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of a nucleon in a nucleus is examined for the two-pion part 

of the nucleon form factor. The nucleon is assumed to be 

bound in a harmonic oscillator potential and also coupled to 

the pion field through the Chew-Low type interaction. In 
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that given in the static Chew-Low theory, as expected, while 
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CHAPTER I 

INTRODUCTION 

The experimental values of the magnetic moments of 

3 3He and H are known very accurately. However, a clear 

discrepancy has long existed between the experimental and 

theoretical values of the magnetic moments of the tri-nucleon 

systems. In this work we attempted to explain this 

discrepancy. 

Up to the time that this work was begun in early 

1972, the theoretical value of the isovector magnetic 

moment of the tri-nucleon systems was from 6 to 8% below the 

experimental value. The theoretical value is composed of 

several factors. One is the expectation value of the one-

body magnetic moment operator. However, from the expression 

for this contribution it becomes apparent that this 

expression cannot account for the experimental value. In 

fact, this was the first clear evidence that exchange 

current effects give an important contribution to the 

magnetic moment calculations. The exchange current 

contribution had been investigated in considerable detail, 

but a discrepancy still remained. 

We thought that the electromagnetic structure of a 

bound nucleon might be appreciably different from that of a 

1 
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free nucleon. To examine this effect of binding, we inves­

tigated the two pion process shown in Fig. 8 (p. 68), which 

gives the two pion contribution to the long range part of 

the charge and magnetic moment distributions of a nucleon 

and is believed to be the most important contribution. 

First we calculated the charge and magnetic moment 

distributions for a free nucleon, and then we considered 

two different cases. We took the nucleon as bound in the 

intermediate state by an effective potential V(S), and 

calculated the corrections to the charge and magnetic moment 

densities of the free nucleon. However, this analysis, 

where we took the static approximation and failed to 

consider the initial nucleon wave function renormalization 

led, we now believe, to an incorrect result. We, therefore, 

proceed to consider the case where the nucleon is bound by a 

harmonic oscillator potential, and we take account of 

nucleon recoil. We find that the effect of binding on the 

electromagnetic structure of a nucleon is very small. For 

example, the magnetic moment of a proton becomes only 1~2% 

larger when it is bound in the triton. 

The form of this work is as follows: In Chapter II 

we start by reviewing what is meant by the electromagnetic 

structure of a nucleon and how we can experimentally 

determine if a particle has such a structure. In Chapter III 

we describe the pion field, the nucleon field and their 
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interactions, all of which are required to explain the 


structure of a nucleon. Chapter IV gives a summary of the 


situation in regard to the magnetic moments of the tri­


nucleon systems, up to the time when our work began and up 


_to the present time. In fact, most of the outstanding 

discrepancy between the experimental and theoretical values 

of the magnetic moments of the tri-nucleon systems has now 

been explained, not by the effect which we have examined, 

but by taking into account the S to D state electromagnetic 

transition probability, which had been neglected until recent­

ly. In Chapters V and VI we present our calculations, 

results and conclusion. 



CHAPTER II 

DEFINITION OF ELECTROMAGNETIC STRUCTURE 

Before beginning an investigation into the 

electromagnetic structure of nucleons, it is, of course, 

necessary to define precisely what is meant by the 

electromagnetic structure of a nucleon. This is most 

easily accomplished by considering electron-nucleon 

scattering and in particular, electron-proton scattering, 

from which most of the experimental information has been 

obtained. 

Using the notation of Appendix I, we calculate the 
~ 

scattering matrix for the scattering of an electron from a 

proton, where the proton is treated initially as a free 

structureless Dirac particle (Fig. 1). The electron and 

nucleon are Dirac particles, i.e., they have spin 1/2 and 

satisfy the free Dirac equation 

(i? - m)~ = 0 [l] 

where~= yµ a/axµ, p = +i a/axµ, mis the mass of the 
v 

particle,_.f( = c = 1, and~ is the solution of the Dirac 

equation, of the form 

[2] 

4 
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p
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Fig. 1: Electron-proton scattering 
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where s = +l for r = 1, 2 and s = -1 for r = 3, 4; which 
r r 

are the positive and negative energy solutions respectively, 

pµxµ =Et - E·~, and where wr(p) are the four spinors listed 

in the Appendix. 

If a spin 1/2 particle has a charge -e and interacts 

with an external field specified by a four-vector potential, 

Aµ(x) = (¢,~),where¢ is the scalar potential, and A is the 

(three-component) vector potential, which in the Lorentz 

gauge satisfies the gauge condition aµA (x} = O, then the 
µ 

Dirac equation describing its motion is obtained by the gauge 

invariant replacement 

[3] 

The Dirac equation then becomes 

cp - m) 1/J =-eA1/J [4] 

The current for the electron is assumed to be (l) 

j e (x) =-ew f (x) y ·,_µ • (x) [S]
µ e µ ei 

where e is the charge of the electron and 1/Jef and 1/Jei 

represent the final and initial plane wave solutions of the 

Dirac equations for the electron. The corresponding current 
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for the proton is given by 

[6] 

where e is the charge of the proton, ~pf and wpi represent 

the final and initial plane wave solutions of the Dirac 

equation for the free proton, and j~ describes the current 

of the Dirac proton, which satisfies the field equation 

[7] 

where A (x) describes the electromagnetic field produced byµ 

th~ proton, with the Lorentz gauge. 

We can calculate the scattering matrix (2 ) (S-matrix) 

for the process shown in Fig. 1 by using perturbation theory, 

and it is found that 

- 1 - µ
x [u(pf,sf)yµu(p . ,s .)] [u(Pf,sf)y u(P. ,s.)]

1 1 2 . 1 q +is 
[8] 

where pi and pf are the initial and final four momenta of the 

electron, respectively, Pi and Pf are the corresponding four 

momenta for the proton, m and M are the masses of the 

electron and proton, respectively, Ef' Ei and sf' £i are the 

energies of the electron and proton, the u's are the four 

1 
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component spinors for the spin 1/2 particles, and l/q2 is 

the propagator for the virtual photon which is exchanged, 

where q = Pf - Pi = Pi - Pf. 

The basic assumption involved in deducing equation 

[8] is that the coupling of the proton to the virtual photon 

is described simply by quantum electrodynamics, where the 

proton is a point particle of unit charge, with the usual 

Dirac magnetic moment. However, it has long been known that 

this simple picture of the proton does not hold since the 

proton has a magnetic moment of 2.79274 nuclear magnetons, 

while the neutron has a magnetic moment of -1.91314 nuclear 

magnetons (nm) • The expected values using the above theory 

are 1 nm and O for the proton and neutron, respectively. 

The proton current in the scattering matrix is 

where we assume that the photon is absorbed by a point 

proton. We can, therefore, replace 

i ( p -p . ) • x µ - iq • x µ
1a4xe f µ e µ o(x'-x)f 

i(pf-p .)µ·xµ -iq ·xµ'4 4 1= d _x' d xe F(x'-x)e µ (10]
f 
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which can be rewritten as 

[11] 

where 

-iq ·yµ 
F(q2 ) = Id 4ye µ F(y} [12] 

and (J} 

F (y} [13] 

Here we consider the proton not as a point, but a particle 

with some spatial extent due to processes that will be 

considered later. The structure is described by the function 

F(x'-x}, which describes the scattering of a photon from a 

particle at x' which originated at x. 

In addition to the change incorporated into Eq. [11], 

the correction for the anomalous magnetic moment means that 

in addition to they
µ

Aµ in Eqs. [4] and [8], we must include 

a Pauli term of the form cr · Fµv where 
µv ' 

and [14] 

F = VvAµ - VA = i(q A - q ·A } µv µ \) \) µ µ \) 
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Combining this with Eq. [13], we obtain 

[15] 


where K is the anomalous magnetic moment of the nucleon in nm. 

Note that a different spatial extent is associated with the 

original convection current coupling y Aµ and with the 
µ 

subsequently introduced Pauli term, cr Fµv. This form is 
µv 

the most general form which is allowed for the coupling of 

a photon to a physical proton by the requirements of gauge 

. . d L . . C4 ) . b h finvariance an orentz invariance ; it can e s own rom 

the fact that j~ is a Hermitian operator that both F Cq2 )1 
2and F (q ) are real.2 

The final form of the scattering matrix to lowest 

order in the electric charge is 

[16] 
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while the differential cross section that is obtained from 

this scattering matrix (commonly called the Rosenbluth cross 

section) (S) is 

2 2 2 22 ea.2[(Fi - lS__S_ F )cos - _s,_ (F 1 + KF~)sin2 ~]2 2 24m2 2dcr 4M= dQ . 2E 2 eJ . 4 e4E 2 [1 + (M)sin 2 sin 2 [17] 

where E denotes the incident energy, e is the scattering angle 

of the electron in the laboratory system, and a. is the 

2electromagnetic coupling constant, a. = e /4~. Individual 

determinations of F and F can be obtained by comparing
1 2 

measurements taken at different scattering angles and energies, 

2but for the same q • 

A point proton of charge e and total magnetic moment 

(1 + K)nm is a particle for which F1 (q2 ) = 1 and F
2

(q2 ) = 1 

2for all values of q • Therefore, a particle has an electro­

2magnetic structure if and only if the function F (q ) and/or1 
2F (q ) are not constant. The functions F and F are called

2 1 2 

the charge and magnetic form factor, respectively, although 

the form factors 

2 
[18)GE-F +~F

1 4M2 2 

which have a more geometrical interpretation, are in wider 

(6)use at the present time 
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Of course, the above analysis also holds for the 

scattering of an electron off of a neutron, which lets us 

apply the isotopic spin formalism, such that isoscalar and 

isovector components are: 

s . 1 
 1
F - (Fp + Fn) {= for q = 0)1 - 2 1 1 2 


1 1
FV = (Fp - Fn) (= for q = 0)1 2 1 1 2 

[19] 

FS = 
1 (Fp + Fn) (= - .06 for q = 0)

2 2 2 2 


FV = 1 (Fp - Fn) (= + 1.85 for q = 0)
2 2 2 2 


.. 



CHAPTER III 


PION-NUCLEON FIELD THEORY 

Now that we have seen what is meant by the 

electromagnetic structure of nucleons, it is necessary to 

describe the factors that contribute to this structure. For 

instance, the anomalous magnetic moment of the nucleon is due 

to a pion cloud around the nucleon; these virtual pions 

have an effective current which contributes to the observed 

anomalous magnetic moment and it also makes it appear that 

the charge of the proton is distributed in space. Equation 

[15] implies that if the spatial extent of the 

proton is due to a virtual meson cloud, the photon could be.. 
absorbed at x' by a virtual meson emitted from the proton at 

x (Fig. 2), which justifies the substitution in Eq. [10]. 

Similarly, Eq. [16] includes all the effects due to 

clouds of virtual particles around the proton, and due to any 

contribution to the proton vertex which does not violate 

Lorentz and gauge invariance (Fig. 3). To understand how this 

virtual cloud of mesons affects the charge and magnetic moment 

distributions, it is necessary to describe the nuclear field, 

the pion field, the electromagnetic field and their interac­

tions. 

13 
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Fig. 2: 	 Electromagnetic field interacting a) with 

the bare proton and b) with the ~+ 

surrounding the nucleon 



-


-p I 

" rn-+ 
~ 

11 
r ' ' t+n ~+ 

/ 	 -p 

1' I r/'Jr"+ 
'P -r 

Fig. 3: 	 Various types of electron-proton scattering di~grams, all of which contribute 

to the total electromagnetic structure of a proton 

..... 
01 
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3.1 The Pion Field 

Much of the pion-nucleon interaction is developed in 

analogy to the electromagnetic interaction. Just as the 

electron charges are the source of the electromagnetic 

field, so the nucleons are assumed to be the source of the 

pion field. The basic rules for describing this field is 

that in the interaction describing the Hamiltonian of the 

system, the source term must contain the wave function of 

the source and it must have the same tensor properties of the 

field. To determine these properties of the field, it is 

necessary to investigate the experimental characteristics of 

the pions. 

Accurate values of the masses of the charged pions 

are obtained from the measurements of the n~µ decay, and the 

result is that (?) 

M(n±) = (139.59 ± .OS) MeV [20] 

while the mean life time of the charged pion is 

+ . -B 
T(~~) ~ 2.6 x 10 sec [21] 

which is measured directly from the decay of the n+ at rest (8) 

The equality of the mean lives of the free particles of 

opposite sign is required under the assumption of invariance 

under charge conjugation. 
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The spin of the pions has been obtained from the 

detailed balance comparison of the reaction (g) 

+p + p ~ D + ~ (22) 

and its inverse 

+ 
~ + D ~ p + p [23] 

which requires that the spin of the pion be zero. 

Since like nucleons cannot exchange charged pions, 

the observed charged independence of nuclear forces requires 

the existence of a neutral pion, TIO. The TIO has a mass of 

135.00 t .05 MeV and its spin is assumed to be zero, while 

't l'f · t 1 h t · t 1 lo-17 sec (lO)1 s mean 1 e is ex reme y s or , approxima e y 

If the reaction (ll) 

~ + D ~ n + n (24] 

is considered, and both the balance of spin and parity are 

studied, it can be concluded that the TI- has odd intrinsic 

parity in relation to the nucleons. If we arbitrarily assign 

+an even parity to the nucleons, i.e., they are 1/2 , then the 

pions are 0-. The pion wave function is a state of 0 angular 

momentum and is invariant under a rotation of the axis but 
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changes sign under a reflection of the axis through the 

origin. The parity of the TI+ is assumed to be odd because 

0of invariance under charge conjugation. The rr +2y decay deter­

mines that the parity of the TIO is odd. This supports the 

theory of charge independence (l 2 ). 

It is ~ecessary to describe this system of pions 

in a complete field theory description. This is best 

accomplished by first considering a system of neutral, spin 

zero particles of massµ (i.e., the ~ 0 particle). A real 

scalar field, ¢(x), which describes this system, satisfies 

the Klein-Gordon equation 

·2 c[J+ µ )¢(x) = 0 [25] . 

where~= c = 1 and the metric and notation are given in 

Appendix I. The Lagrangian density which gives this 

equation is 

1-._ = [26] 

where Eq. [25] is obtained from Eq. [26] using standard 

field theory techniques, with the conjugate momentum defined 

as 

1T = (27] 
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Using the well-known canonical quantization procedure, ri 

and ¢ become Hermitian operators satisfying equal-time 

commutator relations 

[¢(~,t),¢(~',t)] = ['IT(~,t),'IT(~',t)] = 0 

[28] 

[TI(x,t) ,¢(x' ,t)] = - io 3 (x-x') 

The Hamiltonian for this field, obtained from Eqs • 

. [26] and [27] is 

[291 

where,. 

[30] 

while the momentum operator is 

[31] 

We have to construct a complete set of state vectors 

~ by forming eigenvectors of momentum and energy if we want 
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to describe the properties of the quantized Klein-Gordon 

field. This can be accomplished by expanding an arbitrary 

solution of [25] as a Fourier integral over elementary 

plane wave solutions, such that 

-ik•x+iw t 
+ a+(k)e k ] [32] 

where wk = Jk 2 + m2 • The amplitudes a {k) and a+ {k) become 

operators with a+{k) the Hermitian conjugate of a{k), where 
. +

a{k) and a {k) satisfy the following commutation relations: 

[33] 

[a (k) ,a {k')] = [a+ (k) ·,a+ {k')] = 0 

From Eqs. [29] - (33], we can obtain expressions for 

the total energy and momentum for the free Klein-Gordon field, 

[34] 
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From Eq. [29] we see that H is a continuous sum of terms 

1 + += 2 wk[a (k)a(k) + a(k)a (k)] [35] 

which is the expression for a Hamiltonian for a simple 

harmonic oscillator of frequency wk. The a+(k) and a(k) 

are the rising and lowering operators. To go to 

discrete notation, 

and [36] 

so that 

ak = ./6.Vk a (k) 

[37] 

+ + = [ak,ak,] = O 

Since H is a sum of mutually commuting terms, Hk for each 

wave number k_ and f requency wk = (k_ 2 + m2) 1/ 2 , the energy 

eigenfunctions will be products of eigenfunctions ¢k of 

each Hk. General state vectors ~ can be built from a 

superposition of such products over all k values. 

The solution to the oscillator eigenvalue problem 

for each k may be characterized by an integer nk = O, 1, •.• 

in· terms of which the energy eigenfunction and eigenvalue 

are 
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[38] 

n 
1 (a+k) k "' [39]'i'k ( 0 ) 

rnr 
k 

where cpk(O) is the ground state, defined by 

[40] 

and 	the states are normalized to 

[ 41] 

The 	momentum operator may be decomposed as 

p = 	 L pk [42] 
k 

with 

nk = 0, 1, 2, ••• 

The energy momentum eigenfunctions cp are products of the ~k 

for each momentum cell, and are characterized by integers 

nk for each k: 
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.. . ) = 

[43] 

Pµ~cIS' • • • nk ) = ~ kµ(nk + 1
2 ) {. • • nk/.,, ••• ) 

k a. 

The ground state is the state of lowest energy, i.e., the 

state with all nk = 0; such that 
. a. 

[44] 

with an energy 

[ 45] 

which is infinite, but this divergence is easily removed by 

subtracting an infinite constant from H to cancel E0 , so 

that the energy-momentum operator becomes 

, [46] 

or 

[ 4 7] 

for the continuum, where P =wk' and P = k 1 , etc. such0 1 

that P = k. From Eqs. [43] and [46] we find that the 
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eigenvalues of P' are 
µ 

P~ ~ (. • • nk . • •• ) 
a 

[ 48] 

nk = O, 1, 2, ••• 

The different eigenstates for each normal mode k carry four 

momenta corresponding to nk quanta, each with four momentum 

kµ and mass µ according to the Einstein relation 

= E2 k 2k . kµ - [49]µ 

where a particle picture of the field emerges, because nk 

is called the occupation number of the k'th momentum state, 

and by specifying the numbers of quanta nk , we get a 
a 

complete description of the eigenstate~( ••• nk ••• ). 
a 

To further facilitate the presentation of this field 

theory approach to meson theory, we introduce a number 

operator 

[SO] 

with integer eigenvalues 

Nk~( ••• nk .•• ) = nk~( ••. nk ••• ) , nk = 0, 1, 2, ••• 

[51] 
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which gives 

[52] 

where Nk satisfies the commutation relations: 

This relation, along with Eq. [52] implies that a~ is a 

creation operator for a quantum of momentum kµ because it 

produces a state with nk+l quanta of this momentum from a 

state with nk such quanta; e • g • I 

+= n: nk,k~ + kµ ]ak~( •.• nk ••• ) • 
k' 

[54] 

Similarly, ak destroys a quantum with k · , and if it acts on 
' µ 

a state with zero quanta, ak~k(O) = 0. From harmonic 

+oscillator theory, we know that ak and ak connect states 

that differ by one quanta, 

[55] 
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Up to this point, we have been concerned only with 

the description of a neutral pion field. We now have to 

extend this to a description of a charged scalar field, i.e., 

a TI
+ 

, TI system. A charged particle is described in terms 

of a complex wave function 

4> (x) [56] 

with q, and ¢ real. First consider two identical non-inter­1 2 

acting real fields which satisfy the Klein-Gordon field 

equations 

[57] 

which follow from the Langrangian density 

[58] 

where the canonical momenta are 

, [59] 

and both ¢ and TI satisfy the same canonical corcunutation 

relations as the neutral scalar case. The numbers of 

particles 1 and 2 are separately conserved in the absence 
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of interaction terms, and we can label states by the 

eigenvalues of the number operators: 

' [60] 

As a special case where µ = µ = µ (which holds for the1 2 

charged pions) , we may replace ¢ and ¢ by1 2 

(61] 


where ¢ and ¢* satisfy the Klein-Gordon equation, and the 

Lagrangian density becomes 

~= (62] 


and the canonical momenta for these coordinates are 

. . 
<P1 ict>2il= .,,. 

1T = <P =. 
a <P 12 

[63]. . . ¢1 + i¢2 
'IT* = ~= ct> =. 

act>* 12 

The Hamiltonian density is found to be 

[ 64]:x = -t = 
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The commutation relations at equal times become 

[1T(x,t),cp(x',t)] = [1T*(x,t),cp*(~',t)] 

[65] 

Following the form of Eq. [32], we see that the Fourier 

transform of the solutions to the Klein-Gordon equation in 

k space are 

cp (x) = d3k [a+(k)e-ik·x + a~(k)eik·x]I J(21T) 3 2wk (66] 

d 3k + ik·xcp*(x) = [a+(k)eJ (21T)3/2 (2w ) 1/2
k 

+ a_(k)e-ik·x] 

where 

1a+(k) = (a (k) + ia (k))1 212 

+ 1 +
a+(k) = (a1 (k) - ia;(k)) 

12 
[67] 

a (k) = 1 (a {k) - ia2 (k))- 112 

+a~(k) = 
1 (a1 (k) + ia; (k))
12 
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The conunutation relations for the a±(k) are readily 

constructed to be 

[a+(k) ,a!(k')] = [a_(k) ,a~(k')] = o3 (k-k') 

+ +[a+ {k) , a_ (k') ] = [a_(k) ,a+(k')] = 0 [68] 

[a±(k) ,a±(k')] = [a: (k) ,a; (k I)] = 0 

where new number operators can be formed, 

+ [69]= a-,k a-,k 

such that 

P = E k "(N+ + Nk-) (70]
µ k µ k 

The operators a±,k are destruction-operators for the + and ­

+quanta of momentum k, respectively, and a±,k the corresponding 

creation operators. 

Solutions to the Klein-Gordon equation satisfy a 

continuity equation 

(71] 
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which gives, after applying the divergence theorem, 

3Q = J a x j 0 (x) = i J a3x(~*~ - ~~*) =constant, [72] 

i.e., the charge is conserved. In the theory presented here, 

3 + +Q = d k[a+(k)a+(k) - a_(k)a_(k)] [72]J 

or if stated in the discrete notation, 

Q = L (N~ - N~) [74] 
k 

and from (45] and [47], 

[75] 

From Eq. (51], it is seen that the + and - quanta carry +l 

and -1 units of charge Q, respectively. Since 

+ + + + +
[Pµ' a+(k)] = + kµa+(k) and [Q, a+(k)] = + a+' a+ is an 

operator which increases the energy of the system by k andµ 

the charge by +l, while a+ annihilates such a quantum. 

+Similarly, a creates a particle of energy kµ and charge -1, 

while a annihilates it. For our case, a! creates a TI+ from 

the vacuum and a+ creates a TI pion. (The formulation of 

pion field theory can be found in many books on Quantum 
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Field Theory (lJ); (in particular, Bjerken and Drell, 

Relativistic Quantum Fields, Chapter 12, McGraw-Hill, Inc., 

1968)) • 

Much of the theoretical work with this pion field 

theory assumes that µ = µ = µ + and then considers the+ ­1T 1T 1T­

field = ¢3 , ¢1 and as the components of a vector 1 in¢0 ¢2 
some isotopic charge space, where the Lagrangian from Eqs. 

[26] and [58] becomes 

[76] 

If we let T3 be the operator which generates infinitesimal 

rotations about the "3 axis", 

-ieT +ie:T3e . 3 ¢1e = ¢1 + e:¢2 

-ieT +ieT 3e 3 ¢2e = -e:¢1 + ,¢2 [77] 

· -ieT +ie:T 3e 3 ¢3e = ¢3 ' 

since for infinitesimal e: 

¢. (x) - ie: [T3 ,¢. (x)] [78]
1 1 

We see then, that 
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[79] 

so a possible choice for T is3 

[80] 

which equals, from Eq. [72] 

I [81]T3 = e1 Q = el 

If we assume that the masses of the three pions are 

equal, then tis invariant under rotation in isotopic spin 

space, and the components T., i = 1, 2, 3 a .re the components
1 . 

of a vector T with 

[82] 

in analogy with Eq. [80]. The commutation rules of the 

operators Ti are deduced from Eq. [28], such that 
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[83] 

There is a great similarity between this formalism and that of 

the angular momentum, and in fact, the operators Ti satisfy the 

same commutation relationship as the angular momentum operators, 

such that T2 and T3 can be chosen diagonal. One speaks of the TI 

meson system as having total isotopic spin +l, with the three 

different charge states given by = 0, ±1, i.e., if thet 3 

eigenvalue of T2 is denoted by t{t+l), then t = 1, and 

[84] 


where 1¢
0

> is the state of one neutral pion, In+> is the 

state of one TI+ particle, etc. 



34 


3.2 The Nucleon Field 

A similar analysis can hold for the nucleon system, 

the neutron and the proton. There is much evidence that to 

the approximation that electromagnetic and weak interactions 

can be ignored, protons and neutrons have identical 

properties. They both have spin 1/2, they have the same 

space parity, taken to be +l and very nearly the same mass. 

So, for this system, the isotopic spin is similar to an 

angular momentum 1/2 system, that is, a 2 component system. 

The eigenvalues for T are, therefore, ±1/2 such that3 

1
T3lp> = 2 IP> 

1
T31n> = - 2 In> 

[85] 

1
T3lp> = - 2 IP> 

1
T31n> = 2 In> 

where IP> and In> are the proton and neutron antiparticle 

states. 

A quantized view of the pion field has been presented, 

where the field is composed of pions of various charges, 

momenta and energies which can be created or destroyed, and 
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which ~atisfy Bose statistics, i.e., their creation and 

annihilation operators satisfy commutation rules. It will be 

beneficial to apply this same formalism to the spin 1/2 

particles, and in particular, to the nucleon system, composed 

of protons and neutrons. The state of the nucleon field, or 

n particle system, is described by the number of quanta in 

each single particle state. But for fermions, or spin 1/2 

particles, the wave functions are anti-symmetric, and the 

occupation numbers for each state can only be 0 or 1, as 

opposed to the pion case, where there was no restriction on 

the number of particles in a state. We will, therefore, 

introduce creation and annihilation operators for the 

nucleon field, but they will satisfy anti-commutation rules 

rather than the conunutation rules of the Boson field. 

Another difference between the nucleon field and the 

scalar pion field is that the Dirac equation allows for 

negative energy solutions, which, if extended to the quantized 

field theory point of view, implies that there exist negative 

energy particles, or anti-particles, which have been observed 

experimentally. 

The solution to the free Dirac equation (Eq. [l]) 

can be written as 
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$ (?!_, t) = L: 
±s 

J d 
3 

P ~ 
(2n) 3/2 ~ Ep 

[b(p,s)u(p,s)e-ipµ·xµ 

ip •xµ 
+ d+(p,s)u(p,s)e µ ] 

= E 
±s 

3 

J 
· dp 

372(2n) 

r;
E 

p 

. . µ
+ -1pµ·x

[b (p,s)u(p,s)e 

[86] 

ip ·xµ 
+ d(p,s)u(p,s)e µ ] 

where Ep =Po= JJpJ 2 + rn2 and u(p,s) and v(p,s) satisfy the 

relations given in Appendix I , while ~ and ~+ satisfy the 

following anti-commutation relation: 

= o3 (x-x')o- - aS 
[87] 

The energy and momentum of the sy~tem then become 

= L: Jd 3pEp [ b + ( p , s ) b ( p , s ) - d ( p , s ) d + ( p , s ) ] [8 8 ] 
±s 

and 
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3 + += E d pE_[b (p,s)b(p,s) - d(p,s)d (p,s)] [89] 
±s J 

from which it is obvious that d(p,s) creates a negative energy 

particle with (-Ep,-E) and thus b+(p,s) creates a positive 

energy particle with (Ep'E), with d+(p,s) and b(p,s) the 

corresponding annihilation operators; or in terms of the hole 

theory often applied to the Dirac equation, d+ {p,s) creates 

an anti-particle, while d(p,s) destroys an anti-particle. 

The vacuum state in this theory is defined as the state where 

all the negative energy states are filled and the positive 

energy states are empty. 

We can now define the number operator for positive 

energy particles as 

N+ (p,s) = b+ (p,s)b(p,s) [90 l 

+ 3such that N (p,s)d p tells us how many particles of spin s 

.are in the momentum interval d3p, while 

(91] 

is the number operator for anti-particles of positive energy. 

Therefore, the energy-momentum four vector becomes 
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Pµ = }: Jd3ppµ [N+ (p,s) + N- (p,s)] [92] 
±s 

Also, since Q = Jd3x$+$, by inserting Eq. [53] we see that the 

conserved charge becomes 

Q = }: Jd3p[N+(p,s) - N-(p,s)] [9 3] 
±s 

3.3 The Pion-Nucleon Interaction 

We have now seen that to every particle (and its 

anti-particle) we can associate a quantized field. Each such 

particle, when moving freely in space, is characterized by a 

mass, a spin, an electric charge and possibly some other 

quantum number, such as its nucleonic charge (i.e., a nucleon 

is either a proton or a neutron). Now, however, we must 

extend this formalism to take into account the interaction 

between these fields. The interaction between the fields is 

introduced by adding to the Lagrangian of the free uncoupled 

fields,/. 0 , an interaction terrn,[ 1 , which must satisfy the 

quantum mechanical condition of hermiticity, relativistic 

invariance, and for simplicity, it cannot have space-time 

derivatives of the field derivatives higher than the first, 

so that the corresponding field equations are at most of 
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second order. The strength of the interaction term in the 

Lagrangian is measured by the magnitude of a multiplicative 

factor called the coupling constant. 

First of all, we have to distinguish between local 


and nonlocal couplings. In local coupling the interaction 


term is built up from field quantities, referring to the 


same space-time point, e.g., 


[94]~I = G$(x)~(x)¢(x) 

where ~(x) is a spinor field, ¢(x) a scalar field, and G the 

coupling constant. For nonlocal coupling, this is not the 

case, for 

J_I = GJ -
~(x)~(x)F(x-x')¢(x')d

4x' 

. where F(x-x') is a prescribed scalar function which 

characterizes the space-time "region" over which the 

interaction takes place. We also define direct coupling as 

a coupling where no derivatives of field quantities exist, 

as opposed to derivative coupling, where derivatives of 

field quantities appear in :f..
1 

. 

The simplest way to present a local,relativistically 

invariant interaction between a scalar field ¢ and a spinor 

field ~ is to couple the invariant quantity ~~ with ¢ and to 
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write, classically, 

'-' J ­ot1 = G d 4x¢(x)w(x)¢(x) [96] 

where G is the coupling constant. To determine the 


dimensionality of the coupling constant, we note that the 


field quantities are normalized in terms of certain free 


field expressions, as in the free scalar boson field, (Eq. 


[ 301 ) , 

(97] 

where µ is the inverse compton wave length of the particle. 

In natarual units it equals the mass of the particle. 

H has the dimension of energy, so that ¢2 has the dimensions 

of (1lc/Vµ} where V is a volume. We are including ~ and c in 

. this case in order to determine the dimensionality of G. 

Similarly, for the Dirac Field, 

[981 

so that ¢WV is dimensionless. Therefore, since the quantity 

GJd3xWW~ has dimension of energy, it can be shown that G2/tic 

is dimensionless. 
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For the pion field, which is a pseudoscalar field, 


~' the coupling which guarantees the invariance of/_I under 


proper Lorentz transformations as well as under spatial 


inversions is of the form 


, (99] 

resulting from combining the pseudoscalar ~y 5$ with ~' so that 

. ~YsW~ is invariant under inversion. If we wish to describe 

the interaction of charged as well as neutral pions with 

nucleons in such a way that the prediction of the theory will 

be charge independent, then the interaction must be invariant 

under rotations in isotopic spin space. The simplest such 

interaction is one which couples the nucleonic isot~pic 

vector 

[100] 

with the meson isotopic vector 1, with ~ 3 describing the 

neutral meson and 1/12(~ 1 ± i~ 2 ) the corresponding charged 

pions. The interaction terms in the Lagrangian would then be 

of the form 

3 
L G$y 5 -r.$~. (101]

i=l 1 1 
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A more formal field theory description of this 

interaction Lagrangian is developed as follows. In accord­

ance with the assignment of an isotopic spin 1 to the pion 

system, it can be described by a field operator 1 which 

transforms like a vector in isotopic spin space, while the 

nucleon field can be described by an eight component spinor 

operator 

lJJ (x) = [WP (x)l (102] 
\IJn (x) 

which transforms like a two component spinor in isotopic 

spin space. The possible interaction term between these 

fields which are invariant under rotations in isotopic spin 

space, and that conserves charge is of the form 

(103] 

where g and g are coupling constants, and o are1 2 o1 2 

operators which are to be determined, and the other quantities 

have been defined previously. Note that <P creates a charge e, 

while ~ lJJ destroys a charge e, and similarly for the second 
n p 

term, so that charge is conserved. We also require that the 

interaction Lagrangian be charge symmetric, i.e., invariant 

under the transformations: 
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, 

[104] 

which leads to the new Lagrangian 

[105] 

which, therefore, implies that 

[106] 

~ . 

The fact that the Lagrangian is Hermitian, i.e.,;f,_I =lr' 
leads to 

[107] 

which when combined with [106] gives a charge symmetric cl± 

with 

gO = g Yo O* Yo 
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This then leads to the following possible interactions for 

the pion-nucleon system: 

[108] 

(c) 

where gs = scalar coupling, gps = pseudoscalar coupling, 

g = vector coupling and g = pseudovector coupling. If we v pv 

also require a charge independent pion-nucleon interaction 

(i.e., an interaction invariant under rotations in isotopic 

spin space) , we require that 

i = 1, 2, 3 (109] 

. h .th t f th t t 1 . t . .where T . is t e 1 componen o e o a 1so op1c spin.
1 

This will clearly be the case if we form an isotopic scalar 

quantity from the isotopic vector ~ o i·w with the iso-vector 

1 to get Eq. [101] which can also be written in the form 
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= /2 g[$n0$p¢ + wpo·wn¢*] + g[~po·wp - wnown]¢3 

[110] 

Therefore, in a charge independent 

theory with Yukawa coupling, i.e., of the form WO$¢, the 

coupling of the nucleon field to the neutral meson field is 

12 times weaker than to the charged meson field, and, the 

coupling constants measuring the interaction of the neutron 

and proton fields with the neutral pion field are equal in 

magnitude but opposite in sign. 

If we now restrict ourselves to nonderivative Yukawa 

type couplings, the most general coupling of the nucleon 

field to the pion field which satisfies the requirements of 

Lorentz invariance, charge conjugation and parity conserva­

. (14) . 
t ion gives 

= g[~T_y 5 ·w¢ + WT+y 5 ·w¢*] + gjwPy 5 ·wP¢ 3 + gj¢~y 5 ·wn¢ 3 
[111] 

where g, gj and gj are real constants. If we impose the 

requirements of charge independence, it is clear that 

gj = - gj = 1/12 g. The interaction term, therefore, reduces 

to 
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[112] 

The interacting meson-nucleon system can thus be 

described by the following Lagrangian: 

31 2 1 - -2 (µ 1·1 - a ¢•aµ¢) + - G L [WY5TJ.,~]¢J. [113]
µ- - 2 j=l 

where M is the mass of the bare nucleon, and µ is the mass of 

the bare pion, w is an eight component nucleon field operator, 

and the corresponding Hamiltonian for the system is 

[114] 

The Hamiltonian in Eq. [114] can be divided into 3 

parts, 

[115] 

where 
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= x wC-iyµa + M)lJJ~ I d3
µ 

1 
HM = 2 I . {1T2 + (V¢) 2 + µ2¢2}d3x [116] 

HI = G l: I a3x wY 5-r .wet>.
J Jj 

If we apply a Foldy-Wouthuysen transformation to the nucleon 

field (Appendix II) , we remove odd y matrices which connect 

positive and negative energy states, and HN becomes 

[117]I 

which in the non-relativistic limit finally becomes 

2 

~ = Ja 3x wec;M + MlW [118] 

Applying a canonical transformation to H which changes the 

pseudoscalar coupling term to a pseudovector coupling 

(Appendix II) , and keeping terms only to order l/M which 

contribute to the p-wave pion nucleon interaction we get, 

H = <2GM) I d 3x ~ lJJ(x)T. crw(x)·V¢.(x) [119]
I j=l J - - J 

which is equivalent to 

[120] 
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where g/µ = G/2M is called the pseudovector coupling _constant, 

l)J is a four component spinor describing a nucleon which 

transforms like a two component spinor in both isotopic spin 

space and ordinary spin space. We have defined a source 

function p(x), which describes the extent of the meson-nucleon 

interaction region, which is assumed to be spherically 

symmetric. It will be normalized such that 

I [121] 

and if we introduce the Fourier transform of p(x), we can 

define a cutoff function v(k), 

+ik·x 3v ( k) = e - - p ( x) d ~ [122]I 

v(k) (or p(x)) is introduced to account for a convergent 

theory. From the meson field operator (Eq.[66]), we can see 

that it implies that the value of ~ or ~~ is taken exactly 

at the position of the nucleon, i.e., p(x) is a delta func­

tion o(~) if the nucleon is at the origin. But this 

assumption that the nucleon is pointlike leads to v(k) = 1 

for all values of k, which leads to divergences in the 

interaction. This makes it necessary to attribute a finite 

extension to the nucleon in order to get a convergent theory. 

This cutoff function can also, in some manner, take account 
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of antf-nucleon effects, direct meson-meson interactions 

and kaon and hyperon effects, all of which are ignored in 

our approximation and are believed to be small. If we take 

R as the radius of the interaction region, i.e., where. p(x) 

is appreciably different from zero, then if l~IR0 >> 1, v(k) 

falls rapidly to zero. The radius R will be less than l/µ,
0 

and it is believed to be of the order l/M, where M is the 

nucleon mass. 

And finally, we must take into account the possible 

interaction of our n-N system with an electromagnetic field 

specified by the four-vector potential A (x) = (¢,A). The 
µ ­

Dirac field has already been considered in this respect. 

We apply the same formula as in Chapter II, and recall that 

the gauge invariant introduction of electromagnetic interac­

tions requires that the operator ~t in HI be replaced by 

(V - et3A)!, e.g., the V operator be replaced by V + iet3A 

+when acting on the TI operator. Therefore, in the presence 

of electromagnetic effects, an additional term of the form 

[123] 

occurs in the interaction. 

We now have expressions .which describe the nucleon 

field , pion field , pion-nucleon interaction and electro­

magnetic interactions, and we are, therefore, in a position 
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to evaluate the scattering amplitudes for many processes. 

Hopefully, we have not lost sight of our initial objective, 

which is to try to explain how the electromagnetic structure 

of a nucleon is altered when it is bound in a nucleus. 



CHAPTER IV 


PRESENT STATUS OF TRI-NUCLEON MAGNETIC MOMENT CALCULATIONS 

In the preceding section we developed equations 

which describe the nucleon field, the pion field, and 

interactions between these two fields. It is believed that 

the electromagnetic structure of a nucleon is due to the 

strong coupling of a pion field and heavy meson fields to a 

nucleon field. We wish to show how the structure of a single 

nucleon is altered by the presence of other nucleons. First 

we investigate the two nucleon system, since many of the 

techniques used to solve the magnetic moment problem of the 

deuteron are applicable to the tri-nucleon system. 

4.1 The Deuteron Magnetic Moment 

The simplest system that can be studied is the two 

nucleon system, and in particular, the deuteron, a system 

composed of one proton and one neutron, with a corresponding 

isospin ~=O. In the absence of any interaction currents, the 

magnetic moment operator is 

1M = ~ r [(1--r (i)] µ.n£ (i)) + ~ [.1+-r z (i)] (µpcr (i) +L (i) ]]2i=l [ z . 
[124] 

51 
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where ~1n and µp are the free neutron and proton magnetic 

moments, respectively, and where £(i) and ~(i) are the spin 

and angular momentum operators for the ith particle, 

respectively. The observed magnetic moment of the deuteron 

is close to the sum of the magnetic moments of the neutron 

and proton; i.e., the experimental value is µ;xp = .857 nm 

while µ + µ = .879 run. To a first approximation the two p n 
3nucleons are in a s state, where the magnetic moment is1 

almost totally contributed by the magnetic moments 

associated with the parallel spins of the constituent 

nucleons. However, it is also found that the quadrupole 

moment of the deuteron is not zero, which implies that the 

deuteron ground state wave function is not a pure S-state, 

3but rather, it is a superposition of 3s and o states. It1 1 

can be shown (l6) that the expectation value of operator M 

is given by 

[125] 

where P0 is the D-state probability. In order for the 

theoretical magnetic moment to equal the experimental value, 

we need a D-state probability of 3.9 percent. On the other 

hand, realistic nucleon-nucleon potentials, such as the 

Hamada-Johnston and Reid soft core potential, lead to a 

D-state probability of about 7 percent (l7). Several 

experimental results, such as the coherent photoproduction 
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of TI 0 from deuterium (lB) also suggest a D-state probability 

of 7 percent. This leaves a discrepancy of about 

1.7 x 10-2 nm for the magnetic moment. 

Adler and Drell (lg) showed that this discrepancy 

could be lifted if one considers the exchange current 

contribution. The simplest exchange current would be the one 

shown in Fig. 4, where the electromagnetic field interacts 

wi·th t h e TI+ interme· d.iat e c h arged pion.· Since the deuteron 

has isotopic spin T = O, only the isospin scalar part of the 

electromagnetic current contributes to the electromagnetic 

structure of the deuteron; that is, only electromagnetic 

processes that correspond to the emission of photons without 

a change in isospin can take place, since the coupling 

between the electromagnetic and nuclear fields must be an 

isoscalar. We introduce the concept of G parity, which is 

the rotation by angle TI of a system about the second axis in 

isospin space, followed by charge conjugation. The photon is 

odd under charge conjugation, while the isoscalar part of the 

electromagnetic interaction is even under rotation by TI about 

the second axis in isospin space. ~he isovector part of the 

electromagnetic interaction is odd under this rotation. A 

system of n pions has G parity (-l)n; if we assume invariance 

of the strong interactions under G parity, we find that all 

diagrams with an even number of pions contribute to the iso­

vector coupling to the electromagnetic field, while all 
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Fig. 4: 	 Simplest exchange current diagram. The 

intermediate charged pion interacts with 

the electromagnetic field 



55 

diagrams with an odd number of pions contribute to the 

isoscalar coupling. Since only the isoscalar part of the 

electromagnetic interaction acts on the deuteron, all even 

pion states are not present. Therefore, the least massive 

state is that state composed of three pions (Fig. Sa). 

Adler and Drell investigated the exchange current contribu­

tion due to this process, in the approximation that the 3TI 

state may be approximated by a two particle (p,n) system 

(Fig. Sb), with the p (a 2n resonance) and TI landing on 

different nucleons and thus constituting an exchange current. 

They calculated the contribution of this process to the 

deuteron magnetic moment and obtained a value of 

~µ % (1-2) x 10-2 nm, which is comparable in magnitude with 

-2the existing discrepancy of 1.7 x 10 nm. The major part 

of the discrepancy seems to be explained by this exchange 

current calculation. 

It should be mentioned, however, that in dealing with 

apparent discrepancies of this small magnitude a comparable 

correction may be present when we consider relativistic 

effects not included in a treatment of the deuteron as a 

bound state of two Pauli particles interacting via an 

~nstantaneous potential. This problem will also be present 

when we consider the three-body problem. 
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Fig. 5: 	 Exchange current contributions due to the 3TI 

state where a) we consider 3 pions, b) we 

approximate a 3TI state by a two particle 

(p,TI) system 
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4.2 Magnetic Moment of He3 and H3 

We now consider the three nucleon system, He 3 and 

H3 • He 3 is composed_ of two protons and one neutron with a 

magnetic moment of -2.1274 nm with a spin 1/2, while H3 is 

composed of one proton and two neutrons with a magnetic 

moment of 2.9788 nm and a spin 1/2. If we consider the 

three nucleon system in an S-state where there is no 

orbital contribution to the magnetic moment, the magnetic 

moment contribution would come from the unpaired nucleon. 

However, this is certainly not the case. If we evaluate 

Eq. [124] for the three-body system, and determine the 

isovector and isoscalar magnetic moments for the two three­

body ·systems, we find ( 20) 

lls = 2 
1 [µ(He 3) + µ(H3)] 

1 (µp + µn) [P (S) + p (S') - P(D)] + ~ p (D)= 2 
[126] 

. 31 
µv = 2 [µ (He3) - µ(H )] 

1 
(µp + lln) [P (S) - 1 p (S') + ~ P(D)] ~ p (D)= 2 3 

where P(S) is the principal S-state probability, P(D) is the 

D-state probability, P(S') is the probability for the mixed 

symmetry state, where P(S) + P(S') + P(D) ~ 1. 



58 

The classification of allowed states of the 

tri-nucleon system with (JP=~+, T = ~) gives 10 distinct 

21states < > corresponding to the spectroscopic terms: three 

2s 2P and 40 and one 4
0 states. According to

112 
, 

112 112 112 

the work of Gibson ( 22 ) only the S-state (fully space 

symmetric), S' state (mixed space symmetry), O and T = 23 

(mixed space symmetry) states are appreciable. 

To find the best values for P(S), P(S') and P(D), 

various authors have made extensive calculations for the 

tri-nucleon bound states using realistic nucleon-nucleon 

(23)
interactions, such as the Hamada-Johnston potential 

and the Reid soft core potential (24 > (Table I). 

Substituting these values into Eq. [126], we see from Table 

I that there is a large discrepancy between the experimental 

and theoretical values for the isovector magnetic moment 

(~ 15 percent) , while the discrepancy between the isoscalar 

values is much smaller (~ 5%). Historically, the anomaly in 

the tri-nucleon magnetic moment was the first piece of clear 

25evidence of meson-exchange effects < > , since if we consider 

Eq. [126], we see that no values of P(S), P(S') and P(D) will 

fit µs and µv to the experimental values. 

A rather thorough study of the meson exchange 

26effects in He 3 and H3 was done by Chemtob and Rho < > • 

They consider contributions to the isoscalar and isovector 

magnetic moments of the He 3 and H3 system due to the 



TABLE I 


Expectation values of the one-body magnetic moment operators and their deviation 

from corresponding experimental values. The experimental values are 

µ:xp = 2.553 nm and µ:xp = .426 nm. Case A is for the Hamada-Johnston potential 

(Ref. 23) and case Bis for the Reid soft-core potential (Ref. 24). 

(1) µexp_ (1) (1) µexp_µ (1)Case P(S) P (S') P(D) µv v µv µs s s 

(%) (%) (%) (nm) (nm) (nm) (nm) 

A 89 2 9 2.134 .419 (16%) .406 .020 (5%) 

B 90.56 .52 8.92 2.182 .371 (15%) .406 .020 (5%) 

\0 
01 
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exchange of one pion and of vector mesons. In their 

calculations, they used the Gaussian form for the wave 

function of the S-state, and considered only S-state to 

S-state transitions. They calculated the two-body exchange 

operators due to the one-pion exchange (OPE) and the heavy 

meson exchange (HME) contributions. For the OPE terms 

(Fig. 6), they used the familiar low-energy theorem 

information and supplemented these calculations by using 

the Chew-Low model. For the HME case they considered the 

p (2TI resonance) and ~ (three TI resonance) exchange graphs 

(Fig. 7). 

In both the OPE and HME terms, three types of 

currents were considered: the pionic current (Fig. 6a), the 

pair excitation current (Figs. 6b and 6c), and the nucleon 

recoil current (Figs. 6d and 6e). The matrix elements of 

the exchange current operators depend on the radial wave 

function. As stated previously, Chemtob and Rho used the 

simplest analytical form, the Gaussian, and since some of 

the pion exchange and heavy meson exchange terms are very 

sensitive to the part of the wave function where 

r .. = Ir. - r.I (where r. is the distance from the origin
1] 1 J 1 

to the ith nucleon) is small, they employed a Jastrow type 

correlation function of the form 

2 2 . 

IT (1 - e 
-y rij)l/2 

i<j 



---

61 

x 

y 

>( x
)( 

- - mlllli\­

)( 

Fig. 6: 	 The diagrams for the OPE process 

where a} gives the pionic current, b} and c} 

give the pair excitation exchange current, 

d} and e} give the nucleon-recoil exchange current 
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x 


Fig. 7: 	 One pion exchange diagram representing the 

vertex corrections due to the vector meson 

intermediate states 
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to simulate short distance behaviour, where the parameter y 

is related to the repulsive core _radius in nucleon-nucleon 

potential theory. The results they obtain for the isovector 

and isoscalar magnetic moments are 

2 
µv = .193 (± .041) nm 

[127] 

. 2 • oo93 c+_ •oo11> 
µs = .0053 nm 

This reduces the discrepancy between µexp and µ(l) in Table 

I as follows: 

.226 (9%) for case A exp (µ (1) (2»µ - + = v v µv 

.178 (7%) for case B 

[128] 

exp ( (1) µ (2))µ - µs + = • 011 (3%) for cases A and B . s s 

Chemtob and Rho find that if we require µexp= µ(l) + µ< 2>, 

we need P(S') ~ O, P(D) ~ 6 percent, which is not very 

realistic. 

27Riska and Brown < > , in trying to explain a 10% 

discrepancy between the theoretical and experimental values 

of the cross section of the reaction n + p + D + y, found 

that the exchange current contributions could explain this 

3discrepancy if the 1s to n transition is considered,0 1 
29which had been overlooked until then. Harper et al. < > 
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applied this idea to the calculations of Chemtob and Rho. 

They used tri-nucleon wave functions derived from an exact 

solution of the Faddeev equation (29 > for a nucleon-nucleon 

interaction (effective in the 1s0 and 3s
1 

- 3n
1 

states) 

given by the Reid soft core potential (3o> The tri-nucleon 

binding energy they obtained, in the absence of Coulomb 

effects, was 6.7 MeV, and the percentages of P{S), P(S') and 

P(D) were 89.7%, 1.7% and 8.6% respectively. They obtained 

the values given in Table II. It can be seen that the SD 

transition is extremely important here. However, using 

Harper et al.'s values for P{S), P(S') and P(D), we find 

that 

exp (1) 
nm= µs - µs = .017 

.401 run 

The isovector magnetic discrepancy is now only . 2% of the 

experimental value, which is encouraging. However, the 

isovector magnetic moment is overcompensated, which implies 

that the above analysis must be corrected to some extent. 

Hadjimichael et al. (3l) calculated similar meson­

exchange corrections to the magnetic moments of H3 and He

using a method by means of which the two-body short range 

correlations in the nucleon-nucleon interaction are taken 

3 



TABLE II 


Contribution to the magnetic moment expectation values obtained 

by Harper et al. (Ref. 28) due to the processes shown in Figs. 

6 and 7. The notation (X,SS) implies that this is the contribu­

tion for the X type of interaction for an S to S state transition • 

• 
x µ~2 ) (X,SS) µ~2

) ( X t S 1 S 1 
) µ~2 ) (X,SD) 	 Total 

(nm) 

N* .002 -.000 .164 	 .166 

w .000 · -.ooo .012 	 .012 

Pair & .138 -.002 .105 .241 
pionic 

Total .140 -.002 .281 	 .419 

O'\ 

Vt 
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accurately into account in three-body bound state 

calculations. If we assume a 100% S-state probability from 

Eq. [126], they find µ(sb) = 2.353 and µ(sb) = .440, while v s 

if they take P(S) = 91%, P(S') = 1% and P(D) = 8%, they 

obtain µ(sb) = 2.213 and µ(sb) = .410. As we know, the 
v s 

bulk of the difference between the single-body results and 

the experimental values is expected to come from meson-

exchange corrections to the magnetic operator. The 

corrections found by Hadjimichael using a S-state of 92%, 
- -2 

are µv(S-S) = .183 nm and µs(S-S) = .775 x 10 nm for a 

s- to S-state transition. They also applied the theory of 

Riska and Brown that the S-D matrix elements of the two-

body operators are comparable to the S-S matrix elements, 

and taking a 8% D-state probability, they find that 

µ(tb) (S-D) = .170. They note, however, that their 
v 

expression for the D-state wave function does not have the 

correct asymptotic behaviour and that µ(tb) (S-D) is v 

probably overestimated. Therefore, for a s-state probabil­

ity of 92%, P(S') = O, and P(D) = O, they find that 

= 2.217 + .183 + .170 = 2.57 nm 

which agrees favourably with the experimental value, but 

again is larger than the experimental value. 
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Our work on the anomalous magnetic moment of the 

tri-nucleon system began after the work of Chemtob and Rho 

but before the work of Riska and Brown, Harper et al., and 

Hadjimichael was published. We considered the contribution 

due to the process in Fig. 8, which we believe was not 

considered up to that time, and whose effect is still not 

taken into account. 
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Fig. 8: 	 Two pion electromagnetic process that contributes 

to the long range part of the charge and magnetic 

form factors of a nucleon 



CHAPTER V 

CALCULATIONS OF THE ELECTROMAGNETIC STRUCTURE OF NUCLEONS 

The basic problem that is dealt with is calculating 

the effect that a nucleon has on the electromagnetic 

structure of another nearby nucleon. We are concerned 

mainly with the charge and magnetic moment densities due to 

the process shown in Fig. 8, which is known as the "two pion 

contribution" to the long range part of the charge and 

magnetic moment distributions of a nucleon. As we have 

shown in Section 4.1, this two pion process will 

contribute to the isovector magnetic moment of the system. 

This process is believed to give the largest contribution 

to the anomalous magnetic moment of the nucleon. Basically 

it describes a state where a "bare" nucleon spends part of 

its time as a pion-nucleon system. We will discuss the 

contributions to the magnet.ic moment and charge densities of 

a nucleon obtained from these diagrams in various 

approximations, and try to show how these contributions are 

altered when the nucleons are bound, or when they interact 

with other nucleons. 

69 
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5.1 The Free Nucleon Case 

Many authors have calculated the effect shown in 

Fig. 8 by the Chew-Low theory in the stat.ic approximation, 

i.e., in the limit as the nucleon mass goes to infinity. 

Using the well known Feynman propagator approach, the rules 

33 34for constructing the scattering matrix are < , > 

1) for each internal line include a factor 

i 0.. 1 
--~1~] = [129] 
(2TI) 4 k 2 - w2 +is0 k 

where kµ is the four momentum of the pion, wk2 

where µ is the mass of the pion, and k 0 is the energy 

variable in the pion propagator; 

2) for each internal nucleon line include a factor 

4 1 i 1 i 1(2TI) ,. _ -+ -+- [130]M + is 2TI 2TI + isk2 M-+oo ko 
k - + is0 2M 

where the first term is the relativistic propagator for a 

nucleon of mass M and 4-momentum k, the second term is the 

nonrelativistic limit, and the third term is the static 

approximation; 
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~) at each TINN vertex include the factor 

[131] . 


which gives the pion nucleon coupling, where ~ is the 

position of the nucleon, which will be taken to be zero in 

the static approximationt and ~ = ~· 

4) and at the y~~ vertex 

·eAµ 

[132] 

which describes the interaction of the charged pion with the 

electromagnetic field described by the field potential A • µ 

We also multiply by (-i)N, where N is the order of the 

diagram and integrate over all internal momenta. For the 

charge density, Eq. [132] is 

i(k'-k) ·r - - -TI
(21T) a (Z:k0 ) (-i) (o 1 i 6 2 j - a2i a1 j> Ck0+k0)e ·eA0 

[133] 

while for the magnetic moment density, it is 

(ik ' - k) • En 
(2n)o (Z:k0) C-i) Co 1io 2 j - o2iolj> (k+k')e ·eA , 

[134] 

where A0 is the external scalar potential and ~ is the 

vector potential. Applying these rules, we find that the 
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relevant S-matrix is 

s = (-i) 3o (o)J+ 
00 

dtJdkJdk ( i ) 2 i:_ ei(k'-k) ·E.. 

(27T) 4 27T 


-oo 

(cPk') (cr·k) (2n) (k +k')eAµv(k)v(k')
-- -- µ µ 

(t2-w~+is) (t2-w~ 1 :is) (-t+is) 

[135] 

where t = k = t', r is the pion coordinate, and v(k) is
0 

the cutoff function, while in terms of the charge and 

current densities p(r) and iCr) 

[136] 

since the interaction Hamiltonian is 

ep A - e;·A [137]c 0 Jl- ­

From Eqs. [135] and [136] we see that the charge 

density is 

Pc(r) = 4 (f)2 
(21T)6 µ 

- 00 

(£·~') (£·~)ei(~'-~) ·E.. v(k)v(k') 
x 

(t2-w~+is) (t2 -w~ 1 +is) 
continued ••• 
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= 
ei (~' -k) •£ v (k) v (k')

dkdk' k•k' [138]
J ww' (w+w') 

where = +l for the proton and -1 for the neutron, f is theT3 

renormalized coupling constant for this process such that 
2 . 

f /4n = .08, the t (or energy) integration has been done, 

and there is no spin flip such that 

A similar calculation for the current density gives 

i (f) = T3 f22 J g~ f g~'
6(2lT) µ 

(~·k') (~·~) (k'+~)ei(k'-k) ·E_ v(k)v(k') 
x 

w2 w' 

i T 3 ~2 f dk f dk ' . 
(2lT)6 µ2 -- -­

- c~-~·x~) c~·+~)ei(~'-~) ·E_ v(k)v(k') 
x [139]

w2 w'2 

where the k'·k term of the spinor product gives a zero 

contribution, which becomes obvious if k is replaced by -k 

and then integrated. 

If we define p (r) as the magnetic moment density
m 

distribution of the pion-nucleon system, the current density 
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is defined as 

i<;.> = (Vxcr) p (r) = - [140)
- - m 

where a is the spin of the nucleon. The magnetic moment 

density is 

[141] 

where 

() = r a () [142]µr -3"'§rPmr 

After some manipulation (see Appendix III), Eq. [139] 

becomes 

2 T3 f 2 1= (crx~) (-) ~ 
6 2{27T) µ r 

i(k-k') ·r 
x J. ~~~~· v(k)v(k')~·~· e -".' - ­

[143)
w2 w' 2 

Therefore, from Eqs. [140] and [143] 

2T3 <µf)2 lr J g~g~' 
(27T)6 

v(k)v(k')~·~· ei(~-~') ·~ 
x [144]

w2 w'2 
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and from [144] and (142], the magnetic moment density 

µ(r) = 2T3 (-µf)2 f g~ f Q~' 

3(21T) 6 


V (k) V (k I : ) .~• .~ I e i (~-~I ) • E. 
x [145]

w2 w' 2 

and the magnetic moment is 

2T 3 v 2 (k)k2 
µm = µ(r)£E = c!.> 2

J µ 1~ 42(21T) 3 w 

r 4f 2 4 1 2 = T3 (4Tr) dk ~ v (k) [146]31T 2 µ w
0 

while the total charge (from Eq. [138)) is 

2t 3 f2 l Joo 4 
Q = J p (r)dr = 1T C41T> 2 dk ~ v 2 {k) [147]c ­ w3 µ 0 

5.2 Nucleon Bound by an Effective Potential 

We now consider how the charge and magnetic moment 

densities are altered by the presence of another nucleon, as 

shown in Fig. 9. We assume that the two nucleons are 

interacting through an effective potential V(S), where S is 

the distance between the two nucleons. We also assume that 
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J{ 


Fig. 9: 	 A process in which the neutron in the 

intermediate state interacts with another 

nucleon through an effective interaction 

V(S) 
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V(S) is independent of spin and isospin. If we treat V(S) 

in lowest order perturbation theory ~P , the correction to c 

pc(r) due to this process, is simply proportional to V(S), 

and similarly for ~j(r). In Fig. 9 there is an additional 

internal nucleon line, so a factor 

i 1 V(S)
-2ni V(S) 2n -k + iE = [148]

t-1E
0 

must be included in the scattering matrix calculation· in Eq. 

[137]. In the charge density calculation, the tor energy 

integration (Appendix III) replaces l/ww' (w+w') by l/w2 w• 2 

so that 

ei(k-k') ·r v(k)V(k')<V{S)>
x [149]

w2 w'2 

where <V(S)> is the expectation value of the potential V(S), 

while the new current density is obtained by replacing 

l/w2 w' 2 by 

w2 + ww' + w• 2 


(WW I ) 3 (w+w I ) 


so that the additional current density is 
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Llj(r) = iT <-V> 2 I I .3 
6 (f2) dk g~'(cr·k'xk) (k'+k) 

(2'IT) µ 

i(k-k') ·r (k.) (k' .) ( 2 + , .,2)
x e - - - V V W WW + W 

(ww') 3 (w + w') 

• [150] 

The magnetic moment density correction becomes 

Llµ(r} = 
2-r 3<-V> 
-­......... 

3(2TT) 6 
(f)2 
µ 

slli' 

[151] 

which finally gives 

2 oo 4
2 f 1t.µ = J t.µ(r)dr = - <-V(S)> 4TT -i- dk L v 2 Ck> 
'IT µ J w5 

0 [152] 

while the correction to the charge is obtained from Eq. [149] 

4 f 2 1 2LlQ = I llpc(r)dr = T3<-V(S)> iT 47T 2 dk ~ v (k)r 4 

µ w
0 [153] 

We now have expressions that enable us to calculate 

the two pion contribution to the charge and magnetic moments, 

Eqs. [147] and [146] respectively, and the correction to the 

charge and magnetic moments, Eqs. [153] and [152] respectively. 

To obtain some numerical results, we must take appropriate 

values for <-V(S)> and for the nucleon cutoff, v(k). 
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Our main interest is in the three nucleon systems, so 


for the expectation value of -V(S) we take 2/3 of the total 


potential energy E , because two out of three bonds are 
p 


contributing. According to a variational calculation by 


Ohmura et al. (35 >, E is in the range of 55 - BO MeV. The 

p 


potential with a -small hard core gave _55 MeV, while the one 


with a hard core radius of .6 F .gave 80 MeV. Our effective 

interaction should be regarded as a K matrix which shows no 


singular behaviour like the realistic nucleon-nucleon 


potential, so that Ep should be obtained from a potential 


36without a hard core. Also Law and Bhaduri < > showed that, 


for the binding energy calculation of the triton, it is a 


. good approximation to take only the long range part of the 

nucleon-nucleon potential, which gave them a value of 

Ep = 37 MeV. If we note that Law and Bhaduri underestimated 

the triton binding energy while Ohmura et al. overestimated, 

we take E ~ 45 MeV, so that p 

-<V(S)> = ~ Ep ~ 30 MeV [154] 

For our cutoff function, we take v(k) = (A 2-µ2)/(k2+A2), 

where µ, the pion mass is taken to be 139.6 MeV, the cutoff 

parameter A is taken for two cases, A = 5µ and A = 6µ. The 

renormalized coupling constant is such that f 2 /4TI = .08, and 

all quantities are taken in terms of the pion mass. The 
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results for Q, ~Q, µm, ~µ are shown in Table III. It is 

obvious that ~Q/Q~7~9%, and ~µ/µ = 9~10%, which shows that m 

the corrections calculated here are quite large. However, 

the approximations made in obtaining these corrections are 

quite suspect. 

In particular, the static approximation cannot be 

relied upon to give a useful quantitative value, as is men­

tioned by Hiida et al. <37 >. They find that in low energy 

reactions such as pion-nucleon scattering, recoil effects are 

not essential, while in the nucleon structure problem, 

although the static approximation may give a useful qualita­

tive argument, recoil effects are very important. Also, the 

real significance of V(S) is not apparent; we chose V(S) as 

an effective potential for simplicity. We failed, however, 

to consider the initial nucleon wave function renormalization 

in our calculation. Instead of treating it as an effective 

potential, it would be more appropriate to take some potential 

such as a harmonic oscillator potential, and then solve the 

same problem. 

5.3 Nucleon Bound by Harmonic Oscillator Potential 

We now consider a nucleon bound in a nucleus by some 

potential V(r), and we take account of nucleon recoil; 

therefore, in the free nucleon case we have to take account 

of the nucleon kinetic energy, so that in 
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TABLE III 

The charge and magnetic moment densities 

and their corrections due to an interaction 

given by an effective potential V(S). The 

2 2cut-off function is v(k) = (A -m2)/(k2+A ), 

while the cut-off parameter A is shown • . 

The charge is in units of e and the magnetic 

moment in nuclear magnetons, and m is the 

pion mass. 

Q ~Q 

A=5m .507 .046 .957 .095 

A=6m .772 .061 1. 281 .116 
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Eq. [130 ], the free nucleon propagator is 

i 1 [155]2'TT k2 - if::ko 2M + 

where M is the mass of the nucleon. Equation [118] becomes 

[156] 


which is the Hamiltonian for a nucleon bound in a potential 

V(r) I where w{r) can be expanded in terms of creation and 

annihilation operators as in Eq. [86], 

W(E) = L CV wv<E> I [157] 
v 

where $v(r) is a quantum mechanical wave function such that · 

[158] 


$v(r) can be expanded as 

"' r = (0,¢) of r [159] 

"' where fni(r) is the radial dependence of $v(r), Yim(r) are 

the spherical harmonics, and C 
'.) 

is a destruction operator 

and Ev is the energy eigenvalue. Similarly 
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[160] 

such that 

where v - (n~ 1, m) [161] 

The pion field can be expanded as in Eq. [66], and since we 

are using the Schroedinger picture so that the quantities 

are time independent, we have 

1 cp (r) = [162]
a ­ ( 21r) 3/ 2 

+where ak and ak are destruction and creation operators, 

respectively, and w = (k2 + µ 2) 112 • Therefore, Eq. [116] 

becomes 

[163] 

Also, substituting Eqs. [159] and [162] into Eq. [120] 

[164] 
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where the suffix k on ak specifies the isospin state of the 

pion of 	 momentum k, and H _describes the interaction of a1 

meson field with the nucleon field. We are interested in 

the case where a nucleon in the ground state 

(v = (nim) = (OOO))goes to an intermediate state v' and 

interacts with the pion field. We first do the r 

integration* Expand 

[.165] 

such that 

= J 	r2 dr fv(r}fo(r) J ik·rA A Adr Yim(r)Y00 Cr)e - ­

2
"' / 41T. i J?, 	 r r dr f" (r) f 0 (r) j J?, (kr) ·y~m cki [166] 

0 

I: 	 = is assumed. Also, since 
n, i ,m 

= 41T 	 [167 


v 
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I 
A A 

J 
-ik•r 1 oo 

dr w~(r)$0 (r)e - - = (-i) 14TI 

0 

[168] 

Therefore, Eq. [164] becomes 

dk 
__:.:_ F (k) cr •k

I ./2w v - ­

[169] 

where 

2Fv(k) = l4TI J® r dr fv(r)f 0 (r)ji(kr) 

0 

and we have applied the relation 

Our purpose again is to calculate the charge and 

magnetic moment densities for the free nucleon (without the 

static approximation) and the correction required if the 

nucleon is bound by a harmonic oscillator potential. The S 

matrix is calculated as before, except that the TINN vertex 

is altered, as shown by Eq. [169]. The TINN vertex becomes 

for the ground state to intermediate state transition (O + v) 
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0 + \): (2Tii)c(L:k ) fl. ii+l(-l)i+l T. (cr·k)F (k)Y~m(k)
0 µ 	 1 - - V N 

[170] 

while the intermediate state to ground state vertex factor 

. is 

\) + 0: 	 [171] 

The nucleon propagator becomes 

i 1 [172]
2'IT kO - Ev + ie: 

where . Ev= Ev - E
0 

, i.e., the excitation energy. 


The S matrix is then found to be 


S = (- i) J 0 ( 0) 	 E J+ood t Jd_k Jd_k 1 ( i ) 2 i 
v (2'JT)4 2'JT 

-co 

Ytrn<k)Y im (k' >Fv(k) F v (k') (2'IT) Ckµ+k~) ·eAµ 
x • [173] 

t - E + ie:
'V 

Therefore, from Eqs. [136] and [173] we see that 
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I I +oo dt dk dk' F (k)F (k')
f -- \) \) 

-oo 

t(~·k') (tt·k)e~c~·~~) ·E v(k)v(k') 
x Ylm(k)Ytm(k') 2 2 2 2 

(t -w +is) (t -w' +is) (t-E\)+is} 

[174] 

After doing the t integration (see Appendix III) , we find that 

i (k' -k) • r 
(£·~'} (~·~}e - . - - v(k)v(k') 

x [175] 
(w' +w) (w+E\)) (w '+E) 

while 

l . 2
Q = p (r}dr = ([} -r

3 
l: (2.Q.+1}I c -- (2~}3 µ \) 

dkv2 .(k) k 4F~ (k) 
[176]2 

w (w+.E) 

since there is no spin flip so that (~·k'} (Q_·k) = k'·~, and 
oo 

F v (k) = l41T drr f\) (r) f 0 (r} j t (kr} ,J
2

. 0 

t 2t+lA A 

L Ylm(k}Ytm(k) = ~ 
m=-t 
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[177] 

Also, from Eqs. [136] and [173] we see that 

i(r) = 

(k+k') .(cr•k') (cr·~)ei(k'-k) ·r Y!m(k)Ytm(k') 
x v(k)v(k') 

(t2-w~+ie:) (t2 -wk_~+ie:) (t+Ev-ie:) 
[178] 

Evaluating 	the t integration (Appendix III} we obtain 

2
T3 ·,g_2-) · 4..,,. "" f 	 1· (k'-k) •ri(r) = ~ 

11 

~ g~g~'(k_+k')e - - - v(k)v(k')
( 2'IT> s 4'IT µ2 	 \) 

x 

Remembering that 

[180] 

and noting that 

i i(k'-k)•rr ~ - 2 (Vk -	 Vk) e - - - [181] 

we let 
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5 2 2
2-r3/ (2'TT.) (g /4'TT) 4'TT /µ . Ev _ 

f(k' ,k) = {l + w+w'} 
ww ' (w+E ) ( w ' + E ) 

\) \) 

[182] 

which is symmetric with respect to k and k'. 

= - 1· · cv·~v )ei(k'-~> ·~(k+k')
2 -k-k -­

[183] 


The (k·k') does not contribute since it gives a symmetric 

contribution, while (V'-V ) is antisymmetric, and therefore,k k 

this term gives a zero contribution when integrated. 

which gives, after integrating by parts, 

µm = - lfsPsfg~·feik'-~·!;cvk-Vk)x(k+k'l (cr·k'xk)f(k,k')dr 

[185) 

µm = ~Jsi~Jsi~·o (~-~·) f(k,k')kx(.Y_'-Vk) (cr·k'xk) 

since (k+k') and f(k,k') are synunetric with respect to k and 

k' ,· so that when they are operated on by (Vk-Vk) and inte­

grated, they give a zero contribution. The factor 
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[186] 

in the limit ask+ k', and since 

~ k 2cr [187]
3 ­

we see that, when we combine Eqs. [18Q] I [185] and [187], 

2-r3 2 . ; k2G~(k) 
µ = (!:IT) 

4 (27T)3 2: J~is v2(k)m ~ 2 2(211')5 µ \) w (w+E) 

,4 2 ... 2 = T3 (311') <h> 2: (2R.+l) rdkv (kl~ µ n,i 0 

k 4G
\) 

2 {k) Ev 
x 

) 2 (1 + 2w) [188] 
w2 {w+E

\) 

where we· have used the fact that 

.Q, 
2i+l 

E Yim {k) Yim (k) 

m=-i 

= 4iT 


We now solve for Q and µm for the case where the 

nucleon is bound by a harmonic oscillator potential such 

that Eq. [158] becomes 
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2' f 2 

= (~ + 2 r >wv(r) = EllJ (r) [189]


v ­

where f is the harmonic oscillator force constant, which can 

be determined in terms of the size of the nucleus, M is the 

nucleon mass such that 2M = 13.453µ, and p is the nucleon 

momentum. As we assumed previously, llJv(r) = wn1m(r) can be 

decomposed into a radial part and an angular part, Eq. (158], 

where f (r) = f (r) is a normalized function0 0n.11, n.11,K 

1 ' 38)
(K = - (n-1)) ( such that

2 

+ 1 + 1 
f • (r) = a3/2 r2 [r(R. +lit 2)]-1/2
n, N ,K . ar 2 

K' 

[190] 

where f (1 + ~) = (1 + ~) !liT, 

= n! 

{n-m) !m! 


L;+l/2 are the Laguerre polynomials; if we define the 

oscillator frequency E = {f/M) 112 , then the characteristic 

oscillator length is 

' '-fl 1/2 1b ~ = c = 1) ,= (M£) = E)l/2 

so that a2 = l/b2 = ME. 
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As is shown in Appendix IV, a useful expression for 

Gv(k) is 

Gv(k) = J
00 

r 2dr fv(r)f 0 (r)ji(kr) 

0 


[191] 

00where n is summed from 0 to , ~ is summed from 0 to n, 

K = 1 
2 (n-i) , and 

-
We see from Eqs. (188] and [176] that the charge and magnetic 

moment involve terms where 

1 [192] 

which is shown in Appendix IV. The charge and magnetic 

moment expressions become 

= 2 g2 1 E Ioo k4dkv2 (k) e-k2/2a2Q = E Q(n} T 3 TI" (4Tr) µ2 n °'ti (k} 2n 
n 0 w(w+ne:) 2 a 

[193a] 
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.. 2· 4 1 

µm = L µ (n) = 1"3 (~1T) . ~ L an
31Tn µ n 

dkk4v 2 (k)e-k 
2 

/ 2a 
2 

(k) 2n{l + ~} [193b]x 
2 2 a 2wJ w (w+ne:) 

where the energy of the intermediate state is 

En= (n + ~)e: 23 
e: = ne: 

If we let t/e: = k 2/2a2 where t = k 2/2M, and define 

00 

S ( e: ) = E 1 1 (~) n 
n ! 2 e:n=O (w+ne:) 

00 

= d E 1 1 (!,) n 
- dw n! w+ne: e:n=O 

= d ~ 1 Joo d'e-A. (w+ne:) (t) n 
- dw /..,, n ! e: 

n=O 
I\ 

0 

00 

d Joo dA.e-A.w • 2: 1 [194]= dw n!n=O0 
00 

~ 1 nand since ex = t... -1 X I 

n=O n 

S(e} = - :w J00 

dAe-Aw exp(: e-Ae) 


0 


-A.w t -A.e:=r dA.A.e exp(- e ) [195]e: 
0 
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The terms in the integrand of Eq. [193] are of the form 

S(s)e-t/s, so that 

22 . . 1 
Q = 7r <h> ~ r dk k4v~ (k) r dAe~AW Aexp(t(e-AE_l)) 

E µ 0 0 [196] 

and 

[197] 

which becomes 

t -As= 2- 9:-2 _l_ [ J- dk v 2 (k) k 4 J- dAAe-AWµ exp ( - ( e -1) )m 37r 47r 2 2 E 
µ 0 w 0 

4 · t+r dk v 2 (k)k r dAe-Aw (e-As_l))]exp(E" . [198]
w3 

0 0 

These are the final forms of the expressions for the magnetic 

moment and charge densities for a nucleon bound in a Harmonic 

oscillator characterized by the parameter s. 

We now investigate the two limiting cases of the 

charge and magnetic moment: The loose binding (s + 0) and 

the tight binding limit (s + 00 ). Q and µm depend on 

through S(s)e-t/s. In the loose binding limit we obtain 
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lim (S(e:)e-t/e:) lim [- d 
dA.e -A.wexp[£t (e-A.e:_l)]]= dw re:-+0 e:-+0 0 

d -A.trdA.e-A.w= - dw e 

0 

d 1 1 (199]= - dw w+t = (w+t)2 

Then the expressions for the magnetic moment and charge of 

the nucleon are 

2 2 1 k 4 v 2 (k)
QL = - <h> 2 dk 

'1T µ r k 2 20 w(w + 2M) 
[200] 

2 k24 1 k 4v 2 (k)
µL = (~'IT) rdk 

k 2 2 
(1 + 4wM)3'1T 2µ 20 w (w + 2M) 

QL and µL can be regarded as the charge and magnetic moment 

of a free nucleon, respectively. 

Our expression for µL disagrees with that obtained 

39by Goto < > who investigated the magnetic moment of a 

nucleon starting with a relativistic interaction and 

introducing a cut-off function. This difference may be 

attributed to the fact that our transformed Hamiltonian for 

the pion nucleon system, Eq. (120], is correct only to order 

l/M and terms in the expansion were neglected, while Goto 

considers all orders of M and all the various contributions. 

In the tight binding limit, we see from Eqs. [196] 

and (197] that if e: -+ oo, 
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2 4 

QT = -

7f 

2 <Zn> 1
2 r dk k

3 
v 2 (k} 


µ 0 w 
[201] 

2 44 1 
µT = 3n <Zn> 2µ r dk 

w 
k

4 
v 2 (k} 


0 


which are identical to the expressions obtained in Eqs. [146] 

and [147] in the static approximation (M + oo). 

The correct values for the charge and magnetic moment 

of the tri-nucleon system is obtained by taking s between 

these extreme values. If we take the harmonic oscillator 

characteristic length 

1
b = = 1.4 fro 

(ME)l/2 

3 3
the value which gives the best binding energy for He and H

according to the calculations of Law and Bhaduri C 
40}, we 

obtain the best values for Q and µ. 



CHAPTER VI 

RESULTS AND CONCLUSIONS 

We calculate the charge and magnetic moment both for 

a free nucleon and for a bound nucleon. In these 

calculations we take two values for the cut-off momentum, 

A = 6µ and A = 7µ, and two forms for the cut-off function, 

2 2-k /2Av(k) = e 

2A2 - µand v(k) = 
k2 A2+ 

we take the harmonic oscillator characteristic length b to 

be equal to 1.4 fro. The results are shown in Table IV. As 

can be seen, we find that the corrections to the charge and 

magnetic moment due to binding are quite small. The process 

shown in Fig. 8 accounts for over 50% of the total isovector 

magnetic moment. We found that the bound nucleon 

magnetic moment is enhanced by approximately 2%, which 

implies that our calculations give an enhancement of 

approximately 1% to the total experimental value of the 

m~gnetic moment. Our corrections also appear to be 

insensitive to the cut-off function and the cut-off parameter. 
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TABLE IV 


The magnetic moment µm (in units of nm) and charge Q (in units of e). The 

bound nucleon values are primed, where A is the momentum cut-off parameter 

and v(k) is the cut-off function and µ is the pion mass. The percent 

differences are given in parenthesis. 

Q Q' µ'µm m 

(nm) · (nm) 

A=6µ .4280 .4422 (3.3) 1.087 1.110 ( 2 .1)= e-k2/2A2v(k) 
A=7µ .5537 .5713 (3.1) 1. 293 1.320 (2.0) 

2 2 A=6µ .3494 .3612 · (3.4) .8600 .8779 (2.1)-µv(k) = A

k2+A2 A=7µ .4558 • 4712 (3. 4) 1. 044 1.065 (2.0) 

\0 
CX> 
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If we compare the results of Table IV with those of 

Table III we see that there is a rather large discrepancy 

between the results obtained by considering the nucleon 

bound in a harmonic oscillator potential and the result 

obtained by using the method derived in Section 5.2. 

Goebels C4l) pointed out that a possible source of error in 

our treatment in Section 5.2 was that we failed to take 

account of the initial nucleon wavefunction renormalization, 

i.e., our initial work assumed that the nucleon is bound 

only in the intermediate state. 

In Fig. 10 we have plotted the magnetic moment µm 

(Eq. [198]) as a function of b for the case where 

and A = 7µ. We see that µm approaches the free limit as 

b + and µm approaches the static limit as b + O.00 

If we examine the results of Table IV, we find that 

the corrections to the magnetic moments of the tri-nucleon 

systems are not significant. In Chapter IV we found that 

the corrections of Harper et al. and Hadjimichael account 

for the major part of the discrepancy between the experi­

mental and theoretical values of the magnetic moments of 

the tri-nucleon systems; in fact, their calculations 

somewhat overcompensate the difference. If our small 
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Fig. 10: Plot of the magnetic moment 

µm(nm) as a function of b, the 

harmonic oscillator length in 

2fm, with v(k) = (A 2-µ 2)/(k +A 2 ) 

and A = 7µ 

1.14 
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1.10 

1.08 

1.06 

1.04 
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contribution is taken into account, the discrepancy increases, 

which implies that some additional work is still necessary to 

completely understand this problem. 

If we consider Eqs. [193a] and [193b], we see that 

Q and µm are given in terms of a sum over the intermediate 

states, and an interesting problem can be considered. For a 

closed-shell nucleus such as He 4 and 0 16 , there should be a 

( 42"quenching" > of the magnetic moment due to the fact that 

the Pauli exclusion principle will prevent the nucleon from 

recoiling into intermediate states that are already filled. 

If the s-state is completely filled, the term with 

n = 0 (= .196 nm) in the summation of Eq. [193b] should be 

removed. Or more generally, if the n-shell is filled, the 

term with that n should be removed (Table V). The 

"quenching" effect seems to be quite large, and should 

provide further impetus to investigate this problem 

thoroughly. 



TABLE V 

Terms of the charge and magnetic moment expansions 
00 00 

Q = E Q(n) , µ = E µ (n) , 
n=O · m n=O 

Eq. (193], for the case where 

2 2 2 2v(k) = (A -µ )/(k +A ) and A = 7µ. 

n=O n=l n=2 n=3 n=4 n=5 n=6 n=7 

µm(n) .196 .158 .117 .089 .069 .055 .044 .037 

Q(n) .045 .044 .038 .033 .028 .024 .021 .018 

~ 

"' 
0 



APPENDIX I 


A. Coordinates and Momenta 

The space-time coordinates (t,x,y,z) = (t,x) used 

throughout the text are denoted by the contravariant four 

vector (with-if= c = 1): 

µ 0 1 2 3 x - (x , x , x , x ) - (t,x,y,z) [Al] 

The covariant four vector x is obtained by changing the µ 

sign of the space components 

[A2] 

where the metric used here is 

1 0 0 0 

0 -1 0 0
gµv = 
0 0 -1 0 

0 0 0 -1 
 [A3] 

The summation convention is used throughout, and the inner 

product is 
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Momentum 	vectors are defined as 

[A4] 


such that 

[AS] 


and 	 x•p = tE - ~:E. [A6] 

B. 	 Dirac Matrices and Spinor 

A Dirac spinor for a particle of momentum p and 
µ 

polarization s is denoted by u (p ,s), while for the a. µ 

antiparticle it is called va.(pµ,s). In each case the energy 

E = + 	JI nl 2 + m2Po = p ~ 

is positive. Also, the vectorsµ, which in the rest frame 

for the form 

"' "' sµ = (O,s) s·s = 1 	 [A7] 

represents the direction of spin of the physical particle 

in the rest frame. The y matrices in the Dirac equation 
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satisfy the anticonunutation relation 

[AS] 

. 0 1 2 3and 1y y y y 

where the y matrices are 4 by 4 matrices. A familiar 

representation for these y matrices is 

,1 0 0 C1 

[A9]0 -1 -cr O 

where 

1 C12 0'30 -i= = 1 0C1 = 0 1 

0 -1i 01 0 

[AlO] 

1 = 1 0 

0 1 

A frequently occurring combination is 

The inner product of a y matrix with an ordinary 

four-vector is often encountered and is denoted by 
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Aµ .YOAOYµ = ~ = - r_·A 

[All] 

p yµ = EyO= F5 - E_·r_µ 

The spinors u and v satisfy the Dirac equation 

(~ - m)u(p,s) = 0 

[Al2] 

(~ + m)v(p,s) = 0 

In terms of adjoint spinor, 

- + 0 u = u y and 

u(p,s) (~ - m) = 0 

[Al3] 

v(p,s) (~ + m) = 0 

The following normalization and completeness conditions are 

satisfied by the spinors: 

u(p,s)u(p,s) = 1 

v(p,s)v(p,s) = - 1 [A14] 



- -
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Another representation of the Dirac equation that 

is commonly used is given in terms of a and 8 matrices, 

where the Dirac equation is 

- Hip [AlS] 

where the y matrices are related to a and 8 by y = Ba, 

Yo= 8; if 1i = c = 1, the Dirac equation becomes 

[Al6] 



APPENDIX II 


The total Hamiltonian of the pion-nucleon system is 

. 

= I d 

3 
xllJ~'r(~) (~·~ + Sm) 1JJ(~9 


+ 1 I 3 . { 
7T 

2 + µ2cp2(~)}
2 

d x (x) + y<t>·~cp(~) 

+ G I: d3x ~y 5T. llJcp. [Al7]I 
J Jj 

where the pion-nucleon fields interact through direct 

pseudoscalar coupling. 

In order to study the nonrelativistic Hamiltonian, 

matters are greatly simplified if we first transform H so 

as to eliminate the pseudoscalar coupling term for a 

pseudovector coupling term. We perform a unitary 

transformation on H such that 

H' = eiS H e-iS [Al8] 

where throughout we are working in the SchrOdinger picture. 

43Berger et al. < > take 

108 
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[Al9] 

with s(x) = iy 5w(~(~)). We note that S is not a matrix but 

a c-number, and therefore it commutes with all Dirac 

matrices. If we note that 

[A20] 

and remember that the w's anti-commute, and make use of the 

fact that 

5
ei Qe-iS = Q + li [S ,Q] + ~ ~ [S , [S ,Q] l + • • • [A21]

' 

the expression we finally obtain for the transformed 

Hamiltonian is 

3 2is 
+ f d x$*(~) (e -l)SM$(~) 

+ f 
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[A22] 

where~. = iy 5a .• If in this expression we expand the 
1 1 

exponential factor and retain terms quadratic in ¢, and if 

we take -A = G/2M, then the pseudoscalar coupling will be 

eliminated to this order. [The equivalence of pseudoscalar 

and pseudovector coupling is most clearly established by 

Foldy's transformation ( 44 >, where s is taken to be 

1 J 3 -1 G¢{x)
S = 2 d x~*(x)y 5w(~) tan ( M-) [A23] 

If we use this canonical transformation in [Al8], the 

pseudoscalar coupling is completely eliminated, while the 

pseudovector coupling term now appears with a nonlinear 

coefficient.] This gives 

H' = H__ + H + H" [A24]
-~ M · I 

where 
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H" d 
3

xw* (x) o:: •V<f> (x) + iy51T(~))I = 	2~ I - - ­

G2 
+ 	2M J d3xW*(~lSW(~)~ 2 (x) 

G2 3 	 2
cJ 	 d xw* (x) y s"' (~)) [A25]2M 

The first term in Eq. [A25] is called the derivative coupling 

form of the meson-nucleon Hamiltonian, and if we remember 

that 1T(~) is essentially atcp(~), this term becomes 

[A26] 


which is the conventional way of expressing the pseudovector 


interaction, and where 


F G -	 = [A27]
µ 2M 

2The two meson term G /2M J d3xW*(~lSW(~)~2 (x) is analogous 

to 	the quadratic (e 2 /2m)~2 in the nonrelativistic radiation 

theory. The last term in [A25] is called the contact term 

and is always present in the Hamiltonian for a derivative 

. coupling. 

Having now replaced the pseudoscalar pion-nucleon 

interaction term by a pseudovector interaction, we can 

perform successive canonical transformations on H' to remove 
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all the odd Dirac matrices, and to order l/M the transformed 

( 45Hamiltonian becomes > 

+ 6f( ~) [A2 7] 
M 



APPENDIX III 

In Eq. (135], we are required to perform the t, or 

energy integrations. The charge integral is of the form 

J+
00 

I = dt l [A28] 
c _

00 
(t2 - w~ + iE) (t2 - w~, + is) 

If we take the counter-clockwise path of integration in the 

complex plane, Fig. 10, we see that 

1 1 -1 1I 27Ti . {­
c = 	 2 + - 2}2w' 	 2w 2 w' 2 - w w w' 

[A29] 

1I = 271'i c 2ww' (w + w') 

For the case of the current density, the t integral 

is of the form 

dtI. = 	 [A30]2 	 2J r (t2 - w + is) (t2 + is) ( t - iE)
-oo k - wk' 

taking the same path as in Fig. 11, where now there is an 

extra pole at t = iE; we see that 

1 1 1I. = 271'i { + + 	 }
J 2 '2 2w 2 (w2 2 	 w2)w w - w' ) 2w' 2 Cw' 2 ­

[A31] 

I. 	= 2 
27Ti 


J 2 ,2
w w 
113 
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I 


)( )( 

w w' 


Fig. 11: Integration path for the integral of 

Eq. [A26] with the corresponding poles 
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In order to obtain Eq. [150], the energy integral 

is of the form 

I = J+oo dt [A32] 
_ 

00 
( t - i E ) 2 ( t 2 - w~ + is ) ( t 2 - w~ , + i E ) 

27Ti 1 1 1I = -2- (- - -)2 3 ,3w w ' 2 w w 
[A33] 

227Ti W + WW 1 + w' 2I = -2­
(ww') 3 (w + w ' ) 

where we take the clockwise path of integration in the 

complex plane. 

When we perform the t integration in Eq. (174], we 

obtain 

tI = r dt 
(t2 - w2 + iE) (t2 - w ' 2 + iE) (t - E + iE)-oo \) 

-w -w' = 27Ti { + }
2 2 2 2-2w(w - w' ) (-w - E ) -2w' (w' -w ) (-w'-E )

\) \) 

211'i - 1 1{ }= -2­ 2 2 2 2(w' -w ) (w+E ) (w' -w ) (w'+E ) 
\) \) 

1 = 27Ti [A34]2(w' + w) (w + E ) (w' + E ) 
\) \) 

where we take the counter-clockwise path of integration. 

Finally, the t integration in Eq. [178] gives 
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I = 2'1Ti 

1 1= -2'1Ti ' { 2 2 + 2 2 }
2w (w -w ' ) ( w+Ev ) 2w' (w' -w ) (w'+E

\) 
) 

Ev 
[A35]= 2'1Ti 2ww' (w+E) (w'+E) . {l + w+w'}

\) \) 



APPENDIX IV 

If we let 


Gv(k) = J
00 

r2drfv(r)f0 (r)j~(kr) [A36] 


0 

1where v = (n,i,K) and K = 2<n-t) , we have to show that 

where 

and 

3/2 12 3 /K + Ki + ~ ] -1/2
fniK(r) =a ~ar [f(t + 2> \ ) 

[A37] 

For example, 

3/2 -1/4 -(ar) 2/2= 2a n e . , £0 

117 
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so that 

2a~+3 k-1/2 foo drr~+3/2 e-(ar)2
G (k) = 

\) 1 
l t + i + ry 1/2 0( i + -) 12 . 

K 

i+l/2 2 2 
x LK (a r ) J i+l/2 (kr) [A38] 

Li+l/2( 2 2) . L p 1 . 1 d J (k )where K a r is a aguerre o ynomia an i+l/2 r · 

is a Bessel function. 

A useful formula is 

[A39] 

The Laguerre polynomials are defined as 

K (K+~J .r ~ (-l)r ~! [A40] 
r=O K-r 

so that 

lim 
B-+a. 

[A41] 


Putting B = a 2 , we get 
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1 [A42]Kl 

Therefore, G (k) becomes v 

2ai+3 k-1/2 ki+l/2 

K + i + 1 (2a2)i+3/2 
[ ( i + ~) ! ( 2) ] 1/2 

K 

x _.!_ ( k2)K e-k2/4a2 [A43] 
K ! 4a2 

so that 

[A44) 

Using this expression for G (k) , and applying the 
v 

principle of Unitarity of the S-matrix, we see that 

-ik•r ik·r 
1 = E <Ole - -lv><vle - -10> [A45] 

v=n,i 

= E (2i + l)G~(k) [A45] 
\) 

where we sum over all the intermediate states 

1 = E (2i + l)C 2 (k) 2n 
v a 

\) 
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[A46] 

This gives 

I: 
n 

a. n 
(k) 2n 
a 

k 
2
/2a

2 
= e = I: 

n 

1 
n! 

2 
( k ) n 
2a

2 

= I: 
n 

1 

2nn! 
(k)2n 
a 

[A47] 

which implies that 

1 [A48] 
2n In. 
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