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ABSTRACT

The different modes of buckling failure of a compression
member in the form of an open thin-walled channel cross section
are considered.

The member may lose stability in one of two ways,
namely overall buckling and local buckling, depending on
the length-web ratio of the member. For local buckling, the
channel section is treated as a collection of plates,
subjected to inplane loading. The buckling load for sucﬁ
a plate system is determined by the matrix method of analysis.

Depending on the flange-web ratio, two cases are
considered. For the large flange-web ratios, the web and
flanges of the channel are treated as a system of inter-
connected plates. It is assumed that their common edges
remain undeflected under load. When the flange-web ratio
is small, the flanges can be considered as lips to the web
plate and are treated to act as elastic support for the
web plate. The buckling load is determined in each case for
different values of flange-web ratios and length—&eb ratios.

A comparison is made with the previous work done.
A series 6f tests are carried out to verify the

theoretically calculated values for different buckling

(vii)



conditions. Experimental results showed a satisfactory
agreement with theory and followed closely the buckling

behaviour predicted theoretically.
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NOTATIONS

Numerical coefficients, distances
Cross sectional area

Cross sectional area of rib, stiffener
Torsional rigidity (C = GJ)

Warping rigidity (Cl = ECW)
Warping constant

Flexural rigidity of plate [D = Et3/12(1 - vz)]
Modulus of Elasticity

Field transfer matrix

Modulus of elasticity in shear

Thickness of plate, distance, height

Moment of inertia of ‘a plane area with respect
to X, y and z axes :

Polar moment of inertia

Torsion constant

numerical factor, buckling factor [k = ocr/oe]
length of plate

Integers, numerical values, numbers of half waves
of buckling curve.

Bending moments, couple at n
2 2

‘ D,a W ° W
Moo= - (2 4y 2
n b2 8n2 862
2
=—-k-)—-M
D n

(ix)



p-q. Intensity of load distribution
2

p Euler buckling load for columns P = & 5I
e e 22
PCr ‘ Critical buckling load

[P] The product field boundaries matrix for more

than one field
Qn Shearing force at n
3 3
D w
o, =-3l&5+@-v ]
b an 3INdE
3
b

* = - 2
Q n D Qn

[R] Rib matrix, matrix expressing transition

’ conditions across a rib

{s] Support condition matrix

t Thickness

[(T] ' Thickness change matrix

u, v, w Displacements in the x, y and z directions

X, Yr 2 Rectangular co-ordinates

(x)



o Numerical factor [o = a/b]

B, ¥ : Constant quantities
Yg Numerical factor [YB = IE/b.D]
Yh Numerical factor [YD = J.G/b.D]
Yo ' Numerical factor [yw = CW.E/b3.D]
yp Numerical factor [yp = Ip/b3t]
s Numerical factor [§ = Ar/b.t]
E, n, ¢ Rectangular co-ordinates refered to unit dimensions
s Equivalent spring constant for rib
[ ¢ = vgo! - k_on0?) |
{0} State vector
Y Torsional spring constant
(v = Yw94 + (yp -~ krﬂzvp)ezl
8 Numerical factor [6 = mn/a]
v Poisson's ratio
0 Radius of curvature
o - Unit normal stress
Oy Critical buckling stress
Og Euler buckling stress [oe = nzD/bzt]

(x1)



CHAPTER 1

INTRODUCTION

This research is mainly directed to establish the
true buckling behaviour of a compression member of thin-
walled channel cross section, statically loaded at the ends,
considering all the possible modes of buckling failure. For
simplicity, only monosymmetric channel sections are
considered.
The modes of buckling considered are as follows:
1. Overall flexural buckling about the weak axis
(Euler buckling) [14]*.
2. Coupled overall torsional and flexural buckling [14].
3. Local buckling
a. of the flange and web as a connected plate
system tS].
b. of the web alone.
There is no unified analysis to predict all types of failure.
All existing methods of analysis assume certain conditions
on the deformation of the member, and then deduce the buckling
load.

In the overall flexural buckling mode of stability

* Numbers in square brackets refer to the list of references.
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2
it is assumed that the cross-section is nondeformable during
buckling and no torsional deformation takes place. For
convenience we shall refer to this type of buckling as Euler
type buckling and the buckling load as Euler buckling load.
In the torsional flexural mode of buckling, it is also assumed
that the cross section is nondeformable. However, rotation
due to torsional deformation takes place.

For short members, the assumption of nondeformable
cross section becomes unrealistic, and the instability mode
changes from overall buckling to local buckling. For locai
buckling of the member, the buckling mode falls broadly
into two catagories, dependigon the flange-web ratio.

When the flange-web ratio is small, local buckling
occurs at the web, with the effect of the flanges acting as
lips, lending elastic supports to the web. When the
flange~web ratio is large, local Buckling occurs at both
web and flanges as a plate system.

Therefore, the buckling mode depends on the geometry
of the column, namely the length-web width ratio (a), and
the flange-web ratio (n). For long columns where flexural
stiffness is relatively weak, the overall buckling mode of
failure will take place (Euler buckling). For short columns,
iocal buckling criteria takes place due to deformation of
the cross section.

The actual buckling load is given by the minimum of

all critical buckling loads calculated by various assumed



modes of failure.

The overall buckling of the column is given by the
well known Euler studies [14], where he considered the
flexural buckling mode of failure. The torsional overall
buckling was studied [1] and [14], which allows the cross
section, to rotate during buckling deformations.

Kimm [5], expanded the work done in plates using
the differential equation approach, to treat the channel
cross section as a web plate with two overhanging flange
plates, assuming that the corners of the channel section
remain straight and undisplaéed during the loading process.
The buckling load is then claculated for different flange-web
ratios.

Bleich [1], has considered Kimm's assumptions, he
related the flange plate with the web plate by the proper
restraining factor and obtained similar results. A state-
of-art review of the local stability of such members is
given by Bulson [2].

In the present analysis, the coupled toréional—
flexural overall buckling is not considered due to the fact
that the critical load calculated considering torsional-
flexural overall buckling is genevally  higher than Ehe
critical load calculated based on flexural buckling ([14],
or regarding local buckling.

The determination of buckling load for overall
flexural buckling of a compressioﬁ member is well known

and needs little explanation. Therefore the present work



4
is focused on local buckling behaviour of the channel sectién
under compression. The critical load for local buckling is
determined using the matrix transfer method of analysis.

The matrix transfer method was first applied to
vibrations problems by Schnell [11l] and Fuhrke [3], and is
also known by the name Methbd of Influence Coefficients [12],
(137.

Marguerre [6], applied the matrix transfer method
to the buckling problem and gave a detailed comparison of
the mathematical development of the vibration and the buckiing
of beams problem.

The method has been applied to study the stability
of an I shape plate girder by Scheer [10].

In this thesis the matrix transfer method is applied
to study the stability of an open channel cross section.

Two types of local instability are considered depending on
the values of flange-web ratio of the section.

Firstly, the buckling load is determined considering
the local buckling of web plate and the overhanging flange
plates, as a plate system, assuming the corners of the channel
section remain straight. The mode of local buckling ié
termed combined flange-web local buckling. The results
obtained are compared with the previous works where the
buckling loads are determined by different mathematical

formulations.

Secondly, the buckling load is determined considering
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the local buckling of the web only. In this case, the corners
of the channel are no longer considered to remain straight
during the loading process. The flanges are considered as
elastic supports to the web. Therefore, the corner line can
deflect according to the stiffness of the flanges. The
buckling load determined from this mode of local buckling
is different from that determined from the combined flange-
web local buckling. For small values of flange-web ratio;
the buckling load thus determined is less than the buckling
load considering the combined flange-web buckling. Therefére,
for this range of flange-web ratios, the channel section will
become unstable due to local buckling of the web alone.

Three sets of experiments are carried out covering
a wide range of the flange-web ratios to verify the mode of
buckling and the actual buckling load as calculated from

theory.



CHAPTER TII
APPLICATION OF MATRIX TRANSFER METHOD TO DETERMINE THE
BUCKLING LOAD OF A RECTANGULAR PLATE

UNDER INPLANE COMPRESSION

In this chapter, we will illustrate the use of the
Matrix Transfer Method as applied to the stability study of
a rectangular plate subjected to inplane loading. The method
will then be used to solve the local buckling load of the
channel sections under axial loading.

The analysis is based on the following assumptions:

1. Material is linear, elastic, homogenous and
isotropic.

2. The web and flanges of the channel are perfectly
flat and stress is applied in the mid plane of the plates.

3. The deflections in the mid plane of the plate
due to 'the applied stress will be neglected until stress
reaches the critical value.

4, At plate edges, Navier's end conditions are
applied.

5. The applied stress is uniformily distributed over
the thickness and span of the plate.

6. The élassical plate theory-is used for the analysis.
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X=g+*b

Fig. (1)

Consider an elastic rectanguler plate of length a, breadth b
and thickness t, with a uniformly distributed compressive
stress Oy acting in the x direction in the mid plane of the

plate as shown in Fig. (1).

The governing equation of the deflection W of the

plate is given by [14] as,
4 2
p[ig v 20—+ T ] ro e T =0 ... (II-1)

8x4 szay2 8y4 X 3 X

where D is the flexural rigidity of the plate = Et3/12(l - vz)
The stress L will be considered positive if the applied stess.
is compressive.

To nondimensionalize equation (II-1), let:

X = E£.b and

Y = n.b
Expressing the differential equation in terms of the new

set of axes &, nand introducing the buckling factor k, we
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can write:

V4W+k1r2§-—‘g-=0
X3
where
4 4 4
v4w=-—~3?+23¥ 2+3‘Z
ok 3E" 9N on
g
k = _CF
(o}
e

with 0oy 23S the critical buckling stress
buckling stress = nzD/bzt which is the
Square

a/plate free along the edges parallel to

and simply supported on the other edges.

ee. (II-2)

and Oe as the Euler
critical stress for

the applied stress

Consider a plate simply supported at the edges £% 0

and £ = o. The boundary conditions become that both deflection

and moment equal zero at both edges, that is:

W(0) = M(0) = W() = M(@) = 0 .o (II-3)
where

a = a/b

Consider a deflection curve of the form

W(g, n) = w(n) sin mgb 3

= w(n) sin eé eee (II-4)

where

8 = mn/a

with m as the number of half waves of the buckled curve in

a direction parallel to the applied load.

Equation-(II-4) satisfies the boundary conditions

at £ = 0 and § = a.

Introducing equation (II-4) into the differential



equation, we obtain an ordinary differential equation of

the form:
alwm .2 a%w(n) 4 2 2
Moo29% 2V 4 (67 - kw8 )w(n) = 0 ... (II-5)
4 2
dn dn
Seeking a solution in the form
we obtain the characteristic equation as
4 2.2 4 2
AT = 20°2° 4+ 8" (1 - 17 k) =0 ' ce  (II=7)

]

The general solution of equation (II-5) can be written as:

w(n) =C cosh?ln +C, sinhk.n + C cosh?zn

1 1" 3

+ C4 sinh Ko ceo (II-8)
where the arbitrary constants Cl' C2, C3, andAC4 are to be
determined by the boundary conditions at n = 0 and n = 1.

k., and ?2 are roots of the characteristic equation (II-7)

1

and are given by:

A = i/9(6 + 190K) = ?l L. (11-9)

3,4 +fo(o = n*Vi] 2

Expressing the arbitrary constants in terms of the

>
!
i
H
~ |

deflection, slope, moment and shear at edge n = 0, we have:

-2 2
o - - w (k)" = v87) - M *
1 =7 =72
1 2
Mo (5 ® - ve®) + 0¥
C, =+
2 - -2 =2
Kl(Kl - K, )
w, (6% - veZ) - M *
cy o=+
2
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i - *
c - T (Kz ve~ ) + Q
2 1 2
ooo(II-lO)
where
v 1is poisson's ratio
W is the deflection at edge n = 0
oW is the slope of the deflection curve at n = 0
Y
Mo is the moment at edge n = 0
D 32w0 BZWO
b an L3
2
b
* = e e
or M0 5 MO
Qo is the shear at edge n = 0
D a3w a3w
= - =3 ( ——gﬂ + (2 = v) ———37 ) ees (II-12)
b on andg
3
b
K o o
or Qo D Qo

Using equations (II-8) and (II-10), it can be seen
that the deflection of the plate can be expressed in terms

of the deflection, slope, moment and shear at one edge of

the plate:
W (Kz -v62) - MO* -
w(n) = - — — . coshnln
(Kl - K, )
§w° (% ""2) +Q * —
+ n o} .sinh K
R (52 - %9
1 1 2
W (Kl - vez) - Mo* _
+ —> —— -coshxzn



ow 11
— 2 2
zzz)

- 'sinthn
(™ -
eeo(II-13)
The general solution of the differential equation

depends on the values of ?l and ?2. There are five cases

to be considered:

2k 2

a) (1 - "2 )< 0 k> (m/o) e..(II-14.a)
§]
2

b) (1-“§)=0 kK = (m/a)? ... (II-14.Db)
e .
2k 2

c) 0<( 1 - = S )< 1 0<k < (m/a) ee.(II-14.c)
0 .
2, ‘

d) (1-2Z2 5 ) =1 k =0 ... (II-14.4)
0
2y

g) (1-2=)>1 k <0 ... (II-14.9)

6

Cases d and g where k = 0 (i.e. no axial stress) and k< 0
(i.e. tensile stress), although seemuﬂﬂy of no interest,
they will allow any general stress applied to an assembly of
plates.

For the moment we shall consider in detail the case
a, where k >(m/¢)2. The procedure for solution of the
other cases follows essentially the same steps with only slight
modifications.

In this case, ?2 becomes imaginary and the general
solution takes the form:

w(n) = (A, cosh ?l-n + A, cos ?Zn ) oW
Ay - L) -
+ (== sinh x;°n + —= sin k,n ) W _
K1 K2
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o . - - . *
+ ( cosh Ky*m CcOs KN ) M0

+ (%— sinh ?1-n - %f sin ?2 n)+ Q¥

“1 K2
.OO(II_lS)
where
' ow
wo!o= 0
an
w, = [o(n/k + 6) 1%
K, = [8(nk - 0)1
Equation (II-15) can be put in the form:
A
-1 < = L inh ®
win) =3 {(A2 cosh Kqn + Al cos Kzn) (= sinh Kqn
) K
1
A
* 2 ginx n) (gcosh ¥,n = cos x,n}
= 2 1 2
2 -

(o)

1 ginh %on - 2 sin © .
(= sinh «;n =- sin Kzn% w'

K K
1 2 1M N
o
Q *
"o
.o (II—16)
where
_ - 2 - 2
Al = Kl vo
_ 2 2
A2 = K2 + vo
_ 2 _ 2
A =« +
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The slope, moment and shear at any point inside the
plate can be similarly expressed in terms of the state vector

at the edge n = 0, namely,

Slope w'(n) = %—-&Az cosh ?l'n + Al cos ?z-n)
(o}
A A ‘
(—l sinh ?l-n + 2 sin ?zn)
K 3
1 2
( cosh Ky*n- cos‘K2~n) wo‘
Wl
1 . — _ 1 . = . 05
(== sinh xyn E_ sin k,n )3 M >
K1 2
Qo*d
-c.(II-l7)
1 -2 — N
Moment M*(n) = K; . [A2 (Kl -v6°) cosh Kqin = Al (K2 +v6 )COSKzn]
A _ 2 2 _ A, _2 2 _
[:—(Kl - ve ) sinh Ky = — (KZ +vo ) sinnzn]
Ky Ko !

[(?l2 - vez) cosh ?ln + (?22 + vez)cos ?zn]
(2-(<;% -ve?) sinh «; + (¥, + ve?)sink, ]} :
Kl Kz :

LQ°
LI (II"lS)
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and shear Q*(n) = K241A2:l [?12 - (2 - v)62] sinh ?ln
(o]

+ AR, [Ezz + (2 - v)62] sinh ?zn}

L - AZ[EZZ + (2 = v)e?]

-2 2 —
{Al[Kl - (2 = v)86°] cosh «
cosh ?2"}

{?l [c;? = (2 = v)e®] sinh &;n

- %, [Ezz + (2 -v )6%] sin )
-2 2 -
?[Kl - (2 - v)e~] cosh Kqn Pwo
2 2 N Y
+ [Kz + (2 - v)6~] cosh Kzﬁﬂ- ] )
M x
(o]
L-Qo*
v o (II-lg)

To present the theory in a compact form it is convenient
to use the matrix notations.

Defining the state vector {@n} to be

w
"
w' ’
< "
e} = ux [ for 0 < n < 1
n
*
27 ]

It can be seen that, once the state vector(¢é is known for
any section {(n), all the information about that section will

be known. From equations (II-16) to (II—19),{®3 can be
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related to{@dlby a matrix relation:
{el = [ F 1 o} ... (I1-20)
where
[ F] is the field matrix which relates the state vector at
any location n to the state vector at the boundary n= 0.
Its terms are given by the equations from (II-16) to (II-19).
In particular, at the edge n = 0 and n = 1 of the

plate, let the corresponding state vectors be{@% and (¢}

where:
wo Wl1
w ' wl'
fo ) = 4 ° {e;} = , .. (II-21)
M * M. *
0 1
* *
L O . L..Ql.i

They are related by the relation

o1y = I g ]n=l'1¢o} e (II-22)

where [ F ] denotes the matrix [ F ] given in equation

=1
n
(IT-20) by replacing n by unity.

Expanding equation (II-22) we have:

- r ]
wy = Epqw t Epw ) H EaME+ £y 0

w.' = f__w + £
0

[] * *
1 21 22Wo F o EpgM ¥+ £,,00 ... (II-23)

[ Jp—- . ' * *
My* = fggw + Eaow P+ £ M+ £4,0)

-
Q= W+ Eyw, F B M+ £ 00



where f. .
1]

11

12

13

14

21
22
23

31

32

41

are the elements in the

= f44 = A2 cosh Kqm +
Al _
= f34 = _K_— sinh Kln +
1
= f24 = cosh Kqno =
= E; sinh ?ln -
1
= f43 = A2K1 sinh Kqn
= f33 = Al cosh Kqn +
= Kl sinh Kln +
= f42 = AlAZ( cosh Kqn
A.2 _
= — sinh Kqm
K1
= A.%°%. sinh ¥
= 1 Ken

2

16
matrix [ F J].

A, Ccos k

1
A

—= sin k.
—= sin k,n
2

2n

K

!
[T P

ees (IT~ 24)

-Ccos zzn)

2
A,

sin Kzn

The matrix [ F ]n=l which related the state vectors

at the two boundaries n

0 and n

1 is known as the "field

Transfer matrix" or "Field matrix" for the plateQ

J



Field matrix [ F,] for [ k> (m/2) 2 ]

where,

A A
1 2 1 1
A.e. + A.¢e -, + —¢ €, = € — —
2°2 174 Bl 1 82 3 2 4 Bl 82 3
AyBiey ~ ByBpeg Ajey + Byey |Byey t Byey €5 €4
2
Al A2 Al A2
A.A (e, = €,) g€, = e.|A e + A.e B —
17272 4 Bl, 1l 82 3(771°2 274 Bl 82 3
A 28 e, + A 28 € A A, (¢ e, )|A,B.e, - A ,B,¢ A.e Ale
2 171 1 7273 1722 4 27171 17273 2 174
B, = /e( Jk' + 65 g, = sinhB.n A, = 8 2 _ v62
1° " 1 1 1 1
; - _ 2 2
62 = /g(nf]; - 9) €, = coshBln A2 = 82 + v
8 = mr/a €3 = sinan AO = Al + A2 = + 8,
e4 + COSBZn

ee.(II-25)

LT
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Buckling Condition

Let us consider the case of the plate in Fig. (1),
bﬁt the edges at n = 0 and n = 1 are free (i.e. no moment
and no shear).
The boundary conditions at edge n = 1l can be expressed

in terms of the boundary conditions at edge n = o in the form:

S - .
i £, £, f13 fiy Yo
w,' £ £ £ £ wo'
Ml | 21 22 23 24 UL (xz-26)
. .
M £33 f32  f33 I3y M*
* . *
2" fa1 T4z 4z Fag 9o
For the considered example the boundary conditions
are such that
= * = * =
at n o, M0 0 and Q0 o
and at n = 1, Ml* = 0 and Ql* = 0
Therefore, substituting the boundary conditions of
the two edges in equation (II-26) we can write:
vyl £10 fi2 fi3 0 Fyy Yo
w,' f f £ f w '
1 | = 21 22 23 24 c ] o] . (II-27)
0 f31 0 T2 fzz fay 0
0] £41 f4o f43 Fy4 0
which can be expanded as
= v -
w, = fll wooo+ f12 W ... (II-28.a)
- ' -
wl' =f,,w,  + £o5 W, ee.(II-28.Db)
w + f w ' .oo(II—28od)

- 0= £ v, 42 Yo
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Considering equations (II-28.c) and (II-28.d), for the
nontrivial solution of the values for wo and wo', we have

the condition:

£ £
31 32 _
£41 £42
Or £, vf,, - £, +Ey, =0 ... (II-29)

which is the buckling condition for the given case. ‘The
values of k, and hence Onpr Can be determined by solving
equation (II-29) by trial and error method of numerical
analysis.

| Consider ahother problem where the plate is fixed.

at n = 0 but free at n = 1. Equation (II-27) takes the

form:
s - ' . -
vy f11 fi2 fi3 £y 0
1

M Fa1 faz faz faqp 0|

F31 f32  f33 fg4 Mo

*

0] Far Fa2 faz 0 Ty 27

It can be seen that once the field matrix [ F ] is
known, the buckling factor k, and hence the buckling stress
ooy €3N be found for all combinations of boundary conditions
at the edges . n= 0 and , = 1. A complete list of |
combinations of boundary cbnditions along the two edges are
shown in matrix (II-30).

In the matrix (II-30), the actual boundary conditions

at both boundaries, a schematic diagram of the support

1



FREE | RorED: INADMISSIBLE HINGED FIXED )
M = 0 w' =0 w', =0 w, =0 | w, =0 w, =0
d* =0 Q¥ o M, =0 | @ =0 | M% =0 wh =0
S £ It E c———FE -
Pod 1 12 It 13 12 14 13 14
L 21 22 21 23 22 24 23 24
8 2 It 2 S | F——""21
© 1" 12 T 13 12 14 13 14
T 3l 32 31 33 32 34 33 34
Y
m ++(II—-30)
n
0
b3
a
g
z
1]
83‘, ——E | I——F s—1E | 33—+
X! 2l 22 21 23 22 24 23 24
l!-g al a2 al a3 42 44 43 44
W b s F—
w 31 32 31 33 32 34 33 34 o
@ o
L. 41 42 4 43 42 44 43 44
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conditions and also the elements ih the field matrix that
gives the buckling condition are shown. For example, if

both edges are free the table gives the buckling condition

31 32
or equivalently,
41 42
31 £32
= 0
£41 £42

which is the same as given by equation (II-29).

For each combination of boundary conditions at
n=0andn-= l) there will result an equation representing
the buckling condition by equating the deterﬁinant of
certain 2 x 2 matrix to zero. To facilitate computations
it is convenient to define a new matrix called the Field
Boundary Matrix [gA]. This is a 6 x 6 matrix whose elements
consist of the various buckling conditions. For example,

.the free edges condition is found in matrix (II-30) to
occupy a position in the sixth raw and the first column of
the matrix. Therefore, such a buckling condition is
enterea as the element (261) in the newly 2efined Field
Boundary Matrix. Similarly, the element (fll) in the
Field Boundary Matrix is the buckling condition for the

free-fixed boundary condition of the plate.

This modification as will be shown later, to
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facilitate the calculations of the complicated cases and
reduces greatly the time required for computations. The
A
2
Field Boundaries Matrix [FA] for the case of k > (m/m)

is given by matrix (II-31);-



A

Field Boundaries Matrix [FA] ik (m/u)zl

m
m

1 2 2 1 1 1 %2 2.0 1
Loa,, + a2 +adee, | ge. +8.ey Ltal - A)e AL, | 22 - 23 L,
Ai 12 2 1 e ) 5 P15 293 | 12t 1) €5 '8, 8| a2'°%s
+ (8,A% - g.a%).c ] +(B,A, + 8,A ) ] +(8, - 8,)
41 372/ 781 372 471’9 3 4
2 2
A A A A ’ £
1 M 2 1 A 2 1
(e, - =——¢€.) £ =", + ==c.) A(2,3) | =— = A(l1,5)
A_B,°2 7 8,3 4 A g %2t E,03 By
Lia(a - A 1 g ¢ I A(3,3) | = a(2,4) = A(L,4)
22212 (8 1) €5 a_f1 2%3 22 2R12°%s ’ ' '
o o]
(
‘(33A3 + E‘4’*3)'51] B.A.c.) +(® a2 - B a2ye
22183 4?1 3By)8
= A(3,1) = A(3,2) = A(3,3) A(3,3) | = a(2,3) = a(1,3)
1 2 2
AészAle3 + BAe,) B, A(4,2) A(3,2) A(2,2) A(l,2)
1 2an « = A(5,1) = A(4,1) A(3,1) | = a(2,1) |=a(,1)
22 2P1ts
Q
4 4
o (1I-31)

Z

[
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A
Abbreviations in the Field Boundaries Matrix [FA] [k >(mﬁx)2]

8. = V o(nfk + 0)

1
B, = 7 o(nrlk - o)
By = B;/8B,
By = 1/63
Bs = 81 By
A, = 8% - ve 2
A2 = 622 + vez
Ao = Al + A2
B12 = Bt By
9 = qw/o
€, = sinh Bym ;.sinﬁzn
€y = sinh Byn * coOsB,n
€3 = cosh Byn sinan
€4 = cosh Byn * cosB,yn
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It should be mentioned tha£ all the equations from
equation (II-15) to equation (II-24) are valid when the
buckling factor k is'such that equation (II-14.a) is satisfied,
namely that k>(m/x)2. We can arrive at different field
transfer matrices corresponding to the different values of
the buckling factor k with respect to the value of (m/'a)2
as given in equétions (II-14.b) to (II-1l4.g).

Consequently, this will result in five Field
Boundary Matrices [l?‘A], [ﬁB], [éc], [éD], and [EA‘G] depending
on the value of k in relation to (m/a). The detailed
‘mathematicaiformulation for each matrix is given in Appendix I.

To find the value of the buckling factor k that
satisfies the buckling condition [e.g. equation (II-29)],

a trial and error numerical method is adopted. This method
is illustrated in steps as follows and by a flow chart.

1. For a certain value of 4.

2. Assume a value for k.

3. Applying conditions (II-14), we can determine
the proper field boundary matrix to be used in forming thé
buckling condition.

4, Evaluate the buckling condition and if:

a) 1its values equal zero or a practically

very small quantity then, the assumed value of k was taken

as the correct value.
Y

<

b) the buckling condition values differ

from zero substantially, another value for the buckling factor
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k will be used and the whole process will be started again

from step 3.
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Procedure of Numerical Method Followed to Calculate the
A

Buckling Factor k that Satisfies the Buckling Condition Pij

FOR A VALUE OF &

1
O—F
ASSUME A VALUE FOR k
HECK
k & (m/O(‘)2

i N ki
k(msacl | | kstmacf | | 04k Cmrae)| | k=0 k {0

{ ! 1 t i

A A A A A
CE 1 CR 1 CRa CRl | |CFR3

Y

o —3
L

A.
sUBSTITUTE IN THE BUCKLING CONDITION F;?j=0

ASSUME ANOTHER
VALUE FOR k

k 1S THE REQUIR-
-1 ED BUCKLING FACTO

v !

CON SIDEO%ANOTH ER

FLOW CHART




CHAPTER IIT

SPECIAL FIELD TRANSFER MATRICES

In this Chapter, we will illustrate the derivation
of the special Field and Field Boundaries Matrices. These
matrices relate . the state vectors for special
structural elements (e.g., transfer conditions across a
stiffening rib, thickness change or intermediate support
condition). These cases will enable us to extend the
‘ Maﬁrix Transfer Method to be applied for continuous
plates, channel cross-sections and sections of variable

thickness.

A. Transfer Conditions Across a Stiffening Rib

[Rib-transfer Matrix]

/

1 Rib

M

Fig. (2)
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The boundary conditions before and after the stiffening

rib are expressed by the state vectors,{d>n } and {¢_ 1},

n
) 1
to be:
r@n 7 - [w T
) 7
w '
{o_ 1} =J nor and {e_ } = wnl
nO M* nl é x >
n M
Q*o ny
N Q*n
L 4 1]

Reconsidering equation (II-20), we can relate the two

state vectors at the boundaries of the fib to follow

the matrix relation:

{e. } = [Rl - te, ) C ee . (III-1)
1 ) \

where [R] is the rib-transfer matrix which relates the

two state vectors before and after the rib. The Rib

Matrix satisfies the transfer‘conditions across a rib or

a stiffener. 1Its terms will be calculated by the follow-

ing continuation conditions:

i "o

wl - wl oo.(III‘-3)
"1 " 84V 32W

0 = Q + EI o 1 + k_o_ A o 1
"1 o F a;l p?  reT 57 2

ce. (I11-4)
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where the load carried by the rib is the load required
to provide a deflection w plus taking account of the

axial load krceAr in the stiffener.

Ir is the moment of inertia of the rib about

the centre line of the plate
A_ is the cross sectional area of rib-
o is Euler buckling stress

o
k_ is the buckling factor [k = —SX]

To satisfy the moment compatibility we have,

33Vn aswn
1 0 1
M, =M. + GJ ° . - EC .
n n
1 0 26237 b3 W oaeMan b
a3wn
- k [0} 0 . —]j ..'(III—S)

where the moment carried by the rib is due to the shear
across the rib, its torsional rigidity and taking into
consideration the effect of the axial load kroe in the
stiffener.

J is the torsion constant

C.. is the warping constant

. I_ is the polar moment of inertia of the rib

Expressing the shear equation in terms of the deflection
of the plate, then,

ET A :
- _ r 4 _ r 2 217, . _
Q*nl - Q*no [ Eb‘_ 6 kr B'E 7] w 1 wno‘ o..(III 6)
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where
3
b
L T ol
Q n D Qn
9 4\4’n 4 3 zwn 2
— = 6w and —5— = 0w
3 € 3¢ n
8 =mrwn/a

To nondimensionalize the shear equation, let us introduce

the following dimensionless quantities:

N

Y (relative stiffness of rib and plate)

(relative area of rib and plate)

Hence the shear equation reads

Q* = Q* = ¢ w ) s e (III-7)
" . r o
where
¢ is the equivalent spring constant of rib
_ 4 2 2 - ‘
¢, =Yg kr St 9 “ ves (IIXI-8)

to evaluate ¢r numerically, a nondimensional parameter

(r) is introduced to be

where
b is the breadth of web plate

t,_ is the thickness of web plate
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Nondimensionalizing the moment expression, we

can write:

where y _ is the torsional spring constant

v =Y

r w
= GJ
YD T ©D
EC
=
v o 13p
I
Y =
P pot
. 2

b
M o=- 75 M4

o+ vy =k r Py e’

vee (III-9)

Arranging the four boundary conditions, equations

(III-2), (III-3), (III-7) and (III-9), in a matrix form,

then:
\ T [ 1 0
N1
w'n 0 1
3 o=
M 0
nl IJ):I:'
Q* ¢ 0
| M -

" ees (III~10)

Following a similar treatment to obtain the Field
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Boundaries Matrix from the Field Matrix, we can simply
A
arrive to the Rib Boundaries Matrix [R] to be:

F 1 0 0 0 0 0

wr 1 0 0 0 0

A 0 0 1 0 0 0
[R] =

0 0 0 1 0 0

¢ 0 0 0 1 0

wr¢r ¢r 0 0 lb‘.'l:' 1

LI Y (III"‘ll)

B. Transfer Conditions Across an Intermediate Support

[Support transfer Matrix]

The case of a continuous plate o;er an intermédiate
support can be regarded as a special case of the stiffen-
ing rib. The Matrix that represents the transfer condi-
tions across a supportvwill be denoted as the "Support
transfer Matrix", [S]. This matrix can bé easily deduced
from the rib fransfer matrix by realizing the following
facts:

a. The equivalent spring constant ¢ of the.
support is infinity, namely, no deflection is to take
place. . : | : . x

b. The torsion spring constant y_ of the support

is zero, namely, support does not exert rotation restraint

on plate.
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Introducing %fo and ¢s+w, the rib transfer matrix will

yield the Support Boundaries Matrix giving,

e —_

0 0 0 0 0 0

0 0 0 0 0 0

CA
(sl = vee(III-12)

’

C. Transfer Conditions Across Thickness Variation

{Thickness Variation Matrix]

s T
Field i D Field i+l

»Fig. (3)

Considering avplate consists of two sections of differ-
.ent thickness joined together,”let us denote the sections
by i and 1 + 1 with corresponding thicknesses ty and

t The continuation conditions across this sudden

i+l*
thickness change line require the deflection, slope
moment and shear just before and after the change to

satisfy the following relations:
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w = w ees (ITI-13.a)
Ni+l ni :
W' = W' LY (III—13.b)
Ni+1 ny
3
M M ! ' (III-13.c)
n. - n. T——— o a s - .C
i+l i t7.,
i+l
3
Q" ot | (III-13.4)
TTPR Pl e (e
i+l
where , 2
. b,
M == 5 M and
i i i
3
Q" oo Q
ny Dy ny

The state vectors {¢i} and {®i+l} will be related

by the formula
{°i+1} = [T]-{¢i} ee. (IIT-14)

where [T] is a matrix expressing the continuation condi-
tions across a thickness éhange line in the plate in a
direction parallel to the applied stress.

Arranging equations (III-13) in a matrix form, we

can write:

- - r — -’
w 1 0 0 0 | w
w'! 0 1 0 0 w'!
< S ’ 3 .9 3
* *
M | 0 0 (ti/ti+l) 0 M
3
o* 0 0 0 (t./t, . .) Q*
i’ Ti+l" L ns
SRR TS ' . J i

veo (ITI-15)
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Following the same procedure to obtain the

Field Boundaries Matrix from the Field Matrix, we can

arrive to the Thickness Change Boundaries Matrix

A

[T] to be:

A

(T) = (t;/%;

3
+l)

-

3
(ti+l/ti)

0

(=]

0

0

3
(/%5 41)

J

e (III-lG)



CHAPTER IV
APPLICATION OF MATRIX METHOD TO STABILITY OF PLATE SYSTEM

In this chapter we are going to illustrate the
application of Matrix method to a plate with any number of
fields. 1In other words, we are going to extend the Matrix
method to cover any general case of continuous plate. Also,
we are going to formulate the general case of a plate with
elastic supports.

Product Matrix [P] for any Number of Fields

Edge n = 1 [~ Tery?
.4 -y
n Field n
B i e
Mh-1 Field n-l
1 '_—__"——,_,::_,.__.:——-_:_?——-":—%
n"n-1 —__—:_,_—-—-—-:‘———»"-:“—’:—/_’--

’ ;——_ Field 2

UZF%?—'“——-"‘——“ff‘—“—“" fT
Ny n . ' .
’ l *l *l Flgld 1 | , -
Edge n = 0 e
0cr,l
Fig. (4)
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Considering a plate which is divided into a number of fields

n, the ith field is subjected to a uniformly distributed °

stress of a value g where 1 = 1 to n as shown in Fig. 4.
For any field i we can relate the state vectors

{*; 1} and {®i},by the matrix formula:
{wi} = [Fi]-{¢i_l} ees (IV-1)

Equation (IV-1) can be applied to all fields of plate from

i=1to i =n, then

(e} = [Fy1-[oo} | oo (IV-2)

___________________________ and so on

—~—
©
[
—
i
‘o
[
ot
———
(=
t
[
—

- s D G e Ut o s Sy Wt G O Ny i W s s

!
)
BI_.J
©

Loyt
From the above substitutions we can express the state vector
{@n\ in terms of the state vector{s¢ }.

| £ 2 I [F2]-[Fl]-{¢0}
ees (IV~-3)

{¢n} - [Fn]'[Fn—l
This general expression can be written in-short
to-be:

{e } = (Pl-fo } | ... (IV=-4)
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where
[P] is the Product Transfer Matrix.
This matrix can be formed by multiplying the individual
Field Matrices which satisfies the intermediate boundary
conditions of the fields and relating the boundary conditions,
state vectors, across the whole assembly of fields.

We can arrive to the expression in equation (IV-4)

}

[¢]

through an easier computations procedure by defining {E "

as a (6 x 1) column vector expressing the boundary conditions

at edge n, as:

Free end condition {Ei} = 9 3 : eee (IV=-5.a)

Fixed Roller end { 32} =d >, ... (IV-5.b)

Condition
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Hinged Support {55} e (IV-5.c)

It
A
\j

il
A

| ol
Fixed Support {EG} ".L eeo (IV-5.4)

0

i
L

As far as obtaining the buckling condition is concerned, in

-

place of equation (IV-1), we -can write

A .
(B, ) = (1)
— N A —
{enz} = [F]Z-{enl}
) ... (IV-6)
_ A -
(B, ) = FIE, )

By knowing the end conditions vector {Eﬁo}as given by

5)(1), expressions (IV-6) will result, n products

equations (IV-
of (6 x 6) matrix and a column vector (this can be reduced

to n products of (5 x 5) matrix and a column vector, see
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(1)

One can obtain {Eﬁ } using the first equation in (IV-6).
1
Similarly, knowing {Eh } enables to obtain‘{Eh } and so on,
1 2

until we obtain {En } through the use of the last equation
n

in (IV-6). Let us denote {Eh } obtained in this way as
n

{e }I‘ However, the boundary condition at edge n= 1 is

Tn

known, hence, one can write down .the rector {Eﬁ } directly.
n

Depending on the actual boundary conditions the form of

{Eﬁ } is given by equations (IV-5). Let us denote the
n

vector {e_ } obtained this way by {e_ } . By comparing
‘ nn "n II

{e_ } which corresponds to the non zero element in {e_ 1}
"n 1 "n 1

the buckling condition of the problem is obtained by equating

this special element in {e_ } to zero. This method is
n I

known as the "A - coeeficient method". A detailed discussion
of this method is given by Margeurre [18]. This method

is useful for computational purposes. As can be seen, the
buckling condition is obtained through the n multiplications
of a (6 x 6) matrix by a column vector. If we obtain the
buckling condition through the use of equation (IV-4), we
need to find thevproduct transfer matrix [P] which will

involve n multiplications of (4 x 4) matrices.
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Appendix) where expression (IV-3) will result, n products
of (4 x 4) matrices.

Continuous plate over two spans

REVRITRERINSY
SR
~

=
l o
!
I
I
|
[
I
!
!
I
1
[
!
[
!
|
]
|
[
|
|
[
[
L

Y

A

To find the buckling factor k, of a continuous
plate over two spans as shown in fig. (5), we are going to

relate the state vector {@n } in terms of the state vector {@n}

by the Product matrix [P] 2 according to the relation: °

{@n-} ='[1>]-{<1>n } ee o (IV=7)
2 0 '

Referring to the deriviation of the Product Field
Matrix [P] in equation (IV-3), we can write:
(p] = [FZ] (sl [Fi]

where [Fi] is the transfer field matrix for field i (i=1,2)

and [S] is the support transfer matrix as given by (III-12).

The boundary conditions at edges LI and n, are
assumed to be hinged , namely: deflection = 0 and

moment = 0. Applying these boundary conditions to the state
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vectors at both ends we can establish:

0 "o
Lo y=1" TR
) = and ¢ = ce. (IV-8)
n2 0 Mo 0
Q* Q*
- n2 L nO

Expressing the formula (IV-7), by the matrix elements, we

can write:

r o= - -
0 P11 P1a P13 Pig 0
A P P P p - w'
) - 21 P2z P2z Pag| | f L (1v-9)
0 P33 P3p P33 P3y 0
Q* P P P P Q*
9%, [Par Pa 43 44 T

— [}
0 = P W, * pyy QF
Wo'l = Py W'+t Py, QF
- ] *
0 P3p W, +t P3gq Q,

— L
Qo* = Pypy W'+ Pyy QF
The condition for the nontrivial values of wo' and Qo* will

provide the condition:

or expressing the determinant gives:

plZ ¢ p34' - pl4 * P32 =0 ees (IV-10)

Equation (IV-10) forms the buckling condition for the case
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of continuous plate over two spans. The value of the
buckling factor k that satisfies the above equation will
give the buckling factor of the continuous plate.

The expression:

plz ’P34 Z pl4 * P32 oo (IV-11)

forms the element P25 of the Product Field Boundaries
A : ‘
Matrix [P].

Plate with Elastic Supports

b = | |
n N1 n : N1

o)
(a) ,l (b)
Fig. (6)

Considering the case of a plate with nonrigid suppoftsh
namely the rotation is resisted by the torsional stiffness |
of‘support and deformation of the support is proportional
ﬁo the reaction in the direction of deflection. The
structural model can be expressed by two sets of springs as
shown in fig. (6.a)

The case of elastic supports is identical to the
case of a stiffening rib fig. (6.b) where:

. is the equivalent spring constant of the rib.

12 is the torsional spring constant of the rib.

To establish the matrix forxgmulation of this case,
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we are going to consider two additional fields of zero span

as shown in fig. (6.b).

[Fi1R] [F,] [Ry1[F,]
Edge 0 2. @ Edge 1

(Fig. 7)

The state vectors across the whole plate is related

by the Product Matrix as:

{o,) = P1-{e} 3 ... (1IV-12)
where the Product Field Matrix is given by

[P] = [Fyl:[Ry]-[F,]+[R]+[Fy]
where: |

[Fl] and [F3] are the field matrices of a plate
field of zero width, (fig. 7). The value of a matrix of a
plate of zero span reduces to an Identity Matrix.

[Rl] and [R2] are the matrices expressing the
transition conditions across the ribs Ry and R,.

The boundary conditions at the free.edges>o and 1
are: | '/ : \l

Moment = 0 Shear Force = 0
Introducing these boundary conditions in the state vectors

expression equation (IV-12),we can state:
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T - . m
v P11 P2 P13 Pyg Yo
w, ! p p p p w !

! L - 21 22 23 24| J o L. (zv-13)
0 P31 P3p P33 Pyy 0

R Py Pap  Pg3 Pyy L0 ]

This matrix formulation (IV-13) can be written in equation

forms to be:

Wy T Ppyp W, Py v
Wil = Ppp W, v Pyy W'
0 = Py w, * Py,
0 = Py Ve fO Py Wo'

_ The condition for the nontrivial values of the

parameters W and wo' is,

P33 P32
= 0 s 00 (IV"14)

Pg1 Pg2

or expanding the determinant in equation (IV-14), gives:

p3l p42 - p4l P32 0 ees (IV-15)
The right hand side of expression (IV-15) gives the term
A ‘ A
of the Product Field Boundaries Matrix [P]. The value

Pe1 ,
of k, that satisfies the equation (IV-15) gives the buckling

factor for the contineous plate over elastic support conditions.



CHAPTER V
STABILITY. OF CHANNEL COLUMNS

INTRODUCTION

In this chapter we are going to apply the Matrix
Transfer method to calculate the buckling load of a strut
of channel cross section.

We shall only consider the local buckling of a
channel cross section treated as a system of plates. The
modes of buckling considered are as follows:

a) local buckling of the flanges and web and

b) local buckling of the web.
wheh the flange-web ratio is large. The flange, taken as
as the outstanding leg of the channel, is flexible and hence
local buckling occufs at the flanges and the web taken as
an assembly of plates.

When the flange-web ratio is small, the flange,
taken as a stiffening rib for the web plate, acts as an
elastic support for the web plate, and hence local buckling
occurs at the web only. |

a) Local Buckling of Flanges and Web

For the case of relatively large flange-web ratio
the channel section is treated as composed of three fields

of the web platé with two over hanging flange plates. The

45
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structural model is shown in fig. (8).

tf | tw tf

AN | A
L—— bf——o¥v—————~ bw-—————ﬁid———bf-—J

/ ~ Fig. (8)

Considering a channel section of web width bw and
) thickpess tw’ the flanges are of thickness tf and width bf.
The éorners are assumed to remain straight which are expressed
asksimple supports. |

' The state vectors at the éxtreme boundaries are
related by the Product Field Boundaries Matrix by the

equation as:

- (e} = (p1+ {e ]
where
[P] = [F]f'[S]-[T]-[F]w-[S]-[T]-[F]f
A A A A A A A A
{P] = [F]f-{S]-[T]-[F]w-[sl-[T]-[F]f
eee(V=1)
with

[F]f as the Field Transfer Matrix of the flange plate
[F] , as the Field Transfer Matrix of the web plate
[(S] is the Support Transfer Matrix

[T] is the Thickness Variation Matrix
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The extreme ends of the plate assembly is free
The boundary conditions are well known to be:
M* = 0 Q* = 0

Refering to the illustrative matrix (I-30), it is
N ,

clear that the term Pe1 of the Field Boundaries Matrix

represents the free end conditions of the plate.

The expression 661 of the Product Field Boundaries

Matrix given by equation (V-1l), when equated to zero, will

form tHe buckling condition of the structural model

considered.

The value of the buckling factor k, which satisfies

the buckling condition gives the buckling factor of the

plate assembly or in other words is the buckling factor

governing the local buckling of flanges and web of the

channel section.

To form the Product Field Boundaries Matrix we

follow simple Matrix multiplication for the equation (V-1)

which gives:

£11 £12 £13 £14 £15 f16
fa1 f22 £33 £,4 £,5 £i6
A £31 £32 £33 £34 £35 £36
£41 4o £43 £44 £45 £46
£5, £5, £53 £54 f55 f56
1 f61 fe2  fe3  fes fes  fee]

oo (V=-2)

flange



te
where t-=(€—)
: w

[F],, =

3

15

£5
35

45

55

65

11

21

31

41

51

6l

ot

12

22

32

42

52

62

13

23

43

63

33

53

14

24

34

44

64

54

15

25

35

45

55

65

438

eee (V=3)

e oo (V=-4)

flange

e e (V=5)

web
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Continuing the multiplication of matrices in equation (V-1),
A

this will give the Product Field Boundaries Matrix [P], the

term 661 will express the proper boundary conditions of the

free flange paltes:

A A 2 A A A A
Pgp = (£17)¢ ~(Ey5), *+ 2t(f17) ¢ (£57)¢ « (£15)0
A A
+ (f21)§ C(Ey Q) ...(V=6)

Equating the right hand side of equation (V-6) to zero, we

have:
b, A A A
(F19)¢ fp5)y + 28(E19) e (£57) - (£55) 0
A 2 A .

The solution of the buckling condition is carried out
numerically by trial and error by the help of the electronic
computer I. B. M. 7040 to give the value of the buckling
factor k, that satisfies the buckling condition. Calculations
are done for different values of flange-web ratios (n)
from n = 0 to n = 2 with an interval of 0-05. Results are
given in Table (1) compared to the work done by:

1. Kimm, G. [5]

2. Miller-Magyari '[7]

3. Kroll, W. D. [17] : _ -

4., Ritz method,two approximation terms

5. Ritz method,three'approximation terms

6. Bleich, F. [1]

7. Matrix transfer method
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n 1 2 3 4 5 6 7
00 4-000 4-000 4.000
0.1 4-440 4-450 4-450
Q-2 4.259 4520 4650 4.585
0-3 4400 4:260 4-37?
0-4 3+660 3:300 3+755
05 2+32812+908 2:846 {2+948 | 2-948 2+780 2+910
0+75) 1352 1-480 1-356 1-497
1-00| 080 |0-884 | 0-864 |0-904 | 0-904 0-847 0-888
125 0+531 0+600 0-584 0-588
1.50| 0.375({0.415 | 0.408 {0.424 | 0.420 0.426 0.419

TABLE 1
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The above Table 1 shows that the values obtained by the!
Matrix Transfer Method agrees well with the previously obtained
results. This simple comparison also serves as a check to
the Matrix transfer method program.

A-plot of the flange-web ratio verses the buckling
factor k is given by fig. (9), comparing the values resulting
of different methods.

It should be noted that for the case of a channel
- cross section of a zero flange-web ratio, the corresponding
value of the buckling factor k equals 400, which is the
well known case of the buckling factor of a simply supported
plate [14]. This is due to the fact that in the analysis,
it is assumed that there is no deflection at the corner of
the channel section. It is obvious that as the flange-web
ratio décreases, this a;sumption will not be valid and as
the flange-web ratio approaches zero, such assumption
present< an incorrect result.

For small flange-web ratios, the flanges essentially
act as lips to the web plate. Thus, the local buckling of
the channel section occurs at the web plate. The effect
of flanges is to give the web élate elastic support, both
transversely and torsionally. The analysis of the buckling

load is given in the next section.
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b) Local Buckling of Web Plate

A A A A
(F) [R] [T] [F]

b € g a5

w —te W
% 3

(a) (b)
Fig. (10)

For the general case of a channel of a smallwlue
of flange-web ratio, the assumption that the corners remain
straight will not be realistic. A sﬁructural model represents
the influence of the flange plates as providing the edges
of the web plate by torsional and deflection sprihgs is
illustrated by fig. (10.b). This is the same effect as if
the flange plates are considered stiffening ribs for the
web plate.

In this case, the Product Field Boundaries Matrix
consists of as follows:

A - A A A A A A A

[Pl = [Fl - (R}-[T]-[F] - [T]-[RI-([Fl, e (v-8)
where

A
[F]f is the Field Boundaries Matrix expressing the

transfer conditions across the flange plate as given in
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equation (II-31)

[f-\]w is the Field Boundaries Matrix expressing the
transfer conditions across the web plate.

[é] is the Field Boundaries Matrix expressing the
transfer conditions across the thicknessvchange line, as
given in equation (III-15).

[gl is the Field Boundaries Matrix expressing the
transfer conditions across the stiffening rib. Its elements

are formed by:

¢r the equivalent spring constant of the rib

4 2.2

¢r =YB9 - krdw 0 |

12 the torsional spring constant of the rib
4 2 2

The extreme edges of the structural model have the free
boundary conditions. In a similar argument as before, the
corresponding term of the Product Field Boundaries Matrix

giving the buckling condition is:
A
Pg1
The value of k, which satisfied the buckling condition,

=0

equation (V-9), represents the buckling factor of the channel
column,

A numerical trial and error method by the help of
computer, is adopted. The results are represented as a
bplot of the web width - column length ratio o verses thé
buckling factor k, for a set of flange-web ratios, fig. (1l1).

These results are imposed on the previously obtained
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results for the case of local buckling of the web and flange -
plates. A set of combined curves are obtained for a constant
width of web to thickness of web plate ratio of fifty.

This set of curves shown in fig. (l2), gives a
clear limit between the buckling behaviour of the channel
as the local buckling of web plate only and the web and
flange plates. This limit is obtained by getting the same
value of k, considering both forms of behaviour.

Similar curves can be obtained for different values
of the parameter y and the column height-web width ratio a.

The limit between the two modes of buckling |
considered, nameiy local buckling of web andAflanges and
.local buckling of web only, is given in fig. (13). The
dotted line shows the limit after which the buckling
formula of Euler gives satisfactory results. (10%).

It is important to note that the buckling factor k,
calculated by Euler's column Formula, and from the local
buckling of\web only, as mentionedybefore, will never have
the same result. The Euler buckling factor is always less,
due to the fact that he did not consider the energy

required to deform the cross section during buckling.
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CHAPTER VI
EXPERIMENTAL WORK

INTRODUCTION

A set of experiments is carried out to study the
local buckling modes of failure of channel columns. Test
results are compared with the theoretically predicted
behaviours.

Illustration of the test device, specimens
experiments and results will be presented in this chapter.
Apparatus:

The Uniform Compressive stress is applied by
120,000 1b. capacity tension-compression testing
machine with an accuracy of 10. lb. within the used range
of loading. The loading head is provided with a ball
bearing joint.

In order to satisfy the theoretically assumed hinged
supports for the web and flange plates, and to allow for all
possibilities of different buckling modes of failure, a
special end fixture is constructed as shown in fig. (14)
and (15). The fixture consists of two plates A and B.

A 90° V-groove is made on plate g, so that the channel

section fits in the groove. Plate A rests on a steel ball

59
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bearing to allow rotation. By the manual controlled motion
of plate 8 relative to plate g, the ball bearing point can
be al igned with the centre of gravity of the channel cross
section. The bearing plates A and B are taken thick
enough to ensure a uniform stress distribution on the web

and flange plates.
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Test Specimens

Three groups of test specimens were made from
Galvanized steel sheets. The steel sheets were cut and
bent into channel sections of various sizes and lengths.

All channel sections have a constant thickness
of 0-0589 inches. |

Web width is taken a constant value of 3-00 inches, .
namely the web width-thickness ratio (r) is kept a constant
value éf 50+7. - |
| The three test goups were of the same cross
sectional dimensions but varying in column height. This

enables to consider a wide range of the height-web width

ratio (o) as follows:

Group ‘ Column Height (ins.) | (o)

| A 60 20
B 22+4 747
C 450 15-0

A wide range of flange-web ratio is tested covering thé
possibilities of different buckling modes of failure to take
place, as given by table (2).

The mechanical properties of the used material was
found through a simple tension test, by measuring the applied
stress and the corresponding longitudinal and lateral strain,
to be: |

6
3190 x 10 psi

Modulous of Elasticity (E)

Poisson's Ratio (v) 0359
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Table (2)
Group A Group B Group C
Symboi bf(in.) n Symbol bf(in.) n Symbol bf(in) n
Ay 000 0°00 Bl' 0-00 0-00 Cy 0+00 0-00
A, 015 005 B, 0-15 005 c, 0-15 0-05
Ay 0-30 0-10 By 0+30 0-10 Cy 030 0-10
A, 0-33 0-11 B, -- - Cy - -
Ag 0-36 0-12 Bg - - Cg - -
Ag 0°39 013 Bg -- - Co -- --
A, - - B, 0-51 0-17 C, - -
Ag 0°60 0-20 Bg 0-60 0-20 Cg 0-60 0-20
Ag - - By 072 0-24 Cqy - -
A, - - Bio - - Cio 0-81 0+27
Ayq 090 030 Biq 0-90 0-30 Cqiy 090 0-30
AlZ -— - BlZ - - C12 1-11 037
Ajj 1-20 0-40 Bi, 1-20 0-40 Cis 1;20 0-40
Aly 1-50 0+50 Big 1-50 050 Ciyg 1-50 050
Ag 1-80 0-60 Bg 1-80 060 C15 1-80 0-60
A16 2°10 070 B16 2+10 0-70 C16 210 070
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Test Procedure

The channel column is fitted in the groove of the
end bearing plates. The bearing ball is alligned with the
centre of gravity of the channel cross section. An
experimental set-up is shown in fig. (16) and fig. (17).
The compressive stress is applied by the loading head of the
machine moving at speed of 0,005 inch/min. This low rate
of stress application is adopted to avoid the disturbance
that may accompany the higher rates of load application.

A set of dial gages were set up along the column
to measure the deflections at the mid-point and the
quarter-point of column height. The dial readings give an
indication of the loss of stability When the column starts
to buckle. Comparing the readings of the gages at the
same crdss section will enable us to establish the
deformations of the éross section during loading and

buckling processes.
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Fig. (16)
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(17)

Fig.
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Test Results

The buckling stress is divided by the Euler stress
to give the buckling factor k, which is plotted in fig. (22),
(23) and (24) with the theoretically predicted values.

The following remarks are observed during loading
and buckling of the channel columns.

1. ©No twisting or torsional failure took place.

This is due to the fact that the energy required for flexural
’torsioﬁal mode of failure is higher than the energy required
to carry the failure through flexural mode of instability.

2. Some of the test specimens failed due to the
local buckling of flanges and web plates where others failed
due to the buckling of the web plate bnly. In the first
case, the channel corners are observed to remain straight
while the latter case the corners follow a deflected curve
fig. (18). A test specimen Ci3 followed both mentioned
buckling modes of failures, fig. (19) and fig. (20).

3. Some specimens failed following a one half-wave
buckling curve and some others followed a two half-waves
buckling curve, depending on the dimensions of the specimens.

An example is shown by fig. (21).
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CHAPTER VII

STABILITY OF STANDARD ROLLED CHANNEL SECTIONS

In this chapter, we are going to present the values
of the buckling factor obtained by the Matrix transfer
method applied to the standard Rolled Channel sections.

The local buckling study is applied conéidering the
local buckling of web and flange plates for the large
flange-web ratios and the local buckling of web plate with
the flanges acting as stiffening rib for the web plate.

The instability criteria will follow the lower buckling
factor resulting from either céses of buckling modes of
failure.

The buckling factor (k) is plotted verses the
column height-web width ratio (a), for a constant value of:

flange-web ratio ' (n)

web width-web thickness ratio (v)

flangé thickness-web thickness ratio (t)

Results for different standard Rolled Channel seqtions are

given by curves shown in fig. (25) to fig. (34).
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The sectional property used in the calculations
are taken from the Extruded Shapes manufactured by the
Aluminium Company of Canada Ltd. (Aléan).

It can be seen that for a given section a long
channel, (o large), fails under compression due to web
buckling alone. For intermediate length channels, mode
of buckling depends on the flange-web ratio. For large
flange-web ratios, n = 0.4 say, local buckiing of web and
flanges takes place as is shown in the curves covering most
of the sections chosen except sections Alcan 23032 (fig. 32).
Particularly, it can be seen that for section Alcan 23003
(fig. 27) where the flange fo web ratio is over 1, local
buckling of web and flange is the mode of failure over a
wide range of length of the channel. Section Alcan 23032
“has a small flange to web ratio and it is seen from
(fig. 32) that the mode of failure is the buckling of the
web alone for all length of the channel.

Numbers under the channel dimensions in figures

25 to 34 refer to Alcan Series.
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CHAPTER VIIIL

CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH

Conclusions

The introduced Matrix Transfer Method of Stability
analysis proved to-be a flexible, powerful and exact
numerical method. The mathematical procedure can be easily
programmed to be tackled by the recent large capacity
computers in a considerably small interval of time.

The Matrix Transfer Method enables one to attack
the mbre complicated problems, where the classical methods
fail to solve due to the mathematical difficulties involved,
and where the numerical methods fail to meet the required
accuracy.

As a conglusion from applying the Matrix method to
the stability of channel columns we can state that:

1. Considering the results obtained for the local
buckling of web and flange plates ©0of the channel column, and
by comparing these results with the previous work done, the
Matrix method is found to give comparable results.

| 2. Euler's buckling load for the channel strut as .
a column, is higher than the calculated buckling load,
considering the channel as a system of plates. This agrees

~with the results presented by [l4]. However, the experimental
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results showed a buckling load higher than Euler's buckling
load. This can be theoretically arrived at, by considering
a part of the web plate to be acting with the flange plates.
‘This interaction results in an increase in the flexural
rigidity of the flange as a stiffener [1].

3. For a column of channel cross section of small
flange-web ratios, failure occurs following the local
buckling of web with the flanges acting as stiffening ribs.

4., TFor the case of large flange-web ratios, the
instability criteria follows the local buckling of flanges
ahd web plates which agrees with the classical curve.

5. Test results agree to a satisfactorily limit
with the theoretically predicted behaviours.

6. Test results showed that flexural torsional
mode of buckling does not take place. This agrees with
the results arrived at by Divakaran, [15].

7. The limit between the two established local
buckling modes is the intersection point of the two curves.
. A channel column is tested with dimensions giving theorectically
a buckling factor at the intersection point. Test results
showed that both local buckling;modes participate in the
buckling process as shown in fig. (19) and fig. (20). -

8. It was observed that there is a substantial

gain in buckling strenth of the channel section by increasing
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the flange-web ratio n in the range 0 < n < 0.4, when

the length of the channel is not too long (a < 20), this
fact can be utilized for design purposes to obtain a more
efficient compression member of thin walled channel

sections.
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Suggestions for Further Reseaxch

l.

Large scale computer calculations can be expanded to
obtain similar results for different loading distributions
by increasing the number of plate fields considered.
Variable end conditions, and different column and cross
section's dimensions can be studied. Curves can be
obtained giving the buckling factor and the buckling
béhaviour for the practical range of dimensions, end
conditions and loading distribution.

Similar stability studies can be expanded to cover variogs
shapes of cross sections (e.g. I and Z sections).

Large field of experimental work is open to establish

data verifying the true buckling modes of failure for
different cross sections of columns.

The Matrix Transfer Method can be expanded to cover the
case of a plate with applied stresses in two perpendicular
directions. This will be a step fqr a widely required
generalization of the method. |

The study of the Matrix Transfer conditions at the

meeting line of more than two plates.‘

Matrix formulation approach can be extended to the new

field of interest of the dynamic stability problems.
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APPENDIX

DERIVIATION OF FIELD MATRICES AND FIELD BOUNDARIES MATRICES

Field Matrix [FA] for [k>(m/a)2]

The solution of the characteristic equétion (II1-7)

will be given by equation (II-8) where:

i
H
2y

i/*é(n/iv+ 65
3 4 +/ o (n/K - 6)

>
i

... (A-1.a)

ces (A=-1.Db)

>
il
It
[

P.

~

Rewriting the general solution of the differential
equation in the exponential form, it reads:
- K an -K1n ikon —ikon
Wi Cle 1"+ C2e + C3e + C4e
... (A-2)
At the edge n= 0 , the state vector {Qcﬁ will be

expressed by the deflection, slope, moment and shear

components as:

w [ 1 1 1 1 c, |
_ lw ! _ K -K K - C
{(bo} =9 > = 1 1 2 2 . J 2
M * Al Al —A2 -A2 C3
LQ fJ leAZ -KlAz —1K2Al leAl _C4
L it
where oo (A-3)
2 2
Al = Kl - vb
_ 2 2
A2 = K2 vo
A, = B+ A
0 = mm /o

91



92

Expressing the values of Cl’ C2, C3, and C4 in

terms of the end conditions parameters, then,

A
. S * 4+ X0 %
Cl - 2A ( A2wo + K wo + Mo + K Qo )
o 1 1
A
- 1 IR T
C2 - 2A ( AZWO - K wo M Qo )
0 1 1
C = L ( A.w_+ A2w ' M * - TL—Q * )
3 2A 170 ik 0 0 ik o)
0 2 2
_ 1 _ A2 _ . 1 N
Cy = 2A ( Agw, I, "o M+ ix, Q)

Introducing the values of Cl’ C2, C3 and C4 in the

general solution (A-2), we can express the end parameters

at n in terms of end parameters at notO be:

Aw = ( Ay-cosh kyn + A;+COS k, n) W
Ay . Ay .
A4 (==+sinh x;n + —=+sin «.,n )-w '
K 1 K 2 )
1 2
- . *
+ cosh Kqn COSs «k,n ) Mo

+ (X .sinh € n - -i——-sin o0 )eQ *

€y 5 0
co. (A-4)
Akyh' = A,kq sinh kKyn = Ajk, sin Kom )-wo
+ Al cosh Kqn + A, COs Kk,n )'wo'
+ K1 sinh Kqn + P sin Kom )'Mo*
+ ( cosh Kqno = COs Kkgn )-QO*

«..{(A-5)



AoMn* = [ A2(|<l2 - vez) cosh Kyn - Al(;cz2 + v62)cos»<2n]-wO
+ [éi(mlz - vez) sinh Kqn = §£(K22 + vez)sin Kzn]-wo'
1 2
+ (Klz - vez)cosh Kqn + (K22 + v62)COS Kzn]-Mo*
+ t%z(nlz - ve?)sinh kyn + %;(Kzz + ve?)sin k,n]-Q *

... (A-6)

2 2 . 2 2
A Qn* = {AZKl[Kl - (2-v)e~] sinh Kim '+ Ale[Kz + (2-v)e7].

i K W
Sin 2”1 o

2 2 2 2
+]a [y = (2-v)0°] coshiyn = A [k,° + (2-v)0°]-
. '
cos Kzn} W
+§K1[K12 - (2—v)62] sinhgln - K2[K22 + (2—v)62]°

sin Kzn}'Mo*

2

+1 [Klz - (2—v)62] cosh Kqm + [K2 + (2—v)62]-

. *
cosnzn} Qo

« oo (A-T7)

3

Refering to equation (II-20) relating the state vectors at

both edges of the field,

i@n} = (F] {o} | ... (A-8)

Arranging the obtained equations for the boundary parameters

at n in terms of the boundary parameters at ", in a matrix

form we get:



Field Matrix [FA] for [k >(m/oc)2]

where:

Ay ) 1
A.e. + A e —— g, + =— ¢ €, = € = ¢ 1l
252 154 B, C1 7 B, 3 2 4 By 1 - 35 °3
AyBiey ~ ByByey 1 Bje, t Byey Byeg T Byey €2 T %y
A12 A22 Ay A,y
A_A. (e, — €,) —e ., - € A e, + D¢ ——e. + -«
17272 4 Bl 1 82 3 172 274 Bl 1l 82 3
A 28 e, + A 28 £ A A (e €,)! D B.e, - A, B,¢ A.e.. + A.c
2 171 1 7273 17272 4 27171 17273 272 174
B8 = VYo (nvk + 6) € = sinhB,n A = B 2 _ v62
1 1 1 1 1
/ 2
= Vo (nyk - 9) €y = coshgln A2 = 82 + v92
_ _ . _ _ 2
= mn/o ey = 51n82n AO = Al + A2 = Bl + 52
34 = COSan

... (A-9)

76
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Field Matrix [FB] for [k = (m/a)zl

The solution of the characteristic equation (II-7) will

be given the equation (II-8) where:

A oo + Yo(o +6) = /28 = tx ... (A-10.a)
’

A3’4 = 0 : e+ (A=10.Db)

where 8 = mn/a
The general solution of the differential equation
is rewritten as:

w( = C,e + C e“Kn + C, + C

2 3 ... (A-11)

4
Expressing the state vector {QO}in terms of the

derivatives of the deflection formula, then,

Wo 1 1 - 1 1 rbl
w 'l €0 -k 6 0 1 c
s 2 2 2 e
Mo* 07 (2-v) 87 (2~v) -0% v 0 C3
QO* ~ K'Gz'v —Kezv 0 -62(2—vﬂ C4
- o . — A
eoe{A=-13)

Proceeding same as in case of matrix [FA], the terms

forming the Field Matrix [FB] are given by:



Field Matrix [FB] for [k = (mﬁx)z]

w
I
N

where,

2—y 1 1
2 + \)(e:2 - 1) nv + ] —_2_,(82 - 1) 5 (el - Bn)
: 6 0 B
. . -— 8 l
Bev €1 (2 \))s2 + v -e——z—el -6—2-(62 - 1)
... {a-14)
2 . 2. (2-v) 2 2 2-v
vo (2—v)(e2 - 1) |e [——§~——el - von] (Z—v)€2 + v nv + 51
\)262881 ve 2 (2-v) (e, = 1) Bve; 24 vie, - 1)
g = 8/2 € = sinh Bn
8 = mn/u €., = ¢cosh B8n

96
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Field Matrix [F.] for [O<k<(m4x)2]

C

The solution of the characteristic equation (II-7)

will be given by:

A o, = /olo + nJK) = 3 ...(A-15.a)
\3.4 = /o (6 - n/K) = te, ...(A=15.b)

The general solution of the differential equation is

rewritten as:

Expressing the state vector {@O} in terms of the

derivatives of the deflection formula, then:

[w ] 1 1 1 1] [él
!Wo' " “*1 “2 <o S
Mo*r'— S R Cr Gy C3
Q. 7K1 x1C kG <Gy Cy
... (A-17)
where
. Cl* = Klz - v62 = —<22 + (2—v)62
C2* = K22 - v62. = ‘Klz + (2—»)62
C. = Cx-cCyx = 312 - w,® = 20m/¥

Proceeding same as in case of Matrix [FA], the terms

forming the Field Matrix [FD] are given by:



Field Matrix [FC] for [O<k<0m@)2]

o o ]
~(Cpey = Creg) _B—l—sl - §Z€3 €y T €y %—51 - ;3‘"53
1 2 | 1 2
—(81Cpeq — ByC1eg)iCiey = Chey Byey — Byt €y 7 &y
I
c=z _
(o] 2 2 .
“C1Ca(ep ~ 24) ‘.;_1__61 - (;2 e3 | €185~ Oyt ;51 - E35353
1 2 1 2
g,C 25 - B Cze C.C, (¢ e,) 1 -(B.C,e 8.C.,e,) | —-{C,¢ C,e,)
1%2 &1 2C1¢3 1621082 4 1%281 2%1¢%3 22 154
where '
_ T . 2 .2
Bl 6(8 +1VK) € S;nh Bln 1 vo
- Jola - JE _ 2 2
82 = Vo (8 k) €, = cosh Bln 5 vo
. N — : - - 2
8 = mn/a €3 = sinh 82n 1 C2 Bl
€4 = cosh B on

... (A-18)

26
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Field Matrix [F.] for [k=0]

D

The solution of the characteristic equation (II-7)

will be given by the equation (II-8) where:

Aliz & Q'.(A-lgta)
X3’4 = =9 ... (A=19.D)

The general solution of the differential equation

(II-2) is rewritten as,

een e—en

1

... (A-20)

W( 4

Expressing the state vector {Qo} in terms of the

derivatives of the deflection formula, then:

Proceeding same as in case of matrix [FA], the

w 1 F 1 1 0 0 7] ”C
0 1
w ' 8 -9 1 1 C
o} ( = . J 2
mr o [efamv) ed(1-w - 202 292 c,
0 *| [ -67(1-v)  87(1-v)  82(l-v) 6% (L+v) C4J
'..(A—zl)—

‘terms forming

the Field Matrix [FD] are given by:

L]



ALiSHIAINND HILSYWON
AHYd81T IVIYOWAIN STt

Field Matrix [FD] for [k = 0 ]

: 1 n_ 1 -
2 T Onvyey g(Bnvyey + vy0,) 5 1 e3‘8”52 €p)
1 n
—e(eniez - \)261) 262 + eqvlel é-(enez + sl) 3°1
1
2 L ]
—93n\) 2€ 8[6nv 2£+ v, (2+v,)e ]l 2e, + Onv, ¢ —l-(env e, + v.eg.)
1 °1 1 5%V 2’1 2 11 8 152 251
3 2 3 2
9 [envl €y = vl(2+v2)el] -9 nvyeg —e(envlsz - v251) 232 - envlel
e (A-22)
where 8 = m7Yy € = sinh 6n
vy, = 1 -v e, = cosh 8n
\)2 = 1 + v -
o
O




Field Matrix [FG] for [k<«0]
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The solution of the characteristic equation (II-7)

will be given

‘1,0

3,4

where,

B

€

The general

by the equation (II-8), where,

==

* Bt je

t B + ie

/ée(/ez + 12+ 0)

/éec/ez + 72k - 8)

o (A=23.8)

«e. (A=23.D)

solution of the differential equation (II-2)

is rewritten as:

Y

e(B+is)n +C

€1 2

+C4

e-(8+i6)n

e—(B-iE)n

+C3

e(B—ie)n

... (A-24)

Expressing the state vector {¢ } in terms of the

derivatives of the deflection formula,

Vo |
o)
w !

(o]

M *
[¢]

Py

o J

where,

Ny

N,

< o3

o1 1
B+ie - (B+ie)
N,y Ny
L_(B+ie)-Nl —(B+1e)-Nl
2iBe - ez(l—v)

2i8c  + 82 (1-v)

then,

-(B-ie) N

2

1

-(B-ie)
-N,

(B=ie) -N,

... (A=-25)

Proceeding same as in case of matrix [FA], the terms forming

the Field Matrix [FG] are given by:




Field Matrix [FG] for [(k<0)]

2 2 2 . .
2818,¢ 6 vieg G0(81G2€3 + 8,Gy8)) €] Go(81°3 2282
8 - 8.G 28.8.¢. +1%v.e 8. e 8
P2B1%2 T F1b2%s 1°2%4 1%1 153 + P2%2 €1
1F2 2. 2 4 2 2 2 2 2 2
—(4By 7By + Bivydey a;[sz(cle vy t 2G87)e, 128,88, + 07V e 6;(5162°3
+ B. (G 92 - 2G 82)e ] + B.G )
1527 V1 1727 %3 2°1%2
2 2 2 2 4 2.
—[82(Gle vyt 2G281)€2 —(48182 + 9 vl)el S2G152 - BlG253 2818254
2
-8%%v. e
2 2 1%1
. ... (B=26)
where B, = /46( 92 + nzk + 9) € = sinhB.n+*sinf,4n G, = 262 62v
1 2 1 1 2 1 1 1
YOS . 2, 52
By = Vho (V6" + 17k - 9) e, = sinhg n-coss,n G, = 28, + 87y,
_ _ o _ _ 2 2
& = mn/u €y = coshB n-sing,n G, = Gy + G,m2(p)" + B,")
vy, = l - v 64 = COShBlﬂ'COSBZH

20T
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Field Boundaries Matrices

The Field Boundaries Matrix is deduced by simple
analysis from the Field Matrix. This analysis is repeated
for every term of the Field Boundaries Matrix and for the
five Field Boundaries Matrices corresponding to the five

cases of the buckling factor k as given by (II-14).

The Field Boundaries Construction given by Matrix

1A
(II-30), shows that if we consider the term f . of the
; Coritipae A5

Field Boundaries Matrix [F], this term is.corresponding to,

the case of a plate of free and clamped edges.

Boundary conditions are:
w, =0 and w,' =0 = 0
= * = =
Ml 0 and Ql 0 1

Introducing these boundary conditions in the

formula we can write:

state vectors

w £11 £15 £15 £14 0
w £ £ £ £ 0
_ 21 22 23 24 L (a27)
0 £31 £32 £33 £34 M
*
0 Far Ta2 Taz o Tua) o [ Q47)

The Matrix equation given by (A-27), is written in

the equation forms as:

wp = EigMxo+ f£,007
wpt = Mo+ £,,0 0
0 = E£33M ) + £3,07
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= *
0 f43M + f44Q *

The nontrivial values of M * and Q * are established by

the condition:

£33 £34
= 0 ... (A-28)
£43 v
or, £i3 £44 - f43f3, 0 | ... (A-29)

Equation (A-29) gives the stability condition for
the free-clamped edges of the plate case considered.

The stability conditions gives the term f66 of the
Field Boundaries Matrix.

The same procedure of deriviation is repeated for
the different combinations of end condtions and for the five
Field Matrices corresponding to the five cases of the value
of k given by equation (II-14).

The Field Boundary Matrix is axxived-at—te—be a'

( 6 x 6 ) Matrix, symmetrical about the secondary diagonal.
A simple treatment is illustrated by (A-30) and was first
applied by Nassar, [8], [9] reduces the Matrices to ( 5 x 5 )
Field Boundary Matrix.

This analysis is the simple addition of columns 3
and 4 giving column 3 instead and the mean value of rows

3 and 4 giving the row 3 instead. This is due to the

equivalence of columns 3 and 4, and rows 3 and 4.
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. _
. 2f .
213
. 2f . .
A A 23 A A
£3, §f33+1 35 £16 -+ - (A-30)
2f . -
%53
. 25 . .

The Field Boundaries Matrices are given according to the

values of k in sequence as in equations (II-14).

v

Abreviations in the Field Boundaries Matrix [éA][k>(m/d)2]
Jo(n JX + 6)
/%(ﬂ Jk - 6;
8,/8,
1/84
B8
812 - ve?
822 4+ Vo2
A + A2
mw /o

sinh B8.n sin 82n
sinh Bln cos an
cosh Bln sin an

cosh Bln cos 82n



A
Field Boundaries Matrix [FA][k>(m/a)

2]

1 2 2 1 2 1,53 €2 |1
=[2A., + (A + AY)-e, | (B e, + B,¢ E_[(A,-A]) +c (= - =2) | =5[2-¢
a2 “M12 2 1’/ %4 A_F1f2 253 A2 2771 s A B, 8, | a2 5
. 0
2 2
t BBy 5 7 B3Ry 5y t(ByRy + ByR) re ] *(B378y) rey)
2 2
A A A A £

1,71 2 2 1 2 1
—(=—-¢ ce,) € Z(z=re, + =€) - = A(l,4)
A '8y 2 By, 3 4 A'B; 2 B, 3 B
Lia _(a, - a)-c L e ae. - gA e N1- 1o(2a ¢ = 0.5A(2,3)|= 0.5A(1,3)
A2 12772 1 5 ! 2%3 271°%3 2 12°%5 ' !

. .

3 3 2 2

- l———(8 22e. + 8 ae -8 = 2A(3,2) = A(2,2) = A(1,2)

ATTP27103 1722 Bgrey = ' ’ ,
—l——[zAzAze + (B A4 - B A4)' = A(4,1) = 2A(3,1) = A(2,1) = A(1,1)

i i A 372 47
Ao SJ |

... (A-31)

90T
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A
Field Boundaries Matrix [F,][k = (m/x ) 2]

v 2 ; 1 1 1

c =g [y *+ B - ¢ 3 (B * vy ) (e = 9) | Sty )
- B B8 B™ 6

62 2 2
5 (vz» ¢ - n-v: c) c neve v, n-é = B(1,4)
62\) Bl i
5 (\)l\)z-y - Bl-\)) P | 1 + \)(\)z-y + Bl) = 05 B(2,3) = 0.5 B(1,3)

63-\)2

- : S 0 = 2+B(3,2) = B(2,2) = B(1,2)
2
94\)2 2
—5— (Bl'v - v, *Y) = B(4,1) - 2+B(3,1) = B(2,1) = B(1,1)
. (A-32)

LOT
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A ‘
Abreviations in the Field Boundaries Matrix [FB] [k = (m/a )2]

g = 26

8 = mn/a

$ = e-nvA/?

v, = (1=-v)

vy = (2=v)

c = cosh B8n

s = sinh B8n

Bl = §+s8

Y = ¢ -1



A

Field Boundaries Matrix [F] [0<k< (m/x) 2]
Litezey, + (0 v e te | gayie, - Byey) [THlCs e 1_2(;‘ - ;“2“) 12,
C o * i C C 1 1 C

o] (o] o] [¢]

- c4-el] + (83C2 + B4Cl)-el] + (63 +84)€1
2 2
;G—(Zl ey = 22 €3 84 : , ’-Cz:——(El-e2 - ?8-2—%3) ;—l— = C(1,4)
o "1 2 o 1 2 5
Lot ecoeel) 1 gcie. - gcoe) 1+ 2120, ¢ = 0.5 C(2,3) = 0-5C(1,3)
c 2 C127%37%s) c (B85 16283 212" ' '
0
+(B'C3+BC3)€] + C,ee.]
3¢ IS ERAS 4°%1

L g c?c. - s.c.%.) " g_ee = 2C(3,2) = c(2,2) = c(1,2)
¢ tP2C1 °3 162 €2 5°€1 ' ' '

1 2 2 1.

[2.C.%eC = C(4,1) = 2C(3,1) = c(2,1) = c(1,1)
> 1 €2 5
Co .
4 4
+ (83C2 + B4Cl )el]

60
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A
Abbreviations in the Field Boundaries Matrix [FC][O<k<(m/a)2]

B, = Voo + n/m)

5, = Yo(e - n/R)

By = B,/8,

By = 1/85

85 = 81'82

c = Cl - C2

c; = 8,2 - ve?

C2 = 822 - vez

C3 = Cl + C2

Cy = B3 Cy2 + By C

C12 = C1 S

€ = sinh BlnFSinh B,
€, = sinh Bln-cosh By
ey = cosh Bln-sinh Bom
€4 = cosh Bln-cosh Bom
85‘ = 1 - €y |

8 = mw/a



A
Field Boundaries Matrix [FD] [k = 0]

2 .
2 € £ 2 ¢
1 V1V3 €3 n 1 m %3 m<, €1
1+ 5=, + e Sn + =) | S(v, + v, e—) —5 (== - 1) —(—= - 1)
4 fs5 7 "1 2 ) 21 2%, 502 ¢, 292t
V18 o 4+ vel) c lie 4 vve 1 = D(1,4)
2 6 3%3 2 §'%6 2°%3 52 '
62 0 1 2
—Z(Vlv2v3€l E(v293 1 - §(€5vl =0 5D(2,3) =0 5 D(1,3)
- vies) - vl€4) - vzel)
03 2 :
-5“1(“353 56) 8 ey = 2 D(3,2) =D (2,2) = D(1,2)
gfwz( 2, 2_ ) = D(4,1) = 2 D(3,1) = D(2,1) = D(1,1)
4 V1'V3%1 T Vi%g

... (A=-34)

TITT



Abbreviations in the Field Boundaries Matrix [FD] [k

il

mw /o

A

112

0]



A
Field Boundaries Matrix [FG][k<O]

2 € € G G
1 Y1 A%< 1.%6 3 1,72 1 1 1,1 4
= + el A i - (= -— = - (- - —
Go[GlES Gyey + = 2‘82 + 81) gz * )| Go(Baes ~ Bieg) | aa (3 5)
.0 62 Bl 3 o 81 82
G G
(é%°84 + -—%—-el)]
- 8
2 1
-1——(826 B.e,€,) €. + € —2—-(6G5+ -2——(6 + e,) = G(1,4)
G; °2%7°%3 1%8%6 1 5 G, °1%2% G ‘%1 4 '
82G153)
G G G2
1,6 2 1.6 1 %1 _ _
2Go(g—2‘€7€l + ;—58864) -2—(—8-1—83 1 + 5‘;(’8—‘2‘61 = 0 5 G(2,3) =0 5 G(l,3)
1 2 1
Gy Gg
2
1,57 | g G, |
-2-(-~1—€3 + 296) 2(ey + gy) = 2G(3,2) = G(2,2) = G(1,2)
2 2
£ € .
L T o 8l = G(4,1) = 2G(3,1) = G(2,1) = G(1,1)
26,152 "1 T 270 .
° 1 2 S




Abbreviations in the Field Boundaries Matrix

/—(J + 7 k + 0{

/2 + 7 k - 6)

.sinhB

28

= BBy

mw /o

282 — 62 (1-v)
+ 62 (1-v)

Gl + G2

Go.612
(sinh Bln)2

(cosh Bln)2

ln'coshBln

(sinan)z
(cosan)2

51n62n'cos82n

2 2
ZBlnG2 + vle Gl
2 2

NGy = V108G,

(F

A

G

} [k<0]
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APPENDIX B -

Table (3)

Buckling Load on Test Specimens

Group A Group B .. Group C
Symbol | Load lb.lSymbol 'Loadvlb. Symbol ”Load'lb. ”

Ay 442 B, 30 Cq 0.0
A, 1850 ~ | B, 160 c, 25

A, 6120 B, 488 Cy 90

A, 6180 B, _—— c, —
A, 7035 - —— Ce Cm——
A, 9700 Bg —_— Ce | -—
A, _— B, 4350 c, ——
Ag 11150 Bg 4850 Cg 4080
- Ag T By 6840 Cq -—
Ay, —le- B1g —— Cip 5500
Ay 12 800 ' By, 8400 Ciy 7500
AL, —— B, —— ci, 9210
.Al3 13350 By, 13650 Cy3 13500
Ay, 11000 By, 11 600 Ciy4 1C 800
Al 9900 B¢ 10 400 Cis 10 100
Al 7900 Byg 8.500 Cie 8300
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