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INTRODUCTION 

The concept of an equational class of algebras was introduced 

by Birkhoff in 1935, and has since been discussed by several authors 

(see for example Tarski, 1954). If one ignores the found.ation p~o­

blems, which in any case are easily circumvented, the equational 

classes of algebras of a given type form a lattice under class inclu­

sion. It is of interest, then, to investigate the properties of this 

lattice for a given type of algebra, and if possible to describe the 

lattice. 

The former problem has been dealt with more successfully than 

the latter. For example; distributivity of the lattice has been 

characterized in special cases by J6nsson (in press). Up to the pre­

sent, the only lattice to be described is the lattice of equational 

classeR of algebras with one unary operation (Jacobs and Schwabauer, 

1964). The next type to consider would seem to be the lattice of 

equational classes of algebras with one binary operation. Here the 

problem is much more difficult. Kalicki (1955) showed that there are 

uncountably many atoms in the lattice of equational classes of group­

oids. The lattice of all equational classes of semigroups (associa­

tive groupoids) forms a sublattice of the lattice of equational classes 

of groupoids. This sublattice is uncountable (Evans, 1967), and has 

been investigated by Kalicki and Scott (1955), who listed its countably 

many atoms. 
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rrhe latti.ce of equational classes of commutative idempotent 

semigroups, i.P. . of semilattices, consists of only two elements. 

Non-trivial sublattices of the lattice of equational classes of semi-

groups may be obtained by removing one of these restrictions. Par­

tial results have been obtained for the lattice of equational classes 

o( commutative semigroups (Schwabauer, 1966; Nelson, 1967). In the 

case of idempotent semigroups, it is relatively easy to show that the 

lattice ,of equational classes has three atoms, and in fact the sub-

lattice generated by the atoms has been shown by Tamura (1966) to be 

the eight-element Boolean lattice. Kimura (1958-IV) has described 

all equations on idempotent semigroups in three variables. 

In this thesis, a complete description is given of the lattice 

of equational classes of idempotent semigroupo. An outline of the 

thesis, by chapter, follows. 

Chapter 	I: The solution of the word problem for free idem­

potent semi.groups given by Green and Rees (1952) is described. 'rhose 

equations on semigrou.ps which are no restriction on idempotent semi-

groups are characterized. Several invariants are introduced for use 

i.n 	 succeedine chapters. 

Chapter II: The relation ,,,,__, (for every natural number n)
n 

is introduced and characterized. The special characterization given 

in proposition 2.7 is of central importance, and leads to the defini­

tion of certain other relations which are used in later chapters to 

classify equations. 

Chapter III: In this chapter, the equations (f = g) in n 

http:semigrou.ps
http:latti.ce
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variables which satisfy f ,,....._, g are singled out for special attention. 
n 

I I 

For fixed n, we define the n-skeleton to be that subposet of the lat­

tice of equational classes whose elements are the classes determined 

by a single equation of this kind. The n-skeleton is completely 

described, using the relations defined in chapter II. 

Chapter IV: The skeleton of the lattice is formed from the 

union of the n-skeletons by finding the inclusions between elementa 

of successive n-skeletons. The relations defined in chapter II are 

used together with relations introduced in this chapter, to show that 

every equation determines an equational class which either is a member 

of the skeleton or is equal to the meet of 2 skeletal elements. 

Finally from properties of equations, and of the skeleton of the 

lattice, it is shown that every equational class of idempotent semi-

groups is determined by a single equation. A description of the lat­

tice is therefore complete. 



CHAPl'ER I 

INVARIANTS AND FREE IDEMPOTENT SEMIGROUPS 

In this chapter, we present the solution of the word problem 

for free idempotent semigroups given by Green and Reee in ~952. We 

then introduce complete sets of invariants, and use them to further 

describe the algorithm for deciding when two words represent the same 

element of the free idempotent semigroup. Various additional invari­

ants are introduced and their rroperties discussed. These invariants 

will prove to be useful in the succeeding chapters. 

1. The word problem. 

Throughout the paper X will be a fixed countable set, and 

F(X) the free semigroup generated by X. Every semigroup generated by 

X may be thought of as consisting of all products x1x2••• xn of finite 

non-empty sequences in X. The free semigroup F(X) is characterized by 

the property that two products x1x2 ••• xn' y1y2•••ym are equal iff 

n = m and xi= yi' (i =1,2, ••• ,n). We also refer to the elements of 

F(X) as words or ~· 

A semigroup equation is a pair (f ,g) of elements f ,g E F(X). 

The equation (f ,g) is sai~ to hold, to be valid, or to be satisfied in 

a semigroup S iff for every homomorphism <p :F(X) ~ S, <f (f) = <p (g). 

In order to conform with the usual notation we also say in this case 

that the equation {f = g) holds in s. 

4 
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We will be concerned here with idempotent semigrqups, i.e. semi­

2 groups which satisfy the equation {x = x ) , (x EX). Let FI{X) be the 

free idempotent semigroup generated by X. Since every homomorphism of 

F{X) into an idempotent semigroup factors through FI(X) in such a way 

that X is mapped identically, the semigroup FI(X) plays an important 

:r.olP. Let )< :F(X) ~FI(X) be the homomorphism which maps X identically. 

An equation (f = g) holds in every idempotent semigroup iff 

)< (f) = l<(g). If X (f) =)<(g), we also write f-g. 

For technical reasons we also introduce F'(X), the free monoid 
I 

generated by X. F'(X) contains F(X) as a subsemigroup and has one 

additional element e , which may be thought of as the product of the 

empty sequence, and which satisfies ae =ea =a for all a E F'(X). The 

definition of~ may be extended to F'(X) by setting e.--e and assert­

ing that e +a for all a # e . 

It is well known (Cohn, 1965, pl56) that the relation,.....,, on 

F{X) can be described as follows: 

( 1.1) 

E F'(X), (i = O,l, ••• ,n-1), such that ho= f, hn= g, and for every 

i = 0,1, ••• ,n-l, either hi= piqiri and hi+l= piq~r1 , or h1= piq~ri and 

hi+l= piqiri. 

Using this description, the relation ,...,., will be characterized 

in a more convenient way. The following notation will be used. 

: The~ (S*,•) of a semigroup (S,•) is defined by S* =s, 

and a•b = b.a for all a,bES. Since every term f determines uniquely 

the sequence in X of which it is the product, the dual f* of f = x ••• xn1x2 
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may also be introduced by defining f*= ~·x2•••••xn= xnxn-i···~· 

Clearly f* * = f' tH1d f - · e'. iff r• __, g*. ·- .. 

If f = x x •••xn E :F'(X), let L(f) = n be the length of f, and
1 2 

E(f) = { x1 ,x2 , ••• ,xn}, the set of variables occurring inf. Let 

L(e) =O, and E(e) = ~. 

2Since E(pqr) = E(pq r), it follows from the above description 

of _,....,. that 

(1.2) If f ...-' g then E(f) =E(g). 

For f = x1x2••• xn E F(X), define f(O) = x. where j is deter­
J 

mined by the properties 

(i) i < j implies xi# xj 

(ii) E(~e••xj) =E(f) 

Define f(O) = x
1 
••• xj_

1
• Note that f(O) = e if I E(f) I = 1. By duality 

deflne f(l) = r•(o) and f(l) = (f*(o})•. Define e(i) = e, and 

e(i) = e, (i =0,1). 

It follows easily from these definitions that 

(1.3) E(f) =E(f(O)f(O)) = E(f(l)f(l)). 

(1.4) If f ;i e, IE(f)j = jE(f(O)) I +· 1 = IE(f(l)) I+ 1. 

By a substitution we mean here a homomorphism <p :F(X) __,,. F(X) 

which maps X into itself. Every substitution may be extended to equa­

tions by defining c..p ( f ,g) = ( 'fJ (f), <pCg}). 'f is said to be a substitu­

t ion in (f = g) by n variables iff fECyi(f))uE(<f(g))I = n. If th• 

equation (f = g) holds in a semigroup S, then every equation obtained 
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from (f = g) by substitution holds in S. In particular, if f--- g 

then (f (f) r-J <.p (g). Cle~rly 'ror every eubstitutio~ c:.p we have: 

(l.5) <fl {f*) = «p Cr))•. 

(1.6) 	 If E( f) = E(g), then E( cp (f)) = E(<p (g)). 

Moreover: 

(l.7) If E(f) FE(g), then there exists a substitution <.pin 

{f =g) by two variables with E(cp (f)) # E(<p (g)), ,and hence, by 

(1.2), with cp (f) 'f· <p(g). 

~: W.l.o.g. there exists b EE(f) - E(g). With an arbitrary 

aEX, a F b, define c.p by 

( b if x = b. 
<f (x) = ~ 

l a if x e x - {.b} • 

Clearly E{ <jJ {g)) = { a} , and b EE( <-p ( f)). Therefore 

E(tp(f)) F E(<p(g)). 

Lemma 1.1: (Brown, 1964). If f,gEF'(X) and E(g)SE(f), 

then f --fgf. 

Proof: (Brown, 1964). We f:irst show that if f ,_ pgr, 

(p,r E F' (X)), then f ---fgf. If f _, pgr, then fgf- (pgr)g(pgr) 

- (pg) (rg) (pgr)-- (pg) (pg) (rg)(pgr)- p(gpgr) (gpgr).- pgr~ f. 

In order to prove the lemma it is therefore enough to show 

that if E(g) ~ E(f), then f--' pgr for some p,r€ F' (X). We show, by 

induction on L(g), that in fact f ,_ fgr for some r. If L(g) = O, 

taker= f. If L(g) ~ 1, then g = hx, xEX, hEF'(X). By inductive 
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hypothesis, f ........,fhr. Since xEE(g)s: E(f) we have f = f'xf" for some 

f' , f" e F' (X) "' It follow~ that f,...; ( f' xf" )hr = f' (xf"h)r 

,,._,, f' (xf"n)( xf"h)r = fg( f"hr) ·• 

Lemma 1.2: (McLean, 1954). If f ,g,h E F' (X) and E(h) S E(f) 

= E(g) then fg ~ fhg. 

Proof: By lemma 1.1, fhg .-..(fhg)(fg){fhg) 


::: (fhgf)(gfhg) ,_ fg. 


Corollary 1.3: (Green and Rees, 1952). Assume f ,g E F(X). 

If f(O) -- g(O), f(l) .- g(l), f(O) = g{O) and f(l) = g(l), then f __, g. 

In particular, f -- f(O)f(O)f(l)f(l) for all f E F(X). 

Proof: It is enough to show that f,_...f(O)f(O)f(l)f(l). From 

lemma 1.2 it follows immediately that if L(f) ~ L{f(O)f(O)f(l)f{l)) 

then f ~ f'(O)f{O)f(l)f{l). If L(f) < L(f(O)f(O)f(l)f(l)), then there 

exist p, q, r E F'(X) such that f = pqr, pq = f(O)f(O) and 

- 2 - ­qr= f(l)f(l), From this it follows that f...-pq r = f(O)f(O)f(l)f(l). 

Lemma 1.4: (Green and Rees, 1952). If f ,g f F(X) and f ......... g, 

then f(O) .=- g(O), f(l) =g{l), f(O) _. g(O), and f(l) .-- g(l). 

Proof: (Green and Rees, 1952). By duality and the description 

of _.,, , (1.1), it is enough to sl}ow,for :p,q,r E F' (X) with pqr E F{X), 

2that pqr(O) = pqqr(O) and (pqr) (0) -- (pq r) (0). The first of these 

statements is obvious. If pqi=(o) E E{p)u E(q), then the second state­

ment is also obvious. Otherwise there exists r'~F'(X) with (pqr)(O) 

2 2= pqr' ,_ pq r• = (pq r)(O). 
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Corollary 1.3 and lemma 1.4 give the following: 

Theorem 1 .5: If · f ,g E F(X), then f ,...., g iff 

(i) f(O) =g(O), f(l) =g(l) 

(ii) f(O) _., g(O), f(l) ,.._ g(l) • 

A mapping T\ of F(X) into an arbitrary set will be called an 

invariant iff for all f ,g E F(X), if f ,_ g then IT ( f) = T\(g). A set 

Mof such mappings will be called a complete set of invariants iff for 

all f ,g E F(X), f--g iff T\(f) =Jt(g) for all 7\ E M. The set 

{K}, where J(: F(X)~FI(X) is the canonical homomorphism, is a 

trivial complete set of invariants. Theorem 1.5 states that the map­

pings f~f(O), f.~f(l), f~l<.(f(O)), f..-+K(f(l)) constitute a 

complete set of invariants. In order to obtain a more refined set of 

invariants, it is necessary to introduce some more notation. 

Let F(2) be the free semigroup generated by the set {0,1} • 

F(2) consists of all products of finite non-empty sequences in {0,1} 

where two products are equal iff the sequences are the same. The 

length L( o<.) of o< E F(2) is defined as before. For f E F' (X), 

°'- E F( 2), we define objects f( oc...) Rnd f( ex.) by induction on L(0<.. ) • 

If L(o<.) =1, then f(<X) and f(cx..) have already been defined. If 

L ( tX ) ~ 2 , say o<.. =/3i , ( i = 0 , 1) , put 

f(o<.) s <r<f:OHi) and f(cx..) = fr/3YCi) 

By induction on L(ot) + L(/1) it is easy to see that for all 

V( ,13 E F(2), 

(1.8) fCocp> = (f(o<.))Cf3>· 

(1.9) f(0'(.13> =f{(Xl'Y3). 

http:f(0'(.13
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Furthermore, if for o<...: i i ••• ik' (ijE {0,1} ), we put
1 2 


. . ' ' . ' h i' 1 . th
= 1 1 1 2 ••• i L w ere k = - i.k, en 

(l.10) f(o<.') = (f*(o<.))• and 

(1.11) re ex.') =·r•(cx..). 

(1.12) If L(<X) ~ IE(f)I , then jE(f)f = IE(f(0<..))j + L(o<-). 

By induction it now follows from Theorem 1.5 

Corollary 1.6: The set { f-+f(o<.) Io<.. e F(2)} is a complete 

set of invariants. 

2. Some additional invariants. 

From corollary 1.6 it follows that in particular the mappings 

f~f(Ok) and f--+f(lk) are invariants for any k. By (1.2), if f,_g 

then E(f) = E(g). Therefore the mappings Hand H*, defined by 

H<r> =rcolE<r>I > 

H*(f) = H(f*) =f(lfE(f)f ), 

are invariants. H(f) is simply the first variable, and H*(f) the last 

variable which occurs in f. For any n ~ O, define 

H if n is even 
H*n= { H* if n is odd · 

For all n ~ O, (H•n)* =H*(n+l). 

Fur.thermore, the mappings I and F, defined by 

I(f) =f(OIE(f)I )f(OIE(f)l-l) •••f(O) and 

F(f) = (I(f*))• =f(l)f(l2) ••• f(llE(f)I ), 

(where the products are taken in F(X)}, are invariants. I(f) indicates 

the order of first occurrence of the variablAs of f. For any n ~ o, 
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define 

(I if n is even 
I 

n 

=tF if n is odd 

The mappings I and F, defined by 

I(f) = f(O) f(O) and 

F(f) = cicr•))• =rC1)r(1), 

(where products are taken in F(X)), are not themselves invariants. 

However, it follows from theorem 1.5 that the composed mappings 

/{ol and /{oF are invariants. For any n ~ O, define 

( I if n ie even. 
yn ="\ 

lF if n 1s odd .• 

H, I, E, F were introduced by Tamura (1966). 

If <pis any substitution, it is clear that H*n(<..p(f)) 

= CfJCH*n(f)) for all n ~ O. In particular, for all n ~ O, 

0 .. 13) 

Furthermore, we have, for all n ~ O, 

(1.14) If H*n(f) # H*n(g), then there exists a substitution 

'f in (f = g) by two variables such that H*n«p (f)) # H*n.«f (g)) and 

in particular such that c.p ( f) + 'f (g). 

(l.15) Let k be the largest number r such that 'f (f(Or)) 

•7fW<o>. Then Ye 'Pc f)) =c.p< f(Ok) >cp<1Cok> >. 

~ - k~: By definition c.p \ 1 J ( 0) = <p (f( O ) ) • Moreover since 

E(f(Ok)) = { f(Oi) Ik + 1~ i ~ lE{f) I } , it follows ~hat 
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~ 
. " 


<j<f)<o) f. E( Cf (f(Ok))). Therefore by the definition of I, l( <pC f)) 

=c.p<r<ok)) <pCf<ok) >. 

(1.16) Let k be the largest number r such that Cf (f(lr)) 

= 7:f<TI<1). Then F( Sf (f)) = <p (f(lk)) <p< f(lk)) 

(1.17) 

Proof: We will show by induction on IE('f(f))/ that 

I(<.p (f)) = I(lf (I(f))). Then, since F(f) == (I(f*))~,it follows 

easily that F(l{J(f)) =F(fJ(F(f))). 

If jE(<jJ(f))j =1, the result is trivial. Assume 

IEC<f (r)) l>L ,From (1 .15) it follows that I('f (f)) = <f (f(Ok)) c.pCi<ok)) 

for k the largest number r such that y> (f(Or.)) = <f<O<o). By i.nduc­

tive hypothesi& \) I(CjJ(f(Ok))) = IC<f(I(f(Ok)))). Moreover, it is an 

immediate consequence of the definitions that <pCI(f))(O) =SP"'(f}(O) 

..:. k k - k= <[ (f(O )) • Therefore I( tp (f))= I( c.p< f(O )) )'f( f{O ) ) 

= I('f(I(f(Ok))))Cf(I(r)){o)= I(<p(I(f))), (from the definition of k). 

It follows immediately that 

(1.18) 

(1.19) If In(f) ~ I~(g), then there exists a substitution Cf in 

(f:g) by at most three variable~ such that In(<f(f)) # In((f (g)) and 

hence such that 'f (f)'i-' <f(g). 

Proof: By (1.7) and (1.14) w~ can assume that E(f) =E(g), and 

H(f) = H(g). Since I(f) ~ I(g) it follows that I(f) = r xf yr3, and
1 2
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I(g) ' :: g yg xg , with x,yEX, fi,gi€F'(X), (i =1,2,3). Setting
1 2 3

x = b, y = c, !.:'.. , ' z :-: a for z EE(f) - {x,y} g i"var.:: a substitution 

'f with <p(f) = abf' (a,b,c), <.p(g) =acg' (a,b,c). It follows that 

-;:p<.TI<o) =cf. b =<f{gJ(o), and therefore that I('f (f))f. I('{J(g)). 

Let the equational class of idempotent semigroups determined 

by the equation (f = g) be [f = gJ Similarly if (foe. = gcx. ) cx..E I 

i.s a family of equations, let [< fo<. = gcx. )o<-EI] be the equational 

class of idempotent semigroups determined by the family. Then 

[P=q]£ [f=g] iff(p:q)::=;>(f:g). 

Lemma 1.7: If E(f) = E(g), then 


[r = g] = [<r = 'fcr)F(g)), (g = Y<r)F(g))J 


Proof: It is clear that the right hand side is contained in 

the left. Conversely, if (f = g) holds in an idempotent semigroup s, 

then in S, f =I(f)f =I(f)I(g)F(g) =I(f)F(g), by lemma 1.2. By 

symmetry the second equation also holds in S. 

Th~ dual Ol* of a class Ol of semigroups is the class defined 

by S E 0(* iff S* E 6"7. • Then 

( 1.20) [r = gJ • =[r• = g•J and 

(1.21) [r = g] s [P = q] iff [r = g] * £ 



CHAPI'ER II 


SOME RELATIONS 


In this chapter, the existence of certain substitutions will 

be used to define several relations in F(X). These relations will be 

used in succeeding chapters to classify equations. 

1. The 	relation ....--.-n. 

Definition 2.1: For f, g €F(X), f --~g iff for every sub­
n 

stitution <.pin (f = g) by less than n variable~,c.p (f),,_..,.lp(g). 

That the relation r--- is an equivalence relation will be 
n 

proved later in this chapter (statement 2.4). 

Since f .- g iff Cf (f) .....- c.p (g) for all substitutions (f in 

(f = g), the relation -- could be included in definition 2.1 by d~fin-

ing f ~ g if f f............, g • 


Since t.pCf),..._.,'f(g) if jEC<.p(f))UE(<_p(g)) I = 1, it follows 

that 

(2.1) 	 f 2 g, for all f, g E F( X). 

Moreover: 

(2.2) If f,_...n g then f--fc 	 g for all k ~ n, (n =oo included), 

(2. 3) If I E(f) UE(g) I< n 	 then f,_, g iff f ,_g. 
n 

2. 	 Characterization of ,..._..,n for n ~ 3. 

Proposition 2.2: f~ g iff E(f) = E{g), H(f) = H(g), . and 

H•(f) 	= H*(g). 

14 
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Proof: Assume first that E(f) = E(g), H(f) = H(g), and 

H*(f) = H*(g), and let cp be any substitution in (f = g) by two 

variables. r"'rom (1.6) and (1.13), it follows that E( <f (f)) = E( <p (g)), 

H(<_p(f))= H(<p(g)), and H*(VJ(f))= H*(tp(g)). Since I E('f {f)) I= 2, 

(and E( 1f(f)) = E(<.p(g))), it follows that q>(f)(O) = E(f) - {HC<f(r))} 

= E(g) - { H( 'f (g))} =<prsr<o), and similarly that <pIBCl) 

= c.pCg)(l). Theorem 1.5 then gives 

'f (f)~ H( <f (r) )<pnTCo)(f<lYCl)H• ( 'f (f)) · 

= H(tp(g))<pri}Co) tp(g)(l)H*('f(g)),-- <.p(g), and hence r-- g.
3

The inverse implication follows immediately from (1.7) and 

(1.14). 

Proposition 2.3: For n ~ 4, f ~ g iff I(f) = (I(g),
n 

F(f') = F(g), and for all r :t 1, f(Or) ,-- g(Or) and f(lr) ~ g(lr).
n-1 n-1 

Proof: Assume first that I(f) = I(g), and that for all r ~ 1, 

f(Or) --'n-l g(Or). Let <.p be any substitution in (f = g) by less than 

n variables. From (1.18) it follows that I(<.p (f)) = I('f (g)) and in 

particular that cpCfHO) =cprgY<o>. Moreover, .by (1.15), ( cp (f) )(o) 
k - r -:-:-r:'\ = <.p (f(O )), where k is the largest r with t.p(f(O )) = ~\f1(0). 

Since k depends only on I(f) and ~(O), it follows that k is also 

- r ~ kthe largest r with tp(g(O )) c 'f\g1(0) and that Ccp(g))(O) = t.pCg(O )). 

By construction, <.p is a substitution in (f(Ok) = g(Ok)) by less than 

n - 1 variables. But f(Ok) ,,,.._, g(Ok), and therefore 
n-1 

Cf (f(Ok) ),-- <f (g(Ok)). By (1.15) it now follows that I(<f (fr) 

=Cf (f(Ok))'fef(Ok))--'<fl(g(Ok))<j)(g(Ok)) = l(~(g)). 
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By duality, (using (1.10) and the definition of F and F), we 

obtain F(f (f ) ) = F(<.p(fl)), under the cmvH.tions F(f) = F(g) and, for 

all r ~ 1, f(lr) .-- 1 g(lr). It follows therefore from the conditions 
n-

of the proposition that <.pCf),._. I(lp(f))F(tp(f)),_, I{<.p (g))F(<fJ (g)) 

,.._, 'f (g) , and therefore that f __....n g. 

Conversely, assume f -n. g. Since n ~ 4, we have f .--4 g, 
1 

and therefore by (1.19), I(f) =I(g) and F(f) c F(g). Assume 

f(Or) -1~ g(Or) for some r ~ 1. Then there exists a substitution 
n-1 

l.f o in (f(Or) = g(Or)) by lees than n - 1 variables such that 

'f (f(Or))+<_p (g(Or)). Extend <fo to a substitution lp in (f = g) by
0 0 

less than n variables , by setting l(JCx) = aEX - E(<.p(f{Or))) for all 

xEX - E(f(Or)). Then C<p(f))(O) = <f(f{Or))+ cpCg(Or)) = ('f{g))(O), 

and therefore tp (f )r/-' <f (g), which contradicts f ..-.."ri g. This proves 

f(Or) -- g(Or) for all r ~ 1. Dually we can show that 
n-1 

r) ( r)f(l --n,_ 1 for all r ~ 1, completing the proof.1 g 

. ~ . n2 i~ hEvery ol E_ F ( 2) can be written as o( = ••• k w ~re1 1 1 2 

ij F ij+l for l ~ j < k and nj ~ 1, (l ~ j ~ k). Define o( = i 1i 2••• ik. 

The following corollary is obtained from proposition 2.3. by induction. 

Corollary 2.4: If n ~ 4, f __, g and n - L(OC) = 3, then 
n 

f(o<:.) ~-L( oc) g( o<..) • 

From propositions 2.2 and 2.3, it follows that for all n ~ 3, 

if f __. g then E(f) = E(g). With this remark it is easy to prove the 
n 

transitivity of ,__, • The remainder of the proof of the following
n 

statement is trivial. 
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(2.4) 	 ,..._, is an equivalence relation for all n ~ 2. 
n 

3. Characterization of ...........,n for (p,q) in the special case E(p) = E(g), 


IE(p)J= n ~ 	3. 

(i) Notation. 


For any natural number n, define 


+ (-l)n+L {O if n is even1
d(n) = 	 = 2 

1 if n is odd 

For n ~ 3 define (02) and (12) E F(2) as follows: 
n n 

n-d(n)-2 
2(02) = (01) od(n) 

n 

n-d(n)-2 

(12) = ((02) ) 
1 = (10) 2 ld(n) 

n n 

A straightforward calculation shows 

(2.5) 	 1(02) = (12) 1 
n n+ 

0(12) = (02) 1 n n+ 

0 1If f e F'(X), let r = e, and r = f. 


For p E F(X) define 


p(O,n) = (p((02)n))d(n+l)p((02)n)(p((02)n))d(n) 

p(l,n) = (p((l2)n))d(n)p((l2)n)(p((l2)n))d(n+l) 

(2.6) 	 If IE(p)I =n ~ 3 then l E(p(O,n))I =lE(p(l,n))I =3 

(2.?) 	 (p(O))(l,n) =p(O,n+l) 

(p(l))(O,n) =p(l,n+l) 



18 


Proof: From the definitions and (2.5), it follows that: 

( p ( o) ) ( 1 ~· n) = (p{oT( ( 12)n) ) d ( n) ( p ( O) ) ( ( lZ) n) {pCO)( { 12)n) ) d ( n+1 ) 

= (p((02)n+l))d(n+2)p((02)n+l)(p({02)n+l))d(n+l) 

= p{O,n+l). 

(2.8) 	 p(l,n) = (p•(o,n))• 

p(O,n) = (p*(l,n))• 

Proof: From (1.10), (1.11), and the definitions, it follows 

that: 

{p*{O,n))• = ((p*{(02) ))d(n+l)p•((02) )(p*({02) ))d(n))• 
n n n 

= <?«02) ))d(n)(p*((02) ))*(p*((02) ))d(n+l) 
n n n 

= (-((12) ) ) d(n) ((12) )(-((12) ))d(n+l)p n p n p n 


= p(l,n). 


(ii) Expansions and the standard expansion. 


A product P in F(X) of terms p((I(. ) and p(oc:.), ~ E F(2), is 


said to be an expansion for p iff p - P. Thus corollary 1.3 shows 

that p(O)p(O)p(l)p(l) is an expansion for p. 
r • 

If fi E F' (X), O ' 1 ' r, let [}Q fi = frfr_1 ... f0 • 

In order to simplify the notation, if oe. E F(2}, let 

J!BC Cl(.) = p( o<)p( 0(..) and i.E< oG) = p(oc.) p( CX:.) • 

Lemma 2.5: 	 For each r ~ O, the following is an expansion for t: 

c7l-tti((Ol) 100)f((Ol)i+l)))f((Ol)r+l)-n-•(f((Ol)jO)~((Ol)jl)). 
i~ 	 j~ 

Proof: The 	 lemma is proved by induction on r. For r = 0 it is 
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easy to see 	that f -J:£(OO)f(Ol)f(Ol)f(O)it(l). Assume, by the induc­

tive hypothesis , t"ti~t tha expression is ?"1 expans:ion for some 


r = k ~ o. Now f(Ol)k+l_J_L((Ol)k+loo).f.t{(Ol)k+2 )r((o1)kO)alt((Ol)k+ll) 


and therefore, from the inductive hypothesis, it follows that 

k+l i i 1 k 2 k+l. . . 
r.-.- <TIJI«o1) oo)r((o1> + ))f((o1) + HIT 'f«o1)Jo>iU«o1)J1))~ 

i~ 	 j~ 

The expression is therefore anecpansion for each r ~ O. 

For each n :!? 3 a·nd p E F(X), we define below an expansion A (p),
n 


called the standard expansion for p of order n. This expansion will 


be of particular interest, since in general it is the simplest expan­

sion in which p(O,n) an.d p(l,n) occur. 


For all n ~ 	3t define 


A (p) = (A~ (p))(AA (p•))*

n n n 

where, for 	the case n = 3, 
A
A (p) = p(03)
3


and, for the case n ~ 4, 


n+d(n) _
3 

n+d(n) _	 n+d(n) _
2 2 


(~((01) 2 OO))d(n+l)p(O,n)~((Ol) 2 l))d(n) 


n+d(n) -(2+d(n)) 

( n• (ji((o1) jo>,fllC (Ol)jl)) )ji(o). 

2

i' = \, 

j = 1 

An explicit 	d~scription of (1t (p•))* can be given in terms of 
n 

p by applying (l.10), (1.11), and (2.8). Thus, for n ~ 4, 

2 
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n+d(n) -(2+d(n)) 
2 j .

(A (p•)). = p(l)( TI \Ii< (10) O)p( (10) ·31))) 
n j = 1 

n+d(n) _	 n+d(n) _ )
2 2 

<:£2((10) 2 O))d(n)p(l,n)(~((lO) 2 ll))d(n+l 

n+d(n) _
3 

< ~· <P<<10Ji+lli!JCC10Ji11J)J. 
1 = 0 

Lemma 2.6: For all p E F(X) and n ~ 3, 

(1) I(p)-- I(A (p)) =A (p)
n n 

(2) F(p)--F(A (p)) =CA Cp•))•
n n 

In particular, for all n ~ 3, A (p) is an expansion for p.
n 

Proof: We 	 show first, by induction on n ~ 3, that -I(p)__..AA (p).
n 

If n =3, I(p) =p{O)p(O) =p(0,3) =A. (p).
3

Assume k ~ 	3. Then 

p( (02)k) ~ ( p( (02)k)) (O)p( (02)k) (O)p{ (02)k) (1) (p( (02)k)) (1) 

k-d(k)-2 k-d(k)-2 

= (~((01) 2 OO))d(k)p(O,k+l)(~((Ol) 2 l))d(k+l) 

By replacing p((02)k) in \Cp) by the above expression, we obtain, for 

k = 3, 

A3(p)"'""~(OO)p(0,4)p(O) =14(p), 

and for k ~ 4, 

k+d(k) -3 

~ (p) ,._, ( 	 h (J!ij((Ol)1oo)ji((Ol)i+l))) 
i = 0 

k+d(k) 	 k-d(k)-2
-2 	 )

\£R((Ol) 2 OO)p((Ol) 2 Od(k)))d(k+l 
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k-d(k)-2 k-d(k)-2 
(p-p((Ol) 2 OO))d(k+2) (0 k+l)(- ((01) 2 l))d(k+l)
~ 	 p .EEt 

k-d(k)-2 k+d(k) 
(p((Ol) 2 Od(k))pP.((01) 2 -21))d(k) 

= 

k+d(k) (2+d(k)) 


c 
2 

._,--,-· cPcco1>jo>.EEC<o1>j1>>>P<o> =~+1Cp). 
j 	 = 1 

It follows therefore by induction that I(p),.._. ~ (p) for all 
n 

n ~ 3. Since E(J\ (p)) = E((t (p•))•), and E(i (p)) - {'PCo)}
n n n 

I E('A (p)), it follows that in fact I(A (p)) =A (p), and therefore 
n n n 

part (1) has been established. 

Part (2) follows from part (1) by duality. In fact, replacing 

p by p* in <1> g:i.ves that F(p) = <YCp*))• = ci Cp•))*.
n 

(iii) The characterization. 

Proposition 2.7: Assume p,qcF(X), E(p) = E(q), 


IB(p)l = n ~ 3. Then p __. q iff (for ot..E F(2)) 

n 

(1) p(o(.)--"q(oc) for all p(<:X.) occurring in A (p), q(ol) occurring in 
n 

A (q), and cX I (02) , o<- I- (12) ; 
n 	 n n 

(2) p(o<.) = q(o() for all p(ol) occurring in A (p), q(ol) occurring in 
n 

A (q), and d>I (02) , o(. ~ (12) ;
n 	 n n 

n+l 	 n+l n n(3) n• (p(O,n)) = H* (q(O,n)),H* (p(l,n)) =H• (q(l 9n)). 

Proof: We show first by induction on n that conditions (1), 

(2), and (3) imply p ,__,, q.
n 

If n = 3, (3) implies H(p(3)) = H(p(0,3)) = H(q(0,3)) = H(q(3)) 

and H*(p(3)) = H*(p(l,3)) = H*(q(l,3)) = H*(q(3)). By proposition 2.2 

it follows that A (p) ~ A (q), and therefore, by lemma 2.6, p .............. q.
3 3	 3 
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If n = k + 1 ~ 4, it is sufficient, by proposition 2.3, to 

prov,e that I(p) = I(q) ! F(p) =F(q), and p(Or) ...-....-k q(Or), 

p ( 1r) .----k q ( 1r) , ( r ~ 1) • 

The expressions p(O), p(OO), p(OO) occur in p(k+l), and there­

fore by (1) and (2) it follows that p(O) =q(O), p(OO) =q(OO), and 

- r - r 
,-...,1p(OO) q(OO). By theorem 1.5, therefore, p(O ) = q(O ) for all 

r ~ 1 and hence I(p) = I(q). Moreover, it follows that p(Or) ,,._ q(Or) 

for all r ~ 2. We must show that p(O) __..k q(O) .. 

By inductive hypothesis it is enough to show that (1), (2), and 

(3) hold for p(O) and q(O). If H(oC) = O, then Ol: Of , and it 

follows from p(OO) ·--" q(OO) that {p(O) )(oc) = (p(OO) ><13 )-- (q(OO)) Y3 ) 
= (q(O) )( ol) and pro)(O() = ( p(OO) Hp) = (q(OO) Hf) = qrQY(cx:) • 

Therefore we need only verify conditions {l) and (2) in case H(c<) =1. 

If P\OJ(ol) or (p(O)){oe..).occur in \(p(O)); if H(o<.) =1, and 

if <>-# (12)k, then a straightforward calculation to check the many 

cases shows that p(Ool) and p(Ool) occur in ~+l(p), that q(OCX:.) 

and q(Ool) occur in 1\:+l(q) and that OcX I (02)k+l· Therefore 

p(Ool)--q(Ooc), and p(O~) =q(Oo<). Hence (p(O)){ol),_,(q(O))(ol) 

and P\O){oe.) =q[<5J(<X.) for all these 0( , and therefore (1) and (2) 

hold for p(O) and q(O). 

From (2.8), (p(O))(l,k) =p{O,k+l). Moreover, by (3), for p 

k+2 k+2 kand q,H* (p(O,k+l)) = H* (q(O,k+l)) and therefore H* ((p(O) Hl,k)) 

=H*k+2 (p(O ,k+l))) =H*k(( q(O) )(l ,k)). Since p(OO) ....-q(OO), it follows 

by theorem 1.5 that H*k+l((p(O))(O,k))=H*k+l((q(O))(O,k)). Therefore 

( 3) also holds for p(0) and q ( 0) • By induc.tive hypothesis we can 

therefore conclude that p(O) ,,...-k q(O). 

http:induc.ti
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By duality,using the definition of F and (1.10), we can now 

show that F(p) = F(q) and that p(lr) __..k q(lr) for all r ~ 1. The 

proof that (1), (2) and {3) imply p -- q is therefore complete.n 
we

Conversely,Aassume p ,__,,, q, and show (1), (2), and (3). If 
n 

n = 3, (1) and (2) are vacuously true, and (3) follows from proposition 

2.2, since p ...-p(0,3)p(l,3). 

Assume n ~ 4. If p(cx.) occurs in A (p), <:X.! (02) , o( ! (12) ,
n n n 

then by corollary 2. 4, p( ex. ) ......_,n-L( 0(. ) q ( OG.) • Moreover it can be 

shown by direct calculation that n - L(O(.) ~ 3, and therefore by pro­

position 2.2 that E(p(<X)) = E(q{OC:.)). Since, for these (.)(., 

L{<X.)>L(O<.), i t follows that IE(p(cx:.))UE(q(cx:.))I < n - L(CX.), by (1.12). 

Then by ( 2. 3), p(CX.) ~ q(o<:) • 

If p(ol) occurs in A (p), ex. ,i (02) , d... ! (12) , then it can 
n n n 

be shown by corollary 2.4 that if cX.. = CX:. ir, some r ~ 1, i E { 0,1} ,
0 

then p(oC.) ,,-...,;,4 q(ol ). By proposition 2.3 it follows that 
0 0 

p(o<.) = q(cx.), and hence {2) is proved. 

We establish (3) by induction on n d 3, using (2.7). It has 

already been shown that (3) holds if n = 3. Assume that (3) holds if 

n = k ~ 3. Then: 

H*k+2(p(O ,k+l) ):H*k( (p(O)) (l,k)) =H*k( (q(O)) (l,k)) = H*k+2( q{O,k+l)) 

and similarly H*k+l(p(l,k+l))= H*k+l(q(l,k+l)). 

Therefore by induction (3) holds for all n. 

This completes the proof of proposition 2.7. 

Corollary 2.8: Assume p,q EF(X) with I E(p)UE(q) I= n ~ 3 

and p ,,,.._, q. Then I(p)..._, I(q) iff p(O,n)--q(O,n), and F(p)-'F(q)
n 
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iff p(l,n).....-q(l,n). In particular, p,-q iff p(O,n)-q(O,n) and 

p(l,n)--q(l,n). 
,·, ­

Proof: Proposition 2.? and the definition of A (p) show that 
n 

if p(O,n),_.,q(O,n), then l(p)--l(q),~d if p(l,n).,.....,q(l,n) then 

',\. 
,F~p)...-F(q). The converse is trivial since p~p(O,n) and p,.,,,,..p(l,n) 

1 

are invariants. \ 


~: The relations 9 , 0•, 9 and 9•. 

n n n n 

Corollary 2.8 shows that the significant parts of p and q with 

p - q and I E(p) UE(q) I = n ~ 3, are p(O,n), p(l,n), q(O,n), and 
n 

q(l,n). This suggests that the following relations be defined. 

Definition 2.9: Assume p,q E F(X), p __, q, n ~ 3. Then, for 
n 

every substitution c.p in (p =q) by n variables, 

(1) p enq iff In+l{( 'f (p) )(O,n)) = In+l(( 'f (q) )(o,n)), 

(2) p e•q iff p•e q•, the dual of 9 ' 
n n n 

(3) p 0nq iff (<.p(p))(O,n),_.,(<.p(q))(O,n), 

(4) p e•q iff p•e q•, the dual of 9 . 
n n n 

Lemma 2.10: Assume p,q E F(X), p ,......_ q, n ~ 3. 'rhen for every
n 

substitution <.p in (p = q) by n variables, 

(1) p 9~q iff I0((~(p))(l,n)) ~ In((,(q))(l,n)), 

(2) p e~q iff <tpCp))(1,n)""'f {<f(q))(1,n). 

Lemma 2.11: If f ,..._, l g, then f e g, and f e•g.n+ n n 

~: If f __.n+l g, then for every substitution ~in (f = g) 
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by n variables it follows that 'f (£)..........,. lp(g). In particular, 


<y> (f))(C,n),-.._/ C<p (g))(O tn), and C<f (f))(l,n)r-- (lp(g))(_l,n), 


and therefore f 8 g and f e•g.

n n 

The following statement is an immediate consequence of 

definition 2.9: 

(2.9) If p 0 q, then p 0 q for all n ~ 3. 
n n 

If p e~q, thP.n p 9~q for all n ~ 3. 

Moreover, from definition 2.9 and corollary 2.8, 

(2.10) If I E{p) I = n at 3, then p e q and p e•q imply p,..._., q.n n 



CHAPI'ER III 


THE n-SKELETON 


An equation (p =q), with IE(p)UE(q) I= n, P __..n q, P ~n+l q, 

will be called an equation in n essential variables. If (p = q) is 

such an equation, then there is an idempotent semigroup in which (p = ·q) 

does not hold, but for every substitution 'f in (p =q) by less than n 

variables tp (p) --' <f (q). 

For fixed n, we define the n-skeleton to be that subposet of 

the lattice of equational classes whose elements are the classes deter­

mined by a single equation in n essential variables. In this chapter 

we will show that for all n, the n-skeleton is in fact a meet subsemi­

lattice of the lattice of equational classes. The n-skeleton will be 

completely described, and shown to consist of seven elements if n =2, 

and eight elements if n ~ 3. 

1. The n-skeleton, n ~ 3. 

For the proof of the following lemma, it is useful to observe 

that 

( 3.1 ) If I E ( p) I = n , then 


E(p) =[ p((Ol)ioj>I i ~ o, j E [ 0,1}, .. 1 ~ L((Ol)io,i) ~ n} ~ 


This follows from the fact that the p«01) 10~form a set of n mutually 

distinct elements. 

26 
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For f E F(X), 	and n ~ O, define 

. f if n is even 

f*n = 


{ 
f * if n is odd 


From this definition, and the fact that f** = f, it follows that 


n n+l

(f* )• = r• for all n ~ o. 

Lemma 3.1: For f ,p E F(X), assume IE(p) I = n ~ 3, and 

let f(O,n) = (y
1

y •••yn)•n+l, y E X. Let f: F(X)__,.F(X) be any homo­
2 1

morphism which satisfies the following four properties: 

(1) 'f'<'P«o1) 1 )) = f{(Ol)i.)ff((01) 100) ,1 ~ i ~ n+~(n) -(2+d(n)) 

(2) 	'Y<p((Ol)jO)) =ff((Ol)j+ll)f((Ol)jo),O ' j ~ n+~(n) -3 

n+d(n) _ n+d{n) _


2 	 2 
(3) 	t{p((Ol) 2 Od(n+l))) = (yu•••Y1)d(n+l)f((Ol) 2 Od(n+l)) 

d( n)
( Y1 •••Yu ) for some 0 ~ u ~ r. 

(4) . E(t(p(O,n))) = E(f(O,n)). 

Then the 	following is an expansion for t: 

ff(OO) 

n+d( n) _	 d( )
2 3 . . 	 n+ n -2

2'Y< ~ (pp((Ol) 1 00)p((Ol) 1 +l))(pp((Ol) OO)p(O,n))d{n+l)) 
i = 0 

f(O,n) 

n+d(n) -2 n+~(n) -(2+d(n)) . 
2t((p(O,n)pp((Ol) l))d(n) 	 71* (p((Ol)JO)pp((Ol)jl))p(O)) 

j' =~ 

F(f). 

Proof: We show first that 
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ECfCp((Ol)iO) )) = u ( l!lCf (p( (Ol)k) ) )V E('/'fp( \Ol)kO})) ) 
i+H:k 

UE(f(O,n))U{y1 , ••• ,y l U U d( ) E(lt((Ol)k+ll)f((Ol)kO))
uj i+l6kLn+ n -3 

2 

= { f((Ol)kOv)j i+l t. k, v E (0,1} , L((Ol)kov)" n}. 
= E( f( (Ol)iO)). 

Similarly, it can be shown that EC't'Cp((Ol)j))) =E(f((Ol)j)). 

By lemma 1.2, it follows thRt 

tfL< (Ol) 1oo)JL( (Ol)i+l)--~( (01)1oo>'f' <il?B< (01)100) >:UC (Ol)i+l)' 

4. • " n+d(n) df or 0 - i - - 3 , an2 

Ji< {Ol)jo).i.t< (Ol)jl)-~( (Ol)jo>t ~( (Ol)jl) >.UC (01),jl) 

~ . L n+d{n) (2 d( ))f or 1 - J - - + n •2 

Moreover, since E(f(O,n)) = E('f'(p(O,n))), 


n+d(n) _ n+d(n) 

(~((01) 2 2

OO))d(n+l)f(O,n)(~((Ol) 2 -
2 
l))d(n) 


n+d(n) _ n+d(n) _

2 2 


.--cttcco1) 2 oo>'Y<.EB<<o1) 2 oo)p(O,n)))d{n+l)rco,n) 

n+d(n) _ n+d(n) _

2 2 
C'f'Cp(O,n)pp((Ol) 2 l))~((Ol) 2 l))d(n). 

The proof of the lemma is now completed by replacing those 

terms wh:tch occur in A ( f) by the terms which have been established to 
n 

be in the relation ,.._ to them. 

Proposition 3.2: Let p, q, f, g E F(X) satisfy IE(f)f =n ~ 3, 
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Proof: Since p ~n q, there :exists a substitution ~ in (p = q) 

by n variables such that (f{p)fifn'fCq). Since [P = q] ~ [lf(p) =q>(q)J , 
we may assume w.l.o.g. that f E(p) I= n. 

Since p ~ q and IE(p) I =n, In+l(p(O,n)) ~ In+l(q(O,n)).
n 

Since p __, q, it follows that H*n+l(p(O,n)) = H*n+l(q(O,n)), by propo­
n 

aition 2.7, and therefore, w.l.o.g., 

) d(n) d(n+l) )d(n) ( )d(n+l)p(O,n) = (cb p (bc) and q(O,n) = (ca q
3 

ac ,3
where a,b,cE X, and E(p )UE(q ) ~ {a,b,c} •

3 3

Let f(O,n) ·- (y •••yr) .n+i, and


1 

( 0 ) ( ) .n+l .11":. X 
g ,n = Z1···Zs ' yi,zi~ • 

Since f ~--- g, IE(f)I = n, it follows from proposition 2.7 that n 

y :: H*n+l(f(O,n)) =H*n+l(g(O,n)) =z • If f(O,n) ~ g(O,n), there ex­
1 1

-n+lists t such that yj= zj, 1" j <t,and Yt~ zt. (Since I (f(O,n)) = f(O,n)). 

Let 'f' be the mapping referred to in lemma 3.1 with the additional 

conditions that in property (3), u =O, and in property (4), 

'\J/( ) ( )*n+l ( · )•n+l
T c = Y1•••Yt-l = Z1•••Zt-l ' 

fCb) = (yt•••Yr)•n+l, and 

'fCa) = zt. 

Then 

<'ft (p{O,n)) )d{n+l) f'(O,n) ('f (p(O,n))) d( n)
1

='f (((cb)d(n) p (bc) d(n+l»d(n+l) (cb)*n+l((cb)d(n) p (bc)d(n+l) )d(n» 1) 
3 3 

= 'f<<P3bc)~Cn+l)(eb)*n+l(cbp3)d(n)),..._'f'<P3d(n+l)(cb)*n+lP3d(~~) 

='f'Cp(O,n)). 

l)Note: We use the convention (f'*g*)* • g*f* and not gf, for f,gEF(X). 
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Combining this result with lemma 3.1, we obtain 

r--.ll:Coo)'f~An(p))F(f). Therefore [P = q) s; [t<An(p)) =f(An(q))J 

S [ f = ~(00)'f'( An ( q) )F ( f >] • 
Define r by replacing f(O,n) with 'f'Cq(O,n)) in An(f). It1 

can be shown that f (Ol) = f(al), and 1 (0(.) = f(ol), for all f(<X..),
1 1 

f(ol) occurring in A (f), o<.# (02) • From lemma 3.1,
n n 

flg(OO)'l'(An (q))F( f), and therefore [P = q] ~ [r = tJ • Moreover, 

r Co,n) ='f'Cq(O,n)) = '/'CCca)d(n)q (ac)d(n+l))
1 3

= ( ( ).n+l )d(n)Jic ) ( ( ) .n+l)d(n+l)
zl ••• zt-1 zt I q3 zt zl •••zt-1 

= Cz •••zt)d(n) f'cq Hze •• z )d(n+l). Therefore if
1 3 1

f(O,n) = (yi···Y~,)•n+l, it follows that Yi= zj for 0 ~ j ~ t. 

Thus we have found an r1 from f such that [P = q] ~ [f = r1J. 
Moreover, we have shown that if f(O,n),f (o,n), and g(O,n) are written · 

1

as above, then Yj= z/O' j<t), yt! zt' and Yj= zj(O~ j~t). 
The method just described can be repeated at most (s-t)+l times 

to find r2 , f 3, •,• .fv ' where [P = qJ~ [r1 = fi+l] for 1 ' j ~ v - 1, 

and where f (O,n),(•In+l(f (O,n)))= g(O,n). Moreover, f ( ol) = f( o(.)
v v v 

and f (0() =f( o(..) for all f(o<.) and f(ol) occurring in A (f),
v n 

( d. f (02)n) • Since by proposition 2.7 f(<>')--'g(ol) and f(o<.) =g(ol) 

for all f(CX..) and f(o<.) occurring in An(f),(O( F (O~)n' ol F (12)n)' 

it follows by corollary 2.8 that f --I(g)F(f). Hence 
v 

[P = q]' [r =I(g)F(t)] • 

The dual of proposition 3.2 states that if p•,q~,r•,g• E F(X) 

satisfy IE( f*) 1 = n :\!! 3, and f* __, g*, p• __, q*, p* ~ q*, then n n n 


[p• = q•J ~ [r• =I(g*)F(f•)J • This is equivalent t~ the statement 
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that if p,q,f,geF(X) satisfy IE(f)f = n ~ 3, and f__..g, p,_.g, p ~•q,
n n n 

then 8p** = q** JS: [f**= (l(g•)F(f•))•J , Since (F(f*))*(I(g*))* = 
=l(f)F(g), w~ can state the dual of proposition 3.2 as 

(Proposition 3.2)•: Let p,q,f ,gEF(X) satisfy I E(f) I = n ~ 3 

and f --ng' p -riq, p ~~q. Then f! = q] c;; [r = l(f)F(g)J • 

Proposition 3.3: Let p,q,f ,g eF(X) sa.tisfy I E{f) i = n ~ 3 and 

f --ng, f eng' p --nq' p ;nq. Then [P = q] ~ [r = l(g)F(r)J • 

Proof: We may assume w.!.o.g. that IE(p) I =n, since there 

exists a substitution <.pin (p = q) by n variables with <.pCp) ~n<f (q). 

Moreover we may assume that p 9 q by proposition 3.2. Therefore 
n 


n+l ) n+l ) )
I (p(O,n) =I (q(O,n) and p(O,n --q(O,n), and so w.l.o.g. 

p(O,n) = (cbca)d(n)(acbc)d(n+l) = (acbc)*n, and q(O,n) = (abc)•n, 

where a,b,c EX. 

Let f(O,n) = (y •••yr)•n+l, and assume there exist t and j
1

y 
2 

such that Yt = yj for some j < t - 1. Let '/' be the mapping referred 

to in lemma 3.1, with the additional conditions that in property (3), 

u = j - 1, and in property (4), 

'fCc) 

t<b) 
t<a) 

Then n+d{n) _ n+d(n) ­
2 2

2 2'f'CCp((Ol) ))d(n)<Ji«o1) - OO)p{O,n))d(n+l)) 

n+d(n) _ n+d(n)2 22 2t(O,n) 'f'C<p(O,n),E.BC (01) l))d(n) (j)((Ol) - o))d(n+l» 

n+d(n) _ n+d(n) .
2 2 - 2 d(n) -J/ - 2 · - ( )..........,(f((Ol) )y •••yj-l) ( T CJ?E((Ol) OO)(acbc)•n))d n+l


1 

http:f'C<p(O,n),E.BC
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(( ) .n+l ( }•n+l ( )•n+l)•n+l
Y1•••Yj yj Yj+t••Yt-1 Yt Yt+1•••Yr 

n~d(n) _ n+d(n) _
2C'f'C(acbc>°n .i!lCCOl) 

2 
l)))d(n)(yj-i•••Yi f((Ol)- 2 

2 
o))d(n+l) 

n+d(n) _ n+d(n) _
2 2 

,_..,(f((Ol) 2 ))d(n)C'f(~((Ol) 2 OO)))d(n+l) 

( ( ) .n+l ( ) .n+l ( - ) .n+l) .n+l
Y1•••Yj yj Yj+1•••Yt-l Yt Yt•••Yr 


n+d(n) _ n+d(n)
2 2

<'f'C~((Ol) 2 l)))d{n)(f((Ol) 2 - O))d(n+l) 


n+d(n) _ n+d(n) _
2 2 ='f'CCp((Ol) 2 ))d(n)CB((Ol) 2 OO))d(n+l) 

n+d(n) -2 n+d(n) -2 
2 2p(O,n)(pp((Ol) l))d(n)(p((Ol) O))d(n+l)) • ....... 


It follows from lemma 3.1 that f--'a!J.(OO)'/'(An(O))F(f) and there­

fore [P .. q]s['f'w .. 'f'<q>] ~ [r =.UCoo>'f<Vq»Fw]. 
Define f1 by replacing f(O,n) with 


)d(n) ( )( )d(n+l)
(y •••y . l (q O,n) y. •••y in A (f). Then r (cx:) =f(ot.)
1 J- . J-1 1 n . 1

and 'f Coc.> =f( o() for f( o<..) and f{ oC.) occurring in A ( f), ( o( /: (02) ) • 1 n n 

By lemma 3.1, fl-'all(OO)i'(An(q))F(f),and therefore [P =q] <; [r = f1] • 

) ( ) d(n)(( )•n+l( )•n+l )•nM f ( 0oreover, ,n = Yi•••Yj-l . Yt+i•••Yr Yj+l•••Yt-l Yj1 

: ' 

d(n+l)
(yj-1•••Y1) • 

We have now found an r1 from f such that [P • qJ~ [r = f1] , 

In+l(f(O,n)) m In+lcr CO,n)), and L(t (0,n))<L(f(O,n)). By repeating
1 1

the process finitely many times, we can finally find an h such that 

[P = q] £ [r =h] and h(O,n) = In+l(f(O,n)). 

Similarly, we can find h from g such that ·[P =q Js [ g • h ]
0 0 
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.n+l 	 n+land h (O,n) = I (g(O,n)) = I (f(O,n)) = h(O,n).
0 

Now f( c:X. ) = h(C:. ) and f( OC:..) = h( o(.) for all f ( cX'.. ) . and f ( (".X.) 

occurrtng in A (f), (ot... f. (02) ), and g(o<..) = h (o(.),g( rX.) = h (o<:),
n n o o 


for all g(o() and g( Ge.) occurring in A (g), ( ol-1 (02) ) • Since 

n 	 n 

~~~ g, we can conclude by proposition 2.7 and corollary 2.8 that./ 	 1- n 

h ,..._. I(h~)F(h). Therefore [_p = qJ £ [r =l(g)F( f)J . 
Using a method similar to that used in determining an equivalent 

statement for the dual o f proposition 3.2, the dual of proposition 3.3 

can be shown to be equivalent to 

(Proposition 3.3)•: Let p,q, f ,g E F(X) satisfy l E( f) I = n ~ 3 

and f --
0 

g, f e~g, p ,._,n q, p ~~ q. Then [ p = q] ~ [r "'· I(f)F(g)J 

Theorem 3.4: Assume p,q, f ,g E F(X) such that 1 E( f) I = n ~ }, 

p ,,__ q, f __. g. Then any of the following eight conditions is suf­
n n 

ficient for [P • q]s [r =g]. 
(1) p ~n q, P ~~ q 

(2) 	 re gp ~n q, p -~ q, n 

(3) P ~~ q, P ~n q, re• g
n 

(4) p f'• q, f 0 g
n n 

(5) p ~n q, f e~ g 

(6) p ~n q, p -~ q, f en g, f 9~ g 

(7) p ~· q, r e g, r e• gn n n 

(8) p j q, t ~· g, f 9 g
n n n 

':~~ 
· ··Proof: By lemma 1.7, ii ia auffi. c ient to S~<Vw 1.l\ each ~ase 

that the conditions .given in1ply that (f = I(f)F(g)) and ( g =I(f)F(g)) 



hold. This can be done by applying corollary 2.8, propoRition 3.2, 

(proposition 3.2)•, proposition 3.3, and (proposition 3.3)• as needed. 

We will prove (1) and (4) in detail. 

If p ¢n q then, by proposition 3.2,G> = q]s [g = l(f)F(g)J • 

If p pf~ q then, by (proposition 3.2)•, [P =qJ~ [r =I(f)F(g)J. 

Therefore (1) is proved. 

Again, if p ~· q then, by (proposition 3.2)•;
n 


[P = q] ~ [r = I(f)F(g)J • If f e g, it follows by corollary 2.8 
n 

( and the definition of e ) that I(f)__,l(g). It is therefore trivial 
n 

in this case that (g =I(f)F(g)) holds. Hence (4) is proved. 

By (2.10), if f 0 g and f 0• g then is the class of n n 

all idempotent semigroups. By (2.9), if f 0 g then f e g, and if n n 

f 0• g then f e• g. Therefore 
n n 

Corollary 3.5: For n ~ 3, there are at most eight distinct 

equational classes determined by a single equation in n essftntial 

variables. 

The information contained in theorem 3.4 is summarized in 

figure 1. In order to show that this represents the n-skeleton, for 

n ~ 3, it is sufficient to show that all the non-trivial inclusions of 

th~ classes determined by equations in n essential variables are given 

by theorem 3.4. This will show in particular that the eight elements 

of figure 1 are distinct elements of the lattice of equational classes. 
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e , e•, j•
n n n 

e , ~· n n e· d
n' "n 

;;. 9 ,.. a 
"n' n' Pn 

'' 

Figure 1: The n-skeleton, n ~ 3. 



Lemma 3.6: Assume p,q E F(X) with p __, q, and lP-t 
n 

't': F(X)~ lt,(X) be any homomorphism. Then f Cp) -...; 'f(q). In particu­
n 

lar, if IE( f'< p)) VE( t'c q)I) I< n, then t<p).-'f' ( q). 

Proof: Since we have· to show that for any substitution <p in 

<'f(p) =.'f(q)) by less th~~ ·n variables, 'f Cf(p)),_.~<t'«:~)), it is 

enough to show that if IE('f(p))UE('f(q)) I<n, then 'f(p)-'f(q). 

We will show that I('/'(p)),..._,I('f(q)). The remainder of the 

proof is dual. If n = 2, the result is trivial. If n = 3, then w.l.o.g. 

E('t'(p)) = E('f(q)) = {x,y}, say. Since p __,
3 

q, H(p) = H(q), and 

therefore H('f(p)) = HC'i1Cq)) = x, say. It follows that I('f1(p)),..._,xy 

--Ye 'f<g)). 
We proceed by induction on n. Assume n ~ 4. Then there are 

two cases to consider. If E(t'Cp)) - { t'Cp(o))} = ECf'Cp)), then 

E('f(p)) = E('fJ(pp(OO))), and therefore since n ~ 4, I('f(p))w 

=f Cpp(OO)).-'Y{qq(OO)) = Y<'f"Cq))w, and hence I('f'(p))-I('f(q)). 

If E('f(p)) - { 'f(p(O))] ~ E('f'(p)), then E('f'(p(O)))< n-1. Moreover 

by proposition 2.3, p(O),...._., q(O), and it follows by induction that 
n-1 


'fCp ( O) ),-J'f-'(q(O)). Also by proposi.tion 2.3, p(O) = q(O), and there­

fore I( f (p) )--'/"< p(O)) 'fCp(O) )__,I( 'fCq)). 

Proposition 3.7: Let f,g,p,qEF(X) satisfy lE(p) I= IE(f) f 

= n :it 3, f ....._..n g, p n q, p 9 n q , f fln g. Then [ p =q] </:. [r = g] . 
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Proof: ~ = q] £ [r = gJ iff there exists a finite sequence 

h ,h
1 

, ••• ,hn E F(X) such that h0 = f, hn = g, and such that for each0 

0 ~ i < n, there exists u., v. E F'(X) and homomorphism 'Y. :F(X)~F(X) with 
l. l. 1 

h. = ui(fi{p))v ·and h. 
1 

= u.(r.(q))vi' or hi= u.(f.(q))vi and 
1 1 . 1+ l. l. ' 1 l. . 

h. =: u.{\l/(p)h . • Since f ~ g, it follows that l(fkf'l(g). It is 
1+1 i l 1 n 

therefore enough to show that if f = u(!'J"(p))v, r = u('ft(q))v, for1 

some u,v EF' (X) and homomorphism l:F(X
1

)4F(X), then .I( f),..._.. l( r1 ). 

There are two cases. If IE("f'(p))l~n, then by lemma 3.6, 

I( f) = u( 'f (p) )vlu( 'fCq) )v = I(g), f9r some v1 E F' (X) ..1 

If IE(t(p)) I= n, ~hen since pen q, rct<p))--'l('f-'(q)), and therefore 

I(f)w = u'f('/-'(p))-ui('f(qD = l(t )w for some w,w EF'(X). Hence I(f)-I(f ).
1 1 1 1 

Proposition 3.8: Let f,g,p,qEF(X) satisfy IE{f)I =I E(p)I 

= n ~ 3, f ,...._..n g, p ..---n q, p en q, f ~n g. Then [P = q] <;/. [r = g] • 

Proof: Since f ~n g, it follows that In+l(f(O,n))~ In+l(g{O,n)). 

Since \E(f(O,n)) I = 3, E(f(O,n)) = E(g(O,n)), and H.n+l(f(O,n)) 

=H*n+l(g(O,n)), it follows that H*n(f(9,n)),H*n(g(O,n)). As in the 

proof of proposition 3.7, it is therefore enough to show that if 

f = uCt'Cp))v and g = u(t(q))v, for u,vEF'(X) and homomorphism't:F(X)-7F(X), 
1 

then H*n(f(O,n))=H•n(g(O,n)). 

Since p -- q, and IE(p) I = n ~ 3, we can assume w.l.o.g., byn 

propo~ition 2.7, that p(ot:) = q(o<.) and p(c:X) =q(o() for all p(cA.) and, 

p( ol.) occurring in A (p), o< fl (02) • Moreover since p 0 q it follows n n n 

n+l n+l t · n
that I (p(O,n)) =I (q(O,n)). Let u( . (p)) = (~x2•••xr)• and 

u{'f(q)) = Cy y •••y )•n. Then, if H*n(('f(p))(O,n)) • xj, then
1 2 5 

w.l.o.g. ~ =yk for all k ' j. 
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Let H*n((u('f(p)))(O,n)) =x.• Then i & j, and 
l. 

a•n((uCf (p)))(O,n)) = x. = x-4·= H*n<CuCf(q)))(O,n)). Therefore 
l. ,, 

H•n( f(O,n)) =H•n((u( 'V (p)) )(O,n)) =H*n(g(O,n)). 

Theorem 3.9: The elements of figure 1 are distinct elements 


of t he lattice of equational classes of idempotent eemigroups. The 


order indicated in figure 1 is the restriction of the lattice order. 


In particular, figure 1 represents the n-skeleton for n ~ 3. 


Proof: The theorem is an immediate consequence of propositione 

3.7 and 3.8, and their duals. 

Theorem 3.10: For n ~ 3, the n-skeleton is a meet subsemi­

lattice of the lattice of equational classes. 


Proof: Since the poset of figure l is a meet s~milattice and 

a subposet of the lattice of equational classes, it is sufficient to 

show that the meets in figure l are actually meets in the lattice. 

The non-trivial inclusions can be established in each case by appro­

priate application of propositions 3.2 and 3.3, their duals, and 

lemma 1.7. 

For example let pi' q1 e F(X), i =1,2,3, and assume 

IE(pi) I= n ~ 3, P1--'n qi, i =1,2,3, and that P1 en ql, P1 ~: ql, 

P2 ~n q2' P2 ~~ q2' P2 9n q2, P2 6~ q2' P3 ~n q3' P3 6n q3, P3 ~~ q3. 

We must show that [Pi = q1Jn [P2 = q2] ~ [P3 • q3J . Since P1 ~~ q1 , 

it follows by (proposition 3.2)•, that ~p1 a q1J~[P3 =ICp3)FCq3>J. 
Moreover since p2 Jn q2 and p

3 
en q

3
, then by proposition 3.3 

[ P2 = q2J~ [P3 =l(q3)F(p3>J . Therefore by lemma l.7, 
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2. The 2-sk~leton. 

The 2-skeleton has essentially been described by Tamura (1966) 

and Kimura (1958,IV). Kimura also listed· all equations in three 

variables (without proofs), and has therefore deBcribed the 3-skeleton. 

Proposition 3.10: (Tamura,1966). Let (f = g) be any equation 

in 2 essential variables, and let a, be X. Then 

(1) If E(f) # E(g), H(f) # H(g), H*(f) # H*(g), 

then [r = gJ = [a =b] , 
(2) If E(f) # E(g)t H(f) • H(g), H•(f) ~ H*(g),, 

then [r = gJ = [a =ab] , 
(3) If E(f) # E(g), H(f) ; H(g), H*(f) =H*(g), 

then [r = gJ :; [a =b~ , 

I / 

(4) If E(f) ~ E(g), H(f) =H(g), H*(f) =H*(g), 

Ithen [r = gJ = [a =aba] , 

(5) If E(f) = E(g), H(f) # H(g), H*(f) # H*(g), 

then [r = gJ = [ab =b~ , 

(6) If E(f) = E(g}, H(f) =H(g), H*(f) # H*(g), 

then ~ = g] = [ab = aba] , 
(7) If E(f) =E(g), H(f) # H(g), H*(f) =H*(g), 

then [f • gJ = [ab =bab] • 

Moreover, ' these seven equational classes are distinct, and are all the 

classes determined by an equation in 2 e~sential variables. 

Proof: It follows from the ideitJ>otent law that there are only 

nine equations in 2 essential v~riables. These are the seven given in 
I 
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the statement of proposition 3.11, together with (aba =b) and 

Caba =bab). However it is easy to check that 

[ aba = b J = [a =b] tmd [ aba = bab] = [ab = ba] 
It is also easy to check that the seven clas~es listed are 

distinct. For example, if H(f) = H(g), and H(f1) FH(Si), then 

[ f = =g] <J [ f 1 glJ . 
The results of this proposition are summarized in figure 2. 

Theorem 3.12: The poset given in figure 2 ia a meet subsemi­

lattice of the lattice of equational classes, and is in fact the 

2-skeleton. 

~: From proposition 3.11, it is only necessary to show 

that the meets in figure 2 are meets in the lattice of equational 

classes. It is essentially trivial to che~k each case. 
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(aba=ab) (aba=ba) 

(ab=a) (ab=ba) (ab=b) 

Figure 2: The 2-skeleton 

/ 



CHAPTER IV 

THE LA'l'l'ICE 

The union of the n-skeletona, for all n ~ 2, together with the 

restriction of the order in the lattice of equational classes of idem­

potent semigroups, will be called the skeleton of the lattice. Since 

we have previously described the n-skeletons for each n ~ 2, the des­

cription of the skeleton is completed by finding thP. inclusions which 

hold among the elements of n-skeletons for different n. It will be 

shown that in a certain sense the (n+l)-skeleton covers the n-skeleton 

for all n ~ 2. A description of the classes of idempotent semigroups 

which may be described by a single equation will then be completed by 

considering equations (f = g) for which there exists a substttution 

<f by less than IE( f) U E(g) I variables such that <p (f) + c.p (g), and 

relating these equations to the elemeLts of the skeleton. Finally, it 

is shown that every class determined by finitely -many equations is de­

termined by one equation,and from this .and the description of the skele­

ton it is concluded that every class may be described by a single equation. 

1. Extension of propositions 3.2 and 3.3. 

Proposition L•. l: (Extension c:l prQposition 3.2). For n ~ 3 let 

p,q,f ,g E :F'(X) satiRfy p -- q, p ~ q, f -- g. 'l'hen n n n 

[_p = q] ~ [r = YCg)FCr>] • 

Proof: Let E(f) =n + k whe~e w.1.0.g. k ~ O. The proof is 
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by induction on k ~ O. 

Define f by repl a.cj.ng f(O,n) with g(O,n) in Ah(f). From the
1 

proof of proposition 3.2, we can conclude that [P = qJ~ [f = r1] 
(since the cardinality restriction on E(f) in proposition 3.2 was not 

used to prove this statement). 

It is therefore enough to show that 

( 4.1) [P =q] ~ [r =I(g1)F(r)J 

where gl is defined by replacing g(O,n) with f(O,n) in A (g).n 

As was shown in the proof of proposition 3.2, (4.1) is trivial 

if k = O, since in that case g(o<.)-.rf(o<.) and g(oc) = f(o<.) for all 

g(O() . and g(oc) occurring in A (g), ( o<.# (02) , 0( # (12) ) • 
n n n 

Assume by induction that (4.1) is true for k-1 (for some k ~ 1). 

Let r be an arbitrar:f but fixed integer with 0 ~ r ~ n+~(n) -(2+d(n)). 

Let cp be a substitution which satisfies the properties 

<f {f( (Ol)rO)) = f( (Ol)rOO} 

<.p(x) = x for all xEE(f) - {'fCCOl)r.O)} • 

Then <.p is a substitution in (f = g) by (n+k-1) variables. 

By lemma 2.5, 

c.p<r>---cpCfTc~c<o1>ioo>f<<o1>i+l>>rc<o1>r+i>-f=r·crcco1>jo>.Ir.cco1>J1>>>. 
i::O j=O 

Now <fef(COl}rO}) = f( (Ol)rOO) E E(f( (Ol)rO}), and therefore 

E(<p Clf.((01)r+l)f((o1)r))) = E(<f WCC~l)rOO))) " E( <f C.U,((Ol)rl))). 

It follows by lemma 1.1 that 

CpCJl:((Ol)roo)J.t( (Ol)r+l)f( (Ol)rO>li;( Coprl) )-' 'f(Jj( (Ol)rOO).U,( (Ol)rl)}. 

Moreover <.p (-i£((ol)roo)) =idCCol)rOO) •· From these results it follows 
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that 

1 1lf ( f)---' \f (T\<.U< <01> oo)f((o1> + 
1 l ))J'.L((o1)rool 

l. ~o 

r-1_. . . 
tp<lt<<o1)r1).,-\ (f((o1)Jo)JLCC01)J1))), 


j=O 


Sinc.e tp< f)( (Ol)r),.._-,~( f)j'CfX({o1)rO)~ 'f (~),( (Ol)rl), 

it follows from lemma 2.5 that 

r-1 
~(f)_.JT<lf (f) <.p(f),( (Ol)ioo>VCrJ< (Ol)i+l) >Jf< r>-zprr>,< (Ol)ro) 

l.=0 
r-1. . .·Ifffilf<r>,C Co1)r1>fr <?fUY< co1)Jo)1<f Cr) 'f Cr>,C <01) Ji>>. 

. J::O 

By comparing these two expansions for <.pCf) we can conclude that 

Consider a homomorphism 'f:F(X)-.+F(X) which siltisfies th(~ 

following properties: 

'Vex) = x for all xE E((<p(f))((Ol)ro)) 

't<<:j><fTCCOl)i.)) = f({Ol)i)aU((Ol)iOO), 1 ~ i !: r-1 

(4.3) 	 'f<lj5<7Y<Col)r)) =f((Ol)r) 

t'«p (r}( (Ol)rO)) = f((Ol)rOO)~((Ol)r+l)f{(Ol)rO) 

't'<<p<1Y<<o1)jo)) =~((Ol)j+ll)f((Ol)jo), o ~ j ~ r-1 

From (4.2), 	it follows that 

Using (4.3} and (3.1), we can conclude that 

E(f(,~(f)~((Ol)iOO))) = E(J']((Ol)iOO)), 0 ' i . ~ r-1, and that 
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Therefore, for 0 ~ i ~ r-1, 

{4. 5) L!'LC (Ol)ioo)Zf,( (Ol)i+l)) 

-~( (Ol)iOO) 'f<.<p (f) <(> ( f},( (Ol)iOO) )jjj( (Ol)i+l), 

and for 0 ~ j ~ r 

<4.6) ~( (01) jo)~( (01) j1) 

--Ji,( (Ol)jO) t (~<f (f).( (Ol)jl) ).If,( (Ol)jl). 

it follows from lemma 2.5 that 

( 4. 7) r--TI(U( (Ol)iOO)f( (Ol)i+l) )f( (01) rOO)f( (Ol)rOO) 
i::O 

,rt<Co1>r+i>-fT*c1cco1)jo>J.t<<o1)j1)). 
j=O 

By (4.5) and (4.6), it follows from (4.?) that 

f -J!.<oo>ffct C.<p (fl~ (f1C (Ol)iOO) )f( (Ol)i+l>i!lCCol)i+loo)) 
i=O 

li,( (Ol)r+l)f( (Ol)rO) f'<,<.p Cf) cp (f), ( (Ol)rl)} 

D·<J!.< <01> j1>f< co1> j-lo>'f' <Jfffi<pc qcco1)j-11> >>FCrl 

and therefore, by (4.3) and (4.4), that 

Since E( <f (f)) = n+k-1, it follows by induction that 

[P = q]s; ['r«p<r)) =l(fC<fCg)))F('l'CcpCr)))J 
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Since !Cf ( <.p (g)) )F( 'f(tp (f) ))F( f) ,,..._., 'f1C<f (g) )F( f), it therefore follows 

from (4.8) that [P = q] ~ [r =Jl:<oo>'Y«f (g))F(r)J. 

Since <f(f),_,n<f(g), and i ~ r where r ~ n+~{n) -(2+d(n)), it 

i-1 ) )i-1 )follows by corollary 2.4 that <..p(f){(Ol) 0 __...4 <p(g)({Ol 0 and 

therefore by proposition 2.3 that 

Similarly, since j ~ r, it follows that cpCr)((Ol)j) __, <fCg)((Ol)j),
4 

and therefore that 

( 4.10) 

r r 	 · r
Moreover CfJCf)((Ol) O) __, <p(g)((Ol) O) and therefore 	E(<p(f)((Ol) 0))

3 
= E(<p(g)((Ol)rO)). Hence (4.3) holds with f replaced by g. It follows 

that 

(4.11) 	 ~Coo> f «.p (g) >'F<r> 

1= .U<oo>T\<t <,i,p {g>1fraCC01>1oo> >f< Co1>1+1>.IT:«o1>1+ oo> )Jf.«01>r+ll 
1:0 


r< (Ol)rort' <~~ (g),( (Ol)rl)) 


fr• <i!.< <01> j1>"f< <01> j-1o> t (ifZ6J<f <e;~< <01> j-11l l >F< t) • 
• 1:.:l 

Moreover, with the •ethod used to establinh (4.5) and (4.6), 

we can prove the statements obtained from (4.5) and (4.6) by replacing 

<pCf) with 'f (g) and vm with <fGJ· We can also show 

'f< <.p (g)( (Ol)rO) )..-J g((Ol)rOO) by a method similar to that used in 

establishing (4.4). 



47 

From these results, and (4.11), we can conclude 

. 	 . n+e(n) ( ))(4.12) ~ or any 0 ~ r ~ 
2 

-\ 2+d n , 

£ [r = 11'< ff( (Ol)ioo)f( (Ol)i+l)) g((Ol)roo}f( (Ol)r0o>fr< (Ol)r+l) 

i=O 


n-•(f((Ol)jO)ff((Ol)jl))J • 
j=O 

Following the pattern of proof leading to Rtatement (4.12), 

we now let 'f be a substitution with the properties 

8'f (f( (01) )) = f((Ol) 6 1) 

,<f (x) = x for all x EE( f) - {rc<o1) 8 
)} 

!: n+d(n)where s is an arbitrary but fixed integer with 1 ~ 6 -2.
2 

As we proved statement (4.2), we C?n now establish 

( 4.13) 

We consider a homomorphism 'f°:F(X)~F(X) which satisfies the 

following properties: 

'f(x) = x for all xEE(<p(f)((Ol) 8 
)) 

'f ( <p(f)((Ol)i)) = f((Ol)i)ff((Ol)iOO), 1 ~ i ~ a-1 

(4.14) 	 tcqimc<o1) 5
-
1o>) = 'f«o1) 6

-
1o) 

't<<p1f)<<o1)s)) = f((Ol) 5 )ff((Ol) 6 0)f((Ol) 6 l) 

i'<<pTFY<<o1)jO)) =ff((Ol)j+ll)f((Ol)jO), 0' j 's-2 

Using (4.13) and (4.14), and the pattern of proof of (4.12), we 

can finally arrive at a statement which corresponds to statement (4.12), 

n+d(n)(4.15) For any 1 f s f: 2 -2' 
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!: [f = ffcgc (01) ioo)f((o1)i+l) ),UC (Ol) 8o)f((o1) 8 1) 

i .=0 


g((01) 81)~. (f((ol) jo),il;((Pl) jl)>] . 
J :::O 

Since f __. 	 g, it follows from corollary 2. 4 that 
n 

f(Ol) t .-../ g(Ol) t for 0 ~ t ~ n+~(n) -(2+d(n)), and
4 

f((Ol)u-lO) __..
4 

g({Ol)u-lO) for 1 ~ u ~ n+~(n) -2, and therefore, by 

proposition 2.3, that 

( 4.16) 	 f((Ol)tO) =g((Ol)tO), 

0 ~ t ~ n+~(n) -(2+d(n))(4.17) 	 f((Ol)tOO) = g((Ol)too), 

(4.18) 	 f((Ol)tl) = i<Col)tl), and 

- )u) - u , ~ n+d(n)f ( (Ol = g((Ol) ), l - u - -2.
2 

The sta tements (4.12) and (4.15), together with (4.1~), (4.17), 

(4.18), and (4.19).,can now b~ used to establish (4.1) as follows~ 

By (4.12) an<l (4.1?), with r = t = 0, it follows that 

[P = q] S [r = gg(00)J.!j(OJ.)f(O)F(f)] • By (4.19), with n = 1,1 1

f(Ol) = g(Ol), a.nd therefore [P = q] ~ \!' =~(OO)g(Ol)f(Ol)f(O)F(f)J • 

/\ r-1 . . 1 1 
Let f -1 ::: 7T<~< (01) 1·oo)g( (01) 1 + ) )f( (Ol)rOO)f( (Ol)rOO)tU( (Ol}r+ ) 

r i=O 
r • . .n (f( (Ol) .Jo)if.!/ (01) Jl)), and assume by induction that 

j=O 

By (4.12) and (4.19), with f replaced by 
/'

f 1 ,
r-

it follows 	that 

[r = q}; [ f r-l = 7=\\~_i,( (Ol)ioo>i«o1)i+l) ),!i.((m)roo).!!:,((01)r+l) 
i=O 

-f1•crcco1)jo),I!;((Ol)jl))J , and therefore if r+l ~ n+~(n) -2, then 
j=O 
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-2 
OO))d(n+l) 

n+d(n) n+d(n) -(2+d(n)) 

f(O,nHill«o1) 2 -21) )d(n) TI• <S< (Ol)jo)~((Ol)jl))' 
j = 0 

In a similar way, we can show, by induction on s, that 

[P = q]S [g2=I(g1)F(g)J , and th~refore that [P = q] 
~[r =I(g1)F(f)J • This concludes the proof of statement (4.1), and 

hence of the proposition . 

Lemma 4.2: Let f ,g E F(x) satisfy f _,, g and f 0 g. Then 
n n 

n+l n+lI (f(O,n)) = I (g(O,n)). 

Proof: Assume In+l(f(O,n)) F In+l(g(O,n)) for some f,gEF(X) 

with f 9 g. By (1.19), it follows that there exists a substitution 
n 


'fin (f(O,n) = g(O,n)) by 3 variables such that In+l( <(J(f(O,n))) 


f. I 
n+l

(<p(g(O,n))). We can assume that CpCx) ~ x for all xEX - E{f(O,n)). 

Then <p is a substitution in (f = g) by n variables. We will show that 

<<p (f))(O,n)-...- <{J(f(O,n)). 

Since f(O) ¢ E( f(O,n)), it follows . that cp <f(Ol)) = f(O), and 

<.p (x) /. f(O) if x € f(O). Therefore <..p ( f(O) )-- ( <p (f) )(O). Assume by 

inductive hypothesis that c.p<r((Ol)i))......-(<f(f))((Ol)i) for some i, 

and that f((Ol)io)¢ r~(f(O,n)). 'rhen <p(f((Ol)io))--(<.p(f))((Ol)iO). 

Similarly if by inductive hypothesis <f Cf((Ol)jO)) _,,«pCr))((Ol)jO), 

and if f((Ol)j+~¢E(f(O,n)), then <p(f({Ol)j+l))...-(<f(f))((Ol)j+l). 
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It follows by induction that 

n-d(n)-2_0( l) _ n-d(n)-2_d( l) 
<.p(f((Ol) ::. n+ od(n+l1)......J(<f(f))((Ol) 2 n+ od(n+l». 

n-d(n)-2_d(n+l) 
2Therefore C<f (f) )(O ,n) =yn+l(( 'f (f)) ((Ol) Od( n+l))) 

n-d(n)-2_d(n+l) 
__,yn+l((p (f((Ol) 2 · 0 d(n+l))) 

n-d(n)-2 d(n+l) 
,...._.,yn+l«p (In+l(f((Ol) 2 0 d(n+l))))) 

-n+l = I C<p (f(O,n))) = <p (f(O,n)). 

By definition of en, it follows that <p<f) en <_pCg)' and there­

fore In+l((f (f))(O,n)) = In+l(('f (g))(O,n)). Then In+l( <p(f(O,n))) 

n+l n+l ) ) =I ((<p(f))(O,n)) =I C<f(g(O,n ), which is a contradiction. 

Therefore In+l(f(O,n)) = In+l(g(O,n))~ 

Proposition 4.3: (Extension of proposition 3.3). For n ~ 3 

let p,q,f ,g e F(X) satisfy p _.._.,n q, p jin q, f ~ g, and f en g. Then 

[P = q] ~ (!' =I(g)F(r)J. 

Proof: (Cf. proof of proposition 4.1). We must first show 

[p = q] £ [r = rl] (fl defined as in the proof of proposition 4.1). 

This statement was proved in proposition 3.3 with no cardinality 

n+l n+l ))restriction on E(f), except to show I (f(O,n)) =I (g(O,n • 

Lemma 4.2 removes the cardinality restriction on this statement. There­

fore, using lemma 4.2 and proposition 3.3 we can show that 

[P = q J£ [r = r ] under the conditions of ·proposition 4.3.1
i 

It remains to establish statement (4.1) under the assum~tions 

of proposition 4.3. 

McMASTER UNIVERSITY LIBRARt 
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If fen g, then cp<r) en <p<g) for any substitution by IE(f)I- l 

variables. Statement (4.1) can therefore be proved from proposition 

3.3 and 	the definition of e , by the same method as was used in proposi­n 

tion 4.1 . 

2. The 	skeleton of the le.ttice. 

We are now in a position to prove a series of propositions 

which will describe the inclusions among the elements of different 

n-skeletons, thus giving a description of the skeleton of th~ lattice. 

Proposition 4.4: Let p,q,f ,g E~.. (X) sa.tisfy I E(p) I = n ~ 3, 

P-- q, p ~ q, IE(f)I = n+l, f ,,-.- 1 g, fa• 1 g. Then n 	 n n+ n+ · 

[r = q	J~ [r = g]. 

Proof: Since f __.. ... g, and 1E( f) l = n+l ~ 4, it follows by


n+.L 

proposition 2.7 that f(ll) ........... g(ll). Therefore (f(l))(l,n) 

= ('f(IJ((l2) ))d(n)(f(l))((l2) )('f(I}((l2) ))d(n+l) 
n n n 

= (f(l(l2) ))d(n)f(l(12) )(f(l(l2) ))d(n+l) 
n 	 n n 

.-...r(g(l(l2) ))d(n)g(l(l2) )(g(1(12) ))d(n+l) 
n n n 

= (g(l))(l,n). Also since f ~ g, and lE( f) I = n+l ~ 4, it followsn+1 

by proposition 2.3 that f(l) --- g(l). Therefore, by corollary ?..8,
n 

r< r<1) >-- r< g(1) >. 
By (2.7), (f(l))(O,n) = f(l,n+l), and therP.fore, since f e~+l g, 

it follows that f(l) 9 g(l). Applying proposition 3.3 we have that 
n 

[! = q]£ [r(l) = f(g(l))F(f(l)i] , and since F(f(l))-F(g(l)) and 

(by proposition 2.3) f(l) = g(l), it follows that G> = q] s;. [r =- I( f)F(g)J • 

Since f ___. 1 g, it follows by iemma 2.11 that f 9 g. By pro­n+ n 

position 4.3, [P-= q] ~ [g = I(f)F(g)J' and therefore c~:: q] {; [r = g]. 
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Proposition 4.5: Let p,q,f ,g € F(X) satisfy p ,..._.... q,
n 

IE(p) I = n ~ ), p ~n q, f -?i+l g, IE(f)I = n+l. Then [P = q J 
c; [r = g] . 

l

Proof: It follows immediately by proposition 4.1 that 

[P = q] £ [r = I(g)F(f)J and since f(l) -n g(l), that [P = q] ~ [r(l) 

=I(g(l))F(f(l)~ • As in the proof of proposition 4.4, F(f(l)) 

-F(g(l)) and f(l) = g(l), and thPrefore [P = q] <;. ~ = l( f)F(g)J 

It follows that [P = qJ ~ [r = g] • 

ProEosition 4.6: Let p,q,f ,gEF(X) satisfy p --n q, 

jE(p)I = n ~ 3, p ~n q, p ¢:i q, r--n.+1 g, IE(f) I= n+l. Then 

[P = q] ~ [~ = g] • 

Proof: Let f 
1

, g
1

, f 2 , g2 E F( X) satisfy f i __..n+l gi, 

I E(fi) I = n+l (i = l, 2 ), fl 9~+1 gl, f29n+l g2, fl ~~+l gl, fl~n+l 81' 

f ;:; g f d.• g By proposition I+. 4 and its dual,2 ~n+l 2' 2 ~n+l ·2· 

I! = qJ £ [ri = g1] I\ [ f 2 = g2 J · 
Let r and g E F(X) satisfy r -n+l g

3
, IE(f ) l = n+l,

3 3 3 3

r3 ~n+l g3, r3~~+l g3 • ·rhen by theorem 3.10, [r1 = g1 J/\[r2 = g2 J 
= [r = g J . By proposition 3.2 and its dual, [r = g J£ [r = gJ , 

3 3 3 3

and therefore [P = q] S. \! = gJ . 

Proposition 4.7: Let p,q,f ,gE:F(X) satisfy IE(p)j = n ~ 3, 

p ,,-..._, q' p e q' p en• q' IE( f) I = n+1, f -- l g' f ~ l g. Then n n . n+. n+ . 

[P = qJ¢ [r = g] • 

Proof: As was noted in the proof of proposition 3.7, it is 

enough to show that if f = u('/'(p))v and r = u('f'(q))v, for some
1 
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u, v E F' (X) and homomorphism f :F(X)~ F(X), then f 0n+l fl• 

ThC? r~ a r e t wo cases to consider:- either I(f)w = uI('f (p)) 

~:md I(f )w = u"fCt(q)) for some w,w E F'(X), or f(O) = uCf (p))v
1 1 1 1 


and r (0) = uCf (q) )v for some v E F' (X).

1 1 1 

If I(f)w = uI(p) and I(fl)wl =ul(q), then, since pen q 

implies !Ct' (p))-r(f (q)), it follows that I(f)w-I(f )w1 , and
1

therefore (by the definition of I) that I(f)-I(f
1
). In particular, 

it follows that f en+l fl. 

Assume f(O) = u('I' (p) )v and r (O) = u('f' (q) )v • Let ~ be
1 1 1 

a.ny substitution in ( f(O) = r (0)) by less than n = l E( f(O)) I
1 


variables. Then I EC<p<'t'Cp)))j< n, and therefore, by lemma 3.6 


cpCf(p)).-..- q><~ (q)). It follows that q1(f(O)),....._.., tp<r (0)), and
1 

therefore that f(O) ...........,,n f (0). By definition of f(O) and f (0), it is
1 1 


trivial that [P = q] £: [r(O) = r (0)J . 'rherefore from the dual of

1 


proposition 3.8 it follows that f(O) 9~ f (0). Since f(O,n+l)

1

= (f(O))(l,n), it follows from the definitions of 9 land e• that 
n+ n 

Corollary 4.8: Let p
0

, Clo' p
1

, q
1

, p
2 

, q e.F(X) satisfy
2 

- - rl• ePon~' Po 9 nq0, Po~~ qO' P1~ ql 'pl f§n ql, pl "n ql, P1 n ql, 

pl e~ ql, P2 --!'i q2, P2 9n q2, P2 e~ q2, P2 j~ q2, fE(po)I =I E(pl) I 
=I E(p2) I = n ~ 3. Then [Po = Clo] v [P1 = q1 ] ~ [P2 = q2] • 

Proof: From the description of the n-skeleton, it is clear 

that [Po = c1a] v [Pi = q1J£. [P2 = q2J . Consider f ,g EF(X) with 

f ..---n+l g, \ E( f) I = n+l, f ~n+l g, f ~~+l g. From the dual of pro­

position 4.5, and propositions 4.6 and 4.7, it follows that 



In· ord~>~ t ') complete tne description of the skeleton, it is 

necessary to find the inclusions which exist between elements of the 

2-skeleton and the 3-skeleton. This will be done in proposition 4.9 

and coroll~ry 4.10. 

Proposition 4.9: For a,b,c €: x, consider (abc = abac) and 

(abca = acba). Then abc __. abac, abc ~3 abac, abc e abac, abc ~· abac;
3 3 

and abca .-- acba, abca ~3 acba, abca ~3 acba. Also
3 


c~ba = [abc = abacJ ' [ab = aJs [abca = acbaJ
abJ c;:_ 

I - -, - 1 r -1 

Gb = ba_I ~ l__~bca = acbaJ and !__~ha = abJ </-. L_abca = acba j . 

Proof: The only non-trivial statement is 

[aba - ab]ft [abca = acba]. It is clear that if p = aba and q = ab, 

th.en I(u('/J(p))v) = I(u('/.i(q))v) for any u,vE F'(X) and homomorphism 

't:F(X)--;,.F(X) • . Therefore since I(abca) ~ I(acba), 

[aba = ab]¢. [abca = acbaJ. 
Corollary 4.10: [ab = a] v [~b = baJ~ [aba = abJ . 
The above results and the)r duals are summarized in figure 3. 

3. Equntional classeR determined by one equation. 

In this Rection we show th~t all equatjonal classes determined 

by one equation are equal to an element of the skeleton of the lattice, 

or to the meet of two elements of the skeleton. 

Proposition 4.11: Let p,q,f,gEF(X) satisfy\ E(p) I = n ~ 3, 
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~n+l'en+l'¢~+1 
([abc:abac]) 

8 0• a.
n' n'Pn 


( [aba=ab]) 


Q< [aba=a]) 
/ / ~., 

/ ',
y,I 	

I ' • 

" 
I 


d d.• e 0•
y.1n' 11 n' n' n. 

<[ab=ba]) 

e d.• 
n' 11n 


( [ab=aJ) 


F'igure 3: 	 The inclusions between elements of the n-skeleton 

and the (n+l)-skeleton. The broken lines, and 

classes in brackets, refer to n=2 only. 
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p --n q, p ~~ q, f n g, f en g. Then [P = 'l]s. [r = l(g)F(f)] • 

' P-ruof : s ~ ,ce f 0 g, it follows that for every substitution 
n 

<.pin (f = g) by n variables, I((f'(f)).,.._"f(<f(g)). Therefore 

r .-.J I(g)F( r).
n+1 

If p and q E F(X) satisfy I E(p ) I = n+l, Po --rl+l <lo and0 0 0 

Po ~n+l ~' then by the dual of proposition 4.5, and by proposition 

4.1, it follows that [P = q] ~ (?0 = <lo]£ [r = 'f(g)F(f)J • 

Definition l+.12: Let f ,g E F(X) satisfy f __- g, n ~ 3. Then 
n 

(1) f '?i' iff f a I(g)F(f), and n g n+1 

<2) r '9• irr r• e g*.n g n 

It should be noted that if f ~ g, it follows that f _,-..../ I(g)F( f),n n+1 

but not necessarily that f ___, g. From this remark it follows easily
n+1 

(4.20) If p ~ n q, then p e q for all n ~ 3. 
n 

If q, then p e~ q for all n ~ 3.P ~· n 

Moreover: 

(4.21) If '9 q and q then p __. q • p n p ~· n n+1 

ProposiUon 4.13: Let p,q ,f ,g E F(X) satisfy \ E(p) I ::: n ~ 3, 

p ___.n q' p .+n+1 q, f --n g, f -e-n g. Then [ p = 'l] ~ [r = I(g)F( r>] . 

Proof: Let p0 , <lo E F(X) satisfy I E(p0 ) I = n+l, Po ~n+l ~' 

en+l ~, p0 e~+l ~· Since f en+l l(g)F(f), and p0 ~n+l ~' itp0 

follows by proposition 4.3 that [Po= ctoJs;. [r • l(g)FCr)] Since 

p _L, q, and \ E(p) I = n, either p ~ q or p ~· q. Since p 9 a~
~In+1 n n 0 n+l -u 

and Po e•n+l <1o' it follows by proposition 4.4, or its dual, that 
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[P = qJ £ [Po = q0] . Therefore [}> = q] £ [r =I(g)F(.f) J . 
A 

ProposH ion 4.14: Let p,q,f ,g~ F(X) satisfy f -- g, f ¢ g,
n n 

'' · f en g, IE(p) I = n+l, p ..--n+l q. Then [r = gJ~ [P = I(q)F(p)] • 

Proof: Since f G g, it follows that for every substitution 
n 

<pin (f = I(g)F(f)) by n variables, <p(f)--· <p(I(g)F(f)), and hence 

that 	f .--- I(g)F( f). Moreover, since f ~ g, it follows that
M 1 n 


f ~ I(g)F(f). By proposition 4.1, it follows that 

n+1


[r =I(g)F(r)] ~ ~ = I(q)F(p)J , and therefore that 


[r = gJ ~ [P = I(q)F(p)J • 

Proposition 4.15: Let p,q,f,geF(X) satisfy IE(p) I = n ~ 3, 

p ,_.,.n q, f ,..._..,n g. Then any of the following conditions is sufficient 

for [P = ciJ = [r = gJ . 
(1) p ¢n q, 

(2) p en q, 

(3) p e~ q, 

( 4) pen q, 

(5) p 0~ q, 

(6) p ~n q, 

(7) p e n q, 

(8) p e~ q, 

p ~~ q, f ~n g, 

p ~n q, p ~~ q, 

p ~~ q, p ~n q, 

p ~~ q, fen g, 

p ¢n q, f a~ g, 

p ~~ q, p en q, 

p en• q, p ~· q,n 

p en q, p ~n q, 

f ¢~ 	g. 

f en 	g, f ~n g, f ¢~ g. 

f e~ 	g, f ~~ g, f ~n g. 

f ~~ 	g. 

f ~n 	g. 

p e~ 	q, f ~n g, f ~~ g, f en g, f e~ g. 

r 0' 	 g, r a• g, r ¢• g.n n n 

f 0~ g, f en g, f ~n g. 

Moreover, if p
1 

, q E F( X) satisfy I E( p ) I = n+l, p .---n+l q
1 

, then either
1 1 1 

of the following conditions impU.es that [r = gJ = [P = q] A [P = q J • 
1 	 1

(9) 	 p e~ q, p ~~ q, pen q, P1 ¢n+l ql, P1 g~+l ql' f· ~n g, fen g, 


r e• g r °¢* g. 

n ' n 



(10) 	 pen q, p 'Sin q, p e~ q, p1 ~~+l q1 , p1 en+l q1 , f ~~ g, f e~ g, 

f 0 g, f j B• · I 
n n 

Proof: The proof consists for the most part of listing those 

propositions already proved which can be applied. 

(1) propositions 4.1, (4.1)•. 

(2) propositions (L•.l)*, 4.3. 

(3) dual of (2). 

(4) propositions <4.1H, 4.11. 

(5) dual of (4). 

(6) propositions 4.3, (4.3)*. 


(?) propositions 4.13, (4.3)•. 


(8) dual of (7) 

(9) Since p e q and P e• q
1 

, it follows from proposi­n 1 n+l 

tions (4.3)• and 4.14 that [r = gJ~ [P = qJ"' [Pl = ql] • Since 

f ,,__, I(g)F(f), it follows from proposition 4.1 that 
n+1 


[P = qJ~ [r =!(g)f(r)J. By proposition (4.3)•, 


[P = qJ s;: [g = I(g)F( f)J , and therefore IYi = q1J/' [P = q] ~ [t = g] • 
(10) 	 dual of (9). 

The following is the corresponding proposition for n = 2. 

Proposition 4.16: (Tamura, 1966; lemma 13). Let f,gEF(X) 

satisfy f ,..._., g, and let a, b,c EX. Then
2 

(1) If E(f) ~ E(g), H(f) ~ H(g), H*(f) J H*(g), 

then 	 [r = gJ = [a = bJ . 
(2) If E(f) ~ E(g), H(f) =H(g), H*(f) ~ H*(g), 

then [r=g] = [ab=a]. 
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(3) If E(f) ~ E(g), H(f) ~ H(g), H*(g) ~ H*(g), 

then [r = g] = [ab = b] • 

(4) If E(f) f. E(g), H(f) =H(g), H*(f) = H•(g), 

then [r 	~ gJ = [aba = ~1 . 
(5) If E(f) = E(g), H(f) ~ H(g), H*(f) F H*(g), 

then [r 	= gJ = Lab = b~J • 

(6) If E(f) = E(g), H{f) = H(g), H*(f) FH•(g), I{f) = I(g), 

then [f = gJ = [aba = ab] • 
(7) 	 If E(f) = E(g), H(f) ~ H(g), H*(f) = H*(g), F(f) = F(g), 

[aba = ba] • 

(8) If E(f) =E(g), H(f) = H(g), H*(f) FH*(g)~ I(f) F I(g), 

then [_r = g] = [abc = acb] == [;ba = a~] A [~bca = ar: ~:>a] • 
1 

:,· 

(9) If E( f) = E(g)~ H(f) F H(g), H*(f) =H*(g), F(f) F F(g), 

then I! = g] = [abc = ba~ = [aba = ba]A [abca = acb~ • 

. 
Proof: From (1.7) and (1.14) we can conclude th~t if ... . . ' 	 , ' ,·, 

E(f) ~ E(g) then [f =gJ~ {!.ba =a]; if ~(f) FH(g) the~ 

Q' = gJ~ [aba = ba] ; and if H*(f) F H*(g), then [r = gJ~ [aba = ab] . 
It is trivial that if E(f) = E(g), then [ab = ba] £ [r = gJ ; if 

H(f) = H(g), then [ab= a] [f = gJ; and if H*(f) = H*(g), then 

[ab = b] 	£ [f = gJ . 
Thus if E(f) FE(g), H(f) FH(g), and H*(f) FH*(g), then 

[r = gJ ~ [aba = ab]A[aba = a]A[aba = ba] = [a= b], and (1) 

is proved. 

If E(f) # E(g), H(f) = H(g), and H*(f) ~ H*(g), then 

then [r = gJ~ [aba =a ]/\[aba = ab] = Gb = a]~ [r = g] , and (2) is 
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proved. The proof of (3) is dual to th~ proof of (2). 

If E( f ) ~ E(g) , H(f) = H(g), and H*(f) 5 H*(g), then trivially 

[abc = ac] ~ ~ = gJ . But if (aba = a) holds, then abc = abcacabc = ac, 

and therefore [ aba = a J~ [abc = acJ , and hence [aba = ~] =[abc =ac] • 

Ther efore [_~ba =a]~[! = gJ £ (!ba =a] , and (4) is proved. 

If E(f) = E(g), H(f) F H(g), and H*(f) ~ H*(g), then 

[r = gJ ~ [aba = ab]A [aba = ba] =[ab = ba] £: [r = g] , proving (5). 

If I(f) = I(g), then [ aba = a~ <;, [r = gJ , since if (aba =ab) 

holds, then {f =I(f)) holds. Therefore if I(f) = I(g), (which of 

course implies E(f) = E(g), and H(f) =H(g)), and if H*(f) # H*(g), 

then [r = gJ = ~aba = ab] , and (6) is proved. The proof of (7) is 

dual to that of (6). 

If E(f) = E(g) and H(f) = H(g), it is trivial that 

[abc = acbl £ [r = gJ • If H*(f) # H*(g), then [f =gJ ~ [~ba = a1>] • 

If E(f) =E(g), H(f) =H(g), and I(f) F I(g), then 

\.! = gJ ~ [abf (a,b,c) = acg (a,b,c)] · by the obvious substitution,1 1 

and if in addition H*(f) ~ H•(g), then since [r = gJ ~aba =ab] , 

Therefore (8) is proved. The proof of (9) is 

dual to that of (8). 

Theorem 4.17: For each n ~ 3, there are exactly ten equational 

classes determined by equations ( f = g) with f ~ g., f __. 
1 

g.
n n+ 

There are ~xactly nine equational classes determined by equations 

(f =g) with f ~ g. In particular, figures 1, 2, and 3 depict that 

subposet of the lattice of equational classes of idempotent semigroups 

which consists of the classes determined by a single equation. 
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Proof: The descri.ption of the n-skeleton,corolla:d.es 4.8 and 
I 

4 ~10, and theorems 4.15 ((9) and (10)) and 4.16 ((8) and (9)), show that 

for n~3, there exist at least ten classes determined by an equation (f=g) 

with f - g, f -L_,, g, and that there exist at least nine classes · n ·~+l 

determined by a n equation (f = g) with f _.._,1 g. But in fact for each
3 

n, all equations of this typ~ have been shown to be equal to one of 

ten equations for n ~ 3, or one of nine, for n = 2. Therefore ther~ a 

are at most ten or nine such equations, respectively. 

Thus, since all classes determined by a single equation have 

be~n given in figures 1, 2, and 3., these figures do in fact depict the 

subposet of the lattice of equational classes determined by one equation. 

4. Equational classes determined by arbitrarily many equations. 

In order to show that the whole lattice has been described in 

f:i.gures 1, 2, and 3, we will show that every equational class is 

determined by a single equation. 

Proposition 4.18: Every equational class determined by finitely 

many equatlons is determined by one equation. 

Proof: We will show that the meet of two classes, each of which 

is determined by a single equation, is itself determined by a single 

equation. 

r
2
.-- g

2
, then E(f.) = E(g.), H(f ) = H(g.), and H*(f.) = H*(g.),

1 1 1 . 1 1 13 

(i = 1,2). Take E(f )nE(f ) = ¢. It is trivial that
1 2

[r1 = 81] A [r2 =g;J k [r1r2 = g1g2J • 

http:n-skeleton,corolla:d.es
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Moreover, if <.p is a substi tution which satisfies ~ ( x) = H* ( f )
1 1 1

for all x E E(f ), <..p (y) =y for all y E E(f ), then ~l (f r ) = r
2 1 1 1 2 1 

and <.p (g ) = g • Therefore [r r = g J~ [r = J?; ] •1g 1g
1 2 1 1 2 2 1 1

Similarly, if 'f satisfies 'f (x) = H(f ) ,for all x E E(f ) .<.p2 Cy) = y
2 2 2 1 

for all yEE(f ), then it follows that [r r : g1g2J~[r2 = g2 ]·
2 1 2 

If fl + 3 gl, or f 2 +_, g2 , then [ f 1 = g1 ] A [r2 = g2 J 
= [ p = qJA [Pi = J, where either both [:P = q] and [Pi = Jq1 q1 

are equational classes given in proposition Lt.16, or [Pi = q ] is one
1

of these classes, and p and q satisfy p,..._,. q and one of the follow­
3 

ing~ 

(i) p ~· 3 
q, p 03 q, p ~· 3 

q, 

(ii) p ~· 3 
q, P a•3 

q, p fr13 q, 

(iii) p ¢3 q, p ~· q.
3 

It is straightforward to check that all such meets are classes generated 

by a single equation. 

Theorem 4.19: Every equational class of idempotent semigroups 

is determined by one equation. 

Proof: The poset of equational classes which are determined by 

one equation is R lattice which satisfies the descending chain ,::ondi­

tion. Moreover, every set of incomparable elements in this lattice is 

finite. It follows that every meet in the lattice of equational classes 

is a finite meet in the lattice of classes determined by one equation, 

and therefore determined by one equation (by theorem 4.18). 

From thi3 theorem we can now conclude that the lattice of 
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equational classes of idempotent semigroups has bP-en completely 

described. E,igure 4 depicts the complete lattice. 
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-B'• e a
n' n' 17n 

~. e• e a
~n' n' n'""'n 

ii• e• a'n' n')t'n 

E,I ,}!• 

E,H,f ,}1* 

F'igure 4: The lattice. 
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