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SCOPE AND CONTENTS: 

A general,consistent,nonlinear theory "for open 

thin-walled elastic beams is presented. The theory takes 

into account geometric nonlinearities caused by large 

rotation of the cross section of the beam. The nonlinear 

differential equations of deformation·and response are 

derived by means of apolication of Hamilton's principle. 

It is found that the set of equations reduces to the results 

obtained by Cullimore and Greaory in the soecial cases of 

large uniform torsion of thin-walled members. A solution of 

a thin-walled beam, subjected to large non-uniform torsional 

deformation due to application of torques at the ends, is 

obtained. Comoarison is made on the torque - rotation 

characteristics of a thin-walled beam subjected to large 

uniform torsion and large non-uniform torsion to show the 

effect of end constraint from wa~ning. 
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A set of nonlinear equations to study the stability 

of a thin-walled beam of open cross section, under axial 

loading (s~atial stability) and lateral loading (lateral 

stability), is oresented. Using the derived equations, the 

dynamic stability of thin-walled beams of symmetrical and 

monosyrnrnetrical cross sections subjected to axial loads,is 

investiqated. The regions of parametric instability, the 

steady state amplitudes of oscillations, once parametric 

instability takes place, and the non-steady state solutions, 

to show the growth of the parametric oscillat~ons, are carried 

out. 

The effect of viscous damping on the steady state 

amplitude and the growth behaviour of the parametrically 

excited oscillations is shown. The dynamic stability of 

a thin-walled beam of symmetrical I section and a 

monosymmetrical split rinq section are worked out in detail 

as examoles. 
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tHAPTER I 


INTRODUCTION 

1.1. Preamble 

Thin-walled structures are classified as bodies that 

have the form of a long nrisrnatic shell. These bodies are 

characterized in that their three dimensions are all of 

different order of magnitude. The thickness of the shell 

is small cornnared with other characteristic dimensions of 

the cross section. The cross sectional dimensions are small 

compared with the length of the shell. Thin-walled elements 

are classified further if they are of open or closed cross 

section. 

Thin-walled elements are widely used in trusses, 

bridges, aerosoace structures and many other areas of engineering 

design. An open thin-walled section, in general, has large 

flexural rigidity which makes it an efficient structural 

element to resist bendin0. However, it has relatively low 

torsional rigidity. Unless the applied loads pass through 

the line of shear centers of the beam, both flexural and 

torsional deformation occur. Due to its inherent low 

torsional rioidity, lar9e rotations of the cross $ections of 

the beam may occur. It is likely that thin-walled beams 

will be used more often as the imoroved fabrication techniques 

in metals, made it possible to form thin-walled members of 

various shapes of cross section such as channel, I, Zand 

thin-walled aerofoil sections. Thus, a more detailed 
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exaMination of the behaviour of such structural elements, 


taking into account the geometrical nonlinearity caused by 


large rotations of the cross section, is desirable. 


· 1.2. Literature Review 

There is a large volume of literature on the 


behaviour of open thin-walled elastic beams. Most of the 


literature is concerned with small deflections and rotations 


of the member. For clarification, it is convenient to 


sub-divide the literature on thin-walled beams into the 


following categories: 


~L_J.ing_~~eformational_J\na.:!_vsis Under Static _Loa92_ 


Under the action of static load, a thin-walled beam 

may deflect and rotate. Such deformations are accompanied 

by a state of strain and a state of stress. Linear analysis 

is concerned with small deflections and rotations of a 

thin-walled beam subjected to static loads. It predicts 

deformation, strains and the state of stress in the member. 

Thin-walled beams subjected to static loads may respond in 

different ways depending on the character of the applied 

load and geometrical confiourations of the beam. The 

resoonse of the member takes the form of flexural deformations, 

if the aoolied load passes through the line of shear centers 

of the beam. However, when the load does not pass through 

the line of shear centers, both flexural and torsional 

deformations occur. As torsional deformations take place, 
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plane sections do not remain plane and warping of the 

section may develop. If warping of the thin-walled beam is 

prevented, additional axial strains are created and the 

beam is said to be in the state of 11 non-uniform torsion 11 
• 

The concept of non-uniform torsion was introduced by 

Timoshenko [49]*. He considered warnin0 of the cross section 

of a symmetrical I beam subjected to a twisting moment. 

Theories of bending and torsion were studied by Goodier [21], 

Timoshenko and Gere [51]. Extensive study of the hehaviour 

of thin-walled members was condensed in book form, in 

Russian in 1958, by Vlasov and translated into English in 

1961 [54]. 

(b) Linear Stability Analysis Under Static Loads 

Thin-walled beams suhjected to static loads may los~ 

stability in different ways. Under the action of axial 

loads, local bucklina or overall buckling of the member may 

take olace. The overall buckling may take the form of 

flexural, torsional or couoled flexural torsional type of 

bucklinq. Under the action of lateral loads, the member 

may lose stability due to lateral buckling. Lateral buckling 

again may take the form of flexural, torsional or coupled 

flexural - torsional type of buckling, The type of buckling 

depends on the point of annlication, direction of the load 

and the aeometrical configurations nf the thin-walled cross 

*Numbers in parentheses refer to entries in the Bibliography. 
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section. Linear stabilitv analvsis oredicts. the critical
~- .,. 

load corresoonding to bucklino of the member. The elastic 

stability bf thin-walled beams was investigated by 

Timonshenko [49,51], ~fliiger [46], Bleich [4] and Vlasov [54]. 

The effect of axial stress on the torsional bucklin9 of 

thin-walled beams was studied by Goodier [21] and Biot [2]. 

It was shown that the torsional rigidity of the member is 

increased if the beam is under tensile stresses. On the 

other hand, compressive stresses reduce the torsional 

rigidity of a thin-walled beam. 

~___Q-~_form5!__ti ona 1 .Ana 1 vs is Under Static Loads 

Due to the fact that thin-walled members are weak 

in torsion, studies have been carried out to take account 

of nossihle large rotation of the cross section of the beam. 

In particular, the behaviour of a thin-walled beam subjected 

to static twistinq moments aoplied at the end cross sections, 

has been studied by Cullimore [11] and Gregory [23,24]. 

Cullimore considered the case of uniform torsion of a beam 

of narrow rectangular section and I section, subjected to 

static end moments. Gregory extended the study of uniform 

torsion to cover a beam of monosymmetrical angle sections. 

They showed that if large torsional deformation was 

c o n si dered·; · t he to r s i on a 1 a n d 1 o n q i tu di n a l d e f o rma t i ons a r e 

coupled to9ether. Such coupling is known as the "shortening 

effect 11 
• The name was derived from the fact that when a 
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thin-walled beam is subjected to eoual and opposite torques 

applied at jts ends, the end sections tend to approach 

each other due to the torsional and lonqitudnial coupling. 

This coupling is nonlinear in nature and is usually neglected 

in the linear analysis of the problem. 

(d) Linear Response Analysis Under Dynamic Loads 

Thin-walled beams subjected to dynamic loads may 

respond in different ways deoending on the character of 

the applied load and the geometrical configuration of the 

thin-walled beam. The resronse of the member may take 

the form of flexural, torsional or counled flexural - torsional 

type of oscillations. The coupled frenuencies of free 

vibrations for thin-walled beams of monosymmetrical cross 

section, were determined by Gere and Lin [19,20] for various end 

conditions. Vibrations of thin-~alled beams when subjected 

to dynamic loads were discussed by Vlasov [54]. The 

effect of shear strain due to bending and warping of the beam 

was included by Tso [53]. He consldered torsional deformations 

in addition to bending and shearing deformations. This 

approach can be considered as a "Timoshenko beam theory" 

analogy for thin-walled elements. 

{e) Linear Stability Analysis Under Dvnamic (Periodic) Loads 

Under dynamic, periodic, axial loading a thin-walled 

beam may lose stability at load values much smaller than the 

static critical load, depending on the frequency of the 
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loading. It is known that there exists a number of 

fr~quency ~anges in which the beam can be excited into 

lateral oscillations. This type of loss of stability 

is commonly known as oarametric instability or dynamic 

instability of the beam. 

The ranges of frequency, under which parametric 

instability can take nlace, depends on the natural fr~quencies 

of the beam and also on the amplitude of the dynamic load. 

Therefore, in parametric stability st~dies of systems, it 

is convenient to refer to conditions under which parametfic 

instability occur to olots in the applied load amplitude 

and applied load frequency soace. The regions in the load 

amplitude - load freauency space that corresponds to possible 

oarametric instability of the system .are referred to as 

unstable regions. The unstable region, located in the 

neighbourhood of the applied load freauency equals twice 

the natural frequency of the system, is referred to as 

the"nrincioal unstable reqion". it is in this region that 

the system is most susceptible to parametric instability. 

The study of linear oarametric stability analysis consists 

of the determination of the locations of the unstable 

regions, and in particular, the "orincioal unstable region". 

For a system which has more than one sinale natural 

frequency,- such as thin-walled beams, there is a number of 

"princioal unstable reqions". For each natural frequency, 
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there exists a princioal unstable region that corresponds 

to it. 

Literature on the paremetric stability of mechanical 

and structural systems were reviewed by Evan-Iwanowski [18]. 

In particular, the parametric stability of thin-walled 

beams was given by Bolotin [6]. Usin0 Vlasov's thin-walled 

beam equations) Bolotin constructed the boundaries of the 

principal regions of parametric instability for a thin-walled 

beam of symmetrical and monosymmetrical cross sections. 

It can be seen that most work on open thin-walled 

beams are based on the linear theory of thin-walled beams. 

The need for a nonlinear theory of thin-v•alled beams arises 

in many aspects of study. Due to the low torsional 

riqidity of open thin-walled beam, rotations of the beam 

cross section cannot be considered as small in qeneral. 

The effect of large twist on the warping stress need to be 

studied. Such a nonlinear theory would generalize the 

work of Gregory [25] which has been verified experimentally. 

Nonlinear behaviour of the response of a thin-walled beam 

durinq coupled flexural - torsional type of vibration was 

observed exnerimentally by Tso [52]. Theoretical explanation 

of the nonlinear hehaviour is yet to be investigated. In 

the static stability analysis, the linear theory of Vlasov 

becomes inadeauate in the· study of post buckling behaviour 

of the member. In the rarametric stability analysis, it is 
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necessary to include nonlinear terms in order to oredict 

bounded resronse and to establish the steady state amplitudes 

of vibrations once the system is excited into the parametric 

resonance. The need for nonlinear terms arise because a 

linear theory aredicts unbounded response once parametric 

instability sets in. Unlike in forced vihration studies 

inclusion of viscous damninq terms in the linear analysis 

does not predict bounded responses. 

Recent attempts have been made [3, 15, 17, 47] to 

develop a nonlinear theory of ooen thin-walled beams. 

However, the geometrical nonlinearities under consideration 

were not introduced in a systematic manner in the analysis. 

Therefore~ the resultinq theories are either too 

complicated to use or they are of inconsistent order of 

approximation. Therefore, there is a need for a nonlinear 

theory of thin-walled beams of ooen cross section which is 

consistent and relatively simple to aonly. 

1.3. Statement of the Problem 

This thesis is concerned with the derivation of a 

general ,consistent,nonlinear theory of thin-walled beams of 

open cross section subjected to time dependent loads. Due 

to the low torsional rigidity of open thin-walled beams, 

rotations of the cross section cannot be considered as 

small in qeneral. In other word~. if the torsional 

deformations are taken to be of the order E , where E < 1, 
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then it is reasonable to consider the flexural deformations 
2to be of the order € This assumotion was found to be• 

justifiable due to the fact that the flexural rigidity of 

a thin-walled member is large as compared to torsional 

rigidity. Treatinq torsional deformational quantities as 

of orders , wheres< l, and flexural deformational 
2quantities as of order s , terms retained in the formulation 

are such that the resulting equations of motion (or 
3equilibrium) contain terms up to an order of s . Thus, 

products of torsional deformations and products of 

torsional and flexural deformations are retained in the 

final expressions. However, oroducts of flexural deformations 
4are neglected, beinn treated as terms of order s or higher. 

Only a consistent third order aooroximation was maintained 

throughout the derivation. Therefore, the nonlinear theory 

is accurate for large rotations, but essentially linear in 

the longitudinal and flexural deformations. The present 

theory is different from orevious formulations in that the 

effect of large rotations and coupling between axial 

shortening and torsional deformation is taken into account. 

The present ~poroach starts from the nonlinear shell theory 

of elastic shells. By means of special assumotions, the 

theory can be reduced to a theory to renresent the behaviour 

of thin-walled beams. The energy formulation is adopted in 

the derivation. Such an aooroach has two advantaqes. 
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Firstly, ener~y exnressions obtained during formulation are 

useful for the direct application of approximate variational 

methods, such as the Rayleigh-Ritz method of solution. 

Secondlv, a set of boundarv conditions, of c6ns1stent order 

of approximation, is obtained. The energy aooroach consists 

of formulating the strain enerqy, work done by external 

forces and kinetic eneray. Aoplication of Hamilton's 

orinciole leads to the governing set of nonlinear differential 

eauations and the associated boundary conditions. The 

nonlinear deformation eauations in the simnlest form reduce 

to Greqorv's formulations. The nonlinear deformation theory 

was then anolied to the case of non-uniform torsion of 

thin-walled beams. An example of a cantilever thin-walled 

beam of symmetrical I section, subjected to end twistinq 

moment is worked out in detail. 

The second part of this research is the formulation 

of a general ,consistent,nonlinear stability theory. The 

problems considered are 11 bifurcation 11 tyoe of stability 

problems in which other forms of eauilibrium, different from 

the precritical shape, become possible. The stability 

study is further divided into cases of axial stability and 

lateral stability. Axial stability problems refer to the 

class of problems where the structure losses stability 

under axial loading. Lateral stability nroblems refer to 

the loss of stability of the beam under lateral loading. 
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The eneray approach is used again to formulate the nonlinear 

axial and lateral stabilitv theories. The nonlinear 

stability ~heory is then apolied to study the parametric 

stability of thin-walled beams ~ubjected to axial dynamic 

(periodic) loads. The case of a simoly supported thin-walled 

beam of symmetrical I section and the case of a thin-walled 

beam, of built-in ends, of monosvmmetrical split rinq section, 

are considered. In each case, the principle unstable regions 

are determined. In addition, the steady state amolitudes 

of parametric oscillations are found and the nonsteady 

state solutions are worked out which show the growth of the 

amplitudes of vibrations. The influence of viscous damping 

on the steady state amplitude and the growth history of 

the amplitude of vihration is also given. 



CHAPTER II 


GENERAL CONSISTENT NONLINEAR DEFORMATION THEORY OF OPEN 

THIN-WALLED ELASTIC BEAMS 

2.1. Introduction 

In this chapter, a nonlinear theory of thin-walled 

beams of open sections is formulated. Some attempts have 

been made to introduce nonlinearities into the theory of 

thin-walled beams of open sections [3, 15, 17, 47]. The 

nonlinearities, however, were not introduced in a 

systematic manner. Therefore, the resulting theories 

are either too complicated to use or they are of 

inconsistent order of approximations. 

In order to develop a nonlinear theory which is 

sufficiently accurate to describe the behaviour of the 

open thin-walled beam and yet relatively simple to apply, 

it is necessary to examine more closely the basic 

characteristics of the thin-walled beam. Fundamentally, 

a thin-walled beam of open section possesses large 

flexural stiffness, but small torsional stiffness. A 

simple example will illustrate this. Consider a beam of 

standard channel section of 10 11 x 2 5/8 11 x 15.3 lb/ft. 

The length of the beam is taken to be 125 inches~ The 

beam is assumed to be built in at one end while the other 

end is free. A concentrated load P is applied at the 

free end in the plane of the major axis of the channel 

12 
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passing through the centroid of the section. Calculations 

of deformations based on Vlasov's theory of thin-walled 

beams [54], show that the anqle of twist at the free end 

is 61.87 10- 6 P, while the maximum slope of the deflected 

curve is 3.89 10- 6 P. Thus, the angle of twist is in 

general much larger than the slope of the beam caused by 

bending action. One can generalize the argument to state 

that the torsional deformations are large in comparison 

with flexural deformations. In other words, if the 

torsional deformations are of the order e:, where e: < l, then 

it is reasonable to consider the flexural deformations to be 
2of the order e: • 

It is with this frame of mind that the nonlinear 

theory of thin-walled beams was derived. Instead of 

using the direct approach of equating internal and applied 

forces and moments to obtain the equations of motion 

(or equilibrium), the energy formulation was chosen. The 

indirect approach offers two distinct advantages. First 

of all, a set of boundary conditions was obtained. These 

conditions are of consistent accuracy with the derived 

equations of motion (or equilibrium). Secondly, with the 

energy expression readily available, it is possible to 

apply Rayleigh-Ritz type of technique to obtain approximate 

solution to the problems at hand. 

Starting from the nonline~r theory of elastic 

prismatic shells, the nonlinear thin-walled beam theory is 
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formulated by making special assumptions and neglecting 

terms of high order of smallness. Treating torsional 

deformational quantities as of order E, where E < 1, and 
2flexural deformational quantities as of order E ' terms 

are retained in the energy expressions such that the 

resultinq equations of motion (or equilibrium) contain 
3terms up to an order of E • Thus, products of torsional 

deformations and products of torsional deformation and 

flexural deformation are retained in the final expressions. 

However, products of flexural deformations are neglected, 
4being treated as terms of order E or higher. Therefore, 

the derived theory can be considered as a nonlinear theory 

of thin-walled members of open cross sections for large 

angle of twist. It takes into account the nonlinear nature 

of torsional deformations and the coupling between 

torsional and flexural deformations. However, the theory 

is "Linear" in bending deformations in the sense that it 

does not take into account large deformation of the beam 

due to flexure. 

2.2. Strain Enerqy ~~ession 

A thin-walled beam of open section can be treated 

a s a s p e c i a 1 c a s e o f a t h i n - wa11 e d pr i s ma t i c s he 11 . -Co n s 1 d er 

a prismatic shell and let the origin of the co-ordinate 

axes be placed at the centroid of the c~oss section. Axes 

OX and O~ are taken to be in the direction of the principal 
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-axes of the cross section while OZ toincides with the line 

passing through the centroids of the sections. The shell~ 

generator is then parallel to the OZ axis. The lines of 

principal curvature of the shell are orthogonal lines 

parallel and perpendicular to the generator, denoted by 

z and s respectively as shown in figure [l]. 

According to Love's first approximation, the strain 

energy density U of a thin elastic shell is given by [30]; 

u = u 
E 

+ u 
K 

( 2. 1 ) 

Ee 1 2 + )2= 2{1 - vZT [(Ez ES - 2 ( 1 - v)(EZES - 4Yzs)] 

Ec 3 2+ 24 ( 1 - \) 2 } [(Kz + KS) - 2 ( 1 - v)(KZKS - ,2)] 

(2.2) 

where 

u
E 

is the strain enerqy density due to stretching 

u
K 

is the strain enerqy density due to bending 

is the strain in the z directionEz 

is the strain in .the s directionES 

is the shear strain in the ZS planeYzs 

Kz is the change of curvature in the z direction 

is the chanqe of curvature in the s directionKS 

T i s the twist in the ZS plane 
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E represents the modulus of elasticity 

~denotes Poisson's ratio" 
c is the thickness of the thin-walled section 

In the strain energy density expression, the state 

of stress is assumed to be approximately plane. In other 

words, the effect of the transverse shear stress and normal 

stress acting on surfaces parallel to the middle surface 

of the shell are considered to be negligible. 

From the nonlinear formulation of thin shell 

theory, the strains are related to the displacements u, v 

and w by the ex9ressions [42], 

Ez: :~ + ~ ((;~)2 + c;~)2] (2.3) 

= au + av + av (av + ~)
Yzs as az az as Rs 

+ aw (aw 	 _ L) 	 (2.4)az as Rs 

a2 w d 
'[ = -+ (L) 	 ( 2. 5)asaz az Rs 

where 

u{z,s,t) is the longitudinal displacement along 

the z direction 

v{z,s,t) 	is the transverse displacement along 

the tangent of the profile line of the 

cross section 

w(z,s,t) 	is the transverse displacement along 

the normal to the tangent of the profile 
line of the cross section 
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Rs 	 is the principal radius of curvature of 

the shell 

The fundamental assumption in the theory of 

thin-walled beams is that the contour of the cross section 

of the prismatic shell is not deformable in its own plane. 

Thus, the displacements of the contour in its own plane 

consist of rigid body displacements only. The shape of 

the cross section is unchanged after deformation. Thus, 

the displacements of the cross section in its plane can 

be described by orthogonal displacements c and n of any 

point C in the plane of the cross section and a rotation 

e about the point C. The displacements c and n represent 

the lateral displacements of the cross section in the 

principal directions while e represents the rotation of the 

section. The displacements c, n and rotation e are 

independent of the co-ordinate s along the contour of the 

cross section. They are a function of z only. 

In the formulation of nonlinear theory due to 

large rotation, it is necessary to distinguish the deformed 

and the undeformed state. Two sets of co-ordinate axes 

are defined. The co-ordinate axes OX and OY, as shown in 

figure [2] , are along the principal directions of the 

cross section in the undeformed state. The OZ axis is in 

the z direction. The displacements of the cross section in 
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the OX and OY directions are denoted by ~ and n respectively. 

The second set of co-ordinate axes OX, oy and OZ is attached 

to the cross section and thus rotate with the principal 

directions. The two sets of axes thus coincide in the 

undeformed state. During deformation, however, OX, OY and 

OZ axes retain their direction in space while axes OX, OY 

and OZ will rotate with the cross section. The displacements 

of the cross section in the OX and OY directions are 

denoted by ~ and n respectively. In the present formulation 

bending deformations are considered small, namely rotations 

about the OX and OY axis are small. Therefore, in relating 

deformations the cosine of the angle between OZ and OZ axes 

is taken unity. 

The displacements along the undeformed axes are 

related to the displacements in the direction of the 

deformed axes by co-ordinate transformations using the 

direction cosines. 

The direction cosines for large rotation as shown 

in figure [3] can be written as: 

x -y -z 
x cos e sin e 0 

y -sin e cos e 0 

z 0 0 1 
-

(2.6) 


The transformation given by (2.6) accounts only 

for large rotation e, while slopes due to flexural 
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deformations are considered small. Therefore, the displacements 

along the OZ and OZ axes are taken to be the same. The 

curvatures in the X and Y directions can be related to the 

curvatures in the X and Y directions bY the relations 

I -II
E;, I - E;, cos e + T)-:- .. sin e ( 2. 7) 

n" = Ti" cos e - ~ 11 sin e (2.8) 

where ( ) ' a= az 

Consider a point a on the profile line of the 

cross section. The displacements of point a in the OX 

and OY directions E;,a and na can be related to the 

displacements of point C in the OX and OY directions by 

the expressions 

(y c~)(cos e - 1) (2.9) 

Ti + (x sin e + (y c y )(cos e - 1) (2.10) 

The displacements v(s,z,t) and w(s,z,t) of point 

a(x,y) represent displacements in the plane of the cross 

secion. Therefore, they can be expressed in terms of ~' n 

and e by the relationships, 

v(s,z,t) = ~(z,t) cos ¢(s) + ~(z,t) sin ¢(s) 

+ n(s)[cos e(z) - 1] + h(s) sin e(s) (2.11) 

w(s,z,t) = - ~(z,t) sin ¢(s) + ~(z,t) cos ¢(s) 

- h(s)[cos e(z) - 1] + n(s) sin e(z) (2.12) 
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where 1/! is the anqle between the tangent of the cross section 

at point a and the OX axis. 

h(s) = (x - ex) sin 1/! - (y - cy) cos 1/! (2.13) 

perpendicular distance from point C(cx, cy) to the tangent 

of the profile line at point a(x,y). 

n(s) = (x - ex) cos ~ - (y - cy ) sin ~ (2.14) 

perpendicular distance from point C(cx, cy) to the normal 

of the profile line at point a(x,y). 

Since the rotation e of the section is considered 

to be large (say e = 30°), it is necessary to use the 

approximations: 

e3 
sine~ e - (2.15)31 

e2 
cos e ~ 1 - 2T {2.16) 

The disµlacement u(s,z,t) can be expressed in terms 

of~' nand e by assuming the shear strain Yzs to be zero. 

This assumption was found to be acceptable when the beam 

is long; thus, 

= ~+ av +~ (!~ + ~)Yzs as ClZ az as Rs 

aw 
+ (~ - ~) (2.17)

Cl z Cl s Rs 

substituting expressions (2.11) and (2~12) into equation 

(2.17) and using the approximations (2.15) and (2.16), 
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there is obtained; 

u(s,z,t) = t(z,t) - [~' (z,t) + ~'(z~t)e(z,t]x(s) 

- [n'{z,t) - ~'(z,t)e]y{s) - e'(z,t)w(s) 

+ e2(z,t)e'(z,t) nR(s) (2.18) 

t(z,t) represents the overall longitudinal displacement of 

the cross section. nR and w are geometric properties of 

the cross section defined by 
s 

nR(s) = f {n2 + h2) dtjJ ds {2.19) 
Ofs ds 

w{s} :: h{s) ds {2.20}
0 

w(s) is commonly referred to as the sectorial area 

in thin-walled beam theory. 

Since the contour of the cross.section of a 

thin-walled beam is assumed to be non-deformable in its 

own plane, the strain and the change in curvature Es and Ks 

vanish. Also, in the theory of thin-walled beams the 

stretching effect is more important than the bending effect, 

it follows that the effect of the change of curvature Kz 

in the z direction is neglected in comparison with the 

effect of the longitudinal strain Ez. Neglecting Kz is 

equivalent to the assumption that the distribution of the 

normal stresses over the wall thickness is constant. For 

thin-walled beams, where the.wall thickness c is sm~ll, 
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this assumption is reasonable. 

The strain energy density from equation (2.2) can 

be written as: 

(2.21) 

where the strain in the z direction is derived from 

expression (2.3), as 

11e:z = z:' - (~" + n"e)x - (n" - ~ 11 o)y - e w 

(2.23) 

The nonlinear term in the twist expression {2.23) 
3is multiplied by c where the thickness c is small. 

Therefore, this term will be neglected due to the fact 

that it results in smaller terms than the adopted consistent 

third order approximation. 

The total strain energy for the thin-walled beam V, 

is then given as: 

- (n" - ~"e)y - e"w + ~ (n 2 + h
2

)e 1
2 

32+ n (e 2 e" + 2ee ' 2 )] + - Ee e ' 2 } ds dz (2.24)R 120 + v) 
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2.3. Work Done Expr~ssion 

Two types of external loads will be considered. 

Firstly, there are axial loads applied at the ends of 

the beam. Let the stress distribution over the end 

cross section of the open thin-walled beam in the z 

direction be denoted by p(s,t). Then one can define the 

longitudinal end load, end bending moments and bimoments 

by the following relationships: 

P(t) = [ c p(s,t) ds (2.25) 
s 

M ( t)
y 

=- [c x(s) p(s,t) ds 
s 

(2.26) 

Mx(t) = [c y( s) p(s,t) ds (2.27) 

M ( t)
w 

=s rc w(s) p(s,t) ds {2.28) 
s -

M x and M y denote the bending moments alonq the x and Y 

axes respectively. The bimoment is represented by Mw. 

The work done by the longitudinal stresses applied 

at the end can be written as: 
z=l!. 

WE = rc p(s,t) u(s,z,t)I ds 
s z=O 

l-}rc p(s,t) f (~'2 + n' 2 ) dzds (2.29) 
s O a a 

The displacements ~a and na can be related to the 

displacements of the point C, in the X and Y directions by 

using equations (2.9) and (2.10). Also, substituting 

equation (2.18) into (2.29), the work done can be written 



26 


as: 

WE= 	 [c p [r; - (~' + n'e)x - (Ti' - ~'e)y 
s z=l2 1- we' + nR e e ] I ds 

z=O 

2- ! 	f c PJfC~' - (y - c )e' - (x - cx)ee' )
s 0 	 y 

+ (;)' + (x - cx)e' - (y - cy)ee' )2} dzds (2.30) 

In addition, one can apply twistinq moments Mt at the ends 

also. The work done by the end torque is: 

(2.31) 

The second type of loading considered are loads 

applied along the lenoth of the beam~ Only lateral 

loads will be considered. Let q(z,t) be a laterally 

applied distributed load along the length of the beam. 

This lo~d can be always resolved into an equivalent load 

acting throuqh point C, plus a couple mt(z,t) about the 

longitudinal axis through the point C. Further, this 

equivalent load can be resolved into two components qx{z,t) 

and q (z,t) in the OX and OY directions, respectively . 
.Y 

The work done by the lateral force components can 

be written as: 

+ qy(z,t)n + mt(z,t)e} dz 

(2.32) 
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Therefore, the total work done by the longitudinal 

end stresses, twisting moment and lateral force components 

is' 

(2.33) 

2.4. 	 Kinetic Enerqv Expression 

The kinetic energy of the beam is given as: 

(2.34) 

where 

p is the mass density of the material of the 

beam 

u is the velocity component in the z direction 
~· . 
ta and ~a are the velocity components in the X and 

Y directions. They can be related to the 

velocity components at the point C by 

equations (2.9) and (2.10). 

Dots are used to denote time derivatives. 

The kinetic energy expression (2.34) can be ~xpressed 

in terms of displacements refer to axis x and y. 
l 

T = ~ rf pC {[~ - ("€ I + n'e)° x 
0 s . 

- er;· - ~'e) y - e'w + nR(e 2e•) ]2 

. 2+ [~ - (y - c .v )8 - (x - cx)eeJ 

+ [n + (x - cx)e - (y - cy)ee] 2} dsdz (2.35) 
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2.5. Differential Eouations and Boundary Conditions 

The governing nonlinear differential equations of 

thin-walled beam are derived by variational procedure 

from Hamilton's principle, which is written as: 

t2 . 
o fer - v + w)dt = o (2.36) 

t 
Introducfnq the expressions for the strain energy 

(2.24), work done (2.33) and kinetic energy (2.35) into 

Hamilton's principle (2.36), and carryinq out the 

variation, a set of four coupled nonlinear differential 

equations were obtained. 

To simolify the algebra, it is convenient to 

require the following relations to be true. 

f xc ds = f ye ds = fyxc ds = o (2.37) 
s s s

Jxwc ds = f ywc ds = 0 (2.38) 

sJ weds =s (2.39) 
s 

The three integrals given by (2.37) will be zero 

if the origin of the co-ordinate system is at the 

centroid of the cross section and the OX and OY are 

principle axes. 

Integrals given by (2 . .38) are satisfied by selecting 

the arbitrary point C to be the shear center. The integral 

{2.39) is considered as a mathematical definition for the 

origin of co-ordinate s on the contour of the cross section. 
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The nonlinear differential equations resultinq 

from- the variation process in Hamilton's principle can thus 

be written as: 

e' 2 e 2 e 1 1E*Ar;," + E*(I +I ) - pA~ = 0 (2.40)pc nc 
.. 

1 11 11E* I E: iv - E*(I e' 2 +I e2 e ) - I · yy Rx nx P YYE: 

(2.41) 

- P{n 11 +[(ex - ex) - (ey - cy)e]e 
11 


-(e -c )e 12 } .. a +qe=O (2.42)

Y Y "Y · x 

1 1 1 1E* I e1 v - 6 E ( I e ' 2 e ·' - E* I ( e2 e ·' + e e '2)
ww R Qw 

1 11 11 1 
- 2E*[e'(I Z'; - I E; - I )]pc Rx Ryn 

.. 
- G I d e I - p I ·0 I + 2 p I ·0 + p A [ c ( F: + ne ) I I 

WW pC Y 
.. .. 

C (n - t 8 ) J + p[( e - C ) ( f I I + nI I 6)x . y y 

- (ex - cx)(n,. 1 
- 't 11 0)]· - mt + qxn - qYE: = o (2.43) 
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. 
The associated boundary conditions are: 

l 
{E*Ar;' + E*(I e' 2 +I e 2e 1} P}or;I = o (2.44}pc nc 0 

{ E* I F;, I I 

.VY 

F;, 111{E*I - E*(I e'2 +I e 2e'·)'yy Rx nx 

l 
- P{F;, 1 

- [(e - c ) + (ex - cx)e]e 1}0F;,I = 0 (2.46) · 
y y 0 

'l 
{E*I n" - E*(I e 12 +I e 2e') + Mc-Hn'I = 0 (2.47)xx Ry ny ~ o 

12{E*I 111 -E*(I e +I e2e')'xxn Ry ny 

l 
- P{n' + [(e - c) - (ey - c )e]e'Hnl= o (2.48)x x y 0 

{E*I e"-E*[I e' 2 +I· (e2e·11 +ee 1 2)]
ww Rw Qw 

l 
+ M - M e 2 }oe 'I = o (2.49)

w Q 0 

2E* I (I I I I I I I I) 
- 8 pct - RxF;, - Ryn 

1 1 
- GI de 

1 
+ 2Mn e e 

1 
+ P [ ( e - c Y ) ( ~ + ~ e ) y 

l 
- (e - c )(n' - ~ 1 e)J + Mt}oel = o (2.50) 

x x 0 
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where~ and~ can be related to t and n by equations (2.7), 

(2.8) and transformation (2.6) 

E* = E/(1 - v 2 ) (2.51) 

G is the shear modulus of elasticity 

A is the cross sectional area 

A = Jc ds (2.52) 

1 =s f c y 2 ds (2.53)xx s 

I = f c x2 ds (2.54)yy 

Id -- s J2- ds (2.55)3 

s 


Ipc = f1c (h2 + n2) ds (2.56) 
s 

I = fc w2 ds (2.57)
WW 

s 
(h2 + n2)1Rx = f ~ ex ds (2.58) 

s 
ft cy (h2 + n2) ds (2.59)I Ry = 

s 
1Rw = f} cw (h2 + n2) ds (2.60) 

. 
=sf c [ 1 ( h 2 + n2 }12 ds (2.61)IR 

s 

Inc = f c nR d s (2.62) 
s 

= ds (2.63)Inx Jex nR 

ds (2.64)= 

s
sf cyIny nR 

1nw = f cw nR ds (2.65) 

Mn = s fc pnR ds (2.66) 
s 
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The differential equations given by (2.40) to 

{2~43) are the general nonlinear differential equations 

governing the behaviour of thin-walled beam of an open 

section under applied loads. The beam is subjected to 

applied longitudinal stresses and twisting moments at 

the ends as well as lateral loads along the beam. The 

equations are generally coupled. If the applied loads 

are static loads, the coupling occurs with the nonlinear 

terms only. For the case of dynamic loads, the coupling 

between the equations will involve both linear and 

nonlinear terms. 

2.6. Reducing the General Theory to Elementary Theory 

The linear differential eouations governing the 

behaviour of thin-walled beam of an open cross section 

can be deducted from the nonlinear theory. Neglecting 

the nonlinear terms in the eouations (2.40) to (2.43) 

and allowing the application of lateral loads only, 

Vlasov's equations [54] are obtained: 

E A~' I - pA~ = 0 (2.67) 
.. .. 

E I E.: 1 v - p I E.: I 1, + p AE.: yy yy 

+ pA c e - o = 0 (2.68).v 'E.: 

(2.69) 
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.. .. 
01-V e 11 1 1E I - p I - GI 

d 
e · + 2 plpce

WOJ WW 

.. .. 
+ pA c t; - pA cxn mt = 0 (2.70)-.Y 

The associated boundary conditions are 

R.. 
IE Ar;, or;, I = 0 (2.71) 

0 
R.. 

. IE I l; I 0 l; I = 0 (2.72)
Y.Y 0 

t 
E I 

Y.Y 
t; ·' I & t: I = 0 (2.73)I 

0 

l 
I IE I on' I = 0 (2.74)xxn 

0 

l 
I I IE I n· onl = 0 (2.75)xx 0 

R.. e I IE I o e 1 I = 0 (2.76)
WW 0 

l e I I I( E I - Gide')oel = 0 (2.77)
WW 0 



CHAPTER III 


STATIC ANALYSIS OF OPEN 	 THIN-WALLED BEAMS SUBJECTED TO END 
TORQUES 

3.1. Introduction 

To investigate the behaviour of an open thin-walled 

elastic beam subjected to static laods, the terms derived 

from the kinetic energy expression need not be included; 

namely, terms containing time derivatives from equation 

(2.35) can be omitted. 

In particular, the case of a thin-walled beam 

subjected to twisting moments aaplied at the ends is 

studied in this chapter. It is shown that the set of 

nonlinear ordinary differential equations admit a simple 

solution in the case of the uniform torsion of the 

structural member. The eouations can be solved and results 

obtained reduce to the results given by Cullimore [11] and 

Gregory [23,24,25] for a beam with the cross section shape 

of an angle, I section and a beam in the form of a 

rectangular strip. 

The effect of non-uniform twist is considered 

next. In particular, the case of having on~ end of the 

beam fixed with a torque applied at the other free end 

is studied. Due to the fixed end condition, warping is 

prevented and this causes additional axial strain. The 

perturbation technique is used to obtain an aoproximate 

solution of the problem. The results are then compared 

34 
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to the non-uniform torsion calculated according to the 

linear theory of Vlasov. 

3.2. Thin-Halled B_~am Subjected to Uniform ·Torsion 

Consider a thin-walled beam subjected to end 

twisting moments Mt. The nonlinear differential 

equations and boundary conditions as given by equations 

(2.40) to (2.43), will reduce in this case to: 

e 12 1 1E*Ar;·11 + E*(I +I e 2 e } = 0 ( 3. l ) pc nc 

(~ 11 e' 2 e 2 e 1 11E*I +-lie)" - E*(I +I } = 0yy n Rx nx 
( 3. 2) 

E* I (- ' ' - ~ .• 'e) ' • - E* ( I e ·' 2 + I e 2 e ' ) ' , = oxx n Ry ny 

(3.3) 

E*I eiv 
WW 

- 6 E*I e ' 2 e 11 

R - E*I (e 2 e 11 

nw + ee '2) 11 

- 2 E* {e·' [I r.. - I ( E I I + -n I e)pc., Rx , I 

- I Ry (n·' I - "€ I I e ) ] } - GI de 11 = 0 (3.4) 

l 
e 12[E*Az:·' + E*(I + I,._ce 2 e 1 )]or; I = o ( 3. 5)pc 0H 

l 
e 1 2 e 2 e 1[ E* I ( ~ ' ' + - ' 1 e) - E* ( I + I ) ] o~ ' I = oyy n Rx nx 0 

(3.6) 

l 
11 e) 1 e' 2[E*I (~ 1 · 1 + n - E*(l +I e 2 e')']o~I = O yy Rx nx 0 

(3.7) 
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l 
(n 11[E*I - ~"e) - E*(I e• 2 +I e 2 e')]on'I = oxx Ry ny o 

(3.8) 

l 
[E*I (n' 1 -~"e)'-E*(I e' 2 +I e 2 e')']onl =O xx Ry ny o 

(3.9) 

l 
[E*I e'' - E*I e' 2 - E*I (e 2 e·'' + ee' 2 )]oe'I = O 

WW Rw nw 0 

(3.10) 

e' 11[E*I - 2 E*I e'3 - E*I (e 2e" + ee' 2)'ww R nw 

- 2 E* e I { I I - I {~ I I + nI I e ) per; Rx 

- 1 (n'' - €''e)l - Gide' (3. 11)Ry 

By definition of uniform torsion, the variation of 

the angle of twist in the longitudinal direction of the 

beam is linear. Accordingly, derivatives of the angle of 

twist hi~her than the first derivative will vanish in the 

differential equations and the boundary conditions. Applying 

the above simplifications to e~uations (3.1) to (3.11) for 

the case of uniform torsion of a thin-walled beam, there is 

obtained 

Ar; 11 + 2 I nc ee• 2 = o (3.12) 

I (~··+n 1 'e)''-21 0 xe' 3 =0 (3.13)yy . 
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I (nI I - ~ I I e )-' I - 2 I e I 3 = 0 (3. 14)xx ny 


{e'[I i:' - I n•• + n"e)
pc Rx 

- r 
Ry 

(n, . ~''e)]J' = o (3.15) 

The boundary conditions are, 

l 
{Ar,;'+I e' 2 +I e2 e'Hi:I =O (3.16)pc nc 0 

{Iyy (~ 
1 

I + n' 'e) - IRxe ' 2 

l 
- I e2 e '}O~ 'I = o (3.17)nx 0 

l 
{I Ci''+ n''e)' - 2 I ee' 2 }o~I = 0 (3.18)yy nx 0 

l 
11{I (n - [ 

11 e) - I e' 2 I e2 e 'lo 'I = o (3.19)xx Ry nx n 0 

{I (n 1
' - ~'·'e)' - 2 I,..,vee 12 }onl 

l 
= o (3.20)xx ~G. 0 

l 
{IRwe 12 + I nw ee 12 }oe 'I

0 
= o 

{ E* I e '3 + 2 E* I e '3n(J} R 

+ 2 E*e '[I /',;I - IR (~" + n"e)pc x 
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Integrating equations (3.12) and {3,15) once and 

integrating equation (3.13) and (3.14) twice, there is 

obtained 

Ar;, 1	 +I e 2 e 1 +K1 =O (3.22)nc 

I yy (~	 
11 +ii 11 e) (3.23) 

1c-1 IIxx n. - ~I I e) - Int e 2 e + K z + K5 = 0 (3.24)
.Y 

I +e • [I r;, ·' I (~ I ii'!e)pc 	 - Rx 

- I c- I - ~I 18)] = 0 (3.25)Ry n 	
I + K6 

where to are the constants of integrations. UsingK1 K6 
the boundary conditions (3.16) to (3.21), Ki(;= 1,6) can 

be determined to yield: 

IAr, 	 + I e ' 2 + I e2 e 1 = o {3.26)pc nc 

I (~ 11 + n11 e) I e '2 I e2 e ·' = o (3.27}yy 	 Rx nx 

1 (n	 11 -~ 11 e}-1 e' 2 I e 2 e'=O (3.28)xx 	 Ry ny 

13 	 13E* I 	 e + 2 E* I enw 	 R 

1 (€ 11+ 2 E*e 1 [I 1:; - I +-·11 e)pc Rx n 

-I 	(n''-~''e)J+Gide 1 -M -o (3.29)Ry 	 t ­

The first derivative of the angle of twist e ', is a constant 

value for uniform torsion. 
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1 f 11Eliminating ~ , and~· 1 from equation (3.29) 

a first order nonlinear differential equation is obtained; 

namely, 

A I yy 

(3.30) 


This leads to the nonlinear moment-rotation 

relationship: 

The longitudinal strain due to shortening effect 

of nonlinear twist can be found using equation (2.22), 

which is written as: 

E: = r; (~II+ nl10)x- (Ti'' - ~110).Y
z 

(3.32) 

Introducing the derivatives r;', ["and fi 11 

qiven by equations (3.26) to (3.28) into the strain 

equation (3.32), there is obtained 

{I ) 2 
[ I pc

R ­ A 

(3.31) 

(3.33) 
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The moment-rotation relationship and the 

st~ain-rotation expressions as given by equations (3.31) and 

(3.33), respectively, are general formulas for a 

thin-walled beam of unsymmetrical cross section under 

uniform torsion. Uniform torsion is possible only if there 

are applied torques at the end of the beam and also the 

end conditions as given by (3.16) to (3.21) are 

satisfied. 

3.3. 	 Thin-Walled Beam of Monosvmmetrical Section Subjected 

to Uniform Torsion. 

Consider a thin-walled beam of monosymmetrical 

cross section, subjected to end twisting moment Mt. The 

axis OX is considered to be the axis of symmetry. It can 

be easily shown, that for a monosymmetrical section, 

IRy and Inw= O. Introducing this result into equations 

(3.31) and (3.33). The moment-rotation and the 

strain-rotation expressions for a t~ln-walled beam of 

monosymmetrical cross section become, 
(I )2 (I )2 

I 2E* [ pc _ Rx ]e' 2 }Mt = Gide {l + ~ IR ­
A Iyyd 

(3.34) 

= [- Ipc/A (IRx/Iyy)x£ 2 

+ ~ (h 
2 + n 

2
) + 2nRe]e' 2 (3.35) 
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The (twisting moment - angle of twist) and the 

(axial strain - rotation) relationships for a few commonly 

used cross sections of thin-walled beam, are calculated 

in the subsequent sections. 

EXAMPLE 	 1: Narrow Rectangular Cross Section 

A beam of narrow rectangular cross section is 

the simplest shape, thin-walled beam. The cross section 

is symmetric and also there is no warping of the cross section 

under any end conditions. 

Consider a cantilever beam of rectangular cross 

section of thickness c and height b as shown in figure [4a]. 

Assuming c << b, the properties of the cross section can 

then be calculated as follows: 
3 

1 (h2 + n2 ) ds = _cb- (3.36)c= 	 24Ipc 2 	 f 
s 

cb 5 
1 (h2 + n2)2 ds = 	 (3.37)

IR = 4 f c 	 320 

f 
s 


c3 c3b (3.38)
ds =Id = 3- -r-­
s 

(3.39)
= 0nR 

1 2 2 	 (3.40)(h + n 	 )x ds = 0I = c2 sfRx 

Substituting the values of the above constants 

into the moment and the strain expressions as given by 
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(3.34) and (3.35), respectively, gives: 

41 3 EbM = -- Gbc e 1 [l + e 1 2] {3.41) 
t 3 120Gc 2 

. 1 2 1 2
Ez = [2 Y - 24 b ]e •2 {3.42) 

The moment-rotation expression as ~iven by 

(3.41) is identical to that given by Cullimore [11]. The 

strain expression (3.42) is the same as that given by 

Greg pry [ 23]. 

The strain at the centroid can be obtained 

from expression (3.42), at y = 0, thus 

- 1 b2e •2 (3.43)Ez - - 24 

The strain distribution across the cross section 

is parabolic as shown in fiqure [4b]. 

A numerical example for a narrow strip is worked 

out to compare between the linear and nonlinear analyses. 

Consider a beam of rectangular cross section. The length 

of the beam l is taken as 10 times the depth b of the 

rectangular strip section. The ratio of the depth b to 

the thickness c is taken as 50. The nonlinear moment of 

twist - angle of rotation relationship calculated from 

equation (3.41) is plotted in figure [5]. Neglecting 

the nonlinear terms in equation (3.41), the linear 

relationship is obtained. The results are also shown in 
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fiqure [5] for comparison. 

From the plots in figure [5], it is shown that 10% 

error exists in the value of the moment required to cause 

rotation of 0.35 radians. 

EXAMPLE 2: Thin-Walled Beam of I Section 

A thin-walled beam of I section may be a beam of 

symmetrical section, but unlike the narrow rectanqular 

cross section, the section tends to warp under torsion. 

Consider a symmetrical I section of flange and 

web thickness cf and cw, respectively, of height H, 

flange width B as shown in figure [6]. The flange 

thickness is taken to be small compared with the 

height H, i.e. cf<< H. 

The geometrical properties of the cross section 

are evaluated as follows: 

(3.44) 

(3.45) 

= nR = 0 (3.46)1Rx 
3 3

cf cw 
Id = 2 -3- B + -3- H (3.47) 

r 2 = n 2 + h2 (3.48) 

cw 5 cf cf cf 
B H4 BS H2B3IR = 32-0 H + -32 + 160 + 48 (3.49) 
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The moment - rotation expression is obtained by 

substitutinq the values of the above geometrical constants 

into equation (3.34), thus 
2 3. 3cf , .c w 6 E* 

Mt= (-r B.+ -r H)Ge'{l + 3 
G(2cfB + 

·(3.50) 

The strain expression can be obtained by substutiting 

equations (3.44) to (3.49) into equation (3.35), thus: 

£z 
1 = 24 [l 2 2 

r 
H3c + 6H 

2Bcf 
w 

- He + 2Bcf 
+ 2B 

2 c
f]e•2 (3.51) 

w 

The axial strain - rotation expression for a 

thin-walled beam of I section,as qiven by equation (3.51 ), 

agrees with Cullimore's [11] formula which was verified 

experimentally. 

EXAMPLE 3: Equal Anqle Section 

A thin-walled beam of an angle section, represents 

an example of a thin-walled beam with monosymmetrical 

section. 

Consider a monosymmetrical angle section of thickness 

c and side width bas shown in fiaure [7]. 



47 

, __j_ 

r 
B 

-z= 

\ 

I>-

x 
cw 

-f cf7 

H 

_j_ 

tcf 

FIG. (G) SYMf'1ETRICAL I SECTION 


.L 

b 

FIG. (7) EQUAL.ANGLE SECTION 




48 


The geometrical properties can be found to be: 

A = 2 cb (3.52) 

n = r (3.53) 
1 x = ./2 ( r b/2) (3.54) 

Ipc = 1 cb3 
j (3.55) 

I Rx 
5= , 2 12 cb4 (3.56) 

I yy = 1 b312 c (3.57) 

IR = 1 cb5 nr (3.58) 

Id = £ c3b3 (3.59) 

substituting the values of the constants as given by 

equations (3.52) to (3.59) into the moment and strain 

expressions as given by (3.34) and (3.35), then 

£ Gc3b8'(1 - 359 E*b4 s'2)Mt = 3 m· 7 -2- (3.60)Gc 
and 

(3.61) 

For uniform torsion, s' is constant along the beam 

and can be written as 

8' = 8/l (3.62) 

then the strain expression is identical to Gregory's [24] 

formula. 

http:7-2-(3.60
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The Mt - e relationship (3.60) has not been given 

before. It should be noted that the works of Cullimore 

and Gregory are supported by experimental verification. 

The fact that the set of equations (3.1) to (3.4) reduces 

identically to their results in the case of uniform torsion 

gives 1~dication that the equations are capable of predicting 

accurately the behaviour of the beam under more complicated 

loadings and support conditions. 

3.4 .. Thin-Walled Beam Subjected to Non-uniform Torsion 

Consider a thin-walled beam subjected to a twisting 

moment Mt at one end and built-in at the other. The 

non-uniform torsion is different from the uniform torsion 

in the fact that when warping is prevented, additional 

axial strain is created in the beam. ·Accordingly, the 

variation of the angle of twist in the lonqitudinal direction 

of the beam is no longer linear. The governing equations 

are given by equations (3.1) to (3.4) and the boundary 

conditions are given by equations (3.5) to (3.11). Since 

the equations are nonlinear, it is necessary to use 

approximate methods to obtain the solution. In what 

follows, the perturbation technique is used to obtain an 

approximate solution of the problem. 

Integrating equations (3.1) and (3.4) once and 
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integrating equations (3.2) and (3.3} twice, there is 

obtained 

(3.63) 

E*I (~'' + ii"e) - E*(I e' 2 +I e2 e')yy Rx nx 

(3.64) 

E*I Cn'' - ~"e) - E*(I e' 2 + I e2 e')xx Ry ny 

(3.65) 

E* I e ' ' ' - 2E* I e' 3 - E* I ( e2 e ' ' + e e ' 2 ) ' ww R nw 

- 2 E *e I [ I r; I - I (~ I I + nI I e ) pc Rx 

- IRy (ii" - ~"e)] - Gide' + K~ = 0 (3.66) 

where K~ (i = 1,6) are constants of integration to be 
l 

determined using the boundary conditions (3.5) to (3.11). 

Considering the case of a cantilever beam; namely, the end 

z = 0 is fixed while the end z = l is free, the boundary 

conditions can be written as: 

at z = O 

r; = ~ = ~· = n = n' = e = e' = o (3.67) 
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at z = l 

(3.68) 


E*I (f' I + nI I 6) E*{I e' 2 + I e2 e') = 0 (3.69)yy Rx nx 

E*I (~'I + n"e)' - E*(!Rxe'2 + I e2e') = 0 (3.70)yy nx 

E*I en-·· - ~I I e) - E*(I e' 2 + I e2e') = 0 (3.71)xx Ry ny 

E*I c-· · ~I I e) I - E*(I e' 2 + I e2 e')' = 0 (3.72)xx n Ry ny 

e 11E*I - E*I e' 2 - E*I e2e'' + ee' 2) = o (3.73)
WW Rw nw 

E*I e' 11 
- 2E*I e•3 - E*I (e 2 e'' + ee' 2 )'ww R nw 

- 2 E* e ' [I r; ' - I ( €• ' + - ' ' e ) pc Rx n 

- IR (Ti" - ~"e)]-GI e' +Mt= 0 (3. 74)
y . d 

Using the boundary conditions 9iven by equations (3.67) 

to (3.74), the constants of integration can be determined 

· to be: 

K~, = 0 i =· l '5 (3.75) 

(3.76) 

Eliminating r;', ~·' and Ti'' from eauation (3.66) 

by substituting from equations (3.63), (3.64), (3.65), (3.75) 

and (3.76), a third order nonlinear differential equation 
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is obtained, namely 

E*I e'' 1 
- E*I (e 2 e'' + ee' 2 )'

WW nw 
2 

(Ioc) 
- 2E*e' 3 [I - ~TA,~-, R 

2 

~~- ] + Mt = 0 (3.77)I xx 

The boundary conditions associated with equation 

(3.77) are 

at z = 0 

e = e' = o (3.78) 

at z = l 

E*I e'' - E*I e' 2 - E*I (e 2 e' 1 + ee' 2 ) = O (3.79)
WW Rw nw 

To reduce the volume of algebra involved in the solution of 

the nonlinear differential equation (3.77), further 

analysis will be restricted to thin-walled cross section 

that posses the geometrical property giving IRw and Inw = 0. 

This is true for all symmetrical and monosymmetrical sections. 

Furthermore, the quantities IRw and Inw are small for beams 

with cross sections of small curvature, such as sections 

containing piece-wise linear segments. 

It is convenient to normalize the differential 

equation by letting 

-z = z/l (3.80) 



53 

Thus, equation (3.77) can be written in the form: 

2y 'c d ~) 3 + M = 0 (3.81) 
dz 

where the non-dimensional constants are 

2 2
k = 0.5 (1 -	 v)Idl /I (3.82}

WW 

M 
, 
= MtIR/(E*AlI 

WW 
) (3.83) 

y = [IR - (Ipc)2/A - (IRx)2/Iyy 

- (IRy) 
2
11xx]/Iww << 1 (3.84) 

The boundary conditions associated with equation 

(3.81) become 

at 	i = O 

de
e=-=O 	 (3.85)

di 

at i = l 

(3.86) 

A sol~tion for the differential eauation (3.81) 

will be sought in the form! 
2 

e = e1 + re2 + y 03 + ••.• (3.87) 

For small values of y, first order approximation 

of the solution, can be written as 

e = e1 + ye2 (3.88) 
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Substituting the assumed solution given by equation 

_(3.-88) into· the, differential equation (3.81) and equating 

the coefficients of the powers of y, there is obtained 

d3.e 1 de1k2 -+ M = 0 (3.89)~-z . dz 

3.d de _e 2 de 1 3 k2 2 2 (-_) = 0 (3.90)~- dz dz 

The associated boundary conditions are 

d2
.d.e 1 e1= -_-co) = -2(1) 0 (3.91)e1 ( o) = 
dz dz 

de d2e 
= _2(0) = 2 ( 1 ) = 0 {3.92)0 2(0) di di2 

The solution of the linear equation (3.89), which satisfies 

the boundary conditions (3.91 ), is 

e1 = ~ [ • s i n h k i + ta nh~,k ( cos h k i - 1 ) 
. k 

+ kzJ (3.93) 

The solution of the differential equation (3.90), that 

satisfies the boundary conditions (3.92), can be written as 
c2 cl = ---"3 sinh 3kz + ~-3 cosh 3kie2 24k 24k 

C4 
+ sinh 2kz 2kz+ ·?-r cosh 
~ 6k 

'· C5 . c6 ­
+- z sinh kz + ::-2 z cosh kz 

2k 2 2k 
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sinh kz co sh kz+ cl + c2 

C7 ­
(3.94)-- z + C3k2 

where: 
1 M 3 2 

= - (-i) tanh k (tanh k + 3) (3.95)cl 2 k ' 

1 = ( M ) 3 (3 tanh 2 k + 1 ) (3.96}c2 - 2 i7 
(M ) 3 - tanh (3.97)C3 = 6 ki7 

C4 = 3 ( M ) 3 {tanh 2 k + 1 ) {3.98)11 
= - ~- (~) 3 tanh k (tanh2 k - 5) {3.99)C5 2 k 

= ~ (~)3 (tanh 2 k - 5) (3.100)c6 2 k 

= - 3 (;-)3 (tanh 2 k - 5/3) {3.101)C7 
k 


c
- 1 + c4 c6 
= ( __1_ {3. 102)cl - k3 8 3+ 2- C7) 

- 3 sinh 3k co sh 3k)c2 = - re:, tanh k + ::-3' (c2 cosh k + cl co sh k8k 

+ (c4 sinh 2k + co sh 2k) 
3 k3 

2 
cosh k 

C3 

C5 c6 
+ -- (tanh k + £)+ ( l + ~ tanh k)] (3.103) 

(.I R2 k 2?­
- c, c . 
C3 = - (c 

2 + --+ _3_) ( 3. 104) 
24k3 6k 3 

The solution given by eouation (3.88) can be exl"ressed in terms 

of the twisting moment by substituting equations (3.93) 
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and (3.94) into (3.88), The angle of twist can be 

expressed in terms of the twisting moment in the form: 

(3.105) 

To establish the axial strain - rotation expression, 

strain formula given by equation (2.22) is used. Eliminating 

z;;', ~· • and Ti'' from equation (2.22) by substituting from 

equations (3.63), (3.64) and (3.65), the strain expression 

can be written as 

£ = rl Ch 2 + n2
) - 1 - 1 x - vJz 2 pc Rx 1Ry ­

2 
-

-
w 

d
-

e (3.106)
dz 2 

where the values of nondimensional constants are 

-h = h/l and n = n/l (3.107) 

I~c 

and (3.108)I Ry = IRy/Ixxl 

x = x/l and y - = y/l (3. 109) 

-w = w/R..2 (3.110) 

·Once the solution (3.105) is obtained, the axial 

strain expression is defined. It is convenient to write it 

in the form 

: (- - - 12 I I)£z r x,y,w,e ,e (3.111)
2 
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An example of the non-uniform torsion of a thin-walled 

beam of an I section will be discussed. Results are compared 

with the non-uniform torsion calculated according to the 

linear theory. 

3.5. Nort~uniform Tor~iort of Thin-walled Beam of I Section 

As an example, consider the non-uniform torsion of 

a thin-walled beam of I section. Due to the symmetry of 

the cross section IRx = IR = 0 and no bending of the beam
.Y 

under the action of twisting moment will occur. 

As a numerical example, let the dimensions of the I 

section be: 

t/H = l 0 (3.112) 

B/H = 0.5 {3.113) 

H/cw = 30 {3.114) 

cw/cf = 1 (3.115) 

where 

t is the length of the thin-walled beam 

H is the height of the cross section 

B is the width of the flanges 

cw ; s the thickness of the web plate 

is the thickness of the flangescf 

Given a value for the twisting moment Mt' the 

corresponding angle of twist at the free end can be calculated 

using equation (3.105). Results are plotted in figure [8]. 
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To compare the results with the linear theory, equation 

(3.93) is used to give the moment - rotation relationship 

according to Vlasov's theory of thin-walled beam. 

The twistinq moment - rotation relationship in the 

linear analysis is plotted in figure [8]. A comparison 

between the linear and nonlinear analyses for the uniform 

torsion of thin-walled beam of I section,as qiven by 

equation (3.50), is also shown in fiqure [8]. 

From the plots in figure [8] it is shown that if 

the angle of twist is 0.35 radians, a difference of 10% 

exists between the linear and non- linear theory. It 

is interesting to note that the effect of the nonlinear 
11 11terms is a hardeni nq effect. In other words, the 1arger 

the twisting moment,the smaller the rate of increase of 

the angle of rotation. 

The axial strain - rotation relationship is given by 

equation (3.111). The variation of the strain at a point 

on the cross section taken at the corners of the flanges 

is investigated in detail. Flange corners are where the 

maximum axial strain is predicted. 

For a given value of the applied twisting moment, 

the angle of twist and its derivatives can be found using 

equation (3.105). The axial strain at the corners of the 

flanges of the I section can then be calculated from 

equation (3.111). Results are plotted in figure [9]. 
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Comparison between the axial strain variation as calculated 

by. linear ~nd non-linear analyses are given by figure [10]. 

For a given moment of twist, the angle of twist and its 

derivatives can be found by the linear analysis using 

equation (3.93). The axial strain according to Vlasov's 

theory can be calculated usinq the linear terms of 

equation (3.111). from the comparision shown in figure [10] 

it is clear that the linear theory is inadequate for 

predicting the axial strain variation. This is due to the 

fact that the coupling between the axial shortening, 

bending and the twisting is a nonlinear coupling. At 

the fixed boundary, however, both analyses give identical 

results as both solutions are required to satisfy the 

same boundary condition e' (0) = O. The maximum strain is 

found to take place at the fixed end z = O. At the free 

end i = 1, the nonlinear theory predicst positive strain. This 

observation constitutes a criteria for a simple experimental 

verification for the nonlinear theory. 
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CHAPTER IV 

GENERAL CONSISTENT NONLINEAR STABILITY THEORY OF THIN-WALLED 

ELASTIC BEAMS 

· 4.1. Introd~ction 

In the study of stability of an elastic system in its 

critical state, there are two kinds of stability problems 

depending on the character of the applied load. Stability 

problems of the first kind are bifurcation problems in 

which other forms of eauilibrium, different from the 

precritical shape, become possible. Stability problems of 

the second kind are problems in which the deformation of 

the system increases with the increase of the external 

load. At buckling, the deformation of the equilibrium shape, 

shows only quantitative and not qualitative variations from 

the precritical shape. In this chapter, the first kind 

of stability problems (bifurcation), will be considered. 

A thin-walled beam may lose stability in the form of 

overall buckling, local buckling or a combination of both 

types of buckling. In this thesis only overall buckling of 

thin-walled members is considered. A beam of symmetrical 

cross se~tion subjected to an axial end load, passing through 

the centroid of the end section, may result in either 

flexural bucklin~ or torsional buckling. However, a 

thin-walled beam of unsymmetrica~ cross section, under 

axial loading, results in combined flexural - torsional 
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mode of buckling. This is due to the fact that the shear 

center does not coincide with the centroid of the section. 

Accordingly, twisting of the beam is accompanied by 

bending. Coupled flexural and torsional buckling may also 

occur when the axial load is eccentrically applied to the 

beam. 

In addition, a thin-walled beam may lose stability 
' \

due to loads applied laterally. A lateral load acting in 

a plane parallel to the plane of largest ridigity and passing 

through .the line of shear centers, may cause lateral 

instability of the system. At critical conditions, a 

neighbouring equilibrium configuration takes the form of 

combined flexural and torsional deformation of the beam. 

This phenomena is also known in literature as ''plane form 

of bending". 

Linear stability theory of thin-walled elastic beams 

was studied by Vlasov [54]. In the static analysis the 

linear theory is capable of predicting the buckling load 

for different modes of overall buckling configurations. In 

dynamic stability analysis, it is capable of predicting the 

natural frequencies as well as establishing the boundaries 

of parametric instability regions [6]. ·The need for a 

nonlinear stability theory of thin-walled beam, arises 

in two areas. In the static stability analysis, the linear 

stability formulation of Vlasov becomes inadeauate in the 
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stpdy 	of the post buckling behaviour of the member. 

In the parametric stability analysis, it is necessary 

to include nonlinear terms in the analysis in order to 

predict bounded response and establish the steady state 

amplitudes of vibrations once the system is excited into 

the parametric resonance. 

In this chapter a qeneral nonlinear stability theory 

is formulated usina the energy approach. Stability of 

thin-walled members subjected to both axial end loads 

and lateral loads are considered. 

4.2. 	 Stability of Ooen Thin-Walled Beam ~ubiected to Axial 

Loads 

In formulatinq the nonlinear stability theory of 

thin-walled beams under axial loads it is necessary to 

distinguish the behaviour of the beam before buckling. Three 

cases are needed to be considered: (a) before buckling, 

there is neither flexural nor torsional deformations in the 

beam. An example of such behaviour is a thin-walled beam 

of symmetrical cross section subjected to uniformly applied 

axial stress at its ends. The buckling condition is then 

characterized by the existence of an adjacent equilibrium 

state involving flexural or torsional deformations of the 

member. (b) before bucklinq, there is only flexural 

deformation in one princioal direction of the beam. The 
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bucklin9 condition is then characterized by the existence 

of an adjacent equilibrium state involving additional 

flexural deformation in the other principal direction and 

rotation of the section. (c) before buckling, the applied 

end stress causes the beam to have flexural deflections in 

both the principal directions. In this case, the loss of 

stability is characterized by torsional deformations of the 

beam. 

In each case, the governing stability equations can 

be obtatned by calculating the additional energy (potential, 

kinetic and work done) involved when the beam is transferred 

from deformed state to the buckled state. 

Let V, T and Wdenote the additional potential energy, 

kinetic energy and work done during buckling, respectively. 

Then the stability equations can be obtained by the 

application of Hamilton's Principle, namely 
t2 

0 f<T-V+W)dt=O (4.1)t, 
CASE_l_:_j..oss _Q_f___Stability in the Form of C_9_u12led Torsional 

Jtuckli.JUL and Flexural Bucklinq in Two Princi2..!.l 

Dir~ctions. 

Consider a thin-walled beam subjected to a uniformly 

distributed axial stress p(t), applied at the end sections. 

The distribution of the anplied stress is such that the 

resultant P(t) is actino through the centroid of the cross 
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section, namely 

P(t) = f c p(t) ds (4. 2) 

My(t) 
s 

= - f c x-c s > o(t) ds = O {4.3) 
s 

Mx(t} = 
s 
[c y( s} p(t) ds = 0 {4.4) 

M { t)
w = f c 

s 
w(s) o{t) ds = 0 {4.5} 

Mx and M y denote the bending moments along the X and Y 

axes, respectively, Mw denotes the bimoment. Due to the 

applied end load the thin-waTled beam will deform in the 

longitudinal direction while no flexural or torsional 

deformations will take place. As the magnitude of the 

applied load reaches the critical value, flexural buckling 

or torsional buckling may occur and the beam will show 

flexural def1ection in the principal directions as well as 

a rotation e of its cross section. 

The strain energy of deformation V, from the undeformed 

state to the buckled configuration, is given by equation 

(2.24), namely 
l 

V = ~ f f{E*c[z;' - (~I I + nI I e) X 

0 s 

- (n" - ~"e)y - we" 

(4.6) 
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It is convenient to divide the deformation variables into two 

parts, as follows 

s = so + s (4.7) 

.f; = f; 0 + f; (4.8) 

n = no + n (4.9) 

e + e (4.10)= e0 

The quantities so' no and eo, represent the~0' 

deformations from the undeformed state to the deformed state. 

In our present case ~ 0 , and are zero. The variablesn0 e0 
N N 

s' ~' n and e reoresent deformations from the deformed 

state to the buckled state. 

The strain energy of deformation v
0 

, from the undeformed 

state to the deformed state, (i.e. prior to buckling) is 

given by 

c s' 2 ds dz (4.11)
0 

Therefore, the strain energy of deformation V, from 

the deformed state to the buckled state can be written as 

V = V - (4.12)v0 

Subtracting eouation (4.11) from equation (4.6),the 
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strain energy due to buckling is given by 

.t 
. v = 1 f I{ E* c [ r;; I - (~I I + nI I e) x 

0 s 
_ ( n I _ I e) y ­I €I we I I 

' 1 3 - 2 E* c r;; 02 + G c /3 e' 2 } ds dz (4. 13) 

The work done W by the applied forces, from the 

undeformed state to the buckled configurations, is given 

by equation (2.30), namely 

w = J c p[r;; - (~' + n'e)x 

s 


- (n' - t'e)y - we' 


- (v. - cy )e' 

- (x - c )ee'J 2 + [n' + (x - c )e'x x 

(4.14) 


The work done w0 ,to deform the beam from the 

undeformed state to the deformed state,can be written as 
l 


P r;;o I ds (4.15) 

0 
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The work done Wduring buckling is therefore given by 

the formula 

w= w (4. 16) 

Substituting the exnressions for W and w0 from 

equations (4.14) and (4.15) into eouation (4.16), there 

is obtained 
~ 

w = f c p[r; - (~' + n'e)x - (n' - ~·e)y 
s 

,e_ 

we'+ nRe 2 e'JI ds 
' 0 

l 
- C ) 8 I}Jc p j in' - (y y 

- (y - c )ee•] 2} dz ds {4.17)
.Y 

Following a similar procedure, the kinetic energy 

of the beam T, after buckling takes place, is given by 

equation (2.35) and can be written as 
l 

T = 121·1pc{[i:_ - (i=•.., + ii'e)• x - (Ti' - -~·e )• y 

+ nR(e 2 e' )° J2 + [~ - (y - cy)e 

• 2 .: ,. 
- (x - cx)ee] + [n + (x - ex e 

(4. 18) 
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The kinetic energy T0 , before buckling occurs, is 

.e. 
T0 = !- [f Pc 25· ds dz {4.19) 

0 s 
The change of kinetic energy of the beam T, during 

buckling, is thus 

T = T - (4.20)T0 

Substituting the expressions for T and T0 as given 

by equation {4.18) and (4.19) into equation {4.20) there 

is obtain.ed 

1T = fIp c{[~ - {~' + ii'ef x - (n' ~·ef .Y2 
0 s . 

WS I + n (e2e' f ]2 + [~ - (y - Cy )°eR 

. 
(x cx)ee] 2 + En + (x - cx)e 

- {y - c )eeJ 2 - ~5} ds dz {4.21)y 

Introducinq the strain energy {4.13),work done (4.17) 

and kinetic enerqy (4.21) into Hamilton's principle (4.1) 

and carrying out the variation procedure, the following three 

nonlinear stability differential eouations are obtained 

6 12E*I ~l.V - E*{I +I e2 e')"yy Rx nx 

-P[t:'' + c e" + cx(ee'' + e 12 ) - p I t;.''
.Y Y.Y 

.. 
+ p A[t;. + c e + c (ee·+ e2 }] = 0 {4.22)

.Y x 

http:obtain.ed
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E*I ·iv - E*(I e' 2 +I e2 e')''xxn Ry ny 

.. 
- P [n'' - c e'' + c (ee" + e' 2 )] - p I 11 

x y yyn 

.. 
+ pA [n - ex~+ cy(e~ + i2)] = O (4.23) 

E*I e 1 v 6 E*I e' 2 e" - E*I (e 2 e" + ee' 2 )"
ww - R nw 

- 2 E* {e'[I ~· - I ~·I - I n' ']}'pc Rx Ry 

- Gide'' - P [c y(€" + n"e) - cx(n" - ~"e)] 

. . .. ..
8'1 I- plww + 2 plnce + pA[cy(~ + ne) 

.. 
- cx(n - ~e)] = 0 (4.24} 

The associated boundary conditions are: 
l 

{ E *I ~ ' ' - E * ( I e ' 2 + I e 2 e ' ) } o ~·I = o (4.25).v.v Rx nx 0 

{ E* I ~ ' " - E* (I e ' 2 + I e 2 e ' ) ' yy Rx nx 
l 

- P(~' + c e' + c ee')} o~I = o (4.26) 
y x 0 

l 
{E*I n'' - E*(I e' 2 + I e2 e' )} on' I = O (4.27)xx Ry ny o 

111 e' 2{E*I n - E*(I +I e 2 e')'xx Ry ny 
l 

- P(n' - c e' + c ee')} onl = O (4,28)
x y 0 
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{E*I e'' - E*[I e' 2 +I (e 2e" + ee 12 )]
WW Roo nw 

.e_ 

- M e2 } oe'In = o (4.29)0 

{E*I e''' - 2 E*I e' 3 - E*I (e 2e'' + ee'2)•
WW R nw 

- 2 E*e'(I r;' - I ~" - I n")pc Rx Ry 

- GI de ' + 2 Mn e e ' - P [ c Y ( ~ ' + ~ 'e ) 

.t 
- cx(n' - ~·e)]} oel = o (4.30) 

0 

Equations (4.22) to (4.24) are stability equations. 

The deformations in the longitudinal r; direction are 

governed by the deformation eauation 

E*Ar;'' + E*(I e' 2 +I e 2 e' )' - pA~ = 0 (4.31)pc nc 

The associated non-homogeneous boundary conditions 

are 

{E* Ar; ' + E* ( I e ' 2 + I e2 e ' ) - pc nc 
_f_ 

- P} or; I = o (4.32) 
0 

The linear differential equations, governing the 

stability of thin-walled beams of unsymmetrical cross section 

subjected to axial loads apolied at the ends, can be obtained 

from the nonlinear differential equations (4.22) to (4.24). 
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Neqlectinq the nonlinear terms, Vlasov's eauations are 

obtained 

.. .. 
EI.Y.Y~l.V - p~· • - p eye''+ pA~ + pA eye= 0 (4.33) 

EI l. v - Pn I I + p c e I I + p An pA cxe = 0 (4.34)xxn x 

EI eiv - Gide" - Pc~"+ Pc n" 
WW Y X 

{4.35) 

The differential equations (4.33) to (4.35) are 

coupled. These equations represent the coupled flexural ­

torsional type of vibrations. Neglecting the time dependent 

terms, equations (4.33) to (4.35) will then represent the 

case of coupled flexural - torsional buckling. The linear 

differential equations can be uncoupled for the case of 

thin-walled beams of symmetrical cross section. For a 

symmetrical section the shear center coincides with the 

centroid, thus 

ex = cy = 0 (4.36) 

Introducing equation (4.36) into the linear differential 

equations (4.33) to (4.35), the uncoupled eouations can be 

written as 

EI 
yy 
~iv_P~ 11 ·+pA 

0

i=O (4.37) 
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Pn'' + pAn = o 	 (4.38) 

EI e1 v - GI e" - 2 p I e 11 /A
WW d 	 DC 

(4.39) 

The linear differential equations (4.37) to (4.39) 

are the familiar Vlasov's equations. The uncoupled equations 

represent flexural and torsional vibrations. Equations 

(4.37) and (4.38) are the linear equations of flexural 

vibrations under axial load. Neglecting the time dependent 

terms the static stability eauations are obtained. The 

uncoupled cauations will then represent the flexural 

buckling and the torsional buckling of a thin-walled beam. 

A detailed study of dynamic stability of a thin-walled 

beam, of symmetrical and monosymmetrical cross section, 

is presented in Chapter V and Chapter VI. 

CASE 2: 	 Loss of Stability in the Form of Coupled Torsional 

Bucklinq and Flexural Bucklina in One Principal 

Direct~. 

Consider a thin-walled beam subjected to a distribution 

of axial stress p(s,t) apolied at the end sections. The 

distribution of the load over the end section is such 

that the resultant P is acting in the OYZ plane. The point 
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of application of the resultant P is taken to be at a point 

with co-ordina.tes (0, ey)' namely 

P(t) = rc p(s,t) ds (4.40) 
s 

My(t) = - P(t) ex = - sf c x ( s) p(s,t) ds = 0 (4.41) 

Mx(t) = P(t) e =f c y( s) p(s,t) ds (4.42) 
y s 

M ( t) = Jc w(s) p(s,t) ds = O (4.43)w 
s 

Due to the applied load and moment the thin-walled beam 

will deform in the longitudinal t direction as well as in the 

n direction, while no deflection will take place in the E 

direction. Also, there is no rotation e. As the magnitude 

of the applied stress reaches the critical value, coupled 

flexural - torsional mode of buckling will occur and the 

beam will show deflection in the E direction as well as a 

rotation e of its cross section. If deformation variables 

are ex~ressed in the form given by equations (4.7) to (4.10) 

the quantities Eo and are zero in this case.e0 
Following derivations similar to those done in CASE 

I, the strain energy V, work done Wand kinetic energy T of 

the beam,from the deformed state to the buckled state, can 

be written as 

V = 1 ff{E*c[t' - (~'' + n"e)x - (;:j 11 
- ~"e),v 

0 s 
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l E* [ I 	 ]22 c soI - no I y 

(4,44) 

-w = f c p [ l; - ( ~· + Ti'e)x - (Ti' - t'e)y 
s 

l 
- we' + nRe 2e'J 	 I ds 

0 

l 2- } f c p /1 [~' - {y - C 
y 

) 6 I - (x - cx)ee'J 
s 

+ c;;· + (x - C ) 9 I - (y - c )ee 1 J2 
x 	 y 

- n'2} dz ds 	 (4.45)0 

T = ~ fJ pC { [ ~ - ( f I + n'e)° x - (Ti' f' er y 
Os 

. 
- we' + nR(e 2e' )' ]2 + [~ - {y - cy)o 

. 
- 2- (x cx)eeJ + [n + (x - cx)e 

. 2- {y - c y )eeJ 2 - [~o - n0YJ 

~2} ds dz 	 (4.46)0 

Introducin~ the strain energy (4.44), work done (4.45) 

and kinetic enerqy (4,46) into Hamilton's principle (4.1) 

and carrying out the variation procedure, the following 
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two nonlinear stability differential equations are obtained 

E*I t:;iv - E*(I e2 e' )' 1 
- P[t:;' 1 - (e - c )e' 1 

yy nx y y 

+ c (ee" + e' 2 )] - I t:;'' - E*(I e' 2 )
11 

x P yy Rx 

+ pA[~ + c y ~ + c x (e~ + ~ 2 )] = 0 (4.47) 

E*I eiv - 6 E*I e' 2 e'' 
WW R 

2) 1 1- E*I 
Qw 

(e 2 e'' + ee 1 

- 2 E*{e'[I r• - I ~·I - I I']}'pcs Rxs Ryn 

- Gide'' + P[(ey - cy }(~'' + n' 'e) 

+ c (ii" - ~"e)]x 

.. 
- c c;; - ~e)J = 0 (4.48)x 

The associated boundary conditions are: 

{E*I ~·· - E*(I e' 2 + I xe 2 e')- M } 0 fj I 

l
I = 0 (4.49)yy Rx n. n 0 

{E* I t:; ' I - E*(I e' 2 + I e 2 e' )'yy I · Rx nx 
"l 

- p [ t:;' (ey C ) 8 I + cxee']} otl = 0 (4.50)
y 0 
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12 11{E*I e'' - E*[I e + I (e 2e + ee'2)]
WW Rw nw 

l 
1- M e 2 } oe I= o (4.51)n . o 

{E*I e 111 - 2 E*IRe 13 - E*I (e 2e" + ee'2)•
WW nw 

- 2 E*e'[I ,..• - I 11 
- I "]i:­pC 7 Rxs Ryn 


- Gide' - 2 Mnee' + P[(ey - c y )(~' + n'e) 


(4.52) 


The nonlinear deformation equations, in the longitudinal 

and n directions, are 

(4.53) 

1 1 ) 11E*I n v - E*(I e' 2 +I e 2exx Ry ny 

.. 
-pl n" + pA[n+ce+c (e.e+e2)]xx . x y 

- P{n" - [c + (e - c )e]e"x y y 

The associated 

{E*Ar;.' +· 

{E*I n"xx 

+ t'1 }
t;, 

non-homoqeneous boundary 

E*(I e' 2 +I e 2 e')- P}oc nc 


- E*(I e' 2 +I e 2e')
Ry ny 


- l 

on' I = O 

0 

(4.54) 

conditions are 
_l 

or;.I = o (4.s5) 
0 

(4.56) 
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e2 e 1{E* I n' ' ' - E* (I e • 2 + I ) ' xx Ry ny 

,.. P[ n' - c e' (4.57)x 

where 

,.. I I 
~ ~ 

t; = [ f; I I n) 1 'e] (4.58)- (no + 

,.. I I 
n = [(no + ~)I I t [, I I e] (4.59) 

M = - !\ sin 6 (4.60)n 

M = f\ cos 6 (4.61)t; 

The stability equations (4.47) and (4.48) describe 

the bifurcation type of stability in the coupled flextural ­

torsional mode. The deformation equations in the 

longitudinal s and coupled flexural n direction are given 

by equations (4.53) and (4.54). For the case of a 

thin-walled beam of symmetrical cross section, where 

ex = cy = !Rx = !Ry = 0, also Inx = Iny = Inw = 0, subjected 

to an axial static load, the stability equations reduce 

to 

E*l 
yy 

t;1v Pt;'' + P e y e'' = O (4,62) 

E*I 6 
1 v - 6 E*I e' 2 e'' + 2 E*I (e's')'ww R pc 

(4.63) 
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The deformation equations become: 

E*Az:;" + E*(I e' 2 +I e 2 e')' = 0 (4.64)pc nc 

E*Ixxniv - P(n'' - e ee'' - e e'2) = O (4.65)
y . y 

To obtain a solution describing the behaviour of 

the thin-walled beam in the immediate post-buckling zone of 

coupled flexural - torsional type of buckling, the four 

coupled differential equations {4.62) to (4.65) should be 

solved simu·ltaneously. 

A solution of the coupled equations is rather 

difficult, thus an approximate approach should be adopted. 

Before buckling there are no flexural deflections in the ~ 

directions and no rotation e. However, the longitudinal 

deformations as well as the flexural deflection in the n 

directions can be expressed by the linear equations 

E*Az:;' I = 0 (4.66) 

E*I iv Pn'' = 0 (4.67)xxn ­

Solutions for equations {4.66) and (4.67) can be 

easily obtained. These solutions represent the lon~itudinal 

and flexural deformations prior to buckling. Introducing 

the solutions of equations (4.66) and (4.67) into the 

nonlinear stability equations (4.62) and (4.63), two coupled 

nonlinear equations are obtained. These two stability 

equations, represent coupled flexural - torsional type of 
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buckling. An approximate solution will describe the 

behaviour of the thin-walled beam in the immediate post 

buckling zone. It is to be noted that the obtained 

solution is unable to accurately predict the behaviour 

beyond the immediate post buckling zone due to the fact 

that no larqe flexural deformations are accounted for 

in the present nonlinear stability theory. 

CASE 3: Loss of Stabilitv in the Form of Torsional Buckling 

Consider a thin-walled beam subjected to axial end 

stresses. Jhe point of application of the resultant of the 

applied stress has co-ordinates (ex, ey). The end force 

and moments can be written as 

P(t) = Jc p(s,t) ds (4.68) 
s 

My(t) = - P(t)ex - - rc.x(s) p(s,t) ds (4.69) 
s 

~1x (t) = P(t)e = f c y(s) p(s,t) ds (4.70)
y s 

M ( t) = r c w(s) p(s,t) ds = 0 (4.71)
w s 

Due to the applied load and moments, the thin-walled 

beam will deform in the longitudinal t direction as well as 

in the principal directions. No rotation e will take place 

orior to buckling. As the magnitude of the applied stress 

reaches the critical value, buckling will occur and the 

cross section will rotate. To exnress the deformation 

variables, in this case, as given by equations (4. 7) to 
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(4,10), the quantity is zero.e0 

The strain energy V, work done Wand kinetic energy T, 

from the deformed state to the buckled state, as given by 

equations (4.12), (4.16) and (4.20) respectively, can then 

be written as 
l 

v =} ff{E*c[i;;' - CE' I + n' 'e)x - (Ti' I - €' 'e)y 
0 s 

2we'' + l2(h 2 + n2)e' 2 + ~ (e 2 e'' + 2ee' 2 )]R 

E*c[ - c-''x II ]2I- z:o ~o - "o Y 

(4-.72) 

w = f c p[i;; n· + ii'e)x Cn' - t'e)y 
s 

- lll0 I + 

- } f c 
s 

l 
I. d s 
0 

- (x - c )eo'J 2 + [n' + (x - c )e'x x 

- (y - c )oe 1
]

2 - [tb 2 + n6 2 ]l dz ds (4.73)v 
l 

T = 1fr Pc{ [ ~ c~· + n'e)° x Cn, - ~' e} Y 
0 s 

wo' + Q (e2e•)° ]2
R 

. 
+ [~ - (v - c )ey 

+ [~ + (x - ex)~ - (v - cy)e~J 2 
• ·, • 2 • • - [ z: 0 -E;, x -n'y] - (E;,6 + n6)1 ds dz (4.74) 
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Introducinq the strain energy (4.72), work done (4.73) 

and kinetic eneray (4.74) into Hamilton's principle (4.1) 

and carryinq out the variation procedure, the following 

nonlinear stahility differential eouation is obtained 

1 e 12 e 11 	 12 ) 11E*I e v - 6 E*I - E*I (e 2 e' 1 + ee 
WW R 	 nw 

- 2 E* [ e ' ( IP c r; • - IR x ~ ' ' - I Ry n • ' ) ] • 

- Gide' I + P[(e - c )(~'I + n' 'e)y y 


( e - c ) ( nI - ~ I I e ) ] - p I ·0 I
I 	 I
X X 	 WW 

.. .. .. . . 
+ 2 plpce + pA[cy(~ + ne) - cx(n - ~e)] = O 

(4.75) 

The 	 associated houndary conditions are 

{E*I e'' - E*[I e' 2 + I (e 2 e' • + ee' 2 )
WW 	 Rw nw 

l 
- M e2 } o e 'I = o 	 (4.76)

n o 

{E*I e' 11 - 2 E*I e•3 - E*I (e 2 e' • + ee 12 ) 1 
ww 	 R Qw 

-Gide' - 2 E*e'(I r;' - I ~II - I '')pc Rx Ryn 

+ 2 M,.,ee' + p[(e - c )(~' + n'e)
H 	 y y 

t 
- (e - c )(;)' - ~'e)]} eel = O (4.77)

x x 	 0 
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The nonlinear deformation eouations, in the r;, ~ and 

n directions, are 
.. 

1 1E*Ar;" + E*(I e' 2 +I e 2e ) - pAr; = 0 (4.78)
pc nc 

E*I tl.V - E*(I e' 2 +I e 2e')" - I t" yy Rx nx P YY 
.. 

+ pA[~+ce+c(ee+e2)J
y x 

- P[ t'' - (P - c )e' 1 
- {e - c )-y y x x 

(ee' 1 + e' 2 )] = o (4.79) 
.. 

e 12 e 2 e' ) 11E*I iv - E*(I + I I 11 

xxn Ry ny - P xxn 

-P[n''+(e -c)e''-(e -c)x x y y 

(ee' 1 + e' 2 )] = o {4.80) 

The associated boundary conditions are 
_£. 

{E*Ar;' + E*(I e' 2 + Ince 2 e') - P} or;I = 0 (4.81)
pc ~, O 

{E*I t" - E*{I e' 2 +I e 2e')yy Rx nx 
- £. 

- M } o~' I = o {4.82) 
n 0 

{E*l €"'- E*(I e' 2 +I e 2 e')'yy Rx nx 

.. PO:' - [{ey - cy) + (ex - cx)e] 

- £_ 

e'} o~I = o (4.83) 
0 
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{E*I n''xx 
- i 

+ M l on' I = O (4.84) 
~ 0 

{E*I n'" - E*{I e' 2 +I e2 e')'xx Ry ny 
-,e_ 

- P{n' + [(e - c )-(e - c )e]e'l onl = o x x y y 0 

(4.85) 

where 
-s = ( Eo + E)' I 

- I I - (no+ n)' 'e (4.86) 

n - I I = Cn 0 + n) I + + E)' 'e (4.87)I <E.:o 

ME.: = Mx cos e + f..J y sin e (4.88) 

(4.89) 


The linear differential equation governing the 

torsional stability of thin-walled beam of an open cross 

section subjected to axial static loads applied at the ends, 

can be obtained from the general nonlinear differential 

equation (4.75). Neglecting the nonlinear terms as well as 

the time denendent terms, Vlasov's equation is obtained 

EI eiv - Gide''+ P (e - ch'' - P(e - c )n''
WW y Y . X X 

where E and n are expressed by the linear terms of deformation 

equations {4.79) and (4.80). 



87 

4.3. Lateral Stability of Open Thin-Walled Beam 

In formulating the nonlinear stability theory of 

thin-walled beam under axial and lateral loads, it is 

necessary to distinguish the behaviour of the beam before 

buckling. Two cases need to be considered: (a) before 

buckling, there is only flexural deformation in one 

principle direction of the beam. As the magnitude of the 

lateral loads increases to the critical value, buckling 

of the member is characterized by flexural deformation in 

the other principal direction and rotation of the section. 

(b) before bucklina, the anolied loads causes the beam to 

have flexural deflections in both the principal directions. 

In this case, as the magnitude of the lateral loads reaches 

the critical value, loss of stability .is characterized by 

torsional deformations (rotation of the cross sections) 

of the beam. 

In each case, the governing stability equations can 

be obtained by calculating the additional energy involved 

when the beam is transferred from deformed state to buckled 

state and applying Hamilton's principle. 

CASE 1: Lateral Flexural - Torsional Stability 

Consider a thin-walled beam subjected to axial as well 

as lateral loads. The axial loads are distributed alonq 

the member. However, the resultant of the axial loads is 
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restricted so that before buck1inq there exists flexural 

deflection in one orincipal direction only, and no rotation 

of the section will take place. 

N(z,t) = Jc p(s,z,t} ds (4.91) 

My(z,t) !-fc x(s) p(s,z,t,} ds = 0 (4.92) 

s 

Mx(z,t) = f c y ( s) i:i(s,z,t) ds (4.93) 
s 

M (z,t) = f c w(s) p(s,z,t) ds = 0 (4.94)
w 

s 
N, Mx and MY denote normal force and bending moments along 

the OZ, OX and OY axes, respectively. The bimoment is 

denoted by M . . w 

Lateral loads are anplied along the length of the 

beam. It is assumed that the applied lateral loads pass 

through the line of shear centers and are acting in a 

olane parallel to the OYZ plane. This restriction insures 

that there is no lateral deformation in the r, direction and 

also no rotational deformation of the beam would occur before 

bucklinq. 

Let qy(z,t) denote the resultant of laterally applied 

distributed loads at any given cross section of the beam. 

The noint of aonlication of o y (z,t) is taken to have 

co-ordinates (~x'~y) as shown in figure [11]. 

Dividina,• the deformation variables in the form as 

qiven by eouations (4.7) to (4.10), the quantities r, 0 and 
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e0 denoting the flexural deflection and rotation of the 

cross section before buckling are zero. 

The chanoe of strain energy and kinetic energy 

during bucklinq will be the same as those given by 

equations (4.44) and (4.46), resnectively. The chanqe 

in the work done W, during buckling, will be the sum of 

the c ha nq e i n the work done bv ax i a 1 11 oad s WA a n d th a t of 

the lateral loads WL as 

(4.95) 

Using eauation (4.45) the change in the work done by axial 

loads can be written as 
f 

WA= ff c p[z;' - (f' + n'e)'x - (Ti' - ~'e}'y 
0 s 

- we' I+ QR(e~e')']ds dz 
f 

_lffc n{[~· - {y - c )e'
2 0 s y 

- (x - cx)ee 1 J2 + [n' + (x - cx)e' 

- (v - cy )ee'J 2 - n'0 
2 } ds dz (4.96) 

The work done by lateral forces WL, from the undeformed 

state to the buckled state,will take the form 
f 

WL = roy(z,t) ne dz (4.97) 
0 .. ­ne donates the displacement of pqint of application e of the 
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lateral load in the OY direction, as shown in figure [11]. 

The displacement ne of noint ~ can be related to the 

displacemeht of the shear center n by the relation 

(cos e - 1) (4.98} 

Introducing equation (4.98) into equation (4.97) 

there is obtained 

WL • f [oyii + ".v<•y - cy)(cos e - l) 
0 

+ qy(ex - ex) sin e ] dz (4.99) 

Since qy(z,t) was originally assumed to pass through 

the line of shear centers, thus 

qy(ex - ex) = o (4.100) 

Introducing {4.100) into equation {4.99) the 

work done is thus 

WL = 

.e.
f [ayn + qy{ey - cy)(cos e - 1 )]dz (4.101) 

0 

To express the displacement n in terms oft;, n and e, the 

first term of the integral in equation {4.74) can be rewritten 

as follows 
l

f oyn 
0 

dz = 
.e. 

- o nl 
y 0 

l 
+ M*n • 1 x 0 

l 

- JM~n'' dz 

0 
(4.102) 

where 

-M* I x I = - o• ·y = Qy (4.103) 
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-M* and O' denote bending moment in the OX direction 
x 'Y -and shearing force in the OY direction, resulting from 

the appli~d lateral loads only. 

The second derivative of n appearing in equation 

(4.102) denotes the curvature on the OXZ plane. This can 


be related to curvatures in the s and n directions by usino 


equations (2.7) and (2.8). Using equations (2.7),(2.8) 


and (4.102) the work done expression (4.101) can be 


written as 

t l 

0 n-1 + M*-n'I SI I sin e + n" cos e)
·y 0 x 0 

+ q (e - cy)(cos e - l)] dz (4. 104)y y 

Prior to bucklinq th~re would be no deformation in 

the s direction, as well as no rotation e. The work done 

before buckling can thus be written asWL ' 
0 

t 

wL = - Qvnol 
l 

+ M*nol 
t 

- f [M~no'J dz (4.105) 
0 ., 0 x 0 

0 

The change in work done by lateral loads during 

buckling is 

(4.106) 

Substituting the expressions for Wl and W as given
Lo 

_by equations (4.104) and (4.105) into equation (4. 106), then 
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-.e_ - l 
0 nl + M*n'I -f{M*[~'' sine 

y 0 x 0 0 x 

+ n0'. (cos e - 1) + n'' cos e 

(4.107) 

The approximations (2.15) and (2.16) for the sin e 

and cos e will be used. 

Introducinq the strain energy (4.44), kinetic energy 

(4.46) and the work done (4.95) into Hamilton's principle 

(4.1) and carrying out the variation procedure, two 

nonlinear stability equations are obtained. 

8 12 e2 e 1 ) 11E*I ~l.V - E*{I +I 
yy Rx QX 

- {N[t' + cye'(l - e 2t 2 ) + cxee 1
]} 

1 


- plyy~· I + pA[~ +eye+ cx(e~ + a2)] = 0 {4.108) 


E*I eiv 11e 12 e 11 (e 2 e 11 ww - 6 E*I - E*I + ee' 2 )R nw 


- 2 E*[o'(I z:;' - I ~" - IR n")]'
pc Rx y 

.. 
- Gide" - pl

WW 
e'' + M

X
(~" - n' 'e) 

.. .. .. 
+ 2 pl 0 ce + pA[c (~ + ne) - C (n - ~e)J 

1 y ?< 

+ q (e - cy)(e - e3/6) = 0 {4.109)
.Y y ­
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where ~ ·x is the total moment due to axial and lateral loads 

(4.110) 

The associated boundary conditions are 

.. l 
- M } ot.:' I = o (4.111) 

n 0 

{ E* I t, ' ' - E* (I e '2 + I e 2 e' ) ' ,yy · Rx nx 

-l 
- N[t.:' + cye'(l - e2t 2 ) + cxee']} ot.:b= O (4.112) 

{E*I e" - E*[I e' 2 +I (e 2e" + ee' 2 )]
WW 	 Rw nw 

.e 
Mne 2 }.oe'I = o (4. 113) 

0 

{ E* I e' ' ' - 2 E* I e ' 3 - E* I (e 2 e ' ' + e e '2)
WW R nw 


- 2 E*e' (I r;' - I t.:' ' - I ' ' ) 
pc Rx Rvn 


- Gide' + 2 Mee' + t\U:' - n'e)
n 
l 

+ 	cxN(n' - ~ I 6 ) - cyN(~' + nI 6)} 0el = 0 (4.114) 
0 

The nonlinear deformation eouations are 
I 

E*Ar; 1 ' + E*(I e' 2 +I e 2e')" - pAr; - N'= 0 (4~115)pc ny 

E*I xxn iv - E*(I Ry e' 2 ·+ I y e2 e ' ) ' ' + [M J1 - e 2 I 2 ) ] , • 

N[ri' + c ee' - c e'(l - e2/2)J} - plxxn',.v x 

+ pA[~ - cxe + cy(ee +e2)] = 0 (4.116) 
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The associated boundary conditions are 
.. l 

0 12{E*Ar;' + E*(I +I e 2 e') - N} or;I = 0 (4.117)pc nc 0 

{E*I n'' - E*{I e' 2 +I e 2 e')xx Ry ny 

. - l 
+ M } on' I = o (4.118) 

~ 0 

{E*I · '' 1 
- E*{I e' 2 +I e 2 e')'xxn ·Ry ny 

-.e 
- N[n' + c oe' - cx(l - o2t 2)e']} onl = O (4.119) 

y 0 

CASE 2: Lateral Torsional Stabilitv 
~~~~~~~~~~~~--~~------"--

Consider a thin-walled beam subjected to axial as 

well as lateral loads. In this ca~e, the ooint of application 

of the resultant of the anplied axial loads is of co-ordinates 

{ex,eyL namely 

N(z,t) = f c n(s,z,t) ds (4.120) 
s 

M {z,t) = -[ c x ( s) o(s,z,t) ds (4.121)y 
s 

M (z,t) =f c y( s) p(s,z,t) ds {4.122)
x 

s 

M {z,t) =.Jc w(s) p(s,z,t) ds = 0 (4.123)w 
s 

Lateral loads are applied alonq the length of the beam. It 

; s assumed that the annlied lateral loads o(z,t) pass 

throuqh the line of shear centers hefore buckling occurs. 
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The ooint of application of the aoplied lateral load in the 

plane of any cross section is denoted by ~' of co-ordinates 

(~x'~y). The restriction that the lateral load pass through 

the line of shear centers, durino deformation prior to 

buckling, is to ensure that there is no twisting moment that 

could arise durina deformation and consequentlv no 
~ • • v 

torsional deformation of the beam would occur before buckling. At 

buckling, however, the beam will experience torsional deformations. 

It should be pointed out that a conservattve applied load, such as 

gravity loads, does not satisfy this condition in general. 

This lateral load q(z,t) can be always resolved 

into two components qx(z,t) and qy(z,t) in the X and Y 

directions, respectively. 

Exoressin0 the variables ~' ~,n and e in the form 

given by equations (4.7) to (4.10), the quantity e0 is zero 

in the present case. 

The channe of the strain enerqy and the kinetic 

energy durinq buckling will be the same as qiven by 

equations (4.72) and (4.74), respectively. The change in 

the work done by axial loads during buckling, can he written 

usinq equation (4.73), as 
I, - - - ­

WA= Jf c n[~' - n• + n'e)'x - (n' -~'e)'v 
0 s . l 

- we' I+ S1R(o 2 e')'] dsdz - 1ff c r 
0 s 

{[~' - (v - c )e' - (x - cx)ee'J 2 
- v 

+ [n' + (x -
··' 

c )e' - (y - cy)ee'] 
2 

x 

[~ 0 2 + n02 ]} ds dz (4.124) 
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The work done by lateral forces WL, from the undeformed 

state to the buckled state, will take the form 
l 

~!L = f (oxEe + oyne) dz (4.125) 
0 

~e and ne are the displacement components of point e in 

the OX and OY directions. 

The change in the work done by lateral forces WL 

can be obtained follo~inq similar derivations as given in 

CASE l, to be 
-.e - l l 

\\ = - Q nl + M*n' I -J{M*[ ~" sine- no'' (cos e - l)
y 0 x 0 x 

-n" cose]+ qy(ex - cx)(cos e - l)l dz 

-.e. - t l 
- 0 ~I - M*.~ 1 1+ J{M*[ 11 sine+ ~''(cos e - 1), x 0 .v b y n 0 

t ~"cos e] + ax(ey - cy)(cos e - l ) } dz (4.126) 

where 

-M*'x I = - n• 
y = 0 (4.127)

'Y 

I-M* I = r• = qx (4.128)y x 

The change in the total work done W, by axial and 

lateral loads, can be obtained by introducing equations (4.124) 

and (4.126) into the eouation 

(4.129) 

Introducinq the strain energy (4.72), kinetic energy 

(4.74) and the work done (4.129) into Hamilton's orinciple 

(4.1} and carryinq out the variation procedure, a nonlinear• 
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stability eauation is obtained 
1E*I e v - 6 	 E*I e' 2 e'' - E*I (e 2 e" + ee' 2 )"

ww R nw 

- 2 E*[e'(I s' - I ~·' - I '' )]'pc Rx _ Ryn 

- GI d 8 I ' - p I ww'e I I + 2 p I pc 8' 
. . .. .. 

+ pA[cy(~ + ne) - cx(n - [e)] 

+ Mx ( t;' ' - n' 'e) + Mv ( n' ' + t;' 'e) 

+ c [N(n' - ~'e)]' - c [N(~' - n'e)]'x 	 y 

The associated boundary conditions are 

{ E* I e' ' - E* [I e ' 2 + I ( e 2 e' • + e e ' 2 
) J ww 	 Rw Qw 

f_ 

- M e2 } oe' I= o 	 (4.131) 
Q 0 

- 2 E*e 1 [I s 1 
- I t 1 

' - I n' ']pc Rx Ry 

- GJde' + M (t;' .... n'e) + M (n' + i'e)x 	 y 

+ c N(n' - ~'e) - c N(~' + n'e)x 	 y 
f_ 

(4.132)+ 	2 Mnee'} eel = o 
0 

where 

(4.133) 
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(4.134)+ M* y 

The nonlinear deformation equations are 

0 12E*Az;; 11 + E*(I +I e 2 e')'pc QC 

- pA~· - NI = 0 (4.135) 

E*I ~iv - E*(I e' 2 +I e 2 e')"yy Rx nx 

- {N[C + c (1 - e 2/ )e' + c ee']l'y 2 x 


- pl ~II 

.YY 

+ p A [ ~ + c 
y 
e + cx ( e e + e 2)] = 0 (4. 136) 

E*I iv - E*(I e' 2 + I e 2 e' )''xxn Ry ny 


[M (e - e3/ )]''
y 6 

+ pA[~ - c e + c (ee + e2 )] = 0 (4.137)
x y ' 

The associated nonhomogeneous boundary conditions 

are 
~i 

{E*Az;;' + E*(I e' 2 +I e 2 e') - N} oz;;I = 0 (4.138) 
pc QC Q 
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l 

·e 12{E*I t;,'' E*(I +I e2 e') - M} ot;,'I = 0yy 	 Rx ax . n 0 

(4.139) 

{E*I t;,''' - E*(I e' 2 +I e2 e')' +Me'yy 	 Rx nx· x 
_,e_

2
- N[t;,' + cy(l - e ; 2 )e'. + cxee']} ot;. I = 0 

0 
{4.140) 

.e. 
{E*I n" - E*(I e' 2 +I e2 e') + M} on' I = 0xx 	 Ry ny t;, 

0 
(4.141) 

n 111{E*I - E*(I 0 12 + I e 2 e 1 )xx 	 Ry ny 
_.e.

2+ 	Mye 1 
- N[n 1 + cyee' - cx(l - e / 2 )e']} on I = O 

0 

(4. 142) 

The linear differential equations governing the 

lateral stability of thin-walled beams, of an open cross 

section subjected to lateral as well as axial static loads, 

can be obtained from the general nonlinear differential 

equations (4.108) and (4.130). Neglecting the nonlinear 

terms and the time dependent terms Vlasov 1 s equations are 

obtained 

EI t;, 1 v +(Me)" [N(t;, 1 + c e')]' = 0 (4.143)yy x 	 y . 

e) 11EI l.V+ (M - [N(n 1 
- c e')]' = 0 (4. 144)xx" y 	 x 

EI el.V - GI e" + M t;, 11 +Mn" - 2[(NI /A
WW d X y 	 pc 

+ MxIRy/Ixx - MyIRx/Iyy)e 1
] 

1 + cx(Nn 1
) 

1 

c (Nt;, 1
) 

1 ·+ [q (e - c) + q (e - c )Je = o (4.145)y 	 x x x y y y 



CHAPTER V 


DYNAMIC STABILITY OF THIN-WALLED BEAM OF SYMMETRICAL CROSS 


SECTION 


5.1. Introduction 

As examples to illustrate the use of the stability 

equations derived in Chapter IV, the remaining portion of 

the thesis concentrates on studying the problem of parametric 

stability of thin-walled elastic beams of symmetrical and 

monosymmetrical sections, subjected to axial periodic end 

loads. 

Under the action of oeriodic end loadin0, a state of 

longitudinal vibration is set up in the beam as a direct 

consenuence of the applied load. Such behaviour is termed 
11 f IIas orced resno~se • ~lowe v e r , i t i s k n o vrn t h a t a t c e r ta i n 

freouency ran~es of applied load, flexural and/or torsional 

vibrations are set up. This ohenomenon is termed as 

"oarametric instability 11 The parametric stability study of• 

thin-walled beams consists of two parts. The first part is _ 

to determine t~e range of frequencies that such instability 

can take place. Since the ranqe of 11 unstable 11 frequencies 

depends on the parametric amolitude, (i.e. maqnitude of time 

varyina part of the end load), the critical ranQeS of 

frequency are most conveniently expressed in terms of unstable 

re~ions in the parametric amnlitude - parametric frequency 

space. Thus, the first part of the parametric stability 

101 
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study is to determine such reqions of instability. To achieve 

this, only the liflear theory is necessary. Such analysis 

has been done by Bolotin [6] for the case of a symmetrical 

I section. The technioue used in the present analysis will 

be similar to that of. Bolotin. 

While it has been verified that the linear stability 

theory predicts accurately the stability re9ions, it also 

predicts that the flexural and/or torsional response grows 

without bound once the anplied load is in the unstable 

frequency range. This is known as "parametric resonance''. 

However, experimental observations show that while the 

amplitude of the oscillations initially grows exponentially 

as predicted by the linear theory, it soon reaches a steady 

state amolitude. Thus, the second part of the parametric 

stability study in this thesis consists of findinq the steady 

state arnnlitude and also the transient 9rowth of the 

parametric response. 

Two examples of studying parametric stability of 

thin-walled beams are aiven. In this chapter, the case of 

a simply sunoorted, thin-walled beam of symmetrical I 

section is studied. In Chapter VI the case of thin-walled 

beams, of built-in ends, of monosymmetrical split ring 

section will be discussed. 

5.2. 	 Differential Eauations 

Consider a thin-walled beam of symmetrical cross 
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section, subjected to dynamic axial forces at the ends of 
.;. 

the beam. It is assumed that the resultant of the applied 

forces passes through the centroid of the cross section. 

Due to the applied end load, the thin-walled beam will 

deform in the longitudinal direction. In the unstable 

regions, the beam will show additional flexural deflection 

in the principal directions of the cross section or 

rotational deformations. The stability Fequations 

for such a case was discussed in Chapter IV, and the governing 

partial differential equations were formulated. The 

geometrical properties of a symmetrical cross section will 

simplify the form of the differential equations because 

for a symmetrical section the shear center coincides with 

the centroid, i.e. 

= 0 ( 5. 1 ) 

and 

IRx -I- Ry -I- Rw -I- nx =I ny =I nw =O ( 5. 2) 

The lonaitudinal deformation in the t direction is 

given by equation (4.29) 

E* At ' ' + E* ( I e ' 2 + I e2 e ' ) ' - p A·r.: = o (5.3}pc nc 

The associated non-homogeneous boundary conditions 

are 

· {E* At ' + E* (I e ' 2 + I e2 e ' ) pc nc 
~l 

- (P 0 +Pt cos 1-t)} otl = o (5.4) 
0 
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where the resultant of the apnlied forces is considered a 

periodic function which can be exoressed in the form 

P(t) = P0 + Pt cos xt ( 5. 5) 

Using equations (4.22) to (4.24), the flexural 

and torsional stability equations for symmetric sections 

are written as 

E*I E;iV - (PO + pt cos Xt)t;' I + pA~ = 0 ( 5 • 6 ) 
.VY 

E*I n1. v - (PO + pt cos xt)n" + pAn = 0 ( 5. 7)xx 

E*I 81.V - 6 E*I e' 2 e" - 2 E* I (e 's' ) ' 
WW R 	 pc 

-Gie"+2 I "e=O 	 (5.8)d P pc 


The associated boundary conditions are 

l 

t;" o t;'I = o ( 5. 9) 
0 

l 
{E*I .VY ~·· (Po + pt cos J.t)~'} o~I = 0 (5.10} 

0l 
InI 0 n' I = 0 (5.11) 

0 
.t 

{E*I n'' (PO + pt 	cos xt)n'} onl = 0 (5.12)xx 0 
.t 

e I I{E* I - M e2 } a e ' 	I = 0 (5.13)
WW n 0 

{E*I 8' I I - 2 E*I e 13 - 2 E*I e's' 
WW 	 R pc 

l 
+ 	2 ~\1 ee' - Gide'} eel = 0 (5.14) 

0 

It is to be noted that the boundary conditions of 

the s equation, as given by (5.4), are time deoendent. It is 
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convenient to modify the differential eauations so that a 

new variabl~ t is introduced into the equation, t is then1 1 

required to satisfy homogeneous boundary conditions. This 

can be done by a technique that was suqgested bv Mindlin 

and Goodman [36]. 

Let a new variable be defined as 

t 1 (z,t) = dz,t) - (P 0 +Pt cos 1-t)z/E*A , (5.15) 

where 

t1{0,t) = 0 {5.16) 

t1U.,t) = o {5.17) 

Introducing eouation (5.15) into eouations {5.3) 

and (5.8), thus the differential eouations of the system 

can be written as 

E*At I + E*(I e' 2 + I e2 e')'l I pc nc 

- pA ~ l + pAZ!. 
2 

pt cos !. t/ E*A .. 0 (5. 18) 

E*I 
yy 

~iv (Po + pt cos 1-t)t''+pA~ = 0 (5.19) 

(5.20) 

E*I eiv - 6 E*I e' 2 e" - 2 E*I Ie't" 
WW R oc l 

+ e' '(E*Ar;1 + P0 + Pt cos 1-t)/E*A] 


- Gide' I + 2 pI pce = 0 (5.21) 
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The boundary conditions of the thin-walled beam are 

such that 
,,;r 

at z = 0 

r;l = E;. = E;. I I = n = n I I = e = e I' = 0 (5.22) 

at z = l 

r;l = t = E;. I I = n = n I I = e I = e I I I (5.23)= 0 

The end conditions exnressed by equations (5,22) 

and (5.23) satisfy the boundary conditions given by equations 

(5.16), (5.17) and (5.9) to (5.14). 

It is convenient at this stage to nondimensionalize 

the constants and variables. The apnlied force is best 

expressed as a factor less than or equal to l ,multiplied 

by the smallest static buckling load. Frequencies are best 

normalized in terms of the frequencies of free vibrations. 

The static buckling loads in the uncoupled flexural 

and torsional modes of buckling a re 

2 
p E;. = 7r E*I /.t 2 (5.24)yy 

p = 7r 
2 E* I ! l 2 (5.25)

n xx 

Pe = A/(E*I 
WW 

n 
2/4f.. 2 

+ Gid)/(2Ipc) (5.26) 

where PE;., Pn and Pe denote the buckling load in the two 

principal directions E;. and n, due to flexure and torsional 

buckling, resnectively. 
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The applied loads will be exnressed in the normalized 

form 

(5.27) 

The axial load parameters N0 and Nt are nondimensionalized 

with r~spect to the smallest buckling stress (E*B) in the 

weaker mode. = - l corresponds to an aoplied axialN0 
compressive load which will cause bucklinq in the weaker 

direction. 

The frequency of the first mode of free vibration, 

under a constant applied axial load can be written asP0 

Q2 = 	 'IT
2E*/(4pf 2) (5.28)

z:; 

Q2 	 4 4 
[, 

= ( l + Po/Per> 'IT E*I /{pAl ) 	 (5.29)
Y.Y 

4 . 4Q2 = ( 1 	 + Po/Per> 'IT E*Ixx/(pA.t ) (5.30)n 

(5.31) 

where n is the first natural freouency in the longitudinal
z:; 

direction. nr, and nn are the frequencies of free vibration in 

the two nrincipal directions r, and 1 n. n is the frequency of
0 

free 	torsional tyne of vibrations. 

Disolacement variables are nondimensionalized with 
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respect to the length, in the form 

r; * = r; 1 /.t (5.32) 

r,l = r,/l (5.33) 

= n/f (5.34}nl 

z = z/f (5.35) 

The partial differential equations given by 

eoua.tions (5.18) to (5.21) can be transformed to ordinary 

differential equations by Galerkin's averaging technique. 

This is a first step towards attempting to solve the eauations. 

To achieve this, seek solutions that satisfy the boundary 

conditions (5.22) and (5.23) in the form 

z;*(z,t) = i; t ( t ) sin TTZ/2 (5.36) 

-r, 1 (z,t) = r,t(t) sin TTZ (5.37) 

n,(z,t) = nt(t) sin TT Z (5.38) 

e(z,t) = et(t) sin rrz/2 (5.39) 

where z;t, Et' nt and et are functions of time only. 

Solutions in the form of (5,36) to (5.39) represent 

the first apnroximation of longitudinal, flexural and torsional 

motion. Substituting the solutions (5.36) to (5.39) into the 
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partial differential equations (5.18) to (5.21) and applying 

Galerkin's averaging technirue, a set of ordinary differential 

equations are obtained 

·· 2 ( 2 ) 2 E*I 28 2/( 3 A0 4)st +nsr;t - 8St.. Nt cos t..t /n + pcn t p {_. 

2 3 3+ E*IncTI 8t/(16pAl ) = 0 (5.40) 

.. 2 2 ? 
~t + n~~t + n E*BNt cos t..t ~t/(rl-) = 0 (5.41) 

2 2 2 
nt + nr'i n t + n E*sNt cos t..t nt/ (pl ) = 0 (5.42) 

2 2 2 
et + neet + n E*sNt cos t..t et/(4pl ) 

2 2 4 3 4+ n E* etr;t/(3pl") - 3 n E*IRet/(64plpcl ) = O 

(5.43) 

It is convenient to expr~ss the system of ordinary 

differential eauations in matrix notations as 

.. 
[D]{f} + ([E] - SNt cos t..t[B]){f} + {~} = 0 (5.44) 

where [B], [DJ, and [E] are matrices of constant coefficients. 

{f} is a vector of variables 

{~} is a vector consisting of nonlinear terms 

At this stage, it is als~ convenient to introduce 

damping effects. The present investigation will be restricted 

to the effect of linear viscous damoina, This effect is 

rerresented by a coefficient cd known as "fractional critical 

dampinq" times the fundamental frenuency of the mode of 
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vibrations. Generally sneaking, there can be different 

values for the fractional critical damping for longitudinal, 

flexural a~d torsional vibrations. In the present analysis, 

the value of the fractional critical damping will be assumed 

to remain the saMe for all three types of vibrations. 

The presence of viscous dampinq will reduce the 

freauencies of free vibrations; however, this effect can be 

neglected as cd << l. 

Introducing linear damping terms in the system of 

ordinary differential e~uations (5.44), there is obtained 
.. . 

[D]{f} + [Cd]{f} + ([E] - BNt cos At[B]){f} 

+ {'!'} = 0 	 (5.45) 

where [Cd] is the da8oing matrix which contains diagonal 

terms only. Damping matrix can be established experimentally. 

The linear terms of the ordinary differential 

equation (5.40), including linear damping terms, are 
2~t + 2 Cd ~z; ~t + C~i:;;t = (8rn 

2 f\ cos A t)/1T (5.46) 

Equation (5.46) is in the standard form of forced vibration 

equations. 

Neglecting the nonlinear terms of the parametric 

stability equations (5.41) to (5,43), a set of linear 

equations is obtained 
2~t + 2 cdn~it + n~~t + 1T E*sNt cos At~t/(pt 2 ) 	 = o 

(5,47) 
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2 	 2
flt + 	2 c ,st nt + flnnt + rr 

2E*8N cos Atnt/(pl ) = 0 
a n 	 t 

(5.48) 
2 2

et + 	2 cdneet + neet + rr E*8Nt cos At8t/(4pl 2 ) = 0 

(5.49) 

Equations (5.47) to (5.49) have variable coefficients. 

They are of the Mathieu-Hill type equations, a mathematical 

characteristic of the parametric stability problems. 

5.3. 	 Boundaries of the Princinal Regions of Parametric 

. Instability 

Consider a thin-walled beam of symmetrical I section 

of 	the qemoetrical dimensions 

c = c = c (5.50)f w 

H/c = 50 (5.51) 

ti = B 	 (5.52) 

l/H 	= 10 (5.53) 

where cf and cw are thicknesses of the flange and web plates, 

resoectively. 

H is 	the height of the web plate, 

B is 	the width of the flanges 

is the length of the thin-walled beam 

The 	 foµr ordJnary differential equations (5.46) to 

(5.49) are uncoupled due to the fact that the resultant of 

the aprlied loads passes through the centroid of a 

symmetrical cross section. The parametric stability 

l 
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equations (5.47) to (5.49) are in the form of uncoupled 

Mathieu· equations as 
ff • 

[!]{f} + [Cd]{f} + ([E] - BNt cos ~t [B]){f} = 0 

(5.54) 

where [I] is the Identity matrix. 

(5.55){f} = (:] 
0 

(5.56)Q 
n 

0 

[n:~ 0 

(5.57)[E] = n2 
n 

0 

1 0 0 

0 1 0 (5.58} 

0 0 1/4 

Equations (5.47) to (5.49) as were expressed in the 

fo~m (5.54) are uncoupled parametric excitation equations. 

Extensive study_ of the uncoupled Mathieu's equations is 

~vailable [32]. The condition for instability is when 

a bounded harmonic solution does not exist. This condition 

defines a region in the parametric amplitude - parametric 
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frequency plane which is a region of instability. 

To establish the boundaries of instability regions 

correspon~ing to di~ferent types of vibrations, seek a 

solution for equation (5.54) in the form of a Fourier 

expansion, with terms of the period 4n/A. It takes the form 

{f(t)} = L ({ai} sin iAt/2 + {b;} cos iAt/2) 

i=l,3,5 (5.59) 

,,.,,here the vectors { ai} and {bi} are of constant coefficients. 

Substituting the Fourier solution (5.59) into the 

system of linear equations (5.54), and applying harmonic 

balance technique, a system of algebraic equations were 

obtained in the order of two equations for each value of 

the parameter i in the periodic solution (5.59), The 

condition for the existence of the solution with period 

of 4n/A is when the determinant of coefficients vani~hes. 

If the interest is only in the principal region of 

instability, which is the case corresponding to parameter 

= 1, the condition for the existence of the solution 

can be written as 
2[EJ + NtB[B]/2 - [I]A /4 


[G .]A/2 , [E]

a ­

- l\S[B]/2 

(5.60) 

This condition (5.60) is a first approximation for the 
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infinite determinant. The approximation is equivalent to the 

assumption that the periodic solutions on the boundaries are 

the harmonic functions: 

{f (t)} = {a} sin At/2 + {b} cos At/2 (5.61) 

For a relatively small amplitude of exciting force, 

this approximation gives reasonably good results. 

The boundaries of the principal regions of instability 

given .b.Y condition (5.60), can be written as 

[n~ - n 
2

E*sNt/{2pt 2 
) - A2/4] 

2 	 2 2 2[nt + n E*BNt/(2pl ) - A /4] 

2+ 	(Acdnt) = o (5.62) 

2[n~ - n E*Sllt/(2pl 2 ) - >. 
2/4] 

2[n~ + n E*sNt/(2pl 2 ) - A2/4] 

2+ (AC .S"l ) = 0 	 (5.63)a n 

2 	 2 2 2[a
6 	

- n E*s~t/(8pl ) - A /4] 

2	 2[a~ + n E*SNt/(8rl ) - A2/4] 

~here >. is the frequency of the parametric load. at,nn and 

are frequencies of free flexural vibrations in the ~ and nn6 

directions and torsional ~ibrations under a constant applied 
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load P0• 

Equations (5.62) to (5.64) are plotted in figure [12] 

and figure [13] for the case of a thin-walled beam of 

symmetrical I section. The geometrical dimensions of the 

I section are as given by equations (5.50) to (5.53). 

Figure [12] represents the case when da~ping terms are 

absent. The vertical axis represents the parametric load, 

i . e . t-h e am p 1 i t u d e o f t he ex c i t i n g for ce . The hor i z o n ta 1 

axis, with different scales, represents the parametric 

frequency, i.e. the normalized frequency of the exciting force 

with resoect to the frequency of free vibrations. The effect 

of different values of the parameter on the boundariesN0 
of the principal regions of ~arametric instability is shown. 

The three instability regions are the principal regions 

associated with flexural and torsional instability. 

Figure [13] represents the effect of viscous damping 

on the principal region of torsional instability when 

No = O. Different values of the damping coefficients were 

considered. Similar graphs can be easily plotted for the 

other two principal regions of flexural instability. 

It can be easily concluded from figure [12] that the 

principal region of torsional instability takes place before 

the principal regions of flexural instability. This is due 

to the fact that the lo~est frequency of free vibrations is 

the frequency of first mode of free torsional oscillation. 
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5.4. Steady State Amplitudes of· Vibrations 

The ~'1 i n e a r th eory o f s t a b i l i t y wa s u s e d to pre d i c t 

the boundaries of the principal regions of instability. It 

also predicted that the flexural or torsional response grows 

without bound once the applied load is in the unstable 

frequency range. However, experimental observations show 

that while the amplitude of oscillations originally grows 

exponentially as predicted by the linear theory, it soon 

reaches a steady state amplitude. To find the steady state 

amplitudes near the principal region of parametric instability, 

nonlinear theory should be used. The four ordinary nonlinear 

differential equations (5.40) to (5.43) are recalled. The 

steady state amplitude of oscillations near the principal 

region of instability can be obtained by seeking solutions 

of equations (5.40) to (5.43) of the approximate harmonic 

form: 

+ sin A. t + A.t (5.65)r,;t = r; a z; s ~c cos 

sin A.t/2 + cos A. t/2 (5.66)~t = ~s ~c 

sin A.t/2 + cos >..t/2 (5.67)nt = ns ric 

e = e sin A. t/2 + e cos A.t/2 (5.68)t s c 

The assumedsolution of the response in the 

longitudinal direction (5.65) is a forced oscillation case 

where the response frequency A. equals the exciting frequency. 
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The.parametric flexural response in the sand n directions 

and the pa_/ametric torsional response 6 are of response 

frequency A/2 which is half the exciting frequency. Since 

the frequency of parametric response is taken A/2, solutions 

(5.66) to (5.68) apply only to the principal regions of 

parametric flexural and torsional instability. 

The steady state amplitude of the uncoupled flexural 

type of parametric vibrations in the s and n directions 

cannot be obtained using the approximate solutions (5.66) 

and (5.67). Higher order theory has to be used. 

However, the present order of approximations adopted is able 

to predict the amplitudes of the coupled longitudinal and 

torsional type of vibrations. Therefore, the interest will 

be focused on the coupled longitudinal and torsional responses. 

Introducing the adopted solutions (5.65) and (5.68) 

into the differential equations {5.40) and (5.43) and applying 

harmonic balance technique, a set 9f algebraic equations is 

obtained. The components of the amplitude of longitudinal 

oscillations are given by: 

z;a = - ex ( 62 + 62) (5.69)c s 

2 2
z; c = {(Q2 - A )[BA sN /rr 2 - exit 2 ( 6 2 - 62)]. t i; c si; 

+ 4cx cd t. rt~6 c6s}/D 0 (5.70) 



120 


where 

ex = 2 Ipc/.(3A.t2) {5.72) 

2 2 2 
Do = (n~ - A ) + (2 Cd n l,;A)	 (5.73) 

The amplitude of parametric torsional vibrations 

near the principal region of parametric instability is 

given by 

= = 0 	 (5.74)ec es 

or 

e2 = {- (al + cx3)± [(cxl + cx3) 
2 

n 

- 4 ( l 2 + cx~)]l/2}+ cx4)(cxlcx3 

2
/[201 (1 + cx4)J 	 (5.75) 

where 
2 2 2e = 6 + 6	 (5.76)n c s 

The values of the quantities ex;, i = l ,4 are 

2 2 . 2 = n ). /4 	+ 0.5 nr,;BNtcx 1 6 

+ 	 [16 n~(n~ - A
2

)A 
2

BNt/(3n 
2}]/Do (5.77) 

3 3 2 (5.78)cx2 = CdrleA + 32 Cd nl,; A BNt/(3n ) 

http:Ipc/.(3A.t2
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2n2<l,3 = >.. 2/4 - 0.5 nc;13Nt 
~' 

e 

- [16 ~~(n~ - >..
2

)>.. 2 sNt/(3n 2)J/D 0 (5.79) 

0:4 = 4 n4 ex Cd >../(30 001) (5.80)
l; 

Dl = 9 'Tl 
2n2 

l; IR/ ( 64 I .t2 )pc 

2 - 2 n a[2 + (n 2 - >.. 2 )n 2/o ]/3 (5.81)
l; l; l; 0 

Further discussions will involve the behaviour of 

the amplitude of parametric torsional vibrations. This is 

due to the fact that the first principal region of parametric 

instability corresponds to the first mode of the torsional 

type of vibrations. The amplitude of torsional oscillations 

is of larger magnitude compared to the amplitude of flexural 

type of vibrations. This is consistent with the order of 

approximations in the present theory for large rotation. 

The steady state amplitude of parametric torsional 

oscillations, given by equation (5.74), represents a 

trivial solution. It will be shown in Chapter VI that 

the trival solution for the amplitude of torsional vibration 

near the principal region of parametric instability is 

an unstable solution. The non-trivial solution for the 

amplitude of steady state torsional vibrations is given 

by equation.(5.75) where the quantities a 1, i = l ,4 

http:equation.(5.75
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are given by equations (5.77) to (5.80). For a certain 
2value of the parametric frequency (A/2a

6 
) near the 

principal region of torsional instability, equation (5.75} 

gives two solutions for the amplitude of torsional 

vibrations en. Applying the criteria gpverning the stability 

of the two non-trivial solutions,as will be discussed in 

detail in Chapter VI, one of the solutions was found to be 

stable while the other is unstable. 

The steady state amplitude of parametric torsional 

oscillations, as given by equation (5.75), is calculated 

for the case of thin-walled beams of symmetrical I section. 

The geometrical properties of the section are as given 

by equations (5.50) to (5.53). Solutions of equation 

(5.75) are plotted in figure [14]. For rJ 0 = 0 

and a constant value of the parametric load, Nt/2 = 0.05, 

the variation of the amplitude of steady state torsional 

vibration en is shown versus the parametric frequency 

(A/2ae) 2 . Solutions for different values of damping 

coefficients were carried out to illustrate the effect of 

damping on the steady state amplitude of vibration. Solid 

lines in figure [14] represent the stable branches of the 

solution while the unstable branches are represented by 

dotted lines. 

To discuss the behaviour of the structure near the 

principal region of parametric instability as shown in 
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figure [14], two cases should be considered dependjng on 

whether the structure is approaching the instability region 

with increasing or decreasing parametric frequencies. For 

the case of ~n increasing parametric frequency, the steady 

state amplitude of torsional vibration follows the trival 

solution. In other words, no torsional response takes 

place. As the parametric frequency enters the unstable 

range, the amplitude of torsional oscillations will grow. 

Continuous growth of the amplitude of vibrations takes 

place as the parametric frequency increases. As the 

paremetric frequency represents a point on the second 

boundary of the unstable region,a sudden drop of the 

amplitude takes place and the trivial solution of zero 

amplitude becomes stable. 

For the case of approaching the unstable region 

by a decreasing frequency, a sudden jump of the amplitude 

will take place at the right boundary of the unstable 

region. As the parametric frequency decreases further, 

the steady state amplitude of torsional oscillation decreases 

gradually following the solid curve in figure [14]. When 
' 

the parametric frequency represents a point on the left 

boundary of the unstable region, the trival solution (5.74), 

;.e. no torsional response, becomes stable. 
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5.5. Nonsteady State Solution 

Nonsteady state solutions represent the time history 

of the amp-litude growth near the principal region of 

instability. The transient response of a thin-walled beam 

of symmetrical cross section is carried out by taking the 

form of the solutions as 

r; t = r;a + r;s(t) sin At + r;c(t) cos At (5.82) 

t; t = t;s (t) sin At/2 + t;c ( t) cos At/2 (5.83) 

nt = ns(t) sin At/ 2 + nc(t) cos At/2 (5.84) 

et = es(t) sin At/2 + ec(t) cos At/2 (5.85) 

These solutions are of time dep~ndent amplitudes of 

oscillations. It is assumed that the time dependent 

coefficients are slowly varying parameters; namely , the 

variation of the amplitude over a complete cycle is very 

small compared to the amplitude itself. Also, the variation 

of the first derivative of the amplitude ovef a complete 

cycle is very small compared to the derivative of the 

amplitude with respect to time. 

At this stage the interest will be limited to the 

transient response of the parametric torsional vibration 

near the principal region of parametric torsional instability. 

The differential equations (5.40) and (5.43) represent the 
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coupled longitudinal and torsional responses. The solutions 

(5.82) and (5.85) are introduced into equations (5.40) and 

(5.43) and applying harmonic balance technique, a set of 

first order,coupled,nonlinear, differential equations are 

obtained. The components of the amplitude of longitudinal 

oscillations are given by 

(5.89) 

(5.90) 

(5.91) 

D4 = ­ 0.5 [tc(n~ - A
2

) - 8 A
2sNt/n 

2 

+ o . 5an 2 ( e 2 
t c - e 2 ) ]/A ­s cd n t 

t s (5.92} 

The components of the amplitude of parametric 

torsional vibrations near the principal region of parametric 
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torsional instability are given by 

(5.93) 

• 

(5.94) 

where 

(5.95) 

D = - [ec(Q~ - A2/4) + 0.5 Q~SNtec
6 

2Q2 I (e 3 2+ 9 n	 + e e )/(I t 2)z.; R c s c pc 

+ 2 Q2(2 e + z.;cec + z.;ses)/3]/A (5.96)z.; 	 · z.;a c 

2
D7 = [es(Q~ - A /4) - 0.5 Q2SN ez.; t s 

2Q2 2+ 9 TI S IR (e3 + e e )/(I t 2)s c s pc 

+ 2 Q~(2z.;aes - z.;c es - z.;sec)/3]/A (5.97) 

Analytical solutions of equations (5.86) to {5.88), 

(5,93) and (5.94) are difficult to obtain. Therefore, 

numerical solutions are adopted. Numerical integration 

procedure was carried out for the time .interval (n/A) for 

the case of a thin-walled beam of symmetrical I section. 

The geometrical properties of the member are as given by 
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eq~ations (5.50) to (5.53). Arbitrary initial conditions 

were assume~, ec = 0, es = 0.02. Constant values of the load 

parameter = O, the parametric amplitude Nt/2 = 0.05 andN0 
2the parametric frequency (A/2n ) = 1, are considered.

8 

Solutions of equations (5.86) to (5.88), (5.93) and 

(5.94) for different values of damping coefficients, were 


carried out. The time history of the behaviour of the 


transient amplitude of parametric torsional oscillation 


en is plotted in figure [15], In the absence of damping, 


if the parametric frequency is within the unstable range, 


the amplitude of parametric torsional oscillations grows 


almost exponentially from an initial value to oscillate 


about the value of the steady state amplitude. This 


behaviour is shown in figure [15] by the curve denoted by 


. cd 	 = O. The presence of damping coefficients decreases 

the rate of initial growth of the amplitude. Three cases 

can be discussed for different values of the damping 

coefficient. In the presence of relatively small damping 

coefficients, cd = 0.01, the amplitude of oscillations 

initially grows, then damped vibrations take place. The 

damped oscillations converge to the amplitude of steady 

state oscillations. For a larger value of the damping 

coefficient, cd = 0.02 in this case, the amplitude of 

torsional oscillations grows to take the value of the 

steady state solution. However, for a relatively large 
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viscous damping, cd = 0.03, 	~he same value of the 
2parametric_frequency (A/2a 

6 
) = 1, and parametric amplitude 

Nt/2 = 0.05, represent a point outside the unstable region, 

refer to figures [13] and [14]. The transient solution for 

this case decreases continuously from an arbitrary ini.tial 

value to become asymptotic to the stable trivial solution 

en = o. 

To summarize the parametric response of a thin-walled 

beam of symmetric I section and to correlate between 

solutions for the boundaries of parametric instability 

regions, steady state and transient responses, figure [16] 

is presented. Figure [16] represents the parametric 

torsional response for a fixed value of the damping 

coefficient. For the constant load parameter N0 = 0 

the boundaries of the principal region of instability are 

plotted in the upper left corner of the figure. For a 

parametric amplitude of Nt/2 = 0.05, the steady state 

amplitude of parametric torsional oscillations are shown in 

the lower left corner of the graph. Solid lines represent 

the stable solution while the unstable solution is plotted 

in dotted lines. The nonsteady state response, for arbitrary 

initial values, is shown on the right side of figure [ l 6 J 

for parametric frequency of (!.,/2rte)2 = 1. To follO\'/ the 

parametric response, the parametric amplitude of 0.05 and 
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parametric frequency of 1, represent a point inside the 

region of parametric torsional instability, thus, the 

system is unstable. The steady state amplitude of 

torsional oscillations is determined by projecting the 

point (1, 0.05) from the stability chart to meet the 

stable branch of the solution at the magnitude of the 

steady state amplitude (0.24577). The transient response 

is shown to grow from an initial value, then damped 

oscillations take place. The oscillations converge to the 

steady state amplitude of parametric torsional oscillations. 

Quantitiative results can be easily obtained, then plotted 

in graphs similar to figure [16] for different values of 

N0 , parametric amplitude (Nt/2), parametric frequency 

(A/2Q ) 
2 and damping coefficient ed.6 



CHAPTER VI 


DYNAMIC STABILITY OF THIN-WALLED BEAM OF 

MONOSYMMETRICAL CROSS SECTION 

6.1. Introduction 

The dynamic stability of thin-walled beams of 

monosymmetrical cross section is presented in this chapter. 

As an example of monosymmetrical section, a split ring 

section is considered. Under the action of periodic end 

loading a state of longitudinal vibration is set up in the 

beam as a direct consequence of the applied load. In 

general, there is no flexural or torsional deformation. 

However, at certain frequency ranges of the applied load 

flexural and/or torsional vibrations are set up. Under 

such conditions, the beam is said to be 11 parametrically 

unstable 11 The present example differs from the symmetrical• 

I section case, which was presented in Chapter V, in two 

aspects. Firstly, the case of a built-in boundary condtion 

is adopted. Secondly, coupled flexural-torsional type of 

vibratio~s will take place. This fundamental difference in 

behaviour is due to the fact that for a monosymmetrical 

section the shear center does not coincide with the centroid. 

Therefore, coupled flexural-torsional type of vibrations 

will result, once parametric instability sets in. The 
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parametric stability study of thin-walled beam, in this 

chapter, consists of two parts. The first part is to 

determine "the range of frequencies at which such instability 

can take place. This.can be expressed as unstable regions 

·in the parametric amplitude-parametric frequency sppce.· The 

second part of the parametric stability study consists of 

establishing the steady state amplitudes of vibration and 

investigating the transient growth of the parametric response. 

6.2. Differential Equations 

Consider a thin-walled beam of monosymmetrical 

cross section where the axis of symmetry is taken to be the 

OY axis. The beam is subjected to dynamic axial forces 

at the ends of the beam. It is assumed that the resultant 

of the applied forces passes through the centroid of the 

cross section. Due to the applied end load the thin-walled 

beam will deform in the longitudinal direction while no 

flexural or torsional deformation will take place. However, 

if the magnitude and frequency of the end loading corresponds 

to a point in the unstable regions, the beam will show 

flexural deformation in the principal direction of symmetry 

or a combined flexural deformation in the other principal 

direction and torsional deformation. The geometrical 

properties of monosymmetrical cross section will simplify 

the differential equations, as 

c = 0 ( 6. 1 ) x 
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and 

(6.2) 

The longitudinal deformation in the z;; direction is 

given by equation (4.31) 

.. 
E*Az;;" + E*(I e' 2 +I e2 e')' - pAz;; = 0 (6.3)pc - nc 

The associated non-homogeneous boundary conditions 

are 

{E*Az;;' + E*(I e' 2 +I e 2 e')pc nc 
_l 

- + Pt cos >.t)} oz;;I _(P 0 0 (6.4)0 ­

where the resultant of the applied forces is considered to 

be a periodic function which can be expressed in the form 

P(t) = Pa + Pt cos >.t (6.5) 

Using equations (4.22) to (4.24) the flexural 

and torsional stability equations for a monosymmetrical section 

are written as 

E.* I E;. 
1 v - ( P + P co s At ) ( E;. ' ' + c e ' ' ) yy 0 t y 

+ p A~· + p Ac ·a = 0 (6.6}
y 

E*I l.V - E*(I e' 2 +I e 2 e')"xxn Ry ny 

+ pA[n + c y (ee + 82 )J = a (6. 7) 



•• 

136 


E*I e 1 
v - 6 E *I e ' 2 e ' ' - 2 E *·[ e ' ( I l.: ' - I n' ' ) ] ' ww R . pc Ry 

- Glde'' + 2 pl e pc 

- ( Po + pt cos 1't)cy (~'' +n' 'e) 

.. .. 
+ pAc y (~ + ne) = 0 ( 6. 8) 

The associated boundary conditions are 
.t 

t;, • • ot;. • I = o (6.9) 
0 

.t 
{E*I t;''' - (P 0 + Pt cos 1't)(t;' +ce')} as I = 0yy y 0 

(6.10) 
l 

{E*Ixxn I I - E*(I e' 2 + I e 2 e')} on' I = 0 (6.11)Ry ny 
0 

{E*Ixxn I I I - E*(I e' 2 + I e 2 e' )'Ry ny 

- (Po + pt cos 1't)(n' +cee')} on 
l
I ·= 0 (6.12). y 
0 

l 
{E*I e'' - M e 2 } oe'I = o (6.13)

WW fl. Q 

{E*I e''' - 2 .E*I e' 3 - 2 E*e'(I l.:' -·I n")
ww R pc Ry 

.t 
cr0 + pt cos " t ) cy c~ · + ;; •e ) } oe 1 - o c6 . i 4 ) 

0 

The boundary conditions of the l,;· equation as given 

by (6.4) are time dependent~ It is convenient to modify 
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the differential equations so that a new variable z:; 1 is 

re~uired tQ.satisfy homogeneous boundary conditions only. 

This can be done by the Mindlin and Goodman's technique. 

Let a new variable z:; 1 be defined as 

(6.15) 

where 

z:; 
1 
(0,t) = O (6.16) 

z:;l(l,t)=O (6.17) 

Introducing equation (6. 15) into equation (6.3) 

and (6.8) a modified set of differential equations is obtained. 

For fixed end conditions,the boundary conditions of 

the thin-walled beam can be expressed mathematically as 

at z = 0 

z:; 1 = ~ = ~· = n = n = e = e' = O (6.18) 

at z = .e 

ti = ~ = ~' = n = n' = · e = e' = O (6.19) 

It is convenient at this stage to nondimensionalize 

the problem. The applied force is expressed as a factor 

less than or equal to 1, multiplied by the smallest static 

buckling load. The frequencies are best normalized in 

terms of the frequencies of free vibrations. 

Let the static flexural buckling load in the 

uncoupled n direction be P and the coupled flexural n 
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torsional buckling loads be denoted as P1 and P2. Mathematically 

they can be expressed as 

2 2p 
n 

= 4 1f E*I xx /l (6;20) 

= [-02 ± (D - 4 ~ ~ ) 1/2]/(2~ ) (6.21)pl , 2 l l2 3 

where the constants o2 and D3 areD 1 ' 

Dl = Cy 
2 

A/(2Ipc) - 1 (6.22) 

2 2D·2 = 4 1f E*Iyy /l + A(4 1f 
2 E*I 

WW 
/.t 2 + Gld)/ 

(2Ipct
2 

) (6.23) 

2 
D3 = 4 1f E*AIYY(4 1f 

2E*I /l2 + Gld)/
WW 

(2Ipct
2 

) (6.24) 

- In general, P1 is the critical load that corresponds 

to the buckling mode whose torsional deformation is predominant. 

This is called 11 predominant torsional" mode. P2 is the critical 

load that corresponds to the buckling mode whose flexural 

deformation is predominant. This is called 11 predominant 

flexural 11 mode. 

The applied loads will then be expressed in the form 

(6,25) 
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where 

B = P /(E*A) (6.26)er 

The axial load parameters N0 and Nt are 

nondimensionalized with respe~t to the smallest buckling load 

Per in the weaker mode. N0 = - 1 corresponds to an applied 

axial compressive load which will cause buckling in the 

weaker mode. 

The frequency of free vibrations, under a constant 

applie~ axial load P0, in the uncoupled longitudinal and 

flexural type of vibrations can be written as 

(6.27) 

n~ = (1 + P0I Pc r ) 1 6 n 
4 

E* I xx I (3p Al
4 

) (6.28) 

The frequency of free vibration, under a constant 

applied axial load P0 , of the coupled flexural-torsional 

types of oscillations, can be written as 

(6.29) 


where the constant Dl is given by equation (6.22), D2 and 

D~ are given as 

D* = + d0 + 2 d0 o, (6.30)dl2 

D* = (0*2 - 4 D0*) 112 (6.31)
3 2 1 4 

D* = - (d1 - da)(d2 - do)4 

+ c~ A d~/(2Ipc) (6.32) 



140 

d0 
2 2= 4 n P0/(3pAl ) (6.33) 

dl = 16 n
4E*I /(3pAt4 ) (6.34)yy 

2 2 2 2= 2 n (4 n E*Iww/l + Gld)/(3pl Ipc) (6.35)d2 

n1 and are frequencies that correspond to an2 
coupled flexural-torsional type of vibration. The mode 

shape corresponding to one of the frequencies, say n1 , is 

characterized by predominant torsional deformations while 

n2 corresponds to a mode shape of predominant flexural 

characteristic. In general, for a thin-walled beam of 

bpen cross section, the torsional rigidity is small 

compared with the flexural rigidity, thus < n2.n1 

Consider the nondimensionalized variables to be 

z; * = z; 1I l (6.36) 

= E,/l (6.37)E.1 

= nil (6.38)Tl l 

-z = z/l (6.39) 

The partial differential equations given by 

equations (6.3) and (6.6) to (6.8} can be changed to ordinary 

differential equations by applying Galerkin's averaging 

technique to the equations. 
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As our interest is directed to the first mode of 

oscillations in each type of deformation, approximate mode 

shapes are used. The approximate first mode shape functions 

are taken to be 

t*(z,tl = tt(t) sin nz/2 (6.40) 

t;; 1 (z,t) = t;;t(t) (1 - cos 2nz) (6.41) 

n,(z,t) = nt(t) (l - cos 2nz) (6.42) 

e(z,t) = et(t) (l - cos 2nz) (6.43) 

where tt' t;;t, nt and et are functions of time only. 

The first natural frequency of different types of 

vibrations, as calculated using the approximate mode shape 

functions given by equations (6.40) to (6.43) are compared 

to the frequency values calculated using a four term 11 beam 

type 11 mode function. The difference was found to be of the 

order of 0.4%. The approximations in mode shapes as 

expressed in (6.40) to (6.43) are, therefore, regarded as 

reasonable. 

Substituting the solutions (6.40) to (6.43) into 

the partial differential equations (6.3) and (6.6) to (6.8) 

and applying Galerkin's averaging technique, a set of ordinary 
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differential equations is obtained 

(6.44) 


. 2 	 2 
+ 4n E*S(No + Nt cos At)(tt + cyet/l)/(3pl ) = 0 

(6.45) 

(6.46) 


.. 	 . 
et+ cYAltt/(2Ipc) + 2cdnlet + d2et 

+ 	 4n 
2E*s(N 0 + Nt cos At)[et + cYAltt/(2Ipc) 

]/(3pl2 ) + 4n 4E*I e3/( I t 4 )R t P pc 

(6.47) 


where cd is the damping coefficient known as the fractional 

critical damping. The damping terms were introduced in the 
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ordinary differential equations (6.44) to (6.47) after 

Galerkin's technique was applied. The effect on damping 

on the frequency of free vibration can be neglected as 

Cd <;"< 1 . 

The linear terms of the ordinary differential equation 

(6.44) including damping terms, are written as 

Equation (6.46) is in t~e standard form of the forced 

vibration equations. The linear terms of the parametric 

stability equations are 

.. 
Et + cyet/l + 2 Cd Q2 Et + dl Et 

2 2
+ 4n E*s(No + Nt cos At)(Et + Cy6t/l)/(3pl ) = 0 

(6.49) 

(6.50) 

.. .. 
et + cYAlEt/(2Ipc) + 2 cd et + d2eta1 

2
+ 4n E*S(No + Nt cos At)[et + cyAlEt/(2Ipc)]/ 

(3pl 2 ) = 0 (6.51) 

Equations (6.49) to (6.51) are of variable coefficients 

which is a mathematical characteristic of the parametric 
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stability problems. 

6.3. 	 Bound~ries of the Principal Regions of Parametric 

Instability 

For a thin-walled beam of monosymmetrical cross 

section, there exists three types of oscillations. Namely, 

the uncoupled flexural, the coupled flexural-torsional 

type of vibrations of predominant torsional characteristics 

and the coupled flexural-torsional type of oscillations of 

predominant flexural characteristics. For each type of 

vibration, there exists an infinite number of frequencies 

of free vibration corresponding to an infinite number of 

mode shapes. There is a region of principal parametric instability 

corresponding to each frequency of free vibrations. If 

only the first mode of each type of vibration is considered, 

there exists three principal regions of parametric 

instability for a thin-walled beam of monosymmetrical cross 

section. The three principal regions will be distinguished 

by the type of vibration they correspond to. Namely, 

flexural, coupled flexural-torsional of predominant torsional 

or flexural characteristics. In addition, there exists 

regions of parametric instability corresponding to combinations 

of frequencies of free vibrations of the system. However, 

this type of"combination parametric instability 11 will not be 

considered 1n this thesis. The present analysis will be 

limited to the study of the principal regions of parametric 
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instability. 

To establish the boundaries of the principal regions 

of paramet,ric instability, only the linear equations of 

stability are used. 

The equations governing the parametric stability 

of thin-walled beams of rnonosymmetrical cross section (6.49) 

to (6.51) can be written in the form .. . 
[O]{f} + [Cd]{f} + ([E] - s(No + Nt cos At)[B]){f} = 0 

(6.52) 

~t 

{f} = (6.53)T) t 

et 


0 


[Cd] = 2 Cd [ :2 Q 
T) 

(6.54) 

0 :J 
-[ 0 

l 0 

~/l][OJ l (6.55) 

cyA.t/(2Ipc) 0 

0 0dl 

(6.56) 

0 0 

[ E] = 0 l6R 4E*Ixx/(3pAt4 ) 0 

d2 
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(6.57) 


Equation (6.50) is an uncoupled differential equation 

representing parametric stability of the uncoupled flexural 

type of vibrations. The boundaries of the principal region 

of parametric flexural instability can be written as 

[n~ - 2n
2E*BNt/(3pl2 ) - A 2 /4][n~ + 2n 

2E*BNt/(3pl2 ) 

2 2 - A /4] + (cdAnn) = 0 (6.58) 

Usin~ the method suggested by Bolotin [6], the 

boundaries of principal regions of the coupled flexural­

torsional types of parametric oscillations can be written 

using conditions(5.60) as 

Kl Cyµf l -cdn 2A 0 

c Alµ/(21 ) 0 -cdnl>.K2Y pc 

cdn 2A 0 Kl cy'ii!l . = 0 (6.59} 

0 cdnl>. c P1lii/(2I c) K2y p 

where 

(6.60) 

(6.61) 

(6.62) 

http:conditions(5.60
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2 2 2~ = 4n E*(No - Nt/2)/(3pl ) - A /4 (6.63} 

2 2 2 2= µ + 2n (4n E*Iww/l + Gld)/(3pl Ipc}K2 

K2 = K2 - µ + µ (6.65) 

The condition (6.59) for the boundaries of the 

principal regions of coupled flexural-torsional type of 

parametric oscillations, can be solved numerically by trial 

and error method of analysis. The boundaries of the 

principal regions can thus be constructed in the parametric 

amplitude-parametric frequency space. It should be pointed 

out that there is NO GUARANTEE that the boundaries, determined 

by Bolotin's method (6.59) are the actual boundaries of 

unstable regions for coupled Mathieu equations (6.52). It 

remains to show that in the present example, the boundaries 

obtained by condition (6.59) are in fact the boundaries of 

an unstable region. This can be accomplished by a more detailed 

study of the behaviour of the solutions inside the determined 

region. 

To be specific, consider a thin-walled beam of 

monosymmetrical split ring section as shown in figure [17] 
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FIG. <17) SPLIT RING SECTION 
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of geometrical dimensions 

c/r = 	0.065 (6.66) 

t/r = 	36 (6.67) 

t = ~12 	 (6.68) 

where 	 c is the thickness of the thin wall 

l is the length of the beam 

r is the radius of the ring 


t is the semi-central angle in radians 


The geometrical properties of the cross section are 

calculated using the formulas given in Appendix A. 

Numerical substitution in conditions (6.58) and (6.59) 

will give the boundaries of the three principal regions. 

However, the interest will be directed towards the principal 

region of parametric instability of the coupled flexural 

torsional type of vibrations of the predominant torsional 

characteristics. This is due to the fact that the lowest 

frequency of free vibrations is that of the coupled flexural­

torsional type of vibrat~ons of the predominant torsional 

characteristics. Also, the amplitudes of oscillations within 

this unstable region are expected to be larger than the 

amplitudes of oscillations within the uncoupled flexural 

and coupled predominant flexural instability regions. 
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Limiting the discussion to the principal region of parametric 

instability of the predominant torsional characteristics 

is regarded as sufficient since no qualitative change in 

the behaviour is expected by studying the principal regions 

of flexural and predominant flexural parametric instability. 

The solution of condition (6.59) is plotted as shown 

in figures [18] and [19]. The plots are in the parametric 

amplitude~parametric frequency space. Figure [18] represents 

the case when damping terms are absent cd = a,· for different 

values of the parameter N0• Figure [19] represents the 

effect of viscous damping on the principal region of parametric 

stability of the coupled flexural-torsional type of 

oscillations of predominant torsional characteristics, 

when = o.N0 

6.4. Steady State Amplitudes of Vibrations 

Since the stability equations for s and e are coupled 

Mathieu equations, the unstable region as determined by 

Bolotin's method need further verification. This can be 

achieved by studying the steady state amplitudes of vibrations 

near the principal regions. An unstable region will 

correspond to a nontrivial steady state solution near this 

region. To study the steady state equations, the nonlinear 

theory should be used. The four ordinary nonlinear 

differential equations (6.44) to (6.47) are recalled. The 

steady state amplitudes of oscillations can be obtained by 
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seeking solutions of the approximate harmonic form (5.65) 

to. ( 5. 6 8) . .;, 

Introducing the adopted solutions into the 

differential equations (6.44) to (6.47) and applying the 

harmonic balance technique, a set of nonlinear algebraic 

equations i s obtained 

z;;a = cxo e2 (6.69)n 

- - ( 2 e2}z;;c = al eces + 0:2 + a 3 e c (6.70)s 

- - ( 2 e2)z;;s = CX4 eces + 0:5 + cx6 6 c - (6.71)s 

- (6.72}~c = ex 7 ec + cx8es 

- + (6.73)~s = 0:9 ec cx10 6 s 

ec = es = 0 (6.74) 

or e2 (- 2 - 4 - - )1/2] ( - } (6.75}n = [-~12 ± ex 1 2 exllexl3 / 2exll 

where the coefficients ex 0 , ex 1 , i = 1,11 are given in Appendix 

B, and 

e2 = e2 + e2 (6.76)n c s 

The steady state amplitudes of the uncoupled flexural 

type of parametric vibrations in the n 'direction cannot be 

obtained using the approximate solutions (5.61}. Higher order 

theory should be used. However, the order of approximations 
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adopted can predict the amplitude of coupled longitudinal­

torsional and flexural-torsional type of parametric 

oscillations. 

Further discussions will be focused on the behaviour 

of the amplitude of coupled flexural-torsional vibrations. 

This is due to the fact that the first principal unstable 

region is that corresponding to the coupled flexural-torsional 

type of vibrations of the predominant torsional characteristics. 

A trivial solution for e as given by expression 

(6.74) implies trivial solutions for flexural deflections ~ 

and n also. A nontrivial solution for the amplitude of 

torsional oscillations as given by equation {G.75) implies 

nontrivial solutions for ~ and n as given by equations 

(6.72) and (6.73) due to the coupling between e and 

flexural deflection terms. 

The nontrivial solution for the amplitude of 

torsional oscillations en(6.75) has two values. This means 

that for each value of the parametric frequency near the 

principal region there exist two solutions for the amplitude 

of torsional vibrations. However, studying the stability 

of the two solutions shows that one solution is stable while 

the other is unstable. The stability analysis of the steady 

state solutions will be discussed later. The existence of 

a stable solution for the steady state amplitudes of 

flexural-torsional types of vibrations in the principal 
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regions shows that this region is in fact a principal region 

of parametric instability. 

The numerical solutions of equation (6.75} are shown 

in figure [20]. The steady state amplitude of torsional 

vibrations near the principal region of predominant tor~ional 

instability is plotted versus the parametric frequency for 

a certain value of the parametric load (Nt/2 = 0.05), An 

open thin-walled split ring section of the geometrical 

dimensions (6.66) to (6.68} were used. The nontrivial 

solutions for the steady state amplitude, are plotted in 

the lower part of figure [20]. The stable branches of 

the solution are shown in solid lines while the unstable 

solutions are shown dotted. 

The effect of damping on the s~eady state amplitude 

of oscillations is illustrated in figure [20]. Different 

values of the damping coefficients cd are used. The presence 

of small viscous damping (cd = .01, .02) reduces the 

magnitude of the steady state amplitude of oscillations. 

For large values of damping coefficients (e.g. cd = .03) the 

system is not parametrically excited. Therefore, no steady 

state amplitude of oscillations is expected and the trivial 

solution (6.74) will hold. 

To discuss the behaviour of the steady state amplitude 

for varying parametric frequency it is necessary to state 
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whether the unstable region is approached by increasing or 

decreasing parametric frequency for a constant value of the 

parametric amplitude. Starting from a frequency below the 

critical range the system is stable and the steady state 

amplitude will correspond to the trivial solution en = O. 

As the parametric frequency enters the unstable range, the 

amplitude of torsional oscillations increases gradually. 

When the parametric frequency exits from the unstable range 

there is a sudden drop of the steady state amplitude ~o 

zero. 

On the other hand, if the unstable region is approached 

by a decreasing parametric frequency different behaviour is 

predicted. For a parametric frequency above the critical 

range the trivial solution will hold indicating no amplitudes 

of vibrations. This shows that the system is parametrically 

stable. As the parametric frequency decreases until it 

reaches a point on the right boundary of the unstable region 

a sudden jump of the steady state amplitude will take place. 

As the parametric frequency decreases further the steady 

state amplitude of parametric torsional oscillations decreases 

gradually. Finally,as the parametric frequency exits from 

the unstable range, the trivial solution becomes a stable 

one. 
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6.5. Nonsteady State Solution 

The time history of the amplitude growth at the 

principal region of instability is studied in this section. 

The growth of the amplitude of oscillations, from an 

initial value to the value of the steady state amplitude, 

is referred to as Nonsteady state or Transient solution. 

Transient solution can be obtained by allowing the amplitude 

of the assumed solutions to vary with time. This can be 

achieved by considering the solutions of the form as given 

in equations (5.82) to (5.85). In these solutions the 

amplitude components are taken as time dependent. It is 

assumed that the time dependent coefficients are slowly 

varying. In other words, the variation of the amplitude 

component over a complete cycle is considered to be small 

compared to the amplitude itself. Also, the variation of 

the first derivative of the amplitude over a complete cycle 

is considered to be small compared to the derivative of the 

amplitude component with respect to time. 

Solutions (5,82) to (5.85) are introduced into the 

system of differential equations (6.44) to (6.47) and 

applying harmonic balance technique a set of first order 

nonlinear differential equations is obtained 

(6.77) 
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• = (6.78)r,;c 92{r,;c,r,;s' 8 c' 8 s) 

= (6.79)z; s 93(z;c,1;;s' 8 c' 8 s) 

. 
{ f} = [M]-1 {g} (6.80) 

. 
where {f} is a vector of the first derivatives of the 

amplitude components . 
~c 
. . ~s

{f} = (6.81). 
ec 
. 
es 

-
94 

-
95{g} = (6.82) 

-
96 


97 


-The functions g., i = 1,7 are nonlinear functions of the 
1 

amplitude components given in Appendix B. 
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[M]-l is the inverse of matrix [M] where 

l -2cdri 2/>. cyIi 0 

2cdri 2/>. l 0 cy/l
[M] = (6.83} 

cyAl/(2Ipc) 0 l -2cdril /)., 

0 cYAl/(2Ipc) 2cdrll/"A 1 

An analytical solution of equations (6.77) to (6.80) 

is rather difficult to attempt and, therefore, numerical 

solution is used. It should be noted, however, that if 

the first derivatives of the amplitude components (the left 

hand side of equations (6.77) to (6.80) ) are taken to be 

zero, the steady state equations (6.69) to (6.75) are 

obtained. As an example to study the behaviour of the 

transient solution, consider a thin walled beam of dimensions 

monosymmetrical split ring section. The geometrical properties 

of the section are as given by equations (6.66) to (6.68). 

The geometrical properties of the cross section are as given 

by Appendix A. 

The transient solution as given by equations (6.77)
' 

to (6.80) can be established for a given value of the constant 

component of the load N0 , parametric amplitude Nt/2 and 
. 2

parametric frequency ("A/2ri 1 ) . In addition, initial values 
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of the nonsteady state amplitude components should be 

spe~ified initially, ec = O, es = 0.03. The values of the 

parametric ~mplitude and frequency represent a point in the 

parametric amplitude - parametric frequency space. If this 

point is located outside the boundaries of the unstable regions 

the transient solution will decay rapidly and become asymptotic 

to the stable trivial solution. On the other hand, if the 

parametric amplitude and frequency represent a point in the 

unstable region, the transient solution shows the growth of 

the amplitude from an initial value to a value corresponding 

to the steady state amplitude of oscillation. The manner 

with which the amplitude approaches the steady state value 

depends on the damping of the system. Further discussions 

are limited to the behaviour of the transient solution of 

the torsional amplitude near the first principal region of 

. parametric instability of the predominant torsional 

characteristics. 

The behaviour of the nonsteady state amplitude of 

torsional oscillations is presented in figure [21]. Numerical 

solutions of the system of equations (6.77) to (6.80) are 

carried out for the constant load component = O,N0 

parametric amplitude Nt/2 = 0.05 and parametric frequency 


(A/2n 1)2 = 1. These values represent a point inside the 


principal region of parametric instability of predominant 
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torsional characteristics (refer to figure [19] and figure 

[20]). Arbitrary initial values of the amplitude of 

torsional vibrations is considered. Computations were 

repeated for different values of the damping coefficient ed. 

Results plotted in fi~ure [21] show the time history of the 

nonsteady state amplitude of torsional vibrations for 

different values of the damping coefficient. 

In the absence of damping cd = 0 the amplitude of 

parametric torsional oscillations increases initially and 

then oscillates about the value predicted by the steady 

state solution. When relatively small damping is 

present (e.g. cd = .01) the oscillations of the amplitude 

are damped down causing the transient solution to converge 

to the value of the steady state amplitude. For the case 

of larger damping coefficient cd = .03 the considered 

parametric amplitude and parametric frequency represent a 

point that lies outside the unstable region corresponding 

to cd = .03, figure [19]. The behaviour of the transient 

solution in this case is characterised by a rapidly decreasing 

amplitude ot become asymptotic to the trivial solution. 

6.6. Stability of Steady State Solutions 

In the study of the steady state.amplitudes of 

parametric oscillations,in particular the steady state 

amplitude of torsional oscillations, it was shown that more 

than one solution exists. The trivial solution is given by 
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equation (6.74) while equation (6.75) gives two nontrivial 

solutions. When the parametric frequency is outside the 

unstable range only the trivial solution exists. If the 

parametric frequency is within the unstable range, the 

trivial solution is still valid in addition to one or two 

nontrivial solutions from equation (6.74). Therefore, 

it is important to study the stability of the steady state 

solutions. 

To check the stability of the steady state solutions, 

a technique given by Bolotin is used. The steady state 

amplitudes of parametric oscillations are disturbed. If the 

small disturbance considered remains bounded, the steady 

state amplitude value is considered stable. If the 

disturbances grow the steady state solution is considered 

unstable. This stability check can be achieved by using 

the nonsteady state solutions. To be specific, an 

example to study the stability of the steady state solution 

is worked out for the case of a thin-walled beam of 

monosymmetrical section. 

The nonsteady state solutions given by equations 

(6,77) to (6.80) are recalled. This system 6f equations 

contain six first order, coupled, differe~tial equations 

whose coefficients do not explicitly contain time. Let one 

of the steady state solutions which satisfy equations (6.69) 
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to 	 (6.75) be written as 

(6.84)l; c 	 = l; co 

(6. 8 5)ss = sso' 


t;c = ~co (6.86) 


= 	 (6.87)E; s E; s 0 

= (6.88)ec ecO 

= (6.89)es esO 

To investigate the stability of the solutions given 

by equations (6.84) to (6.89) small disturbances of the 

amplitude values are considered in the form 

(6.90)sc 	 = sea + yl 

= (6.91)ss sso + Y2 

(6.92)E; c = t;co + Y3 

E; s = t; sO + y 4 (6.93) 

= (6.94)ec ecO + Y5 

= (6.95)es esO + y6 

where y1, i = l '6 is a small time dependent disturbance of 
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the amplitude components. 

Substituting equations (6.90) to (6.95} -into 

equations (6.78) to (6.80) the equations of the disturbed 

motion are obtained in the form 

dyl L= (6.96)gli Y·dt 1 

i =1 '6 

dy2 
err = L g 2i y . 

1 
(6.97) .' 

i =1 '6 

{y} = [M]-1 [A] {y} {6.98) 

where g .. (j = 1,2 and i = 1,6) are coefficients given in
J 1 

Appendix B. 

{y} is a vector representing the time derivatives 

of the dist~rbance quantities, in the form 

dy 4 
dt 

{y} = (6. 99} 

dy 5 
dt 

dy6 
at 
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[M)-l represents the inverse of the 4 x 4 matrix [M] 

given by equation (6.83). 

Matrix 	 [A] is a 4 x 6 matrix whose elements are 

a . . , j = 1 , 4 and i = 1 , 6. The coefficients aji are given
J 1 

in Appendix B. 

{y} is a column vector of six components representing 

the 	disturbance quantities yi, i = 1,6. 

It is convenient at this stage to express equations 
•I 

(6.96) 	 to (6.98) in the matrix form 

{y} = [G] {y} 	 (6.100) 

where {y} is a column vector of six components yi, i = 1,6. 

[G] represents a matrix of coefficients whose elements can 

be obtained from equations (6.96) to (6.98). The first two 

rows are 9li and 921 ; i = 1,6 while the rows 3 to 6 are 

bji; j=l,4andi =l,6where 

[BJ = [ M] -1 [ AJ (6.101) 

The solution for equation (6.100) is expressed in 

the exponential form as 

{y} 	 (6.102) 

where {y 0} is a column vector of six constant components 

and A is the frequency of the ex~iting force while ~ represents 
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the eigenvalues of [G]. 

The disturbances {y} decay with time only if all 

roots ~ have negative real parts. 

Analytical quantities and coefficients are given for 

equations (6.96) to (6.98) for the case of a thin-walled 

beam of monosymmetrical cross section. However, further 

analytical formulation of the matrix [G] is rather difficult 

as it involves the inversion of the matrix [M]. The elements 

of the matrix [G] can thus be constructed numerically for 

each specific case. 

Numerical computations were carried out to check 

the stability of the steady state solutions near the principal 

regions of parametric instabilities by evaluating the 

eigenvalues of the matrix [G]. 

The cases considered included the trivial and nontrivial 

steady state solutions of a thin-walled beam of symmetrical 

I section. Results are applied to the case of zero damping 

as shown in figures [14] and [16]. The stable solutions of 

the steady state are in solid lines while the unstable 

solutions are dotted. 

Stability of the solutions of the steady state 

amplitudes of parametric torsional vibrations is studied 

for a thin-walled beam of monosymmetrical split ring section 

near the principal region of parametric stability of the 

predominant torsional characteristics. Results are applied 
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to figure [20] as solid lines for the stable solutions while 

the unstable solutions are dotted. 



CHAPTER VII 


CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 

~ 

RESEARCH 

7. 1. Conclusions 

From the present investiqation, the following 

conclusions are arrived at: 

1. The nonlinear deformation theory of thin-walled 

beams of open cross sections, as presented, accounts for 

large rotations of the cross section. The nonlinear differential 

equations were checked in two ways. Firstly, it was shown 

to reduce to the well established linear theory of Vlasov. 

Secondly, the nonlinear deformation equations in the 

simplest form reduce to Gregory's formulations. Both the 

linear theory of Vlasov and Gregory's formulations were 

supported by experimental work. 

2. The present nonlinear theory has four main 

advantaqes over the formulations available in the literature, 

namely: (a) the deformations in the longitudinal direction of 

the thin-walled beam were accounted for. (b) a consistent 

third order aoproximation was maintained throughout the 

formulation. The aooroximations were based on the large 

rotation assumotion where the angle of rotation of the 

cross section is treated as first order while the slope of the 

deflection curve was considered as a second order quantity, 

170 




171 


(c) the nonlinear differential eauations are accompanied 

by the appropriate boundary conditions of a consistent 

order of approximation. (d) the oresent theory is 

relatively simnle to apply. This was illustrated by the 

different examoles considered. 

3. The solutions of a thin-walled beam, of 

symmetrical and monosy~rnetrical cross sections subjected to 

end twistinq moments, were shown to agree with existing 

solutions for the case of uniform torsion, as given by 

Cullimore and Gregory. Numerical solutions for the case of 

a cantilever thin-walled beam, of narrow, rectangular, 

cross section as well as symmetrical I and anqle sections, 

were carried out. Comoarison between the linear and 

nonlinear solutions for the moment of twist - angle of 

rotation behaviour showed substantial difference for large 

angles of rotation. For the soecific cases considered, there 

was a difference of over 10% in the values of the moment of 

twist, when the anqle of rotation was 0.35 radians. 

4. The nonlinear solution of a cantilever thin-walled 

beam, subjected to end torque, was carried out by means of 

perturbation analysis. This solution,to the author's 

knowledqe, has not been done before. The twisting moment ­

angle of rotation relationshin for a thin-walled beam of 

symmetrical I section was comnared with the linear solution 

of non-uniform torsion. 
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The variation of the axial strain comoonent along 

the longitudinal axis of the beam, as predicted by linear 

and nonlinear theories, were comnared for the case of non­

uniform torsion of a thin-walled beam of a symmetrical I 

section. A fundamental characteristic difference in the 

axial strain was shown to take place ne~r the free end of 

the heam. Although the linear theory oredicts no axial 

strain at the free end of the cantilever beam, the nonlinear 

theory shows that a positive strain component exists due 

to the "shortening effect" of larqe torsion. 

5, A general consistent nonlinear stability theory 

of thin-walled beams was presented. The nonlinear differential 

eauations governinq the stability under axial loads and 

lateral stability were formulated. The nonlinear stability 

theory was shown to reduce to the linear equations.of Vlasov. 

6. The study of the parametric stability of 

thin-walled beams of symmetrical I section, subjected to 

axial periodic load passing through the centroid of the end 

section, was carried out. In the case of the snecific example 

considered, the first principal region of oarametric 

instability is that of the torsional type of parametric 

oscillations. The steady state amolitude of vibrations near 

the principal region of parametric torsional instability 

was shown to behave in two different manners denending on 

whether the unstable reoion . , by increasing... is aooroached .. or 
-~ 

http:equations.of
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decreasino 
. ~.· 

narametric 
.: ' 

frenuencies.
I 

As the oarametric 
i . · · 

frequency enters the unstahle ranoe from below, the steady 

state ampl_itude of vibrations qrows from the trivial 

solution. Continuous qrowth of the amplitude takes place 

as the parametric frequency increases. As the parametric 

frequency leaves the unstable range a sudden drop of the 

steady state amplitude to the trivial solution wi-11 take 

place. On the other hand, approaching the unstable region 

from above the unstable ranae, a sudden jumn of the value 

of the amolitude occurs at the riqht boundary of the unstable 

reqion. As the parametric frequency decreases further, the 

steady state amnlitude of oscillations decreases gradually 

until the trivial solution becomes valid at the other 

boundary of the unstable reqion. 

7. The study of the transient solution near the 

orincipal reqion of parametric instability shows qrowth of· 

the amolitude of oscillation. From the initial value, the 

amnlitude grows monotonically at first, then oscillates 

about the corresnondinq magnitude as predicted by the 

steady state analysis. 

8. The presence of viscous damping will affect not 

only the reqions of parametric instability as was established 

by the linear analysis, but also it affects the steady state 

and the nonsteady state amplitudes of oscillations. The 

steady state amnlitude of vihrations of a damped system are 
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smaller than those of an undamped system. The rate of 

growth and duration at which the steady state amplitude is 

reached varies considerably with dampinq. The presence of 

viscous damning was found to decrease the rate of initial 

growth of the amplitude. Three cases can be discussed for 

different values of damping coefficients. A relatively 

small damninq causes the amolitude of the transient vibrations 

to grow and over shoot the steady state value. Then the 

amplitude approaches the steady state value in a decreasing 

oscillation manner. For a larger value of the damping 

coefficient, the amplitude of nonsteady state response grows 

with a smaller rate until it reaches the steady state value. 

For a constant parametric amolitude, the system with large 

damning will not be parametrically excited. Thus, the 

transient solution for this case decreases continuously 

from an arbitrary initial value to become asymptotic to the 

trivial solution of zero magnitude. 

9. The study of the parametric stability of thin-walled 

beams of monosymmetrical cross section, subjected to axial 

periodic load passing through the centroid of the end section, 

was found to differ from the case of a thin-walled beam of 

symmetrical cross section, in one aspect ohly. In the case 

of a thin-walled beam of monosymmetrical sections, coupled 

flexural - torsional type of parametric oscillations can be 

excited. The first principal region of parametric 
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instability for a thin-walled beam of split rinq section was 

found to b~ that of the predominant torsional characteristics. 

The effect of viscous damping on the unstable regions, 

steady state amolitudes and the transient solutions for the 

case of thin-walled beams of monosymmetrical cross section 

was studied. However, when compared with the effect of 

damping on the parametric response of a thin~walled beam of 

symmetrical cross sections, no oualitative difference was 

observed. 

7.2. Suqgestion for Further Research 

The nonlinear theory of thin-walled elastic beams, as 

oresented in this work, was checked in two ways. Firstly, 

it reduces to Vlasov's linear theory. Secondly, it reduces 

in its simolest form to Greaory's nonlinear formulations which 

were verified experimentally. However, further experimental 

verification of the nonlinear thin-walled theory is mandatory. 

Experiments can be conducted to establish the behaviour of 

thin-walled beams when subjected to static and dynamic 

loadino. Deflections and rotations, of a thin-walled beam 

subjected to non-uniform torsion under the action of static 

twistin0 moment aoolied at its ends, can be measured to 

be compared with theoretical nredictions. The response of 

thin-walled beams subjected to dynamic loads can be conducted 

experimentilly in different ways. Lateral dvnamic (periodic) 

1 o a d s wi 1 l c r e a t e a 11 F o r c e d 1/ i b r a t i o n11 t v n e o f r e s p o n s e . 
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The magnitude of steady state amnlitudes of vibrations, for 

an excitinn frequency close to the freauency of free vibrations, 

can be measured exnerimentally to be compared with theoretical 

calculations. Also, measurin~ the lonqitudinal strain 

comoonent at resonance conditions may be done exnerimentally 

to verify theoretical strains. Anolvin0 oeriodic loads in 

the axial direction of a thin-walled beam at its ends will 

give rise to parametric stability nroblems. The amplitudes 

of oarametric oscillations near the nrincioal reoion of 

parametric instability may be established experimentally. 

Exnerimental values of steady state amolitudes of oscillations 

can be comDared to the steady state amrlitudes of parameteric 

oscillations as 
' 

by the nonlinear theorv 
' 
...oredicted 

' 

Further theoretical investiqati~ns may be directed to 

study the phenomenon of combination resonance of variable 

orders. The existence of sub-harmonic and suoer-harmonic 

oscillations may be investiaated. Interaction of different 

instability reqions may take place if two freauencies of 

free vibrations of different modes or types approach each 

other. This will cause the unstable regions corresponding 

to these freauencies to interact. The effect of interaction 

of different instability reqions on the steady state and 

the growth of thP amnlitude may be studied usina the 

nonlinear theory. 

Lateral dynamic loads aoplied to a thin-walled beam 
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will create a parametric stability problem, This asoect 
~ 

of stability may be a wide field of investi~ation. 

Problems includin~ nonlinear, olastic, visa-elastic 

and hysteretic material properties, aprroach a more realistic 

representation of oractical problems. 

Deformation and stability theories of thin-walled 

structures are one of the important branches of the mechanics 

of deformable solids. Althou"h much has been done recently 

to clarify many problems, a wide field of investiqation 

remains. 



BIBLIOGRAPHY 


Entries denoted by an asterisk (*) are referred to in this 

investigation. 

·1. Beresford, R.F. and Mead, D.J."The Free Vibrations of an 

Angle Section Involving Cross-Sectional Distortion", 

Journal of Sound and Vibration, Vol. 3, No. 3, 

May 1966, pp. 315-334. 


2. 	 *Biot, M.A."Increase Of Torsional Stiffness of a Prismatical 
Bar due to Axial Tension", Journal of Applied Physics,
Vol. 10, December 1939, pp. 860-864. 

3. 	 *Blac~, M.M."Nonlinear Behaviour of Thin-Walled Unsymmetrical
Beam Sections Subjected to Bending and Torsion", 
Thin-Walled Structures, A.H. Chilver, ed., John Wiley
and Sons, Inc., New York, 1967, pp. 87-102. 

4. 	 *Bleich, F."Buckling Strenqth of Metal Structures", 

McGraw-Hill Book Co., Inc., New York, 1952. 


5. 	 Bolotin, V.V."Non-conservative Problems of the Theory of 

Elastic Stability", EngTish Translation ed. by 

G. Herrmann, Pergamon Press, Oxford, 1963. 

6. 	 *Bolotin, V.V. 11 The Dynamic Stability of Elastic Systems" 

English Translation, Holden-Day, Inc., San Francisco, 

1964. 


7. 	 Blaqui~re, A."Nonlinear System An~lysis", Academic Press, 

New York, 1966. 


8. 	 Butenin, N.V."Elements of the Theory of Nonlinear 

Oscillations", Blaisdell Publishing Company, New York, 

1965. 


9. 	 Chilver, A.H., ed.,"Thin-Walled Structures", John Wiley 

and Sons, Inc., New York, 1967. 


10. 	 Courant, R. and Hilbert, D."Methods of Mathematical 
Physics", Vol.1, Interscience Publishers, Inc., 1953. 

11. 	*Cullimore, M.S.G."The Shorteninq Effect: A Nonlinear 
Feature of Pure Torsion", Research Engineering
Structure Supplement, London, 1949, pp. 153-163. 

12. 	 Dabrowtki, R."Zum problem der Gleichzeitigen Biegung und 
Torsion dUnnwandiger Bal ken, "Der Stahlbau, Vol. 29, 
No. 4, April 1960, pp. 104-111. 

178 




179 


1 3 • Dabrowski, R."Dunnwandige Stabe Unter Zweiachsig 
Aussermittiqem Druck",Der Stahlbau, Vol. 30, No. 12, 
Dec. 1961, pp. 360-365, 

14. Den Harto~, tJ.P. "Mechanical Vibrations" 4th ed., McGraw­
Hill Book Co., Inc., New York, 1956, 

l 5 • *Dreisbach, R.L."Nonlinear Resoonse of Thin-Walled 
Elastic Beams with Open Sections Subjected to 
per i 0 d i c L0 a d s II ' The s i s i n pa-rt i a 1 f u l f i rm en t 0 f 
the requirements for the degree of Doctor of 
Philosophy, University of Colorado, 1969. 

16. 	 Dzanelidze, G.J."Variational Formulation of the Vlasov 
Theory of Thin-Walled Rods", (in Russian), Prikl. 
Math.Mekk, Vol. 7, No. 6, 1943, pp. 455-462-:--­

17. *Ebner, S.G."Elastic Oscillations of Imperfect Columns 
of Thi n - Wall e d 0 n en Sect i on s Sub .i ect to Ax i al 
Periodic loads", Thesis in partial fulfilment of 
the requirements for the degree of Doctor of 
Philosophy, University of Colorado, 1968. 

18. 	 *Evan-Iwanowski, R.M."On the Parametric Response of 
St r u c tu res 11 

, Apo l i e d Mech a n i c s Rev i e v1 s , Vol . l 8 , 
No. 9, September 1965, pp. 699-702. 

19. *Gere, J.M."Torsional Vibrations of Beams of Thin-Walled 
Open Section", \Journal of Applied Mechanics, ASME, 
Vol. 21, No. 4, December 1954, pp. 381-387. 

20. 	 *Gere, J.M. and Lin, V.K."Coupled Vibrations of 
Thin-Walled Beams of Open Cross Section", Journal 
of Apolied Mechanics, ~SME, Vol. 25, No. 3, Sept. 
l 9 58;-pj)-:-ft3:-Y7S:-­

21. 	 *Goodier, J.N. "On Combined Flexure and Torsion, and the 
Flexural Buckling of a Twisted Bar", Ouarter1y of 
Aoolied Mathematics, Vol. 2, No. 2, July 1944, 
pp. 93-101. 

22. 	 Goodier, J.N. and Barton, M.V."The Effects of Web 
Deformation on the Torsion of I-Beams", Jbtirnal of 
Anolied Mechanics, ASME, Vol. 11, No. 1, March 1944, 
pp. A35-A40. 

23. 	 *Greqorv, M. 11 A Nonlinear Bendinq Effect when Certain 
Unsvmmetrical Sections are Subjected to Pure Torque", 
Aus~ralian Journal of A~olied Science, Vol. 11, 
f96o, no. 33-48. 



180 

24. 	 *Gregory, M."The Bendinq and Shorteninq Effect of Pure 
Torque", Australian ,Journal of Aonlied Science, 
Vol.' 11, 1960, po. 209-216. 

25. 	 *Gregory, M."Elastic Torsion of Members of Thin Open
Cross Section", Australian ,Journal of .l\ppl ied Science, 
Vo1 • 1 2 , No • 2 , J u n e f g6 1 , p p • 1 7 4 - 1 9 3 • 

26. 	 Hayashi, C."Nonlinear Oscillations in Physical Systems",
McGraw-Hill Book Co., Inc., New York, 1964, 

27. 	 Koiter, W.T."A Consistent First Approximation in the 
General Theory of Thin Elastic Shells", Proceedinqs
of Symoosium ~n the Theory of Thin Elastic Shells 
(I.U.T.A.M.), North Hoffand Publishing Company,
1959. ­

28. 	 Lanczos, C."The Variational Princinles of Mechanics", 
University of Toronto Press, Toronto, 1949. 

29. 	 Leipholz, H."Stabilitats theorie 11 
, Bandio, B.G. Teubner, 

Stuttgart, 1968. 

30. 	 *Love, A.E.H."A Treatise on the Mathematical Theory of 
Elasticity~, 4th ed., Dover Publications Inc., 
New York, -1944. 

31. 	 Malkin, I.G."Some Problems in the Theorv of Nonlinear 
OscillatiOiiS'', State Publishinf! House of Technicar 
and Theoretical Literature, Moscow, 1956. English
Translation 1959, Office of Tecnnical Service, 
Dept. of Commerce, Washinaton, D.C. 

32. 	 Mclachlan, N.W."Theory and Apnlication of Mathieu 
Functions 11 

, 1947,Reoublished by Dover Publications 
Inc., New York, 1964. 

33. 	 Mettler, E."Stability and Vibration Problems of Mechanical 
Systems Under Harmonic Excitation 11 

, Dynamic Stability
of Structures, Proceedinas of an International 
Conference, 1965, Peroamen Pre ss-;Gx ford ,-196/, 
p p • 16 9 - 18 8 • 

34. 	 Mettler, E. and Weidenhammer, F. 11 Kinetisches Durchschlagen
des SchNach gekrummter Stabes 11 

, Inoinieur-Archiv, 
Vol. 29, No. 5, 1960, np. 301-315. 

35. 	 Mettler, E. and Weidenhammer, F. 11 Zum Problem des . 
Kinetischen Durchschla<1ens Swach Gekrummter St'abe 11 

, 

Inaini~ur-Archiv, Vol. 31, No. 6, 1962, pp. 421-432. 



181 

36, *Mindlin, R.D. and Goodman, L.E. 11 Bendinq Vibrations with 
Time Deoendent Boundary Conditions 11 

, Journal of 
·.··Annlied' Mechanics, Vol·. 17, No. 4, Trans. ASME. 
Vol. 72, December 1950, po. 377-380. 

37. 	 Mino-rsky, N. 11 f.lonlinear Oscillations 11 
, D. Van Nostrand 

Co,, Inc., Princeton, New tlersey, 1962. 

38. *Mitroool 'skii, Yu.A. 11 Problems of the Asvmptotic Theory 
o f No n s ta t i o n arv Vi br a t i o n s 11 

, I z d • N a u k a , Mo s c ow , 
1964, English Translation, D. Dauch & Co., Inc., 
Ne\·! Yo r k , l 9 6 5 • 

39. 	 Mitronol 'skii, Yu.A. and Moseenkov, B.I. 11 The Monofreouency 
M~thod in the Dynamic Analysis of Structures , 
English Translation by Evan~Iwanowski: Consultants 
Bureau, New York, 1967. 

40. 	 Moody, M.L. 11 Dynamic Resoonse of Elastic Columns of 
Thin-Malled Onen Cross Section due to a Constant 
Relative Velocitv of the Ends 11 

, thesis in oartial 
fulfT1ment of the requirements for the degree of 
Doctor of Philosophy, Stanford University, 1965. 

41. 	 Moody, ~.L. 11 Response of Slender Columns to Rapid 
Comnression 11 

, Journal of the Enoineerinq Mechanics, 
Div., Proc. of the ASCE, EMl, Feb. 1969, pp. 212-222. 

42. 	 *Novozhilov, V.V. 11 Foundations of the Nonlinear Theory of 
Elasticitv 11 

, Grav lock Press, Rochester, New York, 
1 9 5 3. ·--'­

43. 	 No\'Jiniski, tl. 11 Theory of Thin-Walled Bars 11 
, Apolied 

Mechanics Review,,Vol. 12, No. 4, Aprill95g,­
op. 219-221. 

44. 	 Panovko, Y.G. 11 Thin-Halled Memhers 11 Structural.Mechanics 
in the U.S.S.R., 191T-T95r;G. Herrmann, translation 
ed., Pergamon Press, Oxford, 1960, pp. 142-159, 

45. 	 Panovko, Y.G. and Gubanova, I.I."Stabilit.v and 
Oscillations of Elastic Systems 11 

, translated from 
Russian by C.V. Larrick, Consµltants Bureau, 
New York, 1965. 

46. *Pfluqer, B.A. 11 Stabilitats Probleme der Elastostatik 11 
, 

2. neuberb., aufl ., Berlin, New York, Springer, 
1964. 

47. *Popelar, C.H. 11 Dynamic Stability of the Flexural Vibrations 
o f T h i n - Wa11 e d Be am 11 

, I n t e r n a t i o n a 1 ~1 o u r n a 1 of So l i d s 
Structutes, 1969, Vol. 5, pp. 549-557. 



182 

48. Stoker, J.J. 11 Nonlinear Vibrations in Mechanical and 
·Electrical 	Systems 11 

, Inte.rscience Publishers, Inc., 
New York, 1950. 

49. 	 *Timoshenko, S.P. 11 Theory of Bendinci, Torsion and 
Bucklinq of Thin-Walled Members of Open Cross 
Section", Journal of the Franklin Institute, Vol. 239, 
No. 3,4,5, March, Aoril, May, 1945, pp. 201-219, 
249-268, 343-361. 

50. 	 *Timoshenko, S.P~1 Vibration Problems in Enqineerinq 11 
, 

3rd ed. in cOllaboration with D.H. Younq,
D. Van Nostrand Co. Inc., Princeton, New Jersey,
1955. 

51. 	 *Timoshenko, S.P.~ThedrV of Elastic Stability 11 
, 2nd 

ed. in collaboration with J.M. Gere, McGraw-Hill 
Co. Inc., New York, 1961. 

52. 	 *Tso, W.K. 11 Dynamics of Thin-Walled Beams of Open Section 11 
, 

Dynamics Laboratory Report, Pasadena, California, 
June 1964, 

53. 	 *Tso, W.K. 11 Coupled Vibrations of Thin-Walled Elastic 
Bars", .Journal of the Enqineerinq Mechanics Div., 
ASCE, Vol. 91, EM3, tlune 1965, pp. 33-52. 

54. 	 *Vlasov, V.Z. 11 Thin-Walled Elastic Beams", 2nd ed., 
English translation, published for the National 
Science Foundation, Washington, D.C. and the Dept. 
of Commerce, U.S.A. by the Isreal Program for 
Scientific Translations, OTS 61-11400, Jerusalem, 
19 61 • 

55. 	 Woodall, S.R. 11 0n the Large Amolitude Oscillations of a 
Thin-Elastic Beam", International Journal on' 
Nonlinear Mechanics, Vol. 1, No. 4, December 1966,
pp • 2, 7 - 2 3 8 . ----~ 

5 6 • Weiden hammer , F . 11 Ni ch t l i nea re Bi eg es ch wi n gun Cle n des 
axial-pulsierend belasteten Stabes 11 

, Inoenieur-Archive, 
Vol. 20, 1952, op. 315-330. 

57. 	 Ziegler, H, 11 0n the Concept of Elastic Stability 11 
, 

Advances in Aoolied Mechanics, Vol. 4, Academic 
Pr e s s ·1 n c • , Ne w Yo r k , 1 9 5 6 , p p . 351 - 4 0 3 . 

58. 	 Ziegler, H. 11 Principles.of ~tructural Stability", Blaisdell 
Publishinq Co., Waltham, Massachusetts, 1968. 

http:Principles.of


'APP END IX A 

GEOMETRICAL PROPERTIES OF SPLIT RING SECTION 

To define a circular split ring, three independent 

quantities 	should be stated, namely: 

c is the thickness of the ring's wall 

~ is the radius to the center line of the wall 

$ is the semi-central angle in radians 

The origin of the axes OX and OY is the centroid of 

the cross section. Axis OY is taken as the axis of symmetry 

as shown in figure [17]. The center of the circle is of 

co-ordinates (0, a ), cl> is an angle measured from the axis 
0 

of symmetry. The origin of the co-ordinate s for this 

monosymmetrical section is at the intersection of the 

section's profile with the axis of symmetry. 

From the geometry of the split ring section, 

s = r - cf> (A. 1 ) 

x = -r sin cf> (A.2) 

y = - -r cos <P (A.3)ao 

1jJ = <P (A.4) 

A = 2 -r c $ (A.5} 

The value of ao is found by using the formula 

f c ds = 0 (A.6).v 
s 
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thus 

a = -r sin rp I rp (A.7)
0 

2I = [c x dsyy 
s 

= c r-3 ( rp sin rp cos 4> ) (A.8) 

21 = f c y dsxx 
s 

-3= c r ( 4> sin 4> cos 4> - 2 sin 2 
4>/4>) (A.9) 

To determine the co-ordinates of the shear center 

r1- f 	xc = ao - c WB ds 	 (A.10) 
y YY s 


-2
in which = r ., twice the area swept by the radius movingw8 
along the section starting at s therefore= 0' 

. 2 2-r ( 4> sin 4> + sin 4> cos 4> 2 4> cos 4> )c = 	 - (A. 11)y 
4> ( <l> - sin ct> cos 4>) 

To determine the expressions for h(s) and n(s) 

h(s) = 	(x ex) sin ijJ - {y cy) cos ijJ (A.12) 

n(s) = 	(x ex) cos ijJ + ( .Y Cy) sin $ (A.13) 

- 2r(sin 4> - <I> cos 4> )h(s) = 	r - cos (A.14)
<l> sin 4> cos 4> -	 • 

n(s) = 	 2r(sin 4> - 4> cos 4> ) sin • (A. 15)
4> - sin 4> cos <I> 

s 

w(s) = f h(s) ds 


0 

-2 2(sin 4> - . 4> cos 4> )= r [• -	 sin ct>] (A.16J4> - sin 4> cos 4> 
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= c dsId r 3 

3s 

= 3 
2 r - c3 cf> (A. 17) 

2 2= ~ f c (h + n ) ds 
s 

2 = c r3 [cf> + 4 	¢(sin cf> - cf> cos <I>)
 
{¢ - sin cf> cos <f>) 

2 


4 sin <I>{sin cf> 	 - cf> cos cf>)] (A.18) 
cf> - sin cf> cos cf> 

2I = f c w ds
WW 

s 

2 -5 [ ,3 6 sin cf> - cf> cos <I>) 

2 

= c r cf> 	 (A.19)3 	 cf> - sin cf> cos cf> ] 

s 

. 2 . 2 ) ( .
= 2 c r4 [<!> ( cf> + sin cf> cos <!> - sin cf> sin cf> ­

<P - sin <!> cos <!> 

(A.20) 

= ~ c rs [cf> - 8 	 sin cf>(sin cf> - cf> cos cf>) 
cf> .. sin cf> cos <!> 

)2+ 8 (2 cf> + sin cf> cos <I>)(sin cf> : ·•·co~ cf> 
<!> - sin cf> cos <!> 

. '-. 'S i n <!> .. <!> C 0 S .cf>' )332 sin <f>l cf> - sin cf> cos <!> 


_( s i n cf> - • cf> c o's cf> ) 4]
+ 16 	 (A.21)
<!> cf> - sin cf> cos <!> 

)cf> cos cf>] 



·APPENDIX B 

CONSTANTS AND FUNCTIONS 

Coe ff i c i en t of e__q uat i on ( 6 • 6_9 ) 

( B. l ) 

Coefficients of eauation (6.70) 

= - 4 ( B. 2)al a -0 Cd/.. 11 
3 
1:;/Do 

-a2 = 8(n 2 
z; - 1..2)A2s Nt/(n2Do) (B.3) 

- Ui 2 2)- 2
ct3 = - !.. a 0 nz;/0 0 (B.4)

G 

-where is given by eouation ( B • l ) ao 


DO = (n2 - 1..2)2 + (2 Q t..)2 ( B. 5)
Cdz; z; 

Coefficients of equation (6.71) 

(B.6) 


= 16 cd nz;t.. 
3 

S Nt/(n 2o0 ) ( B. 7)a 5 

~6 = 2 Cd Q~ A ~of Do ( B. 8) 

where ~O and are given by equations (B.l) and (B.5),o0 
resnectively. 
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Coefficients of eouation (6.72) 

(B.9) 

(B.10) 


where 

= - (cdn 2;x_) 2 (B.11)50 K1 R1 

2 2
.µ = 4 n E*(N 0 + 0.5Nt)/(3pl2 ) -;x_ /4 (B.12) 

µ = 4 n 
2E*(N 0 - 0.5Nt)/(3pl 2) - ;x_ 2/4 (B.13) 

(B.14) 

(B.15) 

Coefficients of eouation (6.73) 

;9 = Cd n2 A Cy µ/{Ool) (B.16) 

;,o = Kl cy µ;(oot) (B.17) 

-where Do,µ' µ and Kl are qiven by equations (B.11) to (B. 14) 

Coefficients of eouation (6.75) 
2- 82 + (B.18)all = 1 82 

CL 
-

1 2 = B1 (A 11 + A22) + B2(Al2 - A21 ) (B. 19) 

-
CL 1 3 = AllA22 Al2A21 

where 
2 ­

All = K2 + Cy2A µ R1.1c2r
0

co 0) + 4K3 a2 (B.20) 

A12 = Cd n,;x_ - c~A µµ cd n2;x_/(2IpcD 0 ) 

+ 2K3 ;5 (B.21) 
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(B.22)A21 = - Al 2 + 4 K3 a5 


2
= K2 + c~ A µ K1/(2IpcDO)A22 

(B.23) 

= 3 n
4 E*IR/(pl4 I c)B1 0 

+ 8 Kl ( ~ O - 0. 5 ~ 3 ) (B.24) 

(B.25) 

where o0 ,p,µ,K 1 ,K1 are qiven by equations (B.11) to (B.15). 

a0 ;& 1 ,a 2 and are given bv equations (B.1) to (B.4), while&3 

~ is given by (B.7).5 

= µ + 2 n 
2(4 n 

2 E*I /l 2 + Gid)/(3pl2I )K2 WW · pC 

(B.26) 

K2 = K2 - µ + µ (B.27) 

K3 = 32 2 E*/(189pl 2 ) (B.28)TI 

-Function in equ(lti6n (6.77)91 

- = - ( 2 + e2) (B.29)Ql - ao ec s 

-where ao is given by eauation ( B. 1 ) 
' -Function in equation (6~78)92 

(B.30) 

where 

(B,31) 
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- cd n r; r;c (B.32) 

D4 = - 0.5 2
[r;c(nz; - ).2) 8 ). 2SNt/rr 

2 

where ~O is 

+ 0.5 

given by (B.l) 

-ao n2(e2
z; c e~)]/). - Cd nz; r;s 

(B.33) 

.Fupction q3 in eouation (6.79) 

(B.34) 


where o2 , o3 and o4 are given by equations (B.31) to (B.33) 

t:J!nctions in eouation (6.82) 

(B.35) 

-
95 = - ( t,;c Kl + c 

.Y 
µe /l)/A- Cd Q2 t,:s {B.36)c 

96 = [es K2 + Cy. A l µ t,:s/(2I pc> 

4+ 3 n E*IR(e; + e~e 5 )/(pt4 Ipc) 

+ 4 K3(2z;aes r;ces + r;sec)]/). 

- Cd n1 ec (B.37} 
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-
97 = - [ec K2 + c y A l µ ~c/(2Ipc) 

7f+ 3 4 E*IR(e~ + e~ec)/(pl4 Ipc) 

+ 4 K3 ( 2 z:: ae c + z::cec + Z::s 6 s)]/>­

- Cd n, e (B.38)
s 

where µ 'µ ' Kl and Kl are given hy eouations (B.12) to {B.15). 

K2' K2 and K3 are ~iven by eouations (B.26) to (B.28). 

Coefficients of enuation (6.96) 

911 = - Cd 0.Z::[l + 0.5(n~ - >..2)/ >..2]/D2 (B.39) 

2 
912 = [0.5(nz:: >-2)/>.. - Cd 

2 n~/>-]/D 2 (B.40) 

= = 0 {B.41)Cl l 3 914 


Cl l 5 = - 0.5 ao n~[e 50 />. cd nz:: ecol>-
2

]/D2 {B.42) 


- 2 2 
g16 = - 0.5 ao nz::[eco/>.. + Cd Q Z:: esol>.. ]/D2 {B.43) 

where ;:; 0 and are oiven by equations (B. l) and (B.31),o 2 
respectively. 


Coefficients of eouation ( 6. 97) 


= - {B.44)g21 912 

{B.45)922 = all 

= 0 {B.46)923 = q24 

{B.47)g25 = - Cl l 6 
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(B.48) 

where g to are qiven bv equations (B,39) to (B.43).11 q16 

Elements of the matrix [A] in eouation (6.98) 

0 

0 

-4K3esol'­

-4K3eco/>­

0 

0 

4K3eco/'­

-4K 3e50 /;_ 

-cdn2 

- Kl I!­

0 

a43 

Ki/>­

-cdn2 

a34 

0 

0 

-c.Yµ/(:>J) 

a35 

a45 

Cyµ/(~_.f) 

0 

a36 

a46 

where 

a34 = cy A i µ/(2Ipc'-) (B.50) 

a35 = [4K3tso + 6 n4E*IRecOeso/(pl4Inc)J/;_ 

a 36 = [K2 + 3 

- cdnl 

n 
4

E*IR(3e; 0 + e~ 0 )/( 0 t 4 Ipc) 

(B.51) 

(B.52) 

a43 

a45 

= ­

= ­

Cy A l µ/(2Ipc>.) 

[K2 + 3n 4 E*IR(3e~ 0 + e~o)/(pl4IPC) 

t 4K 3(2ta + tea)]/>­

(B.53) 

(B.54) 

(B.55) 

\·/hereµ,µ, K1 and are given hy eouations (8.12) to (B.15).K1 

K2 ,K 2 and are given by enuations (B.26) to (R.28),K3 
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