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Definitions and Notations 

In this thesis a topology t will be said to possess a property 

P rather than saying a topological space (E,t) possesses the property 

P since E, though arbitrary, will be kept fixed during any discussion. 

Definitions:- A topology is said to be ­

regular:- iff for any x~A =A there exist open sets H,N such that 

x t. N, As. N and H fl H ::: ¢ 

completely regular:- iff for any neighbourhood M of any point x €. E 

there exists a continuous ftm.ction f: E~ [o,:iJ such that f(x) = 0 

and f(y) = 1 for all y ~ H. 

normal:- iff for any two closed sets A,B with An B = ¢ there exist 


open sets M,N such that As. M, B = N and Mn N = ¢. 


completely normal:- iff for any two sets A,B with A n B = ¢ = An B 


there exist open sets M,N such that A = M, BE:::. N and Mn N = ¢. 

T0:- iff for any two distinct points there exists an OJ!en set containing 

one and not the other. 

T1:- iff for any x E E there exist open sets A,B such that {x} = A-B."2" 

Tl:- iff for distinct points x and y there exist open sets 0 and O' 

such that x f 0 ,y~ 0 a.rid y E 01, X ~ 0 I• 

T2:- iff for distinct points x and y there exist disjoint open sets 0 

and 0' such that x f. 0 and y f 0'. 

1 



2' 

T :- iff it is T and reGular
3 1 

T~_:- iff it is T1 and completely regular 

T4 : - i ff it is '.I]_ and normal 

T :- iff it is T and completely normal
5 1 

compact:- iff any open cover of E has a finite subcover. 

paracompact: iff any open cover of E has an open locally finite refine­

ment. 

metacompact:- iff any open cover of E has a point finite refinement. 

locally compact:- iff each point has at least one compact neiGhbour­

hood. 

Lindelgf:- iff each open cover of E has a countable subcover~ 

connected:- iff for any proper non-void subset A of E at least one of 

A and E-A is not open. 

locally connected:- iff the neighbourhood system of each point has a 

base consisting of connected sets. 

totally disconnected:- iff only the singletons are connected. 

extremally disconnected:- iff the closure of any open set is again 

open. 

zero dimensionRl:- iff the neighbourhood system of each point has a 

base of open-closed sets. 

principal:- iff the intersection of an arbitrary family of open sets is 

again open. 

door space:- iff every subset of Eis open or closed. 
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A topology satisfies the ­

first axiom of countability:- iff the neighbourhood system of every 


point has a countable base. 


second axiom of countabi1ity:- iff the topology has a countable base. 


A topology t will be said to be maximal with respect to a property P 


iff t is not the discrete topology and rrny topology strictly finer tha..'1. 


t does not possess the property P (E!_inimal is defined dually). 


All other terms are standard and for a definition of these the reader 


is referred to one of [ 9], -L18_:1 
1 , [25], [32], [39]. 
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Notations 

t with or without subscripts or superscripts v1ill denote a topology on 

a set E. 

0 will denote the zero of the lattice of all topologies on E, i.e • .[¢, E}, 

the trivial topology. 

will denote the unit element of the lattice, i.e. P(E), the discrete 

topology. 

U(y) will denote the principal ultrafilter generated by {y}, a one element 

subset of Jt.:;. 

U(A) will denote the principal filter generated by a subset A of E. 

C* will denote the cofinite filter, i.e. the set of all subsets of E 

which have finite complements. 

C1 will denote the filter of all sets A such that E-A is countable. 

C(x,F) will denote the topology whose open sets are precisely the sets 

of the filter F and the sets which do not contain x. 

C(A) v1ill denote the topology {¢, A, E} where A is a rion-empty proper 

subset of E. 

C(F) will denote the topology where the open sets are precisely th.e 

sets belonging to the filter F together with the empty set. 

B(p) will denote the filterbase of all open sets containing P• 

N(p) will denote the filter of all neighbourhoods of p. 

Bt(p) will denote the filterbase of all t-open sets containing P• 

Nt(p) will denote the filter of all t-neighbourhoods of P• 



ChaEter 1 

Structure of J 

The set of all topologies on a set is a complete lattice, 

denoted by T, v1here the order relation is that of set-theoretic 

inclusion. The purpose of this thesis is to study the structure of 

the lattice of all topologies on a given set. 

'l'he meet of two topologies is just the set-theoretic inter-

t 1 At11section, i.e. = fo: OE t' and OEt"}. The ioin of two topo­

logies is the least topology which contains the set-theoretic union 

o:f the two topologies, i.e. the open sets of the join are arbitrary 

unions of finite intersections of sets from either topology. In 

particular if B' is a base for t' and B" is a base for t" then a base 
t II 

for the join is the set of all B. n B. where B.' belongs to B' and 
1 J 1 

Bj 11 belongs to B". 

An in[rato_p_olog;y: is a topology t such that the only topology 

strictly coarser than t is the trivial topology. Thus the infratopologies 

are the atoms of J • Clearly every infra.topology is of the form C(A) = 

.[ ¢, A,E} where A is a non-void proper subset of E. It is equally 

evident that every topology is the supremum of infratopologies coarser 

than it. 

For a point p € E and an ultrafilter different from U(p) define 

C(p, U) = {X: p { X or X£ U} • 'l'his topology is called an ultratopolop;y. 

5 
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Theorem 1.1 .- The C(p,U) are the co-atoms of T and every topology 

is the meet of ultratopologies which are finer than it. (Fr3hlich, 

[17 J) 
Proof:- (i) Assume C(p,U)ct. Then there exists a set XE t such that 

x1c(p,U). This implies pEX~U. But X~U implies (E-X)EU and 

hence (E-X) u {.p}E:Uc:t. Therefore the singleton fp) = ((E-X)u t p} )f\ X 

is in t. Hence all sin~letons are in t and therefore t is the discrete 

topology. 

(ii) Let t be a co-atom. Then there exists a p € E such that (p} f t 

which irnplies that U(p) is not the neighbourhood filter of P• Now 

E-fp} meets every open neighbourhood of p and {CE-{p} )nB: BEB(p)} 

is closed under finite intersection and hence is a filter basis. · Let 

F be the filter generated by it. Since ea.ch filter is contained in an 

ultrafilter there exists an ultrafilter U containing F. Now if {p} € U 

then {.p} n (E- fp} ) = ¢ is also in U which is a contradiction. Therefore 

u=tU(p). Hence t = {X: pf X}u N(p) ~ C(p,U) c P(E). 'l'hus t = C(p,U) 

since t was assumed to be a co-atom. Therefore the C(p,U) are the co­

ater.is of 'T. 

(iii) Suppose tel\ (C(p,U): C(p,U)2t) = t'. Then there exists 

a set X € t' such that X f t. This implies that there exists x E X such 

that for all BE t with XEB we have B n (E-X) +¢. This follows since 

E-X is not closed int. Let F be the filter generated by these Bn(E-X). 

Again, since F is proper, there exists an ultra.filter U_==2F. Hence 

ts{'/:xt: Y}uF= C(x,U). From this it follows that t' ~C(x,U). But 
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X ~ C(x, U) since the complement of X is in U and X is an element of t 1 


which is a contradiction. Hence t equals t'. 


Theorem 1.2 :- If T is a finite set of ultratopologies then C(x,U) 


is finer than /\T iff there exists a y EE and an ultrafilter V such that 

C(y, U) and C(x, V) are in T. (Frghlich, [17 J ) 
n 

Proof:- Let T ={C(xi,Ui): i = 1,2, •••n}. Then /\T == n (P(([xi)u Ui). 
i := 1 

By distributivity one obtains a union of 2n terms of these, however, the 
n n 

only terms of interest are (\ Ui and ("\ P(ctx
2
·) := P( <C{x , ••• X11}). If

1i=l i=l 
n 

ATs=_C(x,U) then P(({x1 , •.• Xn})u('\ Uis.C(x,U) = P(Q:x)u U. Because 

1=1 


{x} <} C(x,U) it follows that xis one of the xi. For this index i we have 
n 

Since P( ([. x) n U(x) = ¢ we have U(x)n I\ Ui c::: U. Since 
i==l 

U(x) f U it follows that U is equal to one of the Ui• For the corresponding 

index i we ha.ve C(xi ,U) € T. The converse is obvious. 

A topology t is a principal topology iff the intersection of 

each subset of t is a member of t. 

Lem~ 1.3 :- The meet of a family of principal topologies is again 

principal. 

Proof: - Let (t.: i£I) be a family of principal topologies. Take a 
1 

family of sets (Aj: jEJ) in the meet of all ti. This implies that 

(Aj: jEJ) belongs to each ti and, since each ti is principal, rlAj cti, 
jtJ 

for all iE.I. Hence n Aj <;: /\ ti. 
j«J i<::I 

Theorem 1.4 :- (i) The infratopologies are principal. 

(ii) An ultratopology C(p,U) is principal iff U is principal. 
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Proof:- (i) obvious 

(ii) Assume U is principal, i.e. U = U(q). Let (A.: i£I) be an 
l. 

arbitrary subfamily of C(p, U(q)) and suppose ('. A.• C(p, U(q)). This 
1i£I 

implies that p is in the intersection while q is not. From this it 

follows that there exists a jd with pEAj, q 4Aj. But this implies 

Aj tC(p, U(q)) which is a contradiction. Therefore the intersection 

belongs to C(p,U(q)) and hence C(p,U(q)) is principal. 

Conversely, assume C(p,U) is principal. Let BP= (I (B: BE.B(p)). 

BP is open since C(p, U) is principal. Since p E Bp it follows that 

Bp ~ U. But :E;- fp} EU since U :f U(p). Thus Bpn (E- tP} ) = BP- [P} is an 

element of U. Now for a:ny X in U, BpsXv{p) and therefore Bp- {p).s.X- t_pj~x. 

This implies U = U(Bp-{P} ) where Bp- fpJ is a singleton. 

Theorem 1.5 :- For a topology t the following are equivalent:­

(1) t is principal 

(2) the t-neighbourhood system of each point has a base of one set 

(3) t is the meet of principal ultratopologies containing it. (Steiner [36]) 


Proof:- (1)=}(2) For each p .s E let BP =n (B: Bi::.B(p)). Then BP is 


open since t is principal and it is the smallest open set containing p. 


Thus {Bp} is a base of N(p). 


(2)~(3) Let pEE and define t' = /\ (C(p,U(q)) : pi:E and q ic:.Bp)• Let 


A be any subset of E. Now A€: t, iff l)>~A for all p EA 


iff AE.C(p,U(q)) for all pEA 1 for all 

q E B 
}l 


iff A E. t I 


Thus t = t'. 
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(3)=9(1) follows from lemma 1.35 

Theorem 1.6 :- The set ii of all principal topologies of E is a meet­


complete sublattice of T. (Steiner [36] ) 


Proof: - 'l'he meet of principal topologies is principal as proven in 


t 11lemma 1.3. Consider t = t' v t" where t' and are principal. By 

theorem 1.5, for each x t. E there exists Bx' such that fBx '} is a 

base for N' (x) and B 11 such that {B 11} is a base for N"(x). Thus x x 

f B ~. = {B 'nB "} is a base for N(x). Thus by theorem 1.5 t is
l x, x x 

principal. 

The lattice of all principal topologies is not a complete sub-

lattice of~-. This is easily seen by the following example. Take a 

non-principal ultrafilter U. Then, by theorem 1.4, C(p,U) is not 

principal. Now C(p, U) == v (C(Ai): i E. I) where each C(Ai) is an infra-


topology coarser than C(p,U) and each infratopology is principal. 


Thus the join of principal topologies need not be principal. 


Theorem 1.7 :- The infratopologies are not T1-topologies if E contains at 


least two elements. 


Proof:- Let t equal{¢, A, E} • There exists an x in E such that 


E- lx} is not in t which implies [x1 is not closed and hence t is not 


a T -topology.
1

Theorem 1.8 :- An ultratopology is a T -topology iff it is nonprincipal.
1

Proof:- Assume U is a nonprincipal ultrafilter on ::<::. Then, for all x 

in E, complement of x is in U. Hence each singleton is closed and 

therefore the ultratopology is a T -topology. 'l'ake any principal1
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ultratopology C(x,U(y)). Then the complement of y is not open in 

C(x,U(y)) and hence singleton y is not closed. Therefore C(x,U(y)) 

is not a T -topology.
1

Theorem l.~ :- C(C*), the cofinite topology is T •1 

Proof:- The complement of the complement of x is singleton x and hence 

finite. This implies complement of x is open and hence singleton x 

is closed. Therefore C(C*) is a T -topology.1

Theorem 1.10 :- The following are equivalent for a topology t:­

(1) t is a T -topology
1

(2) t is the meet of nonprincipal ultratopologies 

(3) t is finer than the cofinite topology 

Proof:- (1) implies (2). By theorem 1.1 every topology is the meet of 

ultratopologies containing it and since any topology finer than a T1­

topology is again a T -topology, t is a meet of nonprincipal ultra­1

topologies. 

(2) implies (3). C(p,U) nonprincipal implies U nonprincipal by 1.8 

hence U contains the cofinite filter and thus C(p,U) contains the 

cofinite topology. Therefore, the cofinite topology is contained 

in the meet of all nonprincipal ultra.topologies. Hence the cofinite 

topology is contained in t. 

(3) implies (1). Since the cofinite topology is a T -topology and t
1

is finer than it, t is also a T -topology. Hence the T -topologies1 1

form a principal filter generated by the cofinite topology which is a 

complete sublattice of 'T. The finest T
1
-topology (the unit of the sub­
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lattice) is the discrete topology and the coarsest (the zero of the 


sublattice) is the cofinite topology. 


Note that on a finite set the only T -topology is the discrete topology.

1

Theorem 1.11 :- Every topology is a meet of a principal topology and 

a T -topology.1

Proof: - By 1.1 any topology t is the meet of ultratopologies ti, i £. I, 

where each ti is finer than t. 


Let t' equal the meet over all j EI such that t j is principal and let 


t" equal the meet over all k EI such that tk is a T -topology. Then
1

t =I\ (ti: iE:I) = t'At11 where t' is principal by 1.3 and t" is a 

T -topology by 1.10.1


A topology on E which is neither a T1-topolor;y nor a principal 


topology is a mixed t'?polo_g;-t. A mixed topology can be represented as the 

meet of a T -topology and a principal topology, but this representation1

need not be unique. 

The join of two mixed topologies can be a T -topology or a
1

principal topology as illustrated by the following example. 

t = C(x,U) A C(p,U(q))1 


t = C(x,U) I\ C(q,U(p))

2 

t =C(y,V) A C(p,U(q)) where x is different from y and U
3 

and V are distinct nonprincipal ultrafilters. 

Then t 1 v t = C(x, U) is a T -topology whereas2 1


t 1 v t = C(p, U(q)) is a principal topology.

3 

The meet of two mixed topologies cannot be a T -topology but
1
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it can be a principal topology. Let t = t " t where t is a T1­1 2 1 

topology and t is a principal topology. Since t is a principal2 2 

topology it is the meet of principal ultratopologies and clearly the 

complement of every point is not in any principal ultratopology and hence 

certainly not in the meet. Hence the meet of two mixed topologies is 

not a T -topology. For an example that the meet of two mixed1

topologies may in fact be principal consider the following. Let U and V 

be distinct nonprincipal ultrafilters. Hence there exists a set A in 

U such that the complement of A is in v. Let t =A(C(x,U(q)) qlA-{xl)1 

and t =/\(C(y,U(q)) qEE-A-[x))
2 

Then t .5:C(x,U), t .s.C(y, V). Also C(x,U)At and C(y,V)/\t are mixed
1 2 2 1 

topologies but their meet is t t which is principal.
1 

A 
2 



Lattice Properties of ~ 
---,.,..-~--

Theorem 2.1 .­
..._ 

The lattice of topologies on a set E is distributive iff E has 

fewer than three elements. If E has three or more elements, the lattice 

is not even modular. (Steiner [36] ). 

~f.:- Obviously if E has one elenent or two elements -J is a distri­

butive lattice. Let E2{p,q,r] and let t 
1 

= C(p,U(q)) A C(p,U(r)) 

t 
2 

= C(p,U(r)) 

t 
3 

=C(r,U(q)) be topologies 

on E. 

tl ~ t2 

( t 
1 

Y t) /\ t := 1 A t2,. = t
2 1 

also t '= C(p,U(q)) and ty'' t ~ C(p,U(q))
1 2 

Thus t v (t At ) s. C(p,U(q)?· But t f. C(p,U(q)) and hence
1 3 2 2 

( tl v t3) /\ t2 $ tl v ( t3 /\ t). 

Therefore Tis not modular. 

Definition:- A lattice L is self-dual iff there exists a one-to-one 

mapping f of L onto intself such that f(aAb) = f(a) v f(b) and f(a vb) = 

f(a) /\ f(b). 

Theorem 2.2 .­

The lattice of topologies on }~ is self-dnal iff IE l < 3. 

(Steiner ~6] ). 

13 
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Proof:- If Tis self-dual there exists a one-to-one mapping f of Tonto 

itself such that if a ~b then f(a) = f(a Ab) = f(a) v f(b). Hence a.< b 

implies f(b)~ f(a). Thus f(O) = 1, f(l) = O, infratopologies map onto 

ultratopologies and ultratopoloe;ies map onto infratopologies. Therefore 

the number of infratopologies and untratopologies must be equal. 

In the lattice of topologies on a set E, if IEI = n<<><> there 

are n(n-1) ultratopologies (all principal) and 2n-2 infratopologies. 

IEI 2IEIIf IE\ :::-. :1C there are 2 infratopologies and 2- ultratopo1ogies 

on E since that is the number of ultrafilters on E (see Banaschewski, [Ii]). 

Thus the number of ultratopologies equals the number of infratopologies 

only when IE I~3· 

If IE I =l or jE I =2 then 'Tis obviously self-dual. If JE ]=3 

there are 29 topologies on E, but it can be seen by rotating the diagram 

on the following page by 180° that this lattice is self-dual. 

Thus the lattice 'T of all topologies on a set E is a complete, 

atomistic, co-atomistic, non-modular (unless IEl..c:3), non-self-dual 

(1.Ulless IEl~3), complemented lattice. It contains the sublattice of 

principal topologies and the complete sublattice (principal filter) of 

T
1
-topologies. (Note - For the proof of the complementation of :T the 

reader is referred to Steiner [36].) 
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A 

B 

c 

D 

F 

0 

Lattice of topologies on a three element set E ={a, b, cf 

0 
1 

Trivial Topology 
Discrete Topology 

1. 
2. 
3. 
4. 
5. 
6. 

A 
</J { b} 
</J {c} 

f/J {a) 

f/J {a} 
f/J (a} 

</J [a} 

le} 
(bl 

lb} 
[b\ 
[c1 

[c} 

(b, c1 
[a, b} 
(a, b} 
[a, b} 
[a, b} 
[c, aJ 

{c, a1 
[b, c} 
[b, c} 
[a, c1 
[a, c) 
f_c, b} 

E 
E 
E 
E 
E 
E 

B 

1. </J fb1 
2. f/J (h! 
3. </J fa} 
4. f/J fa} 
5. f/J ta1 
6. </J fc} 

ic1 ~b, c1 
fo, a1 [b, c} 
lb} (a, b} 
[a, b} [a, cj 
td (a, c] 
fo, a} [c, b} 

E 
E 
E 
E 
E 
E 

1. 
2. 
3. 

c 
</J [a, c} 
</J [a, b} 

<J fa} 

[ b} 
[d 

[b, c} 

E 
E 
E 

1. 
2. 
3. 
4. 
5. 
6. 

D 
</J ~b} [b, c1 
</J Lb} fb, a~ 
</J l_a} [a, b} 

</J (a} {.a,c} 

</J td tC, a} 
</J [c} [c, b} 

E 
E 
E 
E 
E 
E 

1. 
2. 
3. 
4. 
5. 
6. 

F 

</J fb} E 
</J ta, b} E 
</J fa 1 E 
</J ta, c} E 

</J td E 
</J ~b,c} E 



Chapter 3 

'l'opological Prop~rties of Ultratop,01013.ies 

Theorem 3.1 :- Every ultratopology is Ti' T
0 

, completely normal, normal, 


extremally disconnected, paracompact, metacompact, a door space. 


Proof:- Consider any ultratopology C(x,U). 


Ti_ For any p *x we have{p}={P]-¢ and for x we have [x} = E-(x. 


T - T~ implies T •

0 0
 

completely normal Let A,B be subsets of}~ such that AnB = ¢ = AnB. 


If x 4A then A is open and :S-A is also open and contains B. If x E: A 


then x t B and hence B is open. Now An B = ¢ implies A= E-B =E-B. 


Thus the disjoint open sets separating A and B are E-B and B. 'rherefore 


C(x,U) is completely normal. 


norraal - completely normal implies normal. 


extremally disconnected - Let 0 be an open set. If x € 0 then E-0 


EC(x,U) and hence 0 is closed. 'l'herefore the closure of 0 is 0 which 


is open. If x 40 then either E-0 EU or 0 E. U. If E-0 EU then 0 is 


closed and the closure of 0 is 0 which is open. If 0 EU then 0 = 0u{x1 


which again belongs to U and hence closure of 0 is open. 


paracompact - Any open cover of E consists of at least one set V of U 


such that x EV. i''or the refinement select one of these V together 


with all singletons of points not in V. 


metacorapact - paracompact implies metaco11pact. 


16 
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door space - For· any subset A, x 4A or x c A and hence A is open or 

closed. 

Theorem 3.2 :- No ultratopology on a set Eis connected if jE 12:3• 

(Steiner ~6J ) 
Proof:- ·Let C(x,U) be an ultratopology on E. If j E l::o.,..3 then there 

exists a y E: E such that x ~ y and U ~ U(y). Hence {Y} and E- {Y} are 

open. Thus E is the disjoint union of tvm open sets and therefore 

C(x,U) is not connected. 

Th~orem 3.3 :- For an ultratopology C(x,U) the following are equivalent ­

(1) C(x,U) is nonprincipal. 

(2) C(x,U) satisfies the separation axioms T to 7 •1 5
(3) C(x, U) is totally disconnected. 

(4) C(x,U) is zero dimensional. 

(5) C(x,U) is (completely) regular. 

Proof:- (1)~(2) This is a consequence of the following - an ultra­

topology is nonprincipal iff it is T (by 1.8), any ultratopology is
1 

completely normal (by 3.1) and T --tT4 =9 Tyt-~ T ~ T2 -J;> T •
5 3 1

(1)~(3) Nonprincipal implies T (by the above) and T together with2 2 

extremally disconnected implies totally disconnected. If C(x,U) is 

totally disconnected then the singletons are the maximal connected 

sets and hence closed which implies it is a T -topology and hence
1

nonprincipal. 

(1)~(4) Nonprincipal implies T and T together with extremally
3 3 

disconnected implies zero dimensional. If C(x,U) is principal then U 
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is principal (by 1.4), say U = U(y). Then E-lY1 is not open but [y} 


is open and hence there is no base of open-closed sets for the 


neighbourhood system of y. 


(l)<-~(5) By (2), if C(x,U) is nonprincipal then it is (completely) 


regular. Conversely, consider any principal ultratopology C(x,U(y)). 


Then [x1 is closed and any open set containing it must also contain y. 


Hence there do not exist disjoint open sets separating {x) and y. 


Therefore C(x,U(y)) is not regular. 


Lemma 3.4 :- If an ultratopology C(p,U) does not satisfy one of the 


countability axioms then for any topology t strictly coarser than 


C(p,U) which satisfies one of the countability axioms there exists a 


topology t', strictly finer than t and strictly coarser thai;i C(p,U), 


which satisfies the axiom also. 


Proof:- If t satisfies one of the countability axioms and t < C(p,U) then 


there exists a set A e: C(p, U) such that A~ t. Then the infratopology 


C(A) satisfies the axiom and clearly t v C(A) does also. 


Corollary:- If no ultratopology satisfies a countability axiom then 


there exist no maximal topoloi:ies satisfying that countability axiom. 


Lemma 3-~ :- If U is a nonprincipal ultrafilter on E then U does not 


have a countable base. 


Proof:- U nonprincipal implies that E is infinite. Assume U has a 


countable base, namely {B1 , ••••••• , Bn' •••••••), n~N. Without loss 


of generality one can assume B1 => B2 ::'.). • • • • • • • • :::::> Bn::::. Bn+l= • • • • • • • • 


Further one can assume that there are at least two elements in B which 

n 
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are not in Bn+l" By the axiom of choice one can select a point x 
n 

GB 
n 

­

B • Define M = {x : n E N} • M is non-empty as U was nonprincipal.n+1 n 

Further M intersect B is not empty for all n EN since x t. B C"I M. Then 
n n n 

.M £ U since if a set meets every set in an ultrafilter it is in the 

ultrafilter. Hence there exists a B such that B =M. Now there 
n n 

exists y £ B -B +l such that y ~ x • Hence y f: B -M and thus B ~M n nn n n n n n 

which is a contradiction. Therefore U does not have a countable base. 

Corollar~:- The nonprincipal ultratopologies do not satisfy the count­

ability axioms. 


Proof:- Let C(x, U) be a nonprincipal ultratopology. Then, for all y f x, 


tY} is a base for N(y), but N(x) has a countable base iff Uhas a 


countable base which it does not have as seen by the above lemma. 


Theorem )..6 :- For an ultratopology C(x,U) the following are equivalent:­

(1) C(x,U) is principal. 

(2) C(x,U) is locally compact. 

(3) C(x,U) is locally connected. 

(4) C(x,U) satisfies the first axiom of countability. 

Proof:- (1)~(2) Assuming C(x,U) is principal then by 1.5 there exists 

a sr.mllest open set B containing p for all p E. E. If C(x,U) is non.:.. 
p 

principal then U is nonprincipal. It is sufficient to consider any open 

neie;hbourhood M of x. Thus x EM EU and M is infinite. How there exists 

a set N such that M = Nu (M-N) with both N and M-N infinite. '..Vithout any 

loss of generality one can assume that NEU and also that x € N. Then 

N Up €."-rrdl{p} is an open cover of M which has no finite subcover. 
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Therefore there exists no compact neighbourhood of x and hence 

C(x,U) is not locally compact. 

(1)~(3) If C(x,U) is principal then by 1.5 there exists a smallest 

open set B containing p for all p £ E. If C(x, U) is nonprincipal
p 

then U is nonprincipal and for any M € B(x) we have M +[x) and hence 

there exists a yt.l·l with y +x. Now E-{y} is open since {y} ~U. 

Thus !·1 n lty is open. '11herefore M = (Mn <Ly )u {yJ a..'1d thus M is not 

connected. Therefore, if U is nonprincipal, C(x,U) is not locally 

connected. 

(l)f-~(l+) If C(x,U) is principal then N(p) has a countable basis for 

all p EE, namely [B j by 1.5. If C(x,U) is nonprincipal then it does 
p 

not satisfy the first countability axiom by the corollary to 3.5. 

Theorem 3·( :- A space is a door space iff the ultratopoloeies in its 

representation have a common point or a common ultrafilter. (Steiner [36] ) 

Let A be any subset of E. Then either x e A and hence A is closed with 

respect to t or x 4A and hence A€ t • Also A£ V or E-A ~ V and hence
1 1 

A is either open or closed with respect to t • Therefore both t and
2 1 

t yield door spaces.
2 

Consider the topology ts.C(x,U)AC(y,V) where x f y and U t V. 

Now U t V implies that there exists a subset A of E such that A€ U and 

E-A «.V. Then B =(Au {y])n (x does not belong to C(y,V) for if B f.C(y,V) 

then Bn(E-A) EC(y,V), but B n(E-A) = tY1 f C(y,V). Also E-B fC(x,U) for 

if (E-B) cc(x,U) then AnB = [xj f. U which is a contradiction. Hence the 

set B as defined above is neither open nor closed in t. Therefore (E,t) 

is not a door space. 



Chapt~r 4 

In this chapter various properties of topoloGical spaces are 

considered and the minimal and maximal topoloe;ies having these properties 

are investigated. A table is provided at the end of this chapter to 

summarize the results. 

T0 , minimal:­

Definition:- Given a topology t on E define p :::: q iff N(p)~J'!"(q), for 

p, q c E. This defines a partial order on E if t is a T -topology.
0

(This definition is the same as the one in Birkhoff [10], pg. 13). 

Theorem 4.1:- A topo1ogy t is minimal T iff ~ is a total order of0 

E and the non-void sets of t are of the form ]a,~ for a c. E. 

Proof:- Assume ~ is not a total order, that is, there exists points 

p and q in E, such that Pf q an.d q+p. Th3.t, by definition, is 

equivalent to H(p)cj:-N(q) and N(q)$N(p). Consider t' = tAC(p,N(q)). 

This is a topology strictly coarser than t since N(q) converges to 

p in t' but not in t. Claim t' is also T • Without loss of generality
0 

one may take x distinct from y with XfY• 
Case 1 :- xf.p (Nt (x)+ Nt (p)). Hence there exists N in B(x) with 

p 1N and also there exists ME: B(x) with y { M. Thus Mn NE B(x) and 

also MnN~C(p,N(q)) since ptMnN. Therefore MnNt:t' and xE".MnN 

but y 4Mn N. 

21 
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Case 2 :- X$..p, qty· Then there exists a set Mf B(x) and a set N f. B(q) 

such that y t M and y ~ N and hence y. Mu N c: B(q). Therefore Mu N t. t 1 

and x E. N UN but y 4: Mu N. 

Case 3 :- x~p, q-<y. Then N(y)$N(x) because if it were we would have 

N(q)r::::.N(y)= N(x)=N(p) which contradicts the assumption. Similarily 

N(y)$N(p). Hence there exists N £ B(y) with pf N and there exists 

ME B(y) with x+l•l. Thus MnN E. B(y), MnNE.t' since pf MriN and 

y E: Mn N while x t H n N. 

Therefore if t is minimal T then::=... is a total order of E. Now any
0 

set of the form Ja,-4]is int since for any x £]a,-~\we have a<x 

and hence there exists NE. B(x) with Ne= ]a, ----7]. Since t is minimal 

T and the topology v1hose sets are of the form ]a,--j is T we have
0 0 

that the non-void sets of t are of- the form ]a,-----+] for a EE. 

maximal any ultratopology (3.1).'!'.ot .­
T1 , minimal
-2 .­
Theorem 4.2 ..- A topology t is minirial T1 iff ==::..is a total order of E 

2 

and the non-void sets oft are of the form [a,~J and ]a,--}] for a~E. 

Proof: - Assume~ is not a total order. This implies that there exist 

p and q, elements of E, such that p+q and q+p, -i.e. N(p)~N(q) 

a.nd N(q)-9=-tl(p). Consider t'= tAC(p,N(q)). The topology t' is strictly 

coarser than t since N(q) converges to p in t' but not in t. Claim 

t' is also a T1 -topology. Let x <:: E and hence there exist sets A,B «- t 
~-

such that {~ = A-B. 


Case 1 :- x+p. Then there exists N ~ B(x) with p fM. Now An ME: t', 
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BnMEt 1 and £x)::: (AnM) - (BnN). 


Case 2 :- x -LP· This implies N(q)+N(x) and hence there exists a 


set NEB(q) such that xfN. Thus (AuN) E.t', (BuN) Et' and [x) = 


(AvN) - (BuN). Thus if tis minimal T1 we have.<. is a total order. 

z 

It is obvious that sets of the form stated form a T, topology. For 
z 

any x ~ Ja,---'7] we have a-<. x and hence there exists a set N € B(x) with 

Ns..Ja, ___,.]and so ]a,---,.] Et. For any x€ [a,-~J we have a~x and hence 

there exists a set N E. B(x) with Ns. ~'--;}]and so [a,~ is open. 

Therefore since t is minimal T1 we have proven that t is minimal T1
2 2 

iff ~is a total order and the sets of t are of the form Ja,--7] 

and [a,-~ for a EE. 

T1 _,_ maximal .- any ultratopoloey (3.1)-z 

!1' minimal .- Cofinite topology (1.10) 

maximal :- Any nonprincipal ultratopology (1.8 and 1.10)!11 

!2' minimal .­
Theorem 4.2 .- A T -topology t is minimal T iff the following condition

2 2 

holds:- if an open filter has a unique adherence point then it converges 

to this point. (See also Banaschewski [4] and Bourbaki [12] ) • 

Proof:- Let p be the unique adherence point of an open filter F which 

does not converee to p in a T -topology t. Define t' = t /\ C(p,F).
2

Now t' is strictly coarser than t since F converges to p in t' while 

it does not in t. 

rClaim :- t' is a T -topology. Take x 'fY. Without any loss of
2

generality one can assume P-4= y. Then y is not an adherence point of F, 
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and hence there exists an ME B(y) and an open set NE. F such that 

Mn N :::: ¢. Now since t is T there exist t-open sets A,B with x,p €.A,
2 

yE.B and A nB =¢. Hence x<:.AuN, yE.BnM, AUN Et', BnMEt', a.rid 

(A uN) n (B n M) :::: ¢. Therefore t' is a T -topology strictly coarser
2

than t and hence t is not minimal T •
2 

Conversely, let t possess the given property and consider any 

T -topology t' coarser than t. Hence we have Nt 1 (p)s::=:Nt(p). Now
2

since t' is a T -topology anyq=l=p can be separated from p by disjoint
2

t'-open (hence t-open) sets. Hence pis the only adherence point of 

t\, (p), l\, (p) is an open filter relative to t and hence by the given 

property i\ 1 (p) converges top. Thus we have Nt(p)~Nt 1 (p). '.L'here­

fore t =t' and t is a minimal T -topology.
2

This condition implies that corr1pact T -topologies are minimal
2

T • There are minimal '11 -topologies which are not compact. For an
2 2

example of such the reader is referred to Berri [6 ] . 

_!
2 

, maximal :- Any nonprincipal ultratopology (3.3). 

Lemma 4.4 .- Let t be a T -topology. Let F be a filter which has no
1

adherence point (or, has a unique adherence point to which it does 

not converge). Let p be any point in E (or, the u...11ique adherence 

point). Define t' = tAC(p,F). Then t' is a strictly coarser T ­
1 

topology. 

Proof:- {p) is closed with respect tot'. If xtp then xis not an 

adherence point of F and hence there exists a set A E. F such that x {A. 

This implies that A'= !Cx and hence Q°;x € F. '.::'here fore {x)- is closed with 
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respect tot'. Nowt' is a strictly coarser topology since F converges 

to p in t' but it does not in t. Therefore t' is a strictly coarser 

1\, minimal • ­

Theorem 4.5 .- A T -topology t is minimal T iff the following condition
3 3 

holds:- if a regular open filter hns a unique adherence point then it 

converges to this point. (See also Banaschev1ski [4] and Berri [9] ) . 

(Note - a regular open filter is a filter which has a base of open sets 

which is equivalent to a base of closed sets.) 

Proof:- Let p be the unique adherence point of a regular open filter 

F which does not converge to pin a T -topology, t. Define t' = t /\C(p,F).
3

Nowt' is a strictly coarser T -topology (l~.4). Now the claim is that
1

t' is also T •
3

Case 1 :- Consider the point p and a set A such that p c: A t. t'. Thus 

we have fl. £ t and A f. F. A «- t implies by the re[iularity of t that there 

exists a t-closed neighbourhood of p, B, such that Bs::A. By the regu­

larity of F there exists a t - closed set ME. F' such that M.s=A. Thus 

MuB is t-closed, belongs to F, contains p, is contained in A and 

therefore p E. Bu MSA where Bu M is a t' -closed neighbourhood of P• 

Case_s : - Consider x .:!=. p and a t 1 -open set A with x E. A. Consider 

A" ~p. By the ree;ularity of t there exists a t-closed neighbourhood 

N of x such that Ns=.A. Now since F is regular and x is not an 

adherence point there exist t-closed set B and M such that B {: N(x), 

ME.F and BnM = ¢. Bn N is at-closed neighbourhood of x and (BnN) nM=¢. 
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3

Hence O::(BnH)2M and thus IV(BnN)E.F. Therefore BnN is a t'-closed 

neighbourhood of x such that B n Ns.A. 

Therefore t' is a T -topology and hence t is not minimal T •
3 3

Conversely, let t possess the given property and consider any 

T -topology t' coarser than t. Hence Nt, ( p) = Nt ( p). Now since t' 

is '1\ and thus t any q +p can be separated from p by disjoint t Lopen 
2 

(hence t-open) sets. Hence p is the only adherence point of Nt 1 (p), 

Nt 1 (p) is a regular open filter relative tot and hence by the given 

2

property Nt 1 (p) converges to P• Thus we have Nt(p)=Nt 1 (p). There­

fore t =t' and t is a minimal T -topology.
3

This condition implies that compact T -topologies are minimal 

T • For an example of a minimal T -topology which is not compact the
3 3

reader is referred to Berri [9 ]. 

~_3-L-maximal:- Any nonprincipal ultratopology (3.3). 

!it, minimal: ­

Theorem 4.6:- The minimal T4-topologies are exactly the compact 

T -topologies. (See also Berri [6]).2

Proof:- If tis compact and T it is T4 and minimal T (4.3).2 2 

Therefore the compact T -topologies are minimal T4•
2

Conversely, let t be a T4-topology which is not compact and 

hence there exists a closed filter F with no adherence point. Let p 

be any point of E and let t' = t I\ C(p,F). Then t' is a strictly 

coarser T
1
-topology (4.4). Also t' is normal. Let X, Y be disjoint 

t' -closed sets. Vii thout loss of generality let p { X and hence 
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E-X E F. Thus there exists a t-closed set B <::F with B£E-X. Then X 

and Bu Yu fp} are disjoint t-closed sPts and since t is normal there 

exist disjoint t-open sets U and V such that X '=..U and Bu Y u {p) sV. 

Since p f U we have U € t' and since B=v we have Ve: t'. Therefore U 

and V are disjoint t'-open sets such that X'=.U and Y=V. Therefore 

t' is a strictly coarser T4-topology and hence t is not minimal T4. 

~' maximal - Any nonprincipal ultratopology (3.3). 

Tc:, minimal :­
--_;r------~ 

Theorem 4.7 :- A T -topology is minimal T iff it is compact. (See
5 5 

also [31J ) . 
Proof :- If t is a T -topology which is not compact then we have t' = 

5
t "C(p,I.<') as in theorem 4.6. Truce A and B subsets of E such that 

Afl C\,B = ¢ = Clt 1 AnB. This implies AnC\B = ¢ = C\AnB. Hence 

there exist t-open sets u and u such that A-==.U
1
, B:==.U and u n u = ¢.

1 2 2 1 2 

IfxtAUB then u na;x and u ria:x are t'-open sets with void intersection
1 2

and As:U1 na;x and Bsu nex. If xEAuB then without any loss of
2 

generality vie may assume x E. A and hence x fClt 1 B. Since t 1 is a 

T4-topology it is regular and hence there exist t'-open sets v and
1 

1V such that x£V
1 

, Clt 1 B=V and V riv = ¢. Thus A~U1uV1 E:t ,2 2 1 2 

Bs.V
2 

n u E. t' and (u1uv ) /1 (V n u ) = ¢. Thus non-compact T implies
2 1 2 2 5 

non-minimal and therefore minimal T implies compact.
5 

Conversely, if t is compact T then it is compact T4 and hence
5 

minimal T4 (4.6) and therefore minimal T •
5

T
5

, maximal :- Any nonprincipal ultratopology (3.3). 
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T minimal:­31 , 
- 2 

Theorem 1~.8 :- The minimal T3_~_-topologies are exactly the compact 

T -topologies. (See also Banaschewski [4] and Berri [6J ) . 
2

Proof:- The compact ~2-topologies are minimal T
3
+ (4.5). Assume 

(E,t) is a T3t-space. Now (E,t) may be embedded in a T4-space 

(E*,t*) such that Eis dense in E*. If E =E* and Eis not compact 

then by theorem 4.6 there exists a strictly coarser T4-topology and 

hence T t-topology. Thus it ~uffices to consider EcE* and hence there
3

exists q€E* - E. Let pEE. Define a topology s* = t*AC(p,Nt*(q)). 

Let E' = E* - {q) • Now E~E' implies (E,s*E)s.(E' ,s*E'). 

(1) s*E< t*E = t. Let N be a t*-open set containing p and N' a 


t *-open set containing q with N' n N = ¢. Then N n E e; t. Suppose there 


exists a t*-open set M such that qE.M and MnE::: .NnE. Then En(MnN') = 


¢ which is a contradiction since q €. E* and E is dense in E*. 


(2) s*E' is T
1 

• Let x and y be distinct joints in E'. If p:b
I 

x then 

there exists a t*-open set n with x f N and y fN and also there exists 

a t*-open set M with xc:.M and p{M. Thus xeMnN but YfMnN and 

M ()NE. s\-;•. If p = x then there exists a t*-open set N with p E.N 

and y ~ N and also there exists a t*-open set H with q € M and y tM. 

Thus M u N Olt * ( q) , p t. M u N and y t M u N. 

(3) s*E' is normal. Let A, B be s*E 1 -closed sets such that AnB = ¢. 

V/ithout loss of generality p 4A and hence p €E 1 - A E. s*E•. Thus 

(E'-A) U fa1 Ei\.(q), but (E'-A) u fol = E*-A. No;·1 A and Bv fp,q} are 

t*-closed hence there exist disjoint t*-open sets o and o such that
1 2 



29 


o
1 

n I<~' and o2 f1 E' are s*E' -open sets and they have void intersection. 

Thus s*E' is normal. 


Therefore, s*E is T f since every subspace of a T4-space is T i.
3 3
(Kelly [25J pg. 118). Hence it has been shown that a strictly coarser 

T31 -topology can be constructed if the topology is not compact. 
~ 

T31 , maximal :- Any nonprincipal ultratopology (3.3). 
- "2­

Re5ular and Com£letely Regular, minimal:­

Lemma lt.9 :- In a regular topology, if the closure of two distinct 

points have non-void interesection then the closures are equal. 

Proof:- Let the closure of p be denoted by p and let p+q. If 

p 1q then by regularity there exists N ~: B(p) ~;ith N n q t ¢. Therefore 

pflq+¢ iriplies p ~q and by symmetry q Gp. Therefore pnq-f¢ implies 

p = q. 

Therefore in a regular topology one can determine a partition of E by 

taking as elements of the partition the closures of suitably chosen 

single points. 

Theorem 4.10 :- The minimal regular and completely regular topologies are 

exactly those of the form {¢, A, E-A, E} where A is a non-void proper 

subset of E. 

Proof:- Obviously C(A) v C(E-A) are minimal regular and minimal 

completely regular. Let tt-o be a (completely) regular topology and 

hence from lemma 4.9 there exists a partition P of E. 

(i) If P is finite then the closures of points are alsoopen and hence 
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{¢, p, E-p, E}=t. 

(ii) If P is infinite then one can construct a strictly coarser topology 

which is (completely) regular. 

Regular :- Select p and q in E such that p+q and let t" = C(p,U(q)) /\ 

C(q,U(p)). Consider t' = t/\t". Then t' is a strictly coarser topology 

since the closure in t' of p contains q. Now an.y t'-open set is a 

~ .::.'(,. 
t-open: vrhich contains both p and q or does not contain both p and q. 

Let x € E and 0 E Bt, (x). Hence 0' t and by the regularity of t there 

exists Oft such that Xt0
1
s=.Clt 1 0'=-0. If p and q both do not belong 

to 0 then O' is t!-open and CltO' is t 11 -closed and hence t'-closed. If 

p and q are both in 0 then by the regularity of t there exists t-open 

sets 0 and 0 such that p £ 0 sCltO =0 and q E. 0 so..CltO s=O. Now p q p p q q 

xE:O'uo uo E.t' and 0'u0 uO s.Cl(O'uO vO )=Cl (o•uo uO)<:=.O.p q p q t p q t ,, p q 

Therefore t' is regular. Hence, if Pis infinite, we can always find 

a strictly coarser regular topology. 

pomplde_l;y: Regul~ .- Let t be completely regular. Then any t'-closed 

set contains both p and q or does not contain both p and q. Let A 

be a t '-closed subset of -Z and hence A is t-closed. Let x 4A. 

(i) p,q EA. By the 	complete regularity of t there exists a function 

f, 	continuous with respect to t such that f(x) = 0 and f(A) = 1. Let 

- -1 -1 J. J 1
M be any open set in LO,lj , then f (H) f. t. If 1 t l1 then p,q 't C (N) 

1and hence f- (M) E. t'. If 1 E: M the p,q f: f-l(M) and hence f-1 (!1:) ( t 1 • 

Therefore f is continuous in t',f(x) = 0 and f(A) =1. 

(ii) p,q 1A. By the 	complete regularity oft there exist r ,r ,f
1 2 3 
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continuous with respect to t such that f 1(x) = f (p) = f (q) = 0 and2 3
f.(A) = 1, (i = 1,2,3). Let f be the infimum of the f .• Then 
1· 1 

f({x,p,q)) = 0 and f(A) = 1. Let Mbe any open set in [0,1]. If 

-1 )0 e M then p,q e f (M and hence f-1 (H) E. t'. If 0 fM then p,q 4f-1
(M) 

•and hence f-1 (M) E. t I Therefore f is continuous int'. Hence for 

any (completely) regular topology where the partition is infinite, we 

find a strictly coarser (completely) regular topology. Therefore the 

minimal regular and co1:1pletely regular topologies are exactly those of 

the form {¢, A, E-A, E} where A is a non-void proper subset of E. 

~egular and Completely Re.£_~lar, maximal :­

'l'heorem 4.11 :- A toTiology is a maximal regular topology iff it is 


a nonprincipal ultra.topology or it is of the form C(x,U(y)) AC(y,U(x)) 


for some x,y in E. 


Proof:- (i) A topology is a maximal regular T -topology iff it is

1

nonprincipal ultra.topology (3.3). 

(ii) A principal ultra.topology is not regular (3.3) 

(iii) t = C(x,U(y))AC(y,U(x)) is a maximal regular to~ology (Steiner 

[36]). Every t-open set is also t-closed since it must contain both 

x and y or must not contain both x and y. Hence given any closed set 

A and pf' A it is possible to separate them by disjoint open sets, 

namely, A and E-A. Therefore t is regular. Conversely the only 

non-discrete topologies strictly finer than t are C(x,U(y)) and 

C(y,U(x)) (1.2) neither of which is regular (3.3). 
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(iv) Any regular non-T -topology is contained in a topology of the1

form C(x,U(y)) AC(y,U(x)). If t is not a T -topology then there
1

exists p E. E such that p consists of at least two elements. Take 

distinct x and yin p. Then the claim is that tLC(x,U(y))AC(y,U(x)). 

Take M any t-open set. If x and y are both in M or both not in M then 

M€C(x,U(y))AC(y,U(x)). Therefore, without any loss of generality, 

we can assume x€ M and y 4M. Novi y E.1'~-M which is closed and hcnc~ 

y £ (E-M) np which is closed. Also (E-N)np c p since x 4E-M which 

is a contradiction (4.9). 

Corollar:;z:- A topology is maximal completely regular iff it is a 


nonprincipal ultratopology or it is of the form C(x, U(y)) I\ C(y, U(x)) 


for some x,y ~ E. 


Proof:- Nonprincipal ultratopologies are maximal co~pletely regular 


(3.3) and principal ultratopolo~ies are not completely regular (3.3). 

Topologies of the form C(x,U(y))/\ C(y,U(x)) are completely regular 

since all open sets are also closed and hence these topologies are 

maximal co~pletely regular. Complete regularity implies regularity and 

hence one can show, using (iv) above, that any completely regular 

non-T -topology is contained in one of the form C(x, U(y)) I\ C(y, U(x)).1 

Normal and Completely Normal, minimal .- infratopologies - obvious. 

Normal and Completely Normal, maximal :- ultratopologies (3.1). 

p~mpact 1 minimal .- infratopologies - obvious. 

Compact, maximal .­

Theorem 4.12 :- A space (E,t) is maximal compact (Lindel8f) iff the 
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compact (Lindel8f) subsets of E are identical with the closed subsets 

of E. (See also Smythe and 'ililkins, [34]). 

Proof:- Assume (E,t) is maximal compact. Since (E,t) is compact 

(Lindel8f) then every closed subset of Eis compact (Lindel8f). Assume 

that there exists a subset A which is compact (Lindelgf) but is not 

closed. Define t' = tvC(E-A). Then t' consists of all those subsets 

of E which can be expressed as (O'n (E-A))u 0", where O' and 0 11 are t-open 

sets. Since E-A Gt' we have t' > t. Let (U.: i €I) be a t' -open cover 
J. 

of E. Then each U. = (0. I() o~-/\.)) v0. 19. Hence E = u u. = ( u (0. 'n 
J. 1 1 1 1

it::I iEI 
(E-A)) u iYioi11 and therefore the set of all (0. 'vO. ") with i ~I is 

J. J. 

a t-open cover of E. Since (E,t) is compact (Lindelgf) there exists 

11a finite (countable) subcover, i.e. E = YJ(O. 'v 0. ) where J is 
J J.j l.j 

11finite (countable). Hence E-AG;;-_.\..)J((O. 'n0~-A))u0. ). Now .;UE.10 . 11 

Jc l.j J.j • 1 

is an open cover of A and, since A was assumed to be compact (Lindel8f), 

there exists a finite (countable) subcovcr, i.e. As.kUKo. "with K finite 
£ J.k 

(countable). Thus E = U ((o. 'A(E-A)) uO. 11 ) where L = JuK which is 
1£L i1 i.1 

finite (countable). Therefore (E,t') is a compact (Lindel8f) space which 

contradicts the maximality of (E,t). 

Conversely, since Eis closed (E,t) is compact (Lindelgf). Let t' be 

a strictly finer compact (Lindelgf) topology on E. Then there exists 

a subset A which is t'-closed but not t-closed. Hence A is not compact 

(Lindelgf) in (E,t) which is a contradiction since A is compact 

(LindelBf) with respect to the space (E,t'). This implies the compact 

T -topologies are maximal compact.2



Paracompact and Metacom:Ract, minimal :- infratopologies - obvious. 

Paracompact and Hetacom_pac:t, maximal :- ultratopologies (3.1). 

~ocally Compact, minimal :- infratopologies - obvious. 

Loc~~ly ,ComE_act, maximal :- principal ultratopologics (3.6). The 

question as to whether there are maximal locally compact T -topologies
1

is open. 

L . , i"r · · 1ina~ o , minima .- infratopologies - obvious. 

Lindelgf, maximal :- topologies where the Lindelgf subsets are exactly 

the closed ones (4.12). 

Connected, minimal .- infratopologies - obvious. 

Connected, maximal .- Open question. It is easy to see from theorem 

3.8 that C(U), where U is an ultrafilter, and C(x, { E} ) are maximal 

connected. 

Local~y connected, minimal .- infratopologies - obvious. 

Locally connected, maximal .- Principal ultratopologies since the only 

maximal locally connected topologies are ultratopologies and by 3.6 

only ultratopologies which are principal are locally connected. The 

fact that the only maximal locally connected topologies are ultra­

topolor;ies is easily seen by the following:- Assume t =f. P(E) is locally 

connected. Then there exists a point x ~ E such that [x1 ~ t. Then 

t v [¢, {x1, E} is locally connected. 

Totally disconnected, minimal .- open question 

Totally disconnected, maximB.l . - nonprincipal ultratopologies (3.3). 
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Extremally disconnected, minimal .- infratopologies - obvious. 

Extremally disconnected, maximal :- ultratopologies (3.1). 

~ero dimensional, minim~l :- t¢,A,E-A,E} where A is a non-void proper 

subset of E. This is easily seen by considering any non-trivial zero 

dimensional topology, t. Then there exists a subset B such that 

¢ c B c.:E: and let p E. B. Then since t is zero dimensional there exists 

an open-closed set A with pt:A=B. Hence AE.t, E-AE. t, and ¢+A+E. 

Zero dimensi<2_!:!.~l, maximal :­

Theorem 4.13 .- The maximal zero dimensional topologies are the 

nonprincipal ultratopologies and topologies of the form C(x,U(y)) A 

C(y, U(x)) for x,y f E. 

Proof:- A nonprincipal ultratopology is zero dimensional (3.3). 

A mixed topology cannot be maximal zero dimensional since it is properly 

contained in a nonprincipal ultratopology. In the case of principal 

topologies, regularity and being zero dimensional are equivalent 

since regularity implies that for all p ~E, B (1.5) is closed and 
p 

hence open-closed. Hence the neighbourhood system of any point has 

a base of open-closed sets and therefore is zero dimensional. Conversely, 

if a topology is zero dimensional it has a base of closed sets which is 

equivalent to regularity (Kowalsky [26], pg. 59). Therefore the 

maximal zero dimensional topologies are exactly the maxioal regular 

principal topologies which are the topologies of the form 

C(x,U(y)) AC(y,U(x)) for x,y € E. 

First Axiom of Countability, minimal .- infratopologies - obvious. 



36 

First .Axior:i of Countability, maximal :- principal ultratopologies 

by virtue of theorem 3.6, corollary to lemma 3.5 and the corollary to 

lemma 3.4. 

Second Axiom of Countability, minimal :- infratopologies - obvious. 

§.~.92.n.d Axiom of Countability, maximal . - none. This follows as a 

consequence of the corollary to lemma 3.4 since no ultratopology 

(in general) satisfies the second axiom of countability. (Recall 

also the corollary to leMma 3.5). 

Separable, minimal .- any infratopoloey, C(A), since if A is not 

itself countable take a countable subset of A. 

Separable, maximal :­

Theorem 4.14 .- There exist no maxir:ial separable topologies, if E is 

uncountable. 

Proof :- Let t be a topology which is separable. This implies that 

there exists a subset N which is countable such that N :;:: E. Now Nc: E 

and hence there exists p ~· N. Thus E- fpJ2 N and hence E- {p} is not 

closed and so {p} 4t. Consider t' = tvC( fp}) _which is a strictly finer 

topology than t. Let N' = N u [P}. Consider subset A such that 

N's=.AfE. If A is a t'-closed set then E-A Et'. But pf E-A and 

hence E-A E. t which implies A is t-closed which is a contradiction. 

Hence N' is dense int'. Therefore for any separable topology we can 

find a strictly finer separable topology. Also it is ol;vious that no 

ultratcpology is separable. Therefore there exist no maximal separable 

topolo0ies, if E is uncountable. 
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Princi2al, minimal .- infratopoloeies - obvious. 


Principal, maximal .- principal ultratopologies - obvious. 


Door, minimal :- C(x,[E}) and C(U) where U is an ultrafilter. This 


follows directly from theorem 3.7. 


Door, maximal :- ultratopologies (3.1). 
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ultratopologies 

same as regular 

principal ultratopologies 

none 

none 

principal ultratopologies 

ultratopologies 

http:infratopoloc;:i.es


Qllapter 2 


Preservation of Jppolo~ical P:r:£.P.erties under 


Lattice 0£erations an,d Relations 


In this chapter the preservation of various topological properties 

under lattice operations and relations will be investigated. A table 

is provided at the end of the chapter to summarize the results. It 

should be noted that if a property is preserved with respect to 

taking coarser topologies then it is preserved under infinite meets 

which implies it is preserved under finite meets. 'l'his may be 

graphically represented as follows:­

===;;> /\ -Y /\ 

Similarily. -9' v =,-> v 
Also if a property is not preserved with respect to a lattice operation 

or relation we may indicate this by placing a stroke through the symbol. 

Thus we have ~==?A~+ 
~ --? -v- =} 4­

Before beginning the detailed study it is useful to prove 

several general lemmas and theorems which v1ill be used later. 

Lemma 5.1 :- U contains N(p) with respect to a topology t iff t is 

coarser than C(p,U). 

Proof .- If p belongs to a t-open set then the set belongs to U and 

hence C(p,U) and any set not containing p belongs to C(p,U). Conversely, 

39 
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if p 	is contained in a t-open set and t ~ C(p,U) then the set belongs 

to U and hence B(p) ~ U and so also N(p)=U. 

Lemma 5.2 :­

(1) 	t is a T -topology iff for each ultrafilter U there exists at most
2

one point p such that t ~ C(p,U). 

(2) t is compact iff for each ultrafilter U there exists at least one 

point p such that t ~ C(p,U). 

(3) 	t is compact T iff for each ultra.filter U there exists exactly
2 

one 	point p such that t ~ C(p,U). 

Proof :~ (1) t is T ,
2 

iff each ultrafilter U converges to at most one point p, i.e. 

iff for each ultrafilter U there exists at most one point p such that 

U :=!N(p) (by the definition of convergence) i.e. 

iff 	for each ultrafilter U there exist at most one point p such that 

t =C(p,U) (by lemma 5.1) 

(2) 	t is compact 

iff each ultrafilter U converges to at least one point p, i.e. 

iff for each ultrafilter U there exists at least one point p such that 

U:=!N(p) i.e. 

iff for each ultrafilter U there exists at least one point p such that 

t !:. 	 C(p,U). 

(3) follows from ( 1) and (2) 


Theorem 5-.!2 .- The cofinite topology has the following properties:­


(1) 	T0 , (2) Ti' (3) T
1 

, (4) compact, (5) LindelHf, (6) paracompact, 



41 


(7) metacompact, (8) locally compact, (9) connected. The cofinite 


topology if Eis infinte does not have the following properties :­
1 7 

(10) T
2

, (11) T , (12) T)t' (13) T
4 

, (14) T , (15) regular, (16)
3 5
 

completely regular, (17) normal, -Cl8) completely normal, (19) door 

It> •'~:.ii 

space, (20) principal. The cofinlte,topology satisfies the counta­

bility axioms iff E is countable. 


Proof .- C(C*) is T (1.9) hence Tt and T • C(C*) is compact because

1 0 

every ultrafilter converges and hence 5,6,7,8 all hold. C(C*) is connected 

since any two sets in a filter have non-empty intersection. C(C*) is 

not T since any two sets in a filter have non-empty intersection.
2 


Thus 11,12,1:3,11+ do not hold and, since C(C*) is T
1 

, 15,16,17,18 also 


do not hold. C(C*) is not a door space since if A is infinite and 

has an infinite complement then it is neither open nor closed. C(C*) 

.is not principal since it is the meet of nonprincipal ultratopologies 

(1.5). Now since n(B: BEC(C*)) =¢we have that E =u (E-B). Now 

E-B is finite. Hence C(C*) has a countable base iff E is countable. 


Also since {p) =n(B: pc:BE.C(C*)) we have E-[P}=u(E-B). Again since 


each E-B is finite we find that the neighbourhood system of any point 


has a countable basis iff E is countable. 


Theore~ :- The compact T -topologies are incomparable. In2


particular, given a compact T -topology, then any topology strictly
2


finer is not compact and any topology strictly coarser is not T •
2


Proof:- This follows directly from 4.3 and 4.12 since compact T
2­

topologies are minimal T and maximal compact.
2 
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Theorem 5.5 :- C(x,C*) =A(C(x,U): U a nonprincipal ultrafilter). 

Then 9Cx,C*) (1) satisfies all T.• 
J. 

(2) is compact, in fact, maximal compact. 

(3) is minimal T2 , T3' T.3+' T4' T5~ 

(4) is totally disconnected. 

Proof:- C(x,C*) is T - Take A,BsE such that A()B = ¢ = AAB• Without
5 

loss of generality we may assu:rie x ~A and hence A€ C(x,C*). Now 

AnB =¢implies Bs:.~AEC(x,C*). Also Afl!EA =¢and thus C(x,C*) is 

Hence C(x,C*) satisfies all T. • C(x,C*) is compact T since every
J. 2 

ultrafilter converges to exactly one point (5.2). Thus C(x,C*) is 

maximal compact and minimal T2 , T , T3~, T4 , T (5.4). For all Yf x
3 5 

we have {y) is open-closed. Also we have n (E-fy} : y ~ x) = E-U {y 

y :f x}= {x} Ea.ch of the E-{y} is open-closed. Now the component of a 

point is contained in the intersection of all open-closed sets containing 

the point (Kowalsky [26], 14.9). Thus for all p E. E, we have {p) is the 

component of p. Therefore C(x,C*) is totally disconnected. 

Theorem 5.6 :- Let (t.: jEJ) be an arbitrary family of (completely)
J 

regular topoloeies on E. Then t = j';j tj is also (completely) regular. 

(Norris [ 29]). 

Proof:- (a) regular 

Let pfE and let A be a subset of E such that p r;: A E t. Then there 
n 

exist A. ~ t. (i=l,2, •••·n) such that pl;. C' A. s::A. Now, since each
J. J. J.-1 J.

J. J. J. 

t. is regular, there exist B. € t. such that p E. B. s::.Clt B. s.A .• 
J . Ji· Ji· J . . J . J . 

J. J. Ji J. J. 



n n n n 
Let B = n B.

J. 
• Hence pt: BE t. = C\n B. '=- n CltB .=.. nC\ B. s= 

i=l l. i=l Ji i=l Ji i=l ~ Ji 
n 


(\A :s A. Therefore t is regular. 

i= 'Ji 

(b) completely regular 


Let p EE and A=E such that p E: A Et. Then there exist A. et.

J. J.
l. l. n(i=l,2, •••n) such that pEn A. -=.A. Since each t. is completely


i=l Ji Ji . 

regular there exist fi(i=l,2, ••••n), fi: E-?[0,1], continuous with 


respect tot. such that f.(p) = 0 and f. (x) = 1 for all xc «::A •• 
J. 1. 1. Ji1. 

Let f be the supremum of the f .• Then f: E-> [0,1], f(p) =_O and 
l. 


f(x) = l for all x f. ~A. Now, since t is finer than each t. and the 

J.

1. 

f. are continuous with respect tot. , f is continuous with respect to 
l. Ji 

t. Therefore t is completely regular. 

Proposition 5.7 :- Consider the Euclidean plane, E, with the following 

topologies:­

·t =the product of the usual topology, s, on the reals with the
1 


topology which has as base the half-open intervals of the form 


[a,b[. 


t = the product of the topology which has as base the half-open
2 

intervals of the form [a,b[ and the usual topology, s, on the 

reals. 

t = the product of the half-open intervals topologies of the form 

[a,b[ on the reals. 

Then t = t vt clearly. Also t and t are paracompact, T and T1 2 1 2 4 5 

but t is not T nor is it metacompact.


5 
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Proof :- t is obviously T and has a base of open-closed sets. Thus
1 

t is regular since if x belongs to some open set it belongs to a base set which 

is open-closed. Therefore t is T • Now t is not normal for consider
3

the set L = f Cx,y): x+y = 1). Lis closed since for all points not on 

the line there exists an open set which contains the point and has void 

intersection with L. Let M be the set of all points of L with rational · 

co-ordinates and N the set of all points of 1 with irrational co­

ordinates. M and N are both closed subsets of L since the induced topology 

on L is the discrete topology and hence H and N are t-closed. Then H 

and N are disjoint but obviously there exist no disjoint open sets 0 and 0 1 

such that Ms: 0 and NEO: 'I'herefore t is not normal and hence not 

paracompact nor T • Now t is not even metacompact which may be seen by
5

considering the following. Take as an open cover of E the left-half­

plane determined by L (not including L) together with all sets M( )x,y 

where M( ) ={Cc,d): (x,y)e L, x ~ c, y ~ d}. Now the claim is x,y 

that this open cover has no point finite refinement. Assume it does. It 

is sufficient to confine our attention to L and the right-half-plane. 

For all (x, y) ' L there exists a set R( ) in the refinement such that x,y 

(x,y) E: R( )sM( ) and hence there is a "square" (a base set)x,y x,y 

B( )tt such that (x,y)CB( )s=..R( )' B( )= {Cp,q): p-xL..b( )'q-y~b( )'x,y x.,y x,y x,y x,y x,y 

b a real number}. \'le form a partition P of the points of L by(x,y) 

forming a partition P' of the b( ) by saying that (x,y) and (x',y')x,y 

belong to the same class of P iff b( ) and b( , •)both lie in the x,y x ,y 



intervalµ_, _l_] for some n EN. Now there are uncountably many points 
n n+l 

in L and only countably many classes in P' and hence there exists a 

class.P. of P which contains uncountably many points of L, say that P. 
1 1 

corresponds to the interval]- 1 , 1 -I = P. ' • Hence there exists an 
-- -- 1n-1 n ­

accumulation point (p,q)£ L for the class P.• Consider the set 
1 

N' = l<x,y) EE: I(x,y) - (p,q) l<.l:.._ J• Then there exists uncountably 
2n 

many B(x,y)in N' with b(x,y)::> ! and these B(x,y) have non-void 

intersection and hence there exists a point in E which lies in 

infinitely many B( ) and hence in infinitely many sets of the x,y 

refinement. Thus there is no point-finite refinement of the cover 

stated. Therefore t is not metacompact. 

Now t and t are paracompact since each is the product of a
1 2 

paracompact T -topology and a topology which is countable at infinity
3

(Kowalsky [26], pg. 153, 22.8). Therefore t and t are also T •1 2 4
It is conjectured that each is also T with the proof probably being as

5 
follows: Consider t and subsets A,B of E with AnB = ¢ = AnB. Note

1 
rv

A is the closure of A with respect to t and A the closure of A with1 
,...., 

respect to the usual topology on E. Then we have A=::!. A. By the definition 

"' of closure and since t is regular we have that for all pt B - B there
1 

exists Q E t such that Q n B = ¢. Define i' = {Q : p EB - B}. Let 
p p p 

~be a locally finite refinement of .:2 1 and let Q = u;t. Then 
"J 

B - BsQ 

and since locally finiteQ =U(X: XE:l) (Gaal, Q.8], pg. 153). Thus 

we have Qn B = ¢ and B - BsQ E t 
1

• Similarily there exists R such that 

Rf"IA =¢and A - AsRE-t
1 

• Let A'= AnitQ and B' = Bn~R. Now 
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N -----­A' n B' 	 ::: (A na::Q)n (BnG::R) 

=All ~n Bn<:cR 

= ( 6Q n B) n (An (CA u A)) 

= ¢ 

Therefore A' n B' = ¢ a'1.d similarily A' n B' = ¢. 

Hence there exist sets V,W which are open with respect to the usual 

topology and hence t-open such that A' £ V, B' '= W and Vn W = ¢. 

Now A S (V u Q) n (VR E t 
1 


B £ (W uR) n CQ E.t
 
1 

also (Vu Q) (') O::R n a;Q. n (Wu R) S (VuQJR) n (VJuQtJR) A <i:(RuQ) 

£ ( (VuV/)vQuR) n a;(RuQ) 

=¢ 

Therefore (VvQ) n Q;R and (WuR) n O::Q are disjoint t 
1

-open sets and hence 

t is a 	T -topology. Similarily t is a T -topology. With regard to the1 5 2 5
existence of a locally finite refinement this will be the case if 

t 1 / B - B is paracompact. By 13 .19 of Kowalsky [26] this will be the 

case if B - Bis expressible as the countable union of closed sets. Let 

V be any vertical line. Then (B - B)nV =Bna::Bnv = (BnV)n(G:BnV). 

Now Bn V is a closed set, say C. Also t 
1

/ V = s. Thus tB n V is an open 

set and hence is the countable union of closed intervals, say O::B n V = 

U Cn. Therefo:i;-e (BnV) n(a:BnV) = Cn UN Cn = UNCr1Cn. That isn G N nE nc:: 


(B - B)nV is the countable union of closed sets. Thus all that must 


be proved is that (B-B)nV t ¢for only countably many V. This would 


seem to be the case but remains an open question at this time. 
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~:- (-fr) C(x,U(y)) and C(y,U(x)) are both T (3.1) but there is no0 

open set separating x and y in their meet. 

(::::::.) obvious. 

~:-(-A-) C(x,U(y))AC(y,U(x)) is not Ti. 

(~) obvious. 

!
1
:- <4),Coarser than T

1 
need not be T1 since the cofinite topology is the 

smallest T -topology. All other relations and operations preserve T
1 1 

since the T -topologies form a complete sublattice.
1

! :- (-A1 The meet of two compact topologies (e.g. C(x,C*)/\C(y,C*), xfy)
2

is not T2 (5.4, 5.5) 

(.:::::...) obvious. 

T and regularity:­
3 

(-K) C(x,C*) /\C(y,C*), x=f=-y, is not T but is T (5.5, 1.10)
3 1 

(V) Regularity is preserved as proven in theorem 5.6 and also T is preserved1 

so T is preserved.
3 

Ct) Is illustrated by the following example mentioned by Gaal Q.8] 
pg. 85 and first noticed by Hausdorff [22] pg. 264. Let t be the usual 

topology on the reals and t 11 = t v C(C') and let t' = C(C'). Then tt' 

is finer than t and although t is a T -topology t" is not. This is
3

easily seen by the following. Now t" is obviously a T -topology.
1

Assume t" is regular. Let Q be the set of all rationals. Q is a t"­

closed set since it is countable. The irrational number J2' is not in 

Q. If t" is regular then there exist disjoint sets M,N Et" such that 

J2 G. M = AnA' where A f: t and A 'Et' and C.;sN = ~I(B.n B. ') where B. E. t 
1€ 1 1 1 

and B. ' E. t'. 
1 



Thus ¢ = HllN = AnA 1 (I .U (B f\ B. ') = ~ (AnA 'nB.nB. '). Hence AnA 'l"I B.f\B.'
itI i 1 1£I i 1 1 1 

is empty for all it.I and so An B.s:= U:(A' n B. '). Now there exists an 
1 1 

jH such that An B. :j: ¢ since f2 E.AnB. for some jc:I. But then we have 
J J 

an uncountable set contained in a countable one which is impossible. 

Therefore t" is npt regular. 

~ and complete regulari.ty:- The same· arguments and example apply as forT3
T and regularity.
3 

Normal:­

(-1\) C(x,C*) AC(y,C*), x +y, is not T4 but is T (5.5, 1.10)
1 

Lv-) C(E- [x1 )vCO~-fy}), x t y is not normal since there are no disjoint 

open sets in the join separating the closed sets [x1 and [y} • (Note 

that each infratopology is normal.) 

~:-

(-A-) C(x,C*) A C(y ,C*), x +y, is not T4 • (5.5) 


(-V-) Proposition 5.7 


Completely normal :­

(-A--) C(x,C*) I\ C(y,C*), x ~ y (5.5, 1.10) 


(-V'-) C(E-6<})v C(E-fY} ), x :!= y, is not normal hence not completely 


normal. 


T :­
-5 

(-A-) C(x,C*) /\ C(y,C*), x ~ y, is not T (5.5, 1.10)


5 
(?f=._) Since t, in T (~) above, is also T .

3 5
(...\L-) Proposition 5.7 

Comuact :­

(~) obvious 



(-If-) C(x'IC*) \I C(y ,C*) = 1. Each is compact (5.5) but the discrete 

topology is not compact if E is infinite. 

Lindelcif :­

(~) obvious 

(--V-) C(x,C*) v C(y ,C*) = 1. Each is Lindelgf since each is compact 

(5.5) but the discrete topology is not LindelHf if E is uncountable. 

Paracompact :­

(-fi-) This is demonstrated by the following counterexample which shows 

that the meet of two paracompact topologies is not necessarily even 

metacompact. Let R be the reals and Q the rationals. Let t be the1 

usual topology on the reals and let t =/\(C(q,C*): qeQ). Define2 

t = t /\ t • Now t is known to be paracompact and t is paracompact
1 2 1 2 

because for any open cover of R, a finite number of sets cover Q and hence 

one can take as a refinement these sets together with all singletons 

of points not in .these open sets and this refinement is locally 

finite. 

To establish t is not metacompact it will first be shown that each infinite 

point finite open cover is uncountable, i.e., there exists no countable 

point finite open covers. Let (M.: i e. I) be an infinite point finite 
l. 

open cover of R. Now since it is infinite and point finite we have 

f\1M. = ¢ which implies R = U G:M.. Now the U::M. is countable for each 
1 E 1 iE I l. l. 

i EI, R is uncountable and hence II I must be uncountable. Now consider 

A = a; r{2 + n: n EN}. This is an open set since it is the union of 

open intervals and contains all the rationals. Let 0 be the open
n 
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interval about J2 + n given by 0 =]Y2 + n - 1/3, f2 + n + 1/3[ • 
n 

Define A = Au 0 • Then A is open for all n E: N. It is obvious 
n n n 

that (A : nE.N) is an open cover of H, it is countable and hence 
n 

by the previous argument it is not point finite. Clearly there is no 

finite subcover of this cover and it is also quite clear that there is 

no point finite refinement of it either. Hence t is not metacompact. 

(--¥-) Proposition 5.7 

Hetacomnact :­

(-A-) The counterexample in this case is the same as the one for 

paracorapact (-/\) since both t and t are metacompact but t is not•
1 2 

(-V--) Proposition 5. 7 

locall_y: compact :­

(-/\-) The finite meet of locally compact topologies need not be locally 

compact as shown by the following counterexample. Let t be the usual 

topology on the reals. Consider t' = t /\ C(l,U(N)) where U(N) is the 

principal filter generated by the natural numbers. Now t is knovm to 

be locally compact and C(l,U(N)) is locally compact since it is principal 

and hence for all r~ R there exists a smallest open neighbourhood of 

N,Br (1.5). The claim is that t' is not locally compact since there is 

no compact neighbourhood of 1. Assume K is a locally compact neighbour­

hood of 1. Then K contains an open neighbourhood of 1, A = UnEN I n 

where I =Jn-£, n + £[0<-E~i. Let C = [ n- E., n + £] and hence 
n n 2 2 

C s=I • Let C =~NC • Then C is closed since it is the union of 
n n n~ n 

disjoint closed sets and Hi;;.C. Also C is obviously a closed 
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neighbourhood. Now C is compact since it is a closed subset of a compact 

set. Define an open cover of Cto be equal to [~NJ n-.£, n+f[ ~uCJn-E, n[ 
2 2 

nEN) L1 C]n, n+ e [: n E. N). Obviously there is no finite subcover of this 

cover and hence C is not compact which is a contradiction. Therefore 

there is no compact neighbourhood of 1 and hence t' is not locally 

compact. 

(--\/-) The finite join of locally compact topologies need not be locally 

compact as shown by the followine; counterexample. Let A =[-a, aj where 

a is a real number. Let t' be the usual topology of the reals restricted 

to A and let t" be C(O ,C*) on A. Now t = t' v t" is not locally 

compact. This will be proven by showing there is no compact neie;hbourhood 

of zero. Assume there exists a compact nei~hbourhood K of zero. Then 

there exist sets BE: C(O ,C*) and I, an open interval, such that 0 E B ()rs K. 

Hence there exists an open interval J with 0 E JS B n rs K and so there 

exists an open interval J' with 0 EJ' CJ. Take as an open cover of K 

the following, J' together with all fy'}, y E: K-J'. Obviously this has 

no finite subcover. Therefore t is not locally compact. 

connected .­

(~) obvious 

(-V-) Finite join of connected topologies need not be connected as 

illustrated by the following example - C(A) v C(E-A) where ¢cACE. 

locally connected :­

(~) Since discrete topology is locally connected 

(.!\) Lemma 5.8 .- A topology is locally connected iff the components 



of all open subsets are themselves open. (Kowalsky [?6], pg. 108). 

Proof :- Let t be a locally connected topology, H an open subset of E and 

K a component of N. Now a set is open in M iff it is open in E. For all 

p ~ K there exists a connected neighbourhood 0 '=.H. Since K is the 
p 

largest connected subset of H containing p, 0 =K for all p E:K and p 

hence K = Uo. Thus K is open. Conversely, take any open set 0 withpEK p 

p EO. Then the component of 0 containing p is an open neighbourhood 

of p. Hence the neighbourhoods of p possess a basis of connected sets. 

Lemma 5·2 :- The meet t of an arbitrary family (t.: i E::: I) of locally
J. 

connected topologies is locally connected. (Kowalsky [26], pg. 109). 

Proof :- By lemma 5.8 it is sufficient to show all components K of M, 

where H is a t-open subset of E, are t-open. Now Mf. t implies ME t. ,
J. 

for all i E. I. Let p be any element of a component K of M. Then there 

exists a neighbourhood O.f. t., with pf.0.C.:::.M and 0. connected int .• 
J. J. J. J. J. 

Hence 0. is connected int which implies O.~K. Thus, as in the 
J. J. 

last lemma, K = l}Ko. , where p E. 0. , and hence KE: t. for all i E I. 
p<:: J. J. J. 

Therefore KE. t. 

(-¥-J The finite join of locally connect.ed topologies need not be 

locally connected as shovm by the following counterexample. Let E 

be the reals. Consider t v C(U) where t is the usual topology on the 

reals and U is any nonprincipal ultrafilter v1hich converges to P• 

Clearly both t and C(U) are locally connected. Claim that t vC(U) = 

C(p,U). Now tvC(U)s.C(p,U) since for aYJ.y AE:t 1 if pE.A then A~U 

since U converges to p, and if Pf A then A£ C(p,U) by definition. 

http:connect.ed
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To show the reverse inclusion take any A€ C(p, U). If A(:'. U then AE. C(U). 

If A~ U then p ~A. Let q €A, hence q f p and thus there exists a 

t-open set 0 such that q E:: 0 t U (this follows since an ultrafilter con­

verges to only one point in a T -topology). Thus ~O EU and hence2

Q;O u {qJ f U. Therefore t9} = (Q;O u {q}) n 0 E: t v'C(U). Thus Aft Y C(U). 

Therefore t vC(U) =C(p,U) which is not locally connected by theorem 

totall_y: disconnected :­

(-A-) The meet of two totally disconnected topologies need not be 

totally disconnected as is easily seen by considering the meet of the 

half-open interval topologies on the real line. That is, let t be
1 

the topology with a base of open sets of the form [a,b[ and t have as2 

base the sets of the form Ja,b] where a and bare real numbers. Each 

has a base of open-closed sets and is therefore totally disconnected 

but t /\ t is the usual topology on the reals which is connected.
1 2 

(~) obvious 

extremally disconnected :­

(-It-) The meet of two extremaJJy disconnected topologies need not be 

extremally disconnected as shown by the following counterexariple. Take 

A,BG.E such that An B = ¢ and AU BCE. Consider t = {¢,A,B,E-A,E}
1 

and t = [¢,A,B,E-B,E} • Obviously t and t are extremally disconnected2 1 2 

since the closure of every open set is again open. Now t ;;:: t 1\ t = 
1 2 

[¢,A,B,Ej and t is not extremally disconnected since the closure of 

A is E-B which is not t-openo 
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(-v-) The join of two extremally disconnected topologies need not be 

extremally disconnected as shown by the following counterexample. Let 

A be a non-empty proper subset of E and let p 1A. The C(A) is 

extremally disconnected and so is C ( ([: (Av fp})). But, the join of these 

two topologies is t = [¢,A,~(Avfp}), ~ {p}, E} which is not extremally 

disconnected since the closure in t of A is Au fp} t t. 
zero dimensional :­

(-A-) The counterexample in this case is the same as the one for totally 

disconnect~d (-A--). 

(~) Obvious since the trivial topology is zero dimensional while the 

infratopologies are not. 

(V) The property is preserved under arbitrary joins since each topology 

in the arbitrary f~r:ri.ly has a base of open-closed sets for each point 

in E and a base in the join for each point consists of finite inter­

sections of these open-closed sets and is hence open-closed. 

countability axioms :­

(-A-J The meet of two topologies satisfying the second axiom of 

countability need not satisfy the first axiom of countability as 

illustrated by the following. Let E be the reals and t the usual
1 

topology. Let t be the set consisting of the empty set together
2 

with all subsets A of E such that the complement of A consists of only 

finitely many rational numbers. Note that t is a filter topology
2 

(the Frechet filter of a sequence of all rationals) and as such has 

a countable base which implies t satisfies the second countability
2 

http:f~r:ri.ly
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axiom. Let t ::: t /\ t • Then for any XE t we have !CX is countable and
1 2

contains no interval. Let p EE and (B.: i E. I) be a base of open
l. 

neighbourhoods of p. Now t is a T -topology since both t and t
1 21

are. Hence {p} = 0 B. and so E-fp} = .U II:B .• But E-fp} is m1countable 
1~1 1 1E 1 1 

and Q:B. is countable for each i E. I and hence II I is uncountable. 
1 

Therefore there is no countable base for the neighbourhood system and 


hence the first axiom of countability does not hold. 


<4=) since infratopologies satisfy both countability axioms. 


( v) since the base for the join is the set of all intersections of 

base sets from each of the topologies. 

(~~ since infratopologies satisfy both countability axioms. 


separable :­

(-::::=) since closure in a coarser topology contains the closure in a 


finer topology. 


(-V-) Finite join does not preserve separability as illustrated by 

taking the join of the left-half-open and right-half-open interval 

topologies on the reals. This join is the discrete topology which is 

not separable but each of the half-open interval topologies are 

separable since the rationals are dense in each. 

principal .­

(~) since the discrete topology is principal. 

(!\) lemma 1.3 

( V ) theorem 1.6 

(~ since every infratopology is principal. 



door .­

(-fr) for example C(x,U) AC(y,V), x :/= y, U ~ V. (3.7) 

(::::,,,.) obvious 
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vPropert:t; 	 ~ /\ ~ v" 

+ + +TO. 

+ + +Tt 

+ + + + +Tl 

+ + +T2 

+ +T3 

+T)t 	 + 

T4 

T5 


regular + + 


completely regular + + 


normal 


completely normal 


compact + + + 


paracompact 


metacompact 


locally compact 


LindelHf + + + 


connected + + + 


locally connected + + 


totally disconnected + + + 


extremally disconnected 


zero-dimensionaly + + 


1st axiom of countability + 


2nd axiom of countability + 


separable + + + 


principal + + + 


door + + + 


+ 	indicates that the property is preserved 
indicates that the property is not preserved 
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