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INTRODUCTION

The problems considered in this thesis have their basis in
a paper by Kothe [15]. Kothe considered those rings R for which
each right and each left R-module is a direct sum of cyclic modules.
Such rings are called Kdthe rings. In the commutative case the class
of Kothe rings has been determined. By combining results of K&the [15]
and Cohen and Kaplansky [4] one obtains that a commutative ring R
is Kothe if and only if R 1is a ﬁrincipal ideal artinian ring. It
has been shown by Nakayama [18] that in the non-commutative case the
class of serial rings (which properly contains the principal ideal
artinian rings) are Kothe rings. However, Nakayama [19] also showed
that in the non-commutative case the class of serial rings does not

coincide with the class of Kothe rings.

One can generalize the original K&the problem by considering
those rings R such that each right and each left R-module is a
direct sum of finitely generated modules. The name generalized K&the
has been suggested for this class of rings. In the commutative case
the classes of Kothe rings and of generalized Kothe rings coincide
(i.e. they are precisely the principal ideal artinian rings by
Griffith [11, Thm. 4.3]). In the non-commutative case not much is
known about the generalized Kothe rings except they must be artinian

(Faith and Walker [9, Thm. 3.1]).

v)



It is possible to further generalize the original K&the
problem. For instance given an infinite cardinal d consider those
rings R such that each left R-module is a direct sum of modules
each generated by at most d elements. In Chapter 1 we state some
results concerning this problem and similar generalizations of the

original Kothe problem.

In Chapters 2 and 3 we study results due largely to Eisenbud
and Griffith [5, 6, 11] concerning two restricted versions of the
original K&the problem. We characterize those rings R for which
every left R-module is a direct sum of left R-modules with a unique
composition series. We show these rings are exactly the serial rings.
Also we characterize those rings for which every left R-module is a
direct sum of torsionless left R-modules with a unique composition

series. These are shown to be the serial quasi-Frobenius rings.

In Chapter 4 we consider commutative rings. We show that the
Kothe problem, the generalized Kdthe problem and the two restricted
versions studied in Chapter 3 all give rise to the same class of
commutative rings, namely the principal ideal artinian rings. These
results are largely due to Griffith [11]. We also show that if R
is a éommutative ring and there exists a cardinal number n such that
every R-module is a summand of a direct sum of R-modules with at
most n generators,then R 1is a principal ideal artinian ring. This

result is due to Warfield [26, Thm. 2].

Throughout this paper all rings have identities and all modules

will be unital.

(vi)



CHAPTER I

In this chapter we state without proof some general results

which will be used in the succeeding chapters.

Lemma 1: If M is a module which is a direct sum of modules
each generated by at most ¢ elements where ¢ 1is an infinite car-
dinal number, then each direct summand of M 1is a direct sum of mod-

ules each generated by at most ¢ elements.

This result is a generalization of a well known theorem of
Kaplansky's [14, Thm. 1] in which the ¢ above is taken to be countable.
The proof of Lemma 1, which is similar to the original proof of

Kaplansky's, can be found in Walker [21, Thm. 4.3].

Lemma 2: A ring R 1is left noetherian if and only if there
exists a cardinal number c¢ such that each left R-module is contained

in a direct sum of modules each generated by at most c¢ elements.

Lemma 3: If each left R-module is contained in a direct sum

of finitely generated modules then R 1is left artinian.
Lemmas 2 and 3 are due to Faith and Walker [9, Thms. 3.3, 3.1].

Lemma &: If d 1is a fixed cardinal number and if each

left R-module is a direct sum of modules each generated by at most



d elements then R 1is left artinian.

Lemma 4 is due to Griffith [11, Thm. 2.2]. We give a sketch
of Griffith's proof. By Lemma 2 R is left noetherian. The following
remarks show R 1is left perfect which combined with left noetherian
implies R 1is left artinian. In [12, Thm. 2.2] Griffith proves a ring
R 1is left-perfect if and only if each ;v3~separab1e left R-module is
a direct sum of countably generated modules (A left R-module M is
called Fﬂl—separable if M 1is flat, torsionless and if each countably
generated submodule of M 1s contained in a countably generated direct
summand of M.) Therefore if each flat left R-module is a direct sum
of countably generated modules, R 1is left pérfect. The techniques
of Griffith in [12] can be extended to prove that if there exists an
infinite cardinal number d such that each flat left R-module is a
direct sum of modules each generated by at most d elements,then R

is left perfect.



CHAPTER II

For a given riﬁg R Proposition 1 gives a sufficient condition
for every left R-module to be written as the direct sum of modules from
a given class of finitely presented modules. Proposition 2 considers
the same type of problem for an artinian rings that is sufficient
conditions are given for every R-module to be written as the direct

sum of cyclic modules from a given class.

We briefly state the concepts needed for Proposition 1 and

the Lemmas leading up to it.

A module M 1is finitely presented if M = with F and

~|m

K finitely generated and F projective.

A left module M 1is cyclically presented iIf M= for

I

some a € R.

A submodule A of a left R-module B 1is a pure (relatively
divisible) submodule of B if for any finitely presented (cyclically

B j

presented) module F the natural homomorphism Hom(F,B) - Hom(F, A

is surjective.

A module P 1is pure projective (relatively divisible projective)
if for any module B and pure (relatively divisible) submodule A,

the natural homomorphism Hom(P,A) - Hom(P, %-) is surjective.



We state without proof two Lemmas of elementary results on
purity and pure projectivity. Lemma 5 can be found in Warfield

[22, Cor. 1 and 3] and Lemma 6 in Griffith [11, Lemma 3.1].

Lemma 5: A left R-module is pure projective (relatively
divisible projective) if and only if it is a direct summand of a

direct sum of finitely presented (cyclically presented) modules.

Lemma 6: Let R be any ring and A a left R-module.
(a) If B is a submodule of A and C- a pure (relatively

divisible) submodule of A such that C<& B €A and such that

%’ is pure (relatively divisible) in %) then B is a pure (relatively
divisible) submodule of A.
(b) 1f {BA}AEA is an ascending chain of pure (relatively
divisible) submodules of A then B = L~J BA is a pure (relatively
Aeh
divisible) submodule of A.
Proposition 1: Let R be any ring and let EF be a class

of finitely presented left R-modules. If each non-zero left R-module
contains a copy of a non-zero module of Eﬁ as a pure submodule then

each left R-module is a direct sum of copies of modules in fFl

Proof: Let M be a non-zero left R-module. By assumption
there exists at least one independent family étz of non-zero sub-

modules from (i.e. isomorphic to members of) 9: such that G = 2 @a
Ael

is pure in M. We show the existence of a maximal family of this type.

A



We consider a chain é?, ordered by set-~theoretic inclusion, consisting

of such families. We define :ﬁ = (J K, K' = X @® k and
Keﬁ kekK

L= Z @ %. It can easily be shown by a set theoretic inclusion

283;

argument that L = L_} K'. By assumption each K' 1is pure in M

and since the K!' ?25; a chain, Ljaf(' is pure in M by Lemma 6 (b).
Therefore L is pure in M and E;ere exists a maximal family le

by Zorn's Lemma. If G =M we are done. Otherwise we consider the

left R-module %-. By assumption there exists a submodule A of M

such that C% G and G B in i;p We have G 7 A 7 M with G
pure in M and %- pure in % . By Lemma 6 (a) A is pure in M.

It is trivial that G 1is pure in A. Consider the following diagram

B

r b

AS—

A
m G

where j 1is the isomorphism between B and 7 the natural

A
G
projection map and r exists since G is pure in A and B is
finitely presented (hence pure projective). 7r is an isomorphism
and therefore A =2 imr & ker m = B' @ G where B' =B, A is
pure in M and hence [B'](J &} 1is an indépendent family of sub-
modules from "3: whose direct sum is a pure submodule of M. This

is a contradiction to the maximality of the family ;zl and hence

G =M.



A module B 1is an essential extension of a module A if
there exists a monomorphism a: .A>—>B such that if 0 # X< B then
a(A)JYX # 0. If B is injective then B 1s called the injective
hull of A, denoted E(A). It can be shown that any essential

extension of A is contained in E(A) up to isomorphism over A.

A module C 1is a coessential extension of a module D if
there exists an epimorphism B8: C —> D such that ker B + X = C
implies that X = C for all submodules X< C. If C 1is projective
then C 'is called the projective cover of D, denoted P(D). It

can be shown that any coessential extension of D is an epimorphic

image of P(D).

Proposition 2 is essentially a result of Griffith's (Corollary 1)
strengthened slightly by a suggestion of B. Banaschewski (oral commun-

ication).

Proposition 2: Let R be a left artinian ring and ?}: a

class of cyclic left R-modules containing the simple left R-modules.
If EF-is closed under essential and coessential extensions then each

left R-module is a direct sum of modules in ?F.

Proof! Let A # 0 be a left R-module. Since R 1is left
artinian soc A # 0 and thus by assumption A contains a non-zero
submodule B from ZP. Since R 1is left artinian the length of the

composition series of each cyclic left R-module is finite and is



bounded by the length of the compositon series of RR. Therefore we
can choose B as the module from f?’ with longest length which is
isomorphic to a submodule of A. By Zorn's Lemma there exists M < A

such that M 1is maximal with respect to Bf)M = 0. We consider

the map A s ﬁ' where m 1is the natural projection. WIB is a
monomorphism since bl[]B = 0. Also ﬂlB is essential since, 1if
' ' ' L A .

a(B)/\L'=0 for L' = G 8 submodule of 5 2 then B\L =0

which implies L& M and thus L' = 0. Since A is an essential

M
extension of B we have that %-e GFl If ﬂlB = %- then WIB would

be an isomorphism which implies that B 1is a direct summand of A.

In that case B would be pure in A and we could apply Proposition 1
to achieve the desired result. So we assume that =(B) # %-. Since
A - A

ME +, M is cyclic and therefore we can find a cyclic submodule

Ra < A such that w(Ra) =§- . For the same reasons as given above
we can choose D in A such that D has the smallest compositon
length with respect to w(D) = ﬁ-. Also if ker(w|D) + E =D then

m(E) = % and our choice of D gives us that E = D. Therefore D

is a coessential extension of %- and since ﬁ- is in i}j, D is in
:;j. Comparing composition lengths we ‘have that 2(D) > £( %—) > 2(B).
This is a contradiction to the original choice of B. Therefore HIB
is an isomorphism and as indicated above the result follows by

Proposition 1.

Corollary 1: Let R be a left artinian ring and :}f a

class of cyclic left R-modules containing the simple left R-modules.



If 037 is closed under the operations of taking submodules, homo-
morphic images, projective covers and injective hulls then each left

R-module is a direct sum of modules in SG s

Proof: By the remarks before Proposition 2 Z;: is closed

under essential and coessential extensions.

Corollary 1 appears in Griffith [11, Thm. 3.3] and the proof
of Proposition 2 is similar to Griffith's proof of Corollary 1.
Whether the conditions of Corollary 1 are actually stronger than

those of Proposition 2 is not known.

It is clear that two such classes as mentioned in Corollary 1
(and Proposition 2) both contain all indecomposable modules. However)
such classes need not be unique. For instance consider R a principal
ideal artinian ring which 1is not local. We will show in Theorem 1
that the class of left R-modules with a unique compositon series
satisfies the conditions of Corollary 1 (and of Proposition 2). But
we show that the class of cyclic left R-modules (which properly contains
the above class since R 1is not local) also satisfies the conditions
of Corollary 1. Let A be a cyclic left R-module. By Faith [8, Thm. 2]
E(A) is cyclic. Also,since A is cyclic there exists the natural
map of R onto A. Therefore it follows that P(A) is a direct
summand of R and since R 1is principal ideal artinian, P(A) is
cyclic. Obviously the class of cyclic left R-modules is closed with
respect to homomorphic images and it is closed with respect to sub-

modules since R 1is principal ideal.



If R 1is a left artinian ring a finitely generated left
R-module is essential over its socle. Therefore, if given a left
artinian ring R and a class T;: as described in Proposition 2 we
have that the injective hull of a finitely generated left R-module
is finitely generated (this is also true if R 1is a generalized

Kothe ring). This condition for left artinian rings has been studied

in [16] and [20].
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CHAPTER III

3.1 If R is a ring J will denote its Jacobson radical.

If M 1is a R-module then soc M denotes the sum of all simple
submodules of M and 2(M) the length of a compositon series for

M (if one exists).

M 1is called a uniserial module if it has a unique composition
series of finite length. If M 1is a uniserial left R-module it can
be shown that its composition series is M2 JM =2 JZM.... > J™ = o.

RéLL will denote the class of uniserial left R-modules.

A ring R 1is a left serial ring if R 1is left artinian
and for each indecomposable idempotent e, Re 1is uniserial. R
is serial if it is both left serial and right serial (serial rings

are sometimes referred to as generalized uniserial rings).

If R 1is artinian then the left ideal Re, e an indecom-
posable idempotent, is called a dominant left summand of R if

k k
J e =0 dimplies that J = 0.

A module N has the exchange proverty 1f.whenever

=
0

N@®@ X= @& M, there exists M, < M, such that
el i i—="1

N & (@ M; ). One can show that in this case there exist
iel

10



2 % 1

1" C = L " = i
Mi - Mi such that Mi Mi @ Mi for all ie I and N ;f& Mi "

In Theorem.l we show that, among other ways, serial rings
may be characterized by saying that each of their left modules is a
direct sum of uniserial modules. Thus serial rings are Kothe rings
but the containment is proper. (Nakayama [19]). Nakayama [18, Thm. 21]
showed that serial rings possess this property while Fuller [10, Thm. 5.4]
showed that it characterizes serial rings. The proof here is due to

Eisenbud and Griffith [6].

Theorem 1: The following are equivalent for any ring R.

(1) Every left R-module is a direct sum of modules in R?LL

(2) R is left artinian and QQL is closed under the
operations of taking essential and coessential extengions.

(3) R is aleft serial ring and for each simple left R-module
s, E(S) isin _LL. -

(4) Every left R-module is relatively divisible projective
and every indecomposable cyclic left R-module is in ;l( .

(5) R 1is left artinian and the dominant left summands of

BE are BE - injective for each k.

J J
(6) R is serial.

(7)) The left-right symmetry of (1)-(5).

Proof:

3.2 We first prove the equivalence of (1), (2) and (3).



These results are due to Griffith [6, Thm. 4.1]. We note that the

proof of (3) — (2) shows that for A in ﬂl, P(A) 2= Re, e an

R
indecomposable idempotent. Therefore glL. consists of the R-modules
BE-, e an indecomposable idempotent.
Je :

(1) — (3) It follows from Lemma 4 that R 1is left artinian. By
assumption we have that, for each indecomposable idempotent e, Re
is in Rz l . Therefore R 1is a left serial ring. If S 1is simple

then E(S) is indecomposable and thus by assumption is in éﬁ,t ‘

3) = (2) Since Rﬁ’L' is clearly closed under submodules and homo-
morphic images)it's enough to show that for A in EIL, s E(A) and

P(A) are in RQVL.-

A in gLL_ implies that soc A is simple (due to the unique

composition series of A). Since A 1is essential over its socle

E(A) = E(soc A). By assumption E(soc A) and thus E(A) is in ;11. "

To show that P(A) 1is in ;ﬂ,L we note that since A has a

unique composition series it has a unique maximal submodule M. Since.

& 28 » € an indecomposable idempotent.

R 1is left artinian M Je

We consider the diagram

5
N J—
=

>
[R
N
<4t 2
N
ulw
)

12
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where (¢ exists by the projectivity of Re and ™ and m, are the
natural projections. M contains all proper submodules of A and

thus by the commutativity of the above diagram ¢ is an epimorphism.
Also by the commutativity of the diagram keer is contained in Je and
thus by Nakayama's Lemma kery 1is small in Re. Therefore Re = P(A)

and since R 1is left serial, P(A) 1is in £1l_ .

2) — (1) Trivially ;li. contains the class of simple left R-modules.

Therefore (1) follows by Proposition 2.

3.3 In this section we prove the equivalence of (1), (4)
and (5) of Theorem 1. (1) and (4) are due to Griffith [11, Thm. 4.1]
and (5) to Eisenbud and Griffith [5, Prop. 1.1]. The conditions in
(4) have been slightly changed from those originally stated b& Griffith
in [11]. Whereas in (4) we have that each indecomposable cyclic left
R-module is in ;11_, Griffith has that each indecomposable cyclically
GLL . The reason we changed the conditions

R
is that there is a mistake in Griffith's proof that (1) implies (4).

presented left R-module is in

In that proof he shows that a left R-module A in W is isomofphic

R
‘to %%Z , ¥ in R and e an indecomposable idempotent (this follows
from P(A) £ Re and since Re is in ﬁq¢t , all of its submodules are
Re R _ _ _
cyclic). He then states that Rre ° Rx where x = re + (l-e), which

is not always true. We consider the serial ring R (any serial ring
obviously satisfies the conditions of Theorem 1) consisting of all

)

2 x 2 upper triangular matrices over a given field. Choosing e = ( g g



14

01

0 0 ) it is possible to show that Re is a one-dimensional

and r = ( S

vector space over R and %;- is a two-dimensional space over R. We
don't know if Griffith's original statement of (4) is actually equivalent

to the rest of Theorem 1.

(1) — 4) By (1) R is a left serial ring. Let A be in ;Li_ .

By the remark just above A = %%E- for some r € R. We now show that
%%E' is relatively divisible projective.

We wish to complete the diagram

Re
Rre

B

»
¥
<3|

where T 1is the natural map and Y 1is a relatively divisible submodule
of X. An equivalent characterization of relatively divisible (see

[22, Prop. 2]) is that Y§{f)s X =s Y for all s € R. We select x e X
such that n(x) = Lf(E). We have w(rex) = q(rez) = q(;;) = 0 and
hence rex is in Y. Since Y 1is relatively divisible in X there
exists y € Y such that rex = rey. We define (y : Re —> X by

q)(ae) = ae(x-y) for a e R. Clearly }/ is well-defined and since
q;(Rre) = Rre(x-y) = 0 we have the map tp: g%;-—> X given by

'QJ(EE) = ' (ae) = ae(x-y). The map'qj completes the above diagram since

nQDZZE) = n(ae(x-y)) = ae(m(x) - n(y)j = aet@(z) = LQ(ZZ). The
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assumption gives us that every left R-module is a direct sum of modules

of the form De_ , e an indecomposable idempotent. Since the Re _
Rre Rre

are relatively divisible projective every left R-module is relatively

divisible projective. Trivially each indecomposable left R-module is

in ;11.-

4y — (5 It follows from Lemma 3 that R is left artinian. By
Lemma 5 we have that each left R-module is a direct summand of a direct
sum of cyclically presented left R-modules. It's clear that (4) is

true for any homomorphic image of R and thus for EE . Therefore it
J

is enough to prove every dominant‘left summand of R 1is injective.
Suppose Re 1is a dominant left summand of R. Since R 1is left artinian
a module of the form %;- can be written as the direct sum of indecom-
posable cyclic left R-modules. Therefore the indecomposable injective
E(Re) 1is a direct summand of cyclic indecomposable left R-modules and
since injectives have the exchange property (Warfield [23, Lemma 2])

E(Re) 1is a cyclic indecomposable left R-module. Thus by assumption

E(Re) 1is in R”Ll . Now 2(Re)

| A

2(E(Re)) but since Re 1is a

1]

dominant left summand of R, Re = E(Re). Therefore Re is R-injective.

(5) — (1) To show R 1is left serial it is enough to show that,
k-1
for each indecomposable idempotent e, Jk € is simple or zero for
Je
Jk_le Re ’ R
each k. If # 0 then —p— is a dominant left summand of —-
Jke J e Jk

and thus by assumption is an indecomposable EE-- injective. This
J
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Re Jk“1 Re
implies that soc ( — ) 1is simple and since € Csoc — )
k k — k
Je Je Je
k-1
this gives us that K € is simple. :
J e

Next we show that every non-zero left R module has a uniserial
summand and thus (1) is true by Proposition 1. Let M be a left R-

module. Clearly M 1s generated by its cyclic submodules and if Ra

n

is a cyclic submodule of M then Ra = 2 Reia ey indecomposable
i=1

idempoten;s. Reia is a homomorphic image of Rei and since R is

left serial Reia is uniserial. Therefore M 1is generated by its

uniserial submodules. Since R is left artinian we can choose X< M
to be a uniserial submodule of maximal length, say length k. Since

M is the sum of its uniserial submodules and by the way X was chosen)

it follows that JkM = 0. Thus the embedding of X in M can be con-

sidered as a EE monomorphism. As in the proof of (3) — (2) there
J

exists an indecomposable idempotent e such that Re 1is the projective
cover of X. But since 2(X) = k, X 1is isomorphic to SE— . Eﬁ—

Jke Je

Jk

injective. Therefore X 1is BE-— injective and is a direct summand of
J

is a dominant left summand of & and thus by assumption is BE -
J

M.

3.4 Nakayama proved in [18, Thm.-21] that over a serial ring
every finitely generated module is a direct sum of uniserial modules.
The proof here is essentially that of Eisenbud and Griffith [5, Prop. 1.1].
We note that Lemma 8 gives a éondition for a projective module over a

serial ring to be injective.
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6) — (1) We state without proof the following result of Auslander's

[2, Prop. 10].

Lemma 7: Let R be an artinian ring and X an R-module.
Suppose Ext;(s,x) = 0 for every simple module S. Then X is

injective.

Lemma 8: Let R be a serial ring, e an indecomposable
idempotent. Re 1is injective iff for every indecomposable idempotent

f, Re # Jf.

Proof:
(=) If Re 1is injective then Re # Jf since f 1is assumed to be

an indecomposable idempotent.

(<) On the other hand to show that Re is injective it is enough
by Lemma 7 to show that for every primitive idempotent f ,Exti( %% , Re)
This is equivalent to showing that every map g Jf — Re extends

to a map Rf — Re. We consider the diagram

m
1
T N
J£) L > ref 3 R

where 1, jl, j2 are the natural inclusions and "1’ “2 are the natural

projections. We wish to construct a map a: Rf —> Re such that the

= 0.
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left hand triangle of the diagram commutes.

Since R 1is a serial ring, Jf 1is uniserial. Therefore there
exists a primitive idempotent g of R such that Rg = P(Jf). The

epimorphism Rg —> Jf induces a monomorphism
HomR(Jf, R) >—> HomR(Rg, R) = gR

Now jli and qu‘ are in HomR(Jf, R) and hence by tHe above mono-
morphism can be viewed as elements of gR. Since R 1is serial, one

of these elements is a multiple of the other in gR.

Suppose szQ is a multiple of jli. Then there exists
an a: R — R such that jztg = a jli. Let a = T, ajl. We obtain

the following diagram

1
&7
app——L— eSS SR
: ;
! 31
|
1o a
L? )
] m
\V/é 2
Re\F >R
P

where ai = LPY ajli =T, jzkf =P .

If on the other hand jli = bszf we set B = ™ bj2 and

consider the following diagram
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il
i “«—L
Jf>- REY- T NR
« j
i 1
1
|
‘P '8 i
™
!é\ 2
Re> /\R
i,

with BLP =T bqu’ =T jli = i. We show that B 1is an isomorphism.
By the commutativity of the diagram Jf < Im(B). If Im(B) = Jf then
1Jf = 6%3 and so Jf is a summand of Re. Since Re 1is indecomposable
this implies that Jf = Re which contradicts the hypothesis. There-
fore inf?hn(ﬁ) and B 1is an epimorphism since Jf is the unique
maximal submodule of Rf. Since e 1s indecomposable and Rf 1is
projective this implies that B8 1is an isomorphism. Therefore 8—1

will also complete the. diagram.

Proof of (6) — (1)

We have already shown that (1) is equivalent to (5). Since
BE is serial for every k, it sufficies by (5) to prove that the
J
dominant left summands of Re are injective. If Re 1is a dominant

left summand of R, Re # Jf for any indecomposable idempotent f

because of the maximl length of Re. By Lemma (8) Re 1is injective.

3.5 In this section we prove that if every left R-module is
a direct sum of uniserial modules then R 1is serial. Thus by the
above every right R-module is a direct sum of uniserial modules. Since
we have already proved the equivalence of (1) through (5) we obtain the
left-right symmetry of (7). This proof is due to Eisenbud and Griffith

[6, Thm. 1.3] although the result was first obtained by Fuller [10, Prop. 5.4].
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To establish a duality between the category of left R-modules
and the category of right R-modules we use the stable duality functor
of Auslander and Bridger [3]. We give a brief account of this functor.
Let M be a finitely presented module over any ring R and let

P :f—o Q

>> M be exact with P and Q finitely generated projectives.
If we apply the functor _ * = HomR(__, R) to this sequence we obtain
the exact sequence M* >—> Q% LL£> P* and we define D(M) to be the
module which makes the sequence Q* —> P*¥ —> D(M) —> 0 exact

(i.e. D(M) = Coker(Q* ,Ef; P#)). For any other exact sequence

Pl Efio Q1 -—> M with finitely generated projecﬁives P1 and Q1

one can show that there exist finitely generated projectives F and

G such that F @ D(M) 2 ¢ @ D, (M) where D,(M) = Coker (* .

We say that D(M) 1is unique up to stable equivalence. (For the

rest of this chapter Projective will denote a finitely generated pro-
jective). If M 1is a left module then D(M) is a right module.
Therefore D(D(M)) 1is a left module and one can show that M 1is
stably isomorphic to D(D(M)) (i.e. M @ Projective = D(D(M)) (® Pro-
jective). We note the following properties of the functor D.

(l) If M 1is a finitely generated projective then D(M) is also a
finitely generated projective. To see this consider the exact sequence
0 — M )—i—>> M with i the identity map and also the fact that
HomR(__, R) preserves finitely generated projectives.

(2) If M is a finitely presented module with a non-projective
summand then D(M) also has a non-projective summand. If D(M) is

a projective, M @® Projective = D(D(M)) @ Projective Qould imply

that D(D(M)) and thus M are projectives.
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(3) D preserves finite direct sums up to stable equivalence. This

follows from the fact that the two sequences Pl —> Po —>> M and

Q — Q; —>> N induce the sequgnce P, ) Q — P, C-BQO —>> M @ N.

Proof:

Lemma 9: - If A® B = Ay @® C where A = A, and EndR(A)

1
is local then B & C,.

Proof: From Warfield [21, Prop. 1] we have that if N is
indecomposable then N has the exchange property iff N has local
endomorphism ring. Therefore A has the exchange property and there

1 1"
exist Al’ Alngl,
A=Al @ C" and A @ B=A @ A @ C'. Since Endop (A) is

C', C"< C such that A = Ai @A", c=c¢Cc' ®Pc",

local, A is indecomposable and therefore either Ai =0 or C" = 0.

If C" =0 this implies that C' = C and AI =A. A is also

indecomposable and A 2 Ai gives that AI = A and Ai = 0. Since

C' =C and Ai=0)A@ B=A @Ai @ C' implies that

A @ B=A @ C and therefore B = C. On the other hand if A} =0

then A} = A, and A =C". This gives A @ B =A @ A @c'

and therefore B

1
1]

A @ C'. Since A

1 24 2 C",we have B = C @c"=c.

Note that the result holds if A @ B = Ay @ c.

A ring R 1is a semi-primary ring if J is nilpotent and %

is a semi-simple ring.
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Lemma 10: Let R be a semi-primary ring, e an indecomposable
idempotent. Let T be a submodule of eR such that T has finite

length. Then EndR ( -:.—R) is a local ring.

Proof: The result follows trivially if T = 0 since
EndR(eR) 2 eRe which is a local ring. Since eJ 1is the unique maximal

submodule of eR we may assume that T < eJ. It is clear that for

eJ

any R-endomorphism € of £5 that e( L) ) g;l—,— . It then follows

T T
that the set A = { g € EndR (-,%I-{-) | Im(y¢) g—%‘]—} is an ideal of

eR
T)

eR eR
EndR ( T ). Consider @ ¢ EndR ( T ) such that @ ¢ A

EndR ( We show that A 1is the unique maximal ideal of

(i.e. Im ¢? ;—J and thus @ is onto). We show that @ is an iso-
morphism and therefore that the non-units form the unique maximal
ideal A. We have two projective extensions for the finitely pre-

. m eR

> eR —>> T and

sented module 9% namely T >

‘"¢ >> g-&
T where 1 1is the inclusion map and

ker § ™ >—> eR

the projection map. By Schanuel's Lemma it follows that T @ eR =
Ker # @ eR. Since the endomorphism ring of eR is local it follows
by Lemma 9 that T = Ker § n. It follows that Ker # 7 has the same
finite length as T and since Tcg Ker § 7, T = Ker @ n. Therefore

@ is a monomorphism and thus an isomorphism.

Lemma 11: Suppose R 1is a left artinian ring with only
finitely many nonisomorphic finitely generated indecomposable left

modules. Then this statement holds when "left" is replaced by "right".
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Proof:  We first show that R 1is right artiniaﬁ making
essential use of the stable duality theory of Auslander and Bridger [3].
We assume R 1is not right artinian. R is at least semi-perfect and
thus can be written as the direct sum of principal ideals generated by
indecomposable idempotents. Our assumption implies that R 1is not
right noetherian since R being right perfect plus right noetherian
would give R right artinian. Thqs for some indecompoéable idempotent
e, eR 1is not noetherian and therefore does not have a finite composition

series. Looking at the finite chain of modules eR=2 eJ= ... eJ" =0

k
it must be that the composition length of eJk+l is infinite for at
: eJ
least one k, 0 < k < n. We select the largest such k. Since
eJk

: is an k module it can be written as the direct sum of simple
eJk+1 J

k
L edules (and thus simple R-modules) i.e. eJ = Z @ -
J k+1 k+1
eJ iel eJ
where I is an infinite set. We can construct an (infinite) composition
eJk LY Ai
series for where the n+l th term is z @& . We
k+1 - k+1
el i=1 eJ
k+1 k ‘
construct a chain from eJ to eJ with the ntl th term of the
; n n
chain being X A; . The modules ) A, have finite length by
i
i=1 i=1
the choice of k. This can be seen from the isomorphisms
n
n n 121 Ai n A1
a A 1A LA T+ ! @ —51
i i=1 i=1 - eJ - i=1 eJ
z @ and &
k+1 k+1 n-1 n-1 n-1
i=1 eJ eJ ~ 1
LA LA | @ —5y
i=1 = i=1 eJ
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which is simple. We. have constructed an infinite chain

19 S, ‘;S .+« <eR where each S, has finite length. Also we

3 i
have that ES% # g—j— for i # j since otherwise we could apply
Schanuel's Lemma to the two short exact sequences
Si >—=> @R —>> g—lf and Sj >—> eR —>> -g?

to obtain Si @ eR = Sj @ eR. But since eR has a local endo-

k| i

lengths and one contains the other, Si E S.‘i implies that Si = Sj'

morphism ring Si # S, by Lemma 9. Since S, and Sj have finite

We denote the representatives (finitely many by assumption) of
the finitely generated indecomposable non-projective left R-modules by

v., U,, ... U . We note that £R is non-projective for each i and
17 "2 n Si

therefore D( _‘;_ii ) = Vi ® Projective where Vi is a direct sum of
i

n'

certain Uj's, say Vi = z @ ”j' This follows from property (2)
i=1

of D mentioned at the beginning. From property (3) of D we have

that D(Vi) is stably isomorphic to the direct sum of the D(Uj)'s.
n'
By applying D again we get @ %& @ Projective = & D(Uj) @ Projective.
i j=1
Since :—R has a local endomorphism ring it has the exchange property.
s |

But g_R is indecomposable and thus must be isomorphic to a direct
i

summand of 2 module on the right hand side of & . Since 2 s non-

projective the module must necessarily he D(U,) for some j, 0 < j <n'.

3
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Therefore for every i € I there is an index j = j(i) such that

Uj is a summand of V, and g8 is a summand of D(U,). By

i S i
Lemma 9 we have that the complement of %5- on the right hand side
i
of C) is a finitely generated projective. Therefore we can write
g—& @ Projective = D(Uj (i)) & Projective for every i e I. Since
i

there are finitely many Uj's and infinitely many Si's , there are

indices i, i' such that i # i' but j(i) = j(i') i.e. D(Uj(i)) =

D(U,,.,y). Then we would have £8 & Projective = R @) Projective.
j@h) Sy Sj

Since R 1is semi-perfect,Projective can be written uniquely (up to

isomorphism) asthe direct sum of principal ideals generated by inde-

composable idempotents. Therefore both sides of %E EB Projective =
i

%& (E) Projective are sums of modules with local endomorphism rings
j
and so by the Krull-Schmidt theorem %5 = gﬁ_ which is a contradiction.
i 3

Therefore R 1is right artinian.

Since R is right artinian the Krull-Schmidt theorem holds in
the category of finitely generated right R-modules. We use this to
show that for any finitely generated (left or right) R-module M, M
and D(M) have the same number of non-projective indecomposable summands.
For suppose M is a finitely generated (left or right) R-module then
M can be decomposed into the direct sum of indecomposable non-projective
and indecomposable projective summands. Since R 1is both left artinian
and right artinian the Krull-Schmidt theorem gives that this decomposition

n m
is unique up to isomorphism. Let M = @ Ai @ @ B

where the A.['s
1wl j=1 3 1
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are the indecomposable non-projective summands and the B are the

]

s
3
indecomposable projective summands. Then we can also decompose D(M)

' n' m' n
in the same way i.e. @ A! @ (® B =DM = @ D(A,) @ Projective

where the Ai's and Bj's have the same properties as the Ai's and

Bj's. By (2) of the properties of D mentioned at the beginning each
D(Ai) has a non-projective indecomposable summand and in fact it only
1’ €2

are non-projective indecomposable summands. Then Ai @ Projective

has one. For suppose D(Ai) = C1 ©) 02 (j Projective where C

1

D(C;) @ D(C,) (® Projective and each of D(C;), D(C,) must have a
non-projective indecomposable summand, say D(Cl)' and D(CZ)' respec-
tively. Since Ai has local endomorphism ring)it has the exchange
property and therefore we may assume without loss of generality that

Ai = D(Cl)'. Lemma 9 gives us that D(CZ)' is a projective. This is

a contradiction. Therefore for 1 < i <n ,D(A;) has one non-projective
indecomposable direct summand which must be isomorphic to some Ai. By
the Krull-Schmidt theorem n = n'.

Also we have that two finitely generated R-modules without pro-
jective summands are isomorphic if and only if they are stably isomorphic.
That isomorphic implies stably isomorphic is true in general. On the
other hand suppose we have A and B finitely generated R-modules such
that A and B have no projective summands and D(A) () Projective =
D(B) GD Projective. This implies that A GE) Projective = B @ Projective.

We can decompose both sides of this equation into the direct sum of
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finitely generated indecomposables and since neither A nor B have

projective summands, A = B by the Krull-Schmidt theorem.

These last two remarks give us the desired result. For if B
is a finitely generated non-projective indecomposable right module
then by the above D(B) has only one non-projective indecomposable
summand. Then B (& Projective = D(Ui) @ Projective and by the
1ast.remark B = the unique (up to isomorphism) non-projective direct
summand of D(Ui)' Thus R has the same number of non-projective
finitely generated indecomposable modules on the right as on the left
and since R 1is semi-perfect,the same can be said for the left and

right finitely generated indecomposable projective modules
Proof of (1) —> (6)

R 1is left artinian by Lemma 4. Therefore if U 1is a uniserial

left module we can show (as in the proof of (3) — (2)), by considering

the projective cover for U) that U = BE , e an indecomposable
Je

idempotent. Since Jke is uniserial there exists an indecomposable
idempotent e' such that Re' 41is the projective cover for Jke (and
. Re' '

. for some k')
J e

therefore Jke

Then we have the following exact sequence for the finitely
m T

presented module U Re' Los Jke>*i > Re 2 5 U where Tys Ty
are the maps resulting from Re' and Re being projective covers
(im )*
and i the natural inclusion. Therefore D(U) = Cok((Re)* 1 > (Re')*)

is a homomorphic image of (Re')*, a principal indecomposable right ideal.
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By Lemma 11 R is right artinian. For if N 1is a finitely

generated indecomposable left R-modulelthen N = B%— for some k
Je

and some indecomposable idempotent e. Therefore there are only a
finite number of non-isomorphic finitely generated indecompoéable left

R-modules.

Thus if we are given M any finitely generated right module then

n

D(M) is a direct sum of uniserial left modules, say D(M) = & u,-
% i=1

Then M &) Projective = @ D(U,) @ Projective where by the above

i=1
the D(Ui) are homomorphic images of principal indecomposable right

ideals. Since R is right artinian we have by the Krull-Schmidt
theorem that M is a direct sum of homomorphic images of principal
indecomposable right R-modules. By Nakayama [19, Thm. 3] R is a

serial ring.

3!6

If X 1is a subset of a ring R,set (X:0) ={ aeR | Xa =0 }
and (0:X) = {a€eR | aX = 0 }. Any right (left) ideal of R of the

form (X:0) ((0:X)) 1is a right (left) annulet.

A ring R 1is quasi-Frobenius in case
(1) each right ideal is a right annulet.
(2) each left ideal is a left annulet

and (3) R is right (or left) artinian.

Faith and Walker [9, Thm. 5.3] showed that R is quasi-

Frobenius if and only if each injective right (left) R-module is projective
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(this characterization is still valid when the substitution

injective <——> projective is made (Faith [7, Thm. (A)])).

R 1is called a right S-ring if for any left ideal I of R

(1:0) £ 0.

A left R-module M 1is called torsionless provided M can be

embedded (as a left R-module) into a direct product of copies of R.
éli* will denote the class of torsionless modules in ;Ql.;

Theorem 2 gives several equivalent characterizations of serial
quasi-Frobenius rings. The statements of Theorem 2 are similar to
those of Theorem 1 with the main differencebeing that the class éq;L
of uniserial left R-modules in Theorem 1 is replaced by the class éil*

of torsionless uniserial left R-modules.

Theorem 2: The following are equivalent for any ring R.
(1) Each left R-module is a direct sum of modules in ElL*.
(2) R 1is a left artinian,right S- ring and Rii* is
closed under the operations of taking essential and coessential extensions.
(3) Every left R-module is relatively divisible projective
and each indecomposable cyclic left R-module is in ﬁLL?.
(4)

is a left serial quasi-Frobenius ring.

R
(5) EE is quasi-Frobenius for each k.
J

(6) The left-right symmetry of (1)-(5).
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Proof:

(1) <> (3) This is true by Theorem 1.

2 — (1) We show that ﬁlL* contains the simple R-modules and
therefore the result follows by Proposition 2. If A 1is a simple left
R-module then A = %’ where M 1is a maximal left ideal. Since R

is a right S-ring there exists x # 0 € (M:0). We define a map

T 'ﬁ-———> Rx by Q(;) = rx. g is clearly an isomorphism and there-

fore A = Rx which is torsionless.

(4) — (2) Since R 1is left serial it is left artinian. From the
proof of Theorem 5.3 in Faith and Walker [9] one obtains that if R is
a quasi-Frobenius ring then every R-module is torsionless. Therefore
for R quasi-Frobenius ﬁlj = il(* and as in the proof of (3) — (2)
of Theorem 1 it is enough to show that iQJ, is closed with respect to

projective covers and injective hulls. If A is in iﬂl. then as

I

before we can show that P(A) Re, e an indecomposable idempotent.
Since R 1is left serial, Re 1is in ﬁlL . Also we have that
E(A) = E(soc A) and since A 1is in ilLW soc A is simple. E(soc A)

is torsionless and therefore there exists a monomorphism

f: E(soc A) >— I (R)i . We consider the maps ﬂif where the
iel

m, are the natural projections. Suppose that wif is not injective

i
for all 1i. This implies that ker ﬂif # 0 for all i and therefore
that soc A< ker nif for all i. But this contradicts that £ 1is

a monomorphism and thus for some 1, ﬂif is a monomorphism. This

implies that E(A) is isomorphic to a direct summand of R which is
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necessarily indecomposable. Since R 1is a left serial ring, E(A) 1is
in ;LL . R 1is a right S-ring since R quasi-Frobenius implies that

every left ideal is a left annulet.

1) — (4) We have that R 1is serial from Theorem 1. If Q 1is an
indecomposable injective left R-module then by assumption Q is in
ﬁQL*. Since Q is an indecombosable injective and R 1is left artinian
we can consider Q as being the injective hull of some simple module.
Therefore,as in the proof of (4) — (2) above jwe obtain that Q ié a
direct summand of R and is thus also projective. Since R 1is left
artinian’each injective is the direct sum of indecomposable injectives

and hence each injective is projective. By the result of Faith and

Walker quoted at the beginning R 1is quasi-Frobenius.

(5) — (4) To prove that R is left serial it is enough to show
k
Je
Jk+1e

that, for e an indecomposable idempotent, is simple Or zero

for all k. For e an indecomposable idempotent R e is R(= %-)
projective. By assumption R is quasi-Frobenius and therefore by
the result of Faith's mentioned at the beginning Re is R injective.

Since R e is an indecomposable injective soc Re is simple. But

Jk--le _ k—le
m C soc R e and therefore * is simple or zero for all k.
Je _ Je
R — — Re
) — (5 We denote Y by R . Since R 1is serial R e = T
J Je

e an indecomposable idempotent. We let E denote the ﬁi-injective

hull of Re . We have already proved the equivalence of (1) through (4)
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and thus can assume (1). By (1) every left R-module can be written as
the direct sum of modules in Eli . This is true for any homomorphic
image of R and in particular for R . Therefore E is in E?J,.

The projective cover of E is ﬁ?., f an indecomposable idempotent,

and therefore E = %% where ka < If. We show that Re is R injective

by comparing 2(E) and 2(Re). If 2(Re) = A&(E) this implies that

Re

I

E and thus Re is E;injective. 1f 2(Re) < 2(E) then since

k-1 k
e

L(ﬁ;} 2 2(RE) < k we have L(Re) < 2(Rf) < k. Therefore J =Je

and by Nakayama's Lemma Jke = 0. Thus EE— =Re and E is the R-
Je

injective hull of Re. Considered as an R-module E is indecomposable
and since R 1is quasi-Frobenius, Re 1s R-injective. Therefore Re = E.
This implies that Re and thus Re is E;injective. By Faith's result

mentioned before R is quasi-Frobenius.

Remark: Our condition (2) is slightly different from the
corresponding condition of Griffith [11, Thm. 4.2]. His condition is
that R 1is left artinian and Bﬂl* is closed under the operations of
taking injective hulls and projective covers. He then quotes Corollary 1
to obtain (1). However,one of the conditions of Corollary 1 is that
the class of cyclic modules under consideration contains the simple
R-modules. Griffith's assumption does not guarantee this. For instance
consider the serial ring consisting of all 2 x 2 upper triangular matrices
ovef a given field. It is easy to show that over this ring ﬁLL* is
closed with respect to injective hulls and projective covers. However,

this ring is not quasi-Frobenius. The condition that R 1is right S-ring
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was added to insure that the simple R-modules are torsionless.

For an example of a ring that satisfies Theorem 1 but does
not satisfy Theorem 2 consider the ring of all 2 x 2 matrices over a
given field with the usual matrix multiplication except that the product
of off-diagonal entries is zero. This ring is serial but is not quasi-

Frobenius (see Mueller [17]).



CHAPTER IV

4.1 In this chapter we give several characterizations of
commutative K&the rings. K&the [15] showed that if R is a principal
ideal artinian ring (not necessarily commutative) then every R-
module can be written as the direct sum of cyclic modules. The main
result of this chapter is that if R 1is a commutative ring and there
exists a cardinal number n such that every R-module is a summand

of a direct sum of R-modules with at most n generators then R 1is

a principal ideal artinian ring. This result, due to Warfield [26, Thm.

generalized results of Cohen and Kaplansky [4] in which n = 1 and of
Griffith [11, Thm. 4.3] in which n is finite. It follows from this
that in the commutative case the class of KOthe rings coincides with

the class of generalized Kothe rings.

The other characterizations which appear in Theorem 3 are due
mainly to Griffith [11, Thm. 4.3]. It-is shown that in the commutative
case the rings considered in Theorems 1 and 2, namely the class of
serial rings and the class of serial quasi-Frobenius rings coincide

with each other and with the class of Ktthe rings.

Theorem 3: The following are equivalent for any commutative

ring R.

34

2],
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(1) R 1is a principal ideal artinian ring;

(2) | R 1is a serial quasi-Frobenius ring.

(3) Every R-module is a direct sum of cyclic modules.
(4) For some cardinal number n every R-module is a

summand of a direct sum of modules each generated by at most n

elements.

(5) Every R-module is a direct sum of indecomposable
modules.

(6) Every R-module is isomorphic to a direct sum of

ideals of R.

(7) Every R-module is relatively divisible projective.

(8) Every R-module is pure projective.

The following is a diagram of the proof.

\?\\\\\
née—3 =
;l >

4.2 In this section we prove the implications (4) — (1)
and (5) — (1). The results and proof are due to Warfield [26, Thms. 2,3].
We note that (4) implies R 1s noetherian by Lemma 2 and (5) implies

R is noetherian by Faith and Walker [12, Cor. 1.3]. Thus we consider
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commutative noetherian rings which are not principal ideal artinian.
We construét arbitrarily large modules over such rings. Although
these modules are not necessarily indecomposable they can only have
finite direct sum decompositions. Lemma 13 is basic to the construction
of such modules and the techniques used thefe are similar to those of
Griffith [11] to prove that if every R-module is a direct sum of

finitely generated R-modules then R 1is principal ideal artinian.

For m a maximal ideal of the commutative ring R, Rm will
denote the localization of R by m., If L 1is a %’ module then

vector space.

g|=

dimR (L) will denote the dimension of L as a
m
R 1is called a special PIR if it is a commutative local
ring with identity whose maximal ideal m is principal and nilpotent
(see Zariski-Samuel [27, p. 245]). 1If R 1is also noetherian it
follows from [1, Prop. 8.6] that R is a local artinian ring. If

in this case dimR ( EE ) <1, then R 1is a principal ideal artinian
= .

ring by [1, Prop. 8.8].

Lemma 12: Let R be a commutative noetherian ring which is
not a principal ideal artinian ring. Then either

(1) R has a maximal ideal m such that Rm is a
discrete valuation ring, or

(ii) R has a factor ring S(= %- for some ideal L) which
is a local ring with maximal ideal m such that m = a§ (F bs,

aS and bS simple.



37

Proof: If for all maximal ideals m of R, dim, ( Ef ) %1

m
m

then by Warfield [25, Thm. 4] this is equivalent to R a discrete
valuation ring or a special PIR for every maximal ideal m. In
[25, Thm. 4] Warfield also shows that another equivalent condition
is that R 1is the direct sum of Dedekind domains and special PIR's.
From Warfield's proof of the equivalence of these conditions it
follows that if Rm is a special PIR forvevery maximal ideal m ,
then R is a direct sum of PIR's. By the remark before Lemma 12
these PIR's are necessarily principal ideal artinian and therefore
R 1is principal ideal artinian. This is a contradiction and therefore
Rm is a discrete valuation ring for some maximal ideal m.

If for some maximal idealm, dimR ( 92 ) =n >1 we consider
= m

Bf" We note that Ef is a local ring with maximal ideal
m m

the ring

Ef (For if I 1is an ideal such that ngg.l and 17§n1 then
m

I +m=R. Multiplication of both sides by m gives us Im + m2 =nm
and therefore m2 + mI + I = R. However, since mzqg I and mI<I

the last equation implies that I = R). We consider a subspace of
Ef of dimension n-2. This necessarily has the form Lf , L an
m m

ideal contained in m. By the above S = % is a local ring with

maximal ideal The E- dimension of ) is 2. Therefore

ol

m
L *

~~
i
BNIL-‘ IBNIE
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m R R R
f—af@bf,al‘ and b

]

simple and the ring S 1is of the
form of (ii).

We now give the-construction which is basic in obtaining the
large modules mentioned in the introduction. We consider a ring S
as in Lemma 12(ii). We let F be the Cartesian product of a countable
number of copies of S indexed by the non-negative integers. If x
is an element of F, the co-ordinates of x are denoted by
(xo, X)s x2,...). We define a mapping o on F, co—ordinaté—wise,
We let K be the set of elements

by c(x)0 =0 and o(x) %

i+1 - *i
of F of the form ax - bo(x). K can easily be shown to be a sub-

module and we define A to be the S-module %-.

Lemma 13: Let S be a ring satisfying (ii) of Lemma 12,
k = g», k[¢] the polynomial ring in one variable over k, k[[t]]
the power series ring in one variable over- k, and S the A-module

defined above. Then

(1) ﬁX = k[[t]] as k[t] modules and End (A) * k[[¢]] as

J
rings where J 1is the ideal of EndS(A) consisting of those endo-

morphisms - £ such that f(A) < mA.
(2) A 1s an indecomposable S-module which is not countably

generated.

Proof: We first set down the basic notation that will be

used throughout the proof of this lemma. x will denote an element
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of where x € A. If x € A(= % ) then x =f + K where f € F.

i

Since F = I (S)

we can also write f = (s.[), s, € S.
1=0 i i

i

We also have the following isomorphisms. Since i(g mF

and A = % we have the isomorphisms mA = %E given for vy € mA,

y=r(f'+K), rem and f'e F by y—> rf' +K and

F
A, g; = E_ given by x +mA —> f +mF (x and f as-assigned
mA  mF wF : |

K
above). We first make ﬁx into a k[t] module. We define maps
a,B: %X-——> mA by a(x)= ax and B(x) = bx. These maps are well

defined since m2 = 0 and we show that they are also injective. To

prove a 1is injective we must show that ax = 0 implies that x & mA.

By the above isomorphisms this is equivalent to showing af e K

implies f € mF. Now af ¢ K implies there exists an element y = (yi)

of F such that af = ay - bo(y). Written co-ordinate wise this

gives us (aso, asy, ««., aS., coe) = (ayo, ay, - byo, cees @Yy S byi, o I

Starting from the second co-ordinate we have byi = a( for

Si41 ~ Yi41)
all i. Since bS/) aS = 0, byi =0 for a1l i. This gives us
Yg em for all i since otherwise S a local ring implies that Y4
is a unit and thus b = 0. Sipce ’yi em for all i and m2 = 0,
ay - bo(y) = 0 and tﬁus af = 0. Again since S is a local ring,

af = 0 gives us that s, em for all i and thus f ¢ mF. A similar

i
proof shows 8 1is injective. Also, from the definition of K
af + K = bo(f) + K and hence aA < bA and mA = bA. Therefore B8

is surjective and thus is an isomorphism.
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A -1 A
We define a map # on = by @ = Ba . We make -y

into a module over k[t] by defining ty = @#(y). We showed at
A _F p 8y TSy

the beginning of this proof that A - wF " But oF ;ﬁzgyz = ﬁ?ﬁf;
II(S)i S
and ﬁ?ETI = II( ;-)i under the map (si) + Hmi — ((si + m)i).
It is trivial that T (3), = I (k), = k[[t]]. Therefore we
=0 21 4o 1

have %K = k[[t]] where the isomorphism is given by

(-]
x —> z ' ti (5; -8 + m). We show this is a k[t] isomorphism.

fup *

The computation that follows is used repeatedly in the rest of the
proof. We show @(x) can be described explicitly in terms of o(f).

We have #(x) = B-lu(g) = B-l(ax) and as above ax = bo(f) + K.

1(bc(f) + K) = o(f) where 5?%3= (o(f) + K) + %E

Therefore B-l(ax) =8
=f= -

Therefore ¢i(§)

0 (f) where  has the same meaning as above.

n
Thus for k(t) = J k, t, k(t) x = k

0 X 4ot k p"(x) mnaps onto

-0 1
k0 z sy ti + kg X sy ti+l +...4 kn ) s; ¢t which is
i=0 i=0 i=0
° 1, ¢ — .1 A
equal to Z ki t ( z s; t ). Therefore -y = k[[t]] as k[t]
i=0 i=0

modules.

Next we show Ends(A) = Endk[[t]] (k[[t]]) as rings and since
J

Endk[[t]](k[[t]]) = k[[t]] this would complete the proof of (1).

Suppose we are given i ¢ Endoq(A) i.e. (£ is an S-endomorphism of
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A such that LP(A)_?‘_;mA. Therefore p induces a non-zero S-endomorphism

? of %X given by q’(;) = ({’(x) ((P(x) = @(x) + mA). 'k_.f‘ is in fact

mA
=g ({7(x) = krf(x) = kTP(;). We now prove E,E is a k[t] endomorphism
n

a k-endomorphsim of 2 since if k = s + m then lf(k;) = —ZE(E;) = Lf(sx)

of L . We define k(t)= Z k ti and we must show r{?(k(t);) = k(t)_(f_’(;(-).
mA L

Since ? is a k-endomorphism

FROD = kP @ + K BOE) +..t & PUB @)
and we also have
K(OPE) = kgGG) + kWG @) +..t k07 G))

To prove these are equal it is enough to show fp (P(x)) = ¢§(§).

From above we have -\{7((6(;)) =?(>(o(f)) where o(f) = (o(f) + K) + Ii'(‘z .

On the other hand ¢q7(;) = (B-la) (gx) = B-l(al?(X)%
But p is an S-endomorphism and hence B—l(aq’(x)) = B_l( tf?(ax)).

As before ax = bo(f) + K and since v 1is an S-endomorphism

B (@ (ax)) = 8L (bo(6) + K)) = BTy (a(E) + K) = P (a(H) + K=
Q (ﬁ)) where - has the same meaning as above. Therefore -LP(Q(;)) =

GtF(;) and hence tf is a k[t] endomorphism of Aﬁ and thus of k[[t]].

We now show any k[t] endomorphism 1; of k[[t]] is actually a k[[t]]
endomorphism of k[[t]]. We wish to show ?f(ﬂ) = 1@(1) for
T e k[[t]]. We write 7 = m + t™ 7" where L is the polynomial con-

sisting of the first n terms of =7 and t" " the remainder. The
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following equalities are true since EF is a k[t] endomorphism of
k[[t]]. CP(H) = t?(ﬂn + " nn) = Lp(nn) e tP(tn n?). Substituting
n n — - - p— B
m-t w for m,owe have cf(n) - wq(l) =t (t{(w) - qv(l))
for all n. We let (t") denote the ideal generated by t" and
obviously /ﬁ‘ (tn) = 0. Therefore ,aF(ﬂ) = an(l) and thus Z? is
n=

a k[[t]] endomorphism of k[[t]].

The map of EndS(A) into k[[t]] described above is obviously one to one and
J

a ring homomorphsim. To complete the proof of (1) we need to show any k[[t]]
endomorphism f of k[[t]] is induced by an S-endomorphism of A.

First we note any endomorphism f of k[[t]] is given by multi-

©o

plication of an element of k[[t]], say Tt(t) = z ;; ti
i=0
(y1 = 7 + m, vy € S). We consider s(t) = X Yy t:i in S[[t]].

i=0
s(t) can be made to induce an endomorphism on F by defining

t"f = Gn(f) for f ¢ F. The endomorphism induced by s(t) maps

f = (so, S1s cees S, «es) oOnto (yoso, Y051 + Y180 +e o Z yisj,...).

n i+j=n

ax - bx ) € K the endomorphism

For k = (axo, ax, - bxo,..., 1+1 PEREE

induced by s(t) maps k into the element (a(yoxo), a(yox1 + ylxo) - byoxo,..
.oy a(yoxi_’_1 +,40F yi+lx0) - b(y()xi__1 +osoF yi_lxo)...) which also

is in K. If we call the endomorphism induced by s(t) 8, then since

8(K) < K,8 induces an endomorphism ® on A given by O(x) = 6(f) + K.
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It is clear that if s(t) # 0, 6 is in EndS(A) . It is also clear
J

that E(TIZSE)C:E'E

—X and thus © induces an endomorphism 9 on

A —_— - A ':.._-..___. ”
oA The action of & on x ¢ -y is given by 08 (x) = 8(x)+ mA

F mF ' ' ¥
(e(f) +x ) + = ((y98¢> YoS1 + ¥1Sgsreees YgS, Feeet ¥ 500 eee) + E-) + =

By the isomorphism between %K and k[[t]] given at the beginning

this element maps into ( z ;;'ti ) ( X >§; t1 ) in Kk[[t]].
' i=0 i=0 :

But this is just £( s, ti ) and thus we obtain our given endo-

1=0 *
morphism of k[[t]].

= 0 (k)
i=0 i=0

To prove (2) we use the fact that %K

©

o (-]
4.
Homk ( fgg (k)i’ k) under the map 120 kit —> fk e Hom( ;g% (k)i’ k)

n n ©
where fk( ;Ei 213) = jZl zij kij‘ The dimension of ;Ez k, as a

k vector space is card N-= w and by Jacobson [13, Thm. 1, p. 86],

k) = (card K)* > 2°.

Therefore the k-dimension of %K

3,

is uncountable and thus A is not countably generated.

If A has a direct sum decomposition we can assume without loss
of generality it decomposes into two summands, say A =M & N.
This induces a decomposition of mA, namely mA =mM P mN. We

note the projection maps of A, and Py are not in the ideal J.

Py
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For if pM(A) <mA then M is necessarily contained in m M and
thus M = m M. But since m2 = 0 this can't be so. Therefore we

have the non-trivial idempotents and Py in the ring Endos(A)
J

and thus by (1) we have two non-trivial idempotents in the ring

Py

k[[t]]. But k[[t]] 1is a local ring and hence does not have any non-

trivial idempotents. Therefore A 1is indecomposable.

Lemma 14: Let R be a noetherian ring which is not a principal
ideal artinian ring. Then for any cardinal number n there exists a
module M which cannot be generated by n or fewer elements such

that any direct sum decomposition of M has a finite number of summands.

Proof: By Lemma 12 either
(1) Rn is a discrete valuation ring for some maximal

ideal n of R, or

(i1) R has a factor ring S satisfying (ii) of Lemma 12.

In case (i) we can assume R is a discrete valuation ring with
maximal ideal m. We show if X is an Rn-module with the required
properties of the lemma it also has the same properties as an R-module.

For if the R -module X has the decomposition X = ) @ X; as
L iel
an R-module then by tensoring both sides with Rn we obtain

X & X X R, ) (-E(Xi & Rn) (vhere X, denotes X as an
n R iel R n

Rn—module). This is since direct sums commute with tensor products

R

and X, = X & R_ under the map x@‘£—>x£,xex,£eR
" RN s s s n
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Since this map is injective Xi & Rn # 0 for any 1i. Also if X
R

cannot be generated by n or fewer elements as an Rn-module,

XR axX & Rn gives us that X cannot be generated by n or fewer
n R

elements as an R-module.

We define R* to be the completion of R in the m-adic
topology i.e. the basic neighbourhoods of R are the ideals mk.
For a fixed cardinal number n we define M to be the Cartesian
product of n copies of R¥%, Clearly M 1is a complete Hausdorff
R—ﬁodule in the product topology; We show M 1s also a complete
module in the m-adic topology on M. The m-adic topology on M has,
as its basic neighbourhoods the modules mk M; since m'k is finitely

generated for each k, one can easily show that mk M= 1 (mk R*)i’
iel
k

I an index set of cardinality n. But m R¥* = (m*)k where m*
is the completion of m([l, Prop. 10.15]).

We let (xa) be a Cauchy sequence of elements of M in the
m-adic topology. Since the m-adic topology is finer than the product
topology, (xa) is also a Cauchy sequence in the product topology.
But M 1is a complete module in the product topology and thus (xa)
converges to some element x € M which we assume without loss of
generality is 0,(xa) a Cauchy sequence in the m-adic topology
implies that for every k there exists e(k)’ such that for all

Y8 e(k)‘ X, - Xs € H(m*)? . But if we assume (xa) does not

)

converge to zero in the m-adic topology then there exists a k such that

for all a there exists B > a such that xB 4 H(m*)i A * H(m*):

B
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implies there exists a co-ordinate j such that XBj £ (m*)k. If

we choose a = e€(k) then by the Cauchy condition x , - x € (m*)k

Y] BJ
for all y > e(k). Since xSj é(m*)k, ij t(m*)k for all vy > a .
This is a contradiction since (xa) converging to zero in the product

topology implies xaj converges to zero. Thus M is a complete

module in the m-adic topology.

To show M cannot be generated by n or fewer elements is

similar to the proof in Lemma 13 that A was not countably generated.

M(R¥*)
As in Lemma 13 we have the following isomorphisms —/— = S
' " 10
II(R*)i R* R* n "
H(m*fl—'g n( = )i-' As in Lemma 13, dim.& (n( a;—)i) > 2 and

m
therefore M cannot be generated by n or fewer elements.

Now we suppose M has an infinite direct sum decomposition.

Then there exists a countably infinite direct sum decomposition

. (-]

M= ) C)Ni Ny # 0). We show any direct summand of M is closed
=0

in the m-adic topology. For suppose M =N (& N' and that we have
a Cauchy sequence (ma) ¢ N such that (ma) converges to n' ¢ N',

We consider the sequence m, - n'

which converges to zero in the
m-adic topology. Thus for every k there exists a B8 such that o > ]
implies that m, - n' ¢ mk M= mk N & mk N'. m, € N for each a
implies (-n') ¢ mk N' for all k which is true only if n' = 0.

This implies N 1is complete and thus closed.
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r
We define N = z Ny. By the above the N? are all closed
i=0

and their union is M. Therefore by the Baire Category Theorem some
submodule N° contains an open subset. Then N* contains a neighbour-

hood of zero which implies for some integer j, uJ )IEENr. But

-]

o
M= N @ z Ni and therefore mj MgNr implies. mj ( z Ni) = 0.
i=r+l i=r+l

Since R 1is a discrete valuation ring it is an integral domain and

‘thus so is R*. Since M 1s the direct product of R* it is torsion

o

free. Thus mj ( 2 ) Ni) = 0 gives a contradiction and there
i=r+1

does not exist an infinite direct sum decomposition of M. This

completes the proof of case (i).

For case (ii) we let M be the Cartesian product of n copies
of the module A considered in Lemma 13. As above the %- dimension

of gﬁ is 3_2“ and thus M cannot be generated by n or fewer

elements. As in Lemma 13 we have the following isomorphisms.

H(A)i H(A)i A

- R (DM {¢

—}I——_ = F
mM  mI(A); T(mA), mA

wF

13
[

)i

Similar to Lemma 13 we show any S-endomorphism of M induces a k[[t]]-

module endomorphism of 98 . We let x € M where x = Cxi), X; € A

mM
and Xy = fi + K where fi ¢ F. We define x = x + mM and the above
- M A
isomorphism maps x ¢ v, onto (xi + mA)i e I( ey )i' Let ¢ be

an S-endomorphism of M. Then ¢ induces an S-endomorphism CT of

S given by TG = T (G = () +m). By the proof of
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Lemma 13 the k[t] endomorphisms of k[[t]] coincide with the k[[t]]
endomorphisms of k[[t]] and thus it suffices to prove k(t)fF(;) =

m
G (k(t) x) where k(t) = )] k

i) Tt ) = i o
j=0 3 t7. Now Y (x) T(py§ (x)); where

e )

mA ‘1i°

show k(t) p,p (x) = p,(k(t) x) and in fact it is enough to show
1Y g\

Py is the natural projection onto ( Thus it is enough to

kl t piLf(x)'= piL{(kl t x). We have kl t pi\{(x) = kl t(pitf(x) + mA) =
-1 . -1 _ -1

k(B 7a) (py(x) + mA) =k; B (apyy(x) = k; 8 "(py¢g (ax)). The

last steps are true since Py and L( are S-endomorphisms. Due to

tﬁe fact that ax = (axi) = (b o(fi) e K)i and  and p; are

S—-endomorphisms we have the following equalities. kl B—l(pitf(ax)) =
-1 . ~1 : -

kg BT p (b () +K))) =k BT (b py g ((olE) +K))) =

ki (pyuw((o(fy) + K), ) +mA) =k p,T((a(fy) +K),; + mA) =

=k piT§((6_la) ((xi 2 mA)i)) =k, piC¥(tx). The above establishes

M

a ring homomorphism of EndS(M) into Endk[[t]] ( - ) and thus

Endk[[t]] (H(k[[t]Di). Therefore any S-decomposition of M into

direct summands gives @ non-trivial orthogonal idempotents in the

ring End ] (H(k[[t]])i) and thus a decomposition of I[(k[[t]])i

k[[t]
into o parts (as in Lemma 13 we use the fact that if N is an
S-module and N = mN then N = 0). Since k[[t]] is a complete
discrete valuation ring o must be finite by the first part of the

proof of this lemma. Therefore M has the required properties.
Proof of (4) —> (1).

We assume R 1is not principal ideal artinian. First we coneider
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the case when n is finite. By Lemma 3, R is artinian. Since
R is a commutative artinian ring, R is the direct sum of local
rings and thus we can consider R a local ring with maximal ideal

m. 57 is not a principal ideal ring since if Ei is principal then
m m

by [1, Prop. 8.8] R 1is a principal idea; ring. Therefore by the
proof of Lemma 12 there exists a factor ring S of R of the form
of (ii) of Lemma 12. The module A considered in Lemma 13 is an
indecomposable S-module which is not countably generatéd. The exis-

tence of such a module contradicts the hypothesis.

Thus we can assume n 1is an infinite cardinal. By Lemma 2
R 1is noetherian. Since we have assumed R 1is not a principal
ideal artinian ring there exists by Lemma 14 a module M which carnot
be generated by n or fewer elements such that any direct sum decom-
position of M has a finite number of summands. Since the number
of summands is finite and n is an infinite cardinal, at least one
of the summands cannot be generated by n or fewer elements. By
Lemma 1 the assumption implies every R-module is a direct sum of
modules each generated by at most n elements. This is a contradiction

and thus R must be principal ideal artinian.

5) — (1) Corollary 1.3 in Faith and Walker [9] states that if
each injective is a direct sum of indecomposables then R 1is noetherian.
We assume R 1is a noetherian ring which is not principal ideal

artinian. By Lemma 12 either (1) Rn is a discrete valuation ring for
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some maximal ideal n of R or (2) R has a factor ring S lof the
type described in Lemma 12, (ii). In both cases we consider the
modules constructed in Lemma 14 i.e. in the first case we let M

be an infinite product of copies of the completion R: of Rn

and in the second case we let M be an infinite product of copies of

the S-module A described in Lemma 13.

We show the rings EndR(R:) and EndS(A) are local. To
show EndR(R:) is local it suffices to prove EndR(R:) = EndR*(R:)
since EndR*(Rﬁ) is isomorphic to the local ring R:. Obvigusly
any R: engomorphism of R: is an R-endomorphism of R;. On the
other hand suppose \f is an R-endomorphism of R:. Let x be in
R:. x 1is the limit of a Cauchy sequence (xa) in Rn . We wish to
show tp(x) = x!{(l). Since Rn is a discrete valuation ring the
ideals of Rn are exactly powers of thé maximal ideal m of Rn
and in fact it can be shown there exists an element p € Rn such
that mk = (pk) (f1, Prop. 9.2]). Since (xu) is a Cauchy sequence,
for each k there exists an oy such that x - x, € (pk), i.e.

k
X -x = pk r,, ¥, € R_ . Thus we have (x) = (x + Pk ) =
k* Tk & By i oy k

%k
Lf(xd ) + L{(pk rk). But it is easy to show ¥ is an Rn-endomorphism.
k
k , k |
Thus tf(x) = Lf(xak) + \f(p rk) = xmk Lf(l) +p LF(rk) for each
- k. Since R 1is noetherian }’\(pk) = 0. Therefore L?(x) = xtf(l)

and ke is a R: endomorphism of R: "
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To show EndS(A) is local we consider the ideal J defined in

Lemma 13. Since m2 = 0, J2 = 0 and J2 = (0 implies J 1is contained

in any maximal left ideal of EndS(A). For if L 1is a maximal left
ideal of EndS(A) such that .JQEI. then J+L = Ends(A) and thus

JL = J(End.(A)) = J. This gives us JL + L = End,(A). Since JL<L
S S =
' EndS(A)

this leads to a contradiction. By (1) of Lemma 13 —5 is a

commutative local ring and by the above there is a one-to-one

correspondence between the maximal left ideals of EndS(A) and the

EndS(A)

3 . Therefore EndS(A) is a local ring.

maximal ideals of

We will prove the module M (for both cases) is not a direct sum
of indecompoéable modules. From Lemma 14 any direct sum decomposition
of M (in both cases) has only a finite number of summands. From now
on we just consider the module M constructed for case 2 but the fact
that End;(R:) is local makes the proof for case 1 identical. Since
any direct sum decomposition of M 1is finite we can choose the
decomposition M = B, ®...® B_ such that r is
minimal and the Bi are indecomposable and non-zero. Since M is

the infinite product of copies of A, M = Al @ N where A, = A

1

and N 2 M. A has a local endomorphism ring and thus has the exchange
property by Warfield [24, Prop. 1]. Therefore there exist submodules

i <ol 1 = n ! '
B/< B, such that B; is a summand of B, and M = A, @ Bl@...@Br

Since Bi is a summand of Bi and Bi is indecomposable, either

' = ! = ' =
Bi Bi or Bi 0 for each 1i. For at least one i Bi 0,
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for otherwise M = Al @ M. Since A has local endomorphism ring,
N = Bi ® ... @ B; by Lemma 9, where Bi = (0 for some 1i.
Since N =M this is a contradiction to the original choice of r

and thus R must be principal ideal artinian.

4.3 We complete the proof of Theorem 3 in this section.
As mentioned before these results are due mainly to Griffith although
they contain results originally due to Kdthe [15] and to Cohen and
Kaplansky [4].

k-1

e
Jke

1) —> (2) To show R 1is serial it is enough to show

is simple or zero for each k and each indecomposable idempotent e.

We consider the ideal soc ( EE ) in EE . Since R 1is a principal
J J
ideal ring the preimage of soc( EE ) in R 1is a principal ideal and
J
thus soc ( BE ) 1is a principal ideal. However, soc ( BE ) is also
J J
an -% - module and is also principal as an %-- module. This implies
n Re

that 2(soc ( 2-)) < 2(X). since R 1is artinian, R. ) @ =t

k — J J L Je

J i=1 i

Rei
where the Je_  are simple. From this decomposition it follows that
i
n Re n Re
BE = ® ki and thus soc ( BE ) =} @ soc ( ki ). Since
J i=1 Je J i=1 Je
1 i

Rei R ® Re
- 1s simple for all i, &(soc ( —)) < 2( 7 ) implies soc (
Jei J = J Jke

i
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: Re
is simple for all i (soc ( ki ) # 0 since R is artinian). There-
Je
i
Jk-lei Rei
fore the result follows from % <soc ( & = ) I
J e, J e,

R is a commutative artinian ring implies it is the
direct sum of local artinian rings (necessarily serial). Therefore
we can assume- R 1is a local serial ring. In this case
R2 J=2 J2 P 0.2 J% = 0 is the unique composition series for R

i

and thus J is the annihilator ideal for Ji. Therefore every

ideal is an annulet and R 1is quasi-Frobenius.

We note that this proof actually shows commutative serial
rings are quasi-Frobenius and therefore in the commutative case the
class of serial rings is equal to the class of serial quasi-Frobenius

rings.

2) — () This is true by Theorem 2.

7y — (3) By Lemma 5 every R-module is a direct summand of a
direct sum of cyclically presented modules. By Lemma 3 R 1is artinian
and therefore every cyclically presented module can be decomposed into
the direct sum of cyclic indecomposable modules (which necessarily

have local endomorphism rings). It follows that every R-module is a
direct summand of modules with local endomorphism rings and by a

result of Warfield [24, Thm. 1] every R-module is a direct sum of such

modules.
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(3) — (8) By Lemma 3 R is artinian. Over an artinian ring
every finitely generated module is finitely presented and thus (9)

follows by Lemma 5.
(8) — (4) This is obvious by Lemma 5.

(1) — (5) By the above (1) is equivalent to (2) and the result

follows by Theorem 2.

(2) —> {7) By Theorem 2 each R-module is a direct sum of modules
in ﬁﬂj,*. Each module in R?LL* is necessarily an ideal in R

and the conclusion follows.

(6) —> (4) By the assumption we can take n in (5) to be the

cardinality of R.
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