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*
NOMENCLATURE

Symbol

Upper Case

A

C

\Y%
c

Description

Area

Skin friction coefficient as defined for
turbulent Couette flow

Pipe diameter

Hydraulic diameter of the annulus or a section
Contact frictional force per unit area

Chord length of an arc

Length of the capsule

Static Pressure

Volumetric flow rate

Volumetric flow rate due to capsule alone

(= 3 1a’v,)

Radius of either pipe or capsule

Reynolds number

Pressure ratio (=(dp/dz)_/(dp/dz) p)

Velocity ratio (= VC/Vav)
Arc length

Velocity

Capsule Velocity

*Such common abbreviations as cp for centipoise and sp. gr.

for specific gravity, etc. have also been used.
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W Weight of the Capsule

Z Complex variable in the x-y plane (Z = x + 1iy)

Lower Case

a Clearance
o Half of the distance between the two poles of

a bi-polar coordinate system.

d Capsule diameter

dp/dz Axial pressure gradiént

e _ Eccentricity

f Friction factor (of Darcy-Weisbach form)
k Diameter ratio

r Distance in the radial direction

S Distance between the pipe and capsule centres
X Cartesian coordinate

y Cartesian coordinate

w Velocity in the axial direction

zZ Distance in the axial direction

W, ' Half of the capsule velocity (wZ = Vc/2)

Greek Symbols

€ Surface roughness height

r Complex variable in the g-n plane (¢ = g+in)
n Bipolar coordinate fqr annular geometry

6 Angle

ﬁ Fluid dynamic Viséosity
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v © Fluid kinematic viscosity

£ Bipolar coordinate for annular geometry
0 The constant 3.14159.¢c0es s
o Fluid density

Q

Capsule density

? Summation of terms from 1 to «

T Shear stress

¢ _ Angle or some function

Subscripts

ann ' Annulus

av Average value

c Referenced to a capsule-pipe system
N i Referenced to a free pipe

loc Local value

m ‘At the line of maximum velocities in Pressure

flow

max Maximum value

min Minimum value

T Total value

n n = constant

E ¢ = constant

1 Refers to capsule

2 Refers to pipe



Superscripts

* Refers to shear velocity (w* = vV1/p)
+ Refers to dimensionless velocity or distance

ratio in velocity profiles for turbulent flow
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INTRODUCTION

In recent years considerable interest has developed
in the problem of fluid flow through both concentric and

eccentric annuli (Ref. 1 to 17 being some of the relevant

"ones). Amongst numerous other applications, flow in an

annulus has also proved useful as a model for pipeline trans-—
portatioﬁ of capsules. The word 'capsule' in this éontext
has come to mean a large regularly shaped body whose minor
axis is comparable to the diameter of the pipe through which
it is travelling. A capsule may be hollow or solid, cast or
extruded, coated or uncoated, rigid or non-rigid and cylin-
drical or spherical in shape.

A series of tests on capsule pipelining have been
conducted at the Research Council of Alberta in the past few
years. The capsules used in such tests have been cylindrical
(8, 9, 12{ 13, 14)* or spherical (8, 10, 12, 13), hollow or
solid, and of a wide range of densities énd capsule/pipe
diameter ratios; the cylindrical ones having a variety of
lengths and end shapes. The tests.have also included
experimentation on short trains of spherical and cylindrical

capsules.. A variety of theoretical investigations have also

* "
Numbers in parentheses designate references listed at the

end of the dissertation.



béen made (7, 11, 14).

However, all this work has been mainly concerned
with laminar flow in the space surrounding the capsule.
Though experimental tests in which there was turbulent flow
in the annulus (12, 13, 16) have also been conducted, no
theoretical analysis has yet been developed except a some-

. 'what unsatisfactory*outline (17) for such an approach. The
following study thus essentially consists of theoretical
predictions of the behaviour of various parameters governing
the free flow of a very long cylihdrical capsule in a hori-
zontal pipe.

In order that the equilibrium veloccity of such a
capsule may be determined, a proper balance of the forces
acting on it must be obtained. Due to some of the assumptions
made in this study, such a force balance requires that the
thrust due to pressure force must counterbalance the drag due
to shear force on the capsule. Since the former is given by
the product of capsule cross sectional area and the applied

pressure gradient, and since shear force at a wall in fluid

dw
dy’

finding the velocity gradient at the capsule surface.

flow is given by ¥ the problem is reduced in effect to
For this purpose, suitable velocity profiles were
developed: depending on the nature of fluid flow in the
eccentric annular space. A bipolar coordinate system was
used to describe the flow field geometry. Once the capsule

velocity corresponding to a given applied pressure gradient

*Reasons for this are given in chapter 2, page 10.



was found, the othef parameters such as average velocity,
pressure and velocity ratios together with enexrgy reguire-
ments were easily calculated. Due to the extremely compli-
cated and lengthy nature of calculaetions involved, the

analysis was performed numerically using a CDC 6400 digital

computer.



LITERATURE SURVEY

The concept of capsule pipelining emerged from an
- investigation of two-phase flow of water and an immiscible
0il conducted by Charles, Govier and Hodgson (18)f
following this work, further studies were carried out almost
exclusively at the Research Council of Alberta to determine
the characteristics of a flow system in which the observed
slugs of oil in water were replaced by capsules of cylin-
drical or spherical shape. These experiments were later
extended to cover a wide variety of capsule éhapes, sizes and
densities in a variety of pipesand liquid carrie?s. This
work has been reported in a series of papers, Part 1 to Part
"9 (6 to 14 incl.). This series having the general title
'The Pipeline Flow of Capsules' together with references (15,
16, 17) presents the basic research done to date in this field.
For concentric capsule flow, Charles, in Part 2 of.
the series, (7) proposed four models to describe all the
possible flow regimes in a capsule pipeline. These models
are:
i) Laminar flow both in the annulus and in the free
pipe .-
ii) Turbulent flow both in the annulus and in the free
pipe.

"iii) Laminar flow in the annulus but turbulent flow in



the free pipe.

iv) Turbulent flow in the annulus but laminar in the

free pipe.

Charles pointed out that an unstable region near Reynolds
number of 1000 would be expected_un£il either turbulent

flow was stable in the annulus and model 4 applied or laminar
flow became stable when model 1 applied. However, extremely
doubtful of the applicability of model 4 even in the small
region at Reynolds numbers below 2000 and diameter ratios
between 0.4 and 0.7, he suggested that models 1, 2 and 3 are
the only realistic ones which would have wide application in
practice.

In Part 3 (8) Ellis investigated ekperimentally the
transport of single, equal density, cylindrical and spherical
capsules in a water carrier. He also performed a dimensional
analysis of the variables involved in the general case of a

capsule flowing in a pipeline and obtained

dp, _
Vg OF (a‘° - ¢l(va

Zc IOIQIUILCIerr end shape, jrsllez)

v

where j factor to take into account the lubricating quality
of carrier ligquid and the friction between capsule
and pipe surfaces

e, = capsule roughness height

€y = pipe roughness height



By dimensional analysis

\Y \Y Dp L € €

LI av c-p d "¢ 1 2
RV =g = ¢2( . el U end shape, T D )
av
v (2:1)
or using (%%), Vc is replaced by the friction factor
av
&) B
dzC 5% 2
av

This experimental work was limited to equal density

capsules thus eliminating the parameter (=%} as an independ-

p
Vav Dp d Lc

ent variable. The effects of 'S

and end shape on
RV were found to be as follows:

i) The velocify ratio, Rv’ was independent of pipe
Reynolds numbér. A region of instability was,
however, noted at Reynolds numbers of approximately
104 when the value of Vc changed sharply from a
minimum to a maximum value. This ihstability_was
attributed by Ellis to a possible displacement of
the point of separation of the boundary layer to
the rear of the capsule.'

ii) R, increased with decreasing d/D.
iii) R, increased with increasing Lc/d.
iv) The effect of end shape was limited for large d/D
but not so for small 4/D.
In Part 7'(12) Ellis and Bolt repeated the experiments using
water with eqﬁal density capsules in an oil carrier and found

generally the same effects as noted with the water carrier.

However, the region of instability observed in water (8) at



Reynolds numbers of lO4 did not appear in the oil experi-
ments. Also, data taken in the laminar range with the oil
showed good agreement with the laminar flow prediction of
Charles (7).

Parts 4 and 5 (9, 10) deal Qith cylinders and spheres
denser than the water carrier while Part 8 (13) deals with
cylinders and spheres denser than an o0il carrier. 1In Part 4,
a discussion of the various forces involved in the case of an
eccentric annulus was presentéd but no quantitative theory was
attempted.

Observations made in Parf 4 regarding the presence
of a liquid film between the capsule and pipe bottoms are of
particular importance. For small diameter ratio capsules
and in laminar flow conditions, it was observed by Ellis (9)
*that the capsules iifted clearoff the pipe bottom, first in
a tail—-up position and at a higher velocity, in a nose-up
position. It was also noted that at sufficiently high
velocities, this visible lift-off could occur for larger
diameter ratio and even for heavier capsules. However, it
was pointed out that the geometry of the capsule-pipe system
precluded any rigorous application of lubrication theory even
when the capsule was fully supported by the liquid film
beneath it.

In Part 6 (11), Newton, Redberger and Round used a
numerical technique to investigate the efféct of clearance,
end configuration and length of the capsule, deformations of

the capsule cross section and frictional effect between the



capsule and pipe wall for laminar flow in the annulus. A
significant effect on capsule behaviour was found for all the
above variables except for capsule end configuration and
length.

The effect of increasing clearance was to increase
the velocity ratio but to decrease the préssure ratio -- the
fatio of the pressure gradient in the capsule-pipe system
(dp/dz)C to that for the free pipe (dp/dz)f at the same
average velocity. A study of the moments acting on the
capsule indicated that smaller diameter ratio capsules would
lift off the pipe bottom relatively earlier i.e. at lower
velocities. As expected, increasing frictional forces
decreased the capsule velocity and consequently fhe velocity
ratio. The effect of other variables have no relevance to
" the present study.

:In Part 9 (14) Kruyer, Redberger and Ellis solved
analytically the case of a free—flowing; infinitely long
capsule in laminar flow and at varying clearances. It was
shown that, the pressure ratio at constant throughput>was
equal to the flow ratio at constant pressure gradient when

the annular flow was laminar.

. (dp/dz) _ Q£.> _ 5.3
1.8 Rp = my‘; == m ( . )
= const dp

EE = const

Using this relationship, pressure and'velocity ratios were

calculated for a range of diameter ratios from 0.25 to 0.97



and capsule positions from concentric to fully eccentric.
These calculations gave an almost linear plot of Rp VS. Rv
for varying clearances. For a number of diameter ratios,
clearance was plotted against Rv and Rp independently.
Experimental data from %, i % and 4 inch diameter pipelines
was found to agree well with the theoretical‘predictions on
B Rp - RV basis, though the experimental capsules were finite
and of various lengths.

However, large differences did appear when capsules
of different lengths were compared with each other on a basis
of Rp or RV vs. capsule velocity, VC. On this basis, it was
found that at a given VC, the shorter capsules produced lower
Rp and higher RV. It is implicit in the theory that such
changes can only be caused by an increase in clearance i.e.

" nose or tail 1lift occuring at lower VC for the shorter
capsules. Agreement with the theory on a Rp = RV basis
even for short capsuies (which were probably not parallel to
the pipe length) suggests that the governing parameter may
not be primarily the clearance but rather the particular
velocity ratio the capsule achieves. The shorter cépsules
may be able to achieve a higher R, possibly because the ends
produce a more efficient energy transfer from the fluid to
the capsule.

Apart from this series on 'The Pipeline Flow of

Capsules', an extensive photographic study of capsule

behaviour in a pipeline (17) was carried out by Liddle.
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Since his observations were mainly concerned with the
orientation of capsule in the pipeline, they are not parti-
cularly relevant to the present study. However, Liddle aléo
outlined a theoretical approach for predicting the various
parameters governing the flow of a capsule in a pipe. Never-
theless, his analysis is not very convincing at some places.
Following his analysis, one will not only have to
make use of a number of experimental results but also of a
rather bad assumption. This assumption is regarding
turbulent flow in the capsule-pipé annulus when the capsule
is moving but there is no pressure gradient. It may be noted
that such a situation forms only one part of the complete
flow; the other part being the case when capsule is stationary
for the applied pressure gradient. According to Liddle's
‘ theory, it is easy to see that the velocity profile in such
a case is given by the dashed line in Fig. 2.1. The actual
velocity profile is, however, approximated by the full line

in the same figure. It is clear

\Y%
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Fig. 2.1 VELOCITY PROIILE IN TURBULENT.COUETTE FLOW
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then that serious errors in the velocity gradient at the
walls and in average velocity calculations would result
from such an assumption.

This and a few other minor anomalies in Liddle's
suggested outline have been removed in the present study
which does not make use of any experimental result for
 predicting the behaviour of various parameters in a capsule

pipeline flow.
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THEORETICAL ANALYSIS

The free flow of a cylindrical capsule in a pipe by
means of a fluid carrier is governea by the various forces
acting on it. In general, the pipe may not necessarily be
horizontal or the capsule parallel to it. Additionaliy,
the density of the capsule may be different from that of the
fluid. Whatever the case, a proper balance of the forces
acting on the capsule determines its equilibrium velocity.
These forces are summarized pictorially in Fig. 3.1 as:

i) The weight W of the capsule acting vertically
downwards.
ii) The pressure forces P* in the fluid acting perpen-
dicular td the capsule surface at every point.
iii) The shear forces 1 due to the fluid acting parallel
to the capsule surface at every point.
iv) Any frictional force F caused by contact between

the pipe and the capsule.

3.1 End Effects

For a capsule of finite length, there will also be

end effects, particularly at the capsule nose, that is, the

* l .
P is varying both in the axial and radial directions in a

more complicated manner than that indicated by Fig. 3.1.

12
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upstream end of the capsule. Examining the velocity
-profile in the free pipe, it is clear that the capsule is
encountering slower moving fluid in the lower portion of
the turbulent free pipe flow (I*ig. 3:2). This fluid must
be displaced in an upward direction into velocity deficient
areas in front of the capsule or into the upper regions of
the annular area. This movement of the fluid must produce
an upward shear force on the capsule nose, thereby lifting
it up about a fulcrum at the tail of the capsule.

‘ The velocity profile must again return to a free
pipe turbulent profile, thus producing a net downward shear
force. However, this transference must occur primarily in
the wake of the capsule where pressure forces are small com-
pared to those at the nose. Note that the sections A-A and
B-B in rig. 3.2 are far removed from the capsule ends.

The end effects, therefbre, make their presence felt
through a proper modification of the pressure and shear
forces. These forces can be resolved into components par-
allel and perpendicular to the capsule length plus a nose or

tail-up moment on the capsule.

3.2 Force Balance

For a horizontal pipe and a capsule denser than the
fluid, vertical components of the pressure and shear forces
generally decrease the force on the pipe bottom due to the

capsule weight. The resultant force multiplied by the
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coefficient of friction determines the frictional force.
This force decreases, with improved lubrication of the
surface, as the capsule tends to lift from the pipe bottom
at higher fluid velocities.

The horizontal component of pressure forces always
constitutes a thrust force on the capsule, and the frictional
‘force is always a drag force. The horizontal component of
shear force can either be a thrust or a drag force, and can
even be both on different parts of the capsule. This may
be better understood by considering the flow in the annulus
of a capsule filled pipe to be composed of two parts

i) A pressure flow due to the applied pressure gradient,
that is, when the capsule is fixed, and
ii) A Couette-'flow due to the motion of capsule alone,
that is, when there is no applied pressure gradient.
Examining the nature of velocity profile in the vicinity of
the capsule wall (Fig. 3.3, 3.4), it is clear that the shear
force exerts a thrust force Tp on the capsule in pressure
flow but a drag force L in Couette flow. If the two types
of flow can be superimposed linearly on each other to re-
present the total flow, the net shear force at any point on
the capsule surface is the algebraic sum 6f Tp and Toe This
assumptioﬁ of linear superposition is, of course, valid for
laminar flow.' But even when the annular flow is turbulent,
good agreement between theory and expériment, though over
a small range only, leaves little doubt about the validity

of this assumption.
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At very low fluid velocities, a cylindrical capsule
‘denser than the fluid will remain stationary on the pipe
bottom; the thrust due to the horizontal components of
pressure and shear forces being insufficient to overcome
the static friction between the capsule and the pipe bottom.
As the fluid velocity is increased, the static friction will
eventually be overcome and the capsule will slide. This
fluid velocity, at which the capsule starts to slide, is
coﬁmonly known as the threshold velocity. For the capsule
to move with a uniform velocity corresponding to an applied
pressure gradient, the thrust forces must equal the drag

forces, that is, considering Fig. 3.5,

P+ 1_ =F + 1 (3.1)

3.3 Assumptions

For a very long capsule implied by this study, it
is reasonable to assume that end effects as well as the tail
or nose-up moments are negligible. Also, such a capsule, if
denser than the fluid, will only rest on the pipe bottom
should the capsule and pipe surfaces be rough since the
threshold velocity of such a long capsule will approach
infinity as the capsule length approaches infinity. It was,
therefore, essential to assume that the surfaces were per-

' *
fectly smooth. Moreover, for reasons which follow ,

*
c.f. Chapter 4, Section 4.1
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a fully eccentric position of the capsule could not be
-considered. A thin layer of fluid between the capsule and
pipe bottom was therefore assumed.

Furthermore, it has been assgmed that the pipe is
horizontal and the fluid incompressible. Also, any adverse
effect of secondary flow in the annulus has been neglected.
It has been indicated in Refs. 3 and 4 that such a flow is
only encountered in annuli of diameter ratio less than about

0.5. Under these assumptions, the force balance gives
" Thrust due to pressure forces = drag due to shear forces

Since end effects are negligible, flow around a capsule is
entirely in the axial direction so that, the pressure grad—a
ient being constant throughout, the thrust due to pressure
force across the ends of the capsule is simply Ai(dp/dz)c
per unit length of the capsule.'

Further,assuming that the fluid is Newtonian, drag

per unit length due to shear force is given by

[ t ds = J “(gg . ds (3.2)

where ds is an elemental arc length on the capsule‘surface.
This integral has been evaluated numeridally in the present
study. In this perspective, it becomes apparent that the
basic problem is the determination of velocity gradient
(dw/dy)l at a discrete number of pointé on the capsule

surface. However, before attempting to indicate how this was
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determined, an essentially physical argument will be given

as a basis for the remainder of the analysis.

3.4 Nature of Flow in the Annulus

It is reasonable to assume that unless very high
velocities with or without very low viscosities are obtained,
laminar flow conditions will prevail in the small clearance
between the capsule and pipe bottom when the capsule is
denser than the fluid. Thus, even though the freé pipe flow

‘may be highly turbulent, it is unlikely that flow in the
| capsule—pipe.annulus will be totally turbulent. Then, based
on a previous argument that total flow in the annulus consists
of a pressure and a Couette flow, three regimes (Fig. 3.6)
can be defined
a) Where both pressure and Couette flows are individ-
uaily laminar
b) Where one is turbulent while the other is laminar,
and‘
c) Where both are individually turbulent
While the presence of region 'a' is mandatory, that of 'b'
and 'c' depends on the annular geometry, fluid characteristics
and the average flow velocity.

In the light of this argument, it is necessary to
formulate a criterion for determining the point of change
from laminar to turbulen£ conditions, that is, the extent of

regions ‘'a 'b' and/oxr 'c' in the annulus. It may be pointed
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out that such a transition is gradual in practice, that is,
* the boundaries of regions a, b or ¢ are not well defined.
However, for theoretical considerations, change from laminar
to turbulent flow has been assumed to be initiated as the
local Reynolds number exceeds a certain critical value.
Hydraulic diameter is conventionally used as the
length dimension in Reynolds number calculations. Consider-
ing a section of the annulus (Fig. 3.7), we have

R1+R2
Area of the section = — de.a

Wetted Perimeter = (R, + R2) dao

1

_ 4 x area of section
h wetted perimeter

1l
o

.. Hydraulic diameter

= 2a

2a waV ‘
Then ReLOC ) (3.3)

where.wav, the average velocity in the section, was deter-
mined from the laminar flow relations.

The critical Reynolds number for pressure flow in a
pipe is conventionally taken as 2100 while for Couette flow,
it has been taken as 2400. Couette (19) found transition to

turbulent flow at a Re of 460 for plane Couette flow but he

aw
used a Reynolds number criterion of ——E%X-. Reichardt, using

the same definition as of Couette, found the critical Reynolds

number to be 750. According to our définition, it, therefore,

suggests a range of transition from 1840 to 3000; somewhat
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similar to that encountered in free pipe flow. A value of

2400 was finally selected.

3.5 Velocity Profiles

In order to determine the velocity gradient at the
_capsule wall, a knowledge of the velocity profile in the ann-
ulus is essential. Since the total flow has already been
divided into pressure and Couette flows, and since it can
be both laminar and turbulent in different parts of the annulus,
the complete velocity profile has been developed in the foll-
owing three sections.

"3.5.1 Laminar Flow:

For laminar flow in a pipe with an eccentric fixed
.core, Heyda (2) obtained the following exact solution for

the point velocity

2
2c¢” cosh n(l - coth n, tanh n) i« =T
wig,m) = - o— | 1 ~2cs ()
4y dz cosh n + cos g nyTn,
© e sinh n(nl—n)
- 4cs % (—l)r1 5I5E Bir ) cos ng¢l . (3.4)
n=1 SO ATy T

Here, (&,n) are the coordinates of a point in the bi-polar

coordinate system. Both g¢=constant and n= constant represent
2 representing
the capsule and pipe wall respectively. The bi-polar system

two orthogonal families of circles with ny and n

has been discussed at length in Appendix AT.

The exact relation for total throughput (1) in such
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a case is given by

=1 {ais ot 1)
- 1 "2 :
szl sinh n(nl—n2)

- - dp - 5
Q= 8u dz [R2 o +

1
0
(2]
Q

I ™ 8

({3.:5)

Both the egns. (3.4) and (3.5) are in open form, the
nature of which is such that convergence becomes very slow
.as eccentricity approaches unity. For example, it was found
by the author that at least 4000 terms were required to be
summed for an eccentricity of 0.9999 and a diameter ratio of
0.9. Realizing that the velocity gradient has to be deter-
mined at a number of pqints on the capsule surface, the
exact solution will take a considerably long time even on a
high speed computer. It was, therefore, both desirable and
heceésary to develop an approximate method which would not
only be simpler to use but also agree closely with the exact
solution as far as velocity dradient and total throughput
are concerned.

It was believed that a godd starting point would
be to use the laminar velocity profile for concentric
annular flow in some suitable manner for the eccentric ann-
ulus too. A study of the annular geometry revealed that
finite but small sections of the annulus such as PQRS (Fig. 3.8)
could be considered to be concentric with respect to the

centre O. In Fig. 3.8 O, and O, are the centres of capsule

il 2
and pipe respectively and O is the mid-point of the straight

line 0102; A and B are the mid-points of arcs PS and QR
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‘respectively. It was found thdt{ for the range of diameter
ratios and pipe diameters studied, the maximum value of
angle AOB was only about 0.02°. Thus, from the geometfical
point of view, small sections of the annulus could be con-
"sidered to be locally concentric with inner and outer radii
OA and OB respectively. Note that OA and OB vary with the
angular position 6.

To Jjustify physicaliy the assumption of locally
concentric elements, egqns. (3.8) and (3.7) were used to
evaluate average velocity and velocity gradient at the
capsﬁle wall for each of 120 equally spaced elements in the
annulus. Flow rate through the annulus was determined by
summing the product of average velocity andrcorrésponding
cross-sectional area for all the 120 elements. When this
"total flow rate was compared to that obtained from egn. (3.5),
' a maximum error of only 0.2% was found. Comparing the
velocity gradients with those obtained by a proper use of
éqn; (3.4), it was found that the errors, the maximum of
which was even less than 0.5%, were both positive and neg-
ative for different elements, so that there was negligible
error in the total shear force on the capsule. The approx-
imate method is, therefore, both reliable and simpler to
use. It may, however, be pointed out that for an eccen-
tricity approaching unity, the errors may increase if
diameter ratios far less than 0.9 weré used.

Similar results were found for Couette flow.
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Therefore, velocity profiles, that were used, are

For pressure flow:

(r2 - r2) (X )
wo-la 2 ° 1oL w? - e (36
T 4p dz r, ’ 1 :
1n(1:—)
d
so that the velocity gradient at any point is
r2 3 r2
dw _ . 1dp 1 2 1 _ 5]
dr = 4y dz r, L (3.7)
h ln(z‘—')
1
and the average velocity is
r2 _ r2
el o2 %  F2T T
Wy = n dz [(r2 4 rl) T, ] (3.8)
1n('f—l)
1
For Couette flow:
- -
1n (%)
w = VC ———‘IT;— (3.9)
ln(']::—)
1
so that velocity gradient at any point is
\Y%
dw _ ¢ | (3.10)
dr r
5 .
Y ln(—f——)
1
and average velocity is
r2
w_ =y [ 022 LI (3.11)
av (o r, r2 _ r2
ln(z;—) 2 1
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1 and r, are the radii OA

and OB respectively (Fig. 3.8) and so are different for each

In the above relations, r

elementary section of the annulus. Also ry £ T Y, These

relations have been derived in Appendix AII.

3.5.2 Turbulent Pressure Flow

Turbulent flow is too complicated to be amenable to
exact theoretical analysis even to this day. Only semi-
empirical relations approximate the various flow fields in
such a case. Eccentric annular flow is no exception to this
fact at present. While investigators (4) believe that the
defect law is a better approximation to the actual velocity
profile than the law of the wall for an eccentric annulus,
they also point out that even the defect law breaks down
.,completeiy for the inner profile at low diameter ratios (3,4).
Velocity pfofile in the region between the capsule wall and
locus of maximum velocity is usually referred to as the inner

profile. The defect law is

Y»“-‘J—T-—-Vi = -2.44 1n —Y— + 0.8 + h(=—¥) (3.12)
w . max max
where w - point velocity at any angle 6 (Fig. 3.8)
W * - shear velocity = V1/p
vy - distance measured outward from the capsule or
pipe wall

y - y at which w = w
max max
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h( y ) — correction factor (see Ref. 20)
max

Obviously, a prior knowledge of L W is essential
for using the defect law. To author's knowledge, however,

there is no way of finding w beforehand except by making

max

use of the universal law (law of the wall) given by the

equations
wh o= y+ y+ < 5 (3.13a)
wh = -3.05 + 5.0 1n y* 5 <y o< 26 (3.13b)
wh = 3.8 + 2.78 1n y' vt s 26 (3.13c)

1l

+ w + w¥*
where w =5r. ¥ = Zm—, w* = Y1 /p

The average velocity at some sections of the annulus
‘'was calculated from both the egns. (3.12) and (3.13) when
Wmax'to be used in egn. (3.12) was obtained from egn. (3.13c).
‘It was found that the average velocity calculated from eqn.
(3.12) was higher than that obtained from eqn. (3.13) by
about 0.5%. It is known, however, that the universal law,
itself, gives a higher average velocity than the actual one (21).
Thus, the universal law was finally adoptéd for the velocity
profile in preference to the defect law.

Heyda (2) has performed a rigorous analysis to
determine the locus of maximum velocities in the annulus.
This analysis is for laminar flow only. Nevertheless,
starting with egn. (35) in Heyda's paper (2), reproduced as
eqn. (AI-27) in Appendix AI, it is poésible to calculate two
values of velocity at the position of maximum velocity for

each section of the annulus; one refers to the capsule wall
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and the other to the pipe wall. The condition, that these two
velocities must be equal, may then be used to determine the
correct location of maximum velocity by changing " in a
trial and error procedure and recalculating the shear
velocity on the walls for the néw vélue of Ny

Shear stress at the wall in turbulent flow is also
given by Newton's viscosity law

dw
¥ ay

since laminar sub-layer exists very close to the wall. In
this sub-layer, velocity is directly proportional to the

distance from the wall

W yw*
2
W dwy _ (w*)
or y( g = 5
. , ;
so that t© = p(w¥) - (3.14)

This result can also be obtained by the definition
of shear velocity w* = Yt/p.

The averacge velocity for any elementary section of
the annulus was calculated by integrating numerically the
velocity prefile over the central line of the section using

Simpson's and Newton's 3/8 rules described in Appendix AIII.

3.5.3 Turbulent Couette Flow

Even plane Couette flow, though easy to contemplate
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theoretically, is very difficult to achieve in practice. It
is not surprising, therefore, that no universally accepted
velocity profile exists at present for such a flow. Couette
flow in an eccentric annulus is further compliceted by the
curvature of pipe and capsule walls.

Robertson (22) has performed experimental tests on
plane Couette flow. He has aleso coﬁpared his soluticns with
those obtained by other researchers (23, 24, 25, 26).
Foilowing a basically empirical approach, Robertson found
that the velocity profile in the core was very catisfactorily

described by the relation

- £ .
1 e & 4.1 5 (1 b) (3.15)
z
Ce
; £ 0.19
‘with J[:: = o ¥ (3.16)
2 loglORe _
w7b Vc
where - Re = —j—, b = a/2, W, = 5

As part of his unified thecry cf turbulent flow,
Squire (27) has theoretically analysed plane Couette flow,
deriving expressions for velocity in both logarithmic and
square root form. Helfound that neither expressidn completely
agreed with the experimental data of Reicharcdt or Robertson.

However Robertson's recent data on plane Couette
flow (28) agrees well with egn. (3.15) in the core region.
Nevertheless, it is easy to see that éqn. (3.15) gives a

linear velocity profile. Now the fact that the wall effect
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creeps more and more into the core (Fig. 3.9) with increas-
ing Reynolds number, is indirectly mentioned in reference
(22) but is very clear from Fig. 4 in the same reference.
Thus the extent of application of eqn. (3.15) decreases as
Reynolds number increases. Since in the present case, a
range of Reynolds number from a little over 2400 (the critical
.'value) to about 106 was feasible for turbulent Couette flow,
it was desired to obtain some relation which may cover this
range satisfactorily over a fixed core region (Fig. 3.10).
Assuming Robertson's data (22) to be the most
reliable of all those presently available, the relation
developed to fit the data best over a region of flow from

y/b = 0.1 to the point where w = Vc/2 is

/575 | (3.17)

w.—
wo o6 T E6
b
with 1/c, = 2.671 - 0.119 1n Re (3.18)
w b
where Re = 3

Il

Also since w = w_ at y b, eqn. (3.17) gives

{3.19)

Following Ross (29) and after a careful study of
Robertson's data (22), velocity profiles deve}oped for the
wall region (y/b < 0.1) are:

w=5.6wt (1+1log,,y) y »15and £ < 0.1 (3.20a)

o

0.8 wty" 10 <y <15 (3.20b)

w = w¥ y+ yf < 10 (3.20¢)

Il

w
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with + w*
Yy = yv

0.19 w,
Y
log,, Re
~given by eqn. (3.16)).

("t = pC w2 where C,. is

and = w* = V%/p = £ v, £

N =

Needless to say, egns. (3.17) and (3.20) actually
give the velocity deficiency (VC - w) for the inner region
fiom the capsule wall to the point where w = W Fig. 3.11
'is an illustrative representation showing the various velocity
profiles used for different regioné.

Nothing has heen said yet -about the point where
w = Vc/2. For a plane Couette flow, it is obviously at the
mid-point of the distance between the plates. Such is not
the case, however, in the present situation since the surfaces
are curved. The capsule and.pipe have different curved
surface areas; the ratio between the two being the same as
the diameter ratio k. Since in Couette flow, the shear stress
on both the boundary walls ié equal, the unit shear stress
intensity on the pipe wall must beiléss than that on the
capsule wall.

The shear stress is given by

T = % o Cf wi

Since p and W, are constant for the two walls, Cf
must be different on the walls.
But 2

0.19 0.0361

£ (log Re) - : bw_ 2
, ol (log, . —2)
10 v
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Clearly then the only variable is b. Considering Fig. 3.8,

if Sl and 82 represent the arc lengths PS and QR respec-

tively, the relation for determining b for any section of

the annulus is
w
pa
logyy (by—)
wZ S
logyy by—3

2

1

= E (say)

Then since bl + b2 = a = clearance, the above equation may

be written as

E
(by) w
1 _ z,1-E
R (—;) (3.21)
1 _
This equation can only be solved for bl by a trial

and error procedure. It may be inferred from previous
~arguments that b, is less than b,. Actually, it was found

1 2

that for a diameter ratio of 0.9 and an eccentricity of 0.999,
the minimuﬁ value of bl was only about a/4. From egqn. (3.17),
it is clear that the velocity gradient, dw/dy, depends on the
value of b; fhe dependence is rather complicated since Cl
and 02 are also functions of b. Then since bl # b2, it is
obvious that the slope of the velocity profile changes
suddenly at the point where w = L. that is, it represents a
point of discontinuity. In reality, however, the velocity
profile should be mathematically smooth.

Let us consider Fig. 3.12 in order to see how such a

discrepancy in the velocity profile could be accepted without
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seriéusly affecting the results of this study. 1In this

figure, the dashed line indicates the probable true velocity profile
which could not be predicted at present. The full line shows

the predicted velocity profilé with B as the point of discon-
-tinuity while the chain-line represents the velocity profile

if the pipe and capsule surfaces -were plane.

' Now the two important factors that would affect the

results of such a study are:

i) the velocity gradient at the walls -- increasingly
so at the capsule wall, and

ii) the average velocity given by a velocity profile.

Ve CAPSULE WALL
ATHERA T L EEEEELEEEEERENESNAE
"
b 7
L . .
A L
=, B ‘/ | [ a/2
1 T
b, / |
i
/ a/2
.l S’
717777777777/ 77 77777777 )77/ /7777 /7777777777777 777 777 777777777777 /7777

PIPE WALL

Fig. 3.12 ACTUAL AND PREDICTED VELOCITY PROFILES
IN TURBULENT COUETTE FLOW

Examination of Fig. 3.12 shows that the predicted velocity
gradient at the capsule wall is closer to the probable true one than

that obtained in the case of plane-parallel plates. However,
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at the pipe wall, the velocity gradient calculated from
plane-parallel plate assumption is closer to the probable true dne
than that given by the predicted velocity profile. Thus

while bl' calculated by use of egn. (3.21), was used for
(dw/dy)l, the value of b for determining (dw/dy)2 was taken

as a/2.

It is hard to say what percentage error is involved
in the velocity gradients so predicted but it is a fact that
the error increases as diameter ratio decreases and as the
pipe diameter increases. This observation implies that the
maximum error for any capsule-pipe configuration lies at the
widest gap such as region EF of Fig. 3.8. For a pipe diameter
of 2 ft., an eccentricity of 0.999, and a diameter ratio of
0.9, an estimate of this error may be as high as 10-20% at
" the widest gap. However, since the error decreases as one
proceeds from the region EF to the region CD in the annulus
(Fig. 3.8) and is zero for the laminar region if any around
CD, the overall error in the total shear force on the capsule
may only be 3-6%.

-Since this figure is usually accepted in engineering
applications and since there does not seem to be any way of
improving upon it at present, the velocity profile developed
in egns. (3.17) and (3.20) was accepted. For this very
reason, diameter ratios less than 0.9 were not considered.

As far as average velocity is concerned, it will not

be affected much since hatched areas (Fig. 3.12) tend to
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cancel out each other considerably.. Also, such discontin-
uities as may arise from the use of different equations for
different regimes (Fig. 3.11) have negligible effect on the
average velocity calculation. Needless to say, they have
‘no effect on the velocity gradient at the walls.

The calculations of shear stress at the walls and
average velocity for any section of the annulus were carried

out in much the same way as for turbulent pressure flow.



NUMERICAL TECHNIQUE

Before the velocity profiles developed in the

- previous chapter can be used to find the capsule velocity

and other parameters, the plane geometry of the flow field
ﬁust be described by a suitable coordinate system. Such a
system requires that lines along which a velocity distribution
is assumed to apply are orthogonal to both the inner and outer
walls. To fecilitate this, Heyda (2) developed the bipolar
coordinates (&;n) of a point with respect to the Cartesian
coordinates (x,y) referred to an origin on tﬁe common annular
diameter to the right of the pipe wall (Fig. 4.15; The n

coordinate family, of which the capsule and pipe walls are

"two members, consists of a set of circles with centres on the

x-axis and the ¢ family, orthogonal to the n family, is a
set of circles with centres on the y-axis. The (&,n) system

has been developed in detail in the Appendix AI.

4.1 Clearance

From this development, it can be seen that the bipolar
system degenerates for an eccentricity of unity. But for a
very long capsule implied by this study, a position tending
towards an eccentricity of one is the obvious situation.

From these arguments, it is clear: that a value for eccentricity

39
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should be taken very close to unity. That a value of 0.999
was finally selected for it is based on one more argument
which follows.

As -.explained previously, diameter ratios below 0.9
could not be considered at present without involving a
considerable error in the parameters calculated. Eight
diameter ratios between and including 0.9 and 0.99 were used.
Defining clearance as the ratio of minimum thickness of the
liguid layer under the capsule surface to the pipe diameter,
the following relation for it may be developed

a_ .
min _

B =

clearance = (1 - k)(1L - e) (4.1)

N

Thus for an eccentricity of 0.999 the above equation gives
values of clearance varying from 5 x 10_5 to 5 x 10"6 as
"diameter ratio, k,4varies from.0.9 to 0.99. Also, the
relative roughness usually ascribed to a 24 in. commercial
steel pipe is 7.5 x 10—5, and it increases as the pipe diameter
decreases. Sincé pipe diameters of 4, 6, 12 and 24 in. were
considered for this study, it would mean that the clearance
obtained was always less than the relative roughness of a
commercial steel pipe. This is not to suggest, however, that
the capsule and pipe are in contact at the bottom since their
surfaces have already been assumed to be perfectly smooth.
The numerical integration of egn. (3.2) may now be
considered. The product of a finite increﬁental arc length

on the capsule surface and the velocity gradient at the mid

rpoint of that arc must be calculated at a number of points
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all along the outside circumference of the capsule. Such
products should then be summed algebraically and the sum
multiplied by the coefficient of viscosity, u, to give the
net shear force on the capsule. It may be noted that it is
sufficien£ to consider only half of.the flow field since it
is symmetrical about the common annular diameter passing
through the centres of pipe and capsule. The technigque used
to divide the annulus into a number of finite incremental

divisions is described below.

4.2 Division of Annulus

Briefly, the pipe circumference was divided into 120
equal parts, one of which is shown enlarged as arc RS in
Fig. 4.1. For each of these parts, values were calculated
for the gl, 52 and & curves pa;sing through the points R, S
and H respectively where H is the mid point of arc RS. Note
that gl for one element is €2 for the adjacent element and
vice-versa, so that the first value of £, on straight line
CD is zero and the last value of €2 on EF is equal to 7.
Also it may be noted that the £ curve will bisectvthe arc
PQ.on the capsule surface at the point G and that, in
general, & # (gl + gz)/z for an element. The arc lengths
PQ, GT and TH, and the areas Al and A2 were then calculated.

Within this general context, Fig. 4.2 may be

considered to see how a & value can be calculated once the
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anguiar position of a point on~the.pipe surface is known.
B is such a point in this figure while D is the centre of
pipe. Since thé incrementalvarc lengths on the pipe sﬁrface
are all equal, the value of angle ¢ is known. Then applying

. the sine law to the triangle OBD, we get

BNEAS . - SR - - N
sin(m—-6) sin(6-¢)
Simplifying, we obtain
_ sin ¢.
tan 0 = : 5 - (4.2)
cos ¢ - i)
BD
Also from egn. (AI-21),
_ _sin ¢ |
tan 6 = = " , (4.3)

Then from eqns. (4.2) and (4.3),

- sin ¢ sinh n,
sin & = o5 (4.4)
cos ¢ - 'B—]j‘

While BD is the pipe radius in eqn. (4.4), OD is given by c
coth n, (from egn. (AI-8)). The values of c, ny and n, are

given by egns. (AI-15) to (AI-17).

4.3 Calculation of Geometrical Constants

After calculating the (&,n) dbordinates of points
such as P, Q, etc. (Fig. 4.1), the (x,y) coordinates of these
points by use of egns. (AI-18) and.(AI—le may be calculated.
Then, as indicated in Appendix AL, the arc length PQ can be
calculated using ean. (AI-26).

To find the arc lengths GT and TH, and areas Ay and
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A2, the value of nm.should be known. This was found by use

of eqn. (AI-27). But since this equation holds only for
laminar pressure flow, the exact value of N for any element
in turbulant pressure flow was calculated by the trial and
error procedure outlined in the previous chapter (Sec. 3.5.2).
Calculation of GT, TH, Al and A2 was carried_out, therefore,
-'in a different subroutine in the computer programme included
in Appendix AIII. While arc 1engths GT and TH were calculated
and A, were

1 2

calculated by numerical integration of egn. (AI-24) using a

in a way similar to that of PQ, the areas A

Gauss integration technique.

Considering Fig. 4.1 again, it is clear that areas
Al and A2 are changing from a minimum value around CD to a
maximum value around EF. Also, this change is brought about
"by a continuous change in the arc lengths such as GT and TH

while arc lengths such as RS are constant. Therefore, while

direction was a

>

the Gaussian integration employed in the ¢
fixed 6-point one, it was varied all along the annulus from a
minimum of 2-points near CD to a maximum of l6-points near
EF; the variation affected by an increase of 2-points after
every 15 elements.

It may be mentioned that when the total annular area
obtained by a summation of incremental areas Al and A2 was
compared to that given by ﬁ(Rg - Ri), complete agreement
was found up to at least the.eighth significant figure; the

maximum error being only 5 x 10 7%. Also the incremental arc
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lengths on the capsule surface were almost equal to each other

for the geometries studied.



RESULTS AND DISCUSSION

The results of numerical computations are presented

- in Figs. 5.1 to 5.10. Considering these figures, it may be

observed that these results were obtained for average
Qelocities of approximately 1 to 10 ft/sec in pipes of
diameters 4, 6, 12 and 24 inches with capsule-to-pipe dia-
meter ratios of 0.9 to 0.99. For a fixed eccentricity of
0.999, the computations were carried out for two liquid
carriers -- one being water and the other an oil with a
specific gravity of 0.85 and dynamic viscosiﬁy of 10 cp.
A few general remarks, not observable fromrthese~figures, will
be made first before discussing the results as such.

It was found that if the pressure flow in the annulus
was turbulent, the point of maximum velocity was nearer to
the inner wall than in the case of lamiﬂar flow; the deviation
decreasing as the diameter ratio was increased. Similar
observations were made experimentally by Brighton and Jones
(3). Furthermore, it was observed that the eccentricity and
diameter ratio could not be combined into one parameter --
clearance. The reason is contained within eqn. (4.1); one
value of clearance can be associated with different combin-
ations of eccentricity and diameterlratio.' However, since
the annular geometry changes with such combinations, the
various parameters governing the.capsule flow will be seriously
affected. Also, it is implied that, unless otherwise

47
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specified, eccentricity of the capsule-pipe system is constant

- for whatever follows in this chapter.

5.1 f-Re Plot (Fig. 5.1)

Now consider Fig. 5.1 illustrating the variation of
friction factor with Reynolds number. For the capsulé-pipe
system, Reynolds number was based on hydraulic diameter and
average annulus velocity while the friction factor was
calculated in the standard Darcy~Weisbach form. fhe rela-

tions are

(D-d) Vann
Re = {(5.1)
v
and

£ QE) _2D (5.2)

dzc 2

pV
ann

'Fig. 5.1 also shows.a similar variation in the case of a
perfectly smooth free-pipe flow.for comparative purposes. It
may be noted, however, that the average velocity has to be
used for the free-pipe case together with pipe diameter
instead of hydraulic diameter as before for Reynolds number

calculation. The relations this time are

D Vav ‘
Ref = —= (5.3)
v
and
fe = (B -2 (5.4)
f pV

Any discontinuities in the plots are due to transition from

laminar to turbulent flow.
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5.1.1 Effect of 4/D on f

It may be observed from Fig. 5.1 that with
increasing diameter ratio the friction factor increases at
a fixed Reynolds number. The reasons for such a behaviour
are rather complex. Firstly, for a fixed pipe diameter, the
cross—-sectional area of the capsule increases with the square
of diameter ratio thus requiring a higher pressure gradient
for its movement. Secondly, as the diameﬁer ratio increases,w
the annular area decreases so that at least the same change
of velocity has to take place over a shorter distance
between two points. The velocity gradients and hence the
shear stresses are larger on the capsule surface. This
increase in drag force has to be counterbalanced by a further
‘incfease in the pressure gradient. Thirdly as given by
Egn. (5.1), the Reynolds number is directly proportional to
Vann and (D-d). With an increase of d/D, the hydraulic
diameter, (D-d) or D(1-d4/D), decreases so that in order to
keep the same value of Re, a higher Vonn will be required.
It will further require a higher pressure gradient though not
necessarily a higher friction factor since the latter is
directly proportional to dp/dz but inversely to Vinn‘ It

seems, however, that the first two factors outweigh the

third even if it is in opposition to them.

5.1.2 f-Re in Comparison to fe-Reg

It is clear from Fig. 5.1, that the whole pattern
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of variation of f with Re in a capsule-pipe system is similar
to that in a free pipe. For laminar flow in the annulus,

the relation between £ and Re is not only linear but the
straight line is also -parallel to that in the case of a free
pipe suggesting thereby that, within the range of investiga-
tion, the product of f and Re is a constant that varies only
.'with the diameter ratio. It may be recalled that this product
is equal to 64 for flow in a free pipe. The following table
gives the value of this constant for different d/D in a

capsule-pipe system.

Diameter The Product

Ratio (d/D) f.Re
0.9 259.2
0.93 320.5
0.95 - 380.6
0.96 419.9
0.97 © 468.3
0.98 529.3
0.985 566.1
0.99 608.6

The above values are for an eccentricity of 0.999. When the
annular flow is turbulent, it seems that the friction factor
decreases and reaches an asymptotic value at some high enough

Reynolds number -- much the same as in free pipe flow. The
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various curves for different diameter ratios will become
parallel and almost horizontal.

Another significant point is that the f vs. Re curve
for free pipe flow crosses over those for the capsule-pipe
- system in the turbulent region. Such a crossover occurs at
relatively high average velocities whichvincrease rapidly
és the diameter ratio changes from 0.9 to 0.99. Once in this
region, the pressure gradient required to obtain a certain
average velocity in the capsule-pipe system will be lower
than that required for the same average velocity in a free
pipe. However, in practice for a finite capsule, some of
the basic assumptions underlying this study will be violated
at the high velocities required for such an advahtage. For
example, the axis of a finite capsule will no longer be
" parallel to the pipe axis due to nose or tail-up moments.
This changed capsule attitude will markedly affect the various
parameters. It is, therefore, doubtful.to say at this stage
whether such an advantageous situation is practicable.
Experimental tests at such high velocities should be able

to clarify this position.

5.1.3 Critical Reynolds Number

Another peint which may ke noted from Fig. 5.1 is
with regard to the critical Reynolds number where transition

from laminar to turbulent flow takes place in the capsule-
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pipe system. At a first glancé, it may appear that this
critical Re range (approximately 1000 to 1500 for different
diameter ratics) is far less than the usually accepted.value
of 2100 for a free pipe flow. It should be noted, however,

* that the parameters for the length dimensicn and velccity
used for the Reynclds number calculation are different in the
two cases. While Re for the capsule-pipe system is based on
(D-d) and Vann’ it is based on D and Vav for the free pipe
flow (egns. 5.1 and 5.3). The ratio Qf (D~d) to D is (1-k)
which obviously decreases with increasing diameter ratio

and for avalue of k equal to 0.9, this ratio is 0.1. Also
when the velccity ratio, R_, is greater than'l.o, \Y is

\Y ann

less than V__. For R_ less than 1.0, however, V is
av v ann

greater than Vav‘ But since R.V was never less than 0.92

" in the present investigation, the maximum ratio of Vonn O

Vav was only 1.35. Obviously then at a Va that nearly

v
corresponds to the critical Reynolds number in a capsule-
pipe system, the corresponding Re in a free pipe would be
far greater than 2100, that is, well into the turbulent
region.

For example, with water flowing in a 4 in. diameter
pipe having a capsule of diameter ratio 0.97, the flow is

laminar at a Va of 2 ft/sec but if there were no capsule in

\%
the pipe, the flow would be turbulent; the free-pipe Re at

that Vorur being about 6 x 104. This fact that the presence
of a capsule in a pipe suppresses turbulence has also been

experimentally observed by many researchers. But up until,
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now, dué to uncertainty about the knowledge of critical
Reynolds number for a capsule-pipe system, various methods
have been used to classify the flow as either laminar or
turbulent. Some research workers have even refrained from
making such a classification. It méy, however, be mentioned
that Ellis and Bolt (12) suggested a critical Re of about

1000 similar to that observed in Fig. 5.1.

5.2 Rp—RV Plot (Fig. 5.2)

. This figure can be best discussed in three stages.
To start with, the flow is laminar both in the annulus and
in the free pipe at low enough velocities so that it falls
somewhere in the linear portion of the f-Re plot in Fig. 5.1.

~Now since
£ w QE%Q§ 
AV

it may be seen that from egns. (2.2), (5.2) and (5.4), Rp

may also be defined as

R = % (Vanq)Z {5, 5
p £ av
In laminar flow, V « V and since the ratio f/f_. is also
ann av 3%

constant for any diameter ratio (Fig. 5.1), there will only
be one Rp for any value of average velocity once the diameter
ratio is fixed. It may be pointed out at this stage that
while the value of Rp depends on the nature of flow both

in the annulus and in the free pipe, Rv is independent of the
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nature of free pipe flow since it is a ratio of VC to Vav°
For laminar annular flow because Vc is directly proportional

to V_,r R, will also be independent of V,y 2t a fixed d/D.

-
Obviously then, for a fixed diameter ratio and eccentricity,
there is only one point on a Rp = RV plot for any Vav as

long as the resulting flow is laminar both in the annulus and
in the free pipe. Considering Fig. 5.2, this point is the
starting point of the vertical linear portion at the top of
the curves. Note that this point could be included in

Fig. 5.2 only by making the Rp—axis discontinuous at some
point in between.

Consider now an increase in V.y SO that the flow in
the annulus is still laminar but in a free pipe, it is
turbulent for the same total flow rate. That such a situa-
'tion is possible hés already been ekplained in the discussion
on the f-Re plot. Obviousl§ thénIxf\vill still be constant
and the same as in the previous case since it is independent
of the nature of free-pipe flow. Rp’ on the other hand, will
decrease with increasing Vav since the friction factor ff
in egn. (5.5) is higher for turbulent flow in the free pipe
than that if the flow were laminar at the same Reyholds
number. On Fig. 5.2, therefore, the Rp—RV plot will be a
vertical straight line the position of which varies with
the diameter ratio.

When vav is increased further éo that flow in the

annulus also becomes turbulent, the value of velocity ratio
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will‘change since Ve is no longer proportional to Vov® It
has been observed that the velocity ratio increases with
the average velocity till itvtends to become constant --
a stage which, for its accomplishment, requires a lower VaV
. for a higher diameter ratio capsule. Thus while the velocity
ratio for a capsule of diameter ratio 0.99 is almost always
cbnstanﬁ with the average velocity, that for a 0.9 diameter
ratio capsule is changing widely over the range of investi-
gation.

In this region, the pressure ratio is also continuously
decreasing with increasing Vav though at a lower rate than
that in the second case when flow is laminar in the annulus
but turbulent in the free pipe. The reason for fhis change
in rate lies in the plots of Fig. 5.1 for turbulent flow.
*When the nature of annular flow changes from laminar to
turbulent, the slope of the f-Re plot decreases in much the
same fashion as for free-pipe flow. Thé rate of change of
slope in the two cases is different, so much so that while
the curve for the capsule-pipe system is over that fér free
pipe to start with, the two curves cross over each other
eventually and change respective positions at high Reynolds
nunbers. As explained previously, the value of Rp will drop
below unity but will eventually become constant at some value
between 0 and 1 since the f-Re curves for the free pipe and

the pipe with a capsule in it tend to become horizontal at

quite high Reynolds numbers. As mentioned earlier, however,
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the éracticability of such a case is doubtful at the high
average velocities involved.

It may also be noted that for the most part in.
Fig. 5.2, the velocity ratio is greater than unity which
- implies that the average velocity in the capsule-pipe system
is less than the capsule velocity. The reason for this is
fhat under conditions of high velocity ratio, at most only
.a small proportion of the fluid around the top of the capsule
will have a velocity greater than that of the capsule. The
fluid between the bottom of pipe and capsule and that around
the sides will be moving relatively slowly. The total effect
can result in an average velocity falling shért of the capsule
velocity thereby resulting in a velocity ratio gfeater than

unity.

5.2.1 Effect of 4/D and Vg Oon RV

Another important result, inherent in Fig. 5.2, is
the effect of diameter ratio on the velocity ratio. At low
average velocities, the velocity ratio increases with diameter
ratio increasing up to 0.97 beyond which it starts to
decrease. As the average velocity rises, however, the curves
for the smaller diameter ratio capsules overtake those of the
larger. This observation can be made from, the blend of
curves near the vaaxis in Fig. 5.2vtogether with Figs. 5.3

and 5.4. The reason for such a behaviour of RV with
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increasing diameter ratio and at varying average velocity
lies in the change of position of the capsule relative to
the velocity distribution in the pipe as the capsule diameter
increases. A small diameter capsule, occupying as it does
the lower part of the pipe, is situated in a relatively low
velocity region; as the capsule diameter increases, the
capsule finds itself in a region of increasing mean local
velocity. Then as explained earlier during the discussion
of Fig. 5.1 (Sec. 5.1.1), the drag force on the capsule

due to shear stresses will increase with the diameter ratio.
However, since the cross—sectional area of the capsule
increases with the square of its diameter, the thrust force
due to the pressure gradient will increase. Also the
weight per uhit length 6f a capsule increases with the
‘square of its diameter so that{this increase in the weight
to be moved would tend to reduce the velocity ratio as the
diameter ratio increases. The net result will, of course,
depend on a proper balance of these opposing effects. It
is not surprising, therefore, that at low Vot the velocity
ratio reaches a maximum at a diameter ratio of 0.97.

Such a behavibur would also be expected from the
fact that at a 4/D of 1.0, the capsule would be a piston
and the velocity ratio would be unity. Since the velocity
ratio has already become > 1 for a 4/D = 0.95, it would be
expected that a trend toward lower R& musf ensue from a

diameter ratio somewhere between 0.95 and 1.0. It has been
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suggested (9) that for very long cylinders or trains of
cylinders, the maximum velocity ratio may be obtained at a
d/D ratio of about 0.95. The present observation is thus
close to this suggestion. Lastly, it may be noted that the

R —RV plots in Fig. 5.2 are not affécted by the pipe diameter

p
and fluid properties.

5.3 Rp—vav Plots (Fig. 5.3, 5.4)

The concept of pressure ratio is relatively recent
compared with that of velocity ratio. Accordingly, the
behaviour of this ratio has been studied in more detail than
that observable from Fig. 5.2. While Fig. 5.3 shows the
variation of Rp with . for different pipe diameters and
.,d/D ratios when the liquid carrier is water, Fig. 5.4 showvs
a similar variation for an oil .as the liguid carrier, The
curves are all similar though suitably displaced as the

diameter ratio, pipe diameter or the liquid carrier changes.

5.3.1 Effect of 4/D on Rp

As explained in the discussion of Fig. 5.1 (Sec. 5.1.1)
a greater pressure gradient is required to move a higher dia-
meter ratio capsule at a given VaV once the pipe diameter and
fluid carrier are fixed. However, éince the pressure gradient

required for the same flow rate through a free pipe is
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independent of diameter ratio, Rp would increase with an

increase in diameter ratio (see egn. (2.2)),

5.3.2 Effect of V on R
av P

It has already been explained while discussing
Fig. 5.2 (Sec. 5.2) that as Vav increases the pressure ratio
decreases at a faster rate in the beginning but tends to
become constant later on at.high average velocities. From
Fig. 5.3 and 5.4 it is clear that this condition of near
constancy of R_ is accomplished at a relatively lower average
velocity for a less viscous liquid carrier. The explanation
of this behaviour lies in Fig. 5.1. Since with all parameters
except viscosity held constant, a more viscous liquid will

~result in a lower Reynolds number at a given Vi the nature

V.I
of the turbulent portion of f-Re plot in Fig. 5.1 suggests
that to get to the nearly horizontal part of the curve a
higher VaV is required for a more viscous liquid. It should

be noted that operation in this portion of Fig. 5.1 is

essential for attaining a nearly constant value of Rp¢

5.3.3 Effect of D on Rp

Inherent in Figs. 5.3 and 5.4 is also the effect of
pipe diameter on pressure ratio. With other parameters held

constant, a larger pipe diameter will result in a greater
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annulus area as well as greater capsule cross—-sectional area.
- At a given Vav’ the velocity gradients at the capsule wall
will be smaller since about the same change of velocity from
one point to another will take place over a greater distance.
The drag force due to shear stresses will, therefore, be
lower on a capsule in a larger diameter pipe. Since for an
equilibrium velocity of the capsule this drag force has to

be counterbalanced by the thrust force due to pressure
grédient, it is clear that a lower (dp/dz)c will be required.
Moreover, since the thrust force is given by the product of
(dp/dz)c and the cross-sectional area of the capsule (which
increases with D2 for a fixed diameter ratio), it follows
that the pressure gradient required for a given - will be
still lower. An increase in pipe diameter, therefore, results
in a marked decrease in (dp/dz)C required to attain a certain

V_._. For example, at a Va of about 10 ft/sec for water in

av v

a 4 inch diameter pipe, the value of (dp/dz)c was found to be
at least 14 times as much as that in a 24 inch diameter
pipeline at the same Vav; the ratio increased to about 36 for
a vav of nearly 1 ft/sec.

However, withvan increase in pipe diameter, the free
pipe Reynolds number increases and, therefore from Fig. 5.1,
the friction factor ff decreases. Since dp/dz is in general
proportional to f£/D, the pressure gradient‘(dp/dz)f will also
decrease with an increase in pipe diaﬁeter. This change in

(dp/dz)f, though in the same direction as that for (dp/dz)c,
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will in any éase be relatively smaller in magnitude since
(dp/dz)f is almost inversely proportional to D; the effect.

of decrease in ff with D being very small. Since Rp is a

ratio of (dp/d.z)c to(dp/dz)f, the net effect will be to decrease
Rp as the pipe diameter increases. An observation of

Figs. 5.3 and 5.4 will, however, reveal that the rate of
“decrease of pressure ratio with D declines appreciably as

the pipe diameter continues to increase.

5.3.4 Effect of TFluid Characteristics on Rp

A comparison of the results in Fig. 5.3 with those
in Fig. 5.4 indicates that Rp increases as the fluid
carrier becomes more viscous. The reason for this behaviour
+is perhaps not immediately apparent and follows similar
conflicting arguments as for the effect of D on Rp' As the

fluid viscosity increases, the drag force due to shear stresses
dw
v gy

balance this increased drag force, a highér pressure

on the cap;ule also increases since 1 = To counter-
gradient (dp/dz)C will obviously be required. Additionally
as v increases, the free pipe Reynolds number decreases and
so the friction factor ff increases. However, since dp/dz is
in general proportional to the product p.f and since the
density, p, of oil was taken as 0.85 times tﬁat of water,

the value of (dp/dz)f will, if at all, increase only very

little in comparison to that of (dp/dz)c. The pressure ratio
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will, therefore, increase as thé viscosity of the fluid

increases.

5.4 Energy Requirements vs. V (Pig. 5:5; 5.6)

av

Fig. 5.5 and 5.6 show the variation of (hp/ft)/
(ft3/sec) with various variables such as average velocity,
diameter ratio, pipe diameter and the fluid properties. The
energy requirements in capsule-pipeline work have been
generally expressed in the past in terms of hp-hr/ton-mile
but these units could not be used in the present study since
this study holds for any density of the capsule provided
that a proper clearance is obtained along with other
pertinent factors. The energy per unit length of pipe hp/ft,

'was therefore divided by the volumetric flow rate Qc due to
the movement of the capsule alone to get the parameter
(hp/ft)/(ft3/sec).

It may be noted that this ratio can be converted
easily into the conventional form of hp-hr/ton-mile by
dividing by the capsule density and a proper conversion factor.

Additionally, hp/ft is given by the relation

@)

T
50

hp/ft = (dp/dz), s

so that expressing Q the total volumetric flow rate through

TI
the pipe, in terms of Voyr vwe get after dividing by Qc that

1 D, 2

\Y
(hp/£t) /(£t7/sec) = wis (dp/dz) (520) () (5.6)
C
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5.4.1 Effect of Vav on the Energy Requirements

Fig. 5.5 and 5.6 indicate that (hp/ft)/(£t3/séc)
increases with the average velocity. It has.been noted
already that a greater pressure gradient is required to
attain a higher Vav but the velocity ratio (VC/VaV) also
increases with Vav' The increase in Rv is, however, very
small. Within the entire range of investigation, the velocity
ratio only increased from a minimum of 0.92 to a maximum of
nearly 1.06. On the other hand, the increase in (dp/dz)C
required for a higher ¥ oxe is comparatively large. Thus
while in laminar annular flow (dp/dz)C is directly propor-
tional to vav' in turbulent flow, (dp/dz)c has to be more
than doubled for twice the Vav' Egn. (5.6) will, therefore,
give a higher value of energy required for a larger V

av’

The rate of increase of (hp/ft)/(ft3/sec) with Voo is
maximum to start with and decreases to.a nearly constant

value at high V
av

5.4.2 Effect of d/D on the Enerqgy Reguirements

With an increase in diameter ratio, d/D, one may
expect from eqn. (5.6) that (hp/ft)/(ft3/sec) will decrease.
This is not so, however, since (dp/dz)c increases with an

increase in 4/D*. Though the ratio VaV/V; also decreases

*c.f. Section 5.1.1 for an explanation of this.
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with d/D increasing up to 0.97 at least, it appears that the
increase in (dp/dz)c offsets all the opposing effects. This
is not difficult to understand once it is realized that fof
a d/D ratio of 0.99, the pressure gradient required for a
‘given Voo is at least 36 times as much as for a d/D of 0.9

with the same pipe diameter.

5.4.3 Effect of D and Fluid Properties on the Energy Requirements

Agaih with an increase in pipe diameter, it may
seem from egn. (5.6) that the energy required will increase.

However since the ratiQs, d/D and VC/Va , are constant, a

\%
lower (dp/dz)C required with a larger pipe diameter will
result in a lower value of (Bp/ft)/(ft3/sec). Considerable
‘ecohomiés in power requirements can, therefore, be effected
by using a larger diameter vipe. Also with other parameters
held chstant, a more viscoug liguid carrier will need a

higher energy input since a larger pressure gradient is

required.

5.5 Solution of a Problem.in General

At this stage, it may be proper to point out that
Figs. 5.1 to 5.6 have been drawn not only with a view to
enable the effect of various parameters on important
variables to be studied but also to enable the problem of

capsule-pipeline flow to be solved completely should the
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main parameters lie within the range of investigation. For
example, if in a particular problem, the liquid carrier is
neither water nor the o0il specified in this study or the
eccentricity is not 0.999, etc., the computer programme

- included in Appendix AIII will have to be run. The approach
to an arbitrary problem with the use of Figs. 5.1 0 5.6
Qill be demonstrated ﬁsing a 10 in. diameter pipe through
which a capsule of diameter ratio 0.92 has to be carried by
water at a VaV of 5 ft/sec; the minimgm distance between

the capsule and pipe surfaces being 4 x 10—4 inches.

The eccentricity of the given capsule-pipe system
is first calculated. Since the pipe diametef is 10 inches,
the clearance, as defined in egn. (4.1), will bé 4 x 10_5.

For a diameter ratio of 0.92, egqn. (4.1) will then give the
" value of eccentricity as.0.999 -- the one used for fhis
study. Since the fluid carrier is water, Figs. 5.4 and 5.6
will not be used at all for the solutioﬁ.

The pressure ratio Rp can be obtained from Fig. 5.5,
but not directly since none of the four plots in this figure
is for a pipe diameter of 10 inches and because there is no
curve for a d/D ratio of 0.92 on these plots. It will be
necessary, therefore, to plot Rp vs. D for a Vav of 5 ft/sec
and d/D varying from say, 0.9 to 0.97. Foreach diameter ratio,
there will be one curve passing through 4 'points corresponding

to pipe diameters of 4, 6, 12 and 24 inches. There will thus

be five curves on this Rp—D plot corresponding to diameter
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ratios of 0.9, 0.93, 0.95, 0.96 and 0.97. Taking points off
these curves for a pipe diameter ¢gf 10 in.; & plot of Rp vs.
d/D can be drawn. The value of Rp can then be taken from
this plot for a d/D of 0.92. The energy required, (hp/ft)/
(ft3/sec), may be found in a éimilar fashion from Fig. 5.5.
Knowing Rp, values of Rv for diameter ratios from
6.9 to 0.97 are obtained from Fig. 5.2. A plot of RV vs.
d/D with the aid of these five points enables the value of
RV corresponding to a diameter ratio of 0.92 to be determined.
Since Rp is a ratio of (dp/dz)C to (dé/dz)f, the pressure
gradient (dp/dz)c can be easily calculated once (dp/dz)f is
known from the curve for free pipe flow in Fig. 5.1. Also,
the capsule velocity can be easily calculated from a known

R_and V__. If the value of V is desired as well, the
v av a

nn
" relation
Vav - k2VC
Vann - 2 (5.7}
1 -k

may be used.

5.6 Velocity Distribution (Figs. 5.7, 5.8)

Before comparing the theoretical results with the
experimental ones available in the literature, it is perti-
nent to look at some typical velocity disFributions in Figs.
5.7 and 5.8. These velocity distributions have been drawn

for the widest and the smallest gaps between the capsule and
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pipe surfaces for water flowing at average velocities of
approximately 2, 4, 6, 8 and 10 ft/sec in pipes of diameters
4, 6, 12 and 24 in. having a capsule of diameter ratio 0.9
for Fig. 5.7 and 0.99 for Fig. 5.8. The factors by which the
widest and the smallest gaps have been enlarged are 1.25 and
2500 respectively for Fig. 5.7, and 12.5 and 25000.for Fig.
5.8. It may be noted that there is solely laminar Couette
flow in the smallest gap of the annulus. From egn. (3.9),
one may éxpect the velocity profile to be logarithmic in this
case. However, because of the very small distance over which
the velocity is distributed, it is linear for all practical
purposes as shown in Figs. 5.7 and 5.8. Realising the large
factors by which the smallest gap has been enlarged in these
figures, it may be concluded that the velocity gradients are
" very high.

Both the pressure and Couette flows are turbulent in
the widest gap for a diameter ratio of 0.9 (Fig. 5.7).
Starting from the top of this figure, it can be seen that the
velocity gradient at the capsule wall is changing direction
as either the average velocity or the pipe diameter increases.
For example, at a Vav'of 2 ft/sec in pipes of diameters 4 and
6 in., the velocity gradient is such that the shear stress
at the top of the capsule (where the widest gap occurs)
produces a thrust force on it. For practically all other
cases, the shear stress produces a dfag force on the capsule.

Now since the shear force at the bottom of the capsule is
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iﬁvariably a drag force, it follows that for these two cases,
there is a transition point where the drag force changes into
a thrust force as one proceeds from the bottom to the top bf
the capsule along its surface.

Fig. 5.8 shows that the shear stress always produces
a drag force on the capsule both at the top and at the
"bottom. In this figure, a marked change in the velocity
profiles can be seen because the flow in the widest gap
changes from a totally laminar flow to partially laminar or
totally turbulent flow. For examble, at a Vav of 2, 4 and
6 ft/sec in a 4 in. diameter pipe, a Vo of 2 and 4 ft/sec
in a 6 in. diameter pipe and at a L. of 2 ft/sec in a 12 in.
diameter pipe, the flow is totally laminar. As either the
average velocity or pipe diameter increases beyond these
- values, the flow first becomes a turbulent Couette and
laminar pressure flow,.and finally a completely furbulent
flow in the widest gap. There is, thus, a transition from
laminar to turbulent flow both in-the horizontal and vertical
directions in Fig. 5.8. The associated éhanges in shear
stress at the top of the capsule can be easily contemplated

by the nature of velocity profiles.

5.7 Comparison with Experiment (Figs. 5.9, 5.10)

It may be pointed out at the outset that a comparison

of theoretical results was possible only with the experimental



69

déta in Part 9 (14) of the series on 'The Pipeline Flow of
Capsules'; the main reason being that the experimental data
elsewhere does not indicate the clearance. As given by
egqn. (4.1), clearance depends not only on the diameter ratio
but also on the eccentricity of a capsule-pipe system. All
the available experimental results, except those in Part 9,
. ‘mention only thé diémeter.ratio since the clearance, and
indirectly the eccentricity, is rather difficult to measure
experimentally; it being.non—uniform over the capsule length
in most cases and varying from a ﬁaximum at the nose to a
minimum at the tail. Nevertheless, it is a very important
factor that determines the annular geometry and hence the
behaviour of various variables.

. During the comparison of results, it was observed
* that the experimental data in Part 9 (14) corresponds only to
laminar flow conditions in the annulus though at the average
velocities encountered, the free pipe flow is both laminar
énd turbulent. ﬁowever, on the basis of the discussion of
the Rp—-RV plot (Sec. 5.2, Fig. 5.2), it follows that the
experimental curve in Fig. 12 of Part 9 can be extended
fairly accurately up to a velocity ratio of about 1.1. It
then provides some points for comparison even when the flow
in the annulus is turbulent. The present theory could,
therefore, be tested both for laminar as well as turbulent
flow in the annulus, It would of course be desirable to.test

the theory over a wide range of capsule-pipe configurations
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with turbulent annular flow. However, there is a paucity
of the necessary data and consequently the data of Part 9

(14) was relied upon exclusively.

. 5.7.1 Laminar Flow in the Annulus

Fig. 8 of Part 9 contains experimental data for
laminar flow both in the annulus and in the free pipe at

the corresponding Va

v* This data pertains to a 24 in. long,

0.824 diameter ratio cap: ‘e flowing in lubricating oil

(W = 36 cp and sp. gr. = 0.86) in a 0.532 in. diameter
pipeline. The hollow cylindrical capsule was loaded to
different specific gravities thereby giving different clear-
ances af the same capsule velocity. The relationship between
the capsule velocity and clearance is given in Fig. 13 of
Part 9. For a few clearances, the computer programme
developed in Appendix AITI was run with appropriate changes
for the various parameters such as 4/D, D, u, v and p
pertinent to the experimenfal data. The results obtained
from these.computations are plotted in Fig. 5.9.

Three axes are used in this figure to represent a
number of variables simultaneously. Arrows on the curves
refer to the axes used to represent the variables. The
dependence of one variable on the other may be understood
by following the dashed lines in Fig. 5.9. The nearly

straight line represents the theoretical prediction of the
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Rp—RV relationship while the other . two curves show the
theoretical variation of Rp with Vc for different capsule
densities; the specific gravity of capsule for the uppér
curve being 11.75 while for the lower, it is 2.03. It may
- be recalled that the present theoretical analysis can oniy
distinguish between two capsule densities by means of
éifferent clearances at the same capsule velocity. Also
these clearances have to be supplied to the computer
programme in terms of different eccentricities and/or diameter
ratios. Moreover, it may be noted that since the diameter
ratio is fixed in the present case, the eccentricity or,
in other words, the clearance for the capsulé"pipe system
is continuously varying from one point to anothér on all the
curves in Fig. 5.9.

The circled points shown in Fig. 5.9 correspond to
the experimentally determined results in Fig. 8 of Part 9.
It is obvious that a good agreement exists between the
analytical prediction and experimental data as long as 1iqﬁid
in the capsule-pipe annulus is in laminar flow. It is also
clear that the end effects do not cause much deviation from
the theoretical prediction for very long capsules probably
beqause the experimental capsule had a rather high length to
diameter ratio;]é/d being 55 in the present case. Nevertheless,
one may doubt the validity of a previous statement (Chapter 3,
Sec. 3.5.3) that the present study may hold good only for
diameter ratios of 0.9 or over since for the results in Fig.

5.9, the diameter ratio is only 0.824. It may be recalled,
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however, that the only reason for making such a limitation
was the lack of a satisfactory velocity profile for turbu-
lent Couette flow. Since there is only laminar flow in the
annulus for the results in Fig. 5.9, we are no longer
bounded by this limit. Whether the present theory is really
subjected to such a limit could not be detected due to lack

" of pertinent experimental data for turbuient annular flow.

5.7.2 Turbulent Flow in the Annulus

Turning now to the case when the annular flow is
turbulent, observe that, as indicated already, the data in
Fig. 12 of Part 9 can be hopefully used for comparison.

This data corresponds to a 48 in. long, 0.9 diameter ratio

aluminium (sp. gr. 2.71) cylindrical capsule flowing in

i

" transformer oil (u 16.7 op, 8p. g¥. = 0.853) in a 4.03 in.
diameter pipeline. Fig. 5.10 shows the theoretical prediction
of Rp—RV relationship for this capsule-pipe system. As
before, eccentricity is again varYing all along the curve in
Fig. 5.10 which for the most part corresponds to laminar flow
in the annulus but turbulent in the free pipe. The annular
flow is also turbulent, however, for the lower part of the
curve. The circled points shcewn in Fig. 5.10 pertain to the
experimental data in Fig. 12 of Part 9. The agreement
between the theory and experiment is again good though the
length to diameter ratio of the experimental capsule is only

about 13.2.

Three possible reasons may be cited for any discrepan-
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cies between data from cylindrical capsules and the theore-
tical predictions:
i) The experimental capsule is finite and may
display end effects.
ii) The capsule axis is not parallel to the pipe axis
in most cases, and
iii) When the capsule moves at very small clearances, a
frictional force between the pipe wall and the
capsule is introduced.
Any one of these three conditions invalidates the analy-
tical model of a very long, free-flowing, cylindrical capsule
in a pipe. It is also possible that these tﬁree causes of
deviation may at times compensate one anothér to~give
experimental data closer to the prediction than warranted.
'Additionally, reading the values from figures in Part 9 may
constitute another factor contributing to the discrepancies,

the maximum of which is about 5%.
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6. CONCLUSIONS

The theoretically predicted effect of various

. parameters on velocity ratio, pressure ratio and energy

requirements can be summarised as follows:

i)

ii)

iii)

iv)

v)

The average flow velocity does not affect the
velocity ratio as long as the annular flow is
laminar. In turbulent flow, howeVer, velocity
ratio increases with the avefage velocity.

The velocity ratio increases with the diameter
ratio up to 0.97 beyond which it starts to decrease.
The effect of a higher Vav is, however,‘to result

in a higher R, for a lower d/D.

There is no effect of average velocity on the
pressure ratio when the annular as well as free-
pipe flow is laminar. As eithér of the two flows
becomes turbulent, Rp decreases with an increase

in Ving™
The pressure ratio increases with a decrease in
pipe diameter and an increase in diameter ratio and
liquid viscosity.

The effect of an increase in Voy? d/D and liquid

\Y
viscosity is to result in a higher energy require-
ment in terms of (hp/ft)/(ft3/sec) or conventionally
in terms of hp—hr/ton—mfle. A decrease in pipe

diameter results in a similar effect.

84
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It was also observed that the laminar flow regime applies
to a far wider range of Reynolds numbers when a capsule is
present .in a pipe (the range depending on the annular i
~geometry) than for the fluid flowing alone. Moreover, the
‘locus of maximum velocities for turbulent pressure flow in
the annulus is closer to the capsule wall.than that for
laminar pressure flow.

A comparison with experimental data for single
capsules run in pipes of % and 4 in. diameterSshows that a
good agreement exists between the analytical prediction and
experimental results. It is hoped that the performance of a
single, very long capsule in a pipe may provide a theoretical
criterion against which the performance of commefical capsule
pipelines, generally employing continuous trains of capsules,
"can be judged.

It would not be proper, however, to conclude this
study without a recommendation for further experimental work
on the circular Couette flow in turbulent regime. It may
be recalled that the lack of a suitable velocity profile in
such a case was the only reason for limiting the application
of the present theoretical analysis to the capsule-pipe
configurations with diameter ratios equal to or greater than
0.9. Furthermore, it is recommended that a proper velocity
profile be found from further experimental tests on turbulent
pressure flow in the annulus since the universal velocity

profile for free-pipe flow adopted in the present study
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deviates more and more from the actual one as the diameter

ratio decreases.



APPENDIX AT

Geometry of the Eccentric Annulus

Heyda (2) has described the b%polar coordinate
system for an eccentric annulus. This system is such that
£he pipe and capsule walls belong to one of the two families
of circles which are orthogonal to each other.

Let the x-y plane in Fig. AI-1 be regarded as the

i

complex 7 plane (%2 X + iy) and let a new complex variable,

¢z, be defined by ¢ £ + in. Then starting with the trans-

formation,

Z = ic tan(%g) (AI-1)

. it is possible to find relations between x, y, & and n.

Considering Fig. AI-1, it may be observed that

>
£y |Bo + 08| |-z I sy
Y2 8,0+ 0p] ST
Also 82 ~(6l - 7) = arg (c + Z2) - arg (c - Z)
_ Sladl o
= arg (C - Z) (AI-3)

The transformation in egn. (AI-1l) can also be written as

C A elc

c - Z
c + 2z c + %, _ i(g+in)
or Ew——§| arg (c ~ Z) = &
= e—n.el{’

87
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r
-n _ |(c+ 72| _ "2 _
e = - Z' = T (due to egn. (AI-2))
ry .
or n = 1ln — (AI-4)
x
2
Also g = arg (g f g)
= Gy = (91 - 1) (due to eqn. (AI-3))
or E =1 - (61 - 62) (AI-5)

In the Z-plane, rl, r?, ei and 62 may be expressed as

rl=/(x- c)? +y?

r, =/(x_+ c)2 + y/_‘
_ =1 vy

el = tan (X L C)
_ = Y

e2 = Lan, (x + c)

Hence from egns. (AI-4) and (AI—S),‘it follows that

2 2 )
n = 1n JAE= °)2 + Y (AT-6)
(x + ¢)” + ¥
_ _ -1y -1 ¥ N
and E = (tan ety tan = C) (AI-7)

Writing egn. (AI-6) in the exponential form and then
squaring both sides, it follows that a constant n line in the

¢z plane is transformed into the circle

(x + ¢ coth n)2 + y2 = c2 csch2 . - (A1-8)



90

in the Z-plane, with centre on the x-axis. For n<0, the

circle lies in the right-half plane and encloses 0., while for

1
n>0, the circle lies in the left-half plane and encloses 02
(Fig. AI-1).

Taking tangents of both sides of egn. (AI-7) and

simplifying, it can be shown that a constant £ line in the

"; plane is transformed into the circle

x2 + (y + ¢ cot g)z = ¢ csc” & (AI—9)'

in the Z-plane, with centre on the y-axis. This constant g
circle is orthogonal to the constant n circle. Also, the
g-values for points on the circle segments below the x-axis
are m more than the g-values for points on the corresponding

circle segments above the x-axis.

Taking the pipeeand capsule surfaces to belong to the

family of circles for which n = constant, eqn. (AI-8) gives
Ry = ¢ csch ny o (AT-10)
R2 = ¢ csch n, (AI-11)

and s = ¢ (coth UP coth nl) (AT-12)

In order to solve these equations for ny and Nor a

diameter ratio, k, and an eccentricity, e, may be defined as

il
k = == (AI-13)
R .
2
and G 5 g (AI-14)
R = R



Fig. AI-2
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It is, then, possible to show that n, is given by

1 + k
e

2 cosh n, = + (1L - k)e ~(AI-15)

Rewriting eqns. (AI-11l) and (AI-10) gives

Q
1l

R2 sinh n, (AI-16)

and o ng = ¢ (AI-17)
Ry

From egn. (AI-1), it is easy to establish the trans-

formation equations:

_ =c sinh n , 3
X = Cosh n ¥ cos ¢ (AI-18)

and _ _¢c sin &
Y cosh n + cos ¢

(AT-19)

To find the polar coordinates (r,6) of Fig. AI-2 from
known values of (&£,n), it is easy to show, using egns. (AI-18)
and (AI-19), that

2
2 2 2 2 wink 'y 4+ sin L

(cosh n + cos &)2

2 cosh2 n - cos2 £

(cosh n + cos £)2

o r2 - c2 cosh n - cos g (AI-20)

cosh n + cos ¢

and tan 0 = Y - - B8 E (AI-21)
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Also from egns. (AI-18) and (AI-19), it follows that

~arc length, dsg, along a constant & curve is given by

— ~C -
doE ~ cosh n + cos ¢ dn (A1-22)

>

the minus sign indicating that n decreases as S¢ increases.

Similarly, the arc length, dsn, along a constant n

curve is given by

— C —
dsn ~ cosh n + cos & ag (AI-23)

And the area, dA, of an element is

—C2 dn dg

dA = (AT-24)

(cosh n + cos 5)2

To find Sg' sn and A, these three equations are
rather difficult to integrate. Following Wilson (5),
eqn. (AI-24) was integrated numerically using Géuss integration
technigue (30, 31), but a direét geometrical approach was used
to replace egns. (AI-22) and (AI—23f.

Considering Fig. AI-3, the chord length between two

points (n2,£) and (nm,g) on a constant & curve is

L, =/(X(n2,€) “x(n s 8))2 4 (y(ny,£) = yin ,8))°

where x(n,¢) and y(n,%) are given by eqns. (AI-18) and (AI-19).
Thus, the half angle, ¢, enclosed by the radii from the centre
of the circle ¢ = constant to the points (n,,£) and (n,r&) is

1 L sin &

E 2
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Therefore, the arc length, s along the constant & curve

E’
between the two points is given by

2c -1 b sin:g

) (AI-25)

Similarly, the arc length, Sn' along a constant n
line between two points (n,gl) and (n,gz) is given by

_ L_ sinh n
28 . it fd ) (AI-26)

n = sinh n

where Ln is given by

L= e = xe)? + (g -y

The approximate relation to find Mgy in laminar flow,

given in (2), is

1

N

y Ty = sech” [/ (1-tanh nl)(l+tanh n2) + VY (1l+tanh nl)(l—tanh nz)]

(AT-27)



APPENDIX AIT

Laminar Velocity Profile in a Concentric Annulus

The velocity profile for laminar flow in a concentric
annulus can be easily obtained by the application of Navier-
Stokes equation in cylindrical coordinates.

For fully developed incompressible, laminar flow due
to a constant pressure gradient, thé Navier-Stokes equation

reduces to

_é_‘z_ﬂJ,
- 2

dr

= |-
QJIQJ
N §

R~
ol O
=

where r is the radial direction and w is the point velocity in
z direction (Fig. AII-1)

The above equation can be written in the form

1l dp 1d dw B
vaz - rar Fad (ATI-1)
or d (r %ﬂ 1dp gy
r p dz
Since %% is constant, integrating this equation twice, we get
w o= %— ap r2 + ¢ ln ¥ + D (ATI-2)
p dz

The constants C and D can be evaluated by the boundary

conditions
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to obtain

r2 3 r2
c-"l.ap2" "N
4y dz . x,
1n—r——
1.
and 2 2
e -1 dp (rl 1n r, r2 1n rl)
4y dz r2
In —
T
1

Egn. (AII-2), therefore, becomes after simplification

2 2 (£
(x r-) In °r
_ -1 dp 2 3 1 2 .2 -
VS oma T, L EE . RS
In (£7)
1

To obtain an expression for the average velocity, consider
an elemental ring of thickness dr at a radius r as shown in
the Fig. (AII-1l). The total volume flow rate through the

annulus is then given by

£y
Q = [ 2nrwdr

ok
: T
(*2 (r2 r2) ln(fﬂ)
_ -27 dp (2" 0 1?22y ar
4y dz J r2 1
rl 1n -f"i
r
2 2 2
_.r dp T2 "1 { Ei in (%) - EE } = EE + r2 EE
T 2 dz r2 2 rl 4 4 1 2
1n —f—
1
| 1
o
_ o w dp 2 _ 2 3", 2. T Ty
= "§ @ Wz T Tab liEy ¥ ¥pFs =5
ln(f“)
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The average velocity is, therefore, given by

2 -3
Q/n(r2 = rl)

W =
av
r2 = r2
- -1 dp 2y -2 1 .
= "8y az [(r2 + rl) £, ] (ATII-4)
ln(“r-)
1

This development of velocity profile was for the
laminar pressure flow. In case the flow is due to the motion
of the inner wall rather than due to the pressure gradient
as in Couette flow the differential eqﬁ. (ATI-1) will be

modified as

14 dw
rar g =0
or
dw, _
d(raf = 0
Again integrating twice,‘we get
w=Clnxr + D (ATII-5)
The boundary conditions are
w=0 at r = r,

w = Vc at r = rl

From egn. (AITI-5) then, it is easy to obtain
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and

Egn. (AII-5) then becomes after simplification

X
In (=2)
R (ATII-6)
g
In (Erﬁ
1

w =V
G

To find the average velocity, the total volume flow rate is

again given by % :
2 :
Q = J 2r1rw dr

o

Ucsing eqn. (AII-6) and integrating, we get

2
o
_ 2 2 1 _ J.
Q= ﬂ(r2 r)) Vel r, £ r2]
2 1n(—) 2 1
r
1
The average velocity is then given by
_ 0
Wav = 1T(r2 ~ r2)
2 1
r2
- 1 - 1 N
= VI 5T r2] (ATI-7)
2 1n 2 1 :
1
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APPENDIX AIIT

Computer Solution

The various parameters governing the flow in a
capsule-pipeline were calculated by the application of
FORTRAN IV language to the equations developed in Chapters
3 and 4 and Appendix AI. The final form of the solution is
included in this Appendix. Several‘apprOpriately placed
comment cards, identified by a letter C in the extreme left
hand space, serve to explain the calculations performed in
the immediately following portion of the programme. In
addition, a summary of the important FORTRAN symbols and a
brief deséription of the programme are included to clarify
the solution.

The important symbols are tabulated below with capital
lettered word(s) in parentheses, if any, indicating the
section (s) of the programme where the symbols appear. Those
that have not been so indicated appear in almost all sections

of the programme.

Fortran Symbol Description
AC(K,L) Inner and outer incremental areas Al and Az.
B(K,L) Distance from the .inner and outer wall

(bl and b2) whgre w = 59 in turbulent

Couette flow (VCTAO,VELPCT)

101



CR(K,L)
"DPDZ
DR

ECC

ETA (1)

ETA (2)

ETAL

ETAT

FF

FSX (L)

HP

102

Half of the distance between the two poles
of a bipolar coordinate system.

Squares of locally concentric radii r., and

4
r, for laminar flow in the annulus.
Pressure gradient applied, %% in lbf/ft3.
Diameter ratio, k.

Eccentricity of the annular geometry, e

n coordinatevof the capsule wall, Ny

n coordinate of the pipe wall, N,

n coordinate of the line of maximum velocities
for laminar flow -- same for the whole

annulus |

n coordinate of the line of ma%imum velocities
for turbulent flow -- varying with the
location of incremental section in the

annulus (PRESUR)

Friction factor in capsule-pipe system

_ 2D d
(f = =—— 35

Moody friGtion factor for the free pipe with
the same volume flow as in capsule-pipe
system (MAIN)

Arc length along a constant & curve such

as GH in Fig. 4.1

Horse-power required per foot of pipe length

for a unit capsule discharge (MAIN).



IJ

- JI

L

MU
NU

OX (K)

PI
R(1)

R(2)

103

Total number-of divisions of the annulus
taken as 120

The increméntal section number after which
pressure flow becomes turbulent

The incremental section number after which
Couette flow becomes turbulent

Index used to reference inner or outer
section. For the inner section, K = 1; for
the outer, K = 2

Index used to identify any incremental
section -- varies from 1 to I

Dynamic viscoéity of the fluid, u

Kinematic viscosity of the flﬁid, v
Distance of the capsule or pipe centre from
the origin (GEOMTR)

The constant
Capsule radius, R

1

Pipe radius, R2

VannDh
Reynolds number (————

) in the Capsule-
pipe system (MAIN)

Reynolds number for Couette flow only in
the annulus (VCTAO, VELPCT)

Reynolds number in free pipe (Y%Z?)...(MAIN)

Reynolds number for pressure flow only in

the annulus (PRESUR)



RHO
RP
RV

SE (K,L)

SV (K,L)

SX(K,L)

TAO (K, L)

TC

TP

uT

VAC

VANN

VAP

VAV (L)

VAVG

104

Fluid density, p

Pressure ratio, Rp (MAIN)

Velocity ratio, RV (MAIN)

Incremental arc lengths sn along the cap-
sule and pipe walls

Shear velocity, w*, in pressure flow only
Incremental arc lengths along a constant g
line such as arcs GT and TH in Fig. 4.1
Total shear stress at the mid points of
increment arc lengths along the capsule or
pipe wall (VCTAD)

One part of TAO due to Couette flow only
(VCTAO) |

The other part of TAO due to pressure flow
énly (VCTAO)

Shear velocity, w*, in Couette flow only
(VCTAO,VELPCT)

Average velocity for Couette flow only in
any incremental section (VELPCT)

Average velocity through the whole annulus
(dué to fluid alone), Vann
Average velocity for pressure flow only in
any incremental section (VELPCT)

Average velocity. for total flow in any
incremental section (VELPCT)

Averagé velocity‘of flow through the pipe

(fluid + capsule), Vav
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vC Capsule velocity, VC

VMPT Maximum velocity for turbulent pressure
flow only in any incremental section
(Rep > 2100) (PRESUR)

W Weight coefficient for Gaussian Integration
of area (Ref. 31)

XI (L) ¢ coordinate of the central line through

any incremental section

XI2 (1) El coordinate for any incremental section

XI2(2) 52 coordinate for any incremental section

X(K,L), Y(X,L) Coordinates (x,y) of points such as G and
H in Fig. 4.1

X1l,Y1 | Coordinates (x,y) of poiﬁts such as Q and
R in Fig. 4.1

T X2,Y2 éoordinates (x,y) of points such as P and

S in Fig. 4.1

XM,YM Coordinates (x,y) of points such as T in
Fig. 4.1

YP y+ = Xvw* for turbulent flow (VELPCT)

Z Abscissae for Gaussian integration of area
(Ref. 31)

The complete programme has been divided into 5 sections
-- a main programme that calls four sub-programmes for the

solution of the problem. The input data for the programme
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consists of the weight coefficients W and abscissae 7 for
Gaussian integration (31) of annulus area. Also encountered
at a slightly later stage is the input data for pressure
gradients required to obtain an average velocity from about
1 ft/sec to 10 ft/sec for all the geometries considered.
After setting the values of a few constants, the main
. programme calls the subroutine GEOMTR. The first step in
this subroutine is to evalute the n coordinates of the
capsule and pipe walls and of the line of maximum velocities
for laminar pressure flow. This Qalue is used later in the
subroutine PRESUR as a first estimate of L™ for an element
in turbulent pressure flow. The next step involves the
calculation of & coordinate of the incremental elements in a
manner described in Chapter 4 (Sec. 4.2). The rest of the
» subroutine calculates the incremental arc lengths along the
capsule and pipe walls, the coordinates (x,y) of the mid
points of these arcs and the sguares of local concentric
radii, r

and r required for laminar flow. It may be

1 27
pointed out that since egn. (4.4) expresses sin £ in terms
of known variables on the right hand side and since, in
general, sin(m - 0) = sin 6, a check had to be provided for
the values of XI (L) and XI2(2) till they were individually
less than w/2. The details of this check are clear in the
subroutine itself.

The calculation of othervgeométrical constants such

as incremental arc lengths along constant & lines for both
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inner and outer regions in pressure flow and of areas Ay

and A2 was carried out in the subroutine PRESUR. The
reason for it is that these constants depend on the vaiue

of o which in turn depends on the nature of pressure flow --
- laminar or turbulent -- in the element. Since the number of
elements, which may be in turbulent pressure flow, depends

not only on the annular geometry but also on the applied
pressure gradient, this subroutine has to be called every

time the pressure gradient changes even though the annular
geometry is same. Such is not the case, however, for calcu-
lations performed in the subroutine GEOMTR.

To determine the exact value of Ty fér an element in
turbulent pressure flow, the subroutine PRESUR first evaluates
two incremental areas and two shear velocities for the inner
" and outer regions. Then the two values of maximum velocity
obtained at the estimated value of N are matched to within

103

¢ by shifting the &alue of U in a trial and error
procedure. It may be mentioned that not more than 2 trialé
were sufficient to find the exact value of U in all the
cases encountered.

Subroutine VCTAO calculates the equilibrium velocity
of the capsule for the applied pressure gradient. Though
only shear force on the»capsule needs to be calculated for
this purpose, the subroutine also determines the shear stress

distribution on the pipe wall. The exact value of capsule

velocity is determined by changing Vc in a trial and error
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manner so as to balance the pressure force by the shear

force on the capsule. An impprtant variable reguired for
determining the shear stress on the capsule wall is'bl; the
distance from the capsule surface to the point where w = Vc/2
“in turbulent Couette flow. This is also given by a trial

and error solution of eqgr. (3.21).

Having determined the capsule velocity, the sub-
routine VELPCT calculates the average velocity and volumetric
flow rate in the annulus due to the motion of the fluid
alone. While determination of average velocity in laminar
flow is straightforward by usecof eqns. (3.8)and (3.11), it is
carried out by numerically integrating the aépropriate
velocity profile in turbulent flow. Since the distance
between the capsule and pipe walls increases from the
" bottom to the top of the pipe, the number of points at which
velocity should be calculated for an element in turbulent
flow should also increase. The programme sets this number
equal to the number that designates the element so that
velocity is calculated at as many as 120 points in the
widest gap at the top of the annulus.

Needless to say, the velocity distribution at the
central line of the element was assumed to be the same over
the whole of the incremental section. The average velocity
in each section was then multiplied by its corresponding
cross-sectional area and the products’were summed for all
elements to give the volumetric flow rate. A machine sub-

routine QSF to be subsequently elaborated, was used for the
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numerical integration of the velocity profile by Simpson's
and Newton's 3/8 rule.

. R, R, £, Re,

The various parameters such as Va -

v
etc. were then calculated in the main programme, For calcula-
tion of Rp in case the fluid flow in the free pipe was
turbulent, the curve for smooth pipes in the Moody diagram
was approximated by the relation given by Colebrook and White.
This relation is

1
vE

= 1.74 - 2 1oglok;—i§41~) ' (ATTI-1)

£ Ree vig

|

Knowing Reg, this equation was solved for the friction factor
ff in a trial and error procedure.

All the four trial and error solutions were based on
linear approximations meaning thereby that the relation
between the two variables concerned was assumed to be linear.

Fig. ATTI-1 may be considered to understand this concept

clearly. Let OG be the starting

G o s i (o o i

o)

Fig. AIII-1l LINEAR APPROXIMATIONS TO THE TRUE VALUR
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value of ff for a known Ref. Then if OG were the true value
of ff, the ordinate would have been zero. However, let it

be OH so that A represents the starting point. Let the first
prediction, which is always arbitrary in such a technique,
estimate the value of ff to be OP,.giving the ordinate

equal to PB. Now assuming a straight line relationship, the
programme will estimate that for the ordinate to be Zero, the

value of f_. should be OC. Starting with OC, let CD be the

£

actual ordinate value instead of zero. The straight line

BD will then estimate the value of f. to be OE, followed by

£
ON and so on till the ordinate becomes very nearly zero --
less than a preassigned value such as 10—10.

The following is a brief outline of the subroutine

QST called in the subprogramme VELPCT. To compute the

© vector of integral values:

o
I

X ,
i
z(xi) = J yix)dz (i = 1,2;3,v.¢:0)

a

with X.

N a+ (i - 1)h

formulae used in QSI® are (z, = 0 to start with)

1
2. =z o + B(1.25 y. o 4+ 2y. = 0.25 yi..)
J j-1 . 3" J-1 J ’ Jt+l
Z. = Z. + h (v + 4y. + y.).....Simpson's Rule
J Gl 3 “3~-2 ot J
Z. = Z + 2 (y + 3. + 3y.. + y.)...Newton's 3/8 rule
J J=3 8 “J-3 Jj=2 J=1 < =]
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+ 2.625 y.

4 1-3

(Yj_5 + 3.875 yy_ ,

+ 2.625 y.
YJ_

+ 3.875 ¥i o + ¥
Yj-1 * ¥5)

where zj are integral values
yj are function values
and h is the size of the interval
In these formulae, the truncation error is of the order of h5.
The complete programme that follows is quite general
iﬂ the sense that appropriate changes need be made only in the
main section for any different geometry or a different liquid

carrier. The total number of divisions of the annulus can

also be changed without any difficulty.
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MAIN SECTION OF THE PROGRAMME

ALL LINEAR DISTANCES ARE IN INCHES s AREAS IN SQe INCHES s VELOCITIES .
IN FT/SECe s RHO IN SLUGS/CeFT » NU IN FT#*%2/SEC s MU IN SLUGS/FT-~SECs
TAO IN LBF/FT#*x%x2 5 DPDZ IN LBF/CeFT AND HP IN (HP/FT)/(CeFT/SEC) o

REAL NUsMU
DIMENSION Z2(16916)sW(16916)sR(2)sETA(2)2SE(2:120)sCR(25120)sSX(2s1

120)sAC(29120)eSVI(29120)sX1(120)sDXI(120)sXIA(120)sFSX(120)sB(25120
2)9X(29120)sY(25120)DP(10)
DATA PIsIsECC/361415926535898512096999/
READ(5940) RHOsMUsNUsAUX
40 FORMAT(F7¢092E14¢835F4460)

READING THE ABSCISSAE Z AND WEIGHT COEFFICIENTS W FOR GAUSS INTEGRATION

DO 45 NN=2s1692

N=NN/2

DO 45 M=1sN

READ(5546) Z(NNsM) sWINNsM)
46 FORMAT(2F20612)

MM=NN-+1-M

Z(NNsMM)==Z(NNsM)
45  WINNsMM)=WI(NNsM)

CALLING SUBROUTINES IN ORDER TO CALCULATE VC AND VANN FOR A GIVEN DPDZ

DO 38 NDIA =1s64
READ(5955) DPsDRsR(2)
55 FORMAT(10F6e0352F5.0)
R(1)=DR*R(2) _
CALL GEOMTR (Cs1sPIsRsDRsECCSETASETALSXI sDXIsXIAsSEsXsYsCR)
IF(NDIA-33) 359436535
36 READ(5440) RHOsMUsNUs AUX
35 AUY=,5%(1e-DR)*(1e—ECC)
WRITE(6+34) RsDRsECCsAUY sRHO»MU s NU
DO 38 NVC =1510
DPDZ=DP(NVC)*(1e=~DR)*AUX/ 672
VC=NVC
SOM=PI*R(1)%¥R(1)*DPDZ/ 144
CALL PRESUR (CseI9I1JsDPDZsFSXsWsZ sSXsETALSETASSEsSVsACsRHOsMUsNUsXI
19DXI s XIAXsY9sCR)
CALL VCTAO (I1s1JsJIsMUSNUSDPDZsSVsFSXsVCsSEsCRsRHOISUMsSOMsBsNTC)
CALL VELPCT(IsIJsJIsCRsDPDZsMUSNUsSXsFSXsSVsVCsACsPIsRsVANNSB)

CALCULATING VELOCITY AND PRESSURE RATIOS AND ENERGY REQUIREMENTS
VAVG=VANN-(VANN-VC) *DR*DR
RV=VC/VAVG
F=R(2)%DPDZ/ (RHO*VANN*VANN¥*3 . )
RE=VANN*(R(2)=R(1))/NU/6.
REF=VAVG®R(2)/ (NU¥%6,)
IF(REF«LE«2100,) GO TO 17
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N=0

FF=0002
RH=2¢*ALOGLO(REF*SQRT(FF))~0e7963=1¢/SQRT(FF)
IF(ABS(RH )ellEeleE=~10) GO TO 26
IF(NeGTo0O) GO TO 27

AF=FF

AUY =RH

FF=1e1%FF

N=1

GO TO 28

AD=RH *(FF-AF)/(RH =AUY)

AF =FF

AUY=RH

FF=FF-AD

N=N+1

IF(NeGTe1l5) GO TO 29

GO TO 28

WRITE(6s30) REFsVAVG

FORMAT (1HOs2Xs%N OVER 15 FOR RE =%3E1043s% AND VAVG =%4FT7.3)
RP=(VANN/VAVG) **2*%F/FF

GO TO 19
RP=DPDZ*R(2)*R(2)/(1152«*MU*VAVG)
HP=DPDZ/ (RV*DR*DR%*550.)

.WRiTING THE RESULTS AND PUNCHING THEM OUT ON COMPUTER CARDS

38
34

91
92
95

WRITE(6991) VCsDPDZsVANNSVAVGIRVIRPsHP sREsF eI JoJI sSUMsSOMsNTC
WRITE(7s92) R(2)sDRsECCsVCsDPDZsVANNSVAVGsRVRP

WRITE(7595) REsFsHPsIJsJI sSOMs SUMINTC

CONTINUE

FORMAT(1H1 s/ /94X #¥R (1) =%sFTe3s% INCHES*s5X¢%#¥R(2) =%sFB5e19% INCHES

1%¥s5Xs ¥DIAMETER RATIO =%9F563¢5Xs¥ECCENTRICITY =%sF56395Xs*CLEARANC
2E =%9E10e39% DIA¥9//915Xs¥RHO =%sFTe4e% SLUGS/CeFT*s]10Xe*¥MU =%4E13
B0b9% SLUGS/FT=SEC*9]O0Xe*¥NU =%sE13e6910H FT*%2/SECs/// s5Xe¥VCHo6Xs *
GPSF/FT* s 6X o ¥VANNT 9 6X s ¥*VAVGH 9 TX ¥RV ¥* 98X 9 ¥RP HP~S/FT3~FT REY*
510X %¥F*48Xs*]J J1I PIPE SF CAP SF NTC*s /)

FORMAT(1IHO9F8e43F11e552F10643F10e59F106493E12e3521692E1062514)
FORMAT(F401’2F5-39Fl4o10,F10069F140109F10069F806’F]006)
FORMAT(EL1S5e732E1407921492E1366513)

STOP

END
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SUBROUTINE GEOMTR (CsIsPIsRsDRsECCsETASETALsXIsDXIsXIAsSEsXsYsCR)

C SUBROUTINE TO CALCULATE A FEW GEOMETRICAL CONSTANTS

DIMENSION R(2)sETA(2)9OX(2),SINH(Z)yCOSH(2)sX12(2),XI(I),DXI(I)’XI
JACI) 9SE(2sI)1sX(291)sY(251)9CR(251)

C SETTING ETA VALUES AND LOCATING CENTRES OF PIPE AND CAPSULE

C

C

AUX=(1e+DR) /ECC+(1e=DR)*ECC
ETA(2)=ALOG(AUX/2 e +SQRT(AUX¥AUX/ 4 oe~146))
C=R(2)*(EXP(ETA(2))—-EXP(~-ETA(2)))/2
ETA(1)=ALOG(C/R(1I+SQRT(C*¥C/R(1L)/R(1)+1e))

AUX=o 5% (SQRT( (1 o=TANHIETA(I) ) I *¥(1e+TANH(ETA(2)) ) )+SQRT( (1 e+TANHIET
1A(1)))*¥(1e—=TANH(ETA(2))))) ‘
ETAL=ALOG(1e/AUX+SQRT(1e/AUX/AUX~16))

DO 5 K=1s2

OX(K)==C/TANH(ETA(K))

AUX=EXP(~ETA(K))

COSH(K)=(1e /AUX+AUX) /2

SINH(K)}=COSH(K)~AUX

XOX=(OX(1)+0X(2))/2

C GENERATING VALUES OF ELEMENTAL XI

C.

C

19

PXI=0,0
XI121(2120.0 .

DO 16 L=1s1

TH2=(FLOAT(L)=e5)%PI/FLOAT(I)

XI1(L) =ASIN(=SIN(TH2)*SINH(2)/(0X(2)/R(2)+COS(TH2)))
IF(XI(L)eLTePXI) XI(L)=PI-XI(L)

IF(XI(L)eGTePI/2s) GO TO 19

AUX=C*SQRT( (COSH(2)-COS(XI(L)))/(COSH(2)+COS(XI(L})))
AUX=ASIN(AUX®SIN(ATANCSIN(XI(L))Y/SINH(2)))/R(2))
IF(ABS(TH2=AUX) eGTeleE=5) XI(L)=PI=XI(L)

PXI=XI(L)

X12t1)=X1212)

AUX=FLOAT(L)*PI/FLOAT(I)
X12(2)=ASIN(=SIN(AUX)%¥SINH(2)/(OX(2)/R(2)+COS(AUX)))
IF(XI2(2)el.TaX12(1)) XI2(2)=PI=-XI2(2)

N=0

C FINDING ARC LENGTH OF ELEMENTS ALONG THE WALLS

C

25

23

IF(L<EQs1) GO TO 25
SE(2sL)=SE(251)

GO TO 23 |
SE(251)=PI*R(2)/FLOAT(1)
X1==C*SINH(1)/(COSH(1)+1e)
Y1:0,0

GO TO 24

Xy=X2

Yi=Yg
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24  X2==C*#SINH(1)/(COSH(1)+COS(XI12(2)))
Y2==X2%SIN(XI2(2))/SINH(1)
SE(1sL)=2e*R(1)XASIN(SQRT ((X2=X1)*¥24(Y2~Y1)¥%2)/2e/R(1))
IF(XI2(2)eGTePI/2e ¢ORe NeEQel) GO TO 28
IF(SE(1sL)/SE(291)elLTe0e95) XI2(2)=PI=X12(2)
N=1
GO TO 24
28 DXI(L)=(XI2(2)=X12(1))/2.
XIACL)=(XI2(2)+XI2(1)) /2
G
C FINDING LOCAL CONCENTRIC RADII FOR VELOCITY PROFILES IN LAMINAR FLOW
C :
DO.16 K=1s2
X(Kell)==C*SINH(K)/(COSH(K)+COS(XI(L)))
Y(KsL)==X(KsL)*¥SINI(XI(L))/SINH(K)
16 CRI{KsL)=(X(KsoL)=XOX)*%2+Y (KoL )*%2
RETURN
END
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SUBROUTINE PRESUR(CsIsIJsDPDZsFSXsWsZsSXsETALIETASSEsSVsACsRHOsMU »
INUs XTI sDXT9XIAsXsYsCR)

SUBROUTINE TO FIND THE SHEAR VELOCITY IN TURBULENT REGION AFTER
LOCATING THE MAXe VELOCITY CURVE PRECISELY IN THE WHOLE ANNULUS
WHEN THE CAPSULE 1S STATIONARY

CALCULATION OF ELEMENTAL AREAS AND ARC LENGTHS ALONG CONSTANT XI
LINES IS IMPLICIT FOR THIS PURPOSE

DIMENSION SE(291)9SX(2s1)sAC(2s1)9SVI2s1)sFSX(1)sW(16916)32(16+16)
1sETA(2) sCE(2)sFV(2)5H{2) s VMPT(2) s XT(I)sDXI(T) s XIA(I) s X(291)9Y(251)

23CR(2s1) :
REAL NUsMU

1J=0

N=1

NN=2

DO 43 L=1sl

ETAT=ETAL

NT=0

FINDING ARC LENGTHS ALONG THE CENTRAL XI LINES

54 COSHM=(EXP(ETAT)+EXP(=ETAT)) /2

SINHM=COSHM=EXP (~ETAT)
XM==C*SINHM/ (COSHM+COS (X1 (L)))

YM==XM*SIN(XI(L))/SINHM

DO 47 K=1s2
SX(KsL)=2e*C*¥ASIN(eS5*¥SIN(XI (L)) *¥SQRT (X (KsL)=XM)¥%¥2+(Y (KoL) —YM) %%
1)/C)/SINICXI(L)) '

CALCULATING ELEMENTAL AREA BY GAUSS "'INTEGRATION TECHNIQUE

BM=(ETAT-ETA(K)) /2

IF(KeEQe2) BM=-BM

BP=(ETAT+ETA(K)) /2

IF(L-N*15) 25525426
26  NN=NN-+2

N=N+1
25 AC(KsL)=040

DO 47 M=1sNN

AUX=BM*Z (NNsM)+BP

DO 47 NA=1s6
47 AC(KsL)=AC(KsL)~CHCxBM¥DXT (L) ®¥WINNsM)*¥WlgsNA)/ (((EXP(AUX)+EXP (~AUX

1))/726+COS(DXI(L)#Z(6sNA)+HXTACL) ) )*%2)

TESTING FOR TRANSITION FROM LAMINAR TO TURBULENT FLOW WHEN VC=0.0

FSX(L)=SX(1sL)4+SX(2sL)
IF(LeGTo(IJ+1)) GO TO 51

BM=2¢ /ALOG(CR(2sL)/CR(1sL))
REP=DPDZ#* (CR(1sL)*{1e+BM)+CR(2sL)*(1e=BM))®(FSX(L)/MU)/(NUX69126)
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IF(REP«GT«2100¢) GO TO 51

IJ=L
GO TO 43

LOCATING MAX. VELOCITY LINE FOR THE ELEMENT UNDER CONSIDERATION IF
FOUND IN TURBULENT REGION ( RE «GTe 2100 )

51

49

DO 49 K=1s2

SV(KsL)=SQRT(DPDZ*AC(KsL)/SE(KsL)/RHO/124)

VMPT(K) =SVI(KsL)*¥(3e8+2678%¥ALOGISX(KsL)I*¥SV(KsL)/NU/126))
AUX=2 o ¥ (VMPT(2)=VMPT (1)) /(VMPT(1)+VMPT(2))
IF(ABS(AUX)eLEeleE~5) GO TO 43

IF(NT«GTe0) GO TO 52

FIRST PREDICTION OF ETAT

52

53

44
45

43

FV(1)=VMPT(1)
FV(2)=VMPT(2)
ETAT=e999%ETAT
NT=1

GO TO 54

SUBSEQUENT PREDICTIONS OF ETAT UPTO A MAXe OF 5

DO 53 K=142

CE(K)=(VMPT(K) =FV(K))/(ETAT-ETAL)
H(K)=VMPT(K) =CE(K)*ETAT
ETAT=(H(2)=H(1))/(CE(1)=CE(2))
NT=NT+1

IF(NT«GTe5) GO TO 44

GO TO 54

WRITE(69+45) L

FORMAT (/510X s 5H*¥%X %% s ¥*NUMBER OF TRIALS REQUIRED FOR LOCATING THE M
1AXe VELOCITY LOCUS HAS GONE OVER 5 FOR THE ELEMENT*sI492Xs5H¥%%%x¥%)
CONTINUE

RETURN

END
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SUBROUTINE VCTAO (IsIJsJIsMUsSNUSDPDZsSVsFSXsVCeSEsCRsRHO9SUMs SOMs B
1sNTC) '

SUBROUTINE TO FIND THE CAPSULE VELOCITY FOR A GIVEN DP/DZ
SHEAR STRESS DISTRIBUTION IS ALSO CALCULATED ON BOTH THE WALLS

32

JI

19

24

DIMENSION SE(2sI)sSVI2s1)9CR(2sT1)sB(29sT1)sFSX(I)sTAO(25120)sTP(120)
REAL NUsMU

NTC:...

DO 65 K=142

IF(KeEQe2) GO TO 22

NTC=NTC+1

IF(NTCeGT&10) GO TO 36

REPRESENTS THE SECTION AFTER WHICH COUETTE FLOW BECOMES TURBULENT

JI=0

L=0

L=L+1
REC=VC*(1e/ALOGICR(2sL)/CR(1sL))=CR(1sL)I/(CR(29L)~CR(1sL)))*(FSX(L
1)/NU) /6

IF(RECeGT«2400e) GO TO 24

JI=L

IF{L=1) 19+22+22

M=JI+1

FINDING DISTANCE FROM THE WALLS WHERE U=VC/2 IN TURBULENT COUETTE FLOW

25

73

67
64

68
12

DO .72 L=MsI

D=SQRT(SE(2sL)/SE(1sL))
DD=(VC/NU/24 e ) %% (1e=D)
B(lsL)=FSX(L)/2e

N=0

BD=B(1lsL)**¥D/(FSX(L)-B(1sL))
IF(ABS(1e~BD/DD)elLEeleE~4) GO TO 68
IF(NeGT0O) GO TO 73

CE=B(1lsL)

FV=8BD -
B(1sL)=0e95%B(1sL)
N=1

GO TO 25
H=(B(1sL)-CE)/(BD-FV)
CE=B(1lsL)

FV=BD

N=N+1

IF(NeGT«10) GO TO 67
B(1sL)=B(1sL)+H*(DD-BD)
GO TO 25
WRITE(6+64) L
FORMAT (1HO» 10X s 5H¥ 3% % o % NUMBER OF TRIALS FOR FINDING B HAS GONE O
1VER 10 FOR THE ELEMENT#*sI5s7H H¥%¥%xy/)
B(2sL)=FSX(L)/2,
CONTINUE
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22 SUM=0.0
DO 20 L=1s1

SHEAR STRESS CALCULATION IN PRESSURE FLOW (LAMINAR OR TURBULENT)

IF(NTCeGTe0O «ANDe KeEQel) GO TO 26

IF(LeGToIJ) GO TO 21
TP(L)=DPDZ*( (CR(2sL)~CR(1sL))/ALOG(CR(2sL)/CR(1sL))=CR(KsL))/SQRT(
1CR(KsL) ) /240
GO TO 26
21 TP((L)=RHO*SVI(KsL)*SV(Ksl)

SHEAR STRESS CALCULATION IN COUETTE FLOW (LAMINAR OR TURBULENT)
26 IF(LeGTeJI) GO TO 16

TC=24 e ¥MU*VC/SQRT(CR(KsL) ) /ALOGICR(2sL)/CR(1sL))
GO TO 17

16 UT=.095%¥VC/ALCGLIO(VC*B(KsL)/NU/ 246 )

TC=RHO*UT*UT
17 IF(KeEQel) TC=-TC

TESTING FOR NET (SHEAR + PRESSURE) FORCE ON THE CAPSULE TO BE ZERO

TAO(KsL)=TP(L)+TC

20  SUM=SUM+TAO(KsL)*SE(KsL)/6e
IF(KeEQoe2 «ORe ABS(SUM+SOM)elEeleE~10) GO TO 65
IF(NTCeGTe0O) GO TO 35

PREDICTION OF VC ASSUMING A LINEAR RELATIONSHIP BETWEEN VC AND SUM

FvC=VvC
AUY=SUM
VC=1lel %*VC
GO TO 32
35 CE =(SUM+SOM)*(VC—FVC)/{(SUM=-AUY)
FvC=VvC
AUY=5UM
VC=VC-CE
GO TO 32
36 NTC=10
65 CONTINUE
RETURN
END
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SUBROUTINE VELPCT (IaIJ9JI’CR3DPDZ9MU’NU9SX9FSX,SV9VC9AC9PI9R’VANN
1:8B)

SUBROUTINE TO FIND VANN s THE AVERAGE VELOCITY IN THE ANNULUS

DIMENSION SX(2s1)sSV(2e1)sAC(2s1)sCR(2sI)9B(2s1)sFSX(I)sR(2)sVAVI(1]
120)sVA(122)sVPC(122)

REAL NUsMU

SUM=0.0

ELEMENTAL AVERAGE VELOCITY IN LAMINAR PRESSURE FLOW

DO. 71 L=1sl
IF(LeGTeIJ) GO TO 20
VAP=2¢ /ALOG(ICR(2sL)/CR(1sL))
VAP=DPDZ#* (CR(1sL)%(16e+VAP)I+CR(2sL)*(1e~-VAP))/MU/1152.
GO TO 21
20  N=L+1

ELEMENTAL AVERAGE VELOCITY IN TURBULENT PRESSURE FLOW

VPC(1)=0.0
DO 80 U=2sN :
Y=FLOAT(J-1)*FSX(L)/FLOAT(N)
IF(YeGToSX(1sL)) GO TO 25
K=1
GO TO 26

25 K=2 '
Y=FESX(L)=-Y

26 YP=Y%SVI(KsL)/NU/12,
IF(YPelLTe26¢0) GO TO 78 .
VPC(J)=SV(KsL)*(3e8+2. T8¥ALOG(YP))
GO TO 80

78 IF(YPeLTe50 ) GO TO 79
VPC(J)=SV(KsL)*#(~3e05+5e*%ALOG(YP))
GO TO 80 '

79  VPC(J)=SV(KsL)*YP

80 CONTINUE
Y=FSX(L)/FLOAT(N)/12e
N=N+1
VPC(N)=0.0
CALL QSF (YsVPCsVAsN)
VAP=12 e ¥VA(N)/FSX(L)

ELEMENTAL AVERAGE VELOCITY IN LAMINAR COUETTE FLOW

21 IF(LeGTeJI) GO TO 22
VAC=VC* (1 /ALOGICR(29L)/CR{19L))=CR(1sL)/(CR(2sL)=CR(1sL)))

GO TO 23 '
22 N=L+1 :
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ELEMENTAL AVERAGE VELOCITY IN

24

27

FOR

84

85

28
75

23
71

VPC(1)=VC
B(2sL)=FSX(L)=B(1sL)

DO 75 J=2sN
Y=FLOAT(J=1)%FSX(L)/FLOAT(N)
IF(YeGT«B(1sL)) GO TO 24

K=1

GO TO 27

K=2

Y=FSX(L)-Y

YD=Y/B(KsL)
REC=VC*B(KsL)/NU/24e
IF(YDelLTeCOel) GO TO 84
Y=1e/(2e671-06119%ALOG(REC))
VPC(J)=VC*(Y+(1le=Y)¥SQRT(YD)) /2
GO TO 28

WALL REGION IN TURBULENT COUETTE FLOW

UT=e095%VC/ALOGL1O(REC)
YP=Y*UT/NU/12e

IF(YPelLTe15.0)GO TO 85
VPC(J)=56%UT*(1e+ALOGL10(YP))

GO TO 28

VPC(J)=YP*UT

IF(YPeGTe10e) VPC(U)I=0e8%VPC(J)
IF(KeEQel) VPC(J)=VC-VPC(J)
CONTINUE

Y=FSX(L)/FLOAT(N)/12e

N=N+1

VPC(N)=060

CALL QSF (YsVPCsVAsN)
VAC=12 e ¥VA(N)/FSX(L)

VAV (L) =VAP+VAC
SUM=SUM+VAV (L) *¥ (AC(1sL)+AC(2sL))
VANN=2 ¢ ¥SUM/Z (P I*(R(2)%R(2)-R(1)*¥R(1)))
RETURN

END

TURBULENT COUETTE FLOW
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C THE INPUT DATA
1.936 2.08768267E~051607834849E~051.0
e577350269190 1.00000
339981043585 «652145154863
«861136311594 e 347854845137
238619186083 «467913934573
e 661209386466 «360761573048
¢932469514203 0171324492379
e 183434642496 «362683783378
¢525532409916 e313706645878
e 7196666477414 0222381034453
e 960289856498 «101228536290
«148874338982 0295524224715
«433395394129 0269266719310
e679409568299 0219086362516
«865063366689 0149451349151
«973906528517 e 066671344309

125333408511
e367831498918
587317954287
e 769902674194
¢904117256394
«981560634247
«108054948707
¢319112368928
«515248636358
« 687292904812
827201315070
e 928434883664
e986283808697
« 095012509838
«281603550779
e 458016777657
e617876244403
¢ 755404408355
e 865631202388
0944575023073
¢989400934992

0249147045813
0233492536538
0203167426723
¢ 160078328543
0106939325995
e 047175336387
0215263853463
e205198463721
0185538397478
157203167158
0121518570688
«080158087160
¢035119460332
¢ 189450610455
¢182603415045
e169156519395
0149595988817
124628971256
«095158511682
2062253523939
027152459412

2880 60035 94464136174176102216222256615306423356147406449
5673011e850186396256340326626406246480236566600656330744075
11603722649 34662247e2T78606489744617 88¢431103624118.01133.86
1761 34e4 53e0 71694591662 11261 13362915560 17762 20048
3058661625 936115126632160625194693230676266092304623342656
68636 1366722056162756¢4 34960 423¢0 49861 5756 65460 T732.54
121614242e626363e3948465 606662737663868¢3 100066113366126765
272¢2 5436328150 1086.61358041630601901662189¢824817277264
16320 24800 4,460 64320 8633010642012675015425017780206750
2590 54453 8457611692715647819436323649827.,672326310364900
4490010625016600022600028630034696542e00049633057030656340
Te65015673024,30033,26042666052:56062,92073,60084.69095,880
1366 27673 42¢52 57686 T3e74 90626 107649125607143¢52161676
3064 6068 9266 12563 1594 193¢5 2294 26600 30206 34066

«900
«930
<950
+« 960
970
«980
«985
«990
«900
«930
«950
«960
e 970
«980
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53684 10766516165 218e542766¢8333660 39665 457¢56519035585.1
12068 241647362e62248340 603668735e35865e4 99763 11310126367
350 o790 16300 14910 26593 36320 4110 50,060 506985 60981
0682 16492 2¢42)1 36458 4e617 56891 76258 8,67210634111.963
16290 26740 46400 66200 8615010622212¢52014698017490204240
16963 46170 66596 9622611697514696018,22821673425620829.090
36480 7¢26011e6290156660206220256200306403356625416527470260
7660015668024630033620042065052040062662073636084457095760
13646 27634 42607 57028 73608 89633 10666 1240414263 16066
3062 60636 91693 124¢72158627192676228606264005300664338e44
e099 6240 o417 631 873 leldl 1.481 16819 20185 26575
e187 433 o737 1088 16498 16970 26466 3,000 36575 46310
e343  ¢TT71 16289 16875 26532 36283 44068 4,906 56921 6900
¢524 10161 1871 24722 3¢636 44647 54735 66973 846233 94541
e916 16977 36167 46453 506928 76504 962201107012698015172
16960 46163 66567 9620012602014695018622021470025619029.057
36465 76175116193156510206100246956306135356404416194460900
7e55015665624619033610042e475526340626495736050840070950395
26880 66035 9,4641361T74176102216222256615306423356147406449
166456 2.0876826TE-041.26864528E-04860
5e673011685018¢396256340326626406246486236560600656330744.075
11603722649 34662247627860648974617 88e431103e24118001133.86
1761 34e4 5360 71694591662 1121 13362915560 1772 200448
30658661625 936115126632160625194093230676266092304e23342.56
68636 136067220561627564 34960 42360 498e1 57566 65400 732.54
121e14242026363e3948465 606¢62737¢63868¢3 10006611336612675
27262 54363281540 1086661358641630019016621898248167277264%
16320 26800 4,460 66320 86330104420126750156250174780206750
2¢590 54453 8657611e92715647819636323449827.67232¢310364900
4490010,25016600022,000286¢30034496542¢00049,33057403065¢340
Te650156730244630033626042666052656062692073660084.69095.880
13.6 27073 42.52 5Te86 7374 90.26 107.49125007143-52161076
3064 6068 926 12563 15%9e4 19365 2294 266¢0 302¢6 3406
53684 10766516165 21865427668333660 39665 4576¢56519¢35585,1
12068 241e47362e2248360 603.68725.3586564 9973 11310126347
350 o790 16300 :1e910 26593 36320 46110 5,060 5,985 66981
e682 10492 26421 36458 4e617 56891 76258 86672106341116963
16290 26740 46400 66200 80150106222126520146980176¢490206240
16963 46170 66596 9622611e¢97514696018622821073425420829.090
36480 7626011629015666020622025620030640335,625416527474260
76¢60015668024¢30032,20042665052640062.62072:360846570956760
13046 27e34 42007 57028 73608 89633 10666 1240041423 1606
3062 60636 91693 124,72158627192676228606264005300.64338¢44
6099 240 o417 o631 o873 lol&l 16481 16819 26185 24575
¢187 o433 o737 1,088 16498 16970 2.466 3,000 34575 44310
0343 o771 16289 14875 24532 324283 4,068 4,906 5,921 6.900
0524 10161 14871 24722 3e636 44647 54735 64973 84233 9,541
¢916 16977 36167 46453 56928 76504 9022011.07012980156172
16960 46163 66567 9620012602014695018622021670025419029.057
36465 T7e17511619315¢5102061002406956306135356404416194460900
7e¢55015665624019033610042647552e340626495736050840070950395
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