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1. DEFINITIONS AND INTRODUCTORY CONCEPTS

l.1 Definition of Reliability

Reliability has been variously defined by different people.
For engineering equipment, reliability is used to mean the capability
of an equipment not to break down in operation. A better definition
of reliability uses the statistical concept of probability and is stated
as follows by Bazovsky (Ref. A.1.10) -

"The Reliability of a component is its conditional prob-
ability of performing its function within specified performance
limits at a given age for the period of time intended and under
the operating stress conditions encountered."

Hence this definition implies that reliability is the probability
that the device will not fail to perform as required for a certain length
of time. So here, we define reliability as the probability of survival.

Similarly probability of failure may be defined as unreliability.

1.2 Concept
From the advent of industrial age, the need for reliability con-

sideration was felt. Initially it was common to take intuitive approach.
The practice of using the factor of safety also originated due to the need

for higher reliability. A well-designed, well-engineered  thoroughly test-



ed and properly maintained component should never fail in operation.
But  experience shows that even the best design, manufacture and mainte-
nance cannot eliminate failure., This can be explained from the statis-
tical nature of reliability. Absolute perfection cannot be attained in
practice and one can only try to reduce the probability of failure to

some small amount,

l.3 Historical Development

Reliability studies seem to have been made first on ball and
roller bearings. The life of bearings was associated with a definite
probability of survival. In the last century a lot of studies were
also made on railroad equipment because of the high rate of fatigue
failure. But the science of reliability, as we know now, developed
from the advent of aeroplanes and it assumed crucial importance with the
.advent of space vehicles. Space vehicles complex systems as they are,
are extremely prone to failures unless proper consideration has been
given to reliability from the beginning. Reliability studies on air-
craft were made in U.S,A, and U,K, in the 1930's and extensive work
on reliability was done in Germany during the Second World War on rock-
ets. After the war U.,S.A. and U.S.S.R. led the world in reliability

studies.



1.4 Reliability and Quality Control - a Comparison

Reliability control and Quality control sometimes use very
similar techniques., Yet there is a great difference between them.
Quality is generally used to mean good performance and longevity. Re-
liability is also used to mean the same thing. But quality control
measures only instantaneous performance and its variation from specimen
to specimen. In quality control the performance of a product as it
leaves the production line is checked. But no consideration is given
to the way the performance deteriorates when the part is put in service.
So quality control is concerned with the "as is" performance of materials,
parts and products etc. when the manufacture is complete. In reli-
ability control the performance measurements from the instantaneous "as
is" time independent domain are extended to operating-time and life domain.,
In reliability not only does it matter what the initial number of de-
fectives is and the variation of performance characteristics is, but it
Also matters how long a product will maintain its original characteristics
when in operation, how the variations spread with time etc., The statis-
tical techniques used in reliability testing are very similar to those
of the conventional quality control methods, with time added as a new

dimension.

1.5 Strength

We may now examine the term strength a little more closely.

In general strength is the value of the external load at which failure



occurs, Generally, 6 in the handbooks, typical values of strengths of
various materials are listed. Strictly speaking, this sort of approach
is not proper. Due to various practical reasons and imperfections,6 the
same type of strength of the same material shows an appreciable amount
of scatter. For example, the tensile strength of Low Carbon Steel is
listed as 63'000 psi. But actually 6 this listed value is associated
with a certain probability and it would be more proper to specify the
probability value that the tensile strength would be higher than 63,000
psi.

In general  the measured values of strengths are found to be
normally distributed. Again the strength of a certain product is
influenced by manufacturing methods and design, in addition to the material
properties, For example, the strength of a shaft with sharp corners at
the shoulders would be less than a similar shaft with smoother fillet
radius. The strength of a product has been termed as Load Capability
By Johnson (Ref. G.1.5). He states that the typical distribution curve

for predicted load capability of a manufactured element is as shown in

Fig. l-lo
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Fig. 1-1 Typical Statistical Distribution Curve for Load
Capability of a Manufactured Mechanical Element

L = mean value of load capability
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Haviland (Ref. A.1l.35) mentions the use of a method of calculating the
strength of a component by considering the crystal structure. As an
example K we can consider the case of a shearing force applied to a per-
fect cubic crystal. As a result of the applied force, there is a dis-
placement of the lattice planes of the crystal. If x is the shear dis-
placement of a lattice plane with respect to the adjacent displaced
plane and ¢ is the shear stress, then

=g (1-1)

e = T

G

where d is the spacing of the lattice plane and G is the shear modulus.

Fig. 1-2 is a diagrammatic representation and X is the shear displace=-

ment.
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Fig. 1=2 Shear Force Applied to a Cubic Crystal

Since the lattice binding forces are electrostatic (coulomb
force)' they vanish by symmetry at a displacement of 4/2. At some
smeller displacement than this, of the order of %/u, an increase in

stress will cause slippage of one lattice plane with respect to its



adjacent one. ' Thus the maximum shear stress 9, is

., = (1-2)

m

hlm

which shows the point at which the body ceases to absorb energy linearly
by this particular form of storage.

Next 6 we should consider the change of strength and performance
of a component with time. Some objects such as concrete gain strength
with time for a certain period (Ref. A.1.36, Fig. 3-15). This is also
true for age hardening of Cast Iron. For some other objects, such as
steel under static loading at atmospheric temperature, the strength re-
mains essentially constant with time. Finally, the strength starts to

reduce due to wear out,
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Fig. 1-3 Variation of Load Capability With Time for Mechanical
Components Under Static Loading



In Fig. 1-3, the load capability of a certain statically loaded member
was constant for a certain length of time. Finally’ due to wear out,
probably the cross-sectional area was reduced and load capability started
to drop.

Dynamic loading produces fatigue and this is one of the most im=
portant causes of deterioration of strength of mechanical components.
Consideration of fatigue is further complicated due to the fact that
fatigue strength depends on the size of the specimen and is very sensi-
tive to physical shapes due to stress-concentration effects. Ferrous
metals and some other alloys show a definite endurance limit and the
specimen is capable of withstanding infinite number of stress reversals
below this limit, For non-ferrous metals and alloys and non-metallic
materials, a fatigue limit is not observed. The test results of fatigue
testing show a lot of scatter and statistical techniques have to be used
to obtain a meaningful conclusion. The method suggested by Peterson
kRef. G.2.23 and G,2.11) is based on the following assumptions:

(1) The population is normally dispersed with respect to stress.

(2) Results obtained at one lifetime can be extrapolated to

another lifetime.
Epremian and Mehl (Ref. G.2.3) suggest (for data taken so that several
samples are tested at a single stress level) a calculation based upon the
idea that values of log N are normally distributed about a mean value.
In general the normal curve provides a good fit, if the number of data

points are large and this method is used widely.



Another method due to Weibull is used extensively for estimation
of lifetime of ball and roller bearings,
To sum up, the variation of strength with age can be expressed

in a meaningful manner only if associated probabilities are stated as

shown in Fig. 1-4,
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Fig. 1-4 TFatigue Strength - Cycle Relations for Various
Probabilities of Failure

Another cause of variation of strength of mechanical components
is creep. Face-centred cubic metals such as copper show gradual in-
Crease in yield tensile strength and gradual reduction of ductility as

temperature is lowered, whereas for non-face-centred cubic metals such

as Iron  these effects are more pronounced,

Under static external loading conditions, one of the important

influences of constant exposure to high temperature is to produce a

continuous creep deformation., Excessive creep deformation may cause



malfunction of a component and it may even cause failure at lower stress

levels,

1.6 Load

Having briefly reviewed strength of components and its deteriora-
tion, we will now consider the variation of external load. For practical
objects, it is very difficult to state any particular value of external
load. For an aircraft, we can express the load in form of a stress

spectrum as shown in Fig, 1-5.

s
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Fig, 1-5 Stress Spectrum for an Aircraft

The load peaks up at random intervals, probably due to gusts of wind or
turbulence. Some investigators assume the load to be normally distributed
as shown in Fig. 1-6. The numerical values in many cases can only be

determined by experimentation.
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Fig., 1-6 Typical Statistical Distribution Curve for Load
on a Mechanical Element in Usage

Then it is possible to state a value of load associated with a certain
probability of occurrence and use this information in design. One can
draw an envelope on the highest peaks of load spectrum and consider that
as the highest expected load. Haviland (Ref. A.l.36) suggests the use
of the theory of extreme values for the calculation of the expected value
of the heaviest exﬁernal load. This theory has been used with success
for many natural and artificial phenomena. The gusts experienced by
ai;-craft are distributed according to this relationship. Similar rela-
tions have been found for earthquakes, for weather and for strength of

materials (Ref. F.1.29 and A.1.65).

1.7 Estimation of Lifetime Considering Strength and Load

If we consider both strength and external load to be normally

distributed  the situation looks as shown in Fig. 1-7.
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The hatched part of the curve then signifies failure. If we have an
idea of mean values of strength and load and if standard deviation can
be estimated by experiment or previous experience, the probability of
failure can be estimated.

A graph may also be plotted using time as horizontal axis (Fig.

1-8).
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Fig. 1-8 Relationship Between Strength and Load for a Mechanical
Element as the Operating time Increases
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In case of cyclic loading causing fatigue, the situation may be as

follows (Fig. 1-9) -
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Fig. 1-9 Relationship Between Fatigue Strength and Cyclic
Load for a Mechanical Element (confidence band
of failure and associated probabilities are shown)

B

1.8 Environmental Conditions

Environment plays a very important role in reliability engineer-
ing since reliability is the probability of failure free operation for a
specified time under the operating conditions. Hence the results of re-
liability tests conducted in the laboratory are apt to be misleading,
unless sufficient care was exercised in simulating the operating condi-
tions. Environment by definition, includes all factors external to the

object other than the particular load being considered. As such the
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environment includes a set of materials and a set of energies. The
material environment includes all materials that surround an object and
are not part of it. The material environment must be considered with
respect to two characteristics. The first of these is the nature of
materials which determines the activation energy of the deterioration
process. The second is the concentration of the material available for
reactions, The practical environmental factors are items such as the
composition of the atmosphere 6 the amount of dust present and similar
factors.

The energy environment includes all forms of energy that may flow
into or out of an object. This energy environment includes energies that
are always associated with environment materials and other energies that
are independent of the materials. An example of an associated energy is
the ambient temperature. The free energy includes the gravitational,
electrostatic, magnetic and electromagnetic fields. The energy environ-
&ent must be considered in two ways. First it is a factor in the
deterioration process, so the energy available must be determined. Second,
the energy must be considered as a load, although this consideration may be
neglected if it is determined that the load applied by a given energy is
small compared to some other energy source.

In few cases, it is also necessary to consider the materials as
a factor in the determination of load. This arises if an energy field
is present. The most common example of this is the ice and snow loads
on structures where the gravitational field acting on the materials pro-

duces an added load.
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It is common to consider the environment as composed of two
classes, the free environment and the constrained environment. The
environ ment is established by natural processes, and is beyond control.
The constrained environment is established by other manufactured objects
and so is controllable within limits that are established by the external
free environment and by the nature of the associated objects. For example,
a building is subjected to a free environment,K whereas a computer install-
ed within the building is subjected to a constrained environment., The
variations in environmental conditions fall into limited number of pat-
terns, which are: constant value cyclic variation strong persistence
and irregular pattern.

For example, if we are designing an I.C. engine for a generator
to operate in Arabia  we must note the annual cyclic variation of the
cooling water temperature and also the mean value., Environmental condi-
tions would be vastly different for such a plant working in Yukon terri-
£ory of Canada,

Sometimes the term microenvironment is used to describe the environ-
ment surrounding a specific object. Microenvironment is always a con-
strained eanvironment since the object itself has introduced a constraint
on the variation possible. Constraints are also found due to the influ-
ence of additional objects. An example of the importance of micro-
environment is the temperature distribution in a "black box'" normally

used to contain electronic equipment,
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Statistical techniques are sometimes used in analyzing the effect
of environmental conditions. Suppose a new object is being designed
which will move from one area to another. Environment for each area
will be known. The movement plan of the object or the time it spends in
each area is then set up. The expected pattern of variation is established
for each area. Samples are then drawn from the area patterns in propor-
tion to the time spent in that area by Monte Carlo technique. These
samples are then tabulated and analyzed for the mean 6 effective and the

largest values as needed.



2. ELEMENTS OF PROBABILITY AND STATISTICS

PERTINENT TO RELIABILITY ENGINEERING

Reliability engineering is based on theory of probability and

statistics and some important principles and laws are reviewed here.

2.1 Definitions

Mathematical (or a priori) definition of probability - If there
are n exhaustive mutually exclusive and equally likely cases and m of
them are favourable to an event A  the probability of the happening of

A is defined as the ratio m/n. (Ref. F.1.45.)

Statistical (or empirical) definition of probability - If trials
be repeated a great number of times under essentially the same conditions,
then the limit of the ratic of the number of times that an event happens
to the total number of trials as the number of trials increases in-
definitely is called the probability of the happening of that event.

It is assumed that the ratio approaches a finite and unique limit.

Independent Events - Events A and B are said to be independent
if the information that A happened does not influence the probability of

B.

16



Dependent Events - Events are dependent on one another if the

occurrence of any one has an effect on the occurrence of another.

2,2 Theorem of Compound Probability

The probability that A and B happen is the probability that A
happens times the probability that B then happens (Ref., F.2.9). If

A and B are any events, then

p(AB) = p(A)p,(B) (2-1)
For independent events,
py(B) = p(B)
hence p(AB) = p(A).p(B) (2=2)

The notationsused above are as follows =

p(A) = probability that event A happens

p(B) = probability that event B happens

pA(B) = probability that event B happens, provided that
event A has happened
p(AB) = probability that events A and B both happen

p(A+B) = probability that event A happens or event B happens

or both A and B happen

LY



We will illustrate the application of the above theorem by an example.
In Fig. 2-1, if a device will fail due to failure of either component
X or Y and for a given life the probability of survival of component
X is R(X) and the probability of survival of component Y is R(Y) then
probability of survival of both X and Y for the life of the device is

R(X).R(Y), which is the reliability of the chain model.

Fig., 2-1 A Device With Two Components Connected in Series

Here we assumed that the performance of one component does not affect
the performance of the other.
As an example of dependent events, we can consider the prob-

ability of survival or reliability of an aircraft from time tl to tz’

after it has operated from time to to tl. Then the probability that

the aircraft survives from to to t2

= (Probability that it survives from t, to tl)

X (Probability that it then survives from t, to tz).

1

2.3 Theorem of Total Probability

When A and B are any events, then

p(a+B) = p(A) + p(B) - p(AB) (2-3)
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The probability that event A happens or B happens or both A and B happen
is given by the probability that A happens and probability that B happens
less the probability of A and B happening simultaneously (Ref. F.2.9).
For mutually exclusive events, A and B cannot both happen simul-

taneously and hence

p(AB) =0
Hence in this case

p(A+B) = p(A) + p(B) (2-4)
An application of this theorem is found in case of parallel redundant

systems.

Fig., 2-2 Black Box Containing Two Components Connected in Parallel

Fig. 2-2 shows a black box containing two components X and Y in parallel.
The system operates if either one of the components or both of them
operate.

Then, the reliability of the black box

R = R(X) + R(Y) - R(XY) . (2-5)



We can arrive at the same result using the theorem of compound prob-
ability for independent events.

R(X)

]

reliability of component X

reliability of component Y = R(Y)
Then unreliability of component X = 1 = R(X) = Q(X) and unreliability
of component ¥ = 1 -« R(Y) = Q(Y). The black box fails if both the

components fail.

So unreliability of black box

Q = Q(X).q(Y)
=[1 - rx)]) [1 - r(V)]
= 1 - R(X) - R(Y) + R(XY) (2-6)

Hence the reliability of the black box
R=1-QX).

= R(X) + R(Y) - R(XY) (2=7)

2.4 Bayes' Probability Theoren

If A is an event which depends on one of two mutually exclusive
events B, and Bj of which one must necessarily occur then the prob-

i
abilify of the occurrence of A is given by

P(A) = P(A, given Bi).P(Bi)-i-P(A’ given Bj).P(Bj) (2-8)
Applied in case of reliability engineering, we can state the following

rule (Ref. A.,1.10) =

20



The probability of system failure equals the probability of
systems failure given that a specified component in the system is good,
times the probability that the component is good, plus the probability
of system failure given that the said component is bad, times the prob-

ability that the component is bad.

We can also state the rule as
P(system failure) = P(system failure if component X is good)

x P(X is good) + P(system failure if X is bad) x P(X is bad)

As an example we will use this theorem to calculate the reliability of

the system shown in block diagram in Fig. 2-3.

Fig, 2-3 Schematic Block Diagram Showing the Mode of
Connection of Components

21
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Two equal paths A-A' and B-B' operate in parallel. To improve the re-
liability further another component C is connected to both A' and B',
Hence the system may operate using a combination of components as
follows -

A-A'  B-B' C-A' C-B'.

Let RS and Qs be system reliability and unreliability respectively

RA be reliability of component A R
RB be reliability of component B

RC be reliability of component C

QC be unreliability of component C.

Using the rule,
Qg = Qs(if C is good).RC + Qs(lf C is bad).QC
Now we will calculate QS if C is good. If component C is good, the
system will fail only if both A' and B' fails,
So
Qg(if C is good) = (1 - RA,)(l - RB,)
Next if C is bad, the system will fail only if both parallel paths
A-A®' and B-B' fail.
Hence

Qg(if C is bad) = (1 - R\R,,)(1 = RR;,)

Unreliability of the whole system now becomes

Q= (1 - RA,)(l - RB.).RC + (1 - R,R (1 = RgRyy).Q, (2-9)

Reliability of the system Ry =1-Qg (2-10)
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2.5 Statistical Distributions

A number of statistical distributions find wide use in reliability

and quality control and they are briefly enumerated here,

2.5.1 Discrete Distributions

We shall discuss briefly some discrete distributions used in

reliability theory (Ref. F.1l.24).

2.5.1(a) Binomial Distribution

It applies to situations often referred to as repeated trials.
This is particularly useful when we are dealing with attributes, so that
the outcome of a trial is either success or failure as the component is
either good or bad. So it is a case of complementary and mutually ex-
clusive events, The assumptions which underlie the binomial distribution
are (i) theprobability of a success is the same for each trial

(ii) the trials are independent.

in a sequence of n independent trials  let the probability of success on
each trial be p. Vie denote the number of successes by the random vari-
able Sn' The random variable Sn may assume any one of the discrete
integer values K = 0, 1. 2, ..eee, N

A b 9 9

The associated probability distribution is (Ref. A.3.28)
y _ T K N =K
Pr(s_ = K) = (K) b (1 -p)
K=20 i 2 ceces ne. (2-11)

The mean of the random variable is

E(Sn) = np (2-12)
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and the variance is

Tgr(Sn) = np(1-p) (2-13)

2.5.1(b) Multinomial Distribution

The binomial distribution can be generalized to the case of n
repeated independent trials where each trial can have one of r outcomes.

We denote the possible outcomes of each trial by El’ E ), ceces, Er

and let the probability of the realization of Ei in each trial be

pi(i =1, 2, eeee., ) where in general p; is only subject to the
condition

Pp ¥ Py ¥ eeeee tp =1 D 20
The probability that in n trials E) occurs Kl times, E2 occurs K2 times,

etc. is

N ! K; Kz K\"

OB AR X (2-14)

where the Ki's are non-negative integers subject to
+ - =
H K2+ L L B Kr n.
If r = 2 then this distribution reduces to the binomial form

n - K,

with P, =P, Py = 1= p Kl = K and K2

The mean number of occurrences of the event Ej in N trials is
Np, and its variance is Npj(1l - pj). The covariance between the number

of occurrences of E, and E, is -Np.p..
i 3 ¥4
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2.5.1(c) Geomatric Distribution

Let us consider a sequence of Bernoulli trials, for which the
probability of success on each trial is p. We define the random vari-

able Yl as the number of trials up to first success. It can be shown

readily that Y, is a discrete random variable which may assume any one

5 |

of the discrete integer values 1, 2, 3, «ccces &

The probability distribution of Yl is

. j=1

Pr(¥, = ) = p(1 - p)97°, 3 =1, 2 3, ..... (2-15)

The mean of Yl is
o

E(Yl) = /p (2-16)
and the variance of Yl is

Var(y)) = =352 (2-17)

P

2.5.1(d) Pascal Distribution

This is a generalization of the geomatric distribution. The

random variable of interest is YK' the number of trials until the Kth

success occurs., YK is a discrete random variable which may assume any

one of the discrete integer values K, K+l K+2' ese o

The probability distribution of YK is

. K ik
Pr(YK=j) =(f}:i—‘-)p qY K’ =K, K1 ..... (2-18)
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The mean of YK is

B(Yy) = /p (2-19)
and the variance of YK is
Var(Y,) = 551—5—21 (2-20)
p

The Geometric and Pascal distributions are frequently called
discrete waiting time distributions. If each trial takes one second to
perform, Yl is the number of seconds until the first success occurs and

YK is the number of seconds until the Kth success occurs.,

2.5.1(e) Poisson Distribution

The Poisson distribution can be obtained from the binomial dis-~
tribution by simultaneously letting n-=o° and p-» O, in such a way that
the product np = A  where M is a preassigned positive constant. If this
is done, the random variable Sn converges to a random variable S with

associated probability distribution

Y
Pr(s=K) =e A K=0,1, 2, ..... (2-21)
]

e ’ ’ b

K:
The mean of S is given by

E(S) = A (2-22)

and the variance of S by

Var(S) = A
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The Poisson distribution is used extensively in industry in
quality control work (Ref. F.1l.65 and F.1.5). For example, in an

attributes sampling plan  a random sample is drawn from the submitted

lot.
Let C = number of defects,
n = sample size,
p = lot fraction defective R
and P(C) = probability of any number of defects (C) in the sample.

Using Binomial distribution, we can write

p(c) = ()" - p™°

But in most cases of quality control the lot size is large rela-
tive to the sample size, and the fraction defective in a lot is small..
Hence the Poisson distribution can be used, since the requisites are
approximately satisfied.

We can write

R (on)”

Fo) = st (2-24)

Here pn represents the expected number of defectives per sample,
Sometimes, the probability of getting C defects or less is needed.

Hence we must use the cumulative form of the Poisson distribution  which

is

¢ e-(pn)(pn)c

P(C or less) = &
C=0 cl

(2-25)
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Cumulative probability curves of the Poisson exponential are available

(Ref. F.3.3) and the probability of occurrence of C or less defects can

be directly obtained. Tables given in Ref. F.3.7 are also very useful,
Poisson distribution is used in a variety of other cases such

as hourly traffic loading, frequency of radiocactive disintegration etc.

2.5.2 Continuous Distributions

2.5.2(a) Exponential Distribution

This is the most widely used distribution in reliability theory.

Usually it is given in the following forms -

t
_ 1 e i
ﬁ(t)— i (2-26)
-2t
{T(t): A\ e (2-27)

where A and € are constants.

The mean is given by

BT = [t (0t

o

(<]

=J£e dt
e

@|ct

v 9 = — (2-28)
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and the variance is given by

VarlT) = g° = s (2-29)

In reliability work,6 the parameters are designated as follows -

A

chance failure rate

8 = mean time between failure (MTBF)
MIBF is also commonly designated by m
T is a variable signifying life time and is reckoned from
any arbitrary instant.
The usefulness of exponential distribution for reliability studies be-

comes apparent  if we examine the variation of the failure rate during the

lifetime of a component shown in Fig, 2-4.

EarLy
| follwes | Chance foilures I —
Burn-in :‘ U sefud b;fe period Wearouk
period

period

FdlLure roi'e S

el —— S

Okeva:&na LL_{@ —

Fig, 2-% Component Failure Rate as a Function of Operating Life
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We see that in the useful life period, the failure rate A is approximately
constant and hence the requisite for using the exponential distribution
is satisfied. This is a very convenient distribution to use in practice
because as long as the failure rate remains constant, the age of the com-
ponent is immaterial to the question of whether or not it will survive
the next increment of time. Computationally also, the exponential dis-
tribution is easy to use and only a table of exponential function e* is
needed (Ref. F.3.11).

One often refers to the exponential distribution as corresponding
to a purely random failure pattern (Ref, C.2.12). It is implied that
whatever is causing the failure occurs according to a Poisson process
(random, rare events) with some rate A (Ref. F.2.2).

Let T be the random variable associated with the time interval

between successive events (failures)

then Pr(T>t) = Pr [no event occurs in the interval (0,t)],

where t = O is the time when the most recent event occurred.
From the Poisson assumption (Ref. A.1.65),

o | (2-30)

1 - (2-31)

Pr(T>t)

Thus Pr(Tg t)

The probability density function is then given by
~A
£(t) =Ne .
The relevance of this sort of distribution to a real life situation

can be explained as follows -
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Imagine a situation where a device under test is being subjected
to an environment E | which is some sort of random process. Let us
imagine that this random process has peaks distributed in a Poisson
manner and that it is only these peaks that can affect the device in
the sense that the device will fail if a peak occurs and will not fail
otherwicse. If this is the situation and if the peaks in the stochastic
process describing the environment occur with Poisson rate A, then the
failure distribution of the device under test will be exponential and

the p.d.f. will be given by

#’(t) - Xe-kt

This failure distribution in reality describes the frequency of
severe shocks in the environment. Hence, what is actually meant is that
the device fails, if and only if a peak occurs and not otherwise.

In case of complex mechanisms, times between failure result from
a superposition of failure patterns of the individual parts and Cox and
Smith (Ref. F.1.10 and F,1.11) have shown that this gives rise to an
exponential distribution of the times between successive breakdowns.

It will be instructive to derive the exponential distribution
function from the definition of reliability. We have defined reliability
as the probability of survival for a certain length of operating time
under specified operating conditions. If we test a fixed number of com-

ponents No' then suppose after time t N, components survive the test

S

and Nf components fail. Then by definition
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NS NO—Nf Nf
Reliability R(t) = g= = =1 - (2-32)
o o o
Differentiating, we obtain
dN
dR 1 b4
a TN *Tat (2-33)
o
aN
- £, ar i
or rearranging il B (2-34)
Dividing either side by NS'
ﬁl‘ . ._dif - ;‘3 g_‘u; (2-35)
S S
1 dN
The term N o is the instantaneous probability of failure per one
S
component, which is called failure rate A,
Then
No dR 1l dR
)y:..fq—- -aTt-=_§.-az (2-36)
or »at= -8 (2-37)
%
Integrating, l1n R = = J‘ A dt (2-38)

During the useful life of the component the failure rate is approximately

constant. Then taking A as constant,

At

R(t) = e (2-39)

The failure density function fT(t) is the distribution of
failures in time on a per component basis or the failure frequency curve

per component basis.



33

aN
i3 f
Then £ (t) = TS
o
= _ 4R
at
- B A
== \¢© )
or f(t) = Ke-kt

This is the exponential distribution function developed before.
The unreliability Q(t) is the cumulative probability function and

can be obtained by integrating the probability of failure distribution

function.
t
SO EJOR (2-40)
o t
Then reliability R(t) =1 - j#(t).dt
oo e}
- X f (t).at. (2-41)
t
0

f r\<Q(t) = Area -fv‘om zero To Lime T
P

A

Fig, 2-5 shows the exponential probability density function,
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The exponential distribution works reasonably well in many cases
and agrees closely with empirical facts., Computational simplicity ob-
tained by using this distribution in such cases as series or parallel
circuits is also another reason for its popularity. There are certain
drawbacks in using this distribution (Ref. B.1.51). The most important
one is due to the fact that a clear physical distinction has not yet been

found to satisfactorily delineate between failures in burn-in period and
wear out failures on the one hand and the random failures of the mid-
period (Ref. Fig. 2-4). Another disturbing feature is that, in some
cases the failure rate never really remains constant, but goes on increas-
ing with age throughout the lifetime of the component. Such a situation

can be met with under fatigue conditions.

?.S.E(b) Mixed Exponential Distribution

This is a generalization of the exponential distribution where
it is assumed that a piece of equipment can fail with probability p from
one of two sources, each of them being exponentially distributed. The

usual form of density function is given by

£(t) = ph, ot L (1-p), o ey (2-42)
The mean is given by
D) =2« %‘:Pl | (2-43)

1 2
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and the variance is given by

Var(T) = -Pé + (—%E)- (2-4k)
S AS

2.5.2(c)Gamma Distribution

Gamma distribution is useful distribution in fatigue and wear-
out studies., It has also a very important relationship to the exponential
distribution, namely the sum of n identically distributed random variables,
each an exponential distribution with parameter 6, is gamma distribution
with parameters n and 6 (Ref. A.1.66), The probability density function

of failure in general form is given by

o
f = to(! Z (2-45)

The mean is given by
KT) = of (2-46)

and the variance by
Var(T) = ap® (2-47)

a is also called shaping parameter and § the scaling parameter.

Gamma distribution is a two-parameter-type statistical distribution,
whereas the exponential distribution admits one, Two parameters permit
greater flexibility in curve fitting  and hence a better fit to empirical

data can be obtained than with a single parameter model, If the value of
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the shaping parameter « is chosen as 1, the gamma distribution density
function reduces to the familiar exponential form. Choices of « less
than 1 produce probability density functions more convex (when viewed
from the origin) than does the exponential law. Choices of a greater
than 1 produce a humped probability density function which can be con-
sidered to be a not too unsatisfactory approximation to a Gaussian error
function. A special case is obtained when we put @ = ¥ and 8 = 2,
Chi-square distribution then results., If under the same physical assump-
tions of random failure processes as for the exponential law, the failure
data were plotted against total aggregate test time for all components,

a gamma distribution arises (Ref. B.1.51).

2.5.2(d) Normal Distribution

The normal distribution is one of the most familiar forms of
statistical distributions.

The density function is given by

2
(T-M)
¥ ( | T 2¢2
T)=m ——— € (2-48
)= i ’
The mean is given by
E(T) = M (2-49)

and variance as

Var(T) = ¢ (2-50)
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Normal distributicn approximates the wearout phenomena quite
well (Ref. A.1.10) and has been widely used for this purpose. Failures
cluster around the mean wearout life M and standard deviation g provides
a measure of scatter. This distribution is convenient from a computa-
tional point of view since tables of areas under the curve and ordinates
are readily available. One disadvantage of using this distribution in
approximating wearout phenomena stems from the fact that the normal prob-
ability density function curve stretches from - oo to +o00  and obviously
it is quite impossible to have a value of component age T at failure less
than zero; neither can any component be expected to last infinitely.
But since the area under the curve at both ends is very small the error
introduced is negligible. For instance, probability of a component
failing due to wearout at an age less than M=3y is only 0.0013. Hence
tc eliminate any significant part of the distribution lying on the negative
axis  one can state as a general rule that this distribution may be used
éo life test situations if its mean is positive and the ratio of the mean
to. the standard deviation is greater than 2.5 (Ref. A.3.28).

Another restriction is that the failure effect contributions must
be additive.

The cumulative probability of failure can be obtained from the

density function by integration.

an = [ (maar (2-51)
-0
But using lower limit of - makes no sense and we can alternatively
write
+ oo
UT) =1 - Jf(T)d’l‘ (2-52)

-



The cumulative reliability is then
402

R(T) = J £(T)aT (2-53)

-

Truncated normal distribution has been discussed in Sec. 3.3.

2.5.2(e) Logarithmic Normal Distribution

This distribution has been used by some investigators in describing
wearout failures, It is generally obtained by taking the logarithm of a
set of values, which follow a normal distribution.

The probability density function is of the form

2
_(log T=M)
2 o

— ‘ -
T(T>_ rEv—3 e (2-54)

Here the variable log T is treated as normally distributed and g and M
are the standard deviation and mean of log T,

Bazovsky (Ref. A.1.10) advocates use of logarithmic normal dis-
tribution to approximate wearout phenomena when M<:30' because of the

advantage of having f(T) =0 at T = O,



3. RELIABILITY TESTING

3.1 Introduction

In reliability testing, also called life testing, a number of
components or assemblies are operated under some desired operating
conditions, and the lives or times to failure are measured. In most
cases, single components or sub-assemblies are tested in the laboratory
at simulated stress conditions and reliability data is obtained. The
designer then uses this data in designing a machine as a system which is
required to have a certain specified reliability., Or in other words
the system reliability is predicted from the component reliability data
using mathematical methods. The designer can then try various configura=-
tions of components, such as series, parallel standby etc. to obtain the
specified reliability at minimum cost.

. Since reliability is defined as the probability of survival for

a certain time under operating conditions, it is very important that for
reliability testing in laboratory the operating environmental conditions
are closely simulated, Thus, before undertaking any life tests, one

must have enough data about the operating environment, Environmental
tests are used to this end and various statistical methods are used to
cbtain meaningful data. Another method of reliability testing is measure-
ment at actual service stress levels. Components are observed during

the actual service use of the equipment in which they are installed and
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failure data is recorded. Then information can be obtained about the
reliability of the components. But this is a post factum approach and
data are collected for equipments which have already been designed. So
if any modification is recommended based on this data, redesign as costly
modifications may be necessary, which are expensive and time consuming.
But, on the other hand such historical data are very useful for future
design as development, This type of testing has been used by the auto-
mobile industry for a long time and has resulted in reliability improve-
ment in future models.

In laboratory reliability measurements, failure times of components
are noted. To analyze this data and to obtain useful reliability informa-
tion, it is convenient to use some statistical distribution and assume it
is a mathematical model adequately representing the behaviour of compo-
nents. In reality, no distribution is exactly followed, but still some
distributions may be chosen which approximate the failure data to a reason-
%ble accuracy. Choice of a particular distribution depends a great deal
on the past experience with the process. Exponential distribution has
teen widely used in the chance failure region of the life of the component
and normal distribution has been used for wearout region. Recently the
Weibull distribution is also finding widespread acceptance. One should
be careful in choosing a distribution, since if the data do not follow
the assumed distribution, any conclusions drawn will be largely invalid.
There are some statistical procedures, known as nonparametric methods

which do not depend on the nature of the distribution of the population
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from which the data is drawn. Here no assumption is made concerning
the distribution for the operating life of the equipment. Of course,
there is some loss in statistical efficiency when a nonparametric method
is used and hence, in general the component life is assumed to follow

some distribution,

3.2 Life Testing Assuming Exponential Distribution

3.2.1 Fixed Failure Truncated Life Test

The probability density fugction is given by

6

£(t) = % e (3-1)
or £(t) = Ke-xt (3=2)

@ is Mean time between failures (MTBF) and A is failure rate. Thus
parameters are constant for exponential distribution.

At

Then Reliability R(t) = e~ (3-32)

Exponential distribution is used during the useful life period of a com-
ponent, after early failures have been eliminated and wearout has not set
in. Failures are assumed to occur due to environmental peaks, which are
considered as random rare events. Cox and Smith (Ref. F.1.10 and F.1l.11)
have shown that in case of complex mechanisms, times between failure
result from a superposition of failure patterns of the individual parts,
and this gives rise to an exponential distributiaon of the times between

successive breakdowns.
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In life testing under exponential distribution, one has to be
careful to see that only debugged components are used (after eliminating
early failures) and the test is terminated before wearout sets in. Ve
are interested in obtaining an estimate of 6, the Mean time between failures
from the failure data of the test pieces. Knowing MTBF, reliability for
any mission time can immediately be calculated.

Ideally, we can put n components or assemblies on test and note

the time to failure ti of each.

=t
4 (3-4)

Then estimate of MTBF 8 = ——
But in practice, this is almost impossible, since we have to run the

test for a great length of time and the expense incurred would be pro-
hibitive. The method usually followed is to put n components to test.

As the components fail 6 an ordered set of failure times t t

1s tZ’ % Ane
are obtained, such that tl < £, < t3 ese o The test is discontinued
as soon as the rth component fails. This method is known as Fixed
Failure Truncated Life Test. Then the best estimate of MTBF is given
by

t1 * t2 + t3 * .. * tr + (n-r) tr

8
=
r

r
= t, ¥ (n-r) ¢t
i=] o

= (3-5)

n

Epstein and Sobel (Ref. C.2.13) has shown that it is the best estimate
of parameter 6 in the sense that it is maximum likelihood, unbiased,

minimum variance, efficient and sufficient. This is valid for a non-
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replacement test, In case the failed units are replaced by new units
so that the sample size remains constant at nRoberts (Ref. A.1l.65) states

that
nt
% = 2 (3-6)

b ol

We have assumed the exponential distribution to hold true in the chance
failure region of the operating life of the components. But wearout life
of a component cannot be assumed to follow the same distribution. Hence
if any of the r failures are considered to be due to wearout, they must be
censored out in estimating MTBF (Ref. A.1l.10),

If failure of K components are deemed to be due to wearout or

any cause other than chance, then

r
'Z b+ (n-r) t,
i=]l

2 = (3-7)
r-K

By stopping the test after the rth component fails the remaining
(n-r) components can be put to service use, since they are as good as new
(assuming exponential distribution). This results in saving of testing
expense. Testing time is also reduced substantially, as can be seen

from Table 3.1 as given by Epstein and Sobel (Ref., C.2.13).

Here
E(tr n) = average waiting time to observe first r failures from
’
a sample of size n (n > r)
and
E(Tr r) = average waiting time to observe all r failures from a

sample of size r.
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TABL

=

=1
Ratio of the expected waiting time to observe the rth failure in

samples of size n and r respectively

E(tr n)
9 =
r,n
E(tr,r)
- 1 2 3 L 5 10 15 20
5 of
1 1 0.50 0.33 0.25 0.20 0.10 0,067 0,050
2 1 0.56 0.39 0,% 0.14 0,092 0,068
3 . 1 0.59 O0.43 0.18 0.12 0,087
L 1 0.62 0,23 0.14 0.10k
5 1 0.28 0,18  0.125
<10 | 1 0.35  0.23

So we see that if we take a sample of 10 and discontinue to test after

Sth failure, the time necessary would be only 0.28 of the time needed

for all 10 components to fail,

Now let us examine the confidence interval of the estimate of
MTEBF, The calculated value of § is a point estimate of the true para-
meter 6 and to obtain an interval estimate, we must have the confidence
limits. Epstein (Ref., C.2.18) has shown that the ratio 2r % has a chi-
square distribution with 2r degrees of freedom when the test from which

t

the estimate 6 was obtained was terminated after the r h failure. For a



k5

two sicc.. .onfidence level (l—a), we can write

P(Xa =L ¢ )(2 ) = (-a) &8

1-% ,2r 6 S, , 21

This means that there is a probability (1l-z) that the value of the ratio

N
ggg will be within the interval given by two percentage points of the

chi-sguare distribution,

By rearrangement, we can write

A ar A o2r
O—z——< 0 £ B—=¢ (3-9)
%, 2 21 X 1 =%, 20

Two-sided lower confidence limit is then

2r >
L .= s 5 (3-10)

Xa/Q,zr

and upper confidence limit

2y A
|| =—=5 0 (3-11)

X

l"'u/z)QY’

Sometimes, only one sided confidence limits are desired. We want to know
that the true value of the parameter 6 exceeds a certain minimum life with

a probability (l-«).
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Then one-sided lower confidence limit

c =-=2rS% (3-12)
L ><2
| o,2r

MTBF confidence limits can also be obtained from the graph shown
in Fig. 3-1 (from Ref. A.l.13). The graph provides two-sided confi-
dence limits. To obtain one-sided confidence limits the graph may be

used with following conversions-

Two-sided confidence level (%) | One-sided confidence level (%)
60 80
80 90
90 99
95 97.5
99 99.5

We shall now solve a typical example. Suppose a manufacturing
firm produces some mass produced appliance such as a washing machine. The
machine uses a gearbox subassembly in the drive train, In order to
improve the reliability and gain more competitive advantage in the market,
the manufacturer decides to do some life tests on the gearbox sub-
assembly., The life distribution is assumed to be exponential and it is
decided to truncate the test after a fixed number of failures, Initially'

a sample size of 10 is chosen and it is decided to obtain 3 failures.
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From Table 3.1, it was seen that

E(tr n)

for n=10and r = 3
But it was then realized that the test time could be reduced by about 50%
by putting 20 gearboxes on test,

for n = 20 and r = 3 ’ = 0,087

Increasing the number of specimens in the test reduced the test time and
the variation among the specimens was also considered. Now the test is
run in the laboratory at simulated stress conditions. The following data
was obtained.
First failure after 833 hours

2nd failure after 838 hours

2rd failure after 896 hours
The components were debugged before being put on test to remove early
failures and on examining the failed specimens, it was found that the
failures were not due to wearout.

Using equation (3-5) we obtain

4 = 833+ 838 + 896 + (20-3) 896
3

. 17—222 = 5933 hours.
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Now we will calculate the confidence limits.

e 2.
If we choose A = 0'10 = =12
w o i X°V252Y‘ XO-OS,& - 592

i . 1-635
1=%,2r Xo-95,6 .
2 2
= = 10>
XD\'Q_ya XO-!O,b SO

From equation (3-10)
A
L _ 2r8

R el

2 x3 %5933
" = 2820 hours
12:502

from equation (3-11)
Uy =-2¢ B
e 2

Xl-o(/z )27-

2= 2 ¥S5053 = 21780 hours
1635

i

from equation (3~12)
A
C 2y 8

L 2
x X, 2r

i

10:645




So with 90% confidence, we can state that the true value of MIBF lies
between 2822 hours and 21780 hours, and is greater than 3340 hours.

We had conducted this test with a sample of 20 specimens and trun-
cated the test after 3rd failure. Let us examine the case, if we con-
tinue the test till we obtain 5 failures.

Thenn-ZO, r=95

From Table 31, E<tr,n) = 0,125. =

Eztr )

oF

In previous case, this ratio was 0,087, So the testing time would in-
crease considerably. Suppose that now with n = 20 and r = 5 we obtain
8 = 5933 hours, which is the same as in previous case. We shall now
examine the confidence intervals.

As before, we choose O = 0-10,

2 2
Xa/a,zr =X o510 = 18307

|

2 2
Xl"o‘/g,2Y‘ =X

095,10 3:940
2 2
XG,ZY' =Xo-lo,|o e L

Using equation (3-10)

Al

| -_2rsé
T s
X«/z,zr

2 x5 %
. —'Ig_fo%w = 3220 hours
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equation (3-11) gives

LJ N 21*3
i 2
7<|—°22,2r
XD X = 15030 hours
3.9

and from equation (3-12)

C - 2\"6
. )(2
o, r

2x 2 x 2933
15.987 3?15 houra.

30 we see that by running a longer test and obtaining 5 failures, the
confidence interval has been considerably narrowed down for the same
level of significance «. But a longer test would obviously be more
expensive, Hence, we have to reach some compromise between the cost
of testing and precision obtained. It is of interest to note that
sample size n does not affect the calculation of confidence interval.
It is of importance only for the waiting time of test truncation.

For reliability testing, often one works in the reverse order.
We may need to know with 100(l-a) per cent confidence that the true
reliability R is larger than exp(-t/CL)e So the level of significance
« and the lower confidence limit CL for a one-sided test have been

specified. We must decide a value for r, the number of failures at

test truncation.
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Equation (3-12) can then be written as

2
Xu,QY‘
L 2r

i

6

Vv

To satisfy the specified reliability requirements, the estimated value
of MIBF should exceed this value.

Writing T = total observed operating time = Sr, we can state that
in T hours, not more than r failures should occur, The value of sample
size n can now be chosen from the consideration of waiting time to rth
failure,

Epstein (Ref. C.2.15) treats this problem from a different view-
point. He defines the quantile xp as being that life such that a pro-

portion p of the items live for at least time xp. Accordingly,

Pr (t xp) = p (3-13)
The p.d.f. for an exponential distribution is
-t
£(¢) =2 0 °
Substituting, we get
xp =9 1n % (3-14)

The one-sided 100(l-a) per cent confidence interval for xp

is given by

27 6 ‘tn Lﬁ

Xy, D : (3-15)

o, ar
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This means that we can be 100(1-&) per cent confident of the assertion
that the fraction of items surviving

T = e r 6 lY\ »b
2

>(<i,2r

or more time units is greater than or equal to p. If we define

|
K(ra,b) = 22 n % (3-16)

o« 2r

then we can say that the multipliers K(r, « p) are such that there is a
probability (1-a) that at least 100p per cent of the population has life
exceeding K(r, o« p)gr .- Epstein (Ref, C.2.15) has tabulated values
of K(r, a p) for vari;us values of r, « and p. Table 3,2 has been
reproduced from Epstein's paper.

If we choose @ = 0,10, r = 3 and p = 0,50, then K(r « p) = 0.391.
If ’e‘r’n as estimated from test is 5933 hours, then K(r, a, p)’@r’n =

=T= 0.391 x 5933 = 2320 hours,

Hence we can assert with 90% confidence that at least 50% of the popula=-

tion have lives exceeding 2320 hours,
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TABLE 3.2
Values of K(r 0.01,p) Values of K(r, 0.05 p) Values of K(r 0.10 p)
'r P .50 75 00 .95 .99 % P .50 15 .90 .95 099 P .50 75 .90 .95 99
r
1 150 .0624 | .0229 0111_1 0022 1 231 0061 | .0352 0171 0033 1 301 125 L0457 0223 .0043
2 209 .0866 | .0317 0154 .0030 2 292 Jd21 .0445 0216 0042 2 356 .148 .0542 .0264 L0051
3 247 103 0376 0183 .0036 3 330 137 L0495 0241 .0048 3 391 162 L0594 .0289 .0056
4 276 115 0419 .0204 .0040 4 358 .148 0544 0264 0052 4 415 172 .0631 .0307 0060
5 299 Jd24 0454 0221 .0043 5 378 157 0575 .0280 .£055 5 434 .180 .0660 0321 0063
6 317 132 .0483 0235 .0046 6 306 164 0602 0293 6057 6 448 .186 0682 0332 0065
7 333 138 0506 .0246 .0048 7 410 170 0623 .0303 0059 7 461 191 .0701 L0341 0067
8 347 144 0527 0257 .0050 8 421 175 .0641 0312 .0061 8 471 196 0717 0349 .0068
9 358 149 .0545 0265 .0052 9 432 .180 0658 .0320 €062 9 .480 199 0730 0356 L0069
10 369 153 .0561 0273 .0053 10 442 183 0671 0327 .0064 10 .488 203 0742 .0361 L0070
11 378 157 0575 0280 .0055 11 450 187 0684 .0333 0065 11 495 205 0753 0366 .0071
12 387 161 0588 .0286 .0056 12 457 199 0695 .0338 .0066 12 501 .208 0762 .0371 0072
13 395 164 L0601 0202 0057 13 464 192 0705 0343 L0067 13 507 210 0770 0375 .0073
14 402 167 0611 0208 .0058 14 469 195 0714 0347 .0068 14 512 212 0778 .0379 0074
15 408 .169 0621 0302 .0059 15 475 197 0722 .0351 .0069 15 516 214 0785 .0382 0075
16 414 172 0630 0307 0060 16 480 199 0730 0355 .0069 16 521 216 0792 .0385 0075
17 420 174 L0639 0311 .0061 17 485 201 0738 L0359 0070 17 525 .218 0798 .0388 .0076
16 | .426 |.a77 | .0647 | .0315 | .0061 18 | 489 | 203 | .0744 | 0362 | .0071 18 |.520 |.220 |.0803 | .0301 |.0076
19 |.430 |.79 |.0655 | .0319 | .0062 19 |.493 |.265 |.0750 | .0365 | .0071 19 | 532 |.221 |.0808 | .0393 |.0077
20 435 181 0662 0322 .0063 20 497 .2C6 0756 .0368 .0072 20 535 222 .0814 .0396 0077
25 | 455 |.189 |.0602 | .0337 | .0066 25 | .514 |.213 |.0781 | .0380 | .0074 25 | 540 |.228 | .0835 | .0406 |.0079
30 470 195 0716 .0348 .0068 30 526 .218 .0800 .0389 0076 30 559 232 .0850 0413 .0081
40 493 205 0750 0365 L0071 40 544 226 0827 .0403 .0079 40 574 .238 .0873 J0425 .0083
50 510 212 0776 .0378 0074 50 557 231 0847 0412 .0080 50 .585 .243 .0890 0433 0084
5 .539 223 .0818 .0398 0078 75 579 .240 .0880 .0428 .0084 5 602 .250 .0916 0446 .0087
100 | 556 |.231 |.0845 | .0411 | .0000 100 | 503 | 248 | 0001 | 0439 |.0086 100 | 613 |255 |.0933 | .0454 | .0080
Values of K(r,0.20 p) Values of K(r 0.25 p) Values of K(r, 0.50, p)
p |50 | a5 | 90 | 95 | 99 P om0 | a5 | w0 | o5 | P |0 | s | w0 | s | e
} o
1 430 179 0655 0319 .0062 1 500 .207 0760 0370 0072 1 1.000 | .415 152 0740 0144
2 463 192 0704 0343 .0067 "2 °|-515 214 0783 .0381 .0074 2 826 343 126 0611 0119
3 486 202 0739 0360 .0070 3 530 220 0806 .0392 0077 3 178 323 118 0576 0112
4 |.502 | 200 |.0764 | 0372 |.0073 a4 [543 |.225 |.0825 | .0402 | .0078 s |55 |313 | 115 | 0550 |.0109
5 516 214 0784 .0382 0074 5 552 229 .0840 .0409 .0080 5 142 .308 113 .0549 .0107
6 52 218 .0800 .0389 .0076 8 560 232 .0852 0415 .0081 6 733 304 Jd12 0543 .0106
i 534 222 .0813 0396 .0077 7 567 235 0862 0420 .0082 4 128 302 Jd11 .0539 .0105
8 542 225 0824 .0401 .0078 8 573 .238 .0871 0424 .0083 8 723 300 110 L0535 .0104
9 548 228 .0834 0406 .0079 9 577 240 0878 0427 .0083 9 719 299 109 .0532 0104
10 | .554 230 .0842 L0410 .0080 10 582 241 .0884 L0430 .0084 10 ST 297 109 0530 .0103
11 559 232 .0850 .0413 .0081 11 .585 .243 .0891 .0433 .0085 11 115 297 109 L0529 .0103
12 563 234 .0856 0417 .0081 12 589 245 .0896 .0436 .0085 12 713 296 108 0527 .0103
13 567 235 0862 L0420 .0082 13 5902 .246 0900 0438 .0085 13 Jq11 295 .108 0526 .0103
14 570 237 L0867 | .0422 .0082 14 595 .247 L0004 0440 .0086 14 710 .295 .108 .0525 .0102
15 574 238 .0873 0425 .0083 15 597 248 .0908 0442 .0086 15 709 204 .108 .0524 0102
16 ST7 239 .0877 0427 .0083 16 .600 .249 0012 0444 0087 16 708 294 .108 0524 0102
17 579 241 .0881 L0429 .0084 17 602 250 .0916 .0446 .0087 17 707 293 .108 0523 .0102
18 582 242 .0885 .0431 .0084 18 604 251 .0919 \0447 .0087 18 108 .293 107 .0523 .0102
19 584 .243 .0889 0432 .0084 19 606 251 .0921 .0448 0087 19 706 293 107 0522 .0102
20 586 .243 .0892 .0434 .0085 20 .608 252 0924 .0450 .0088 20 705 .293 107 0522 .0102
25 596 247 0908 0441 .0086 25 815 255 .0936 0456 .0089 25 102 201 107 .0520 .0101
30 603 250 0017 .0446 0087 30 .621 .258 0944 L0460 .0090 30 701 201 107 0519 .0101
40 613 255 0933 0454 .0089 40 .629 261 0957 0466 .0091 40 699 290 106 0517 .0101
50 | .621 258 0944 .0460 .0090 50 635 264 0965 0470 0092 50 698 290 108 0517 0101
75 | 633 |.263 |.0062 | .0468 | .0091 75 | 645 |.268 |.0080 | 0477 |.0003 75 | 608 |.289 | 108 | .0515 |.0101
100 |.640 | 266 |.0073 | 0473 | .0092 100 | 651 |.270 | .0000 | 0482 |.0004 100 | 605 |.289 | 08 | 0515 |.0101
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3.2+2 Fixed Time Truncated Life Test

Frequently it is convenient to terminate a life test at some pre-
assigned total life T, whether or not a failure occurs exactly at that
time. Items under test may or may not be replaced. Suppose during
test time T r failures are observed. Epstein (Ref. C.2,16) gives the
following relationships for the confidence interval of the MTBF,

The two-sided 100(1-a) per cent confidence interval for @ is

given by

2 2T
5 £ 8 g 2 (3-17)

><qa,2r+2 1= 22T

One-sided 100(1-a) per cent confidence interval for 6 is

2T
e > CL = — : (3-18)

Xu,2r+z

Alternately, one sided 100(1-x) per cent confidence interval for the

quantity xp = 0 log % is given by

2T kn '
XQ.

&, 2r+2

(3-19)

At
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We define

T = 2T L’n ‘/P (3_20)

2
Xo(, 2r4+ 2

Then we can assert with 100(1-a) per cent confidence that at least
100p per cent of the items survive for a length of time T .
If we define
~ T
B = = (3-21)
one-sided 100(1-a) per cent confidence interval for xb is given by

2 (Y‘+')§ {n '/p

XP > 5 (3-22)
><u,2r+2
We can now define
2(r In 4
K(r+1,%,p) = (2 Fig Lo o (3-23)
X, o

and use tables of Epstein (Ref. C.2.15) obtain the appropriate value of

the multiplier K. @ Then we obtain

T = K '5 (3-24)


http:v.__.;.Yp

57

To consider a specific example we assume that we put 20 gearboxes
on test and the test was truncated after 900 hours, and 3 failures were
obtained in this interval. The test was a replacement type, so that as
soon as a gearbox failed it was replaced by a new one,

Total life T = 20 x 900 = 18000 hours,
and number of failures r = 3,

Using equation (3-18) the 90% one-sided lower confidence limit

for MIBF is
= 2T - 2 x 18000
L xa Xz
oA, 2r+2 00,8
%’—;;—;%3@ 2697 hours.

So we can state with 90% confidence that the true value of the parameter
6 is higher than 2697 hours,
‘ Suppose we want to find the value of T for p = 0,50,
From equation (3-21)
T 18000

G —_— - 4500 hours.

From Table 3—2'
K(r+1, o, p) = K(“, 0.10, 0.50)

= 0,415,

T =K(r+l, « p)& = 0,415 x 4500

= 1868 hours.



So we can state with 90% confidence that at least 50% of the gearboxes
will survive for 1868 hours.

It is interesting to note that in case no failure occurs before
the truncation time  point estimates of MTBF cannot be obtained. But
interval estimates can still be obtained and values of T can also be
caléulated.

Simonds (Ref. C.2.47)has provided tables and graphs to obtain
MTBF confidence limits, Table 3,3 has been reproduced from the paper by

Simonds, He defines a nominal test MTBF as

5] = - (3-25)

If U and L are upper and lower confidence limits for MTBF, Simonds

defines

Upper MTBF multiplication factor = -6U- (2-26)
T

Lower MTBF multiplication factor = é: (3-27)
He has tabulated the values for these multiplication factors for various
confidence levels and numbers of test failures. Graphs have also been
plotted to obtain these multiplication factors.
In our example, we had
T = 1800 hours
r=3

and &« = 0,10



TABLE 3.3
MTBF Multiplication Factors for One-Sided Lower Confidence Limit

Confidence Level (%)
Number of
Test Failures 1.0 2.5 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45,0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 9.8 99.0
1 6.757 4.132 "2.809 1.880 1.547 1.214 ~1.062 0.911 0.819 0.727 0.662 0.59%6 0. 546 0.495 0.452 0.410 0.372 0.333 0.296 0.258 0.211 0.179 0.1s51
2 4.598 3.236 2.451 1.817 1.560 1.302 l7l‘ 1.045 0.960 0.87% 0.812 0.748 0.695 0.641 0.596 0.551 0.508 0.466 0.422 0.377 0.317 0.2717 0.238
3 3. 641 2.7%7 2.193 1.720 1.514 1. 307 1.19¢6 1.085 1.010 0.934 0.876 0.817 0.769 0.721 0.676 0.630 0.586 0.543 0.496 0.449 0. 387 0.342 0.299
4 3.128 2.461 2.030 1.643 1.468 1.29% 1.197 1.100 1.032 0.964 0.910 0.857 0.810 0.762 0.720 0.678 0.638 0.597 0.548 0.500 0.437 0.3% 0. 345
5 2.796 2.271 L9n 1.587 1.434 1.280 1.194 1.107 1.045 0.98; 0.932 0.882 0.838 0.794 0.750 0.706 0.664 0.622 0.572 0.521 0.455 0.407 0. 359
6 2.574 2.132 1.828 1.542 1.405 1.268 1.188 1.109 1.051 0.993 0. 946 0.899 0.858 0.816 0.778 0.739 0.699 0.659 0.615 0.571 0.507 0.4%8 0.412
9 2.410 2.025 1.757 1.503 1.379 1.255% 1.182 1.109 1.055% 1.001 0.95 ' 0.912 0.872 0.833 0.797 0.761 0.722 0. 684 0. 640 0.595 0.534 0.486 0.438
L] 2.279 1.945 1.703 1.472 1.358 1.245 1. l'76 1.108 1.058 1.007 0.96% 0.923 0. 885 0. 847 0.814 0.780 0.742 0.70S 0. 661 0.617 0.5%6 0.508 0.461
L) 2.179 1.875 1.657 1.447 1.341 1.238 Lin 1.107 1.059 1ol 0.971° 0.931 0.89% 0.857 0.823 0.789 0.754 0.720 0.677 0.634 0.57) 0.526 0.479
10 2.095 1.822 1.620 1.425% 1.32% 1.225% 1.165 1.105 1.059 1.013 0.975 0.937 0.902 0. 866 0.836 0. 805 0.769 9.733 0.691 0. 649 0.59%0 0. 544 0.497
1 2.028 1.773 1.589 1.406 1.312 .17 1.160 1.103 1.060 1.103 1.060 1.016 0.980 0.943 o\uz 0.811 0.778 0.745 0.704 0. 664 0. 603 0.55%9 0.512
12 1.968 1.738 1.559 1.388 1.300 1.211 1.1%6 1.102 1.060 1.018 0.983 0. 948 0.914 0.879 0.852 0.824 9.790 0.757 0.716 0.674 0.615% 0.573 0.524
13 1.919 1.698 1.53% 1.374 1.289 1.204 1.152 1.099 1.059 1.019 0.985 0.951 0.922 0.893 0.861 0.829 0.79% 0.761 0.724 0. 688 9. 627 0. 584 0. 540
14 1.874 1. 667 1.515 1.3%9 1.278 1.198 1.148 1.098 1.059 1.020 0.987 0.954 0.926 0.897 0. 865 0.833 0.802 0.771 0.734 0. 697 0.639 0.594 0.549
15 1.838 1. 642 1.497 1.348 1.z 1.194 1.146 1.097 1.059 1.021 0.989 0.957 0.929 0.901 0.870 0. 840 0.310 0.780 0.742 0.704 0. 649 0. 605 0.%560
i6 1.801 1.617 1.478 1.337 1.263 1.189 1.142 1.095 1.058 1,022 0.991 0.960 0.932 0. 905 0.876 0.846 0.817 0.788 0.750 0.711 0. 659 0.618 0.570
17 1.769 1.59% 1.462 1.327 1.25¢6 1.184 1.138 1.093 1.058 1.023 0.992 0.962 0.93% 0. 908 0.852 0.824 0.795 0.7%6 0.718 0. 668 0.62% 0.580
18 1.742 1.875 1. 448 1.318 1.248 1.179 1.135 1.091 1.057 1.024 0.994 0. 965 0.938 0.911 0.858 0. 829 0. 800 0.762 0.724 0.676 0.63) 0.589
19 1.715% 1.555 1.433 1.309 1.242 1.174 1.132 1.089 1.056 1.024 0.995 0.966 0. 940 0.913 0.864 0.835 0. 805 0.768 0.731 0.683 0. 642 0.597
20 1.693 1.540 1.422 1.301 1.236 L7 1.130 1.088 1.056 1.024 0.9% 0.968 0.942 0.916 0.891 0.866 0.838 0.810 0.774 0.737 0.689 0. 649 0.665
21 1.670 1.52% 1.411 1.29% 1.230 1.167 1127 1.087 1.056 1.024 0.99% 0.969 0. 944 0.918 0.893 0.868 0.841 0.814 0.778 0.743 0.693 0. 656 0.613
2 1.651 1.510 1. 401 1.286 1.225 1.164 1.124 1.085 1.055 1.024 0.997 0.971 0. 946 0.920 0.896 0.871 0.845 n.819 0.784 0.750 0. 700 0.662 0. 620
23 1.634 1.497 1.391 1.280 1.220 1. 161 1.123 1.085 1.055 1.025% 0.998 0.972 0.947 0.921 0.899 0.876 0.850 0.823 0.790 0.756 0.706 0. 666 0.626
24 1. 606 1.484 1.381 1.273 1.216 1.158 1121 1.084 1.054 1.02% 0.999 0.973 0.948 0.923 0.9%02 0.881 0.854 0.828 0.795 0.762 0.711 0.671 0.632
25 1. 602 1.473 1.373 1.268 1.212 1.155% 1.118 1.082 1.053 1.024 0.999 0.974 ©0.950 0.925 0. 904 0.882 0.356 0.829 0.798 0.766 0.717 0.676 0.636
30 1.537 1.425% 1.337 1.245 1.194 1.143 1.110 1.077 1.050 1.024 1.001 0.978 0.955 0.932 0.910 0.861 0.843 0.813 0.783 0.737 0.699 0.662
3 1.489 1. 388 1.310 1.227 1.180 1.133 1.103 1.073 1.048 1.024 1.005 0.982 0.963 0. 944 0.922 0. 900 0.877 0.854 0.826 0.798 0.756 0.718 0.709
40 1.451 1. 360 1,288 1212 1.169 1.126 1.098 1.070 1.047 1.024 1.004 0.983 0. 965% 0. 947 0.926 0. 905 0.838 0.870 0.839 0. 808 0.769 0.736 0.699
45 1.420 1.338 1.270 1.199 1.159 1.119 1.094 1.066 1.045 i.024 1.004 0.985 0.968 0.95" 0.932 0.914 0.89%4 0.873 0. 846 0.818 0.779 0.748 0.711
50 1.39% 1.318 1.256 1.188 1.151 1.114 1.089 1.064 1.044 1,023 1.00% 0. 987 0.970 0.952 0.935 0.917 0.896 0.876 0.854 0.832 0.792 0.7% 0.723
- 60 1.355% 1.286 ~ 1,230 L 1.138 1.104 1.081 1.058 1.040 1.022 1.006 0.989 0.972 0.955 0.942 0.928 0. 908 0.887 0. 864 0.841 0.808 0.77¢ 0.746
70 1.324 1.262 1.212 1.1%9 1.128 1.237 1.076 1.055 1.038 1.021 1.006 0.991 0.974 0.958 0. 944 0.930 0.914 0.897 0.874 0.851 0.822 0.789 0.760
80 1.301 1.244 1.196 1.147 1.119 1.091 1.071 1.051 1.036 1.020 1.006 0.992 0.980 0. 968 0.950 0.933 0.920 0. 906 0.883 0.860 0.831 0.804 0.773
90 1.281 1.229 1.186 1.139 .12 1.086 1.068 1.050 1.034 1.019 1.006 0.993 0.981 0.970 0.956 0.942 0.925 0. 908 0.888 0.868 0.839 0.811 0.786
100 1.26% 1.206 1.176 1,132 1,107 1.082 1.064 1.047 1.032 1.018 1.006 0.993 0.982 0.971 0.957 0.943 0.930 0.917 0.897 0.877 0. 847 0.8519 0.793
150 1.211 1.174 1. 141 1.107 1.087 1.067 1.083 1.039 1.028 1.017 1.006 0.995 0.984 0.974 0. 964 0.955 0.942 0.929 0.912 0.895 0.872 0. 850 0.828
200 1.180 1.149 1.121 1.092 1.07% 1.058 1.046 1.034 1.024 1.014 1.006 0.997 0.986 0.976 0. 966 0.957 0.948 0.939 0.926 0.913 0. 889 0.873 0.851
250 1.160 1.132 1.109 1.083 1.068 1.053 1.042 1.031 1.022 1.01% 1.00% 0.997 0.992 0,986 0.976 0.967 0.9s58 0.949 0.936 0.922 0.897 0.881 0.866
300 1. 147 1.122 1.101 1.081 1.065 1.049 1.039 1.029 1.021 1.013 1.00% 0.998 0.992 0.987 0.978 0.968 0.960 0.953 0. 940 0.926 0. 904 0.892 0.876
400 1.12% 1.104 1.085% 1.066 1.054 1.042 1.034 1.025 1.018 1,011 1.00% 0.999 0.99;5 0.988 0.979 0.970 0. 964 0.959 0. 946 0.934 0.919 0. 908 0.892
500 110 1.092 1.07% 1.062 1.050 1.037 1,030 1.023 1.016 1,010 1.005 0.999 0.994 0.988 0.983 0.978 0. 969 0. 960 0.951 0.942 0.933 0.916 0.899
750 1.104 1.087 1.072 1.059 1.048 1.036 1.029 1.022 1.016 1,010 1.008 1.000 0.995 0. 990 0. 985 0,980 0.971 0.962 0. 954 0. 946 0.937 0.921 0. 908
1000 1.098 1.082 1.068 1.056 1. 045 1.034 1.028 1.021 1.016 1.010 1.008 1.000 0.996 0. 991 0.986 0.981 0.972 0.964 0.957 0. 950 0. 941 0.92% 0.910
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From Table 3.3 we find for a one-sided confidence limit, multiplication

Using equation (3-12), Bp = g = = 6000 hours,
factor = 0,449,

So the lower confidence limit for MTBF (one-sided) = 0,449 x Brp

= 0,449 x 6000

= 2694 hours.
It agrees closely with the value that we obtained earliers The same
result can be obtained by using the graphs. One disadvantage of this
method is that the tables or the graphs cannot be used if no failures
are obtained before test truncation time.

We can make some comments regarding the sample size. The larger
the sample size, the larger is the tofal test time T for a specified
testing interval. If T is larger, we expect to get more failures and
then the confidence limits are closer. Hence by obtaining more test
failures, our estimate of MIBF is more precise. This can be appreciated
from Fig. 3-1.

Another method of MTBF and reliability estimation has been suggest-
ed by Epstein (Ref. C,2.18). Here n items are placed under test and
straight test duration time t* is known, At the end of the test time
the number of failed items are counted and failed items are not replaced.
Then, it can be stated nonparametrically with 100(1-a) per cent confidence
that at least 100b per cent of the population survives for a length of

time t* the value of b being given by

{

4+ |
N=r d,2r+2,2n-2r

o
il

(3-28)
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Values of F;vfl'fa can be obtained from the tables of F distribution.

This method being nonparametric is independent of the underlying
distribution. Equation (3-28) can also be interpreted as the lowest
estimate of Reliability for t* hours with 100(1-«) per cent confidence
is bs In the particular case where the underlying distribution is

exponential  one-sided 100(1-a) per cent confidence interval for MTBF is

given by -

*

T
(3-29)
n l:' "'(:f:») Fu,2r+2,2n—zr‘:|

6 >

If no failure occurs during the test time t* equation (3-29) becomes

6 > (3-30)
7 =

and equation (3-28) can be written as

R (1) ) T e (3-31)

N oo, 2,2Nn
We will use this method in our example, Suppose the test was run for
900 hours with 20 components and 3 failures were obtained, Failed

components were not replaced,
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So t* = 900 hours
n = 20
r = %

If we choose a = 0,10, Fb 10 8 3= 1.86
* ’ ’

900
6 >
- 3+
b [' M (2;—3) Fo-lo,'a, 34] ‘
00
;> - 4x1-86
An [| + ——;:7——':‘
>/ 2472 hours
Similarly
E |
FQ(:t ) >; | + 0:438

> 0:696

3.,2.3 Acceptance Sampling Plans for Reliability Testing

In acceptance sampling the supplier of components supplies a
lot which is required to have a certain minimum MTBF or reliability.
Samples are drawn at random from the lot  tests conducted and depending
on the test results a decision is made whether to accept or reject the
lot., Here, a quantity C  called acceptance number is defined, If in a
test with a sample of n components for a test duration t, C or fewer units
fail the lot from which the sample was drawn is accepted and if more
than C units fail, the lot is rejected; this decision being made at a

specified level of confidence. If the population has MTBF of eo, then



63

probability of failure for time t is
%

F; (1:) — (2- &

With n units on test, the probability of C or fewer items failing is ob-
tained by summing up the terms of the Binomial expansion,

If the desired confidence level is 100(1-B), we can write

c .

ul [Foﬁ)]"[u - R (] )

T (n-0)1

(3 (3-32)

IN

From the table of Cumulative Binomial Distribution (Ref. F.3.8) the
smallest integral values of n satisfying this inequality can be obtained.
The results were tabulated by Sobel and Tischendorf (Ref. C.2.48) and
can be conveniently used in planning sampling plans (Table 3.4),
‘ We will demonstrate the use of the table by solving a typical
example in which the minimum acceptable specified value of mean life is
L500 hours. We wish to run the test for 900 hours., For a confidence
level of 90% we wish to fix the value of C and n,

t = 900 hours

eo = 4500 hours

t 00
e =I5 7 02



TABLE 3.4

Minimum Size of Sample to be Tested for a Time t to Assure
a Minimum Mean Life of @, with Confidence P* when
C is the Acceptance Number

P* = 100(1 — B) = 90 per cent

t/6s
c
10(05| 0.2 | 0.1 |0.05( 0.02 | 0.01 | 0.005| 0.002 | 0.001 | 0.0005| 0.0002 | 0.0001

0 3 5 12 24 47 116 231 461| 1,152| 2,303| 4,608| 11,513| 23,020
1 5 9 20 40 79 105 390 778| 1,046| 3,801 7,780| 19,450| 38,808
] 71|12 28 55 | 109 206 533|1,085| 2,002| 5,323|10,645| 26,612 53,223
3 0| 15 35 69 | 137 333 e68| 1,337 3,341| 6,681|13,362| 33,404| 66,808
4|11] 10| 42| 83| 164 398| 1798|1,509| 3,907| 7,004)15,088| 39,068 79,636
5|13 22 49 97 | 190 462 927|1,855| 4,638| 9,275| 18,540| 46,374| 92,747
6|15 25 56 | 110 | 217 528| 1,054 |2,107| 5,267|10,533|21,084| 652,661) 105,322
7116 28 63 | 123 | 243 580|1,178|2,355| 5,886 11,771|23,542| 68,855 117,710
8118 31 70 | 136 | 209 648| 1,300 2,509| 6,498| 12,995| 25,000| 64,074 | 129,948
9|20 | 34 76 | 149 | 204 709| 1,421 2,842| 7,103| 14,206| 28,412| 71,030 142,060
10 | 22 | 37 | 83| 161 | 310 770| 1,541|3,082| 7,704| 15,407 |30,814| 77,034 154,008
11 | 23 | 40 80 | 174 | 344 830)1,600| 3,320 8,300]| 16,598| 33,197 | 82,001 105,082
12 | 25 | 42 95 | 187 | 309 888|1,779|3,667| 8,801|17,782|35,504| 88,008| 177,810
13 | 27| 45 | 102 | 109 | 393 947|1,806|3,702| 9,479|18,058|37,016| ©04,790| 189,580
14 | 20 | 48 | 108 | 212 | 417 | 1,007 2,013 | 4,020 10,004 | 20,128 40,256 | 100,640 | 201 .280.

P* = 100(1 — B) = 95 per cent

/0

1.0/ 05| 0.2 | 0.1 | 0.05]| 0.02 | 0.01 | 0.005| 0.002 | 0.001 | 0.0005| 0.0002 | 0.0001

3 8 16| 31 60 149 208 600( 1,498| 2,906| 5,902| 14,970| 20,058
6| 11 26 | 49 97 236 473 949| 2,372| 4,744 9,488| 23,720| 47,439
8| 14 33 65 | 120 314 630|1,260| 3,i48| 6,200) 12,5692 31,479| 62,058
0| 18| 41 80 | 159 386| 776 1.881( 38,877 7,754|15,508| 88,760| 77,837
2|21 48 95 | 189 456 914 1,831( 4,577 0,154 18,307| 45,708 901,538

6| 14| 24 66 | 109 | 217 627)1,052|2,103| 5,257 | 10,5614 21,027 | 52,566| 105,131
6| 16 | 27 63 | 123 | 245 697(1,183|2,360| 5,922| 11,843 | 23,685| 59,212( 118,424
7| 18131 70 | 137 | 274 6501 1,315(2,630| 6,5756| 13,149 26,207 | 65,741 131,481
8| 19| 34 77 | 160 | 209 722( 1,444 (2,887 7,218| 14,435 28,870 72,174 144,347
9| 2137 84 | 1064 | 327 786|1,571|3,142| 7,853 | 15,706 31,411| 78,526/ 157,052

10 | 23 | 40| 01| 178 | 353 846 1,697 |3,393| 8,482| 16,063 | 33,025| 84,811| 169,622
11 | 25 | 43 98 | 100 | 379 908 1,821/3,642| ©,104|18,208| 36,416 91,038 182,076
12 | 27 | 46 | 105 | 205 | 405 971|1,045|3,880| 9,722| 10,443 | 38,886 07,213 104,426
13 [ 20| 49 | 111 | 218 | 431 | 1,034 | 2,067 | 4,134 | 10,335 20,669 | 41,338 103,343 | 206,686
14 | 30 | 62 | 117 | 231 | 457 | 1,005 2,180 4,378 10,044 | 21,887 | 43,773 | 100,433 | 218,865
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From Table 3.4 we can choose the following alternatives -

C n
0 12
1 20
2 28
3 35 '
4 42
5 k9

So we see that the tables provide a useful method of devising a suitable
sampling plan. The tables, strictly speaking,6 are valid for infinite
lot sizes only., But the result obtained from the fables, when the lot
size is finite is always conservative and the error is towards the
safer side., If the sample size is less than 15% of the lot size, the
error is negligible,

The usefulness of these tables is immense, Nevertheless, the
sampling plans set up using these tables have some disadvantages (Ref,
B.1.%0). A large sample size is required., The alternative to a large
sample size is for the true reliability to be much better than the
requirement,

Operating characteristiq curves, which are very common in
quality control work are also used in reliability testing. An operating

characteristic curve is a plot of the probability that a given quality level
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will be accepted by a sampling plan versus the value of the quality
level. The problem has been analysed by Epstein and Sobel (Ref. C.2.13),
Peterson (Ref. C.2.41) Goldsmith (Ref, C.2.20) and Altman (Ref. C.1.1l).
The proportion of units tested that can be expected to fail at any time T
is given by

fo
p=F(T) =1-ce (3-33)

So a sample of size n is taken  tested for T hours and number of failing
units are determined on an attribute basis. To obtain the 0.C. curve,
we compute the probabilities of acceptance as a function of failure rate
of the lot and acceptance number C. We shall illustrate the computa-
tions using an example,

Let n = 50 and T = 1000 hours., If the failure rate A for the

lot is 0.00001 per hour or 1% per 1000 hours, then

1
eo - e = 100000 hours

(o]

and -T/eo
e = 0,99,

Using equation (3-33), the proportion of items expected to fail by
1000 hours = 1 = 0,99,

or p = 0,01
So the expected number of failures per sample is

pn = 0,01 x 50 = 0,50
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The cumulative form of Poisson distribution is given by

— =, e
P = s . Kb (3-34)

This gives us the probability of having C or less failures, and hence this
also gives us the probability Pa that the sample will accept the lot,

To determine P_, we may use the tables by Burr (Ref. F.1.9) or
the charts of Dodge and Romig (Ref. F.3.3) or those given by Bowman and
Fetter (Ref. F.1l.5).

The calculations for the 0.,C, curve are shown below.

n =50 C=1 T = 1000 hours.

Lot failure rate A o =/ T/ pzl-e-x/eo

(per cent per 1000 hours) | (in hours) %o po Fa
o 0,00 0,000 0.00 | 1.00
1l 100,000 0.01 0,010 0.50 | 0.60
2 50,000 0,02 0.020 1.00| 0,37
3 20,255 0,03 0.030 1.50 | 0,22
4 25,000 | 0,04 | 0,039 1.95 | 0.1k
5 20,000 | 0.05 | 0,049 2,45 | 0,09
6 16,667 | 0.06 | 0,058 2.90 | 0.05

The resulting 0.C. curve is shown in Fig, 3-1,
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time. Reducing the acceptance number C makes the curve more discriminat
ing, if test time T and sample size n are kept constant, Similarly, if C

and n are held constant  a longer test time makes the curve more dis-

criminating. A larger sample also yields a steeper curve keeping C and

T constant. These characteristics are shown graphically in Fig., 3-2

(Ref. colol) .

] L%*{ BESS . 4 I RERES! -
1;"'{ T : H HH HHH H
- *" \({%"‘ -1 BEsEsE b S 1] BEE RN Il 1] :
FH U }1'\\ CHH 1 HH ] H HiHHHHH LF HH
T 1 : H § 5 1 H T
HHH TN HHH H M SR 8 SSEE8 1] HHHHH
HH \\' : HH 1] HHH HHH
SENENEE ANEEN NS Y ESSUNEARRER 111 H e sEsEREEEEES
EsEacsdas NHHHEEH HHHHH : HHHHHHH HHHHHHHHHH HHHHHH
an BEE gua a8 (1 . =2 B8 8 B 8 1 -
SaSessyysseases T : : geesezsay Tt
o B HHHHHNGE HHHH H H HHH T gas
— T ._‘; t‘f‘ CHETE \ sESEsEE 8 o b4 H3H H HH B THT3 :-‘::
® [F 4%;; - i H ] 1 FHH ERES 4 H sas
= T NTH i5 H HH FEH BEsESEsssaaaEssEsE
Sigeaad diaaseds +HHHH HH HHHHHHHHHHH HHHHH aasasessssssagsans
® B T I HHH it ﬂ HH :tiz:
) SsagsEmmasEn H H 1
S T HHHH HiHH H H HHHHHH
[ ] b 1] = s I I I
-g :é..‘ x [ s 117 . !
HH »—E H N HH SEE L 2% A
()] I SEEEEEEN 111 i . EEEEE 8 .
T T u N 11 8 SN
A N H 1
8 B T SRESEEE A
o NG 1
: ST ] HH H
2 ! NG ] H HH
-+ - \\Lj} . 4 w 1 H
+ H1 HIN +
i _ i
» B T
< 2 . - 1 I
P aeas! (m}
[s W t e 1 :
i { e}f T
» BT :
oA S i f
— 1T AEE BN 1 1
Al -
el
g T 1
o M + L ]
Failure rate A of lot (expressed as a percentage per 1000 hours)
Fig. >~1 0.C, Curve (n = 50, C=1 T = 1000 hours)
Hence, this sampling plan will accept lots with A = 0,00001 per hour 60%
of the time, and will accept lots with A = 0,00006 per hour 5% of the
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Fige 3-2 0.C. Curves for Different Life Test Sampling Plans

(A) Effect of Acceptance Number
(B) Effect of Test Time
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A sampling plan may be designed to suit some specified require-

ments., This

Rls

can be demonstrated by the following example. Let
Acceptable Reliability Level

reliability level of submitted lots at which it is desired
to set P equal to (1=cx)

a failure rate of 0,00002 per hour,

Lot Tolerance Failure Rate
reliability level of the submitted lots at which it is
desired to set Pa equal to B

a failure rate of 0,00005 per hour,

producer's risk or probability with which lots of reliability
R1 will be rejected by the plan.

0.10

consumer's risk or probability with which lots of reliability

R2 will be accepted by the plan,

0.10

We now need to know three quantities, test time T 6 acceptance number C

and sample size n, We are to decide on the value of one of these and the

other two can then be determined. Suppose we assume that we will run the

test for 500

hours only. Thus T = 500 hours.. From the Poisson Chart,

we obtain various values of pn and pon corresponding to the respective

probability of acceptance,



Values of p.n Values of p,n P
C 2 e Ratio 2
for P_ = 0,90 for P = 0,10 Py
a a
0 0,107 2¢3 21.45
| 0.538 3.9 223
2 1.09 53 4,86
3 1.74 6.7 3.85
4 2.41 8.0 3,32
5 3415 9.2 2.92
Here we have ARL = Pl = 0,00002 failures/hour.
()] |
= = 5 ho
O, 0-00002 SR
_'T_-_ — 500 = O}
e(') 50000
(o)
-
. - Yo
P = 1 — e
I
- 00l
= | - e
= 1 - 0:99

00l

71
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Again RTFR = R, = 0,00005 failures/hour,

2

(2 _ | _
0% = 5005~ = 2000 hours
T 500

—_ = = £y 25

p¢? 2000

(o]

* -.179:2) -0:25 —

p =] — e | — e = 0.221
2

p.
2 _ 0.221

So the required ratio is ;;, 0.010 22.1

Comparing with the ratios computed earlier, we see that a plan with
C = 0 is most suitable.

Then pn = 0,107

Substituting P, = 0,01, n = g‘%—g% = 10,7 =11

éo the required sampling plan is as follows =

Test duration T = 500 hours

Sample size n = 11

Acceptance number C = 0
If no failure occurs during the test, we accept the lot, otherwise we
reject it  the risks in making this decisibn being @ and f. Alterna-
tive plans can also be designed by taking a different value of T,

Bonis (Ref. B.1.9) suggested drawing 0.C. curves with a non-
dimensional quantity called Normalized Time as the horizontal axis.
Normalized Time is the ratio of total testing time in hours and the

true MIBF in hours,
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total test time T
true MIBF

Normalized time d =

Hence, this is the expected number of failures for true MTBF. The chart

is shown in Fig, 3-3, In the chart' a represents acceptance number,
Suppose for some components,6 true MIBF = 500 hours.

Total test duration T = 4500 hbura (this takes sample size into account)

Then

- 120 .
d 500 90

If acceptance number is 15, from Fige 33 we get Ps = 98%. Or in other
words, probability of observing an MTBF of &ggg = 300 hours is at least

0.98, when true MIBF is 500 hours.

3,2.4 Sequential Testing in Reliability

Sequential testing plans allow the number of items inspected or
the total testing time to be determined by the cumulative results of the .
;nspection process. Pioneering work on sequential testing for quality
control work was done by Wald (Ref. F,1,66). This method has been
adopted for reliability work by Epstein and Sobel (Ref. C.2.14), Lieberman
(Ref, C.2.37), Brewington and Tiger (Ref. B,1.14) Aroian (Ref. C.2.3),
Eagle (Ref, C.2.8) and others. |

The major advantage of sequential testing plans is that on the
average they require less testing than other plans, This is particularly
true for very poor or very good material. As in acceptance sampling
plans, interval estimates of reliability or MIBF are of importance and

with a specified margin of error (or risk), it is ascertained whether the
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reliability of the items to be tested is at least as good as specified,
If the material is accepted by sequential testing, we still do not know
by how much the equipment is better,
We define the following terms -
t = acceptable value of MTBF

o
RU = acceptable reliability

o
-
|}

unacceptable value of MTBF

= unacceptable level of reliability

e

)

= producer's risk - probability of rejecting a lot with
MIBF t_ or better (Reliability Ry or better)
B = consumer's risk - probability of accepting a lot with

MIBF t, or worse (Reliability R, or worse)

Roverts (Ref. A,1.65) suggests a testing procedure, where the
data is obtained as cumulative successes or cumulative failures. An item
performing the specified operation is counted as a success, otherwise it
is counted as a failure,
Let F = cumulative number of failures
S = cumulative number of successes
From simple probabilistic concepts, the equations for accept and reject

lines can be derived as follows =

Pinl-PLegin® mina . - (3-35)
A = By Ry

and Fin® " ® +51n L = 1ns3, (3-36)
L~ By Ry
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where A= lﬁiJi (3-37)
and B = '1_%? (3-38)

The above lines are graphically represented in Fig. 3-4. The region be-
tween the two lines is the area of no decision. As the test proceeds,
the results are plotted on the graph and testing is continued till the
plotted line meets either the accept or reject line. So it is clear

that number of samples to be tested depends on the cumulative result of
the previous tests and cannot be decided in advance. But the average or
expected sample size can be computed using the following relationship and

is useful for planning purposes

(1 ~a)lnB+alnA
(1-Ry)1n [;%;]* Ry ln(%)

where ASN = average sampling number,

ASN = (3-39)

(%))
£ Reéec't
=
" . Conlinue test
(&)
2
= Accept
? r ————————————————————
| }
&3 i |
rm—————————— Jd
]
Ty 1 e n - i L
: . . . ' ' ) +

Cumulolive successes

Fig. 3=4 Graphical Representation of Sequential test When Data
is Available as Cumulative failure or Cumulative
success
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This method is quite simple to use. However K it is based on
attributes, or in other words, for the specified mission time we test
the components and the results are reported as failures or successes.

It is felt that this limits the generality of the method., The approach
of Epstein and Sobel (Ref., C.2.14) appears to be more powerful.

We consider n items are drawn at random (when underlying p.d.f.
is exponential) and placed on life test. We wish to test the hypo-

thesis Ho t t = to against hypothesis H1 ¢ t = t, with associated type I

1
error of a and type II error of B as before.
Let
V(T) = Total accumulated operating time
T = Straight test time
Then in the replacement case,
V(T) = nT : (3-40)
and in the non-replacement case,
r ’ :
V(D) = T x + (n-r)(T-x) (3=41)
i=1
where r = number of failures observed during the test
and x, = time of 1*® failure,
If t is the true value of MIBF, then from the Poisson distribution, the

probability of getting r failures in test duration T is
V(T
'()/t

r
P(Y‘) == [V_ET)] e_f' (3-42)




If the MIBF of the components is exactly equal to tl'
_V('r)/

B in) = [vt(,t)]r er! :

and if MTIBF is exactly equal to to

-V(T)y

O

We form a probability ratio p(r) so that

(= 22 = (B en {44 Tvin)

R (r)

So our decision criterion will be

B{p(r) A
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(3-43)

(3=4k4)

(3-45)

(3-46)

If at any stage of the test, p(r) { B, we make an accept decision,

and if p(r) ) A, we reject the lot. For intermediate values of p(r),

the test is continued.

Substituting for p(r) from equation (3-45) in equation (3-46),

we get

Y\

s (s on [-[4-1lven) <Aoo
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Taking logarithms and re-arranging, we get

|
P
-
>
ﬁ
F
5
5t
I
o
ve)
-
f*—
=
g

+ LI V(M) ( st & | (3-48)

I
l_.

-
I

To plot the data continuously in time, we can write the above equation
as

-h) +r S (V< h +rS (3=49)

Equation of the accept line is

V(T) =h_ +r S (3-50)
and equation of the reject line is

V(T) =-h, +r 8 (3-51)

ho' h1 and S are positive constants given by

ho - |—ln|8 (3-52)
t 5
In A
h, = (3-53)
%,
(n ( Tes
and S = n< t'> (3-54)




Totad accumudoted Aife observed V (T)——

o Faikures v ——

Fig. 3=-5 shown above is a graphical representation of this method.
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ho is the intercept of the accept line on time axis, -h1 is the intercept
of the reject line on time axis, and S is the slope of both the lines.

If L(t) = probability of accepting Ho when t is true MIBF, Wald
(Ref. F.1.66, pp. 48-50) gives the following relationships for deter-

mining L(t) for any value of t by assigning different values to h,

h
L (t) 2—2,;———8'7 i (3-55)
h
1
=) -1
ond g i — (t'> (3-56)

“\ < | | >
tl to
This enables us to obtain an 0.C, curve. Some points[:L(t)' t] on the
in A
0.C. curve a.re[O, 0]’ [B' tl] i [m’ S] " [(l-a), to]
andEl,0q].
Epstein and Sobel (Ref. C.2.,1k4) give some formulas to compute

ASN approximately. This information is very useful in planning the tests

in advance.

Denoting ASN by Et(r),

& h - L(t)(ho + hl) for t # 8 (3=57)
E(r) = = St
h
~e 1 ft kB (3-58)
. .

Lieberman (Ref. C.2.37) has provided a number of tables and charts for
sequential testing without using graphical methods. These tables are

based on the above formulas,
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We will now demonstrate the use of this method by solving a
typical example. A manufacturer of household appliances obtains certain
gearboxes in large lots from various suppliers. The desired value of
MTBF is 4000 hours, and components with MTBF lower than 2000 hours are
,not acceptable,

Hence t, = 4000 hours

and tl = 2000 hours s
It was agreed to have a = B = 0,10,

from equation (3-37),

podh 1-01 09 g
« 0.1 0.1
and equation (3-38) gives
B T O
B = Rt 1-0.1 0.9 0.,111
from equation (3=52)
o = in B - 1ln 0,111
R | 8792 hours.
t t 2000 4000
ak o
From equation (3-53),
_ lmA  _ _ 1m9
hy T N 8788 hours.
tl t 2000 LO0O
(o]
from equation (3-54)
t
1n (7o/, )
S = Fy < lfi = 2772 hours.
T - & 2000 4000
1 o



Equation of accept line is
V(T) = 8792 + 2772 r
and that of reject line is
v(T) = -8788 + 2772r
These lines are shown in Fig. 3-6. Using equations (3-55) and (3-56),
an 0.C, curve can now be drawn. The following points on the 0.C. curve

were obtained -

Probability of acceptance L(t) | Average MTBF t(hours)
0 0]
0.10 2000
0.50 2772
0.90 LooO
1 o)

0.C. curve has been plotted in Fig. 3-7.
Now we can investigate the variation of ASN with Average MIBF
of lot. We use equations (3-57) and (3-58) and obtain following

values

Average MTBF t (hours) ASN
(o) 3.2
2000 9.1
2772 10.1
Looo 5.7
00 0
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A curve of ASN vrs., MIBF (true value of population) has been plotted in
Fig. 3-8. We would expect on the average, a sample size of 10 should be
aufficient' though in some cases, as many as 20 or 30 items need be tested
before a decision can be made.

In this particular case, we will run a test of replacement type

and replace components as they fail. The results are as follows =

Life of individual Accumulated
No., of failures r operating time
components (hours) (hours)

1 1600 1600
2 3600 5200
3 4800 10000
b4 2000 12000
D 1200 13200
6 2400 15600
7 3600 19200
8 Looo 23200
9 2000 25200
10 3600 28800

An accept decision was made after the 10th failure. The procedure has
been shown graphically in Fig. 3-6,
The same results can be obtained by using tables given by Lieber-

man (Ref, C.2.37). He provides limits of time for accepting or rejecting
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after each failure, and the test is terminated as soon as either of the
two limiting values is reached.
In summary 6 we can make the following remarks regarding the
number of samples needed to reach a decision =
(1)  ASN increases with decreasing a and B.
This is because the decision must be made with a smaller

margin of error,

t
(4i) ASN increases as the ratio Eg decreases,
t 3!
A smaller ;g ratio will require that the test be more dis-
1

criminating and hence more testing is necessary.

(iii) If the true value of MIBF of a lot is much higher than t
or much lower than tl a decision is reached sooner. Or in other words,
very good or bad lots need less testing.

Another important point which needs to be considered is test
truncation, Tests continued for very long duration tend to be expensive
Qnd hence sometimes, decisions are made to truncate the tests after a
predetermined test time. Bazovsky (Ref. A.1.10) suggests that a line
be drawn through the origin parallel to the accept and reject lines
(dashed line in Fig, 3-6). If no decision has been made before the trun-
cation time Tt' then an accept decision is made if r(t) step function A
at Tt is towards the left of the dashed line  otherwise a reject decision
is made, If truncation time T, is sdfficiently large compared to T

t

the minimum time for acceptance, the error introduced in this process is

min?

small. Eagle (Ref. C.2.8) suggests that tests may be terminated at

Tt = 10 to. Various methods have been suggested to estimate the error
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introduced by truncation and have been discussed by Ginsburg and Shaffer
(Ref. C.2.19), Aroian (Ref, C.2.3) and others. But it is felt that the
method suggested above is sufficient for most engineering purposes.,

In conclusion, we may mention that Eagle (Ref. C.2.8) recently
proposed a new method of drawing sequential testing charts, where the
accept and reject boundaries are parabolic arcs instead of straight lines.
But Aroian (Ref. C.2.3) criticiied this approach since the probability of
rejection of a lot is much higher than the specified value. This is be=-
cause BEagle assumed sample points on sequential testing charts to be in-
dependent of each other which is in fact not true. Each point in
sequential life test depends on the previous point,

Sequential testing is a very useful method of reliability testing
when large number of components are to be tested and the assurance that
the reliability of the components is higher than a specified limit is

more important than exact determination of reliability.

3.3 Life Testing Assuming Normal or Logarithmic Normal Distribution

Normal distribution has been used widely as a model for the
wearout life of a component. In most cases, the observed data fits the
normal p.d.f. reasonably well, The theoretical normal curve extends from
-00 to too In practice, it is inconceivable to have a negative
value of component life  and hence some investigators, such as Bazovsky
(Ref. A.1.10) suggest using Logarithmic normal distribution as an appro-
priate model. But in the normal distribution  the probability at the
two ends of the curve is so small that for engineering purposes,6 very

little error is introduced by using normal distribution,
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In testing for wearout life the sample size need not be large,
but the testing time is usually long to obtain sufficient number of wear-
out failures. As the test proceeds, some chance failures may occur,
which are caused before the onset of wearout due to chance. Such fail=-
ures may be recognized by physical examination and eliminated from |
further consideration, Statistical methods, such as determination of
skewness or any of the standardvmethods for checking of outliers using
Extreme Value theory may be used. Some of these methods are those pro-
posed by Irwin (Ref, F.1.36), Grubbs (Ref, F.1.26) and Dixon (Ref, F.1l.1lh
and F.1.15).

If n components are put on wearout life test and if ry wearout

failures were obtained, estimates of mean and standard deviation are

Y\N
A ;Z; tiu&
= | (3-59)
M == |
" 1
i A2
(th—M>
and g = [= (3-60)

where tiw is the operating time to wearout failure of ith component.,
Hence (n-rw) failures have been considered to be caused by factors other
than wearout and were eliminated from further consideration.

In reliability work  the standard deviation calculated from the
sample is used as an approximation for the true parameter if the number

of wearout failures obtained during the test is at least 25 (Ref. A.1.10).
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We have reviewed some methods of obtaining point estimates of
mean wearout life and its standard deviation. But for reliability work,
interval estimates are of great importance and confidence intervals are
to be obtained. The estimate of standard deviation obtained in equation
(3-60) is a biased one.

Unbiased estimate of standard deviation of the universe

A 2 Pu
= g -— 61
a By (3-61)

The standard error of the mean can be calculated as

N
o
O—M - NeoN (3-62)

Here we assume that the lot size is much larger than'rw.
The upper and lower confidence limits of the mean wearout life

can now be calculated. If o = level of significance then in two-

sided case, lower confidence limit

A
L=M- za/ Oy (3-63)
2
and upper confidence limit
A
U=M 4-2nl Oy (3-64)
/2

If only the lower limit of mean wearout life is desired  we use the

one-sided test, and lower confidence limit

CL=M=-2Z o0y (3-65)
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associated with confidence level 100(1-«). 2:“'15 the percentage point
for level a and can be obtained from Tables of normal p.d.f. So if in
a wearout test  the estimate of wearout life obtained is ﬂ, we can be
100(1-a) per cent confident that the true wearout life of the lot is at
least CL‘

The estimate of standard deviation G has been obtained from
the sample itself, It is possible to obtain an idea of the error involved
in this estimation. If the wearout lives of the items in the lot is con-
sidered to be normally distributed Stockton (Ref, F.1,61) states that

the standard error of standard deviation is

g = a (2-66)

It can be readily seen that this error is small unless the number of wear-
out failures obtained during the test r. is small.

When the sample size or more precisely the number of wearout
failures obtained is small (less than about 25), it is more appropriate
to use t distribution in computing the confidence limits. For two-sided

test, upper confidence limit

A
U=M™M +t T, (3-67)

The lower confidence limit is

L=wm -t,

7 e T (3-68)

and for one-sided test lower confidence limit

c=m -1 T (3-69)
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For the sake of accuracy it is advisable to take the standard error of
the standard deviation into consideration since here we are dealing with
small sample sizes.

More frequently 6 the test cannot be continued till all the com-
ponents have failed due to enormous time required and due to economic
reasons, Hence' the test has to be truncated before all the compo-

nents have failed.

Let
to = truncation time
n = total number of items put to test
a = number of items which have not failed up to time to
then (n-a) = number of items failed due to wearout before test
truncation
t; = times to failure of (n-a) components, i =1, 2 ...

y(n-a).
ﬁere we are dealing with a truncated normal distribution and Hald
(Ref., F.1.30) gives the following method for estimating the mean wearout
life M and standard deviation,
We compute an estimate of degree of truncation as

a

Then from (n-a) observations, we compute

n-=a

(n-a) 3 (1)’

Z[Z(to—ti)]a

(3-71)
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Now we refer to Table X of Hald (Ref, F.3.5) and obtain an estimate of
the standardized point of truncation as Z= f(h y).
Knowing Z | we can obtain from the same table the parameter

W'(Z) and calculate

h = i et (3-72)
%( %) ay(z) —(n-a)z

Then an estimate of standard deviation can be computed as

Z(to—ti)
s == " q(h) (39

and an estimate of mean wearout life as
M=t +12ZS (3-74)
For truncated normal distribution, Hald (Ref. F.1.30) states that
the standard error of the mean can be obtained by using a correction

factor pﬁﬁ %), so that the standard error of the mean is

2 )
— S
O‘M = \/n "Ln('z') (3-75)
Then one-sided lower confidence limit for mean wearout life is given by
A
= - Z
c =f-z g (3-76)

We will illustrate the above by solving an example. In a wearout
life test of 25 gear boxes, the times to wearout failures were as

follows =



Gear box No., (i)

Time (ti) in hours

O o NN o U oF W

10
11
12
13
14
15
16
17
18
19
20

6000
6800
6980
7200
7500
8000
8200
8345
8420
8500
8520
8528
8588
8623
8646
8672
8735
8780
8858
8940

The test was truncated after 20

th- poilure at 9000 hours,
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Using the previous notation,
A= 5
n= éS
n-a = 20
from equation (3-70) degree of truncation

h=2=%=0.2

We now compute

20 5 20
131 (to - ti) and 131 (to - ti)
2

1 (to - ti) (to - ti)
1 3000 9000000
2 2200 4840000
3 2020 L4o80k400
L 1800 3240000
5 1500 2250000
6 1000 10000C0
Vi 800 640000
8 655 429025
9 580 236400
10 500 250000
11 480 230400
12 472 222784
13 2 169744
14 377 142129
15 354 125316
16 328 107584
17 265 70225
18 220 48400
19 . 142 20164
20 60 3600
17165 . 27206171




We have
20

izgl (¢, - £) = 17165

and
20 5
z (t = ti) = 27206171
i=1 °

Then from equation (3-71)

(n-a) i (to"'ta>2

" 2 [f(to—tt)]a

or

_ 20 x 27206171
J 2 x 17165 x 17165

From Table X of Hald (Ref, F.3.5), we have

0.923

Z = £(h, y) = £(0.2, 0.923) = -0.61k
and y'(2Z) = 1,2230

Then using equation (3-72)

) o O
avy'(z)—(n=-a)Z

9(hz) =

20
[5 x 1.223] - [20 x (-0.618)]

or g (hz) =

= 1,087
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We can now compute the estimate of standard deviation using

equation (3-73)

n=a
z (to‘- t,)
8 = = £ L2
n=-a

17165 x 1.087
20

or - = 932,918 hours.

Finally,6 estimate of mean wearout life from equation (3-74) is
A
M= to +2Z S
= 9000 - (0,614 x 932.918)
= 8427.19 hours.
Having obtained a point estimate of the parameter we may now proceed
to compute the confidence limits,
From tables,

|—b“(z) = 1,110

Using equation (3-74) standard error of the mean

i '
j_n' ’-N,,(Z)

2 L)
(932,918)° x 1,110
25

Oy

= 195.913 hours.,

If the desired level of confidence is 95% in one-sided case,
a = 0,05,
From tables of normal p.d.f.

A 1,645
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Hence, using equation (3-76), the lower confidence limit

A
C, =M - Z

L « oM

= 8427.19 - (1.645 x 195.913)

= 8104,91 hours.
Hence from the results of this test, we can assert with 95% confidence
that the mean wearout life of the gearboxes is above 8104,91 hours,
assuming that the wearout life is represented by normal distribution.

Various investigators have used the normal distribution to re-
present the fatigue life of components. Pope (Ref. G.2.24) suggests a
method where the specimens are tested at a single stress level and the
variable N/ the number of reversals to failure is treated to be normally
distributed. Using the methods described earlier 6 the number of re-
versals a specimen is expected to survive at a certain stress level can
be predicted with a specified level of confidence.

Epremain and Mehl (Ref. G.2.3) used logarithmic normal distribu-
tion and based their calculations upon the idea that the values of log N
are normally distributed about a mean value (for data obtained at a fixed
stress level).

In contrast to the previous methods, Peterson (Ref. G.2.23) uses
data obtained at different stress levels. The procedure is difficult
to justify statistically 6 but this is probably the only method that can
be used when data have been taken without previous planning for statis-
tical analysis. This method provides a measure of standard deviation in

stress for a specified life time measured in number of stress reversals,
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3.4 Nonparametric Methods of Reliability Testing

There are some methods to analyze and evaluate life test data

of equipments, without making any assumption concerning the distribution

of the operating life of the equipments.

One such method has been suggested by Virene (Ref. C.2.51)

using the procedure suggested by Harris (Ref, F,1.33) and Gumbel and

Von Schelling (Ref. F.1.27). A life test is conducted with a sample size

n. Then  the probability that  in a large future sample at most a

fraction K of the future units will fail at a life time less than the

shortest recorded in the trial sample n is given by

W=1-(-K" (3-77)

TABLE 3.5

Minimum Sample Sizes Required to Provide W% Probability that
Fewer than K% of Future Units will Fail in Time Less than
Shortest Recorded in n

Maximum Present Probability* W,

. of Fl.rl‘tl;lrie Units
a
o (7;\; 99.9 99 95. 75 50
Sample Sizes, n
1 688 459 299 138 69
2 342 228 149 69 35
3 227 152 29 46 23
4 170 113 74 34 17
5 135 90 59 28 14
10 66 44 29 14 7
15 43 29 19 9 5
20 31 21 14 k| 4
25 25 17 11 5 3
30 20 13 9 4 2
35 17 11 7 4 2
40 14 10 6 3 2
45 12 8 6 3 2
50 10 7 5 2 1

*When rounding up small sample sizes to integers, W m -
tually be considerably above u?e given value, e .
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Table 3.5 has been constructed based on this formula, The
usefulness of this table can be demonstrated by the following example.

A life test with a sample 90 gearboxes was run and of all the
units tested, 1875 hours was the shortest life time. Then from the table,
we can assert with 99% confidence that not more than 5 units will fail
at a shorter operating life. The table lists only a few typical values.
Equation (3=77) can be used for cases not tabulated.

Dixon and Massey (Ref. F,1.16) describes a number of non-
parametric testing methods and Roberts (Ref. A.l.24) has demonstrated
the use of these methods in reliability testing. Some of these methods
are Rank-sum test Run test  Exceedance test and Maximum-deviation test.
Rank-sum test is a very sensitive test for testing of hypothesis in test-
ing of environmental effects. We shall illustrate the use of this test
by the following example,

We put a sample of size n = 8 components on life test under
Aormal operating environment and note the times to failure of each com-
ponent., We call this sample Control Sample. Let the mean life of these
components be eo. A similar sample of 8 components are subjected to life
test under a different environment E. This sample is called exposure sample.
Let the mean life of the components under the new environment be OE'

We wish to know whether the mean life of the components have
changed significantly due to exposure to the different environment., Or
in other words, we wish to test the null hypothesis

H : BE = 0

o (<]
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against an alternate hypothesis

H1 i - # 90

We need to make an assumption that the exposure to the new environment
does not change the dispersion of the component lives,

We set a level of significance a = 0,05, so that our risk of in-
curring type I error (rejecting H , when it is in fact true) is 0.05.

In life testing, the data is obtained in an orderéd manner & so
that the times to failure are arranged in increasing order. This is

very important for this test. The data for control sample is as follows =

time to failure x: x1<x2< ceese X,

20.1
28.2
30.5
343
36.8
38.7
39.9
40.8

The data for exposure sample are as follows =



time to failure y:

The data is now combined and ordered in increasing order,6 and

ranks are assigned to each entry.

1643
18.2
25.6
28.9
30.7
35.4
37.8
39.1

V1< Y5 (oeeee ¥y

L L ZyKaeennlZpg

o
\OG)\JO\UI-P\NNH%

A T
oW W v H O

Data

16.3
18.2
20.1
25.6
28.2
28.9
30.5
30.7
343
35.4
36.8
37.8
38.7
39.1
39.9
Lo,8

103



104
Then the ranking order of the control sample x is:
3,5 7,9, 1 13 15 16
and that of exposure sample y is:
1, 2, 4 6, 8 10, 12 14
Next the sum of the ranks of two samples are computed,
(Zranks) =3+5+7+9+11+13+15+16=79
(= ranks)y =1+2+L4+6+8+10+12+ 14 =57

Wilcoxon (Ref. F.1.69) has listed Rank-sum-test significance criteria S
for various sample sizes and levels of significance. The smaller of
sums of the ranks are compared with the appropriate value of S and if it
is less than or equal to S, Ho is rejected, Here the smaller rank sum
is 57. From Table 3,6, for n = 8 and @ = 0.05, we get S = 49,

Hence we accept H , so that with 0.05% risk, we can state that
exposure to new environment has not changed the mean life of components
significantly.

One disadvantage of this test is that all components of the sample
must be tested to failure and no test truncation is possible,

Run test also allows no test truncation and has the added dis-
advantage of not being as sensitive. But it is simple and little compu-

tation need be done., Tables by Swed and Eisenhart (Ref, F,1,62) are used
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TABLE 3.6
Rank-Sum Test Significance Criteria

n a = 0.06 a = 002 a = (001
5 18 ' 16 15
6 27 24 23
7 37 34 32
8 49 46 43
9 63 59 56 -
10 79 74 71
1m | 97 91 87
12 116 110 105
13 137 130 125
14 160 152 /147
15° 185 176 170
16 212 202 196
17 241 230 . 223
18 271 259 252
19 303 291 282
20 338 324 316

for this test. Exceedance test and Maximum-deviation test allow test
truncation without having to wait for all items to fail. Tables by
Epstein (Ref, F,1.20) are used for Exceedance test and results of the
work by Tsao (Ref., F.1,64) Massey (Ref. F.1.53) and Smirnov (Ref,

F.1.59) are useful for Maximum-deviation test.



4, WEIBULL DISTRIBUTION AND ITS
ROLE IN RELIABILITY TESTING

4.1 Introduction

Weibull distribution is a member of extreme value family of
distributions (Ref. F. 1.38) and has recently found extensive use
in reliability work. This distribution is one of the limiting type
to which the distribution of the smallest member of a sample, under
general conditions, tends as the sample size is increased indefinitely
(Ref. G.2.18), and is the third asymptotic distribution of smallest
values (Ref. G.2.12). The distribution in cumulative form, as
given by Weibull (Ref. F. 1. 37) in 1951 is as follows -

(x—xuf“
e

Fx)=I1- e » XYy Xy, Xp0,mM>0

F(x) = O olherwise (4-1)

where X, is the location parameter,
X, is the scale parameter,

and m 1is the shape parameter.
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For any given x, F(x) is the proportion of x-values less than
or equal to x.

The Weibull probability density function can be obtained by
differentiating F(x) with respect to x.

(x- xu)m

-) xo

B

X

|
o
x
A\
X
<
N
0
A4
(o]
3
v
(o]

o

I
O

olherwise (4-2)

1)

The Weibull distribution, since it is a type having three
parameters, can be fitted to a greater variety of experimental data
than can other distributions. For reliability work, it is usual to
get X, equal to zero, since failures can occur as soon as the
experiment has been started.

If we fix the value of X, and let m = 1, we get the exponential
probability density function. As m increases, the distribution
approaches the normal distribution more and more closely and for
m = 4, the normal distribution and Weibull distribution are almost
indistinguishable. This shows the versatility of Weibull distribution
and the failure characteristics of a component during the various phases
of its lifetime can be represented by a single distribution by the

proper choice of the parameters for each phase. Fig. 4-1 shows the



Weibull p.d.f. for various values of parameter m.
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Fig. 4-1 Weibull Probability Density Function with
Fixed x, and Various m

An expression for reliability can now be derived. We will start
from the fundamental probability concept. For any continuous p.d.f. f(x),

the probability that the chance variable X will be between a and b is

P(ag¢xg b)= jbfmdx = fb«z)dx -fa#cwdx

= F(b)-F(a) (4-3)

Here F(X) is the c.d.f. and hence

dF(X) = f(x)dx.
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If the distribution is a failure age distribution starting at the

origin, we have

b
P(Xg¢hb) =j;<x>dx = F(b) (4-4)

and F(b) is the probability of failure at age b. Then [1_- F(b)]
is the probability of nonfailure at age b, which is also the reliability

by definition. So in general,

Reliability R(x) = 1 - F(x)
Substituting for F(x) from eqn. (4-1), we get

m
(% = %u)
‘xo

R(x) = e (4-5)

We can now derive an expression for Weibull instantaneous failure
rate or hazard rate. Probability G(h,x) of failure in a finite

period h, given that no failure has occured up to age x is given

by
% +h
I-{:(.d,)dy x+h
G (h) == o e dy (4-6)
I = F () R (%)

X

This equation was obtained using the theorem of compound

probability (Section 2.2). If we let h approach zero, then the
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instantaneous failure rate or hazard rate Z(x) is given by

fG0 109

= (4-7)
R (%) | =F(%)

Z(x) =

So hazard rate is the number of failures per unit time at a time

x ratioed to the number still operative at that time. Substituting
from eqns. (4-1) and (4-2), we get

'

"me
m (x-%,)
X

(4-8)

Z(x =

-]

This was termed ''conditional density function' by Davis (Ref. A.3.10.),

but now the term hazard rate is universally used.

In reliability testing, theoreticélly it is possible for a
éomponent to fail as soon as the test has been started and so Z(x)
must be positive for all values of x greater than zero. This requires
that the location parameter X, be zero. In all future work in this
chapter, X, will be considered to be zero, since we are interested in

using the Weibull distribution in life testing only.

If, in eqn. (4-8), we seét X, = 0 andm = 1, we get

Z(x) = (4-9)

!
‘X—o
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This is the failure rate A in the exponential distribution
and is independent of component age. This is one of the major
differences between the Weibull distribution and the exponential
distribution. Hazard rate in Weibull distribution increases with
x for m > 1 and decreases with x for m < 1 and is independent of x

form =1,

During the '"burn-in'" period of component life, we would
expect the hazard rate to reduce with time as components of sub-standard
quality are eliminated and this should be followed by a period of
constant hazard rate (when exponential distribution model can be used)
and finally in the wear out stage, hazard rate should increase rapidly
with time. But from numerous experiments, it has been demonstrated
that very rarely does a component show a éonstant hazard rate during
ény part of its lifetime, which proves that the exponential distribution
is not a good model in most cases. The ability of the Weibull
distribution to fit empirical data to a much better degree partically

accounts for its wide acceptance in reliability work in recent times.

4.2 Different Testing Procedures

As with any other type of testing, the criteria for judging
failure of a component should be clarified before the tests are planned.

In case of some mechanical equipment, such as anti-friction bearings,
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gears etc, this may present considerable difficulties, since a gear
may continue to function even when the flanks of the teeth have been
badly pitted and the operation is noisy. In such a case, the gear may
be considered to have failed. A clear and unambigious statement of
failure criteria is essential to obtain meaningful information from

test data.

We should next consider the case of test truncation . It is
quite satisfactory if testing can be continued till all items fail.
But limitations of testing time and economic considerations generally
call for terminating the test before all items have failed. The tests
are usually truncated in two different ways (Ref. F.1.43) -

th item out of

(a) Item truncation - The test is stopped when the r
a sample of n items fails. In such a case, the precise failure ages of
éach individual item are usually obtained. If Xy is the age at failure
of ith item, then the data is obtained in an ordered manner, such that

0 < Xy < Xy € eee < Xp

For tests lasting for long duration, it may be necessary to arrange for

automatic monitoring and recording apparatus, so that continuous recording

is possible. This type of data is referred to as ''ungrouped life testing
data'".
(b) Time truncation - The test is stopped after a certain test time

z, regardless of the number of failures that have occurred during the test.
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During testing, the number of failed components are counted
periodically after a certain fixed time. These times of inspection
zj (j = 1,2, ...., k) are chosen conveniently when the tests are
planned. The failure data is obtained as fj’ which is the number of
failures that occurred during the period zj—l and zj. Or»in other words,
the observations are pairs of numbers zj, fj {for j @ 1, 2,.ses,k)s
These paired ordered observations are referred to as ''grouped life
testing data'. For life tests which require a long time to obtain an
adequate number of failures, this is a more convenient and ecoﬁomical
method. The items on test require no attention between inspection times,
sonce the precise time of failure of a single item is not needed. But in
this method, intragroup information in the data is lost and the estimate

made from such data are liable to be inaccurate, if inspections are

done at long intervals.

Many engineering devices are designed for a long life under
design load and operating conditions. Accelerated testing has been
attempted to reduce testing time and cost. Failures are induced sooner
by increasing the load and the severity of the environmental complex. But
the most difficult thing is to extrapolate the accelerated data back to
normal use conditions. No general rule can be laid out and the way the
component life is affected by varying the load or any environmental
condition is purely a characteristic of the particular component. A

few relationships have been proposed, but they vary widely for different
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component types and for different environments. To do any accelerated
testing, the experimenter must investigate the behaviour of the

component life with varying load or environment and must devise appropriate
correlations for extrapolation. Weisenberg (Ref. C.2.52) has reported
that accelerated testing is done at the Harrison Radiator Division of GM
Corporation on automotive radiators by subjecting the radiators to elevated
temperatures and cyclically fluctuating pressure. Levenbach (Ref. C.2.36)
'and Kimmel (Ref. C.2.35) have attempted to provide some relationships

for accelerated testing of paper dielectric capacitors. Guild (Ref. C.2.28)
studied the burnout times of heaters of a certain type of vacuum tube under
normal and accelerated conditions. Cary and Thomas (Ref, C.2.5) proposed a
particularly useful method, in which accelerated testing is treated as

a special case of general model theory. The model is subjected to a

more severe environment than prevails in normal use and then failure data

are extrapolated to normal operating conditions.

4.3 Estimation of Parameters of Weibull

Distribution’

In Sec. 4.1, it was mentioned that in reliability work, the
location parameter is assumed to be zero. Eqns. (4-1), (4-2), (4-5),

and (4-8) then take the following form



xm
e
F(x) =1 - e 35 X30,%,50, M )0
F(x) = O elsewhere (4-10)
x'm
=i T =,
1 (%) =-YD-;C—— e ; X 30,%,50, m>0
f(x) =0 elsewheve (4-11)
m
-
-Z
R(x) = e (4-12)
-1
ond Z(x) = 20X (4-13)

To use the Weibull distribution in reliability work, the
parameters m and x, are estimated from test data. We shall now briefly

review some of the methods available for this purpose.
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4.3.1 Graphical Method Using Weibull

Probability Paper

The Weibull c¢.d.f. as given in eqn. (4-10) is

_x"
xXe _
F(x) = | — ¢
This can be rewritten as
m

RIR

I
I =—FC0

I
o

Taking natural logarithm twice, we get

l“ '(“ —l—— = —Ln P mln p (4-14)
= F(x) °
This is the equation of a straight line with independent variable In x
and dependent variable 1n In[1/{1-F(x)}] . Hence, if a set of data
following Weibull distribution is plotted with principal abscissa In x
and principal ordinate In In[1/ {1-F(x)}], a straight line is obtained
with intercept ( - In xo) and slope m. The graphical estimation of X,

and m is done using Weibull probability paper.

116

If we have a set of values of x and corresponding values of F(x),

we first plot the values of 1ln x and In In [1/~{1-F(x)}] . If a good
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fit is obtained by one straight line, we can the proceed to estimate m
and X, But sometimes, one encounters mixed Weibull distribution,
where one straight line fits a part of the points and another straight
line with a different slope fits the remaining points. This is a
situation where the total population is composed of two segments of
proportions P1 and P2 and each segment is itself a Weibull distribution.
“Such a situation may be expected, if the failure characteristics of a
component are different during the normal operating period and during
the wearout period, which is quite normal. In case of a mixed Weibull
distribution, the parameters m and x, are estimated seperately for each
segment. The great value of the graphical method is that the presence

of a mixed distribution can immediately be detected by examining the plotted

points.

If a good straight line fit is obtained on Weibull probability

paper, the parameters m and X, are estimated as follows -

(i) To estimate shape parameter m - We obtain the value of
In ln[l/ {1-F(x)I]at In x = 0 and then we obtain the value of 1n x at

In 1n [1/{ 1-F(x)}] =0.
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Then
l
e [_.__]
| = F()
O.j. LY\ X =0
o= (4-15)
[n =
o\t Lﬂlﬂ __._,_.__ = 0
I =F (%)
(ii) To estimate scale parameter Xy ™ We read off the value of
In In [ 1/{ 1-F(0)}] at In x = 0
Then from eqn. (4-14), we get
LYI X, = I
I — F(x)
CIT LY\ x> =0
|
I ) Wy N
| — F(x)
or *(, = &€ ' (4-16)

Weibull probability paper has been modified by Kao to include
some extra scales, so that these parameters can be obtained directly from

the graph.
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Several conventions»are in use to estimate F(x) from
experimental data, each with its own statistical nature. For any
given x, F(x) is the proportion of x-values less than or equal to x.
For ungropued data, Weibull used the mean rank as an unbiased estimate
and the most likely or expected value (Ref. G.2.24, p. 130 and F.1.3).

Then

F(x.) = (4-17)

n+1

where n = sample size

and r = number of x-values less than or equal to X

The larger the sample size, the more precise is the estimate of F(xr).

One disadvantage of this approach is that no quantitative information

is obtained about the confidence level. On the other hand, Johnson

(Ref. F.1.39) uses median ranks calculated from the table of the incomplete
Beta function. Values of median ranks up to n=50 have been tabulated

(Ref. F.1.39, Table I). Johnson has also tabulated 5% and 95% ranks

of Order Statistics for sample sizes up to 50 (Ref. F.1l. 39, Tables II and III).
These were computed from the incomplete Befa function Using these tables,

a 90% confidence band can be plotted on the Weibull probability paper,

so that one can assert with 90% confidence that the plotted points would

lie within this band. For grouped data, Kao (Ref. F.1.43) states that

F,
F(z;) = —nl (4-18)
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where n = sample size

¢
and F, = Z: #1

J oy
= cumulative number of failures occuring on or before the inspection
time z..
J
Kao states that this is an unbiased minimum variance estimate
of F(zj). We will now illustrate the use of this method by solving

an example.

A random sample of 43 step motors were tested. A power supply
furnished electrical pulses to each motor and a motor was considered
to have fa;led if the motor failed to make a step or index even though
an electrical impulse was provided. The data obtained in grouped form
is given in Table 4.1 (Ref. F.1.3). Here mean ranks were used in
estimating F(x). The data was plotted on Weibull probability paper
and the graph is shown in Fig. 4-2. It is clear that this is a case
of mixed Weibull distribution. We will estimate the parameters for each
segment seperately.
For the first segment,

I dn [l——‘?c_xi]

— 2:48

al An 2L=0
and

2%

bn

ey ['___] =0

= F (%)
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TABLE 4.1
Number of Steps to Failure x 10-3 Cumulative Percent Failure

X F(x)

0.11 2.32
0.61 6.96
2.37 13.92
6.16 23.20
11.73 ©30.16
20.47 51.04
29.68 76.56
35.00 83.52
46.00 92.80

Then from eqn. (4-15),

(1) _ 2.48 _
mi= =g = 0.64

- From eqn. (4-16),
xél)z ez'48 = 11.94

For the second segment,

LY\ L'n ____.__I =
= F ()

G.t L‘n X=0

and

n

ot ln,h\['

= F(=x)

]

._5.5

25
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Data of Step Motor Failure Plotted on Weibull Probability Paper

2

Fig. 4-
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From eqn. (4-15),

(2)_ 5.5
m --3—-5 1.57

and from eqn (4-16),

§§)= es'5 = 244.69

So initially, the failure data follows the Weibull distribution

0.64
X

F(x) =1-¢e 11,94 for 0z x < 17

and then the data follows the distribution
1.57
X

Fix) =1-e 24499 £r x5 17

Here the unit of x is number of steps to failure x 10-3 .

The expression for reliability is then

0.64
_x
Rx) =e. MM groex < 17
and
1.57
-
R(x) = e 244.69 for x 3 17

The hazard rate for Weibull distribution was given in eqn. (4-13) as

m-1
mx

Z(x) =
o
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The hazard rate for the first segment is then

0.36

Z,(x) = 0.054x N for 0 & x g 17

and the hazard rate for the second segment is

Z, (x) = 0.0064 037 for x 17 -

The variation of the hazard rate can also be demonstrated graphically.
Taking the logarithm of eqn. (4-13), we get

In Z(x) = (m-1) Inx + (Inm - 1n xo)
which is an equation of a straight line.
For the first segment,

In Z(x) = - 0.36 In x - 2°926 for 0 ¢ x <17 for 0 & x < |7
and for the second segment,

In Z(x) = 0,57 In x - 5.049 for x 2 17

The values of Z (x) for various values of x were computed and

tabluated in Table 4.2.

A graph of Z(x) against x has been plotted on logarithmic
graph paper and is shown in Fig. 4-3. It can be seen that the hazard rate
continues to reduce up to x = 17 x 1073 steps and then increases. So it
appeafs that the failure pattern of the motors change from infant mortality

stage to wearout stage without any intervening transition period of random
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TABLE 4.2

x In x In Z(x) Z(x)
0.11 -2.207 =2+ 131 0.119
0.61 -0.494 -2.748 . 0.064
2.37 0.863 =3.237 ' 0.039
6.16 1.818 -3.580 0.028
11,73 _2.460 -3.812 0.022
20.47 3.020 -3.328 0.036
29.68 3.911 Sl 0.044
35.00 3+955 -3.023 0.049
46.00 3.829 -2.866 0.057
“failures with a constant failure rate. Hence it is clear that an

exponential distribution would have been a very poor model to represent

the failure pattern.

We will now review another example where automotive
radiators were tested for reliability (Ref. C.2.52). The radiators were
operated at a constant elevated temperature and a solution of water
and’ethylene glycol was circulated. The pressure was varied cyclically,

one cycle consisting of increasing the pressure for zero to the maximum
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value and returning to zero. A random sample of 9 radiators were

tested and failure age in cycles was defined as the last cycle observed
prior to the cycle in which failure was observed. The data was of
ungrouped form and median rank was used in preference to mean rank for
plotting on Weibull probability paper. For each point plotted, an upper
confidence limit at 95 percent rank and a lower confidence limit at

S percent rank were obtained (Ref. F.1.39, Tables I, II, III). So.it

was possible to obtain a 90 percent confidence band for the straight line

plotted. The experimental data and the ranks computed are given in Table

4.3
TABLE 4.3
Radiator Failure Failure Age Mean Median 5% 95%
Number In Cycles Rank Rank Rank Rank
1 ‘ 24,432 0.10 0.074 . 0.006 0.283
2 ’ 36,365 0.20 0.181 0.041 0.429
3 36,490 0.30 0.287 0.098 0.550
4 49,000 0.40 0.394 0.169 0.655
5 55,700 0.50 0.500 0.251 0.749
6 69,690 0.60 0.606 0,345 0.831
7 77,150 0.70 ‘0. 713 0.450 0.903
8 89,785 0.80 0.819 0.571 0.959
9 96,302 0.90 0.926 0.717 0.994
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The graph, drawn on Weibull probability paper is shown in Fig. 4-4.

The estimated values of Weibull parameters are

Shape parameter m = 2.35

and scale parameter X, " 2:272 x 1011 cycles.

The reliability of the radiators is then given by

2.35
.
( 11
R(x) = e \2.272 x 10

4.3.2 The Method of Least Squares on

Transformed Data

Eqn. (4-14) was

In 1n . S—— = - 1In xo +mln x
1 - F(x)

In the previous section, a straight line was fitted to the points plotted.

on Weibull probability paper visually. The method of least squares may also
be used to obtain a better fit.

Eqn. (4-14) can also be written as

a=d+m (4-19)



where
a=1nIn 1
1 - p(x)
d = - 1In xo
b= 1nx

Here d and m are constants and a series of values for a and b are

obtained from experimental data as a; and bi’ where i = 1,2,...,»

We then obtain the normal equations for the least squares line as
Za=dr+mzIb

Tab=d I b +m L b

Solving these equations simultaneously, we obtain

(z)(zk?) —(Zb)(Zob)
YISk —(=Zb)?

(4-20)

d =

and

r>aob - (Zb)(Z0)
il T

(4-21)

3
|

The shape parameter m is obtained directly from eqn. (4-21) and the
scale parameter X, is obtained as

x, = exp (-d) . (4-22)
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To obtain an idea of the goodness of fit, the coefficient of correlation
must be calculated. We calculate the mean values of variables a

and b as

r
3 o,
a i=t N

il

and

b

A. = a. - a
i i

B. =b. - b
1 i

Then the coefficient of correlation is given as

Q,u o 2 AB
/(3 A2)(38%)

The better the least squares line fits the data points, the closer is

(4-23)

the value of R to unity. A smaller value of R would indicate that the data
does not follow Weibull distribution closely or it may indicate the

presence of a mixed Weibull distribution.

The graphical method or least squares method of estimating Weibull
parameters are the simplest of all available methods. Nevertheless,

these two methods have several weaknesses. Kao (Ref. F.1.43) states
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that these methods do not necessarily guarantee the best fit of the raw
data in the cartesian scale. Another disadvantage is the selection of the
proper plotting position. Gumbel (Ref. F.1.29) and Weibull have

advocated the use of mean rank, whereas some other investigators like
Johnson (Ref. F.1.39) advocate the use of median rank. Lieblein and

Zelen (Ref. G. 2.18) have pointed out that the method of léast squares

as usually used fails to take adequate account of the items which have

not failed when the test has been stopped.

The greatest advantage of these two methods is that an
approximate estimate of Weibull parameters can be obtained quite easily
and can be used as an initial estimate for more precise methods.

We will now illustrate the use of the method of least squares
by solving an example (Ref. F.1.56). A random sample of 20 relays was
put on life test and the number of actuations made by a relay before
failure was noted. Hence the data was obtained in ungrouped form and
the test was truncated after 17 relays had failed. Mean ranks were
used in computing the cumulative percent failure. The test data has
been tabulated in Table 4.4. A computer program was set up for
obtaining the Weibull parameters and is enclosed in Appendix A-1. The
results obtained from the computer are as follows -

Coefficient of correlation ﬁ*= 0.99554
Shape parameter m = 1.83797

Scale parameter X = 0.11073 x 1012
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Relay Failure

Cummulative Percent

Actuations to

Number Failures F(x) Failure x
1 0.0476 190000
2 0.0952 334000
3 0.1429 365000
4 0.1905 420000
5 0.2381 472000
6 0,2857 589000
7 0.3333 610000
8 0.3810 662000
9 0.4286 792000

10 0.4762 840000
11 0.5238 850000
12 0.5714 900000
13 0.6190 960000
14 0.5667 1102000
15 0.7143 1195000
16 0.7619 1240000
17 0.8095 1303000
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Since the coefficient of correlation is close to unity, we infer that the
experimental data follows Weibull distribution quite closely. The

reliability of the relays is given by

1.838 ]

- i

R(x) = €Xp. 12 l
0.111 x 10

4.3.3 The Method of Maximum Likelihood
For Ungrouped Data

Modern statistical practice makes considerable use of the
likelihood function introduced by Gauss and developed by R. A. Fisher

X

(Ref. F.1.18, F.1.45 and F.2.1). For a sample of n values X)5 Xopeoney X

drawn at random from a continuous distribution with p.d.f. f£f(x,d), the

likelihood function is defined by

L(x' ,22,....,‘xn,0/) ] ]Y_i[.’ f(zc ,d>

= f(xl,a) f(xz,a) e f(xn,a).
The maximum likelihood method consists in choosing, as an estimate of
the unknown population parameter of a, the value that renders the likelihood
function as large as possible. For Weibull p.d.f. given by eqn. (4-11),
the likelihood function for ungrouped life testing data Xps Xps eeneneX,

r

from a sample of size n where r <n is given by Kao (Ref. F.1.43) as
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ﬁ x?-‘ exp —-;—Co[i 2?+(n—r)x:n ]

Lel L=

Putting the partial derivations of In L with respect to m and X, equal

to zero, we get

"
m
%, = [ z X, o+ (n-r)?c:"] (4-24)

=

¥
Z xzn i %, + (n-r) x:n I -

(=1

-%% -+ j;:lv\ xi

These equations can be solved simultaneously by trial and error to yield
the maximum likelihood estimates of the parameters m and X for ungrouped
data. These two simultaneous transcendental equations can also be
solved by numerical methods, such as Newton's approximation. The
approximate estimate obtained by graphical means or by least squares
method is used as the initial trial value and these equations are then
solved to obtain a more accurate value.

The example solved in Sec. 4.3.2 was solved by this method.
A computer program was set up and is enclosed in Appendix A-2. From the
estimate of the shape parameter m obtained by the least squares method,

various trial values of m were used and eqns.(4-24) -and (4-25) were solved.
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The following results were obtained from the computer.
Estimate of shape parameter m = 1.8362
Estimate of scale parameter X, = 0.10089 x 1012

Using trial values of m at closer intervals, a more precise estimate

can be obtained.

4.3.4 The Method of Maximum Likelihood

for Grouped Data

The Likelihood function for the Weibull p.d.f., when data

is obtained in grouped form, has been given by Kao (Ref. F.1.43) as

Taking natural logarithum of the above equation, we get
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The function In L and hence L can now be maximized with respect to m and

X .
O

Setting the partial derivatives 3(In L) and 9( In L) equal to zero,
om

S 4 [l ez ]
4=\

z" |

K hzk a ‘F
_...__._xo n _(}—Z ; = O (4-26)

- Ko
< o
EG-SE) =0 e

where



138

and

b =

o |

Eqns. (4-26) and (4-27) can be solved by trial and error on the computer

to yield m and X,

Since equations (4-26) and (4-27) are quite complex and difficult to solve,
equations (4-24) and (4-25) have been modified to yield approximate

estimates of m and X for grouped data. These equations are as follows -

m m
x, = LP{Z fxp + (h=r)xy } (4-28)

zﬁx;n kv\ x; —-(Y\—T‘)x:n ln 9
x = (4-29)

o v

The grouped data obtained in the form zj,fj(j =1,2,....,k) has been
converted to ungrouped form X oXgeenes X by assuming that (a) all
fj items which failed between Zj-l and zj have a failure age of
1 : . : '
xj = f{zj-l + zj) and (b) the last inspection time z, equal to X ..
Both these approximations are not unreasonable if (zj - zj-l) are small

for all j. Again equations (4-28) and (4-29) may be solved by trial
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and error or by numerical methods. If the inspection periods are long
and number of failures per inspection period are not small, equations

(4-26) and (4-27) must be used to obtain adequate accuracy.

4.3.5 The Method of Minimized
Chi-Squares for Grouped Data (Ref. F. 1. 43)

For grouped life data obtained in the form zj’fj {3 =1;2.000s k),
let pj-be the probability that any item will fail in the time interval

Z. to Z.. Then
j-1 J

pJ = F(ZJ) - F(zj'l)

and in particular,

p, = F(z;) - F(0) = F(z))

and

Pryp = F() - F(z) =1 - (z)

Then npj (3 =1, 2, «..., k + 1) will be the expected number of failures

between inspection times Zj-l and zj. For large n, and if npj > 5 and
k + 1 3 5, the following quantity has a chi-square distribution with k

degrees of freedom (Ref. F., 1.34) -

K+1

Z (F nloff - # -n (4-30)
n p .

J—I



140

The smaller the chi-square value, the better is the goodness of fit.
An estimate of Weibull parameters X and m can be obtained by minimizing

the chi-square value with respect to X, and m.

For a Weibull distribution,

K
- £ 8 K EE;? :E: %
-4 = (n - > e 4 - (4-31)
b. jzf& ~Zn LE
=1" 4 Bog oy
3" e —

By minimizing the right hand side of eqn. (4-31) with respect to X,

and m, these parameters may be estimated.

4.3.6 Method Suggested by Gumbel for
Ungrouped Data (Ref. G. 2.12)

Gumbel makes use of extremal probability paper to plot the
failure data. The mean rank is used for plotting position, so that

m
F(xm) TN+ 1

where N is the sample size

Then a reduced variable y is defined as

y=1n [ - 1n{1 - F(x)] ] (4-32)
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so that
F(x) =1-¢e (4-33)

Comparing with equation (4-10), we see

D
x
o

and therefore y = m In x - In x © (4-34)

So a straight line plot is obtained on extremal probability paper,
when y is plotted as ordinate and log x as abscissa. Of course, a

straight line can only be obtained, if the failure data follows Weibull

distribution. For x =1, y = = 1In X
and hence
B
xo € at x =1

For y = 0, m In x = In X,

In x
andm:-._'_L.

In x at y = 0

Gumbel has also provided tables and charts to estimate the parameters.

He defines

(4-35)

=R



TABLE 4.5
A\ E(x)/a¢ A E(x)/e¢ | A E(x)/o
0.0 78.534 0.15 5.688 0.60 1.621
.02 39.543 .20 4.366 .65 1.508
.03 26.542 25 3.564 70 1.408
.04 20.039 .30 3.024 NE) 1.320
.05 16.135 .35 2.634 - .80 1.242
.06 13.531 40 2.337 .85 1172
.07 11.669 45 2.104 .90 1.109
.08 10.271 .50 1.913 95 1.052
.09 9.183 55 1.756 1.00 1.000
.10 8.312 " )
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Table 4.5 provides the value of X\ for various values of E(x)/o, where

E(x) is the first moment or the mean and o is the standard deviation

for the Weibull distribution. The mean is given by

E(x) = xg roo+ 1)

So X can be obtained as

E o)
xX =
¢ T(A+1)

(4-36)

(4-37)

Fig. 4-4 can also be used to obtain the value of A, if the"quotient

E(x)/o is known. If the experimental data xi(i = 1,2,...,n) is known,
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the arithmetic mean x is calculated as

n
> %

i = L=l
Mn
and the standard deviation is computed as ~

n 2
g(xi—x)

mn - |

The quotient x is computed and used instead of population value E(x)
S o
PARAMETER A for 09 <A<l :
o9 - 2 25 -3 a 5 6 T:8 9 W |
100 C { SRS o G e LG B B 2 B LR rnnnnlvvn. TYTTITrTT=T - 0
50 N 1 s l
w0 \\ i |
70 |- - 7
6 E \\ s
2 E \Q§>\ E
§% -
' E 3 5
S N o
S ;:: T L0ia<io 10<A<1.0 é ,"\5
g% N 33 &
25 _E_- \ 3 258
o > 3
20 ; \\ : 2 )
5 _— \\ —-: 5
K \\\ ]
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Fig. 4-4 Graph for Estimating A
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and the estimate A of the parameter A is obtained from Fig. 4-4 or

from Table 4.5 by interpolation. To illustrate the precedure, we will
use the same example as used in Sec. 4.3.2. Here the test was not
truncated and all 20 relays were tested to failure. Relay 18 failed

at 13.42 x 105 actuations, relay 19 failed at 18.07 x 10S actuations

and relay 20 failed atv20.63 b 10S actuations. The data has been
plotted on extremal probability paper and is shown in Fig. 4-5. A good

fit has been obtained to a straight line.

955 iil ipiabienaliciibiiviliceilsmalsisciliiiit tiaa il maalicas g i i ki liciig 995 —5‘5‘5
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Fig. 4-5 Probability of Survival of a Relay Submitted to Actuation
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The arithmetic mean of the sample is

R

& 180-36 x10~

= 0.0I8 x lOs OCTuaTions .

20

and the standard deviation of the sample is

s =
Hence
X .
s
From Table 4
2 -

;;(Xi’iiz

\

B
= 4:900 x 10 actualions -

1.840

19

.5 or from PFig. 4-4, we obtain

0.52

and hence the estimate of scale parameter m = —%5 = 1,923

To obtain X we use the values obtained from the sample in eqn. (4-37).

We get

)
% o

r(h+1)

% 1:923
S:018 x 10

T (52)

0-3581 x10'2 actustions.

145
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The estimate of Xy differs from the value calculated earlier because
here the test was not truncated and also due to approximations used by

Gumbel.

4.3.7 The Method of Order Statistics for

Ungrouped Data

This method has been suggested by Lieblein and Zelen

(Ref. G.2.18) and will be discussed in Section 4.6.2.

4.4 Different Measures of Life Quality

We shall now derive the expressions for various measures of
life quality of a product. It is advisable to use the notation suggested
by Kao, since it is now widely used in reliability work. In Kao's notation,

the Weibull c.d.f. becomes

F(t) =1- e (4-38)

n>o0,Bc ,ty0
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The Weibull p.d.f. becomes

Bt <T7)B

B[t
f( ) n n (4-39)
The expression for reliability is then

(&)
N
R(T) = e (4-40)

The expression for hazard rate is

B=1
Z(t) = (%) (4-41)

8 is referred to as the Weibull slope and n is called the characteristic life.

An expression for mean life u ( or first moment) can now be derived.
oo
b= [t st
o

€
- -(%)
e dt

- [r8)s)
- 2r(3)

<'é‘ + ') (4-42)

S|
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where the gamma function is defined as

Py = [ " eTdx 5 mo

The variance (or the second moment) can also be similarly derived as
2 ) |
2 2
ag =0 [T‘(—B%-l) -T <_ﬁ+‘> (4-43)

. The standard deviation is..

%
2 2/
ag =0 r(—é"l'l) T (’5+l> (4-44)
If we define the quantile of order p as CP’ then
Sk
b -_-J 2(t) dt
o

We then have
|
B
'; = Y) (n——' > (4-45)

An expression for median life can now be obtained by setting p = %n


http:setti.ng

149

Median £ = n (ln 2)1/8 (4-46)

The expressions derived here will be used in the later

sections.

4.5 Sampling Plans Based on

Weibull Distribution

Sampling plans based on Weibull distribution have been
developed in recent years. Depending on the measure of life quality
which is of importance, namely either the mean life or the hazard rate,

two different types of sampling plans are available.

4.5.1 Acceptance Sampling Plan Based On Mean

Life Criterion

This approach is taken when the mean life of the components is
deemed more important. The plan is developed as follows (Ref. C.2.26).

The c.d.f. for the Weibull distribution is

F(t) =1 -¢ —(n

If we substitute

1
b=z (4-47)



we get 1/b

t
Ft) =1-e ) (4-48)

Eqn. (4-42) for mean life then becomes

u=nr(d+1) (4-49)

Let p' = the probability of an item failing before the end of test

time t

Then

O

p' =1 -¢e€ (4-50)

This can be rewritten as

L @)

T-p' €

1/b

Taking natural logarithms,

¢ 1/b

-in (1-p') = (&)
and hence

o] -3
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which yields

n=t
[1n a-p»] B

From eqn. (4-49), we get

n:

u
T+ 1)

Equating equations (4-51) and (4-52), we get

pooo__t
T(b+1) [~dn (1= p"]°
b
t 3 [-—&n(l = H)j]
t [ T(b+1)

s
ot _expilal-lnG-pD] ]
o r (k>4-5>
10t epildnlst= B
= T (b+1)
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(4-51)

(4.52)

(4-53)

(4-54)



Values of the expression = In [—ln(l-p')] can be obtained from the
table of the inverse of the cummulative probability function of
extremes (Ref. F.3.11, Table 2, pp. 19-25). Again from equation

(4-53), we get

I

£\ b G-p)
(—> [r(b+n)]"

or b

| — exp {—(*}%)rz[r(b‘“)]ﬁ} (4-55)

Using eqns. (4-54) and (4-55), Kao (Ref.C.2.26) has tabulated values
of % for different values of p' and values of pb' for different
values of ﬁ-. The inspection is done on an attribute basis and the
number of failed items y at the end of test time t is counted. If
the lot size N is large compared to the sample size n, the cumulative
binomial distribution may be used to obtain the probability of

acceptance P (A).

4
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P(A) = P(vge) = Z( ;)b’y("‘b')my (4-56)

Y=o


http:Ref.C.2.26
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If the sample size n is relatively large compared to the lot size N,
the cumulative Poisson distribution must be used.
/

= (np) -nb

P(A) =P(ygcC) 7] & (4-57)

y=0

To set up a sampling plan, a convenient testing time t is first selected.
Then the ratio 5- is computed for mean life Hy corresponding to

ARL (Acceptable Reliability Level) and mean life sy corresponding to
LTFR (Lot Tolerance Failure Rate). Then from tables of E- and P"
two values of p' are obtained. Then from the tables of cumulative
binomial distribution (Ref. F.3.6 or Ref. F.3.8) or cumulative Poisson
distribution (if Poisson distribution is used), the sample size n and
acceptance number C can be obtained for the two specified values of the
probability that the sample will accept the iot,P (A). These two values
of P (A) are the producer's risk a and consumer's risk B. An 0.C. Curve
may also be plotted. Kao (Ref. C.2.26) has provided tables for

designing such sampling plans.

In summary, the plan works as follows -

(1) Select a random sample of n items from the lot.
(ii) Put the sample items on life test for some preassigned period t.

(iii) Denote by y the number of failures observed prior to time t.
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(iv) Accept the lot if y g C, the acceptance number and if y > C,
reject the lot,

Double and multiple sampling plans can also be designed.

4.5.2 Acceptance Sampling Plan Based

On Hazard Rate Criterion

This type of sampling plan is used when the hazar& rate during
any part of the lifetime of the component is deemed to be the m&st
important life quality. The plan is developed as follows (Ref. C.2.22,
C.2.23 and C:2.24). In eqn. (4-41), the hazard rate for Weibufl

distribution was given as

2w =(5)(+)

Multiplying both sides by

-1

gives

™|t

B
T 28, (3_) (4-58)
E 1
The probability of an item failing before the end of test time t is

given by

8
b' = F(t) =1-e-(-§-)
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Substituting from eqn. (4-58), we get

/ t Z(t)
e
and therefore
t Z(t) = - B In (1-p") (4-60)

TZ¢) =B exp {Ln [_ln(a-p')]}

Values of the expression - In [ -ln(l-b')] are obtained from the
table of the inverse of the cumulative probability function of extremes

(Ref. F.3.11, Table 2, pp. 12-25).

Here the lot quality of interest is the hazard rate at a life
of t hours. Acceptable hazard rate Zl(t) and rejectable hazard rate
Zz(t) are specified. Using eqn. (4-59), the two values of p' at the
two specified hazard levels are computed. For specified consumer's
risk @ and producer's risk B, the sample size n and acceptance number:
C can be obtained from eqns. (4-56) or (4-57). Kao (Ref. C.2.24) has

provided tables for obtaining b' for different values of t Z(t) and for
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obtaining t Z(t) for different values of p'. He has also provided

tables of sampling plans for a number of values of B.

4.6 Use of Weibull Distribution

On Fatigue Studies of Mechanical Elements

4.6.1 Theoretical Considerations

The Weibull distribution has been extensively used as a model
for the fatigue life of mechanical elements. Weibull in his original
paper (Ref. F.1.67) applied this distribution to the analysis of fatigue
data. Failures in most mechanical elements exposed to dynamic loading
are caused due to fatigue. The failure of rolling contact bearings,
when operated under proper conditions (sufficient lubrication, absence
of dust and foreign material etc.) is due to fatigue and is manifested as
flaking of the raceways, cracks and fractures etc. (Ref. G.1.11). The
failure of gears are also mostly due to fatigue. Bending fatigue failures
are caused by gear tooth being stressed many times. Pitting and spalling
of the gear flanks occur due to fatigue caused by repetition of
compressive loading. Failures of shafts, machine structural elements etc.
are also frequently caused by fatigue. Due to the importance of
predicting fatigue life, various methods have beén proposed for representing
fatigue reliability data. The Weibull distribution has been found to be
a very good mathematical model for approximating fatigue phenomena. The

theoretical justification for using the Weibull distribution for fatigue
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studies has been given by Freudenthal and Gumbel (Ref. G.2.7) on the
basis that fatigue is an extreme-value phenomenon, related in some
manner to the strength at the weakest point in the material under
stress.
This leads to a distribution of the type suggested by Weibull.
Lieblein and Zelen (Ref. G.2.18) have stated that this explanation
has not received universal acceptance. Nevertheless, various
investigators have shown that the Weibull distribution represents
experimental fatigue data quite satisfactorily and hence there are
practical reasons favouring the use of this distribution. Gumbel
(F.1.28) has stated that the probability theory developed by Fisher
and Tippet (F.1.22) and Gnedenko postulates the following conditions
for the existance of a Weibull distribution:
A Number of independent occurances will asymptotically approach
a Weibull distribution (generally with finite lower bound) if
(i) Each of these occurances is the earliest one of a very large
parent population of mutually independent, actual or potential
occurances. In fatigue testing, each observed failure must be
the earliest one of a very large population of mutually
independent potential (or actual but subéritical)failures.
(ii) The possible range of values assumed by the variate characterizing
the occurances has a lower bound that may be finite or zero. In
fatigue testing the possible range of fatigue lives has a lower

bound which is either a finite minimum life or zero.
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(iii) The parent distribution G(L) of potential occurances from
which the observed earliest occurances are derived must

satisfy the following necessary and sufficient condition

GECCL"LQ] _ Ce,

Lim

L—>Lb G [ L f' L'b]

Here L is the endurance life of a potential (subcritical failure),
Lb is the - lower bound of L, C is an arbitarily selected fixed quantity

and e is a positive constant.

Gumbel (Ref. F.1.28) has shown that, if the above conditions are

satisfied, the following Weibull distribution is asymptotically

S = exp [__ <t:—LLbb >e J

where Lo is the scale parameter.

approached:

The first two conditions intuitively fit the customary model of a
rolling contact which fails in fatigue, such as flaking of rolling
contact bearing raceways and pitting of gear tooth flanks. It is
generally assumed that such a contact will fail as a result of subcritical
damage accumulating at numerous mutually independent weak points within the
metal, which are stressed in turn as the rolling contact traverses over

them. The weakest of these weak points will precipitate macroscopic



159

failure of the specimen. Because of the small stressed volume
surrounding a rolling contact, the assumption of independence of

failure probabilities of different weak points is plausible.

4.6.2. Analysis of Rolling Contact

Bearing Life Using Weibull Distribution -

Statistical methods have been used in analysis of rolling
contact bearing failure data for a long time and the Weibull distribution
has been used by a number of investigators. It is advisable to use
the notations used in the bearing industry. The Weibull cumulative

distribution function is stated as

P e [(5)]

e |
S = exb[-—({:) ] y L YO (4-63)

A\

O (4-62)

The notations used are as follows -
L = life in stress cycles or shaft revolutions

Lo = Scale parameter

e = Weibull slope



160

F = cumulative probability of failure
S = cumulative probability of survival or reliability

Lb = location parameter, which is generally assumed to be zero.

LSO = Median life, which is the life when 50% of the bearings have failed

and

L10 = design life or rating life, when 10% of the bearings have failed.
Lieblein and Zelen (Ref. G.2.18) analyzed the failure data of

about 5000 deep-groove ball bearings manufactured by a number of

manufacturers. The Weibull parameters were estimated by the method

of order statistics. The results obtained were as follows -

Mean value of Weibull slope e = 1.51

‘Median value of Weibull slope e = 1.43

. > G
Ratio L—SQ = 4.08
10

But ASA standard B 3.11 states that

L
o = 5.0
10
and this value is widely used. The rating life L. is obtained for

10

any bearing using the relationship

n
L10 =(§) million revolutions (4-64)
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where C = Basic Dynamic Load Rating (1bs.)

= the load which will give a rating life of 1 million revolutions

s
"

constant bearing load (lbs.)

The exponent n is given as
n = 3 for ball bearings %
and

n = 10/3 for roller bearings.

Values of C has been listed by the bearing manufactures for all types of
bearings. For most purposes, the rating life is used. But it must

be remembered that the probability of failure at rating life is 10% or
in other words, the reliability is 90%. " For calculating the life for

higher reliability, the following method may be used -

From eqn. (4-63),

o[

For 90% probability of survival

L e
' 0o/

Since precise estimates of Weibull slope e are not available, the

Imlationship LSO/L = 4,08 may be used.

10
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Then we can write

4.08 L &
0.50 = exp |- (——_——1-0-> : (4-66)

L
o

Equations (4-65) and (4-66) have been solved by Shube (Ref. G.2.25)
to yield
e = 1.34

and L0 = 5,35 LlO.

Hence eqn. (4-63) can be written as

1,34 -
L ‘
S = exp -—<—§T—L-1-O——> (4-67)

So far a particular application, where any specified reliability (or

_probability of survival) S1 is warranted, L10 life is obtained from

eqn. (4-64) and solving equation (4-67), the required life can be

obtained. If the ratio L = 5 is used, then we get

50/
Lo

e =1.17

and Lo = 6.84 LlO

Eqn. (4-63) then becomes

| 1.17 |
- gg— [“<—_—2.s4 “10) :] (4-68)



163

Equations (4-67) and (4-68) can be expressed in the alternative form

T'j— = (9.49 1n 5)9°746

10
and

_11:_ = (9.49 1n 5)0-854

10

Shube (Ref. G.2.25) has plotted the ratio L/Llo against F and the graph
is shown in Fig. 4-5. The life L for a given reliability requirement

S can be obtained from the graph, knowing the value of L10 from eqn.
(4-64).

We had assumed that the bearing failure data follows Weibull
distribution at any part of the lifetime. But Tallian (Ref. G.2.27)
‘has shown that in the early failure part of the bearing life, the
experimental data does not fit the Weibull line (on Weibull probability
paper) closely. The Weibull line yields a much lower value of failure
life than is observed by actual experimentation. This discrepancy is
shown in Fig. 4-6 and Fig. 4-7. In these figures, In ln(%) is plotted
on the ordinate and In L on the abscissa. Tallian has suggested the
following mathematical causes of deviations from Weibull distribution -
(1) The specific assumption of location parameter Lb = 0 may be incorrect.
(ii) Independent potential or subcritical failures are not sufficiently

numerous to warrant use of the asympotic Weibull form.

(iii) Macroscopic failure is not instantaneous.
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The mechanism of fatigue in metals has been explained by some
investigations (Ref. G.2.27, pp. 192) as a succession of phases of
structural transformation as follows -

(1) A relatively short phase of work hardening occurs, which in itself
does not necessarily lead to fatigue failure.

(2) Concurrently with work hardening, and after its termination, a
crack in excess of critical size forms.

(3) The crack propagates until macroscopic failure occurs.

Based on this mechanism, Tallian (Ref. G.2.27) hypothesized that

Phases (1) and (2) are concurrent and life up to the end of Phase (2)

is Weibull distributed with zero lower bound. Phase (3) requires a

finite length of time since a crack in rolling contact fatigue initiates

at a substantial depth beneath the surface and must therefore traverse

‘a finite distance in the metal before it can reach the surface and produce

fatigue spalling. Phase (3) life will therefore have a finite lower

bound.

On the above hypothesis, the experimental results in the region
of early failures can be explained by assuming that in this region,
the excess experimental life YE is Phase (3) life and as such it is
dependent on Phase (2) life Yo The reliability equation can then be

modified as
|

P
L . lY’(é) *’3% q
Co | (G)
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Tallian (Ref. G.2.27) has indicated some methods of estimating YE
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5. CONCLUDING REMARKS

We have briefly reviewed some methods for determination of
reliability of components and also sampling plans to assess the
reliability of components purchased by outside suppliers.

In designing for high reliability, reliability should be
considered right from the preliminary stage and a reliability control
program should be effective during the entire design stage and extend
beyond it to prototype approval and production. A number of
different approaches should be tried and a tentative design should
be made. Necessary testing for determining the reliability of the
components should be done, if such data is not available, and the
reliability of the entire machine or system should be calculated.
Reliability analysis of alternative designs using different arrangement
of components or using different components themselves should be made.
Finally; a design best satisfying the requirements of reliability,
economy etc. should be selected. Then the detailed design work can
be done and a precise reliability analysis of the final design can be
made. Finally the prototype should be subjected to life tests and the
test results should be compared with the reliability requirements and
modifications and redesign should be made as necessary. Only then should

the design be released for production.



Space vehicles are designed with strict reliability supervision
and control. Most aircraft manufacturers also base their design on
reliability theory. Many automobile manufacturing firms are paying
increasing attention to reliability and some of them have done
substantial amount of reliability testing. Some of them have
remarked about the high cost of reliability testing due to frequent -
change in automobile models. But it has also been remarked that if
a large volume of test data on older models are available, testing for
subsequent models need not be so rigorous and testing expense may
be reduced. Reliability studies on rolling contact bearings have
been made for a long time and the life of a bearing associated with a
certain probability of survival can be easily obtained from the
information supplied by the manufacturers.

A similar approach has also been taken by the manufacturers
some electrical components, such as electric bulbs and vacuum tubes.
More and more designers and producers are getting conscious of
reliability and are setting up reliability programs, There is a huge
potential for use of reliability theory for mass produced items and
this would be beneficial both for the producer in making his product
more competitive and for the user in getting some precise idea of the
product quality during its lifetime. One difficulty with specifying
reliability is the wide variety of environmental conditions a product

is exposed to. In order to overcome this, a certain product may be
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tested under some stardardized environment and load. The automobile

tire of a certain size may be tested in this manner and life specified.

The consumer can then obtain a more precise idea of the quality of the
particular tire and may also compare the reliability data given by different

manufacturers.

The Weibull distribution seems to be the most powerful and most
modern mathematical model for mechanical components. It is a safe practice
to assume the experimental data to follow the Weibull distribution and
obtain estimates of the parameters. However, up to the. present time, the
Weibull distribution is not as well developed theoretically as the
exponential or normal distribution. There are some aspects, such as plotting
position'and confidence intervals, which are still controversial. lence, if,
on analyzing the experimental data, the estimate of the shape parameter
is found to be close to unity, the exponential distribution may be used;
and if the estimate of the shape parameter is found to be nearly 4, the
normal distribution may be used, thus permitting use of the better developed

statistical theory for these distributions.

In conclusion, it may be stated that a better understanding and
acceptance of the principles of reliability will be beneficial both

for the industry and the consumer.
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APPENDIX ‘A-1

The FORTRAN program for

estimating the parameters of the

Weibull distribution by the method of least squares

is given below

>

ESTIMATION OF SC
LOCATION PARAMETER ASSUMED TO BE ZERO
DIMENSION X(10U)sFX(1U0)s ABSCA(LCU)>»

U)s DEVY(1UC)s DATA(LQC)

[

READ 11 NsM

READ 129 (X(I)sI=1sN)
READ 13"(DATA(I);I=1’N)
FORMAT(214)
FORMAT(5(F1l2e394X))

FORMAT(5(F%e3s7X)")

FX(I)=DATA(I)/(FLOAT(N)+FLCAT(M)+140)

ABSCA(I)=ALOG(X(I))

ORD(I)=ALOG(ALOG(1eG/(1e0=FX(I))))

LE AND SHAPE PARAMETERS OF WEIBULL

ORD(100)»

FIT STRAIGHT LINE BY LEAST SQUARES METHOD

SUMX1=040
SUMX2=UeU
SUMY1=0e0
SUMY2=0.0

SUMXY=Ue0
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DO 25 I=14N
SUMX1=SUMX1+ABSCA(I)
SUMX2=SUMX2+ ( (ABSCA (1)) % (ABSCA(I)))
SUMY1=SUMY1+ORD (1)
SUMY2=SUMY2+( (ORD(I))%(ORD(I)))
SUMXY=SUMXY+( (ABSCA(I) )% (ORD (1))

25 CONTINUE |
A= (( (FLOAT(N))#SUMXY ) =(SUMX1#SUMYL))/( ((FLOAT(N))*SUMX2)~=(SUMX1*SU
1IMX1)) | A
B=( (SUMX2#SUMY1) = (SUMX1%SUMXY) )/ ( ( (FLOAT (N) ) ¥SUMX2)=( SUMX1%*SUMX1) )
XMEAN=SUMX1/FLOAT (N) '
YMEAN=SUMY1/FLOAT (N)
SUM5=0e0
SUM6=040
SUM7=040
DO 31 I=1sN
YEST(I)=(A¥ABSCA(T))+B
DEVX(I)=ABSCA(I)=XMEAN
DEVY(I)=0ORD(I)=-YMEAN
SUM5=5UMB+(DEVX (I )*DEVY (1))
SUMG6=SUME+(DEVX (I )*DEVX (1))
SUMT=SUMT7+(DEVY(I)*DEVY (1))

31 CONTINUE

CORR=5UMS5/ ( (SUME*SUMT ) #%0e5)

PRINT 33,
33 FORMAT(T73H NOe X LN (X)) FEGR LN(LN(L1/7(1=F(X))) .
1 EXPTDe VALUE )

00 35 I=1sN

35 PRINT 36s Is X(I)s ABSCA(I)s FX(I)s ORD(I)sYESTI(I)
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36 FORMAT(IQyZK,F12-3,2X9F9.592X9F7.4;2X9Fl2;59 9XsFTek)
PRINT 41s CORR
41 FORMAT(35H THE COEFFICIENT OF CORRELATION IS sF9e5)
| SCALE=EXP(=B)
PRINT 51s SCALE
51 FORMAT (24H THE SCALE PARAMETER I§ sE14e5)
PRINT 535A -

53 FORMAT(24H THE SHAPE PARAMETER IS sF1l245)

sTOP
END
SENTRY
17 3
19000040 33400040 36500040 42000040 47200040
58900040 61000040 66200040 79200040 84000040
85000040 90000040 96000040 110200040 119500040
124000040 130300040
1.0 2.0 340 4e0 540
640 740 ' 840 ' 940 1040
1140 1260 13,0 1440 . Ok 1540

1660 1740
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23

APPENDIX A-2

The FORTRAN program for estimating
the parameters of the Weibull Distribution by the

method of maximum likelihood for

ungrouped data is given below

MAXIMUM LIKELIHOOD ESTIMATES OF WEIBULL PARAMETER

DIMENSION X(100)

READ 11sNsK

READ 125 (X(I)sI=1sN)

FORMAT (214)

FORMAT(5(F124354X) )

PRINT 16,

FORMAT (78H ITERATION NO.
X(0) FROM EGNe(4=25) )

NNN=1

SLOPE=1.834

SUM1=040

SUM2=040

SUM3=U 40

DO 23 I=1sN

SUM1=SUML1+( (X(I))%*%(SLOPE))

SUM2=SUM2+( ( (X (I))**(SLOPE))I*(ALOG(X(I))))

SUM3=SUM3+ALOG(X(I))

PARAMETER M

DE=FLOAT(KKK)I#*( (XIN))**x(SLOPE))

DF=((DE)*ALOG(X(N)))

DG=(FLOAT(N))/SLOPE

174

X(0)

FROM

EQNe (4—24)
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GH=(1eO/FLOAT(N))}*(SUM1+DE)

UM2+DF)

w

GI=(
GJ=(DG+SUM3)
GK=((GI)/(GJ))
PRINT 263NNNsSLOPEsGH»GK
26 FORMAT (7X31598XsF8els10XsEL4e5912XsE14465)
GL=ABS (GH=GK )
IF (GL=UsCUL)61561532
32 IF (NNN=50134534561
34 NNN=NNN+1
SLOPE=SLOPE+0+0001
GO TO 21
61 STCP
END
§ENTR?
L7 20
19000040 33400040 36500040 42000040 47200040
58900040 61000040 66200040 79200040 84000040
85000040 90000040 " 960000,0 110200040 119500040

124000040 ) 1303000.0
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