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This thesis deals with the analytical and experimental 

study of buckling strength, of thin walled channel struts, of 

different geometrical dimensions. The influence of the 

dimensions of the columns on the buckling strength has been 

studied. 

The experimental work consisted of testing different 

channels of thin sheeting to failure. Comparison ha:S, been 

made with the previous work done and a comparison is made 

between the theoretical predicted values and the experimental 

results. The Appendix includes detailed mathematical 

procedure and matrices formulations. 
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ABSTRACT 

The different modes of buckling failure of a compression 

member in the form of an open thin-walled channel cross section 

are considered. 

The member may lose stability in one of two ways, 

namely overall buckling and local buckling, depending on 

the length-web ratio of the member. For local buckling, the 

channel section is treated as a collection of plates, 

subjected to inplane loading. The buckling load for such 

a plate system is determined by the matrix method of analysis. 

Depending on the flange-web ratio, two cases are 

considered. For the large flange-web ratios, the web and 

flanges of the channel are treated as a system of inter

connected plates. It is assumed that their common edges 

remain undeflected under load. When the flange-web ratio 

is small, the flanges can be considered as lips to the web 

plate and are treated to act as elastic support for the 

web plate. The buckling load is determined in each case for 

different values of flange-web ratios and length-web ratios. 

A comparison is made with the previous work done. 

A series of tests are carried out to verify the 

theoretically calculated values for different buckling 

(vii) 



conditions. Experimental results showed a satisfactory 

agreement with theory and followed closely the buckling 

behaviour predicted theoretically. 

(viii) 
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NOTATIONS 

Numerical coefficients, distances 

Cross sectional area 

Cross sectional area of rib, stiffener 

Torsional rigidity (C = GJ) 

Warping rigidity (Cl = ECW) 

Warping constant 

3 2Flexural rigidity of plate [D = Et /12(1 - v )] 

Modulus of Elasticity 

Field transfer matrix 

Modulus of elasticity in shear 

Thickness of plate, distance, height 

Moment of inertia of ·a plane area with respect 
to x, y and z axes 

Polar moment of inertia 

Torsion constant 

numerical factor, buckling factor [k = ocr/oe] 

length of plate 

Integers, numerical values, numbers of half waves 
of buckling curve. 

Bending moments, couple at n 
2 2D a w a w 

M = n b2(an2 +v a~2) 

= 
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p.q. 

p 
e 

[P] 

Q* 
n 

[R] 

[S] 

t 

[T] 

u, v, w 

x, y, z 

Intensity of load distribution 

Euler buckling load for columns 

Critical buckling load 

The product field boundaries matrix for more 
than one field 

Shearing force at n 
3D a w 

Qn=-b3(an3+ 

bJ 
= - - QD n 

Rib matrix, matrix expressing transition 
conditions across a rib 

Support condition matrix 

Thickness 

Thickness change matrix 

Displacements in the x, y and z directions 

Rectangular co-ordinates 
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Ci Numerical factor [a = a/b] 

B , y Constant quantities 

YB 

Yo 

Yw 

yp 

0 

Numerical 

Numerical 

Numerical 

Numerical 

Numerical 

factor 

factor 

factor 

factor 

factor 

[yB = IE/b.D] 

[yD = J.G/b.D] 

[yw 
3 = cw.E/b .DJ 

[yp = I /b3t]p 

[o = Ar/b.t] 

E; , n, l; Rectangular co-ordinates refered to unit dimensions 

4' Equivalent spring constant for rib 

[ 4' = yBe4 kron2e2] 

{ ~} State vector 

e 

Torsional spring 

4 
[ ip = y we + {y 0 

Numerical factor 

constant 

2 2 
- kr n y P) e ] 

[e = mn/a] 

v Poisson's ratio 

p Radius of curvature 

(J Unit normal stress 

0 cr 
Critical buckling stress 

Euler buckling stress [o
9 

= n 
2
D/b

2
t] 
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CHAPTER 1 

INTRODUCTION 

This research is mainly directed to establish the 

true buckling behaviour of a compression member of thin

walled channel cross section, statically loaded at the ends, 

considering all the possible modes of buckling failure. For 

simplicity, only monosymmetric channel sections are 

considered. 

The 	modes of buckling considered are as follows: 

1. Overall flexural buckling about the weak axis 

(Euler buckling) [14]*. 

2. 	 Coupled overall torsional and flexural buckling [14]. 

3. 	 Local buckling 

a. 	 of the flange and web as a connected plate 

system [5]. 

b. of the web alone. 

There is no unified analysis to predict all types of failure. 

All existing methods of analysis assume certain conditions 

on the deformation of the member, and then deduce the buckling 

load. 

In the overall flexural buckling mode of stability 

* Numbers in square bracket$ refer to the list of references. 
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it is assumed that the cross-section is nondeformable during 

buckling and no torsional deformation takes place. For 

convenience we shall refer to this type of buckling as Euler 

type buckling and the buckling load as Euler buckling load. 

In the torsional flexural mode of buckiing, it is also assumed 

that the cross section is nondeformable. However, rotation 

due to torsional deformation takes place. 

For short members, the assumption of nondeformable 

cross section becomes unrealistic, and the instability mod~ 

changes from overall buckling to local buckling. For local 

buckling of the member, the buckling mode falls broadly 

into two catagories, depen&~on the flange-web ratio. 

When the flange-web ratio is small, local buckling 

occurs at the web, with the effect of the flanges acting as 

lips, lending elastic supports to the web. When the 

flange-web ratio is large, local buckling occurs at both 

web and flanges as a plate system. 

Therefore, the buckling mode depends on the geometry 

of the column, namely the length-web width ratio (a), and 

the flange-web ratio (n). For long columns where flexural 

stiffness is relatively weak, the overall buckling mode of 

failure will take place (Euler buckling). For short columns, 

local buckling criteria takes place due to deformation of 

the cross section. 

The actual buckling load is given by the minimum of 

all critical buckling loads calculated by various assumed 



3 

modes of failure. 

The overall buckling of the column is given by the 

. /

well known Euler studies [14), where he considered the 

flexural buckling mode of failure. The torsional overall 

buckling was studied [l] and [14], which allows the cross 

sectio~ to rotate during buckling deformations. 

Kimm [5], expanded the work done in plates using 

the differential equation approach, to treat the channel 

cross section as a web plate with two overhanging flange 

plates, assuming that the corners of the channel section 

remain straight and undisplaced during the loading process. 

The buckling load is then claculated for different flange-web 

ratios. 

Bleich [l], has considered Kimm's assumptions, he 

related the flange plate with the web plate by the proper 

restraining factor and obtained similar results. A state-

of-art review of the local stability of such members is 

given by Bulson (2) . 

In the present analysis, the coupled torsional-

flexural overall buckling is not considered due to the _fact 

that the critical load calculated considering torsional-

flexural overall buckling is ge~e~I~ higher than the 

critical load calculated based on flexural buckling [14], 

or regarding local buckling. 

The determination of buckling load for overall 

flexural buckling of a compression member is well known 

and needs little explanation. Therefore the present work 
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is focused on local buckling behaviour of the channel section 

under compression. The critical load for local buckling is 

determined using the matrix transfer method of analysis. 

The matrix transfer method was first applied to 

vibrations problems by Schnell [11] and Fuhrke [3], and is 

also known by the name Method of Influence Coefficients [12] , 

[13 J • 

Marguerre [6], applied the matrix transfer method 

to the buckling problem and gave a detailed comparison of 

the mathematical development of the vibration and the buckling 

of beams problem. 

The method has been applied to study the stability 

of an I shape plate girder by Scheer [10] . 

In this thesis the matrix transfer method is applied 

to study the stability of an open channel cross section. 

Two types of local instability are considered depending on 

the values of flange-web ratio of the section. 

Firstly, the buckling load is determined considering 

the local buckling of web plate and the overhanging flange 

plates, as a plate system, assuming the corners of the channel 

section remain straight. The mode of local buckling is 

termed combined flange-web local buckling. The results 

obtained are compared with the previous works where the 

buckling loads are determined by different mathematical 

formulations. 

Secondly, the buckling load is determined considering 
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the local buckling of the web only. In this case, the corners 

of the channel are no longer considered to remain straight 

during the loading process. The flanges are considered as 

elastic supports to the web. Therefore, the corner line can 

deflect according to the stiffness of the flanges. The 

buckling load determined from this mode of local buckling 

is different from that determined from the combined flange

web local buckling. For small values of flange-web ratio, 

the buckling load thus determined is less than the buckling 

load considering the combined flange-web buckling. Therefore, 

for this range of flange-web ratios, the channel section will 

become unstable due to local buckling of the web alone. 

Three sets of experiments are carried out covering 

a wide range of the flange-web ratios to verify the mode of 

buckling and the actual buckling load as calculated from 

theory. 



CHAPTER II 


APPLICATION OF MATRIX TRANSFER METHOD TO DETERMINE THE 


BUCKLING LOAD OF A RECTANGULAR PLATE 


UNDER INPLANE COMPRESSION 


In this chapter, we will illustrate the use of the 

Matrix Transfer Method as applied to the stability study of 

a rectangular plate subjected to inplane loading. The method 

will then be used to solve the local buckling load of the 

channel sections under axial loading. 

The analysis is based on the following assumptions: 

1. Material is linear, elastic, homogenous and 

isotropic. 

2. The web and flanges of the channel are perfectly 

flat and stress is applied in the mid plane of the plates. 

3. The deflections in the mid plane of the plate 

due to •the applied stress will be neglected until stress 

reaches the critical value. 

4. At plate edges, Navier's end conditions are 

applied. 

5. The applied stress is uniformily distributed over 

the thickness and span of the plate. 

6. The classical plate theory is used for the analysis. 

6 
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r y=n • b 
ox 

r-ti:"'-=-=-=-=-~-:"'-=-=-::-:-=-=-::-:_,,,,.-,:_=-=-=-=-=--=-=-::-:-=--="""-,,..._=-"_,....___....,:..._~ 

b 	 I 

I 


_l__.._.=~=-=-~-~-==-=-~-~-~-~-~-=-=-~-~-=-=-=-=-~-~-~-=-=-:..=..=-=j1--L-~~--t-
a 	 x=F,; •b 

Fig. (1) 

Consider an elastic rectang~~Yplate of length a, breadth b 

and thickness t, with a uniformly distributed compressive 

stress a acting in the x direction in the mid plane of the x 

plate as shown in Fig. (1). 

The governing equation of the deflection W of the 

plate is given by [14] as, 
4

[
a w + a 

4 
w J + a • t. = 0 ••. (II-1)D. -- + 24 xa Y4ax 

3 2where D is the flexural rigidity of the plate= Et /12(1 - v ) 

The stress ax will be considered positive if the applied stess. 

is compressive. 

To nondimensionalize equation (II-1), let: 

x = F,;.b and 

y = n .b 

Expressing the differential equation in terms of the new 

set of axes~, nand introducing the buckling factor k, we 
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can write: 
2

v4w 2 wa ••• (II-2)+ k ir a~2 = o 

where 
4 4 4a w a w a wV'4W 2= + + -4a~4 a~ 2 an 2 

an 
0 crk = a e 

with a as the critical buckling stress and a as the Euler er e 

2 2
buckling stress = ir D/b t which is the critical stress for 

5'{iu:tre 

a£plate free along the edges parallel tb the applied stres~ 

and simply supported on the other edges. 

Consider a plate simply supported at the edg~s ~ !: 0 

and ~ = a. The boundary conditions become that both deflection 

and moment equal zero at both edges, that is: 

\./ ( 0) = M ( 0) = V (a ) = M(a ) = 0 ••• (I I-3 ) 

where 

a = a/b 

Consider a deflection curve of the form 

mirb
W(~, n) = w(n) sin ~ a 

= w(n) sin a~ ••• (II-4) 

where 

e = mir/a 

with m as the number of half waves of the buckled curve in 

a direction parallel to the applied load. 

Equation (II-4) satisfies the boundary conditions 

at ~ = 0 and ~ = a • 

Introducing equation (II-4) into the differential 
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equation, we obtain an ordinary differential equation of 

the form: 

4 2d w(n) 2 d w ( n)20 ••. (II-5)
dn 4 2- dn 

Seeking a solution in the form 

w(n) = eAn ••• (II-6} 

we obtain the characteristic equation as 
2 
~ k) = 0 ..• (II-7) 
e 

The ge~eral solution of equation (II-5) can be written as: 

+ sinh ; 2 n ••• (II-8}c4 

where the arbitrary constants c1 , c 2 , c 3 , and are to bec 4 

determined by the boundary conditions at n = 0 and n = 1. 

; and ; 2 are roots of the characteristic equation (II-7)1 

and are given by: 

= ±/e (e n'-fk>' cAl,2 + ± Kl .•. (II-9} 

±)e (e TI 2 fk) ' ±
A3,4 = - K2 

Expressing the arbitrary constants in terms of the 

deflection, slope, moment and shear at edge n = 0, we have: 

- 2 2 
w 0 (_K 2 -. "e } - M * 

0 

- 2 - 2
(K 1 - K2 } 

aw o - 2 
(Kl - "e 2} + Qo* an 

c2 = + 
- - 2 - 2
Kl(Kl - K2 ) 

w -
Kl

2 "e 2) - M * 
C3 = + 0 0 

- 2 - 2
(Kl - K2 ) 
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(°K

2 
2 - ve 2 

) + Q 
0 
* 

•.. (II-10) 

where 

v is poisson's ratio 


w is the deflection at edge n = 0 

0 

aw is the slope of the deflection curve at n = 0 
0 

a '1 

M is the moment at edge n = 0 

0 2 2


D a wo + v a w o >= ••. (II-11)2 2b2 an a~ 
b2 


or M * = D Mo
0 

Qo is the shear at edge n = 0 


3 3

D Cl W 0= - ( ~ + (2 - v) .•. (II-12)3 2b3 an ana~

b3 
or Qo* =  o Qo 

Using equations (II-8) and (II-10), it can be seen 

that the deflection of the plate can be expressed in terms 

of the deflection, slope, moment and shear at one edge of 

the plate: 

-ve 2 ) - M * 

w ( n) = 

0 


- 2 
- K )2 

aw 
0 - 2 2

( K 1 ve )an- - + Q * 0 sinh K 1 n+ - 2 - 2 
Kl (Kl K2 ) 

- 2 2
W0 (Kl - ve ) - M

0 
* 

+ - 2 - 2
(Kl K2 ) 



aw 11 
0 - 2 

( K  Q * an 2 	 0 

•.• (II-13) 

The general solution of the differential equation 

depends on the values of Kl and There are five casesK 2. 

to be considered: 
'1T2k 2a) 1 	 - -- ) < 0 k> (m/a) •.• (II-14.a)
e2 
'1T2k 2b) 1 ) = 0 k = (m/a) •.• (II-14 .b)-7 
'1T2k - 7 	

2c) 0 <( 1 ) < 1 0 <k < (m/a) ••• (II-14.c) 

7T2k
d) ( 1 	 - ) =l k = 0 .•. (II-14 .d)7 

- 7T2k 
g) ( 1 ) > 1 k < 0 	 ..• (II-14 .g)7 

Cases d and g where k = 0 (i.e. no axial stress) and k< 0 

(i.e. tensile stress), although seem1n9~ of no interest, 

they will allow any general stress applied to an assembly of 

plates. 

For 	the moment we shall consider in detail the case 

2 a, where k >(m/u) • The procedure for solution Af the 

other cases follows essentially the same steps with only slight 

modifications. 

In this case, K becomes imaginary and the general2 

solution takes the form: 

w ( n) = (A2 cosh "K1 ·n +Al COS "K2 n )•W 
0 

A.
Al 

+ <::- sinh "K1 ·n + 2 
sin K n ) •w ' 2 0 

Kl 
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+ ( cosh K • n cos K2 n ) •M * 1 0 

+ (~ sinh K1 •n 1 sin K2 n) • Qo* 
Kl K2 

••• (II-15) 

where 

w I 
0 

aw = 
0 an 


(8(TT.Jk + e> l ~
Kl 

K2 - [ 8 ( TTVk - 8)]~ 

Equation (II-15) can be put in the form: 

w(n) =A~ {<A2 cosh <1 n + A cos K2n)1 

+ A2 
sin K"2n> (.posh Kln - cos K 2 n 'l 

K2 
w 

0 

1 .. 1 w'(:::-· sinh Kln sin K2n)} . 
0 

Kl K2 
M 

0 * 

Qo* 

.•• (II-16) 

where 

- 2 
Al = Kl " e 2 

2 2 

ve
A2 = K2 + 

2 2 

A 

0 = Kl + K2 
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The slope, moment and shear at any point inside the 

plate can be similarly expressed in terms of the state vector 

at the edge n = 0, namely, 

Slope w' (n) = l:__. [(A cosh K • n + Al cos K"2 ·n>A 2 1
0 

Al A2 
sinh K • n + - sin K"2n><= 1 

Kl K2 

cosh K •n- cos. K"2 • n>1 

( 1 	 . sinh Kl n 
1 sin K2n ) 1 

Kl 	 K2 

2 2
Moment M*(n) = ! ·{[A2 (< 1 -ve ) cosh •in - A1 

0 

Al _ 2 2 A2
[=-(Kl - ve ) sinh Kl 
Kl 

w 
0 

w' 
0 

M
0 
* 

Q * .o 

..• (II-17) 

2 
+ve )COSK2nl 

2 
+ve ) sinK"2n! 

1 (-K22 + 82) • + 	 v sinK 2 
K2 

w 
0 


W I 


0 


M
0 
* 


Q * 

0 

••• (II-18) 

J ' 
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- 2 
+ AlK2 (K2 + (2 - v) e 2 ] sinh i<2 n~ 

2 - 2 2f - 2 (2 - v)e ] cosh {2 - v)e ]Al[Kl - Kl A2[K2 + 

cosh i<2n} 

- 2 (2 - v) e2] sinht"Kl [Kl - Kln 

l['K1
2 - (2 - v)e 2

] cosh K 1 n w 
0 

2 w' 
0+ [i<2 + (2 - v)e 2 ] cosh 'K2 n~· 

M * 
0 

Q0 * 

••• {II-19) 

To present the theory in a compact form it is convenient 

to use the matrix notations. 

Defining the state vector{~ } to be 
n 

w 
i-1 


w' 
 -ri 
l ~ } = for 0 < n < 1M*n 

t) 

Q* 
t1 

It can be seen that, once the state vector\~ l is known for 
n 

any section (n), all the information about that section will 

be known. From equations (II-16) to (II-19),{~\ can be n 
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related to[¢ Jby
0 

a matrix relation: 

{¢]=n [F] n •t¢}o 
••• (II-20) 

where 

[ F is the field matrix which relates the state vector at 

any location n to the state vector at the boundary n= 0. 

Its terms are given by the equations from (II-16) to (II-19) • 

In particular, at the edge n = 0 and n = 1 of the 

plate, let the corresponding state vectors bel¢} and \~ 1 }
0 

where: 

w 
0 

I W Iw 
0 1 ••• (II-21)l ~ } = 

0 
M * 0 

Q 
0 
* 

They are related by the relation 

.•• (II-22) 


where [ F ] denotes the matrix [ F J given in equation
n=l 

(II-20) by replacing n by unity. 

Expanding equation (II-22) we have: 

= I

wl f 11w 0 + fl2w o + fl3M/ + fl4Qo* 

wl 
I = f 21w 0 + f22w o 

I + f23Mo* + f 24Q o* ••• (II-23) 

M * = f 3lw o + f32W o 
I + f33Mo* + f34Qo*1 
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where f .. are the elements in the matrix [ F ] .
]. J 

f 11 = f 44 = 	A2 cosh Kln + Al cos K2 n 


Al A2 

f 12 = f 34 = sinh Kln + sin K2n 


Kl K2 


= = 	 cosh Kln cos K2nf 13 f 24 

f 14 = 
1 sinh K1 n 1 sin K2n 

Kl K2 

f 21 = f 43 = A2Kl sinh Kln - Ali<2 sin K2n 
•.. {II- 24) 

= cosh cosf 22 f 33 	 = Al Kln + A2 K2n 


= Kl sinh Kln + K2 sin K2n
f 23 

f 31 = f 42 = AlA2( cosh K1 n-cos 'K2n> 


2
A 2 A2 
= 1 sinh Kln - -- sin K2nf 32 

Kl K2 

f 41 = A2 
2-

Kl sinh Kln + Al 
2-

K2 sinK 2 n 

-
The matrix [ F ] n=l which related the state vectors 

at the two boundaries n = 0 and n = 1 is known as the "field 

Transfer matrix" or "Field matrix" for the plate. 



Field matrix [FA] for [ k>(m/~) 2 ] 

A2e:2+Ale:4 

1 
A= A 

0 

-

A2 8le:l - A1 82e:3 

AlA2(e:2 - e:4) 

T 

2 2 
A2 81e:l +Al 82e:3 

Al A2 
e-e:1 + ee:3

1 2 

Ale: 2 + A2 e: 4 

A 2 A 2 
1 2 

-8-e: 1 - -8-e: 3 
1 2 

AlA2 ( e: 2 - e: 4) 

e:2 - e:4 

81e:1 + 82e:2 

Ale: 2 + A2 e: 4 

A2 81e:l - Al 82e:3 

1 1 
se:1 - 5e:3

1 2 

e: 2 - E4 

••• (II-25) 

Al A2 
se:1 + 5e:3 

1 2 

A2e:2 + Ale:4 

where, 8 = le (1T/k' + e) e: 1 = sinh8 1 n A1 = 81 
2 

- ve 2 
1 

e: 2 
A2 

2 2 
8 = /e(1Tfk - 8) 

I 

= cosh8 1 n = 82 + ve 
2 

2 2 
8 = m1T /a. e: 3 = sin8 2n Ao = Al + A2 = 81 + 82 

e: 4 + COS8 2n 

..... 
-.....! 
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Buckling Condition 

Let us consider the case of the plate in Fig. (1), 

but the edges at n = 0 and n = 1 are free (i.e. no moment 

and no shear) • 

The boundary conditions at edge n = 1 can be expressed 

in terms of the boundary conditions at edge n = o in the form: 

wl 

wl 
I 

= 
M * 1 

Q1 * 

f 11 f 12 f 13 f 14 

f 21 f 22 f 23 f 24 

f 31 f 32 f 33 f 34 

f 41 f 42 f 43 f 44 

w 
0 

wo' 
••• (II-26) 

M
0 
* 

Q * 
0 

For the considered example the boundary conditions 

are such that 

at n = 0 M * = 	 0 and Q * = o , 0 	 0 

and at n = 1, M1 * = 0 and o1 * = 0 

Therefore, substituting the boundary conditions of 

the two edges in equation (II-26) we can write: 

wl 

wl 
I 

= 
0 

0 

f 11 f 12 f 13 f 14 

f 21 f 22 f 23 f 24 

f 31 f 32 f 33 f 34 
-

f 41 f 42 f 43 f 44 

which can be expanded as 

wl f 11 0 + f 12 0 ' = w w 

wl ' f 21 0 + f 22 0 
I = w 	 w 

w I0 = f 31 w 
0 + f 32 0 

0 = f 41 w 
0 + f 42 w 

0 ' 

::1 ••• (II-27) 
0 

j0 

•.• (II-28.a 

••• (II-28.b 

••• (II-28.c 

••• (II-28 .d 
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Considering equations (II-28.c) and (II-28.d), for the 

nontrivial solution of the values for w and w ' we have
0 0 , 

the condition: 

f 31 f 32 
~ 0 

f 41 f 42 

or 0 •.. (II-29)f31 ··f42 - f41 • f32 = 

which is the buckling condition for the given case. The 

values of k, and hence ocr' can be determined by solving 

equation (II-29) by trial and error method of numerical 

analysis. 

Consider another problem where the plate is fixed. 

at n = 0 but free at n = 1. Equation (II-27) takes the 

form: 

wl 

W I 

1 

0 

0 

= 


f 11 f 12 f 13 f 14 

f 21 f 22 f 23 f 24 

f 31 f 32 f 33 f 34 

f 41 f 42 f 43 f 44 

0 


0 


M0 * 


Q
0 
* 


It can be seen that once the field matrix [ F ] is 

known, the buckling factor k, and hence the buckling stress 

ocr can be found for &11 combinations of boundary conditions 

at the edges n= 0 and n = 1. A complete list of 

combinations of boundary conditions along the two edges are 

shown in matrix (II-30) • 

In the matrix (II-30), the actual boundary ·conditions 

at both boundaries, a schematic diagram of the support 



FREE FIXED
ROLLER 

~=O W 
1 

I= 0 

0~1 • o o"*, = o 
0 

w =O E 31 e:w 
x 0 

I" 121 I" 131 
LL w~=O 21 22 21 23 

0 
w0 =0 31w 2l. A 

\!) I" 121 I" 131z M*=O-:c 0 31 32 31 33 

w w0 =0_, 
al d!=o-en 0 
en-:!: w'=O0 0 
~ 

M!=oz- 0 

I Q:: 
31 IEOw w~=O E w_, 

121 221 121 231~ ... a*=ou.o 41 42 41 430:: 
0 

M*=o 3~LLJ 
w 0 

131 321 131 3310:: 
a*=oLL. 0 41 42 41 43 

INADMISSIBLE HINGED 

w' = 0I w, = 0 w, = 0 

M'1 = 0 a*1 = 0 ~I = 0 

A E 

1'2 
22 

141 
24 

LS A 

1'2 
32 

141 
34 

LS I~ 

122 
42 

241 
44 

LS 

132 
42 

341 
44 

F J XED 

WI = 0 
I = 0Wt 

3 e: 
1'3 
23 

141 
24 

3 :A 

113 
33 

141 
34 

3 IE 

123 
24 

43 44 

3 

133 
43 

341 
44 

• • CII-30) 

I\) 

0 
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conditions and also the elements in the field matrix that 

gives the·buckling condition are shown. For example, if 

both edges are free the table gives.the buckling condition 

31 32 

or equivalently, 

41 42 

= 0 


which is the same as given by equation (II-29). 

For each combination of boundary conditions at 

n = 0 and n = 1, there will result an equation representing 

the buckling condition by equating the determinant of 

certain 2 x 2 matrix to zero. To facilitate computations 

it is convenient to define a new matrix called the Field 
~ 

Boundary Matrix [FA]. This is a 6 x 6 matrix whose elements 

consist of the various buckling conditions. For example, 

the free edges condition is found in matrix (II-30) to 

occupy a position in the sixth raw and the first column of 

the matrix. Therefore, such a buckling condition is 
~ 

entered as the element (f 61 > in the newly defined Field 
~ 

Boundary Matrix. Similarly, the element (f11 > in the 

Field Boundary Matrix is the buckling condition for the 

free-fixed boundary condition of the plate. 

This modification as will be shown later, to 



2 

2la 

facilitate the calculations of the complicated cases and 

reduce~ greatly the time required for computations. The 
~ 

Field Boundaries Matrix [FA] for the case of k > (m/rr) 

is given by matrix (II-31) • · 



~ 

Field Boundaries Matrix (FA] [k (m/~) 2 ] 

1 
A2[2Al2 

Cl> 

+ 
2

(A 2 
2+ A ) • E:1 4 

1 
A<S1E:2 

0 
+ 8 2E:3) L[(A2

A~ 
- Al)E:5 = A(l,3) 

1 E: 2 
-(-
Ao 8 2 

-
~)
Qµl 

!_[2t:52A 

2 
+ (f34Al -

2 
S3A2) "E:l] +(S3A2 + S4A1)2i_] +(S3 - S4) s 11 

2 
1 Al 
A<-se2 

0 1 

2 
A2 

- se3> 
2 

E4 
1 Al 
A(SE:2 

0 1 

A2 
+ SE3}

2 
= A(2,3) 

e: 1 

85 
= A(l,5) 

1 
2[Al2(A2
A 

0 

- Al)e:S 
1 
A{Sl 

0 
2e3 - 12[2Al2e5 

Ao 

= A{3,3) = A(2,4) = A(l,4) 

3 
-(S3A2 

3 
+ S4Al) •el] 

- B2Al e 3) B 2+ ( 4Al - B 2 
3A2)£ 1] 

= A(3,l) 

1 2 
- A{S2Ale3 

0 

2 
+ SlA2e2) 

I = A(3,2) 

I -s . E5 1 

I 
I 

= A(3,3) 

= A(4,2) 

I= A(3,3) I= A(2,3) 

I= A(3,2) I = A(2,2) 

I= A(l,3) 
I 

I= A(l,2) 

1 2 2 
2[ 2AlA:2e5 
A 

0 

4 4 
+ {f33A2 - S4A1)el] 

I = A(S,l) I = A(4,l) I= A(3,l) I = A(2,l) ! = A(l,l) 

••• (II-3l)N 
I\) 
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l':i. 2 
Abbreviations in the Field Boundaries Matrix [FA) [k >(m/a.) ) 

I 

/e(rr.jk+ e)Bl = 
' = /e(rrVk - e)82 


B3 = 81/82 


B4 = 1/83 


B5 = Bl 82 


2 - ve2
Al = Bl 

2 2 
A2 = B2 + ve
 

A 
0 

= Al + A2 


A •
Al2 = 1 A2 


e = mrr /a. 


e: 1 = sinh B1 n . sinB 2n 

e: 2 = sinh B1 n . cos8 2 n 

e: 3 = cosh B1 n . sinB 2 n 

e: 4 = cosh 81 n • cose 2 n 


1 e: 5 = e: 4 
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It should be mentioned that all the equations from 

equation (II-15) to equation (II-24) are valid when the 

buckling factor k is such that equation (II-14.a) is satisfied, 

namely that k>(m/a ) 2 . We can arrive at different field 

transfer matrices corresponding to the different values of 

2the buckling factor k with respect to the value of (m/a) 

as given in equations (II-14.b) to (II-14.g). 

Consequently, this will result in five Field 
t. t. t. t. t. 

Boundary Matrices [FA], [FB], [Fe], [F0 ], and [FG] depenqing 

on the value of .k in relation to (m/a). The detailed 

mathematic~ formulation for each matrix is given in Appendix I. 

To find the value of the buckling factor k that 

satisfies the buckling condition [e.g. equation (II-29)), 

a trial and error numerical method is adopted. This method 

is illustrated in steps as follows and by a flow chart. 

1. For a certain value of' a. 

2. Assume a value for k. 

3. Applying conditions (II-14), we can determine 

the proper field boundar~ matrix to be used in forming the 

buckling condition. 

4. Evaluate the buckling condition and if: 

a) its values equal zero or a practically 

very small quantity then, the assumed value of k was taken 

as the correct value. 

b) ithe buckling condition values differ 

from zero substantially, another value for the buckling factor 
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k will be used· and the whole process will be started again 

from step 3. 
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Procedure of Numerical Method Followed to Calculate the 
f':. 

Buckling Factor k that Satisfies the Buckling Condition P .. 
l. J 

FOR A VALUE OF CC 


A 5SlJME A VALUE FOR k 

8----+ 

2 22 
k=(m/CX:) 0 <._ k ( (m/OC)k(.(m /CX:) k = 0 k (O 

A 

[ ~ ::1 
A 

C fa :J. 

susstJTu TE 

ASSUME ANOTHER NO 

VALUE FOR k 

{j,; 

IN THE BUCKLING CON DI TION ~(O 

k IS THE REQUIR :

'----1 ED BUCKLING FAC10 

.CONSIDER.ANOTHER 
cc 

FLOW CHART 




CHAPTER III 


SPECIAL FIELD TRANSFER MATRICES 


In this Chapter, we will illustrate the derivation 

of the special Field and Field Boundaries Matrices. These 

matrices relate the state vectors for special 

structural elements (e.g., transfer conditions across a 

stiffening rib, thickness change or intermediate support 

condition). These cases will enable us to extend the 

Matrix Transfer Method to be applied for continuous 

plates, channel cross-sections and sections of variable 

thickness. 

A. 	 Transfer Conditions Across a Stiffening Rib 

[Rib-transfer Matrix] 

Tl 

Rib 

Fig. (2) 

27 
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The boundary c0nditions before and after the stiffening 

rib are expressed by the state vectors {<l> } and {<l> }, 
1 n n

0 1 
to be~ 

ww n n10 

w' w'no{ ¢> } = and { q> } = nlnl"o M* M*no nl 
Q*Q~o J nl 

Reconsidering equation (II-20), we can· relate the two 

state vectors at the boundaries of the rib to follow 

the matrix relation: 

.•• (III-1) 


where [R] is the rib-transfer matrix which relates the 

two state vectors before and after the rib. The Rib 

Matrix satisfies the transfer conditions across a rib or 

a stiffener. Its terms will be calculated by the follow

ing continuation conditions: 

w = w : •• (III-2)
nl no 

••• (III-3)w' = w' 
n1 no a4V 'a 2v 

no no1 1
Q + EI + k C1 AQn = r 4 r e r1 "o al b4 <1!2 b2 

••• (III-4) 

• 
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where the load carried by the rib is the load required 

to provide a deflection w plus taking account of the 

axial load k cr A in the stiffener. r e r 

Ir is the moment of inertia of the rib about 

the centre line of the plate 

Ar is the cross sectional area of rib 

cre is Euler buckling stress 
cr 

is the buckling factor [k = er] 
cr e 

To satisfy the 	moment compatibility we have, 
a3V a5V 

no 1 	 no 1 
Mn = Mn + GJ --- - EC • 

1 as2 a'7 ~ w H.,,4 a1 b5"0 

1 - k cr 	 ••• (III-5)r e ~ 

where the moment carried by the rib is due to the shear 

across the rib, its torsional rigidity and taking into 

consideration the effect of the axial load krcre in the 

stiffener. 

J is the torsion constant 


C is the warping constant 
w 
I is the polar moment of inertia of the rib 

p 

Expressing the shear equation in terms of the deflection 

of the plate, then, 

Eir e4 - Ar e2 2 ] [ 	 ••• (III-6)= Q* - OD kr Et 1T ·w 
no 	 no 
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where 

b3 
Q* = - - Qn D n 

and 

e = m 1T /o. 

To nondimensionalize the shear equation, let us introduce 

the following dimensionless quantities: 

EI r (relative stiffness of rib and plate)YB = bD 

A 
6 

r (relative area of rib and plate)= Et 

Hence the shear equation reads 

- <I> ••• (III-7)
r 

where 

<f>r is the equivalent spring constant of rib 

4
"' = y e - k ••• (III~S)"'r B r 

to evaluate <I> numerically, a nondimensional parameterr 

(r) is introduced to be 

where 

bw is the breadth of web plate 

t~ is the thickness of web plate 
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Nondirnensionalizing the moment expression, we 

can write: 

aw 
n 

0M * = M * + tJi ••• (III-9)r a,nl no 

where tJi is the torsional spring constant r 


84 + - k 1T2Y )82
tJi r = Yw (yD r p 


GJ 

Yo = bD 


EC 
w 
Yw = 

b 3D 


I 

yp = 


b3! 


M * = 
n 

Arranging the four boundary conditions, equations 

(III-2), (III-3), 


then: 

w 
n1 

w' 
n1 

* M 
n1 

* Q n 
1 

= 


(III-7) and (III-9) I in a matrix form, 

1 0 0 0 

0 l 0 0 

0 tJir 1 0 

-<1> r 0 0 1 

w 
no 

. w' 
n 

0 

* M 
no 

* Q 
no 

••• (III-10) 


Following a similar treatment to obtain the Field 

• 
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Boundaries Matrix from the Field Matrix, we can simply 
t. 

arrive 	to the Rib Boundaries Matrix [R) to be: 

1 	 0 0 0 0 0 

1 0 0 0 0"'r 
0 	 0 1 0 0 0t. 

[R] 	 = 
0 0 0 1 0 0 

0 	 0 0 1 0<l>r 

0 0ljJ r<l>r <l>r 	 ljJ r ~ 
••• (III-11) 

B. 	 Transfer Conditions Across an Intermediate· Support 

[Support transfer Matrix] 
.. 

The case of a continuous plate over an intermediate 

support can be regarded as a special case of the stiffen

ing rib. The Matrix that represents the transfer condi

tions across a support will be denoted as the "Support 

transfer Matrix", [S]. This matrix can be easily deduced 

from the rib transfer matrix by realizing the following 

facts: 

a. The equivalent spring constant cf>s of the. 

support is infinity, namely, no deflection is to take 

place. i 
b. The 	torsion spring constant ws of the support 

,, 
is zero, namely, support does not exiert rotation restraint 

on plate. 
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Introducing ~=o and ~ ~00 , the rib transfer matrix will s s 

yield the Support Boundaries Matri;x: giving, 

0 0 0 0 0 0 

0 0 0 0 0 0 

fj 

[S] c: 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 0 0 0 0 0 

0 1 0 0 0 0 

••• (III-12) 


C. 	Transfer Conditions Across Thickness Variation 

[Thickness Variation Matrix] 

t. 
l 	 ti+l 

I 

) 
 Ml/Jl 

Qi . Mi+l 
Field i Field i+l.I. 

Fig. (3) 

Considering a plate consists of two sections of differ

.ent thickness joined together,~let us denote the sections 

by i and i + 1 with corresponding thicknesses t. 
l 

and 

-
ti+l" The continuation conditions across this sudden 

thickness· change line require the deflection, slope 

moment and shear just before and after the change to 

satisfy the following relations: 
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w = w ••• (III-13.a)n.ni+l 1 

w' = w' ••• (III-13 .b) 
ni+l n.

1 

3t. 
l

M* = M* 
n. 3 ••• (III-13 .c) 

ni+l 1 t i+l 

3t.* lQ = Q * 
n. 3 ••• (III-13.d) 

ni+l 1 t i+l 

where 2b ..* 1- _..__M = M and n. D. n. 
1 1 1 

b. 3 
lQ * 

n. = - 0.- Qn. 
1 1 1 

The state vectors {~i} and {~i+l} will be related 

by the formula 

••• (III-14) 

where [T] is a matrix expressing the continuation condi-. 

tions across a thickness change line in the plate in a 

direction parallel to the applied stress. 

, ' Arranging equations (III-13) in a matrix form, we 

can write: 

w· 

w' 

M* 

Q* 

= 

ni+l 

1 0 0 0 w 

0 1 0 0 w' 

0 0 3 
(ti/ti+l> 0 M* 

0 0 0 
3 

(ti/ti+l> Q* n. 
1 

••• (III-15) 
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Following the same procedure to obtain the 

Field Boundaries Matrix from the Field Matrix, we can 

arrive to the Thickness Change Boundaries Matrix 
ti 

[T] to be: 

(ti+l/ti) 
3 

0 0 0 0 0 

• 
ti 

[T J = (ti/ti+l> 
3 

• 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

·o 

0 

1 

0 

0 

(ti/ti+l> 
3 

••• (III-16) 




-----------------

- - - - - - - - - - - - - - -- --

- - -- - ---- -- - - ----

CHAPTER IV 


APPLICATION OF MATRIX METHOD TO STABILITY OF PLATE SYSTEM 


In this chapter we are going to illustrate the 

application of Matrix method to a plate with any number of 

fields. In other words, we are going to extend the Matrix 

method to cover any general case of continuous plate. Also, 

we are going to formulate the general case of a plate with 

elastic supports. 

Product Matrix [P) for any Number of Fields 

Edge n = 1 


Field n 


Field n-1 


~====-=::;:; ·- ....,,_::!====- - 

Field '2 

Field 1 


Edge n = O 
 L j
0 cr,l 

Fig.. (4} 
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Considering a plate which is divided into a number of fields 

n, the ith field is subjected to a uniformly distributed · 

stress of a value o. where i = 1 ton as shown in Fig. 4. 
J. 

For any field i we can relate the state vectors 

{~i-l} and {~i} by the matrix formula: 

•.• (IV.;..l) 

Equation (IV-1) can be applied to all fields of plate from 

i = 1 to i. = n, then 

••• ( IV-2) 

--------------------------- and so on 

From th·e above substitutions we can express the state vector 

l~n\ in terms of the state vectort~J· 

"' {~} = [F ]•[F J ••••• [F.] ••••• [F 2 J•[F1 J·f~oJ n n n-1 J. 

.•• (IV-3) 

This general expression can be written _in-short 

to be: 

= [PJ·{~} ••• ( IV-4)
0 
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where 

(P] is the Product Transfer Matrix. 

This matrix can ~e formed by multiplying the individual 

Field Matrices which satisfies the intermediate boundary 

conditions of the fields and relating the boundary conditions, 

state vectors, across the whole assembly of fields. 

We can arrive to the expression in equation (IV-4) 

through an easier computations procedure by defining { e } 

as a (6 x 1) column 

at edge n as: 
0 

Free end condition 

Fixed Roller end 

Condition 

no 

vector expressing the boundary conditions 

1 

0 

0 

\ e-11 = 
0 

0 

0 

0 

1 
0

{e-21 = 
0 

0 

0 


••• ( IV-5. a) 

••• (IV-5.b)
" 
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0 

0 

0 ••• (IV-5. c)'Hinged Support {es} = 
0 

1 

0 

0 

0 

0. 
••• (IV-5. d)Fixed Support 

0 

0 

l 

As far as obtaining the buckling condition is concerned, in 

place of equation (IV-1), we·can write 

\ 

~. 
b, ' 

[F] 
1 

•{e }no 

.•• (IV-6) 

b, 
[F] •{e }

n nn-1 

By knowing the end conditions vector {e }as given byno 
equations (IV-5) (l), expressions (IV-6) will result, n products 

of (6 x 6) matrix and a column vector (this can be reduced 

to n products of (5 x 5) matrix and a column vector, see 
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(1) 

One 	can obtain {e } using the first equation in (IV-6) . 
n1 

Similarly, knowing {e } enables to obtain {e } and so on,
n1 n2 

until we obtain {e } through the use of the last equation 
nn 

in (IV-6). Let us denote {e } obtained in this way as 
nn 

{en }I. However, the boundary condition at edge n= 1 is 
n 

known, hence, one can write down.the rector {e } directly. 
nn 

Depending on the actual boundary conditions the form of 

{e 	 } is given by equations (IV-5). Let us denote the 
nn 

vector 	{e } obtained this way by {e } • By comparing 
nn nn II 

{e 	 } which corresponds to the non zero element in {e } 
nn I nn I 

the buckling condition of the problem is obtained by equating 

this special element in {e } to zero. This method is 
nn I 

known as the "6. - coeeficient method". A detailed discussion 

of this method is given by Margeurre (18] • This method 

is useful for computational purposes ..As can be seen, the 

buckling condition is obtained through the n multiplications 

of a (6 x 6) matrix by a column vector. If we obtain the 

buckling condition through the use of equation (IV-4), we 

need to find the product transfer matrix (P] which will 

involve n multiplications of (4 x 4) matrices. 



40 


Appendix) where expression (IV-3) will result, n products 

of (4 x 4) matrices. 

Continuous plate over two spans 

n20 
x 

1 

II 
II 
l 

r-~=-==='""="=-::=-===-=:-=-=-=-,--------..,.~~~~~~----.OXr--- --------- - - -- - - - - -..., 
I I 
I I 

I Field 2
I 

,n1 

~--------------------------
' I 

i Field 1 
In I 
L~----------------------J 

Fig. (5) 

To find the buckling factor k, of a continuous 

plate over two spans as shown in fig. (5), we are going to 

relate the state vector { ~ } in terms of the state vector ( ~ }
n2

• 
no 

by the Product matrix [P) according to the relation: 

[F, )
1 

• •. ( IV-7) 

Referring to the deriviation of the Product Field 

Matrix [P) in equation (IV-3), we can write: 

where [F.) is the transfer field matrix for field i (i=l,2)
• 1 

and [SJ is the support transfer matrix as given by (III-12). 

The boundary conditions at edges n and are 
0 

n2 

assumed to be hinged , namely: deflection = 0 and 

moment = O. Applying these boundary conditions to the state 
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vectors at both ends we can establish: 

ro  0 

w' 
and •.. (IV-8) 

Q* 
no 

Expressing the formula (IV-7), by the matrix elements, we 

can write: 

0 0 

w' w' 
•.• (IV-9)= 

0 0 

Q* 
no 

Equation (IV-9) can be expanded to ...b.e-a,s: 

0 = 

W I = 
2 

0 

+W 
0 

I P14 Q o* 

W I 

0 
+ P24 Q o* 

W 
0 

I + P34 Q o* 

w' + 
0 P44 Q o* 

The condition for the nontrivial values of w ' and Q * will 
0 0 

provide the condition: 

= 0 


or expressing the determinant gives: 

= 0 •.. (IV-10) 

Equation (IV-10) forms the buckling condition for the case 

• 
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of continuous plate over two spans. The value of the 

buckling factor k that satisfies the above equation will 

give the buckling factor of the continuous plate. 

The expression: 


P12 °P34 P 1 4 • P 32 ••• (IV-11) 

!.!.. 

forms the element P 25 of the. Product Field Boundaries 
!.!.. 

Matrix [PJ • 

Plate with Elastic Supports 

1: 
T) 0 

! 
T) 1 

R 

-0 
I 

T) 0 

Rj 
I 

nl 
{a) (b) 

Fig. (6) 

Considering the case of a plate with nonrigid supports,. 

namely the rotation is resisted by the torsional stiffness 

of support and deformation of the support is proportional 

to the reaction in the direction of deflection. The 

structural model can be expressed by two sets of springs as 

shown in fig. (6.a) 

The case of elastic supports is identical to the 

case of a stiffening rib fig. (6.b) where: 

lr is the equivalent spring constant of the rib. 

•r is the torsional spring constant of the rib. 

To establish the matrix fo~ulation of this case, 
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we are going to consider two additional fields of zero span 

as shown in fig. (6.b). 

[F1 J [R
0

] [F 2 J [R1 J [F3 J 

Edge O --""~""-----------.1~=- Edge 1 

(Fig. 7) 

The state vectors across the whole plate is related 

by the Product Matrix as: 

•.• (IV-12) 

where the Product Field Matrix is given by 

where: 

[F1 J and [F3 J are the field matrices of a plate 

field of zero width, (fig. 7). The value of a matrix of a 

plate of zero span reduces to an Identity Matrix. 

[R1 J and [R2J are the matrices expressing the 

transition conditions across the ribs R1 and R2 • 

The boundary conditions at the free edges o and 1 

are: 

Moment = O Shear Force = O 

Introducing these boundary conditions in the state vectors 

expression equation (IV-12),we can state: 



wl 

wl 
I 

0 

0 

= 


44 

wP11 P12 P13 P14 0 

IwP21 P22 P23 P24 0 ... (IV-13) 
0P31 P32 P33 P34 

0P41 P42 P43 P44 

This matrix formulation (IV-13) can be written in equation 

forms to be: 

w + wwl 	 = P11 0 P12 0 
I 


= w + w
wl 
I 

P21 0 P22 0 
I 


0 = w + w
P31 0 P32 0 


0 = w + w
P41 	 0 P42 0 

The condition for the nontrivial values of the 

parameters w and w ' is,
0 0 

= 0 	 •.• (IV-14) 


or expanding the determinant in equation (IV-14), gives: 

= 0 ... (IV-15) 

The right hand side of expression (IV-15) gives the term 
6 	 6 
p of the Product Field Boundaries Matrix [P] • The value61 

of k, that satisfies the equation (IV-15) gives the buckling 

factor for the contineous plate over elastic support conditions. 



CHAPTER V 

STABILITY.OF CHANNEL COLUMNS 

INTRODUCTION 

In this chapter we are going to apply the Matrix 

Transfer method to calculate the buckling load of a strut 

of channel cross section. 

We shall only consider the local buckling of a 

channel cross section treated as a system of plates. The 

modes of buckling considered are as follows: 

a) local buckling of the flanges and web and 

b) local buckling of the web. 

when the flange-web ratio is large. The flange, taken as 

as the outstanding leg of the channel, is flexible and hence 

local buckling occurs at the flanges and the web taken as 

an assembly of plates. 

When the flange-web ratio is small, the flange, 

taken as a stiffening rib for the web plate, acts as an 

elastic support for the web plate, and hence local buckling 

occurs at the web only. 

a) Local Buckling of Flanges and Web 

For the case of relatively large flange-web ratio 

the channel section is treated as composed of three fields 

of the web plate with two over hanging flange plates. The 
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structural model is shown in fig. (8). 

t 
w 

A A7 
1-- bf-·1-·-- ~1+4-bf _jbw ---1... 

Fig. (8) 

Considering a channel section of web width b and 
w 

thickness t , the flanges are of thickness tf and width bf.' / w 

The corners are assumed to remain straight which are expressed 

as simple supports. 

The state vectors at the extreme boundaries are 

related by the Product Field Boundaries Matrix by the 

equation as: 

[P]• {qi J 
0 

where 

[P] 	 = [F]f• [SJ• [TJ • [F]w· [SJ• [TJ • [F]f 

6 6 6 6 6 6 6 6 
[P] = [F] •[SJ• [T) • [F] • [S] • [TJ • [F]

f . w 	 f 
••• (V-1) 

with 

[F]f as the Field Transfer Matrix of the flange plate 

[F]w as the Field Transfer Matrix of the web plate 

[SJ is the Support Transfer Matrix 

[T] is the Thickness Variation Matrix 
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The extreme ends of the plate assembly is f+ee 

edges. The boundary conditions are well know~ to be: 

M* = 0 Q* = 0 

Refering to the illustrative matrix (I-30), it is 
6. 

clear that the term p of the Field Boundaries Matrix61 

represents the free end conditions of the plate. 

The expression ~61 of the Product Field Boundaries 

Matrix given by equation (V-1), when equated to zero, will 

form ttte buckling condition of the structural model 

considered. 

The value of the buckling factor k, which satisfies 

the buckling condition gives the buckling factor of the 

plate assembly or in other words is the buckling factor 

governing the local buckling of flanges and web of the 

channel section. 

To form the Product Field Boundaries Matrix we 

follow simple Matrix multiplication for the equation (V-1) 

which gives: 

f 11 f 12 f 13 f 14 f 15 f 16 

f 21 f 22 f 23 f 24 f 25 f 26 

6. 
[F]f = 

f 31 

f 41 

f 32 

f 42 

f 33 

f 43 

f 34 

f 44 

f 35 

f 45 

f 36 

f 46 

f 51 f 52 f 53 f 54 f ss f 56 

f 61 f 62 f 63 f 64 f 65 f 66 

••• (V-4) 


flange 



/::, /::, 

[S] • [T] = 

/::, /::, /::, 

[F] f • [S] • [T] = 

tf 3 
where t =(-)t w 

!:, 

[F] w = 

0 

0 

0 

0 

1 

0 

f 15 

f 25 

f 35 

f 45 

f ss 

f 65 

f 11 

f 21 

f 31 

f 41 

f 51 

£61 

0 0 

0 0 

0 0 

0 	 0 

0 0 
t 

(_f) 3 0t w 

f16·t 	0 
0f26·t 

f36·t 0 

0f46·t 
f 56 ·t o 

0f66·t 

f 12 

f 22 

£32 

f 42 

f 52 

f 62 

f 13 

f 23 

f 33 

f 43 

f 53 

f 63 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

f 14 

f 24 

f 34 

f 44 

f 54 

f 64 

0 

0 

0 

0 

0 

0, 

0 

0 

0 

0 

0 

0 

f 15 

f 25 

f 35 

f 45 

f 55 

f 65 
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0 

0 

0 
••• (V-3) 

0 

0 

0 

0 

0 

0 ..• (V-4) 

0 

0 

0 

flange 

f 16 

f 26 

f 36 
••• (V-5) 

f 46 

f 56 

f 66 


web 
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Continuing the multiplication of matrices in equation (V-1), 
/:,. 

this will give the Product Field Boundaries Matrix [P] , the 

term ~61 will express the proper boundary conditions of the 

free flange paltes: 

/:,. /:,. /:,. 

+ 	2t(fll)f • (f21>f • (f15>w 

..• (V-6) 

Equating the right hand side of equation (V-6) to zero, we 

have: 

••. (V-7) 

The solution of the buckling condition is carried out 

numerically by trial and error by the help of the electronic 

computer I. B. M. 7040 to give the value of the buckling 

factor k, that satisfies the buckling condition. Calculations 

are done for different values of flange-web ratios (n) 

from n = O to n = 2 with an interval of 0·05. Results are 

given in Table (1) compared to the work done by: 

1. Kimm, G. [ 5] 

2. Muller-Magyari 	 ·[7] 

3. Kroll, W. D. 117] 

4. Ritz method,two 	approximation terms 

5. Ritz method.three approximation terms 

6. Bleich, F. [l] 

7. Matrix transfer 	method 
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I 

I 

42 3 6 71 5I -
n 

I 

O•O 4•000 4•0004•000 

O•l 4·440 4·450 4. 450 ' 

0•2 4•259 4•520 4•650 4·585 

0·3 4·3774•400 4•260 

0•4 3•7553•660 3•300 

.2•948.0•5 2•908 2•840 2•948 2•9102•328 2·780 
v 

0•75 1•356 1·4971•352 1•480 

0•864 0•904 0•904 0•847 0·8881•00 0•80 0•884 

0•584 0•5881•25 0•6000•531 . 

0.424 0.420 0.426 0.4191•50 0.415 0.4080.375 

TABLE 1 
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The above Table 1 shows that the values obtained by thel 

Matrix Transfer Method agrees well with the previously obtained 

results. This simple comparison also serves as a check to 

the Matrix transfer method program. 

A·plot of the flange-web ratio verses the buckling 

factor k is given by fig. (9), comparing ~he values resulting 

of different methods. 

It should be noted that for the case of a channel 

cross section of a zero flange-web ratio, the corresponding 

value of the buckling factor k equals 4•00, which is the 

well known case of the buckling factor of a simply supported 

plate [14]. This is due to the fact that in the analysis, 

it is assumed that there is no deflection at the corner of 

the channel section. It is obvious that as the flange-web 

ratio decreases, this assumption will not be valid and as 

the flange-web ratio approaches zero, such assumption 

present~ an incorrect result. 

For small flange-web ratios, the flanges essentially 

act as lips to the web plate. Thus, the local buckling of 

the channel section occurs at the web plate. The effect 

of flanges is to give the web plate elastic support, both 

transversely and torsionally. The analysis of the buckling 

load is given in the next section. 
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b) Local Buckling of Web Plate 

/'; /:, /'; 

[R) [T] [F) f 

r 
(b} 

Fig. (10} 

For the general case of a channel of a small\alue 

of flange-web ratio, the assumption that the corners remain 

straight will not be realistic. A structural model represents 

the influence of the flange plates as providing the edges 

of the web plate by torsional and deflection springs is 

illustrated by fig. (10.b). This is the same effect as if 

the flange plates are considered stiffening ribs for the 

web plate. 

In this case, the Product Field Boundaries Matrix . 

consists of as follows: 
/'; . /'; /'; /'; /'; . /'; /'; /'; 

[P] = [F]f• [R] • [T] • [F]w· [TJ • [RJ • [F]f •.. (V-8) 

where 
/';

[F]f is the Field Boundaries Matrix expressing the 

transfer conditions across the flange plate as given in 
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equation (II-31) 

[~] is the Field Boundaries Matrix expressing the w 

transfer conditions across the web plate. 


/:, 

[T] is the Field Boundaries Matrix expressing the 

transfer conditions across the thickness change line, as 

given in equation (III-16) • 
/:, 

[RJ is the Field Boundaries Matrix expressing the 

transfer conditions across the stiffening rib. Its elements 

are formed by: 

~r the equivalent spring constant of the rib 
4 2 2 

~r =yB8 krOTI 8 

the torsional spring constant of the rib 

4 2 2 
=y 8 + (Yo k TI y ) 8 w r p 

The extreme edges of the structural model have the free 

boundary conditions. In a similar argument as before, the 

corresponding term of the Product Field Boundaries Matrix 

giving the buckling condition is: 
/:, 

p61 = 0 

The value of k, which satisfied the buckling condition, 

equation (V-9), represents the buckling factor of the channel 

column. 

A numerical trial and error method by the help of 

computer, is adopted. The results are represented· as a 

plot of the web width - column length ratio a verses the 

buckling factor k, for a set of flange-web ratios, fig. (11). 

These result~ are imposed on the previously obtained 
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results for the case of local buckling of the web and flange 

plates. A set of combined curves are obtained for a constant 

width of web to thickness of web plate ratio of fifty. 

This set of curves shown in fig. (12), gives a 

clear limit between the buckling behaviour of the channel 

as the local buckling of web plate only and the web and 

flange plates. This limit is obtained by getting the same 

value of k, considering both forms of behaviour. 

Similar curves can be obtained for different values 

of the parameter y and the column height-web width ratio a • 

The limit between the two modes of buckling 

considered, namely local buckling of web and flanges and 

local buckling of web only, is given in fig. (13). The 

dotted line shows the limit after which the buckling 

formula of Euler gives satisfactory results. (10%). 

It is important to.note that the buckling factor k, 

calculated by Euler's column Formula, and from the local 

buckling of web only, as mentioned before, will never have 

the same result. The Euler buckling factor is always less, 

due to the fact that he did not consider the energy 

required to deform the cross section during buckling. 
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CHAPTER VI 

EXPERIMENTAL WORK 

INTRODUCTION 

A set of experiments is carried out to study the 

~ocal buckling modes of failure of channel columns. Test 

results are compared with the theoretically predicted 

behaviours. 

Illustration of the test device, specimens 

experiments and results will be presented in this chapter. 

Apparatus: 

The Uniform Compressive stress is applied by 

120,000 lb. capacity tension-compression testing 

machine with an accuracy of 10. lb. within the used range 

of loading. The loading head is provided with a ball 

bearing joint. 

In order to satisfy the theoretically ~ssumed hinged 

supports for the web and flange plates, and to allow for all 

possibilities of different buckling modes of failure, a 

special end fixture is constructed as shown in fig. (14) 

and (15). The fixture consists of two plates A and B. 

A 90° V-groove is made on platee, so that th~ channel 

section fits in the groove. Plate A rests on a steel ball 
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bearing to allow rotation. By the manual controlled motion 

of plates relative to plate fi, the ball bearing point can 

be al igned with the centre of gravity of the channel cross 

section. The bearing plates A and B are taken thick 

enough to ensure a uniform stress distribution on the web 

and flange plates. 



..... 
B F ¢; ttt 

CR 0 SS SEC.X -X 


x/

F 

G 

E 

A- Pl. 5 x 5 x 0. 5 E_ TEST SPECIMEN 

B- Pl. 5 x 4 x 0.5 F_ C.G. OFCHANNEL 

C BEARING BALL O• l .. G-C.L OFB EARING 

D 90° V  GROOVE BALL. 

Fl G.14 
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Test Specimens 

Three groups of test specimens were made from 

Galvanized steel sheets. The steel sheets were cut and 

bent into channel sections of various sizes and lengths. 

All channel sections have a constant thickness 

of 0·0589 inches. 

Web width is taken a constant value of 3·00 inches,, 

namely the web width-thickness ratio (r) is kept a constant 

value of 50 • 7. ·. 

r
The three test goups were of the same cross 

sectional dimensions but varying in column height. This 

enables to consider a wide range of the height-web width 

ratio (a) as follows: 

Group Column Height (ins.) (a ) 

A 6•0 2·0 

B 22•4 7•47 

c 45·0 15•0 

A wide range of flange-web ratio is tested covering the 

possibilities of different buckling modes of failure to take 

place, as given by table (2). 

The mechanical properties of the used material was 

found through a simple tension test, by measuring the applied 

stress and the corresponding longitudinal and lateral strain, 

to be: 
6 

Modulous of Elasticity (E) = 3•190 x 10 psi 

Poisson's· Ratio {y) = 0·359 



64 


Table (2) 

Group A Group B Group C 

Symbol bf (in.) n Symbol bf(in.) n Symbol bf (in) n 

Al O•OO O•OO Bl 0·00 0•00 cl 0•00 0•00 

A2 O·lS O•OS B2 0•15 0•05 c2 0·15 O•OS 

A3 0•30 0•10 B3 0•30 0•10 C3 0·30 0·10 

A4 0•33 0·11 B4 - - c4 - -

AS 0•36 0•12 BS - - cs - -

A6 0•39 0·13 B6 - - c6 - -

A7 - - B7 O•Sl 0•17 c7 - -

A8 0·60 0•20 B8 0•60 0•20 ca 0•60 0•20 

Ag - -- Bg 0·72 0•24 Cg - I--

AlO - -- BlO - -- ClO 0•81 0·27 

All o·go 0•30 Bll O•go 0•30 ell O•go 0•30 

Al2 - - Bl2 - - c12 1•11 0·37 

Al3 1·20 0·40 Bl3 1•20 0•40 cl3 1•20 0·40 

Al4 1•50 0•50 Bl4 1·50 O•SO cl4 l·SO O•SO 

AlS l • 8 O' 0·60 BlS 1·80 0•60 c1s 1·80 0•60 

Al6 2•10 0•70 Bl6 2•10 0•70 cl6 2•10 0•70 

• 
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Test Procedure 

The channel column is fitted in the groove of the 

end bearing plates. The bearing ball is alligned with the 

centre of gravity of the channel cross section. An 

experimental set-up is shown in fig. (16) and fig. (17). 

The compressive stress is applied by the loading head of the 

machine moving at speed of 0.005 inch/min. This low rate 

of stress application is adopted to avoid the disturbance 

that may accompany the higher rates of load application. 

A set of dial gages were set up along the column 

to measure the deflections at the mid-point and the 

quarter-point of column height. The dial readings give an 

indication of the loss of stability when the column starts 

to buckle. Comparing the readings of the gages at the 

same cross section will enable us to establish the 

deformations of the cross section during loading and 

buckling processes. 
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Fig . (16 ) 
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Fig. (17) 
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Test Results 

The buckling stress is divided by the Euler stress 

to give the buckling factor k, which is plotted in fig. (22), 

(23) 	 and (24) with the theoretically predicted values. 

The following remarks are observed during loading 

and buckling of the chan~el columns. 

1. No twisting or torsional failure took place. 

This is due to the fact that the energy required for flexural 

•
torsional mode of failure is higher than the energy requir~d 

to carry the failure through flexural mode of instability. 

2. Some of the test specimens failed due to the 

local buckling of flanges and web plates where others failed 

due to the buckling of the web plate only. In the first 

case, the channel corners are observed to remain straight 

while the latter case the corners follow a deflected curve 

fig. (18). A test specimen followed both mentionedc13 

buckling modes of failures, fig. (19) and fig. (20). 

3. Some specimens failed following a one half-wave 

buckling curve and some others followed a two half-waves 

buckling curve, depending on the dimensions of the specimens. 

An example is shown by fig. (21). 
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CHAPTER VII 

STABILITY OF STANDARD ROLLED CHANNEL SECTIONS 

In this chapter, we are going to present the values 

of the buckling factor obtained by the Matrix transfer 

method applied to the standard Rolled Channel sections. 

The local buckling study is applied considering the 

local buckling of web and flange plates· for the large 

flange-web ratios and the local buckling of web plate with 

the flanges acting as stiffening rib for the web plate. 

The instability criteria will follow the lower buckling 

factor resulting from either cases of buckling modes of 

failure. 

The buckling factor (k) is plotted verses the 

column height-web width ratio (a), for a constant value of: 

flange-web ratio (n) 

web width-web thickness ratio (y) 

flange thickness-web thickness ratio (t) 

Results for different standard Rolled Channel sections are 

given by curves shown in fig. (25) to fig. (34). 
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The sectional property used in the calculations 

are taken from the Extruded Shapes manufactured by the 

Aluminium Company of Canada Ltd. (Alcan) . 

It can be seen that for a given section a long 

channel, (a large), fails under compression due to web 

buckling alone. For intermediate length channels, mode 

of buckling depends on the flange-web ratio. For large 

flange-web ratios, n = 0.4 say, local buckling of web and 

flanges takes place as is shown in the curves covering most 

of the sections chosen except sections Alcan 23032 (fig. 32). 

Particularly, it can be seen that for section Alcan 23003 

(fig. 27) where the flange to web ratio is over 1, local 

buckling of web and flange is the mode of failure over a 

wide range of length of the c.hannel. Section Alcan 23032 

has a small flange to web ratio and it is seen from 

(fig. 32) that the mode of failure is the buckling of the 

web alone for all length of the channel. 

Numbers under the channel dimensions in figures 

25 to 34 refer to Alcan Series. 
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CHAPTER vrrr 
CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH 

Conclusions 

The introduced Matrix Transfer Method of Stability 

analysis proved to-be a flexible, powerful and exact 

numerical method. The mathematical procedure can be easily 

programmed to be tackled by the recent large capacity 

computers in a considerably small interval of time. 

The Matrix Transfer Method enables one to attack 

the more complicated problems, where the classical methods 

fail to solve due to the mathematical difficulties involved, 

and where the numerical methods fail to meet the required 

accuracy. 

As a conolusion from applying the Matrix method to 

the stability of channel columns we can state that: 

1. Considering the results obtained for the local 

buckling of web and flange plates ·of the channel column, and 

by comparing these results with the previous work done, the 

Matrix method is found to give comparable results. 

2. Euler's buckling load for the channel strut as 

a column, is higher than the calculated buckling load, 

considering the channel as a system of plates. This agrees 

with the results presented by [14]. However, the experimental 
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results showed a buckling load higher than Euler's buckling 

load. This can be theoretically arrived at, by considering 

a part of the web plate to be acting with the flange plates. 

This interaction results in an increase in the· flexural 

rigidity of the flange as a stiffener [l]. 

3. For a column of channel cross section of small 

flange-web ratios, failure occurs following the local 

buckling of web with the flanges acting as stiffening ribs. 

4. For the case of large flange-web ratios, the 

instability criteria follows the local buckling of flanges 

and web plates which agrees with the classical curve. 

5. Test results agree to a satisfactorily limit 

with the theoretically predicted behaviours. 

6. Test results showed that flexural torsional 

mode of buckling does not take place. This agrees with 

the results arrived at by Divakaran, [15]. 

7. The limit between the two established local 

buckling modes is the intersection point of the two curves. 

A channel column is tested with dimensions giving theorectically 

a buckling factor at the intersection point. Test results 

showed that both local buckling modes participate in the 

buckling process as shown in fig. (19) and fig. (20). 

8. It was observed that there is a substantial 

gain in buckling strenth of the channel section by increasing 
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the flange-web ration in the range 0 < n < 0.4, when 

the length of the channel is not too long (a < 20), this 

fact can be utilized for design purposes to obtain a more 

efficient compression member of thin walled channel 

sections. 
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Suggestions for Further Research 

1. 	 Large scale computer calculations can be expanded to 

obtain similar results for different loading distributions 

by increasing the number of plate fields considered. 

Variable end conditions, and different column and cross 

section's dimensions can be studied. Curves can be 

obtained giving the buckling factor and the buckling 

behaviour for the practical range of dimensions, end 

conditions and loading distributiori. 

2. 	 Similar stability studies can be expanded to cover various 

shapes of cross sections (e.g. I and Z sections). 

3. 	 Large field of experimental work is open to establish 

data verifying the true buckling modes of failure for 

different cross sections of columns. 

4. 	 The Matrix Transfer Method can be expanded to cover the 

case of a plate with applied stresses in two perpendicular 

directions. This will be a step for a widely required 

generalization of the method. 

5. 	 The study of the Matrix Transfer conditions at the 

meeting line of more than two plates. 

6. 	 Matrix formulation approach can be extended to the new 

field of interest of the dynamic stability problems. 
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APPENDIX 

DERIVIATION OF FIELD MATRICES AND FIELD BOUNDARIES MATRICES 

2Field Matrix [FA] for [k>(m/a) ] 

The solution of the characteristic equation (II-7) 

will be given by equation (II-8) where: 

' 
= ±/8(1Tjk+ e) = ± •.. (A-1.a)ft.1,2 Kl 

= ±I e ( 1T./k - e) = ± iK ..• (A-l~b)ft.3,4 2 

Rewriting the general solution of the differential 

equation in the exponential form,· it reads: 

+ + 

... (A-2) 

At the edge n = 0 , the state vector { <P } will be 
0 

• expressed by the deflection, slope, moment and shear 

components as: 

l <P 0} -

w 

w 

M 

1 

J= 

l 

Kl 

Al 

1 

-Kl 

Al 

l 

K2 

-A . 2 

l 

-K 
2 

-A2 

c l
1 

c2 

c3 

where 

Q *J / 

/ 

,KlA2 -KlA2 -iK 2A1 iK 2Alj c4 

••• (A-3) 

Al = 2 
Kl ve 2 

A2 = 2 
K2 ve 2 

A + 
0 

= Al A2 
e = ffi1T /a 
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Expressing the values of c 1 , c 2 , c 3 , and inc 4 

terms of the end conditions parameters, then, 

Al1 	 1( 	 w I
cl = 2A 

0 
A2w o + Kl 0 

+ M 
0 * + 

Kl Qo* 

Al1 	 w I + M 
1 

Qc2 = A2w o 	 * * 2A 	 Kl 0 0 Kl 0 
0 

A2 

= 

1 
Alw o + -.-w I - M * - ~* 
C3 2A 	 1.K2 0 0 1.K 0 

0 2 

1 A2 1
( A w - w - M.c4 = 2A 1 0 iK 0 0 * + iK Qo* 

0 2 2 

Introducing the values of c 1 , c 2 , c and c in the3 4 

general solution (A-2), we can express the end parameters 

at n in 	terms of end parameters at n to be: 
0 

Aw = ( A ·cosh K1 n + A1 ·cos 
o 	 n 2
 

A1 A2 

.+ (-•sinh K1 n + -·sin K n ) •W 

2 0 
I 

Kl 	 K 2 

+ cosh K1 n - COS K 2 n ) •M * 
0 

+ (~ •sinh Kn - ~•sin K2 n )•Q * 
Kl 1 	 OK2 

•.. (A-4) 

Aw ( sinh 	 sin K2 n ) •w 
o n 

I = A2Kl Kln - AlK2 	 0 

+ ( Al cosh Kln + A2 cos K2 n ) •w 
0 

I 

+ ( Kl 	 sinh Kln + K2 sin K2 n ) •M * 
0 

+ ( cosh Kln - cos K2 n ) • Q 
0 
* 

••• (A-5) 
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A M * = 
o n 

A 
+ 	 (_l(K 2 


Kl 1 


+ 

+ .!.._(K 
2 + ve 

2 )sin K n] ·Q * 
K 2 	 2 O2 

••• 	(A-6) 

\ 2 2 	 2 2+1A [K - (2-v)6] coshK n - A [K + (2-v)6 ]·
1	 1 1 2 2 

1cos K 2n} ·w 
0 

( 2 2 	 2 2+lKl[Kl - (2-v)6] sinhK 1 n - K [K + (2-v)6 ]•2	 2 

sin K2 n}·M 
0 
* 

! 2 2 	 2 2+ l [Kl - (2-v)e] cosh K n + [K + (2-v)e] •
1 2 

COSK n J • Q * 2 0 

••• 	(A- 7) 

Refering to equation (II-20) relating the state vectors at 

both edges of the field, 

\ <P ~ = [F] ~ <P 1 ••• (A-8)
n o 

Arranging the obtained equations for the boundary parameters 

at n in terms of the boundary parameters at n in a matrix 
0 

form we get: 



2 ..Field Matrix [FAJ for [k >(rn/a.) ] 

A2e:2 + Ale:4 

A2$le:l - All32t:3 

A = 1 . 

A 

0 

AlA2(E2 - E4) 


2 2

~2 13 1E1 +Al 13 2E3 

where: 

131 = le (nlk' + e ) 
13 = /ecn/k- e) 
e = ffiTr /a. 

Al A2 
8 e:l + 8 €:3 

1 2 


Alt:2 + A2t:4 

A 2 A 2 

1 2
rs i - -13-e: 3 

1 2 


AlA2(t:2 - E4) 


S2 - E4 
< 

l31El + l32E2 

Alt:2 + A2i::4 

A2l3le:l - AlS2 2 3 


1

S e:l - !_ E3 


1 132 


e:2 - E4 

••• (A- 9) 
Al A2 

Si::l + S 2 3


1 2 


A2t:2 + Alt:4 


e: 1 = sinhl3 1 n Al = 13 1 - ve 

2 2 
= coshl3ln = 13 + veE2 A2 2 


13 2
e: 3 = sinl3 2 n A = Al + A2 = Sl 
2 

+
0 2 


e: 4 = cosl3 2n 

2 2 


l.D 
~ 
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2Field Matrix (FB] for (k = (m/a) ] 

The solution of the characteristic equation (II-7) will 

be given the equation (II-8) where: 

A1 , = ± /e(e +e)' ••• (A-10.a)2 

= 0 •.. (A-10.b) 

where 8 = mrr /a 

The general solution of the differential equation 

is rewritten as: 

... (A-11) 

Expressing the state vector { <r? } in terms of the 
0 

derivatives of the deflection formula, then, 

1
1 1 1 1 

rc1 

K8 -K8 0 1 c2f::. = 
2 2 2

8 (2-v} 8 (2-v} -8 \) 

2 2 

M * 
2K•8 •\) -K8 \I 0 c4-e :2-v~ lc3

lo:• 
... (A-13) 

Proceeding same as in case of matrix (FA], the terms 

forming the Field Matrix [FB] are given by: 



•
Field Matrix [FB] for [k = (m/a) 2 ] 

2 + v(s
2 

- 1) 

S•v•s·l 
B = 1- . 

2 

2 . 
ve (2-v) (s 

2 
- 1) 

2 2 
v 6 Ss

1 

where, s = en 
6 = mn /a 

2-v 
nv + -S-sl 

(2-v) s + v
2 

2 
8 2[(2-v} 2]

S sl-v.n 

2
v6 (2-v} (s - 1)

2 

s = sinh1 

£ == cosh2 

1-(s - 1)
62 2 

-

s 
2sl 
6 

(2-v}s + v
2 

Svsl 

Sn 

Sn 

1
-(s - Sn)
628 1 

1
-(s - 1)
62 2 

••• (A-14) 

2-v 
nv + -8-s 1 

2 + v(s - 1)
2 

ID 

O'\ 
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Field Matrix [Fe] for [O<k<(m~) 
2 J 

The solution of the characteristic equation (II-7) 

will be given by: 

Al,2 = ±/e(e + 

>--3,4 = ±le (e -
The general solution of 

rrlfJ = ±Kl ... (A-15.a) 

rrfk) = ±K ... (A-15.b)
2 

the differential equation is 

rewritten as: 

Expressing the state vector{~} in terms of the 
0 

derivatives of the deflection formula, then: 

1 1 1 1 

= 

... (A-17) 

where 

2\) e2 + (2-\1) e= 
. 2 2\) e + (2-v) e= 

- K2 
2 = 2errlk= 

Proceeding same as in case of Matrix [FA] , the term~ 

forming the Field Matrix [F0 ] are given by: 



--
--

2 ... 
Field Matrix [Fe] for [O<k((m/a) J 

cl c2. 
-(C2t:2 - Clt:4) BEl - BE3 

1 2 

Clt:2 - C2t:4-(f31C2t:l - f32Clt:3) 

1 .c = c 
0 

c 2 c 2 
1 2 

-s-E 1 - -s-E 3-ClC2(E2 - E4) 
1 2 

2 2 
-c1c2<t:2 - E4)61c2 El - 62C1E3 

where 

E2 - E4 

f31El - f3 2 E 3 

Clt:2 - C2E4 

-(SlC2sl - f32Cls3) 

s
1 

= /e(e +n/K) El = sinh s 1 n cl = 

s 
2 

= le (e -Jrfi) €2 = cosh s1 n c2 = 

8 = mn /a s·
3 = sinh s 2 n c 

0 
= 

€4 = cosh s2n 

1 1-E - -E 
f31 1 82 3 

E2 - E4 

. .. (A-18) 

cl c2 
8El - Se:3 

1 2 

-(C2s2 - Cls4) 

f3 2 
1 

- v62 

f3 2 - v82
2 

cl - c2 = s 2
1 

- s 2
2 

l.D 
CD 
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Field Matrix [FD] for [k=O] 

The solution of the characteristic equation (II-7) 

will be given by the equation (II-8) where: 

= + e ••• (A-19.a)"1 j 2 

= - e ... (A-19 .b)'-3,4 

The general solution of the differential equation 

(II-2) is rewritten as, 

w(n) = Cleen + c2een + c3e-en + c4e-en .•. (A-20) 

Expressing the state vector {~ } in terms of the 
0 

derivatives of the deflection formula, then: 

1 1 0 0 cl
: 0.1 

e -e 1 1 c2l. 
2 3 e (1-v) e (1-v) , 2e 2 

-20
2 J cM:*/ 

= 

3 3 2 2-e (1-v) e (1-v) e (1-v) e (l+v) c:JQ * 
0 

..• (A-21) 

Proceeding same as in case of matrix [FA], the "terms forming 

the Field Matrix [F ] are given by:0 



Field Matrix [F ] for [k = 0 ]0 

2 E 2 ·- 6 T)\) 1E1 

D.= 
12. 

-e (enyE 2 -

3 2 
-e nv 1 El 

v 2 E1 ) 

s 
:s:: ;=
(") r
:S:: en 
~$ 
-I fTl 
rri $ 
::0 0 
c ::0 
z l> 
<' 
'f11 r 
?J co 
-~ ::0 
·-l l>
-< ;o 

-< 

where 

3 2 
e [env

1 
E2 -

e 

\) 1 

\) 2 

v1 C2+v 2 )E 1 J 

== m v' a 

= 1 - \) 

= 1 + \) 

1 
e<envlE2 + "2 6 1) 

2E 2 + 8Q.VlEl 

e[env
2 
~+ v (2+v )E 1 J1 1 2 

3 2 
-e Elnv 1 

·-· 

El 	= sinh en 

= cosh enE 2 

n 
eE1 

1 
S(8nE2 + El) 

-

2E + env e:2 1 1 

- . 

-e(env E - v )
2 

E
1 2 1 

1 ~ 

3(BnE2 - e:l) 
e 

n 
SE 1 

··---i 

1 
9<env1E2 + "2s1) 

2E 2 - env 1 El 

·--' 

•.. (A-22) 

I-' 
0 
0 
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Field Matrix [FG] for [k<O] 

The solution of the characteristic equation (II-7) 

will be given by the equation (II-8), where, 

± B ;t lE: ••• (A-23. a)>.1,2 == 

-= ± 13 + i E: ... (A-23.b)A3,4 

where, 
' 

13 = ~8 d8 2 + 1T2k + 8) 

E: = ~8 (J 8 2 + 1T2k 
I 

- 8) 

The general solution of the differential equation (II-2) 

is rewritten as: 

c (8+ie:)n + C2e-(8+ie:)n + C3e ( 8-iE:) n
w ( n) = le 

... (A-24) 

Expressing the state vector {¢ } in terms of the 
0 

derivatives of the deflection formula, then, 

w 
0 

w I 

0 = 
M0 * 

Q
0 
* 

where, 

1 1 1 1 


S+iE: - ( 8+iE:) 13-iE: -(13-iE:) 
 l~1 
N2 N2 -N1 -N1 

C3J 
(8+iE:) •N1 -(S+ie:)•N - (8 ... iE:) •N (13-iE:) •N C4l 2 2 

•.• (A-25) 

2= 2i8E: - 8 (1-v)N1 

= 2il3E: + 8 (1-v)N2 
2 

Proceeding same as in case of matrix [FA], the terms forming 

the Field Matrix [FG] are given by: 



----

Field Matrix [FG] for [(k<O)] 

2
~SlS2E4 - 8 VlEl 

s2G1E2 - .s1G2E3 

1
G = 

2SlS2 2 2 4 2
-(4Sl + 8 v1 )ElS2 

-[S (G1 8
2 

v + 2G2 S
2 

)E 22 1 1 

-S (G 8
2 

v - 2G S
2 
2 )E1 2 1 1 3 

2
where S1 = A8 c/8 + n

2k + 8) 

s 2 = 
;{ ft2~8(e 2' ·' 

+nk-8) 

8 = mn/a 

\)1 = 1 - \} 

~ (SlG2E3 + S2GlE2) 
0 

2 
2SlS2E4 +A. VlEl 

2 2 2
G[S 2 (G1 8 + 2G1 S1 )E 2v1 

0 

+ s (G 8
2 v - 2G S2 

2 )E ]
1 2 1 1 3 

2 2 4 2
-(4SlS2 + 8 vl)El 

= sinhS1 n·sinS 2 nEl 

£2 = sinhS n·cosS 2 n1
 

= coshS 1 n·sinS 2 n
£3 

E4 = coshS n·cosS 2 n1 

El :: 2:: 21~0(81'3 -


S1E3 + S2E2 

2
2S 1 S2 E + 8 v1 s4 1 

S2G1E2 - SlG2E3 

El 

2 
G(SlG2E3 

0 

+ S2GlE2) 

2S 1 S2 E4 

2
-8 \!lEl 

-

•.. (A-26) 

G1 1 
2 2 

1 = 2S - 8 v

G2 
2 
2 

2 
1 = 2S + 8 v

s 2)Go= Gl + G2=2(Sl2 + 2 

I-' 
0 
N 
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Field Boundaries Matrices 

The Field Boundaries Matrix is deduced by simple 

analysis from the Field Matrix. This analysis is repeated 

for every term of the Field Boundaries Matrix and for the 

five Field Boundaries Matrices corresponding to the five 

cases of the buckling factor k as given by (II-14). 

The Field Boundaries Construction given by Matrix 
/J 

(II-30), shows that if we consider the term f 6 of the6 
/::i f O· i- f f 5- i' o"' '~ ~-

Field Boundaries Matrix [FJ, this term is.corresponding to 

the case of a plate of free and clamped edges. 

Boundary conditions are: 

and w0 
1 = 0 n = o 

M * = 0 and Q1 * = 0 n = 11 

Introducing these boundary conditions in the state vectors 

formula we can write: 

wl 

wl 
I 

= 
0 

0 

f 11 f 12 f 13 f 14 

f 21 f 22 f 23 f 24 

f 31 f 32 f 33 f 34 

f 41 f 42 f 43 f 44 

0 

0 
•.. (A-27) 

M * 
0 

QQ)* 

The Matrix equation given by (A-27) , is written in 

the equation forms as: 

wl = f 13M o* + fl4Qo * 

I +wl = f 23M o* f24Qo* 


0 +
= f 33M o* f34Qo* 
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The nontrivial values of M * and Q are established by* 
the condition: 

f 33 f 34 
= 0 ... (A-28) 

f 43 f 44 I 

or, = 0 ... (A-29)f 33 f44 f43f 34 

Equation (A-29) gives the stability condition for 

the free-clamped edges of the plate case considered. 

The stability conditions gives the term f of the66 

Field Boundaries Matrix. 

The same procedure of deriviation is repeated for 

the different combinations of end condtions and for the five 

Field Matrices corresponding to the five cases of the value 

of k given by equation (II-14). 

The Field Boundary Matrix is '6.r:rived at te he a 

6 x 6 ) Matrix, symmetrical about the secondary diagonal. 

A simple treatment is illustrated by (A-30) and was first 

applied by Nassar, (8], (9] reduces the Matrices to ( 5 x 5 ) 

Field Boundary Matrix. 

This analysis is the simple addition of columns 3 

and 4 giving column 3 instead and the mean vaiue of rows 

3 and 4 giving the row 3 instead. This is due to the 

equivalence of columns 3 and 4, and rows 3·and 4. 
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••• (A-30) 

L 

The Field Boundaries Matrices are given according to the 

values of k in sequence as in equations (II-14). 

/:, 2 
Abreviations in the Field Boundaries Matrix [FA] [k>(m/a) ] 

. s1 = le (rr fk + e) 

S2 = le (rr Jk - e) 

63 = 61/62 

S4 = 1/ 63 

=S5 S1·S2 


\) e2
Al = s1 2 
A 13 v e2
+= 22.2 

A 

0 
= Al + A2 


A1·A2 


e = mrr/a 


= sinh s1 n sin s2n 


= sinh s1 n cos s 2 n 


= cosh s1 n sin s 2n 


= cosh s1 n cos s2n 


= 1 - e: 4 



0 

Field Boundaries Matrix [~A] [k> (m/a) 
21 .. 

1 E3 £21 2 2 121 -(- - -) -[2·e:-:-2[ (A2-Al). e:S2[ 2Al2 + (A2 + Al) ·e:4 A(Sl e:2 + S2e:3) A2 SAo S2 SlAo A0 

2 2 
+ (S3A2 + S4A1) •sl] +<s3-S4) ·s11+ (S4A1 2 - S3A2) E 1 

2 2 
1 Al A2 2 Al A2 E: 1 
~{-•s - -·e: ) -(-· e: + -· E: ) = A(l,4)e: 4 

0
s2o S1 2 S2 3 A ;Sl 2 3 SS 

1 11 
l- 2[ 2Al2°sS I = 0 • 5A ( 2 I 3 ) I = 0 • SA ( l , 3 ) 2[A12<A2 - Al) ·ss A(SlA2s3 - S2Als3)

A Ao0 
0 

3 3 
- (S3 2 + S4 l)·s1] 

1 2 2 
A7(82Als3 + 81A2s2) - 8 • e: 

s 1 
0 

2 2 
+(S4Al - S3A2) ·sl] 

= 2A ( 3 I 2) 

I ~ 
= A(2,2) I= A(l,2)-

I 
----------~---_J 6 

I 

I1 2 2 4 4 
2[2A1A2 s + - s 4A1 ) • =A(4,l) I = 2A ( 3 I 1) I =A(2 1 l) I= A(l,l) 

CJ\ 

(8 3A25 
Ao £,j j 

••. (A-31) 




.., 
t:, 

Field Boundaries Matrix [FB] [k = (m/:t) 
2 J 

, 

\) 

+ Sl)c - - (v y2 2 

81 2 2 
- (v - ·<P - n·v c)2 2 

82" 
-- (v v •y - S •v)2 1 2 1 

83. "2 
•S-

2 

84\12 2 • y)- (S ·v - v2 1 2 

- <P 

c 

s1 
-
n 

~---

0 

= B(4,l) 

2 -
2 (Sl + "1Y ) 
s 

n·vc +v ·ct> . 2 

1 + v(v 2 ·y + s 1 ) 

= 2•B(3,2) 

2•B(3,l) 

1
-(we - <P)
s2 

n. cp 

= 0·5 B(2,3) 

--

= B(2,2) 

= B(2,l) 

1 1
--(-y + -) 
S282 " 

= B(l,4) 

= 0•5 B(l,3) 

= B(l,2) 

= B(l,l) 

I-' 

... (A-32) -....) 
0 
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6 

Abreviations in the Field Boundaries Matrix [FB] [k = (m/et)2] 

B = 2J6 

e = ffi TI /a. 


= e • nv//2 


(1-v)\11 = 


(2-v)
\)2 = 


c = cosh Bn 


s = sinh Bn 


Bl = o·s 


y = c - 1 


~ = s/B 




.. 
t:,. 

2
Field Boundaries Matrix [Fe] [O<k< (m/2') J 

1 
-2 [- 2Cl2 
c 

0 

+ 
2 

(Cl + 
2 

C2 ) e:4 
1 
c-<S1·e:2 

0 

- S2·e:3) 
-2 
-2[C3·e:5 
c 

0 

1 e:3 
-(
c2 s1 

0 

< 

e:2 - -) 
s 1 

1--[2. s 
c 2 5 

0 

l 
- c •e: ]

4 1 
+ (S3C2 + S4C1) •e:l] + (S3 +S4) e:l 

-

2 2 
2 cl c21 cl c2 e: . -(-· e: - -· e: ) 

e: 

S5 

1 
1= c ( 1, 4) I-(--·e: - --·e: ) C s 2 34G s 2 s 3 0 1 s20 1 2 

I 

I 
1 = 0·5 C(2,3) = O·SC(l,3)1~[ (Cl2 •Cj • e: 5) ~ ' s 2c1 e: 3 - s 1c2 e: 3 >I + · ~ 2 [ 2c12 • e: s 

Gc 0 

3 3 + C4;e:l]+ (S3C2 + S4C1 ) e:l] 

1 2 2 = 2C(3,2) = C(2,2) = C(l,2)
c-<s2c1 e:3 - 61c2 e:2) S5·e:1 

0 

2 2 f-'= C(4,l) = 2C (3 I 1) = C(2,l) = C(l,l)~[2·Cl e:C2 5 
Co l.D 

4 4 
+ (S3C2 + S4C1 ) e:l] 

0 
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/::, 2 
Abbreviations in the Field Boundaries Matrix [Fe] [O<k<(m/a) ] 

= / 8 ( 8 + 1T /K)Sl 

= / 8 (8 - 1T /k)S2 

S3 ::: S1/S2 

S4 = l/S 3 

S5 = S1·S2 

c = cl c2 

\) 8 2 cl = s1 2 
2 \) 6 2 c2 = S2 

C3 = cl + c2 
2•CC4 = S3 c2 2 + S4 1 

c12 = cl c2 

£1 = sinh s n··sinh s 2 n1

£2 = sinh s1 n·cosh s2 n 

£3 = cosh s1 n·sinh s2 n 

£4 = cosh s1 n·cosh s2 n 

E::5 = 1 - E::4 

6 = mn/a 



----

--

6 
Field Boundaries Matrix [F J [k = OJ

0 

2 
vl vlv3 

l+ -·E + --·E4 5 4 1 

v 18 
-2- (E:6 + \J3E:3) 

82 
4(vlv2v3E:l 

3 
- VlE:S) 

83 . 
2\Jl (V3E:3 - E:6) 

t-------

8 
4 2 2 

4·v] (v3 8 1 -
2 

VlE:S) 

'---- ...... 

1 E3 
-(n + -)
2 8 

E 2 

8 
2<v2 8 3 

- \)1 E:4) 

28 • E: 
1 

= D(4,l) 

n2 
-(v

2 1 
+ v 

2 

El 
·-)

ES 

1 
e<E:6 + v2·E:3) 

. 1 . 2 
1 - 2(E5\Jl 

2 
- \)2E:l) 

= 2 D(3,2) 

= 2 D(3,l) 

m e3 
-(- - 1)

82 E
2 4 

- E 
1 

~ 

= 0 5 D(2,3) 

= D ( 2 I 2) 

= D(2,l) 

ffi2 El 
-(- - 1)
482 E:s 

= D(l,4) 

= 0 5 D(l,3) 

= D(l,2) 

= D(l,l) 

t--' 
t--' 
t--' 

•.. (A-34) 
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!'::. 

Abbreviations in the Field Boundaries Matrix [FD] [k = O] 

e 	 = mn/a 

1 	 \)\) 1 	 = 

\)\) 2 	 = 1 + 

\)\) 3 	 = 3 + 

El 	 = (sinh E4) 
2 


= (cosh E4) 
2 


E2 


E3 = 1E1"E2' 


= en.
E4 

62112ES = 


E6 = \il"E4 = v 1 ·e·n 




~ •· 
Field Boundaries Matrix [FG] [k<O] 

E El vl .X 2 ~ 
 1 G2 Gl 1 
 1 1 4 
 l~+-£ + 2) -(- - -) I
G[Gle:S + G2e:2 + --2 c;(2e:4 + 2s1) G( 6 2s3 - 61 s6)2 6 2 61 
 2G 6 2 6 2 I
0 3
. o 6 6
2 1 
 0 
1 2 I 


G2 Gl 

(82•e:4 + 2·s1)] 


2 13 1 


1 
 2
2 

= G(l,4)c;(e:l + €4)


3 

c;<S2E7E3 - Sle:8e:6) €1 + €5 G(SlG2e:6 + 

03 


J 
I 


62Gls3) 

2 

1 Gl 2 
 1 Gl 
 1 Gl ~ 0 G(l,3)15
1 + c;(2e:1 I = 0 5 G(2,3)~(2E7El + 2€8E4) 2(ss3

1
o 6 6
 o1 2 
 s1 

G2Gl 2 
- -e: ) - -· € )
61 6 
 62 4 


2 

1 E7 . E8 G 

0 = 2G(3,2) = G(2,2) = G(l,2)2(El + E4) 

1 2


2(se:3 + se:6) 

----I 
2 2 


1 E7 E8 

--(-•e: - -·s ) = G(4,l) = 2G(3,l) = G(2,l) = G(l,l)2G 2 1 2 4 


f-'0 6 6

f-' 

--- ---------- --------- w 
1 2 
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Abbreviations in the Field Boundaries Matrix [FG] [k<O] 

2=J~(Jo 2 + k 
1

+ o)1r 

=)~do 2 
+ 1T 

2k' - 6) 


= 13 1. 13 2 


e = ffiTI/a. 


= 1 	 - v 


2 2
 = 213 - 6 (1-v)
1 
2 	 2 = 213 + 6 (1-v)
1 


Go = Gl + G2 


G3 	 = Go·i312 


= (sinh 


= (cosh 

E = sinhB 1 n·coshi3 1 n3 


= (sini3 2n) 2 

E 4 


2
Es 	 = (coss 2n) 


= sini3 2n•cosi3 2n
E6 


= 2s1
2 nG 2 + v 1 6 

2 

E 7 G1 


E8 
2 2G2 
= 2B 2nG1 v1 6 
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APPENDIX B · 


Table (3) 


Buckling Load on Test Specimens 


Group A 

Symbol Load lb. 

442Al 

lSSO ..
A2 

6120A3 

61SOA4 

703SAS 

9700A6 

A7 

lllSOAS 
" 

. A9 

AlO 

12 sooAll 

Group B .. Group C 

·LoadSymbol LoadSymbollb. lb. 

Bl 

B2 

B3 

B4 

BS 

B6 

B7 

BS 

Bg 

BlO 

Bll 

30 

160 

4SS 

43SO 

4SSO 

6S40 

S400 

cl 

c2 

C3 

C4 

cs 

c6 

C7 

Cs 

c9 

ClO 

c11 

o.o 

2S 

90 

40SO 

ssoo 

7SOO 

Al2 --- Bl2 --- c12 9210 

Al3 13°3SO Bl3 136SO c13 13SOO 

Al4 11000 Bl4 l] 600 c14 lC soo 

AlS 9900 BlS lC: 400 c1s 10 100 

Al6 7900 Bl6 s.soo cl6 S300 
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