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INTRODUCTION 

The problems considered in this thesis have their basis in 

a paper by Kothe [15]. Kothe considered those rings R for which 

each right and each left R-module is a direct sum of cyclic modules. 

Such rings are called Kothe rings. In the commutative case the class 

of Kothe rings has been determined. By combining results of K~the [15] 

and Cohen and Kaplansky [4] one obtains that a commutative ring R 

is Ktithe if and only if R is a principal ideal artinian ring. It 

has been shown by Nakayama [18] that in the non-commutative case the 

class of serial rings (which properly contains the principal ideal 

artinian rings) are Kothe rings. However, Nakayama [19] also showed 

that in the non-commutative case the class of serial rings does not 

coincide with the class of Kothe rings. 

One can generalize the original K6the problem by considering 

those rings R such that each right and each left R-rnodule is a 

direct sum of finitely generated modules. The name generalized Kothe 

has been suggested for this class of rings. In the commutative case 

the classes of Kothe rings and of generalized Kothe rings coincide 

(i.e. they are precisely the principal ideal artinian rings by 

Griffith [11, Thm. 4.3]). In the non-connnutative case not much is 

known about the generalized K'Othe rings except they must be artinian 

(Faith and Walker [9, Thm. 3 .1]) • 

(v) 



It is possible to further generalize the original Kothe 

problem. For instance given an infinite cardinal d consider those 

rings R such that each left R-module is a direct sum of modules 

each generated by at most d elements. In Chapter 1 we state some 

results concerning this problem and similar generalizations of the 

original K"'othe problem. 

In Chapters 2 and 3 we study results due largely to Eisenbud 

and Griffith [5, 6, 11] concerning two restricted versions of the 

original Kothe problem. We char~cterize those rings R for which 

every left R-module is a direct sum of left R-modules with a unique 

composition series. We show these rings are exactly the serial rings. 

Also we characterize those rings for which every left R-module is a 

direct sum of torsionless left R-modules with a unique composition 

series. These are shown to be the serial quasi-Frobenius rings. 

In Chapter 4 we consider commutative rings. We show that the 

Kothe problem, the generalized Kothe problem and the two restricted 

versions studied in Chapter 3 all give rise to the same class of 

commutative rings, namely the principal ideal artinian rings. These 

results are largely due to Griffith [11]. We also show that if R 

is a commutative ring and there exists a cardinal number n such that 

every R-module is a summand of a direct sum of R-modules with at 

most n generators, then R is a principal ideal artinian ring. This 

result is due to Warfield [26, Thm. 2]. 

Throughout this paper all rings have identities and all modules 

will be uni tal. 

(vi) 



CHAPTER I 

In this chapter we state without proof some general results 

which will be used in the succeeding chapters. 

Lemma 1: If M is a module which is a direct sum of modules 

each generated by at most c elements where c is an infinite car

dinal number, then each direct summand of M is a direct sum of mod

ules each generated by at most c elements. 

This result is a generalization of a well known theorem of 

Kaplansky's [14, Thm. l] in which the c above is taken to be countable. 

The proof of Lemma 1, which is similar to the original proof of 

Kaplansky's, can be found in Walker [21, Thm. 4.3]. 

Lemma 2: A ring R is left noetherian if and only if there 

exists a cardinal number c such that each left R-module is contained 

in a direct sum of modules each generated by at most c elements. 

Lemma 3: If each left R-module is contained in a direct sum 

of finitely generated modules then R is left artinian. 

Lemmas 2 and 3 are due to Faith and Walker [9, Thms·. 3.3, 3.1]. 

Lemma 4: If d is a fixed cardinal number and if each 

left R-module is a direct sum of modules each generated by at most 

1 




2 

d elements then R is left artinian. 

Lemma 4 is due to Griffith [11, Thm. 2.2). We give a sketch 

of Griffith's proof. By Lemma 2 R is left noetherian. The following 

remarks show R is left perfect which combi.ned with left noetherian 

implies R is left artinian. In [12, Thm. 2.2] Griffith proves a ring 

R is left-perfect if and only if each ;\~-separable left R-module is 

a direct sum of countably generated modules (A left R-module M is 

called ~1-separable if M is flat, torsionless and if each countably 

generated submodule of M is contained in a countably generated direct 

summand of M.) Therefore if each flat left R-module is a direct sum 

of countably generated modules, R is left perfect. The techniques 

of Griffith in [12] can be extended to prove that if there exists an 

infinite cardinal number d such that each flat left R-module is a 

direct sum of modules each generated by at most d elements) then R 

is left perfect. 



CHAPTER II 

For a given ring R · Proposition 1 gives a sufficient condition 

for every left R-module to be written as the direct sum of modules from 

a given class of finitely presented modules. Proposition 2 considers 

the same type of problem for an artinian ring1 that is sufficient 

conditions are given for every R-module to be written as the direct 

sum of cyclic modules from a given class. 

We briefly state the concepts needed for Proposition 1 and 

the Lemmas leading up to it. 

A module M is finitely presented if M :: !_ with F and
K 

K finitely generated and F projective. 

A left module M is cyclically presented if M:: !_ forRa 

some a e: R. 

A submodule A of a left R-module B is a pure (relatively 

divisible) submodule of B if for any finitely presented (cyclically 

Bpresented) module F the natural homomorphism Hom(F,B) ~ Hom(F, A) 

is surjective. 

A module P is pure projective (relatively divisible projective) 

if for any module B and pure (relatively divisible) submodule A, 

Bthe natural homomorphism Hom(P,A) ~ Hom(P, A ) is surjective. 

3 




4 

We state without proof two Lemmas of elementary results on 

purity and pure projectivity. Lemma 5 can be found in Warfield 

[22, Cor. 1 and 3] and Lennna 6 in Griffith [11, Lemma 3.1]. 

Lemma 5: A left R-module is pure projective (relatively 

divisible projective) if and only if it is a direct summand of a 

direct sum of finitely presented (cyclically presented) modules. 

Lemma 6: Let R be any ring and A a left R-module. 

(a) If B is a submodule of A and C· a pure (relatively 

divisible) submodule of A such that cc BC.A and such that 

B AC is pure (relatively divisible) in CJ then B is a pure (relatively 

divisible) submodule of A. 

is an ascending chain of pure (relatively 

divisible) submodules of A then 

(b) 

is a pure (relatively 

divisible) submodule of A. 

Proposit;_ion 1: Let R be any ring and let J' be a class 

of finitely presented left R-modules. If each non-zero left R-module 

d~""contains a copy of a non-zero module of ~ as a pure submodule then,..,. 


each left R-module is a direct sum of copies of modules in 


Proof: Let M be a non-zero left R-module. By assumption 

there exists at least one independent family J:l of non~zero sub

modules from (i.e. isomorphic to members of) 'f such that G = I @GA 
'A£A 

is pure in M. We show the existence of a maximal family of this type. 
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We consider a chain ~ , ordered by set-theoretic inclusion, consisting 

of such families. We define :l = LJ K, K' = l- (±) k and 
Ke:~ k.e::K 

L = ~ (£) t. It can easily be shown by a set theoretic inclusion 

te: ;[, 
argument that L = u K'. By assumption each K' is pure in M 

Kt.~ 
and since the K' form a chain J u K' is pure in M by Lemma 6 (b). 

Ke:~ 
Therefore L is pure in M and there exists a maximal family Ji 
by Zorn's Lemma. If G = M we are done. Otherwise we consider the 

M
left R-module G . By assumption there exists a submodule A of M 

such that ~7· ~ and ~ ;; B in 1. We have Gr A'f M with G 
pure in M and ~ pure in ~ By Lemma 6 (a) A is pure in M. 

It is trivial that G is pure in A. Consider the following diagram 

11' G 

where j is the isomorphism between B and A 
'IT the naturala' 

projection map and r exists since G is pure in A and B is 

finitely presented (hence pure projective). '!Tr is an isomorphism 

and therefore A = im r (f) ker 'TT = B' @ G where B' = B. A is 

pure in M and hence [B'] l) ~ is an independent family of sub

modules from -~ whose direct sum is a pure submodule of M. This 

is a contradiction to the maximality of the family ;rl and hence 

G = M. 
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A module B is an essential extension of a module A if 

there exists a monomorphism a: A>->B such that if 0; xc B then = 
a(A)/1 X ~ O. If B is injective then B is called the injective 

hull of A, denoted E(A). It can be shown that any essential 

extension of A is contained in E(A) up to isomorphism over A. 

A module C is a coessential extension of a module D if 

there exists an epimorphism 8: C ->> D such that ker $ + X = C 

implies that X = C for all submodules X c C. = If C is projective 

then C is called the projective cover of D, denoted P(D). It 

can be shown that any coessential extension of D is an epimorphic 

image of P(D). 

Proposition 2 is essentially a result of Griffith's (Corollary 1) 

strengthened slightly by a suggestion of B. Banaschewski (oral commun

!cation). 

Proposition 2: Let R be a left artinian ring and '1 a 

class of cyclic left R-modules containing the simple left R-modules. 

If ~ is closed under essential and coessential extensions then each 

left R-module is a direct sum of modules in :f. 

Proof; Let A ; 0 be a left R-module. Since R is left 

artinian soc A ; 0 and thus by assumption A contains a non-zero 

submodule B from :1. Since R is left artinian the length of the 

composition series of each cyclic left R-module is finite and is 
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bounded by the length of the compositon series of RR. Therefore we 

can choose B as the module from ~ with longest length which is 

isomorphic to a submodule of A. By Zorn's Lemma there exists Mc:::: A 

such that M is maximal with respect to B() M = 0. We consider 

ir Athe map A-» M where 1T is the natural projection. is a 

monomorphism since Mfl B = 0. Also 1T IB is essential since, if 

n(B)/t L' = 0 for L' = !=_ a submodule of A 
M MJ then 

Awhich implies Le M and thus L' = O. Since M is an essential = 
extension of B we have that ~ e: 1'. If 1T IB = a then 1T IB would 

be an isomorphism which implies that B is a direct summand of A. 

In that case B wuuld be pure in A and we could apply Proposition 1 

Ato achieve the desired result. So we assume that 1T(B) ;: M • Since 

A irr:' A 
Me: :r' M is cyclic and therefore we can find a cyclic submodule 

Asuch that ir(Ra) = - For the same reasons as given above
M 

we can choose D in A such that D has the smallest compositon 

Alength 	with respect to ir(D) = M • Also if ker(irjD) + E = D then 

A1T(E) = M and our choice of D gives us that E = D. Therefore D 

A Ais a coessential extension of M and since M is in °J, D is in 

:f. Comparing composition lengths we ·have that i(D) > 1( ~) > 1(B). 

This is a contradiction to the original choice of B. Therefore irlB 
is an isomorphism and as indicated above the result follows by 

Proposition 1. 

Corollary 1: Let R be a left artinian ring and ~ a 

class of cyclic left R-modules containing the simple left R-modules. 
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v--(""
If &' is closed under the operations of taking submodules, homo

morphic images, projective covers and injective hulls then each left 

R-module is a direct sum of modules in ~ • 

Proof: By the remarks before Proposition 2 ~ is closed 

under essential and coessential extensions. 

Corollary 1 appears in Griffith [11, Thro. 3.3] and the proof 

of Proposition 2 is similar to Griffith's proof of Corollary 1. 

Whether the conditions of Corollary 1 are actually stronger than 

those of Proposition 2 is not known. 

It is clear that two such classes as mentioned in Corollary 1 

. (and Proposi.tion 2) both contain all indecomposable modules. However) 

such classes need not be unique. For instance consider R a principal 

ideal artinian ring which is not local. We will show in Theorem 1 

that the class of left R-modules with a unique compositon series 

satisfies the conditions of Corollary 1 (and of Proposition 2). But 

we show that the class of cyclic left R-modules (which properly contains 

the above class since R is not local) also satisfies the conditions 

of Corollary 1. Let A be a cyclic left R-module. By Faith [8, Thm. 2] 

E(A) is cyclic. Also
1 
since A is cyclic; there exists the natural 

map of R onto A. Therefore it follows that P(A) is a direct 

summand of R and since R is principal ideal artinian, P(A) is 

cyclic. Obviously the class of cyclic left R-modules is closed with 

respect to homomorphic images and it is closed with respect to sub

modules since R is principal ideal. 
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If R is a left artinian ring a finitely generated left 

R-module is essential over its socle. Therefore, if given a left 

artinian ring R and a class ~ as described in Proposition 2 we 

have that the injective hull of a finitely generated left R-module 

is finitely generated (this is also true if R is a generalized 

Kothe ring). This condition for left artinian rings has been studied 

in (16] and (20]. 



- - -

CHAPTER III 


3.1 If R is a ring J will denote its Jacobson radical. 

If M is a R-module then soc M denotes the sum of all simple 

submodules of M and i(M) the length of a compositon series for 

M (if one exists). 

M is called a uniserial module if it has a unique composition 

series of finite length. If M is a uniserial left R-module it can 

2be shown that its composition series is M :l JM :::;, J M • ., • => J~ = 0 • 

R4.J_ will denote the class of uniserial left R-modules. 

A ring R is a left serial ring if R is left artinian 

and for each indecomposable idempotent e, Re is uriiserial. R 

is serial if it is both left serial and right serial (serial rings 

are sometimes referred to as generalized uniserial rings). 

If R is artinian then the left ideal Re, e an indecom

posable idempotent, is called a dominant left summand of R if 

Jke = 0 implies that Jk = 0. 

A module N has the exchange prooP.rty if whenever 

M:N @ x = there exists ' such that® Mi Mi'= Mi 
ie:I 

M = N ~ c (±) M' ) . One can show that in this case there existiie:I 

10 
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M" C: M such that M = M' ® M" for all i E I and N - ffi M1'
i = i i i i ii+I 

In Theorem 1 we show that, among other ways, serial rings 

may be characterized by saying that each of their left modules is a 

direct sum of uniserial modules. Thus serial rings are Kothe rings 

but the containment is proper. (Nakayama [19]). Nakayama [18, Thm. 21] 

showed that serial rings possess this property while Fuller [10, Thm. 5.4] 

showed that it characterizes serial rings. The proof here is due to 

Eisenbud and Griffith [6]. 

Theorem 1: The following are equivalent for any ring R. 

(1) Every left R-module is a direct sum of modules in 
R°LL 

~u(2) R is left artinian and is closed under the
R 

operations of taking essential and coessential extensions. 

(3) R is a left serial ring and for each simple left R-module 

s, E(S) is in Rll_ • 

(4) Every left R-module is relatively divisible projective 

and every indecomposable cyclic left R-module is in R6Ll 

(5) R is left artinian and the dominant left summands of 

R 

Jk 
are R 

Jk 
injective for each k. 

(6) R is serial. 

(7) The left-right symmetry of (1)-(5). 

Proof: 

3.2 We first prove the equivalence of (1), {2) and (3). 
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These results are due to Griffith [6, Thm. 4.1]. We note that the 

proof of (3) -> (2) shows that for A in Rtl., P (A) ,;. Re, e an 

indecomposable idempotent. Therefore ;-LL consists of the R-modules 

Re--iz , e an indecomposable idempotent. 
J e 

(1) -> (3) It follows from Lemma 4 that R is left artinian. By 

assumption we have that, for each indecomposable idempotent e, Re 

is in R<tl_ • Therefore R is a left serial ring. If S is simple 

then E(S) is indecomposable and thus by assumption is in R°Ll . 

(3) -> (2) Since R°LL is clearly closed under submodules and homo

morphic imagesJit's enough to show that for A in RLL , E(A) and 

<i\ IP(A) are in R L-L- • 

A in R\.l. implies that soc A is simple (due to the unique 

composition series of A). Since A is essential over its socle 

E(A) = E(soc A). . By assumption E(soc A) and thus E(A) is in ;LL . 

To show that P(A) is in R6L,l we note that since A has a 

unique composition series it has a unique maximal submodule M. Since . 

R is left artinian ~ =~= , e an indecomposable idempotent. 

We consider the diagram 

At?:..-------:)-n) A ;: _R_e 
M Je 
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where l{' exists by the projectivity of Re and and are the 

natural projections. M contains all proper submodules of A and 

thus by the commutativity of the above diagram is an epimorphism.lf 

Also by the commutativity of the diagram ker lf' is contained in Je and 

thus by Nakayama' s Lemma ker 'f is small in Re. Therefore Re =P(A) 

and since R is left serial., P(A) is in .RLL 

(2) -> (1) Trivially ;LL contains the class of simple left R-modules. 

Therefore (1) follows by Proposition 2. 

3.3 In this section we prove the equivalence of (1), (4) 

and (5) of Theorem 1. (1) and (4) are due to Griffith [11, Thm. 4.1] 

and (5) to Eisenbud and Griffith [5, Prop. 1.1]. The conditions in 

(4) have been slightly changed from those originally stated by Griffith 

in [11]. Whereas in (4) we have that each indecomposable cyclic left 

R-module is in R°Ll, Griffith has that each indecomposable cyclically 

presented left R-module is in Rll. • The reason we changed the conditions 

is that there is a mistake in Griffith's proof that (1) implies (4). 

In that proof he shows that a left R-module A in ~ is isomorphic 

Re
to r in R and e an indecomposable idempotent (this follows

Rre ' 

from P(A) ;:. Re and since Re is in R6U , all of its submodules are 

Re Rcyclic). He then states that -- :: - where x = re+ (1-e), which
Rre - Rx 

is not always true. We consider the serial ring R (any serial ring 

obviously satisfies the conditions of Theorem 1) consisting of all 

2 x 2 upper triangular matrices over a given field. Choosing e = ( 0 O ) 
0 l 
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Re
and it is possible to show that is a one-dimensionalRre 

vector space over R and R is a two-dimensional space over R. We
Rx 

don't know if Griffith's original statement of (4) is actually equivalent 

to the rest of Theorem 1. 

(1) -> (4) By (1) R is a left serial ring. Let A be in ;U . 
By the remark just above A =Re for some r e: R. We now show thatRre 
Re is relatively divisible projective.Rre 

We wish to complete the diagram 

Re 

Rre 


1~ 
x ---- --,)"';?) ! y 

where n is the natural map and Y is a relatively divisible submodule 

of X. An equivalent characterization of relatively divisible (see 

[22, Prop. 2]) is that Y () s X = s Y for all s e: R. We select x e: X 

such that 1T(x) = lf (~). We have 1T(rex) = lf(ree) = if (re) = 0 and 

hence rex is in Y~ Since Y is relatively divisible in· X there 

exists y e: Y such that rex = rey. We define t..iJ : Re -> X by 

q.J(ae) = ae(x-y) for a e: R. Clearly 4J is well-defined and since 

Retp(Rre) = Rre(x-y) = 0 we have the map YJ : ---> x given byRre . 

Cf' (ae) = tp (ae) = ae(x-y). The map \j) completes the above diagram since 

nljJ(ae) • 1T(ae(x-y)) = ae(ir(x) - ir(y)) = ae tp(e) = tf (ae). The 
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assumption gives us that every left R-module is a direct sum of modules 

Re Re
of the form -R , e an indecomposable idempotent. Since the 

. re Rre 

are relatively divisible projective every left R-module is relatively 

divisible projective. Trivially each indecomposable left R-module is 

in R'U_ • 

(4) -> (5) It follows from Lennna 3 that R is left ar.tinian. By 

Lennna 5 we have that each left R-module is a direct summand of a direct 

sum of cyclically presented left R-modules. It's clear that (4) is 

true for any homomorphic image of R and thus for R Therefore itIZ· 
J 

is enough to· prove every dominant left summand of R is injective. 

Suppose Re is a dominant left summand of R. Since R is left artinian 

a module of the form ~ can be written as the direct sum of indecom

posable cyclic left R-modules. Therefore the indecomposable injective 

E(Re) is a direct summand of cyclic indecomposable left R-modules and 

since injectives have the exchange property (Warfield [23, Lennna 2]) 

E(Re) is a cyclic indecomposable left R-module. Thus by assumption 

E(Re) is in ;Lt Now t(Re) ~ t(E(Re)) but since Re is a 

dominant left summand of R, Re= E(Re). Therefore Re is R-injective. 

(5) 	-> (1) To show R is left serial it is enough to show that, 
Jk-le 

for each indecomposable idempotent e, is simple or zero for 
Jke 

Re 	 Reach k. If then 	~ is a dominant left summand of 
Je ~ 

and thus by assumption is an indecomposable -R - injective. This 
Jk 



16 

k-1 
J e C:soc Reimplies that soc is simple and since )
Jke Jke 

this gives us that is simple. 

Next we show that every non-zero left R module has a uniserial 

summand and thus (1) is true by Proposition 1. Let M be a left R-

module. Clearly M is generated· by its cyclic submodules and if Ra 
n 

is a cyclic submodule of M then Ra = l Re1a ei indecomposable 
i=l 

idempotents. Reia is a homomorphic image of Rei and since R is 

left serial Reia is uniserial. Therefore M is generated by its 

uniserial submodules. Since R is left artinian we can choose X ~ M 

to be a uniserial submodule of maximal length, say length k. Since 

M is the sum of its uniserial submodules and by the way X was chosen/ 

it follows that J~ = O. Thus the embedding of X in M can be con

sidered as a -
R
· k monomorphism. As in the proof of (3) -> (2) there 

J 
exists an indecomposable idempotent e such that Re is the projective 

Re Re cover of X. But since .t(X) = k, x is isomorphic to -~ • ~ 
J e J e 

R Ris a dominant left summand of and thus by assumption is ~ -
Jk .Jk 

injective. Therefore X is R injective and is a direct summand ofk ·
J 

M. 

3.4 Nakayama proved in [18, Thm. 21) that over a serial ring 

every finitely generated module is a direct sum of uniserial modules. 

The proof here is essentially that of Eisenbud and Griffith [5, Prop. 1.1]. 

We note that Lemma 8 gives a condition for a projective module over a 

serial ring to be injective. 
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(6) -> (1) We state without proof the following result of Auslander's 

(2, Prop. 10]. 

Lemma 7: Let R be an artinian ring and X an R-module. 

Suppose for every simple module s. Then X is 

injective. 

Lemma 8: Let R be a serial ring, e an indecomposable 

idempotent. Re is injective iff for every indecomposable idempotent 

f, Re ¥: Jf. 

Proof: 

( > ) If Re is injective then Re ¥: Jf since f is assumed to be 

an indecomposable idempotent. 

( <= ) On the other hand to show that Re is injective it is enough 

1 Rfby Lemma 7 to show that for every primitive idempotent f >ExtR ( Jf , Re) = 0. 

This is equivalent to showing that every map lf: Jf -> Re extends 

to a map Rf -> Re. We consider the diagram 

11'1 
iJf) >Rf>(( )R 

jl 

11'2 


Re§< )R 

j2 


where i, j 1 , are the natural inclusions and n1 , n are the naturalj 2 2 

projections. We wish to construct a map a: Rf -> Re such that the 
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left hand triangle of the diagram commutes. 

Since R is a serial ring , Jf is uniserial. Therefore there 

exists a primitive idempotent g of R such that Rg = P(Jf). The 

epimorphism Rg ->> Jf induces a monomorphism 

Ho~(Jf, R) >---> Ho~(Rg, R) =gR 

are in Ho~(Jf, R) and hence by the above mono-

morphism can be viewed as elements of gR. Since R is serial, one 

of these elements is a multiple of the other in gR. 

Suppose ~ is a multiple of j i. Then there existsj 2 1

an a: R -> R such that j tp
2 

the following diagram 

1Tl 
i

Jf) )Rf)t( ;)~t 
jl 

ata 

• 
11'2 

\Y°/~ ' Re) ~R 

j2 

where ai = 11' 2 aj 1i =· 11' 2 j 2 lf = lf . 

If on the other hand j i = hj 2Lf we set e = 1Tl bj2 and1

consider the following diagram 
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11'1 

Jf)-~~i~--)Rff~<~~~~)R

'i" 
I jl 
I 

:s b 

I 1T2 
R~f-(____)R 

with 8lf = n1 bj 2Lf = n1 jli = i. We show that 8 is an isomorphism. 

By the commutativity of the diagram Jf S Im(8). If Im(S) = Jf then 

ljf = B~ and so Jf is a summand of Re. Since Re is indecomposable 

this implies that Jf ~ Re which contradicts the hypothesis. There

fore Jf 'j Im(S) and 8 is an epimorphism since Jf is the unique 

maximal submodule of Rf. Since e is indecomposable and Rf is 

-1
projective this implies that 8 is an isomorphism. Therefore 13 

will also complete the. diagram. 

Proof of (6) -> (1) 

We have already shown that (1) is equivalent to (5). Since 

.!__ is serial for every k, it sufficies by (5) to prove that the 
Jk 

dominant left summands of Re are injective. If Re is a dominant 

left summand of R, Re ~ Jf for any indecomposable idempotent f 

because of the maxim! length of Re. By Lemma (8) Re is ~injective. 

3.5 In this section we prove that if every left R~module is 

a direct sum of uniserial modules then R is serial. Thus by the 

above every right R-module is a direct sum of uniserial modules. Since 

we have already proved the equivalence of (1) through (S) we obtain the 

left-right symmetry of (7). This proof is due to Eisenbud and Griffith 

(6, Thm. 1.3] although the result was first obtained by Fuller (10, Prop. 5.4]. 
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To establish a duality between the category of left R-modules 

and the category of right R-modules we use the stable duality functor 

of Auslander and Bridger [3]. We give a brief account of this functor. 

Let M be a finitely presented module over any ring R and let 

lfP ~-> Q ~->> M be exact with P and Q finitely generated projectives. 

If we apply the functor _·_* = Ho~(~, R) to this sequence we obtain 

the exact sequence M* >~> Q* .!(:.!> P* and we define D(M) to be the 

module which makes the sequence Q* ~> P* ~> D(M) ~> 0 exact 

(i.e. D(M) = Coker(Q* ~> P*)). For any other exact sequence 

P LP~> Q --> M with finitely generated projectives P and Q1 1 1 1 

one can show that there exist finitely generated projectives F and 

G such that F @ D(M) =G @ n (M) where n1 (M) = Coker tr.* •1 

We say that D(M) is unique up to stable equivalence. (For the 

rest of this chapter Projective will denote a finitely generated pro

jective). If M is a left module then D(M) is a right module. 

Therefore D(D(M)) is a left module and one can show that M is 

stably isomorphic to D(D(M)) (i.e. M ® Projective :; D(D(M)) $Pro

jective). We note the following properties of the functor D. 

(1) If M is a finitely generated projective then D(M) is also a 

finitely generated projective. To see this consider the exact sequence 

i0 ~> M >-=-->> M with i the identity map and also the fact that 

Ho~(___, R) preserves finitely generated projectives. 

(2) If M is a finitely presented module with a non-projective 

summand then D(M) also has a non-projective summand. If D(M) is 

a projective, M $ Projective = D(D(M)) ® Projective would imply 

that D(D(M)) and thus M are projectives. 



21 

(3) D preserves finite direct sums up to stable equivalence. This 

follows from the fact that the two sequences P1 -> P0 ->> M and 

Q -> Q -» N induce the sequence P $ Q -> P c±) Q -» M ~ N.
1 0 1 1 0 0 

Proof: 

Lemma 9: If A cX) B = Al (f) C where A = Al and EndR (A) 

is local then B - C. 

Proof: Fr om Warfield [21, Prop. l] we have that if N is 

indecomposable then N has the exchange property if f N has local 

endomorphism r ing. Therefore A has the exchange property and there 

exist A' A" . A C' C" c:::: C such that A = A' (£> A", C = C' (t) C",
l' 1 ~ l' ' = 1 1 

A a A" '+' C" and A (it B = A @ Ai (£> C ' • Since EndoR(A) is·l q::I 

local, A is indecomposable and therefore either A"
1 = 0 or C" = 0. 

If C" = 0 this implies that C' = c and A" = A. Al is also
1 

indecomposable and A :: A" gives that A" =A and A' = o. Since
1 1 1 1 

C' = c and A' = 0 J A (±) B = A © (f) C' implies thatAi1 

A (±) B =A ® c and therefore B :: C. On the other hand if A" = 01 

then A' =A and A :: C". This gives A (f) B = A (±) A' (f) CI 
1 1 1 

and therefore B =A (±) c' . Since A =A = C" we have B =C @ C" = c.1 1 J 

Note that the result holds if A (1) B. =A1 © C. 

A ring R is a semi-primary ring if J is nilpotent and R 
J 

is a semi-simple ring. 
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Lemma 10: Let R be a semi-primary ring, e an indecomposable 

idempotent. Let T be a submodule of eR such that T has finite 

length. Then EndR ( eR ) i s a 1oca1 r i ng.
T 

Proof: The result follows trivially if T = 0 since 

EndR(eR) ~ eRe which is a local ring. Since eJ is the unique maximal 

submodule of eR we may assume that T ~ eJ. It is clear that for 

eR e-( eJ ) c eJany R-endomorphism e: of It then follows
T ~ · T = T • 

that the set A E d eR ) _ } is an. { 1 ( I Im( in ) <:;; eTJ ideal of= <-i e: n R T ' 

EndR ( ;R ). We show that A is the unique maximal ideal of 

eR
EndR ( ;R ). Consider 0 e: EndR ( T) such that 0 i A 

(i.e. Im 0'f ~J and thus 0 is onto). We show that 0 is an iso

morphism and therefore that the non-units form the unique maximal 

ideal A. We have two projective extensions for the finitely pre

eR i ir eRsented module namely T >--> eR -->> - and
T T 

ir0 eRker 0 '71' >--> eR -->> 
T where i is the inclusion map and '71' 

the projection map. By Schanuel 's Lemma it follows that T (f) eR = 

Ker 0 '71' (f} eR. Since the endomorphism ring of eR is local it follows 

by Lemma 9 that T : Ker 0 ir. It follows that Ker 0 ir has the same 

finite length as T and since Tc: Ker 0 1T, T = Ker 0 ir. Therefore 
= 

0 is a monomorphism and thus an isomorphism. 

Lemma 11: Suppose R is a left artinian ring with only 

finitely many nonisomorphic finitely generated indecomposable left 

modules. Then this statement holds when "left" is replaced by "right". 
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Proof: We first show that R is right artinian making 

essential use of the stable duality theory of Auslander and Bridger [3]. 

We assume R is not right artinian. R is at least semi-perfect and 

thus can be written as the direct sum of principal ideals generated by 

indecomposable idempotents. Our assumption implies that R is not 

right noetherian since R being right perfect plus right noetherian 

would give R right artinian. Thus for some indecomposable idempotent 

e, eR is not noetherian and therefore does not have a finite composition 

series. Looking at the finite chain of modules eR ~ eJ ::> ••• -:'.) eJn = 0 

eJk 
it must be that the composition length of is infinite for at 

eJk+l 


least one k, 0 < k < n. We select the largest such k. Since 


eJk 
 Ris an module it can be written as the direct sum of simple. k+l JeJ 

R eJk Ai 

J modules (and thus simple R-modules) i.e. = l ®

eJk+l 	 eJk+lif! 

where I is 	an infinite set. We can construct an (infinite) composition 
eJk n A1series for where the n+1 th term is l (f We 

eJk+l i=l eJk+l 


k+l eJkconstruct a chain from eJ to with the n+l th term of the 


n n 

chain being l Ai • The modules l Ai have finite length by 


i=l i=l 


the choice of k. Thi.s can be seen from the isomorphisms 

n 

n l Ai Ain 	 n
i=l 	 l (f)l Ai 	 l AiAi 	 eJk+l eJk+ln i=l i=l 	 ... i=ll G) = and -	 = 

eJk+l eJk+l n-1 n-1 n-1i=l l Ai 	 l Ai l ® 
Ai 

eJk+li=l 	 i=l i=l 
eJk+l 
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which is simple. We, have constructed an infinite chain 

s1 '=t s2 ~s3 ... c::.. eR where each has finite length. Also weSi 

eR eRhave that ¥: for i r/a j since otherwise we could apply
Si sj 

Schanuel's Lemma to the two short exact sequences 

eR eR 
>-> eR ->> and >-> eR ->> Si sj sSi .. j 

to obtain (£! eR =. s. <£> eR. But since eR has a local endo-Si J 

morphism ring Si =Sj by Lemma 9. Since Si and s. 
J 

have finite 

lengths and one contains the other, Si =Sj implies that s. 
1 

= s 
J 
.. 

We denote the representatives (finitely many by assumption) of 

the finitely szenerated indecomposable non-projective left R-modules by 

eR
We note that S is non~projective for each i and 

i 

therefore D( ~~ ) = Vi <'.±) Projective where is a direct sum of 
1 n' 

certain U. 's, say v = This follows from property (2)
J i 

i=l 
l 

of D mentioned at the beginning. From property (3) of D we have 

that D(Vi) is stably isomorphic to the direct sum of the D(U.) Is. 
Jn' 

By applying D again we get @ ~R <.±) Projective = <i> D(Uj) © Projective. 
i j=l 

Since SeR has a local endomorphism ring it has the exchange property. 
i 

But SeR 
is 

' 
indecomposable and thus must be isomorphic to a direct 

i 
summand of a module on the right hand side of t1) Since is non-

projective the module must necessarily be D(Uj~ for some j, 0 ~ j < n'. 
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Therefore for every i £ I there is an index j = _j (i) such that 

eR 
Uj is a summand of Vi and is a summand of By

Si 
eRLemma 9 we have that the complement of S- on the right hand side 

i 
of © is a finitely generated projective. Therefore we can write 

eR "-P ( ) J'.'L\ f i I SiSi Q:/ Projective= D Uj(i) ~ Projective or every £ • nee 

there are finitely many Uj's and infinitely many Si's , there at:e 

indices i, i' such that i ~ 1' but j{i) = j{i') i.e. D(Uj(i)) = 

D(Uj(i •». Then we would have ;: © Projective =;; © Projective. 

Since R is semi-perfect , Projective can be written uniquely (up to 

isomorphism) as the direct sum of principal ideals generated by inde

eR ~ composable idempotents. Therefore both sides of -~- q;; Projective = 
:Si 

eR (£> Projective are sums of modules with local endomorphism rings
sj 

... eRand so by the Krull-Schmidt theorem which is a contradiction. = Sj 
Therefore R is right artinian. 

Since R is right artinian the Krull-Schmidt theorem holds in 

the category of finitely generated right R-modules. We use this to 

show that for any finitely generated (left or right) R-module M, M 

and D(M) have the same number of non-projective indecomposable summands. 

For suppose M is a finitely generated (left or right) R-module then 

M can be decomposed into the direct sum of indecomposable non-projective 

and indecomposable projective summands. Since R is both left artinian 

and right artinian t he Krull-Schmidt theorem gives that this decomposition 
n 

is unique up to isomorphism. Let M = @ Ai where t he A
i 
's 

i=l 
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are the indecomposable non-projective summands and the B 's are the
j 

indecomposable projective sunnnands. Then we can also decompose D(M) 

n' m' n 

in the same way i.e. (±) Ai © G B! =D(M) = @ D(Ai) .© Projective 


i=l j=l J i=l 


where the A' 's and B' 's have the same properties as the Ai's and
i j 

Bj 's. By (2) of the properties of D mentioned at the beginning each 

D(Ai) has a non-projective indecomposable sunnnand and in fact it only 

has one. For suppose D(Ai) = c1 @ (fl Projective where c1 ,c2 c2 

are non-projective indecomposable summands. Then Ai (£> Projective = 

D(C ) (f) D(C ) (±) Projective and each of D(C ), D(C ) must have a1 2 1 2

non-projective indecomposable summand, say D(C )' and D(C2)' respec1

tively. Since Ai has local endomorphism ring,it has the exchange 

property and therefore we may assume without loss of generality that 

Ai= D(C1)'. Lemma 9 gives us that D(C )' is a projective. This is2

a contradiction. Therefore for 1~i~n D(Ai) has one non-projective1 
indecomposable direct summand which must be isomorphic to some Ai· By 

the Krull-Schmidt theorem n = n'. 

Also we have that two finitely generated R-modules without pro

jective summands are isomorphic if and only if they are stably isomorphic. 

That isomorphic implies stably isomorphic is true in general. On the 

other hand suppose we haye A and B finitely generated R-modules such 

that A and B have no projective summands and D(A) Cf) Projective = 

D(B) ® Projective. This implies that A <±> Projective = B (f) Projective. 

We can decompose both sides of this equation into the direct sum of 
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finitely generated indecomposables and since neither A nor B have 

projective summands> A= B by the Krull-Schmidt theorem. 

These last two remarks give us the desired result. For if B 

is a finitely generated non-projective indecomposable right module 

then by the above D(B) has only one non-projective indecomposable 

summand. Then B $ Projective =D(Ui) <:±) Projective and by the 

last remark B =the unique (up to isomorphism) non-projective direct 

summand of D(Ui). Thus R has the same number of non-projective 

finitely generated indecomposable modules on the right as on the left 

and since R is semi-perfect, the same can be said for the left and 

right finitely generated indecomposable projective modules 

Proof of (1) ~> (6) 

R is left artinian by Lemma 4. Therefore if U is a uniserial 

left module we can show (as in the proof of (3) ~> (2)), by considering 

the projective cover for U> that e an indecomposable 

idempotent. Since Jke is uniserial there exists an indecomposable 

idempotent e' such that Re' is the projective cover for Jke (and 

therefore for some k') 

Then we have the following exact sequence for the finitely 

presented module u where nl, ir2 

are 

and 

the maps resulting from Re' 

i the natural inclusion. 

and Re 

Therefore 

being projective 

D(U} = Cok((Re)* 

covers 
(in1)* 

> (Re')*) 

is a homomorphic image of (Re')*, a principal indecomposable right ideal. 
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By Lemma 11 R is right artinian. For if N is a finitely 

generated indecomposable left R-module 1then N =:~e for some k 

and some indecomposable idempotent e. Therefore there ar·e only a 

finite number of non-isomorphic finitely generated indecomposable left 

R-modules. 

Thus if -we are given Many finitely generated right module then 
n 

D(M) is a direct sum of uniserial left modules, say D(M) = ~ u1 . 
i=l 

n 
Then M © Projective = @ D(Ui) $ Projective where by the . above 

i=l 

the D(Ui) are homomorphic images of principal indecomposable right 

ideals. Since R is right artinian we have by the Krull-Schmidt 

theorem that M is a direct sum of homomorphic images of principal 

indecomposable right R-modules. By Nakayama [19, Thm. 3] R is a 

serial ring. 

3.6 

If X is a subset of a ring R,set (X:O) = { a c R Xa = 0 } 

and (O:X) = {a· c R I ax= 0 }. Any right (left) ideal of R of the 

form (X:O) ((O:X)) is a right (left) annulet. 

A ring R is quasi-Frobenius in case 

(1) each right ideal is a right annulet • 

. (2) each l _eft ideal is a left annulet 

and (3) R is right (or left) artinian. 

Faith and Walker [9, Thm. 5.3) showed that R is quasi-

Frobenius if and only if each injective right (left) R-module is projective 
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(this characterization is still valid when the substitution 

injective<~> projective is made (Faith [7, Thm. (A)])). 

R is 	called a right S- ring if for any left ideal I of R 

(I:O) 	 -/: 0. 

A left R-module M is called torsionless provided M can be 

embedded (as a left R-module) into a direct product of copies of R • 

.:it* will denote the class of torsionless modules in R6l_L~ 

Theorem 2 gives several equivalent characterizations of serial 

quasi-Frobenius rings. The statements of Theorem 2 are similar to 

those of Theorem 1 with the main differencebeing that the class 

of uniserial left R-modules in Theorem 1 is replaced by the class 

of torsionless uniserial left R-modules. 

Theorem 	2: The following are equivalent for any ring R. 

(1) 	 Each left R-module is a direct sum of modules in :LL*· 
(2) R is a left artinian, right s- ring and 

R
.,11* is 

closed under the operations of taking essential and coessential extensions. 

(3) Every left R-module is relatively divisible projective 

and each indecomposable cyclic left R-module is in RU*· 

(4) 	 R is a left serial quasi-Frobenius ring. 


R 
. (5) is quasi-Frobenius for each k. 
Jk 

(6) 	 The left-right symmetry of (1)-(5). 
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Proof: 

(1) <-> (3) This is true by Theorem 1~ 

(2) -> (1) We show that R'll.* contains the simple R-modules and 

therefore the result follows by Proposition 2. If A is a simple left 

R-module then A =!. where M is a maximal left ideal. Since R
M 

is a right S-ring there exists x '/: 0 e: (M: 0) • We define a map 

lf7 : · ~ -> Rx by ~(r) = rx. ~ is clearly an isomorphism and there~ 

fore A =Rx which is torsionless. 

Since R is left serial it is left artinian. From the 

proof of Theorem 5.3 in Faith and Walker [9] one obtains that if R is 

a quasi-Frobenius ring then every R-module is torsionless. Therefore 

for R quasi-Frobenius R'll = R'tt* and as in the proof of (3) -> (2) 

of Theorem 1 it is enough to show that R'tl is closed with respect to 

projective covers and injective hulls. If A is in R11. then as 

before we can show that P(A) = Re, e an indecomposable idempotent. 

Since R is left _serial, Re is in R~L . Also we have that 

E(A) = E(soc A) and since A is in R1..1> soc A is simple. E(soc A) 

is torsionless and therefore there exists a monomorphism 

f: 	 E(soc A) >~-> Il (R)i • We consider the maps irif where the 
ie:I 

are the natural projections. Suppose that is not injective'Jri irif 

for all i. This implies that ker 1Tif '/: 0 for all i and therefore 

that soc Ac;,;. ker ir if for all i. But this contradicts that f is 

a monomorphism and thus for some i) irif is a monomorphism. This 

implies that E(A) is isomorphic to a direct summand of R which is 
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necessarily indecomposable. Since R is a left serial ring, E(A) is 

in ;t-L . R is a right S-ring since R quasi-Frobenius implies th~t 

every left ideal is a left annulet. 

(1) -> (4) We have that R is serial from Theorem 1. If Q is an 

indecomposable injective left R-module then by assumption Q is in 

Ril*· Since Q · is an indecomposable injective and R is left artinian 

we can consider Q as being the injective hull of some simple module. 

Therefore,as in the proof of (4) -> (2) above,we obtain that Q is a 

direct summand of R and is thus also projective. Since R is left 

artinianJeach injective is the direct sum of indecomposable injectives 

and hence each injective is projective. By the result of Faith and 

Walker quoted at the beginning R is quasi-Frobenius: 

(5) 	-> (4) To prove that R is left serial it is enough to show 
k

. J ethat, for e an indecomposable idempotent, is simple or zero 
Jk+le 

- Rfor all k. For e an indecomposable idempotent Re is R(= - )
J 

projective. By assumption R is quasi-Frobenius and therefore by 

the result of Faith's mentioned at the beginning Re is R injective. 

Since Re is an indecomposable injective,soc Re is simple. But 

k-1 k-1J e 	 J ec soc Re and therefore is simple or zero for all k. 
Jke = 	 Jke 

R Since R is serial · R Re(4 ) --:-> ( 5) We denote 
e = Jke 

e an indecomposable idempotent. We let E denote the R -injective 

hull of Re • We have already proved the equivalence of (1) through (4) 
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and thus can assume (1). By (1) every left R-module can be written as 

the direct sum of modules in R'1-l • This is true for any homomorphic 

image of R and in particular for R . Therefore E is i~ Rl..l. 

The projective cover of E is Rf , f an indecomposable idempotent, 

and therefore E = ~~ where Jkf c. If. We show that Re is R injective 

by comparing 1(E) and 1(Re). If 1(Re) = 1(E) this implies that 

Re =E and thus Re is R-injective. If 1(Re) < 1(E) then since 

1(Re) < 1(Rf) < k we have 1(Re) < 1(Rf) < k. Therefore Jk-le = .Jke = = = 
k · Reand by Nakayama's Lennna J e = 0. Thus ~- = Re and E is the R-

Jke 
injective hull of Re. Considered as an R-module E is indecomposable 

and since R is quasi-Frobenius, Re is R-injective. Therefore Re= E. 

This implies that Re and thus Re is R-injective. By Faith's result 

mentioned before R is quasi-Frobenius. 

Remark: Our condition (2) is slightly different from the 

corresponding condition of Griffith [11, Thm. 4.2]. His condition is 

that R is left artinian and R~* is closed under the operations of 

taking injective hulls and projective covers. He then quotes Corollary 1 

to obtain (1). However,one of the conditions of Corollary 1 is that 

the class of cyclic modules under consideration contains the simple 

R-modules. Griffith's assumption does not guarantee this. For instance 

consider the serial ring consisting of all 2 x 2 upper triangular matrices 

over a given field. It is easy to show that over this ring is~* R 

closed with respect to injective hulls and projective covers. However, 

this ring is not quasi-Frobenius. The condition that R is right S-ring 
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was added to insure that the simple R-modules are torsionless. 

For an example of a ring that satisfies Theorem 1 but does 

not satisfy Theorem 2 consider the ring of all 2 x 2 matrices over a 

given field with the usual matrix multiplication except that the product 

of off-diagonal entries is zero. This ring is serial but is not quasi

Frobenius (see Mueller (17]). 



CHAPTER IV 

4.1 In this chapter we give several characterizations of 

commutative Kothe rings. Kothe (15] showed that if R is a principal 

ideal artinian ring (not necessarily commutative) then every R-

module can be written as the direct sum of cyclic modules. The main 

result of this chapter is that if R is a commutative ring and there 

exists a cardinal number n such that every R-module is a summand 

of a direct sum of R-modules with at most n generators, then R is 

a principal ideal artinian ring. This result, due to Warfield [26, Thm. 2], 

generalized results of Cohen and Kaplansky [4] in which n = 1 and of 

Griffith [11, Thm. 4.3] in which n is finite. It follows from this 

that in the commutative case the class of Kothe rings coincides with 

the class of generalized Kothe rings. 

The other characterizations which appear in Theorem 3 are due 

mainly to Griffith [11, Thm. 4.3]. It is shown that in the commutative 

case the rings considered in Theorems 1 and 2, namely the class of 

serial rings and the class of serial quasi-Frobenius rings coincide 

with each other and with the class of Ktlthe rings. 

Theorem 3: The following are equivalent for any commutative 

ring R. 

34 
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(1) R is a principal ideal artinian ring. 

(2) R is a serial quasi-Frobenius ring. 

(3) Every R-module is a direct sum of cyclic modules. 

(4) For some cardinal number n every R-module is a 

summand of a direct sum of modules each generated by at most n 

elements. 

(5) Every R-module is a direct sum of indecomposable 

modules. 

(6) Every R-module is isomorphic to a direct sum of 

ideals of R. 

(7) Every R-module is relatively divisible projective. 

(8) Every R-module is pure projective. 

The following is a diagram of the proof. 

8-(---·3 ~----7 

4.2 In this section we prove the implications (4) --7 (1) 

and (5) ~ (1). The results and proof are due to Warfield (26, Thms. 2,3]. 

We note that (4) implies R is noetherian by Lemma 2 and (5) implies 

R is noetherian by Faith and Walker (12, Cor. 1.3]. Thus we consider 
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commutative noetherian rings which are not principal ideal artinian. 

We construct arbitrarily large modules over such rings. Although 

these modules are not necessarily indecomposable they can only have 

finite direct sum decompositions. Lemma 13 is basic to the construction 

of such modules and the techniques used there are similar to those of 

Griffith [11] to prove that if every R-module is a direct sum of 

finitely generated R-modules then R is principal ideal artinian. 

For m a maximal ideal of the commutative ring R, R will m 
R 

denote the localization of R by m. If L is a - module then m 

di~ (L) will denote the dimension of L as a R vector space.
m 

m 

R is called a special PIR if it is a commutative local 

ring with identity whose maximal ideal m is principal and nilpotent 

(see Zariski-Samuel [27, p. 245]). If R is also noetherian it 

follows from (1, Prop. 8.6] that R is a local artinian ring. If 

min this case di~ ( ~ ) < 1, then R is a principal ideal artinian 
m m 

ring by (1, Prop. 8.8]. 

Lemma 12: Let R be a commutative noetherian ring which is 

not a principal ideal artinian ring. Then either 

(i) R has a maximal ideal m such that R is a 
m 

discrete valuation ring, or 

(ii) R has a factor ring S(= !
L 

for some ideal L) which 

is a local ring with maximal ideal m such that m = aS ~ bS, 

aS and bS simple. 



37 

Proof: If for all maximal ideals m of R, di~ ( m2 ) < 1 
m m 

then by Warfield (25, Thm. 4] this 	is equivalent to R a discrete 
m 

valuation ring or a special PIR for every maximal ideal m. In 

(25, Thm. 4] Warfield also shows that another equivalent condition 

is that R is the direct sum of Dedekind domains and special PIR's. 

From Warfield's proof of the equivalence of these conditions it 

follows that if Rm is a special PIR for every maximal ideal m ; 

then R is a direct sum of PIR's. By the remark before Lemma 12 

these PIR's are necessarily principal ideal artinian and therefore 

R is principal ideal artinian. This is a contradiction and therefore 

R is a discrete valuation ring for some maximal ideal m. m 

mIf for some maximal ideal m, dimR ( 	- 2 ) = n > 1 we consider 
m 

m 

the ring 2R . We note that 2R is a local ring with maximal ideal 
. m m 

2 m2 (For if I is an ideal such that m C. I and I <j;- m then 
m 

2
I + m = R. Multiplication of both 	sides by m gives us Im + m = m 

2 	 2and therefore m + ml + I = R. However, since m c I and ml c. I 

the last equation implies that I= R). We consider a subspace of 

m of dimension n-2. This necessarily has the form 2L L an2 
m m 

ideal contained in m. By the above R
S = L is a local ring with 

m 
2

R ~ (:"; !1!_ )maximal ideal ~ The dimension of 	 is 2. Therefore 
m L 	 L 

2 
m 
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m R/'Ll R R dL = a L ~ b L , a L an b ~ simple and the ring s is of the 

form of (ii). 

We now give the construction which is basic in obtaining the 

large modules mentioned in the introduction. We consider a ring S 

as in Lemma 12(ii). We let F be the Cartesian product of a countable 

number of copies of S indexed by the non-negative integers. If 

is an element of F, the co-ordinates of x are denoted by 

(x0 , x1 , x2 , ••• ). We define a mapping a on F, co-ordinate-wise, 

by a(x) 0 = 0 and a(x)i+l =xi. We let K be the set of elements 

of F of the form ax - bo(x). K can easily be shown to be a sub-

Fmodule and we define A to be the S-module K . 

Lemma 13: Let S be a ring satisfying (ii) of Lemma 12, 

k =;, k[t] the polynomial ring in one variable over k, k[[t)] 

the power series ring in one variable over· k, and S the A-module 

defined above. Then 

(1) ~ =k[ [ tll as k[t] modules and End5 (~) =k[[t]] as
mA 

J 

rings where J is the ideal of End (A) consisting of those endo~8 

morphisms - f such that f(A) ~ mA. 

(2) A is an indecomposable S-module which is not countably 

generated. 

Proof: We first set down the basic notation that will be 

used throughout the proof of this lemma. x will denote an element 

x 
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A Fof where x e: A. If x e: A(= - ) then x = f + K where f E F.
mA K 

co 

Since F = n (S)i we can also write f = (si), s e: S.1i=O 

We also have the following isomorphisms. Since K E mF 

F - - i mA,and A =K we have the isomorphisms mA = mF g ven f or y e:
K 

y = r(f' + K), re: m and f' e: F by y -> rf' + K and 

F 

~ ~ !F =!F given by x + mA ~> f + mF (x and f as assigned 

K 
Aabove). We first make into a k[t] module. We define maps
mA 

A 
a, e: --> mA by a(x)= ax and S(x) = bx. These maps are well

mA 

defined since m 
2 

= 0 and we show that they are also injective. To 

prove a is injective we must show that .ax = 0 implies that x e: mA. 

By the above isomorphisms this is equivalent to showing af e: K 

implies f e: mF. Now af e: K implies there exists an element y • (yi) 

of F such that af = ay - bo(y). Written co-ordinate wise this 

gives us (as0 , as1 , ••• , asi' ••• ) = (ay
0

, ay - by0 , ••• , ayi - byi' ••• ).1 

Starting from the second co-ordinate we have byi = a(si+l - Yi+l) for 

all i. Since bS{) as = 0, byi = 0 for all i. This gives us 

v e: m for all i since otherwise S a local ring implies that yi1 
2is a unit and thus b = 0. Since for all i and m = 0, 

ay - bo(y) = 0 and thus af = 0. Again>since S is a local ringJ 

af = 0 gives us that for all i and thus f e: mF. A similar 

proof shows B is injective. Also, from the definition of K 

af + K = bo(f) + K and hence aA c. bA and mA = bA. Therefore B 

is surjective and thus is an isomorphism. 
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~ A b ~ = oa-1We de f i ne a map ~ on mA Y ~ P We make ~ 

into a module over k[t] by defining ty = 0(y). We showed at 
F ncs~i n(s) 1

the beginning of this proof that ~ -:: !F . But mF = mTI(S)i = II(m)i 

Il (S).
l. ....and = TI(; )i under the map (si) + Ilm - ((si + m) i).TI(m) i
1 

00 00 

s
It is trivial that n ( m )i = n (k) i =k [ [ t]) . Therefore we 

i=O i=O 

have A_ =k[ [t·]] where the isomorphism is given by
mA 

co· 

1x -> l s t (si = si. + m). We show this is a k[t] isomorphism.
1i=O 

The computation that follows is used repeatedly in the rest of the 

proof. We show ~(x) can be described explicitly in terms of o(f). 

We have 0(x) = B-1a(i) = 6-l(ax) and as above ax = bo(f) + K. 

Therefore 8-l(ax) = S-l(bo(f) + K) = o(f) where o(f)a (o(f) + K) + ~F 

Therefore 0i(x) = oi(f) where has the same meaning as above. 

n -Thus for k(t) = l ki ti, k(t) x = k0 
-
x + •.•+kn 0

n-
(x) maps onto 

i-0 
00 co 00 

- i - i+l ti+n
ko l Si t + kl 2 Si t + ..•+ kn l Si which is 

i=O i=O i=O 

n 
t - iequal to 2 k t 

1 ( 
00 

l Si t ) • Therefore A_ =k[ [t]]. as k[t]
i mAi=O i=O 

modules. 

Next we show End 5(A) =Endk[[t]] (k[[t]]) as rings and since 

J 

Endk[[t]](k[[t]]) =k[[t]] this would complete the proof of (1). 

Suppose we are given 'f £ Endo (A) i.e. i is an S-endomorphism of8 
J 

0 
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A such that <.p (A) 1;: mA. Therefore lf induces a non-zero S-endomorphism 

- A -- -- lf of mA given by lf (x) = 'f(X) ( cpCx) == f (x) + mA). lf is in fact 

A - -
a k-endomorphsim of mA since if k = s + m then lf (kx) = Cf (sx) = r<sx) 

= s cp(x) = ktf(x) = kf(x). We now prove tp is a k[t] endomorphism 
A n i 

of mA • We define k(t}= l k t and we must show lf (k(t)x) =k(t) "if (x).
1i=O 

Since ~ is a k-endomorphism 

and we also have 

To prove these are equal it is enough to show t.f' (0 (x)) = ~Hf (x). 


From above we have '11(0(x)) = 1-('Co(f)) where o(f) = (o(f) + K) + ~F 


. - - -1 -1
On the other hand 0 tp(x) = (f3 Cl) ( lf(x)) = 8 (alp (x)). 

-1 -1
But lf is an S-endomorphisrn and hence S (a lf (x)) = e ( lf (ax) ) • 

As before ax = bo(f) + K and since \f is an S-endomorphism 

-1 -1 -1
B (lf(ax)) = f3 (lf(bo(f) + K)) = f3 (b\f(o(f) + K)) = tf(o(f) + K)= 

~ (a (f)) where has the same meaning as above. Therefore tp(0(x)) = 
Aand hence Lf is a k[t] endomorphism of mA and thus of k[[t]]. 

We now show any k[t] endomorphism lf of k[[t]] is actually a k[[t]] 

endomorphism of k[[t]]. We wish to show "lf Cn) = n~(l) for 

·n n 
n e k[[t]]. We write n = n + t n where n is the polynomial conn n 

sisting of the first n terms of n and tn nn the remainder. The 
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following equalities are true since 'f is a k[t] endomorphism of 

n - n nk[[t]]. 'f (ir) = 'f(nn + tn Tr) = \f(Trn) + lfCt n.). Substituting 
\ 

,,-·· 

tn Trn - - n 
1T - for 'Tl' we have lf(TI') - TrLf(l) = t (lf (1T) nn'f (1))

n 

for all n. We let (tn) denote the ideal generated by tn and 

obviously 
co 

(tn) = o. Therefore Ji ('IT) = Tr <f'Cl) and thus isDo lf 
a k[ [ t]] endomorphism of k[[t]]. 

The map of End (A) into k[[t]] described above is obviously one to one and5 
J 

a ring homomorphsim. To complete the proof of (1) we need to show any k[[t]] 


endomorphism f of k[[t]] is induced by an S-endomorphism of A. 


First we note any endomorphism f of k[[t]] is given by multi-

co 

- iplication of an element of k[[t]], say T(t) = l y. t 
i=O l. 

co 

We consider s(t) • l in S[[t]]. 
i=O 

s(t) can be made to induce an endomorphism on F by defining 

tnf = on(f) for f £ F. The endomorphism induced by s(t) -maps 

f = (s0 , s 1 , ... , sn' ••• ) 

For k = (ax0 , ax1 - bx0 , .•. , axi+l - bxi, ••• ) £ K the endomorphism 


induced by s(t) maps k into the element (a(y0x0), a(y0x1 + y1x0) - by0x
0

, .. 


•• , a(y0xi+l + •••+ Yi+lx0) - b(y0x1_1 + •••+ y1_1x0) ... ) which also 


is in K. If we call the endomorphism induced by s(t) 9, then since 


Q(K) ~ K> Q induces an endomorphism Q on A given by Q(x) = Q(f) + K. 
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It is clear that if s(t) ~ 0, 9 is in End (A) • It is also clear8
J 

that 9 ( mF ) C: mF and thus 9 induces an endomorphism 9 on
K - K 

A 
mA 

The action of 9 on x e: ~ is given by 9 (x) = Q(x)+ mA = 

. A 
By the isomorphism between mA and k[[t]] given at the beginning 

CIO • 00i . i 
this element maps into ( l y t ) ( l si t ) in k[ [t]].

1i=O i=O 

But this is just f ( l s ti ) and thus we obtai.n our given endo
1i=O 

morphism of k[[t]]. 

CIO CIO 

To prove (2) we use the fact that ~= n (k)i. n (ki) = · 
mA i=O i=O 

CIO CIO CIO 

Ho~ ( (±) (k)., k) under the map kt i 
-> Hom( <t) (k) i' k)1 l i f k e: 

i=O i=O i=O 

n n CIO 

where fk( (±) iiJ) = l 1ij kij. The dimension of @ ki as a 
jal j=l i=O 

k vector space is card N-= w and by Jacobson [13, Thm. 1, p. 86], 

00 

2(J).dill\ ( II ki) = (card k) 
w 

> Therefore the k-dimension of 
A 

- mAi=O 

is uncountable and thus A is not countably generated. 

If A has a direct sum decomposition we can assume without loss 

of generality it decomposes into two summands, say A = M <±J N. 

This induces a decomposition of mA, namely mA = m M $ m N. We 

note the projection maps of A, pM and pN, are not in the ideal J. 
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For if ~(A) ~ m A then M is necessarily contained in m M and 

2thus M = m M. But since m • 0 this can't . be so. Therefore we 

have the non-trivial idempotents pM and in the ring Endo (A)5
J 

and thus by (1) we have two non-trivial idempotents in the ring 

k[[t]]. But k[[t]] is a local ring and hence does not have any non

trivial idempotents. Therefore A is indecomposable • 

.Lemma 14: Let R be a noetherian ring which is not a principal 

ideal artinian ring. Then for any cardinal number n there exists a 

module M which cannot be generated by n or fewer elements such 

that any direct sum decomposition of M has a finite number of summands. 

Proof: By Lemma 12 either 

(i) R is a discrete valuation ring for some maximal 
n 

ideal n of R, or 

(ii) R has a factor ring S satisfying (ii) of Lemma 12. 

In case (i) we can assume R is a discrete valuation ring with 

maximal ideal m. We show if X is an R -module with the required
n 

properties of the lemma it also has the same properties as an R-module. 

For if the R -module x has the decomposition x = l ©xi as 
n id 

an R-module then by tensoring both sides with R we obtain 
n 

XR = x @ R - I @cx1 ® R ) (where denotes x as an 
n n ~ n R id R n 

R -module). This is since direct sums commute with tensor products
n 

and - X QS) R under the map x ~!.. -> x !.. x e: X !.. e: R 
R n ~; s s ' ' s n 
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Since this map is injective R :/: 0 for any i. Also if xx1 @
R n 

cannot 	be generated by n or fewer elements as an R -module, 
n . 

=X@ R gives us that x cannot be generated by n or fewer 
R n 

elements as an R-module. 

We define R* to be the complet i on of R in the m-adic 

topology i.e. the basic neighbourhoods of R are the ideals m 
k 

• 

For a fixed cardinal number n we define M to be the Cartesian 

product of n copies of R*. Clearly M. is a complete Hausdorff 

R-module in the product topology. We show M is also a complete 

module in the m-adic topology on M. The m-adic topology on M has . 

as its basic neighbourhoods the modules m 
k M; s i nee m 

.k is finitely 

kgenerated for each k, one can easily show that Il (m R*)i, 
i£l 

I an index set of cardinality n. But m 
' k 

R* = (m*)k where m* 

is the 	complet i on of m([l, Prop. 10.15]). 

We let (x ) be a Cauchy sequence of elements of M in the 
a 

m-adic topology. Since the m-adic topology is finer than the product 

topology, (x ) is also a Cauchy sequence in the product topology.
a 

But M is a complete module in the produtt topology and thus (x ) 
a 

converges to some ·element x £ M which we assume without loss of 

generality is O,(x) a Cauchy sequence in the m-adic topology
a 

implies that for every k there exists £ (k) 
1 

such t_hat for all 

y,o ~-	 £(k), xy - x £ Il(m*)i
k 

• But if we assume (x ) does not
0 a 

converge to zero in the m-adic topology then there exists a k such that 

for all a th~re exists B > a such that x
8 

{ Il(m*)~ • x
8 

~ Il(m*)~ 
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implies there exists a co-ordinate j such that t (m*)k. IfXBj 

we choose a = e:(k) then by the Cauchy condition xyj - x e: (m*)
k 

Sj ·. 

for all y ~ e:(k). Since t(m*)k, xyj i.(m*)
k for all y > a .XSj 

This is a contradiction since (x ) converging to zero in the product
a 

topology implies x . converges to zero. Thus M is a complete
aJ 

module in the m-adic topology. 

To show M cannot be generated by n or fewer elements is 

similar to the proof in Lemma 13 that A was not countably generated. 
M IT~R*)i

As in Lemma 13 we have the following isomorphisms mM = = 
Il(R*)i mil(R*)i 

~ ~ n 
Il(m*)i = Il( m* ) 1 .• As in Lemma 13, dim! (Il( m* )i) ~ 2 and 

m 
therefore M cannot be generated by n or fewer elements. 

Now we suppose M has an infinite direct sum decomposition. 

Then there exists a countably infinite direct sum decomposition 

00 

M = l @Ni (Ni :/: O). We show any direct sunnnand of M is closed 
i=O 

in the m-adic topology. For suppose M = N <£) N' and that we have 

a Cauchy sequence (m ) e: N such that (m ) converges to n' e: N'. 
a a 

We consider the sequence m - n' which converges to zero in the 
a 

m-adic topology. Thus for every k there exists a S such that a > 8 

k k kimplies that m - n' e: m M : m N c±) m N' • m e: N for each a 
a a 

implies (-n') e: mk N' for all k which is true only if n' = 0. 

This implies N is complete and thus closed. 



47 

r 
We define Nr = l Ni. By the above the Nr are all closed 

i=O 

and their union is M. Therefore by the Baire Category Theorem some · 

submodule Nr contains an open subset. Then Nr contains a neighbour

hood of zero which implies for some integer j, But 

M == Nr <f) l and therefore mj M ~ Nr implies . mj ( 
00 

l Ni) = 0. 
i=r+l i=r+l 

Since R is a discrete valuation ring it is an integral domain and 

thus so is R*. Since M is the direct product of R* it is torsion 

free. Thus mj ( l <tJ N1) = 0 gives a contradiction and there 
i=r+l 

does not exist an infinite direct sum decomposition of M. This 

completes the proof of case (i). 

For case (ii) we let M be the Cartesian product of n copies 

sof the module A considered in Lemma 13. As above the - dimension 
m 

M nof mM is ~ 2 and thus M cannot be generated by n or fewer 

elements. As in Lemma 13 we have the following isomorphism5. 

M Il(A)i Il(A)i 
-= = - TI(~) :: 
mM mn(A) 1 Il(mA)i mA i 

Similar to Lenuna 13 we show any S-endomorphism of M induces a k[[t]]

module endomorphism of M We let x e: M wheremM • 

and = £1 + K where £1 e: F. We define x = x + mM and the abovex1 

M A
isomorphism maps x e: rnM onto (x1 + rnA)i e: II( mA )i. Let Cf be 

an S-endomorphism of M. Then lf induces an S-endomorphism 7{" of 

M given by tp (x) = t.f' (x) ( Lf Cx) = tf (x) ~ mM). By the proof of
mM 
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Lenuna 13 the k[t] endomorphisms of k[[t}] coincide with the k[[t]] 

endomorphisms of k[[t]] and thus it suffices to prove k(t)Lf (x) = 
m 

tpCk(t) x) where k(t) = l kj tj. Now l..f1 (i) = IT(pilf-(x))i where 
j=O 

A
pi is the natural projection onto ( mA )i. Thus it is enoqgh to 

show k(t) Pilf (x) = Pilf(k(t) x) and in fact it is enough to show 

k1 t piLf (x) · = pi lf' (kl t x). We have kl t pi lf (x) = kl t(pi lf (x) + mA) = 
-1 -1 ,, -1

k1 (B a) (pi lf (x) + mA) = k1 e (api Lf (x), = kl B (pi lf (ax)). The 

last steps are true since pi and Lf are S-endomorphisms. Due to 

the fact that ax = (axi) = (b o(f1) + K)i and tf and pi are 

k1 B
-1

S-endomorphisms we have the following equalities. (pilf(ax)) = 
-1 -1

kl B pi lf ((b a ( f i) + K) i) = kl $ (b pi ~ ((a (.f i) + K) i) ) = 

kl (pi lf ((a(fi) + K) i) + mA) = kl Pilf ((a(fi) +K) i + mA) = 
- -1= k1 Pilf((8 a) ((xi+ mA)i}) = k1 Pi<:f(tx). The above establishes 

M 
a ring homomorphism of End5(M) into Endk[[t]] ( mM) and thus 

Endk[[t]] (IT(k[[t]~). Therefore any S-decomposition of M into 

direct summands gives a non-trivial orthogonal idempotents in the 

ring Endk[[t]] (Il(k[[t]])i) and thus a decomposition of Il(k[[t]])i 

into a parts (as in Lemma 13 we use the fact that if N is an 

S-module and N = mN then N = O). Since k[[t]] is a complete 

discrete valuation ring a must be finite by the first part of the 

proof of this lemma. Therefore M has the required properties. 

Proof of (4) ~> (1). 

We assume R is not principal ideal artinian. First we consider 
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the case when n is finite. By Lemma 3, R is artinian. Since 

R is a commutative artinian ring, R is the direct sum of local 

rings and thus we can consider ~R a local ring with maximal ideal 
.R 	 m 

m. 	 --'2 is not a principal ideal ring since if --'2 is principal then 
m m 

by (1, Prop. 8.8] R is a principal ideal ring. Therefore by the 

proof of Lemma 12 there exists a factor ring S of R of the form 

of (ii) of Lemma 12. The module A considered in Lemma 13 is an 

indecomposable S-module which is not countably generated. The exis

tence of such a module contradicts the hypothesis. 

Thus we can assume n is an infinite cardinal. By Lennna 2 

R is noetherian. Since we have assumed R is not a principal 

ideal artinian ring there exists by Lemma 14 a module M which cannot 

be generated by n or fewer elements .such that any direct sum decom

position of M has a finite number of summands. Since the number 

of summands is finite and n is an infinite cardinal, at least one 

of the summands cannot be generated by n or fewer elements. By 

Lemma 1 the assumption implies every R-module is a direct sum of 

modules each generated by at most n elements. This is a contradiction 

and thus R must be principal ideal artinian. 

(5) ~> (1) Corollary 1.3 in Faith and Walker [9] states that if 

each injective is a direct sum of indecomposables then R is noetherian. 

We assume R is a noetherian ring which is not principal ideal 

artinian. By Lemma 12 either (1) R is a discrete valuation ring for 
n 
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some maximal ideal n of R or (2) R has a factor ring S of the 

type described in Lemma 12, (ii). In both cases we consider the 

modules constructed in Lemma 14
1 
i.e. in the first case we let M 

be an infinite product of copies of the completion R* of R 
n n 

and in the second case we let M be an infinite product of copies of 

the S-module A described in Lemma 13. 

We show the rings EndR(R~) and End (A) are local. To
5 

show EndR(Rn*) is local it suffices to prove EndR(R*) • EndR*(R*) 
n n n 

since EndR*(R*) is isomorphic to the local ring R*. Obviously
nn n 

any . R* endomorphism of R* is an R-endomorphism of R*. On the 
n n n 

other hand suppos~ lf is an R-endomorphism of R*. Let x be in 
n 

R*. x is the limit of a Cauchy sequence (x ) in R We wish to 
n a n 

show lf (x) = x ~ (1) • Since R is a discrete valuation ring the 
n 

ideals of R are exactly powers of the maximal ideal m of R 
n n 

and in fact it can be shown there exists an element p £ R such 
n 

k kthat m = (p) ([l, Prop. 9.2]). Since (x) is a Cauchy sequence,
a 

k
for each k there exists an ak such that x - x £ (p ), i.e. 

ak 

x - xak = P 
k 

rk, rk £ Rn Thus we have Lf (x) = lf (xak + P 
k 

rk) = 

tp(xak) + lf (P
k 

rk). But it is easy to show tp is an Rn-endomorphism. 

k k 
Thus 'f (x) = If (xak) + i (p rk) = xak tf (1) + p lf (rk) for each 

k. Since R is noetherian n(pk) = 0. Therefore ~ (x) = Xlf (1) 

and \f is a R~ endomorphism of R* • n 
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To show End (A) is local we consider the ideal J defined in
5

2 • 2 2Lemma 13. Since m 0, J = 0 and J = 0 implies J is contained 

in any maximal left ideal of End (A). For if L is a maximal left5 

ideal of End (A) such that J f: L then J + L = End (A) and thus
8 5 

JL = J(End
8 

(A)) = J. This gives us JL + L = Ends (A). Since JL t::=. L 
· · Ends(A) 

this leads to a contradiction. By (1) of Lemma 13 J is a 

commutative local ring and by the above there is a one-to-one 

correspondence between the maximal left ideals of End (A) and the 
End (A) 5 

5maximal ideals of ~~J~- Therefore Ends(A) is a local ring. 

We will prove the module M (for both cases) is not a direct sum 

of indecomposable modules. F.rom Lemma 14 any direct sum decomposition 

of M (in both cases) has only a finite number of sunnnands. From now 

on we just consider the module M constructed for case 2 but the fact 

' 
that EndR(R~) is local makes the proof for case 1 identical. Since 

any direct sum decomposition of M is finite we can choose the 

decompos.ition M = B1 @ ••• <±> Br such that r is 

minimal and the Bi are indecomposable and non-zero. Since M is 

the infinite product of copies of A, M = A1 @> N where A1 =A 

and N =M. A has a local endomorphism ring and thus has the exchange 

property by Warfield [24, Prop. l]. Therefore there exist submodules 

B' C::::. B such that B' is a summand ofi= i i 

Since B' is a summand of and is indecomposable, either
i 

Bf = Bi or Bi = 0 for each i. For at least one i B' = 0
i ' 
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for otherwise M = A1 <f} M. Since A has local endomorphism ring, 

N a Bi G> • • • G> B~ by Lemma 9, where B'
i 

= 0 for some i. 

Since N ~ M this is a contradiction to the original choice of r 

and thus R must be principal ideal artinian. 

4.3 	 We complete the proof of Theorem 3 in this section. 

As mentioned before these results are due mainly to Griffith although 

they contain results originally due to Kothe [15] and to Cohen and 

Kaplansky [4]. 

Jk-le 
(i) 	-> (2) To show R is serial it is enough to show k 

J e 

is simple or ·zero for each k and each indecomposable idempotent e. 

R RWe consider the ideal soc ( k) in Since R is a 	principall(•
J J 

ideal ring the preimage of soc( Rk ) in R is a principal ideal and 
J 

R Rthus soc ( 	k) is a principal ideal. However, soc ( k ) is also 
J J 

an JR - module and is also principal as an JR - module. This implies 

R n 
that t(soc ( kR )) < t( JR ). Since R is artinian, J = l 

J i=l 

where the 
Re

1 are simple. From this decomposition it follows that 
Jei 

n Rei 	 n ReiR 
k 	 l-= l G) and thus soc ( Rk ) = (t) soc ( -k- ). Since 

Jk i=l J ei 	 J i=l J ei 

Rei 
is simple for all i, t(soc <\.)) < t( !. ) implies soc ( -k~ )

J
J 	 J ei 
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Rei 
is simple for all i (soc ( -k~) ~ 0 since R is artinian). There

. J ei 

k-1 
J ei 

fore the result follows from c:. soc
k 

J ei 

R is a commutative artinian ring implies it is the 

direct sum of local artinian rings (necessarily serial). Therefore 

we can assume R is a local serial ring. In this case 

R !> J :;;> J 
2 

:> ••• ::::> J 
n = 0 is the unique composition series for R 

n-iand thus J is the annihilator ideal for Therefore every 

ideal is an annulet and R is quasi-Frobenius. 

We note that this proof actually shows commutative serial 

rings are quasi-Frobenius and therefore in the commutative case the 

class of serial rings is equal to the class of serial quasi-Frobenius 

rings. 

(2) -> (7) This is true by Theorem 2. 

(7) -> (3) By Lemma 5 every R-module is a direct summand of a 

direct sum of cyclically presented modules. By Lemma 3 R is artinian 

and therefore every cyclically presented module can be decomposed into 

the direct sum of cyclic indecomposable modules (which necessarily 

have local endomorphism rings). It follows that every R-module is a 

direct summand of modules with local endomorphism rings and by a 

result of Warfield [24, Thm. l] every R-module is a direct sum of such 

modules. 
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(3) ~> (8) By Lemma 3 R is artinian. Over an artinian ring 

every finitely generated module is finitely presented and thus (9) 

follows by Lemma 5. 

(8) ~> (4) This is obvious by Lemma 5. 

(1) ~> (5) By the above (1) is equivalent to (2) and the result 

follows by Theorem 2. 

(2) ~> (7) By Theorem 2 each R-module is a direct sum of modules 

in R°ll*· Each module in R<t)_* is necessarily an ideal in R 

and the conclusion follows. 

(6) ~> (4) By the assumption we can take n in (5) to be the 

cardinality of R. 
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