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Optical absorption spectra of alkali halide 

crystals containing H- ions (U-centres) are calculated 

using a two-parameter model to describe the defect. It is 

shown that this model gives a satisfactory account of the 

observed anharmonic sideband of the main U-centre absorption 

band in the infrared, and also of the impurity-induced far 

infrared absorption for the two host crystals considered, 

potassium bromide and potassium iodide. The broadening of 

localized modes and resonances is also discussed. In 

particular, the anharmonic broadening is calculated for 

the main U-centre line in KI and KBr and for a localized 

gap mode in KI:KH. 
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CHAPTER 1 


INTRODUCTION 

The possibility that lattice defects can lead to 

the appearance of vibrational ·modes whose frequency lies 

outside the continuous frequency spectrum of the perfect 

crystal was first discussed by Lifshitz (1943, 1944). He 

formulated the theoretical problem of calculating the 

properties (for example, the density of vibrational states) 

of the lattice with defects in such a way that its solution 

did not require that the size of the perturbation be small 

in the usual sense, but that it be localized in space. 

This formulation was therefore particularly suited to the · 

theoretical study of crystal lattices containing a single 

d~fect, and the conditions governing the occurrence of 

localized modes of vibration associated with such a defect 

had been cons(dered in detail before such a mode had been 

seen experimentally (Montroll and Potts 55: Maradudin 

et al. 58: Domb et al. 59). The first experimental evidence 

for localized modes was reported by Schaefer (1960). He 

observed an absorption band in the infrared spectra of 

alkali halides containing U-centres, which are negative 

hydrogen ion impurities substituted for halide ions of the 
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perfect crystal. The presence of such an absorption band 

was explained by Rosenstock and Klick (1960) and also by 

Wallis and Maradudin (1960). These workers showed that as 

a consequence of its light mass, the hydrogen ion impurity 

gives rise to a high frequency, localized vibrational mode 

which is optically active. Essentially only the hydrogen 

ion moves in this mode, which is often referred to as the 

"U-centre localized mode". 

A description of the dynamics of the perfect host 

crystal is needed before the local mode frequency can be 

predicted theoretically. Early calculations employed a 

nearest neighbour force constant model to do this, and were 

able to explain the observed local mode frequency using the 

mass change as the only perturpation of the host crystal 

resulting from the impurity (Wallis and Maradudin 60; 

Takeno et al. 62). Similar calculations were subsequently 

carried out using models to describe the perfect crystal 

which take into account the long range electrostatic forces, 

as indeed a realistic model must. These were performed by 

Jaswal and Montgomery (1964) using the rigid-ion and de

formation-dipole models, by Fieschi et al. (1965) using 

the shell model, and by Page and Strauch (1967) using the 

"breathing" shell model. In each case, the authors found 

that the predicted local mode frequency _is in poor agreement 

with experiment unless a considerable decrease in the 
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central force constant connecting the H ion to its nearest 

neighbours, as well as the mass change, is included in the 

perturbation. 

In addition to the main U-centre line, which 

corresponds to the creation of a single U-centre local mode 

phonon, Schaefer (1960) also observed sidebands corresponding 

to the creation of a local mode phonon plus a lattice phonon, 

which have since been studied in more detail by several 

workers (Brada and Mitra 64; D8tsch et al. 65; Fritz 65; 

Fritz et al. 65; Timusk and Klein 66). The existence of 

sidebands can be attributed to the anharmonic coupling of 

the local mode to other vibrational modes of the crystal, 

with the cubic anharmonic terms dominating (Fritz 65; 

Elliott et al. 65; Timusk and ·Klein 66; Nguyen 66; Bilz 

et al. 66). An alternative mechanism, requiring the second

order electric dipole interaction, has been considered in 

detail by Nguyen (1966, 1968) and by Page and Dick (1968), 

who conclude that the anharmonic interaction dominates. 

The leading anharmonic terms giving rise to side

band contributions contain only the coordinates of the 

hydrogen ion and its nearest neighbours. By calculating 

with a simple form for this anharmonic interaction, Timusk 

and Klein (1966) were able to show that, as a consequence 

of the highly localized nature of the coupling~ the side

band lineshape depends only on the vibrational spectra of 
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ions in the defect area. Therefore it is very important 

that perturbations caused by the presence of the impurity, 

both the mass change and force constant changes, be care

fully taken into account in the calculation. They evaluated 

the decrease in the hydrogen ion-nearest neighbour force 

constant needed to predict the correct U-centre local mode 

frequency, and used this value in their calculation of the 

sideband lineshape. Their model leads to reasonable overall 

agreement with experiment. However, in the particular 

cases of KBr and KI, certain peaks. in the sideband are 

predicted at very different frequencies from those observed 

experimentally. These peaks are interpreted as arising from 

the interaction of the H ion with vibrational modes in 

which the amplitudes of its nearest neighbours are large. 

Such modes are called resonances. Gethins et al. (1967) 

extended the model to include a force constant change 

between the first and fourth neighbours of the H ion. 

They showed that a decrease in this force constant reduced 

the frequencies ·of the resonances in the sideband, 

considerably improving agreemen~ with experiment. In that 

calculation, the anharmonic coupling chosen by Timusk and 

Klein (1966) was again used. 

Recently Kfihner and Wagner (1968) have done a 

calculation similar to that of Gethins et al. (1967), using 

a more complete anharmonic coupling. Their results show 
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tl1at this can also improve the agreement. However, these 

authors found it necessary to assign arbitrary values to 

the ratios of the anharmonic coupling constants involved. 

In chapter 4 of this work, less arbitrary procedures for 

evaluating these ratios are suggested and are used in a 

detailed calculation of the sideband lineshape. 

The introduction of an impurity ion into a crystal 

also induces optical absorption in the far infrared, which 

has been studied experimentally by Sievers (1965) and by 

Timusk et al. (1968). This problem has been theoretically 

investigated by many authors (Lifshitz 43, 44; Dawber and 

Elliott 63a, 63b; Maradudin 63, 64a, 66; Rebane et al. 

64; Benedek. and Nard~lli 67; Patnaik and Mahanty 67; 

Martin 67; Takeno 68; Timusk et al. 68; Woll et al. 68) • . . 

The presence of the impurity removes the translational 

symmetry of the lattice. This lifts the requirement that 

the phonon and photon have the same wavelengths and allows 

all modes ·of appropriate point symmetry with respect to the 

defect site to contribute to the absorption. Therefore, 

in addition to the strong reststrahlen absorption 

characteristic of pure alkali halides, when U-centres are 

present absorption can also occur at other frequencies. 

This absorption can show considerable structure; for 

instance, resonances similar to those appearing in the side

band can occur. These have been interpreted by Woll et al. 
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(1968) as being due to absorption by optically active modes 

which have large amplitudes near the defect. 

In his original work, Schaefer {1960) also studied 

the temperature dependence of the width of the U-centre 

local mode peak. This study has since been extended by 

Mi~lin and "Reshina (1964), by .Fritz et al. (1965) and by 

Bauerle and Fritz (1967). It is found that the line has a 

small, non-zero width at very low temperatures, which 

increases with temperature. The residual width at zero 

temperature can be understood in terms of the possibility 

of anharmonic decay of the local mode phonon into lattice 

phonons (Elliott.et al. 65). At non-zero temperatures it 

is necessary to consider a second anharmonic mechanism, in 

which thermally excited lattice phonons are scattered by 

the local mode phonon, as shown by Elliott et al. (1965), 

by Ivanov et al. (1966) and by Ipatova and Klotchichin 

(1966). These authors came to the conclusion that the 

"scattering" mechanism does in fact -dominate -the "decay 0 

mechanism at high temperatures in many cases. 

Although the qualitative aspects of this problem 
\~ 

are well understood, apart from the work of Elliott et al. 
...

(1965) on CaF containing H ions, almost no numerical2 

estimates of the linewidths of U-centre local mode phonons 

have been made. This is probably due to the lack of 

information on the values of the anharmonic constants near 

http:Elliott.et
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the impurity and the need ·to know the detailed vibrational 

spectra of ions in the defect area. 

In the present work, the various properties 

described above for alkali halides containing U-centres 

are treated theoretically, using a model of the defect 

containing two parameters. This model was originally 

applied to calculation of the sideband spectrum for KI 

and KBr (Gethins et al. 67). It is shown that this model 

leads to a satisfactory explanation of the far infrared 

absorption as well as the sideband spectra, which implies 

that it provides an adequate description of the dynamics 

of ions near the defect. For this reason, the model is 

also applied to the calculation of the broadening of the 

main U-centre line for KI and KBr. In addition, the model 

is applied to calculation of the broadening of an A lg 

symmetry mode which happens to be localized in the case of 

KI. This mode lies in the band gap of the KI crystal 

containing U-centres, and gives rise to a strong peak in 

the sideband spectrum. 

In chapter 2, the Green's function treatment of 
~ 

the harmonic latt~ce containing a point defect is reviewed 

and the theory of thermodynamic Green's functions is 

presented in a form which is convenient for the problems 

under consideration. In chapter 3, the theoretical model 

used for the U-centre is described. In chapter 4, the 
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techniques and model are applied to the calculation of the 

sideband lineshape and in chapter 5 to the calculation of 

the far infrared absorption spectrum. In chapter 6, the 

anharmonic broadening of modes is considered. The 

broadening of the iocalized gap mode in KI:KH is calculated 

first, followed by calculation of the broadening of the 

main U-centre local mode peak. The application of similar 

techniques to anharmonic broadening of sharp resonances 

observed in the sideband and far infrared spectra is also 

discussed. 



CHAPTER 2 

GENERAL FORMALISM 

A. THE PERFECT LATTICE 

The vibration Hamiltonian H for an alkali halide 
0 

crystal in the harmonic approximation can be written 

(Maradudin 63) 

2 1 K11 •(11( 1 aK,a 1 K1 C1K ClH M r (1)= °2" r XL + <l>L L' x~ XL'0 K 2 _,_
LaK Leu: 

L'a'K' 

where x~K is the displacement from equilibrium of the ion on 

the site at position ~ in the a-direction and X~K is its 

time derivative. The label K indicates the type of ion on 

site L and M is its mass (K = + and K = -, indicating
K 

aK,a 1 K 1 

alkali and halide ions, respectively). <l>L_,_L' is the 

interionic force constant defined by 

K 1aK,a 1 

(2)<l>L L'-'

L 
Here V is the potential energy of the crystal and the 

condition ~ = 0 indicates that the second derivative is to 

be evaluated with every ion at its equilibrium position. 

Assuming a cyclic boundary condition for the displacements 

9 
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and making the substitution 

I (3) 

aKwhere w is the frequency of vibration and uL is a time-

independent amplitude, the equation of motion for the L th 

ion can be reduced to the form (Maradudin 63) 

aK,a 1 K1 

( 
4>L,!!' 

IM M ' K K 

-
2 

w oL L'
-'

0a,a' = 0 

(4) 

Defining 

aK,a 1 K 1 

' 'AaK,a K 
L L'_,_ = 

4>L L'_,_ 

IM M ' K K 

(5) 

enables the equations of motion for all L to be combined 

into the matrix equation 

(A - w2I)u = 0 I (6) 

where I is the unit matrix. The matrix A, for a crystal 

containing 2N ions, is diagonalized by making a unitary 

transformation, using the matrix U, whgse elements are 

1 K(k") ik.LU (7)= t::N e:a _J e - - I
~aK,~j t'N 

to the representation of plane waves denoted by~ and j. 

The index j labels the six normal modes of vibration which 

correspo.nd to each value of the wave vector k and which 

have characteristic frequencies wk .• £(~j) is an eigenvector
_] 

whose elements e::(~j) give the relative vibrational amplitudes 

http:correspo.nd
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of the two types of ion in the three Cartesian directions 

for the (~j)th normal mode. 

The Green's function matrix for the perfect crystal, 

2G(w ), is defined by the equation 

(8) 

In the {~j}-representation, A is diagonal with elements 

wk. 
2

' and therefore in this representation the elements of 
_] 

G are 

o.k ,,. , o . . , 
= tlli. ]1]

2 2
wk. - w_J 

- G(w 2 ;~j) (9) 

The normalized density of states for the crystal, defined by 

(10) .p(w) = ~ ~· O(wk. - w) , 
_J _J 

can be written in terms of the Green's function matrix 

elements as 

P (w) (11) 


using equation {9) and well-known properties of the Dirac 

o-function. The small positive quantity O+ is needed to 

specify the sign of the imaginary part required in equation 

(11). 

B. THE HARMONIC LATTICE CONTAINING A SUBSTITUTION~L IMPURITY 

The changes in mass and force constants caused by 
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the substitution of a single impurity into the crystal can 

be taken into account by replacing the matrix A in equation 

(8) by the matrix A given by 

(12) 

The elements of r, the change in dynamical matrix, are 

defined. in the {~aK}-representation by 

2 
+ AW 6L 06L L'6 ,8 _6K,K'_ , _ , _ Cl Cl K, 

1 

(13) 

where the impurity has been taken at a negative ion site 


which has also been chosen as the origin of coordinates. 


6V is the change in potential energy of the crystal resulting _ 


from force constant changes; the mass change has been taken 


into account explicitly by the term proportional to A, 


given by 


{14) 


'where ~1z is the mass of the · impurity. The equation of motion 

for the perturbed harmonic crystal is therefore 

- 2 2(A(w ) - w I)u = 0 (15) 

The elements of the vector u are again defined by equation 

(3); that is, in terms of the masses of the unperturbed 

crystal. 

2The perturbed Green's function matrix G(w ) is 
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defined in the {~aK}-representation by 

- 2 - 2 .2 -1G(w ;LaK,L'a'K') = (A(w ) - w I)L L' , , (16)
- - _aK,_ a K 

G is diagonal in the representation of perturbed phonons 

labelled by p (perturbed) and has elements 

- op,p'
G(w 2 ;p,p') = 2 2 

·W - W p 

- 2: G(w ;p) (17)I 

where w is the frequency of phonon p.p 

It is not possible to give a useful general expression 

for the elements UL of the transformation matrix from_aK 1 p 

the position to the perturbed phonon representation. 

However, in the particular case of the U-centre, elements 

corresponding to the local mode phonon are particularly 

simple since it can be assumed that only the H- ion moves 

(Kagan and Iosilevskii 63). The local mode frequency Q 

is then determined by a single element of the dynamical 

matrix and it follows from equation (16) that 
~ 

G(w 2 ;Qa-,Qa-) = (A~- 0 a-Cw 2 )-w 2 )-l , (18)_,_ 

Using equations (12) and (13) with equation (17) gives 

-( 2 O O .) M_ 1G w ;_a-,~a- = ~ • 2 2MH Q - w 

I (19) 

where P labels the local mode phonon polarized in the 
a 
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direction a. MI has been set equal to the· H ion mass MH, 

d 2 .an n is given by · 

2
n2 = M_ [ Ao.-,o.- + a tJ.V (20)Q,Q ( a- ) ]·MH a

auQ auQ 
u = 0 

It follows from equation (19) that 

UQo.-,Po. (21)~ j:; 

2

G(w
2 ) can be written in terms of G(w ) using equation (16) 

with equations (8) and (12). The result is the Dyson equation 

G = (I + Gf)-l G 

= G - GrG + GrGrG - (22) 

Defining the T-matrix (Klein 63) by 

T = r(I + Gr)-l 

= r - rGr + rGrGr - .~ •• , (23) 

equation (22) can be rewritten 

G = G - GTG (24) 

Equations · (22) and (24) are the two forms for G most suited 

to taking full advantage of the space localization of the 

perturbation described by r. In particular, the . expression 

(22) will be useful when only elements of G are required 

which correspond to the vic.ini ty of the impurity, while 

the expression (24) will be used when other elements of 

G are required. 
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C. ANHARMONIC EFFECTS IN THE PERTURBED LATTICE 

The complete vibrational Hamiltonian H for a lattice 

containing a mass defect can be written 

H = H + H.· + HAo imp 

(25) 

where H. is the correction to H, defined in equation (1),imp o 

resulting from the addition of the impurity. Their sum, 

H' is thus the Hamiltonian for the perturbed lattice ino' 

the harmonic approximation. HA consists of the anharmonic 

terms in the crystal potential and will be treated as a 

perturbation to H'. This is conveniently done using the 
0 

method of thermodynamic Green's functions (Kadanoff and 

Baym 62) as discussed by Maradudin and Fein (1962) and by 

Cowley (1963) , . who consider anharmonic effects in the 

perfect lattice. A slightly modified '-form of the theory 

given by Maradudin (1963) will be used here. 

The phonon thermodynamic Green's function of the 

variable v = it/fi is defined by 

1 -SH{ aK a'K' l 
= Z trace (e T uL (v) uL' . (0) 1 ) 

.(26) 



16 

where u~K(v) is the Heisenberg operator defined by 

-vH e (27) 

Z is the crystal's partition function and S is l/kBT 

where kB is Boltzmann's constant and T is the absolute 

temperature. The superscript A simply indicates that this 

Green's function includes anharmonic effects, and the time-

ordering operator T orders the operators which follow it so 

that their arguments decrease from left to right. An 

expression such as that in equation (26) can be evaluated 

by exploiting the similarity between the dependence on 

temperature and that on complex time (Alekseev 61; Kadanoff 

and Baym 62). In fact, using the cyclic property o~ the 

trace, equation (26) can be rearranged to show that GA(v) 

is periodic along the v-axis (in the direction of complex 

time) with period e. This suggests expanding GA in a 

Fourier series: 

~A l 
GA(L L' , '-'-. ) 2ni1v/eG (v;~aK,~'a'K') = e L 1 

_aK,_ a K e . (28) 
1=-~ 

where 

A JB A -2ni1v/BG (LaK,L'a'K') = G (v;L_aK,~'a'K')e dv _ (29)
t - 

0 

Before preceding with the perturbation theory which 

enables the Fourier coefficients defined in equation (29) 

to be calculated, it is worthwhile to clarify their impor~ance 
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in the theory of optical absorption. The (x,x)-component 

of the optical absorption constan.t at frequency w can be 

written (Maradudin 63) 

sin wt .<M (t)M (O)>Hdtx x 
0 (30) 

where Vis the crystal's volume, n(w} its refractive index 

and c is the velocity of light. The x-component of the 

crystal's electric dipole moment, M (t), is given by 
. x 

e 
M (t) = I: K (31) 

x L g-
K 

where e is the charge on the K th ion. Using equations 
-.··K 

(26), - (28) and (30), together with . Fesult~ d~iived by 

Maradudin and Fein (1962), the absorption constant can be 

rewritten 

e e ,
41Tw K K 

= Ven (w) I:
LK IMM 

K
,- 1K~ t KI 

(32) 

where GA(w;fxK,~'x'K') is obtained from G~(~xK,~'x'K') by 

making the transition to the continuous variable w using the 

identification (Maradudin and Fein 62) 

{33) 


The problem is thus essentially solved when the Fourier 

coefficients G~ have been determined. 

Starting from equation (26), the thermodynamic Green's 
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function can be 	written (Matsubara 55) 

(-l)n 
n! x 

f3 f3 

x .I ...f 
0 0 

(34) 

where O(v) is an operator in the interaction represention, 

vH' -vH' 
() (v) = e 9 O ( 0) e o (35) 

·, . 

The n = 0 term in equation (34) is the harmonic Green's 

function defined by 

-	 -a K ( ) a' K'G(v'•~NK 1 !! 1 N 1 K 1 ) 	 - <TU V U- (Q)> I (36)
'"" '"" - L L' H' 

0 

which, in complete analogy to equation (28), can be expanded 

in a Fourier series: 

(37) 

where 
Cl) 

G (LaK L'a'K') = f 	 (38)
R. 	 - '

0 


The general procedure for obtaining the required coefficients 

G~ in terms of the coefficients G
1 

starting from equation 

(34) and using the "diagram" technique is well established 

(e.g. Maradudin 	and Fein 62), but is usually specialized 
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to the case where the unperturbed system is the one described 

by H and not by H~. However, th~s simply means that
0 

instead of labelling single lines in the diagram by ~ and 

j, which characterize the normal modes of the perfect 

crystal, they are .to . be labelled as perturbed phonons by 

p (Maradudin 64b). Each line therefore represents a factor 

G
1 

(p), which is shown to be given by 

1 (39)2 2 
wp + wt 

in appendix 1. G~ is represented diagrammatically by a 

double line which must have two labels in the {p}

representation since G~ is not diagonal. The Dyson 

equation for G~(p,p') is shown schematically in figure 1. 

In that figure, the "bubble", which represents the sum of 

all linked proper diagrams (Cowley 63) containing at least 

one anharmonic vertex, is called the proper self-energy, 

and represents a factor M (p,pl). Thus the equation can
1 

be written 

(40) 

It has been shown by Maradudin and Fein (1962) that if 

only diagonal elements of G~(p,p') are required, then it is 

a good approximation to neglect off-diagonal terms of the 

proper self-energy. In that case G~(p,p) can be 
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written 

A 1
GR,{p,p) = --1

G1 {p) - MR. (p) 

- G
A 
1 (p) (41) 

where 

The general rules for the drawing of diagrams and 

their evaluation have been given by many authors (e.g. 

Cowley 63). For the applications considered in this work, 

it is convenient to use the position representation to label 

internal lines in MR.. Such lines require two labels, of 

course, since it is not the representation in which GR.is 

diagonal. The modified rules for evaluating diagrams 

labelled in this way are given in appendix 1. 



CHAPTER 3 


A THEORETICAL MODEL OF THE U-CENTRE 

It was pointed out in the introduction that, when 

a realistic model is used to represent the host crystal, it 

is necessary to introduce force constant changes as well as 

the mass change to account for the observed U-centre local 

mode frequency. There is no reason to expect that any of 

the short-range force constants involving the H ion are 

the same as those of the perfect crystal; however, it is 

reasonable to argue that the most pronounced difference 

will be the change 6f, in the longitudinal force constant f, 

between the H ion and its nearest neighbours. If 6f is 

the only such change. considered, as in the model of Timusk 

and Klein (1966), its value can be determined from the 

observed local mode frequency and is found to represent a 

large decrease in f. 

The shapes of some of the absorption spectra 

characteristic of the U-centre, for instance the sidebands, 

are largely determined by the vibrational spectra of the 

neighbours of the H- ion (Timusk and Klein 66). In fact, 

to explain the sideband lineshape in some detail, it has 

been found necessary to extend the model described above 

(Gethins et al. 67). The considerable decrease in the force 

21 
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constant f suggests that the equilibrium distance between 

the H- ion and its nearest neighbour will be less than the 

perfect crystal value. Such a shift in equilibrium position 

will cause a weakening in the force constant g between 

nearest and fourth riearest neighbours of the H ion. This 

effect is included in the present model as a change 6g in 

g. The force constants which are considered to be perturbed 

in this model are shown schematically in figure 2. 

The change in the crystal's potential energy due 

to 6f and 6g can be written 

-~ a.+ -k a.- 26f ' 2 26V = }: { (M u _ - M u ) +2 + Sa. 0 a.=x,y, z 


s=±l 


(1) 

where~ is a vector in direction . a. - whose magnitude . is equal 

to the interionic spacing •a'. Therefore, using the 

definition given in equation (13) of chapter 2, . the non

zero elements of the matrix r are 

a.-, a.
r .Q., .Q. . 


ra.± a-_ = 

±a,±2a 
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a-,a- =~ r - - M±2a,±2a 

a+ a !:if 
r -' = ---- a = x,y,z • (2)

±a,O 
IM+M-

Because the presen~e of the impurity leaves the point 

symmetry of its site unchanged, it proves convenient to 

choose, as a basis for the non-zero part of the matrix r, 

coordinates which transform according to the irreducible 

representations of the octahedral group. A suitable 

choice is 

Qn(Eg) = IM n/6 (2q
n 

(x) - qn (y) · - qn (z) ) 

Q (E') = IM /2 (qn (y) - q (z) ) 
n g n n 

Qn(Alg) = IM /3 (qn (x) + qn(y) + q (z) ) 
n n 

( aK +Qn (T~u) · = 11/2 u - u aK 
~- > na -na 

a- n = 1,2, (3)Qn=O(T~u) = uo a = x,y,z 

where 

1 ( ClK ClK )q (a) = u - - u - ,
n IM na -na 

n 

and 
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This basis defines a 15 x 15 subspace outside of 

which the elements of r are all zero. Let the elements of 

r be those of the small matrix y in this subspace, which 

will be referred to as the "space of y" {Klein 63). Then, 

y has the block diagonal form 

y(E)
g 

y (EI) 
g 

y = 

where, for example, the elements of the 2 x 2 matrix y(E)g 

will be labelled y , (E )nn g as suggested by the notation of 

equation (3). The non-zero elements of y are 

6f + ~9:yll(S) = 
M+ 

~Y22{S) = M 

!lg
Y12(S) = Y21(S) = 

IM+M



25 

a ) = 26f + 'w2Yoo (Tlu g- I\ 

s = Al IE IE' I Tlg g g u 
a = x,y,z 

(5) 

2 - 2If g(w ) and g(w ) are written for the parts of 

2 - 2G(w ) and G(w ) respectively, in the space of y, then from 

equation (22) of chapter 1 it readily follows (Klein 63) 

that 

+ 
g = (I + gy)-lg = (I + gy) g 

I (6)
det (I + gy) 

where the notation M+ has been used to denote the adjoint 

matrix of a matrix M. The cpndition for the occurrence 

of a local mode is (Klein 63) the existence of a solution 

of the equation 

det (I + gy) = 0 (7) 

outside the frequency range of the eigenrnodes of the perfect 

crystal. In the representation defined by equation. (3), 

like y, g is also block diagonal and therefore so is 

(I+ gy). Thus equation (7) reduces to the condition that 

the product of the determinants of each of the "blocks" is 

equal to zero. Since the H- ion only moves in modes of 

Tlu symmetry, as can be seen from equation (3), the 

frequency n of the triply degenerate U-centre local mode 
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is given by 

2 2det (I+ g(n )y(n ))Ta = O (8) 
lu 

Because n >> w , the maximum phonon frequency in the m 

unperturbed lattice, it is a good approximation (Klein 68) 

to consider simply 

, (9) 

where all the matrix elements refer to the T1
C1 u-block. 

Since n is known from experiment, equation (9), which is 

independent of 6g, can be used to determine 6f. The 

matrix g is real at frequency n and its elements can be 

calculated as described in appendix 3. The computed values 

of those required in equation (9) are 

goo<n 
2 

> = - 0.14683 x 10-28 (rad/sec) -2 

for KBr, 
2 -210-30gOl (n ) = 0.34387 x (rad/sec) 

and 

2 10-28 -2 
goo<n > = - 0.19767 x (rad/sec) 

. ) for KI, 
. . . -210-30gol. Cn2> = 0~45255 x (rad/see} 

and the results for 6f are 

6f = - 8860 dyne/cm for KBr 

= - 8660 dyne/cm for KI (10) 

These values will be used throughout this work. 



CHAPTER 4 

SIDEBANDS OF THE U-CENTRE LOCALIZED MODE 

A. FORMULA FOR THE LINESHAPE 

The 
( 

expression for the absorption constant given 

in equation (32) of chapter 2 can be approximately written 

4ne
2

v { A . + }axx(v) = Vc'M Im G (v + iO ;Qx-,Qx-) (1) 

for frequency v near the U-centre local mode frequency. 

c' is the velocity of light in the crystal near that 

frequency. If it is assumed that in the local mode only 

the hydrogen ion moves, then equation (1) can be written 

(2) 

The form given in equation (21) of chapter 2 has been used 

for the eigenvector of the local mode phonon, 

U = 0 0 0 JM~ (3)
LaK,P K,- ~,Q a,x MH - x 

Absorption can occur at frequencies both above and 

below n (upper and lower sidebands), since the local mode 

can interact anharmonically either to create a "lattice 

phonon" (a perturbed phonon other than P ) or to destroy one 
a 

that has been thermally excited. The anharmonic terms 

27 




28 

giving rise to such interactions must therefore contain the 

square of the H- ion coordinate. The most important terms 

of this type result from cubic anharmonic interactions 

between the hydrogen ion and its nearest neighbours and are 

given in equation (3) of appendix 2. These interactions 

can be treated using the perturbation theory discussed in 

chapter 2. The diagram to be considered (Bilz et al. 66) 

is shown in figure 3 with all internal labellings which are 

allowed by the anharmonic terms and which do not contain 

off-diagonal elements of G for coordinates of different 

symmetry, since these elements are zero. The contribution 

of the diagram to the self-energy Mis) (Px) for the sideband 

is evaluated using the rules given in appendix 1. A factor 

two must be associated with the diagram to account for 

topologically equivalent diagrams, and a factor IM_/MH 

arises at each vertex from the expansion of Q0 (T~u) in 

the . {p}-representation. The labellings shown in figures 

3a and 3b have an additional factor two at each vertex 

since the pair of coordinates Q0 (T~u) are interchangeable. 

The total contribution ·of the diagram is therefore 

M (s) (P ) M (a) (P ) + M (b) (P ) + 2M ( c) (P ) 
R, x - i x t x t x 
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- 2 - xy } (4).+ 12V2 Gi-il (Ql(T2g)) 

where M{a), M(b) and M(c) are the contributions from the 

labellings shown in figures 3a, 3b and 3c respectively. 

The symmetry coordinate Q1 (T~~) is defined in appendix 2. 

An abbreviated notation has been used to denote the 

diagonal elements of G and the definitions 

a 3v 
V3 = -3 

ar r 
0 

{5)= _1 (q)v2 
r ar o r 

0 

have been used, where r is the perturbed hydrogen ion
o 

nearest neighbour distance and ~ is the perturbed potential. 

The elements of G can now be formally expanded in the 

{p}-representation. Using equation {39) of chapter 2 

and equation (3), the contribution M{a) (P) given by
R, x 

equation {4) 	 becomes 

- - 22 (V + 2V )
M(a)(P) = 3 2 2: 2: ___,,_l__.,,,._ 

R, x 3M_;M~!3 · p R,l n2 + w~ 
1 
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where w is the frequency of the phonon p. The sum over 
p 

ii can be performed using the results of appendix 1. At 

low temperatures, the Bose-Einstein factors can be set 

equal to zero, giving 

1 { 1 
x 2w v + n + w v - ~- w }up,Ql(Al)

p p . p . g 

(7) 

where the continuous variable v has been introduced using 

equation (33) of chapter 2. The imaginary part of this 

equation essentially gives 

. (V + 2V ) 211 
3 2Im { M (a ) ( w + i 0+ ) } = 

2 
3M+MHn 

x 

x 2:p O(w - wpl up,Ql(Alg) 

- - 2(V + 2V ) n
3 2 2 + }= 2 Im{-G(w + iO ;Ql (Alg)) 

3M+MHQ 

I (8) 

which follows from the definition of G given in equation 

(17) of chapter 2. The symbol w, defined by 

w = v - n I 

has been used to indicate the frequency measured with 

respect to the local mode frequency. 
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Now, from equations (17) and (41) of chapter 2, 

A 1
G (v;P ) = x 

1 (9)= 

Taking imaginary parts gives 

2 { 2Re { M ( v , P ) } ) + (Im M ( v i P ) } ) x x 

(10) 

(11) .
' 

which is a good approximation if the perturbation is 

sufficiently small. Using equation (8) and analogous 

expressions for the contributions M(b) and M(c), together 

with equations (2) and (11), the optical absorption constant 

for the upper sideband at low temperature can be written 

2 -2 
rre ?'lv

3 a (w) = • t(w) (12)
3 2 

xx Vc'MifM+n 

The function i(w) is the lineshape, defined by 

(l + ~) 11 + 2t) 2 
R, ( w) = Im { 


(1 + ~n)2w2 3 
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(13) 

where ~ = v2;v3 • The value of ~ (which is negative) 

determines the relative weights of the Alg' Eg and T2g 

parts in the sideband, which are described by the functions 

L(w;A ), L(w;E) and L(w;T 2 ), respectively. It should1g g g 

be pointed out that the elements of G having T2g symmetry 

are equal to those of G when the model of the defect 

described in chapter 3 is used. 

B. CALCULATION OF THE SIDEBAND SPECTRA 

The calculation of the matrix elements of G required 

in equation (13) is described in appendix 3. The Dyson 

equation has been used to express elements of G 

corresponding to A and E symmetries in terms of the 
. 1g g 

elements of G and r of corresponding symmetry. Elements of 

G have been calculated using shell model phonons derived 

from neutron diffraction data (Cowley et al. 63; Dolling 

et al. 66) using a modification of the method introduced 

by Gilat and Raubenheimer (1966). The required elements 

of G refer to the nearest neighbours of the H- ion, and 

depend through the Dyson equation on the perturbation 

parameters ~f and ~g, while the mixture of symmetry types 

called for in equation (13) depends on the ratio ~. 
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The choice ~g = O, ~ = 0 corresponds to the model 

of Timusk and Klein (1966). This model leads to satis

factory agreement with the lineshape observed at low 

frequencies, but the detailed agreement at higher 

frequencies is rather poor~ Considerable improvement can 

be effected by taking non-zero values for ~g and ~. 

The positions and intensities of peaks in the 

calculated sideband spectrum are determined by the behaviour 

of the complex determinants D(E) and D(A ), defined in 
g 1g 

appendix 3, which arise in the matrix inversions required 

by the Dyson equation. In particular, a resonance or 

antiresonance occurs whenever the real part of these 

determinants has a zero. If this zero occurs at a frequency 

where the imaginary part of the corresponding determinant 

is zero, for instance in the band gap of the unperturbed 

density of states, then the resonance becomes a pole. This 

indicates the existence of a perturbed phonon which is 

largely localized on the nearest neighbours of the H ion. 

The Timusk and Klein model predicts a pole of E g 

symmetry in the band gap of both KI and KBr and resonances 

of Aig symmetry are predicted in their optical bands 

(Timusk and Klein 66; Gethins et al. 67). Comparison with 

experiment shows that, in KBr, no peak is observed in the 

band gap, while in KI, although a peak is present in the 

gap, it is at a considerably higher frequency than that 
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predicted by this model. Furthermore, considerable 

structure is observed near the top of the acoustic band 

which is not explained by the simple model. 

The effect of giving 6g a negative value, that is, 

weakening the force constant g, is to lower the frequencies 

of the poles and resonances. This improves the agreement 

to such an extent that it becomes possible to establish a 

correspondence between the various resonances in the theory 

and peaks in the experimental sideband spectra (Gethins 

et al. 67). Thus the peaks at ·79 cm-land 111 cm-l in KBr 

are associated with resonances in the Eg and Alg component 

parts, respectively, of the lineshape. In KI, the peak at 

-165.5 cm is a resonance of E symmetry and the peak in 
g 

the gap at 93 cm-l has Alg symmetry. 

The Alg and Eg parts of the sideband were therefore 

calculated using several values of 6g and the predicted 

positions of the resonances were compared to those observed. 

The results are shown in figure 4. The values 

6g = -5000 dyne/cm and -4400 dyne/cm, for KI and KBr 

respectively, were found to fit the positions of both 

-1 resonances in each case to within 3 cm which is 

comparable to anharmonic frequency shif ts which have been 

neglected. In the case of KI, the position of the E g 

resonance relative to the peak predicted at 61.5 cm-l was 

-1also considered in choosing 6g. This peak at 61.5 cm 
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arises from an off-symmetry van Hove singularity in the 

density of states of the unperturbed crystal (see figure 

14) and therefore results from phonons not measured directly 

in the neutron diffraction experiments. Its position could 

therefore be in erior by the 3 cm-l necessary to align it 

with the peak observed at 58 cm-l in the KI sideband.· Far 

infrared results discussed in the next chapter also seem to 

suggest that this is the case. Since the position of the 

resonance in the theory is to some extent determined by 

the position of this critical point, it is reasonable that 

some weight be given to the relative positions of the 

resonance and critical point peaks in assigning a value to 

fig. 

The contributions of the Alg and Eg parts of the 

sideband lineshape for the values of fig given above, 

together with the T2g contribution, are shown in figures 

5 and 6 for KI and KBr respectively, and the resonance 

denominators D(A ) and D(E ) are plotted in figure 7. The1g g 

results for KI:KH and KBr:KH are shown in figures 8 and 9. 
' 

The value ~ = -0.15, which is discussed in appendix 4, 

was used in both cases. The results are in good agreement 

with the experimental curves shown in the same figures. It 

should be pointed out that the most noticeable difference, 

that peaks associated with the resonances in the theoretical 

curves are predicted too narrow, is a result of neglecting 
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the anharmonic broadening of the perturbed phonons in the 

final state of the sideband process. This broadening is 

discussed in detail in chapter 6. Also, the agreement for 

the relative intensities of corresponding peaks in the 

theory and experiment is improved by the considerations of 

the next section. 

C. CORRECTIONS TO THE LINESHAPR 

As can be seen from equation (12), the intensity of 

the sideband depends on the square of the anharmonic constant 

v3 • Although this intensity cannot be measured absolutely, 

the ratio of the area under the upper sideband to the area 

under the peak at frequency n, which at low temperatures 

is equal to the Huang-Rhys factor s, has been measured 

{Fritz et al. 65). This provides a means of estimating 

v • Since the values of v and other anharmonic constants3 3 

in the defect area are needed to estimate the contributions 

of higher-order processes to absorption in the sideband 

region, their determination is of considerable importance. 

The intensity I of the local mode peak can be obtained 
0 

from equation (2) by replacing GA by G and using equation 

(17) of chapter 2. Integration of the absorption constant 

over frequency then gives 

2 2
2 TI eI = (14)

0 vc'M
. H 
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Using this value with equation (12) enables s to be written 
- 2 Wm 

s - l'i V3 I t(w)dw (15)I 

- 2irM~'\f+G 2 
0 

where the integral extends over the upper sideband to the 

maximum phonon frequency w • 
m 

It has been pointed out by Bilz et al. (1967) 

that the approximation made in going from equation (10) to 

equation (11) is not justified in the case of strong 

impurity effects, and can considerably affect the intensities 

of peaks in the original sideband spectrum. The more exact 

lineshape t' (w) which would result from using equation (10) 

can be calculated from i(w) using (Bilz et al. 67) 

2 2( n 2 - v ~ Re { M ( s > ( o ; P x ) } ) 
R-' (w) = i(w) 

• (n 2 - v 2 

I (16) 

where it can be seen from equations (8) and (13) that 

2nv 223 (1 + w/2n) wIm M ( s ) ( w ; Px) (17)= -.-,,.2- • (1 + w/Q) - • 'R, (w) • 
M+MHn 

The real part of M(s) is obtained from its imaginary part 

using an equation analogous to equation (6) of appendix 3. 

The corrected lineshape was calculated from i(w) for various 

values of v3 , and in each case the value of s given by . 
w 

n v 2 m 

s - 3 J .l 1 (w) dw (18) 
- 2nM~1+n 2 

0 
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was evaluated. The values of v corresponding to the3 

experimental values of s were thus found to be 

12 2= -0.9 x 10 dyne/cm for KI {using s = 0.22) 

and 

12= -1.15 x 10 dyne/cm · for KBr (using s = 0.17)v3 

(19) 

It should be noted that the value of the integral required 

in equation {18) can only be evaluated following a calculation 

of the sideband lineshape and therefore v3 obtained in this 

way is dependent on details of the model used. In addition, 

since i{w) varies with~' the value of v3 also shows a 

slight dependence on ~. However, at this time there is no 

reason to expect either that the present model of the 

u-centre is not a reasonable one or that the values of ~ 

which have been used are very much in error, and therefore 

it seems probable that the values of v quoted are reliable3 

estimates~ 

The corrected lineshape for KI is compared to !{w) 

in figure 10. The magnitude and relative intensities of 

peaks in the sideband are affected, resulting in an overall 

improvement in the agreement with experiment. The corrections 

obtained in the present calculation seem to be smaller than 

those estimated by Bilz et al. {1967), probably due to' 

differing values of v3 ; however, direct comparison is 
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difficult since the correction was applied in a different 

way. 

It is interesting to consider replacing the H ion 

by a D ion. Since the ions are electronically identical 

the values of and E; are unaffected; however fromv3 

equations (16) and (17) it can be seen that the changes in 

mass and local mode frequency result in the correction factor 

of that equation being of less importance in the case of 

D than in the case of H , a result which is explained by 

the fact that anharmonic interactions are less important 

for the D ion because of its smaller amplitude. This 

effect, together with similar effects arising in evaluating 

the contributions to absorption in this frequency range of 

other anharmonic processes (for instance, contributions to 

the two·-phonon sideband spectrum), should lead to observable 

differences in the relative intensities of corresponding 

peaks in the sideband spectra of the H- and D local mode. 



CHAPTER 5 

FAR INFRARED ABSORPTION 

It has been ovserved experimentally that the 

far infrared absorption of alkali halides, which is 

normally restricted to the reststrahlen absorption, is 

modified by the presence of an impurity. For instance, 

in the case of crystals containing U-centres, considerable 

absorption is induced at frequencies near the top of the 

acoustic band. This absorption can be calculated using 

the model developed in the preceding chapters without the 

introduction of new parameters. 

A convenient form for the optical absorption 

constant for this problem has been given recently by Klein 

(1968): 

Cl ( w)
xx = 

(n2 (oo) + 2) 2 
9n(w) 

4nNe
2 

w
cVµ 

{-
Im GR R 

x' x 
2(w + } + iO ) 

(1) 

where w is now the actual absorption frequency, n( 00 ) is 

the index of refraction in the high frequency limit (taken 

equal to unity in previous expressions for a(w)) andµ 

is the reduced mass of the alkali and halide pair, given by 

µ = M+M_/(M+ + M_). The matrix element of G required is 

defined in the plane wave representation discussed in 

40 
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chapter 2, and is the diagonal element corresponding to 

the phonon with k = 0 in the transverse optical branch, 

polarized in the x-direction, that is, the "Reststrahlen" 

phonon, R • Equation (1) can be derived from equationx 

(32) of chapter 2 by expanding the matrix element of GA 

in that equation in· terms of its elements in the {~,j}-

representation, using the transformation matrix defined 

by equation (7) of chapter 2. The summation on L and L' 

can then be performed essentially giving equation (1). 

(Anharmonic effects have been neglected.) 

The matrix element of ~ needed in equation (1) is 

most easily evaluated using equation (24) of chapter 2, 

which expresses G in terms of the T-matrix. Since G is 

diagonal in the {~,j}-representation with elements defined 

in equation (9) of chapter 2, the required element of G 

can be written 

2 -2 22 2)-1 - ( 2 - w ) TR R (w ) , (2)GR R (w ) W WR
x' x x x' x 

and for w ~ wR , equation (1) becomes 
x 2

Im{TR R (w +2(n2(oo) + 2)2 4irwe x' x 
cx (w) = xx 9 n (w) cVµ 

(3)• 

. It can be seen from equation (23) of chapter 2 that in the 

{~aK}-representation, T is only non-zero in the space of y, 
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and a matrix t can be defined such that the elements of T 

are equal to those of t in this subspace. Expanding 

TR R in the {~aK}-representation then gives 
x' x 

TR R (w 
2 

) = 1 r '· 
x' x N LaK 

L'a'K' ( 4) 

where the summation is restricted to the space of y. 

£K(R) is an element of the polarization vector for the a x 

mode R , and is determined by normalization and by the x 

requirement that the centre of mass of the alkali and 

halide ions remains fixed. It has the value 

+ 
£- (R ) (5)

a x 

It is convenient to rewrite the summation of equation (4) 

using the symmetry coordinates defined in equation. (3) 

of chapter 3. The result involves only "odd" matrix 

elements of t, and using equation (5) can be written 

where the ~otation t , (Tx ) is analogous to that used for nn 1u 

the elements of y and g in chapter 3. The elements of the 

matrix t(T~u) can be obtained from the T~u part of equation 
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(23) of chapter 2, that is, 

(7) 

The elements of y{T~u) are defined in equation.· (S) of 

chapter 3, and the .calculation of the real and imaginary 

parts of the matrix elements of g{T~u) as a function of 

frequency is described in appendix 3. Since the matricies 

involved are of small dimension (3 x 3), the inversion 

required in equation (7) can be easily performed. Formally, 

the result can be written 

x
t {T ) 

lu 
= 

D*{Tx)
lu 

IDCT~u) 1 
2 

x
• y {Tlu) • 

· 
{ I 

x+ g {Tlu) 
x )

y {Tlu 
t

) (8) 

where the quantity D{T~u) and its complex conjugate D*{T~u) 

are defined by 

(9) 

D(T~u) plays the same role in this problem as that played 

by D{Alg) and D(Eg) in the sideband calculation; that is, 

zeroes of its real part determine the frequencies of 

resonances or antiresonances (depending on the slope of 

Re{D} at its zero) which appear in the spectrum. The 

important difference is that while resonances in "even" 

modes of ions in the defect area are observed in the one-

phonon sideband spectra, resonances of "odd" modes are seen 

in far infrared measurements. D(T~u) is plotted in figure 
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11 for KBr and KI. The zeroes of Re{D} marked with arrows 

give resonances, whereas the unmarked zeroes give anti-

resonances. 

The absorption constant was calculated from equation 

(3) using equations (6) and (8) with the results shown in 

figures 12 and 13 for KI and KBr, respectively. Experimental 

curves {Timusk et al. 68) are also plotted there for 

comparison. 

The most striking contribution to the infrared 

absorption curve is the pole at the reststrahlen frequency 

wR • This pole occurs in the first term of equation {2) 
x 

and is the only contribution of this term. The second term 

of equation (2) modifies the absorption near wR , and in 
x 

addition gives rise to the absorption observed at other 

frequencies. In particular, this absorption is strong 

close to the frequency of the resonance which occurs at 

the top of the acoustic band, and reflects some details of 

the frequency distribution in that region. (The index of 

refraction has been assumed to be constant over this 

frequency region.) It is remarkable that the force constant 

model developed in chapters 2 and 3, whose parameters were 

chosen to reproduce features of the sideband extending over 

most of the frequency distribution, should lead to such close 

agreement with experiment for the position and general 

shape of the narrow band of structure observed in the far 
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irifrared absorption curves. 

The resonances which are predicted in the theoretical 

curves are very much narrower than any of the experimental 

peaks, probably due to neglect of anharmonic broadening 

effects. Other peaks in the theoretical curves arise from 

van Hove singularities in the total densities of states 

which can be seen in figure 14. The critical points involved 

-1 are the ones giving the high peaks at 83.5 cm in KBr and 

-161.5 cm in KI, which in each case arise from a saddle-

point of the dispersion surfaces in an off-symmetry direction 

in the (001) plane of wave-vector space, (referred to 

subsequently as t:-he "off-symmetry saddle"), together with 

the ones producing the shoulders on the high-frequency 

-1 -1 .sides of these peaks (at 88 cm and 64 cm , in KBr and 

KI respectively), which arise from saddle-points falling 

on directions of high-symmetry (referred to as "on-symmetry 

saddles"). 

A detailed discussion of the correspondence between 

the experimental peaks and peaks in the theoretical curves 

has been given by Woll et al. (1968). In KBr, the following 

tentative id.entif ication is suggested: the shoulder at 

-1
86.5 cm in the experimental curve corresponds to the peak 

at 83.5 cm-l in the theory. The peak at 89 cm-l in both 

the experimental and theoretical curves is the resonance. 

Any contribution from the shoulder at 88 cm-l must coincide 
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-1 .with the resonance. In KI, the small peak at 64 cm in 

the experiment corresponds to the shoulder at the same 

. -1
frequency in the theoretical curve. The peak at 58 cm in 

the experiment probably corresponds to the one predicted at 

161 cm-l in the theory, and the remaining peak, at 61 cm- , 

can then be identified with the resonance. 

This interpretation suggests that although the 

on-symmetry saddles occur at the observed frequencies, the 

-1
off-symmetry saddle is predicted at a frequency 3 cm . 

low ~n KBr and 3 cm-l h"igh . vI Th"is poin. t 1so in. .~ in • a aroseh 

the discussion of the position of the corresponding peak 

in the sideband spectrum of KI (see chapter 3). It is 

probable that the error arises from use of the shell model 

to predict off-symmetry dispersion surfaces not directly 

observed in neutron experiments. Such effects have also 

been suggested in other contexts (Dynes et al. 68). 

In concluding this chapter, it can be said that 

calculations of far infrared absorption spectra of KI and 

KBr containing CT-centres based on the present model of the 

defect, show satisfactory agreement with experimental 

results and have helped to explain how such spectra should 

be interpreted. 



CHAPTER 6 

ANHARMONIC BROADENING OF LOCALIZED MODES 

AND RESONANCES IN THE PERTURBED CRYSTAL 

A. GENERAL REMARKS 

The appearance in theoretical spectra of peaks 

which are much narrower than those observed experimentally, 

as discussed in chapters 4 and 5, is probably a consequence 

of neglecting anharmonic effects in the final states of 

the process under consideration. These effects lead to 

lifetime broadening of the perturbed phonons which can be 

treated in the theory by replacing the harmonic Gr~en's 

function matrix G by GA in the expressions for the 

absorption constant given in equation (13) of chapter 4 

and equation (1) of chapter 5. The contribution of each 

perturbed phonon p to the absorption spectra is governed 

by the element Im{GA(w + iO+;p)}, which is, roughly 

speaking, a Lorentzian function of finite width. For 

phonons not appreciably localized near the defect site, 

this width will be approximately .equal to that of phonons 

of similar wave vector and polarization in the perfect 

crystal. However, the widths of phonons which are 

appreciably localized will be determined in part by 

47 
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perturbed anharmonic coefficients and by perturbed 

vibrational spectra of ions in the vicinity of the defect. 

Calculation of the broadening of such phonons, including 

the high frequency localized mode, will be discussed in 

this chapter. 

B. BROADENING OF THE GAP MODE IN KI:KH 

The perturbed phonon of Alg symmetry occurring in 

the band gap of KI:~H will be labelled pA' with 

corresponding frequency wA. The phonon is localized on 

the nearest neighbours of the H- ion to an extent determined 

by the transformation matrix element U • This 
Ql (Alg) 'PA 

element can be calculated as follows: the projection 

p Cw;A g> of the density of states, which is plot~ed in11 1

figure 15, is given by 

pl l ( w ; Al ) = >: U ( ) o ( w - w) U ( ) , ( l)
g p Ql Alg ,p p p,Ql Alg 

with normalization such that 
Wm 

f pll (w;Alg)dw = 1 (2) 

0 

The area under the pole at wA' which is equal to the square 

of UQ (A ) , can therefore be estimated. The result is 
1 lg ,pA 

(3) 
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Other elements of the transformation matrix for the mode 

pA' whose values fall (in magnitude) exponentially with 

increasing distance from the defect, can be estimated 

similarly or calculated using the method of Dawber and Elliott 

{1963a). In the present calculation the approximate value 

(4) 

will be used; that is, it will be assumed that the mode 

is completely localized on the nearest neighbours of the 

H ion. This assumption simplifies the calculation, and 

is sufficiently realistic to yield meaningful results. 

The lowest order processes contributing to the 

broadening of the phonon pA are cubic anharmonic processes. 

At low temperatures the "decay" mechanism dominates, in 

which the phonon pA decays into two phonons having frequencies 

in the acoustic band. At higher temperatures, a thermally 

excited acoustic phonon can interact with pA to leave a 

phonon with frequency corresponding to the optical band. 

The leading cubic anharmonic terms required for these 

processes, which must contain the coordinate o CA > at1 19
least once, are given in equation {7) of appendix 2. Terms 

with transverse anharmonic coefficients have been neglected. 

The self-energy, Mi(pA)' of pA is determined by 

evaluating the diagram shown in figure 17 using the rules 
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given in appendix 1. The result is 

Here the primed summation indicates that o ,Qi,Q2 and 021 

take all values of the symmetry coordinates, de~ined in 

equation (3) of chapter 3, which occur in the anharmonic 

terms under consideration, excluding combinations in which 

any phonon line is labelled with coordinates of different 

symmetry, and excluding combinations which do not yield 

a "distinct" set of labels. Labellings which differ only 

by the interchange of the two phonon lines are not "distinct" 

in this context. The factor C{Q1Q 2 :QiQ~) results from 

application of the rules (iv) and (v) of appendix 1: its 

values for all sets of labels which need to be considered 

are given in Table 1. The values quoted include factors 

which account for labellings giving equal contributions: 

for example, whenever two labellings occur which differ 

only by interchange of the two vertices, the contributions 

are equal and !lave been taken into account simply by listing 

only one of the combinations and multiplying the value of 

'C' quoted by two. Similarly, the total contributions of 

labellings containing coordinates of E symmetry and those 
g 

with E' symmetry are equal. Therefore only the labels of g 

E symmetry have been listed, and the values of 'C' include g 



TABLE 1 

VALUES OF THE COMBINATORIAL FACTOR C(Ql Q2 ; 
* Qi Q2) 

Ql Q2 Q'
1 

Q'2 C(Ql Q2; Qi Q2) 

Al Al ~l Al 
-(V3 

2 3 - v3 ) /12M+ : c 1 

Al Al A2 A2 - -v3 cv3 
2 - v3 )/6M_M+ : c 2 

Al Al Al A2 V3 (~3 - V )/3M l/2M S/2 
3 - + = - C3 

A2 A2 A2 A 2 v3 
2
/12M_ 

2
M+: c 4 

Al A2 A2 A2 - V32/3M_3/2M+3/2 : CS 

Al A2 Al A2 v3 
2

/6M_M+ 
2 

:: c 6 

Al A2 A2 Al c6 

El El El El 2c1 

E1 E1 E2 E2 2c 2 

El El El E2 2c3 

E2 E2 E2 E2 2c 4 

U1 
..... 



Ql 

El 

El 

El 

TO 

TO 

TO 

TO 

TO 

TO 

TO 

TO 

VALUES 

Q2 

E2 

E2 

E2 

TO 

TO 

TO 

TO 

TO 

Tl 

Tl 

Tl · 

OF THE 

Q'1 

E2 

El 

E2 

TO 

TO 

Tl 

T2 

Tl 

TO 

Tl 

Tl 

COMBINATORIAL 

Q'2 

E · 2 

E2 

El 

TO 

Tl 

Tl 

T2 

T.2 

Tl 

TO 

Tl 

TABLE 1 

FACTOR C(Ql 0 2 ; Qi 02) * (cont'd) 

C(Ql Q2; Qi 02) 

2c 5 

2c6 

2c6 


. V 2/M M 2 

3 + 

- V 22/2/M 3/2M 3/2

3 + 

- - . 2
V3 (v3 - v3 )/M+ M_ 


- v3
-v3/M_ 2M+ 


3/ 2
2V V /M 3 f 2M
3 3 + 

2
V 2/M M 3 - + 


2
V 2/M M 
3 - + 


- V (V - V )/2/M S/2M l/2 

3 3 3 + 

lJ1 
I\.> 



TABLE l 

*VALUES OF THE COMBINATORIAL FACTOR C(Ql Q2 ; Qi Q2) (cont'd) 

Ql Q2 	 Q' Q' C(Ql Q2; Qi Qi)1 2 

312V V 12/M 3f 2MTl T2 	 T2 ·T.O 	 3 3 - + 

- n. 2
TO Tl 	 ~l T2 - v3v3 2/M+ M_ 

- n. 2
TO Tl 	 T2 Tl - v3v3 2/M+ M_ 

T 3cTl Tl 	 Tl1 1 


3c
Tl Tl 	 T2 T2 2 

Tl Tl Tl T2 3c 3 

T2 T2 T2 T2 3c4 

Tl T2 T2 T2 3c5 

Tl T2 Tl T2 3c6 

Tl T2 T2 Tl 3c6 

-
* .See footnotes to table 2. 

' 
U1 
w 
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a factor two. In an analogous way, the factors 'C' 

containing T~u symmetry coordinates have· been multiplied 

by three to take into account Tlu and T~u terms. The 

factor arising from rule (~),which is included in 'C', 

was calculated in the following way. It includes a factor 

equal to the number of times Q CA1g> occurs at each vertex1 

(since there is a choice in selecting which of these will 

be transformed to give the external label pA) together with 

a factor two if the remaining two coordinates at either 

vertex are identical (since these are then interchangeable). 

Equation (5) can be reduced to a form suitable for calculation 

by following the procedure used in chapter 4. The elements 

of G can be formally expanded in the . {p}-representation and 

the summation on i performed. Taking the imaginary part1 

of the result gives 

} 

(6) 
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The notation, 

(3fiw
P·1 1 

n. 	 : n (w ) = (e - - 1) - I i = 1,2 I (7) 
1 pi 

has been used for the Bose-Einstein distribution function. 

The a-functions in equation (6) can be rewritten, using 

w 

0 «l)2 ± wl - w) = I dw' o(wl - w' ) o (w 2 - w ± w' ) I (8) 

0 

which is valid for positive frequencies, and the summations 

on p and p can be performed to give a result in the form1 2 

(9) 

Here 

w 

I ( w) - I dw ' { 1 + n ( w') + n ( w W ' > . } I m G <w ' 2 + 1. a+ ; Q1 , Q' > x
1 	 1 

0 

x Im -G c c w - w ' >2 + 1. a+ ;Q2,Q2' > 	 (10 )" 

gives the contribution of the "decay" mechanism, while 

w 
- 2I (w) - I dw' { n (w') - n(w + WI) } { Im G(w' + 1·a+ ;Ql ,Ql'> x2	 ' 

0 

- 2x Im G((w + w') 2 + 1. a+ ;Q2,Q2'> Im G(w' + 1. 0 +;Q2,Q2') 

2 x Im G ( ( w + w ' ) + i 0+; Ql, Qi) } 	 (11) 

gives the contribution due to absorption of an acoustic 
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phonon. 

The required width can be related to the quantity 

Im{M(pA)} using equation (41) of chapter 2. The imaginary 

part of that equation gives, using equation (17) of chapter 

2, 

• (12)
2 i> 2 2

(w - + (Im MCw + iO+ ;pA))
l\. 

Here the frequency shift due to anharmonic processes has 

been neglected. If the imaginary part of the self-energy 

is approximately constant for w near WA' equation (12) 

describes a Lorentzian peak whose full width at half 

maximum, (half-width), W(pA), is given by 

W(p ) = .!__. Im M(wA + iO+;pA) (13r .. 
A WA 

The width W(pA) has been determined from this 

equation with equation (9) for various temperatures. The 

elements of G were calculated, as before, using the method 

described in appendix 3, and the values used for the 

anharmonic coefficients were 

v3 
12 2= 0.9 x 10 dyne/cm (see chapter 4) (14) 

12 2
v3 = 6.2 x 10 dyne/cm (see appendix 4). (15) 

The results for W(pA) are plotted in figure 18, together · 

with some experimental values of Klein (1966) for the width 
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of the gap mode in the sideband spectrum. To allow a 

meaningful comparison to be made, W(pA) ~ust be corrected 

for the half-width, W(P), of the high frequency local mode 

phonon P. The corrected value W' (pA) is approximately 

given by the sum of the two widths since the peaks are 

approximately Lorentzian. The half-width W(P) for KI:KH 

-1 0has been measured as 14.5 cm at 90 K by Fritz et al. (1965) 

and its value at other temperatures was estimated by 

2assuming a T -dependence (the results of the next section 

indicate that this is a good approximation for the present 

purpose). The results for W' (pA) are also shown in figure 

18. It can be seen that its behaviour at high temperatures 

is largely determined by that of the high frequency local 

mode, whereas as low temperatures, W(P) can be neglected 

and a useful comparison of the present results with 

experiment is possible. The theoretical estimates are 

smaller than experimental results, by a factor approximately 

two at low temperatures. This disagreement may arise from 

several sources; .the likliest source is neglected terms in 

the anharmonic Hamiltonian. The most important group of 

such terms is the group of terms proportional to the 

transverse cubic anharmonic coefficient. Although this 

coefficient is smaller than v3 , it gives rise to a large 

number of term.s, namely, those connecting the motion of 

each of the ions involved in the Alg localized mode with 
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the motions of its six nearest neighbours. Inclusion of 

these terms would require, in addition to v2, which can 

be estimated using equation (6) of appendix 4, knowledge 

of the corresponding quantity in the perfect l~ttice, 

which can be determined using the shell model parameters 

referred to in appendix 4. However, the large number of 

added terms would greatly complicate the computational 

task of evaluating the broadening; for this reason, they 

have been neglected in the present treatment. It should be 

pointed out, however, that a similar effect, depending on 

transverse cubic anharmonic coefficients between the · 

impurity an.d its . nearest neighbours, considerably influenced 

the shape of the sideband spectrum. Therefore, it may be 

expected that including similar terms in the broadening can 

produce a significant improvement in agreement with 

experiment. 

A second possible source of the discrepancy is the 

approximate form, given in equation (4), for the displacement 

corresponding to the Alg localized mode. However, it does 

not seem likely that the error introduced by this approxima

tion, which is of order 10%, could account for the factor 

of two discrepancy between theory and experiment. 

In order to demonstrate the importance of calculating 

with perturbe~ phonons, the half-width W(pA) was also 

calculated from equation (13) using unperturbed phonons (i.e. 
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replacing G by Gin equations (10) and (11)). The 

theoretical results obtained in this way· were approximately 

a factor two smaller than those obtained using perturbed 

phonons, at low temperatures. Since the perturbation 

weakens the force constants near the defect, the amplitudes 

of vibration of ions close to the impurity are, _roughly 

speaking, larger at lower frequencies than they would be 

in the unperturbed system, as can be seen from figure 15. 

This has the effect of increasing the density of states 

available for decay of the gap mode into acoustic phonons, 

thus increasing its broadening. Such an effect is also 

important in eva~uating the probability of decay for the 

high frequency local ·mode, which is discussed in the next 

section. 

C. BROADENING OF THE U-CENTRE LOCAL MODE PHONON 

At low temperatures, the anharmonic broadening of 

the U-centre local mode is determined by the "decay" 

mechanism. For the H- ion case, the lowest order process 

that can occur is decay of the local mode phonon into three 

lattice phonons, whereas, in the D ion case, decays into 

both two and three phonons are important (Elliott et al. 

65). At higher temperatures another mechanism, the 

"scattering'' mechanism, (called by Klein (1968) the "Raman" 

mechanism) becomes increasingly important, and strong 
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arguments have been given to predict that it eventually 

dominates (Elliott et al. 65; Ivanov et al. 66}. The 

results of the present calculation confirm this prediction 

for KBr and KI. The leading anharmonic terms for the decay 

mechanism are cubic and quartic anharmonic interactions 

between the H- or D ion and its nearest neighbours, and 

are given in equations (4} and (5} of appendix 2. The 

contributions to the self-energy resulting from decay into 

two or three phonons will be denoted by MII and MIII, 

respectively~ and can be found by evaluating the diagrams 

shown in figure 19. Applying the rules of appendix 1 

gives 

(16) 

MIII(P }
R. x 

x 	 l: Gi CQ1 ,0i) Gt CQ 2 ,Q2} GR.-t -R- (Q 3 ,Qj) . (17) 
R,lR,2 1 2 1 2 

The quantities cI 1 co1o 2 ;QiQ~) and CIII<o o o ;Qi020;>1 2 3 

contain anharmonic constants and combinatorial factors as 



TABLE 2 

VALUES OF COMBINATORIAL FACTOR CII{Ql Q2 ; Qi a2>*t 

Q2 Q' Q' c<a1 02; Oi a2>1v32~l 1 2 

TO Al TO Al 2/3M_M+MD 

- 2/2/3M l/2M 3/ 2MTO Al Tl Al - + D 

2 
Tl Al Tl Al l/3MDM+ 

TO El TO El 4/3M_M+MD 

E . - 4/2/3M l/2M 3/ 2MTO El Tl 1 - + D 

Tl E1 Tl El 2/3MDM+ 
2 

* NOTE The following notation has been used: A. :: Q. {Al )
l. l. g 

E. : Q. {E )
l. l. g 

T. : Q. {Tl )
l. l. u 

t NOTE The factors have been adjusted so that only the listed 

labellings should be used. 

°'...... 
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COMBINATORIAL FACTOR CIII(Ql 02 Q3 ; Ql 02 Qj) * 
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1 
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TO 
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TO 
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TO 

Tl 

TO 

TO 

Tl 

TO 

TO 

Tl 

Tl 

Tl 

- f2/3M 312M 312M 
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. , 
2 
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TO TO Tl TO Tl Tl - 212/M 312M 312M 
- + H,D 

Tl 

TO 

TO 

TO 

TO 

Tl 

TO 

Tl 

Tl 

Tl 

,,, 
.... 1 

Tl 
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,,, 
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1 Tl 
2
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TABLE 3 

FACTOR CIII(Ql 0 Q3 ; Qi Q2 QJ) * (cont'd)2 

CIII(Ql Q2 03; Oi 02 Oj)/V42 

3 
l/12M+ MH,D 


2
 
l/18M_M+ MU,D 


- /2/18M S/2M l/2M 

+ - H,D 

2 
2/9M+ M_MH,D 

- 2/2/9M+5/2M_l/2MH,D 

2 
2/9M+ M_MH,D 


- 2/2/9M S/2M l/2M 

+ - H,D 

3 
l/36M+ MH,D 


3 

l/9M+ MH,D 


3 

l/9M+ MH,D 

*See footnotes to table 2. 
O"\ 
w 
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before, and are given in Table 2 and Table 3, respectively. 

Their values have been adjusted to account for labellings 

leading to equal contributions, and ther~fore, only the 

listed labellings should be used. It should be noted that 

both quantities contain the factor M_/MH,D where MH,D is 

the mass of the hydrogen or deuterium impurity. _ This factor 

results from transformation of a displacement coordinate 

x
Q0 CT 1u> at each vertex to give the external label Px' using 

the matrix element given in equation (3) of chapter 4. 

Applying the procedure of the previous section 

allows reduction of the imaginary parts of MII and MIII 

to the forms 

w 
m 

x I - 2 + 
1 2

dw' { 1 + n{w') + n(w - w') } Im G(w' + iO ;Q ,Q ) x 

w-w 
m 

x I m G ( { w - w ' >2 + 1. a+ , > (18);Q 2 ,Q 2 

for the broadening due to decay into two phonons, and 
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w w 

m m 

dw 11 11x f dw' f a (w - w' - w ) { (1 + n (w')) (1 + n (w 11
)) x 

0 0 

x (1 + n (w - w' - w") ) - n (w') n (w") n_(w - w' - w") x 

x Im -G ( w' 2 + i 0+ ; Q2 , Q2 ) . Im G ( w 11 2 + 1
. 0+

; Q , .Q, > (19)
3 3 

for the broadening due to decay into three phonons. In 

these expressions, the function e(w) is the step function, 

defined by 

e(w) = 1 for w > 0 

= 0 for w < 0 (20) 

The scattering ~echanism broadens the local mode 

by scattering a thermally excited lattice phonon into 

another state of the same frequency. This process requires 

interaction of four phonons, and can therefore occur 

directly through the quartic anharmonic interaction or · 

indirectly through two successive cubic anharmonic inter

actions. In the present calculation, the truncated cubic 

anharmonic Hamiltonian introduced by Elliott et al. (1965) 

is used, which contains only terms in which two of the three 

phonons interacting are local mode phonons. The anharmonic 

terms which have been considered in evaluating the 

contribution of the scattering mechanism are given in 
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equation (6) of appendix 2. 

The largest non-vanishing contributions arise from 

the processes shown schematically in f ig~re 20a {Elliott 

et al. 65). It can be seen from the anharmonic terms that 

the lines referring to lattice phonons must be labelled 

by symmetry coordinates which are either even for both 

lines or odd for both lines, and that the indirect transition 

process occurs only when both lines refer to even symmetry. 

The effect of the indirect processes can be included in the 

contribution of the direct processes simply by replacing 
,..., 

the anharmonic constant V by V4 , whe.re4 

,...,., 
= both lines of odd symmetryV4 V4 

- 2 
v3 

= - both lines of even symmetry.V4 24MH,Dn H,D (21) 

The quantity nH,D is equal to the local mode frequency of 

a hydrogen or deuterium U-centre, as appropriate. This 

.
result for 

~ v4 , given by Elliott et al. (1965), can be seen 

to be correct by comparing the matrix elements for the 

direct and indirect transitions. 

The contribution of the scattering process to the 

self-energy of the local mode can be obtained by evaluating 

the diagram in figure 20b. Labelling this contribution 

Ms and following the procedure of the previous section, 
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leads to the result 

Im M
s 

(w = QH,D;Px) = 

w 
m 

dw' n (w ' ) { 1 + n (w ' ) } • Im -G (w ' 2 + 1. o+ ; Q ,Q ' > xx J 1 1 
0 

-c ,2 ·o+ '> (22)x Im G w + 1 ;Q ,Q2 2 

This equation, as well as equations (18) and (19), have 

been obtained in a slightly different form by Ipatova and 

Klotchichin (66). The values of cs, which contain the 

constants ~4 , are given in Table 4. They have been 

adjusted, as before, so that only the labellings listed 

must be considered. 

The contributions to the self-energy of the high 

frequency local mode given by equations (18), (l~) and (22) 

have been separately evaluated for both hydrogen and 

deuterium U-centres at several temperatures, again 

calculating the matrix elements of G as described in 

appendix 3. The values of v given in equation (19) of3 

chapter 4 were used together with the following values of v4 : 

20 3v = 1.95 x 10 dyne/cm for KI4 


20 3
= 2.45 x 10 dyne/cm for KBr (23) 

which are discussed in appendix 4. The half-width W(P )x 



TABLE 4 

VALUES OF THE COMBINATORIAL FACTOR C 5 (Qo(T~u) Ql Q2; Qo(T~u) Qi 02) * 

2 
Ql Q2 Q' Q' C5 COo(T~u) Ql Q2; QO(T~u) Qi Q2)/V41 2 

3 
TO TO TO TO 2/M_ MH,D 

. 2 
TO TO Tl Tl 2/M_ M+MH,D 

- 4/2/M S/2M l/2MTO TO TO Tl - + H,D 

2 
Tl Tl Tl Tl l/2M_M+ MH,D 

- 2/2/M_3/2M+3/2MH DTl Tl TO Tl 
' ' 

2 
TO Tl TO Tl 2/M_ .M+MH,D 

2 
TO Tl Tl TO 2/M_ M+MH,D 

' 2 
Al Al Al Al l/18M+ M_MH,D 

2 
El El El El 2/9M+ M_MH,D 

2 
Al El Al E 2/9M+ M_MH,D1 

*See footnotes to table 2. 

°'co 
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was then evaluated using 

W(P ) = l I M ( iO+ ·P ) (24)
x n-- m nH D + . ' x

H,D I 

where 

(25) 

The results for both hydrogen and deuterium U-centres are 

plotted in figures 21 and 22 for KBr and KI respectively, 

together with some experimental results of Mirlin and 

Reshina (1964), of Schaefer (1960) and of Fritz et al. (1965). 

The calculations indicate that W(P ) is essentially x . 

determined by the scattering mechanism above about 100 K for 

hydrogen U-centres in both KBr and KI, and above S0°K 

and 30°K for deuterium U-centres in KBr and KI respectively. 

This is in general agreement with the conclusions of 

Elliott et al. (1965), based on numerical estimates in 

CaF:H and CaF:D , and also those of Ivanov et al. (1966) 

and of Ipatova and Klotchichin (1966). 

Comparison between theory and experiment is at 

present restricted to temperatures above 50 0 K by the 

available data, that is, to the range in which the 

theoretical result is almost independent of the contributions 

of the decay mechanism~ Therefore, while the general, 

low temperature, behaviour of W(P ) for hydrogen and 
x 

deuterium U-centres in KBr and KI corresponds qualitatively 

to results of experimental measurements in other alkali 
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halides {Fritz et al. 65; Bauerle and Fritz 67), a 

quantitative comparison must await further experimental· 

investigation. At higher temperatures, where data are 

available for comparison, it can be seen that the theoretical 

values are too small by a factor close to ten. This error 

probably results either from the use of an incorrect value 

for the anharmonic constant v of from the use of the4 

truncated Hamiltonian in calculating the second order cubic 

anharmonic contributions to the scattering process. If 

an underestimate of v4 is assumed to be the dominating 

error, then, since the contribution of the scattering 

process to the self energy is essentially proportional to 

-2 , the value of -v4 used must be in error by a factor ofv4 

order three. Since the value used depends directly on the 

parameter ~' whose estimation is discussed in appendix 4, 

it is possible that such a large error has been made. It 

should be noted that where this parameter has been used 

before in the work, for calculating sideband spectrum shape 

and evaluating v3 from the sideband area, the results have 

been insensitive to the value of ~. However, the truncation 

of the cubic anharmonic Hamiltonian may also have influenced 

the magnitude of the result. Until the validity of this 

truncation has been fully investigated, the value of v4 

should not be adjusted to fit the experimental results. 

The situation would be clearer if comparison between theory 
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and experiment at lower temperatures, where the decay 

mechanism is dominant, could be achieved. Since corrections 

to the contribution of the decay process, the most important 

of which result from neglect of terms in the Hamiltonian 

proportional to the transverse anharmonic coupling, should 

not be large, such a comparison would reveal any errors 

in v and v •3 4 

Experimental values for the half-width at low 

temperatures are available in other alkali halides (Fritz 

et al. 65; Bauerle and Fritz 67). However, before 

broadening calculations are attempted in these crystals, it 

is important that any force constant model used to describe 

the U-centre should adequately reproduce experimental defect 

spectra, such as the sideband and far infrared lineshapes. 

The importance of using such a model in estimating the 

broadening of localized modes can be demonstrated by 

repeating the present calculations using unperturbed 

densities of states, that is, replacing G by G in equations 

(18), .(19) and (22). The elements of Im{G} and Im{G} 

occurring in those equations are shown in figures 15 and 

16 for Kr and, KBr, respectively. The results show that 

the use of unperturbed phonons leads to results which differ 

widely from those presented above, especially at low 

temperatures where the decay mechanism is dominant. For 

example, W(P ) was found to be larger by a factor of order x 
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four for KI:KD at 100 K when unperturbed spectra were used. 

The reason for this dependence is that the· broadening 

resulting from the decay process is determined by the 

amplitudes of vibration of ions near the defect at optical 

frequencies. Since the force constants near the impurity 

have been weakened, these amplitudes are smaller and, 

consequently, there is less broadening. The contribution 

of the scattering mechanism, which is negligible at very 

low temperature, is, in fact, smaller when unperturbed 

phonons are used. This is understandable since there are 

always more thermally excited acoustic than optical phonons, 

and their contripution to the scattering part of the 

broadening is smaller in the unperturbed crystal. 

Before closing this discussion, one other result 

of the calculations should be mentioned. The contribution 

of the two-phonon decay process to the broadening of the 

deuterium peaks was found to be smaller by an order of 

magnitude than that of the three-phonon decay process. 

This is a consequence of the fact that the two phonons 

in the final state of the cubic process must be high 

frequency optical phonons, whereas the three phonons in 

the final state of the quartic process are essentially 

unrestricted in frequency. This has been pointed out by 

Ivanov et al. (1966) in discussing measurements on KBr:KD. 

It is interesting to speculate that, since the final 
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three-phonon state is similarly restricted in the case 

of hydrogen impurity, it might be necessary to include 

processes of one higher order to account for the residual 

width of such U-centres. 

D. BROADENING OF RESONANCES 

It has been shown in chapters 4 and 5 that some of 

the peaks observed in opti~al absorption spectra are 

resonances resulting from local perturbations associated 

with the impurity. The peaks predicted theoretically are 

in every case narrower than those observed experimentally, 

and are, in fact, narrower than the observed A local mode . 1g 

peak observed in the gap in KI:KH. It is therefore 

likely that observed peak widths, for resonances as well 

as for the A local mode in KI:KH, are due to anharmonic
19 

broadening. 

The methods of this chapter allow calculation of 

the broadening in cases where a peak is due to a single 

mode whose frequency is outside the continuous frequency 

spectrum and which is therefore truly localized. However, 

the predicted resonances lie in the continuum and involve 

many modes which, though they have enhanced amplitude near 

the impurity, are not truly localized (Klein 63). Therefore, 

two questions must be answered to produce a theory of 

anharmonic ' broadening of resonance peaks: first, how are 
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the continuum .spectra to be expressed in terms of broadened 

continuum modes, and second, how is the broadening to be 

calculated for modes which are neither truly localized nor 

modes of the perfect lattice? 

The first question can be answered by considering 

the displacement correspondin~ to a particular mode of 

the perturbed lattice. For continuum modes, this dis

placement is given by Klein (1963) 

- l: G(w~. + iO+;~aK,!!a'K') T(w~. + iO+;_!:!'a'K',~"a."K") x 
_J _JL'a'K' 


L"a"K" 


x UL" " " k. (26)- a K ,_J . 

Here p(~j) is the eigenmode of the perturbed lattice 

corresponding to the (~j)th mode of the unperturbed lattice. 

The elements of the T matrix, and therefore the non-zero 

terms in the sums, are restricted to the space of y. 

The elements of Im{GA} in the {ba.K}-representation, for 

frequencies in the continuum, are given by 

Im M(w + iO+;p(kj) x 
2 2 2 2

( w - wk . ) + (Im M ( w + i 0+; p ( k j ) ) 
_J 

(27)
X Up (]5 j ) If t a I K I 
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AFor the sideband calculation, only a few elements of G 

are required in the {~aK}-representation, ·and these can 

be found from equation (27) using equation (26). In the 

far infrared calculation, the quantity required is 

e e ,
K K 

l.M M I
K K 

(28) 

This can be reduced to a from suitable for calculation 

using the result 

r e K u = e [ 0
LK /MK ~XK,p(~j) ;µ kj;R- x 

- E G ( w~ • + i 0+;Rx, f!' a ' K ' ) T ( w~ • + i 0+; !!_' a ' K ' , !:!"a" K" ) x 
K 1 _] _JL'a 1 

~ 1111 Cl 11 K 

, (29)x UL " " " k . ]_ a K ,_J 

which follows from the same considerations used in deriving 

equation (1) of chapter 5, and is easily calculable because 

of the restriction of the sums to the space of y. 

In results (27) and (28), the required spectra 

have been written as sums on individual phonons, whose 

frequencies are the same as those of the unperturbed 

crystal. The contribution of each phonon is a broadened 
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phonon peak with projection factors calculated correctly 

for the perturbed crystal. Calculation of - the broadening 

of the phonon peaks would answer the second question; · 

unfortunately, this calculation cannot be carried out using 

either the techniques used here for purely localized 

phonons, or those developed elsewhere (e.g. Maradudin and 

Fein 62) for unperturbed phonons. It is expected that the 

broadening of modes near the resonance will lie between 

the values appropriate to a completely localized mode of 

the same symmetry and the values appropriate to the 

corresponding unperturbed modes. For the present, no 

quantitative calculation of that broadening will be 

attempted. 



CHAPTER 7 

CONCLUSION 

The extended force constant model which has been 

developed for the defect has led to a considerably improved 

understanding of both the sideband absorption and the far 

infrared absorption associated with U-centres in KI and 

KBr. The symmetries of the resonance peaks observed in the 

sideband spectra have been predicted from the theory and 

these predictions have been partially verified experimentally 

by observing the behaviour of the peaks under uniaxial 

stress (Fritz et al. 67). Also, one of the peaks in the 

impurity-induced far infrared spectra of both KI and KBr 

has been shown to arise from a resonance mode (of Tlu 

symmetry) while other absorption maxima have been related 

to sharp peaks in the unperturbed density of states. 

However, the precise correspondence between the theoretical 

and experimental peaks in that calculation is not yet 

well-defined. The difficulty lies in the fact that the 

exact peak positions are determined both by the model used 

for the defect and al~o by the positions of sharp maxima 

in the perfect densities of states, which in the present 

case are determined from the shell model. Since some of 

these maxima ·arise from regions of ~-space where the phonons 

77 
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have not been directly measured by neutron diffraction, 

their positions could be in error by a few wavenumbers. 

Further experimental investigation of both the perfect and 

perturbed crystals should allow a positive identification 

of peaks in the far infrared spectra to be made. Since 

this gives an additional experimental resonance frequency, 

it should be considered together with the local mode 

frequency and the two resonance frequencies of the sideband 

in evaluating the parameters of future models of the 

U-centre. 

Apart from effects resulting from the neglect of 

anharmonic broadening in the calculations of these spectra, 

essentially two differences remain between theory and 

experiment. These are first, that the relative intensities 

of peaks {especially in the sideband calculations) are not 

correctly given, and second, that the positions of some of 

the resonance peaks in the theory are in error by a few 

wavenumbers {possibly as many as 9 cm-l in the far infrared 

calculation for KI:KH). While the first error must be 

largely due to the neglect of higher-order processes which 

can contribute to absorption in the sideband region, both 

errors may result in part from using an oversimplified model. 

A more realistic model of the impurity would allow for many 

changes of force constant; the strongest being those 

connecting the impurity to its nearest neighbours, and a 
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series of smaller changes associated with relaxation of 

the lattice about the impurity. The present theory attempts 

to describe these effects with the two parameters ~f and ~g. 

It is therefore not surprising that the fitting of all 

resonance frequencies is not perfect, nor would it be 

surprising to find that the description of vibrational 

amplitudes of ions .near the defect proved to be only 

approximate. However, that a single choice of ~f and ~g 

fits so many data so closely suggests that the most 

significant force constant changes for the problems studied 

are indeed the ones which have been included. 

The perturbations associated with the impurity are 

such that some phonons become localized, or in some cases 

approximately localized~ near the defect. A method was 

presented in chapter 6 which shows how the broadening of 

such phonons can be calculated by taking advantage of their 

localized nature. The method was applied to the calculation 

of the half-width of the high frequency U-centre local mode 

in KI and KBr, and also to . that of the localized gap mode 

in KI:KH. The results of those calculations were discussed 

in detail in chapter 6, but it is worthwhile emphasising 

two of the conclusions here. First, it was shown that 

especially at low temperatures, where the "decay" mechanism 

is dominant, it is important to use perturbed phonons in 

the calculation. The decrease in £orce constants around 
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the defect considerably increases the effective density of 

states for decay into acoustic phonons, while the effective 

density of states for decay into high frequency phonons is 

decreased. The effect of this is to reduce the residual 

width of the high -frequency local mode (since it can only 

decay .into optical phonons), whereas the width of the gap 

mode in KI:KH is considerably increased (since it decays 

only into acoustic phonons). 

The second conclusion of chapter 6 is that the 

half-widths depend critically on the value·s of anharmonic 

constants near the defect. Since only the determination 

of the constant v is at all reliable (see chapter 4 and3 

appendix 4), _it seems sensible to use v and ~ as parameters4 3 
in future calculations. The values obtained in that way 

could then be used to determine details of the forces near 

the defect. Before this can be done howeve~, the importance 

of the corrections suggested in chapter 6 should be carefully 

examined and, if necessary, they should be incorporated 

into the theory. 

In summary, the present theory of the sideband 

absorption, _and to a lesser extent, the far infrared 

absorption, leads to satisfactory overall agreement with 

experiment, which suggests that the vibrational spectra of 

ions near the defect are reasonably well explained by the 

force constant model which has been developed. These 
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spectra can therefore be used with some confidence in 

calculations of the anharmonic broadening rif localized 

modes using extensions of procedures discussed in chapter 

6. This should lead to a more precise knowledge of the 

anharmonic constants, and hence the form of the interactions, 

near the impurity. 

I 



APPENDIX 1 

EVALUATION OF DIAGRAMS 

A. EVALUATION OF THE FOURIER COEFFICIENT G9..(p) 

Creation and destruction operators (in the inter

action. representation· ) f or t h e perturb e d p h onon p, ~a+ {v) 
p 

and a (v) respectively, can be defined such that 
p 

(Maradudin 64b) 

(1) 

Using this expansion, it follows from equation (36) of 

chapter 2 that 

G(v·LaK
- 1_L'a'K')

I 

x ( a; ,co > + a-P , co > ) (2)>H' up' L'a'K'0 ,_ 

Therefore, 

-+ - . N+ ~ 
G (v;p,p') = < T (a (v) + a (v) (a ~ (O) + a , (O)) > , • {3) 

p p p p 8 0 

The thermal average can be evaluated using the eigenstates 

of H' (the perturbed phonons), with the result 
0 

1i. Jvlfiw · -lvlnw 
G(v;p,p') = op,p' . ~ { n e P + (1 + n )e P }

p pp 

(4) 
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where 

Sl'iw 
n = (e P - 1)-l 

p 

and the values 

+ - . ,<a a 1 > 
p p 810 

<a a 
+

,>H' = o _E_ (1 + n ) (5) 
p p 0 p,p' 2w p p 

have been used. Now, Gi(p,p') can be written in terms of 

G(v;p,p') using equation (38) of chapter 2 as 

8 
_ J - -2nitv/BGi(p,p') = dv G(v;p,p')e . (6) 

0 

Substituting the value of G(v;p,p') from equation (4) 

and integrating gives 

1 (7)GR. (p,p') = 0 ' •p,p 

Therefore, 

G'.e. (p) - Gi(p,p) 

1 = (8)2 2 
w + wip 
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B. RULES FOR THE EVALUATION OF DIAGRAMS 

The internal lines of diagrams contributing to 

the self-energy M (p) have been labelled in the {~aK}1 

representation. The modified rules for their evaluation 

are: 

(i) 	 Include a factor G 1 (~aK,~'a'K') for a line whose 

end-points are labelled by (~aK) and (~'a'K'). 

n-m-1 ·n (ii) 	 Include a factor S (-1) /n! for a diagram with 

n vertices and m phonon lines. 

(iii) 	 Include a factor equal to the number of topologically 

equivalent diagrams. 

(iv) 	 Include an anharmonic coupling constant at each 

vertex. 

(v) 	 Having chosen a time-ordering, include a combinatorial 

factor which gives the number of pairing schemes 

to which a particular labelling corresponds {this 

must be separately evaluated for each set of end

point labels, as described in the main text). · 

(vi) 	 Sum over the labels at each vertex in a way that is 

consistent with the anharmonic terms (this point is 

also clarified in the main text). 

(vii) 	 Conserve the quantity 1 1' at each vertex and sum 

over intermediate 1's. The following results, 

which are obtained using a contour integral for 
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each series, as described, for example, by Kadanoff 

and Baym (1962) I are assumed in the main text: 

1 + nl + n21 1 sn>: . = {2 2" 2 2 4w iwR, + wl + w2R, 1=-oo wl + wR, ( w 1 - w1) + w2 1 w2 . 
1 1 


1 + + ni n 1 n 1 n 2-------+iw - - iwi + 
1 

w1 w2 w2 w1 

n (1 + n + n ) + (1 + n ) (1 + n )1 2 3 2 3 
----~~~~~~~~~~~~~~~- +

iw - w - w 
1 1 2 w3 

+ (n 2 - n 3 ) (1 + n 1 ) + n 3 (1 + n 2 ) + 

iw + w + w 1 1 3 w2 

+ Cn 1 - n 2 ) (1 + n 3 ) + n 2 (1 + n 1 ) + 

iw
1 

- w1 + w2 + w3 

+ n 1 Cn 2 - n 3 ) - n 3 (1 + n 2 ) + 
. iwi - - +w1 w2 w3 

(10) 



APPENDIX 2 

THE ANHARMONIC HAMILTONIAN, HA 

The anharmonic Hamiltonian for the crystal, HA, 

has been derived assuming that anharmonic terms arise from 

nearest neighbour interactions through the short-range 

part of the interionic force (assumed to be central). 

These assumptions have been discussed by Cowley (1963). 

Furthermore, only those terms in the Taylor expansion of 

the crystal potential proportional to third and fourth 

powers of ionic displacements have been considered. 

The following notation has been used ·for derivatives 

of the two-particle interactions: 

4
a v 

V4 = ~ 
ar ro 

v3 = a 3v Iar3 -r 
0 

v2 1 a2v = =- -:-2r · ar 
0 

r 
0 

V3 
a3v = ;? I r 

0 

, (1) 

where v is the potential for the short-range force between 
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the H (or D-) impurity and its nearest neighbours, and r 

is their equilibrium separation. Similarly, V is the 

potential for the short-range force between the first and 

fourth neighbours of the impurity, and r their equilibrium
0 

separation. The numerical values used for the constants 

defined in equation (1) are given and discussed in appendix 

4. Terms of the anharmonic Hamiltonian have been written 

using the symmetry coordinates defined in equations (3) 

of chapter 3, together with the coordinate a1 (T 2g>' defined 

by 

ua+ +us+ - us~), a = x,y,z, Bia. (2) 
-8 a -a 

The decomposition into symmetry coordinates is similar to 

that of Kllhner and Wagner (1967). 

In addition to the basic assumptions. referred to 

above, additional assumptions have been made for each 

process treated. These are discussed at appropriate 

points in the main text. The relevant anharmonic terms 

for each process are listed below. 

(1) The terms of HA which have been used in the 

sideband calculation, His), are given by 

Q2(Tx ) 

- + 
- x2V2QO(Tlu)

+ { Q (TV )Q (Txy) + Q (Tz )Q (Txz) } • (1)0 lu -1 2g 0 lu 1 2g
M_IM+ 

H(s) = 
A 

0 lu 

M /"GM 
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(2) 	 The terms of HA which have been used in calculating 

the contribution to the self-energy of the U-centre 

local mode arising from decay into two phonons, 

decay into three phonons and the scattering mechanism, 

11denoted by.H~1 , H! and H! respectively, are given 

by 

' 
( 4)-K 0 1 <~u, } 

HIII = V4QO(T~u) { Q~(T~u) 

A 12M ll2 M 3/2 


2/2 Q (TX )Q (TX ) + 
IM+M- 0 lu 1. lu 

(6) 
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(3) 	 The terms of HA used in calculating the self-energy 

of the gap mode in KI:KH, HX, are given by 

g = Ql (Alg) { (V3 - V3) [ 2 2
HA M Qi(Alg) + 3 CQl(Eg) + 

6/6M+ '"+ 

+ oi<E~l + L oicT1ull ] + 
a==X, y ., Z 

1 (Q~ (Eg) + Q2 (EI ) + E (Q2 (Ta ) - 2Ql (T~u)Q2(T~u)))1 +M 	 2 g 2 lu 
Cl 

6V3 
E 	 (7)+ Qo(T~u> [ Qo(T~u) - Jf+ Ql (Talu)] }

YM a 	 IM 



APPENDIX 3 

CALCULATION OF GREEN'S FUNCTION MATRIX ELEMENTS 

A. ELEMENTS OF G. 

Elements of the matrix G are related to elements 

of G by the Dyson equation, which is equation (22) of chapter 

2. Since the elemerits required in the calculations of 

chapters 4, 5 and 6 are all in the space of y, they can be 

written 

- 2 2
G ( w ; Q (Al ) 'Q I (Al ) ) = g , (w ;A )

n g n g nn 1g 

- 2G ( w ; Q (E ) 'Q I (E ) ) 
n g n g 

(1)I 

n,n' = 1,2 

. 
where the symmetry coordinates are defined in equation (3) 

of chapter 3. The notation used for g is analogous to that 

used for g and y in chapter 3. It follows from the 

definition of g (equation (6) of chapter 3) that its 

submatrices have the form (suppressing the frequency 
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variable w) 

t D*(E) 

g(E ) 
 + g(E) y(E) g(E) g ., 

g g g ] g • -1D (E ) 12 
g 

t D* (TX ) 
- (TX ) I ( -X ) ( x ) ( X } lu (2 } 
g lu = [ + g Tlu Y Tlu ] g Tlu .jD(T~u) 12, 

where 

and D*(A ) is its complex conj-ugate.
19

similarly defined. The required elements of G have been 

calculated from equations (1) and (2) using the elements 

of y defined by equation (5) of chapter 3. The elements 

of g were calculated as described below. 

B. ELEMENTS OF G 

The elements of g required by equation (2), to

gether with the diagonal element G(w 2 ;Q(T2g)) called for 

in equation (13) of chapter 4, are calculated by making 
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an expansion in the {~j}-representation: 

1 2 2 -1 
(3)= N ~ . UQ (A ) , k ' (wk ' - w ) Uk ' Q (A ) ' 

_J n _lg _J _J _J, n' lg 

where equation (9) of chapter 2 has been used. Analogous 

expressions hold for elements of Eg, T2g and Tlu symmetry. 

Using equation (7) of chapter 2, it can be seen that 

UQ (Al ) ,kJ'n g 

K 

(3 0 1)£ n(kj) . sin nk a,UQ (E ) k' a ,x . a .... . : .. a . _-n g I_] 

= l..JI- (£+(k') sin k a + £;.c~j) sin k a)uQ (Txa > k. N x _J1 2g ,_J 8 x 

K 
£ n (k.) cosUQ (TX) k' = l.·N- x _J nk a

N xn lu ,_J 
f3 = y,z, 

U = i f!Nl £x- (~j) ' n = 1,2, ( 4)Oo(T~u),Jsj ~N 

The imaginary parts of the Green's function matrix 

elements were computed from the equation 

2Im{ g , (w + iO+ ;Al ) } = nn g 

2 2 
x 0 ( WJ • - w ) Uk . Q (A )

~] ]1 ' 1- - n g 
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which follows from equation (3), and analogous expressions 

for the matrix elements of .Eg' T2g and T1~ symmetry. The 

summation over k was performed using an effective 32,000 

points uniformly distributed throughout the first Brillouin 

zone of reciprocal· space. The eigenfrequencies and 

eigenvectors for each k were calculated using the neutron-

determined shell model VI of Cowley et al. (1963) for KBr 

and of Dolling et al. (1966) for KI. The method of 

Gilat and Raubenheimer (1966) was used to obtain the 

elemen~s of Im{G} in histogram form using 'bins' of size 

-10.5 cm • The total density of states has also been 

calculated from equation (10) of chapter 2. 

The elements of Re{G} are written in terms of 

corresponding elements of Irn{G} using the Cauchy relations • . 

For instance, the elements of Re{g(Alg)} are given by 
OQ ( 2 . o+ ), w1 + 1 ;Al2 1 nn g 2rm g 

Re dwgnn' (w ;Alg) = 
1T 2 2 1 - w 

0 
w1 

where the principal part of the integral is required. This 

integral was performed numerically using a procedure 

suggested by Sievers er al. (1965). 



APPENDIX 4 

THE ANHARMONIC FORCE CONSTANTS 

It has been assumed that the anharmonicity arises 

from nearest-neighbour, short-range forces which are 

described by a Born-Mayer potential. For the interaction 

between the H- ion and its nearest neighbours, this potential 

will be written, following Cowley (1963), 

V (r) = Ae '-r/p . (1) 

Since V (r) _describes the interaction between an H ion and 

+ .a K ion, the parameters A and p are likely to be considerably 

different from the corresponding parameters in the potentia~ 

for the interaction between nearest neighbours of the 

perfect crystal • . In fact, their values should be fairly 

close to those foQnd in a perfect potassium hydride crystal, 

and even to those in the KH molecule. Experimental data 

are limited to the molecular system. The value of p 

determined from that data, pmol' is (Varshni and Shukla 63) 

0 = 0.4724 A (2)Pmol 

The equilibrium distance in the molecule, rmol' has the 

value 

0 
(3)rmol = 2.85 .A 
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From the form of the potential and the definitions 

of v4 , v and v given in appendix 2, the following3 2 

relationships can be derived: 

r 
0 - ( 4)-v 

p 2 

and 

1 -v (5) 
p 3 

Furthermore, the parameter ~, which plays an important part 

in determining the sideband lineshape (see equation (13) 

of chapter 4), has also been defined as 

t; - (6) 

From equation (4), ~can be written 

~ = - £. (7) 
r 

0 

A rough value for t; can be obtained from this equation by 

using the approximate values (MacDonald 66) 

' 
(8)P = Pmol 

where 'a' is the lattice spacing of the host lattice. 

Experimental results (Hilsch and Pohl 38) indicate that the 

first of tpese approximations represents a small over

estimate of r . The second approximation is justified
0 



96 

only if the value of p at distance 'a' is close to that 

describing the short-range force in the KH molecule at 

distance r • At present there seems to be no way of mo1 

estimating the dependability of this assumption. The 

values obtained for ~ were 

~ = - 0.13 for KI 

and 

F; ~ - 0.14 for KBr (9) 

Equation (6) offers another possible way of estimating ~. 

By definition (see appendix 2), v2 is given by 

(10) 

The corresponding quantity in the perfect crystal is known 

from model c~lculations. Using the shell model notation 

of Cowley et al. (1963) in which the longitudinal and 

transverse force constants between nearest neighbours are 

A and B, respectively, v can be written2 

1= (A + 6A) (11)
a 

where 6A is the change in force constant resulting from 

replacing the potential of the perfect crystal by V and by 

changing the equilibrium distance from 'a' to r • Although
0 
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the value of 6A is related to that obtained for ~f, they are 

not equal since 6f is the change in total effective short-

range force constant, which is given by A + 2B in the shell 

model {in the approximation that second neighbour forces 

may be neglected). An estimate of 6A is given by 

6A 6f
A = _A_+__,....2-B {12) 

assuming that A and B have suffered the same fractional 

change. Equation {10) then becomes 

~ .!_(A + 2B + 6f) (13)
a 

Using values of v3 already determined from the sideband 

area, (which are slightly dependent on the value assumed 

for ~' as discussed in chapter 4) together with the shell 

model parameters, equation (6) gives the following estimates 

of ~= 

~ = - 0.17 for KI 

~ = , - 0.21 for KBr ' (14) 

Considering the nature of the approximations made in 

obtaining the independent estimates of t; given in equations 

(9) and (!A), the agreement is surprisingly good. It should 

be pointed out, however, that the situation is by no means 

satisfactory. For example, neglect of B in equation (13) 

would lead to values of ~ greater by about 50% than those 

given in equation (14). The two sets of values for~ 
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would then differ by a factor close to two. Fortunately, 

even a crude estimate of ~ is sufficient to determine both 

the sideband lineshape and the value of (see chapter 4)v3 

reasonably accurately. The value ~ = - 0.15 has therefore 

been used in this determination for both KI and KBr. 

However, higher-order anharmonic constants required 

in other cal~ulations, for instance v4 , can at present only 

be determined from equations like equations (4) and (5), 

and therefore depend on~ (using equation (7)). In the 

present calculations, v4 was calculated from equation (5) 

using p = p 1 , and, for that reason, may not be a reliable mo 

estimate. The values obtained were 

20v = 1.95 x 10 dyne/cm for KI4 


20
= 2.4 x 10 dyne/cm for KBr (15) 

The situation is slightly less complicated when the 

interaction between the first and fourth nearest neighbours 

of the H- (or D-) impurity is considered, since this 

interaction is probably adequately described by the Born-

Mayer potential for the perfect lattice. Even so, it is 

likely . that the equilibrium separation has been changed 

and at present there seems to be no dependable way of 

estimating the magnitude of the change. In the broadening 

calculation for the Alg gap mode, the approximation r = a
0 

was made. The value of v for KI, which is the only3 
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constant required, was then calculated using the shell 

model parameters of D~lling et al. (1966).· The result 

was 

12 2= 6.2 x 10 dyne/cm for KI (16)v3 
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Figure 1. 

Figure 2. 

Figure 3. 

~.. 

FIGURE CAPTIONS 

The Dyson equation for the anharmonic 

Green's function G~ is shown. G~ is 

represented by a d_ouble line and G , the harmonic
1 

Green's function, by a single line. The "bubble" 

represents the proper self-energy M •
1 

The force constants which are considered 

to be .perturbed by introduction of the H- ion. 

The ion at the centre is the H-. Its first 

neighpour (alkali) ions are represented, as 

well as its fourth neighbour (halide) ions. 

6f and ~g are the changes in the force constants . 

f and g, respectively, of the perfect crystal. 

The diagram considered in the calculation of 

the U-centre sideband spectrum is shown with 

the three "labellings" consistent with the 

anharmonic pot~ntial His). In each case one 

of the internal lines, indicated by the label 

(P), is the high frequency local mode phonon. 

The contribution of (c) is to be doubled to · 

account for the equivalent labelling in which 

y is replaced by z. 

lOS 
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Figure 4. 

Figure 5. 

Figure 6 ._ 

Figure 7. 

The computed Alg and· Eg resonance frequencies 

are plotted for various values of bg. The 

experimental resonance positions are marked with 

arrows. The arrow labelled "(E )"for KI 
g 

indicat~s the frequency of the resonance 

relative to that of the van Hove singularity. 

The dashed lines are drawn at the selected values 

of 6g. It should be noted that the figures have 

been drawn on an expanded scale and that the 

-1experimental accuracy is only ±1.0 cm • 

The Alg' Eg and T2g sideband lineshapes 

are given for KI:KH. The values 6f = -8660 

dyne/cm and bg = -5000 dyne/cm were used. The 

dashed line in the band gap .for the A component1g . . 

represents a localized gap mode of Alg symmetry. 

It should be noted that the T2g component is 

independent of 6f and 6g. 

The Alg' Eg and T2g sideband lineshapes 

are given for KBr:KH. The values bf = -8860 

dyne/cm and bg = -4400 dyne/cm were used. It 

should be noted that the T component is . 2g 

independent of both bf and bg. 

The complex resonance denominators for Alg 

and E symmetries are plotted for KI and KBr. g 

Resonances occur where Re{D} passes through zero 

with negative slope. The height of the resonance 
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Figure 8. 

Figure 9. 

Figure 10. 

is determined by the value of Im{D} (for the same 

symmetry) at the zero. 

The results of the sideband calculation for 

KI:KH are compared with the experimental results 

of Timusk and Klein (see Gethins et al. 67). 

-1The sharp peak at 68 cm in the theory is a 

resonance of E symmetry while the dashed line 
g 

at 90 cm-l indicates a pole of Alg symmetry. 

(Background has not been subtracted from the 

experimental results.) 

The results of the sideband calculation for 

KBr:KH are compared with experimental results 

of Timusk and Klein (1966) . The sharp peak at 

79 -1 cm in the theory is a resonance 
.-1 

of E 
g 

symmetry while the peak at 108 cm is a 

resonance of Alg symmetry. (Background has not 

been subtracted from the experimental results.) 

The "uncorrected" and "corrected" ·sideband 

lineshapes, 1(~) and 1' (w) respectively, are 

compared for KI:KH. The position of the first 

maximum in the corrected curve is shifted by 

about 2cm-l to higher frequencies. The intensities 

of peaks are also changed by the correction 

leading to better overall agreement with the 

experimental results ~hown in figure 8. 
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Figure 11. 

Figure 12. 

Figure 13. 

Figure 14. 

The real and imaginary parts of the 

resonance denominator for Tlu symmetry modes, 

D(Tlu)' are plotted for KBr and KI. The 

zeroes of Re{D(T u>} marked with arrows give1

rise to resonances in the far infrared absorption 

spectra. 

The results of the far infrared calculation 

for.KI:KH are compared with the experimental 

results of Timusk et al. (1968). The peak at 

-1
77 cm in the exp~rimental curve is due to 

-1Cl impurities. The sharp peak 	at 68.5 cm 

in the theory is a resonance of 	Tlu symmetry. 

2(The unit A is 4ne 2q{ (n 2 (00 ) + 2) /9n(w)µc} x 

-1210 sec, where q is the relative density of 

H ions.) 

The results of the far infrared calculation 

for KBr:KH are compared with experimental results 

-1of Timusk et al. (1968). The peak at 95 cm 

in the experimental curve is due to Cl impurities. 

-1The sharp peak at 89.5 cm in the theory is a 

resonance of Tlu symmetry. (See caption of 

figure 12 for unit A.) 

The total densities of states for KI and 

KBr, calculated from the shell model. The van Hove 

singularities occurring at 83.5 cm-l and 88 cm-l 



Figure 15. 

Figure 16. 

Figure 17. 

Figure 18. 

in KBr at 61.5 cm-l and 64 cm-l in KI lead to 

peaks in the far infrared absorption spectra. 

Projections of the perturbed and 

unperturbed densities of states of KI are 

compared. The dashed line represents a pole of 

Alg symmetry predicted in the band gap at 

90 cm-1 • The sharp peaks in the perturbed 

densities of states are resonances of E and g 

Tlu symmetries. 

Projections of the perturbed and 

unperturbed densities of states for KBr are 

compared. The sharp resonances in the perturbed 

densities of states appear in the sideband and 

far infrared absorption spectra. 

The diagram considered in calculating the 

broadening of the gap mode in KI:KH is shown. 

The internal lines are labelled in the position 

representation. 

The calculated results for the half-width 

W(pA) of the gap mode in KI:KH are shown as a 

function of temperature in a log-log plot. 

Also shown are some experimental measurements 

of Klein (1966) of the half-width of the gap 

mode in the sideband spectrum. The calculated 

quantity which should be compared to these 
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Figure 19. 

Figure 20. 

experimental values is W' (pA), which is 

obtained from W(pA) by correcting for the 

width of the main U-centre line. (The 

error bars on the experimental points have 

been estimated by T. Timusk.) 

The two diagrams considered in 

calculating the broadening of the high 

frequency local mode are shown. The cubic 

process can only occur for deuterium U-centres 

whereas the quartic process is possible for 

both hydrogen and deuterium u~centres. 

The three scattering processes which 

have been considered in evaluation of the 

broadening of the high frequency local mode 

are shown ~chematically in figure (a). 

In each case the initial and final states 

consist of a local mode phonon P and a · 

lattice phonon, p or p'. The transition can 

precede either directly through the quartic 

anharmonic interaction or indirectly through 

two successive cubic interactions. In the 

calculation, evaluation of diagram (b) takes 

into account all of these processes when the 

renormalized quartic anharmonic coefficient 

is used.v4 
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Figure 21. The calculated values of the half-width 

W(P) of the high frequency local mode for 

hydrogen and deuterium U-centres in KBr are 

shown as a function of temperature in a 

log-log plot, together with some experimental 

results of (a) Mirlin and Reshina (1964) 

and (b) Fritz et al. (1965). Solid lines 

have been drawn ·through the theoretical 

points, dashed lines through the experimental 

ones. Note the change in scale at low 

temperatures. 

Figure 22. The calculated values of the half-width 

W(P) of the high frequency local mode for 

hydrogen and deuterium u~centres in KI are 

shown as a function of temperature in a 

log-log plot. Some experimental results of 

(b) Fritz et al. (1965) and (c) Schaefer 

(1960) for KI:KH are also plotted. Solid 

lines have been drawn through the theoretical 

points and a dashed line through the 

experimental ones. Note the change in scale 

at low temperatures. 



FIGURE I. THE DYSON EQUATION FOR G~(p,p') 
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FIGURE 2. THE PERTURBED FORCE CONSTANTS. 
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-FIGURE . 3 . DI AGRAM CONTRIBUTING TO M<~>(I;) 
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FIGURE 6. SIDEBAND COMPONENTS 
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FIGURE 7. THE RESONANCE DENOMINATORS O(A19) AND O{E )
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FIGURE 11. THE RESONANCE DENOMINATOR D (T1u) 
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FIGURE 12. FAR INFRARED ABSORPTION FOR Kl=KH 
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FIGURE 13. FAR INFRARED ABSORPTION FOR Ker:KH 
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FIGURE 14. TOTAL DENSITIES OF STATES 
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FIGURE 15. PROJECTED DENSITIES OF STATES FOR Kl=KH 
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FIGURE 16. PROJECTED DENSITIES OF STATES FOR KBr: KH 
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FIGURE 17. DIAGRAM CONTRIBUTING TO ML(pA) 
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FIGURE 18. HALF-WIDTH OF GAP MOOE IN Kl= KH 
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FI G U RE I 9 . D I AGRAM S C 0 NT RI 8 UT I N G T0\ M ( Px) 
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FIGURE 20. THE SCATTERING MECHANISM 

(a) CONTRIBUTING PROCESSES _______ ___ : 


(b) DIAGRAM 
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FIGURE 21. HALF-WIDTH OF U- CENTRE LOCAL MODE IN K Br 
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I r FIGURE 22. HALF-WIDTH OF U-CENTRE LOCAL MODE. IN Kl 
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