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ABSTRACT 

To determine the detectability of thermal radiation 

from the surface of a neutron star, the surface tempera-

ture as a function of time is needed. To find this, the sur­

face temperature as a function of core temperature is found; 

this ratio depending on temperature, stellar mass, and magne­

tic field strength. The energy loss rates from photon emis­

sion and neutrino emission are calculated, along with the 

specific heat of the star; the latter two quantities depen­

ding on the core temperature. The surface temperature as 

a function of time is then calculated for various combina­

tions of the variable parameters: stellar mass, equation of 

state, magnetic field, superfluidity, and pion cutoff density. 

Finally, a calculation of the detectability (distance vs. age) 

of a typical neutron star is made, using the estimated capa­

bilities of the X-ray telescope on the Einstein Observatory. 

iii 



ACKNOWLEDGEMENTS 

I would like to thank my supervisor Dr. Peter Su­

therland for introducing me to this topic, and for his 

words of wisdom without which I might never have finished. 

I have also enjoyed many interesting discussions with other 

members of the theory group, notably with Frank Hayes and 

with my dinner companion Axel Becke. 

I also thank McMaster University for financial 

support these past two years. 

Finally, my appreciation goes to Mrs. Helen Kennelly 

for typing this thesis faster than I believed possible. 

iv 



CHAPTER I 

INTRODUCTION 

The experimental evidence for neutron stars has 

grown enormously starting with the discovery of pulsars in 

1967. Over one hundred and fifty pulsars have been found, 

and they are almost certainly rotating, magnetized neutron 

stars (for a review see Manchester and Taylor 1977). Also, 

X-ray bursters and compact sources in X-ray emitting binaries 

have been identified as neutron stars (see for example Joss 

and Rappaport 1976) • 

To learn more about neutron stars, it would be use-

ful to observe direct surface radiation from them. This has 

yet to be achieved. From theoretical considerations, and from 

the spectra of X-ray bursters (van Paradijs 1978, 1979), neu-

tron stars are found to have radii ~ 10 km for the lumino-

2 4 sity (L = 4rrR crT ) to compare to that of a main sequence star. 

Such a high surface temperature implies a spectrum strong 

in soft X-rays; therefore such radiation is looked for with 

X-ray detectors. These detectors must be taken above the Earth's 

atmosphere since it is opaque to X-rays. The recent launchings 

of the High Energy Astronomy Laboratory (HEAO) satellites are 

responsible for much of the current interest in neutron star 

cooling. 

1 
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novas, 

Neutron stars are believed to be formed in super­

wi th very high initial temperatures (~ 10
11 

K). As 

they have no internal energy sources, neutron stars will 

cool off monotonically with time until they are no longer de­

tectable. The aim of the present work is to determine the 

temperature of a neutron star as a function of age; this is 

useful since the ages of certain pulsars and supernova rem­

nants are known. The cooling rate is affected by certain 

parameters (mass, magnetic field), and is sensitive to some 

uncertain properties of high density matter (equation of 

state, superfluidity parameters, possible pion condensate); 

therefore observations of surface temperature and age should 

reveal information about the star in question and of high 

density matter in general. 

Such calculations of cooling rates have been done 

previously (see for example, Tsuruta and Cameron 1966; Tsuruta 

1974, 1978; Maxwell 1979), however, the present work attempts 

a more detailed and exact calculation. In this work the best 

available opacities, conductivities, specific heats, and 

neutrino emissivities are made use of. The effects of varia-

tion in the high-density equation of state and variation in 

mass are explored. General relativistic effects are included; 

they are of order unity in many cases. The equation of state 

in the outer layers is accurately treated (for non-magnetic 

stars). Also, realistic superfluidity estimates are used as 
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opposed to the extremes used by other authors. 

The general assumptions made in solving the problem 

should be noted here: (i) the star is taken to be spheri­

cally symmetric (rotation is neglected; it introduces a 

small asymmetry); (ii) the structure of the star is unchan­

ging in time; (iii) there are no energy sources (the star 

merely loses stored heat); and (iv) for stars with magnetic 

fields, the obviously unrealistic use of spherical symmetry 

is meant to simulate an 'average' effect, and so should be 

looked upon more as a qualitative calculation. 



CHAPTER II 

EQUATIONS OF STELLAR STRUCTURE 

The general relativistic differential equations of 

stellar structure for a spherically symmetric star are 

(Thorne 1967) : 

a) Mass equation. 

dm 
dr 

Here m(r) is the mass interior to radius r. 

b) Tolman-Oppenheimer-Volkoff equation of 

hydrostatic equilibrium 

dP 
dr 

= -G(p+P/c
2

) (m+4nr3P;c
2

) 

r 2 ( l-2Gm/rc2 ) 

(2.1) 

( 2. 2) 

P is the pressure and pc
2 

is the total mass-energy density, 

including internal energy. 

c) Source equation for the gravitational 

potential ¢. 

d<P = 
dr 

G(m+4nr3P/c2 ) 
2 2 2 r c (l-2Gm/rc ) 

4 

(2.3) 
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d) Equations of energy generation at constant 

composition (no net nuclear reactions) 

(2.4) 

Here ~~ is the rate of change of entropy per particle, and 

n is the number density of particles. Equation (2.4) states 

that the contribution to the energy flux from a spherical 

shell of radius r is determined by the rate of change of 

the heat content of the shell. 

The luminosity L(r) is that measured locally by an 

observer at rest with respect to the star. The luminosity 

is given by 

(2.5) 

where L and L are the photon and neutrino luminosities, 
y v 

respectively. 

The second equation of energy generation is 

(2.6) 

where qv is the neutrino emissivity per particle. The neu­

trinos are produced by a variety of mechanisms and, by vir-

tue of their long mean free paths, escape directly from their 

point of production. 
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e) Equation of energy transport. 

= 
-3KpL ecp 

16aT3 4Tir2 (1-2Gm/rc2 ) 112 
(no convection) 

dT 
dr 

f 2-l T dP 
= r-;- P dr (convection) 

6 

(2.7) 

( 2. 8) 

The lesser in magnitude of the two temperature gra-

dients is used. (However, none of the neutron stars exa-

mined in this work have convective layers.) 

Th . t (. 2 -1) . e opac1 y K in cm -g in eqn. 

1 
K 

= 1 + 1 
K c 

(2.7) is given by 

( 2. 9) 

where KR is the radiative opacity, and Kc is the conduc­

tive opacity, which is inversely related to the thermal 

conductivity. 

At high densities Kc << KR, therefore K ~ Kc' and 

this decreases rapidly with increasing density. Thus the 

temperature gradient (2.7) becomes negligible at densities 

10 -3 much above 10 g-cm This allows a natural division of 

the star into two regions: an 'isothermal' core and an 

outer envelope. By 'isothermal' one means that there is 

no thermal energy flux. As a consequence of the gravitational 

redshift this implies that Te<P = constant. It should be 

noted that the outer envelope contains a negligible frac-
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tion of the star's mass and heat. 

The rate of loss of internal energy is found by 

integrating eqns. (2.4) and (2.6) through the isothermal 

core: 
R 

2<t> - f c ne<PT ds 4nr2dr 
L(Rc)e 

c (2.10) = dt (l-2Gm/rc2 ) 1/ 2 

r=O 

2<1> ~ re ng r 2 <1> 
2 

L (R ) e c 4nr dr ( 2 .11) 
( l -2Gm/rc2 ) 172 . v c v 

r=O 

Here <Pc= </>(Rc) is the gravitational potential at 

the core-envelope boundary, r = Rc. The entropy derivative 

in egn. (2.10) may be written in terms of the specific heat: 

ds 
T dt = (2.13) 

Define a new temperature parameter T' = Te<P. Then 

dT' </> dT de¢ 
dt = e dt + T dt 

= e¢ dT 
dt 

since the structure of the star does not change with time. 

times 

As already seen, T' is independent of radius at all 

dT' 
(in the core) . It follows that dt is also indepen-

dent of radius. Therefore eqns. (2.10) and (2.11) may be 

rewritten as: 



and 

2¢ 
L (R ) e c 

c 

r=O 

dT' 
= - dt 

RIC 

r=O 

r=O 

nC dV v p 

nq e
2

<P dV v p 

where av is the differential for the proper volume. 
p 

8 

(2.14) 

(2.15) 

Our goal is to determine the surface temperature of 

a neutron star as a function of time. Rewriting eqn. (2.14) 

gives the following equation for the rate of change of the 

core temperature: 

= 

dT' 
dt = 

2¢ 
L(R )e c 

c 

f nc av 
v p 

2¢ 2¢ 
L"(R )e c+L (R )e c 

v c y c 

f nC dV 
v p 

(2.16) 

Each of the three terms on the right side of eqn. 

(2.16) must be evaluated as a function of T'. The specific 

heat and neutrino luminosity depend simply on the density, 

temperature and gravitational potential; and the relevant 

terms are evaluated in chapters four and five. The photon 
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luminosity depends on the effective surface temperature T . 
s 

Thus, to solve for the cooling curve, the relation-

ship between the core and surf ace temperatures must be 

established. We turn to the determination of this rela-

tionship in the next chapter. 



CHAPTER III 

THE CORE-SURFACE TEMPERATURE RATIO 

To solve for the cooling curve, the surface tempera-

ture must be found as a function of core temperature. This 

is accomplished by integrating the temperature gradient (2.7) 

throughout the outer envelope. However, as eqn. (2.7) is 

coupled to the other equations of stellar structure (2.1)­

(2. 6), the whole set should be solved simultaneously. This 

can be much simplified by using certain approximations valid 

in the outer envelope. 

III.l Equations for the Outer Envelope 

a) Mass and Pressure 

The outer envelope contains a negligible fraction 

-6 (about 10 ) of the star's mass. Therefore m(r) ~ M, the 

total mass of the star. 

The pressure at a given point is just the weight per 

unit area of the matter above. Therefore, with 6m being 

the mass of the outer envelope, 

2 
4nr P GM6m M 2 = ~~2 << (3.1) 

c re 

since 6m <<Mand GM
2 

< 1. Thus, in eqns. (2.2) and (2.3), 
re 

we can set 

10 
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3 
m + 4nr P ~ M 

2 • ( 3. 2) 
c 

b) Gravitational Potential 

Outside a spherically symmetric star the potential 

is given by the exterior Schwarzschild solution 

ecp 2 1/2 
= (l-2GM/rc ) ( 3. 3) 

This is valid throughout the outer envelope to the extent 

that m(r) ~ M. 

c) Luminosity 

It follows from eqns. (2.4) and (2.6) that in the 

absence of local energy sources then Le 2
cj> and L e 2

cj> are v 

independent of radius. Together with eqn. (2.5) this 

implies that 

L e 2
cj> = 

y 
constant 1 ( 3. 4) 

valid as there are negligible energy sources in the outer 

envelope. At the surface, the photon luminosity defines 

an effective blackbody temperature Ts: 

2 4 
L (R) = 4TIR crT • (3.5) 

y s 

Thus, for the photon luminosity in eqn. (2.16) we have 

( 3. 6) 
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d) Temperature Gradient 

It is simplest to take the pressure as the inde-

pendent variable. 

= 

4T3 dT dr 
dr dp 

3KR2T4ecp 
_________ s~~- + 

4GM(l + ----;.) 
pc 

4T
4 

2 
pc +P 

( 3. 7) 

as follows from eqns. (2.2), (2.7) and (3.3). The second 

term on the right hand side is a relativistic effect ari-

sing from the gravitational potential. 

Equation (3.7) is to be integrated from the photo­

sphere (defined below) inward to a density of 2x1010 g-cm3 , 

above which the star is isothermal (Tecp = constant) . The 

surface temperature T is taken to be a free parameter. To s 

do the integration two functions are needed: p(P,T) and 

K(p,T). These functions are discussed in the remainder of 

the chapter. 

To check the assumptions that the mass and thickness 

of the outer envelope are small, equations (2.1) and (2.2) 

are integrated as well. 

The integrations are done numerically using the Runge-

Kutta method, which is accurate to fourth order in the step 

size. The step size is chosen so that neither the pressure 

nor the temperature change by more than ten per-cent per 
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step. 

The boundary condition on the pressure at the sur-

face (photosphere) is given by (Thorne 1967) 

where KR is the radiative opacity. This corresponds to an 

optical depth of 2/3. 

III.2 Equation of State 

a) Composition 

It is conunonly supposed that the matter in a neutron 

star will be in the most energetically favourable state, as 

a result of the tremendous thermonuclear activity accompanying 

7 -3 the formation of the star. At densities below 10 g-cm 

the most stable state is 56Fe nuclei in an electron sea. 

At higher densities, more neutron-rich nuclei are favoured 

because of the large Fermi energy of the electrons. The re-

sults of Baym, Pethick and Sutherland (1971) for the compo-

sition in the outer envelope are generally accepted and are 

used here. 

Two points should be noted here. If the star accretes 

matter, there may form a blanket of hydrogen or helium at 

the surface, as is suggested in the case of X-ray bursters. 

Secondly, the surface layers of a neutron star may be sig-

nificantly affected by a strong magnetic field (Ruderman, 
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1971, 1974), such as are found in pulsars. These possi-

bilities are not considered further at the present. 

The composition enters the equation of state in two 

ways: in the number of nucleons per free electron, Jle; and 

in the mass of the ions, m. (in proton masses). 
J. 

The number of free electrons per nucleon is 

1 = z f 
)le A 

( 3. 9) 

where f is the fractional ionization. The following appro­

ximation is used for f (CGS units) 

f = max{0.303 log (0.2p) ,0.926 log (l.357xlo-18T4 p- 0 · 313 )} 

with cutoffs 0 < f < 1. This expression is adequate 

b) Contributions to the Pressure 

(3.10) 

56 
for Fe. 

The pressure in the outer envelope comes from three 

sources: the electrons, the ions, and the radiation. These 

terms can be written as 

p = p + pkT + a T4 • 
e m. 3 (3.11) 

J. 

The pressure and temperature are known, and the den-

sity must be solved for. As the electron pressure P is e 

density dependent, the density must be solved for iterative-

ly. 
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The ion pressure is much less than the electron 

pressure (except under conditions where f is very small}. 

If a reasonable estimate of the density is used to evaluate 

the ion pressure, the electron pressure may be solved for 

from eqn. (3.11) with small error. This value for the 

electron pressure will yield a density that can be put 

back into eqn. (3.11) to check for self-consistenty. 

c} The Density as a Function of Electron Pressure 

The following definitions are useful. 

a= 
_ _E_ 

kT 

S = kT 
~ e 

, µ = chemical potential 

m = electron mass • e 

( 3 .12} 

(3.13) 

As 9hown in Appendix A, the electron pressure may be writ-

ten as 

p 8TikT 
(2mekT}

3
/

2
G(a,S} = 

3h
3 e (3.14) 

with r x3/2(1 + .!. Sx} 312dx 
G(ct,S) 2 = ; 

1 + e a+x 
(3.15) 

0 

and the density may be written as 

(3.16) 



with 

H(a.,13) 
= Joo x

1
/

2 
( 1+13x) (1 + ! Bx) 

112 
dx 

1 + ea+x 
0 

16 

(3 .17) 

Equation (3.14) must be solved for a. This could be 

done by evaluating the integral (3.15) numerically at an 

array of points in the (a.,13) plane and interpolating. How-

ever, to achieve the desired accuracy this would require a 

prohibitively large number of integrals. 

The problem is simplified by dividing the {a.-13) plane 

into four regions. In three of these regions G(a.,13) and 

H{a.,13) can be expanded in series, eliminating the need to do 

the integrals. 

The four regions are: 

i) Non-degenerate region {a >> 0) 

The boundary is taken to be G(a,13)<0.024+0.07 13, (or 

a < -8). . -a G(a.,13) can be expanded in a power series in e 

G(a,13) = L: 
j 

Here x = j/13 and K2 (x) is a modified Bessel function. Sol-

-a ving for e I 

G( S) c2(l3) 2 
e-a= a, - G (a.,13) + 

cl(l3) ci(l3) 

(3.19) 

http:G(a,13)<0.024+0.07
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H(a,S) can also be expanded in a power series. The result 

is 

H(a,S) 
2 -a 4 -2a 6 -3a = 3 c 1 (S)e + 3 c 2 (S)e + 3 c 3 (S)e + .•• (3.20) 

which is evaluated using eqn. (3.19). 

ii) Strongly degenerate region (a << 0) 

The boundary is taken to be G(a,S) > 80+550 S, (or 

a> 4). The integrals G(a,S) and H(a,S) can be expanded using 

Sommerfeld's lemma (see for example,Chandrasekhar 1939). Af-

ter some lengthy algebra one finds: 

4 4 1/2 
7n S (2x-l) (x+l) } + 15 3 

(3.21) 

x 

H(a,S) !" x
312 

{l + n
2s2 

(2x+l) 7n 4s 4 

312 s3/2 2 x2 + 40x4} • (3.22) 

The right hand side of eqn. (3.21) is a monotonic 

function of x at fixed S, so the equation can be solved for 

x by using a simple root finding procedure. H(a,S) can then 

be evaluated. 
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~ii) Intermediate degeneracy, small S region (S < 0.01) 

Expanding eqns. (3.15) and (3.17) in powers of S one 

gets: 

r x 312dx 3S r S/2d 3S
2 r 7/2d 

G(a,S) + x x + x x + ••. (3 .23) = 4 16 l+ea+x l+ea+x l+ea+x 
0 0 0 

r l/2d SS r 3/2d 7S
2 r 5/2d 

H(a,S) x x + x x + x x + ••• (3.24) = T 32 1 
a+x l+ea+x l+ea+x +e 

0 0 0 

The above integrals are evaluated numerically for 

- 8 <a< 4, in steps of a= 0.2. Eqn. (3.23) is solved for 

a using a quadratic interpolation from the nearest three points. 

Then the integrals in eqn. (3.24) are similarly evaluated by 

interpolation. 

iv) Intermediate degeneracy region, S > 0.01 

The integrals for G(a,S) and H(a,S) are evaluated nu-

merically at an array of points in the (a-S) plane. A two-

dimensional interpolation is used to find a , and then H(a,S) 

may also be evaluated by interpolation. 

This method is straightforward, but is cumbersome 

because of the large number of integrals to evaluate. To 

achieve the desired accuracy within the restricted region 

-8 <a < 4, S > 0.1, a total of three thousand integrals are 

used. This prevents the method from being used for all a and 

s. 
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Once H(a,S) is evaluated, the density resulting from 

eqn. (3.16) may be tested for self-consistency. If the two 

sides of eqn. (3.11) differ by more than 0.01% the process 

is repeated. This method converges quickly to the correct 

density. 

II.3 Opacity 

There are three possible means of energy transport in 

a star: radiative, conductive, and convective. Neutron 

stars are found not to have convective regions. Conduction 

by electrons is the most important method of energy trans-

port, except in the non-degenerate outermost layer, where 

radiative transport dominates. 

Opacity is a measure of 'resistance' to energy trans-

port. An opacity to thermal conduction (K ) , and an opacity 
c 

to radiation (KR), may be defined. The total opacity is then 

given by 

1 
K 

= 

which is dominated by the smaller of KR and Kc. 

(3.25) 

4 -3 For densities less than 10 g-cm both KR and Kc 

have been provided for pure 56Fe by the Los Alamos library 

(Huebner et al. 1977). At higher densities the results of 

Flowers and Itoh (1976) have been used. Some extrapolation 

and interpolation has had to be done to obtain the necessary 
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values. The effects of a magnetic field on the opacity are 

discussed at the end of this chapter. 

Radiative Opacity 

Tables of the radiative opacity KR in the low-density 

region were kindly provided by the Los Alamos group. At high 

temperatures these tables had to be extrapolated to higher 

densities where the conductive opacity becomes dominant (see 

Figure 3.1). Although this extrapolation becomes suspect for 

T >> 10 8K, this is unimportant for two reasons. Firstly, for 

outer layers at these temperatures, the neutrino emission 

from the core completely controls the cooling rate. Second-

ly, the star will remain this hot only for the first year or 

so after its formation. 

Conductive Opacity 

The conductive opacity Kc is related to the thermal 

conductivity A by 
c 

(3.26) 

Flowers and Itoh (1976) present tabulated calculations 

4 -3 of the thermal conductivity in the region p > 10 g-cm 

T > 10 6K. Their calculations include contributions from 

electron-electron scattering, electron-phonon and electron-

impurity scattering (below the lattice melting temperature), 

and electron-ion scattering (above the lattice melting tern-
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perature). To make use of their results one must specify 

a lattice melting temperature, which (following them), we 

take to be given by 

(3.27) 

where Z,A are the charge and mass numbers for the lattice 

ions. One must also specify a parameter for the charge 

fluctuations due to impurities x. < (6Z) 2>, with x. 
l. l. 

fractional concentration of impurities. A value 

being the 

2 ofx.<(tiz) > 
l. 

= 1 has been used throughout. The electron-electron scat-

tering term does not appear in previous calculations of 

the thermal conductivity (eg. Hubbard and Lampe, 1969), but 

its significance is diminished since the radiative opacity 

dominates when the electron-electron scattering is largest. 

The Los Alamos group have also provided conductive 

opacities at low densities. Although these never dominate 

the radiative opacity they are useful in helping to extra-

palate the Flowers and Itoh results, especially at low tern-

peratures. 

Figure (3.1) summarizes the above points, and also 

illustrates the temperature-density profiles of a typical 

neutron star at three characteristic surface temperatures. It 

can be seen that the tabulated opacities fairly well cover 

the regions of interest. 



Figure 3-1 

Envelope profiles in the temperature-density plane for a 

1.25 M neutron star, stiff equation of state (PPS), and 
® 

zero magnetic field. The solid curves are for surface tem­

peratures of 10 5 • 5 , 10 6 · 0 , and 10 6 · 5 K. The plane is divided 

into several regions: in the upper left (stippled) region 

the radiative and conductive opacities from Los Alamos 

(Huebner et al. 1977) are used, and in the upper right re­

gion the conductivity calculations of Flowers and Itoh (1976) 

are used; elsewhere interpolation and extrapolation are 

used. The dashed lines roughly divide the plane according 

to degeneracy (non-degenerate above) and according to mode 

of energy transport (conductive below). 
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III.4 Magnetic Fields 

Some neutron stars may have very strong magnetic 

fields (e.g. B ~ 1012 G for a pulsar). A magnetic field 

of this size does not appreciably alter the structure of 

the star, except in the outermost layers where the pressure 

is small. It has been suggested (Ruderman 1971,1974) that 

the surf ace layer of a magnetized star may be a highly ani-

sotropic 'magnetic metal', terminating abruptly at a den-

4 -3 sity near 10 g-cm ; however the properties of such 

exotic matter have not been reliably calculated to date. 

Therefore in the present work we take no account of any 

magnetic modifications to the low density equation of state. 

We do consider the modification of the radiative and 

conductive opacities by the field: these will change 

(reduce) the core-surface temperature ratio. 

Radiative Opacity 

It has been shown (Lodenquai et al. 1974) that the 

radiative opacity in a strong magnetic field is approximately 

related to the zero-field opacity by 

I (3.28) 

eB where w = is the cyclotron frequency and w is the radia-c m c 
e 

tion frequency. 

For temperatures much greater than 10
7

K the typical 
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photon f kT . requency w ~ ~ is comparable to the cyclotron·fre-

quency 

lowing 

for magnetic fields ~ 

expression (derived in 

KR(w,B) = 
2 w 

2 2 w +w c 

1012 G. Therefore, the fol-

Appendix B) is used instead. 

(3.29) 

This has the correct limits for both large and small mag-

netic fields. 

To obtain a frequency independent opacity the Rosse-

land mean is used 

r r 1 1 dB dB 
dT dw/ dT dw . (3.30) = 

KR (w) KR 

0 0 

Here B (w) is the Planck blackbody distribution. 

To evaluate the Rosseland mean the frequency depen-

dence of K(w,B=O) is needed. For the opacity due to free-

free transitions Kff -7/2 
a: w • However, at low densities and 

at high temperatures (the regions where electron conduction 

is least effective) the radiative opacity is dominated by 

Thompson scattering, which is frequency independent. 

The result in this case is then 

(3.31) 
1 + 
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where B12 and T8 are the magnetic field in units of 1012 G 

and the temperature in 108 K, respectively. 

as 

Conductive Opacity 

The conductive opacity in a magnetic field is expressed 

a < 1 . c - (3.32) 

The factor a is a function of the density, temperature, c 

and magnetic field intensity. Graphs of ac{p) for various 

magnetic fields are given by Tsuruta (1974) based on earlier 

calculations by Canuto and Chiu ( 196 9) , and are used here. 

The temperature dependence drops out if the electrons are 

degenerate, as they are when conduction dominates the energy 

transport. 

The total opacity is given by the standard relation 

-1 -1 = KR (B) + Kc (B), identical in form to the case 

with zero magnetic field. 

Apart from the only approximate expressions used here 

for the opacity in a magnetic field, there are several other 

important effects which are being neglected. The additional 

anisotropy (polarization dependence in the case of radiation) 

of energy transport due to the field is being crudely averaged 

over. In reality the thermal radiation from the star will 

not be spherically symmetric and, if the neutron star should 

also rotate, this could appear as a "pulsation". Further-
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more, the strength of the magnetic field will vary over 

the surface of the star (by a factor of two in the simplest 

dipole case) • Thus the single magnetic field parameter used 

in the opacity is somewhat ill-defined and is intended to 

represent an average effect. 



Figure 3-2 

Relationship between temperature at the core/envelope 

boundary and temperature at the surface, for neutron 

stars of 1.25 M , with the soft BPS EOS B = O; 
G.> 

• • • • • B = 1012 G) and with the stiff PPS EOS (----- V = O; 

12 
-·-·-· B = 10 G). 
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CHAPTER IV 

SPECIFIC HEAT 

To solve equation (2.16) for the cooling rate it is 

necessary to know C , the specific heat per particle, 
v 

throughout the star. Contributions to the specific heat 

come from the neutrons, protons, electrons, crustal ions, 

muons and hyperons. The hyperons are present only at the 

highest densities, and are omitted hereafter since the para-

meters are not well known. Apart from the ions, the par-

ticles are all degenerate Fermi gases. 

To determine the heat content of the core, the 

Fermi momenta and energies are needed. 

Fermi Momenta 

For spin 1 
2 fermions the Fermi momentum is related 

to the number density of particles of type (i) by 

= n(i) (4.1) 

(4.2) 

PN 
For the neutrons, n(N) = , and therefore for pN ~ p 

~ 
1/3 

~ 336.5 (__£_) MeV 
Po c 

(4.3) 

28 
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where p
0 

= 2.8xlo14 g-cm3 (nuclear matter density). 

For the free protons, electrons and muons, by charge neu-

trali ty (in the absence of ions) 

n (p) = n (e) + n(µ) (4.4) 

3 3 3 (4.5) Pp(p) = Pp(e) + PF(µ) 

Fermi Energies 

The electrons are extremely relativistic and have 

In beta equilibrium the elec-

trons and muons must have equal energies 

( ) ( 2 4 + 2 2 ( ) ) 1/2 cpF e = mµc c Pp µ , 

(The thermal energies of the particles are negligible since 

k T < l MeV < < E F. ) 

For the protons and neutrons it is useful to intro-

* * duce the effective masses mp and ~, defined in the non-

relati vistic limit by 

* dpF(i) 
mi = Pp(i) de:F(i) • (4.7) 

* If m. is independent of the Fermi momentum (or density) 
l. 

then eqn. (4.7) integrates to give 

p; Ci} 
EF(i) = * 

2m. 
l. 

( 4. 8) 

The non-relativistic limit is valid for the protons. The 

neutrons become relativistic at the very highest densities 
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15 -3 
(p > 3xlO g-cm ), but the non-relativistic limit is 

used for simplicity. 
* mn 

For the protons, _..i:;;. is taken to be one at all den­m 
s i ties, so eqn. ( 4. 8) ho las. For the neutrons, the effective 

mass of Takatsuka (1972) is used. This is approximated by 

* -0.032 
= min(l,0.885(-f-) 

0 

p -0.135 
, 0.815(p-) ) 

0 
( 4. 9) 

which has a weak density dependence. Integrating eqn. (4.7) 

with this effective mass yields 

where 

= 
2 

Pp (N) 

0.4 
f ~ 1.14 + 0.04(-f-) 

0 

(4.10) 

( 4 .11) 

* (There is considerable uncertainty about the values of m 
p 

* * and ~- Takatsuka's value for is used since his super-

* fluidity parameters (dependent on ~)are later used.) 

The neutrons, protons and electrons are in S-equili-

brium 

2 
+me 

p * 2m 
p 

( 4. 12) 

2 2 
Since ~c - rope ~ 1 MeV << other terms, and in the absence 

of muons pF(p) = pF(e), we have 

2 
Pp(e) 

cpF(e) + * 
2m 

p 

(4.13) 
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which is a quadratic with solution 

2 1/2 * 2 Pp (N) 
cpF(e) = mpc I(l + * * 2 ) - l] 

mp~f c 
(4.14) 

which is evaluated using eqn. (4.3). 

Now Pp{J.1) is evaluated using eqn. (4.6) and n(p) found 

fror,1 eqns. (4.4) and (4.5). Since the density appearing in 

eqn. (4.3) should really be pN, a first-order correction is 

made by using n(p) and 

1/3 
p-n(p)m MeV 

( Py -
p c 

(4.15) 

0 

in eqn. (4.14), and repeating the calculation. 

IV.l Specific Heat of Fermions 

The specific heat per particle of a degenerate 

(kT << EF) Fermi gas is (Ziman 1960) 

c 
v 

(4.16) 

dn = 
dEF 

is the density of states at the Fermi surface. 

There are two cases: 

i) Non-relativistic particles (neutrons and protons) 

Equations (4.7) and (4.2) yield 

dn dpF 
= 

dpF ~ 
= 

* 3nm 

7 F 

and thus the specific heat per unit volume is 

(4.17) 
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7f2 
n{i)Cv(i) =n(i) 

3 

* * 
2 3m. 11 m. p. 1/3 

k T --=--1 -= 1. 63xlO (~) (2..) T 
P;(i} mi Po 

-3 -1 erg-cm -K (4.18) 

i~) Relativistic particles (electrons and muons) 

2 4 2 2 l/2 
Ep = (m c + c Pp) 

2 
- me 

dEP - (m2c4 + 2 2 -1/2 2 
dpF - c Pp) c Pp 

N(E ) 
F 

2 4 2 2 l/2 
= dn dpF = 3n(m c +c pp) 

dpp tlEP 2 2 
c Pp 

2 4 2 2 . 1/2 
[mi c +c Pp (i)] 

2 2 (.) c Pp i 

2 4 2 2 
For electrons mec << c pF(e) 

k; (e) 
n(e)C (e) = 

v 37f2 

For muons, using eqn. 

n(µ)C (µ) 
v 

( 4. 6) 

p;(ll) cpF(e) 
= rr 2k 2T -=--=--

3rr2~3 c2p;(µ) 

(4.19) 

{4.20) 

(4.21) 

(4.22) 

(4.23) 

k 2T 2 2 2 4 l/2 2 
3c3'.M.3 cpF(e) (c pP-mµc ) , cpp(e)>mllc 

= 
0 2 , cpp(e)<m c 

- ll 
(4.24) 
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At densities below 2xlo14 g-cm3 there are no free 

protons, but instead there are crustal ions. The number 

densities of ions, neutrons and electrons are calculated 

from the results of Negele and Vautherin (1973). The fol-

lowing parametrizations are made: 

n 
e 

36 1.04 
= max[5xlO (_e._) 

Po 

n. ion 
34 0.61 

= max[4xl0 (...£._) 
Po 

36 0.48 
l.29x10 c:

0
> 1 

34 0.33 
, l.38xlO (~) ] 

0 

(4.25) 

( 4. 26) 

= min[0.816 logp+2.414,0.15 logp+l.055,0.05 logp+0.947] 
p 

(4.27) 

with the condition PN ~ 0. 

In the crust (p < 2x1014 g-cm- 3), the neutron and 

electron specific heats are given by eqns. (4.18) and (4.23), 

with the densities (4.27) and (4.25), respectively. 

According to Flowers and Itoh (1976) the ions form a 

lattice with a melting temperature T >> l09
K (except 

m 

in the outer envelope). Therefore, the ions are taken to be 

a solid with Debye specific heat 

n (ions) CV (ions)= 3k n (ions) V ( 8D/T) (4.28) 

8D is the Debye temperature 
10 0.38 9 

~ min[l.5><10 <f> ,5x10 ]. 
0 

V(x) is the Debye function, which has limits 

V(x) + 1 , x small 

V (x) 
4rr 4 

= -- , x large 
5x3 

3 (T law) • 

http:logp+l.055,0.05
http:logp+2.414,0.15
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IV.2 Superfluid Specific Heat 

At certain densities and temperatures the protons and 

neutrons may be in superfluid states. If so, then the spe-

cific heat is modified from the previous result (4.18) by 

a factor Y . Maxwell (1979) gives a graph of Y versus T/T , s s c 

where 

graph 

T is the c superf luid transition temperature. This 

is fitted by 

( ...'.!'.... 
1.6 T y = 3.47 0. 2) 0.2 < T < 1 s T I -c c 

= 0 I T < 0.2 T 
c 

= 1 I T > Tc . (4.29) 

The transition temperature T is a function of the c 

Fermi energy. The results of Takatsuka (1972) are used for 

For nucleon Fermi energies between 1 MeV and 40 MeV 

the possibility of s-wave superfluidity exists, and for 

Fermi energies from 50 MeV to 120 MeV the possibility of 

p-wave superfluidity exists. 

The protons are all in the s-wave region (cF ~ 1~40 

MeV). The neutrons will form two bands of superfluid re-

gions (s-wave and p-wave), with the remaining neutrons in 

the normal state. 

If the neutrons are in the normal state, they contri-

bute most of the specific heat of the star. If the neutrons 
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are superfluid, the protons should be as well, and the elec-

tron may become the major source of specific heat. The 

crustal ions may be important under certain conditions. 

IV.3 Zoning and Equation of State 

To evaluate the temperature derivative (2.16) the 

specific heat (and neutrino luminosity) must be integrated 

throughout the star. Since the integrands have complicated 

density dependencies, it is expedient to divide the star 

into concentric shells of constant density, temperature, and 

gravitational potential; and to replace the integrals with 

s ununations. 

r=O 

r=O 

nq e 2¢(r)dV 
\) p 

2¢. 
+ I: VP ( j ) e J ( nq v) . 

j J 

nC dV v p 
+ I: (nC ) . V ( j) 

j v J p 

(4.30) 

(4.31) 

To find the proper volume, average density and gravi-

tational potential of each zone, the equations of stellar 

structure (2.1), (2.2) and (2.3) are integrated along with a 

zero temperature equation of state. 

There is some doubt as to what equation of state is 

valid at neutron star densities. To test the sensitivity 

of the results to the equation of state, two (possibly extreme) 

equations of state are used. These are: (A) the equation of 
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state of Baym, Pethick and Sutherland (1971) • hereafter 

referred to as BPS; and (B) the TI equation of state of 

Pandharipande, Pines and Smith (1976), hereafter referred 

to as PPS. The BPS equation of state is much softer than 

that of PPS, allowing higher central densities and smaller 

radii. For the same mass, a star with the stiffer PPS equa­

tion of state has a larger radius and lower central density, 

thus a larger crust and larger superfluid regions than the 

corresponding BPS model. 

The stars are divided into forty zones, chosen so 

that fifteen zones have densities between p = Sx10 9 and 

p = Sxlo-13 g-cm- 3 , with a further twenty-five zones interior 

to these. The density ratios between successive zones is con-

stant in each of the two regions. 

The expression for the neutrino emissivity is deter­

mined in the next section. 



Figure 4-1 

Specific heat contributions for neutron star matter at 

14 3 
density p = 10 g-cm : normal neutrons (-----), super-

fluid neutrons Takatsuka (1972, -·-·-·),electrons ( ), 

and ion lattice (·····). At this density there are no 

free protons. The soft and stiff EOS' s are identical at 

densities below that of nuclear matter (2. Bx1014 g-cm- 3 ) . 
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CHAPTER V 

NEUTRINO EMISSIVITY 

Various nuclear reactions can occur that produce 

neutrinos (and antineutrinos) without altering the compo-

sition of the star. This is the case when a reaction is 

in equilibrium with its inverse reaction (e.g. 8-decay and 

inverse 8-decay) • Bremsstrahlung processes that directly 

convert thermal energy into neutrino-antineutrino pairs 

also do not alter the composition. Once produced, the 

neutrinos will escape the star without further interaction 

(Bahcall and Wolf 1965). (An exception occurs during the 

first few hours of a neutron star's life, when the neutrino 

mean free path may be less than the stellar radius, but 

this is of no consequence later on.) 

Following Tsuruta (1978), there are six processes 

considered here as significant neutrino sources. These are: 

i) Beta processes 

TI 

TI 

and their inverse 

involving pions 

+ n + n + µ + 

+ n + n + e + 

processes 

38 

v 

v 
µ 

e 

(5.la) 

(5.lb) 

• 



n + µ -+ n + 7T 

n + e -+ n + 7T 

+ \) 
µ 

+ \) 
e 
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(5. le) 

( 5 .ld) 

If pion condensates exist in the star, the above 

processes will dominate the neutrino emissivity and cool 

the star very rapidly. This was first pointed out by Bahcall 

and Wolf (1965) • 

ii) Modified URCA processes 

-n + n -+ n + p + µ + \) 
µ 

( 5. 2a) 

n + n -+ n + p + e + \) 
e 

( 5. 2b) 

ahd their inverse processes 

n + p + µ -+ n + n + \) 
µ 

(5.2c) 

n + p + e -+ n + n + \) 
e 

(5.2d) 

Only particles near their Fermi surfaces can partake in these 

reactions, so an extra spectator particle (neutron} appears 

on each side of the reaction to allow conservation of momentum 

and energy. 

iii) nn-pair Bremsstrahlung 

n + n -+ n + n + v + v (5.3) 

iv) np-pair Bremsstrahlung 

n + p -+ n + p + v + v (5.4) 

v) Electron-ion Bremsstrahlung 

( Z, A) + e -+ ( z, A) + e + v + v • ( 5. 5) 
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vi) The plasma process 

y + v + v (5.6) 
p 

where y is a plasma excitation (plasmon). (This process is 
p 

not considered by Tsuruta (1978). 

For the pion processes (5.1 a-d) Maxwell et al. 

(1977) have calculated a luminosity 

7T 
nq v 

-3 -1 ergs cm s (5.7) 

Here T9 is the temperature in units of 10 9K and e2 is a pion 

density factor. Maxwell et al. (1977) suggest using e2 = .1 as 

a typical value. Also used is a cutoff intensity p below which 
7T 

there is no pion condensate; p is treated as a free para­
TI 

meter, although it is expected to fall in the range (2-20)xp
0

. 

The emissivities resulting from processes (ii) to (v) 

are given by Maxwell (1979). 

*3 * 

nq~RCA ~ 1. sx1021 (l+F) (~) ~ 
2! 3 8 -3 -1 

(L) T
9 

ergs cm s . (5.8) 
Po 

PF ( JJ) 
Here F = and is included to account for reactions (5.2a) 

Pp (e) ' 

and (5.2c). 

1/3 
(L) T8 ergs 
Po 9 

-3 -1 cm s (5.9) 
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M_* 2 M* 2 2/3 
(--~) (_E) (_e__) 
~ Mp Po 

8 -3 -1 T ergs cm s 
9 

(5.10) 

nqions 
\) 

= 2.1x10 20 z
2 

_Q_ 'I' 6 ergs 
A Po 9 

-3 -1 cm s (5.11) 

The emissivity from the sixth process is given by 

Maxwell and Soyeur (1979) 

.fiw 15/2 
nqp£ = 8.3Xl014 (____E!) v kT 

-l'fwpt 9 
exp(- kT ) T9 ergs 

-3 -1 cm s (5.12) 

where the plasma frequency wpt is related to the chemical 

potential µe by 

4 1/2 
= (~) ]l 

3rr e 
(5.13) 

place in the crust (below The last two processes take 

14 -3 
p = 2xlo g-cm ), whereas the np-process takes place above 

14 -3 2x10 g-cm , where there 

For evaluating the 

are free protons. 

z2 
factor I\ in eqn. (5.11) the re-

sults of Negele and Vautherin (1973) are parametrized as: 

z2 -0.61 
A = max [ 0 . 2 ( f) 

0 

-0.37 
I 0.62(L) ] 

Po 

z2 
I 1 < - A 

< 10 • (5.14) 

It is clear from a comparison of the above emissivi­

ties that the term nqrr will strongly dominate if a pion conden­
v 

sate is present. 
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V.l Superfluidity Effects 

The temperature dependent energy gap for nucleon 

species (i) is approximately 

6 . ( T) = 6 . ( T= 0) [ 1-T IT ( i ) ] 1I 2 
1 1 c 

= 0 

T < T 
c 

T > T 
c 

T (i) and 6. (T=O) are given by Takatsuka (1972). 
c 1 

(5.15) 

h . . . t. URCA d np h d d T e emissivi ies nq an nq are eac re uce 
\) \) 

by a factor exp{[-6N(T)-6p(T)]/T}, and nq~n is reduced by a 

factor exp[-26N(T)/T],from the non-superfluid values (Maxwell 

1979). 

7T It is not known how the pion process rate nq is af­v 

fected by nucleon superfluidity. The effects of such uncer-

tainties may be accounted for by varying the pion cutoff 

density pTI. 

All the above six emissivities are retained since super-

fluidity may suppress the seemingly dominant ones (such as the 

URCA process). 



CHAPTER VI 

RESULTS AND CONCLUSIONS 

From the results of the preceeding three chapters, 

the right hand side of eqn. (2.16) may be evaluated in 

terms of the 'core temperature' T'. A first order differen-

tial equation is thus obtained: 

dt = f(T') 
dT' (6.1) 

This may be solved using a simplified Runge-Kutta method: 

t ( T I +Li T I ) ~ t ( T I ) + l16T I { f ( T I ) + 4 f ( T I +Li T I I 2 ) + f ( T I + Ll T I ) } (6.2) 

with initial conditions t = 0 at T' = T~. For T~ > 5x10 9K 
I 

the choice of starting temperature T
0 

has no effect on the 

cooling curves, due to the strong temperature dependence of 

the neutrino luminosity. 

The general shape of the cooling curve for a neutron 

star has been known for some time (Tsuruta 1974, Tsuruta and 

Cameron 1966) and is clear in Figures (6-1) and (6-2). In 

the early phase (t < 10
4 

- 10 5 years) the cooling is domina-

ted by neutrino emission from the interior, and the slope of 

the cooling curve in a log T vs log t plot is approximately 

1 
6 (this follows from the heat content of degenerate fermions 

~ T
2 

while the neutrino emissivity ~ T8 ). This is followed 

43 
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by a phase of steeper slope in which the cooling is domi­

nated by photon emission from the surface. The change in 

slope reflects the fact that the photon emission is proper-

tional to the fourth power of the surface temperature, and 

because, as the star cools, the contrast between the surface 

and core temperatures is reduced (see Figure 3-2) • At tem-

4 
peratures much below SxlO K the star will be isothermal out 

to the surface, and one expects the cooling curve to have a 

slope of - ~ (reflecting the T
2 

dependence of the heat con­

tent and the T4 dependence of the radiation loss) • 

Results for the cooling of neutron stars with no 

magnetic field, but with superfluidity effects accounted for, 

are presented in Table 6-1 for both equations of state and 

four stellar masses, at ages appropriate for comparison with 

young supernova remnants. The variation with mass is not 

very severe: less than a factor of two for the stiff EOS (PPS), 

and only 30% for the soft EOS (BPS) • For the stiff EOS the 

most massive stars are the hottest because the specific heat 

has a stronger density dependence than does the neutrino 

emissivity, resulting in slower cooling for higher density 

(more massive) stars. The same is true for the soft EOS mo-

dels as well, but it is offset in the two most massive cases 

by the enhancement of neutrino emission by the large central 

redshift factors (which raise T = T'e-¢). For stars of 

the same mass, with no pion condensate, the soft EOS model 
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is the hotter because of the thinner (less insulating) outer 

layers (see Figure 3-2). 

If a pion condensate is present then these models are 

about a factor of seven cooler, which renders them virtually 

undetectable as soft x-ray sources. The stiff EOS models 

have such low central densities that it is unlikely that 

pion condensates could exist. Whether or not the soft EOS 

models should have pion condensates is uncertain, as it de-

pends on some poorly known parameters of high density matter. 

At present, the observed upper limits on the temperatures of 

putative neutron stars in young supernova remnants are in 

6 the range l-3xlQ K (Helfand, Chanin and Novick 1979). As 

seen in Table 6-1 this is also the expected range of tern-

perature for young neutron stars in the absence of pion con-

densates. The lack of evidence so far for thermal radiation 

from neutron stars is suggestive of (but does not demand) the 

existence of pion condensates in these stars. It would re-

quire a lowering of the observed temperature limits by a fac-

tor of two to resolve the question satisfactorily. 

For reasons discussed in Section III.4, calculations 

that attempt to incorporate magnetic fields at present have 

only a qualitative value. The effect of a strong magnetic 

field is to reduce the opacity and hence the core-surface 

temperature contrast. In the neutrino-dominated cooling phase 

this increases the observed (surface) temperature, because 
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it is the core temperature that controls the cooling rate. 

However, when the cooling becomes photon-dominated, the lower 

opacity results in faster heat loss and hence a shorter life-

time. Since the radiation from a cooling magnetized neutron 

star is expected to be anisotropic (and therefore modulated 

by stellar rotation), polarization dependent, and deviating 

in frequency-dependence from black-body radiation , its detec-

tion may be less straightforward than in the case of an un-

magnetized star. 

The effects of nucleon superfluidity are twofold: 

the specific heat and the neutrino emissivity are both sharp-

ly reduced at temperatures below the transition temperature. 

The result is that the inclusion or exclusion of nucleon 

superfluidity makes only minor differences in the neutrino-

dominated phase. However, in the photon-dominated phase the 

absent heat content of the superfluid results in a shorter 

lifetime (see Figures 6-1 and 6-2) • This is most pronounced 

in the low mass, stiff EOS models, for which a substantial 

mass fraction becomes superfluid. The soft EOS models have 

only small superfluid regions and so the effects of super-

fluidity are less noticeable (see Figure 6-1). It is found 

that the cooling curves are sensitive to the superfluid energy 

2 
gaps only for ages ~ 10 years, as after that all models are 

well below plausible transition temperatures. 
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Lastly, it remains to relate the cooling curves to 

the possibility of detecting cooling neutron stars. In Figure 

6-3 detectability curves (distance vs age) are given for a 

1.25 M neutron star, stiff EOS, with superfluidity inclu­
G> 

ded but no magnetic field. The maximum detectable distance 

at a given age is defined by requiring that the count rate 

2 -3 in a 100 cm soft X-ray detector (0.1-4.5 keV) exceed 2.5xlo 

counts/sec (modelled on the IPC counter on the Einstein 

Observatory, see Giacconi et al. 1979). The spectrum is 

assumed to be blackbody and the three curves are for inter­

stellar densities of 0.3, 1.0 and 3.0 cm- 3 ; the absorption 

coefficients being those of Brown and Gould (1970). If mea-

surements of this sensitivity were made (as should be possible 

with the HEAO-II satellite), since Figure 6-3 indicates that 

the cooling of a number of neutron stars (e.g. the Crab 

pulsar) should be detectable, then one may be able to select 

between the various cooling curves and thus learn more about 

the stars in question. 
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Table 6-1. Neutron Star Models for Cooling Calculations 

M/M R (km) l pc ' 14 
- z z T6 T6 

Pn/Po EOS P14 G> s c (300 y) (1000 y) 

10.0 
I 

0.15 2.45 2.05 BPS 0.4 

I 
6.7 1.90 0.065 -

0.30 0.27 2 
PPS 0.4 17.5 1.7 0.354 0.036 0.088 1.32 1.07 -

i 
i 

BPS 0.7 I 4.13 0.135 0.31 2.72 2.38 9.30113.0 -
i 0.30 0.27 2 ! 

PPS 0.7 16.571 2.5 0. 729 ' 0.070 0.155 1.73 1.47 -
l 

' 
BPS 1.25 8.13!21. 11.0 0.35 0.96 2.42 2.13 -

• i 0.36 I 0.31 2 i PPS 1.25 16.0 I 3.8 1.45 O.Vl 0.31 2.10 1.81 -! 

BPS 1.41 
I 

7.00'.55. 19.5 0.58 2.36 2.14 1.89 -
! 0.36 I 0.33 2 ' PPS 1.41 15.75l 5.0 1.71 0.167 0.38 2.26 1.94 -
l 0.36 I 0.32 1.5 

l l 
The equation of state (EOS) is either soft (BPS) or stiff (PPS). 
The central density, Pc, and the mean density, p, are given in 
units of 1014 g-cm-3. Also listed are the surface and central 
redshifts. The temperature, in units of 106 K, is given for each 
neutron star at ages of 300 y and 1000 y; neutron superfluidity 
effects are included but magnetic effects are not. The threshold 
density for the onset of pion condensation is given in units of 
nuclear matter density, p

0 
= 2.8x1014 g-cm3. 

http:7.00'.55


Figure 6-1 

Cooling curves for a 1.25 M neutron star with the soft 
Q 

15 '-3 EOS (central density= 2.7xlO g-cm· ) • The observed 

temperature is the gravitationally redshifted surface tern-

perature. There are two sets of four curves each: for the 

upper set, cooling by a pion condensate is ignored where-

as in the lower set this effect is included. Each set 

divides into two pairs: the pair for which the cooling 

is ultimately more rapid has a surface magnetic field of 

10
12 

G; the other pair corresponds to zero magnetic field. 

In each pair, the more rapidly cooling curve corresponds 

to the inclusion of nucleon superfluidity whereas the other 

member corresponds to its exclusion. The reason for the 

relatively rainor effect of superfluidity is that for this 

mass and this EOS, the central density is so high that 

the mass fraction capable of superfluidity is very small. 



49 

co 
r---r-~--.-~~..--~--,,--~-,--~-,--~~-,--~-.-~--,C> 

~ 

(>1> ·dl/\l3.l ·sao 



Figure 6-2 

Cooling curves for a 1.25 M neutron star with 
G 

the stiff EOS (central density = 3.8xlo14 g-cm- 3 ). The 

central density is below that at which it is believed 

likely for pion condensation to develop, so there are no 

curves which include the enhanced neutrino cooling effect 

of a condensate. The two pairs correspond to zero mag­

netic field (longer lifetime) and a surface field of 1012 G 

(shorter lifetime). At early stages, when neutrino cooling 

dominates, the effect of a field is to raise the observed 

surface temperature; at later stages, when photon cooling 

dominates, the presence of a field then naturally means 

more rapid cooling. For each pair, one curve has nucleon 

superfluidity included (and this reduces the lifetime) 

whereas the other does not. The effect of superfluidity is 

more pronounced for stars with the stiff EOS (especially 

those of even lower mass) because a substantial mass fraction 

is capable of superfluidity. 
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Figure 6-3 

Detectability distance for a 1.25 M neutron star (stiff 
Q 

EOS, B = 0, neutronsuperfluidityincluded) as a function 

of its age, for a nominal soft X-ray detector of area 

100 cm
2

, sensitive to X-rays of energy 0.1-4.5 keV. The 

detectability threshold is taken to be 2.Sxlo- 3 counts-

-1 
s This nominal detector approximately mimics the IPC 

on HEA0-2. The three curves are for interstellar hydro­

gen densities of nH = 0.3, 1.0, and 3.0 cm- 3 ; the X-ray 

absorption coefficients of Brown and Gould (1970) have 

been used. 
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APPENDIX A 

Pressure and Density of a Fermi Gas 

The total number of particles is found by integra-

ting over phase space: 

(A. 1) 

Here f (p,x) is the distribution function and g = 2s+l is 

a spin multiplicity factor. 1 For non-interacting spin - par-
2 

ticles, g = 2 and f (p,x) is given by the Fermi distribution 

f (p,x) = f (p) = 1 
(A. 2) 

l+exp [ (£-µ) /kT] · 

Here s(p} is the kinetic energy andµ is the chemical poten-

tial. This distribution applies to an electron gas if corre-

lations due to coulomb interactions are negligible. 

Integrating over x and over angles in momentum space: 

N 8n 
n = = v h3 J

oo p2dp 

l+exp [ (s-µ) /kT] · 
(A. 3) 

0 

This can be written as a dimensionless energy integral by 

using 

cp (A. 4) 

(A. 5) 



and using the definitions 

]..I 
a = - kT ' 

kT s = --2 , 
me 

E 
x = kT . 

Eqn. (A.3) then becomes 

n = 4rr (2mkT)3/2 
~ J

oo x1/ 2 (l+Sx) (1 + i Bx) 1/ 2dx 

1 
a+x + e 

0 
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(A. 6) 

(A. 7) 

(A. 8) 

(A. 9) 

The matter density is related to the number density of 

electrons by 

p = ]..I m n 
e P 

where µe is the number of nucleons per electron, and mp is 

the mass of a nucleon. 

For fermions, the therm9dynamic potential n = -PV 

is (see for example Landau and Lifshitz 1958) 

n = -kT L: .R,n (1 + e(µ-£)/kT) 

states 

= -kT :3 J d3: j d3p .R,n(l + e(µ-E)/kT) 
-

Integrating by parts, one obtains 

n = -PV = 8rrkTV 1 
h3 3 J

oo 3 
p dE 

l+e(E-µ)/kT • 

0 

(A.12) 
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Using the definitions (A.6), (A.7) and (A.8), and using 

equation (A.4), the pressure may be expressed as 

p = 8TikT (2mkT)3/2 

3h
3 J

oo 3/2 1 3/2 x (1 + 2 (3x) dx 
+ • (A.13) 

1 + ea x 
0 
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APPENDIX B 

RADIATIVE OPACITY IN A MAGNETIC FIELD 

Consider waves in an electronic plasma in the 

presence of an external magnetic field ~o· Neglecting the 

pressure gradient term, the equation of motion is given 

by 

dv av 
dt = at + (v·V)v = e 1 (E + vXB) - yv 

m c - -
(B .1) 

where y is the collision frequency. For waves propagating 

in the z-direction, one expects departures from equilibrium 

to be of the form exp(ikz-iwt). Therefore: 

ikz-iwt ) 

B = ~o + ~l e 

+ Ill 
ikz-iwt 

n = no e 
(B. 2) 

v = ::1 e ikz-iwt 

E = ~l 
-ikz-iwt e 

The quantities B1 , n 1 , v
1 

and E1 are taken to be first order 

small in comparison to B
0 

and n
0

. 

Putting eqns. (B.2) into eqn. (B.l) and keeping 

terms only up to first order small, one obtains 

v = -ie ie E - vxB . 
m(w+iy) - mc(w+iy) - -0 

(B. 3) 
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Also, from Maxwell's equations and the current density 

J = -env , 

one obtains, using eqns. (B.2): 

w 
= c ~l 

4nen
0 k -w E + . XB = l v 

- -1 c c 

Solving the above two equations for v yields 

where w
2 = 
p 

-ie 2 2 2 2 
v = 2 {c (~·~)~ + (w -ck )E}, 

mwwp 
2 

4rre no 
m 

is the plasma frequency. 

Thus,equation (B.3) becomes: 

. 2 2 2 2 (w + iy) {c (k•E)k + (w -c k )E} - - - -
2 2 A 2 2 2 A 

=WW E-iw {c (k·E)kXBO+ (w -ck )~XBO}, 
P- c - - - --

where w 
c 

eB = is the cyclotron frequency. 
me 

(B. 4) 

(B. 5) 

(B. 6) 

(B. 7) 

(B. 8) 

We now look for normal modes of eqn. (B.8) in the 

two fundamental cases of waves propagating parallel and per-

pendicular to the magnetic field. 
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Case ( i) ~I I B 0 

The normal modes are circularly polarized states 

with E = E(~ ± iy). For these modes equation (B.8) re-

duces to 

(w+iy+w ) (w 2-c2k 2 ) = ww 2 (B.9) c p 

T k 1 k 1 d · t d 2 -- c 2k 2/w 2 . a e w rea , comp ex, an in ro uce n 

2 n = 1 

For n ~ 1 and y << w 

n :::: 1 -

w2 
p 

w(w:+w +iy) 
c 

2 -
wp(w+wc-iy) 

- 2 2w(w+w ) c 

(B.10) 

(B.11) 

of 

The imaginary part of k results in a damping term 

-Im(k)z 
e . This can be related to the opacity K as fol-

lows: 

Im(k) = (mean free path)-l = Kp • (B .12) 

Since n = ck/w, the opacities with and without an external 

magnetic field are related by: 

K(B) 
K (B=O) = 

Im n(w) c 
Im n (w =O) c 

= - 2 . 
(w+w ) 

c 

(B.13) 

Now, since 
w2 w2 

= ----2,,,... 2 2- , we take as an approximation 
(w+w ) w +w +2ww 

c c c 

K(B) 

K(B=O) = 
2 

w 
2 2 w +w c 

(B.14) 
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valid for both modes in both limits w >> w and w << w . 
c c 

Case (ii) ~ l~o 

The two normal modes in this case are known as the 

ordinary and the extraordinary modes. 

a) Ordinary mode (~11~ 0 ) 

The ordinary mode is independent of the cyclotron 

frequency w , so the opacity is unaltered by an external c 

magnetic field. 

b) Extraordinary mode (~ 1 ~ 0 ) 

The dispersion relation for the extraordinary mode 

becomes 

2 
WW 

p 

2 
w 

( 2 2) 
w +w c 

(B.15) 

As in case (i) above, the opacity is found from Im(k). In 

this case one obtains: 

K(B) = K(B=O) 

2 
w 
2 2 I 

w +w c 

(B .16) 

which is identical to eqn. (B.14) for the longitudinal modes. 

The above expression (B.16), although not valid for 

the ordinary mode, is taken as a direction independent opa-

city for simplicity. Some error is introduced by this, but 

in any case the simple assumption of a uniform strength mag-
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netic field throughout the star is unrealistic and precludes 

a better quantitative analysis of stars with magnetic fields. 
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