU. Then f£(V)2WNTf(e), for scme

Ve ¥ (E) such that V
open W in ¥/(F), since v = f|G is open. Thus,

£Hie(n) 2 £ wne) 2 £ HwNa,
and so £ H(e(M))V 2 el 2 (N))] 2 e F el
Now f"l (W) is open in G, and G is dense in E, so
£ e(v))vasr (W), Hence, £(U)zr(v3)2£(V)?
e f[f-l(f(V))V] =2 i‘(f"i(.w)), and this last is equal to W,
since f is onto. Thus, f is open and (a) is proved.

(b) The proof is almost identical with (a), with

certain simplifications resulting from the additional assumps

tion that £ is one-~to-one.

We remark that Theorems l.4 and 1.5 do not require
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that the group G be completables
The following theorem summarizes our results for

conmpletable groupse

Theorem 1.6 Let G be any Hausderff group with equal

uniformities, "E its Haugdorff completion.
(a) G is a B(&A) group iff E is a B(AZ) group and,

for each closed normal subgroup H of E, HNG is dense in H.
(b) G is a Br(Q) group iff E is a Br(d) group and

G has non-trivial intersection with each non-trivial closed

normal subgroup of E.

We concludé this section with a few applications
of this criterion.

(a) The group Q of rational numbers under addition
with the relative topology from R is not a B,.(4 ) group.
To see this, let b be an arbitrary irrational number.

Then Zb = {nb t ne Z} s where Z represents the group of
integers, is a subgroup of R which is disecrete and there-
fore closed. Furthermore, R is the completion of Q, and
QNZb = {0}. Then, by Theorem l.4(b), Q is not a Br(Q)
group.

(b) Let p be a fixed prime number, and let 2 be
endowed with the group topology having as its unit neigh-
bourhood filter {an i n e_l_\l_} . This group is totally

bounded, and so has a cémpact completion, which we shall
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denote by 2 Now Z is compact, and therefore a B (&)

p*
group. Furthermore,p’che only non-trivial closed subgroups
of 2., are the groups {p“zp t né€N} , a fact we shall not
prove here. Since, for all n, anpf\Z # {0} » we conclude
from Theorem l.4(b) that 2 with the topology described
above is a Br'(CZ) group.

(¢) Let U be the group of roots of unity, the tor-
sion subgroup of the group T of complex numbers with unit
modulus. 'Now, T is the completion of U, and, furthermore,
every?glégggd subgroup of T is also a subgroup of U [14; o 2&6].
Since T is compact, it is a B(4) group, and it follows
from Theorem 1.3(a) that U is a B(4Q) group.

Sulley and Sunyach both appeal to this example to
show that a B(& ) group need not be topologically complete.

(d) The following example is due to Sulley [22],
and shows that a Br( Q) group need not be a B(AQ) group.
Let G be the subgroup of those elements of U which have
squarefree order. Since every integer has some squarefree
divisor, G intersects every non-trivial closed subgroup of
T in a non-trivial manner. Hence, G is a Br( A) group,
by Theorem 1.6(b). However, letting T, and T, represent
the groups of elements of T of order 2 and 4, respectively,
then GNT, = T, , end this is not dense in T,. Hence,
by Theorem 1.6(a), G is not a B({Z ) group.

(e) Finally, we displaj an example of a precompact

group which is not a Br(d) group. For a fixed prime p,
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let Up denote the group of all p~power order roots of unity.

The completion of Up is Te Now, if q is a prime distinct

from p, then the group T_ of all g=th roots of unity is a

q

closed subgroup of T which has trivial intersection with Up.

It follows from Theorem 1.6(b) that Up is not a Br(CZ) group.

Some further applications of Sulley®s exceedingly

useful criterion ocecur in Section 5.

L4 Internal Characterization of B( Q) Groups

The definition of a B(Q) group is entirely an ex~
ternal characterization of the objects in question, in that
it concerns only the mappings defined on a group and makes
no direct mention of the elements, substructures, or topology
of the group itself. One internal characterization of B( Q)
groups is provided in this section.

We first develop some notation. Let G be a topolo-
gical group with topology u. If we write v<u, then v is
a group topology on G such that every v-open set is u-open.
If v is another group topology on G, then v(u) will denote
the group topology whose unit neighbourhood filte; is
{cr,u s UeU(u) .

The following result is Theorem 31.4 of (8]. Its

proof is included here for completeness.



Lemma 1.3 If (G,u) is a B(A) group, then; for
any Hausdorff group topology v on Gy, veu and v(u) = v
together imply u = v. For Br(CZ) groups, this condition
is both necessary and sufficient. |

Proofs Let v be such a group topology, and
consider the identity map j s (G,u) —> (G,v). Since vgu,
Jj is continuous, and, since every v(u)-open set contains a
v-open set, j is also almost open. The map is clearly onto,
and so it is open, since G is a B(A ) group. Thus, usv,
and we conclude u = v.

Clearly, the above argument is also valid if G has
the Br(cZ) property, for j is a one~-to-one map.

Conversely, let f i (G,u) I=—» (H,w) be a contin-
uous and almost open homomorphism. Let v denote the group
topology generated on G by {f-l(w) : We Z/(w)}. Since w
is Hausdorff and f is one-to-one, it follows that v is
Hausdorff. Furthermore, v € u, and, letting T, be the map
which goes from (G,v) to (H,w) and coincides with f point-
wise, we see that : O is continuous and opens Now, v € u
implies v = v(u)s we then show v(u) € v by demongtrating
that U € ¢/ (u) implies there exists V€ ¥/ (v) such that

V.S CL,U,.

]

N{vg™ ) + we 7w}
(\{f‘i [f(Uof"1(w))] s We Zf(w)}

Now, ClvUo

- (\{f'l[f(vo)w] s We ?/(w)}
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£ [N {ewu ¢ we v )]

f'1(01wf(uo)) .

But, Clwf(Uo)e U (w), so c1,U, € ¥/ (v)s Thus, v(u) = v.
By our hypothesis, u = v, and so f = fo‘ Therefore, f is

open, and (G,u) is a Br(d) group.

Since v & u implies v < v(u), by Proposition 31.8

of [8], we can partially recast Lemma 1.3 as follows.

Lemma 1.4  (G,u) is a B,.(&Q) group iff, for every
Hausdorff group topology v on G, v(u) € v cu implies

YV = U

For a topological group G, let %(G) denote the set

of closed normal subgroups of G.

Lemma 1.5 G is a B(Q) group iff G/H is a B ()
group for every He€ 71(G).

Proof: The "only if" direction follows at once
from Proposition 31.7 of [8].

Conversely, let £ : G —» A be a continuous,
almost open homomorphisme. Then f factors as f = f¥*n,
where n is the natural map G —3» G/Ker f and f* is
the unique one-to-one map G/Ker £ —3> A which satisfies
the above equation. By Proposition 0.3, f# is continuous

and almost open. Since (Ker £)€ 71(G), G/Ker f is a

Br(Q) group, and so f* is open. Again by Proposition 0.3,
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f is open. Hence, G is a B(A) group.

Now, we may apply the condition of Lemma 1.3 to the
quotient groups G/H. For each H€ 7/ (G), let uy denote
the usual quotient topology on G/H, ny the natural map

G —¥ G/H. Lemmas 1.4 and 1.5. can then be rewriiten as:

(G,u) is a B(Q) group iff, for each H€ 7{(G) and for
every Hausdorff group topology w on G/H, W(UH)QWGuH
implies w = uy. '

For w, a group topology on G/H, let nﬁl (w) denote
the group topology on G generated by the inverse images
under ny of w-open sets. We let uH = nﬁl(u H), the group
topology generated by all sets of the form {UH t Ue ?/(u)}.

Writing the above criterion in terms of neighbour-
hoods, and taking inverse images with respect to ny , we
obtain the following, for each He& 2{(G) : if, for every
Ue U (u), there is a We¢ U (w) such that nﬁl(w)g nﬁl(C‘.lwnH(U)),

and if, for every We€ U (w), there exists U €/ (u) such
that UH < nﬁl (W), then w = Uy e We claim that

ngt (CL (V) = Oyt (w) U = Cly=t () Us

To show the first equality, we first observe that

a7t (61, () = gt (A {ng(W)¥ : we U (w)})
= f\{nﬁl(nH(U)W) t We zf(w)}

2 N {0zt () + we v ()}
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= C1nﬁi (W)UH ®

We need now show only the reverse of the inclusion to have
proved the first equality.
Let p be a point of nﬁl(nH(U)w), for each W€ U (w).

Then nH(p)é n‘H(U)W, whence, for each such W, there exists
x €U, yeVW such that nH(p) = nH(x)y = nH(x)nH(t), for some
tengl(W). Thus, pengl(ny(xt)) = xtH = (xH)(tH) = UHng' (W),

This proves the first equality.
The second equality is merely a reflection of the fact
that H is a subset of every nﬁl (w)-neighbourheood of the unit,.
We now prove a result which enables us to dispense
-completely with references to topologies on the quotient

groups G/H.
Lemma 1,6 The group topologies on G coarser than

uH are precisely the inverse images under n, of group

‘topologies on G/H coarser than uye

Proof: If w is a group topology on G coarser than uH,

then nH(w) is coarser than nH(uH) = uy; « Then the unit
neighbourhood filter of nﬁl (nH(w)) is {WH :t We ?f(w)] .

But each W& {/(w) is of the form W = YH, where Y€ ¥ (u),
since w is coarser than uH. TLet ? = {Ye VYV (u) ¢+ YH = W,

some WE¢ ?/"(w)} « Then,
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{WH t We 7/(w)} = {YHZ : Yey} = {YH : Yey} = 1f(w)e.

Hence, w = nﬁl(nﬂ(w)) .

Conversely, if Wy is a group topology on G/H coarser
than uy , its inverse image under ny is clearly a group

topology on G which is coarser than uH. QED

This lemma can now be combined with the equalities
derived above to obtain the following condition for a

topological group (G,u) and a closed normal subgroup H of G.

P(H) ¢+ If w is a group topology on G such that, for each
Wel (w), there exists U€ U (u) such that UHEW,
and, for each U U (u), there exists We U (w)
such that W&Cl,U, then w = uH. |

Combining the above results, we have proved:

Theorem 1,7 G is a B(Q) group iff P(H) is satis-

fied for every He 7 (G).

5 Permanence Properties of B(&) and B (&) Groups

In this sectiqn, we examine B(4 ) groups and Br(CI)
groups as subcategories of the category of all topological
groups and continuous homomorphisms. We investigate the
closure properties of these subcategories under the forma-
tion of products, subobjects, retracts, projective limits,

and other categorical operations.
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These categories are quite poorly behaved with res-
pect to such “permanence" properties. We shall first prove
theorems of a positive nature concerning retracts and a
special case of subgroups, followed by several counterex-

amples to a number of attractive conjectures.

Definition A subgroup H of a topological group G
is said to be a retract of G if there is a homomorphism
r+ G—>» H such that rlH is the identitys r is then
said to be a retraction. |

A subgroup H of a topological group G is said
to be a topological direct factor of ¢ if there is a
subgroup H® of G such that the multiplication map
m: Hx H* =—» G is an isomorphism.

We now state the following result, which, to %The
best of the author®s knowledge, is unpublished and due

to B. Banaschewski,

Lemma 1.7 If H is a subgroup of G, then the follow=-
ing ére equivalent:
(1) H is a topological direct factor of Gj
(2) H is normal in G and a retract of Gj
(3) H is the kernel of a retraction.
Prooft (1)=>(2) Let f ¢+ G —>H x H* be the
inverse of the multiplication map, and let p ¢+ H x H* —>H

be the projections Then pf : G —> H is a homomorphism
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A whose restriction to H is the identity. Hence, H is a re-
tract of G. Now, to see that H is normal in G, let hé€H,

a €G, and note that a can be expressed uniquely as a product
1. mf(aha-l) =
n[e(a)e(n)e(a) ] = n[(x,y)(ne)(xL,y™Y)] = n(xnxt,e)

= xnx~! € H.

a=2Xxy , x€H, yéEH'. Then aha”

(2)=>(3) Let H be normal in G, £ ¢+ G —> H the
retractions Then g €Ker f, t€H implies sts~l e,

s op(sts™l) = £(e)E(1)£(s)7Y = £(t) = t.

whence sts
Hence, ts = st. Define g+ G —>Ker £ by X} xf(x)-l.
Then, g(xy) = xyf(xy)"1 = xyf(y)'lf(x)'l, and, since f(x)€H
and yf(y)'lé Ker £, it follows that g(xy) = xi‘(x)"lyf(y)m1
= g(x)g(y). Hence g is a homcmorphisms since it is the
composition of continuous maps, it is itself continuous.
Then g[g(X)] = g(xe(x)"1) = xf(X)-lf(X)fj[f(x)'i] = x£(x)"T,
since f[f(x)] = f(x). Hence, gg = g, and so g is a re=-
traction. ‘

Now xé€XKer g iff g(x) =e iff x = f(x) iff X € Ha
Hence, H is the kernel of the retraction.

(3)=>(1) Let H = Ker g, g a retraction, g ¢+ G —>» H'.
As above, s€H, t€H®' implies +ts = st, and it follows from
this that the multiplication map m 1+ H x H® —> G is a
homomorphism.

Define h : G =—>H x H' by h(x) = (xg(x)'l.g(x))-

Since X > xg(x)"1 is a continuous homomorphism, it fole-
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lows that h is a continuous homomorphism.
Then (mh)(x) = x, and (hm)(s,t) = h(st)
(sta(st) L, a(st)) = (sta(t) ta(s) Lia(s)a(t)) = (stt™le,et)

(s;t). Them m is invertible, and so is an isomorphism.

With the above result established, we prove the

followings

[

Theorem 1.8 If G is a Br(d_) group and if H is

a normal subgroup of G and a retract of G, then H is a
Br(CZ) Zroup.

Proof: By the definition and Lemma 1.7, the mul=
tiplication map m :+ H x H* —¥ G is an isomorphism, and
so m has an inverse j which is also an isomorphism. Let
f + H—> A be continuous, almost open, one-to-one, and
onto. Define h t: G —>A x H' by h(s) = (£ x idy)(j(s)),

so that this diagram commutess

H x H'g;:£%==2
f x 3dies
| H h
A x H? °

Clearly, h is one-to-one, onto, and continuous. Further=-
more, (f x idH.) is almost open, for

CL, , yo(f X 1dyo) (V) % V,) = €1, 1o (£(V)) x V)

= (ClAf(Vl))X vz o



Since j is open, h = (f x idH.)j is almost open. Since
Gis a Br(a() group, h is an open mapping. Now,

(f x idH'.) = (£ x idH.)jm = hm, but m is open, so (f x idH.)
is open. It follows that f is open, and so H is a Br(d)

group.

Theorem 1,9 If G is a B(QR) group, and H is a

normal subgroup of G and a retract of G, then H is a
B(Q) group.
Proof: Same as above, dropping the assumption that

f be one=to-one.

Remark The above results also hold for B($ ) and
Bf({) croups, where ¥ is any full subeategory of . 1In
particular, in the case of Abelian groups, the normality

assumption is also subsumed.

We now proceed to our second permanence property.

-

Notation We shall denote the centre of a topolo-

gical group G by Cent G.

Theorem 1,10 Let (G,u) be a Br(Q) group, and
H an open subgroup of G such that HSCent Go Then H is
a B({) group.

Proof: Let u|H denote the relative topology on H
induced by u, and let w be any Hausdorff group topology
such that we< u|H end w(u|H) = w. By Lemma 1.3, it
suffices to show that w = u|H.

Define a new topology w, on G by taking 'Zf(wl) = Z/(w),
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recalling that H is open in G. Since H is in the centre.
of G, we obzserve that xvx"l = v for every VE€ Y (w) and
x€Gs it follows that conjugation is continuous at e. The
other axioms for a group topology follow trivially. Also,
Wy is Hausdorff, sinée w has this property and the unit
neighbourhood filters coincide.

Now, w, Su, because H is open, and so wlc_‘,wl(u), by
Proposition 31.8 of [8]. We show wl(u)gwl. Let U€ U (u),
so UNH e 'Z/(u\H). Since w(u\H) = w, there is some W€ Y (w) |
such that WECIW(Ur\H). But this latter is precisely the
wq-closure of UNH, so VIEClwl(Uf\H)ECIW1U. Thus, wl(u)s-.wl.

Since G is a Br( A ) group, this implies wy = u. Then
w = wl‘ H = u]H, and so H is a Br(Q) group, by Lemma 1.3,

By a similar method, we obtain an analagous perman-~

ence property for B({ ) groups.

Theorem 1,11 If (G,u) is a B() group and K is

an open subgroup of G such that K<Cent G, then K is a
B(4 ) group. _

Proof:  We use the internal characterization of
Theorem 1.7. Let He 7](K). Since K is open in G, it is
also closed; hence, H is closed in G. Since H<Cent G,
it is a normal subgroup of G Therefore, HE€ ?’L(G).

Let w be a group topology on K such that the two

conditions of P(H) are satisfied (on K!). ILet v, be the
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group topology on G generated by U/(w) as unit neighbourhood
filter. We show that w; satisfies the two conditions of
P(H) on G.

First, if We¢ U(w ), then there exists V& ¥ (w)
such that V=W, whence there exists U€ 7 (K) such that
UHEV. But Ue U (G), since K ié open, and so the first
condition is satisfied.

Secondly, if Ue 7 (G), then UNK € ¥ (K), and so there
exists We ¥(w) such that WESCL (UNK). Then We U (w ) and

wgClwlU, since Cl A =,Clw1A for any subset A of K. Thus,

the second condition is satisfied.

Since G is a B({) group, it follows from Theorem 1.7
that u = w;. Hence, the relative u-topology on K equals
the relative wy-topology on K, but the latter is precisely w.
Therefore, K is a B({ ) group, by Theorem 1.7.

We then have the following joint corollary of Theor-
ems 1,10 and 1.11, which follows immediately from these

theorems.

Corollary If G is an Abelian Br(Q) (respes B(Q))
group and H is an open subgroup of G, then H is a Br(Q)

(resp. B(q)) group.

Several counterexamples follow, the first of which

-
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shows that, given a group G with two topologies, with res-
pect to each of which G is a B({ ) group, then G need not

even be a B, () group, whén.endowed ‘with the join. of the.
iwo topologiess

Example 1.1 Let (R,u) denote the reals with the

usual topology, g a discontinuous automorphism of the reals
[27s »p. h9], and (R,g(u)) the reals, endowed with the topo-
logy consisting of the images under g of u-open sets.
We claim the identity map j 3 (R,uvg(u)) —> (R,u)
is continuous and almost open. The continuity is clear.
To see that j is almost open, it is sufficient to show that
the image under g of any u~copen set is u-dense in R, for
then, if A,B are u-open sets, it follows that Cl,A = Clu(Af\g(B)).
To demonstrate this fact, we first observe that the
image under g of any u-open set is unbounded. If not, then
g(Vo) is bounded for some open set Ve Without loss of gene-
rality, we may assume V, = (-a,a), and that g(V, )& (~1,1).
Let pesg'l(-l,l), and let t be a rational number such that
ostﬁ%min{l - g(p)y 1 + g(p)}. Then g(p + (~at, at))
= g(p) + tg(-a,a) = glp) + (~t,t) = (~1,1). Thus,
g"l(-l,l) contains a u-neighbourhood of each of its points,
and so is u-open. But this implies g : (R,u) —> (R,u) is
continuous, a contradiction. Hence, g(V) is unbounded for

every u=-cpen set V.

We now show that g(V) is dense in R, with respect to
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fhe u-topology. Assume O0€V, and that V is connected.
Then, for each x€V, {kx t 0Sk<1, k rational} < V, whence
{kg(x) t 0<k<€1, k rational} < g(V)s For each x, the
above set ié u-dense in \'_O,g(x)jl « But g(V) contains arbi-
trarily large real numbérs. Thus, g(V) is u-dense in R,
Hence, j is continuous and almost open, but it is obviously
not open.

Now, (R,u) is locally compact, and so is (R,g(u)),
since it is the continuous, open image of (R,u). Hence,
both are B((¢ ) groups, but (R,uvg(u)) is not a Br( q)
group, for we have constructed a continuous, almost open,
one-to-one homomorphism from this group onto a Hausdorff

group, which is not an open map.

Remark The above example also shows that the join
of two locally compact group topologies need not be locally
compact, for, if R with the join topology were locally
compact, it would be a B.(A) group.

Our next example shows that a finite product of B({)

groups need not be a Br(.d) Eroup.

Example 1,2 Let R be the reals with the usual
topology, U the group of complex roots of unii;y. The lat-
ter was proved to be a B({) group in Exaﬁlple (e), Section

1.3, and, of course, R is locally compact. However, R x U

is not a Br(() groupe.
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To see this, observe that the completion of R x U
is R x Ty where T is the circle group. Since R x T is
locally compact, it is a B(A ) group. Let b be an arbi-
trary irrational number, and let
H= {(n,exp(anni)) t néz}.
Then H is a discrete subgroup of R x T, and so is closed.
However, HN(R x U) = {(0,12}, and so R x U 1is not a Br(CZ)

group, by Theorem 1.6(b).

Remark Since products are trivial projective limits,
we have also shown that B({) and Br(cZ) groups are not
closed under projective limits. However, this is not a
directed system, and the question of whether our categories
are closed with respect to limits over such systems is still

opene.
Our next example concerns inductive limits.

Example 1.3 Let (R,u) and (R,d) denote the reals -

with the usual and discrete topologies, respectively. Let
G, = (R,u) x (R,d)s G, = (Rsd) x (Rsu), and let £ 1 Gy —> G,
by (x,¥) += (y,x). Let this system be ordered by 1 £2.

in the category of topological spaces
Its inductive limit/is then R endowed with the topology
(uxd)A(d x u)e It has been proved in [19], however,
that this is not even a group topology, although the groups

involved are locally compact and so B(L ) groups.
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Finally, we consider the question of quotients of

groups in our category.

Example 1.4 Let G, T, Ty, T, be defined as in

‘Section 1.3, Examples (¢) and (d). It is shown in (d) that
G is a Br(Q) group which is not a B({ ) group. Let n be
the natural map T —» 'I"/Tu. m : G —» n(G) its restric-
tion. Then Ker m = GN\Ker n = GNT, = T,. We claim G/T2

- is not a B,(¢{) group.

Suppose it is. Then, by Lemma 1.1, m is continuous
and almost open, whence its factorization m* : G/T2 —»n(G)
also has these properties. But; if G/‘I‘2 is a Br(d) group, |
it follows that m* is open, whence m is also open, by Pro-
position 0.3, However, Lemma 1.1 also states that m is open
iff GI\TLL is dense in Tys @ condition which is ciearly

not satisfied. This contradiction proves that G/T2 is not

a B..(g) group.

Remark This counterexample shows that the portion
of Proposition 31.7 of [8] which refers to Br(4) groups

is false. Further reference to this fact will be made in

Chapter 3.
[ B(£ ) Groups Which are not B({) Groups

Several references have been made so far to B(¢)
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groups, but no example has been produced to show that a
B(Z) group, for some class f of Hausdorff groups, need
not be a B({ ) group. This defect will now be remedied by
displaying such a class and such a group.

For this section only, £ will represent the cate-

gory of first countable Hausdorff groups.

Lemma 1.8 A continuous map of a countably compact

" space into a first countable Hausdorff space is closed.
Proof: Let f : X —> Y be such a map, A a closed

subspace of X. Then A is countably compact, and so is f£(A),

by Theorem 3.6, Chapter XI of [QJ. By the same theorem,

a countably compact subspace of a first countable space is

closed, so f(A) is closed in Y, whence f is a closed map.

Theorem 1,12 A continuous, almost open homomorphism

f of a countably compact topological group G into any group

H in ¥ is open.
Proof: Let B be a closed unit neighbourhood in G.

Then f(B) is closed, by Lemma 1.8; i.e., f(B) = Cle(B).
But Cl,f(B) is a unit neighbourhood in H, since f is almost

open. Hence, it follows that f is open.

Corollary Every countably compact topological group
is a B(£ ) group.

This is merely the special case of Theorem 1.12,

where f is onto.
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Remark The above rerults also hold if G is taken
to be locally countably compact, a slight gaiﬁ in generality.

To show that B(%Z ) groups, as a class, are strictly
larger than B({ ) groups, we consider an example giveri by
Pontryagin [14; p. 127-8].

Example 1.5 Let A be any uncountable set, and let
Abelian A

G be any non-trivial,compact,Hausdorff/group. Let G* = G,

and define

P= {(xa) : x; # e for at most countably many a GA}.
Pontryagin shows that P is countably compact, but is also
dense in the compact Hausdorff group G¥, and so is not
compacte.

Furthermore, P is not a B,.({ ) group. For each g€G,
let (g) be that element (x,) of G¥* such that x, = g for
every a€ A, Let H denote the "diagonal™ subgroup of G*
given by H = {(g) : geG}. It is easy to see that H is
closed, and that HAP = {(e)}. It then follows from
Theorem 1.6(b) that P is not a Br(Q) group.

7. An Open Mapping Theorem for Non=-surjective Homomorphisms

All our ‘discussions up to this point have, directly
or indirectly, been concerned with surjective homomorphisms.

This brief section gives one example of an open mapping
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theorem in which this condition is at least slightly relaxed.

Theorem 1.13 Let G and H be locally compact groups,
H Hausdorff, and let f : G —> H be a continuous, almost
open homomorphism. If f(G) is dense in H, then f is open.

Proof. Let fy : G —>» £(G) be the corestriction of f.
Now f, is almost open, sinée, for U€ Y (@), |

Cly oy F(U) = £(e)NCL£(V) € U (£(C)),
by Theorem 7.2, Chapter III of [l&]. It then follows from
Theorem 26.4 of [8] that £(G) is locally compact.

Now, G is a B(4 ) group, so f; is open. Fﬁrthermore,
by Exercise 6.95 of [eﬂ,f(G) is open in H. Hence, the
natural injection j : £f(G)|—> H is open, and so f = ify

is open.



CHAPTER 2

THE CLOSED GRAPH THEOREM FOR TOPOLOGICAL GROUPS

1. Preliminaries

We seek to generalize the classical closed graph
theorem to appropriate classes of topological groups.
Since the classical result depends heavily on the fact
that any linear mapping of a Banach space into a metrizable
topological vector space is almost continuous, we ask for
what classes of groups must a homomorphism which is almost
- eontinuous and has a closed graph be continuous. We also
investigate how the B(£ ) and Br(-ﬁ) groups of the last
chapter are involved in studies of this nature, and what
other conditions on the homomorphisms may imply continuity.
Baker [ﬁ] and Husain [§. ld] have extended the closed
graph theorem for B(jf) groups, where 15 is a category of
Hausdorff groups which is assumed to have some additional
permanence property. Baker imposes a condition involving
inductive 1limit topologies on his groups, all of which are
assumed to be Abelian. We shall not deal with this particular

type of category here; for details, see [#]. |

S5k
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Husain's condition is somewhat simpler, but, since
we depart from his terminology, we must first state a defi=~

nition, which is an adaptation from Isbell [11; P 119].

Definition 1If_} is a category, y a subcategory
of X, anda £ a class of morphisms in %, then ? is said
fo be right fitting with respect to £ if Ye %{, X e and
f+ Y—>X in { together imply Xe y.

Throughout this chapter, the symbol A will be re-
served for the class of morphisms in 4, the category of
all Hausdorff topological groups and continuous homomorphisms,
which are almost open. Similarly, Cy will denote those
morphisms in A, the image of whose domain is dense in the
codomain. . .

Husain's condition is then that - be right fitting
with respect to A. We shall extend Husain's results, and
also consider categories of groups which are right fitting
with respect to £9, as well. | _

In addition, Husain ild] requires that the codomains
of his maps be Abelian. We weaken this condition in two
ways. First, we may simply require that the image of the
domain group be contained in the centre of the codomain.

Our results in this case are strict generalizations of those
of Husain. Second, we may assume that the left and right

uniform structures on the codomain coincide. Besides
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commutative groups, this embraces precompact and compact
groups, as well as locally compact groups whose quotient
group modulo the centre is compact [?5]. In this second
case, we must add some conditions to our maps, so these

results extend, but do not strictly generalize, those of

Husain.
2 Closed Graph Theorems

We first embark on an examination of a technique
which will appear repeatedly in proving various versions
of the closed graph theorem, namely the construction of
a new topology on the codomain.

Consider a homomorphism f + G —>H . For U€ ¥ (H),

let O=sg(c1e™(w) , ur= U0, and 2= {u* : UV (D)},
Let 7/ be a subbasis of open neighbourhoods of ey » and form

a topology for the whole group by taking all translates of

the sets in this subbasis. This topology will be denoted |
throughout this chapter by w.

Lemma 2.1 If f£(G) = Cent H, then w is a group
topology.

Proof: We show that 7V,satisfies the three axioms
(gvi) = (GV3) for a group topology given in Section 0.1.

For (GV1), let Ue ¥/ (H) and let V< 7/ (H) such that
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v2<u. Then (v¥)% = (v)2 = v(idn)T = v3($)2, since £(c)

commutes with every element of H and V<£(G). Now,
(h2 = (z[orge™ nD? = 2(fer et ]
= #e [t n?)) = f(ciG[f'i(vz)])
= r(er e ] = 0.

2

2 A A
Hence, (V¥*)" < V°U < UU = U%,

As for (GV2), Uc U(H) implies U Y€ ¥/ (H), and

(v9)~! = (uh)? = (§)ty?

= U-l(llf)"1 s since f = cent }f:

-1,.-1\A "
=U (U ") , by elementary calculations,
= (U-i)* o

Therefore, ‘(U"‘)* = (U*)'l. ‘and the latter is indeed
in .

Finally, for (GV3), let U< ¥/(H) and a €H. Pick
Ve U/ (H) such that ava~l<U, and let Y = VAU, Then

ay*a~l = ('aYa"i)(af'a'i)
=l A A
= (ata"l)Y , since Y<Cent H,

A
< Uu = U* .,

Therefore, w is a group topology for H.
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Lemma 2.2 If H has equal left and right uniformities,
f(G) is dense in H, and f is élmost open, then w is a group
topology.

Proof: By Theorem 0.1, H has a fundamental system
of unit neighbourhoods which are fixed under all inner auto-
morphisms of He We now invoke the three axioms from Section
0.1 again.

Because of the property of % mentioned above, (GV1)
and (GV2) follow easily, in a manner similar to that of the
previous lemma.

To prove (GV3), we first show that, if U€ «, then U*
is also invariant under all inner automorphisms of H.. We
begin by showing that 6 is invariant undef conjugation by
elements of £(G).

Let t€G, U¢% . Then

§ = gfeage™tu)] = sforge™t (2(e)ve(e) ™))
2 rlergeemt ()]
> £(t)roree™ (u)] 2(4) !
= £()0£(+) 7,
Now, similarly, U2 £(t)~10£(t). Therefore,

(=)
U

> £(+)08(t) "t 2 f(t)\'_f('c)"H‘Jf(*c)._\f('c)'1 e U , whenee

A et
£(t)Uf(t) 1. It then follows easily that U¥* is invari-

>
L[]

ant under conjugation by elements of £(G).
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Now let a be an arbitrary element of H. Since f(G)
is dens’e in H and since f is almost open, there exist y€aG
and V€7 (G) such that a€Cl,f(yV). Given U€%, pick a
symmetric W€ % such that (W*)? < U*. Then (Wa)N£(yV) # &,
and a = x"lf(yt), where x €W and t €V. Hence,
awra™l = x~le(yt)wee(ye)~lx
= x"lyxx, by our previous observations,

< WW*W , since W is symmetric,
#)3 < g
c(w*)” < U* ,

Therefore, (GVi) - (GV3) being satisfied, w is a group

topology.

Lemma 2.3 If w is a group topology and if f has
closed graph, then w is a Hausdorff topology.

Proof:s Let R(f) be the graph of f, considered as
a subset of G x H. We show that N{u* + Ue U ()} = {ey}.

Let y€ NU*. Let U€ ¥ (H), and let We 2 (H) such
that W is symmetric and ‘W2SU. Then yé€W*, whence y = x£(a),
where x€W and a€Cle"1 (W) Such a point a can be rep-
resented as a = tz, where f(t)€W and 2z €V, V being an
arbitrary unit neighbourhood in G. Then az"l = ¢ Gf'l(w),
and so :lE‘(a.)f(z)"1 €W. Since W is symmetric, we have

P(z)e wf(a) = Wx"ly = w?'y < Uy «

It follows that (z,f(z)) € (V x Uy)N\R(f). Since
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U, V were arbitrary unit neighbourhoods, it then follows

that (eG,y)QClGxHR(f). Therefore, (eG.y)GR(f), since

the latter is closed by hypothesis, and so y = f(eG) = ey
It then follows from Theorem 21.4 of [8] that w is a Haus-
dorff topologye.

We now proceed to various forms of the closed graph

theorem, having these properties of the w-topology in hand.

Theorem 2.1 Let —é be a category of Hausdorff
groups which is right fitting with respect to L. Let Ge4 ’
H be a Br(ﬂ) group, and f : (G,v) —> (H,u) be an almost
continuous, almost open homomorphism with closed graph.

If w is a group topology, then re l.

Proof: By Lemma 2.3, (H,w) is a Hausdorff topolo-
gical group, and so is a T3 topological space. We now
apply Proposition 31.9 of [81 by showing that w(u) = w.
Cleariy, weu, so wew(u)<Eu, by Proposition 31.8 of ‘8]-
Hence, it remains only to show tha'o wew(u). .

Let U ¥/ (H), and let Ve ¥/(H) such that VZSU.

We claim V*<Cl U. Let ye€V¥., Then y = sf(x), where s €V

and xéCle"1 (V)e Now, for any symmetric We UV (H),
-1 -1 -1 -1
x€f (V)Cle (W), whence t "x¢€ Cl,f (W), for some

téf-I(V). Hence, x~14 4ECle"'1 (W), since W is symmetric,
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-1
and so £(t) € £(x)£[c1,£71(W)]. Therefore,

A
sf(t) € sf(x)W = yW € yw*,
Also, sf(t)evzg U, whence sf(t)eUunyws # ;5. Since W

was arbitrary, y€ClL,U , so V¥cCl Us Therefore, w(u) = w.

Then the identity map j : (H,u) —> (H,w) is con=-
tinuous and almost open. Furthermore, the map
g1 (G',v) —> (H,w) which coincides with f pointwise is
continuous, for g~ l(U*)= g"l(f[01Gf'1(U)] ) 2 Cle'l(U),

which is a unit neighbourhood since f is almost contihuous.
Hence, g = jf<.£ . Therefore, (H,w)<.£ , since £ is right
fitting with respect to L. ‘But then j is open, since
(H,u) is a B.($) group, and it follows that w = u. But we
have proved that g : ¢ —> (H,w) is in £. Therefore,

f =g and tel.

Corollary 1 Let £ be as above. Let Ge.£, H be

a Br(»é) group, and f :+ G —> H be an almost continuous,
almost open homomorphism with a closed graph. If £(G) is
contained in Cent H, then fe.£.

Proof: By Lemna 2.1, w is a group 'Eop010gy, and
so it is Hausdorff, by Lemma 2.3, It then follows from
the above theorem that fel.

Corollary 2 Let ,6 be as above.s Let H be a Br(,g)
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group, G€ .4, and assume H is Abelian. Then any homomor=-
phism f :+ G —> H which is almost open and almost conti-
nuous and has a closed graph is continuous.

Proof: This is an immediate consequence of Corol-

lary 1, for H = Cent H if H is Abelian.

Corollary 2 is Theorem 1 of [10]. The following,

however, is new.

Corollary 3 Let © be as above. Let G¢.£, H be

a Br(é) group, and assume that H has equal uniformities.
Let £+ G—>H be almosf continuous and almost open, and
have a closed graph. If f(G) is dense in H, then fe¢.£.

Proof's By Lemma 2.2, w is a group topology, and
Hausdorff by Lemma 2.3. It then follows from the theorem
that £¢ £,

We now consider closed graph theorems for the partic-

ular case of Br( q) groups.

Theorem 2.2 Let G be a Hausdorff group, H a B (&)

groups Let f : G —> H be an almost continuous homomor-
phism with closed graph. If f(G)< Cent H, then f is
continuous.

Proof: By Lemmas 2.1 and 2.3, w is a Hausdorff
group topology on H. Hence, (H,w)€ { , and the rest of
the proof follows identically with Theorem 2.1.
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Corollary 1 Let G be a Hausdorff group, H an Abe-
lian Br(d) group. Then any almost continuous. homomorphism

f 1 G—>H with closed graph is continuous.
The above corollary is Theorem 2 of [10].

Remark The category 4 is right fitting with res-
pect to A by definition. However, even the continuous,
open homomorphic image of a Hausdorff group need not be
Hausdorff. For example, the group R/Q with its quotient
topology is indiscrete, although the canonical map

R —> R/Q is both continuous and open.

Theorem 2.3 Let G be a Hausdorff group, H a Br(d)
- group with equal tmiforﬁxi.ties. Then an almost continuous,
almost open homomorphism f : G —> H with closed graph
is in £ if £(G) is dense in H.

Proof: It follows from Lemmas 2.2 and 2.3 that w
is a Hausdorff group topology, whence (H,w)EZ'. The re-
sult then follows identically with Theorem 2.1.

By strengthening the conditions on G, we can prove
still another closed graph theorem for Br( Q) groups.
We must first state the following proposition.

Proposition 2.1 If G is a Hausdorff topological

group with the Baire property, H a separable (or Lindeldf)
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topological group, then any homomorphism f : G —> H is

almost continuous.

This is Proposition 32.11(b) of [8]. The proof is

easy and is omitted.

Theorem 2.4 Let G be a Hausdorff group with the
Baire property, and H a separable (or Lindelof) Br(cl)
groupe Then a homomorphism f : G —> H with closed graph
" is continuous if (a) f£(G) S Cent H, or (b) H has equal uni-
formities, f(G) is dense in H, and £ is almost open.

Proof: By Proposition 2.1, f is almost continuous.
Then f is continuous by Theorem 2.2 in case (a) and 2.3 in

case (b).

We could now draw more corollaries of the type found
in Section 32 of [S]. However, the presence of the assump-
tions (a) or (b) makes such corollaries weaker than known
results. See, for example, Section 6.R of [26].

The foregoing considerations do ehable us, however, .

to prove a form of the open mapping theorem for B( &)

groupse.

Theorem 2.5 Let G be a B(() group with equal uni-
formities, H a Hausdorff group. Then any almost continuous,
almost open homomorphism g 1+ G —» H with closed graph

is open.
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Proof: Ket ’K = Ker g3 by Proposition 30.2 of [8],
K is a closed normal subgroup of Go Let n :+ G —9 G/
be the natural map. Now, G/K is a B.(Z) group, by Lemma
1.4, Let f : G/KI—> H be the unique map such that g = fn.
We claim that R(f) is closed in (G/K) x Hs let F = (G/K) x H.

Let (z,y)€ C1zR(f). Then (UxV)NR(f) # #, for every
neighbourhood UxV of (z,y) in F. Now, 2 = n(t) for some
t € G, so for every neighbourhood W of t in G,

(n(w) x V)AR(E) # $.

Hence, there exists a€W such that (fn)(a) = g(a) €V.
Since V,W were arbitrary, this means (WxV)NR(g) # &,
vhence (t,y) €Cl, . R(g) = R(g). Hence, y = g(t) = fn(%)
= £(z), and so (z,y) € R(f). |

Now, by Proposition 0.3, f is almost open aﬁd almost
continuous, since g has these properties; since f is one-to-
one, its inverse f~' is defined and is also almost open and
almost continuous. Furthermore, R(f) = R(f"l), and so this
set is closed. Also, by Lemma 1.2, G/K has equal unifor-
mities. Hence, f"1 is continuous by Theorem 2.3, and f is'

open. It then follows from Proposition 0.3 that g is open.

We now turn to the other class of maps mentioned in
Section 1, the class,&. of morphisms f:1G—>H in a

for which f(G) is dense in H.
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Theorem 2.6 Let‘.,é be a subcategory of 4 which
ta ylght Fitting with vespect to A2, Iet ged, snd let
H be a B (4 ) group with equal uniformities. Then an
almost pontinuous, almost open homomorphism f : G —> (H,u)
with a closed graph, such that £(G) is dense in H, is in b
Proofs By Lemmas 2.2 and 2.3, (H,w) is a Hausdorff
topological groupe Now let j : (H,u) —> (H,w) be the
identity map. It follows as in Theorem 2.1 that the mapA
g=3jf + ¢ —> (H,w) is continuous. Furthermore, since
wecu, g(G) is dense in (H,w). Hence, ge/\?, and (H,w)é/g.
The fact that j is continuous and almost open follows as
in Theorem 2.1. Hence, j is open, since (H,u) is a Br(tf)
group, and so w = ue Therefore, g = f, and so f is conti-

nuous and in &.

Remark The above theorem subsumes fhe results
analagous to corollaries 1 & 2 of Theorem 2.1. If a homo=-
morphism f has the properties that (1) £(G)<Cent H, and
(2) £(G) is dense in H, simultaneously, then H is Abelian,
for Cent H is closed [B; Proposition 23.%], and so it
must be the whole group. Of course, an Abelian group

has equal left and right uniformities.
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3. A= and G- Right Fitting Subcategories of A

To indicate the breadth of application of the main
results of Section 2, we establish in this section that
some important subcategories of { are right fitting with

respect to the classes of maps we have considered.

Theorem 2.7 The following categories of Hausdorff

groups are right fitting with respect to A
(a) locally compact groups
(b) locally precompact groups
(¢) first countable groups
(d) locally connected groups

{ o>

R ey
W}

~
2 o, ™ - RS S & i = P
e & - -

Proof: (a) Let G be locally compact, H be Hausdorff,
fs 6 ——9;H _in.4!, and V a compact neighbourhood of eqe
Then £(V) is éompact, and so closed in H; i.e., £(V) = Cle(V).
But the latter is a neighbourhood of ey, since f is almost
open. Since the neighbourhoods of ey of the form Cle(U),
where U< 7/(G), are a fundamental system in /{H), it fol-

lows that H is locally compact.

(b) Let V be a precompact neighbourhood of eqr T

and H as in (a). Then f(V) is precompact, and Cl,£(V) is

2

in Y/(H). Let Ue€ 7/ (H), and W€ Z/(H) such that W eU,

Then f(V)=XW, for some finite subset X of H, whence
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Clyf(V) € £(V)W € Xx#2 S XU, Hence, Clyf(V) is totally

bounded, and so precompact. Hence, H is locally precompact.

(¢c) Let G be first countable, {Ui} its countable
fundamental system of unit neighbourhoods, f and H as
before. Let V be a closed set in ¥/ (H). Then

-1
v 2 cne [ (V)] 2 crye(uy),
for some j. But CIHf(Uj)e Y (H), since f is almost open.

Hence, {Cle(Ui)} is a countable local base at ey and H

is first countable.

(d) Let G be locally connected, V a connected unit
neighbourhood in G, f and H as befores Then f(V) is con-
nected, and so is Cle(V), by Theorems 1.4 and 1.6, Chap=-
ter V of [4]. But Clyf(V) is in V/(H), whence H is locally

connected,

We point out that Theorem 2.7(a) has appeared as

Theorem 26.4 of [8]. Its proof is included for completeness.

The above theorem enables us to state one further
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result of the same type as in Section 2.

Corollary 4 to Theorem 2.1 Let G be a first count-

able group, H a countably compact group. If f ¢+ G —» H
is almost continuous and almost open, and has a closed
graph, and if either of the following two conditions is
satisfied:

(a) £(G) € Cent H;

(b) £(G) is dense in H and H has equal uniformities,
" then f is continuous.

Proof: By Corollary 1 to Theorem 1.12, H is a

B..(#) group, where £ is the class of all first countable,
Hausdorff groups. By Theorem 2.7(c), £ is right fitting
with respect to L » By Lemma 2.1 or 2.2, w is a group .

topology on H, so f is continuous by Theorem 2.1.

Before moving on to the next theorem, we recall from
Section 0.8 that, for two Hausdorff groups A and B, we
define Hom(A,B) to be the set of continuous homomorphisms
with domain A and codomain B. This set is always non-empty;
if it consists of only fhe map whose kernel is all of A,

we say Hom(A,B) is trivial.

Theorem 2.8 The following categories of Hausdorff

groups are right fitting with respect to o
(a) compact groups
(b) precompact groups
(¢) Abelian groups
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(d) connected groups
(e) separable groups’:
(f) groups G such thaf Hom(G,A) is trivial, for some
fixed A €.
Proof: (a) is trivial, for if G is compact and
£f(G) is dense in H, then f(G) = H and H is compact.
(b)  Let G be precompact, f: G —>H in &, H €.
Then £(G) is precompact, and so is CIHf(G), as in Theorem

2.7(b). The latter set, however, is H.

(¢) Let G be Abelian, f and H as before. Define
qt HxH—>Hby q(a,b) = aba"'b"l. Then q is continu-
ous, and f(G) x £f(G) € Ker q. Hence,

HxH-= CleH(f(G) x £(G)) & Ker q,

whence H is Abelian,

(d) Let G be connected, f and H as before. Then
£(G) is connected, and so is its closure, as in Theorenm

2.7(c)e Therefore, H is connected.

[

(e) 1Let G be separable, X its countable dense sub-
gset, f and H as before. Then, _ _
H= Cle(G) = Cle(ClGX)‘EEClH(Clﬁf(X)) = Cle(X).

The reverse inclusion is trivial, so H = Cle(X). Hence,

f(X) is dense in H, and this set is at most countable;

therefore, H is separable.
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(£) Let ced such that Hom(G,A) is trivial, f and
H as before. Let +té€Hom(H,A). Then tf € Hom(G,A), whence
tf is trivial. Thus, f(G) = Ker t, and it follows that
Ker t = Cle(G) = H, Hence, t is trivial, and H has the

required property.

Before proceeding to the next theorem, we first
state the following result without proof. The proof may
~ be found in [6; p. 62, Theorem 7.?_) or Y_B; Theorem 26.7].

Lemma 2.4 Let G be a compact, zero-dimensional
group. Then every neighbourhood of the identity contains

a compact open normal subgroup. The converse also holds.

Theorem 2.9 The following categories of Hausdorff

groups are right fitting with respect to é(\ﬂ :
(a) second countable groups
(b) compact, zero-dimensional, Abelian groups; i.e.,
Abelian profinite groups

(¢) groups with equal left and right uniformities,

Proof: (a) Let G be second countable, H e d,
f1 G—>H in ,{n,&, {Ui} the countable neighbourhood

base for the topology of G« Then a€H, V = Cl,V € U(H)

H

together imply f-i(aV) 7‘;5 and contains some Uj' Then

01,£(0;) < o1e (s (av)] = c1y(av) = av, so {c1,2(u;)) forns
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a neighbourhood base for the topology of H, whence H is

second countable.

(b) Let G be compact, zero-dimensional, and Abelian,
f and H as in (a)s By Theorem 2.8, H is compact and Abelian.
Let N be an open subgroup of G; then Cle(N) is an open
subgroup of H. Moreovér. every unit neighbourhood in H
contains one such, for, if B¢V (H) and A€ 7/(1{) such that
ClyA € B, then it follows that £ >(A)€ /(G). Hence, £~ (A)
contains some open subgroup N, by Lemma 2.4. Then Clyf(N)
= Cle[f'i (A)] S ClyA =3B. Hence, H is compact, zero-

. dimensional and Abelian, by Lemma Z,b.
(¢) This has already been proved in Lemma 1.2.

Remark Certain important categories of Hausdorff
groups behave very badly in this connection; in particular,
totally disconnected groups and metric groups are not right
fitting with respect to A{/\A9 and with respect to A?, res-
pectively. As a counterexample to the first, one need only
considér the natural injection of the rationals Q into the
reals R. In the second case, let A be any uncountable set,
and let (Q*)4 be the indicated product with its discrete
topology. This is a metric space with the trivial metric.
Consider the injection (QA)due—evRA, where the reals have
the usual topology. This map is clearly in &, but RA is

not a metric space, since it is not normal [6; Theorem 8.15).
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ke Ultrabarrelled Groups

In an effort to extend the notion of an ultrabarrelled
locally convex space (see [9], for example) to topological
groups, S. O. Iyahen [}é} has defined a g-ultrabarrelled
group. From this, he derives an open mapping and closed
graph theorem which appears to generalize Corollary 32.4
of [8} and our Theorem 2.4,

Unfortunately, Iyahen's proof contains a flaw which
renders his resuit doubtful, although no counterexample is
yet known. In this section, we point out the nature of

this defect and suggest one corrected version.

Definition If (G,u) is a topological group, let V
be a u-closed symmetric subset of G for which there exists
a sequence {Vn} of u-closed, symmetric sets such that:

(i) V12_ SV and szr,_i EVn, for each n;

(ii) for any x €G and integer n, there exists an inte-

-1
ger m such that xV x "<V, .

If, under the group topology v having {Vn} as a base of

" neighbourhoods, the group G is separable, then V is said
to be a group ultrabarrel in (G,u), and {Vn} is said to be
a defining seqéence for Vo If (G,u) has the property that
every group ultrabarrel is a neighbourhood of identity,

then (G,u) is said to be a g-ultrabarrelled group.
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Iyahen then proves that every topological group of
second category in itself is g-ultrabarrelled, and provides
a counterexample for the converse. Hence, the g-ultrabar-
relled groups ihclude the locally compact and complete
metrizable groups.

Iyahen claims to have proved the following : any
closed group homomorphisﬁ (i.es, having closed graph) from
a Hausdorff g-ultrabarrelled space (i.e., group) E into
- a separable, complete metrizable topological group F is
~econtinuous, and any closed group homomorphism from F onfo
E is open.

The first statement depends on his assertion, not
proved in [;g]; that any group homomorphism from a
g-ultrabarrelled group E into a separable group F is almost
continuous. It-is here that the flaw mentioned above oc=-
curs. If one attempts to prove this statement by the
straightforward method of taking an arbitrary symmetric
unit neighbourhood U in F and a sequence_{Un} of symmetric
unit neighbourhoods such that Uf €U and Uﬁ_,,lQUn for '
each n, and claiming that ClEf'l(U) is a group ultrabarrel
with {ClEf-l(Un)} as defining sequence, one quickly dis-
covers that condition (ii) for a group ultrabarrel is evi-
dently not satisfied without some further hypothesis on
the groups. For example, if E is Abelian, condition (ii)

is trivial, and ClEf-i(U) is indeed a group ultrabarrel



and so a unit neighbourhood. As another alternative, we
prove the result for the case where F is separable and

has equal left and right uniformities.

Lemma 2. Every group homomorphism from a Haus-
dorff g-ultrabarrelled group G into a separable group
(Hyu) with equal uniformities is almost continuous.

Proof: Let U be a symmetric unit neighbourhood
in H which is fixed under the inner automorphisms of H.
Since the set of a2ll such neighbourhoods is fundamental

in ¥/(H), we can select a sequence of neighbourhoods

{_Un} having this property such that Uf €U and Ugﬂ < U,
for each n, Let v be the group topology on H having {Un}

750

as its unit neighbourhood basis. Since (H,u) is separable,

so is (H,v), since vsu. Clearly, (H,v) is first countable,

and so it is second countable. Hence, every subspace of

(H,v) is separable, by Theorem 7.3, Chapter VIII of [4].

In particular, f(G) is separable in the relative topology

of (H,v).

‘We now show that 61Gf'1(U) is a group ultrabarrel
on G with {Cle'l(Uh)} as defining sequence. First, all
Cle'l(Un) are closed and'symmetric. since the Un have
this property. Secondly.' (Cle'l(Un))g SCl, f'l(Un) 2

= c15e7 (v2) cc1,e7 (U, ,) . Finally, since the U,

G

are fixed under the inner automorphisms of H, for any
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integer n and a € G, we have

aforget(u]a™ = crgas™ (ua™ = e e(a)v, ea) 7]

= Clgr™ (u).
similarly, a~l[c1,27 (v )]a =c1,671(u ). Hence
s G n’/l% ="%%g n’* :
-1 -1 = "
afer e (u))a™ = 1427 (U ). Therefore, Clyr™ (V) is
a group ultrabarrel on G;3 moreover, {Cle'l(Un)} is a basis

for a group topology, say w, on G.
Since (£f(G),v) is separable, there is a countable
set XSG such that f(X) is v-dense in f(G); that is,
f£f(g) = f(X)[Um/\ f(G)] » for each integer m. Taking iﬁverse
images of both sides, we obtain
¢ = £71[2(e)) = £ [£(x) (un £(6)))
= (X)(Ker £)(£71(U))
< x£™1(u,)? , since Ker £££71(U,) for all m,
< x4 .

Hence, G = X[Clgf'l(um)] s for any m, and it follows that

(G,w) is separable. Since G is a g-ultrabarrelled group,
it follows that Cl,£™1(U)€ ¥(G), and so f is almost

continuous.

The proof of the following is along lines dual to

the above.
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Lemma 2.6 Every homonorphism from a separable group
(Hyu) with equal uniformities onto a Hausdorff g-ultrabar-

relled group G is almost open.

With these results in hand, we can now state the

following modified version of Iyazhen's result.

Theofem 2,10 Let G be a Hausdorff g-ultrabarrelled
group, H a separable locally compact or complete metrizaﬁle
group with equal uniformities. Then any homomorphism
f £+ G —>»H with a closed graph is continuous, and any
homomorphism g s+ H —» G with closed graph is open.

Proof: This follows at once from the two lemmas

above, and from {?63 pe 213, R(a) and R(c)].

Finally, we can apply our own earlier results to

obtain:

Theorem 2.11 Let G be a Hausdorff g-ultrabarrelled

group, H a separable B,.(A) group with equal uniformities.
If f s+ G—>H is almost open and has a closed graph, and '
if £(G) is dense in H, then f is continuous.

Proofs By Lemma 2.5, f is almost cdntinuous.

The result then follows from Theorem 2.3.

Theorem 2.12 Let G be a B( Q) group with equal

uniformities, H a Hausdorff g-ultrabarrelled group.
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- Then any homomorphism f ¢ G —> H with a closed graph
is open.
Proof: By Lemma 2.6, f is almost open, and the

result follows from Theorem 2.5.



CHAPTER 3

THE OPEN MAPPING AND CLOSED GRAPH THEOREM
FOR EMBEDDABLE TOPOLOGICAL SEMIGROUPS

1. Introduction to Embeddability

In this section, we consider the properties of a
particular class‘of Hausdorff topological semigroups,
namely those which can be embedded as an open subspace of
a topological groups The question of when such an embed-
ding exists has been investigatéd by.a nﬁmber of authors:
Gelbaum, Kalisch and Olmsted [5] » Christoph [3] , and
Rothman [18}. The last-named éﬁthqr gives a concise
statement of the relevant elementary facts which will

be quoted verbatim.

‘"An outline of the embedding of a commutative semi=-
group with cancellation in its group of quotients follows.
Let S be such a semigroup; then the set S x S is again
sﬁch a semigroup when the binary operation is defined
coordinatewise. In S x S, define (a,biR(é,d) » where
(a,b), (c,d) €S x S, iff ad = be. It follows easily that
R is a congruence relation on S x S (the symbol R will be
used to denote this relation). Let G be the collection

79.
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of equivalence classes modulo R; then, G is a group and is
called the group generated by S. Let #': S xS —> G be
the natural mapping which assigns to each (a,b)€S x S
the equivalence class in G containing the element (a,b) (*).
It is easy to see that ” is a homomorphism. For b, any
element of S, define P 1 S —>» G by P(x) = 7(xb,b).
It follows ;hhat P is a well defined isomorphism of S into
G and is independent of the choice of bs The function P
is the embedding of S into the group generated by Seees
"When S is a commutative {topological) semigroup
with cancellation, let S x S have the product topology,
and the group generated by S the quotient topologys; that
is, 0 is open in G iff 17"'1(0) is open in S x S. The semi-
group S is said to be embeddable in G iff G is a Hausdorff
topological group énd P is a homeomorphism onto P(S), with
the relative topology induced by G."

Several other concepts introduced by Rothman merit
mention here. First, he obtains an internal characteriza-.
tion for a semigroup to be embeddable in a topological

group in the manner described above.

Definition A topological semigroup S is éaid to
have Property F if x,y €S and V an open set containing x
together imply there is an open set W, with y €W, such that
Xy € /\{vr_ : y'cw} and yxe N{y'V y e}

(*) The unit of G is clearly the image under 7r of
the diagonal of S x S. '
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His fundamental result is the following:

Theorem 3.1 Let S be a commutative topological
semigroup with cancellation. A necessary and sufficient
condition that S be embeddable as an open subset of G, the

group generated by S, is that S have Property F.

The proof is complicated, involving several lemmas,
and will not be reproduced here. For details, see [18].

Finally, the open mapping and closed graph theorem
for complete metric, separable, commutative semigroups with
cancellation and a further convergence property was consi=-
dered in [5; Theorem 17}, and Rothman has also proved a
theorem in this direction. Because he constructs a map
which is of great importance iﬁ what follows, we state and

prove the following result, which is Theorem 4.1 of [13}:

Theorem 3.2 Let S,T be commutative, cancellative
topological semigroups, embeddable in the topological
groups G,H, respectively. Assume that S is locally compact
(localiy complete metrizable) and separable, and that T
is a second category subset of H, a topological (metric)
group. If £ : S —» T_io a continuous homomorphism, then
f is open.

Proof: Let Ty be the natural map of S x S onto
G, the group generated by S, and let T, + T x T —>H
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be defined by my(ty, t3) = fttgl. Define (f x f) from
SxS to TxT in the natural way, and consider the

diagram

2
7

H—> o

in which h(x) = 1?2(f X f)ﬂ'Ii(x). This is, of course,

an abuse of notation, in that W’Il(x) is an equivalence
class of the elements of S x S. However, it is easy to
check that the choice of a representative from within this
class is immaterial, and that h is indeed well-defined.

It then follows that h is a continuous homomorphism, and
h(G) econtains T, a second category subset of H. By Theo-
rems 5 and 6 of [13], h is open. But S is open in G, and
it follows that £ is also open.

Notation We pause to make certain notational con-:
ventions. Throughout this chapter, the letters S and T will
denote commutative, cancellative topological semigroups
which are embeddable in the Hausdorff topological groups
G and H, respe?tively. The extension of the semigroup
homomorphism f 1+ S —» T constructed above will be denoted

as h : G —» He These assumptions underlie all the results
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which follow, unless the contrary is stated, and no further

explicit mention of them will be made.

25 B-Completeness and Preliminary Results

Definition A topological semigroup S will be called
B-complete if every cohtinuous and almost open homomorphism
from S onto a Hausdorff topological semigroup T is open,
Bp-complete if every such map which is also one-to-one is
open.

The following result shows that the property of
BQcompleteness is possessed by a wide class of topological

semigroups, namely those which are locally compact.

Theorem 3.3 Let X be a locally compact topological'
space, Y a Hausdorff space, f : X —» Y a continuous,
almost open mappings Then f is open.

Proof: Let x¢ X; N be a compact neighbourhood of x.
Then f(N) is compact, and so is closed in Y. Then '
£(N) = Clyf(N), but the latter is a neighbourhood of f(x),

since f is almost open. Hence, f is open.

The fact that a locally compact semigroup is B-complete
then follows, as a special case. |
Another class of semigroups, those which are locally

complete metrizable, are also B-complete. To show this,
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however, we must first establish some results of a téchnical
nature.

We first show that certain useful properties of the
homomorphism f :+ S —> T are inherited by its extension

h s G—>H.

Lemma 3.1 Let £ Sr-——>"l‘ be a homomorphism.

If £ is (a) continuous, (b) open, (c) almost continuous,
(d) almost open, (e) one-to-one, (f) onto, or (g) endowed
with the closed graph property, then h t G —> H has
the same property.

Proof: (a) This is embodied in the proof of
Theorem 3.2.

(b) Let Ve U(G)s then, for any s, €S, we have
(s ,¥NS) € V(S:so). whence f£(s,VNS) is open in T and
contains f(s,). Now, f(soVNS) is open in H, since T is,
and h(V) 2 £(s,) " £(s,VAS). Hence, h(V)€ ¥/ (H), and it
follows that h is open.

(¢) Let xeG, B€ YV (H; h(x))e Then h(x) = h(s1851)
= f(sl)f(sz)"‘, where s,, S, €S. Hence, there are neigh-
bourhoods Cy, Cp of h(sq)» h(sy), respectively, such that
cicglsB. Then

-1 -1
ClGh (B)9 Cl h (010 )'—'D Cl h (Cl)h (CZ)

2 c1gh™ (cy) (c1n7 (e,



85
201567 e n 1) caget(e,n)

Since f is almost continuous, Clsf"l(cin T) is a neigh-
bourhood of s; inS, for i =1, 2, and so a neighboup-

hood of s; in G. Hence, ClGh"'1 (B)v contains a neigh- |
bourhood of x = siszl, and so h is almost continuous.

(The converse is also true, for x€S, Ve ¥ (T; £(x)) implies

01Sf'1(v) - sr\01Gh‘1(v)e U (ss x).)
(d) Let vey(a). Then Clzh(V) = Q1Hh(af‘1aV).'

for any a €S, whence Clyh(V) = h(a™1)Clzh(aV), and this
in turn contains h(a'i)Cle(aV/\S). But Cle(an'\ S) is
in Y(7s f(a)), whence h(a"i)Cle(an\ S) is in Y (H).

Furthermore, h(a™)Clof(aVAS) = Cl;h(V), o h is almost

opene.

(e) Let f be one-to-one, and let x, y€Ge Then

x = 81351 s ¥ = alagl. for some sy, Sy 84 2, €S

L3

Then, if h(slsgl) = h(x) = h(y) = h(alasl), it follows that

h(slaz) = f(slaz) = f(alsz) = h(aisz)a Since f is

one-to-one, S48, = 84S, » whence 81851 = ala‘z'i, and x = y.

Hence, h is one-to-one.

(£) This is trivial, for S, T generate G, H
algebraically.
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(g) Let f have the closed graph property, and let
R(f) and R(h) be the graphs of f and h, respectively. Then
R(£)=S x T, R(h)SG x H, and R(£)=R(h).
Let (a,y) €ClgyR(h). Then, for any U x V in

V(e x H), (aU x yV)NR(h) # #. Now let s, €S; then
(s,U x h(sa™t)yV)AR(h) # g, for (s,£(s)) €(al x yV) im-

is, h(soa'is)) is a point of

plies (soa'
(s,U x h(sga™t)yV)AR(R).

Since S is open in G, we can assume that U = sng,
~ where Be U (S; s_); similarly, we may assume that
V= f(so)'ic. where Ce UV (T; f(s,)). Then, for any such
B and C, |

(5,551B x h(s,a™l)yf(s,)~1c)NR(n) # £,

whence (B x h(a'i)yc)r\ R(f) # ¢ . Then for each B x C
in U(s; s,) x U(Ts £(s,)), there exists sg,g €B such
that f(sBxC) €h(a)-1yc. This yields a net

‘6‘= {.sBxc t BxCe Y(ss s;) x V(T3 f(so))} s
where f(sBxC)é h(a)'lyc. Since f\lf(T; f(so)) = {f(so)}.
we have f£(8) converging} to h(a)-iyf(sd). Clearly, A

converges to s,, and so f(s,) = h(a)-lyf(so), since R(f)
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is closed. Then y = h(a), and so R(h) is closed.

Remarks (1) Since all our semigroups are pre-
sumed commutative, the associated groups are also commuta-

tive, for, if 849 Sy €S, then si’lszsl = si’lslsz =85

whence s"‘ls s s"1 =g s"1 Hence, sTls, = s,sl, and
1 °2°1"°1 2~1 * s B Mk 2°1 ?

it follows that G is Abelian.

(2) As for topological properties, we will wish
to consider those of a certain nature; namely, if s is
a topological semigroup with property (P) and if S is
embeddable in a topological group G, then G also has pro-
perty (P).

It suffices that the category of topological semi-
groups with property (P) be right fitting with respect to
continuous, open mappings and closed with respect to finite
products. Many such properties are of a "local" nature:
first countability, local metrizability, local connected-
ness, local compactness. Others include compactness,
connectedness, second countability, and separability.

(3) There is some inconsistency in the use of the
term "topological invariant® with respect to complete
metric spaces. Some authors, [7; p. 81] and [21: p..lho},

cite counterexamples to show that a homeomorphism does

not preserve the complete metric property. others.[zo;.p. 3?}
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and (4; Do 295], for example, maintain that this property
is indeed a topological invariant. The latter author is
more explicits we paraphrase his Theorem 2.5(1), Chapter XIV:
if X is a complete metric space, Y a topological space,
and there is a homeomorphism from X onto Y, then there is
a metric on Y which generates the topology of Y and with
respect to which Y is a complete metric space. Fortunately,
this sense is sufficient for our purposes, and it is in
this sense we shall use the term.

()  Pursuant to Remark (2), it is evidently not
the case that B-completeness is transmitted from a semi-
group to its associated group, in general. This will
necessitate the addition of certain assumptions to
subsequent theorems. The best we can state in this direc-
tion is the following, whose proof is a trivial consequence
of Lemma 3el. | '

Lemma 3.2 Let S be a B-complete semigroup, T a
Hausdorff semigroup, f + S —» T a continuous, almost
open homomorphism. Then the induced map h : G —» H is ‘

open.

Having established these preliminaries, we proceed
to prove that another large class of semigroups has the

property of B-completeness.
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Theorem 3.4 ~ A locall, complete metrizable semi-
group is B-complete. |

Proof: Let S be such a semigroup, subject to the
conventions outlined in Section 3.1. Since S is embeddable
in its associated group G, it is open therein. Then,
for any sée-s and any complete metrizable heighbourhood
v in Y(S; S,) s s;1V is a complete metrizable unit
neighbourhood in G, since translations are homeomorphisms
[183 Lemma 3.£1 and complete metrizability is a topological
invariant in the sense described in Remark (3) above.

Then G is a locally complete metrizable group, and so a
B(A ) group, by Theorem 1.2. .

Let f ¢+ S —3> T be a continuous, élmosf open homo=-
morphisme. It follows from Lemma 3.1 that the induced map
h: G —> H is continuous, almost open, and onto. Hence,

h is open. Since S, T are open in G, H, respectively,
and h|S = f, it follows that f is open, and that S is

B-complete. )

In a manner analagous to groups, we may define a
condition weaker than that of B-completeness‘for semi-
groups. If _4 is a category of (embeddable!) topological
semigroups, we say that S is a B(.{) or Br(aﬂ) semigroup
if every continuous and almost open homomorphism from S
onto a semigroup in 45 is open. The following result

illustrates this idea.
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Theorem 3.5 Let 131 be the category of first

countable semigroups. Then every locally countably
compact, and hence every countably compact, semigroup is
a B(-$4,) semigroup.
Proof Let S be a locally countably compact, T
a first countable semigroup, f : S —» T a continuous,
almost open homomorphism. ILet x€S, and let V be a
~ countably compact neighbourhood of x. Then £(V) is a
countably compact subset of Ty and so it is closed in T,
by Theorem 3.6, Chapter XI of [4]. But Clpf(V)e /(15 £(x)),
since f is almost open. Then f(V)é /(T3 £(x)), and so £

is open.

The above result is true, of course, even without

our embeddability assumptions.

3. Open Mapping and Closed Graph Theorems

We now prove a result analagous to Theorem 1 of [10],
which we will apply in a variety of situations. Let P be
a property which is transmitted from an embeddable topolo-
gical semigroup to its associated topological group. Let
4{ be the category of Hausdorff topological semigroups with
property P, and 45* that of topological groups with the
same property. Further assume that _/* is right fitting
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with respect to continuous, almost open homomorphisms.

v

Theorem 3.6 Let S€4£ and T be a Br(,z) semigroup.
Then if H is a Br(lé *) groupand f 1+ S —> T is almost
continuous, almost open, and has a closed graph, then f
is continuous.

Proof: By Lemma 3.1, the extension of f, the homo-
morphism h 3+ G —> H is also almost continuous, almost .
open, and has closed graph. By the assumptions above,
Ge£ *. Then, by Theorem 1 of [10], h is continuous, and

s0 is its restriction h[S = f,

Th_eofem 3.7 Let S be any Hausdorff semigroup,
T a B,-complete semigroup. If H is a B.({) group and if
f s+ S—>T is almost continuous and has closed graph,
then f is continuous.

Proof: By Lemma 3.1, h is almost continuous and
its graph is closed. Then h is continuous, by Theorem 2

of [10], and so f is continuous.

Remark It has already been demonstrated by means
of a counterexample (Example 1.4) that the portion of
Proposition 31.7 of [8) which pertains to B.(-£) groups
is false. Theorems 32.8 and 32.9, which depend on this
proposition, must therefore be amended. It suffices to
make the slightly stronger assumption that E be a B({)

group; this category is closed under quotients, and the
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arguments of [8] become valid.

Theorem 3.8 Let S be a B-complete semigroup, T any
Hausdorff semigroup. If f + S —3)» T is almost open and
has a closed graph, and if G is a B({ ) group, then f is
open. | |

Proof: Since H is Hausdorff and h 1+ G —) H is
almost open and has a closed graph, it follows from the
- amended version of Theorem 32.8 of [8] that h is open.

Therefore, £ is open.

Before proceeding to open mapping and closed graph
theorems of a more specialized type, we first establish

some further preliminary results.

Lemma_3. If a topological space X has the proper=-
ty that every point has a neighbourhood which is a Baire
space, then X is a Baire space.

Proofs Suppose the contrary. Then, for some
countable closed covering {An t ne_lg_} of X, IntyA = ¢,
for all n. Let x,€ X, and let B be a neighbourhood of x,
which is a Baire space. Then {_Anf\B s neﬁ} is a closed
cover for B of the required cardinality. However,

Intg(A, NB) = BAIntyA = p, for all n. This contra-
dicts the assumption that B is a Baire space. Hence, X is

a Baire space.



93.

The above is found in [ll-], Chapter XI, Exercise 10.4.
The proof is included for completeness. From this, we ob=-

tain the following very easily.

Lemma 3.4 If S is a Baire semigroup, then the asso-
ciated group G is also endowed with the Baire property.
Proof:s Since S is open in G, for any x€G, se€S,
we see that xs™1S is a neighbourhood of x which is a Baire
space, since Baire spaces are invariant under continuous,

open surjections. By Lemma 3.3, G is a Baire space.

Proposition 3.1 Any homomorphism f of a separable
topological semigroup S onto a Baire semigroup T is almost
open.

Proof: Since separability is preserved under finite
products and continuous images, G is separable. By Lemma 3.4,
H is a Baire group. Then, by Proposition 32.11 of [8],

h is almost open. Now, if B€ ¥/ (S; xo), then Cle(B)
= TNC1yf(B)¢ U (73 f(x,))e Hence, f is almost open.

L}

Proposition 3.2 Every homomorphism f of a Lindeldf

topological semigroup S onto a Baire semigroup T is almost
open.

Proof: Let BeV (S; x,)¢ Then xgiBe ¥ (G), and
so S = U{S Nsx31B séS}. Since S is a Lindelof space,

there exists a countable subset {si : ieﬁ} of S such that
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S = U{Sn six;"B : iey_} « Hence, T = U{f(sr\sixgis) : iey_}

sU{T(\h(six;lB) t ieﬁ}. Since the reverse inclusion is

trivial, equality holds. Because T has the Baire property,

Clyp (TN h(snxng)) has non-void interior, for some n €N.
Hence, [h(x,s;1)Clp(TNh(s x518))|NT < Clgh(B) = Clof(B)
contains an open set. Therefore, f is almost open.

Proposition 3.3 Let S be a Baire semigroup, T a

separable semigroup, and f, t S —> T a homomorphism. Then
f is almost continuous.

Prooft By Lemma 3.4, G is a Baire group; H is
separable since T has this property. Hence, h 1+ G —> H
is almost continuous, by Proposition 2.1. Now, if
Be U(Ts £(x,)), then Clgf™1(B) = sNClgh™(B), and the

latter is in 7V/(Ss X,)e Therefore, f is almost continuous.

Proposition 3.4 Every homomorphism f of a Baire

‘

semigroup S into a Lindelof semigroup T is almost continu-

Oous.
Proof: Let a<S, Be / (T; f(a)). Then f(a)-iB eV (H).

'1st(a)"1B. Since T is Lindelof,

Let V€ 7/(H) such that V
it follows that Cle(S) also has this property; now,
Cle(S) = TﬂCle(S)

= oA N{gsv + wey ()}
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= N{z(sywnt + we Vm}.
In particular, Clpf(S) & £(S)VNT. Since Clpf(S) is Lin~-
deldf, it follows that
clp2(s) = U{t(s;)vAT 1 1en],

for some eountable subset {Si} of S.

then s =U{r™[z(s;)vn1] + 1€N}, and it fol-

lows from the fact that S has the Baire property that, for
some ne€N,

IntClf 2 [£(s )vnT] # £ .

s¥*s n

Hence, there exists pe€S such that

' -1

Clgf [f(sn)vr\'r]e V(ss p)
whence there is some open U€ /(G) such that

v s p tergr (s, ) VN1,

Then U C (Clsf-l[f(sn)vnTl)-l(C]_.Sf-:"[f(sn)Vr\ 7))
scig[(e™ [e(s vt T (£ [e(s ) v T])]
cc1ht [t )vT) T (2(s )VAT))
sc1n (v lv) 2 c1gn [£(2) 78]

Now, (auUns)< Y (S; a), and
“auns € (aclh  [£(a) '] )Ns,

e (c1™ [2(a)2(a) " B8] )N

= 152”1 (8) .
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This shows that f is almost continuous at the point a.

Since this point Qas chosen arbitfarily. f is almost

continuous.

We now turn to some versions of the open mapping

theorem.

Corollary 3.1 Let S be a separable (or Lindeldf)

B-complete semigroup, T a Baire semigroup. Then any
continuous homomorphism f ¢+ S —s» T is open.

Proof: By Propositions 3.1 and 3.2, such a homo-
morphism is almost open, and so is open, since S is

B=-complete.

Corollary 3.2 Let S be separable (or Lindeldf) and
locally complete metrizable, T a Baire semigroup. Then
any continuous homomorphism f : S —» T is open.

Proof: This is a consequence of Corollary 3.1,
since every locally complete mefrizable semigroup is

B-complete, by Theorem 3.4. ’

Corollary 3.3 Let S be a separable (or Lindelof),
locally complete metrizable semigroup, T locally complete
metrizable. Then any continuous f : S —» T is open.

Proof: Since a complete metrizable space is a
Baire space, by Theorem 0.2, T is locally a Baire space,

and so is itself a Baire space, by Lemma 3.3. The result
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then follows from Corollary 3.2.

Corollary 3.4 Let S be a locally compact, second

countable semigroup, T a Baire semigroup. Then any con-
tinuous homomorphism f : S —»T is open.

Proofs Every second countable space is Lindeldf;
hence, f is almost open, by Proposition 3.2. Then f is
open, since every locally compact semigroup is B-complete,

by Theorem 3.3.

Corollary 3.5 1Let S and T‘be locally compact semi-
groups, with S second countable. Then any homomorphism
f + S—» T which is continuous is also open.

Proof: A locally compact'space is a Baire space,

by Theorem 0.2. This result then follows from Corollary 3.4.

Corollary 3.6 Let S be a separable (or Lindeldf)

B-complete semigroup, T a locally compact Hausdorff semi=-
group. Then any continuous homomorphism f :+ S —» T is
opene.

Proof: This follows at once from Corollary 3.1,

since T is locally compact and hence Baire.

Corollary 3.7 Let S be a separable (or Lindelodf),

locally complete metrizable semigroup, T a locally compact
Hausdorff semigroup. Then any continuous homomorphism

£f s+ S—»>T is open.
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Proof: This follows at once from Corollary 3.6

and Theorem 3.4.

Corollary 3.8 1Let S be a Baire semigroup, T a sep-

arable (or Lindeldf) semigroup such that H is a B (4) group.
If £f:+ S —>T is a homomorphism with closed graph, then
f is continuous. | |

Proof: Since S is a Baire space, so is G, and H is
. separable since T has that property. Then h ¢+ G —» H is
almost continuous, by Propositions 3.3 and 3.4. Then, ﬁy

Theorem 3.7, h is continuous, and so f is continuous.

Corollary 3.9 Let S be a Baire semigroup, T a sep-
arable‘(or Lindel6f), locally complete metric semigroup.
Then any homomorphism f : S —> T with a closed graph is
continuous.

._ Proofs Since T is locally complete metric, H has
this property, and so is a B({ ) group, by Theorem 1.2,

The result then follows from Corollary 3.8.

Corollary 3.10 ©Let S and T be locally complete

metrizable semigroups, with T separable (or Lindelof).
Then any homomorphism f : S —> T with closed graph is
continuous.

Proof: A locally complete metrizable space has the

Baire property. Hence, this follows from Corollary 3.9.
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orollary 3.11 Let S be a Baire semigroup, T a

locally compact, second countable semigroup. Then any homo=-
morphism f : S —» T with a closed graph is continuous.
Proof: Since T is locally compact, so is H, whence
H is a B( ) group. Furthermore, every second countable
space is separable. It then follows from Corollary 3.8

that f is continuous.

Corollary 3.12 Let S be a locally compact semi=-
group, T locally compact and second countable. Then any

homomorphism f : S —> T with a closed graph is continuous.

Corollary 3.13 Let S be a locally compact semi=-
group, T a separable semigroup such that H is a Br(d)
group. Then any homomorphism f : S —=> T with closed
graph is continuous. '

Proofs of Corollaries 3.12' and 3.13: These
results follow from Corollaries 3.11 and 3.8, respectively,

since every locally compact space is a Baire space.

'gemark These results have essentially followed
the pattern of Section 32 of [8}. However, our results
gain nothing in generalit_y by proceeding to consider the
compact case, for a compact, cancellative topological

semigroup is a topological group [24].
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