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INTRODUCTION

The concept of an equational class of algebras was introduced
by Birkhoff in 1935, and has since been discussed by several authors
(see for example Tarski, 1954). If one ignores the foundation pro-
blems, which in any case are easily circumvented, the equational
classes of algebras of a given type form a lattice under class inclu-
sion. It is of interest, then, to investigate the properties of this
lattice for a given type of algebra, and if possible to describe the
lattice.

The former problem has been dealt with more successfully than
the latter. For example, distributivity of the lattice has been
characterized in special cases by Jonsson (in press). Up to the pre-
sent, the only lattice to be described is the lattice of equational
classes of algebras with one unary operation (Jacobs and Schwabauer,
1964). The next type to consider would seem to be the lattice of
equational classes of algebras with one binary operation. Here the
problem is much more difficult. Kalicki (1955) showed that there are
uncountably many atoms in the lattice of equational classes of group-
oids. The lattice of all equational classes of semigroups (associa-
tive groupoids) forms a sublattice of the lattice of equational classes
of groupoids. This sublattice is uncountable (Evans, 1967), and has
been investigated by Kalicki and Scott (1955), who listed its countably

many atems.



The lattice of equational classes of commutative idempotent
semigroups, i.e. of semilattices, consisté of only two elements.
Non-trivial sublattices of the lattice of equational classes of semi-
groups may be obtained by removing one of these restrictions. Par-
tial results have been obtained for the lattice of equational classes
of commutative semigroups (Schwabauer, 1966; Nelson, 1967). In the
case of idempotent semigroups, it is relatively easy to show that the
lattice of eguational classes has three atoms, and in fact the sub-
lattice generated by the atoms has been shown by Tamura (1966) to be
the eight-element Boolean lattice. Kimura (1958-IV) has described
all equations on idempotent semigroups in three variables.

In this thesis, a complete description is given of the lattice
of equational classes of idempotent semigroups. An outline of the

thesis, by chapter, follows.

Chapter I: The solution of the word problem for free idem-
potent semigroups given by Green and Rees (1952) is described. Those
equations on semigroups which are no restriction on idempotent semi-
groups are characterized. Several invariants are introduced for use
in succeeding chapters.

Chapter I1: The relation r*dh (for every natural number n)
is introduced and characterized. The special characterization given
in proposition 2.7 is of central importance, and leads to the defini-
tion of certain other relations which are used in later chapters to
classify equations.

Chapter III: In this chapter, the equations (f = g) ir n
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variables which satisfy f ~, B are singled out for special attention.
For fixed n, we define the n-skeleton to be that subposet of the lat-
tice of eguational classes whose elements are the classes determined
by a single equation of this kind. The n-skeleton is completely
described, using the relations defined in chapter II,

Chapter IV: The skeleton of the lattice is formed from the
union of the n-skeletons by finding the inclusions between elements
of successive n-skeletons. The relations defined in chapter II are
used together with relations introduced in this chapter, to show that
every equation determines an equational class which either is a member
of the skeleton or is equal to the meet of 2 skeletal elements.
Finally from properties of eguations, and of the skeleton of the
lattice, it is shown that every equational class of idempotent semi-
groups is determined by a single equation. A description of the lat-

tice is therefore complete.



CHAPTER I

INVARIANTS AND FREE IDEMPOTENT SEMIGROUPS

In this chapter, we present the solution of the word problem
for free icdempotent semigroups given by Green and Rees in 1952, We
then introduce complete sets of invariants, and use them to further
describe the algorithm for deciding when two words represent the same
element of the free idempotent semigroup. Various additional invari-
ants are introduced and their properties discussed. These invariants

will prove to be useful in the succeeding chapters.

l. The word problem.

Throughout the paper X will be a fixed countable set, and
F(X) the free semigroup generated by X. Every semigroup generated by
X may be thought of as consisting of all products X Xse oo X of finite
non-empty sequences in X. The free semigroup F(X) is characterized by
the property that two products X X5eeeX g Y Yoo ooy, are equal iff

n = m and X5= Yy (i = 1,240444n). We also refer to the elements of

F(X) as words or terms.

A semigroup equation is a pair (f,g) of elements f,g € F(X).
The equation (f,g) is said to hold, to be valid, or to be satisfied in
a semigroup S iff for every homomorphism ( :F(X)—>§, (¢ (f) = (p(g).
In order to conform with the usual notation we also say in this case

that the equation (f = g) holds in S,



We will be concerned here with idempotent semigroups, i.e. semi-
groups which satisfy the equation (x = xa), (x€X). Let FI(X) be the
free idempotent semigrour generated by X. Since every homomorphism of
F(X) into an idempotent semigroup factors through FI(X) in such a way
that X is mapped identically, the semigroup FI(X) plays an important
role. Let K:F(X)—>FI(X) be the homomorphism which maps X identically.
An equation (f = g) holds in every idempotent semigroup iff
K(f) =X(g). If K(f) =X(g), we also write f~g.

For technical reasons we also introduce F'(X), the free monoid
generated by X. F'(X) contains F(X) as a subsemigroup and has one
additional element e, which may be thought of as the product of the
empty sequence, and which satisfies ae = ea = a for all a € F'(X). The
definition of ~ may be extended to F'(X) by setting e ~ e and assert-
ing that e~«~a for all a ¥ e.

It is well known (Cohn, 1965, pl56) that the relation ~ on

F(X) can be described as follows:

(1.1) f ~ g iff there exists ho,hl,...,hnEEF(X) and p,,9;,7y

€F'(x), (i = 0,1,...,n=1), such that hy= f, h = g, and for every
i =0,1,cee4n=-1, either hi= P 4Ty and hi+1= piqiri, or hi= piqiri and
Bia1= P393%se
Using this description, the relation ~ will he characterized
in a more convenient way. The following notation will be used.
The dual (S*,*) of a semigroup (S,*) is defined by S* = S,

and a*b = b,a for all a,b€S. Since every term f determines uniquely

the sequence in X of which it is the product, the dual. f* of f = Xy Xye oo X



. o T _
may also be introduced by defining f*= Xy#XobooonrX = X X qeeeXge
Clearly £** = f, ond f~ g iff £*~ g*.

If £ = X Xye00x € F(X), let L(f) = n be the length of f, and
E(f) = { xl,xa,...,xn} s the set of variables occurring in f. Let
L(e) = O, and E(e) = @.

Since E(pqr) = E(pqar), it follows from the above description

of ~ that
(1.2) If £~ g then E(f) = E(g).

For f = X X,e00X € F(X), define £(0) = X, where j is deter-
mined by the properties
(i) i< j implies xi# Xy
(ii) E( aoox.) = E(f)
e R
Deflne f(o) = Xl...xj_l.
£*(0) and £(1) = (£*(0))*. Define e(i) = e, and

Note that f(0) = e if |E(f) | = 1. By duality

define £(1)
e(i) = e, (i = 0,1).

It follows easily from these definitions that

(1.3) E(f) = E(£(0)T(0)) = E(T(1)£(1)).

(1.4) If £ £e, |E(£)| = |B(£(0))]| +1 = |B(£(1)) | + 1.

By a substitution we mean here a homomorphism (P:F(X)—-)F(X)
which maps X into itself. Every substitution may be extended to equa-
tions by defining Sp(f,g) = (y?(f).Sp(g)). Sﬂis said to be a substitu-

tion in (f = g) by n variables iff IE(?D(f))LJE(Sp(g))' = n. If the

equation (f = g) holds in a semigroup S, then every equation obtained



from (f = g) by substitution holds in S. In particular, if f—~ g

then (f) ~ @(g). Clearly for every eubstitution (p we have:

(1.5) @ (£%) = (@ ()=,
(1.6) If E(f) = E(g), then E(¢ (f)) = E(¢p (g)).
Moreover:
(1.7) If E(f) # E(g), then there exists a substitution ¢ in

(f = g) by two variables with E(L’p(f)) 2 E(()o(g)), and hence, by

(1.2), with (p(f) * ‘70(g).

Proof: W.l.o.g. there exists beE(f) - E(g). With an arbitrary
a€X, a £ b, define Lp by
jb if x = b.

Sﬁ(x) =

Clearly E((’u(g)) = {a} , and beE(t{?(f)). Therefore

{aif xeXx -{b} .

E(LP(f)) # E(Lp(g)).

Lemma 1.1: (Brown, 1964). If f,g€F'(X) and E(g) < E(f),

then f ~fgf.

Proof: (Brown, 1964). We first show that if f -~ pgr,
(pyreF'(X)), then f ~fgf. If f ~ pgr, then fgf ~ (pgr)g(pgr)
—~ (pg) (rg) (pgr) ~ (pg) (pg) (rg) (pgr) ~ p(gpgr) (gpgr) ~ pgr ~f.

In order to prove the lemma it is therefore enough to show
that if E(g) € E(f), then f~pgr for some p,re€ F'(X). We show, by
induction on L(g), that in fact f~ fgr for some r. If L(g) = O,

take r = f. If L(g) = 1, then g = hx, x€X, heF'(X). By inductive



hypothesis, f ~fhr. Since x€ E(g)<¢ E(f) we have f = f'xf" for some
f',f"eF'(X). It followes that f~ (f'xf")hr = £'(xf"h)r

~ ' (xf"n) (xf'"h)r = fg(£f"hr).

Lemma 1.2: (McLean, 1954). If f,g,h¢F'(X) and E(h) < E(f)

= E(g) then fg —~ fhg.

Proof: By lemma 1.1, fhg ~ (fhg)(fg)(fhg)

(fhgf) (gfhg) ~ fg.

Corollary 1.3: (Green and Rees, 1952). Assume f,g¢€ F(X).

If £(0) ~ g(0), £(1) ~ g(1), £(0) = g(0) and £(1) = g(1), then f—g.

In particular, f ~ £(0)E(0)T(1)£(1) for all fe€ F(X).

Proof: It is enough to show that £~ f(0)f(0)f(1)£f(1). From
lemma 1.2 it follows immediately that if L(f) = L(£(0)T(0)F(1)£(1))
then £ ~ £(0)f(0)E(1)£(1). If L(f)< L(£(0)T(0)T(1)£(1)), then there
exist p, q, r € F'(X) such that f = pqr, pq = £(0)F(0) and

gr = F(1)£(1)s From this it follows that £~ pqor = £(0)F(0)F(1)£(1).

Lemma 1l.4: (Green and Rees, 1952). If f,g€F(X) and f— g,

then £(0) = g(0), (1) = g(1), £(0)—~ g(0), and £(1)~ g(1).

Proof: (Green and Rees, 1952). By duality and the description
of ~ , (1.1), it is enough to show,for p,q,r € F'(X) with pqr € F(X),
that par(0) = paar(0) and (par)(0) ~ (pq°r)(0). The first of these
statements is obvious. If pqr(0) € E(p)UE(q), then the second state-
ment is also obvious. Otherwise there exists r'e F'(X) with (pqr)(0)

= pqr'~pq2r' = (pqar)(O)-



Corollary 1.3 and lemma 1.4 give the following:

Theorem i.5: If f,g€F(X), then f ~g iff
(i) T(0) = g(0), (1) = g(1)

(ii) £(0) ~ g(0), £(1)~ g(1) .

A mapping 7T of F(X) into an arbitrary set will be called an
invariant iff for all f,g€F(X), if f~ g then JU(f) = T\(g). A set

M of such mappings will be called a complete set of invariants iff for

all f,geF(X), f~g iff TU(f) = JU(g) for all 7\ € M. The set
{K} s where K: F(X) —FI(X) is the canonical homomorphism, is a
trivial complete set of invariants. Theorem 1.5 states that the map-
pings f~>£(0), f~>f(1), f~>Kk(£(0)), f~>K(£f(1)) constitute a
complete set of invariants. In order to obtain a more refined set of
invariants, it is necessary to introduce some more notation.

Let F(2) be the free semigroup generated by the set {0,1} .
F(2) consists of all products of finite non-empty sequences in {0,1}
where two products are equal iff the sequences are the same. The
length L(X) of « ¢ F(2) is defined as before. For f eF'(X),
A € F(2), we define objects f(ox) and f(c<) by induction on L(o< ).
If L(ex) = 1, then f(o<) and f(o<) have already been defined. If
L(x) = 2, say o<=f31, (i =0,1), put

f(x) = (£(3))(1) and  T(x) = 'f'(ﬁ?(i)
By induction on L(&) + LSﬁi) it is easy to see that for all

0\./3 € F(2),

(1.8) 2e3) = (£(e)) ().
(1.9) 'f(o&ﬁ) = f(Od(ﬁ).
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Furthermore, if for o= i i ...i (ije {O,l} ), we put

172
o' = 1i1;...1' where ié =1 - ik, then
(1.10) £f(ot') = (£*(x))* and
(1.11) Fo') = To(x).
(1.12) If L(o<) ¢ |E(£)] , then |E(f)] = | E(£(ex))| + Lt ).

By induction it now follows from Theorem i

Corollary l.6: The set {f»n»?(o()loc € F(2)} is a complete

set of invariantse.

2. Some additional invariants.

From corollary 1.6 it follows that in particular the mappings
fa~¢?(0k) and f»~>?(1k) are invariants for any k. By (1.2), if f~g

then E(f) = E(g). Therefore the mappings H and H*, defined by

H(f) = ?(olE(f)')

He(£) = B(£*) = FIEDIy,

are invariants. H(f) is simply the first variable, and H*(f) the last

variable which occurs in f. For any n » O, define

#t {H if n is even
H* =

H* if n is odd -

For all n 2 0, (H*%)* = g»("*1),

Furthermore, the mappings I and F, defined by

70 B O3By $0)  ana

IE(f)I)'

I(f) =
F(£) = (I(£*))* = FVTQD...2Q
(where the products are taken in F(X)), are invariants. I(f) indicates

the order of first occurrence of the variables of f. For any n = 0O,



define
(I if n is ewen
’ =1_F if n is odd
The mappings T and F, defined by

I(f) = £(0) T(0) and

F(£) = (T(£*))* = T(1)£(1),

(where products are taken in F(X)), are not themselves invariants.
However, it follows from theorem 1.5 that the composed mappings
Kol and KoF are invariants. For any n * O, define
{‘f if n is even.
™.

F if n is odd.
H, I, E, F were introduced by Tamura (1966).
If () is any substitution, it is clear that H-“(L;/(f))

=g (H*™(£)) for all n 2 0. In particular, for all n 2 O,
(1.13) If He'(£) = B*"(g), then H*"(@(£)) = H*" (P (g))
Furthermore, we have, for all n 2 O,

(1.14%) If H*™(f) £ H*™(g), then there exists a substitution
Sp in(f = g)by two variables such that H'n(Hp(f)) £ H‘n(gp(g)) and

in particular such that go(f)qffsp(s).

(1.15) Let k be the largest number r such that (P(?(Or))

=GTE)(0). Then 'I'(Lp(f)).-s(f(f(ok))(f(?(ok)).

Proof: By definition 99(f5(0) = 90(?(0k)). Moreover since

E(£(0%)) ={?(oi)|k +1€1i% |ED)|}, it follows that

11
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ﬁp(fS(O) ;éla(y;(f(ok))). Therefore by the definition of I, T(Sp(f))

= Q(£(0)) P(F(0)).

(1.16) Let k be the largest number r such that 90(?(11‘))

= GUD(). Then F((p(£)) = soc?(lkm,o(f(l“))
(1.17) 1“(50(f>) - In(<7p(In(f))).

Proof: We will show by induction on IE(sp(f)), that
I(9J(f)) = I(SP(I(f))). Then, since F(f) = (I(f*))*,it follows
easily that F(gp(f)) = F(SO(F(f))).

If |E(90(f))l = 1, the result is trivial. Assume
|E(gp(f))l>1..From(i.15) it follows that T(yv(f)) = 9o(f(ok))@p(?(ok))
for k the largest number r such that y><?(or)) = EZT?T(O). Bj induc-
tive hypothesis, I(%p(f(ok))) = I(Sp(I(f(Ok)))). Moreover, it is an
immediate consequence of the definitions that ?7?3??7)(0) = ZET?T(O)

- 90(?(ok)). Therefore 1(((£))= I(Lp(f(ok)))gp(?(ok))
. 1(97(I(f(ok)))>§ﬁfif?77(o)= I(( (1(£))), (from the definition of ks

It follows immediately that

(1.18) If 1™f) = I™(g), then 1“(<f(r)) = I“(sp(g)).

(1.19) 1f 1°(f) £ 1™(g), then there exists a substitution f in
(f=g) by at most three variables such that In((P(f)) # In(gu (g)) and

hence such that SD(f)7¢ sp(g).

Proof: By (1.7) and (1.14) we can assume that E(f) = E(g), and

H(f) = H(g). Since I(f) # I(g) it follows that I(f) = flezyf and

3’



I(g) = B1YB, X85 with x,y€X, f ,g € F'(X), (i = 1,2,3). Setting

XxX=by,y=c¢c,t  z =a for z€E(f) - {x,y} gives a substitution

(p with (P(f) = abf'(a,b,c),(/)(g) = acg'(a,b,c). It follows that

7???7(0) =c#£b =7ﬁ?§7(0), and therefore that I(y (£))£ I(p (g)).

Let the equational class of idempotent semigroups determined
by the equation (f = g) be [f = g] . Similarly if (£, = g, Xxel
is a family of equations, let [(q%.z ga.)oaeijbe the equational

class of idempotent semigroups determined by the family. Then

[p=a]lc [£=¢] itf (p

q)=>(f = g).

Lemma 1.7: If E(f) = E(g), then

g] = [(£=T(DOF), (g = IOFe)] .

i

[t

Proof: It is clear that the right hand side is contained in
the left. Conversely, if (f = g) holds in an idempotent semigroup S,
then in S, £ = 1(f)f = I(£)I(g)F(g) = I(£)F(g), by lemma 1.2. By

symmetry the second equation also holds in S.

The dual A * of a class (| of semigroups is the class defined

by S € (i(* iff 8* ¢ {1 . Then

g] » [f‘ & g‘] and
g] & [p=q] iff [f=z]‘§ I:p=q]"-

L]
it

(1.20) E

(1.21) E



CHAPTER II

SOME RELATIONS

In this chapter, the existence of certain substitutions will
be used to define several relations in F(X). These relations will be

used in succeeding chapters to classify equations.

1. The relation < “n.

Definition 2.1: For f, g € F(X), f —~8 iff for every sub-

stitution ¢ in (f = g) by less than n variables,( (f)ﬂ({)(g).

That the relation ~n is an equivalence relation will be
proved later in this chapter (statement 2.4).

Since f~g iff @ (£)~ (p(g) for all substitutions ( in
(f = g), the relation ~~ could be included in definition 2.1 by defin-
ing f ~, g iff f~g .

Since Lp(f)N (P(g) if | E(L{)(f))UE(({)(g))I = 1, it follows

that
(2.1) f~5 g, for all f, g € F(X).
Moreover:
(2.2) If f"“h g then fr g for all k € n, (n = oo included),
(2.3) If |E(f)UE(g)| < n then f~ g iff f~g.

2. Characterization of ~~n for n 2 3,

Proposition 2.2: f,~3 g iff E(f) = E(g), H(f) = H(g), and

H*(f) = H*(g).

14
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Proof: Assume first that E(f) = E(g), H(f) = H(g), and
H*(f) = H*(g), and let (» be any substitution in (f = g) by two
variables. From (1.6) and (1.13), it follows that E(¢ (f)) = E(@(g)),
R(Q@(£)= B (), and H(@(£) = B*((p(g)). Since | E(g (D] = 2,
(and B(¢ (£)) = E(cp(g))), it follows that TP"Z?T(o) = E(f) - {H((,a(f))}
= B(g) - {H(¢(e)]} = GTEI(0), and similarly that GTEI(1)

= (PZgS(l). Theorem 1.5 then gives

Lp(f)NH(cp(f))ap(ff(o) (.P(f)(l)H*(({)(f)) :

= H( cfa(g))(p(g)(o) l.P(g)(l)H"((,’o(g))fv <P(g), and hence fNBg.

The inverse implication follows immediately from (1.7) and

(1.14).

Proposition 2.3: For n 2 4, £ ~ 8 iff I(£) = (1(g),

F(£) = F(g), and for all r 2 1, £(0") ~ , g(0") and £(17) ~ . g(1™).

Proof: Assume first that I(f) = I(g), and that for all r » 1,
£(o") ~ g(0"). Let ¢ be any substitution in (f = g) by less than
n variables. From (1.18) it follows that I(( (f)) = I(So(g)) and in
particular that (p(£)(0) = @()(0). MNoreover, by (1.15), (¢ (£))(0)
= (£0%)), where k is the largest r with ¢ (F(0™)) = GTEI(0).

Since k depends only on I(f) and "C{R?)‘(o), it follows that k is also
the largest r with ((g(07)) = G(g)(0) and that (¢(g))(0) = LP(g(Ok)).
By construction, (f is a substitution in (£(0%) = g(0*)) by less than

n - 1 variables. But £(0X) ~~ g(0%), and therefore
(f)(f(ok))rvtp(g(ok)). By (1.15) it now follows that T(¢p(£))

= (p (20" P (FON) ~ () (&P (&) = T(p(a)).
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By duality, (using (1.10) and the definition of F and F), we
obtain f(q?(f)) = f(q)(g)), under the conditions F(f) = F(g) and, for
all r 2 1, f(lr)-rvn_l g(1¥). It follows therefore from the conditions
of the proposition that (f)(f)N .f(L'O(f))-F.‘(QP(f))N f(c,o (g))f"(so (g))
’*‘ﬁp(g), and therefore that f.— g.

Conversely, assume f’“’h g. Since n 2 4, we have £.~«h g
and therefore by (1.19), I(f) = I(g) and F(f) = F(g). Assume
f(Or)-ﬁ%ﬁ_l g(0F) for some r * 1. Then there exists a substitution
LPO in (£(0") = g(0¥)) by less than n - 1 variables such that
(Po(f(or))obgao(g(o‘")). Extend (7 to a substitution (p in (f = g) by
less than n variables, by setting (ﬁ(x) =aéX - E(LP(f(Or))) for all
x€X - E(£(0¥)). Then ((P(f))(O) = (F(f(Or))'%’ Cf)(g(Or)) = ((P(g))(O),
and therefore (P(f)7b 99(3), which contradicts f ~ 8 This proves
£(0") ~ 1 g(0¥) for all r » 1. Dually we can show that

£(1%) ~1 g(1") for all r » 1, completing the proof.

n
Every oL € F(2) can be written as <« = i:l 122 ...ik where

| ] £ _3 nee
ij £ ij+l for 1 ¢ j < k and n, 21, (L £ j£k). Define o S PURRS !

The following corollary is obtained from proposition 2.3 by induction.

k.

Corollary 2.4: If n 24, f ~ gandn - L(X) = 3, then

£loe) ~ () 8-

From propositions 2.2 and 2.3, it follows that for all n 2 3,
if f ~ g then B(f) = B(g). With this remark it is easy to prove the
transitivity of e The remainder of the proof of the following

statement is trivial.
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(2.4) ~, is an equivalence relation for all n * 2.

3. Characterization of ~~n for (p,q) in the special case E(p) = E(g),

[E(p)|= n = 3,

(i) Notation.

For any natural number n, define

d(n) = l_i_i___ -

_1)n+1 {0 if n is even
5 -

1 if n is odd

For n 2 3 define (02)n and (12)n € F(2) as follows:

n-d(n)=-2

(02) = (o1) 2 pdla)

n-d(n)=2
2 1d(n)

(12)_ = ((02) )" = (10)

A straightforward calculation shows

(2.5) 1(02)n (12)n+1

0(12)n = (02)n+l

If £ € F'(X), let £2 = e, and £ = f.

For p € F(X) define
p(0,m) = (50(02) ¥ ™ p((02) ) (F((02) )™

p(l,n) = (S(<12)n))d(n)P((lz)n)(;((IZ)n))d(n+l)
(2.6) I IE(P)l =n =23 then |E(p(o’n))| - .E(p(l'n))l .3

(2.7) (p(0))(1,n) = p(O,n+1)

(p(1))(0,n) = p(l,n+l)
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Proof: From the definitions and (2.5), it follows that:

(p(0)(1,m) = (HO1((12) N¥™ (p0))(2) ) (FTET((22) ) Hn+D)

N pc02), )G((02) 03

(5((02)n+

p(O,n+l).

(2.8) p(1,n) = (p*(O,yn))*

p(O,n) = (p*(1,n))*

Proof: From (1.10), (1.11), and the definitions, it follows
that:

(p*(0,n))* ((5:((Oa)n))d(“+l)p~((Oz)n)(52(<02)n))d(n)),

]

1]

(702 )%™ (302)_))*(F ((02)_))3+D)

(e N¥ W12y H(pcazy A

p(l,n).

(ii) Expansions and the standard expansion.

A product P in F(X) of terms p(e& ) and p(x), o€F(2), is
said to be an expansion for p iff p~P. Thus corollary 1.3 shows
that p(0)p(0)p(1)p(l) is an expansion for p.

r »
L] -

If £, € F'(X), 0 £1 ¢, let z:g £, 0= £.0 jeeefy.

In order to simplify the notation, if o« € F(2), let

pp(ec) = p(e<)p(ok) and pp(ec) = ploc)p(oc).
Lemma 2.5: For each r 2 O, the following is an expansion for f:
P . N i ;
(TTE o1 Yooy o) M) ) 2 (01) ™M TT (B (o1)90)Fe( (01)91)) .

i=0 j=0

Proof: The lemma is proved by induction on r. For r = O it is
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easy to see that f ~££(00)F(01)f(01)T(0)I£(1). Assume, by the induc-

tive hypothesis, that the expression is == expansion for some

W+l k+l k+2

00)F£((01) sy

r =k 20. Now f(01 )?((01)koxiix(01)

~ ££((01)

and therefore, from the inductive hypothesis, it follows that

kel _ 1 \= i+l K2, ks TS '
£~ (TULE((01) 00)T((01) ")) £((01) ™) (TT £((01)I0)EL((01)1)).
i=0 j=0

The expression is therefore an expansion for each r 2 0.

For each n » 3 and p&€F(X), we define below an expansion An(p),

called the standard expansion for p of order n. This expansion will

be of particular interest, since in general it is the simplest expan-

sion in which p(O,n) and p(1l,n) occur.

For all n 2 3, define

~ A *® L
An(p) = (An(p))(An(p ))

where, for the case n = 3,

FAS
A3(p)

and, for the case n 2 4,

p(03)

n+d(n) -3
2 : :
R =C TT @onionsont*n)
i=0
n+d(n) -2 n+d(n) >
(pR((01) 2 00)¥™ 6 nyEptor) 2 1))d(m)
ntdln) _(24a(n))
TT  Guonloppionnzo.
j=1

An explicit description of (ﬁh(p*))‘ can be given in terms of

P by applying (1.10), (1.11), and (2.8). Thus, for n 2 4,



n+d(n)

£ _(2+d(n)) .
(R_(p*))* = B(L)( [T (pp((10)90)5((10)71)))
j=1
n+d(n) -2 n+d(n) _
@10 2 on®™pa mGeeaoy 2 1))
(T Gao* (o).
i=0

Lemma 2.6: For all peF(X) and n 2 3,

[

(1) I(P)’~'I(An(p)) An(p)

1]

(2) F(P)’*’F(An(p)) (An(p*))‘

In particular, for all n =2 3, An(p) is an expansion for p.

Proof: We show first, by induction on n 2 3, that T(p)f*’ﬁn(p).
If n = 3, 1(p) = p(0)p(0) = p(0,3) = ﬁj(p).

Assume k 2 3, Then

p((oz)k)f~/(p((oa)k))(o)p((02{?(o)p((oz)k)(l)(p((oz)k))(l)

k-d(k)~2 k-d(k)=2

2 0030, ke1) (Epllor) 2 1))dCk+D)

= (pp((01) 1))
By replacing p((02) ) in ﬁk(p) by the above expression, we obtain, for
k = 3,

KB(p)f~q2§(oo)p(o,u)E(o) = A, (p),
and for k 2 4,
A~ TT (zB( (01 00)5((01)*)))

k+d(k) _
2

k-d(k)=-2

2
2 Od(k)))d(k+l)

(pp((01) 00)p((01)
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k=-d(k)-2 k-d(k)=2

(wpCo1) 2 0030 k) B0y 2 1))l

k-d(k)=2 k+d(k)
(o) 2 o¥N)Tpccon) 2

_21))d(k)

£ ra00)

* - Jonr J = _ A

( j’ ‘1 (p((01)-0)pg((01)+¥1)))p(0) = Ak+1(p).

It follows therefore by induction that T(p)f~'ﬁn(p) for all

. N A A -

n 2 3. Since B( (p)) = B((R (p*))*), and BR (p)) - {B(O)}
4 5(R (p)), it follows that in fact I(A (p)) = Kn(p), and therefore
part (1) has been established.

Part (2) follows from part (1) by duality. In fact, replacing

p by p* in (1) gives that F(p) = (I(p*))* = (ﬁn(p*))‘.

(iii) The characterization.

Proposition 2.7: Assume p,q€ F(X), E(p) = E(q),

[B(p)] =n 2 3. Then p ~ a iff (for € F(2))
(1) p(ex)~q(e¢) for all p(e¢) occurring in An(p), q{e¢ ) occurring in
An(q), and o £ (O?)n, oL £ (12)n;
(2) p(ex) = qet) for all p(o¢) occurring in An(p), q(c< ) occurring in

A (a), and o # (02) , o # (12) ;

n+l . H,,1'1+1

(3) E*""(p(0,n)) (q€0,n)) H*"(p(1,n)) = H*"(q(1,n)).

Proof: We show first by induction on n that conditions (1),
(2), and (3) imply p ~ Qe

If n

3, (3) implies H(p(3)) = H(p(0,3)) = H(q(0,3)) = H(q(3))

and H*(p(3))

H*(p(1,3)) = H*(q(1,3)) = H*(q(3)). By proposition 2.2

it follows that As(p)»-3 AB(q), and therefore, by lemma 2.6, p.f~3 Qe
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IfTn=k+124, it is sufficient, by proposition 2.3, to
prove that I(p) = I(q).F(p) = F(q), and p(0¥) ~ q(0"),

p(17) ~ a1"), (r 2 1).

The expressions p(0), p(00), p(00) occur in p(k+l), and there-
fore by (1) and (2) it follows that p(0) = q(0), p(00) = q(00), and
p(00) ~ q(00). By theorem 1.5, therefore, p(0°) = q(0") for all
r 21 and hence I(p) = I(q). Moreover, it follows that p(0") ~ q(0")
for all r 2 2. We must show that p(0) ~r q(0).

By inductive hypothesis it is enough to show that (1), (2), and
(3) hold for p(0) and q(0). If H(e¢) = O, then = qﬁz , and it
follows from p(00) ~ q(00) that (p(0))(wx) = (p(oo))g/a)/~a(q(oo))98 )
=(q(0))(x ) and p(0OY(X) = '(5135)')'(/3) = m(/?) = q(0)(ex).
Therefore we need only verify conditions (1) and (2) in case H(<<) = 1.

If H(0)(ct) or (p(0))(e¢) occur in A (p(0)); if H(X) = 1, and
if ol f (12)k' then a straightforward calculation to check the many
cases shows that p(Oc¢) and p(Oct) occur in Ak+l(p)' that q(0o<)
and q(0oC) occur in Ak+1(q) and that 0o¢ £ (02)k+1’ Therefore
p(0cX) ~q(0x), and p(OL) = q(Occ). Hence (p(0))(o¢)~(q(0))(ax¢ )
and p(0)(c¢) = q(0)(e) for all these o , and therefore (1) and (2)
hold for p(0) and q(0).

From (2.8), (p(0))(1,k) = p(O,k+l). Moreover, by (3), for p

and q,H*52(p(0,k+1)) = foE*e

=H,k+2

(q(0,k+1)) and therefore H*k((p(O))(l,k))
(p€0,k+1))) = H*((q(0))(1,k)). Since p(00) ~q(00), it follows

by theorem 1.5 that H‘k+1((p(0))(0.k))=H‘k+l

((q(0))(0,k)). Therefore
(3) also holds for p(0) and q(0). By inductive hypothesis we can

therefore conclude that p(O)«ﬁvk q(0).
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By duality,using the definition of F and (1.10), we can now
show that F(p) = F(q) and that p(1F) - q(1F) for all r 2 1. The
proof that (1), (2) and (3) imply p ~, is therefore complete.

Conversely?fassume P ~¢ 4, and show (1), (2), and (3). 1If
n = 3, (1) and (2) are vacuously true, and (3) follows from proposition
2.2, since p ~p(0,3)p(1,3). _

Assume n 2 4, If p(x) occurs in An(p), ol # (02)n,o<';4 (12)11’

then by corollary 2.4, p(O‘)‘-h ) q(o¢). Moreover it can be

-L(x
shown by direct calculation that n - L(X) 2 3, and therefore by pro-
position 2.2 that E(p(c¢)) = E(q(o¢)). Since, for these o<,
L(oC) >L(ex), it follows that | E(p(e<))UE(q(e<)) | < n - L(X), by (1.12).
Then by (2.3), p(o<)~~qfc<).

If p(ol) occurs in An(p), oK £ (OZ)n. X £ (12)n, then it can
be shown by corollary 2.4 that if cC= o i', some r 3 1, i e{o,l} ,
then p(ogo)z-a q(cco). By proposition 2.3 it follows that
p(ex) = q(o¢), and hence (2) is proved.

We establish (3) by induction on n 2 3, using (2.7). It has
already been shown that (3) holds if n = 3. Assume that (3) holds if
n =k 2 3. Then:
HeK*2( 500 k+1))=H*( (p(0)) (1,k)) = H**((q(0))(1,k)) = H***2(q(0,k+1))

L (p(1,ke1)) = B¥* L (q(1,k41)).

and similarly
Therefore by induction (3) holds for all n.

This completes the proof of proposition 2.7.

Corollary 2.8: Assume p,q € F(X) with | B(p)UE(q) | =n 2 3

and p ~; q. Then I(p)~I(q) iff p(0,n)~q(0,n), and F(p)~F(q)
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iff p(1,n) ~q(l,n). In particular, p~q iff p(O,n)—~ q(0O,n) and

p(l’n)NQ(l’n)o

Proof: Proposition 2.7 and the definition of An(p) show that
if p(0,n) ~q(0,n), then I(p)~ I(q),and if p(1,n)~~q(1l,n) then
ng)f~ff(q). The converse is trivial, since p~»p(0,n) and p~»p(l,n)

are invariants.

4. The relations & , ©*, © and ©*.
n* "a' "n n

Corollary 2.8 shows that the significant parts of p and q with
P ~ q and |E(p)UE(q)| = n 2 3, are p(O,n), p(1l,n), q(O,n), and

q(l,n). This suggests that the following relations be defined.

Definition 2.9: Assume p,q € F(X), P~ 9y n 2 3. Then, for

every substitution (§ in (p = g) by n variables,

(1) p o iff I ())(0,m) = I (¢ ())(0,n)),
(2) p e;q iff p‘enq‘, the dual of en,

(3) p 5gq iff ((p(p))(O.n)'~’((p(q))(o,n).

o . 0 A% a
(W) p ©*q iff p enq , the dual of en.

Lemma 2.10: Assume p,q€ F(X), P~ QD2 3. Then for every

substitution ¢ in (p = q) by n variables,
(1) p o3q iff I((p(p))(1,n)) = I"((¢(a))(1,n)),
(2) p Bpa 17 ((P))(L,n)~ (G (a))(Ln).

Lemma 2.11: If f’“fh+l gy then £ agg, and f §;g.

Proof: If f ~ . g, then for every substitution ¢ in (f = g)
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by n variables it follows that (P(f)fV'(f(g). In particular,
((P(f))(C.n)f\’((P(g))(obn), and ((?(f))(l,n)f~r((P(g))(l,n).

and therefore f éng and f §;g.

The following statement is an immediate consequence of

definition 2.9:

(2.9) If p enq, then p Gnq for all n 2 3.

14

if p 5;1q, then p 6*q for all n 2 3.

Moreover, from definition 2.9 and corollary 2.8,

(2.10) ¥/ 1f |E(p) | = n 2 3, then p 5£q and p 5;q imply p~q.



CHAPTER III

THE n-SKELETON

An equation (p = q), with |E(p)\JE(q)| =0, P~ G P Apq D

will be called an equation in n essential variables. If (p = q) is

such an equation, then there is an idempotent semigroup in which (p = q)
does not hold, but for every substitution (P in (p = q) by less than n
variables w(p)‘~41?(q).

For fixed n, we define the n-skeleton to be that subposet of
the lattice of equational classes whose elements are the classes deter=-
mined by a single equation in n essential variables. In this chapter
we will show that for all n, the n-skeleton is in fact a meet subsemi-
lattice of the lattice of equational classes. The n-skeleton will be
completely described, and shown to consist of seven elements if n = 2,

and eight elements if n 2 3.

l. The n-skeleton, n 2 3.

For the proof of the following lemma, it is useful to observe

that

(3.1) 1f | E(p)| = n, then

5p) {50091 20, 5 e {01}, 1 ¢ LoD oY) ¢ n]}.

This follows from the fact that the Eabl)ioj)form a set of n mutually

distinct elements,

26
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For feF(X), and n 2 0, define
'f if n is even
f‘n =
f* if n is odd

From this definition, and the fact that f** = f, it follows that

(£*™)* = f"‘n+l for all n 2 O.

Lemma 3.1: For f,p€F(X), assume |E(p)| = n 2 3, and
~ o0+l ’ -
let £(O,n) = (ylyz...yn) " yié X. Let \PZ F(X)—>F(X) be any homo
morphism which satisfies the following four properties:

(1) Y(E(nH) = FonhHrEontoo),1 « 1 « 232 _(a.a(n))

(2) Y00 o)) = Frtton I 1)F((01)30),0 ¢ 3 « 2R) ;5

n+d(n) -2 n+d(n) _
(3 Yoy 013y < (y,eruy ¥ VE((01) 2 gihnelly
(yl...yu)d(n) for some O € u £ r,.

(4) E(Y(p(0,n))) = E(£(0,n)).
Then the following is an expansion for f:
££(00)

3 n+d(n)_2

Y TT2 (a0 FCOL ) (pE(0) 2 00)p(0,n)) 4Py
i=0 [

f£(o,n)

n+d(n)_2 2-4-'-2-(---1-’1--)--(2+d(n))
Wi(po,mFp(o1) 2 13 ‘]—\I (5¢(01)90)Fp( (01)91))5(0))
j =

F(£).

Proof: We show first that

BCY (p((01)%0))) = E(£((01)%0)),0¢14 2288 5 | ang
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n+d(n)

ECY (p((01)3))) = E(£((01)9)),1¢3¢2H8L _(514(n)).

U 0P G000 v E(Y(B({01)*0)))
i+lek

E(¥(p(01)t0)))

n+d(n) -2

E(F((01))£E((01)*00) ) U E(F((01)

i+1ék=5i%£52-(2+d(n))

k+1

UE(£(0,n))U yl,...,yu}u \Jpeatny _EECOD1)T((01)*0))

i+l‘ké—T 3

- {?((01)kov)| i+4l ¢ k, V€ {0,1} , L((01)¥0") s n} .
= B(£((01)0)).
Similarly, it can be shown that E(*’(p((Ol)j))) = E(f((Ol)j)).

By lemma 1.2, it follows that

SLE01) 00)Fe( (01) M)~ £8((01) 00) ¥ (p( (01)Y00))E8( (01) 1Y),

for O ¢ i ¢ 21%&22 -3, and

£5((01)90)F£( (01) I1) ~ £F( (01) Y0) ¥ (Bg((01)91))F£( (01) I1)

n+d(n)
2

Moreover, since E(£f(O,n)) = E(V’(p(o,n))).

n+d(n) - n+d(n)

2 0004 p(0,m) (Z2((01)

n+d(n) -2 n+d(n) -2
~(£E((01) 2 00) ¥ (pg((01) £ 00)p(0,n)))

n+d(n) n+d(n)
2 2

for 1 43 ¢ -(2+d(n)).

-2
(£E((0L) 2 1))d(m)

d(n+1)t'(0,n)

- _
1))££((01)

-2
(¥ (5(0,m)Pp((01) 1))

The proof of the lemma is now completed by replacing those
terms which occur in An(f) by the terms which have been established to

be in the relation ~—~ to them.

Proposition 3.2: Let p, q, f, g € F(X) satisfy |E(f)| = n 2 3,
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f~ 8 P~1q,P ¢n q. Then [p = q] < [f = f(g)?(f)] N

Prcof: Since p ﬁn q, there exists a substitution ¢ in (p = q)

by n variables such that ('a(p)ﬂn(f(q). Since [p = q] c [LP(p) =LP(q)] "

we may assume w.l.c.g. that | E(p)| = n.

since p #_a and |E(p) | = n, I (p(0,n)) # I™" (q(0,n)).

H"‘n+1

Since p ~ q, it follows that (p(O4n)) = H‘n+l(q(0,n)), by propo-

sition 2.7, and therefore, w.l.0.g.,

p(0,n) = (e0) ™ p (0e) ¥ ™ Mang q(0,n) = (ea) ¥ Mg (ac) (74,

where a,b,c€ X, and E(pB)UE(q3) c {a,b,c} .

n+l

Let f(O,n) (yl...yr)“ , and

il

O+l

g(0,n)
Since f .~ &g, | E(£f)| = n, it follows from proposition 2.7 that

yy= B*™1(£(0,n)) = B*"*1(g(0,n)) = z.. If £(O,n) z g(O,n), there ex-

1.
ists t such that ¥i= %g0 1 £ j<t,and Yt 2o (Since Tn+1(f(0,n)) = £f(O,n)).
Let'ﬂ/ be the mapping referred to in lemma 3.1 with the additional

conditions that in property (3), u = O, and in property (4),

Y(c)
Y (b)

Y(a)

),n+1

<N+l
(yl...yt"l = (zl...zt-l) 'Y
(yt...yr)‘n+1, and

Zt.

Then

O (p00,m)N Y™V 206 1) (¥ (p(0,n))) 4™

Y ((em) 2 g (0e) A(nH10) 30D) ()t (o) AR)p () A(n41)ydln)y 1)
y,((pBbc)g(n+1)(cb),n+1(cbp3)d(n))N\’,(de(ml)(cb),mlp d(n),

=¥(p(0,n)).

3

1)Note: We use the convention (f*g*)* = g*f* and not gf, for f,gE€F(X),



Combining this result with lemma 3.1, we obtain

-

£ ~£E(00)Y(A (p))F(£). Therefore [p = q]c E\P(An(p)) =Yb(An(q)i]
< [r = £E(00(A_(a))F(£)] .

Define f, by replacing £(0,n) with V(a(0,n)) in A (£). It

can be shown that fl(oC) = f(ot), and 'fl(oc) = f(ot), for all f(oc),
(L) occurring in An(f), oLf (02)n. From lemma 3.1,

leQ(OO)Y(An(q))f(f). and therefore [p = q] g [f = f]] + Moreover,

fl(O,n) = Y(Q(O,n)) = \//((ca)d(n)qz(ac)d(ml))

((zyennz ™2 )3 (0,0 (2 (2 my ) omeTyd0HD)

(]

t-1

(zl. " .zt)d(n) +(q3)(zt. . .zl)d(n+1) . Therefore if

n+l
f)

f(O,n) = (yic . oyr

, it follows that yj = z, for 0 € j £ t.
Thus we have found an f, from f such that [p - q]_c_ [f - fl].
Moreover, we have shown that if f(O,n),fl(O,n). and g(0O,n) are written
as above, then Y= zj(O £ j<t), yt;é z,, and y3= zj(Oé jet).
The method just described can be repeated at most (s-t)+1 times
. o £ P
to find fa, f}""‘fv' where [p = qjg l:fi" fi+1] for 1 £1i £ v 1,

and where fv(O,n), (=1n+1

(fv(o,n)))-- g(0O,n). Moreover, fv(o() = f(X)
and ‘fv (xX) = f(o¢) for all f(o¢) and f(eC) occurring in A (£),

(oC# (02) ). Since by proposition 2.7 f(o¢)~ g(c¢) and T(ex) = glet)
for all () and T(o¢) occurring in A (£),(o¢ £ (02) , o¢ £ (12) ),

it follows by corollary 2.8 that fv~f(g)f(f). Hence

[p=a)c[r-T@FD] .

The dual of proposition 3.2 states that if p*,q*,f*,g* € F(X)
'satisfy IE(f‘)l =n =23, and f* Nng*. p*,\,nq", p* ﬂnq"‘, then

[p* = q"':] < [f‘ = f(g*)f(f‘)] . This is equivalent to the statement
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that if p,q,f,z €F(X) satisfy |E(f)| = n 2 3, and f ~— 8 P~8 P #ha,
then l:(p" = q""]S [:f".-. ('I'(g*)F(f-))‘] + Since (F(£*))*(I(g*))* =

= 1(£f)F(g), we can state the dual of proposition 3.2 as

(Proposition 3.2)*: Let p,q,f,g €F(X) satisfy | E(f)| = n 2 3

and f.—~hg, P~—ds P ¢;q. Then [? = q] c [f = I(f)F(gi] .

Proposition 3.3: Let p,q,f,g €F(X) satisfy | E(f)| = n 2 3 and

f~ g feg, P~—ds P ahq. Then [p = q] c [f = T(g)f(fi] "

Proof: We may assume w.l.o.g. that lE(p)l = n, since there
exists a substitution (?in.(p = q) by n variables with (P(p) ancp(q).
Moreover we may assume that p Gnq by proposition 3.2. Therefore

In+1(p(0,n)) = In+l(q(0,n)) and p(O,n)~ q(0O,n), and 50 w.l.0.g.

d(n)(acbc)d(n+1)

p(O,n) = (cbea) = (acbc)*®, and q(O,n) = (abc)*®,

where a,b,c €X.

Let f£(O,n) = (ylyz...yr)'n+1

, and assume there exist t and j
such that y, = yj for some j < t - 1. Let Y’ be the mapping referred
to in lemma 3.1, with the additional conditions that in property (3),

u=j-1, and in property (&),
\’/(C) = yj= yt'

),n+1

\"I(b) = (yj+1...yt_1 , and
o0+l

Va) = (3, 050"
S n+d(n) _ n+d(n) -2
W((B((or) 2 1™ 501y 2 00)p(0,0))8(5+1))

n+d(n) _, n+d(n) _
f(ovn)\’/((P(o'n)‘_;B((Ol) 2 1))d(“)(‘5((01) 2 o))d(n+l))
n+d(n) n+d(n)
— 2 -2 d(n) - —-2 -2 5 d(n+]_)

~(T((01) )¥y e ¥ 3) (Y (pp((o1) 00) (acbe)*™))
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((yl...y.)‘n+lyj(yj+1..yt_l)‘n+l .'.yr).n+l),n+1

J yt(yt+l

n+d(n) n+d(n)
— =D ntdln) _,
(¥((acbe)+™ Bpllon) 2 1)))d(n)(yj_1...y1 (o) 2 o))dml)

n+d(n) -2 n+d(n)
2 )i y(pgiony 2

-2

~ (F((01) 00)))3(n+1)

<+l ),n+l .n+1),n+1

((yl...yj) yj(yj+1"‘yt-1 yt(yt...yr)
n+d(n) _, n+d(n) _,
F@Epton 2 N (Eony 2 ondmd)
n+d(n) -2 n+d(n) -2
= WGy 2 WG 2 00y dm)
n+d(n) -2 n+d(n) -2

p(0,n)(Bp((01) © 1 (zeory 2 0yyd(ael)y

It follows from lemma 3.1 that f~£z(00)\'/(An(o))'f(f) and thereé

tore [p=a]s[ Y0 = Y@] ¢ [£ = ooy aFen ].

Define f; by replacing f(O,n) with

(yl. . .yj-l)d(n) d(n+l)

(q(O,n))(yj_l...yl) in An(f). Then fl(cc) = f(et)
and 'fl(oc) = f() for f(ox) and f(X) occurring in A (£), (o€ £ (02)).
By lemma 3.1, fr~1:§(00)*TAn(q))F(f),and therefore [b = q] < [f = fl] .

)d(n)

Moreover, fl(O,n) = (yl...yj_1

N+l n+l_ (N
((yt+1oooyr) (yj+1-ooyt_l)‘ yj)

d(n+1)

d(n) S+l
(yj_logoyl) = (yloovyj_l) (yjy3+1...yt_1yt+1..-yr)

(yj-l"‘yl)d(n+l)°

We have now found an fl from £ such that [p = q:]g [f = f1] 5
In+1(f(0.n)) = In+1(f1(0.n)), and L(fl(O,n))<IL(f(0,n)). By repeating
the process finitely many times, we can finally find an h such that
[p=a]c[t=n] and n(o,0) = 1™ (2(0,n)).

Similarly, we can find ho from g such that [p = q]._:_ [g = h°]
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and h_(04n) = 1™ (g(0,n)) = 1"*}(£(0,n)) = h(O,n).

Now £(e¢) = h(ct) and F(e<) = B(o<) for all £(«<) and F(wx)
occurring in A (f), (o< £ (02) ), and g(ot) = ho(oL).E(oc) = h (),
for all g(c€) and g(oc) occurring in A L(8)s (ot (02) ). Since

f’,f —~ B we can conclude by proposition 2.7 and corollary 2.8 that

h—~ I(h(‘))F(h). Therefore Lp = qJ c [f = I(g)F(f)] *

Using a method similar to that used in determining an equivalent
statement for the dual of proposition 3.2, the dual of proposition 3.3

can be shown to be equivalent to

(Proposition 3.3)*: Let p,q,f,g €F(X) satisfy |E(f)| = n 23

and f ~— g, f @%g, p ~, 0 P 5:1 q. Then Lp = q:]l c Lf = f(f)f(g)] "

Theorem 3.4: Assume p,q,f,g€ F(X) such that |E(£)| = n 2 3,

P~ f‘-, g. Then any of the following eight conditions is suf-
ficient for I:p = q] [f = g:‘

(1) pg a,rga

(2 p@ a,pPia fo &

(3) pfra,pP a, £0%8

(B p@a,f 5; g

(5) p@ a, £0 ¢

(6) pB a,pBia £06 & £07¢g

() pPa, 0 g 1038

B
8) pf oa, £8, 8, TO 8

" "Proof: By lemma 1.7, it is sufficient to show /u each case

that the conditions given imply that (# = I(f)F(g)) ard (g = I(£)F(g))



34

hold. This can be done by applying corollary 2.8, proposition 3.2,
(proposition 3.2)*, proposition 3.3, and (proposition 3.3)* as needed.
Ne will prove (1) and (4) in detail.

If p ¢n q then, by proposition 3.2,[p = q]S— [g = f(f)f‘-(g)] .
If p ﬂ; q then, by (proposition 3.2)*, [? = q] g.[f = T(f)f(g)] .
Therefore (1) is proved.

Again, if p ¢; q then, by (proposition 3.2)*,
[p = 41 c [; = T(f)f(gi] s Ir2 6; g, it follows by corollary 2.8
( and the definition of 5n) that I(f) ~I(g). It is therefore trivial

in this case that (g = I(£)F(g)) holds. Hence (4) is proved.

By (2.10), if f 6; g and f 6; g then [} = g] is the class of
all idempotent semigroups. By (2.9), if f §n g then f Gn g, and if

f 5; g then f 9; g+ Therefore

Corollary 3.5: For mn 2 3, there are at most eight distinct

equational classes determined by a single equation in n essential

variables.

The information contained in theorem 3.4 is summarized in
figure 1. In order to show that this represents the n-skeleton, for
n 2 3, it is sufficient to show that all the non-trivial inclusions of
the classes determined by equations in n essential variables are given
by theorem 3.4. This will show in particular that the eight elements

of figure 1 are distinct elements of the lattice of equational classes.



Figure 1:

The n-skeleton, n 2 3,
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Lemma 3.6: Assume p,q€ F(X) with p et fa and let
\F: F(X)—F(X) be any homomorphism. Then 4/(p)'~uh\y(q). In particu-

lar, if IE(‘P(p))UE(‘l’(q)) |<n, then \l/(p)N\“'/(q).

Proof: Since we have to show that for any substitution (F in
(¥(p) = Y(a)) by less than n variables, @ (V(e)~g(V(@), it is
encugh to show that if | E(W(p))UE(Y(q)) |<n, then W(p)~TY(a).

We will show that T(W(p))~ T(Y¥(a)). The remainder of the
proof is dual. If n = 2, the result is trivial. If n = 3, then w.l.0.g.
B(W(p) = E(¥(a) = {x,5} , say. Since p~; a, H(p) = H(q), and
therefore H(Y(p)) = H(\Y(q)) = x, say. It follows that I(Y(p))~ xy
~T(¥(g)).

We proceed by induction on n. Assume n 2 4. Then there are
two cases to consider. If E(Y(p) - {500} = BOY(p)), then
E(VY(p)) = E(\W(pp(00))), and therefore since n 2 4, I(\}(p))w
= ¥ (pp(00))~Y(qq(00)) = T(Y(q))w, and hence I(V (p))~ T(V¥(q)).
Ir 5C¥(p) - {Y(5(02) ] # BCY(p)), then B(Y(p(0)))< n-1. Horeover
by proposition 2.3, p(0) —~ q(0), and it follows by induction that
Y(p(0))~W(q(0)). Also by proposition 2.3, p(0) = q(0), and there-

fore T(Y(p))~W(p(0)) ¥(p(0))~T(Y(a)).

Proposition 3.7: Let f,g,p,q€F(X) satisfy |E(p)| = |ECE) |

=na.’5.f~ns,p»~;lq.p§nq,f§ns- Then [p=q]¢[f=s]-
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Proof: Ep = q] c [t‘ = g1 iff there exists a finite sequence
ho,hl,...,hn € F(X) such that h, = £, hn = g, and such that for each

O £ i < n, there exists u, v, € F'(X) and homomorphism Yi:F(X)—)F(X) with

i
h, = u (Y, (e))v, and h = u (Y, (@))v,, or b= u (Y, (a))v, and
hi+l= ui(‘}/(p))vi. Since f an g, it follows that I(f)~#4I(g). It is
therefore enough to show that if £ = u(‘¥(p))v, £,= u(Y(a))v, for
some u,v €F'(X) and homomorphism Y:F(X)—-)F(X), then,-I-(f)N-I'(fl).

There are two cases. If |E(‘Y(p))l<n. then by lemma 3.6,

I(£) = u(Y(p))vy~u(¥(a))v, = T(g), for some v, €F'(X).
If |E(\f’(p)) | = n, then since p §n as -I.(\‘/(p))’vf(‘}’(q)), and therefore

I(fw = u-I-(‘*’(p))NuI_(\P(q)) = -I-(fl)wl for some w,w.€F'(X). Hence f(f)'-;f(fl).

1

Proposition 3.8: Let f,g,p,q€F(X) satisfy |E(£f)| = | E(p) |

=n 2 3 f~ng,p~nq,p6nq,f¢ng. Then [p=q]g[f=g].

Proof: Since f §_ g, it follows that I™* (£(0,n))# 1" (g(0,n)).
Since |E(£(0,m) | = 3, E(£(0,n)) = E(g(0,n)), and H*"*1(£(0,n))
=H*"*1(g(0,n)), it follows that H*P(£(0,n))4H**(g(0,n)). As in the
proof of proposition 3.7, it is therefore enough to show that if »

f = u(\}’(p))v and g = u(‘l/(q))v, for u,v€F'(X) and homomorplrxism‘Y:F(X)—-)F(X),i
then H*™(£(0,n))=H*"(g(0,n)).

Since p ~ q, and |E(p)| = n 2 3, we can assume w.l.0.g., by
proposition 2.7, that p(e¢) = q(o¢) and p(x) = q(<) for all p(c<) and
p(o¢) occurring in An(p), oK # (OZ)n. Moreover since p @ q it follows
that In+l(p(0,n)) = In+l(q(0,n)). Let u(Y(p)) = (x.l.xa...xr)‘n and
u(ﬁP(q)) = (ylyz...ys)‘n. Then, if H*"((Y¥(p))(0,n)) = T then

WeleOoge X =¥ for all k £ j.
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4

Let H*"((u(¥(p)))(0,n)) = x,, Then i £ j, and
ge"((u(Y (p)))(0,n)) = x; = x, = H*"((u(¥(q)))(0,n)). Therefore

B+ (£(0,n)) = H*"((u( ¥ (p)))(0,n)) = H*"(g(0,n)).

Theorem 3.9: The elements of figure 1 are distinct elements
of the lattice of equational classes of idempotent semigroups. The
order indicated in figure 1 is the restriction of the lattice order.

In particular, figure 1 represents the n-skeleton for n 2 3,

Proof: The theorem is an immediate consequence of propositions

3.7 and 3.8, and their duals.

Theorem 3,10: For n 2 3, the n-skeleton is a meet subsemi-

lattice of the lattice of equational classes.

Proof: Since the poset of figure 1 is a meet semilattice and
a subposet of the lattice of equational classes, it is sufficient to
show that the meets in figure 1 are actually meets in the lattice.
The non-trivial inclusions can be established in each case by appro-
priate application of propositions 3.2 and 3.3, their duals, and
lemma 1.7,

For example let p., q,€ F(X), i = 1,2,3, and assume
IE(pi)| =n 3, p.~ q,1=1,2,3, and that p 6 a;s P B2 ap,
Py &, 9 P, By a5 P, 8 a0 P, O] 950 P5 B a5, P O dgs Py B g
We must show that [?l = qufwl:pz = qzi]g[jp3 = qi] « Since Py ﬂ; )
it follows by (proposition 3.2)*, that l:bl = qli}g.[pB = T(p3)F(qji] .
Moreover since p2 Bn a, and p3 en q3. then by proposition 3.3

[Pz = qzjg [:p3 = T(qj)f(p3)_‘| « Therefore by lemma 1.7,
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[PL= %] [P - qaj} c [P5 = a5] -

2. The 2-sk:zleton.

The 2-skeleton has essentially been described by Tamura (1966)
and Kimura (1958,1V). Kimura also listed all equations in three

variables (without proofs), and has therefore described the 3-skeleton.

Proposition 3.10: (Tamura,1966). Let (f = g) be any equation

in 2 essential variables, and let a, b€X. Then

(1) If E(f) £ E(g), H(f) £ H(g), H*(f) £ H*(g),

then [? = é] = [g = é] ’

(2) 1f E(f) # E(g), H(E)

then [fzg] = [a:ab] ’

H(g), H*(£) # H*(g),,

(3) 1f E(f) # E(g), H(f) # H(g), H*(f) = H*(g),
then [? = 5] = [é = bé] ¥
(4) 1f E(f) # E(g), H(f) = H(g), H*(f) = H*(g),

then [f=g| = [a = abal , (

(5) 1f E(f) = E(g), H(f) # H(g), H*(f) # H*(g),

then [f=g] = [ab=b;_| .

(6) 1f E(f) = E(g), H(f)

then [t =g] = [ab = aba] ,

(?7) 1f E(f) = E(g), H(E) # H(g), H*(f) = H*(g),

then [f =g| = [ab =bab].

Moreover, these seven equational classes are distinct, and are all the

H(g), H*(f) # H*(g),

classes determined by an equation in 2 essential variables.

Proof: It follows from the idegpotent law that there are only

nine equations in 2 essential variables. These are the seven given in'



the statement of proposition 3.11, together with (aba = b) and

(aba = bab). However it is easy to check that

[aba =b | = [a=b] oud [aba =bab | = [ab = ba_]

It is also easy to check that the seven classes listed are

distinct. For example, if H(f) = H(g), and H(fl) A H(gl), then
[f - 5J¢l_f1 =g |-
The results of this proposition are summarized in figure 2.

Theorem 3.12: The poset given in figure 2 is a meet subsemi-

lattice of the lattice of equational classes, and is in fact the
2-skeleton.

Proof: From proposition 3.11, it is only necessary to show
that the meets in figure 2 are meets in the lattice of equational

classes. It is essentially trivial to check each case,



(aba=ab)

(ab=a)

() (aba=a)

(ab=ba)

Figure 2: The 2-skeleton

(aba=ba)

(ab=b)

W
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CHAPTER IV

THE LATTICE

The union of the n-skeletons, for all n 2 2, together with the
restriction of the order in the lattice of equational classes of idem-
potent semigroups, will be called the skeleton of the lattice. Since
we have previously described the n-skeletons for each n 2 2, the des-
cription of the skeleton is completed by finding the inclusions which
hold among the elements of n-skeletons for different n. It will be
shown that in a certain sense the (n+l)-skeleton covers the n-skeleton
for all n 2 2. A description of the classes of idempotent semigroups
which may be described by a single equation will then be completed by
considering equations (f = g) for which there exists a substitution
¢ by less than |E(£)U E(z)| variables such that (P(f)ﬁf’(P(g). and
relating these equations to the elemernts of the skeleton. Finally, it
is shown that every class determined by finitely -many equations is de-
termined by one equation,and from this and the description cf the skele-

ton it is concluded that every class may be described by a single equation.

1. Extension of propositions 3.2 and 3.3.

Proposition 4.1: (Extension & proposition 3.2). For n 2 3 let

Pyq,f,g8 € F(X) satisfy P~ QP ﬂn q, an g. Then

[p = q]S I:f = -I'(g)'F'(f):I "

Proof: Let E(f) = n + k where w.l.0.g. k @ 0. The proof is

k2
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by induction on k =2 O.

| Define f, by replacing £f(O,n) with g(O,n) in An(f)' From the
proof of proposition 3.2, we can conclude that [b = q:]g [f = fl]
(since the cardinality restriction on E(f) in proposition 3.2 was not
used to prove this statement).

It is therefore enough to show that
(4.1) [p = a] < [£ = TeF(D)]

wherée g, is defined by replacing g(0,n) with £f(O,n) in An(g).

As was shown in the proof of proposition 3.2, (4.1) is trivial
if k = 0, since in that case g(ot)~ £(o¢) and g(x) = f(cx) for all
g(o<) and g(ot) occurring in An(g). (e (02)n, X £ (12)n).

Assume by induction that (4.1) is true for k-1 (for some k 2 1).

n+d(n)

> -(2+d(n)).

Let r be an arbitrary but fixed integer with O £ r <
Let ¢ be a substitution which satisfies the properties

¢ (£((01)70)) = F((01)"00)

() = x for a1l xeu(s) - { F(oV )} .
Then () is a substitution in (f = g) by (n+k-1) variables.

By lemma 2.5,
cp(f)~<p<‘ilig(g<<ol>ioo)?((oni*1))f<(ol)’*l);rz'(?<(ol)-1o)@<(ol)-il))).
Now ((F(©1)70)) = T((01)"00) € E(£((01)70)), and therefore
5(Q @ (OVTHT(OV)) = K@ WX((01)T00))) = B(Q EL((01)™))).

It follows by lemma 1.1 that
(p (LE((O1) T00)F£( (01) ™) F((01)TOITE( (01)71) )~ ¢p(LE( (01)T00)EL((01) 1)) .

Moreover (p(if((Ol)rOO)) = ££((01)T00). From these results it follows



that
r-i _ i - i+l o r
@ ()~ @ (TTEE(01)700)F((01) ™)) }£L((01)"00)
i=D
r=1, _ o "
‘-f(.'i"_f,((OI)rl)Tg (£((01)0)E£((01)1))),
J=

since (£)((01)") ~ (N GIE((OL) OGTH ¢ (£),((01)1),

it follows from lemma 2.5 that

r-1 3
@)~ TTQP (OTE (O 00  GTE (01 1)) (1) GTEN( (1) 0)
i=0

r-1

T EOLTTT (TTEN((01)30) FTEY ¢ (£)((01)91)).
d¥L___gL__J 320 ﬁﬂ de__iﬁ__J

By comparing these two expansions for <P(f) we can conclude that

(4.2) (Lp(f))((Ol)ro)~ £((01)F00).

Consider a homomorphism ‘*QF(X)——aF(X) which satisfies the

following properties:

Wx) = x for a1l xe E((¢(£))((01)70))

Y@M = TonHEE(on00), 14 1 4 1
(4.3) Y (@D (o1™) = T((on)™)

Y@ (01 0)) = F(01)T00)E5((01) " H)F((01) 0)

\I’(W((m)jo)) = F5(01)3*11)F((01)%0), 0 ¢ j £ r-1

From (4.2), it follows that
(4.4) \k«cf (£)((01)70))~ £((01) 00)

Using (4.3) and (3.1), we can conclude that

ECY (@)D, ((01)Y00))) = E(££((01)200)), 0 € i € r-1, and that

L
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BV (@I = BEe(01I)), 14 5 ¢ .

Therefore, for O £ 31 £ r-1,

)

~£E((01)100) Y (@ (O TTD (01 00))F5( (o) M),

(4.5) £E(01)Y00)Fg( (01) !

and for O ¢ j £ r

(4.6) F£((01)90)Fg((01)91)
~ E5((01)30) ¥ (@B ¢ (1) (01) I1))E( C01) 1)

Since £(01)F ~£F((01)T00)F£((01)T*L

YT((01)F0)EE((01) 1),
it follows from lemma 2.5 that
r-1 . s
(4.7) £~ TV (EE(01) T00) T (01) 1) ) £( (01)T00) F( (01) T00)
i=0

r . - . - 4
FE(OLTHTT (F((01)90)F5( (01)91)).
j=0

By (4.5) and (4.6), it follows from (4.7) that
r-1 . . .
£ ~£E(00) T TOY (YLD GTE(01) 00)F((01) 1) (01) 1+ 00))
i=0 =
T2 01 ™HE((01)70) ¥ (LI (£),((01)™1))
: ) % 3 %
" (Fr01) I F01) I o) (TTE ¢ (£)((01)3711)))F(£)
JT}' £ Y (@@ )
and therefore, by (4.3) and (4.4), that

(4.8) f~@(00)‘{’((p(f))1"(f).

Since EK(f(f)) = n+k-1, it follows by induction that

[p = a]e (Y@ = TY(Y@NFY (¢ (£)))]
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Since T(“/(Cp(g)))F(\f’(Ll)(f)))F(f)N ‘f’((ﬁ(g))?(f). it therefore follows
from (4.8) that | p = q € [£ = LE00)¥(Q(e)F(D)].

Since kf(f)—~4ncp(g), and i € r where r < n+d(n) -(2+d(n)), it

2
follows by corollary 2.4 that (P(f)((01)1-10) ’*1}?(3)((01)1-10) and

therefore by proposition 2.3 that
(4.9) PO = Pl for 1 41 4 x.

Similarly, since j & r, it follows that (P(f)((Ol)j) ~, cp(g)((onj),

and therefore that
(4.10) GO ((01)%0) = (70Zg5((01)j0) for'D & 3 & v

Moreover (P(f)((Ol)rO) ~3(P(g)((01)r0) and therefore E((P(f)((Ol)rO))

= E(V)(g)((Ol)rO)). Hence (4.3) holds with f replaced by g. It follows

that

(4.11) LE(00) ¥ (¢ (£))F(£)
r-l . .
= £E00) TTY (@ () T (01)Y00)) F((01) 1 * ) £E((01) 1*100) )F£( (01)7*)
1 13 \‘/ M_G_a
'f'((m_)ro)\\/(,gg(gSgg(g),((oDrl))

r P A
TV (Fg(01) 1) T((01) I ) V(@R W (8)((01)3711)))F( 1) .
gl 5]

Moreover, with the method used to establisch (4.5) and (4.6),
we can prove the statements obtained from (4.5) and (4.6) by replacing
(P(f) with (P(s) and ZFT?T with EETET. We can also show
Y (£)((01)70))~ ((01)700) by & method similar to that used in

establishing (4.4).
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From these results, and (4.11), we can conclude

(4.12) Jor any 0 € r € Eigiﬁl ~(2+d(n)), [? = q]
v S i \= i+l T \= I \= r+l
Q[f = [ T(££((01)700)£((01) 7)) g((01) "00)T((01)T00) ££((01) ™)
i=0 .
O 5 . ;
TT (f((01)~]o)ff((01)31))] .
3=0

Following the pattern of proof leading to statement (4.12),
we now let (? be a substitution with the properties
@(F((01)%)) = F((01)°1)

@) = x for all x€E(f) - {F(o1)%)}

n+d(n) _

5 2.

where s is an arbitrary but fixed integer with 1 £ s ¢

As we proved statement (4.2), we csan now establish
(4.13) @£ ((01)%) ~£((01)°1) .

We consider a homomorphism W:F(X)—>F(X) which satisfies the

following properties:

Y(x) = x for all xe€ E((P(f)((Ol)s))
Y @D = TonHrEonoo), 1 ¢ 1 € 81
(4.1h) Y(W((m)s'lo)) = F((01)%0)
Y@ ((01)®) = F((01)%)£T((01)°0)F((01)®1)
\{/('QE(‘FT((Ol)jo)) = Te(on) I 1)F((o1)d0), 0 € § ¢ s-2

Using (4.13) and (4.14), and the pattern of proof of (%4.12), we

can finally arrive at a statement which corresponds to statement (4.12),

+d(n) = -
(4.15) For any 1 £ s £ E—E—E_ -2, L? = qJ
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- s=1
sl_f 7“T(gd((01) 100)F((01)*1))£F((01)®0)T((01)51)
o

g((O1)°)) (f((ol)ﬂo)ffc<ol)31)i]
j=0

Since f ~ g, it follows from corollary 2.4 that

£(o1)*t g(Ol) for O £ t £ Lli-‘é‘-f-’-‘-z--(2+ol(n)), and

f((Ol)u-lO)'**h g((01)“’1o) for 1 € u < Eigiﬂl -2, and therefore, by
proposition 2.%, that

(4.16) T((o1)"0) = g((o)%0),

(4.17) T((01) %00) = E((01)too). 0¢t = 2:%&22 -(2+d(n))
(4.18) T(on)t) = go1)t), and

(4.19) oD = go)™), 1 ¢ u = 51%332 <Z,

The statements (4.12) and (4.15), together with (4.,1A), (4.17),
(4.18), and (4.19), can now be used to establish (4.1) as follows:
By (4.12) and (4.17), with r = t = 0, it follows that
[ = d] Lf &(00)ELOVT(OIF(£) | . By (4.19), with n = 1,
F(01) = 7(01), and therefore |p = a | € [f = g5(00)E(OL HODFOIF() ]
r-1

Let T ‘7’T(ggﬁ(01> 100)5((01) 1)) £((01)F00) F( (01) 00)EL( (01)
i=0

r+l)

¥ . ‘
IAY (T((01)70)F£,((01)71)), and assume by induction that
j=0

[p = qJ & [f = ?;—LJ . DBy (4.12) end (4.19), with { replaced by ?r-l'

it follows that

[p=ale] %, 7’Yggs;<01) 100)7((01) 1) )gg( (01)F00)EL( (01) ™)

n+d(n)

P e . .
TV (f((01)30x;g((01)31))] , and therefore if r+l ¢ =3

j=0

-2, then



k9

[ -0 Je[%, - 2,0

By induction it therefore follows that if

n+d(nj

=D n+d(n)

£ -~ e i4lyy,o = 2 2 yd(ne1)
g, = [ 1 (gg((01)"00)g((01)"")) (gg((01) 00))

i=0

ned(n) n+dln) _(2.4(n))
£(0,n) (F£((01) ° et [ T (g((01)%0)gg((01)91)),
i=0

then [f = q:]gl:f = T(gZ)F(f)] .
In a similar way, we can show, by induction on s, that
[p = q:]g [FZ = f(gl)f(gi] , and therefore that [b = d]
g[} = f(gl)F(f}j . This concludes the proof of statement (4.1), and

hence of the proposition.

Lemma 4.2: Let f,geF(x) satisfy f~ gand £6 g. Then

n+l n+1

I 7(f(o,n)) = I “(g(Oyn)).

Proof: Assume In+l(f(0,n)) P In+l(g(0,n)) for some f,ge€F(X)
with f en g. By (1.19), it follows that there exists a substitution

(p in (f(0,n) = g(0,n)) by 3 variables such that pod

(So(f(o,n)))
# T ¢ (8(0,m))). e can assume that (p(x) = x for all x €X - E(£(0,n)).
Then () is a substitution in (f = g) by n variables. We will show that
(@ (£))(0,n)~ @ (£(0,n)).

since £(0) ¢ E(£(0,n)), it follows that ((£(01)) = £(0), and
Qx4 £(0) if x€ £(0). Therefore Q{)(f(O))N((,D(f))(O). Assume by
inductive hypothesis that () (£0(01) 1)) ~ (P (£)((OLY) for some 1,
and that F((01)'0)¢ B(£(0,n)). Then ¢ (£((01) 0))~ (¢ (£))((o1)}0),
Similarly if by inductive hypothesis (F(f((Ol)jO))N(C/J(f))((ol)jo).
and if F((OL)T*Y ¢R(£(0,n)), then Q(£((01)T*™)) ~ (@ (£)) (o)),



It follows by induction that

s n-d(n)-2
) ————-d(n+1)
@ (£((o1) - 8Ly (ye(on 2 gdne)y

n-d(n)-2

> d(n+l)

Therefore ((,O(f))(O,n) = -fn+l(((f(f))((01) od(n-vl)))

n-d(n)-2
———=——=ad(n+1)
~T* (@ (s((o1) od(m+lyyy

n-d(n)=2

5 d(n+1)

~T (o (T2 (01) 0d(n+llyyyy

- T“*l(cp (£00,n))) = ¢ (£(0,n)).

By definition of € , it follows that (p(f) en(f)(g), and there-
fore T (¢ (£)(0,m)) = T™H((Q (g))(0,n)). Then I ¢(£(0,n)))
= In+l(((p(f))(0,n)) = In+1(<p(g(0,n))), which is a contradiction.

Therefore In+l(f(0,n)) = In+1(g(0,n)).

Proposition 4.3: (Extension of proposition 3.3). For n 2 3

let p,q,f,g € F(X) satisfy p ~ 9 P En a, £~ & and £ 6 g. Then
[p=a]<[f-T@fon].

Proof: (Cf. proof of proposition 4.1). We must first show

v - o[

This statement was proved in proposition 3.3 with no cardinality

fl] (f1 defined as in the proof of proposition 4.1).

restriction on E(f), except to show In+1(f(0,n)) = In+1(g(0,n)).

Lemma 4.2 removes the cardinality restriction on this statement. There-
fore, using lemma 4.2 and proposition 3.3 we can show that

[p = q] g;[f = ﬁij under the conditions of proposition 4.3, |

It remains to establish statement (4.1) under the assumptions

of proposition 4.3,

McMASTER UNIVERSITY LIBRARY.
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If £ 6 g then ((f) 6 Q(g) for any substitution by |E(£)]- 1
variables. Statement (4.1) can therefore be proved from proposition

3.3 and the definition of Gn, by the same method as was used in proposi-

tion 4.1 .

2. The skeleton of the lattice.

We are now in a position to prove a series of propositions
which will describe the inclusions among the elements of different

n-skeletons, thus giving a description of the skeleton of the lattice.

Proposition 4.4: Let p,q,f,g€F(X) satisfy |E(p)| = n 2 3,

n

e a)efe sl

Proof: Since f,»uﬁ+l 5, and ]E(f) ‘: n+tl = 4, it follows by

_ ) ) - .
P~ d, P& d, |E(£)| = n+l, £ ~~,1 & £, g Then

proposition 2.7 that f(11)~-g(11). Therefore (f(1))(1,n)
- (T ) ™ () (2) ) (FI ) )i
5 (?(1(12)n))d(“)f(1(12) )(F(1(12) ))d(“+1)

aln) g1 (12) DEaa2) y)d(n+l)

~ (g(1(12) ))
= (g(1))(1,n). Also since f~— . g, and |EC(£) | = n+l 2 4, it follows
by propesition 2.3 that f(l)‘-uh g(1l). Therefore, by corollary 2.9,
F(£(1))~ F(g(1)). |

By (2.7), (£(1))(0Oyn) = f(1,n+l), and therefore, since f 9.1 8

it follows that f(1) G g(1l). Applying proposition 3.3 we have that
[0 =a]c[r@) = 1(5(1))r(f(1)1] , and since F(£(1)~F(g(1)) and
(by proposition 2.3) T(1) = g(1), it follows that LP 4] [} = I(f)F(gj]

Since f ~ .1 B it follows by lemma 2.11 that f 9 g. By pro-
position 4.3, [p ]C I(f)F(g)J , and therefore |_p = q]Q[f = g] .



Proposition 4.5: Let p,q,f,g €F(X) satisfy p ~

|E(p) | =n >3, p g0 T~ ;8 |E(£)| = n+l. Then [p = qj

c[r-¢].

Proof: It follows immediately by proposition 4.1 that
7 TR . . [ .
[»=a|c[t=T@Fn) and since £(1) ~; (1), that [p = | € [1(0)
= T(g(l))F(f(l)i] . As in the proof of proposition 4.4, F(f(1))

~F(g(1)) and T(1)

g(1), and therefore [p = q] c [f = T(f)f(g)]
q:] c l:f = g] .

Proposition 4.6: Let p,q,f,g€F(X) satisfy p ~; s

Tt follows that l:p

lE(p)| =n—3'p¢ q,pﬁf‘ 1 £~ lg,IE(f)l=n+l. Then
G-a)efeesl-

Proof: Let f e F(X) satisfy £~

11 gli fa' 82 +l 8 ]
|E(f_)| =0+l (i =1,2), £, 0% g4 1.9 1 By ) Br g f 1#e1 10
. . l .
f2 §n+1 8o f ¢n+l . By proposition 4.4 and its dual,
" 1
lEJ:ngLfl:gl]/\_fZ:gz_i.

Let f3 and gBGF(X) satisfy f3 ~%+1 &3 ‘h(f:,,)l = n+l,

» . pa— -
f3 ¢n+l g3, f3¢n+1 gj. Then by theorem 3.10, [fl = gl]/\ [fz = gaj
_ . !
['f 5 g3] . By proposition 3.2 and its dual, [fj . g3] g[f =8,

and therefore } P = q] < Lf = gj

Proposition 4.7: Let p,q,f,g€F(X) satisfy |E(p)| =n=2 3,

P~ q,pe 9, p €2 q,lE(f)|-n+l f ~ lg,f¢n+lg. Then
[p=q__l¢l_f=g]‘

Proof: As was noted in the proof of proposition 3.7, it is

enough to show that if f = u(¥ (p))v and £ = u(Y(Q))v, for some



u,v € F'(X) and homomorphism Y :F(X)—> F(X), then f en+l fl'

Thers are two cases to consider:— either I(f)w = uf(*’(p))

and i(fl)wl = uf(q’(q)) for some w,w, € F'(X), or f(0) = u(\"(p))v1

1

and fl(o) = u(\{’(q))vl for some v. € F'(X).

1

If I(f)w = ul(p) and T(fl)wl = ul(q), then, since p §n q
implies I(Y (p))~ 'I—(\"(q)), it follows that f(f)w~f(f1)w1, and
therefore (by the definition of I) that f(f)'v'f(fl). In particular,
it follows that f 6n+1 fl.

Assume f(0) = u(\}’(p))v1 and fl(O) = u(\y(q))vl. Let (P be
any substitution in (£(0) = £,(0)) by less than n = | B(£(0)) |
variables. Then | E((P(\‘}'(p)))|< n, and therefore, by lemma 3.6

@Y @)D~ ¥ (a). Tt follows that E(£(0))~ ¢(£,(0)), and
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therefore that f(O),»»L fl(O). By definition of f(0) and fl(O), it is

trivial that [p = q:]g [f(o) =f (O)] . Therefore from the dual of
1
proposition 3.8 it follows that f(O) 9; fl(O). Since f(O,n+l)

= (£(0))(1,n), it follows from the definitions of en+ and e; that

1

£0,1 %

Corollary 4.8: Let Pps 99 Ppr 90 Poo qaeF(X) satisfy

a a *
po "—;lqO ] po ean ] po g; qoi pl o "n ql ] pl ¢n q] ] pl an ql ] p-l en ql L]
* =) " o —
P, O A0 Py~ 9p0 Py O a4y Py Of 950 Py B] a4y |5(py)| = | ECp)) |

=|E(p2)' =n 2 3. Then l—po = qOJVLpl B qug‘_pa = q2] .
Proof: TFrom the description of the n-skeleton, it is clear

that [po - qo:l\/[pl = q,]:] g_l:pa = qzj . Consider f,g€F(X) with
. = » %
f o~ .1 & |E(f)l = n+l, f ¢n+l g, T ¢n+l g. From the dual of pro

position 4.5, and propositions 4.6 and 4.7, it follows that



5h

[0 = %0]v[p = a]er=e]somt [ =0y ¢[r-e]

In"order to complete tne description of the skeleton, it is
necessary to find the inclusions which exist between elements of the
2-skeleton and the 3-skeleton. This will be done in proposition 4.9

and corollary 4.10.

Prcposition 4,9: For a,b,ce X, consider (abc = abac) and

(abca = acba). Then abc ~—;, abac, abc @

3 3

and abca ~5 acba, abca ¢3 acba, abca Q% acba. Also

. - : - -
[?ba = ab, ¢ fébc abac] " [éb = a]'g L?bca = acbaJ',

. Sl
[?b = baj glmgbca

abac, abc 6, abac, abc @* abac;

3

= | s -
acbaJ y and |aba = ab | ¢ | abca = acba | .

Proof: The only non-trivial statement is
= R — . .
. aba = ab_jg_Lﬁbca = acba | . It is clear that if p = aba and q = ab,

then I(u(ﬁ/(p))v) = T(u(V¥(q))v) for any u,ve F'(X) and homomorphism

\V:F(X)——>F(X). Therefore since I(abca) # I(acba),

i =4 |
Lgba = ab_J¢‘:§bca = acba_}.

Corollary 4.10: [ab = é]\J [éb = ba:]gllgba = ab] »

The above results and their duals are summarized in figure 3,

3. Equational classes determined by one equation.

In this section we show that all equational classes determined
by one equation are equal to an element of the skeleton of the lattice,

or to the meet of two elements of the skeleton.

Proposition 4.11: Let p,q,f,g €F(X) satisfy ‘E(p)l =n 2 3,




)
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*
n+1’en+1'¢n+1 CD
([abc=abac]) //
N
* ’,/
\\fgn+l ¥ n+l
% i
— - ([abqa:igba])
en,e;,Q; 9) C} C)
) Fa S
([aba=ab]) P \_\\
// i \\\
,/ § .\\\.
; \
f u‘\
/ ' ™
]
q Q (aba=a]) )
P / N
¥ 7 % ~
7 N
7 4 A ~ //
\-\\/ 7 \ . /
k P
// ‘\\\ /// N
. g ™ P
. \ , y
o / / \\\ /__/ N N
»* s - R
6n'gn C> () C)
(|ab=a)) an’ag'en’e;
([ab=ba])

Figure 3: The inclusions between elements of the n-skeleton
and the (n+l)-skeleton. The broken lines, and

classes in brackets, refer to n=2 only.
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P~ 9 P Q;‘l 9 f~ & f é'n g. Then [p = q]é [f = T(s)f(f)] 5

Prcof: S.aice f 6n g, it follows that for every substitution
P in (f = g) by n variables, T((P(f))Nf(tp(g)). Therefore
£~ ., T(&F().

If p, and qoe F(X) satisfy | E(po) | = n+1, Py ~41 Y 2nd
Po ¢n+1 9y then by the dual of proposition 4.5, and by proposition

4.1, it follows that [p = qjg [po = qo]g[f = T(g)f(f)] s

Definition 4.12: Let f,g€F(X) satisfy ffs;l g, n 2 3, Then
P~ . - b=
1) f en g iff f 6n+1 I(g)F(f), and

A# - *® *®
(2) for g iff £* 0 g*.

It should be noted that if f ’én g, it follows that f ~ . I(g)F(L),

but not necessarily that f'\'n+1 g. From this remark it follows easily

'

(4.20) If p @h q, then p 5n q for all n > 3.
If p @; q, then p 6; q for all n 2 3.
Moreover:

PAY
*
(4.21) Tf p© q and p@n q then p ~ . q.

Proposition 4.13: Let p,q,f,g€F(X) satisfy | E(p) | =n 23,

~ "
P~ 4 Pog g D f~n €y I Gn g+ Then [p = q]g [f = I(g)F(f)] ”

Proof: Let p,, qOeF(X) satisfy | E(po) l = n+l, p, am—l Ay
Py €41 % P 5;14-1 5. Since £ 6_ . I(g)F(f), and P an+l qys it
follows by proposition 4.3 that [po= qo:‘_c_ [f & T(g)f(f)] . Since
P+, 9 and | E(p)l = n, either p En q or p a';l q. Since py @ . a4

and P 9‘n+l Ay it follows by proposition 4.4, or its dual, that
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l:p = qJ = Ipo = qO] . Therefore [p = q]g [f = f(g)f(f)] "

Proposi.ion 4.,14: Let p,q,f,ge€ F(X) satisfy f~n g T an 2

£8 g |E(®) | =ntl, p~ . q. Then [} - gtlgl:p = T(q)F(pi] .

Proof: Since f §n g, it follows that for every substitution
(Pin (f = I(g)F(f)) by n variables, ({)(f)f'VQP(-I‘(g)‘F_‘(f)), and hence
that £~ I(g)F(f) Moreover, since f @n g, it follows that
f ¢n+lf(g)F(f). By proposition 4.1, it follows that

[} = T(g)?(fi] < [@ = I(q)F(p)] , and therefore that
[? = g:]g;[P = T(q)f(p)] .

Proposition 4.15: Let p,q,f,g€F(X) satisfy IE(p)l =n 2 3,

P~ fN g. Then any of the following conditions is sufficient
o fpeo] -[-o)

(1) pg ayp8 a £ 8 g f2 e

(2 po_a,p@ a,p ¢; a.fe g £8 g & e

(3) a PP a, PP q, £ g £8 8 8 &

(&) a p#ra, £8 g f@ e

(5) a pg a £6 8 fF &

(6)
(7)
8 p

<
(0}
= S
=
=}

k<) el
D O
Se O

o]
R

a pP.a, PO a, p0%aq, £ P g £P & 6 g O g

-~ ]
a, peta, pPia, O g fOrg £ e.

=
=]
=

o]
@I
-]
-

i
*

— A el
9 penQ7 ppnch fe;g! fengvfgng'

=]

Moreover, if Py 9, € F(X) satisfy lE(pl)l n+l, P, ~; a4 then either

n+l

of the following conditions implies that [f g] [p = q] [pl = q]:l
" -
(9) posa, P8 ayp8 ayp &4 0,.Pp 05, 9, f8 & £6_ e,

* An
ferg, f@ e

n+l



(10) p en qy P

i f en gy, T

Proof:
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g o * ) * o
B a,p8 a,p B, 9,0 0 9,8 e 88,

g e '

The proof consists for the most part of listing those

propositions already proved which can be applied.

(L
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

propositions 4.1, (4.1)*.

propositions (4.1)*, 4.3,

dual of (2).

propositions (4.1)*, 4.11.
dual of (4).

propositions 4.3, (4.3)*.

propositions 4.13, (4.3)*.
dual of (7)

. - —‘ . -
Since p en q and Py 9n+1 a4y s it follows from proposi

tions (4.3)* and 4.14 that [? = g:]g [? = q:]/\[bl = qi] . Since

£~ I(g)F(f), it follows from proposition 4.1 that

n+

[p = q].C.[f
[p=a]<[e

(10)

T(g)f(f’] . By proposition (4.3)*,

T(g)f(f)] y and therefore l:pl = q]] A~ [p = q] c [f =
dual of (9).

The following is the corresponding proposition for n = 2.

Proposition 4.16: (Tamura, 1966; lemma 13). Let f,g €F(X)

satisfy f ~, g, and let a,byc € X. Then

2
(1) If

E(f) # E(g), H(f) # H(g), H*(f) £ H*(g),

then [? - 5] . [} & b] .

(2) 1f

E(f) # E(g), H(f) = H(g), H*(f) £ H*(g),

then |f = g] = [ab= a].

e -
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(3) 1f B(f) £ E(g), H(f) # H(g), H*(g) = H*(g),
then [f = g] = [ab = b] .
(4) 1If E(f) # E(g), H(f) = H(g), H*(f) = H*(g),

then [£=g| = [aba = é] .

(5) 1If B(f) = E(g), H(F) # H(g), H*(f) £ H*(g),

then “} = g] = [%b = béj .

(6) 1f E(f) = E(g), H(f) = H(g), H*(f) £ H*(g), I(f) = I(g),
then [} - g] - [gba » ab] .
(7) 1f E(f) = E(g), H(f) £ H(g), H*(f) = H*(g), F(f) = F(g),

then [? = é] [gba . ba] "

(8) 1If B(f) = B(g), H(E)

H(g), H*(£) £ H*(g), I(£) £ I(g),

b | ]

=
! abca = ac'oa_l .

L

then Lf = g] = labc = acb] = lr;ba = ab_% ~

(9) If E(f) = E(g), H(E) # H(g), HH(£) = H*(g), F(£) # Flg),

then '} = g] - [:abc = ba;] = Eaba = ba]/\ [abca = acb] .

Proof: From (1.7) and (1.1h4) we can conclude that 11;
E(f) # E(g) then [} = g:]g;[éba = g] : if»H(f) £ H(g) th;p
[t - g:]g [}ba x bé] ; and if H*(£) 4 H*(g), then [f = g < [aba = ab:].
It is trivial that if E(f) = E(g), then [:gb = ba] < [f = g].; if
H(g), then [ab = a] [f = g] ; and if H*(f) = H*(g), then

b]ct-¢].

[ab
Thus if E(f) # E(g), H(f) # H(g), and H*(f) # H*(g), then

[£=¢]c | aba = ab:l/\[_aba a]/\[aba = ba:]‘ - [a - b:l , and (1)

is proved.

If E(f) £ E(g), H(f)
then [f = g]QLaba = a:l/\waba = ab:l = ‘:ab = a]g[f = g:l , and (2) is

H(g), and H*(f) # H*(g), then



proved. The proof of (3) is dual to the proof of (2).

If 8(f; # B(g), H(f) = H(g), and H*(f) = H*(g), then trivially
[}bc = ac:]g [? = 5] . But if (aba = a) holds; then abc = abcacabc = ac,
and therefore Véba = a:]gi:abc = ac] , and hence [;ba = é] = [%bc = aé] .

a:]g.[? = g] c [éba = é] , and (4) is proved.

Therefore [éba

If E(f) = E(g), H(f) £ H(g), and H*(f) £ H*(g), then |
[f = g]g [aba = ab]/\[aba = ba] = Eab = ba] S[f = gj] s proving (5).
If I(f) = I(g), then | aba = a%] < [} = é] , since if (aba = ab)

holds, then (f = I(f)) holds. Therefore if I(f) = I(g), (which of
course implies E(f) = E(g), and H(f) = H(g)), and if H*(f) # H*(g),
then [} = gt] = [éba = ayj , and (6) is proved. The proof of (7) is
dual to that of (6).

If E(f) = E(g) and H(f) = H(g), it is trivial that
[abc = acb:]g_[f = gj . If H*(f) £ H*(g), then [f = g]g lj&ba = alil .
If E(f) = E(g), H(f) = H(g), and I(f) £ I(g), then
[} = é] < [}bfl(a,b,c) = acgl(a.b,ci]' by the obvious substitution,
and if in addition H*(f) # H*(g), then since |f = g] |:§ba = ap] ,
[? = é:lg [ﬁbc = acé] . Therefore (8) is proved. The proof of (9) is

dual to that of (8).

Theorem 4.17: For each n 2 3, there are exactly ten equational

classes determined by equations (f = g) with f ~ 8 £~ B

There are exactly nine equational classes determined by equations
(f = g) with f’"‘é g+ In particular, figures 1, 2, and 3 depict that

subposet of the lattice of equational classes of idempotent semigroups

which consists of the classes determined by a single equation.
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Proof: The descrivtion of the n-skeleton,corollaries 4.8 and
4.10, and theorems 4.15 ((9) and (10)) and 4.16 ((8) and (9)), show that

for n®3, there exist at least ten classes determined by an equation (f=g)

with f-vh g, f'7Lh+1 gy, and that there exist at least nine classes
determined by an equation (f = g) with ff\/3 g. But in fact for each
n, all equations of this type have been shown to be equal to one of
ten equations for n 2 3; or one of nine, for n = 2. Therefore there a
are at most ten or nine such equations, respectivelj.

Thus, since all classes determined by a single equation have

beén given in figures 1, 2, and 3, these figures do in fact depict the

subposet of the lattice of equational classes determined by one equation.

4, Equational classes determined by arbitrarily many equations.

In order to show that the whole lattice has been described in
figures 1, 2, and 3, we will show that every equational class is

determined by a single equation.

Proposition 4.18: Every equational class determined by finitely

many equations is determined by one equation.

Proof: We will show that the meet of two classes, each of which
is determined by a single equation, is itself determined by a single

equation.

Let (fl = gl) and (f2,= gz), be equations. If fllﬁ—g g,» and

f2,-3 821 then E(fi) = E(gi), H(fi) = H(gi)? and H‘(fi) = H‘(gi),

(i = 1,2). Take E(fl)r\E(fZ) = @. It is trivial that

[fl = ‘-”1] A [fé a 32] < [flfz ’ 8132] ‘


http:n-skeleton,corolla:d.es
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Moreover, if (Pl is a substitution which satisfies §P1(x) = H‘(fl)

for all xéE(fz), (Pl(y) =y for all y€E(f1), then (Pl(flfz) = f;

and (Pl(glgz) = 8- Therefore [flfa = glgé] < [%l = gl:

Similarly, if glpz satisfies (.Pa(x) = H(fa),for all XGE(fl).(Pz(y) =y

for all y €E(f,), then it follows that [f,f, = 8.8, | €[fs = 8, |-
If £) 5 84 OF £745 By, then | f) = By AL = 8,
= [b = q],mi;pl = qu], where either both [? = qj and [?1 = ql:I
are equational classes given in proposition 4.16, or [bl = qlflis one
of these classes, and p and q satisfy p,~v3 q and one of the follow-
ing;
(1) p @3 a) p 05 a, p £ a,

(i1) p #5 a, p 63 qy D &5 a,

(iii) p #5 a, p #5 a.
It is straightforward to check that all such meets are classes generated

by a single equation.

Theorem 4.19: Every equational class of idempotent semigroups

is determined by one equation.

Proof: The poset of equational classes which are determined by
one equation is a lattice which satisfies the descending chain zondi-
tion. Moreover, every set of incomparable elements in this lattice is
finite. It follows that every meet in the lattice of equational classes
is a finite meet in the lattice of classes determined by one equation,

and therefore determined by one equation (by theorem 4.18).

From this theorem we can now conclude that the lattice of



equational classes of idempotent semigroups has been completely

described. Figure 4 depicts the complete lattice.
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