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A general,consistent,nonlinear theory for open
thin-walled elastic beams is presented. The theory takes
into account geometric nonlinearities caused by large
rotation of the cross section of the beam. The nonlinear
differential equations of deformation-and response are
derived by means of application of Hamilton's principle.

It is found that the set of equations reduces to the results
obtained by Cullimore and Gregory in the special cases of
large uniform torsion df thin-walled members. A solution of
a thin-walled beam, subjected to large non-uniform torsional
deformation due to application of torques at the ends, is
obtained, Comparison is made on the torque - rotation
characteristics of a thin-walled beam subjected to large
uniform torsion and large non-uniform torsion to show the

effect of end constraint from warning.
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P set of nonlinear ecuations to study the‘stability
of a thin-wa11éd beam of open cross sectidn, under axial
loading (sbatia] stabi]ity) and lateral loading (lateral
stability), is presented. Using the derived equations, the
dynamic stability of thin;wa11ed beams of symmetrical and
monosymmetrical cross sections subjected to axial loads,is
investigated. The regions of parametric instability, the
steady state amplitudes of oscillations, once parametric
instability takes place, and the non-steady state solutions,
to show the growth of the parametric oscillations, are carried
out.

The effect of viscous damping on the steady state
amplitude and the growth behaviour of the parametrically
excited oscillations is shown. The dynamic stability of
a thin-walled heam of symmetrical I section and a
monosymmetrical split ring section are worked out in detail

as examnles.
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NOTATIONS

a arbitrary point on the profile 1ine of the

| cross section

a_ distance from center of circle to centroid
of the split ring section

fa;},{b;} vectors of constant coefficients

A cross sectional area

[AT,[B] matrices of coefficients of coupled

Mathieu's equations

b depth of a narrow rectangular sectijon

B width of the flanges of an I section

c thickness of the thin-walled section

C4 fractional critical damping

ci’Ei constant quantities

CesCy, thickness of flange and web plates
of an I section, respectively

Cx’cy co-ordinates of shear center relative
to centroid in the X, Y, directions,
respectively

C the shear center

[cd] the damping matrix

[D],[E] matrices of coefficients of coupled
Mathieu's equations

e(ex,ey) point of application of the resultants of

axial loads



point of application of lateral loads
Young's modulus

/(1 - v?)

vector of variables

functions of the amplitude components
shearing modulus of elasticity
perpendicular distance from shear center
to the tangent of profile line at point a
height of web plate of an I section
integer dindex

St. Venant's torsional constant

principal moments of inertia

half the polar moment of inertia relative
to shear center

fourth moment of inertia about shear center
third moments of inertia

warping torsional constant

the 1dentity'matrix

nondimensionalized quantity

- [0.5(1 - v)efry/1 1Y/2

constant coefficients

constants of integration

length of the thin-walled beam

twisting moment distributed over the length’

of the thin-walled beam
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M nondimensionalized moment quantity

My My total bending moments along the X and Y
directions due to axial and lateral loads
'Mx’My bending moments along the X and Y directions

due to axial loads

M;,M; bending moments due to lateral forces aiong
the X and Y axis, respectively

Mt moment of twist applied at the end of the
thin-walled beam |

Mw | bimoment

n perpendicular distance from shear center
to the normal of the profile line at point a

N resultant of axial loads

No’Nt nondimensionalized axial load parameters

0 centroid of the cross section

0. center of the circle of the split ring section

0X, 0Y, 0Z principal axes through centroid and rotate
with the cross section
0%, 0Y, 0Z oprincipal axes through centroid in the

undeformed state

P distributed axial end load

p distributed axial load

P resultant of axial end loads

PorPt static and dynamic components of axial

load
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U, v, w

= o o <

buckling loads for uncoupled fiexural and
torsional modes of buckling

buckling loads for coupled flexural
torsional modes of buckling

distributed lateral load

lateral load components along the X and Y
directions, respective]y

shearing forces along the X and Y
directions, respectively

- (h2 + n2)1/2

radius of the split ring section

radius of curvature in the s direction
co-ordinate along the contour of the
cross section

time variable

change in the kinetic energy

total kinetic energy and energy before
buckling, respectively

displacements along z, tangent and normal
to the tangent of profile line of cross
section, respectively

strain energy density of thin shell

strain energy density due to stretching

‘strain energy density due to bending

change in the strain energy
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v, Vo total strain energy and enérgy before
buckling, respectively
change in the work done by external loads

&, wo total work done and work done before
buckling, respectively |

Wp s NL change in the work done by axial and 1atera}
loads, respectively

W change in work done by axial end loads

wT work done due to end twisting moment

Xy ¥V, 2 variables in the X, Y and Z directions,
respectively |

z co-ordinates in the E direction

z z/L

a,&,aij constant quantities

B nondimensionalized huckling load

Y a small parameter y<<]

Yo the shear strain in the sz plane

8 variational operator

€,9€g strain in the z and s directions, respectively

Ny > n displacements from undeformed.to deformed
state and from deformed to buckled state,
respéctive]y

NesNg ampiitude components of steady state solution

) rotational displacement of cross section
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6165504 components of perturbation solution
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6,90 amplitude components of the steady

state solution
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_ 2 24172
= [ec + es]
KoK ¢ change of curvature in the z and s directions,

respectively

by ‘freduency of forcing functions

v Poisson's ratio (taken to be 0.33 in all
calculations)

A translational displacements of shear center

in the Z, X and Y directions, respectively

Laslesle amplitude components of the steady state
solution
Zo longitudinal displacement prior to buckling
. " longitudinal displacement during buckling
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E¢2%¢
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state and fromvdeformed to buckled state,
respectively

amplitude components of the staady state
solution
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 CHAPTER 1
INTRODUCTION

1.1. Preamble

Thin-walled structures are classified as bodies that
have thé form of a 1long nrismatic shell. These bodies are
characterized in that their three dimensions are all of
different order of magnitude. The thickness of the shell
is small compared with other characteristic dimensions of
the cross section. The cross sectional dimensions are small
compared with the Tenagth of the shell. Thin-walled elements
are classified further if they are of open or closed cross
section,

Thin-walled elements are widely used in trusses,
bridges, aerospace structures and many other areas of engineering
design. An open thin-walled section, in general, has large
flexural rigidity which makes it an efficient structural
element to resist bendina. However, it has relatively low
torsional rigidity. Unless the apnlied loads pass through
the line of shear centers of the beam, both flexural and
‘torsional deformation occur. Due to its inherent low
torsional riaidity, larae rotations of the cross sections of
the beam may occur. It is like1y that thin-walled beams.

will be used more often as the improved fabrication techniques

~

in metals, made it possible to form thin-walled members of
various shapes of cross section such as channei, 1, Z and

thin-walled aerofoil sections. Thus, a more detailed



examination of the behaviour of such structural elements,
taking into account the geometrical nonlinearity caused by

large rotations of the cross section, is desirable,

1,2, Literature Review

There is a large volume of literature on the
behaviour of open thin-walled elastic beams. Most of the
Titerature is concerned with small deflections and rotations
of the member. For clarification, it is convenient to
sub-divide the literature on thin-walled beams into the
following categories:

‘(a) Linear Deformational Analvsis Under Static Loads

Under the action of static load, a thin-walled beam
may deflect and rotate. Such deformations are accompanied
by a state of strain and a state of stress. Linear analysis
is concerned with small deflections and rotations of a
thin-walled beam subjected to static loads. It predicts
deformation, strains and the state of stress in the member.
Thin-walled beams subjected to static loads may respond in
different ways depending on the character of the applied
load and geometrical confiocurations of the beam. The
response of the member takes the form of flexural deformations,
if the anplied load passes through the 1ine of shear centers
of the beam. However, when the load does not pass throuah
the line of shear centers, both flexural and torsional

deformations occur. As torsional deformations take place,



plane sections do not remain plane and warping of the
"section may develop. If warping of the thin-walled beam is
nrevented, additional axial strains are created and the

beam is said to be in the state of "non~unifofm torsion".

The concept of non-uniform torsion was introduced by
Timoshenko [49]*, He considered warping of the cross section
of a symmetrical 1 beam subjected to a twisting moment.
Theories of bending and torsion were studied by Goodier [211],
Timoshenko and Gere [51]. Extensive studyv of the behaviour
of thin-walled members was condensed in book form, in

Russian in 1958, by Vlasov and translated into Enalish in
1961 [54].

(b) Linear Stahilitv Analysis Under Static Loads

Thin-walled beams subiected to static loads may lose
stability in different wavs. Under the action of axial
loads, local buckling or overall buckling of the member may
take place. The overall buckling may take the form of
flexural, torsional or counled flexural torsional type of
buckling. Under the action of lateral loads, the member
may lose stability due tor1atera1 bucklinag. Lateral buck]ing’
again may take the form of flexural, torsional or coupled
flexural - torsional type of buckling. The type of buckling

depends on the point of application, direction of the load

and the cgeometrical configurations of the thin-walled cross

* Numbers in parentheses refer to entries in the Bibliography.



section. Linear stability analysis predicts the critical
lToad corresnondihq to buckling of the member. The elastic
stability of thin-walled beams was investiqated by
Timonshenko [49,51], Pfluger [46], Bleich [4] and Vlasov [54].
The effect of axial stress on the torsional buckling of
thin-walled beams was studied by Goodier [21] and Bibt [2].
It was shown that the torsional rigidity of the member is
increased if the bgam is under tensile stresses. On the
other hand, compressive stresses reduce the torsional
rigidity of a thin-walled beam,

(c) Monlinear Deformational Analysis Under Static Loads

Due to the fact that thin-walled members are weak
in torsion, studies have bheen carried out to take account
of nossible large rotation of the cross section of the beam.
In particular, the behaviour of a thin-walled beam subjetted
to static twisting moments annlied at the end cross sections,
has been studied by Cullimore [11] and Gregory [23,24].
Cullimore considered the case of uniform torsion of a beam
of narrow rectanqular section énd I section, subjected to
static‘end moments, Gregory extended the study of uniform
torsion to cover a beam of monosymmetrical angle sections.
They showed that if large torsional deformation was -
considered, the torsional and longitudinal deformations are
coupled together. Such coupling is known as the "shortening

effect". The name was derived from the fact that when a



thin-walled beam is subjected to eoual and opposite torques
appiied at its ends, the end sections tend to approach

each other due éo the torsional and longitudnial coupling.
This Coup]ing’is nonlinear iﬁ nature and is usually neglected
in the linear analysis of the problem.

“(d) 'Linear Response Analysis Under Dynamic Loads

Thin-walled beams subjected to dynamic loads may
respond in different ways depending on the character of
the applied load and the geometrical configuration of the
thin-walled beam. The resnonse of the member may take
the form of flexural, torsional or coupled flexural - torsional
type of oscillations. The counled freaquencies of free
vibrations for thin-walled beams of monosymmetrical'cross
sectioh, were determined by Gere and Lin [19,20] for various end
conditions. Vibrations of thin-walled beams when subjected
to dynamic loads were discussed by Vlasov [54]. The
effect of shear strain due to bending and warping of the beam
was included by Tso [53]. He considered toréiona1 deformations
in addition to bending and shearing deformations. This
approach can be considered as a "Timoshenko beam theory"
~ analogy for thin-walled elements.

~{e) Linear Stability Analysis Under Dvnamic (Periodic) Loads

Under dynamic, periodic, axial loading a thin-walled
beam may lose stability at load values much smaller than the

static critical load, depending on the frequency of the



Toading., It is known‘that there exiéts a number of
freéuency ﬁange§ in which the beam can be excited into
lateral oscillations. This type of loss of stability
is commonly known as parametric instability or dynamic
instability of the beam, |

| The ranges of frequency, under which parametric
instability can take place, depends on the natural freduencies
of ‘the beam and also on the amplitude of the dynamic load.
Therefore, in parametric stab111ty studies of systems, it
is convenient to refer to conditions under which parametric
" instability occur to plots in the applied load amplitude
~and applied load frequency space. The regions in the load
amplitude - load freouency space that corresponds to possible'
‘parametric insfabi]ity of fhe system are referred to as
unstable reaions. The unstable region, located in the
neighbourhood of the applied load freauency equals twice
the natural frequency of the system, is referred to as
the"orincipal unstable region", It is in this region that
the system is most susceptible to pnarametric instability.
The study of 1ineaf parametric stability analysis consists
of the determination of the locations of the unstab]e’
reqgions, and in particular, the "princioal unstable region”

For a system which has more than one sinale natural

frequency, such as thin-walled beams, there is a number of

“princinal unstable regions". For each natural frequency,



there exists a princinal unstable region that corresnronds
to if.

Literature on the paremetric stability of mechanical
and structural systems were reviewedbby Evan-Iwanowski [18].
In particular, the parametric stability of thin-walled
beams was éiven by Bolotin [6]. Using Vlasov's thin-walled
beam equations, Bolotin constructed the boundaries of the
principal regions of parametric instability for a thin-walled
beam of symmetrical and monosymmetrica1 cross sections.

It can be seen that most work on open thin-walled
beams are based on the linear theory of thin-walled beams.
The need for_a nonlinear theory of thin-walled bheams arises
in many aspects of study. Due to the low torsional
rigidity of open thin-walled team, rotations of the beam
cross section cannot be cohsidered as small in general.

The effect of larae twist on the warping stress need to be
studied. Such a nonlinear theory would generalize the

work of Greaory [25] which has been verified experimentally.
Nonlinear behaviour of the response of a thin-walled beam
during coupled flexural - torsional tvpe of vibration was
obseryed exnerimentally by Tso [52]. Theoretical explanation
of the nonlinear behaviour is yet to be investigated, In

the static stability analysis, the linear theorv of Vlasov
becomes inadecuate in the study of post buckling behaviour

of the member. In the parametric stability analyvsis, it is



necessary to include nonlinear terms in order to predict
bounded-response and to establish the steady state amplitudes
of vibrations once the system is excited into the pérametric
resonance. The need for nonlinear terms arise because a
Tinear theory predicts unbounded response once parametric
instability sets in. Unlike in forced vihration studies
inclusion of viscous damping terms in the linear ana1ysié
does not predict bounded responses.

| Recent attemnts have heen made [3, 15, 17, 47] to
develop a nonlinear theory of open thin-walled beams.
However, the geometrical nonlinearities under consideration
were not introduced in a systematic manner in the analysis.
Therefore, the resulting theories are either too
complicated to use or thev are of incpnsistent order of
approximation. Therefore, there is a need for aAnon11near’
theory of thin-walled beams of open cross section which is

consistent and relatively simple to aponly.

1.3. Statement of the Probhlem

" This thesis is concerned with the derivation of a
general,consistent,nonlinear theory of thin-walled beams of
open cross section subjected to time dependent loads., Due
to the low torsional rigidity of open thin-walled beams,
rotations of the cross section cannot be considered as
small in general. In other words, if the torsional

deformations are taken to be of the order e , where ¢ < 1,



then it‘is reasonable to consider the flexural deformations
to be of the order ez. This assumption was found to be
justffiab]é due to the fact that the flexural rigidity of

a thin-walled member is large as compared to forsiona]
rigidity. Treating torsional deformational quantities as

of order ¢ , where ¢ < 1, and flexural deformational
quantities as of order ez, terms retained in the formulation
are such that the resulting equations of motion (or
equilibrium) contain terms up to an order of e3. Thus,
products of torsional deformations and products of

torsional and flexural deformations are retained in the
final expressions. However, products of flexural deformations
are neglected, beina treated as terms of order s4 or higher,
Only a consistent third order approximation was maintained
throughout the derivation. Thérefore, the nonlinear theory
is accurate for large rotations, but essentially linear in
the longitudinal and flexural deformations. The present
theory is different from nrevious formulations in that the
effect of large rotations and coupling between axial
shortening and torsional deformation is taken into account.
The present approach starts from the nonlinear shell theory
of elastic shells. By means of special assumptions, the
theory can be reduced to a theory to renresent the behaviour
of thin-walled beams. The enerqy formuTation is adopted in

the derivation. Such an approach has two advantages,.
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Firstly, eneragy expressions obtained during formulation are
buseful for the direct application of approximate variational
methods, such as the Rayleigh~-Ritz method of solution.
Secondlv, a set of boundarv conditions, of consistent order
of approximation, is ohtained. The energy anproach consists
of formulating the strain eneragv, work done by external
forces and kinetic eneray. Ppplication of Hamilton's
princinle leads to the governing set of nonlinear differential
equations and the associated boundary conditions. The
nonlinear deformation equations in the simplest form reduce
to Gregoryv's formulations. The nonlinear deformation theory
was then apnlied to the case of non-uniform torsion of
thin-walled beams. An example of a cantilever thin-walled
beam of symmetrical I section, subjected to end twisting
moment is worked out in detail.

The second part of this research is the formulation
of a general,consistent,nonlinear stability theory. The
problems cons%dered are "bifurcation" tyve of stébi]ity
problems in which other forms of eaquilibrium, different from
the precritical shape, become possible. The stability
study is further divided into cases of axial stability and
lateral stabi]ity. Axial stability nroblems refer to the
class of nroblems where the structure losses stability
under axial loading. Latera] stability problems refer to

the loss of stability of the beam under lateral loading.
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The eneray approach is used again to formulate the nonlinear
axial and lateral stability theories. The nonlinear
stability theory is then annlied to study the parametric
stability of thin-walled beams subjected to axial dynamic
(periodic) loads. The case of a simply supported thin-walled
beam of symmetrical I section and the case of a thin-walled
beam, of built-in ends, of monosymmetrical split ring section,
are considered. In each case, the princinle unstable regions
are determined. In addition, the steady state amnlitudes

of parametric oscillations are found and the nonsteady

state solutions are worked out which show the arowth of the
amplitudes of vibrations. The influence of viscous damping
on the steady state amnlitude and the growth history of

the amplitude of vibration is also aiven.



CHAPTER 11

GENERAL CONSISTENT NONLINEAR DEFORMATION THEORY OF OPEN
THIN-WALLED ELASTIC BEAMS

2.1. Introduction

In this chapter, a nonlinear theory of thin-walled
beams of open sections is formulated. Some attempts have
been made to introduce nonlinearities into the theory of
thin-walled beams of open sections [3, 15, 17, 47]. The
nonlinearities, however, were not introduced in a
systematic manner. Therefore, the resulting theories
are either too complicated to use or they are of
inconsistent order of approximations.

In order to develop a nonlinear theory which is
sufficiently accurate to describe the behaviour of the
open thin-walled beam and yet relatively simple to apply,
it is necessary to examine more closely the basic
characteristics of the thin-walled beam. Fundamentally,
a thin-walled beam of open section possesses 1ar§e
flexural stiffness, but small torsional stiffness. 'A
simple example will illustrate this. Consider a beam of
standard channel section of 10" x 2 5/8" x 15.3 1b/ft.
The length of the beam is taken to be 125 inches. The
beam is assumed to be built in at one end while the other
end is free. A concentrated load P is appiied at the

free end in the plane of the major axis of the channel

12
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passing through the centroid of the section. Calculations
of deformations based on Vlasov's theory of thin-walled

beams [54], show that the angle of twist at the free end

6 P, while the maximum slope of the deflected

6

is 61.87 10
curve is 3.89 10" P. Thus, the angle of twist is in
general much larger than the slope of the beam caused by
bending action. One can generalize the argument to state
that the torsional deformations are large in comparison
with flexural deformations. In other words, if the
torsional deformations are of the order e, wheree< 1, then
it is reasonable to consider the flexural deformations to be
of the order 82

It is with this frame of mind that the nonlinear
theory of thin-walled beams was derived. Instead of
busing the direct approach of equating.internal and applied
forces and moments to obtain the equations of motion
(or equi]ibrium), the energy formulation was chosen. Thé
indirect approach offers two distinct advantages. First
of all, a set of boundary conditions was obtained. These
ﬁonditions are of consistent accuracy with the derived
equations of motion {or equilibrium). Secondly, with the
energy expression readi1y available, it is possible to
apply Ray1eigh-Ritz’type of technique to obtain approximate
solution to the problems at hand.

Starting from the nonlinear theory of e]astic‘

prismatic shells, the nonlinear thin-walled beam theory is
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formulated by making special assumptions and neglecting
terms of high order of smallness. Treating torsional
deformational quantities as of order e, where ¢ < 1, and
flexural déformationa] quantities as of order 52, terms

are retained in the energy expressions such that the
~resulting equations of motion (or equilibrium) contain
terms up to an order of e3. Thus, products of torsional
deformations and products of torsional deformation and
flexural deformation are retained in the final expressions.
However, products of flexural deformations are neglected,
being treated as terms of order e4 or higher. Therefore,
the derived theory can be considered as a nonlinear theory
of thin-walled members of open cross sections for 1érge
~angle of twist. It takes into éccount'the nonlinear nature
of torsional deformations and the coupling between
torsional and flexural deformations. However, the theory
is "Linear" in bending deformations in the sense that it
does not take into account large deformation of the beam
due to flexure.

2.2. Strain Eneray Expression

A thin-walled beam of open section can be treated
as a special case of'a thin-walled prismatic shell. -<Consider
a prishatic shell and let the origin of the co-ordinate
axes be placed at the centroid of the cross section. Axes

0X and O¥ are taken to be in the direction of the principal



axes of the cross
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section while 0Z coincides with the 1ine

passing through the centroids of the sections. The shell's

generator is then

parallel to the 0Z axis. The lines of

principal curvature of the shell are orthogonal lines

parallel and perpendicular to the generator, denoted by

z and s respectively as shown in fiqure [1].

According to Love's first approximation, the strain

eneragy density U of a thin elastic shell is given by [30];

Uu=14

€

n

+ U (2.1)

K

7TT£%“377 [(e, + es)2 - 2(1 - v)e e - %wis)]

3
Ec 2 2
+ 54(1 - vZ) [(KZ + KS) - 201 - V)(KZKS - t2)]
(2.2)
where

U8 is the strain eneray density due to stfetching
UK is the strain energy density due to bending
€, is the strain in the z direction
g is the strain in .the s direction
g is the shear strain in the zs plane

K is the

K is the

T is the

change of curvature in the z direction
chanage of curvature in the s direction

twist in the zs plane



Cross-Section
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16




17

E represents the modulus of elasticity
v denotes Poisson's ratio
¢ 1is the thickness of the thin-walled section

In the strain energy density‘expression, the state
of stress is assumed to be approximately plane. In other
words, the effect of the transverse shear stress and normal
stress acting on surfaces parallel to the middle surface
of the shell are considered to be negligible. |

From the nonlinear formulation of thin shell
theory, the strains are related to the dispiacements u, v

and w by the exnressions [42],

€ _ 3u 1 Av,2 3w, 2 |

2z 53z 72 [(az) + (az) ] ,'(2‘3)

= 8U , 3V . 3V 3V . W

Yzs T 3s T3zt 3z ( s T RS)

oW ,OW \'
t 57 (gg - ﬁ—) (2.4)
s
_ 32w 3 v . ,

T 3%z T3z (R ) (2.5)

where
u(z,s,t) is the longitudinal displacement along
the z direction
v(z,s,t) is the transverse displacement along
- the tangent of the profile 1ine of the
cross section |
w(z,s,t) is the transverse displacement along

the normal to the tangent of the profile
1ine of the cross section

~
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R is the principal radius of curvature of

the shell

The fundamental assumption in the thebfy‘of
thin-walled beams is that the contour'of the cross section
of the prismatic shell is not deformable in its own plane.
Thus, the displacements of the contour in its own plane'
consist of rigid body displacements only. The shape of
the cross section is unchanged after deformation. Thus,
the displacements of the cross section in its plane can
be described by orthogonal displacements £ and n of any
point C in the plane of the cross section and a rotation
® about the point C. The displacements & and n represent
the lateral displacements of the cross section in the
principal directions while ¢ represeﬁts the rotation of the
section. The displacements £, n and rotation 6 are
independent of the co—ordinate s along the contour of the
cross section. They are a function of z only.

In the formulation of nonlinear theory due to
large rotation, it is necessary to distinguish the deformed
and the undeformed state. Two sets of co-ordinate axes
are defined. The co-ordinate axes Oi and 0;, as shown in
figure [2] , are along the principal directions of the
cross section in the undeformed state. The 02 axis is in

the z direction. The displacements of the cross section in
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the 0X and 0; directions are denoted by £ and n respectively.
The second set of co-ordinate axes 0X, OY and 0Z is attached
to the cross section and thus rotate with the principal
directions. The two sets of axes thus coincide in the
undeformed state. During deformation, however, Oi, 0; and
02 axes retain their direction in space while axes 0X, OY
and 0Z will rotate with the cross section. The displacements
of the cross section in the 0X and 0Y directions are
denoted by & and n respectively. In the present formulation
bending deformatgons are considered small, namely rotatioﬁs
about the 0X and 0Y axis are small. Therefore, in relating
deformations the cosine of the angle between 02 and 0Z axes
is taken unity.

The displacements along the undeformed axes are
related to the displacements in the direction of the
deformed axes by co-ordinate transformations using the
direction cosines.v

The direction cosines for large rotation as shown

in figure [3] can be written as:

X Y i

X cos @ sin o 0
(2.6)

Y -sin o cos 0 0

Z 0 0 1

The transformation given by (2.6) accounts only

for large rotation e, while slopes due to flexural
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Undeformed
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FIG (2) RIGID BODY MOTION OF THE CROSS SECTIOWN

—w— Deformed Ayxes

Undeformed Axes

FIG. (3) LARGE ROTATION OF CO-ORDINATE AXES
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deformations are cohsidered small. Therefore, the displacements
along the 0Z and 0Z axes are taken to be the same. The
curvatures in the X and Y directions can be related to the

curvatures in the X and Y directions by the relations

E" = £" cos O+ " sin e , (2.7)

n

n" n" cos 6 - E" sin o (2.8)

where ( )' = %E

Consider a point a on the profile line of the
cross section, The displacements of point a in the 0X
and 0Y directions Ea and ;a can be related to the
displacements of point C in the 0X and 0Y directions by

the expressions

E. =& - (y - cy) sin e + (x - ¢ )(cos o - 1) (2.9{

=
1
=

+ (x - cx) sin 6 + (y - cy)(cos 8 - 1) (2.10)

The displacements v(s,z,t) and w(s,z,t) of point
a(x,y) represent displacements in the plane of the cross
secion. Therefore, they can be expressed in terms of Z, n
and ¢ by the relationships,
vis,z,t) = E(z,t) cos y(s) + n(z,t) sin ¥(s)
+ n{s)[cos 6(z) - 1] + h(s) sin e(s) (2.11)

wis,z,t) = - £(z,t) sin y(s) + n(z,t) cos y(s)

- h(s)[cos e(z) - 1] + n(s) sin o8(z) (2.12)
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where ¢y is the angle between the tangent of the cross section

at point a and the 0X axis.

h(s) = (x - cx) sin ¢ - (y - cy) cos ¢ (2,13)

perpendicular distance from point C(cx, cy) to the tangent

of the profile line at point a(x,y).
n(s) = (x - cx) cos ¢ - (y - cy) sin ¢y (2.14)

perpendicular distance from point C(cx, cy) to the normal
of the profile line at point a(x,y).

Since the rotation & of the section is considered
to be large (say o = 30°), it is necessary to use the

approximations:

3

sin 62 © - 37 . (2.15)
2
cos 8 ~> 1 - %T (2.16)

The displacement u(s,z,t) can be expressed in terms
of £, nand 0 by assuming the shear strain Y, to be zero.
This assumption was found to be accentable when the bheam

is long; thus,

su oV Y oV w
Il B e P
Yzs s 5z T 3z (as + RS)
3w 0w v ‘
<+ 37 (E)S - —R‘;') (2.]7)

substituting expressions (2.11) and (2.12) into equation

(2.17) and using the approximations (2.15) and (2.16),
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there is obtained;
u(s,z,t) = c(z;t) - [E‘(z,t)‘+ n'(z5t)e(z,t1x(s)
- [n'(z,t) - g'(z,t)ely(s) - e'(z,t)w(S)
+ ez(z,f)e'(z,t) 2p(s) (2.18)

t(z,t) represents the overall longitudinal displacement of
the cross section. 2p and w are geometric properties of

the cross section defined by

s ‘ .
ag(s) = [ (n2+n?) 4 g (2.19)

w(S)

0 ,s
0fh(§) ds (2.20)

w(s) is commonly referred to as the sectorial area
in thin-walled beam theory. |

Since the contour of the cross section of a
thin-walled beam is assumed to be non-deformable in its
own p]ane; the strain and the change in curvature € and K¢
vanish. Also, in the theory of thin-walled beams the
stretching effect is more important than the bending effect,
it follows that the effect of the change of curvature K,
in the z direction is neglected iﬁ comparison with the
- Neglecting K is
equivalent to the assumption that the distribution of the

effect of the longitudinal strain ¢

normal stresses over the wall thickness is constant. For

thin-walled beams, where the wall thickness ¢ is small,



24

this assumption is reasonable.
The strain enerqgy density from equation (2.2) can

be written as:
, o . .3
- Ec 2 Ec 2
U = "2"(‘1*—':""‘;’ EZ + m-r—"r‘;‘)‘ T . (2.2])
where the strain in the z direction is derived from

expression (2.3), as

e, = ¢' - (E" + n"0)x - (3" - E"0)y - o"w
+ % (n? + nZyo'2 4 2p (626'"' + 260'2) (2.22)-
T = 08' - %-eze‘ | (2.23)

The nonlinear term in the twist expression (2.23)

3 where the thickness ¢ is small.

is multiptied by c
Therefore, this term will be neglected due to the fact
that it resu1ts in smaller terms than the adopted consistent
third order approximation,.

The total strain energy for the thin-walled beam V,

is then given as:

2
V = ff{ ?‘(TE‘E‘"G‘ZT [z' - (g" + n%)x
0 s

- (Hu - Ene)y - 6"&) + _]2__ (n2 + hz)elz

: 3
24 12 2 ....._..EC v 2
+ QR(B o" + 206'2)]° + 12(Tf;—;ye } ds dz (2.24)
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2.3. Mork Done Expression

Two types of external loads will be considered.
Firstly, there are axial loads applied at the ends of
the beam, Let the stress distribution over the end
cross section of the open thin-walled beam in the z
direction be denoted by p(s,t). Then one can define the
longjtudinal end load, end bending moments and bimoments

by the following relationships:

P(t) = [c pls,t) ds  (2.25)
S

M, () =-S-fc X(s) pls,t) ds (2.26)

M (t) = [c F(s) pls.t) ds (2.27)
S

M (t) = [culs) pls,t) ds (2.28)
S

Mx and My denote the bending moments along the X and Y
axes respectively. The bimoment is represented by Mw.
The work done by the longitudinal stresses applied

at the end can be written as:

2
ds
0

z=
We = fc p(s,t) uls,z,t)]
S Z=
: L
3 e o(s,) [ (2 + %) az0s (2.29)

The disp]acéments Ea and ﬁa can be related to the
displacements of the point C, in the X and Y directions by
using equations (2.9) and (2.10). Also, substituting

equation (2.18) into (2.29), the work done can be written
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as:

e = [eple- (B +ate)x - (7' - E'e)y

S 9 z=L
- wo' + Qp 8 o']

: £
- %;‘fc glf{(i' - (y - cy)e' - (x - cx)ee')2
+ (R0 + (x - c o - (y - cy)ee')z} dzds  (2.30)

In addition, one can apply twisting moments Mt at the ends
also. The work done by the end torque is:

z=L

We = M, 8 | (2.31)
T t 220

" The second type of 1oadjng considered are loads
applied along the lenath of the beam. Only lateral
loads will be considered. Let q(z,t) be a laterally
applied distributed load along the length of the beam;
" This load can be always resolved into an equivalent load
acting through point C, plus a couple mt(z,t) about the
longitudinal axis through the point C. Further, this
equivalent load can be resolved into two components qx(z,t)
and qy(z,t) in the 0X and 0Y directions, respectively.

The work done by the lateral force components can

be written as:

K .
Wy =Of.{qx(z,t)§ + qy(z,t)ﬁ + mt(Z,t)G} dz
(2.32)
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Therefore, the total work done by the longitudinal

end stresses, twisting moment and lateral force components

is,
W= Mg + Wy + W (2.33)
2.4. Kinetic Energyvy Expression
The kinetic energy of the beam is given as:
T = l-r Zt (02 + éz + ;2) dzds (2.34)
ZS P a = "a :
where
0 is the mass density of the material of the
beam
u is the velocity component in the z direction'
/Ea and ;a are the velocity components in the X and

Y directions. They can be related to the
velocity components at the point C by
equations (2.9) and (2.10).
Dots are used to denote time derivatives.
The kinetic energy expression (2.34) can be expressed
in terms of displacements refer to axis X and Y.
L
T=d [foc i~ @ i)
0 s ‘
-, N 2y a2
- (n' - €'8) y - 6'w + QR(B ') ]
+ [ - (y - ¢ )6 = (x - ¢ )ob]?
A y X

+ [é + (x - cx)é - (y - cy)eé]z} dsdz (2.35)
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2.5. Differential Eaquations and Boundary Conditions

The governing nonlinear differential equations of
thin-walled beam are derived by variational procedure

from Hamilton's principle, which is written as:

t, -
6 [T - v wdt =0 (2.36)
Introdus%nq the expressions for the strain energy
(2.24), work done (2.33) and kinetié energy (2.35) into
Hamilton's principle (2.36), and carrying out the
variation, a set of four coupled nonlinear differential
equations were obtained.

To simplify the algebra, it is convenient to

require the fo1]owihg relations to be true.

J'xc ds = wfyc ds = 'fyxc ds = 0 (2.37)
s S s ,
ijc ds = Iywc ds = 0 (2.38)
S s

j wc ds = (2.39)
.

The three intearals given by (2.37) will be zero
if the origin of the co-ordinate system is at the |
centroid of the cross section and the OX and,OY are
principle axes.

Intearals given by (2.38) are satisfied by selecting
the afbitrary point C to be the shear’center. The integral
(2.39) is considered as a mathematical definition for the

origin of co-ordinate s on the contour of the cross section.
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The nonlinear differential equations resulting
from the variation process in Hamilton's principle can thus

be written as:

* 1" to 2,1 )1} - by =
EXAr" + E*(Ipce + Ich 6 ) pAT 0 (2.40)

6'2+1 620")" '~ oI £

E*T YV - E¥(I vy

yy RX
. .. -
+ oAle + cye + cx(ee + 02)]

- Plett - [y - cy) + (e, - c, )ole’

- (e, - cx)ef2} - q, " 4,0 =0 | (2.41)
E*T,n®Y - EX(Tp 02 + T 020')"" - SHEE

+ pA[n - ¢X§ + ¢, (05 + 82)]

- P{n'"' + [(eX - Cx) - (ey - cy)e]e"

- (e, = ¢ )02} - a, + g0 = 0 (2.42)
E*Iwwelv - 6E(Ipe'26'" - E*I, (620'' + 06'2)""

- 2E*[e'(Ipcc' - Ipe't - IRyn")]l

- GI40'" - pleE" + 2p1pc5 + pA[Cy(% + 7e)

cy(n - €0)1 + PL(e, - ¢ )(E" +7'")

"‘lu_“ag o - -
(e, -~ ¢, )n £'%0)} - mg + oyn - q £ =0

(2.43)
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The associated boundary conditjons'are:
' ' L
*p,t % v 2 29! - =
{E*Ag' + E (Ipce + 1,.0%0") P}scg 0 (2.44)

£
e 12 2nt - M o |
{E*Iyyg E*(IRxe + IQxe 6') rn}sg é

0 (2.45)

* [ I T * 2 240\t
(E Iyyg E (IRxe + 1,820 )
/

: ' ST ,
- P{g' - [(ey - cy) + (ex - c,)ele }agé = 0 (2.46)

‘L'
* vty 12 2.4 ]
{E Ixx“ E*(IRye + Inye 0') + Mg}an é

0 (2.47)

* v 12 2,1y}
{E Ieyn E*(IRye + Ide 0')

L
- P{n' + [(ex - cx) - (ey - cy)e]e'}6h$= 0 (2.48)

* i - l2 . 2 _ll l2
{EXT © E*[IRwe + IQw(e 8- + 66 2)]
2 'L
+ M, - MgeZlee é =0 (2.49)
[ ] - l3 - 2 1 12 t
{E*Iwwe 2E*IRe E*IQw(e ) + 00 2)
- 2E*9 (Ipcc~ - IRXg' - IRyn- )

- GIp *2Mgee ' + PL(e, - ¢ )(E'+ n'e)
=t pogl } »C
- (ey - dn’ - g'e)] ¢+ Mt}69é =0 (2.50)

y
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where £ and n can be related to & and n by equations (2.7),

(2.8) and transformation (2.6)

E*

E/(1 - v2)

G is the shear modulus of elasticity

A is the cross sectional area

A = ‘rc ds

IXX

Iyy

Iy
e
I

ww

IRx

IRy

N wn

S

I Cc yz ds
f
c x2 ds
5" 3
Ve
c
J"g"—‘ ds
S a
, ; c (h2 + n2) ds
s
’C wz ds
S"l 2 2
)7 cx (h® + n%) ds
5’1 2 2
» 5 CYy (h® + n®) ds
7
% Cw (h2 + n2) ds
S
r
c [% (h2 + n2)]2 ds
s:
‘ c QR ds
Sf‘
) cX QR ds
Sf‘
cy @, ds
o) Y R
’. .
) cCw QR ds

(2.51)

- (2.52)

(2.53)
(2.54)

(2.55)

(2.56)
(2.57)
(2.58)
(2.59)
(2.60)
(2.61)
(2.62)
(2.63)
(2.64)
(2.65)

(2.66)
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The differential equations given by (2.40) to
(2,45) are the general nonlinear differential equations
governing the behaviour of thin-walled beam of an open
section under applied loads. The beam is subjected to
applied longitudinal stresses and twisting moments at
the ends as well as lateral loads along the beam. The
equations are generally coupled. If the applied loads
are static loads, the coupling occurs with the nonlinear
terms only., For the case of dynamic loads, the coupling
between the equations will involve both 1inear and

nonlinear terms.

2.6. Reducing the General Theory to Elementary Theory

The linear differential equations governing the
behaviour of thin-walled beam of an open cross section
can be deducted from the non]ihear theory. Neglecting
the nonlinear terms in the equations (2;40) to (2.43)
and allowing the application of lateral loads only,

V]asov's equations [54] are obtained:

E Az'' - oAz = O (2.67)
v “y .
E Iyy«‘, pIny oAt
+ pA cy'e' - q, = 0 (2..68)
iv NE .
E Ixxn - pIxxn~ + pAn

(2.69)

1
el
>
o
>
@4
'
o
n
o
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v P - a .
1,07 - el 0 GIgo ' + 2 pl1 (b

m

+ oA, £ - oA cno-my =0 (2.70)

The associated boundary conditions are

: £
E Az 6z =0 (2.71)
0 ) /
1 = 2.
E T,k sE & 0 (2.72)
£
E KN = .
Iyyg ag([) 0 (2.73)
2 ,
E Ixxn : snvé = 0 | (2.74)
t 1 £
E Ixxn' Gn(l) = 0 | (2.75)’.
a
ETI e'' s08'|] =0 (2.76)
ww
0
t it 1 £
(E I,.° - GI,8 Yse| = 0 (2.77)



- CHAPTER 111

STATIC ANALYSIS OF OPEN THIN-WALLED BEAMS SUBJECTED TO END.

TORQUES
3.1, Introduction

To investigate the behaviour of an open thin-walled
elastic beam subjected to static laods, the terms derived
from the kinetic energy expression need not be included;
namely, terms containing time derivatives from equation
(2.35) can be omitted.

In particular, the case of a thin-walled beam
subjected to twisting moments applied at the ends is
studied in this chapter. It is shown that the set of
nontinear ordinary differential equations admit a simple
solution in the case of the uniform torsion of the
structural member, The ecuations can be solved and results
obtained reduce to the results given by Cullimore [11] and
Gregory [23,24,25] for a beam with the cross section shape
of an angle, I section and a beam in the form of a
rectangular strip.

The effect of non-uniform twist is considered
next. In particular, the case of having one end of the
beam fixed with a torque applied at the other free end
is studied. Due to the fixed end condition, warping is
prevented and this causes additional axial strain. The
perturbation technique is used to obtain an approximate

solution of the problem. The results are then compared

34
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to the non-uniform torsion calculated according to the

1inear theory of Vlasov.

'3.2. Thin-Walled Beam Subjected to Uniform Torsion

Consider a thin-walled beam subjected to end
twisting moments Mt' The nonlinear differential
equations and boundary conditions as given by equations

(2.40) to (2.43), will reduce in this case to:

* at 12 2a bty -
E*Az + E*(Ipce + Ich o') 0 (3.1)
P ~ 1 LI 112 240y o
E*Iyy(g + n''e) E*(IRXe + nge o) 0
(3.2)
oulll 0L = I | te 12 2ty o
E*Ixx(n £''s) E*(IRye + Inye 8') 0
(3.3)
iv 100 2, L1 12y 11
E*Iwwe 6 E*Ipe'“e E*Iﬂw(e ] + 60'?)
4 L T -1
- 2 E*{e¢ [Ipcg IRX(g + n''e)
- IRy(ﬁ"' -t''s)]) - GIde”= 0 (3.4)
2 2 ¢
¥ A * ' ! =
[E*Ac' + E (Ipce + Ince 0 )]Gcé 0 (3.5)
z y 2 2 ¢
* 11 1 - - t .l ‘l -
[E Iyy(g + n e)‘ E (IRxe + IQxe p')]s¢g é 0
(3.6)
L

[E*1 (£'' + 7' '8)" - E*(1p,0'2 + IQxeze')']ﬁeé = 0
(3.7)
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L
gt T ' 12 2q 4 1 =
[E*Ixx(n - T''0) - E*(IRye + Igye o')]sn é 0
(3.8)
] 2 2 [} t
* =4 _"ll L * t 1 -
[E Ixx n £''e) E (IRye + Ide 6') ]ané 0
(3.9)
2 2 2 '£
* vy * [} - * 1 ' -
[E I,,° E*Ip 0 E Igw(e 0 + 60'2)]se é 0
(3.10)
[E*Iwwe"‘ - 2 E*IRe'3 - E*Igw(e2e" + 80'2)"
- 2 E*p {Ipcc - Ip (e’ 4+ ntle)
- 1 pudi O | 1 £
- IRy n'' - £"")} - GI 8"+ Mt]seé = 0 (3.11),

By definition of uniform torsion, the variation of
the angle of twist in the longitudinal direction of the
beam is linear. Accordingly, derivatives of the angle of
twist higher than the first derivative will vanish in the |
differential equations and the boundary conditions. Applying
the above simplifications to equations (3.1) to (3.11) for
the case of uniform torsion of a thin-walled beam, there is

obtained

At + 2 IQCGG'2 = 0 (3.12)

- -1 L 13 .
Iyy(g t 4+ n''s) 2 1,68 0 (3.13)
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=G B T ) LU '3 .
Ixx(n £''e) 2 Ide 0 (3.14)
{BI[IpCC| - IRx(gni + nlle)
B N R A DN AR (3.15)

The boundary conditions are,

£
: 12 24 ¢ =
{Az' + Ipce + Ince ) }scé 0 (3.16)
Fl | - 12
{Iyy(a +n''s) Iny®
24 1 'K
- nge 8 '}sE é = 0 (3.17)
Foi ~ ) ) £
{Iyy(g + n''e)' - 2 IQxee- }5gé = 0 (3.18)
o For 12 2,41 aﬂ
{Ixx(n -£''9) - IRye - 1,,6%0 '}en é =0 (3.19)
bl B | bl Y | 1 & £
{Ixx(n - £''e)' - 2 Idee Z}Gné = 0 (3.20)
|2 l2 llK
{IRwe + IQwee }56 é =0
'3 '3
{E*IQme + 2 E*IRe
+ 2 BT 0" - I, (6" +n''e)
: L
-1

ry(f' - E770)] + 640" - Mt}deé =0 (3.21)
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Integrating equations (3.12) and (3.15) once and

integrating equation (3.13) and (3.14) twice, there is

obtained
Ag' + 1,.06%" + Ky =0 (3.22)
Iyy(E" +0''0) - I 0% + K,z + Ky = 0 (3.23)
L(ntt - 8''e) - I .0%" + K,z + Kg = 0 (3.24)
o'[I et = Tp, (E"" + n'te)
- I, ntt - E''e)] + Kg = 0 (3.25)

e

where K] t0>K6 are the constants of integrations. Using
the boundary conditions (3.16) to (3.21), Ki(i = 1,6) can

be determined to vield:

' 12 20 =
Az '+ Ipce + Ich 8 =0 (3.26)
eal I =t - 12 20 =
Iyy(a + n''s) Tny® I,,.6%0 0 (3.27)
ool I = I - t2 20 ' =
L, (n £''s) IRye Ide 8 0 (3.28)

13 * '3
E*Igme + 2 E IRe

' ' =S UL
+ 2 E*o [Ipcc - T (E1 + 77t )

- Ip (At - Ee)] + Glget - My =0 (3.29)

The first derjvative of the angle of twist o', is a constant

value for uniform torsion.
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Eliminating ¢z', £'' and n'' from eaquation (3.29)
a first order nonlinear differential equation is obtained;

namely,

2 2

| (1..) (Ip.)

GIqo' + 2 E*o'3[I, - RC - IRX

yy

2
(1,,)
S AL RS S B T (3.30)
IXX 2 "Quw t

This leads to the nonlinear moment-rotation

re]étionship:

2 2
(r_.) (Ip,)
' 2E pc Rx
5 yy
(Ip,) |
- Ry 1 ‘2
[+ g 1, o2 (3.31)

The longitudinal strain due to shortening effect
of nonlinear twist can be found using equation (2.22),

which is written as:

e, =z = (B + R e)x- (' - )y
+ 5 (h? + n?)p 2 (3.32)

=1t

Introducing the derivatives z', £'' and 7
given by equations (3.26) to (3.28) into the strain

equation (3.32), there is obtained

eg = D= Tpe/h - (g /Ty 0% = (T /1, )y

4] (h2 + nz)]e'2 + ZQRee'2 (3.33)

2
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The moment-rotation\re]ationéhip and the
stréin—rotaiionVexpressions as given by equations (3.31) and
(3.33), respectively, are genera] formulas for a
thin-walled beam of unsymmetkica] cross section under
uniform torsion. Uniform torsion is possible only if there
are applied torques at the end of the beam and also the
end conditions as given by (3.16) to (3.21) are
satisfied.

~3.3. Thin-Walled Beam of Monosymmetrical Section Subjected

“to Uniform Torsion.

Consider a thin-wa]1ed beam of monosymmetrical
cross section, subjected to end twisting moment Mt‘ The
axis 0X is considered to be the axis of symmetry. It can
be easily shown, that for a monosymmefrical section,

IRy and IQw= 0. Introducing this result into equations
(3.31) and (3;33), The moment-rotation and the
strain-rotation expressions for a tﬁﬁn-wal]ed beam of
monosymmetrical cross section become, )2

(1

Mg

™
ft

g = [ I /A = (g, /1 )x

+ 5 (h% + n?) + 20,0702 (3.35)
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The (twisting moment - angle of twist) and the
(axial strain - rotation) re1atiohships for a few commonly
used cross sections of thin-walled beam, are calculated

in the subsequent sections.

EXAMPLE 1: Narrow Rectangular Cross Section

'A beam of narrow rectangular cross section is
the simplest shape, thin-walled beam. The cross section
is symmetric and also there is no warping of the cross section
under any end conditions.

Consider a cantilever beam of rectangular cross
section of thickness ¢ and height b as shown in figure [4a].
Assuming ¢ << b, the properties of the cross section can

then be calculated as follows:
3

= ] 2 2 = Cb
Ipc = 5 ‘f c (h® + n") ds = 53 (3.36)
5
2 . 2.2 ,
1, = }rsf ¢ (2 + n?)2 ds = S (3.37)
c3 3b
Id = f§—- ds = g (3.38)
S
Qp = 0 (3.39)
I =X f (h? + n)x ds = 0 (3.40)
Rx 2 <

Substituting the values of the above constants

into the moment and the strain expressions as given by
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(3.34) and (3.35), respectively, gives:
‘ 4

My =33~Gbc3e-'[1 +~f-9--—-2~e'2] (3.41)
120Gc
€, = '[Jz‘ ye - %’E b?Je 12 (3.42)

The moment-rotation expression as given by
(3.41) isvidentical to that)given by Cullimore [11]. The
strain expression (3.42) is the same as that given by
Gregpry [ 23].

The strain at the centroid can be obtained

from expression (3.42), at y = 0, thus

—t

€. = - w7 b%e '2 | (3.43)

N
nN

The strain distribution across the cross section
is parabolic as shown in ficure [4b].

A numerical example for a narrow strip is worked
out to compare between the linear and nonlinear analyses.
Consider a beam of rectangular cross section. The length
of the beam £ is taken as 10 times the depth b of the
‘rectangular strip section. The ratio of the depth b to
the thickness ¢ is taken as 50. The nonlinear moment of
twist - angle of rotation relationship calculated from
equation (3.41) is plotted in figure [5].‘ Neglecting
the nonlinear terms in equation (3.41), the linear

relationship is obtained. The results are also shown in
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fiaure [5] for comparison,
From the plots in figure [5], it is shown that 10%
error exists in the value of the moment required to cause

rotation of 0.35 radians.

" EXAMPLE 2: Thin-Walled Beam of I Section

A thin-walled beam of I section may be a beam of
symmetrical section, but unlike the narrow rectanqular
cross section, the section tends to warp under torsion.

Consider a symmetrical I section of flange and
web thickness Ce and Coy respectively, of height H,
flange width B as shown in figure [6]. The flange
thickness is taken to be small compared with the

height H, i.e. << H.

“f
The geometrical properties of the cross section

are evaluated as follows:

(3.44)

A = H Cy + 2B Ce

. 1 3 3 2
Ipc = 57 [H ¢, *+ 2B  co+6H B cf] (3.45)
IRx = Qp = 0 (3.46)

c 3 c 3

P v
rZ = n? 4 n?

. C c c . C

- w5 °f 4 £ pb . Of 42,3
In =355 B + 37 BH + yp5 BY + g5 H'B (3.49)

(3.48)



46

The moment - rotation expression is obtained by
substitutinag the values of the above geometrical constants

into equation (3.34), thus
2 3 3
€t < 6E*

M, = ( B. 4+ — H)Go'{1 +
t - 3 3 G(2c§8 +oc

3
wH)

5
c,H™ Ce 4 C¢ 5 Cg oo

[pg— + 55 BH' + 15 8° + 4% n8°

B
3 3 2 2
- (H ¢, * 2B ce *+ 6H Bcf)

" 576 (Hc + 2Bc Jo'2) (3.50)

)

The strain expression can be obtained by substutiting

equations (3.44) to (3.49) into equation (3.35), thus:

3 2 2
2 H cw + 6H"Bc,. + 2B ¢

1 £
e, = zx [12 r" - He, + 28¢

L PR (3.51)
£ ‘

The axial strain - rotation expression for a
thin-walled beam of I section,as given by equation (3.51),
agrees with Cullimore's [11] formula which was verified

experimentally.

EXAMPLE 3: Eaual Angle Section

A thin-walled beam of an angle section, represents
an example of a thin-walled beam with monosymmetrical
section.

Consider a monosymmetrical angle section of thickness

¢ and side width b as shown in fiaure [7].
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The geometrical properties can be found to be:

A =2 cb | (3.52)
n=r ' (3.53)
o | |
/2 (r - b/2) ~ (3.54)
I = 1 b’ (3.55)
Iy = Tpo7s b’ (3.56)
vy " }7 ch3 (3.57)
Ip = }U cb? (3.58)
I, = % 3b (3.59)

substitutfng the values of the constants as given by
equations (3.52) to (3.59) into the moment and strain

expressions as given by (3.34) and (3.35), then

~and
e, = (3 rf e 2 b? - Lbr)er2 | (3.61)
For uniform torsion, ' is constant along the beam
and can be written as
6! = 6/4 | ~(3.62)

then the strain expression is identical to Gregory's [24]

formula.


http:7-2-(3.60
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The M, - o re]ationéhip (3.60) has not been given

t
before, It should be noted that the works of Cullimore

and Gregory are supported by experimental verification.

The fact that the set of equations (3.1) to (3.4) reduces
identically to their results in the case of uniform torsion |
gives 1ﬁdication that the equations are capable of predicting

accurately the behaviour of the beam under more complicated

loadings and support conditions.

3.4,  Thin-Walled Beam Subjected to Non-uniform Torsion

Consider a thin-walled beam subjected to a twisting
moment Mt at one end and built-in at the other. The
non-uniform torsion is different from the uniform torsion
in the fact that when warping is prevented, additional
axial strain is created in the beam. - Accordingly, the
variation of the angle of twist in the longitudinal direction
of the beam is no longer linear. The governing equations |
are given by equations (3.1) to (3.4) and the boundary
conditions are given by equations (3.5) to (3.11). Since
the equations are nonlinear, it is necessary to use
approximate methods to obtain the solution. 1In what
follows, the periurbation technique is used to obtain an
approximate solution ofvthe problem.

Integratin@ eqdations (3.1) and (3.4) once and
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integrating equations (3.,2) and (3.3) twice, there is

obtained
E*Ag! 4+ E*(Ipce' + Ichze') + K¥ =0 ‘(3.63)
E*Iyy(g" +n'') - E*(Ip,0'2 + 1,.06%8")
+ ng + K3 =0 (3.64)
EXTL (7' - E''6) - EX(Ipe'2 + I 0%6')
+ KEz + Ky o= 0 (3.65)
E*Iwme"‘ - 2E*IR0'3 - E*IQw(eze" + 96'2)!

- ! [ T T
2E*pg [Ipcg IRX(g + n''e)

- Tp ('Y - E''e)] - GI0' 4 KE =0 (3.66)

where K? (i = 1,6) are constants of inteqration to be
~determined using the boundary conditions (3.5) to (3.11).
Considering the case of a cantilever beam;‘_namely,,the end
z = 0 is fixed while the eﬁd z = £ is free, the boundary
conditions can be written as:

at z = 0

C:g:é'=n=n'=e=6'=o (3.67)
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at z = £

il
o

* Al 02. '2.
E*Ar' + E*Ipc(e + 1,.0%6 ) (3.68)

E¥I, (E'' + 7'') - EX(Ip 0’2 + 1 020') =0 (3.69)

yy Qx
E*Iyy(g" +R'te) - EX(Ip,e'2 + I,820') = 0 (3.70)
Exp ('t - E'te) - E*(IRye'2 + Ideze') =0 (3.71)
EXI (R - E'')" - EX(Ip,0'2 + Io0%")" = 0 (3.72)
CExY et - EXIp e'? - EXI . e%0'' + 60'2) = 0  (3.73)
E¥T e''' - 2E*Ipe'3 - E*I, (0%e'' + 66'?)’
- 2E%0'[1 ot - Tp (E'' + ')
- Lyt - £''0)]-GIe' + Mo =0 (3.74)

Using the boundary conditions agiven by equations (3.67)

to (3.74), the constants of integration can be determined

- to be:
K¥ = 0 i=1,5 (3.75)
Kg = Mt I (3.76)

Eliminating ¢', £'' and 7'' from equation (3.66)
by substituting from equations (3.63), (3.64), (3.65), (3.75)

and (3,76), a third order nonlinear differential equation
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is obtained, namely

vt 200 12y . oq '
E*T 0 E*IQw(e 8'' + o0 ) GI40
2 2
(1 (1
- 2E*0'3[1, - ( gc) - (IRX)
R yy
2
(Ig,)
- “N‘_LIR ..-.1 4+ Mt = () (3‘77)
XX

The boundary conditions associated with equation
(3.77) are
at z =0

6 =0' =0 (3.78)

]
(e

at z

E*I o8'' - E*IRwe'2 - E*Igw(eze" +080'2) = 0 (3.79)

ww

To reduce the volume of algebra involved in the solution of
the nonlinear differential equation (3.77), further
analysis will be restricted to thin-walled cross section

~ that posses the aeometrical property giving Iy, and I, = 0.

This is true for all symmetrical and monosymmetrical sections.

Furthermore, the quantities IRw and IQw are small for beams

with cross sections of small curvature, such as sections
contaihing piece-wise linear seaments,

It is convenient to normalize the differential
equation by letting

z = z/2 (3.80)



Thus, equation (3.77) can be written in the form:

a3 .
L T M L ER I
dz dz dz

where the non-dimensional constants are

kK* = 0.5 (1 - v)14e%/1,

w
M = M I/ (E*ALT )

v o= [l = (1 %78 - (1021,

pc

2
- (U )/ T, e

The boundary conditions associated with equation

(3.81) become

at z

N3

at

will

= 0

1}
—t

dz

A solution for the differential eauation (3.81)

1

be sought in the form:

2
6 = 01+Y92+Y934"....

For small values of y, first order approximation

of the solution, can be written as

6 = 6 + v06,

53

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)



54

Substituting the assumed solution given by equation
(3.88) into the differential equation (3.81) and equating

the coefficfents of the powers of y , there is obtained

..d3e] 2.de , ( )'
-3 - k" — + M = 0 3.89
dz . dz _

3

.d e de . de
—% - k2 2.2 ()P -0 (3.90)
dz dz dz

_ ~de, dze]
de, d292

~The solution of the linear equation (3.89), which satisfies

the boundary conditions (3.91), is

0, =_%§ [=sinh k% + tanh k(cosh k3 - 1)
+ kz] (3.93)
The solution of the differential equation (3.90), that

satisfies the boundary conditions (3.92), can be written as

€, .0 _
6y = 3 sinh 3kz + —3 cosh 3kz
24k 24k
A sinh 2kE + 3 cosh 2k
+ sin kz + cos z
6k 6k
~Cp _ . S )
+ — 2z sinh kz + z cosh kz
2k 2 2k



+ E] sinh kz + 62 cosh kz

_C7 - -
- —5 7 4 C4 (3.94)
k
where: .
e = 1M y3 tanh k (tanh? Kk + 3) (3.95)
172 V2 |
¢, = -1 (%7)3 (3 tanh? k + 1) - (3.96)
'
cg=-6 (f?)3 tanh k (3.97)
¢y = 3'(5:-2-)3 (tanhZ k + 1) (3.98)
cg = - %-(%?)3 tanh k (tanh2 k - 5) (3.99)
¢ = % (%7)3 (tanh? k - 5) (3.100)
¢y = - 3 (%2-)3 ' (tanh? Kk - 5/3) (3.101)
- 1 %2 . % . %
C] Z - -l-(—'g- (-8——- + -3--—- + '2—*- - C7) (3.102)
- - 3 sinh 3k cosh 3k
Co = - [c] tanh k + g;§~(c2 cosh & ¥ €1 Cosh & )
2 .
+ (c, sinh 2k + ¢, cosh 2k)
3 k3 cosh k 4 , 3
Cg 2.. %6 2
+ i (tanh k + -E')+ =7 (] + X tann k)] (3.]03)
2k 2k |
- - C C" !
c, = - (¢ ] 3
3 + + ) (3.104)
2 an3 kS |

The solution given by eauation (3.88) can be exrressed in terms

of the twisting moment by substituting equations (3.93)



56

and (3.94) into (3.88). The angle of twist can be

expressed in terms of the twisting moment in the form:
o = 1, (2, M, 1°) (3.105)

To establish the axial strain - rotation expression,
strain formula given by equation (2.22) is used. Eliminating

4 g't and 7'' from equation (2.22) by substituting from
equations (3.63), (3.64) and (3.65), the strain expression

can be written as

el g2 -2 = S - - -
€, = [7 (h® + n%) - Ipc - Ip, X - IRy v]
2
(9992 . 4¢ (3.106)
dz dz™

where the values of nondimensional constants are

h = h/L and n=n/lL (3.107)
I =1 /ne? I o= 1. /1 4
pc pc i Rx Rx" “yy
and Tp, = Tpy /1,8 (3.108)
X = x/L and y = y/L (3.109)
B o= w/kl (3.110)

" Once the solution (3.105) is obtained, the axial
strain expression is defined. It is convenjent to write it
in the form

(X,7,2,86'2,8'") (3.111)

ez = F2



An example of the non-uniform torsion of a thin-walled
beam of an I section will be discussed. Results are compared
with the non-uniform torsion calculated according to the

linear theory.

“3.5.  Non-uniform Torsion of Thin-walled Beam of I Section

As an example, consider the non-uniform torsion of
a thin~wa11ed beam of I section, Due to the symmetry of
the cross section IRX = IRy = 0 and no bending of the beam
under the action of twisting moment will occur,

As a numerical examnle, let the dimensions of the 1

section be:

2/H = 10 (3.112)

B/H = 0.5 (3.1]3)‘

He, = 30 | (3.114)

cw/cf = (3.115)
where

£ is the length of the thin-walled beam

H  is the height of the cross section

B - is the width of the flanges

Cy fs the thickness of the web plate

Ce is the thickness of the flanges

Given a value for the twisting moment M the

t!
corresponding anagle of twist at the free end can be calculated

using eaquation (3.105). Results are plotted in figqure [8].
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To compare the results with the Tinear theory, equation
(3.93) is used to give the moment - rotation relationship
according to Vliasov's theory of thin-walled beam.

The twisting moment - rotation relationship in the
lTinear analysis is plotted in figure [8]. A comparison
between the l1inear and nonlinear analyses for the uniform
torsion of thin-walled beam of 1 section,as given by
equation (3.50), s also shown in figure [8].

From the plots in fiqure [8] it is shown that if
the angle of twist is 0.35 radians, a difference of 10%
exists between the linear and non-linear theory. It
is interesting to note that the effect of the nonlinear
terms is a hardening 'effect. In other words, the larger
the twisting moment,the smaller the rate of increase of
the anale of rotation.

The axial strain - rotation relationship is given by
equation (3.111). The variation of the strain at a point
on the cross section taken at the corners of the flanges
is investigated in detail. Flange corners are Qhere the
maximum axial strain is_predicted.

For a given value of the applied twisting moment,
the angle of twist and its derivatives can be found using
equation (3.105). The axia] strain at the corners of the
flanges of the I section can then be calculated from

equation (3.111). Results are plotted in fiqure [9].
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Comparison between the axial strain variation as calculated
by‘iinear and non-linear analyses are given by figure [10].
For a given.moment of twist, the angle of twist and its
derivatives can be found by the 1inear analysis using
equation (3.93). The axial strain acéording to Vlasov's
theory can be calculated using the Tinear terms of

equation (3.111). From the comparision shown in fiqure [10]
it is clear that the linear theory is inadequate for
predicting the axial strain variation. This is due to the
fact that the coupling between the axial shortening,

bending and the twisting is a nonlinear coupling. At

the fixed bqundary, however, both analyses give identical
results as both solutions are required to satisfy the

same boundary condition 6'(0) = 0. The maximum strain is
found to take place at the fixed end z = 0. At the free

end z = 1, the nonlinear theory predicst positive strain. This
observation constitutes a criteria for a simple experimental

verification for the nonlinear theory.
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- CHAPTER 1V

GENERAL CONSISTENT NONLINEAR STABILITY THEORY OF THIN-WALLED
ELASTIC BEAMS

4,1, Introduction

| In the study of stability of an elastic system in its
critical state, there are two kinds of stability problems
dependinag on the character of the applied load. Stability
problems of the first kind are bifurcation problems in
which other forms of eauilibrium, different from the
precritical shape, become possible. Stability problems of
the second kind are problems in which the deformation of
the system increases with the increase of the external
load. At buckling, the deformation of the equilibrium shape,
shows only quantitative and not qualitative variations from
the precritical shape. In this chapnter, the first kind
of stability problems (bifurcation), will be considered.

A thin-walled beam may lose stability in the form of
overall buckling, local buckling or a combination of both
types of buckling. In this thesis only overall buckling of
thin-walled members is considered. A beam of symmetrical
cross section subjected to an axial end load, passing through
the centroid of the end section, may result in either
flexural buck]fnq or torsional buckling. However, a
thin-walled beam of unsymmetrical cross section, under

axial loading, results in combined flexural - torsional

63
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mode of bucklina. This is due to the fact that the shear
center does not coincide with the centroid of the section,
According{y, twisting of the beam is accompanied by
bending. Coupled flexural and torsional buckling may also
occur when the axial load is eccentrically épp1ied to the
beam. |

In addition, a thin-walled beam may lose stability
due to loads applied laterally., A lateral load aceing in
a plane parallel to the plane of largest ridigity and passing
through .the 1ine of shear centers, may cause lateral
instability of the system. At critical conditions, a
neighbouring equilibrium confiquration takes the form of
combined flexural and torsional deformation of the beam.
This phenomena is also known in literature as "plane form
of bending”.

Linear stability theory of thin-walled elastic beams
was studied by Vlasov [54]. 1In the static analysis the
linear theory is capable of predicting the buckling load
for different modes of overall buckling configurations. In
dynamic stability ana]yéis, it is capable of predicting the
natural frequencies as well as establishing the boundaries
of parametric instability regions [6]. The need for a
nonlinear stability theory of thin-walled beam, arises
in two areas. In the static étabi]ity’ana1ysis, the linear

stability formulation of Vliasov becomes inadeauate in the
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study of the post buck]ing-behaviour'of the member.

In the parametric stability analysis, it is necessary
to include nonlinear terms in the analysis in order to
predict bounded response and establish the steady state
amplitudes of vibrations once fhe system is excited into
the parametric resonance. _

In this chapter a general nonlinear stabijlity theory
is formulated usinog the eneray approach. FStabi1ity of
thin-walled members subjected to both axial end loads

and lateral loads are considered.

4,2, Stability of Open Thin-Walled Beam Subiected to Axial

Loads

In formulating the non1inéar stability theory of
‘thin-wa11ed beams under axial loads it is necessary to
distinquish the behaviour of the beam before buckling. Three
cases are needed to be considered: (a) before buckling,
there is neither flexural nor torsional deformations in the
beam. An example of such behaviour is a thin-walled beam
of symmetrical cross section subjected to uniformly applied
- axial stress at its ends. The buckling condition is then
characterized by the existence of an adjacent equilibrium
state involving flexural or torsional deformations of the
member, (b) before buckling, there is only flexural

deformation in one principal direction of the beam. The
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buckling condition is then characterized by the existence
of an adjacent equilibrium state involving additional
flexural deformation in the other principal direction and
rotation of the section. (c) before buckling, the applied
end stress causes the.beam to have flexural deflections in
both the principal directions. In this case, the loss of
stability is characterized by torsional deformations of the
beam. |

In each case, the governing stability equations can
be obtained by calculating the additional energy (potential,
kinetic and work done) involved when the beam is transferred
from deformed state to the buckled state.

Let V, T and W denote the additional potential energy,
kinetic energy and work done during bdck]ing, respectively.
-Then the stability equations can be obtained by the

application of Hamilton's Princinle, namely
t
2

5 I(T-v+w) dt = 0 (4.1)
Y

CASE 1: Loss of Stability in the Form of Coupled Torsional

Buckling and Flexural Bucklina in Two Principal

" Directions.

Consider a thin-walled beam subjected to a uniformiy
distributed axial stress p(t), applied at the end sections.
The distribution of the applied stress is such that the

resultant P(t) is acting through the centroid of the cross
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section, namely

P(t) = f-c p(t) ds . | (4.2)
S :

M (t) = - S J'c ?(s)‘o(t) ds = 0 (4.3)

Mx(t) = 5'[C y(s) n(t) ds = 0 (4.4)

M (L) = fc w(s) p(t) ds = 0 (4.5)

S

Mx and My denote the bending moments along the X and Y

axes, respectively, Mw denotes the bimoment. Due to the
applied end load the thin-walled beam will deform in the
longitudinal direction while no flexural or torsional
deformations will take place. As the magnitude of the
applied load reaches the critical value, flexural buckling
or torsional buckling may occur and the bheam will show
flexural deflection in the principal directions as well as
a rotation & of its cross section,

The strain energy of deformation Q, from the undéformed
state to the buckled configuration, is given by equation
(2.24), namely

L
V=L [feerere - (@ s T e
0 s

- (all - glle)y - wo'!

2

+ (h? + n2)6'2 + QR(ezel! + 266'2)]2

N =

+ 6 cY/3 0'2) ds dz (4.6)
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It is convenijent to divide the deformation variables into two

parts, as follows

L= gyt g (4.7)
E= gyt & (4.8)
= ong ton (4.9)
6 = 0, + 5 (4.10)

The quantities Zos £p° Mg and 64> represent the
deformations from the undeformed state to the deformed state.
In our present case Eg: Mg and 6y are zero. The variables
Z, i, ; and o represent deformations from the deformed
state to the buckled state.

The strain enerqgy of deformation VO’ from the undeformed
state to the deformed state, (i.e. prior to buckling) is
given by I3

Vg = %—J{ EX ¢ g% ds dz (4.11)

Therefore, the strain eneray of deformation V, from

the deformed state to the buckled state can be written as

V=YV-YV (4.12)

0

Subtracting equation (4.11) from equation (4.6),the
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strain energy due to buckling is given by

£
SV [feEeelet - (@ e R e
0 s ‘
- (a',' - EI'B)y - we||

(n2 + hz)e'2 +9R(eze" + 299'2)]2

N =t

E* ¢ g2 + 6 ¢3/3 912} ds dz  (4.13)

] —

The work done W by the applied forces, from the
undeformed state to the buckled configurations, is given

by equation (2.30), namely

W o= .f ¢ ple - (8" + n'e)x

- (E' - g'e)y - wh'

L
QReZe']I ds

0,
) _
-5 |cp [{[g" - (v - c e’
ZJ of y
- (x - e es' 1%+ [R 4 (x - c,)e’
- (y - cy)ee‘]z} dz ds - (4.14)

The work done wo,to deform the beam from the

undeformed state to the deformed state,can be written as

£
Wy o= J’c p z,| ds (4.15)
VO s ) 00 '
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The work done W during buckling is therefore given by
the formula
We=W- wo (4.,16)

Substituting the expressions for ¥ and HO from
equations (4.14) and (4.15) into ecuation'(4.16), there
is obtained

W = _fc plz - (' + 7'e)x - (7' - E'e)y
S : ‘ -

L
- wo' + Qpeze'][ ds
‘ 0
K. .
1 FUo - t
-7Sfc pgf{[f, (v - c,)o
- (x - c,)00' 3% 4 R+ (x - c e’
-y - cy)ee']z} dz ds (4.17)

Following a similar procedure, the kinetic energy

of the beam T, after buckling takes place, is given by

equation (2.35) aﬁg can be written as
T - %c{jpcui - (B 4 ate) x - (7' - Ee)y
S .
+ agle%0') 1% + [E - (y - c )b
- (x - c )65}2 + [% +(x - c,)e
X X

- (y - cy)eé]Z} ds dz (4.18)
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The kinetic eneragy TO’ before buckling occurs, is

Ty = & J’fp ¢ if ds dz (4.19)

The change of kinetic energy of the beam T, during

buckling, is thus

T=T-T1 (4.20)

0
Substituting the expressions for T and T0 as given
by equation (4.18) and (4.19) into equation (4.20) there

is obtained

T =% J£[ pocllz - (E' +7'6) x - (7' - E'0)y
0 s )
- wb' + QR(eze‘Y ]2 + [E - (y - cy)b
- (x - cx)eé]2 + [% + (x - cx)é
- (y - cv)eé]z - i2) ds dz (4.21)

Introducing the strain energy (4.13),work done (4.17)
and kinetic eneragy (4.21) into Hamilton's principle (4.1)
and carrying out the variation procedure, the followinag three

nonlinear stability differentijal eauations are obtained

'lV_ 12 2at [}
E*Iyyg E*(IRXe + IQXe 6')

_ L UL U 12 - "og
Ple cye cx(ee to'2) -p Iyyg

+p Al + cy6 + cx(eé’+ 82)] = 0 (4.22)


http:obtain.ed

‘iv ) 24t )00
E*¥I__n - E*(IRye o+ Igye 8')
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XX
- U 1y ' t2 - i
P [n €y + cy(ee +6'2)] - o Iyyn
+ oA [n - c, b+ c (06 +62)] = 0 (4.23)
J_V_ 1200 * 2a b0 v 12yt
E*Iwwe 6 E*IRe ) E Igw(e ) + 60'2)
- ' v e ey
2 E* {8 [Ipcc IRxg IRy” 1D,
- GIde" - P [Cy(gll + ;lle) - Cx(alu - Eloe)]
- plwwé“' + 2 plpca + pA[cy(E + 7o)
- ¢y (- £8)] = 0 (4.24)
The associated boundary condftions are:
£
e 12 2at AL o
{E*Iyyg E*(IRxe + ;Qxe ')} agé 0 (4.25)
* LI * 12 2at V1!
{E Iyyg E (IRXe + nge 0')
4
- P(g* + c o' +c_00')} 8] =0 (4.26)
y X 0
. , 2
U * 12 [ ] -
{E*Ixxn E (IRye + Igye 8')} &n é 0 (4.27)
U I B 12 24t )1
{E*Ixxn E*(IRye + Igye 6')
£

- P(n' - cxe' + cyee‘)} sné = 0 (4.

28)
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* LI * v2 20 2
{EXI ® EX[1, 8'2 + IQN@ o'' + 00'2)]
, L
t
- Mgoth 89 é =0 (4.29)
R 3 2t 12yt
{E*T o 2 E*Ipe ExI, (e26'' + 60'2)

2 E*p (Ipcc IRxg

IRynll)
- GI40' + 2 Moo’ - P[cy(é"+ n'e)
- _ £
- ¢ (n' - E'e)]) s8] =0 (4.30)
0

Equations (4.22) to (4.24) are stability eauations.
The deformations in the longitudinal ¢z direction are

aoverned bv the deformation eauation
E*Az'' + EX(1,00'% + Ig.0%0")' - AT = 0 (4.31)

The associated non-homoceneous boundary conditions
are
*p,! - % 12 2q1
{E*Ag' + E (Ipce + 1,.8%08")
L ' :
- P} sz =0 (4.32)
0
The linear differential equations, governina the
stability of thin-walled beams of unsvmmetrical cross section
subjected to axial loads applied at the ends, can be obtained

from the nonlinear differential equations (4.22) to (4.24).
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Neglecting the nonlinear terms, Vlasov's equations are

obtained
1v _ ' _ ' o .o -
Elyyg Pe P cye + pAg + oA cye 0 (4.33)
Erxxnlv - Pn'' 4+ Pt + pAn - pA cxa = 0 (4.34)
Elwwelv - GIdell - P Cvgll + P cxnll
“ - LR
- 2 PIpce /AN + 2 pIpce + pA cya
- oA c.n =0 (4.35)

X

The differential equations (4.33) to (4.35) are
coupled. These equations represeﬁt the coupled flexural -
torsional type of vibrations. Neglecting the time dependent
terms, equations (4.33) to (4.35) will then represent the
case of coupled flexural - torsional buckling. The linear
differential eauations can be uncoupled for the case of
thin-walled beams of symmetrical cross section. For a
symmetrical sectfon the shear center coincides with the

centroid, thus

c. =¢ =20 (4.36)

Introducing equation (4.36) into the linear differential
equations (4.33) to (4.35), the uncoupled eauations can be
written as

Elyvgiv - Pg't 4+ pAE = 0 (4.37)
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EI..nY - Pn'' + pAn =0 (4.38)

XX
iv - Yy i
EI_® GI4® 2P I 0t /A
+ 20 Ipce =0 (4.39)

The linear differential equations (4.37) to (4.39)
are the familiar Vlasov's equations. The uncoup]éd equations
represent flexural and torsional vibrations. Equations
(4.37) and (4.38) are the linear equations of flexural
vibrations under axial load. Neglecting the time dependent
terms the static stability equations are obtained. The
uncoupled equations will then represent the flexural
buckling and the torsional buckling of a thin-walled beam.

A detailed study of dynamic stability of a thin-walled
beam, of symmetrical and monosymmetrical cross section,

is presented in Chapter V and Chapter VI.

CASE 2: Loss of Stability in the Form of Coupled Torsional

Buckling and Flexural Buckling in One Principal

Direction.
Consider a thin-walled beam subjected to a distribution
of axial stress p(s,t) apnlied at the end sections. The
distribution of the load over the end section is such

that the resultant P is acting in the OYZ plane. The point
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of aprplication of the resultant P is taken to be at a point

with co-ordinates (0, ev), namely

P(t) = I’c p(s,t) ds (4.40)
S .
My(t) = « P(t) ey =’—Sj.c x(s) p(s,t) ds = 0 (4.41)
m,(8) = p(t) e = [c T(s) pls,t) as (4.42)
M () = fc w(s) p(s,t) ds = 0 (4.43)
S

Due to the applied load and moment the thin-walled beam
will deform in the longitudinal ¢ direction as well as in the
n direction, while no deflection will take place in the ¢
direction. Also, there is no rotation 6. As the magnitude
of the applied stress reaches the critical value, coupled
flexural - torsional mode of buckling will occur and the
beam will show deflection in the ¢ direction as well as a
rotation ¢ of its cross section. If deformation variables
are expressed in the form given by equations (4.7) to (4.10)
the quantities €0 and 6, are zero in this case.

Following derivations similar to those done in CASE
1, the strain eneray V, work done ¥ and kinetic energy T of
the beam,from the deformed state to the buckled state, can
be written as |

v = % ‘f‘{E*C[Q' - (glo + 7'')x - (n*! - E"S)y

0 s

1

- wd'' + 5 (h2

+ nz)e'2 + QR(eze" + 289'2)]2
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- LB clof - ng'yvl?
+ 6¢3/30'2) ds dz | (4.44)

W o= J'c plz - (E' + 7'e)x - (' - E'8)y

S
£

- we' + qpe?e'] | ds
0

. :
-5 ¢ Ddf{[é' -y - eet - (x - c,)e0' )7
S
# R+ (x - o e’ - (y - ¢ des' ]’
- n(')z} dz ds - (4.45)

T ='%f?@c {[c- (£ + ') x - (3" - £'8s)y
Os

- 0o ' + QR(eze'f 1% + [é - (y - Cy)b

(x - ¢ 081% + [ + (x - ¢ )b

(v - cy)eé]2 - [zq - hby]z

66} ds dz - ' (4.46)

Introducina the strain enerqgy (4.44), work done (4.45)
and kinetic enerqy (4.46) into Hamilton's principle (4.1)

and carrying out the variation procedure, the following
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two nonlinear stability differential equations are obtained

* iV g« 290y _ Ftt - 1t
E Iyyg E (nge 8') Ple (ey cy)e

"|| 12y 1
g'' - E*(Ip,0'2%)

+ [ ] t 2 -
cx(ee + 06'2)] pIyy

+ pAlE + cy5,+ cx(e§ +82)] =0 (4.47)

EX] o'V - 6 E*I.0'2p""
ww - 'R

- E*I 626" +eel2)ll

Qw(

P ' 1 '
2 E*{e [IPCC - IRXEH = IRyn ]}

GIo'' + P[(ey - cy)(E" +n''e)
+ c (F'll - Elle)]

- pxwwé" + 2 QIDCE + pA[cy(E + no)

¢ (i - E0)1 = 0 (4.48)

The associated boundary conditions are:

L
LN I v 2 2t - 1 =
{E*Iyyg E*(IRXe + IQXG o') Mn} 88 $ 0 (4.49)

LI B 12 2t )10
{E*I v E*(IRxe + IQxe p')

yyg
"L
v - ' ' £l =
- P[¢ (ey cy)e + ¢ 00 1} agé 0 (4.50)
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* e %* 12 21t V2
{E Iwwe E [IRme + Igw(e ) + 06'2)]
£
- Mnez} se'l = 0 (4.51)
’ 0
* LI I B * t3 -k‘ 2~|| 1213\
{EXT_ o 2 E*Ipe E IQw(e 9 + 00'2)
- *g ! v U I (]
2 E*xo'[1  z' - Ip.e Ipyn''d

- GI40' - 2 M0’ + P[(ey - cy)(é' + n's)

2

t e (n' - E'e)]) s0] =0 (4.52)
0

The nonlinear deformation equations, in the longitudinal
and n directions, are

*kpP0 * ' 2 20\ oo
ExAg + E (Ipce + 1,.0%0 Y' - pAz = 0 (4.53)

* S AR £ ' 2 2t )10
E Ixx“ E (IRye + Igye 8')

.

- pIXXh" + oAln +'ng + cy(eg +,é2)]
- P{n'' - [cx + (ey - cy)e]e"
- - 121 = |
(ey cy)e } 0 (4.54)

The associated non-homogeneous boundary conditions are
2
' * r2 20VY) . =
{E*Ac + E (Ipce + 1,.0%0")- P} 5@& 0 (4.55)
* e t 2 2at
{E¥T /n E*(IRve f Ide 6')

W

L
+ M.} én'| =0 (4.56)
0 ,
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rey ' 12 250 ¢t
{EXI . n E*(IRye + Igye 6')
' ~L
- ' - - - ' ==
P[n c,0 (ey cy)ee 11 Gné 0 (4.57)
where

E't = [£' - (ng + n)''el (4.58)
At =g ) 4 £'e] (4.59)
(M= - M, sino (4.60)
Mg = M, cos @ (4.61)

The stability equations (4.47) and (4.48) describe
the bifurcation type of stability in the coupled flextural -
torsional mode. The deforma?ion equations in the
Tongitudinal ¢ and coupled flexural n direction are given
by equations (4.53) and (4.54)., For the case of a
thin-walled beam of symmetrical cross section, where

c, = ¢C_ = IRx = IRy = 0, also IQX = IQy = Igw = 0, subjected

to an axial static load, the stability equations reduce

to

E*Iyyiiv - PE't 4P et =0 (4.62)

v 12,00 Loty
E*I o - 6 E*IRB ) + 2 E*Ipc(e ')

ww

- GIge'! 4 P ey(zf‘ + ') = 0 (4.63)
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The deformation equations become:

12 2at)yy o
E*A;" + E*(Ipce + IQCe 8')' = 0 (4.64)

- lV - [ e 12 - y
E*Ixxn P(n eyee | eye ) 0 (4.65)

To obtain a solution describing the behaviour of
the thin-walled beam in the immediate post-buckling zone of
coupled flexural - torsional type of buckling, the four
coupled differential equations (4.62) to (4.65) should be
solved simultaneously.

A solution of the coupled equations is rather
difficult, thus an approximate approach should be adopted.
Before buckling there are no flexural deflections in the ¢
directions and no rotation 6. However, the longitudinal
deformations as well as the flexural deflection in the n
directions can be expréssed by the linear equations

EXAz'' = 0 (4.66)

E*Ixxnlv - Pr'' =0 (4.67)

Solutions‘for equations (4.66) and (4.67) can be
easily obtained. These solutions represent the longitudinal
and flexural deformations prior to buckling. Introducing
the solutions of equations (4.66) and (4.67) into the
nonlinear stability ecuations (4.62) and (4.63), two coupled
nonlinear eqUafions are obtained. These two stability

equations, represent coupled flexural - torsional type of
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buckling. An approximate solution will describe the
behaviour of the thin-walled beam in the immediate post
buckling zone. It is to be noted that the obtained
solution is unable to accurately predict the behavibur
beyond the immediate post bucklinag zone due to the fact
that no large flexural deformations are accounted for

in the present nonlinear stability theory.

- CASE 3: Loss of Stability ih the Form of Torsional Buckling

Consider a‘thin-walled beam subjected to axial end
stresses. The point of application of the resultant of the
applied stress has co-ordinates (ex, ey). The end force

and moments can be written as

P(t) = c p(s,t) ds .(4.68)
s'r |

Hy(t) = - P(tle, = - [ X(s) pls,t) s (4.69)

() = Pltde, = [ F(s) p(s,t) ds (4.70)

1, (8 = f ¢ u(s) pls,t) ds = 0 (4.71)

Due to the applied load and moments, the thin-walled
beam will deform in the longitudinal ¢z direction as well as
in the principal directions. No rotation 6 will take place
oprior to buckling. As the magnitude of the applied stress
reaches the critical value, buckling will occur and the
cross section Qi]] rotate. To exnress the deformation

variables, in this case, as aiven by equations (4. 7) to
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(4,10), the quantity N is zero.

| The strain eﬁergy V, work done W and kinetic enerqgy T,
from the deformed state to the buckled state, as given by
equations (4.12), (4.16) and (4.20) respectively, can then

be written as

Z— .
vl [feererer - @ e Redx - (G- B ey
.0 s
- 00"t o+ ]2—(h2 + nz)e'2 + Qp(eze" + 299'2)]2

- Exelcy - g5'x - né'ylz

+ 6 ¢3/3 8'2) ds dz (4.72)
W = .fc plz - (E' + 5'e)x - (7' - £'8)y

S
- wd' + QRGZG'] | ds
0
2
%fcpfﬂ? -U-WN'
S 0

(x - ¢, )00 1% + [7' + (x - ¢ )o’

- (y - cv)ee']2 - [gg? + ng2ly dz ds (4.73)

£ o
T L foctli - (B 4 o) x - G- Ee)y
0 s
- b+ aple2e') 1°

$TE - (v-edb - (x - c el

o

[h + (x = ¢, )6 = (v - ¢ )odl?

- Tig -&'x -n'y]% - (E3 + 73)) ds dz  (4.74)
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Introducing the strain enerqy (4.72), work done (4.73)
and kinetic eneray (4.74) into Hamilton's principle (4.1)
and carrying out the variation procedure, the following

nonlinear stability differential equation is obtained

* v * 12900 _ E% 2911 12y
E Iwwe 6 E Ipe'20 E Iﬂw(e ) + 06'2)

1 ) 1] ]
sz*[e (Ipcc' - IRXE" - IRy“l )]

GIo"' + P[(ey - cy)(a" +n''e)

- - TUr P - 'y
(e, - ¢ )(n £''0)] ol 0"
+ 20l 0 4 pA[cy(é +n6) - c (n - Ee)] =0
(4.75)
The associated boundary conditions are
v 12 2q1 12y
{E*Iwwe E*[IRwe + IQw(e 8'' + p0'2)
L
- Mo0%) 80’ =0 (4.76)
0
* LI * '3 2l 12\
{E Iwwe 2 E Ipe E*Inm(e ;) + 96'2)
- L dal v N 't
GIge' - 2 Exe' (I  c' - Tp ¢ Tpyn' ')

f 2 M08! + P[(ey - cy)(é' + ﬁfe)

2
- (ex - cx)(ﬁ' - £'s)]} Geé = 0 (4.77)
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The nonlinear deformation equations, in the z, & and
n directions, are

) e
E¥AC'' + EX(I 0'2 + Tp0%')' - oAz = 0 (4.78)

w1V - F%x 12 20y v Py
E*Iyyg E (IRXe + 1,,0%0 ) pIyyg

+ oA[E + cy5 + cx(95 +62)]

- Pl B ] - - e - -
ple (r-:‘y cy)e (eX cx)
(e6'' + 0'2)] =0 (4.79)
. v - 2 . 2 . . o .
E#Ixxn E*(IRye' + Igye p')'! plxxn'

+ oAl - c,o + c (00 + 62)]

- P[n'' + (eX - cx)e" - (ey - cv)

(e0'' + 08'2)] =0 ‘ : (4.80)

The associated boundary conditions are

WL
{E*Ag' + E*(Ipce'2 + IQCeZe') - P} Gcé =0 (4.81)

* gty 12 20
{E Iyyg E*(IRxe + Inxe 6')
-qL ’
-M}sg'l =0 (4.82)
n 0 ‘
: FLVE % V2 2t )t
{E*Iyyi Ex(Ip,0'% + Io.0%")

- P{g' - [(ey - cy) + (e, - cx)e]

-~ z :
o'} agér= 0 : (4.83)
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Ty e 12 2
{E*I 40 E*(IRye + Iﬂye o')
ot .
+ MY sn'] =0 (4.84)
£ 0 .
’ * L O 12 2
{E Loyn E*(IRye + Ide p')!

-~

Pin' + [(e, - cx)-(ey - cy)e]e'} Gné = 0

(4.85)
where
B = (gg* &) = (ng+ n)''e (4.86)
n'ts (ng v m)'tw (gg + E) e (4.87)
ME = MX cos 6 + My sin o | (4.88)
Mn =7My cos 6 -~ M, sin o (4.89)

The linear differential equation governing the
torsional stability of thin-walled beam of an open cross
section subjected to éxia] static loads applied at the ends,
can be obtained from the generé] nonlinear differential
equation (4.75). Neglecting the nonlinear terms as well as

the time dependent terms, Vlasov's equation is obtained

. 1V- t _‘ !l_ - tt
Elwwe - GI,e + P (ey cy)g P(eX cx)n

Ye''t = 0 (4.90)

~.2(PIDC/A + MXI MyIRx/Iyy

Ry/Ixx
where £ and n are expressed by the linear terms of deformation

equations (4.79) and (4.80).
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4,3, Lateral Stability of Open Thin-Walled Beam

In formulating the nonlinear stabiiity theory of
thin-walled beam under axial and lateral TOads, it is
necessary to distinauish the behaviour of the beam before
buckling. Two cases need to he considered: (a) before
buckling, there is on]y-erxura1 deformation in one
principle direction of the beam. As the magnitude of the
lateral loads increases to the critical value, buckling
of the member is characterized by flexural deformation in
the other principal direction and rotation of the section,
(b) before bucklina, the anplied loads causes the beam to
have flexural deflections in both the principal directions.
In this case, as the magnitude of the lateral loads reaches
the critical value, loss of stability is characterized by
torsional deformations (rotation éf the cross sections)
of the beam.

In each case, the governing stability eguations can
be obtained by calculating the additional energy involved
when the beam is transferred from deformed state to buckled

state and applying Hamilton's principle,.

" CASE 1: Lateral Flexural - Torsijonal Stability

Consider a thin-walled beam subjected to axial as well
as lateral loads. The axial loads are distributed along

the member. However, the resultant of the axial loads is
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restricted so that before buckling there exists flexural
deflection in one principal direction only, and no rotation

of the section will take place.

N(z,t) = J’c p(s,z,t) ds (4.91)
- s
My(z,t) =-:fc x(s) p(s,z,t,) ds = 0 (4.92)
S
M (z,t) = [ ¢ 7(s) Bls,z,t) ds (4.93)
S
M, (z,t) = [ uls) ps,z,t) ds = 0 (4.94)
- - s
N, Mx and Mv denote normal force and bending moments along

the 07, 0X and 0Y axes, respectively., The bimoment is
denoted by &w. |

Lateral loads are anplied alona the length of the
beam. It is assumed that the applied lateral loads pass
through the 1ine of shear centers and are acting in a
plane parallel to the 0YZ plane. This restriction insures
that there is no lateral deformation in the £ direction and
also no rotational deformation of the beam would occur before
buckling.

Let qy(z,t) denote the resultant of laterally applied
distributed loads at any given cross section of the beam.
The point of application of oy(z,t) is taken to have
co-ordinates (Ex,éy) as shown in fiqure [11],

Dividing the deformation variables in the form as

agiven by equations (4.7) to (4.10), the quantities £g and
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0¢ denoting the flexural deflection and rotation of the
cross section before buckling are zero,

during buckling will be the same as those given by
equations (4.44) and (4.46), resnectively, The change

in the work done W, during buckling, will be the sum of
the change in the work done bv axial loads NA and that of

the lateral loads wL as

W= NA + W (4.95)

L
Using eauation (4.45) the change in the work done by axial

loads can be writt%n as
wy = [ e Blat - (B % we)x - (B - Ero)y
0 s
- we'' 4+ gp(e20')']ds dz

£ _
- %Ofsfc p{LE" - (y - ¢ )o!

e

- (x - cx)ee']2 + [n' + (x - cx)e'

- (y - cv)ee']2 - néz} ds dz (4.96)

The work done by lateral forces wL, from the undeformed
state to the buckled state,will take the form
oo 4
W= f o (z,t) 7, dz (4.97)
0
donotes the displacement of point of apnlication e of the

Ne
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.1atera] load in the 0Y direction, as shown in Figure [111].

The disnlacement ﬁe of noint e can be related to the

displacement of the shear center n by the relation

ng = n+ (e, - c )sine + (8, -

(cos 8 - 1)

¢
y)

(4.98)

Introducing.équation (4.98) into equation (4.97)

there is obtained

W =O [oyn + oy(ey - cy)(cos 9

+ qy(ex - Cx) sin o ] dz

Since qv(z,t) was originally assumed

the line of shear centers, thus

Introducing (4.100) into equation (4.

work done is thus
) £
Wy =Of[o,yﬁ + o,y('éy - cy)(cos 0

To express the displacement n in terms of ¢,

- 1)

(4.99)

to pass through

(4.100)

99) the

- ])]dz‘ (4.101)

n and ¢, the

first term of the integral in equation (4.74) can be rewritteh

as follows

where

£ ‘
n' | —_fM*ﬁ'* dz (4,102)

(4.103)
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Undeformed
Position

Buckled
Position

Deformed
Position

FIG, (11) RIGID BODY MOTION OF THE CROSS SECTION TO BUCKLED
CONFIGURATION
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M; and Q; denote bending moment in the 0X direction
and shearing force in the 0Y direction, resulting from
the applied lateral loads only.
| The second derivative of n appearing in equation
(4.102) denotes the curvature on the 022 plane. This can
be related to curvatures in the ¢ and n directions by usina
equations (2.7) and (2.8). Using equations (2.7),(2.8)
and (4.102) the work done expression (4.101) can be

written as

- 2 e F
W= - Qyn(l) + M;n'(l) - _f[M;;( g'' sin e + n'' cose)
0
+ Qy(ey - cy)(cos 6 - 1)] dz (4.104)

Prior to buckling there would be no deformation in
the ¢ direction, as well as no rotation 6. The work done

before buckling wL , can thus be written as
0

i et
Mo m o Oyng] # tngl = f Thgng ] 0z (4.105)
0 0 0 0
The change in work done by lateral loads during

buckling is
HL = HL - NLO | | (4.106)

Substituting the expressions for W, and W as given
0

_by equations (4.104) and (4.105) into equation (4.106), then
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+ qy(éy - cy)(cos 8 - 1)1} dz (4.107)

The approximations (2.15) and (2.16) for the sin o
and cos 6 will be used.
Introducing the strain energy (4.44), kinetic energy
(4.46) and the work done (4.95) into Hamilton's principle
(4,1) and carrving out the variation procedure, two

nonlinear stability equations are obtained.

v 1o 241 )1
E*Iyyg E*(IRXB + IQxe )"
£ M (0 -6/ )]""
X 6
y , 2 .
- {N[E' + cye (1 - » /2) + cxee']}

= oI E'' + oA[E + cyﬁ + cx(eg +92)] = 0 (4.108)

yy
E*Iwwelv -6 E*IRe'ze" - E*Igw(eze“ + 00'2)"!
- 2 EXfot (I et - Tp,e"! - Tpun' )]
- elde"'- pI o't + M (g = n''e)
+ ¢ [N(n" - E‘e)]'/~ cy[N(E‘ +n'e)]"

+2 01 5 + pAlc, (E + n0) - ¢ (7 - o)]

+

ay (8, - c )6 - 87/5) = 0 (4.109)

y
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vwhere MX is the total moment due to axial and lateral loads

MX = Mo+ M ' (4.110)

The associated boundary conditions are

2 N B ! 12 2gt
{E*Iyyg E*(IRxe + IQXe 8')

"2
-M3Yse'| =0 (4.111)
n 0

)

LN B B * 12 2401\
{E*Iyyg E (IRxe + IQXe o')

+ ]
MX 8

"2
- N[’ + c o (1 - 0%/,) + cye0']) scl= 0 (e.112)

by 12 2 2
{E*Iwme E*[IRwe + Igw(e 8'' + 06'2)]
L
- MQeZ},ae'l = 0 ‘ (4.113)
0
LI 13 - 2ttt 12
{E*I o 2 E*Ip6 E*Inw(e ) + 90'2)

- 2 E*o'(1_ ' - 1
( pct

S N
c £ - IRV” )

Rx

i 1 [ I [
- Gl6' + 2 Moo’ + MX(E n'e)

Z
+ ¢ N(n' - £'8) = ¢ M(E' + n'e)} s8] =0 (4.114)
X y 0 |

The nonlinear deformation eauations are

ExAg'! + E*(Ince'2 + queze')" - pAz - N'= 0 (4,115)

iv - 2 2 i y - 2 P
E*T, ,n E*(IRye' + 1 ye p')' 4+ [Mél ) /2)]

-
pIyyn

+ pA[n - c,8 + c (86 +062)] = 0 (4.116)

- NIn' 4 cy00' - ot (1 - 077,01
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The associated boundary conditions are

L

V V2 2t - N =
{E*Ag' + E*(Ipce + IQCe o') M} agé 0 (4.117)
: I B 12 2408
{E*Ixxn E*(IRye + Igye ')

g
+ M} osn'| =0 : : (4.118)

£ 0 o v
) ret 12 2tV
{E*Ixxn E*(IRye + Igye 6 )

-

-~

- N{n' + cyee' - cx(l - 62/2)6‘]} aﬁé =0 (4.119)

CASE 2: Lateral Torsional Stability

Consider a thin-walled beam subjected to axial as
well as lateral loads. 1In this case, the point of application
of the resultant of the applied axial loads is of co-ordinates

(ex,ey), namely

N(z,t) =vj'c n(s,z,t) ds (4.120)

- S

y(2,t) - -sf ¢ %(s) p(s,z,t) ds BERUREL

M (z,t) = [ ¢ Fs) Bls,z,t) ds (4.122)
S -

&w(z,t) =,J’c w(s) p(s,z,t) ds = 0 (4.123)
: | |

Lateral loads are applied along the length of the beam. It
is assumed that the anplied lateral loads a(z,t) pass

through the 1ine of shear centers before buckling occurs,
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The noint ofvapplication of the anplied lateral load fn the

plane of any cross sectfon is denoted by e, of co-ordinates
(éx,éy). The restrictijon that the lateral load pass through

_the line of shear centers, durinao deformation prior to

buckling, is to ensure that there is no twisting moment that
could arise during deformation and consequently no

torsional deformation of the beam would occur before buckling. At
buckling, however, the beam will experience torsional deformations.
It should be pointed out that a conservative applied load, such as

gravity loads, does not satisfy this condition in general.

This lateral load aq(z,t) can he always resolved
into two components qx(z,t) and qv(z,t) in the X and Y
directions, respectively,

Expressing the variables z, £,n and 8 in the form
aiven by eauations (4.7) to (4.10), the cuantity 8 s zero
in the present case.

The chanae of the strain energv and the kinetic
energy during buckling will be the same as given by
equations (4.72) and (4.74), respectively. The change in
the work done by axial loads during buckling, can bhe written
using equation (4.73), as

Mp = fﬁic Blc' - (E' + 7'6)'x - (R’ -E'e)'y
s 1 -
- wo'' + o,(020')'] dsdz - —‘IJ’C D
R 2
0 s )
T ]
{fe' - (v - cy)e' - (x - ¢ ee']
-~ ] l2
+[n' 4 (x - c et - (v - cy)ee ]

- [£g% * np?]} ds dz (4.124)
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The work done by lateral forces wL, from the undeformed

state to the buckled state, will take the form

e
[ (o)Fy *+ a5 a2 (4.125)
0
Ee and Ee are the displacement components of point e in

the 0X and 0Y directions.
The change in the work done by lateral forces W

can be obtained following similar derivations as given in

CASE 1, to be

5 ~L -z L
wL = - Qyné + M;n'é -OI{M;[ £'' sin o~ né' (cos o~ 1)
- a” cos o]+ qy( - c )(cos 8 - 1)} dz
-~ ~ 2— '
- Q E E J}M*[ '"'sin o + g"(cos o - 1)

T - :
+ £''cos o] + ax(ey - cy)(cos o - 1)} dz (4.126)

where
-METY = L '
MX 0y qy | (4.127)
“MEYY = Q' = o qy (4.128)

~

- The change in the total work done W, by axial and
lateral loads, can be obtained by jntroducing equations (4.124)
and (4.126) into the eauation

o= My 4 M , (4.129)

Introducinag the strain energy (4.72), kinetic energy
(4.74) and the work done (4.129) into Hamilton's principlé

(4.1) and carrying out the variation procedure, a nenlinear
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stability equation is obtained

Ex1 0¥ - 6 E*Ipe'20'' - EXI o (e%0'' + o00'?)"
-2 BRIy cet - Tkt - Tgnt )]
- GI40' - oI 0" + 2 plpca
+ ohle,(E + 7o) - ¢, Y

] [ . 1 Y t '
+ M (¢ n''e) + Hy(n +t''0)

+

e, [M(n' - E'0)]" - ¢ IN(E" - n'e)]"

+

Loy (8, = ) + 0, (8, = ¢, )]s - 0°/4) = 0 (4.130)

The associated boundary conditions are

e 12 2t V2
{EXT 6 E*LIRwe + IQw(e ) + 00'2)]
£
- My82} se'| =0 (4.131)
0
vt t3 _ 2! v2
{E*I ® 2 E*Ipe E*IQw(e ) + 06'2)

*n! (.
2 E*e [Ipcc IRX

Fau - Tt
£ IRy" ]

' b . ' i
GI0' + Mx(a n'e) + My(n + £'9)

+ ¢, N(n' - £'8) - cy N(E' + n's)
£
+ 2 M ee'} s8] = 0 (4.132)
Q
0
whereb
Mx = Mx + M; | (4.133)



99

M, =M, o+ M | (4.134)

o n ~

The nonlinear deformation equations are

* [ 4 t2 2al ]
E*Ar + E*(Ipce + Igce o')
- AL - N' =0 (4.135)

* iv _ ox 12 201yt
E Iyyg E (IRXe + nge o')

- I - 027000 w D (e - 0%7¢) 1"
- {N[£' + cy(l - 92/2)9' + cxee']}'

_ Y
pIyya

+ oAE + c b + c (08 +02)] (4.136)

1
[am]

* iv _ +2 21 )t}
E*I, ,n E*(IRye + Ian 8')

$ I (1 - 087,010+ D (o - 0%7g)]"

- {N[n' + cyee' - cx(1 - 62/2)6']}' - pIXXH"

+ pAln - c 6 + c (68 +62)] =0 (4.137)
X ) '

The associated nonhomogeneous boundary conditions

are
£

' 't 2 2t - N =
{E*Az' + E*(Ipce + 1,.6%0 ) N} 5@& 0 (4.138)

McMASTER UNIVERSITY LIBRARY.
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_ £
* L R * : t2 2al o M ~| -
(ExI & E*(Ip,0"% + Inxe,9 ) - MY e é 0
(4.139)
‘lll_ t 2 241 V1 Y 1
{E*Iyyg . E*(IRXe + I,,0%0 )+ M@
- Neg'" + ¢ (1 - 62 o' + ¢ ée']} 6~f = 0
g y /918" X £0
(4.140)
. . , £
- % e * 2 2l 1 -
{E Ixx” E (IRye + Ide ') + Mg} én é 0
(4.141)
e t2 2t
{E¥I,  n E*(IRye + Igye o')

£
1 ' f 2, 1 - -
+ Mye - N[n' + c 60" - c, (1 - 8%/,)0' 1} ané = 0’

(4.142)

The linear differential equations governing the
lateral stability of thin-walled beams, of an open cross
section subjected to lateral as well as axial static loads,
can be obtained from the general non]ineaf differential
equations (4.108) and (4.130). Neglecting the nohlinear

terms and the time dependent terms Vlasov's equations are

obtained
Vs (Moe)!'t - [N(et +c8')]' =0 4,143
ET ¢ (M8) [N(e" +ocp0')] ( )
- v Y v .n - Yy =
EIXXn + (Mye) [N(n , Cxe )] 0 (4.144)
EI 6™ - GI,e'' + M.e'' + M n'' - 2[(NI__/A
wo d VX y" pc

Y - 17t (AW

I /Ty = M Tp /T Y6t T+ e (in')

- qEt) 5 - 5 - = 45
cy(hg )+ [qx(eX cx) + qy(ey cy)]e 0 (4.1-E)



CHAPTER V
DYNAMIC STABRILITY OF THIN-WALLED BEAM OF SYMMETRICAL CROSS
SECTION

5.1, Introduction

As examples to illustrate the use of the stability
equations derived in Chanter IV, the remaining portion of
the thesis concentrates on studying the problem of parametric
stability of thin-walled elastic beams of symmetrical and
monosymmetrical sections, subjected to axial periodic end
loads.

Under the action of periodic end loading, a state of
longitudinal vibration is set up’in the beam as a direct
conseaquence of the applied 1oad. Such behaviour is termed
as “forced response". ‘However, it is known that at certain
freauency ranaes of apnlied load, flexural and/or torsional
vibrations are set up. This phenomenon is termed as
"parametric instability". The parametric stability study of
thin-walled heams consists of two parts. The first part is
“to determine the range of frequencies that such instability
can take place. Since the range of ﬁunstab]e" freauencies
depends on the parametric amnlitude, (i.e. maagnitude of time
varyine part of the end load), the critical ranoges of
freoguency are most conveniently expressed in terms of unstable
reaions in the parametric amnlitude - parametric freauency

space. Thus, the first part of the parametric stability

101
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study is tb determine such regions of instability. To achieve
this, only the linear theory is necessary. Such analysis

haé been done by Bolotin [6] for the case of a symmetrical

I section. The technicue used in the present analysis will

be similar to that of. Bolotin.

While it has been verified thatvthe linear stability
theory predicts accurately the stability reaions, it also
predicts that the flexural and/or torsional response grows
without bound once the aonplied 1oad is in the unstable
frequency range. This is known as "parametric resonance".
However, experimental observations show that while the
amplitude of the oscillations initially arows exponentially
as predicted by the linear theory, it soon reaches a steady
state amonlitude. Thus, the second pért of the parametric
stability study in this thesis consists of finding the steady
state amplitude and also the transient arowth of the
parametric response,

Two examples of studying parametric stability of
thinfwa11ed beams are aiven. In this chapter, thelcase of
a sihply supported, thin-walled beam of symmetrical I
section is studied, In Chgpter VI the case of thin-walled
beams, of built-in ends, of monosymmetrical split ring

section will be discussed.

5.2. Differential Eauations

Consider a thin-walled beam of symmetrical cross



103

section, supjected to dynamic axialwforces at the ends of
the beam. ét js assumed that the resultant of the applied
forces passes through the centroid of the cross section.
Due to the applied end load, the thin-walled beam will
deform in the longitudinal direction. 1In the unstable
regions, the beam will show additional flexural deflection
in the principal directions of the cross section or
rotational deformations. The stability equations
for such a case was discussed in Chapter 1V, and the governing
partial differential equations were formulated. The
geometrical properties of a svmmetrical cross section will
simplify the form.of the differential equations because
;for a symmetrical section the shear center coincides with
the centroid, i.e. '

c, =c,=0 (5.1)
and |

=lp, =1, =1 _=1_=1_ =0 (5.2)

The longitudinal deformation in the ¢ direction 1is
given by equation (4.29)
E*Az).u" + E*(IpcelZ + IQCGZGU)! - PAE = 0 (5.3)

The associated non-homogeneous boundary conditions

are

: [ 2 ' 2t
{(E*Az' + E*(Ipce' + I .6%0 )
_ ' WL
- (Py + Py cos at)} sg] =0 (5.4)
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where the resultant of the apnlied forces is considered a
periodic function which can be expressed in the form

P(t) = Py + P, cos At ' (5.5)

t
Using equations (4.22) to (4.24), the flexural
and torsional stability equations for-symmetric sections

are written as

iv (] "__ ’
EXI, 80 - (Py + Py cos at)e'' + pAg = 0 (5.6)
E*I  n"" = (Py + P ocos at)n'' + pAR = 0 (5.7)

iv 120t 1 1
E*T .0 6 E*Ipe'20 2 E*Ipc(e ')

- GIde" + 2 pIpCe = 0 (5.8)
The associated boundary conditfons are
.
g''seg'| =0 , (5.9)
0 .
' £
* e 1 =
{E Iyyg (P0 + P, cos at)e'd agé 0 (5.10)
£
n'' §n'l =0 (5.11)
0
‘ £
{E*Ixxn" - (PO + P, cos At)n'} éné = 0 (5.12)
£
{E*¥I o'' - M 82} s0'| = 0 (5.13)
ww Q 0
| UL * 13 * Vo
{E*Imwe 2 E IRe 2 E Ipce z
L ,
+ 2 Mgee' - GIje'} s6] = O (5.14)
0

It is to be noted that the boundary'conditions of

the ¢ equation, as aiven by (5.4), are time devendent. It is
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conyenient to modify the differentiai eaquations so that a
new variable z, is introduced into the equation., ¢, is then
recquired to satisfy homogenecus boundary conditions. This
can be done by a technique that was suggested bv Mindlin

and Goodman [36]. | |

Let a new variable be defined as

c](z,t) = ¢(z,t) - (P0 + Py cos at)z/E*A (5.15)
where

z3(0,t) = 0 (5.16)

;i(ﬂ,t) = 0 (5.17)

Introducing eauation (5.15) into eauations (5.3)
and (5.8), thus the differential ecuations of the system
can be written as

E¥Azy' + EX(I 0'? + I 6820")"

- oAE, phza? P, cos At/E*A = O (5.18)
EXT, 6%Y - (Pg + Py cos At)E''+ pAE = 0 (5.19)

E*1_ n*Y - (Pg + Py cos at)n'' + oAn = 0 (5.20)

* iv * 12401 _ * Vo
E*1 0 6 E*Ip0'?e 2 E Ioc[e 24

cos At)/E*A]

+ e"(E*Aci + P0 + Pt

- GIge'! + 2 plpcé = 0 (5.21)
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The boundary conditions of the thin-walled beam are

ar

such that
at z = 0

gy =& =¢g'""=n=n'""=98=09""=0 (5.22)
at z = 2

zy = g=¢'"=qn=n'""=58"'"=9"'""=0 (5.23)

The end conditions exnressed by eauations (5.22)
and (5.23) satisfy the boundary conditions aiven by equations
(5.16), (5.17) and (5.9) to (5.14).

It is convenient at this stage to nondimensionalize
the constants and variables. The apnlied force is best
expressed as a factor less than or equal to 1,mu1tiplied
by the smallest static buckling load. Freauencies are best
normalized in terms of the frequencies of free vibrations.

The static buckling loads in the uncoupled flexural

and torsional modes of buckling are

o2 2
PE n E Iyy/z (5.24)
2 2 :
L (5.25)
p = A/(E*I «2742% + G1,)/(21 ) (5.26)
o ww d pc ) :
where PE’ Pn and P, denote the buckling Toad in the two

principal directions £ and n, due to flexure and torsional

buckling, resnectively.
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The applied loads will be exnressed in the normalized

form

E*A (Ny + N, cos at) = Py + P, cos it (5.27)

t t

The axial load parameters N, and Ny are nondimensionalized

0
with respect to the smallest buckling stress (E*g) in the
weaker mode. N0 = - 1 corresponds to an applied axial
compressive 1oad‘which will cause bucklinag in the weaker
direction, |

The freauency of the first mode of free vibration,

under a constant applied axial load P0 can be written as

'“2 = w2E%/(4022) | (5.28)

2 4 -
o = (1 4+ Py/p ) E*Iyy/(pA£4) (5.29)

2 .
0l = (1« b/ ) wtern s (onet) (5.30)

2 2 2. 9
af = (1 + Po/p_ ) n2(E*I_ n?/48% + G1,)/

(8£21 oh) (5.31)
pc :

‘where Qt is the first natural frequency in the longitudinal

direction, Qg and Q. are the frequencies of free vibration in

the two principal directions ¢ and'n, @, is the frequency of

6
free torsional tvne of vibrations, ’

Disnlacement variables are nondimensionalized with




respect to the lenath, in the form

C* = C]/£
E] =g/l
np = n/Z
zZ = z/L

The partial differential ecuations aiven by
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(5.32)

(5.33)

(5.34)

(5.35)

eauations (5.18) to (5.21) can be transformed to ordinary

differential equations by Galerkin's averaging technique.

This is a first step towards attempting to solve the eaquations.

To achieve this, seek solutions that satisfy the boundary

conditions (5.22) and (5.23) in the form

t*(z,t) = ¢, (t) sin «2/2
E](z,t) = ét(t) sin nz
,ﬂ](Z,t) = ﬂt(t) sin nz

6(z,t) = et(t) sin nz/2

where Tis Eps Ny and 6, are fdnctions of time only,

(5.36)

(5.37)

‘(5.38)

(5.39)

Solutions in the form of (5.36) to (5.39) represent

the first approximation of longitudinal, flexural and torsional

motion. Substituting the solutions (5.36) to (5.39) into the
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partial differential equatioﬁs (5.18) to (5.21) and app1ying
Galerkin's averaging techniocue, a set of ordinary differential

equations are obtained

. 2 2 2 2 2 4
Ty vRL Ty - (88 Ny cos At)/n” 4+ E*Ipcn et/(3pA£ )
2 3

+ E¥I 1203/ (16pA0%) = 0 (5.40)
£, + 0%, + n2E*aN, cos it £,./(pL2) = 0 (5.41)
-t gbt 7T ETRRN AL &4/ p :
w2 2., 2y _
ng t g +om EXgN, cos at nt/(pz ) =0 (5.42)
s 2 - .
0y + Qg0 + nZE*sNt cos At et/(4p£2)

2 ? 4 3 4
+ ¢ E* etct/(Spﬂ ) - 3 E*IRet/(64pIpC£ Yy = 0

(5.43)

It is convenient to express the svstem of ordinary

differential ecuations in matrix notations as

[DJ{f} + ([EJ - 8N, cos At[BI){f} + {v} = 0  (5.44)

t
where [B1, [D], and [E] are matrices of constant coefficients.

{f} dis a vector of variables

{v} dis a vector consisting of nonlinear terms

At this stage, 1tbis also convenient to introduce
damping effects.v The present investigation will be restricted
to the effect of linear viscous dampina, This effect is
represented by a coefficient c, known as "fracfiona] crftica]

damping" times the fundamental freauency of the mode of
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vibrations, Generally speaking, there can be different
values for the fractjonal critical dampina for longitudinal,
flexural and torsional vibrations, In the present analysis,
the value of the fractiona1 critical damping will be assumed
to remain the same for all three types of vibrations.

The presence of viscous damping will reduce the
freauencies of free vibrations; however, this effect can be
neglected as Cy4 << 1.

"Introducing linear damping terms in the system of
ordinary differential ecuations (5.44), there is obtained

[DICF} + [C 3FY + ([E] - e

"y cos At[B]){F}

+{v} =0 (5.45)

where [Cd] is the damﬁing matrix which contains diagonal
terms only., DRamping matrix can be established experimentally.

The linear terms of the ordinary differential
equation (5.40), including linear damping terms, are

Zt + 2 ¢y Qcit +’Q§ct = (Ssxz N, cos At)/nz (5.46)

Equation (5.46) is in the standard form of forced vibration
equations.

Neglecting the nonlinear terms of the parametric
stability equations (5.41) to (5.43), a set of linear
equations is obtained \
2

. . 2 x . 2y _
Eg t 2 cyR By g + mTEFBHL cos atg /(pl”) = 0

(5.47)
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. \ 2
+ 2 Cdant + Qint + WZE*BNt cosS )\tnt/(p/@ ) = 0
' (5.48)
COSvXth/(4p£2) = 0

"t

+ 2 cy0 6. + 00, + nlE%gN

® 0%t 6%t

t t

(5.49)

Equations (5.47) to (5.49) have variable coefficients.
They are of the Mathijeu-Hill type equations, a mathematical

characteristic of the parametric stability problems.

5.3. Boundaries of the Princinal Regions of Parametric

, Instability

Consider a thin-walled beam of svmmetrical I section

of the gemoetrical dimensions

Ceg =€, =C _ (5.50)
H/c = 50 (5.51)
H =B (5.52)
£/H = 10 | ~ (5.53)

where Ce and ¢ are thicknesses of the flange and web plates,

W
»respective]y.
| H is the height of the web plate,

B js the width of the flanges

£ js the length of the thin-walled beam

The four ordinary differential equations (5.46) to
(5.49) are uncounled due to the fact that the resultant of

the apnlied loads passes through the certroid of a

symmetrical cross section, The parametric stability
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equations (5.47) to (5.49) are in the form of uncoupled
Mathieu equations as -

[11¢% + [C 1eF) + ([E] - gl cos at [BI){f} =0

(5.54)
where [I1] is the Identity matrix.
. ;
{f} o= . (5.55)
0
| 2, 0 0
[Cqd = 2 ¢4 0 Q. 0 (5.56)
0 0 24
2
Qg 0 0
[E] = |0 ni 0 (5.57)
2
0 0 24
1 0 0
= 2 * 2 )
[B] = - =°E*/(pl°) | © 1 0 (5.58)
0 o 1/4

Equations (5.47) to (5.49) as were expressed in the
form (5.54) are uncoupled parametric excitation equations.
Extensive study of the uncoupled Mathieu's equations fis
available [32]. The condition for instability is when

a bounded harmonic solution does not exist. This condition

defines a region in the parametric amplitude - parametric
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frequency plane which is a regijon of instability.

To establish the boundaries of instability regions
corresponding to different tynes of vibrations, seek a
solution for cquation (5.54) in the form of a Fourier

expansion, with terms of the period 4x/x. It takes the form

{(f(t)} = ZE:: ({ai} sin iat/2 + {b;} cos iat/2)
“i=],3,5’ , (5.59)
where‘the vectors {ai} and {bi} are of constant coefficients.
Substituting the Fourier solution (5.59) into the
system of Tinear equations (5.54), and applying harmonic
balance technicue, a system of algebraic ecuations were
obtained in the order of two equations for each value of
the parameter i in the periodic solution (5.59). The
condition for the existence of the solution with period
of 4w/» is when the determinant of coefficients vanishes.
If tne fnterest is only in the principal region of
instability, which is the case corresponding to parameter
i = 1, the condition for the existence of the solution
can be written as

[£] + welBl/2 - [112%/4 - L6 1n/2
a-.

[6,12/2 | [E] - nes[1/2 - [112%/4

(5.60)

This condition (5.60) is a first approximation for the

0
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infinite determinant. The approximation is equivalent to the

assumption that the periodic solutions on the boundaries are

the harmonic functions:

{f(t)} = {a} sin at/2 + {b} cos At/2

(5.61)

For a relatively small amplitude of exciting force,

this approximation gives reasonably good results.

The boundaries of the principal regions of instability

given by condition (5.60), can be written as

[af - nPExg / (20£2) - 2%/a]

[o?

Z 4 nZE*sHt/(zpzz) - 22747

2 _
+ (Aqdng) = 0
o] Lol
[95 - an*sut/(zsz) TN
[ni + nzg*ewt/(zpzzj - 22747
2 _

[Qg - ﬂzz*sut/(apzz) - 22747

[ol + wZE*all /(802%) - 22/4]

y
+ (Ache) = 0

where X is the frequency of the parametric load. @

(5.64)

&’Qn and

Qg are frequencies of free flexural vibrations in the £ and q

directions and torsional vibrations under a constant applied
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load PO'

Equations (5.62) to (5.64) are plotted in figure [12]
and figure [13] for the case of a thin-walled beam of
symmetrical I section. The geometrical dimensions of the
I section are as civen by eauations (5.50) to (5.53).

Figure [12] represents the case when damping terms are

absent. The vertical axis represents the parametric load,
i.e. the amplitude of the exciting force. The horizontal
axis, with different scales, represents the parametric
frequency, i.e. the normalized frequency of the exciting force
with respect to the freaquency of free vibrations. The effect
of different values of the narameter NO on the boundaries

of the principal regions of narametric instability is shcwn.
The three instability reagions are the principal regions
associated with flexural and’torsiona1 instability.

Figure [13] represents the effect of viscous damping
on the principal region of torsional instability when
Ng = 0. Different values of the damping coefficients were
considered. Similar graphs can be easily plotted for the
other two principal regjons of flexural instability.

It can be easily concluded from figure [12] that the
principal region of torsiona]vinstability takes place before
the principal regions of flexural instabiiity. This is due
to the fact that the lowest frequency of free vibrations 1is

the frequency of first mode of free torsional oscillation.



t

PARAMETRIC AMPLITUDE tiv2N

.06

04

02

N =0 N =0 N,=0
B 1 S’ o é‘ o 0 .
o u —
-
i < 2 <
o 5 5
7)) x b4
x N,=-0.4 o No=-04 4 || No=-0.4
et B ————— W [T
1 1 1 L ] >
0.5 1.0 15 10.5 o .S 265 27.0 275 (N2} )
096 LO 0s 2.4l 2.46 2.50(>\/2Q§)2
PARAME TRIC. FREQUENCY . . .
2
0.98 .00 1.02(7\/2.(),'1)

FIG. (12)

PRINCIPAL INSTABILITY REGIONS FOR SYMMETRICAL I BEAM

9t



http:cA.12.0f

117

AMPLITUDE (172N,
° .
@ o

o
o
i

PARAMETRIC

o) L | L ! 2
090 0.95 1.00 105 |.|0(>\/2.Qe)

PARAMETRIC FREQUENCY

FIG. (13) PRINCIPAL REGION OF TORSIOWAL INSTABILITY FOR SYMMETRICAL
I BEAN



~118

5.4. Steady State Amplitudes of’ViBrations

Thesﬁinear theory of stability was used to predict
the boundaries of the principal regions of instability. It
also predicted that the flexural or torsiona] response grows
without bound once the applied load is in the unstable
frequency range. However, experimental observations show
that while the amplitude of oscillations originally grows
exponentially as predicted by the linear theory, it soon
reaches a steady state amplitude. To find the steady state
amplitudes near the principal region of parametric instability,
nonlinear theory should be used. The four ordinary nonlinear
differential equations (5.40) to (5.43) are recalled. The
steady state amplitude of oscillations near the principal
region of instability can be obtained'by seeking solutions

of equations (5.40) to (5.43) of the approximate harmonic

form:
Ly = Lyttt sin At + ¢ cos at (5.65)
E¢ = &g sin At/2‘+ . cos Ath | (5.66)
ny = ng sin At/2 + n_ cos At/2 (5.67)
6, = 6, sin at/2 + 6_ cos at/2 (5.68)

The assumedsolution of the response in the
longitudinal direction (5.65) is a forced oscillation case

where the response frequency A equals the exciting frequency.
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The parametric flexural response'inrthe £ and n directions
and the paf%metric torsional response ¢ are of response
frequency A2/2 which is half the exciting frequency. Since
the frequency of parametric response is taken A/2, solutions
(5.66) to (5.68) apply only to the principal regions of
parametric flexural and torsional instability.
The steady state amplitude of the uhééup]ed flexural
type of parametric vibrations in the ¢ and‘n directions
cannot be obtained using the approximate solutions (5.66)
and (5.67). Higher order theory has to be used.
However, the present order of approximations adopted is able
to predict the amplitudes of the coupled longitudinal and
torsional type of vibrations. Therefofe, the interest will
be focused on the coupled longitudinal and torsional responses.
Introducing the adopted solutions (5.65) and (5.68)
into the differential equations (5.40) and (5.43) and applying
harmonic balance technique, a set of algebraic equations is
obtained. The components of the amplitude of longitudinal

oscillations are given by:

_ 2 2

ca = - a(ec + es) (5-69)
_ 2 2 2 2 2,2 2

L. = {(QC - AT)[8ATBN, /7" - a2 (6 - 6]

3 .
+ 4o cq 2 Q;eces}/DO (5.70)
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R {- 2a QE(Qi —_xzjeces
+ 2 cdﬂcx[axzsNt/nz - aﬂi(eg - eg)}/D0 (5.71)
where
o = 2 IpclksAzz) (5.72)
0y = (22 =257+ (2 cyo 1) (5.73)

The amplitude of parametric torsional vibrations

near the principal region of parametric instability is

given by
6, = 0, = 0 (5.74)
or
02 = (- (ug * agde [lag + ay)’
- 41 * aZ)(aqay + a5)1/%)
/[20,(1 + o)1 (5.75)
where
92 = 92 + o2 , , . (5.76)

n c S

The values of the quantities ay, i = 1,4 are

oy = ng - 2%/4 + 0.5 QisNt
2,02 2.2, 2y
+ [16 QC(QC - A9 ght/(3n )1/0,  (5.77)
3 .3 2 |
0y, = CyRok t 32 ¢y 2, 2 BNt/(3n ) , (5.78)
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ag = Qg - A2/4 - 0.5 QiﬁNt |

- [16 gi(gi - aE0Ben s (3e8) 1y (5.79)
ay = 4 92 ¢ Cy A/(300p]) | (5.80)
0y = 9 wzﬂi /(64 Ipczz) |

-2 Qia[? + (92 - A2)9§/D0]/3 (5.81)

Further discussions will involve the behaviour of
the amplitude of parametric tdrsiona] vibrations. This is
due to the fact that fhé first principal region of parametric
instability corresponds to the first mode of the torsional
type of vibrations. The amplitude of torsional oscillations
is of larger magnitude compared to the amplitude of flexural
.type of vibrations. This is consistent with the order of
approximations in the present theory for large rotation.

The steady state amplitude of parametric torsional
oscillations, given by equation (5;74), represents a
trivial solution. It will be shown in Chapter VI that
the trival solution for the amplitude of torsional vibration
near the principal regfon 6f parametric instability is
an unstable solution., The non-trivial solution for the
amplitude of steady state torsional vibrations is given

by equatioh'(5.75) where the quantities oy i=1,4
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are given by equations (5.77) to (5.80). For a certain

value of the parametric frequency _(A/Zne)2 near the

principal region of torsional instability, equation (5.75)
gives two solutions for the amplitude of torsional

vibrations 0+ Applying the criteria governing the stability
of the two non-trivié] solutions,as will be discussed in
detail in Chapter VI, one of the solutions was found to be
stable whi]e the other is unstable.

The steady state amplitude of parametric torsional
oscillations, as given by equation (5.75), is calculated
for the case of thin-walled beams of symmetrical I section.
The geometrical properties of the section are as given
by equations (5.50) to (5.53). Solutions of equation
©(5.75) are plotted in figure [14]. For Hiy = 0
and a constant value of the parametric load, Nt/2 = 0}05,
the variation of the amplitude of steady state torsional
vibration o, is shown versus the parametric frequency
(A/Zﬂe)z. Solutions for different values of damping
coefficients were carried out to illustrate the effect of
damping on the steady state amplitude of vibration. Solid
lines in figure [14] represent the stable branches of the

solution while the unstable branches are represented by

" dotted lines.

To discuss the behaviour of the structure near the

principal region of parametric instability as shown in
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figure [14], two cases should be considered depending on
whether the structure is approaching the instability region
with increasing or decreasing parametric frequencies. For
the case of an increasing parametfic frequency, the steady -
state amplitude of torsional vibration follows the trival
solution. In other words, no torsional response takes
place. As the parametric frequency enters the unstable
range, the amplitude of torsional oscillations will grow.
Continuods growth of the amplitude of vibrations takes |
place as the parametric frequency increases. As the
paremetric frequency represents a point on the second
boundary of the unstable region,a sudden drop of the
amplitude takes 'place and the trivial so]utign of zero
amplitude becoﬁes stable.

For the case of approaching the unstable region
by a decreasing frequency, a sudden jump of the amp]itude
will take place at the right boundary of the unstable
region. As the parametric frequency decreases further,
the steady state amplitude of torsional oscillation decreases
gradually following the solid curve in figure [14]. When
the paraﬁetric frequency represents a point on the left
boundary of the unstable fegion, the trival solution (5.74),

i.e. no torsional response, becomes stable.
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5.5. HNonsteady State Solution

Nonsteady state solutions represent the time history
of the amplitude growth near the principal region of
inétabi]ity. The transient response of a thin-walled beam
of symmetrical cross gection is carried out by taking the

form of the solutions as

Ly = Ly ¥ cs(t) sin At + ;c(t) cos At (5.82)
Eg = Es(t) sin at/2 + gc(t) cos At/2 (5.83)
ng = ns(t) sin At/Z + nc(t) cos rt/2 (5.84)
6, = 0, (t) sin at/2 + 6 _(t) cos At/2 | (5.85)

These solutions are of time dependent amp1itﬁdes of
oscillations. It is assumed that the time dependent
coefficients are slowly varying parameters; namely , the
variation of the amplitude over a complete cycle is very
small compared to the amplitude itself,. A]éo, the variation
of the first derivative of the amplitude over a complete
cycle is very small compared to the derivative of the
amplitude with respect to time.

A% this stage the interest will be limited to the
transient response of the parametric torsional vibration
near the principal region of parametric torsional instability.

The differential equations (5.40) and (5.43) represent the
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coupled lTongitudinal and torsional responses. The solutions

(5.82) and (5.85) are introduced into equations (5.40) and

(5.43) and applying harmonic balance technique, a set of

first order,coupled,nonlinear, differential equations are

obtained. The components of the amplitude of longitudinal

oscillations are given by

2y

2
- a(ec + es

(o
[}

. = (D3 + cqg D4/2)/D,

af]
]

s (D4 - Cd QC D3/A)/DZ

where

2
a = 2 Ipc/(3A£ )

Dy, = 1 + (chC/A)2

Dy = 0.5 [cs(ng - A2) + agiéces]/x
- cq 9,5

Dy = = 0.5 [e (al - 2%) - 8 a%8ny/n"
+ O.Sagi(ei - ei)]/x- Cq Q;cs

The components of the amplitude of parametric

(5.86)

(5.87)

- (5.88)

(5.89)
(5.90)

(5.91)

(5.92)

torsjonal vibratiens near the principal region of parametric
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torsional instability are given by

o = [che (D6 -y @ 65)/A

C ]
+ (Dy - cg 95 0c)1/0g (5.93)
;S = [- Cd“e(D7 - g9, 0.)/
+ (Dg - cy0,0.)1/0g " (5.94)
where
pg = [1+ (2 cya,/2)°] (5.95)
D6 = - [ec(ng - 52/4) + 0.5 QgsNtec
+9 ﬂzﬂg Ip (o2 + egec)/(lpcﬂz)
+ 2 a(2c 0 + t oo + £ 8.)/31/2  (5.96)
0, = [eg(al - 2%/4) - 0.5 aZsh 6,
+ 9 NZQE I, (o) + eges)/(lpéﬂz)

) _
+ 2 Qg(aneS - T 0 - csec)/3]/x (5.97)

Ana]ytfcaT solutions of equations (5.86) to (5.88),
(5.93) and (5.94) are difficult to obtain. Therefore,
numerical solutions are adopted. Numer%ca1 integration
procedure was carried out for the time interval (=x/rx) for
the case of a thin-walled beam of symmetrical I section.

The geometrical properties of the member are as given by
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equations (5.50) to (5.53). Arbitrary fnitia] conditions
were assume"&,‘eC =0, 6, = 0.02. Constant values of the load
parameter NO = 0, the parémetric amplﬁtude Nt/2 = 0.05 and
the parametric frequency (A/Zsze)2 = 1, are considered.

Solutions of equations (5.86)'to (5.88), (5.93) and

(5.94) for different values of damping coefficiénts, were
carried bdt. The time history of the behaviour of the
transient amplitude of parametric torsional oscillation
o is plotted in figure [15]. 1In the absence of damping,
if the parametric frequency is within the unstable range,
the amplitude of parametric torsional oscillations grows
almost exponentially from an initial value to oscillate
about the value of the steady state amplitude. This
behaviour is shown in figure [15] by the curve denoted by
. Cq = 0. The presence of damping coefficients decreases
the rate of initial growth of the amplitude. Three cases
can beAdiscussed for different values of the damping
coefficient. 1In the presence of relatively small damping
coefficients, Cq = 0.01, the amplitude of oscillations
initially grows, then damped vibrations take place. The
damped oscillations converge to the amplitude of steady
state oscillations. For a larger value of the damping
coefficiant, Cq = 0.02 1h this case, the amplitude of

torsional oéci]]ations,grows to take the value of the

steady state solution. However, for a re]ativé]y large
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viscous damping, c, = 0.03, the same value of the
parametric.frequency (A/ZQG)2 = 1, and parametric amp]ftude
Nt/2 = 0.05, represent a point outside the unstable regioﬁ,
refer to figures [13] and [14]. The transient solution for
this case decreases continuously from an arbitrary initial
value to become asymptotic to the stable trivial solution

6 = 0.

To summarize the parametric response of a thin-walled
beam of symmetric I section and to correlate between
solutions for the boundaries of parametric instability
regions, steady state and transient responses, figure [16]
is presented. Figure [16] represents the parametric
torsional response for a fixed value of the damping
coefficient. For the constant load parameter NO = 0
the boundaries of the principal region of instability are
plotted in the upper left corner of the figure. For a
parametric amplitude of Nt/2 = 0.05, the steady state
amplitude of parametric torsional oscillations are shown in
the iower left corner of the graph. Solid lines represent
the stable solution while the unstable solutjon is plotted
in dotted lines. The nonsteady state response, for arbitrary
initial values, is shown on the right side of figure [16]
for parametric frequency of ()\/209)2 = 1. To follow the

parametric response, the parametric amplitude of 0.05 and
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parametric frequency of 1, represent a point inside the
region of parametric torsional instabilijty, thus, the
system is unstable. The steady state amplitude of
torsional oscillations is determined by projecting the
point (1, 0.05) from the stability chart to meet the
stable branch of the solution at the magnitude of the
steady state amplitude (0.24577). The transient response
is shown to grow from an initial value, then damped
oscillations take place. The oscillations converge to the
steady state amplitude of parametric torsional oscillations.
Quantitiative results can be easily obtained, then plotted
in graphs similar to figure [16] for different values of
Ng» parametric amplitude (Nt/2), parametric frequency

(A/Zsze)2 and damping coefficient Cq-



CHAPTER VI

DYNAMIC STABILITY OF THIN-WALLED BEAM OF
MONOSYMMETRICAL CROSS SECTION

6.1. Introduction

The dynamic stability of thin-walled beams of
monosymmetkica] cross section is presented in this chapter.
As an example of monosymmetrical section, a split ring
section is considered. Under the action of periodic end
1oadfng a state of longitudinal vibration is set up in the
beam as a direct consequence of the applied load. In
general, there is no flexural or torsional deformation.
However, at certain frequency ranges of the applied load
flexural and/or torsional vibrations are set up. Under
such conditions, the beam is said to be "parametrically
unstable". The present example differs from the symmetrical
I section case, which was presented in Chapter V, in two
aspects; Firstly, the case of a built-in boundary condtion
js adopted. Secondly, coupled flexural-torsional type of
vibrations will take place. This fundamental differehce in
behaviour is due to the fact that for a monosymmetrical
'section the shear center does not coincide with the centroid.
Therefore, coupled flexural-torsional type of vibrations

will result, once parametric instability sets in. The

133
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parametric Stabi]ity study of thin-walled beam, in this
chapter, consists of two parts. The first part is to
determine ‘the range of frequencies at which such instaﬁility
can take place. This can be expressed as unstable regions
-in the parametric amplitude-parametric frequency space.  The
second part of the parametric stability study consists of
establishing the steady state amplitudes of vibration and

investigating the transient growth of the parametric response.

6.2. Differential Fquations

Consider a thin-walled beam of monosymmetrical
cross section where the axis of symmetry is taken to be the
0Y axis. The beam is subjected to dynamic axial forces
at the ends of the beam. It is assumed that the resultant
of the applied forces passes through the centroid of the
cross section. ~Due to the app]ied end load the thin-walled
beam will deform in the 1ongitudina]"direction while no
flexural or torsional deformation will take place. However,
if the magnitude and frequency of the end loading corresponds
to a poin§ in the unstable regions, the beam will show |
flexural deformation in the principal direction of symmetry
or a combined flexural deformation in the other principal
direction and torsional_deformation. The geometrical
propertiés of monosymmetrical cross section will Simp]ify
the differéntia] equations, as

c, = 0 . ‘ (6.1)
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and

Iny = Ip, = Top 7 Ig, | | (6.2)

The longitudinal deformation in the ¢ direction is

given by equation'(4.31)
' - 12 20yt _ S
E*Ag + E*(Ipce I 8%0 ) pAg = O (6.3)

The associated non-homogeneous boundary conditions
are
[} * ' 2 2!
{E*Az' + E (Ipce + 1,026 )
. ~£ .
where the resultant of the applied forces is considered to

be a periodic function which can be expressed in the form

P(t) = Py + Py cos at (6.5)

t
Using equations (4.22) to (4.24) the flexural
and torsional stability equations for a monosymmetrical section

are written as

E*I_ g*V - (P, + P

yy 0

o A ] 14
¢ €OS At) (et + ¢, )

+ pAE_', + pAcy.e. = 0 (6.6)

= A V2 2at YU
E*Ixxn E (IRye + Ide 9')

- (Pg + Py cos:xt)fn" + Cy(ee" +9'2)]

+ oAln + cy(65 + 62)] =0 ' (6.7)
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E¥I eV - 6 E¥Ipe'%0'! - 2 E*{e'(Ip ¢! - Igyn' )1

ww C

' ”
- (Py + Py cos At)cv(E" +n'%)
+ pAcy(E + ) =0 (6.8)

The associated boundary conditions are

L
g''sg'] = 0 (6.9)
0
£z
{E*Iyyg"' - (P0 + Py cos at) (g + cye')} 6€é =0
, (6.10)
{E*Ixxn" - E*(IRye'2 + Ideze')} an'é =0 (6.11)
{E*Ixxn"' - E*(IRy'e'2 + Inyeze')'
v £
- (Py + Py cos at)(n' +,cyee‘)} Gné'= 0 (6.12)
Z ' '
{E*Iwwe" - MQeZ} 6e'é = 0 (6.13)
(E*y o''' - 2 E*IRe‘3 -2 E*e'(Ipcc' -'IRyn")

LI 1
L

- (P, + P, cos At)cy(i' + n'e)} s8] = 0 (6.14)

0 t

The boundary conditions of the ¢ equation as given

by (6.4) are time dependent: It is convenient to modify
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the differential equations so that a new varijable 21 is
regﬁired ta satisfy homogeneous boundary conditions only.
This can be done by the Mindlin and Goodman's technique.

Let a new variable Zq be defined as

t1(z,t) = t(z,t) = (Py + P, cos at)z/E*A  (6.15)
where

C](O,t) = 0 (6.16)

z(2,t) =0 | (6.17)

Introducing equation (6.15) into equationv(6.3)

and (6.8) a modified set of differential equations is obtained.
For fixed end conditions,the boundary conditions of

the thin-walled beam can be expressed mathematically as

at z = 0 |

€' =n=n'=6=6"=0 (6.18)

1
&
[
—
"
™
L]

at z

Z3 E=¢' =n=n'=6=06"=0 (6.19)
It is convenient at this stage to nondimensionalize
.the problem. The applied force is expressed as a factor
less fhan or equal to 1, multiplied by the smallest static
buckling load. The frequencies are best normalized in
terms of the frequencies of free vibrations.
Let the static flexural buckling load in the

uncoupled n direction be Pn and the coupled flexural
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torsional buckling Toads be denoted as P1 and P2. Mathematically

they can be expressed as

P = 4 ¢ E*I__/2° ﬂ (6.20)

- - - -

v 1/2- -
(0, - 4 0,0,)' /%17 (20)) (6.21)

e
—
-
N
H
~
]
)
nN
-+

-

where the constants Dy, D, and D3 are

2 |
D, = ¢y A/(21 ;) - 1 (6.22)
o 2 2 2 2
Dy = 4 x° EXI, /0% 4 A8 0% ERL /00 4 Gy)/
(21__£2) (6.23)
pc )
o 2 2 2
Dy = 4 7 EXAL, (4 x°Ex1, /2% + G1,)/
(21 £%) | (6.24)
pc . ,

-In general, P] is the’critica] load that corresponds
fo the buckling mode whose toréiona] deformation is predominant.
This is called "predominant torsional" mode. P, is the critical
load that corresponds to the buckling mode whose flexural
deformation is predominant, This is called "predominant
flexural" mode.

The applied loads will then be expressed in the form

E*AB(NO + Nt co;vAt) = PO + Pt cos At (6.25)
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where

B = Pcr/<E*A) (6.26)

The axial load parameters NO and Nt are
nondimensionalized with respect to the smallest buékling load
Pcr in the weaker mode. NO = - 1 corresponds to an applied
axial compressive load which will cause buckling in the
weaker mode.

The frequency of free vibrations, under a constant

applied axial load PO’ in the uncoupled longitudinal and

flexural type of vibrations can be written as

Qi = n2E%/(42%)) » (6.27)
Q% = (1 + P./P_ ) 16 nYE*I._/(30AL™) (6.28)
n o/ er XX e .

The frequency of free vibration, under a constant
applied axial load PO’ of the coupled flexural-torsional

types of oscillations, can be written as

2y , = (D = D§)/(20,) |  (6.29)

where the constant D, is given by equation (6.22), DE and

D§ are given as

Dy = dy + dg + 2 dg D, | (6.30)
_ 2 - 1/2

Dy = (D%° - 4 D]DZ) (6.31)

DF = - (dq - dg)ld, - dy)

2 .2 :
+ oy A do/(ZIpC)v (6.32)
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dy = 4 wZPO/(3pA£2) (6.33)

d, = 16 5 E*1._/(3pALY) | (6.34)
1 yy TR '

2, 2 2 2 4

dp = 2 °(8 nPEL /0% v 61/ (3270 () (6.35)

2, and @, are frequencies that correspond to a
coupled flexural-torsional type of vibration. The mode
shape correspohding to one of the frequencies, say 21 is
characterized by predominant torsional deformations while
@, corresponds to a mode shape of predominant flexural
characteristic. In general, for a thin-walled beam of
open cross section, the torsional rigidity is small |

compared with the flexural rigidity, thus 2y < 5.

Consider the nondimensionalized variabhles to be

* = gy/L | o (6.36)
gy = &/L | (6.37)
ny = n/t (6.38)
z = z/2 (6.39)

The partial differential equations given by
equations (6.3) and (6.6) to (6.8) can be changed to ordinary
differential equations by applying Galerkin's averaging

technique to the equations.
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As our interest is directed to the first mode of
oscillatjons in each type of deformation, approximate mode
shapes are used. The approximate first mode shape functions

are taken to be

e*(z,t) = g, (t) sin nz/2 (6.40)
g1(Z,t) = g,(t) (1 - cos 2rZ) | (6.41)
ny(z,t) = n (t) (1 - cos 2nz) (6.42)
6(z,t) = ¢.(t) (1 - cos 2x2) | (6.43)

where Lo Bgs Ny and 0, are functions of time only.

The first natural frequency of different types bf
vibrations, as calculated using the approximate mode ﬁhape
functions given by equations (6.40) to (6.43) are compared
to the frequency values calculated using a four term "beam
type" mode function. The difference was found to be of the
order of 0.4%. The approximations in mode shapes as
expressed in (6.40) to (6.43) are, therefore, regarded as
_reasonab]e. ’

Substituting the solutions (6.40) to (6.43) into
the partial differential equations (6.3) and (6.6) to (6.8)

and applying Galerkin's averaging technique, a set of ordinary
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differential equations is obtained

St

+ .

o

S 2 2 2
240 Ty * 2Ty - (88N, 27 cos At)/x

‘ 2,2 2 2.3 aply .
1024 Ipcﬂcet/(63A£ ) - 1 Igcﬂcet/(3wA£ ) =0

(6.44)

gy + d

c 0/ + 2¢49, 16t

2
E*B(NO + N

I, cos at)(e, * cyet/z)/(spzz) - 0

(6.45)

- 2
2Cdant + ant

2 ;
4nlExp(lg + Ny cos at)(ny + c, 0/£)/(3p7)

C o =2 -
s Loy5y + 621/(32) = 0

0 ‘(6.46)

19¢ *

& d

) + 2¢,9 >

d 9

2 1]
4r°Exg (N, + N, cos at)[e, + cyAth/(ZIpc)

t

4

1/(3p22) + 4n E*IRei/(plpC£4)

2561 2E*6 -

(y/(18902%) = 0 (6.47)

where Cq is the damping coefficient known as the fractional

critical damping.

The damping terms were introduced in the
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ordinary differential eguations (6.44) to (6.47) after
Galerkin's technique was applied. The effect on damping
on the frequency of free vibration can be neglected as
Cq s< 1,
The linear terms of the ordinary differential equation
(6.44) including damping terms, are written as
2

os . 2 _ 2
P 2 4 Qcct + QC Ly = (88Ntk cos At)/n (6.48)

Equation (6.46) is in the standard form of the forced
vibration equations. The linear terms of the parametric

stability equations are

£t +.Cyet/£ + 2 Cq 9p &4 ¥ d] Et

pa
+ 4nPERg(Ny + Ny cos at)(ey + c,0./£)/(3p2%) = 0
(6.49)
h.o+ 2 ¢, 0 n +0°n
t d "n 't n 't
2., 2, .
+ 4+°F BNt cos it nt/(3p£ ) =0 (6.50)
0, * cyAEgt/(ZIpc) + 2 cq etv+ dzet
2 . -
+ 4 E*B(n-l0 + Nt cos At)[et + cyAth/(ZIpC)J/
2 .
(3p£7) = 0 - (6.51)

Equations (6.49) to (6.51) are of variable coefficients

which is a mathematical characteristic of the parametric



144

stability problems.

6.3. Boundaries of the Principal Regions of Parametric

Instability

For a thin-walled beah of monosymmetrical Cross
section, there exists three types of'oscillations. Namely,
the uncoupled flexural, the coupled flexural-torsional
type of vibrations of predominant torsional characteristics
and the coupled flexural-torsional type of oscillations of
predominant flexural characteristics. For each type of
vibration, there exists an infinite number of frequencies
of free vibration corresponding to an infinite number of
mode shapes. There is a region of principal parametric instability
corresponding to each frequehcy of free vibrations. If
only the first mode of each type of vibration is considered,
there exists three principal regions of parametric
instability for a thin-walled beam of monosymmetrical cross
section. The three principal regions will be distinguished
by the type of vibration they corréspond to. HNamely,
flexural, coupled flexural-torsional of predominant torsional
or f]exuré] characteristics. In addition, there exists
regions of parametric instabi]ity}corresponding to combinations
of frequencies of free vibrations of the system. HoweQer,
‘this type of“combination parametric instability"” will not be
considered in this thesis.  The bresent analysis will be

1imited to the study of the principal regions of parametric
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jnstability.

To establish the boundaries of the principal regions
of parametric instability, only the linear equations of
stability are used.

The equations governing the parametric stability
of thin-walled beams of monosymmetrical cross section (6.49)
to (6.51) can be written in the form

[D]{f} + [cd]{%} + ([E] - 8(Ny + N, cos At)[BI){f} = 0

(6.52)
¢
¢
92 0 0
[cd=2c¢4 |0 2, o . (6.54)
0 0 0,
1 0 L
cy/
(0] =| o o 0 (6.55)
cyAﬁ/(ZIpc) | 0 1
4 0 0
[E] = 0 ]6m4E*Ixx/(3pA£4) o | (6.56)

0 0 d



[B] = - 4x2E*[D]/(3pL%)
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(6.57)

Equation (6.50) is an uncoupled differential equation

representing parametric stability of the uncoupled flexural

type of vibrations. The boundaries of the principal region

of parametric flexural instability can be written as

[95 - 2n25*8nt/(3pzz) - x2/4][n§ + 27

2
2 ' 2 _
- A7/4] + (cdxgn) = 0

Using the method suggested by Bolotin [6], the

E*sH,/(3p2)

(6.58)

boundaries of principal regions of the coupled flexural-

torsional types of parametric oscillations can be written

using cdnditions(5.60) as

cyAzu/(ZIpc) K2 70 ~CyfqA
Cqfol 0 K] Cyu/f,'
0 Cq2y cyAﬂu/(ZIpC) K2
where
Ko o= u + 160 E*1 /(3pA27)
1 yy

=
n

AxCER (Mg *+ N /2)/(302%) - 2%/4

0 (6.59)

(6.60)
(6.61)

(6.62)
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Bo= anZER(Hy - N/2)/(3p2%) - A%/4 (6.63)
- 2,, 2 2 2

Kp =+ 2nt(anlExD /2% + 61,)/(302%1 ()

Ky = Ky = u + 5 (6.65)

The condition (6.59) for the boundaries of the
principal regions of coupied flexural-torsional type of
parametric oscillations, can be solved numerically by trial
and error method of analysis. }The boundaries of the
principal regions can thus be constructed in the parametric
amplitude-parametric frequency space. It should be pointed v
out that there is NO GUARANTEE that the boundaries, determined
'by Bolotin's method (6.59) are the actual boundaries of
unstable regions for coupled Mathieu equations (6.52). It
remains to show that in the present example, the boundaries
obtained by condition (6.59) are in fact the boundaries of
an unstable region. This can be accomplished by a more détailed
study of the behaviour of the solutions inside the determined
region.

To be specific, consider a thin-walled beam of

monosymmetrical split ring section as shown in figure [17]
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1C (O,cy)

FIG. (17) SPLIT RING SECTION
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of geometrical dimensions

¢/7 = 0.065 (6.66)
L/ = 36 | “ (6.67)
o = n/2 (6.68)

where ¢ 1is the thickness of the thin wall

£ is the length of the beam

=31

is the radius of the ring

¢ is the semi-central angle in radians

The geometrical proﬁerties of the cross section are
calculated using the formulas given in Appendix A.

‘Numerical substitution in cohdifions (6.58) and (6.59)
will give the boundaries of the three principal regions.
However, the 1nterest will be directed towards the principal
region of parametric instability of the coupled flexural
torsional type of vibrations of the predominant torsional
characteristics. This is due to the fact that the Tlowest
frequency of free vibrations is that of the coupled flexural-
torsional type of vibrations of the predominant torsional
characteristics. Also, the'amplitudes of oscillations within
this unstable region are expected to be larger than the
amplitudes of oscillations within the anoup]ed flexural

and coupled predominant flexural instability regions.
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Limiting the discussion to the principal region of parametric

jnstability of the predominant torsional characteristics

is regarded as sufficient since nb qualitative change in

the behaviour is expected by studying the principal regions

of flexural and predominant flexural parametric instability.
The solution of condition (6.59) is plotted as shown

iﬁ figures []8] and [19]. The plots are in the parametric

amplitude-parametric frequency space. Figure [18] represents

the case when damping terms are absent Cq = 0, for different

values of the parameter N Figure [19] represents the

00
effect of viscous damping on the principal region of parametric
stability of the coupled flexural-torsional type of
oscillations of predominant torsional characteristics,

when NO = 0.

6.4, Steady State Amplitudes of Vibrations

Since the-stability equations for ¢ and 6 are coupled
Mathieu equations, the unstable region as determined by
Bolotin's methbd need further verification. This can be
achieved by studying the steady state amplitudes of vibrations
near the principal regions. An unstable region will
correspond to a nontrivial steady state solution near this
region. To study the steady state equations, the nonlinear
theory should be used. The four ordinary nonlinear
differential equations (6.44) to (6.47) are recalled. The

steady state amplitudes of oscillations can be obtained by
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seeking solutions of the approximate harmonic form (5.65)
to.(5.68)._;”

Introducing the adopted solutions into the
differential equations (6.44) to (6.47) and applying the
harmonic balance technique, a set ofrnonlinear algebraic

equations is obtained

ga = 010 en (6.69)
L= a, 6. 6_ + a, + a (92 - 62) (6.70)
c 1 c's 2 3' ¢ S :
. = o0, 6.0+ ap + & (e2 - 62) (6.71)
S 4 “c’s 5 6 ¢ S *
Ec = a7 8.+ agb (6.72)
Eg = ag 0. *+ a3q0 | (6.73)
8. = 0, = 0 (6.74)
2 . - -2 - - \1/2 -

or en = [—a-‘z * ayo - 4 cc”a-|3) ]/(Za.”) (6.75)

where the coefficients &0, a i=1,11 are given in Appendix

.i’
B, and
8" = 0. + 92 ~(6.76)

The steady state amplijtudes of the uncoupled flexural
type of parametric vibrations in the n direction cannot be

obtained using the approximate solutions (5,61). Higher order

theory should be used. However, the order of approximations
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adopted can ﬁredict the amplitude of coupled longitudinal-
torsional and flexural-torsional type of parametric
oscillations.

Further discuséions will be focused on the behaviour
of the amplitude of coupled flexural-torsional vibrations.
This is due to the fact that the first principal unstable
region is that corresponding to the coupled flexural-torsional
type of vibrations of the predominant torsional characteristics.

A trivial solution for 8 as given by expression
(6.74) implies trivial solutions for flexural def]ections £
'and n also. A nontrivial solution for the amplitude of
torsional oscillations as given by ecquation (6.75) implies
nontrivial solutions for £ and n as given by equations
(6.72) and (6.73) due to the coupling between 6 and
flexural deflection terms.

The nontrivial solution for the amplitude of
torsional oscillations en(6.75) has two values. This means
that for each value of the parametric frequency near the
principal region there exist two solutions for the amplitude
of torsional vibrations. However, studying the stability
of the two solutjons shows that one solution is stable while
the other is unstable. The stability analysis of the steady
state solutions will be discussed lTater. The existence of
a stable solution for the steady state amplitudes of

flexural-torsional types of vibrations in the principal
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regions shows that this region is in'facf a principal region
of parametric instability.

The numerical solutions of equation (6.75) are shown
in figure [20]. The steady state amplitude of torsional
vibrations near the principal region of predominant torsional
instability is plotted versus the parametric frequency for
~a certain value of the parametric load (Nt/2 = 0.05). An
open thin-walled split ring section of the geometrical
dimensions (6.66) to (6.68) were used. The nontrivial
solutions for the steady state amplitude, are plotted in
the lower part of figure [20]. The stable branches of
thé solution are shown in solid lines while the unstable
solutions are shown dotted.

The effect of damping on the steady state amplitude
of oscillations is illustrated in figure [20]. Different
values of the damping coefficients cq are used. The presence
of small viscous damping (cd = ,01, .02) reduces the
magnitude of the steady state amplitude of oscillations.

For large values of damping coefficients (e.g. Cq = .03) the
‘system.is not parametrically excjted. Therefore, no steady
state amplitude of oscillations is expected and the trivial
solution (6.74) will hold.

To discuss the behaviour of the ﬁteady state amplitude

for varying parametric frequency it is necessary to state
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whether the unstable region is approached by increasing or
decreasing parametric frequency for a constant value of the
parametric amplitude, Starting from a frequency below the
critical range the system is stable and the steady state
amplitude will correspond to the trivial solution 6, = 0.
As the parametric frequency enters the unstable range, the
’amplitude of torsional oscillations increases gradually.
When the parametric frequency exits from the unstable range
there is a sudden drop of the steady state amplitude to
Zero. | |

On the other hand, if the unstable region is approached
by a decreasing parémetric frequency different behaviqur is
predicted. For a parametric frequency above the critiéa]
range the trivial solution will hold indicating no amplitudes
of vibrations. This shows that the system is parametrically
stable. As the parametric frequency decreases until it
reaches a point on the right boundary of the unstable region
a sudden jump of the steady state amplitude will take place.
As the parametric frequency decreases further the sfeady
state amplitude of parametric torsional oscillations decreases
gradually. Finally,as the parametric frequency exits from
the unstable range, the trivial solutioﬁ becomes a stable

onhe.
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6.5. MNonsteady State Solution

The time history of the amplitude growth at the
principal region of instability is studied in this section.
The growth of the amplitude of osci]1ations; from an
initial value to the value of the steady state amplitude,
is referred to as Nonsteady state or Transient solution.
Transient solution can be 6btained by allowing the amp]itudé
of the assumed solutions to vary with time. This can be
achieved by considering the solutions of the form as given
in equations (5.82) to (5.85). In these solutions the
amplitude components are taken as time dependent. It is
assumed that the time dependent coefficients are slowly
varying. In other words, the variation of the amplitude
component over a complete cycle is considered to be small
compared to the amplitude itself. Also, the variation of
the first derivative of the amﬁ]itude over a complete cycle
is considered to be small compared to the derivative of the
amplitude component with respect fo time.

Solutions (5.82) to (5.85) are introduced into the
system of differential equations (6.44) to (6.47) and
applying harmonic balance technique a set of first order

nonlinear differential equations is obtained

c, = dq(0..8.) (6.77)
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L. = gz(cc,cs,ec,es) | (6.78)
Ty = G35 s0gs0,50,) | (6.79)
(£} = 1177 ) (6.80)

where {%} is a vector of the first derivatives of the

amplitude components

fg-'c\

tfy =) S| (6.81)

{g} =) 95 (6.82)

The functions éi’ i = 1,7 are nonlinear functions of the

amplitude components given in Appendix B.
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[M]-] is the inverse of matrix [M] where

1 -2c .,/ £ 0 -
B ‘ Cq 2/ Cy/
2¢C 0,/ 1 0 c /2
(1] = 72 y (6.83)
cyAK/(ZIpC) 0 1 -ZCdQ]/A '
~ 0 cyAﬁ/(ZIpc) 2ch]/A 1 d

An analytical solution of equations (6.77) to (6.80)
is rather difficult to attempt and, therefore, numerical
solution is used. It should be noted, however, that if
the first dérivatives of the amplitude components (the Teft | ,
hand side of equations (6.77) to (6.80) ) are taken to be
zero, the steady state equations (€.69) to (6.75) are
obtained. As an example to study the behaviour of the
transient solution, consider a thin walled beam of dimensions
monosymmetrical split ring section. The geometrical properties
of the section are as given by equations (6.66) to (6.68).
The geometrical properties of the cross section are as given
by Appendix A.

The transient solution as given by equations (6.77)
to (6.80) can be established for a given value of the cohstant
component of the 1bad NO, parametric aﬁp]itude Nt/2 and

parametric frequéncy (A/ZQ])Z. In addition, initial values
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of the nonsteédy state amplitude components should be
specified initially, o = 0, o, = 0.03. The values of the
parametric 3mp1itude and frequency represent a point in the
parametric amplitude - parametric frequency space. If this
point is located outside the boundaries of the unstable regions
the transient solution will decdy rapidly and become asymptotic
to the stable trivial solution. On the other hand, if the
parametric ampTitude and frequency represent a point in the
unstable region, the transient solution shows the growth of
the amplitude from an initial value to a value corresponding
to the steady state amplitude of oscillation. The manner
with which fhe amplitude approaches the steady state value
depends on the damping of the systeh. Further discussions
are limited to the behaviour of the transient solution of
the torsional amplitude near the first principal region of
~parametric instébility of the predominant torsional
characteristics. | |

The behaviour of the nonsteqdy state ampiitude of
torsional oscillations is presented in figure [21]. Numerical
solutions of the system of equations (6.77) to (6.80) are
carried out for the constant load component N0 = 0,
parametric amplitude Nt/2 = 0.05 and parametric frequency
(A/ZQ])Z = 1, These values represent a point inside the

principal region of parametric instability of predominant
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torsional characteristics (refer to figure [19] and figure
[20]). Arbitrary initial values of the amplitude of
torsional vibrations is considered. Computations were
repeated for different values of the damping coefficient c,.
Results plotted in figure [21] show the time history of the
nonsteady state amplitude of torsional vibrations for
different values of the damping coefficient.

In the absence of damping cg = 0 the émp]itude of
parametric torsional oscillations increases initially and
then oscillates about the value predicted by the steady
state so]utfon. Nhén relatively small damping is
present (e.q. Cq °© .01) the oscillations of the amplitude
are damped down causing the transient solution to converge
to the value of the steady state amp]itude. For the case
of larger damping coefficient Cq = .03 the considered
parametric amplitude and parametric frequency represent a
point that lies outside the unstable region corresponding
to Cq = .03, figure [19]. The behaviour of the transient
solution in this case is characterised by a rapidly decreasing

amplitude ot become asymptotic to the trivial solution.

6.6. Stability of Steady State Solutions

In the study of the steady state amplitudes of
parametric oscillations,in particular the steady state
amplitude of torsional oscillations, it was shown that more

than one solution exists. The trivial solution is given by
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equation (6.74) while equation (6.75) gives two nontrivial
solutions. When the parametric frequency is outsjde the
unstable range only the trivial solution exists. If the
parametric frequency js within the unstable range, the
trivial solution is still valid in addition to one or two
nontrivial solutions from equation (6.74). Therefore,
it is important to study the stability of the steady state
solutions.

To check the stability of the steady state solutions,
a technique given by Bolotin is used. The steady state
amplitudes of parametric oscillations are disturbed. If the
small disturbance considered remains bounded, the steady
state amplitude value is considered stable. If the
disturbances grow the steady state solution is considered
unstable. This stability check can be achieved by using_
the nonsteady state solutions. To be specific, an )
example to study the stability of the steady state solution
is worked out for the case of a thin-walled beam of
monosymmetrical section. |

The nonsteady state solutions given by equations
(6.77) to (6.80) are recalled. This system of equations
contain six first order, coupled, differential equations
whose coefficients do not~explic1t1y contain time. Let one

of the steady state solutions which satisfy eqUations (6.69)



to (6.75) be written as

e T %tco (6.84)
Lo = Leg. " (6.85)
£c = & (6.86)
£, = £¢g | (6.87)
% 7 ®co | (6.88)
6, = 0. ‘ (6.89)‘

To investigate the stability of the solutions given
by equatibns (6.84) to (6.89) small disturbances of the

amplitude values are considered in the form

CC = CCO + Y] (6-90)
§S = CSO + Y2 (6.9])
Ec = Eop * Y3 | (6.92)
£ = B0 * V4 (6.93)
0, = 9.5 * Vg (6.94)

s % %0 T Vs (6.95)

where Yo i = 1,6 is a small time dependent disturbance of
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the amplitude components.
Substituting equations (6.90) to (6.95) -into
equations (6.78) to (6.80) the equations of the disturbed

motion are obtained in the form

dy, ,
ae s L i (6-96)
i=1,6
at - z:: 92i Yi ﬂ (6.97)
i=1,6
14
;) = 1Y [AT )  (6.98)

where gji(j = 1,2 and i = 1,6) are coefficients given in

Appendix B. ,

{y} is a vector representing the time derivatives
of the disturbance quantities, in the form

’ \

o.

Y
t

w

o
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=
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jal
o+

{y} ={ , . (6.99)
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[M]'] represents the inverse of the 4 x 4 matrix [M]
given by equation (6.83).
Matrix [A] is a 4 x 6 matrix whose elements are

s J = 1,4 and i = 1,6. The coefficients a,; are given

3i ji
in Appendix B.
- {y} is a column vector of six components representing
the disturbance quantities Yo i =.1,6.
It is convénient at this stage to express equations

(6.96) to (6.98) in the matrix form
(v} = [6] (v} | (6.100)

where {y} is a column vector of six components Yis i ='],6.
[G] represents a matrix of coefficients whose elements can
be obtained from equations (6.96) to k6.98). The first two
rows aré 97 and PY i=1,6 while the rows 3 to 6 are

b.

51 J = 1,4 and 1 = 1,6 where

[B] = [M1™' [A] (6.101)
The solution for equation (6.100) is expressed in

~the exponential form as
v} o= {yy) e(At/2) (6.102)

where {yg? is a column vector of six constant components

and A is the frequency of the exciting force while X represents

-\
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the ejgenva1ues of [G]. |

The disturbances {y} decay with time only if all
roots X have negative real parts.

Analytical quantities and coefficients are given for
equatioﬁs (6.96) to (6.98) for the case of a thin-walled
beam of monosymmetrical cross section. However, further
analytical formulation of the matrix [G] is rather difficult
as it involves the inversion of the matrix [M]. The elements
of the matrix [G] can thus be constructed numerically fork
each specific case. |

Numerical computations were carried out to check
the stability of the steady state solutions near the.principal
regions of parametric instabilities by evaluating the
eigenvalues of the matrix [G].

The cases considered included the trivial and nontrivial
- steady state solutions of a thin-walled beam of symmetrical
I section. ﬁesu]ts'are applied to the case of zero damping
as shown in figures [14] and [16]. The stable solutions of
the steady state are in solid lines while the unstable
solutions are dotted.

Stability of the solutions of the steady state
amp]itudes of parametric torsional vibrations is studied
for a thin-walled beam of monosymmetrical split ring section
near the principal region of parametric stabijlity of the

predominant torsional characteristics. Results are applied
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to figure [20] as solid lines for the stable solutions while

the unstable solutions are dotted.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER
RESEARCH

7.1; Conclusions

From the present investiéation, the following
conclusions are arrived at:

1. The nonlinear deformation theory of thin-walled
beams of open cross sections, as presented, accounts for
large rotations of the cross section. The nonlinear differential
equations were checked in two Qays. Firstly, it was shown
to reduce to the well established linear theory of Viasov.
Secondly, the nonlinear deformation equations in the
simplest form reduce to Gregory's formulations. Both the
linear theory of Vlasov and Gregory's'formulations were
supportéd by experimental work.

2. The present nonlinear theory has four main
advantages over the formulations ayai]ab1e in the literature,
namely: (a) the deformations in the longitudinal direction of
the thin-walled beam were accounted for., (b) a consistent
“third order approximatibn was haintained throughout the
formulation, The approximations were based on the large
rotation assumption where the angle of rotation of the
cross section is treated as first order while the slope of the

deflection curve was considered as a second order quantity,

170
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(c) the nonlincar differential equations are accompanied
by the approprfate boundary conditions of a consistent
order of approximation. (d) the oresent theory is
re]ativély simnle to apply. This was illustrated by the
different examnles considered. ‘

3. The solutions of a thin-walled beam, of
symmetrical and monosvmmetrical cross sections subjected to
end twistina moments, were shown to agree wfth existing
solutions for the case of uniform torsion, as given by
Cullimore and Gregory. MNumerical solutions for the case of
a cantilever thin-walled hbeam, of narrow, rectangular,
cross section as well as symmetrical I and anale sections,
were carried out. Comparison between the linear and
nonlinear so]utions.for the momentbof fwist - angle of
rotation behaviour showed substantial difference for large
angles of rotation; For the specific cases considered, there
was a difference of over 10% in the values of the moment of
twist, when the angle of rotation was 0.35 radians.

4. The nonlinear solution of a cantilever thin-walled
beam, subjected to end torque, was carried out by means of
perturbation analysis. This solution,to the author's
knowledge, has not been done before., The twisting moment -
angle of rotation relationshin for a thin-walled beam of
symmetrical I section was compared witﬁ the linear solution

of non-uniform torsion.
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The variation of the axial strain component along
the longitudinal axis of the beam, aé predicted by linear
and nonlinear theories, were compnared for the case of non-
uniform torsion of a thin-wa]]ed'beam of a symmetrical I
section., A fundamental characteristic“difference in the
axial strain was shown to take place near the free end of
the beam. Althouagh the linear theory predicts no axial
strain at the free end of the cantilever beam, the nonlinear
theory shows that a positive strain component exists due
to the "shortening effect" of large torsion.

5. A general consistent nonlinear stability theory

of thin-walled beams was presented. The nonlinear differential

equations governing the stability under axial loads and
_1atera1 stability were formulated. The nonlinear stability
theory was shown to reduce to the linear eguations of Vlasov.
6. The study of the parametric stability of
thin-walled beams of symmetrical I section, subjected to
axial periodic load passing through the centroid of the end
section, was carried'out. In the case of the specific example
considered, the first principal reaion of parametric
instability is‘that of the torsional type of parametric
oscillations. The steady state amplitude of vibrations near
the principal region of parametric torsional instability
was shown to behave in two different manners depending on

whether the unstable region is approached by increasing or
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decreasinag parametric freauencies, As the parametric
frequency enters the unstable rance from below, the steady
state amplitude of vibrations grows from the trivial
solution, Continuous arowth of the amplitude takes place
as the pafametric freduency increases. As the parametric
freauency leaves the unstable range a sudden drop of the
steady state amplitude to the trivial solution will take
place. On the other hand, approaching the dnstab]e region
from above the unstable rance, a sudden jump of the value
of the amnlitude occurs at the right boundary of the unstable
region. As the parametric frequency decreases further, the
steady stafe amplitude of oscillations decreases gradually
until the trivial solution becomes valid at the other
boundary of the unstable region.

7. The study of the transient solution near the
principal reaion of parametric instability shows qrowth of -
the amplitude of oscillation. From the initial value, the
amniitude grows monotonically at first, then oscillates
about the corresponding magnitude as predicted by the
steadv state analysis,

8. The presence of viscous damning will affect not
only the regions of parametric instabjlity as was established
by the‘linear analvsis, but also it affects the steady state
and the nonsteadv state amplitudes of 63ci11ations. The

steady state amnlitude of vibrations of a damped system are
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smaller than those of an undamped svstem. The rate of
growth and duration at which the steady state amplitude is
reached varies considerably with damping. The presence of
viscous dampning was found to decrease the rate of initial
growth of the amplitude. Three cases can be éiscussed for
different values of damping coefficients. A relatively
small damping causes the amplitude of the transient vibrations
to grow and over shoot the steady state value. Then the
amplitude approaches the steadv state value in a decreasing
oscillation manner. For a larger value of the damping
coefficient, the amplitude of nonsteady state response grows
with a smaller rate until it reaches the steady state value.
For a constant parametric amplitude, the system with large
damping will not be parametrically excited. Thus, the
transient solution for this case decreases continuously

from an arbitrary initial value to become asymptotic to the
trivial solution of zero magnitude.

9. The study of the parametric stability of thin-walled
beams of monosvmmetrical cross section, subjected to axial
periodic load passing through the centroid of the end section,
was found to differ from the case of a thin-walled beam of
symmetrical cross section, in one aspect only. 1In the caée
of a thin-walled beam of monosymmetrical sections, coupled
flexural - torsional type of parametric oscillations can be

excited. The first principal region of pafametric
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instability for a thin-walled beam of split ring section was

fopﬁd to be that of the predominant torsional characteristics.
fhe éffect of viscous dqmping on the unstable regions,

- steady state amp]itudes and the transient solutions for the

case of thin-walled beams of monosymmetrical cross section

was studied. However, when compared with the effect of

damping on the paramétric response of a thin-walled beam of

symmetrical cross sections, no aualitative difference was

observed,

7.2. Suggestion for Further Research

The nonlinear theory of thin-walled elastic beams, as
presented in this work, was checked in two ways. Firstly,
it reduces to Vlasov's linear theory. Secondly, it reduces
in its simplest form to Greaory's nonlinear formulations which
vere verified experimentally. However, further experimental
verification of the nonlinear thin-walled theory is mandatory.
Experiments can be conducted to establish the behaviour of
thin-walled beams when subjected to static and dynamic
loadina., Deflections and rotations, of a thin-walled beam
subjected to non-uniform torsion under the action of static
twistino moment applied at its ends, can be measured to
be compared with theoretical nredictions., The response of
thin-walled beams subjected to dynamic'1oads can be condﬁcted
experimentally in different ways. Lateral dynamic (periodic)

loads will create a "Forced Vibration" tvpe of response.
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The magnijtude of steady state ampnlitudes of vibrations, for

an excitina frequency close to the frequency of free vibrations,
can be measured experimentally to be compared with theoretical
calculations., Also, measuring the longitudinal strain
component at resonance conditions may be done exnerimentally
to verify theoretical‘strains. Apnlvina periodic loads in

the axial direction of a thin-walled beam at its ends will
give rise to parametric stabilitv problems. The amplitudes

of parametric osci]iations near the nrincipal reaion of
parametric instability may be established experimenta1]y.
Experimental values of steady state amplitudes of oscillations
can be compared to the steady state émp1itudes of parameteric
oscillations as predicted by the nonlinear theory.

Further theoretical investigations may be directed to
study the phenomenon of combination resoﬁance of variable
orders. The existence of sub-harmonic and super-harmonic
oscillations mav be investicated. Interaction of different
instability reqgions may take place if two freauencies of
free vibrations of different modes or types aporoach each
other. This will cause the unstable regions corresponding
to these freaquencies to interact. The effect of interaction
of different instability reaions on the steady state and
the arowth of the amnlitude hay be studied usina the
nonlinear theorv,

Lateral dynamic loads applied to a thin-walled beam
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will create a parametric stability problem, This aspect
of stability may be a wide field of investigation.

Prob]ems'inéluding non]ineaf, olastic, viso-elastic
and hysteretic material properties, approach a more realistic
representation of oractical problems.

Deformation and stabi]ify theories of thin-wallad
structures are one of the impnortant branches of the mechanics
of deformable solids. Although much has been done recently
to clarify many problems, a wide field of investigation

remains.
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“APPENDIX A

PERTIES OF SPLIT RING SECTION

rcular split ring, three independent
stated, namely:

the thickness of the ring's wall

the radius to the center line of the wall

the semi-central angle in radians

the axes 0X and QY is the centroid of

Axis QY is taken as the axis of symmetry

17]. The center of the circle is of
, ¢ isan angle measured from the axis

igin of the co-ordinate s for this

monosymmetrical section is at the intersection of the

section's profile wi

From the geome

S =T ¢

X =r sin
y = a, -
v o= ¢
A=2rc

The value of a,

J'y c d
S

th the axis of symmetry.

try of the split ring section,

o | (A.

is found by using the formula

s =0 | (A.
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thus
a, = r sin ¢/¢ : (A.7)
_ 2
Iyy = _fc X~ ds
s _3 _
= c¢r” (¢ - sin ¢ cos ¢) (A.8)
_ 2
Ixx = I~c y  ds
s

= ¢ 73 (¢ sin ¢ cos & - 2 sin? 3/9) (A.9)

To determine the co-ordinates of the shear center

c(o, cy)

C. = ap - v X € wy ds (A.10)
y 0 Iyy s B
in which w, = F2¢, twice the area swept by the radius moving

B
along the section starting at s = 0, therefore

. -r{¢ sin o + sin2 ¢ cos & - 2 % cos ¢) (A.11)

c
Y ¢(¢ - sin ¢ cos o)

To determine the expressions for h(s) and n(s)

h(s) = (x - cx) sin y - (y - Cy) cos ¢ (A.12)
n(s) = (x - cx) cos v + (y - cy) sin v (A.J3)
h(s) = r - g;fsi?n°¢'cgscgs *) cos ¢ (A.14)
) = Blaln oo e cont) L (1.15)
w(s) = jsh(‘s') d3

0

2 Colein & o ‘ .
= r [o - ¢(§121§ 5 g;scgs ®) sin o] (A.16)
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F el

f ¢ (h? 4 n?) ds

s

73 4 o(sin o - o cos 0)°
r- [o +

(6 - sin o cos &)

_ 4 sin o(sin & - ¢ cos ¢)]
"¢ - sin @ cos ¢

fc w2 ds

)2

=5 [¢3 _ 6 sin ¢ - ¢ cos ¢
' $ - sin & Ccos o

]
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(A.17)

(A.18)

(A.19)

(A.20)
Lo (n? + n?)? ¢s
¢ 70 [p - 8.sin s(sin & - & cos &)
¢ - sin ¢ cos ¢
8 (2 & + sin & cos Q)(sin $ - 9 'cos @ ,2

s ~ein ¢ - & cos o 3
32 sin of TRErY e )

4Sine- o cos ¢ 4
16 o ¢ - sin & cos ¢) ]

$ - sin ¢ cos o

(A.21)
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CONSTANTS AMD FUNCTIONS

Coefficient of equation (6,69)

. , 2
Gg = - 512 1 /(63 AL”)

“Coefficients of eauation (6.70)

- - 3

a] - - 4 QO CdA QC/DO

- 2 2y, 2, 2

a, = 8(9C - A°)2%8 Nt/(n DO)
- 2 2, - 2

ag = (szC -2 )ao QC/DO

where &0 is given by ecuation (B.1)

- 2 2,2 2
Dy = (9C - A%)° + (2 Cq QCA)

Coefficients of equation (€.71)

2

_ - 2

2
(QC - A )/DO

- 3 2
16 C4 QCA B Nt/(n DO)

3 -

where &O and D0 are given by equations (B.1) and (B.5),

resnectively,

186



“ Coefficients of eoquation (6.72)

where

Kq cy u/(DOE)

A HZE*(HO+ o.smt)/(spzz) _2/a

uo=
Bo= 4 afER(Ng - 0.5N,)/(3022) - 2%/4
Ky = w o+ 16 wtExr /(3000

Y

~
n

- 4
S+ 16 w'E*Iyy/(3pA£4)

Coefficients of eauation (6.73)

where

g = K Cy u/(Dyt)

Dysws p and Ky are aiven by equations (B.11) to

Coefficients of eauation (6.75)

where

-2 2
app = By + By

oy = By(Ayy + Ryn) + By(Ayy - Ajy)

a = A - A

11P22 = A2l

2 2
= K2 + cyA 1 R]/(ZIDCDO) + 4K

oo 2 - ‘
A]2 = Cq 22 - cyA HH Cy sz/(ZIpcﬁo)

+ 2K, &5

3 %2

187

(B.9)

(B.10)

(B.11)
(B.12)
(B.13)

(B.14)

(B.15)

(B.16)
(8.17)

(B.14)

(B.18)
(B.19)

(B.20)

(B.21)



Aoy = = Mg * 4 K3 og
A, = R v ¢2p % /(21 5 )
22 2 M pc 0
- 4 K3 (12
By = 3 - E*IR/(p£4IDC)
By = Ky o
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(B.22)

(B.23)

(B.24)

(B.25)

where Do,u,i,K],K] are aiven by equations (B.11) to (B.15).

8y,3q9,3, and &3 are agiven by equations (B.1) to (B.4), while

ag is given

Function Q]

by (B.7).
2

~
]

p + 2 ﬂ2(4 i

2

5 = 32 % E¥/(189027)

~
il

in-equation (6.77)

where &0 is
Function 52

- -2, 2
0y = - aglog + 8g)
given by eauation (B.1)

in eaquation (6.78)

where

-

(Dg + cq@, Da/2)/D,

92

D, = 1 + (cd Qé/k)z

2
EXI, /2% + G14)/ (302

2

Ipc

)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)
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- ¢4 Qc T, (B.32)
- 2 2 2 2
Dy = - 0.5 [QC(QC - A7) - 8 BN,/
= 20,2 2 o
+ 0.5 ag nc(eC - es)]/x = Cq 0, T4
(B.33)
where &O is given by (B.1)
Function 53 in eauation (6.79)

where D,, D; and D, are given by equations (B.31) to (B.33)

Functions in eauation (6.82)

9y = (gs Ky + cy ﬁes/ﬁ)/x - Cq %y E (B.35)
95 = - (g, Ky + cy uo JL)/A- ey 0y £ (B.36)
Go = [0, K, + cy AL £/(21 )

+ 3 n4.E*IR(62 + éges)/(o£4lpc)

+ 4 K3(2Caes T T8 Csec)]/k

- cy ?c (B.37)
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- [, )

K2 + cy AL H gc/(ZIpc

4 3 2 4
30 E*Ip(ey + 0.0 )/ (0”1

3

DC)
4 K, (ZCaec *r.6. £ 6.)]/A

- Cy4 9 es (B.38)

where u,u, Ky and K, are given hy eauations (B.12) to (B.15).

Ky, K, and K, are aiven by equations (B.2€) to (B.28).

Coefficients of

eauation (6.96)

9

912

where g and 02

resnectively.

Coefficients of

= - ¢y 0,01+ 0.5(a§ - 287 221, (B.39)
- [0.5(92 -4 - cs ni/x]/oz (B.40)

_ -2 2
= - 0.5 g Qc[eso/x - ¢y chco/x ]/D2 (B.42)

~ - 2 2
= - 0.5 oq QC[eco/x oy @ eso/x ]/D2 (B.43)

4

are given by equations (B.1) and (B.31),

eauation (6.97)

921
922
923

925

=7 Y2 (B->44)
= ayy (B.45)

- - ay | (B.47)



926 = N5
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(B.48)

where a,q to ayc are given by equations (B,39) to (B.43).

Elements of the matrix [A] in equation (6.98)

0
0

—4K36c0/l

where

where u,u,

K,,K, and Ky are given by eauations (B.

0 -Cy4%, Ky/ A 0 cy;/(@ﬁ)
0 =Ky /2 -Cy49% -cyu/(xﬁ) 0
W3beo/r O 234 335 236
-4K3850/A as3 0 A5 26
agg = ¢, A2 ﬁ/(ZIpCA) (B.50)
ag5 = [4Kgu o + 6 n4E*IR6C0850/(pZ4ID¢)]/A
- C4y (B.51)
agc = [K, + 3 ntERI (362, 4 650)/(p£41pc)
+ 4K3(2;a - gco)]/x (B.52)
a3 = - <, A Lu/(21 ) (B.53)
a5 = - [K2 + 3 E*1 (39 co * eSO)/(pf I )
ot Aky(20, + £ )]/ (B.54)
a6 = [-4K3;50 + 6 n4E * ] R®cq® SO/(of I )]/A
- cgfy (B.55)

Ky and Ky are civen by eauations (B.12) to (R.15).

26) to (B.28),
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