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ABSTRACT 

An optimal stochastic feedforward-feedback control 

scheme is implemented on a heat exchanger-stirred tank system 

using an on-line minicomputer. Because variations in the 

measured disturbance variable have an effect on the output 

controlled variable before compensating action can become 

effective, the feedforward action must be predictive in nature. 

Statistical time series models are used to model both the 

measured disturbance and the unobserved disturbances in the 

system. These stochastic disturbance models and the transfer 

function models for the process are identified, fitted and 

checked using statistical model building procedures on a set 

of data collected on-line using the minicomputer. The predictive 

feedforward-feedback controller is derived from these models. 

The performance of the control scheme is compared with that of 

a pure feedback control scheme and the actual performances are 

shown to conform well to the theory. 
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CHAPTER 1 


INTRODUCTION 

1.1 Feedback Control 

Traditional feedback control is often enough to 

maintain a process variable close t o a desired value (Fig. 1). 

The "controlled" variable is measured and compared to the 

desired value or "setpoint". The difference is used to cal­

culate a deviation in another "manipulated" variable which 

through the process will affect the controlled variable and may 

bring it closer to the setpoint. The calculation may be 

simple or complex. In proportional control action, the devia­

ation in manipulated variable is a constant times the deviation 

in controlled variable. Better control can usually be obtained 

by adding a constant multiple of the rate of change of devia­

tion and/or a constant multiple of the integral of deviation 

with respect to time. This is called Proportional-Integral­

Derivative (PID) action. PID control can be executed continu­

ously using an analog controller, which relies on physical 

components to measure the value, the integral and the derivative 

of the deviation, and to add together predetermined constant 

multiples of the three actions to obtain a continuously 

changing manipulated variable. The constants used are unique 

for each process, and methods of determining their best values 

have been closely studied. 

1 



setpoint 

lcviat ion 
f ecc1hack 

controller 

2 


\ 

manipulated 
variable 

process 

controlled 
variable 

Fig. 1 Feedback Control 

mean disturbance 

deviation 

f eedfoTurard 
controller 

manipulated 1 

varia~~~-

process 
1 

load or 
disturbance 
variable 

process 
2 

controlled' 
variable 

Fig. 2 Feedfonvard Control 



3 


Sometimes, a digital computer is preferable to an 

analog controller, for example, if 

(1) the controlled variable has to be measured at 

discrete time intervals, or the manipulated variable is change­

able only at discrete time intervals; or 

(2) a time delay is necessary before changing the 

manipulated variable; or 

(3) the calculation of deviation in manipulated variable 

includes mathematics that cannot easily be reproduced by 

physical elements. 

1.2 Feedforward Control 

In the process, there may be a "load" or "disturbance" 

variable whose variations are known to cause undesirable 

variations in the controlled variable (Fig. 2). 

The best way to prevent this is to control the dis­

turbance variable close to a constant value, so that variations 

in the controlled variable are negligible. However, this is 

not always possible, e.g., when the previous process leading 

to the disturbance variable is too complex or when interference 

is not permissible. Instead, feedforward control may be used. 

This relies on a knowledge of the effect of the disturbance 

variable on the controlled variable, and of the effect of the 

manipulated variable on the controlled variable. The dis­

turbance is measured and compared to its mean value, and a 

deviation in manipulated variable is calculated such that its 

effect on the controlled variable exactly cancels out the effect 

of the disturbance on the controlled variable. 
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Feedforward control may or ma y not requir e forec a st­

ing. If the effect of the manipulated vari able is seen in 

the controlled variable befo r e the ef f ect o f the disturbance 

is seen in the controlled variable, then action can be 

calculated which will ex actly cancel the effect of the present 

or previous values of the disturbance. However, i f the 

effect of the disturbance will reach the controlled variable 

first, then when action is taken, it has to cancel the fore­

casted effects on the cont r olled variable of future values of 

the disturbance variable. 

Simple feedforward control without forecasting can be 

accomplished with analog equipment as in ratio control, and 

simple forecasting can be done by analog filters. For more 

complex schemes, a digital computer may be required. 

1.3 Feedforward-Feedback Control 

If the disturbance which is compensated for by feed­

forward control is the only disturbance to the process, then 

theoretically the controlled variable should remain constant 

at the desired value. However, this almost never is the 

case: there are always other unknown or poorly identified 

disturbances which will cause deviation of the controlled 

variable. This can be corrected by feedback control, and so 

usually feedforward control is used in conjunction with feed­

back control (Fig. 3). 
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1.4 Process Models 

It is not necesary to have models describing the 

process when using analog equipment: empirical methods have 

been derived to obtain the best possible values of controller 

parameters and ratios for a particular process; this is called 

''tuning''. However, it is often helpful, and in other schemes, 

essential, to have process models. These may be derived 

theoretically from equations which describe physical or chemical 

changes in the process, or experimentally from observations of 

process output when it is subjected to different inputs. 

Experimental observations may be analysed by the 

methods of frequency response analysis, based on classical 

control theory, or time series analysis based on statistical 

theory. If the experimental data is good and truly representa­

tive of a process whose characteristics will not change, then 

the model obtained is final, and a controller which is 

designed from it needs no further tuning. 

1.5 Time Series Analysis 

Box and Jenkins [l] have developed a method of obtain­

ing simple models to describe single series of observations 

spaced at equal time intervals, and also to relate such a 

series to one or more other series. 

For single series, the main tool is the autocorrela­

tion between any observation and another taken a certain 

number of intervals later. The pattern of autocorrelations at 

different lags, called the autocorrelation function, often 
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falls into one of a small number of characteristic patterns, 

each of which can be represented mathematically by a simple 

model. To relate one series to ano t her, the cross correlation 

between an observation in one series and an observation in the 

other series taken a certain number of intervals later is 

calculated. The pattern of crosscorrelations at different 

lags again often resembles a common pattern which can be 

represented mathematically by a simple model. Regression 

analysis is used to find the best model parameters to fit the 

given data. 

To obtain good estimates of parameters, a fairly 

large number of observations are often needed (e.g., one or 

two hundred). For processes having long time constants (> 1 min­

ute) analog equipment such as high speed recording charts, or 

even readings taken manually, can be used, but for time 

constants of the order of seconds, a digital computer becomes 

preferable. If it is desired to use an artificial input to 

the process, then the computer can be readily programmed to 

calculate a sequence for input. 

Box and Jenkins have extended their methods to the 

design of controllers. Once models have been chosen and the 

best parameter estimates obtained to describe the process, 

these models can be used to relate the controlled, manipulated 

and disturbance variables in a control algorithm. A feedback 

controller can be designed from two models: one to describe 

the effect of the manipulated variable on the controlled 

variable, and the other to describe the behaviour of the "noise" 
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nt in the controlled variable. This was done in practice by 

Huynh [2] who compared conventional PID and Time Series feed­

back control algorithms experimentally on two stirred tanks 

in series. A simple feedforward-feedback controller needs 

three models: one to relate the manipulated variable to the 

controlled variable; one to relate the disturbance variable to 

the controlled variable; and one to describe the behaviour 

of the noise. In feedforward-feedback control, if forecasting 

of future values of the disturbance is required, then a 

fourth m?del is necessary to describe the behaviour of the dis­

turbance itself. The theory of feedforward-feedback control 

with forecasting of the disturbance has been derived by 

MacGregor [3], but has not previously been tested experimentally. 

1.6 Objectives 

No new theory is presented in this work, which is an 

application study of the Box-Jenkins-MacGregor theory. The 

aims of the study are: 

(1) Using a digital minicomputer to collect data and 

identify models to relate controlled, manipulated and dis­

turbance variables in a physical process; 

(2) with these models to derive feedback and feedforward­

feedback control algorithms, using the Box-Jenkins-MacGregor 

theory; 

(3) to implement the algorithms by minicomputer to 

control the process. 
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1.7 Experimental 

The apparatus used was a constant volume stirred 

tank with two incoming water streams at dif f erent temperatures 

and an overflow to drain (Fig. 6). Tank temperature was the 

controlled variable. One input stream was cold water whose 

flowrate varied and could be measured by an orifice meter: 

this reading was the disturbance variable. The other stream 

was a constant flowrate of hot water of variab le temperature, 

produced by passing cold water through 2 small heat exchangers 

in series. The steam supply was in parallel to both exchangers 

from a single steam control valve, whose setting was the 

manipulated variable. The scheme was to control the tank 

temperature by compensating for the effect of disturbances in 

cold water flowrate by manipulation of the steam control valve 

and hence hot water temperature. Readings and control action 

were taken regularly by minicomputer through an interface. 

A disturbance in cold water flowrate affected the 

tank temperature quickly (detectable in less than 10 seconds). 

A change in steam valve position would appear much later; the 

dynamics of the valve, steam pressure build-up, establishment 

of new temperature profiles in the exchangers, a hold-up 

between exchangers, and pipe length from the second exchanger 

to the stirred tank all contributed to a total of approximately 

40 seconds lag. Thus in feedforward control a manipulation of 

the steam valve had to be calculated to compensate for the 

effect of a disturbance in cold water flowrate that would occur 

30-40 seconds later. To predict it so far ahead, the dis­
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turbance had to be describable by a mathematical model, and 

the accuracy of control would depend on the accuracy of this 

model. 

Since disturbances in the cold water supply avai l able 

in the laboratory were insignificant, it was necessary to 

simulate the disturbance by means of a control valve in the 

cold water line. A simple model was designed and programmed 

into the minicomputer for transmission of a signal to the 

water control valve every sampling interval. Knowledge of 

this model was not used in the overall scheme, except for 

the assumption of its constancy. The disturbance variable 

was the reading of the in-line orifice meter. 

A feedback control scheme was also designed to 

compare the effectiveness of its control action when the 

water control valve was subjected to the same disturbance 

signals but when no use was made in the control algorithm of 

orifice meter readings. 



CHAPTER 2 

THEORY: A SUMMARY 

2.1 Single Series 

A time series is a series of observations zt taken 

at a fixed time interval. It is possible to describe a single 

observation zt in terms of a "white noise sequence" or a 

finite or infinite series of random "shocks" at where at 

is a random number drawn from a normal distribution. 

2 
2 t =at+ ~l at-1 + ~2 at_z····=(l + ~l B + ~ 2 B .... )at =~(B) at 

where B is the backward shift operator (Bat = at_ 1). 


at is said to be transformed to zt by the linear filter ~(B) 


which is a basic model for the series. However, it is a 


cumbersome model and it is more convenient to express the 


series in one of two basic forms: 


Autoregressive Process: 


Moving Average Process: 


or a combination of the two forms, where p and q are small 


numbers. Sometimes it is desirable to take the first difference 


of zt and express the new variable 


(zt - zt-1) = vzt = wt 

in one or another of the above forms. Again sometimes it is 

necessary to take the second difference of zt: vvzt = wt. 

11 
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To find which form to use the autocorrelation 

function and partial autocorrelation function are needed. 

The autocorrelation coefficient at lag k is between any 

observation and the observation made k intervals previously, 

and is estimated by 

-
w) k=0,1,2 ...where ck 

The pattern of autocorrelation coefficients is called the 

autocorrelation function. The partial autocorrelation 

coefficient at lag k is the residual autocorrelation at lag k 

after the effect of the autocorrelations up to lag (k-1) has 

been removed. The following autocorrelation and partial 

autocorrelation functions would be expected from an AR(l) 

process: 

l·O 

l'a.r-tia.lAuto 

By merely looking closely at the forms of the auto­

correlation functions and partial autocorrelation functions 

of the series and of its first and second differences, it 

is possible to identify a model together with rough estimates 

of its parameters in one of the basic forms above or a 

combination called generally an Auto Regressive Integrated 

Moving Average (ARIMA) model. 



13 


The best estimates of the parameters of the tenta­

tively identified model can be obtained by a nonlinear least 

squares procedure. The residuals from such a fit should 

appear as a white noise sequence and diagnostic checking 

procedures are based on testing for this. On the assumption 

of an adequate model the calculated residual autocorrelations 

and partial autocorrelations can be compared with 95% probability 

limits and any inadequacies pinpointed. 

2.2 Transfer Functions 

Given two series of observations, taken simultaneously 

at equal time intervals, statistical methods may be used to 

determine the relationship, or transfer function, between 

them. First, an ARIMA model is found to describe one series 

(the input). Then both series are "prewhitened" or multiplied 

by the inverse of this model to obtain two new series: one is 

a white noise sequence, and the second is the transformed 

output. Let the relationship before prewhitening be 

where nt is a component of yt that is not correlated with 

xt called the noise component. Then after prewhitening it 

will be 

= v (B) o: + y
t t 

Estimates of the v-weights can then be obtained by calculating 
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the cross-correlations rk between the at and Bt series. 

Specifically [Ref .1 p .. 380]: 

SB 
vk = rk s 

a 

where sa and sB are the standard deviations of the series. 

The crosscorrelation pattern for -20 <k < 20 might look thus: 

t I r I I I
I I I I f I I I I I I I 

rk 
I II l111 I I I I 

0 k --t> 

It is possible to represent a transfer function using these 

v-weights but if there are many it is cumbersome. Box and 

Jenkins pointed out that a general model of the form 

where r, s are small numbers, 

or = w(B) Bb x
8TBT t 

is more parsimonious of parameters. They have drawn the cross-

correlation patterns for a number of models of the above form 

for different values of r and s. So having calculated the 

experimental crosscorrelation pattern, the model giving the 

closest pattern would be identified as the best to describe 

the physical process. Box and Jenkins [ ~347] explain how to 

calculate rough estimates of the model parameters from the 
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calculated v-weights. 

At this stage noise is considered: there will 

usually be a component of the output series that is not 

correlated with the input, but may be autocorrelated: this 

is referred to as Noise. This component is calculated from 

and is then analysed as described above for a single series. 

Auto and partial autocorrelations at different values of k 

are calculated for the nt sequence, and the resulting patterns 

(functions) are viewed to identify the best ARIMA model to 

describe the noise together with rough estimates of its 

parameters. Again it may be necessary to analyse the series 

derived from the first or second difference of nt. 

Having obtained the forms of the transfer function 

model and noise model and rough estimates of their parameters, 

a regression routine is used to estimate all the parameters 

together by minimising the sum of squares of the residuals 

at which may be calculated recursively: 

__ y w(B) x 

t - 8lBT t-b 


a = ¢(B) vd n 
t em t 

The residuals at should form a white noise sequence, and 

should be uncorrelated with the input series, and diagnostic 

checks are based on this. The estimated autocorrelations 

and partial autocorrelations, and crosscorrelations with the 

input series, can be compared with their 95% confidence limits 
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calculated on the assumption of white noise and overall chi-

squared tests may also be performed. These checks will 

reveal any inadequacy in either of the models. 

Finally 

and 

x:t -----!.)'! 

2.3 Two Input Series 

If there are two uncorrelated input series and one 

output series of observations taken simultaneously at equal 

time intervals, each input may be treated separately. While 

one input and the output are being considered, the other 

input is ignored. For each input an ARIMA model is found, 

both input and output are prewhitened with the inverse of 

this model, and the crosscorrelation pattern of the resulting 

two series at various lags is calculated. From this pattern 

a transfer function model is tentatively identified and 

rough parameter estimates calculated. Having done this for 

both inputs, the noise is calculated by subtracting from the 

output the product of each input and its corresponding 

v-weights: 
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From the autocorrelation function of nt an ARIMA model is 

identified and rough parameter estimates calculated. A 

regression routine is used to obtain best estimates of all 

the parameters together by minimising the sum of squares 

of residuals at from 

a = ct> (B) vd n 

t 8 (B) t 


The residuals should again be white noise and hence should 

be neither autocorrelated nor correlated with either input. 

To check the models, the autocorrelation function for at and 

the crosscorrelation pattern between at and each prewhitened 

input separately may be calculated and compared with 95% 

confidence limits calculated under the assumption of white 

noise. 

e(B) 
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Fig. 4 Feedback Controller 
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2.4 Minimum Variance Feedback Controller 

Fig. 4 represents at time t a minimum variance 

feedback control scheme derived below, where pr ed icted 

deviations in the controlled variable are cancelled out by 

the effect of calculated deviations in the manipulated vari­

able. A model to describe the behaviour of noise in the 

controlled variable due to unknown disturbances, and a 

transfer function model to describe the effect of the 

manipulated variable on the controlled variable, are required. 

Let the transfer function model be 

= u' t-f-1 

where (f+l) is the number of lags between a man i pulation 

and its effect being observed in the controlled v a riable. 

When taking action ut it should be designed to cancel a 

deviation in the controlled variable that will occur (f+l) 

time intervals later. Thus we need an expression for the 
A 

(f+l) step ahead forecast of nt+f+l' denoted nt (f+l) 

= e (f+l) + nt (f+l)
t 

The ~-weights are obtained by expanding the ARIMA Noise model 

When the scheme is implemented, nt (f+l) should be cancelled 
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out, and so deviations in controlled variable Lt will be 

equal to the error in forecasting nt: 

Lt = e t-f-l (f+l) 

,,.. 

The at's are not known directly, so nt(f+l) is calculated 

from Lt 

,,.. 

nt(f+l) = 

et-f-l(f+l) = (B) at1 4 

A 13 (B) 

· nt(f+l) = 14 (B) et-f-1 (f+l) = 


The effect of ut on the controlled variable is u't and 

should cancel (f+l). So the action by the manipulatednt 

variable ut should be such that: 

(B) 	 (B)12 13 

ut Lt
11 (B) = -

14 (B) 

or 

11 (B) 13 (B) 

ut = - (B) . (B) Lt
12 14 

where Lt is the deviation of controlled variable from set­

point. 

2.5 	 Minimum Variance Feedforward­
Feedback Controller 

(when the de~ay in the effect of the manipulated 

variable exceeds the delay in the effect of the measured 

disturbance.) 
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In the minimum variance feedforward-feedback scheme 

shown in Fig. 5 and derived b~low, the predicted effect on 

the controlled variable due to the measured disturbance is 

cancelled by feedforward control action, and the deviations 

in controlled variable which are not correlated with the 

measured disturbance variable, but which are neverthel e ss 

predictable, are cancelled by feedback control action. 

The notation u't means the effect on the controlled 

variable of action ut, and z't means the effect on the 

controlled variable of disturbance zt. 

Four models are required: 

1) to describe behaviour of the disturbance. 

2) to relate the disturbance to the controlled variable. 

3) to describe behaviour of noise (deviations in 

controlled variable that are not correlated with 

measured disturbances). 

4) to relate the manipulated variable to the controlled 

variable. 

Let the transfer function models be (for the disturbance) 

z' = w (B) Bb z 
t-b a (B) t 

and (for the manipulated variable) 

1 2 (B) f+l 
u't-f-1 = L (B) B ut

1 

When all contributions are added 

- u' + z' + nYt - t-f-1 t-b t 
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or, rewriting at the time when action is taken: 

L - y = u' + z' + nt+f+l - t+f+l t t+f+l-b t+f+l 

When control action is being taken, the deviation in the 

controlled variable is Lt = Yt· If u't could cancel out 

(z't+f+l-b + nt+f+l)' the error Lt would be zero. However 

at time t, neither of them are known, and they have to be 

forecasted: 
eQ, (B) 

The disturbance model is zt = 
<Pi (B) at 

eQ, (B) 
21 = w (B) = w (B) 


t+f+l-b o (B) 2 t+f+l-b o (B) <P,q, (B) at+f+l-b 


which can be expanded in terms of at: 

= L6 ' (B) at+f+l-b + 15 ' (B) at 

Substitute for at: 

(B) (B)<P ,Q, <P ,Q, 
= 1 ' (B) z + 1 ' (B) Ztz't+f+l-b 6 (B) t+f+l-b s (B)e.t e,Q, 

" = £'t (f+l-b) + z' Cf+l-b)
t 

N.B. Both 15 (B) and 13 (B) below can be put irt the fonn of parsimonious 

expressions. 
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e (B) 
The noise model is: n 

and may be expanded as in the pure feedback model: 

14 (B) at+f+l 

et (f+l) + nt (f+l) 

Rewriting the equation for Lt: 

A A 

L: = u' + z' (f+l-b) + E' (f+l-b)+n (f+l) + e (f+l)t+f+l t t t t t 

A minimum variance controller is designed to 

A A 

Var(Lt+f+l) = Var[u't+z't(f+l-b)+nt(f+l)]+Var[E't(f+l-b)]+Var[et(f+l)] 

All covariances are zero. 


The first term can be set equal to zero by the proper choice 


of control action; the others are fixed positive values. 

A 

By setting - u't = z't (f+l-b) + nt (f+l) 

the error in the controlled variable becomes: 

L:t+f+l = E't (f+l-b) + et (f+l) 

and L:t = E't-f-l (f+l-b) + et-f-l (f+l) 

The noise forecast is obtained as in the pure feedback 

controller: 
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" 
nt (f+l) = e t- f - 1 ( f + 1 ) 

The forecasting error et-f-l (f+l) in the noise nt can be 

obtained from the above expression for the deviation . in 

controlled variable Lt: 

1 (B)3 
= 14 (B) [z:t - Er t-f-1 (f+l-b)] 

Thus the feedforward-feedback controller becomes: 



CHAPTER 3 


APPARATUS AND DATA COLLECTION 

3.1 Apparatus 

A diagram of the apparatus used in this work is 

shown in Fig. 6. The variable to be controlled was the 

temperature of water in an open-top constant volume stirred 

tank. There were four vertical side baffles, stirring was 

vigorous, and mixing was top to bottom with little swirl. 

Water level was usually 2/3 of the way up the 3" pipe overflow 

to drain, and the tank volume was 7.3 U.S. gallons. 

There were two water flows entering the tank. Cold 

water from the main entered through l" pipe. The flow could 

be varied between 0-6 USGPM by a 1/2" pneumatic control valve, 

and this was used to generate a disturbance. An orifice plate 

(diameter 0.437 inch) was used to measure the disturbance vari­

able and was connected via a dp-cell and transmitter to the 

computer interface. 

The other flow entering the tank was hot water pro­

duced by a fairly complex arrangement. Mains cold water was 

maintained at constant flowrate by a manual valve and rota­

meter: initially 4.8 USGPM was used, but for the final 

identification run and control runs, 7.2 USGPM was used. 

The water passed down through a small heat exchanger, a hold-up 

volume and a second heat exchanger, all close together in 

series. Then up through 12 feet of l" pipe full of water, 

26 
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past an atmospheric vent and down through 8 feet of 2" pipe 

partly filled, before entry into the tank. Each heat exchanger 

shell was approximately 8" long and 2" diameter. The inter­

mediate hold-up volume was approximately 2.4 U.S. gal. A 

copper constantan thermocouple was used to measure the water 

temperature at the exit from each heat exchanger: each was 

connected via a transmitter to the computer interface. The 

tank thermocouple was connected similarly. Only the latter 

was used for control; the two heat exchanger thermocouples 

were used only in checking results. 

The steam supply was in parallel to each heat 

exchanger, and was controlled by a single 1/2" pneumatic 

control valve, whose setting was our manipulated variable. 

Both this valve and the water control valve received signals 

via their transducers from the computer interface. Pressure 

gauges indicated pressure up and down stream of the control 

valve, and upstream of the first gauge was a manual valve used 

for throttling (see below). Steam supply pressure was nominally 

100 psig (a constant 110 psig as measured by the first gauge). 

Condensate from the heat exchangers passed through the same 

continuously-operating bucket-type steam trap to drain. 

The water flowrate through the heat exchangers as 

indicated by the rotameter was held reasonably constant by 

manual adjustments, which had to be made during runs only on 

one or two occasions. Based on observations of the rotameter, 

the standard deviation in the hot water rate would be approxi­

mately 0.1 USGPM. These small variations contributed to the 

noise nt observed in the output. 
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The water control valve was purchased to linear 

specification and upon checking was found to be approximately 

linear in the range 2-8 volt in signal to the transducer. (The 

full signal range was 0-10 volts.) In any case, this was not import­

ant since disturbances were measured by orifice meter. The valve 

had a very short time constant and did not stick. 

Linearity of the steam control valve was checked by 

observations of the valve setting and of the steady-state 

temperature rise caused at a constant water flowrate. It was 

found that above a 6 volt signal to the transducer, steam 

flow increased more rapidly. To counteract this, the manual 

steam valve upstream of the control valve was throttled, which 

had the effect of reducing supply pressure at wider control 

valve openings. By trying different manual valve settings it 

was not difficult to obtain a water temperature rise that was 

linear with steam control valve opening, and also to obtain 

a maximum hot water temperature with the steam control vaive 

fully open that was high enough on discharge (S0-60°C) without 

incidence of boiling in the second heat exchanger. 

Having determined a manual valve setting it had to 

be repeatable, so before each run, after a half-hour apparatus 

warm-up with the water rate set at 7.2 USGPM, the manual 

valve was adjusted until at certain control valve settings 

(7 and 10 volts) the pressure between manual and control 

valves was always the same (72 and 45 psig respectively). 

The ste~control valve steam packing was oiled before 

each run, before application of steam, to prevent sticking. 
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All thermocouple and dp-cell transmitters were 

found to be linear. The temperature conversion for the 

transmitters used was 

T = .278 * (Value in A/D units) - 30.4 (°C) 

3.60 A/D units = 1 Centigrade degree 

Differential pressure across the orifice meter was proportional 

to the square of flowrate and so the flowrate conversion was 

F = .566 * /(Value in A/D units) - 105 (USGPM) 

These calibrations were done before any runs were made, and 

were not rechecked after the runs. While it is true that 

transmitter characteristics change with time, it is a reason­

able assumption that the changes in spans (which are important 

in this work) were insignificant. A/D and D/A units have 

been used in this study: no conversions were made to 

engineering units. 

The interface between : the Data General NOVA 2 minicomputer 

and the apparatus is shown in Fig. 7. 

3.2 Procedure 

In feedforward-feedback control of tank temperature, 

simultaneous measurements are needed of tank temperature 

and cold water flowrate at constant sampling interval. 

Combined feedback and feedforward control action is calculated 

by the computer in a few microseconds and immediately output 

to the steam control valve. As mentioned in the introduction, 



31 


NOVA 2 

D/A channel 

steam 
valve 
transducer 

c9pper constantan thennocouples 

Fig. 7 Minicomputer Interface 

teletype 

disturbance 
water valve 
transducer 

orifice 
meter 

differential 
pressure 
cell 



32 


the process has no significant inherent disturbance, and so 

in order to test a control scheme a simulated disturbance is 

needed. To achieve this a signal is output by the computer 

to the water control valve during each sampling interval. 

Experimental runs were in two groups: identification, 

and control. 

Identification 

Using random numbers and two ARIMA models, the 

computer calculated two stochastic inputs, one to each control 

valve, to be transmitted in between sets of readings of tank 

temperature and orifice meter at a regular sampling interval. 

The length of interval, and the times within the interval of 

transmission of each valve signal, were the same as in control 

runs. For feedforward-feedback control the data was used to 

derive four models: an ARIMA model for the orifice meter 

readings, transfer functions relating the steam valve setting 

and orifice meter to the tank temperature, and a noise model. 

For feedba~k control the same data was used to derive two 

models only for the transfer function and noise models relating 

steam valve setting to tank temperature. 

The models were then used to derive feedforward­

feedback and feedback control algorithms respectively. 

Control 

At every sampling interval, simultaneous readings 

of tank temperature and orifice meter were used in the feed­

forward-feedback algorithm to calculate control action which 
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was immediately output to the steam control valve. Using 

random numbers and the same ARIMA model as used in identifica­

tion, a stochastic input signal was calculat~and sent to the 

disturbance water control valve 7 seconds after each reading 

of tank temperature and orifice meter. 

When testing the pure feedback algorithm, the same 

stochastic input signal was sent to the disturbance water 

control valve, but no use was made of the orifice meter 

readings. 

3.3 Choice of Values for Input Parameters 

Previous studies on the heat exchangers alone had 

shown that a good sampling interval was 5 seconds. The 

stirred tanks added extra capacity to the system, and for this 

work a 10 second interval was found to be suitable. 

A value was chosen for the variance of the stochastic 

input series to each control valve ut based on linearity. 

Since both valves had been shown to be approximately linear 

in the range 2-8 volts, a was chosen at 1.16 volts (59.5u 

A/D units), such that 99% of observations would fall within 

this range (2.58 ou). 

An AR (1) model was chosen to calculate each 

stochastic input series; different ~-values were chosen to 

reflect the apparently different time constants. Then 

(1 - ~B) u = at t 

where at is a white noise sequence, and the desired variance 

of at is calculated from 
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[Ref.1 p.58] 

Box and Jenkins explain that in designing an input 

for a process having slow dynamics (a large o) a similarly 

large ¢ should be chosen to produce a slowly drifting input. 

Thus ¢ = 0.9 was chosen for both inputs, which gave fairly 

good results. For the final identification run, ¢s = 0.8 

was used for the steam valve stochastic input, and ¢w = 0.5 

for the water valve, thinking that its effect on tank tempera­

ture had .a shorter time constant; the latter value was used for 

all control runs too. When results were analysed it turned 

out that the disturbance - tank temperature transfer function 

actually had the same o value as the steam valve - tank 

temperature. 

3.4 Minicomputer Software 

Two routines in assembler language were used for 

identification: ACQUI (the executive) and subroutine RANDO 

which calculated valve signals from random numbers. The 

flow charts in Appendix 1 show the sequence of operations. 

RANDO calls a subroutine RAND in the NOVA program library, 

which calculates a "random" number x in the uniform band 
16 . . 

range 0 to 2 -1, using the algorithm 

- (x * A + C) mod 2**16xn+l - n 

where A = (2**11 + 2**2 + 1) 

and C = 33031 octal 
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The variance of a random variable x from such a 

uniform distribution is theoretically 

2 
= (Range)Var(x) 12 


16
where Range = 2 -1 

RANDO obtains 16 numbers from RAND and calculates 

the average, which is multiplied by 

desired standard deviation of at (cra) 

standard deviation of this average 

to obtain at in A/D units. 

+ a 
t 

ut is added to the mean valve setting to obtain the valve 

action, which is stored for use by ACQUI. 

RANDO performs this operation twice, once for each 

control valve, in less than one millisecond. 

ACQUI records the time, reads the A/D channels, calls 

RANDO to calculate the stochastic inputs to the two valves, 

immediately outputs the steam valve signal via a D/A channel, 

waits 7 seconds and then outputs the disturbance water valve 

signal, waits another 3 seconds and returns to record the time 

again. A subsidiary TASK outputs data from ACQUI and RANDO 

to the teletype and to punched tape for future analysis. 

Al2 was the final identification run, and was used to 

determine models for all feedback and feedforward- feedback 

controllers. 



CHAPTER 4 


MODEL IDENTIFICATION 
AND ESTIMATION 

4.1 Single Series 

After a run of 300 readings, the data on tape was 

converted to cards, and the mean value of each data column 

calculated, to enable subsequent calculation of data about 

mean zero. The orifice meter series and the steam valve 

series were identified using Fortran program IDENT from the 

time series programs in the Department of Chemical Engineer­

ing which calculated the autocorrelation and partial auto­

correlation coefficients at various lags. Both series showed, 

as expected, patterns clearly identifiable as AR(l) processes. 

Program TSHAUS, a least squares regression routine, was used 

to estimate ~ for each process. In the final identification 

run, ¢s for the steam valve included .80 in its 95% confidence 

limits, and since .80 had been used in calculating its input 

series, this value was used subsequently. ~ was .54 for the 

orifice meter reading and was .55 for the series formed from 

the square root of its reading. The confidence limits of both 

the latter series included .SO which had been used for the 

stochastic input to the disturbance water control valve, but 

this fact was not used, since the water valve series was 

presumed unknown. 

Having determined a value of ¢, it was used with an 

36 
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AR(l) model to prewhiten input and output series before 

calculating crosscorrelations at various lags between the 

series. This was done for each input using its respective 

~-value, giving a crosscorrelation pattern for each input, 

shown in Fig. 8 for the final identification run Al2. 

4.2 	 Choice of Disturbance Variable 

Since the orifice meter reading was proportional 

to the square of the cold water flowrate, the reading and 

its square root were separately cross-correlated with the 

tank temperature, and it was found that the square root gave 

slightly more significant crosscorrelations (Fig. 9). There­

fore the square root was chosen as the disturbance variable. 

4.3 	 Transfer Function and Noise Model 
Identification and Estimation 

Firstly the transfer function v-weights were ·obtained 

by multiplying the significant crosscorrelations by the ratio 

of standard deviations of output and input series, as described 

in Chapter 2. 

For feedforward-feedback control, by subtracting the 

product of each input and its respective v-weights from the 

tank temperature, and analysing the resulting series by its 

auto-and partial-autocorrelations, the noise model was identified 

best as an AR model, but possibly as an IMA model (Fig. 10). 

For feedback control, only the product of the steam 

valve setting and its v-weights was subtracted from the tank 

temperature to obtain the noise series, which was identified 
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again 	as an AR or possibly an IMA (013) model (Fig. 11). 

The crosscorrelation patterns were studied and 

suitable transfer function models chosen. The orifice 

meter reading (square root) pattern was clear and a good 

model was chosen immediately, but the steam valve pattern 

was not clear and many models were attempted. For the noise 

an AR(l) model was a clear choice and worked well; an IMA 

noise model was also fitted to permit design of a controller 

to include integral action. The same models were used for 

feedback and feedforward-feedback control, but with different 

parameter values. 

Table 1 shows the results of all regression programs 

to estimate the best parameter values. 

4.4 	 Regression Using Both Orifice Meter 
and Steam Valve Inputs 

The orifice-tank crosscorrelations had the pattern 

of a first order decay and the first significant crosscorrela­

tion at lag 1 was also the biggest. The model 

was chosen for the transfer function. From noise model 

identification, an AR(l) model was the obvious choice. These 

two models were used in testing out different steam valve-

tank transfer function models. 

The first significant crosscorrelation between steam 

valve and tank temperature was at lag 4, but since lag 3 was 
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almost significant, a model with b = 3 was tried first. 

Because the most significant crosscorrelation was at lag 4, 

w and were essential. After lag 4, the pattern approxi­w10 

mated an exponential decay, and so a first order o
1 

was 

chosen. Thus the model 

was chosen this time. Then, using these three models, 

parameters were estimated by regression routine, minimizing 

the variance of the residuals (oa in Table 1). The final o a 

(Model 1) was the lowest ever obtained and the autocorrelations 

of residuals and the crosscorrelations of residuals with 

inputs, showed only one or two peaks that were just significant. 

However, the values of (w - B) were (.142 + .170 B).
0 

w1 

Looking ahead, the controller design would contain the terms 

(.142 + .170 B) ut = 

or + • • • • 

1.2 ut-l + •••. 

This controller design is unstable, and when tested it proved 

to be . so. Therefore a different steam valve-tank transfer 

function model had to be used. 

To avoid using two w-values, the almost significant 

crosscorrelation coefficient at lag 3 was ignored; then lag 4 

had the first and most significant crosscorrelation, after 
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which the pattern approximated to exponential decay. Thus 

the model 

was chosen and used with the previously mentioned 

models for orifice transfer function and for the noise to 

estimate parameters (Model 4). Residual cra was not much 

worse than Model 1 and the residual autocorrelation and cross-

correlation checks in Fig. 12 showed no very significant peaks 

except one at lag 3 in the steam valve-residuals pattern; 

r = .278, which was undesirable, but as we have seen, not3 

easily removable. An additional paramter 0 for a second2 

order steam valve-tank model (Model 3) did not reduce the 

residual variance significantly. The parameters estimated here 

were used in designing the feedforward-feedback controller 

using an AR(l) noise model, (AF controller). 

Using the models derived above, a controller analogous 

to a classical proportional controller was obtained, which 

meant that there might be an offset in controlled variable. If 

an IMA noise model were used, the resulting controller would 

have integral action, which would eliminate offset. 

Although not as good as an AR(l), it was possible to 

fit an IMA noise model, and IMA (013) was chosen arbitrarily 

because that was the best model derived for pure feedback 

control (see below). Regression in Model S left a residual cra 

larger than Model 4, but residual autocorrelation and cross-

correlation checks were almost as good. The parameters estimated 
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here were used in designing the feedforward-feedback controller 

using IMA (013) noise model, (IF controller). 

4.5 	 Regression Using Knowledge of 
the Steam Valve Input Only 

The orifice meter input was ignored. The noise was 

identified previously as an AR(l) model, possible AR(2), 

possible IMA(Ol3). For the same reasons as above, the model 

for the steam valve-tank transfer function was: 

Using this and an AR(l) noise model to estimate parameters in 

Model 6, the residual a was considerably higher than before,
a 

as might have been expected since we had ignored the orifice 

meter input. The residual autocorrelation at lag 17 and 

crosscorrelation with input at lags 1, 3, 8 were all slightly 

significant (Fig. 13). 

AR(Z) was tried instead for the noise, but the 

decrease in a was not much, and so the above two models and a 

their estimated parameters were used in designing a pure feed­

back controller with AR(l) noise model, (AB controller). 

To include integral action in the controller, an 

IMA (013) noise model was tried with the above steam valve-tank 

model in Model 8. The residual oa and correlation checks were 

worse than Model 6, but significantly better than IMA (012) 

and so these models were used to design a pure feedback 

controller with IMA noise model, (IB controller). 
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For both pure feedback and feedforward-feedback 

controllers, the IMA noise model gave a greater residual aa 

than the AR model, and so it might be expected that the 

variance of the tank temperature about the mean value using 

a controller based on an IMA model would be greater than on an 

AR model. However, because it has integral action, the IMA 

model would be expected to cause the tank temp erature to vary 

about a fixed set-point, while the AR model might cause an 

offset. 

Parameter values from the four useful regression 

programs are in Table 1. A striking feature of the parame ter 

table is that the o values for orifice-tank and steam valve­

tank transfer functions are very close. Their confidence 

limits all include a common value, and this fact enabled the 

expression (l-8B) to be cancelled, thus making the design of 

controllers much simpler. 

The physical interpretation is that the time constants 

of the two separate "processes" were the same. 



CHAPTER S 

DERIVATION OF CONTROLLERS 

Here minimum variance feedforward-feedback and pure 

feedback controllers of the position-type are derived, both 

using AR(l) noise models. Velocity-type controllers having 

integral action are derived from IMA noise models in Appendix 2. 

The model for the disturbance variable (square root of the 

orifice meter reading): 

where <Pi 0.55 

is common to all control schemes. 

5.1 	 Feedforward-Feedback Controller Using an 
AR(l) Noise Model (Controller AF) 

Parameter values were estimated in Model 4 (see 

Table 1), and the four required models are: 

(1) Disturbance variable model (1-<PiB) zt 

(2) Disturbance transfer function model 
w Q, 

= z 't-1 1-o B zt-1 
. Q, 

(3) Manipulated variable transfer function model: 

L (B)
2

u't-4 = L (B) ut-4
1 

(4) Noise model 

50 
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Now Yt z't-l + u't- 4 + nt or at the time of 

taking action Yt+4 = z't+3 + u't + nt+4 

To minimise the variance of y, we should set 

- u't = z't+3 + nt+4 

but these are future unknown values, and so we can only use 

their estimates. 
" " 

Set -u't = z't(3) + nt(4) 

" " 
Then Yt+ 4 = u't + z't(3) + E't(3) + nt(4) + ~(4) 

and the error or deviation in controlled variable equals the 

sum of the errors in the two estimates: l: = E' (3) + et(4)t+4 t 

or at time t: ~t = E't_ 4 (3) + et_ 4 (4) 

" To obtain z't(3), expand z't+3 in terms of at: 

w.Q, w at+3 
= = .z't+3 1-o B 2 t+3 1-oB l-¢B.Q, 

= [(o+¢)-8¢B] 
w at+3 + w (l-oB)(l-¢B) at+2 

= [(o+¢)(cS+¢-cS¢B)-8¢] 
w at+3 + w(cS+¢) at+2 + w (l-cSB)(l-¢B) at+l 

2 
= w at+ 3 + w(o+¢) at+Z + w[(o+¢) -8¢] at+l 

{[(8+¢) 2-o¢] [8+¢-8¢B] - (cS+¢) cS¢} 
+ w (l-8B) (1-¢B) a_t 

= 2 2 {f(B)}
w{l+(o+¢)B + [ (cS+¢) -cS¢]B }at+ 3 + w(l- 8B) (l-¢B) at 
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backsubstituting for at: 

= L6 (B) zt+ 3 (unknown at t) + L5 (B) zt (known at t) 

= E' (3) + 
t 

A 

Thus z't(3) = L5 (B) zt and 

A 

Similarly expand nt+ 4 to obtain nt(4): 

at+4 cj>= = +nt+4 1-<j> B at+4 1-<j>B at+3 
n 

<P 2
+= at+4 + <P at+3 1-cpB at+2 

¢3 
= + + cj> 2 +at+4 cj> at+3 at+2 1-cpB at+l 

<P 4 
= + + cj> 2 + <P 3 +at+4 <P at+3 at+2 at+l 1-cpB at 

= (1 + cj>B + <P 2 B2 + <P 3 B3) + 
<P 4 

at+4 1-cpB at 

= L 4 (B) at+ 4 (unknown at t) + L 3 (B) at (known at t) 

Now 
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Rearranging: 

~ L (B) 

nt( 4) = L 

3 
(B) et_4C 4)


4 

L (B)
3 

= L4CBi- (Lt - E't-4( 3 )) 

L (B)
3 

= L (B) (Et - L6(B) zt-1)
4 

The control action is described by: 

-u' 
t 

Dropping the subscript i, such that: 


w o ¢are wi oi ¢i , referring to the disturbance variable; 


wrn om refer to the manipulated variable; 


¢n refers to the noise; 


Substituting in the control equation: 


2= {[(o+¢) -o¢] [0+¢-0¢B]-(0+¢)0¢} 
w (1-oB) z 

t 
+ 

Since orn:C;oi =o, (1-ornB) and (1-oB) may pe considered equal. 

Multiply through by (l-¢~B 4 )(1-oB)/w: 

Wm 4 4 4 4 2 
- ~ (1-¢ B )u = {l-¢nB }{[(o+¢) -0¢] [o+¢-o¢B] - (0+¢)0¢} zt + w n t 

4 Et 2 2 
¢n {1-oB}{--;;- -[l+(o+¢)B+((o+¢) -o¢)B] [l-¢B]zt_ 1 } 



54 


Some terms will cancel out, but at this stage it is simpler 

to substitute values: 

4 2
= {l-.06SB }{ [1.38 -.457] [1.38-.457B] 1.38 x .457} zt + 

2 2
.065(1-.83B) {-1.6 Lt -[l+l.38B + (1.38 -.457)B ] [1-.SSB]zt-l} 

= (-.104 + .0865B) Lt+ (l.36-.725B) zt 

+ 19.9 [(-.104+.0865B) Lt+ (l.36-.725B) zt] 

ut = .065 ut_ 4 -2.07 Et+ 1.71 Lt-l + 27.2 zt - 14.4 zt-l 

(Controller AF) 

This controller and the next one are both position-

type controllers, having no integral action, and are not con­

vertible to velocity algorithms. u L z are deviation variables 

and for implementation have to be added to the known steady-

state physical values of mean steam valve setting, mean tank 

temperature, and mean disturbance. 

Calculation of the theoretical variance of the controlled 

variable when the controller is in action: 

= + 



SS 


Var at is the variance of the residuals at after fitting a 

model to the disturbance series (square root of orifice meter 

reading), which we did in Chapter 4 before crosscorrelating 

the disturbance and tank temperature. Var at is the variance 

of the residuals at after fitting both transfer function models 

and the noise model to all series in model 4 (see Table 1) 

.39[1+1.9+2.09] Var at +(l+.255+.065+.0166) Var at 

= l.95xl.487+1.34x2.617 = 6.4 

at = 2.53 



56 


5.2 	 Feedback Controller Using an AR(l) 
Noise Model (Controller AB) 

Parameter values were estimated in Model 6 (see 

Table 1), and the two required models are: 

(1) 	 manipulated variable transfer function model 


L (B)
2u' 	 = t-4 	 ut-4 = L (B)
1 

(2) noise model: 

= a 
t 

or, at time of taking action 

u't + 	nt+4Yt+4 

To minimise the variance of yt, we should set -u't = nt+ 4 

Since the future noise value must be estimated, we set 
,.. 

-u't = nt(4). 

,.. 

Then Yt+ 4 = u't + nt(4) + et(4) and et(4) will be equal 

to the error or deviation in controlled variable Et+ 4 . 

4 
at+4 2 3 <f>.n 

Expand = = a +~ 	 a +~ a +~ a + ant+4 1-<t> B t+4 ~n t+3 ~n t+2 ~n t+l 1-<t> B t 
n 	 n 

<f> 4 

= (l+~nB+~~B2+~~B3) at+4 + 1-~nB at 

= L4 (B) at+ 4 (unknown at t) + L3 (B) at (known at t) 

,.. 
If nt(4) = L3 (B) at and et_ 4 (4) = L4 (B) at 
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The control action 	is described by: 

L (B) L (B)
2	 3 

---~-u' ­
t L (B) ut = L (B) Et 

1	 4 

Substituting: 

ut = .336 ut_ 4 - 12.3 Et + 10.4 Et-l (Controller AB) 

Like the previous controller, this is a position-type which 

requires the knowledge of mean values of steam valve setting 

and tank temperature for implementation. 

Calculation of the theoretical variance of the controlled 

variable when the controller is in action: 

= (1 + .76B + .578 B2 
+ .439 B3) at= ~(B) at 

Var Et = [ (~ 2 ) Var at 

Var at is the variance of residuals at after fitting transfer 

function and noise models to the manipulated and controlled 
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variable series in Model 6. 

Var = (1 + .578 + .334 + .192) VarLt at 

= 2.1 x 3.751 

= 7.88 

= 2.81al: 

Controllers using IMA noise models are derived in Appendix 2. 



CHAPTER 6 


IMPLEMENTATION OF CONTROLLERS 

6.1 Apparatus and Procedure 

The apparatus was set up as for the identification 

runs and experimental conditions were adjusted to be as close 

as possible to the conditions prevailing during identification. 

The steam control valve packing was well oiled and the valve 

actuated several times before opening up the steam supply. 

The constant hot water flowrate was set at 7.2 USGPM, checked 

by rotameter and rechecked before starting a run. The manual 

steam valve was set and the pressure between it and the 

control valve was checked at the same control valve settings 

as described in Chapter 3. The cold water temperature was not 

under our control, and if it was different from the identifica­

tion run a corresponding change in setpoint was made; but this 

was not critical since each controller would settle the tank 

temperature to its own mean value, and our criterion of 

performance was variance about this value. The apparatus was 

allowed to warm up for at least 30 minutes before each run. 

The disturbance signal to the water control valve was 

calculated from the same model and variance as for the 

identification run. Controller performance was measured when 

the "random" number sequence (which could be determined) was 

(PREV 1) the same as, and (PREV 2, PREV 3) different from 

that used in the identification run. (A different "random" 

59 
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number sequence is generated when a different initial number 

is specified.) The timing of output of the disturbance signal 

in control runs was the same as in the identification run: 

7 seconds after reading the A/D channels. Each run had 300 

observations (PREV 1), or 160 observations (PREV 2, PREV 3). 

6.2 Minicomputer Software 

The two programs ACQUI and RANDO used in the identifica­

tion run were modified slightly for the control runs and a 

third program AR/IMCON was written to calculate control action. 

Immediately after reading the time of day and the A/D channels, 

ACQUI called the controller · subroutine AR/IMCON to calculate 

control valve action based on the latest readings, whereupon 

the result was immediately output to the steam control valve 

by ACQUI. Then ACQUI called subroutine RANDO to calculate 

the disturbance signal from "random" numbers as in the 

identification run. After a 7 second wait this signal was 

sent to the water control valve by ACQUI. After a 3 second 

wait ACQUI returned to read the time of day and A/D channels 

again. The calculation times of RANDO, AR/IMCON were each 

less than one millisecond. 

Subroutine ARCON used a position-type algorithm 

suitable for both feedforward-feedback and pure feedback 

controllers derived using an AR(l) noise model: 

ut = al ut-1 + a2 ut-2 +. • • .bo L:t + bl L:t-1 +. • • .+ co 2 t + cl 2 t-l + • • · • 

For feedback control the z-coefficients are all zero. 
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Subroutine IMCON used a velocity-type algorithm 

suitable for both feedforward-feedback and pure feedback 

controllers derived using an IMA noise model: 

The final term is a multiple of the latest deviation in 

disturbance variable, which is produced in the derivation; 

in practice this term is not very large. Again for feedback 

control the vz- and z-coefficients are all zero. 

The flow charts of ARCON and IMCON are very similar 

(Appendix 1). ARCON is described here; the flowchart shows 

where IMCON differs. 

The setpoint, the orifice meter dp-cell transmitter 

reading under zero flow, the mean value of the square root 

of the net orifice meter reading, and the mean valve signal, 

were all calculated from identification data and specified in 

ARCON: (SETPT, NOFLO,ZAV16,MOUT). 

When called, using A/D readings from ACQUI, ARCON 

calculates the latest deviations in tank temperature (Et) and 

in the square root of the net orifice meter reading, and 

stores them in a variable list. The square root is calculated 

by a library subroutine: ISQR. ARCON has only one variable 

list containing 5 previous ut values, Et and 4 previous Et 

values, zt and 4 previous zt values. There is one coefficient 

list. 



62 


Pointers are set to each list, and a counter set 

to the number of variables. 

A cyclic procedure calculates the product of each 

variable and its coefficient and adds it to a double precision 

sum, which is then divided by 1,000* to obtain ut. ut is 

added to the mean valve signal to obtain the valve signal, 

which is then restricted if necessary between 0-10 volts. 

A back-calculation gives ~he actual ut and stores it in the 

variable list. The program then returns to ACQUI. 

6.3 Test Runs 

ACQUI, RANDO, were used with ARCON to test both feed­

forward-feedback, and pure feedback controllers derived in 

Chapter S, and with IMCON to test both controllers derived in 

Appendix 2. A fifth run was done with the steam valve set 

at a constant 5 volts, to test the apparatus with no control. 

In all 5 cases the "random" number sequence used in calculating 

the signal to the disturbance water valve was the same as in 

the identification run. Results of the 5 test runs are in 

Table Z(a). 

The criterion of performance adopted was the standard 

deviation of the tank temperature about its mean, which with 

feedforward-feedback control was smaller than with feedback 

control, which was smaller than with no control. 

The largest standard deviation of the steam control 

For the reason, see note on Flowchart.* 



Run No. 

Controller type 

Noise model 

Bl 

Forward-Back 

AR(l) 

B2 

Back 

AR(l) 

B3 

0 

B4 

Forward-Back 

IMA(Ol3) 

BS 

Back 

IMA(Ol3) 

Setpoint 

Average tank temp. 

Standard deviation al: 

230 

229.52 

2.48 

225 

224.89 

2.87 

226.95 

3.46 

240 

239.56 

2.34 

240 

240.08 

2.71 

Valve setpoint 

Average valve setting 

Standard deviation au 

270 

272. 65 

34.9 

270 

270.11 

23.5 

(256) 

0 

270 

255.31 

39.8 
: 

270 

254.32 

49.9 

TABLE 2(a) Results of controller test runs on different days: 300 readings per run. 
(PREV 1 was used) 

Temperature in A/D units: 3.60 A/D units = 1 Centigrade degree 

Valve setting in D/A units: 51 D/A units = 1 Volt 
t.N °' 



Run Section 

Controller type 

Noise model 

1 

Back 

IMA(Ol3) 

2 

Forward-Back 

AR(l) 

3 

0 

4 

Back 

AR(l) 

5 

Fonvard-Back 

IMA(013) 

6 

0 

Setpoint 

Average tank temp. 

Standard deviation ar 

235 

234.82 

2.70 

235 

232.84 

2.16 

234. 71 

3.11 

235 

233.51 

2.62 

235 

234.65 

2.27 

232.66 

3.21 

Valve Setpoint 

Average valve setting 

Standard deviation au 

270 

290.81 

45.2 

270 

274.47 

35.0 

(270) 

0 

270 

274.49 

27.8 

270 

281. 66 

41. 7 

(270) 

0 

Run section 

Controller type 

Noise model 

7 

Forward-Back 

AR(l) 

8 

Forward-Back 

IMA(Ol3) 

9 

Back 

AR(l) 

10* 

0 

11* 

Back 

IMA(Ol3) 

12 

0 

Setpoint 

Average tank temp. 

Standard deviation or 

235 

231. 37 

2.43 

235 

234.92 

2.32 

235 

232.72 

2.96 

233.96 

3.50 

235 

234.99 

3.36 

231.33 

3.27 

Valve setpoint 

Average valve setting 

Standard deviation a u 

270 

275.42 

35.7 

270 

288.05 

37.4 

270 

276.82 

22.l 

(270) 

0 

270 

300.64 

40.9 

(270) 

0 

TABLE 2(b). Results of continuous control run B6: 160 readings per section (Sections 1-6 used 
PREV 2; Sections 7-12 used PREV 3). 
*N.B. Sections 10 and 11 were adversely affected. °'+::­
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valve setting was SO D/A units or 1 volt, which means that 

more than 99% of valve actions were within the linear range 

of the valve. Therefore it was not necessary to constrain 

the valve action, which would have called for much more 

complicated theory. 

The above tests both suggested that the controllers 

were working properly. However since the 5 runs had been 

done on different days it was possible that unmeasured external 

disturbances (e.g., water pressure or temperature, steam 

pressure, or ambient temperature) could have influenced the 

results, and so a sixth run was planned to test all controllers 

again, this time using two different "random" number sequences 

in calculating the disturbance water valve action. 

6.4 Final Run 

AR(l) 
noise 
model 

IMA(Ol3) 
noise 
model 

v 
2 

f eedforward 
no feedback feedback 
control control control 
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Twelve sections were planned, as shown in the 

block diagram. The first 6 sections were done using PREV 2 

(the second "random" number sequence), and then 6 sections 

using PREV 3 (the third sequence). Within each group of 

six the order was picked out of a hat: 

PREV 2 PREV 3 

Each block was a half hour long, containing 180 readings of 

which the first 20 (3 min. 20 secs.) were discarded, leaving 

160 readings for analysis. 

The programs ACQUI, RANDO, AR/IMCON were modified to 

permit a continuous run through all the above combinations. 

The constant hot water flow rate had to be adjusted once or 

twice, but otherwise all went well until the program stopped 

unexpectedly during section 10 (regime: no control) due to 

lack of storage space. It was restarted again to complete 

the run, but the results of sections 10 and 11 were adversely 

affected. Results of the other sections were good, and are 

tabulated in Table 2(b). 



CHAPTER 7 


RESULTS AND DISCUSSION 

Tabulated results have been transferred to 

graphs (Fig. 14) which may be used to compare the following: 

(1) The effect on controller performance of a 

different "random" number sequence in calculating the dis­

turbance water valve signal. 

(2) The standard deviation of the controlled variable 

under no control, pure feedback control, and feedforward­

feedback control. 

(3) The performance of controllers derived using an 

AR(l) noise model and using an IMA noise model. 

(4) The performance of controllers with their theore­

tical performance. 

(5) The standard deviation of the manipulated variable 

for different controllers. 

The graphs for the third "random" number sequence 

(PREV 3) have some starred points, which are the adversely 

affected results of sections 10 and 11 in the final run. 

The dotted line shows a trend which has been inferred from 

the previous graphs. 

Taking the above points in order: 

(1) If the model form and model parameter values are 

the same, the use of different random numbers in calculating 

the disturbance signal in different runs should cause no 

6f7 



4.0 

10 

3.0 

2.0 oi: 

1.0 

6~ 

40 

30 

20 

Test 
Runs 
PREV 1 

10 

0 
0 B F­

40 

30 PREV 2 

20 

10 

Continuous
0 Rune- B F 

40 

30 

PREV 3
20 

0 --B-- F­

gu = 	 standard deviation of manipulated 
variable D/A units; 51 units=l volt 

ai: = 	 standard deviation of controlled 
variable A/D units; 3.6 units = 1 
centigrade degree 

Fig. 14 
0 No control: open loop 

B Pure feedback control 

F Feedforward-feedback control 
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4.0 

3 .. 0 
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1.0 

0 
i} 

4.0 

3.0 

2.0 . 01: 

LO 

B 


·B F 

(IMA) 

* 

~adversely affected data 

-(} -B F 

4.0 

3.0 

Theoretical 
2.0 0 B 

OE 

0 
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difference in the standard deviation of the controlled 

variable, provided that the random numbers are drawn from 

the same distribution. From the graphs it may be seen that 

the magnitudes of aE and the trend between controller-types 

are not very different between runs using different random 

number sequences, which bears out the above assertion. 

(2) In all graphs, aE for the feedforward-feedback 

controller is smaller than for the pure feedback controller, 

which demonstrates the better performance of the feedforward­

feedback controller. This is true for controllers derived 

using both AR(l) and IMA noise models. 

The improvement from feedback to feedforward-f eedback 

controller appears to be about as much as from no control to 

feedback controller. The amount of improvement in either 

step is not great, because of the lack of precision in fore­

casting either noise or disturbance 30-40 seconds ahead. 

(3) When fitting models by regression, the fits using 

IMA 	 noise models had an appreciably larger residual variance 

2 cra than had the fits using AR(l) noise models, which suggests 

that the former should control with a larger aE than the 

latter. However this is not supported by results of runs 

using the first and second "random" number sequences: al: 

values for controllers using AR(l) or IMA noise models are 

very close and neither is better than the other. 

(4) Theoretical standard deviations in the controlled 

variable have been calculated at the end of the derivation 

of each controller. Experimental estimates of model parameters 
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contain errors and therefore theoretical standard deviations 

calculated from these estimates will be expected to differ 

from the experimentally obtained standard deviations. They 

have been pl9tted in a graph under the experimental graphs. 

The reduction in oL from no control to feedback to feed­

forward-feedback control follows a trend similar to the 

experimental. Theoretically aL is bigger using an IMA noise 

model, which is not borne out in practice. It is interesting 

to note that in almost all cases, the controller performance 

as measu~ed by aL is better in practice than in theory, but 

this observation is most likely not statistically significant. 

(5) The standard deviation of the manipulated variable 

is rather different for different controllers, as may be 

expected from the widely differing algorithms. 

(6) The preceding discussion of results has been based 

entirely on aL the standard deviation in controlled variable 

about its ·mean value. Another basis for comparison is the 

difference between this mean value and the setpoint, which 

is tabulated for different controllers in Table 3. The 

differences are smaller for controllers using an IMA noise 

model, which demonstrates the effect of the integral action. 
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Noise model AR(l) IMA (013) 

Controller type Forward-Back Back Forward-Back Back 

Runs Bl-BS - • 48 - . 11 - . 44 +.08 

B6 Sections 
1-6 -2.16 -1. 49 -.35 - . 18 

B6 Sections 
7-12 -3.63 -2.28 - . 08 - . 01 

TABLE 3 	 Difference between Setpoint and 
actual mean tank temperature 
(A/D Units) 

3.60 A/D 	 Units 1 Centigrade degree 



CHAPTER 8 


CONCLUSIONS 

The object of this study was to demonstrate the 

use of time series analysis in designing a feedforward-feed­

back control scheme to compensate for an unavoidable, but 

measurable, disturbance to a system. A physical process 

having a manipulated variable capable of affecting the controlled 

variable was subjected to a repeatable simulated external 

disturbance. Since the disturbance affected the output before 

the manipulated variable did, it was necessary to forecast the 

effect of future disturbance values. Stochastic inputs to the 

manipulated variable and disturbance variable produced data 

from which models describing the relationship of each with 

the controlled variable were identified. From these models 

was derived a control scheme which made use of the disturbance 

readings, and also a scheme which did not: feedforward-feed­

back and pure feedback schemes respectively. Implementation 

of the feedforward-feedback controller reduced the variance 

of the controlled variable about its mean value more than 

did the pure feedback controller, demonstrating the advantage 

of feedforward control, and successfully testing the Box­

Jenkins-MacGregor theory. 

The reduction in variance of the controlled variable 

was in fact not much; 15-20% reduction in aL was achieved in 
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each of the two steps: from open loop to feedback control, 

and from feedback to feedforward-feedback control. This 

was because disturbance values had to be forecasted far 

ahead: had the forecast been shorter, greater improvement 

might have been obtained. The simple model chosen for the 

effect of the manipulated variable was only approximate: 

had the real process been less complex then its representative 

model might have been a closer fit. The magnitude of the 

effect of disturbance on the controlled variable was not 

great (oL:C::t 1°C): a bigger effect could have been chosen 

and still been mostly within the linear range of the control 

valves. 

It should be noted that the time constant for the 

effects of both disturbance and manipulated variable was 

the same. 

Time did not allow the comparison of the method 

used with 2 other methods which would have been interesting. 

Pulses and step changes in input and their effect on the 

output could have provided data to be analysed by classical 

methods to yield models usable in controller design. 

Secondly, theoretical models could have been derived to 

describe the effect of each input on the output, and the data 

obtained in this study used with a regression routine to 

obtain model parameters. 

In this study it turned out that the variance in 

manipulated variable did not exceed the linear range of the 

control valve, and so it was not necessary to constrain the 
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manipulations. However, MacGregor [3] has extended the 

theory deriving a feedforward controller by time series 

analysis to include the constraint of the manipulated 

variable by a state variable technique. 
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APPENDIX I 

FLOWCHARTS FOR MINICOMPlITER SOF1WARE 
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Program ACQUI (Executive) 

Enter: Set up TASK to print out data 

>Read time of day and store it in data block 

Were all A/D channels read last time? _N_o__>Error 
Yes + 

Reset to first A/D channel 

Call A/D channel reading routine 
Read 4 A/D channels and store readings 
in data block and in program 

Receive message saying A/D channel reading is finished 

Identification Version: Call subroutine RANDO } to calculate steam 
Control Version: Call subroutine AR/IMCON valve signal 

Identification Version: Send signal from RANDO } via D/A channel 
Control Version: Send signal from AR/INCON to steam valve 

Call subroutine RANDO to calculate water valve signal 

Wait 7 seconds 

Send signal from RANDO via D/A channel to water valve 

Wait 3 seconds 

TASK every 10 d prin OU t a ine of d t on t 1secon s . t a a e e t)]2_e: 

4 A/D channelsTime RANDO or AR/IMCON I RA.t'IDO 
of Steam Valve Water Valve \fank HE (2) HE (1)/ dpDay v Celltemperatures Action at ut Actionat ut 

Seconds A/D Units D/A Units D/A Units 

Print out lags 30 seconds behind readings. 


Calculation times of RANDO, AR/IMCON were each less than 1 millisecond. 
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Program 	RANDO 

(Calculates valve signals from random numbers.) 

External: Library subroutine RAND which calculates "random" numbers. 

Enter: Store retuni address 
Set N = -2 for steam valve calculation 

------.).-Get S ''random'' numbers by calling RAND and discard them 
Set SUM = 0 and M = 16 

-----~> Get a ''random'' mnnber from RAND 

Divide it by 16 

Add the result to SUM 

Decrement M
non i Zerozero 15From SUM subtract mean 2
Check sign; make positive if necessary; store sign 
Get desired standard deviation of at oa 
Multiply SUM by oa 
Divide result by standard deviation of SlJI'1 or 7 at 
Round up or down and restore sign 
Store at in program and in data block 
Get previous value of Ut 
Check sign; make positive if necessary; store sign 
Get value of ¢ * 100 
Multiply Ut-1 by ¢ * 100 
Divide by 100 
Round up or down and restore sign 
Ut = ¢ * Ut-1 + at 
Store Ut in program and in data block 
Get mean valve setting VBAR and add it to ut 7 Valve action 
Store valve action in program and in data block . 

N=-l Increment N 
--~-~~~First cycle was for steam valve 

Second cycle was for water valve 
"- N=O 

Retuni to main program ACQUI 

N.B. 	 The above is the version used in Identification. 
In the control version, both cycles are completed, but 
the steam valve cycle values are neither used for 
output nor stored in the data block nor print out. 
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Program ARCON/IMCON 

(Calculates a steam valve signal using a position algoritlun (ARCON) or 
a velocity algoritlun (IMCON), for feedforward-feedback or feedback control.) 

External: Library subroutine .ISQR for the square root of an integer 

Enter: Store return address 
Get latest reading of tank temperature from ACQUI 
Subtract SETPOINT + ~t 
Store 	result in variable list 
Get latest orifice meter reading from ACQUI 
Subtract reading at zero flow (NOFLO) 
Restrict result to the range 0 to + 127. 
Multiply by 256. 
Call library subroutine .ISQR to find latest square root; 
store 	result. 
Subtract mean value of square root ZAV16 + zt 
Store 	result in variable list 

Get latest and previous square root 
Store latest square root in location for previous square root 
for use after next interval 
Subtract previous from latest square root + V z 
Store result in variable list l IMCON only} t 

Set 2 pointers to variable list and 1 pointer to coefficient list 
Set sum of (variable * coefficient) to zero 
Set N to the number of variables in control algorithm 

~~~~--Get a variable. Re-store it do~m one location for use after next 
interval. 
Get coefficient of variable and check if it is zero 

tiply variable by coeff~c~~nt, preserving sign 
result to or subtract from previous sum and store new sum 

last variable?Decrement N:-
+ No l 	 Yesl 

~---- Decrement variable and coefficient pointers 
Divide sum of (variable x coefficient) by 1000, rounding up 
or down, preserving sign 

..L 

l;Calculated Vut J 
Get previ~us act~al value ut-l lIMCON ARCON calculated ut 

ut - ut-1 vut 

Get mean valve signal MOUT; add calculated ut + Valve signal 
Restrict signal 0-10 volts and store value in program and 
in data block 
Subtract mean valve signal MOUT + actual Ut 

Get previous actual Ut-1 an in its location store actual Ut 
for use after next interval 

actual Vut = actual Ut 	 IMCON only 

Store result in varia le list 
Return to main program ACQUI 

NB: 	 ARCON variables are 

IMCON variables are 
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ARCON/IMCON 


Notes: 

(1) SETPOINT, ZAV16, and MOUT were specified after 

calculation from the identification data. 

(2) 	 To obtain high enough precision using integer 

calculations, ut or vut' and rt coefficients 

were multiplied by 1000 before inclusion in 

AR/IMCON. Hence the need to divide the sum of 

(variable * coefficient) by 1000. 

zt or vzt coefficients were only multiplied by 

62.5, because the variable zt or vzt itself 

contains a factor of 16 introduced to obtain maxi­

mum precision from the square root subroutine. 

(3) 	 Thick lines enclose sections where IMCON differs 

from ARCON. 
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APPENDIX 2 

DERIVATION OF FEEDFORWARD-FEED­
BACK AND FEEDBACK CONTROLLERS 

USING IMA NOISE MODELS 

(For the derivation of controllers using AR(l) noise models, 

see Chapter 5.) 

AZ.l Feedforward-Feedback Controller using 
an IMA Noise Model (Controller IF) 

Parameter values were estimated in Model 5 (see 

Table 1). Three out of four required models are the same 

as used with the AR(l) noise model: 

(1) Disturbance variable (square root of orifice meter 

reading) model: 

(2) Disturbance transfer function model 

wi
z' = t-1 1-8 B

i 

(3) 	 Manipulated variable transfer function model 

L (B)
2u' = t-4 	 ut-4 = L (B)
1 

(4) The noise model 1s different: 
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As in Chapter 5, the general expression for Yt+ 4 is: 

" 	 " 
= u' + z't(3) + s't(3) + nt(4) + et(4)t 

The control action 

" " 
-u' t = z' t (3) + nt(4) 

and the error or deviation in controlled variable 

When z't+ 3 is expanded in terms of at' we obtain expressions 

for 

" 
z't(3) = 	L 5 (B) zt and s't_ 4 (3) = L6 (B) zt-l 

which are identical to those in Chapter 5 (feedforward­

feedback controller). 
" 

Expansion of nt_ 4 to obtain nt(4) is different: 

2 3( l-6 B-6 	 B -6 B ) 1 2 3 
1-B 

c1-0 1 -e 2-0 3) 
1-B at+l 

= at+4+ 	 (l- 9 1)at+3 + (l- 9 1- 62)at+z+Cl- 9 1- 62- 63) at+l 

(1-61-82-83) 
+ 1-B at 
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= 14 (B) at+ 4 (unknown at t) 

Rearranging: 

L (B) 
= 1

3 
(B) (Et - c't-4( 3))

4 

1 (B) 

= 1 
3 

(B) (Et - 1 6 (B) zt-1)
4 

The control action is again described by 

-u' 
t 

Substituting parameters obtained in Table 1 (Model 5), and 

dropping the subscript i such that w = wi 0 = 0 .e, 

- w ~ 
~-m- u = w{[(o+¢)'"'-0<1>] [o+cp-o¢B]-(o+cp) ocp} z + 

1-o B t 1-cB t 
rn 

Since om :a: o.e, = o, the express ions (1- omB) and (1- oB) may be 
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considered equal. (1-B) in the denominator of the feedback 

part will give integral action. We will derive a velocity 

algorithm. 

Multiply through by 

Wm 	 2 3 
- -- [ 1 + ( 1-·e ) B+ ( 1-e -e ) B + ( 1- e -e -e ) B ] vu = 

w 1 1 2 1 2 3 t 

Substituting values obtained from Table 1 (Model 5): 

1 2 3 2 3
[1~703B+.445B +.267B ]Vut = {l+.703B+.445B +.267B }{[1.8-.435] [l.34-.435B]21 . 75 

-	 l.34*.435} vzt 


2
+ {l-.79B} .267{-1.543 Lt-[1+1.34B+(l.8-.435)B	 ] [1-.SSB] zt-l} 

When the right-hand side is multiplied out, and terms in zt are 

re-expressed as terms in vzt (plus a residual term in zt), it 

becomes: 

+ 	29.2Vzt+2.42Vzt_1-.76vzt_ 2-2.26Vzt_ 3-2.02zt 

(Controller IF) 

In this velocity algorithm the required change 

in steam valve action is expressed in terms of previous changes 
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in valve action, changes in disturbance variable, the latest 

deviation in disturbance variable, and deviations in controlled 

variable. The deviations in controlled variable will provide 

"integral" action and ensure that control is about the set-

point. No knowledge of a mean valve setting is required. 

The mean disturbance is needed only for the term in zt' whose 

coefficient is small compared with the vzt coefficients, and 

so the mean disturbance need be only approximately known. 

Calculation of the theoretical variance of the controlled 

variable when the controller is in action: 

2 . 2 3 
= -.648[1+1.34B+l.365B Jat-l + [l+.703B+.44SB +.267B ] at 

Var Et = L(t,: 
2
) Var at-l + L (1JJ 

2
) Var at 

= 1.95 * 1.487 + 1.763 * 2.933 

= 8.07 


= 2.84
or 

A2.2 Pure Feedback Controller using an 
IMA Noise Model (Controller IB) 

Parameter values were estimated in Table 1 (Model 8), 

and the two required models are: 

(1) 	 Manipulated variable transfer function model: 

L (B)2u' = = L (B) ut-4t-4 1 
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(2) Noise model 

As in Chapter S, the equation for Yt+ 4 when the disturbance 

is ignored is: 

u' +Yt+4 = t 

The control action 

and et(4) is the error or deviation in controlled variable Et. 

Expanding nt+ 4 in terms of at: 

(1-e 1B-e 2B2-e 3B3) (1-e -e B-e B2)
+ 1 2 3 

nt+4 = 1-B at+4 = at+4 1-B at+3 

(1-e -e -e B)1 2 3-- at+4 + c1-e1) at+3 + 1-B at+Z 

(l-8 -8 2-e 3) 
- a + (l-e1) at+3 + (1-81-82) at+2 + 

1
- t+4 1-B at+l 

(l-8 -e -8 )1 2 3 
1-B 

= 

L (B)
3Rearranging et-4(4) = -=--1-=(B,..-.,-) 
4 
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and the control action is described by: 

-u' 
t 

Substituting parameters obtained from Table 1 (Model 8) 

(1-8 -8 -8 )
1 2 3 

2 3
[1-B] [ 1 + ( 1- 8 ) B+ (1- 8 - 8 ) B + ( 1- 8 - 8 - 8 ) B ] 

1 1 2 1 2 3 

(1-B) in the denominator will give "integral" action. We 

derive the velocity algorithm. Multiply through by 

- [1-B] [1-o B] [l+(l-8 )B+(l-8 -8 )B2+(1-e -8 -8 )B]3 /w
m 1 1 2 1 2 3 m 

(l-8 -8 -8 )(1-o B)
1 2 3 m 

Substituting values obtained from Table 1 (Model 8): 

.482 (1-.85 B) E.0262 t 

Finally 

vut = -.944vut_1-.725 vut_ 2-.482vut_3-18.4Et+l5.6Et-l 


(Controller IB) 


The change in manipulated variable is expressed only 

in terms of previous changes in manipulated variable and of 

the deviation in controlled variable. The latter provides 

"integral" action, ensuring that control is about the set-

point. The mean steam valve setting is not required. 

Calculation of the theoretical variance of the controlled 



88 

variable 	when the controller is in action: 

Lt = et-4(4) 


2 

= [l+(l-8 1) B + (l-e 1 -e 2)B + (l-e 1 ~e 2 -e 3 )B 3 ] at 

2 3 
= [ 1 + . 9 4 4B + . 7 2 5 B + . 4 8 2 B ] at 

Var Lt 	 = EC1JJ 2 ) Var at 


= 2.646 3.98
* 
= 10.53 


OL = 3.25 


(Position-type controllers are derived using AR(l) noise 

models in Chapter 5.) 
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APPENDIX 3 

PROCESS DEVELOPMENT AIDED 
BY CROSS-CORRELATION 

The equipment used in this work was a general 

purpose laboratory apparatus and some development work was 

done before carrying out the final identification run Al2. 

The key diagnostic tools used in this were the two input­

output crosscorrelation patterns, and their use is lllustrated 

here in studying three practical aspects. 

(1) The cross correlation pattern between steam valve 

and tank temperature for some of the early identification 

runs showed reasonable crosscorrelations at lags 40 and 50 

seconds, but the most significant one was at 100 seconds. 

To trace the cause, two extra diagnostic checks 

were done: one was to crosscorrelate the steam valve setting 

with the thermocouple readings at the outlets from heat 

exchangers (1) and (2). These are shown together with the 

crosscorrelations between the steam valve and tank temperature 

in Fig. 15. 

For HE(l) there was one large crosscorrelation at 

a lag of 10 seconds, and very little else of significance. 

For HE(2) there were many crosscorrelations of the same order 

of significance between lags 40-200 seconds. Much of this 

was due to the hold-up volume between exchangers, but it was 

also thought that if condensate were not draining fast from 
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the second exchanger it might be having an aggravating effect. 

The second diagnostic check was to crosscorrelate 

the two "random" number sequences calculated from RAND as 

shown in Fig. 16. there were a few just-s ignificant corre­

lations which might have been transferred to the two stochastic 

input series and contributed to the undulating pattern between 

steam valve and tank temperature; however the method of 

obtaining "random" numbers was not altered since correcting 

condensate back-up appeared more fruitful. 

Condensate was thought to be backing up into the 

second heat exchanger and so the thermodynamic trap was 

replaced by a continuously operating bucket - type trap posi­

tioned further away, which resulted in a definite change, as 

shown in Fig. 15. The crosscorrelation at 100 seconds lag 

was still present but much less significant, while others 

became more significant. 

(2) Initially the simulated disturbance signal was out­

put immediately after the reading of the A/D channels. When 

the orifice meter was read 10 seconds later, the disturbance 

had already caused a change in tank temperature, as shown 

by a crosscorrelation between orifice meter and tank tempera­

ture at lag zero (Fig. 17). The inference was that in this 

situation we might as well not read the orifice meter because 

the information is already contained in the tank temperature: 

i.e., feedforward control would give little advantage. So 

the outputting of the disturbance signal was delayed 7 seconds 

after reading the A/D channels. When the A/D channels were 
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again read 3 seconds after the disturbance signal, the 

orifice meter had already reacted but the tank temperature 

had not, as shown in Fig. 17. The steam valve signal was 

still sent immediately after reading the A/D channels. 

(3) Data was collected from two runs with the hot 

water flow rate set at 4.8 USGPM and 7.2 USGPM. (In the 

latter run the manual steam valve was thro t tled to a lesser 

extent; in both runs the steam control valve was linear.) 

Fig. 18 shows the effect of this process variable on each of 

the input-output cross correlation patterns. 
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