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Chapter O

Definitions and Notations

In this thesis a topology t will be said to possess a property
P rather thaen saying a topological space (E,t) possesses the property
P since E, though arbitrary, will be kept fixed during any discussion.
Definitions:~ A topology is said to be -
regular:- iff for any:aéA.= A there exist open sets M,N such that
xeM, AN and H 1N = ¢
conpletely regular:- iff for any neighbourhood M of any point x € B
there exists a continuous function f: E—%[b,i1§uch that £(x) =0
and £(y) = 1 for all y ¢ M.
normal:- iff for any two closed sets A,B with AN B = @ there exist
open sets M,N such that A= M, BN and Mn N = ¢.
completely normal:=- iff for any two sets A,Bwith An B =¢ =An B
there exist open sets M,N such that A= M, B=N and MN N = g,
TO:- 1ff for any two distinct points there exists an open set containing
one and not the other.
Tgi- iff for any x € E there exist open sets A,B such that {x}= A-B.
Tl:- iff for distinct points x and y thgre exist open sets O and O
such that x¢ 0,y¢ O and ye O, x4 0",
TZ:— iff for distinct points x and y there exist disjoint open sets O

and O' such that xe 0 and ye 0'.



Ty

“1
1w iff it is T

T_:= iff it is and regular

3:

T and completely regular

1
Tq:- iff it is lland normal

TS:- iff it is T1 and completely normal

compact:~ 1iff any open cover of E has a finite subcover.

paracompact: iff any open cover of £ has an open locally finite refine-
ment.

metacompact:~ iff any open cover of & has a point finite refinement.

locally conmpact:~ iff each point has at least one compact neighbour-
hood.

Lindel6f:~ iff each open cover of E has a countable subcovers.

connected:~ iff for any proper non-void subset A of E ét least one of
A and E-A is not open.

locally connected:- iff the neighbourhood system of each point has a
base consisting of connected sets.

totally disconnected:- iff only the singlefons are connected.

extremally disconnected:~ iff the closure of any open set is again
open.

zero dimensional:- iff the neighbourhood system of each point has a
base of open-closed sets.

principal:~ iff the intersection of an arbitrary family of open sets is
again open.

door space:- iff every subset of E is open or closed.



A topology satisfies the -

first axiom of countability:; iff the neighbourhood system of every
point has a countable base.

second axiom of countability:- iff the topology has a countable base.

A topology t will be said to be maximal with respect to a property P
iff t is not the discrete topology and any topology strictly finer than
vt does not possess the property P (minimal is defined dually).

All other terms are standard and for a definition of these the reader

is referred to one of [ 9, [13], [18}, [2s], [32], [39].



Notations

t with or without subscripts or superscripts will denote & topology on
a set K.

0 will denote the zero of the lattice of all topologies on E, i.e.ﬁﬁ, E},
the trivial topology.

1 will denote the unit element of the lattice, i.e. P(E), the discrete
topology. .

U(y) will denote the principal ultrafilter generated by {y}, a one element
subset of E.

U(A) will denote the principal filter generated by a subset A of E.

C* will denote the cofinite filter, i.e. the sel of all subsets of E
which have finite complements.

C!' will denote the filter of all sets A such that E-A is countable.

C(x,F) will denote the tOpology whose open sets are precisely the sets
of the filter F and the sets which do not contain Xe

C(A) will denote the topology {#, A, B} vhere A is a ron-empty proper
subset of E. |

C(F) will denote the topolégy where the open sets are precisely the
sets belonging to the filter F together with the empty set.

B(p) will denote the filterbase of all open sets containing p.

N(p) will denote the filter of all neighbourhoods of p.

Bt(p) will denote the filterbase of all t-open sets containing p.

,Nt(p) will denote the filter of all t-neighbourhoods of p.



. Chapter 1

Structure of 7

The set of all topologies on a set is a complete lattice,
denoted by iT, where the order relation is that of set-theoretic
inclusicn. The purpose of this thesis is to study the structure of
the lattice of 2ll topologies on a given set.

The meet of two topclogies is just the set-theoretic inter-
section, i.e. t'At" = {0: Oc¢ t' and Oet"}. The join of two topo-
logies is the least topology which contains the set-theoretic union
of the two topologies, i.e. the open sets of the join are arbitrary
unions of finite intersections of sets from either topology. In
particular if B' is a base for t' and B" is a base for t'" then a base
for the join is the set of all Bi'ﬂ Bj" where Bi' belongs to B' and
Bj” belongs to B'.

An infratopology is a topology t such that the only topology

strictly coarser than t is the trivial topology. Thus the inffatOpologies
are the atoms of J . Clearly every infrétopology is of the form C(A) =
{ g, A,E} where A is a non-void proper subset of E. It is'equally
evident that every topology is the supfemum of infratoéologies coarser
than it.

For a point p€E and an ultrafilter different from U(p) define

c(p,U) = {x: p% X or Xe U} . This topology is called an ultratopology.




Theorem 1.1 := The C(p,U) are the co—atomé of T and every topology
is the meet of ultratopologies which are finer than it. (Frohlichs
[17])
Proof:~ (i) Assume C(p,U)ct. Then there exists a set X€t such that
X(¥C(p,U).' This implies peX §U. Bﬁt X €U implies (E-X)€ U and
hence (E~-X)u {pl€U=t. Therefore the singleton {p} = ((E-X)u{p} InX
is in t. Hence all singletons are in t and therefore t is the discrete
topology.

(ii) Let t be a co-atom. Then there exists a p€E such that {p}¢ t
which implies that U(p) is not the neighbourhood filter of p. Now
E-{p} meets every open neighbourhood of p and {_(E-{p}v)ﬂ B: Be B(ﬁ)}
is closed under finite intersection and hence is a fil£er basis. - Let
F be the filter generated by it. Since each filter is contained in an
ultrafilter there exists an ultrafilter U containing F. Now if {p}€ U
then {p}N (E-{p} ) = @ is also in U which is a contradiction. Therefore
U+U(p). Hence t ={X: péX}u N(p)= C(p,U) € P(E). Thus t = C(p,U)
since t was assumed to be a co-atom. Therefore the C(p,U) are the co-
atoms of J .

(iii) Suppose tea(C(p,U): C(p,U)=t) = t'. Then there exists
a set X€t' such that X% t. This implies that there exists x€ X such
that for all Bet with XeB we have BN (®-X) ¥g. This follows since
E-X is not closed in t. Let F be the filter generated by these BN (E-X).
Again, since I' is proper, there exists an ultrafilter U=F. IHence

te{Y:xe Y}uF= C(x,U). From this it follows that t' = C(x,U). But



X € C(x,U) since the complement of X is in ﬁ and X is an element of t!
which is a contradiction. Hence t equals t'.
Theorem 1.2 := If T is a finite set of ultratopologies then C(x,U)
is finer than AT iff there exists a y¢E and an ultrafilter V such that
C(y,U) and G(x, V) are in T. (Fréhlich, [17 ) |
Proof:- Let T = {C(x;,U;): i = 1,2,...n} . Then AT = rn\ (P(Cx3)u Uy).
By distributivity one obtains a union of 2" terms of th:s;,lhowever, the
only terms of interest are {E& U3 and {S&P(Qxi) = P(GXﬁl, ces Xﬁ}). If
ATEMxﬂ)tMnPN%ﬁJ...@ﬁhéiUfzdxm)=P@xhﬂL Because
{x}é:C(x,U) it follows that x is one of the x;. For this index i we have
C(x,U;) €T, Since P(Cx)n U(x) = & we have U(x)n{za U;=U. Since
U(x) # U it follows that U is equal to one of the Ui. For the corresponding
index i we have C(xi,U)efP. The converse is obvious.

A topology t is a principal topology iff the intersection of
each subset of t is a member of t.
Lemma 1.3 :~ The meet of a family of principal topologies is again
principal.
Proof:- Let (ti: ieI) be a family of principal topologies. Take a
family of sets (Aj: jeJ) in the meet of all t;« This inplies that
(Aj: j€J) belongs to each ti and, since each ti is principal, g:}Aj cti,

for all ieI. Hence /M Aj‘f/\ ti.
jed iel

Theorem 1.4 :~ (i) The infratopologies are principal.

(ii) An ultratopology C(p,U) is principal iff U is principal.



Proof:- (i) obvious

(ii) Assume U is principal, i.e. U = U(q). Let (Ai: i€I) be an

iel
implies that p is in the intersection while q is not. From this it

arbitrary subfamily of C(p,U(q)) and suppose /M Ay & C(p,U(g)). This

follows that there exists a jeI with pPeAy, qé.Aj. But this implies
Aj %C(p,U(q)) which is a contradiction. Therefore the intersection
belongs to C(p,U(q)) and hence C(p,U(q)) is principal.
Conversely, assume C(p,U) is principal. Let B, = N (B: BeB(p)).
Bp is open since C(p,U) is principal. Since peBp it follows that
Bp€U. But B~ {p}eU since U + U(p). Thus By (B~ {p}) = By~ {p} is an
element of U. Now for amy X in U, BPSEX\/{b} and therefore Bp- {p}s;X— {p}gx.
This implies U = U(Bp—{b} ) where Bp- {p} is a singleton. |
Theorem 1.5 i~ For a topology t the following are eéuivalent:—
(1) t is principal
(2) the t-neighbourhood system of each point has a base of one set
(3) t is the meet of principal ultratopologies containing it. (Steiner [36])

Proof:~ (1)==(2) For each peE let B, = N (B: BeB(p)). Then B, is

p

open since t is principal and it is the smallest open set containing p.

P

Thus {Bp} is a base of N(p).
(2)=>(3) Let p¢E and define t' = A (C(p,U(q)) : pek and q€Bp). Let
A be any subset of E. Now Act iff Bp=A for all peA

iff A eC(p,U(q)) for all p<A, for all

1ff Aet!



(3)=(1) follows from lemma 1.3.

Theorem 1.6 := The set 7 of all principal topologies of E is a meet-
complete sublattice of J . (Steiner [36:])

Proof:~ The meet of principal topologies is principal as proven in
lemma 1.3. Consider t = t'v t" where t' and t'" are principal. By
theorem 1.5, for each x€¢E there exists By' such that {BX'} is a
base for N'(x) and B " such that {Bx"} is a base for N"(x). Thus

{B

principal.

L ={B,'"B "} is a base for N(x). Thus by theorem 1.5 t is

The lattice of all principal topologles is not a complete sub-
lattice of ¥ . This is easily seen by the following example. Take a
non-principal ultrafilter U, Then, by theorem 1.5, C(p,yU) is not
principal. Now C(p,U) = v (C(A;): i<¢I) where each C(A;) is an infra-
topology coarser than C(p,U) and each infratopology is principal.
Thﬁs the join of principal topologies need not be princinal.
Theorem 1.7 := The infratopologies are not Tq-topologies if E contains at
least two elements.
Proof:- Let t equall{ﬁ, A, E} . There exists an x in E such that
E- {x} is not in t which implies {x} is not closed and hence t is not
a T -topology.

1

Theorem 1.8 := An ultratovology is a T.,-topology iff it is nonprincipal.

1

Proof:- Assume U is a nonprincipal ultrafilter on %. Then, for all x
in E, complement of x is in U. Hence each singleton is closed and

therefore the ultratopology is a T,-topology. Take any principal

1
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ultratopology C(x,U(y)). Then the complement of y is not open in
C(x,U(y)) and hence singleton y is not closed. Therefore C(x,U(y))
is not a Tl—topology.

1'

Theorem 1.9 := C(C*), the cofinite topology is T
Prdof:- The complement of the complement of x is singleton x and hence

»

finite. This implies complement of x is open and hence singleton x

is closed. Therefore C(C*) is a T,-topology.
Theorem 1.10 :~ The following are equivalent for a topology t:-
(1) t is a T, -topology

(2) t is the meet of nonprincipal ultratopologies
(%) t is finer than the cofinite topology
Proof:- (1) implies (2). By theorem 1.1l every topology is the meet of

ultratopologies containing it and since any topology finer than a Tl-

topology is again a T, -topology, t is a meet of nonprincipal ultra-

1
topologies.

(2) implies (3). C(p,U) nonprincipal implies U nonprincipal by 1.8
hence U contains the cofinite filter and thus C(p,U) contains the
cofinite topology. Therefore, the cofinite topology is contained

in the meet of all nonprincipal ultratopologies. Hence the cofinite

topology is contained in t.

(3) implies (1). Since the cofinite topology is a T, -topology and t

1

l—tOpology. Hence the Tl-topologies

form a principal filter generated by the cofinite topology which is a

is finer than it, t is also a T

complete sublattice of 74 . The finest Tl—topology (the unit of the sub-
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lattice) is the discrete topology and the coarsest (the zero of the
sublattice) is the cofinite topology.

Note that on a finite set the only T.-topology is the discrete topology.

1

Theorem 1.1l :~ DLvery topology is a meet of a principal topology and

a Tl—topology.

Proof:~ By 1.1 any topology t is the meet of ultratopologies ti, ie:I;
where each tj is finer than t.

Let t' equal the meet over all j €I such that tj is principal and let
t" equal the meet over all k€I such that ty is a Tl-topology. Then

t = A(ty: ieI) = t*'At" where t' is principal by 1.3 and t'" is a

T, -topology by 1.10.

1

A topology on E which is neither a T.-topology nor a principal

1

topology is a mixed topology. A mixed topology can be represented as the

meet of a Tl—topology and a principal topology, but this representation
need not be unique.

The join of two mixed topologies can be a T,~topology or a

1l
principal topology as illustrated by the following example.

t, = C(x,U) A C(p,U(q))
t, = C(x,U) n C(q,0(p))
t3 = C(y,V) A C(p,U(q)) where x is different from y and U
and V are distinct nonprincipal ultrafilters.
Then tl\/tz = C(x,U) is a Tl—topology whereas
tlvt3 = C(p,U(q)) is a principal topology.

The meet of two mixed topologies cannot be a T.-topology but

1
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it can be a principal topology. Let t = tlA t2 where tl is a Tl-
topology and t2 is a principal topology. Since t2 is a principal
topology it is the meet of principal ultratopologies and clearly fhe
complement of every point is not in any principal ultratopology and hence
certainly not in the meet. Hence the meet of two mixed topologies is

not a Tl-topology. For an example that the meet of two mixed

topologies may in fact be principal consider the following. Let U and V

be distinct nonprincipal ultrafiltfers. Hence there exists a set A in

U such that the complement of A is in V. Let t; =A(C(x,U(q)) : qeA-{x})
and t, = A(C(y,U(q)) : qeB-A-{x})
Then tlle(x,U), tZ:;C(y, V). Also C(x,U)/\t2 and C(y,V)/\tl are mixed

topologies but their meet is tl/\t2 which is principal.



Chapter 2

Lattice Properties of J

Theoren 2.1 :-

The lattice of topologies on a set E is distributive iff B has
fewer than three elements. If ¥ has three or more elements, the lattice
is not even modular. (Steiner E36] ).

Proof:—~ Obviously if I has one element or two elements 7 is a distri-

Clp,U(g)) A C(p,U(r))

butive lattice. Let E={p,q,r} and let t

1
t, = C(p,U(r))
vt3 = C(r,U(q)) be topologies

on E.

t. < t

1 2
(t) v t.j)/\t2=1/\t1=tl
also tl.EiC(p,U(q)) and t}’\tZ:s Clp,U{qg))

Thus v (t3/\t2) < C(p,U(q)). But t, £ C(p,U(q)) and hence
(t,v tj)/\ t, + t v (t3/\ ts).
Therefore J is not modular.
Definition:~ A lattice L is self-dual iff there exists a one-to-one
mapping £ of L onto intself such that f(aab) = f(a)v £f(b) and flavb) =
£(a) 4 £(b). ‘
Theorem 2.2 :=

The lattice of topologies on B is self-dual iff ‘EISZ}.

(Steiner [56] ).
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Proof:- If 7 is self-dual there exists a one-to-one mapping f of T onto
itself such that if a <b then f(a) = flaad) = f(a) v £f(b). Hence a=<b
implies f(b)< f(a). Thus £(0) =1, f(1) = 0, infratopologies map onto
ultratopologies and ultratopologies map onto infratopologies: Therefore
the number of infratopologies and untratopologles must be equal.

In the lattice of topologies on a set E, if |B| = n<e there
are n(n-1) ultratopologies (all principal) and 2"-2 infratopologies.

2|
If |E| » . there are Z‘E‘ infratopologies and 22’ !

ultratopologies

on E since that is the number of ultrafilters on E (see Banaschewski, [4)).
Thus the number of ultfatopologiesvequals the number of infratopologies
only when |E |£3.

If |E|=1 or |E|=2 then T is obviously self-dual. If |E[=3
there are 29 topologies on E, but it can be seen by rotating the diagram
on the following page by 180° that this lattice is self-dual.

Thus the lattice 7 of all topologies on a set E is a comple?e,
atomistic, co-atomistic, non-modular (unless |E|<3), non-self-dual
(unless IEi:SB), complemented lattice. Tt contains the sublattice of
principal topologies and the complete sublattice (principal filter) of
Ti-topologies. (Note - For the proof of the complementation of 7 the

reader is referred to Steiner [36:3.)
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Chagtegmé

Topological Properties of Ultratopologies

Theorem 3.1 := Every ultratopology is T%, TO, completely normal, normal,
extremally disconnected, paracompact, metacompact, a door space.

Proof:- Consider any ultratopology C(x,U).

T%_ - For any p # x we have {p}=&>}—¢ and for x we have {x} = B~ Cx.

TO - T% implies TO
completely normal - Let A,B be subsets of B such that AnB =g = AnB.,
If x4A then & is open and B-A is also open and contains B. If xeA
then x ¢ B and hence B is open. Now AnE = ¢ implies A & B-B =E-B.

Thus the disjoint open sets separating A and B are E-B and B. Therefore
C(x,U) is completely normal.

nornal - completely normal implies normal.

extremally disconnected - Let O be an open set. If x €0 then E-O
€C(x,U) and hence O is closed. Therefore the closure of O is O which

is open. If x40 then either E-O €U or O €U. If E~O€U then O is
closed and the closure of O is O which is open. If O €U then O = Ou{x}
which again belongs to U and hence closure of O is opeén.

paracompact - Any open cover of E consists of at least one set V of U
such that x€V. For the refinement select one of these V together

with all singletons of points not in V.

metacoupact - paracompact implies metacompact.

16
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door space - For any subset A, xéfA or x €A and hence A is open or

closed.

Th;orem 3.2 1= No ultratopology on a set B is connected if ]EIEzB.
(Steiner E§6]-)

Proof: - "Let C(x,U) be an ultiatopology on B, If lEI::B then there
exists a Y€E such that x £ y and U £ U(y). Hence {y} and E- {y} are
open. Thus E is the disjoint union of two open sets and therefore

Cc(x,U) is not connected.

Theorem 3.3 :~ For an ultratopology C(x,U) the following are equivalent -
(1) ¢(x,U) is nonprincipal.

(2) C(x,U) satisfies the separation axioms T. to T

1 5°

(3) C(x,U) is totally disconnected.

() C(x,U) is zero dimensional.

(5) C(x,U) is (completely) regular.

Proof:~ (1)&«=(2) This is a consequence of the following - an ultra-
topology is nonprincipal iff it is Tl (by 1.8), any ultratopology is

7 ——— P ———
completely normal (by 3.1) and T5:=§Tq==% TB%_9>T3<_> TZ‘_;>T1'

(1)&>(3) Nonprincipal implies T2(by the above) and T. together with

2

extremally disconnected implies totally disconnected. If C(x,U) is
totally disconnected then the singletons are the maximal connected

sets and hence closed which implies it is a T, ~topology and hence

1

nonprinecipal.

(1) (4) Nonprincipal implies ‘I‘3 and T3 together with extremally

disconnected implies zero dimensional. If C(x,U) is principal then U
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is principal (by 1.4), say U = U(y). Then E-{y} is not open but {y}
is open and hence there is no base of open-closed sets for the
neighbourhood system of y.

(1)ex(5) By (2), if C(x,U) is nonprincipal then it is (completely)
regular.A Cbnversely, consider any principal ultratopology C(x,U(y)).
Then {XE is closed and any open set containing it must also contain y.
Hence there do not exist disjoint open sets separating {x}jand y.
Therefore C(x,U(y)) is not regular.

Lemma 3.4 := If an ultratopology C(p,U) does not satisfy one of the
countability axioms then for any topology t strictly coarser than
C(p,U) which satisfies one of the countability axioms there exists a
topology t', strictly finer than t and strictly coarser than C(p,U),
which satisfies the axiomvalso.

Proof:- If t satisfies one of the countability axioms and t<C(p,U) then
there exists a set A €C(p,U) such that A«%t. Then the infratopology
C(A) satisfies the axiom and clearly t vC(A) does also.

Corollary:~ If no ultratopology satisfies a countability axiom then
there exist no maximal topologies satisfying that countability axiom.
Lemma 5.5 :~ If U is a nonprincipal ultrafilter on E then U does not
have a countable base.

Proof:-~ U nonprincipal implies that E is infinite. Assume U has a
countable base, namely {Bl' cecensay Bn’ ......& s n€N, Without loss
of generality one can assume B, > B :>.........:>Bn::B T2 eeeesee o

1 2 n+l

Further one can assume that there are at least two elements in Bn which
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are not in Bn+ By the axiom of choice one can select a point xn_GE%—

1.

B

e+l Define M = {xn: n € N} + M is non-empty as U was nonprincipal.

Further M intersect Bn is not empty for all n €N since x € Bnr\M. Then
MeU since if a set meets every sel in an ultrafilter it is in the
ultrafilter. Hence there exists a Bn such that BngzM. Now there

exists yné;Bn-Bn+l such that Yy F X e Hence ynéiBn-M and thus BnﬂzM
which is a contradiction. Therefore U does not have a countable base.
Corollary:- The nonprincipal ultratopologies do not satisfy the count-
ability axioms.

Proof:~ Let C(x,U) beba nonprincipal ultratopology. Then, for all y fx,
{y} is a base for N(y), but N(x) has a countable base iff U has a
countable base which it does not have as seen by the above lemma.

Theorem %.6 :~ For an ultratopology C(x,U) the following are equivalent:-
(1) ¢(x,U) is principal.

(2) ¢(x%,U) is locally compact.

(3) C(x,U) is locally connected.

(4) C(x,U) satisfies the first axiom of countability.

Proof:-~ (1)<=(2) Assuming C(x,U) is principal then by 1.5 there exists
a smallest open set Bp containing p for all pe¢E. If C(x,U) is non=
principal then U is'nonprincipal. It is sufficient to consider any open
nelghbourhood M of x. Thus x€M €U and M is infinite. Now there exists
a set N such that M = Nu(¥-N) with both N and M-N infinite. Without any
loss of generality one can assume that N€U and also that x € N. Then

PJUI)éﬂzé{p} is an open cover of M which has no finite subcover.
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Therefore there exists no compact neighbourhood of x and hence

C(x,U) is not locally compact.

(1;¢$(5) If C{(x,U) is principal then by 1.5 there exists a smallest

open set Bp containing p for all peE. If C(x,U) is nonprincipal

then U is ﬁonprincipal and for any M€ B(x) we have M # {ﬁ} and hence

there existé ay€eM with y + x. Now E-{y} is open since {y} % U,

Thus ¥nCy is open. Therefore M = (MnCy)u {y} and thus M is not

connected. Therefore, if U is nonprincipal, C(x,U) is not locally
connected.

(Ve=(4) If C(x,U) ié principal then N(p) has a countable basis for

all p € B, nanmely {Bé} by 1.5. If C(x,U) is nonprincipal then it does

not satisfy the first countability axiom by the corollary to 3.5.

Theorem %,7 :~ A space is a door space iff the ultratopologies in its
representation have a common point or a common ultrafilter. (Steiner [36:])
Proofi- Let t; =A(C(x,U;): i€I) and let t

1 2

Let A be any subset of E. Then either x €A and hence A is closed with

= /\(C(yj,V): jed).

1 or xéA and hence A €t1. Also A€V or E~A €V and hence

A is either open or closed with respect to tZ' Therefore both tl and

respect to t

t2 yield door spaces.

Consider the topology t=C(x,U) AC(y,V) where x % y and U £ V.
Now U % V implies that there exists a subset A of E such that A€ U and
E-A €V. Then B = (Au {y})n Cx does not belong to C(y,V) for if B eC(y,V)
then Bn(E-A) €C(y,V), but Bn(E-A) = {y}f%C(y,V). Also E-B %C(X,U) for
if (BE-B) €C(x,U) then AnB = {x} € U which is a contradiction. Hence the
set B as defined above is neither open nor closed in t. Therefore (E,t)

is not a door space.



Chapter &

Minimal and Maximal Topologies

In this chapter various properties of topological spaces are
considered and the minimal and maximal topologies having these properties
are investigated. A table is provided at the end of this chapter to

summarize the results.

IO’ minimal:-

Definition:~ Given a topology t on E define p = q iff N(p)=N(q), for
py q€ kB, This defines a partial order on E if t is a To—topology.
(This definition is the same as the one in Birkhoff [io], pg. 13).
Theorem h.1:~ A topology t is minimal _TO iff € is a total order of
E and the non-void sets of { are of the form Ja,~—€ﬂfor a ek,

Proof:~ Assume = is not a total order, that is, there exists points

p and q in L, such that p%;q and q:#p. That, by definition, is
equivalent to N(p)ézN(q) and N(q)q;N(p). Consider t' = t/\C(p,ﬁ(q)).
This is a topology strictly coarser than t since N{q) converges to

p in t' but not in t. Claim t' is also TO. Without loss of generality
one may take x distinct from y with x:%y.

Case 1 :- x%&p (Nt(x)%th(p)). Hence there exists N in B(x) with

P % N and also there exists M ¢ B(x) with yi[M, Thus Mn N € B(x) and
also MANe&€C(p,N(q)) since pér MnN. Therefore ¥nNet' and xeMnN

but y dM AN,

21
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Case 2 i1~ X<p, q:%y. Then there exists a set M€ B(x) and a set Ne B(q)
such that y qE-M and y%N and hence y%MuN €B(q). Therefore MuNet?
amixeMUNkmty%MUN.

Case % 1= x=p, q=Y. Then N(y)gFN(x) because if it were we would have
N(q)EiN(y)EaN(x)EEN(p) which contradicts the assumption. Similarily
N(y)éiN(p)oA Hence there exists Ne B(y) with p%LN and there exists
MeB(y) with x4¥. Thus MnN € B(y), MANet' since p¢MnN and
yeMnN while x¢ MnN.,

Therefore if t is minimal TO then = is a total order of E. Now any

set of the fornm ]a,——é]is in t since for any x eja,——%]we have a<x

and hence there exists Né B(x) with N= |a,—]|. Since t is minimal -

TO and the topology whose sets are of the form ]a,——a.is TO we have

that the non-void sets of t are of- the form ]a,——{]for a€kl.

T maximal :=- any ultratopology (3.1)

Ty, minimal :=-

Theorem 4.2 :~ A topology t is minimal T% iff = is a total order of E
and the non-void sets of t are of the form [a,—~{]and ]a,——fﬂ for ackE,
Proof:- Assume = is not a total order. This implies that there exist

p and q, elements of E, such that p:%q and q:%p,‘i.e. N(p)EFN(q)

énd N(q)g%.N(p). Consider t'= t AC(p,N(q)). The topology t' is strictly
coarser than t since N(q) converges to p in t' but not in t. Claim

t!' is also a T%-topology. Let x € E and hence there exist sets A,Bet
such that {x} = A-B.

Case 1 :- xp. Then there exists MeB(x) with p¢M. Now AnHet',
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BnMet' and {x} = (AnH) ~ (Bnal).

Case 2 := xX=p. This implies N(q)%aN(x) and hence there exists a
set N € B(q) such that X%N. Thus (AuN)et', (BuN)et' and {x} =
(AuN) - (BuN). Thus if t is minimal T% we have =< is a total order.
It is obvious that sets of the form stated form a T% topology. For
any x:g]a,-—{]we have a<x and hence there exists a set N €B(x) with
Ne a,__{]and S0 ]a,—*—{]et. For any x¢ [a,-{]we have a=zx and hence
there exists a set N & B(x) with Nga[é,.—{]and s0 [§,~—;]is open.
Therefore since t is minimal T% we have proven that t is minimal T%
iff =is a total ordervand the sets of t are of the form Ja,—~7]

and [a,ma] for ack.

Ty, maximal :- any ultratopology (3.1)

I,o minimal :~ Cofinite topology (1.10)

211 maximal :~ Any nonprincipal ultratopology (1.8 and 1.10)

22, minimal ¢~
Theorem 4.3 := A Tz-topology t is minimal TZ iff the following condition
holds:~ if an open filter has a unique adherence point then it converges

to this point. (See also Banaschewski LQ:]and Bourbaki [12J )e
Proof:~ Let p be the unique adherence point of an open filter F which

does not converge to p in a T._-topology t. Define t' = t AC(p,F).

2
Now t' is strictly coarser than t since F converges to p in t' while
it does not in t.

Claim :- t' is a Tz—topology. Take x:%y. Without any loss of

generality one can assume p%:y. Then y is not an adherence point of Fy
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and hence there exists an M€ B(y) and an open set Ne&F such that

MnAN = . HNow since t is T2 there exist t-open sets A,B with x;pe€e 4,

ye€B and AnB = . Hence xe Aull, ye BnM, AUNet'y BaMet', and

(AUNY N (BAM) = #. Therefore t' is a T_~topology strictly coarser

2

than t and hence t is not minimal T2'

Conversely, let t possess the given property and consider any
T,-topology t' coarser than t. Hence we have Nt'(p)sth(p). How
since t' 1s a Tz—topology anyq4:p can be separated from p by disjoint
t'-open (hence t-open) sets. Hence p is the only adherence point of
Nt,(p), Nt'(p) is an oben filter relative to t and hence by the given
property Nt,(p) converges to p. Thus we have Nt(p)Eth|(p). There-
fore t = t' and t is a minimal Tz—topology. |

This condition implies that coupact T_~topologles are minimal

2
o* There are minimal Tz—topologies which are not compact. For an

example of such the reader is referred to Berri [6 ]‘

T

22, maximal :~ Any nonprincipal ultratopology (3.3).

Lemma 4.4 1~ Let t be a T)-topology. Let F be a filter which has no
adherence point (or, has a unique adherence point to which it does
not converge). Let p be any point in B (or, the unique adherence
point). Define t' = t AC(p,F). Then t' is a strictly coarser Tl—
topology.

Proof:- {p} is closed with respect to t'. If x:%p then x is not an

adherence point of F and hence there exists a set A€F such that X:#A.

This implies that A=Cx and hence Cx €F. Therefore {x} is closed with



25

respect to t'. Now t' is a strictly coarser topology since F converges
to p in t* but it does not in t. Therefore t' is a strictly coarser

Tl-topology.

T,, minimal :-~
AL

Theorem 4.5 := A TB-topology t is minimal T3

holds:~ if a regular open filter has a unique adherence point then it

iff the following condition

converges to this point. (See élso Banaschewski [ﬁ] and Berri [9] ).
(Note - a regular open filter is a filter which has a base of open sets
which is equivalent to a base of closed sets.)

Proof:- Let p be the ﬁnique adhérenée point of a regular open filter

F which does not converge to p in a T,-topology,t. Define t' =t AC(p,F).

3

Now t' is a strictly coarser T, -topology (4.4). Now the claim is that

‘ 1
t!' is also T3.

Case 1 :- Consider the point p and a set A such that pecAet'. Thus
we have Ac¢t and AeF. A<t inplies by the regularity of t that there
exists a t-closed neighbourhoéd of p, B, such that B=A. By the regu-
larity of ¥ there exists a t-closed set MeF such that M=A. Thus
MUB is t-closed, belongs to F, contains Py 1is containéd in A and
therefore p ¢ BUMS=A where BUuM is a t'-closed neighbourhood of p.
Case 2 :~ Consider x+£p and a t'-open set A with xeA. Consider
AnCp. By the regularity of t there exists a t-closed neighbourhood
N of x such that N=A. Now since F is regular and x is not an

adherence point there exist t-closed set B and M such that Be N(x),

MeF and BnM = g. BnN is a t-closed neighbourhood of x and (BnN) nM=g.
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Hence C(BnUH)=M and thus C(BnN) € F. Therefore BaN is a t'-closed
neighbourhood of x such that Bn N=A.

Therefore t' is a T ~topology and hence t is not minimal T

3 3°

Conversely, let t possess the given property and consider any

Tj—topology t' coarser than t. Hence Nt,(p)g;Nt(p). Now since t'

is T3 and thus t2 any q;%p can be separated from p by disjoint tlopen

(hence t-open) sets. Hence p is the only adherence point of Nt,(p),
Nt,(p) is a regular open filter relative to t and hence by the given

property Nt,(p) converges to p. Thus we have Nt(p)EEN (p). There-

tl

fore t = t' and t is a minimal T_-topology.

3

This condition implies that compact T.~topologies are minimal

2

B—topology which is not compact the

T,. ¥Yor an example of a minimal T

3

reader is referred to Berri [9].

T,, maximal:- Any nonprincipal ultratopology (3.3).

5_..__
T!! minimal:-

Theoram 4.6:~ The minimal T),-topologies are exactly the compact

T -topologies. (See also Berri [5]).

Proof:~ If t is compact and T, it is T, and minimal T, (4.3).

2

Therefore the compact T.,-topologies are minimal TQ'

2
Conversely, let t be a Tq—topology which is not compact and
hence there exists a closed filter F with no adherence point. Lét P
be any point of E and let t' = t AC(p,F). Then t' is a strictly
coarser Tl-tOpology (k.b). Also t' is normal. Let X, Y be disjoint
t'-closed sets. Without loss of generality let p¢{X and hence
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BE-X €F. Thus there exists a t-closed set B¢F with B=E-X. Then X
and BtJYLJ{p}are disjoint t-closed sets and since t is normal there
exist disjoint t-open sets U and V such that X<U and BuY u {pj=V.
Since p‘%U‘we have U €t' and since B=V we have Vet', Therefore U

and V are disjoint t'-open sets such that XU and Y=V. Therefore

t' is a strictly coarser Tq-topology and hence t is not minimal TQ'
24, maximal :- Any nonprincipal ultratopology (3.3).

T.y minimal &~

e

Theorem 4.7 1= A T iff it is compact. (See

5—topology is minimal T5
also [31] ).
Proof :- If t is a T.-topology which is not compact then we have t' =

5
t nC(p,F) as in theorem 4.6. Take A and B subsets of E such that

AnCl B = # =Cl ,AnB, This implies AnC1,B = g = C1 _AnB. Hence

t t! t t
there exist t-open sets Ul and U2 such that A=, B=U, and Ulm U2 = @.
If'xéiAkJB then Ulrwmx and Uznmx are t'-open sets with void intersection

and AEEUlf)@x and BEEUZI\GX. If x¢ AuB then without any loss of
. !
generality we may assume x ¢ A and hence Xt;CIt,B. Since t' is a

Tq-topology it is regular and hence there exist t'-open sets Vl and

— - m o= 1
V2 such that x€Vl, Clt,B_\J2 and Vlﬂ V2 @. Thus A__Ulu Vle tt,

BV, nU,et' and (Uluvl)rw(V f1U2) = @#. Thus non-compact T_. implies

2 2

5

non-minimal and therefore minimal T_. implies compact.

5

Conversely, if t is compéct T5 then it is compact T4 and hence

minimal T, (4.6) and therefore minimal Ts.
25, maximal :- Any nonprincipal ultratopology (3.3).
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T minimal -
S S

Theorem 4.8 1= The minimal T,

37

T,-topologies. (See also Banaschewski [ﬁj and Berri [51 ).

~topologies are exactly the compact

Proof:- The compact T,-topologies are minimal TB% (4.5). Assume
(E,t) is a Tj%—space. Now (E,t) may be embedded in a Tq—space

(E*,t*) such that E is dense in E*. If E = E* and E is not compact
then by theorem 4.6 there exists a strictly coarser TA-topology and

hence T_,-topology. Thus it suffices to consider E <B* and hence there
2 .

3
exists q €E* - E. Let p¢E. Define a topology s* = t*/\C(p,Nt*(q)).

Y.

Let B' = E* - {g} . Now E=E' implies (E,S*E)E(E',S*E,

(1) s*.< t*E = t. Let N be a t*-open set containing p and N' a

E

t*-open set containing q with N'n N = g, Then NnE et., Suppose there

exists a t*-open set M such that qe€M and MAnE = NnE. Then En(MnN') =

# which is a contradiction since q € B* and E is dense in E*.

(2) s*p is T). Let x and y be distinct joints in E'. If p%:x then
there exists a t*-open set N with x€HN and y %N and also there exists
a t*-open set M with xeM and p%M. Thus x€MnN but y% MAN and
M(\N'ES*:,. If p = x then there exists a t*-open set N with pelN
and y%;N and also there exists é t*-open set M with qeM and y’%bh
Thus MVl €N, ,(q), peMuN and y $ MU,

(3) s*.,, is normal. Let A, B be s*

E' ~-closed sets such that AnB

it

E' ¢'

B Thus

(®'-a) v {g}ed, (a), but (E'-A)u {q} = E*-A. Now A and Bu {p,q} are

Wiithout loss of generality ;>4A and hence pe¢E' - A€ s*

t*-closed hence there exist disjoint t*-open sets Ol and O2 such that
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AEaOl and BL/{p,d}EEO2. Clearly O1 and O2 are open in s*. Hence

OlruE' and OZf\E' are s*E,—open sets and they have void intersection.

Thus S*E' is normal.

Therefore, s*., is TB% since every subspace of a Tq-space is T

B b
(Kelly [ZEL pg. 118). Hence it has been shown that a strictly coarser

TB%-topology can be constructed if the topology is not compact.
25%3 maximal :- Any nonprincipal ultratopology (3.3).

Repular and Completely Regular, minimal:-

Lemma 4.9 := In a regular topology, if the closure of two distinct
points have non-void interesection then the closures are equal.

Proof:- Let the closure of p be denoted by p and let p%:q. If

p ¢Qq then by regularity there exists N& B(p) with Nng ¢ @. Therefore

I

NE=}¢ implies p €@ and by symmetry q €p. Therefore png+@ implies
p = G

Therefore in a regular topology one can determine a partition of E by
taking as elements of the partition the closures of suitably chosen
single points.

Theorem 4,10 :~ The minimal regular and completely regular topologies are

exactly those of the fornm {ﬁ, A, E-A, E} where A is a non-void proper
subset of E.

Proof:- Obviously C(A) v C(E-A) are minimal regular and winimal
completely regular. Let t4-0 be a (completely) regular topology and
hence from lemma 4.9 there exists a partition P of E.

(1) If P is finite then the closures of points are alsoopen and hence



{#, B B-, Ej=t.

(ii) If P is infinite then one can construct a strictly coarser topology
which is (completely) regular.

Regular :~ Select p and q in E such that 545q and let t" = C(p,U(g)) A
C(q,U(p)). Consider t' = tAat". Then t' is a strictly coarser topology
since the closure in t' of p contains gq. Now any t'-open set is a
t»openf;hich contains both p and q or does not contain both p and q.

Let x €% and O EBt'(x). Hence 0 ¢t and by the regularity of t there
exists O€¢t such that x éO'EaClt'O'an. If p and g both do not belong
to O then O' is t'~open énd CltO' is t"-closed and hence t'-closed. If
p and q are both in O then by the regularity of t there exists tQOpen

sets O and O such that pe 0 =C1, 0 =0 and q¢ 0 =Cl 0 ==0. Now
p q P Q tq

tp

x€0'V0 U0 et and 0'u0 V0 =C1LO'v0 u0 )=Cl, [0'u0 uO)=0.
P q P q t P 49 t p q

Therefore t' is regular. Hence, if P is infinite, we can always find

a strictly coarser regular topology.

Completely Regular :~ Let t be completely regular. Then any t'-closed

set contains both p and q or does not contain both p and q. Let A

be a t'-closed subset of © and hence A is t-closed. Let xe%A.

(i) p,q€A. By the complete regularity of t there exists a function
f, continuous with respect to t such that f(x) = 0 and f(A) = 1. Let
M be any open set in [b,l] s then f-l(M)é't. If l%-ﬂ then p,qé:f-l(M)
and hence f“l(n) €t'. If 1e¢M the p,q éf_l(M) and hence f"l(M)e tt.
Therefore f is continuous in t',f(x) = O and f(A) = 1. |

(ii) p,q,#Au By the complete regularity of t there exist f o f

l’f2 3
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continuous with respect to t such that f3(x) = fa(p) = f5(q) = 0 and
fiSA) =1, (i =1,2,3). Let f be the infimum of the fi. Then
£f{,p,q}) = 0 and £(A) = 1. Let M be any open set in Eo,:L:[. If

O €l then pyq € f-l(I‘JI) and hence f—l(M) et', If O%M then p,qet f-l(M)
and henoé f-l(H)G-t'. Therefore f is continuous in t'. Hence for

any (completely) regular topology where the partition is infinite, we
find a strictly coarser (compietely) regular topology. Therefore the
minimal régular and completely regular topologies are exactlj those of

the form {ﬁ, A, E-A, E}' where A is a non-void proper subset of E.

Regular and Completely Regular, maximal -

Theorem 4.11 :~ A topology is a maximal regular topology iff it is

a nonprincipal ultratopology or it is of the form C(x,U(y)) AC(y,U(x))
for some x,y in E.

Proof:- (i) A topology is a maximal regular T,-topology iff it is

1
nonprincipal ultratopology (3.3).

(ii) A principal ultratopology is not regular (3.3)

(iii) ¢ = C(x,U(y))XC(y,U(#)) is a maximal regular tonology (Steiner
[36]). Every t-opeh set is also t-ciosed since it must contain both
x and y or must not contain both x and y. Hence given any closed set
A and p%ﬁA it is possible to separate them by disjoint open sets,
namely, A and E-A. Therefore t is regular. Conversely the only

non-discrete topologies strictly finer than t are C(x,U(y)) and

C(y,U(x)) (1.2) neither of which is regular (3.3).



(iv) Any regular non-T.-topology is contained in a topology of the

1
form C(x,U(y)) AC(y,U(x)). If t is not a T

l—topology then there
exists p € B such that P consists of at least two elements. Take
distiﬂct x and y in . Then the claim is that t<C(x,U(y)) A C(y,U(x)).
Take M aﬁy.t-open set. If x and y are both in M or both not in M then
M€ C(x,U(y))A~C(y,U(x)). Therefore, without any loss of generality,

we can assume x& M and yé:M‘ Now y € E-M which is closed and hence

y € (B-M) NP which is closed. Also (E-M)nPcP since x ¢ BE-M which

is a contradiction (4.9).

Corollary:- A topology is maximal completely regular iff it is a
nonprincipal ultratopology or it is of the form C{x,U(y)) aC(y,U(x))
for some X,y ¢H.

Proof:~ Nonprincipal ultratopologies are maximal completely regular
(3.3) and principal ultratopologies are not completely regular (3.3).
Topologies of the form C(x,U(y))A C(y,U(x)) are completely regular

since all open sets are also closed and hence these topologies are
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maximal completely regular. Complete regularity implies regularity and

hence one can show, using (iv) above, that any completely regular

non-T,-topology is contained in one of the form C(x,U(y)) aC(y,U(x)).

Normal and Completely Normal, minimal :— infratopologies - obvious.

Normal and Completely Normal, maximal :-~ ultratopologies (3.1).

Compact, minimal :- infratopologies - obvious.

Compact, maximal :-

Theorem 4.12 :~ A space (E,t) is maximal compact (Lindelof) iff the
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compact (Lindel8f) subsets of E are identical with the closed subsets
of . (See also Smythe and V/ilkins, [34]).

Proof:~ Assume (E,t) is maximal compact. Since (E,t) is compact

(Lindel8f) then every closed subset of E is compact (Lindel8f). Assume
that there exists a subset A which is compact (Lindel8f) but is not
closed. Define t' = tvC(E-A). Then t' consists of all those subsets

of E which can be expressed as (0'n (E-A))u 0", where O' and O" are t-open
sets. Since B-A¢t' we have t'>t. Let (Ui: ieI) be a t'-open cover
of E. Then each U; = (0,'n(B-A))v 0" Hence E = U, = (U (0,'n

iel iel

(E-A))LJ}~J 0." and therefore the set of all (0.'v0.") with ieI is
iel i i i

a t-open cover of E. Since (E,t) is compact (Lindelgf) there exists
a finite (countable) subcover, i.e. E = }7¥J(Oi 'ty Oi") where J is
J i J

finite (countable). Hence E-A==\J ((0, 'a(E-A))uLO, "). Now L)oo

jed i iy ie 141
is an open cover of A and, since A was assumed to be compact (Lindel8f),
there exists a finite (countable) subcover, i.e. A= é—’o "with K finite

1k
(countable). Thus B LJ((O 'n(E—A))\JOi") where L = JuK which is
1

T 1lel
finite (countable). Therefore (E,t') is a compact (Lindel8f) space which
contradicts the maximality of (E,t).
Conversely, since E is closed (B,t) is compact (Lindelof). Let t' be
a strictly finer compact (Lindel6f) tovology on E. Then there exists
a subset A which is t'-closed bu£ not t-closed. Hence A is not compact
(Lindelof) in (E,t) which is a contradiction since A is compact

(Lindel8f) with respect to the space (E,t').  This implies the compact

T2-topologies are maximal compact.
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Paracompact and Metacompact, minimal :- dinfratopologies - obvious.

Paracompact and Hetacompact, maximal :- ultratopologies (3.1).

.

Locally Compact, minimal :- infratopologies - obvious.

Locally Compact, maximal :- principal ultratopologies (3.6). The

guestion as to whether there are maximal locally compact T.-topologies

1l
is open.

N o . . .
Lindelof, minimal :- infratopologies - obvious.

Lindelgf, maximal :- topologies where the Lindeldf subsets are exactly

the closed ones (4.12).

Connected, minimal :- dinfratopologies -~ obvious.

Connected, maximal :~ Open question. It is easy to see from theorem

3.8 that C(U), where U is an ultrafilter, and C(x, {Ef}) are maximal
connected.

Locally connected, minimal :- infratopologies - obvious.

Locally connected, maximal :~ Principal ultratopologies since the only

maximal locally connected topologies are ultratopologies and by 3.6
only ultratopologies which are principal are locally connected. The
fact that the only maximal locally connected topologies are ultra-
topologies is easily seen by the following - Assume t%:P(E) is locally
connected. Then there exists a point x¢E such that {?% #t. Then

tv {{5, {x} , E} is locally connectéd.

Totally disconnected, minimal :- open question

Totally disconnected, maximal := nonprincipal ultratopologies (3.3).
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Extremally disconnected, minimal :~ infratopologies - obvious.

Extremally disconnected, maximal :- ultratopologies (3.1).

Zero dimensional, minimal :- {ﬁ,A,E—A,E} where A is a non-void proper

subset of E. This is easily seen by considering any non-trivial zero
dimensional topology, t. Then there exists a subset B such that
FcBck and let p e B. Then since t is zero dimensional there exists

an open-closed set A with p€ A=B. Hence Act, E-Aect, and ¢+ A+E.

Zero dimensional, maximal :-

Theorem 4.1% :~ The maximal zero dimensional topologies are the

nonprincipal ultratopoiogies and topologies of the form C(x,U(y)) A
C(y,U(x)) for x,y¢€E.

Proof:-~ A nonprincipal ultratopology is zero dimensional (3.3).

A mixed topology cannot be maximal zero dimensional since it is propefly
contained in a nonprincipal ultratopology. In the case of principal
topologies, regularity and being zero dimensional are equivalent

since regularity implies that for all p e®H, Bp(l.5) is closed and

hence open-closed. Hence the neighbourhood system of any point has

a base of open-closed ss=ts and therefore'is zero dimensional. Conversely,
if a topology is zero dimensional it has a base of closed sets which is
equivalent to regularity (Kowalsky [?6], pg. 59). Therefore the

maximal zero dimensional topologies are exactly the maximal regular
principal topologies which are the topologies of the form

C(x,U(y)) nC(y,U(x)) for x,y €E.

First Axiom of Countability, minimal :- infratopologies - obvious.
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First Axiom of Countability, maximal :- principal ultratopologies

by virtue of theoren 3.6, corollary to lemma 3.5 and the corollary to
lemma 3.4,

Second Axiom of Countability, minimal :-~ infratopologies -~ obvious.

Second Axiom of Countability, maximal :~ none. This follows as a

consequence of the corollary to lemma 3.4t since no ultratopology
(in general) satisfies the second axiom of countability. (Recall
also the corollary to lemma 3.5).

Separable, minimal :~ any infratopology, C(A), since if A is not

itself countable take a countable subset of A.

Separable, maximal :-

Theorem 4.14 :~ There exist no maximal separable topologies, if B is

uncountable.

Proof :~ Let t be a topology which is separable. This implies that
there exists a subset N which is countable such that N = E. Now NcE
and hence there exists pé:N. Thus BE- {p}EQN and hence E—{p} is not
closed and so {p}%:t. Consider t' = tvC({p}).which is a strictly finer
topology than t. Let N' = NlJ{p}. Consider subset A such that
N'=A%E. If A is a t'-closed set then E-A€t'. But p&E-A and

hence E-A €t which implies A is t-closed which is a contradiction.
Hence N' is dense in t'. Therefore for any separable topology we can
find a strictly finer separablé topology. Also it is ohvious that no
ultratcpology is separable. Therefore there exist no maximal separable

topologies, if E is uncountable.
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Principal, minimal :- infratopologies - obvious.

Principal, maximal :- principal ultratopologies - obvious.

m

Door, minimal := C(x,{E}) and C(U) where U is an ultrafilter. This

follows directly from theorem 3.7.

Door, maximal := ultratopologies (3.1).




Property

regular

conmpletely regular
normal
completely normal

compact

‘paracompact
metacompact

Jocally compact

Lindelof

connected

locally connected
totally disconnected
extremally disconnected
zero dimensional

1st axiom of countability
2nd axiom of countability
separable

principal

door

Minimal Maximal 35

topology where = is a total ultratopologies
order of K and it is of the
form Ja,—] for a in E.

topology where = is a t.o.
of B and it is of the form
[a,—3]and Ja, —3] for a in H.

ultratopologies

cofinite nonprincipal ultratopologie

T ,-topology where if an nonprincipal>ultratopologie
open filter has a unique
adherence point then it

converges to this point

T3—topology where if a nonprincipal ultratopologied
repgular open Iilter has a

unique adherence point then

it converges to this point

compact TZ nonprincipal ultratopologie
compact T2 nonprincipal ultratopologie:
compact T. nonprincipal ultratopologie

) 2

{2, A, E-A, E}=C(A)VC(E»A) nonprincipal ultratopologies
or of the form C(x, U(y)A
Cly, U(x))

same as regular
infratopologies
infratopologies

infratopologies

infratopologies
infratopologies

infratopologies

infratopologies

infratopologies
infratopologies
9

-

infratopologies

‘same as regular

infratopologies
infratopologies
infratopologies
infratopologies
C(x,{E}) and c(V)

same as regular
ultratopologies
ultratopologies

topologies where compact
subsets are exactly the
closed ones.

ultratopologies
ultratopologies

principal uwltratopologies
and 7?7

1
topologies where the Lindelq

subsets are exactly the
closed ones

C(U), C(x,{E}) and ?
principal ultratopologies

nonprincipal ultratopologies

ultratopologies

same as regular

principal ultratopologies
none |
none

principal ultratopologies

ultratopologics
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Chapter S

Preservation of Topological Properties under

Lattice Operations and Relations

In this chapter the preservation of various topological properties
under lattice operations and relations will be investigatéd. A table
is provided at the end of the chapter to summarize the results. It
should be noted that if a property is preserved with respect to
taking coarser topglogies then it is preserved under infinite meets
which implies it is preserved under finitefmeets. This may be
graphically represented as follows:~ |

= = /\ = A

Similarily = \V/ —_—
Also if a property is notApreserved with respect to a lattice operation
or relation we may indicate this by placing a stroke through the symbol.

Thus we have AT == 1/3<- SN s%

s VAl 8

Before beginning the detailed study it is useful to prove
- several general lemmas and fheorems which will be/used later.

Lemma 5.1 :—= U contains N(p) with respect to a topology t iff t is
coarser than C(p,U).
Proof :~ If p belongs to a t-open set then the set belongs to U and

hence C(p,U) and any set not containing p belongs to C(p,U). Conversely,

39
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if p is contained in a t-open set and t £ C(p,U) then the set belongs
to U and hence B(p) = U and so also N(p)=U.
Lemma 5.2 :-

(1) t is a T -topology iff for each ultrafilter U there exists at most

2
one point p such that t £ C(p,U).

(2) t is compact iff for each ultrafilter U there exists at least one
point p such that t £ C(p,U).

(3) t is compact T, iff for each ultrafilter U there exists exactly

2

one point p such that t £ C(p,U).

Proof :~ (1) t is Tss

iff each ultrafiltér U converges to at most one point p, i.e.

iff for each ultrafilter U there exists at most one point p such that
U=N(p) (by the definition of convergence) i.e.

iff for each ultrafilter U there exist at most one point p such that
o= C(p,U) (by lemma 5.1)

(2) t is compact

iff each ultrafilter U converges to at least one point p, i.e.

iff for each ultrafilter U there exists at least one point p such that
U=N(p) i.e.

- 1ff for each ultrafilter U there exists at least one point p such that
t £ C(p,U).

(3) follows from (1) and (2)

Theorem 5.3 :~ The cofinite topology has the following properties:-

(1) TO’ (2) T‘, (3) Tl, (4) compact, (5) LindelSf, (6) paracompact,



Ly

(7) metacompact, (8) locally compact, (9) connected. The cofinite
topology,if E is infinte does not have the following properties :=-
(10) T,, (11) T, (12) TB%', (13) T, (k) T, (15) regular, (16)

completely regular, (17) normaf,f(l8) completely normal, (19) door

» e

. } . SN
space, (20) principal. The cofinite:topology satisfies the counta-
bility axioms iff E is countable.

Proof := C(C*) is T1 (1.9) hence T% and T ¢c(C*) is compact because

o
every ultrafilter converges and hence 5,6,7,8 all hold. C(C*) is connected
since any two sets in a filter have non-empty intersection. C(C*) is
not T2 since any two seté in a filter have non-empty intersection.

Thus 11,12,13%,14 do not hold and, since C(C*) is Tl, 15,16,17,18 also
do not hold. C(C*) is not a door space since if A is infinite and
has an infinite complement then it is neither open nor closed. C(C*)

~is not principal since it is the meét of nonprincipal ultratopologies
(1.5). Now since n(B: BeC(C*)) = @ we have that E =u(E-B). Now
E-B is finite. Hence C(C*) has a countable base iff E is countable.

Also since {p} =n(B: peBeC(C*)) we have E-{p}= u(E-B). Again since
each E-B is finite wé‘find that the neighbourhood system of‘any point
has a countable basis iff E is countable.

Theorem 5.4 :~ The compact T ~topologies are incomparable. In

2

particular, given a compact T

Z—topology, then any topology strictly
finer is not compact and any topology strictly coarser is not T2'
Proof:~ This follows directly from 4.3 and 4.12 since compact T2-

topologies are minimal TZ and maximal compact.
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Theorem 5,5 := C(x,C*) =n(C(x,U): U a nonprincipal ultrafilter).
Then C(x,C*) (1) satisfies all T,.
(2) is compact, in fact, maximal compact.
(3) is minimal Tss TB’ T}%’ Tys T
(b)) is totally disconnected.

5;

Proof :- C(x,C*) is T_ - Take A,B=E such that AnB = @ = AAB. Without

5
loss of generality we may assume x%;A and hence Ae C(x,C*). Now
ANB = @ implies B=CA €C(x,C*). Also ANCA = @ and thus C(x,C*) is

T Hence C(x,C*) satisfies all T, C(x,C*) is compact T., since every

5° 2
ultrafilter convérges to exactly one point (5.2). Thus C(x,C*) is

maximal compact and minimal T, TB' Tors Ty T5 (5.4). For all y¥x
2

3
we have {y} is open-closed. Also we have n(E-{y} : y # x) = vaf& :

vy ¥ x}= {x Each of the E—{y} is open-~closed. Now the component of a
point is contained in the intersection of all open-closed sets containing
the point (Kowalsky [?6], 14.9). Thus for all p€E, we have {py is the
component of p. Therefore C(x,C*) is totally disconnected.

Theorem 5.6 :- Let (tj: j€J) be an arbitrary family of (completely)
regular topologies on E. Then t = ggg tj is also (completely) regular.
(Norris [29]).

Proof:- (a) regular

Let peE and let A be a subset of E such that peAet. Then there
n .
exist A, et, (i=1,2,...n) such that p é{;& AjEEA. Now, since each
i i i
t. 1is regular, there exist B, et. such that peB,=Cl, B.=A, .
3y J; J A S P

i i vi i jig i1
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n n n n
Let B =/ B, . Hence peBet. Now CltB=Cltﬁ B,=/M"NClB.=/\C, B
o i=l Ji i=1 Y1 i=

(3 A:;=A. Therefore t is regular.
1—1-3i

(b) completely regular

Let p€E and A=E such that p€A€t. Then there exist A, Etj
C i i
(i=1,24...n) such that p€/% A,=A. Since each t, is completely
i=1 Ji 9% ‘
regular there exist fi(i=l,2,....n), £, E-|0,1], continuous with

respect to t, such that f£;(p) = 0 and £, (x) =1 for all xe oA,
Y5 i
Let f be the supremum of the fi. Then f: E~»|_O,1], £(p) = 0 and

f(x) =1 for all x€CA. Now, since t is finer than each tj and the
' i
fi are continuous with respect to tj y T is continuous with respect to
_ i
t. Therefore t is completely regular.

Proposition 5.7 :- vConsider the Euclidean plane, E, with the following

topologies: -

't

1 ° the product of the usual topology, s, on the reals with the
topology which has as base the half-open intervals of the form
[?,b[.

t2 = the product of the topology which has as base the half-open
intervals of thé fdrm [é,b[ and the usual topology, s, on the
reals.

t = the product of the half-open intef&als topologies of the form

[é,b[ on the reals,

Then t = t1V’t2 clearly. Also tl and t

but t is not T. nor is it metacompact.

5

5 are paracompact , T4 and T

5
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Proof :~ t is obviously T, and has a base of open-closed sets. Thus

1
t is regular since if x belongs to some open set it belongs to a base set which

is open-closed. Therefore t is T,. Now t is not normal for consider :

3
the set L. = {(x,y): Xty = ik L is closed since for all points not on

the line there exists an open set which contains the point and has void
intersection with L. Let M be the set of all points of L with rational
co-ordinates and‘N the set of all points of L with irrational co-
ordinates. M énd N are both closed subsets of L since the induced topology
on L is the discrete topology agd hence M and N are t-closed; Then M

and N are disjoint but obviously there exist no disjoint open sets O and O!
such that M=0 and N=0, Therefore t is not normal and hence not

paracompact nor T Now t is not even metacompact which may be seen by

5‘

considering the following. Take as an open cover of E the left-half-

‘plane determined by L (not including L).together with all sets M(x )
]
where M(x ) = {(c,d): (x4y)e L, x €c, y = d} . Now the claim is

]

that this open cover has no point finite refinement. Assume it does. It
is sufficient to confine our attention to L and the right-half-plane.
For all (x,y) €L there exists a set R(x ¥) in the refinement such that

]

(x,y)QZR( and hence there is a "square" (a base set)

X9Y)EM(XsY)

B( )ét such that (x’y)eB(x,y)aR(x,y)' B(X,y)= {(PvQ): P—xéb(x’y)$Q"y<b(x’y)a

b(x ) a real number}. Vie form a partition P of the points of L by

]

forming a partition P' of the b(x ¥) by saying that (x,y) and (x',y')
. ]

belong to the same class of P iff b(x ) and b(x' 1) both lie in the
]

]
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interval] y 1 ] for some neN. Now there are uncountably many points
. n n+l
in L and only countably many classes in P' and hence there exists a

class_Pi of P which contains uncountably many points of L, say that Pi

corresponds to the interval] 1, 1 W = Pi'. Hence there exists an
n-1 n~
accumulation point (p,q)é& L for the class Pi. Consider the set

N' = {(x,y)ﬁ-E: [(x,y) - (p,q)lﬁ_&mz + Then there exists uncountably
2n

many B(x

in N' with b > 1 and these B have non-void
»Y) (x,y) = (x,y)

intersection and hence there exists a point in E which lies in

infinitely many B and hence in infinitely many sets of the
(x,¥)

refinement. Thus there is no point-finite refinement of the cover
stated. Therefore t is not metacompacte.

Now tl and t2 are paracompact since each is the product of a

paracompact T_-topology and a topology which is countable at infinity

3

(Kowalsky [?6], pg. 153, 22.8). Therefore t; and t, are also Th'

It is conjectured that each is also T_. with the proof probably being as

5
follows: Consider tl and subsets A,B of E with ANB = g = AnB. Note

— ~
A is the closure of A with respect to tl and A the closure of A with

respect to the usual topology on L. Then we have A = A. By the definition

of closure and since tl is regular we have that for all p<5§ - B there

exists Qpé t such that ?Qpn—ﬁ = . Define 3' = {Qp: péfg -—5} . Let
2 be a locally finite refinement of 2' and let @ =UXL, Then‘E —'§€EQ
and since locally finite @ =U(X: X€32) (Gaal, [18], pg. 153). Thus

we have QNB = @ and B - B=Q et Similarily there exists R such that

l.
RNA = g and A ..XERetl. Let A' = AnCQ and B' = BnCR. Now
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(2%
A'n B!

u

(XnEQ) n (BACR)

ANCHNBACR
(€8 aB)n (An (CAUR))
=g

Therefore A' A B' = @ and similarily A'n B = [/

i}

Hence there exist sets V,W which are open with respect to the usual

topology and hence t-open such that A'€V, B'E€W and VNVW = 4.

mn

Now A € (VUQ)NCR et

1
(W UR) N CQ €ty

n

B

]

also (VUQ)NCRNECYN (WUR) & (VLQUR) n (WuQuR) N C(RUQ)

n

((VuW)UQuR) N C(RUQ)
=g

Therefore (VUQ) NCR and (WUR) nCQ are disjoint t.-open sets and hence

1

tlis a T_~topology. Similarily t2 is a T_-topology. With regard to the

5 5
existence of a locally finite refinement this will be the case if

tl lﬁ’—.§ is paracompact. By 13.19 of Kowalsky [?6] this will be the
case if B - B is expressible as the countable union of closed sets. Let
V be any vertical line. Then'(g -B)NV =BnCBNV = (Er\V)r1(€§/WV).
Now BNV is a,qlosed‘set, say Q. Also tlIV = s. Thus CBnV is an open
set and hence is the countable union of closed intervals, say CBNV =
A?chn' Therefore (gnV)fj(CE(WV) = Cr\kg& Cn = ngCnCn. That is

(B - B)AV is the countable union of closed sets. Thus all that must

be proved is that (B-B)nV %+ & for only countably many V. This would

seem to be the case but remains an open question at this time.



" easily seen by the following. Now t'" is obviously a T

b7

T := (&) C(x,U(y)) and C(y,U(x)) are both To (3.1) but there is no
open set separating x and y in their meet.

(=) obvious.

T,:= (A C(x,U(y)) AC(y,U(x)) is not Ty

(=) obvious. .

21:- @#)‘Coarser than T. need not be Tl since the cofinite topology is the’

1

smallest Tl-tOpology. All other relations and operations preserve T1

since the Tl-topologies form a complete sublattice.
22:- () The meet of two compact topologies (e.g. C(x,C*)AC(y,C*), x*:y)
iS not TZ (501’1’, 5.5)

(>) obvious.

T, and regularity:-
-

A C(x,C*) AC(y,C*), x:f:y, is not T, but is T, (5.5, 1.10)

3

(V) Regularity is preserved as proven in theorem 5.6 and also T,

50 T3 is preserved.

(%:) Is illustrated by the following example mentioned by Gaal [iSJ
pg. 85 and first noticed by Hausdorff [?é] pg. 264. Let t be the usual
topology on the reals and t" = t v C(C') and let t*' = C(C'). Then t"

is finer than t and although t is a T_~topology t'" is not. This is

3
-topology.

1
Assume t" is regular. Let Q be the set of all rationals. Q is a t'-
closed set since it is countable. The irrational number V2 is not in
Q; If t" is regular then there exist disjoint sets M,N €t'" such that

JZEeM = AnA' where Act and A'et' and G=N = \J (B.AB.') where B, € t
) jeI™"1 i i

and B,'c t',
i

is preserved
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= N = ' u 1 = U t ! 1 1
Thus @ = MnN = AnA r\ieI(Bir\Bi ) 7T (AnA nBinBi ). Hence AnA nBinBi
is empty for all ieI and so Af\B{EEG(A'n Bi')° Now there exists an

j¢I such that AfWBj $ & since Té-éAnBj for some jcI. But then we have

an uncountable set contained in a countable one which is impossible.

The same arguments and example apply as for

Therefore t" is not regular.

23; and complete regularity:-~
’I‘3 and regularity.
Nornal: - |
(4  0(x,C*) AC(y,C*), x ¥ ¥, is not T, but is T, (5.5, 1.10)
() C(E~{%} )vC(F-{y}), X * y is not normal since there are no disjoint
open sets in the join separating the closed sets {i} and {y} « (Note
that each infratopology is normai.)
C(x,C*) AC(y,C*), x T ¥, is not Ty. (5.5)

Caw)

()

Proposition 5.7
Completely normal :=-
) C(E-»&})V/C(E—fy} ), x £ ¥y 1s not normal hence not comnletely

(-*) C(x,c*)ncC(y,Cc*), x # y (5.5, 1.10)

normal.
T :=
-5
&) C(x,c*)AC(y,C*), x % ¥, is not T, (5.5, 1.10)
(Eé) Since t, in T3 (E#) above, is also TS.

(=) Proposition 5.7
Compact :- '

(=) obvious
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) c(x,c*)vC(y,C*) = 1. Bach is compact (5.5) but the discrete
topology is not compact if E is infinite.

Lindelof :-

(=) obvious

(%%) C(x,C*) vC(y,C*) = 1. Each is Lindeldf since each is compact

(5.5) but the discrete topology is not Lindel8f if E is uncountable.

Paracompact :-

(A7) This is demonstrated by the following counterexample which shows
that the meet of two paracompact topologies is not necessarily even

metacompact. Let R be the reals and Q the rationals. Let tl be the

usual topology on the reals and let t, =A(C(q,C*): q€Q). Define

t =t.At,. Now t, is known to be paracompact and t., is paracompact

1 72 1

because for any open cover of R, a finite number of sets cover Q and hence

2

one can take as a refinement these sets together with all singletons

of points not in these open sets and this refinement is locally |

finite.

' To establish t is not metacompact it will first be shown that each infinite
point finite open cover is uncountable, i.e., there exists no countable
point finite open covers. Let (Mi: i€I) be an infinite point finite

open cover of R. Now since it is infinite and point finite we have

{CDIMi = @ which implies R = k?é GMi. Now the ¢Mi is countable for each
i€I, R is uncountable and hence III must be uncountable. Now consider

A=¢C g(g + n n.€N}. This is an open set since it is the union of

open intervals and contains all the rationals. Let On be the open
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interval about /2 + n given by o =j]V§—+ n-1/3, V2 +n + 1/3[?.
Define An = A\JOn. Then An is open for all neN. It is o?vious

that (An: néN) is an open cover of R, it is countable and hence

by the previous argument it is not point finite. Clearly there is no
finite subcover of this cover and it is also quite clear that there is
no point finite refinement of it either. Hence t is not metacompact.
(%) Proposition 5.7

Metacompact :-

(-A) The counterexample in this case is the same as the one for

paracompact (-A) since both t, and t, are metacompact but t is not.

2
() Proposition 5.7

locally compact =

(/Y)  The finite meet of locélly compact topologies need not be locally
compact as shown by the following counterexample. Let t be the usual
topology on tﬁe reals. Consider t'! = t AC(1,U(N)) where U(N) is the
principal filter generated by the natural numbers. Now t is known to

be locally compact and C(1,U(N)) is locally compact since it is principal
and hence for all rerR there exists a smallest open neighbourhood of
N,B, (1.5). The claim is that t' is not locally compact since there is
no compact neighbourhood of 1. Assume K is a locally compact neighbour-
hood of 1. Then K contains an open neighbourhood of 1, A = T

néN "n

where In =]n—-£, n +£[O<£é%. Let Cn =[n- Ey n + §] and hence
2 2

C=I. Let C = kal C . Then C is closed since it is the union of

n n neN n ;

disjoint closed sets and N=C. Also C is obviously a closed

RARY.
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neighbourhood. Now C is compact since it is a closed subset of a compact
set. Define an open cover of C to be équal to {kEQZang, nfg[jiu(jn—éa n[::
neN) v (n, n+&[: neN). Obviously there is no finite subcover of this
cover and hence C is not compact which is a contradiction. Therefore
there is no- compact neighbourhood of 1 and hence t' is not locally
compact.

(V) The finite join of locally compact topologies need not be locally
compact as shown by the following counterexample. ILet A = [;a, é] where
a is a real number. lLet t' be the usual topology of the reals restricted
to A and let t" be C(O,C*) on A, Now t = t'v t" is not locally

compact. This will be proven by showing there is no compact neighbourhood
of zero. Assume there exists a compact neighbourhood K of zero. Then
there exist sets B¢ C(0,C*) and I, an open interval, such that 0€BaI=K.
Hence there exists an open interval J with 0&€J=BNI=K and so there
exists an open interval J' with 0€J'<J. Take as an open cover of K

the following, J' together with all {&}, y€K~J'. Obviously this has

no finite subcover. Therefore t is not locally compact.

connected :-

(=) obvious

€v¥-) Finite join of connected topologies need not be connected as
illustrated by the following example - C(A)Vv C(E-A) where @cAcE.

locally connected :-

(é?) Since discrete topology is locally connected

(A) Lemma 5.8 :- A topology is locally connected iff the components



of all open subsets are themselves open. (Kowalsky [éé], pg. 108).
Proof :~ Let t be a locally connected topology, M an open subset of E and

K a component of M. Now a set is open in M iff it is open in E. For all

p €K there exists a connected neighbourhood OpEEM. Since K is the

largest cbnnected subset of M containing p, OéZZK for all p €K and
hence K = ;Eﬁ’op. Thus K is open. Conversely, take any open set O with
p €0. Then the component of O containing p is an open neighbourhood
of p. Hence the neighbourhoods of p possess a basis of connected sets.
Lemma 5.9 :- The meet F of an arbitrary family (ti: i€&1) of locally
connected topologies is locally connected. (Kowalsky [26], ps. 109).
Proof :~ By lemma 5.8 it is sufficient to show all components K of M,
where M is a t-open subset of E, are t-open. Now M&t implies Méiti,
for all i€I. Let p be any element of a component K of M. Then there
exists a neighbourhood Oi€ ti, with peiOiEEM and Oi connected in ti.
Hence Oi is connected in t which implies OiEEK. Thus, as in the

last lemma, K = ngin, where p*EOi, and hence Kéiti for all ieT.
Therefore K¢ t.

(-¥-) The finite join bf lbcally connected topologies need not be
locally connected as shown by the following counterexample. Let E

be the reals. Consider tvC(U) where t is the usual topology on the
reals and U is any nonprincipal ultrafilter which converges to p.
Clearly both t and C(U) are locally connected. Claim that t vC(U) =
C(p,U). Now tvC(U)=C(p,U) since for any A€t, if p€A then A€ U

since U converges to p, and if p%:A then A€ C(p,U) by definition.
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To show the reverse inclusion take any A€ C(p,U). If A<€U then AcC(U).
If AéiU then p%;A. Let q € A, hence ¢ + p and thus there exists a
t-;pen set O such that quO(#U (this follows since an ultrafilter con-
verges to only one point in a Tz-topology). Thus €O €U and hence

co v {q} é.U.V Therefore @} = (COu {q})no €t vC(U). Thus ActvC(U).
Therefore t vC(U) = C(p,U) which is not locally connected by theorem
3.6,

totally disconnected :-

(A) The meet of two totally disconnected topologies need not be
totally disconnected as is easily seen by considering the meet of the

half-open interval topologies on the real line. That is, let tl be

the topology with a base of open sets of the form [é,b[:and t., have as

2
base the sets of the form }a,b:lwhere a and b are real numbers. Each
has a base of Open-cloéed sets and is therefore toltally disconnected

1 "2

(=) obvious

but t, At is the usual topology on the reals which is connected.

extremally disconnected :-

() The meet of two extremally disconnected topologies need not be
extremally disconnected as shown by the following countefexample. Take
A,BEE such that ANB = @ and AUBCE. Consider t, = {ﬁ,A,B,E-A,E}

and t2 = {ﬁ,A,B,E—B,E} » Obviously t1 and t2 are extremally disconnected

since the closure of every open set is again open. Now t = tIA t2 =

{¢,A,B,E3 and t is not extremally disconnected since the closure of

A is E-B which is not t-open.
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() The join of two extremally discounnected topologies need not be
extremally disconnected as shown by the following counterexample. Let
A ge a non-empty proper subset of E and let p %A. The C(A) is
extremally disconnected and so is C(G(Au{b})). But, the join of these
two topologies is t = {ﬁ,A,G(Au{b}), C {p}, E} which is not extremally
disconnected since the closure in t of A is Avu {p}é.t.

zero dimensional -

(A-) The counterexample in this case is the same as the one for totally
disconnected (A7),

(E%) Obvious since the trivial topology is zero dimensional while the
infratopologies are not.

(V) The property is preserved under arbitrary joins since each topology
in the arbitrary family has a base of open-closed sets for each point

in E and a base in the join for each point consists of finite inter-
sections of these open-closed sets and is hence open-closed.

countability axioms :-

(-A) The meet of two topologies satisfying the second axiom of
countability need not satisfy the first axiom of countability as

illustrated by the following. Let E be the reals and tl the usual

topologye. Let t2 be the set consisting of the empty set together

with all subsets A of E such that the complement of A consists of only

finitely many rational numbers. Note that t2 is a filter topclogy

(the Frechet filter of a sequence of all rationals) and as such has

a countable base which implies t_ satisfies the second countability

2
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axiom. Let t = tl.Atz' Then for any X €t we have CX is countable and

contains no interval. Let p€E and (B,: i€I) be a base of open
s

1 and t2

CBi. But E—{p} is uncountable

neighbourhoods of p. Now t is a Tl~topology since both t

AN

je1 B and so E-{p} = i%J

are. Hence {p} = T

and GBi ié éountable for each i!eI and hence ’I‘ is uncountable.
Therefore theré is no countable base for the neighbourhood system and
hence the first axiom of countability does not hold.

(2#) since infratopologies satisfy both countability axioms.

(v) since the base for the join is the set of all intersections of
base sets from each of ﬁhe topologies.

(V9  since infratopologies satisfy both countability axioms.
separable :-

(=) since closure in a coarser topology contains the closure in a
finer topology.

(++) Finite join does not preserve separability As illustrated by
taking the join of the left-~half-open and right-half-open interval
topologies on the reals. This join is the discrete topology which is
not separable but each of the half-open interval topologies are
separable since the rationals are dense in each.

principal :-

(é%) since the discrete topology is principal.

(/\) lemma 1.3

(v) theorem 1.6

(%fj since every infratopology is principal.



door @

()
(=)

for example C(x,U) AC(y,V),

obvious

x +y, U£V. (3.7)
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Property < A ~
TO. - - -
T - - -
¥
- + +

T1
T2 - - -
T - - -
3

T - - -
3%

Tu - - -
T - - -
5

regular : - - -
completely regular A - - -
normal - - -
completely normal - - -
compact + + +
paracompact - - -
metacompact - - - -
locally compact : - - -
Lindel6f + + +
connected + + +
locally connected - + +
totally disconnected - - -
extremally disconnected - - -
zero-dimensionaly - - -
1st axiom of countability - - -
2nd axiom of countability - - -
separable + +
principal - + +
deor ‘ - - -

+ indicates that the property is preserved
~ indicates that the property is not preserved
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