METHODS OF STATISTICAL ANALYSIS FOR INTERACTION AND MAIN EFFECTS CONTRIBUTING TO AN ALL OR NOTHING TRAIT by

CAROLYN FYON

A PROJECT
SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE
MASTRR OF SCIENCE
MCMASTER UNIVERSITY
(OCTOBER) 1974

TITLE: METHODS OF STATISTICAL ANALYSIS FOR INTERACTION AND MATN EPPECTS CONTPIBUTITG TO AN ALI OR MOTHING TRAIT.

AUTHOR: CAROLYN FYON, B.Sc. (LOYOLA COLLEGE OF MONTREAL)
SUPERVISOR: DR. M. L. TIKU
NUMBER OF PAGES: iiii, 53
SCOPE AND CONTENTS: An analysis of the presence or absence of black melanin in broiler chickens as affected by the presence of different traits is studied in the following project. The purpose of this analysis is to show that the simple partitioning of chi-square method is as good as any other method.

This project also shows the equivalence of different statistical methods.

Acknowledrement

I would like to gratefully acknowledee the help and guidance of Dr. M.L. Tiku, my supervisor.
(ii)
Scope and Contents (i)
Acknowledsements (ii)
Table of Contents (iii)
Chapter I 1
Chapter II 23
Bibliosraphy 52

Introduction

Huntsman, Jerome and Snyder (1960) presented data concerning the incidence of black melanin in the abdominal tissue of broiler chickens. This pigment, when present, is located in the umbilical region of the abdomen and infiltrates the facial tissue there. The character is pleiotropic in nature and its presence or absence appears, for the most part, to be under the control of the plumage color phenotype and sex.

From previous work, it had been noted that three pairs of allelic plumage genes involving three independent loci appear to have distinct influence on the incidence of melanin deposition. The allelic traits concerned were: dominant white (I) and absence of dominant white (i); extended black (E) and restricted black (e); barred (B) and nonbarred (b). The first two pairs on autosomes, the last pair is located on the sex chromosome.

The population of broiler chickens from which the data were obtained was produced by using male parents known to be heterozygous for plumage color alleles at these three loci in a cross with females homozygous for the recessive alleles at each of the three loci. Therefore the males were of the genotype IiEeBb and the females were iieeb-. As a result of these parental genotypes, the eight plumage color phenotypes expected in the population were: IEB, IEb, IeB, Ieb, iEB, iEb, ieB and ieb. (see FIg. I on p. 5/)

Huntsman et al (1960) did no formal analyses on their data but pointed out that certain genetic interactions between genes at different loci appeared to be present.

The purpose of this project is to develop a logical analyses in order to determine the significance of these interlocus interactions and of any main effects produced by alleles within a locus. This will be done by first using a chi-square test and then by analyzing the data using a linear model. A test developed by Woolf will be done for second order interaction.

Chapter I consists of a summary of a number of papers dealing with the chi-square distribution:

Bartlett (1935), Berkson (1955), Berkson (1968), Bhapkar (1966), Bhapkar and Koch (1968), Cochran (1950), Goodman (1963), Kastenbaum and Lamphiear (1959), Plackett (1962), Woolf (1955), Roy and Kastenbaum (1956). There is also a summary of a paper by Grizzle, Starmer and Koch (1969) on linear models and a summary of a paper by Patil (1974) on the analysis of a three dimensional contingency table.

Chapter II consists of a more detailed account of some of the methods used to analyze the data:
(a) partitioning of chi-square
(b) method by Woolf and Plackett to test zero second-order interaction and
(c) methods related to linear models.

Table I
The incidence of melanin pigment deposition in the male offspring

Genotype *	Total no. of birds	No. with melanin present	No, with melanin absent	\% with melanin present
iiEeBb	76	2	74	2.6
iiEebb	115	102	13	88.7
iieeBb	80	29	51	36.3
iieebb	90	17	73	18.9
IiEeBb	62	1	61	1.6
IiEebb	76	19	53	30.3
IieeBb	73	6	38	26.0
Iieebb	44		13.6	

* the genotypes of the parents were such that the genotypes of the offspring can be deduced from the phenotypes.

Chapter I

Bartlett (1935) considered the problem of a $2 \times 2 \times 2=2^{3}$ contingency table. The difference between this table and the ordinary 2×2 table is that in the 2^{3} table, the second-order interaction must be taken into account. The 2^{3} table looks as follows:

The standard deviation denoted by x is to be found. This is done by solving: $\left(n_{1}+x\right)\left(n_{4}+x\right)\left(n_{6}+x\right)\left(n_{7}+x\right)=\left(n_{2}-x\right)\left(n_{3}-x\right)\left(n_{5}-x\right)$ $\left(n_{8}-x\right)$. The expected value $a_{i}(i=1,2, \ldots, 8)$ is then found. Therefore the sum of squares is given by $x^{2} \sum_{r=1}^{8} \sum_{r}^{\frac{1}{a}}$ which is distributed in large sample theory as chi-square with one degree of freedom.

Cochran (1950) wrote a paper describing methods to use when the ordinary chi-square test cannot be used because of matching which may cause correlation between the results in different samples.

If there are only two samples, McNemar's test is used. The 2×2 table is of the form:

"Matching" means that each sample contains exactly the same subjects. The numbers b and c are tested to see whether they are binomial successes and failures out of $n=(b+c)$ trials with probability $\frac{1}{2}$.

Therefore $x^{2}=\frac{\left(b-\frac{n}{2}\right)^{2}}{\frac{n}{2}}+\frac{\left(c-\frac{n}{2}\right)^{2}}{\frac{n}{2}}=\frac{(b-c)^{2}}{(b+c)}$ with one degree of freedom.

Cochran wanted to extend this test to the situation where there are more than two samples. Suppose we have a table of the form:

A	B	C	D	Number	
	a_{1}	b_{1}	c_{1}	d_{1}	E
a_{2}	b_{2}	c_{2}	d_{2}	F	
	a_{3}	b_{3}	c_{3}	d_{3}	G
	a_{4}	b_{4}	c_{4}	d_{4}	H
	a_{5}	b_{5}	c_{5}	d_{5}	I
Total $\left(T_{j}\right)$	K	L	M	N	

where the "a's" and "b's" are 0!s or l's.

By number, it is meant the number of say cases with that specific combination of the $a^{\prime} s$ and b's. Note $K+L+M+N \neq E+F+G+H+I$. The values K, L, M and N are obtained by adding up the total number of 1's for each column, e.g. $a_{1}=1, a_{2}=1$ and $a_{3}=a_{4}=a_{5}=0$ e.g., $a_{1}=1, a_{2}=1$ and $a_{3}=a_{4}=a_{5}=0 \quad \operatorname{Total} T_{j}=E+E$.

The data is considered as having $E+F+G+H+I$ rows and 4 columns. The test criterion used is $\Sigma\left(T_{j}-\bar{T}\right)^{2}$ where T_{j} is the total number of successes (1's) in the j th column. This is distributed as $\chi^{2} \sigma^{2}(1-p)$ with $(c-1)$ degrees of freedom where c is the number of variates. Here $\sigma^{2}=\sum_{i} \frac{u_{i}}{c}\left(1-\frac{u_{i}}{c}\right)$ where u_{i} represents the successes. The common covariance is given by

$$
\rho \sigma^{2}=\frac{-\sum \frac{u_{1}}{c}\left(1-\frac{u_{i}}{c}\right)}{(c-1)}=\frac{-\frac{\sigma^{2}}{(c-1)}}{(c-1)}
$$

Therefore $\sigma^{2}(1-\rho)=\sigma^{2}-\rho \sigma^{2}$

$$
\begin{aligned}
& =\Sigma \frac{u_{i}}{c}\left(1-\frac{u_{i}}{c}\right)+\frac{\sigma^{2}}{(c-1)} \\
& =\frac{(c-1)\left[\Sigma\left(\frac{u_{i}}{c}\right)\left(1-\frac{u_{i}}{c}\right)\right]+\Sigma \frac{u_{i}}{c}\left(1-\frac{u_{i}}{c}\right)}{(c-1)} \\
& =\frac{1}{(c-1)} \Sigma u_{i}\left(1-\frac{u_{i}}{c}\right)
\end{aligned}
$$

Therefore the required test is given by:

$$
Q=\frac{(c-1) \sum_{j}^{\sum}\left(T_{j}-\bar{T}\right)^{2}}{\sum_{i} u_{i}\left(1-\frac{u_{i}}{c}\right)}=\frac{c(c-1) \sum_{j}^{\Sigma}\left(T_{j}-\bar{T}\right)^{2}}{c\left(\sum_{i} u_{i}\right)-\left(\sum_{i} u_{i}^{2}\right)}
$$

which is distributed as chi-square with (c-1) degrees of freedom. Notice that with two samples (i.e. $c=2$)

$$
Q=\frac{(b-c)^{2}}{(b+c)}
$$

which is the same as that obtained above for the two sample case.

When an example is being worked out: $\sum_{i} u_{i}=\underset{j}{\sum} T_{j}=\sum_{i}$ (value of u_{i}) frequency and $\sum_{i} u_{i}^{2}=\sum_{i}$ (frequency) (value of u_{i}^{2}). The frequencies are E, F, G, H, I depending on which row is being used. The u_{i} value is obtained by using the number of l's in each row that is being considered.

Berkson (1955) wanted to show which is the better: the minimum chi-suare or the maximum likelihood estimate for finite samples where the estimates may differ in their distributions.

We have $P_{i}=1-Q_{i}=\frac{1}{1-e^{-\left(\alpha+\beta x_{i}\right)}}$

$$
p_{i}=1-q_{i}=\frac{1}{1-e^{-\left(a+b x_{i}\right)}}
$$

The straight line transform of this function called the logit is given by

$$
\operatorname{logit} P_{i}=\ln \left(\frac{\mathbf{P}_{i}}{\mathbb{Q}_{i}}\right)=\alpha+\beta x_{i}
$$

For the maximum likelihood estimates of α and β, the following equations must be solved:

$$
\sum_{i} n_{i}\left(p_{i}-\hat{p}_{i}\right)=0
$$

and

$$
\sum_{i} n_{i} x_{i}\left(p_{i}-\hat{p}_{i}\right)=0
$$

where n_{i} is the number at x_{i} and $p_{i}=1-q_{i}$ is the proportion of n_{i} observed to respond and p_{i} is the estimate of P_{i}.

The minimum chi-square is obtained by solving:

$$
\begin{aligned}
& \sum_{i} n_{i} \frac{\left(\hat{p}_{i} q_{i}+\hat{q}_{i} p_{i}\right)\left(p_{i}-\hat{p}_{i}\right)}{\hat{p}_{i} \hat{q}_{i}}=0 \\
& \sum_{i} n_{i} \frac{\left(\hat{p}_{i} q_{i}+\hat{q}_{i} q_{i}\right) x_{i}\left(p_{i}-\hat{p}_{i}\right)}{p_{i} q_{i}}=0
\end{aligned}
$$

To this day, it is still not known which is the better. However, the minimum chi-square has the same asymptotic properties as the maximum likelihood estimate.

Plackett's work (1962) involves interactions in contingency
tables. Suppose we have a $2 \times 2 \times 2$ table of the form:
Combination of Classes
Probability

$A B C$	p_{1}
$A \bar{B} C$	\mathbf{p}_{2}
$\bar{A} B C$	\mathbf{p}_{3}
$\bar{A} \bar{B} C$	\mathbf{p}_{4}
$\overline{A B C}$	\mathbf{p}_{5}
$\bar{A} \bar{B} \bar{C}$	\mathbf{p}_{6}
$\bar{A} \bar{B} \bar{C}$	\mathbf{p}_{7}
$\bar{A} \bar{B} \bar{C}$	\mathbf{p}_{8}

where $p_{1}, p_{2}, \ldots, p_{8}$ are the probabilities and A denotes the presence of the attribute A and \bar{A} denotes the absence of the attribute A etc. A function Ψ is introduced such that $\Psi\left(p_{1}, p_{2}, p_{3}, P_{4}\right)$ measures the degree of association between A and B in class C. The condition for zero second order interaction is:

$$
\Psi\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\Psi\left(p_{5}, p_{6}, p_{7}, p_{8}\right)
$$

Also, $\Psi\left(p_{1}, p_{3}, p_{5}, p_{7}\right)=\Psi\left(p_{2}, p_{4}, p_{6}, p_{8}\right)$ for A and C in class B. Similarly $\Psi\left(p_{1}, p_{2}, p_{5}, p_{6}\right)=\Psi\left(p_{3}, p_{4}, p_{7}, p_{8}\right)$ for B and C in class A.

Bartlett (1935) used for a 2×2 table:

$$
\Psi\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\frac{p_{1} p_{4}}{p_{2} p_{3}}
$$

In a $2 \times 2 \times 2$ table, the condition for zero second-order interaction is

$$
p_{1} p_{4} p_{6} p_{7}=p_{2} p_{3} p_{5} p_{8}
$$

because $\Psi\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\Psi\left(p_{5}, p_{6}, p_{7}, p_{8}\right)$

$$
\begin{aligned}
& \frac{p_{1} p_{4}}{p_{2} p_{3}}=\frac{p_{5} p_{8}}{p_{6} p_{7}} \\
& p_{1} p_{4} p_{6} p_{7}=p_{2} p_{3} p_{5} p_{8}
\end{aligned}
$$

Similarly $\Psi\left(p_{1}, p_{3}, p_{5}, p_{7}\right)=\Psi\left(p_{2}, p_{4}, p_{6}, p_{8}\right)$

$$
\begin{aligned}
& \frac{p_{1} p_{7}}{p_{3} p_{5}}=\frac{p_{2} p_{8}}{p_{4} p_{6}} \\
& p_{1} p_{2} p_{4} p_{6}=p_{2} p_{8} p_{3} p_{5}
\end{aligned}
$$

Similarly $\Psi\left(p_{1}, p_{2}, p_{5}, p_{6}\right)=\Psi\left(p_{3}, p_{4}, p_{7}, p_{8}\right)$

$$
\begin{aligned}
& \frac{p_{1} p_{6}}{p_{2} p_{5}}=\frac{p_{3} p_{8}}{p_{4} p_{7}} \\
& p_{1} p_{6} p_{4} p_{7}=p_{2} p_{5} p_{3} p_{8} .
\end{aligned}
$$

In all cases (and therefore consistent)

$$
p_{1} p_{4} p_{6} p_{7}=p_{2} p_{3} p_{5} p_{8}
$$

There is another way of analyzing a $2 \times 2 \times t$ table given by Woolf (1955). Let the frequencies in the kth 2×2 table be denoted by $n_{1 k}, n_{2 k}, n_{3 k}, n_{4 k}$ where $n_{1 k}, n_{2 k}$ occupy the first row and $n_{1 k}, n_{3 k}$ the first column.

Compute:

$$
z_{k}=\ln n_{1 k}-\ln n_{2 k}-\ln n_{3 k}+\ln n_{4 k}
$$

and u_{k} from

$$
\frac{1}{u_{k}}=\frac{1}{n_{1 k}}+\frac{1}{n_{2 k}}+\frac{1}{n_{3 k}}+\frac{1}{n_{4 k}}
$$

If there is zero second-order interaction

$$
x^{2}=\sum_{k} u_{k} z_{k}^{2}=\frac{\left(\sum_{k} u_{k} z_{k}\right)^{2}}{u_{k}}
$$

is asymptotically distributed as X^{2} with ($t-1$) degrees of freedom.
Roy and Kastenbaum (1956) also discussed the hypothesis of no interaction: Suppose we have a three way table: let $n_{i . j k}$ denote the observed frequency and $p_{i j k}$ the probability in the (ijk)th cell where $i=1,2, \ldots ., r ; j=1,2, \ldots, s ; k=1,2, \ldots, t$.

Let the marginals be denoted in the usual manner i.e., $\underset{i}{\sum_{i j k}} n_{n} \cdot j k$ and $\underset{i, j, k}{n_{i j k}}=n . \quad$ Similarly define $\sum_{i}^{\sum} p_{i j k}=p_{. j k}$ etc. The likelihood function is

$$
\phi\left(n_{i j k} \prime s\right)=\phi=\frac{n!}{\prod_{i} n!} \quad \prod_{i, j, k} p_{i j k}^{n_{i j k}}
$$

$$
\text { As } n!\sim \underset{i, j, k}{n} \stackrel{n!}{i j k}
$$

$$
n_{i j k}
$$

$$
\phi \sim \mathbb{I} p_{i j k}
$$

$$
i, j, k
$$

The hypothesis of independence between (i, j) and k is to be tested. The best way of doing this is by using the following set of conditions:

$$
H_{0}: p_{i j k}=\frac{q_{i j .} q_{i . k} q_{. j k}}{q_{i . .}^{q} q_{\cdot j .}} q_{., k}
$$

The role of the q 's is to yield certain constraints on the p 's.
For an $\mathbf{r} \times \mathrm{s} \times \mathrm{t}$ table, the following "no interaction" constraints are present:

$$
\left.\frac{p_{r s t} p_{i j t}}{p_{i s t} p_{r j t}}=\frac{p_{r s k} p_{i j k}}{p_{i s k} p_{r j k}}\right\}\left\{\begin{array}{l}
i=1,2, \ldots\left(\begin{array}{l}
(r-1) \\
j=1,2, \ldots . \\
k=1,2, \ldots
\end{array}(t-1)\right.
\end{array}\right.
$$

Therefore there are $(t-1)(s-1)(r-1)$ constraints on the $p_{i j k}$'s.

Maximize ϕ subject to the "no interaction" constraints and all $\Sigma p_{i j k}=1$. To do this, use the Lagrangian multiplier $\lambda_{i j k}$ for $\frac{P_{r s t} P_{r j t}}{P_{i s t} P_{r j t}}=\frac{P_{r s k} P_{i j k}}{P_{i s k} P_{r j k}}$ and the Lagrangian multiplier μ for $\Sigma p_{i j k}=1$. Solving these equations, the following is obtained:

$$
\sum_{i, j, k} \frac{\mu_{i j k}^{2}}{\left(n_{i j k}+n_{i j k} \mu_{i j k}\right)}
$$

which is distributed as χ^{2} with ithe degrees of freedom equal to the number of "no interaction" constraints on the p 's which is equal to $(r-1)(s-1)(t-1)$ where $i=1,2, \ldots, r ; j=1,2, \ldots, s ;$ $k=1,2, \ldots, t$ and

$$
\begin{aligned}
\eta_{i j k}=1 & \text { if ijk }=\text { rst or if any two subscripts differ } \\
\eta_{i j k}=1 & \text { if any one subscript differs from the } \\
& \text { corresponding pivotal or if all the } \\
& \text { subscripts differ. }
\end{aligned}
$$

Berkson (1968) discussed logit analysis. Linear formulas of the estimates are used in this kind of analysis. Therefore iterative methods are not necessary. The logit X^{2} is computed directly from the observations.

Consider the following table:

birth order k	No. of mothers with Losses 1	No losses 2	Total	
2	1	a_{1}	b_{1}	n_{11}
	2	c_{1}	a_{2}	n_{21}
	2	c_{2}	b_{2}	n_{12}

with $p_{1 k}=1-q_{1 k}=a_{k} / n_{1 k}$

$$
\begin{aligned}
& \mathbf{p}_{2 k}=1-q_{2 k}=c_{k} / n_{2 k} \\
& \mathbf{p}_{1 k}=1-Q_{1 k}=\text { probability corresponding to } p_{1 k} \\
& \mathbf{p}_{2 k}=1-Q_{2 k}=\text { probability corresponding to } p_{2 k} \\
& \ell_{1 k}=\operatorname{logit} p_{1 k}=\ln \left(a_{k} / b_{k}\right) \\
& \ell_{2 k}=\operatorname{logit} p_{2 k}=\ln \left(c_{k} / Q_{k}\right) \\
& L_{1 k}=\operatorname{logit} P_{1 k}=\ln \left(p_{1 k} / Q_{1 k}\right) \\
& L_{2 k}=\operatorname{logit} P_{2 k}=\ln \left(P_{2 k} / Q_{2 k}\right) \\
& \mathbf{B}_{k}=L_{1 k}-L_{2 k} \\
& \mathbf{B}_{k}=\ell_{1 k}-\ell_{2 k}
\end{aligned}
$$

$\cdot{ }_{Y_{k}}=$ odds ratio $=\frac{P_{1 k}}{Q_{1 K}} \quad \frac{P_{2 k}}{Q_{2 k}}=e^{\beta_{k}}$

$$
\begin{aligned}
& c_{1 k}=1 / a_{k}+1 / b_{k} \\
& c_{2 k}=1 / c_{k}+1 / d_{k} \\
& \tilde{c}_{t}=\sum_{k=1}^{3} c_{1 k}+\sum_{k=1}^{3} c_{2 k} \\
& w_{1 k}=\frac{1}{c_{1 k}} \\
& w_{2 k}=\frac{1}{c_{2 k}} \\
& w_{k}=\frac{1}{\left(c_{1 k}+c_{2 k}\right)}
\end{aligned}
$$

The analysis is broken into four cases as follows:
Case I : the hypothesis of no interaction is tested. The logit x^{2} is given by

$$
\begin{aligned}
x_{\ell}^{2} & =\sum_{k=1}^{3} n_{1 k} p_{1 k} q_{1 k}\left(\ell_{1 k}-L_{1 k}\right)^{2}+\sum_{k=1}^{3} n_{2 k} p_{2 k} q_{2 k}\left(\ell_{2 k}-L_{2 k}\right)^{2} \\
& =\sum_{k=1}^{3} w_{1 k}\left(\ell_{1 k}-L_{1 k}\right)^{2}+\sum_{k=1}^{3} w_{2 k}\left(\ell_{2 k}-L_{2 k}\right)^{2}
\end{aligned}
$$

the constraint is

$$
L_{11}-L_{21}=L_{12}-L_{22}=L_{13}-L_{23}=B
$$

which can be written as

$$
\begin{aligned}
& F_{1}(L)=F_{1}=L_{11}-L_{21}-L_{12}+L_{22}=0 \\
& F_{2}(L)=F_{2}=L_{11}-L_{21}-L_{13}+L_{23}=0
\end{aligned}
$$

Using Lagrangian multipliers, the following is obtained $x_{\ell}^{2}=\sum_{k=1}^{3} w_{1 k}\left(\ell_{1 k}-L_{1 k}\right)^{2}+\sum_{k=1}^{3} w_{2 k}\left(\ell_{2 k}-L_{2 k}\right)^{2}+\lambda_{1} F_{1}+\lambda_{2} F_{2}$.

Setting the differentials with respect to the L's equal to zero and substituting the solutions for L and estimating λ_{1}, λ_{2}.

$$
\hat{\beta}=\frac{\widetilde{w}_{1} B_{1}+\widetilde{w}_{2} B_{2}+\widetilde{w}_{3} B_{3}}{\widetilde{w}_{1}+\widetilde{w}_{2}+\widetilde{w}_{3}}
$$

and

$$
\begin{equation*}
x_{\ell}^{2}=\sum_{k=1}^{3} w_{1 k}\left(\ell_{1 k}-L_{1 k}\right)^{2}+\sum_{k=1}^{3} w_{2 k}\left(\ell_{2 k}-L_{1 k}+\hat{\beta}\right)^{2} \tag{1}
\end{equation*}
$$

Differentiating x_{l}^{2} with respect to the $L_{1 k}$ and equaling to zero, the estimate of $L_{l k}$ is obtained

$$
\begin{equation*}
\hat{L}_{1 k}=\frac{w_{1 k} \varepsilon_{1 k}+w_{2 k} \varepsilon_{2 k}+w_{2 k} \hat{\beta}}{w_{1 k}+w_{2 k}} \tag{2}
\end{equation*}
$$

and

$$
\hat{L}_{2 k}=\hat{L}_{1 k}-\hat{\beta}
$$

Substituting (2) in (1)

$$
x_{\ell}=\sum_{k=1}^{3} \widetilde{w}_{k}\left(B_{k}-\hat{\beta}\right)^{2}=\sum_{k=1}^{3} \widetilde{w}_{k} B_{k}^{2}-\hat{\beta}^{2} \sum_{k=1}^{3} \cdot W_{k}
$$

Case II: Is there a difference between problems and controls. The constraint is

$$
F(L)=F=L_{11}+L_{12}+L_{13}-L_{21}-L_{22}-L_{23}=0
$$

Using Lagrangian multipliers

$$
\begin{equation*}
x_{\ell}^{2}=\sum_{k=1}^{3} w_{1 k}\left(\ell_{1 k}-L_{1 k}\right)^{2}+\sum_{k=1}^{3} w_{2 k}\left(\ell_{2 k}-L_{2 k}\right)^{2}+\lambda(F) \tag{3}
\end{equation*}
$$

Differentiating with respect to the L's and solving

$$
\begin{align*}
& L_{1 k}=\ell_{1 k}-\frac{\lambda}{2 w_{1 k}}-\ell_{1 k}-\frac{\lambda}{2} c_{1 k} \\
& L_{2 k}=\ell_{2 k}+\frac{\lambda}{2 w_{2 k}}-\ell_{2 k}+\frac{\lambda}{2} c_{2 k} \tag{4}
\end{align*}
$$

Substituting (4) in (3)

$$
\begin{equation*}
\lambda=\frac{2\left({ }_{k} \sum_{1}^{3} \ell_{1 k}-k^{\sum_{n}} \ell_{2 k}\right)}{\widetilde{C}_{t}} \tag{5}
\end{equation*}
$$

Substituting (5) in (4)

$$
\left.\begin{array}{l}
\hat{L}_{1 k}=\ell_{1 k}-\frac{1}{2} \lambda C_{1 k} \tag{6}\\
\hat{L}_{2 k}=\ell_{2 k}-\frac{1}{2} \lambda C_{2 k}
\end{array}\right\}
$$

Substituting (6) into

$$
x_{\ell}^{2}=\sum_{k=1}^{3} w_{1 k}\left(\ell_{1 k}-L_{1 k}\right)^{2}+\sum_{k=1}^{3} w_{2 k}\left(l_{2 k}-L_{2 k}\right)^{2}
$$

the following is obtained:

$$
x_{l}^{2}=\frac{3}{2} \hat{c}_{t} \lambda^{2}
$$

Case III: The hypothesis of equality of birth order effects is to be tested. The constraint is

$$
L_{11}+L_{21}=L_{12}+L_{22}=L_{13}+L_{23}
$$

This case is similar to Case I and

$$
\hat{\beta}^{\prime}=\frac{\left(\widetilde{w}_{1} B_{1}^{\prime}+\widetilde{w}_{2} B_{2}^{\prime}+\widetilde{w}_{3} B_{3}^{\prime}\right)}{\widetilde{w}_{1}+\widetilde{w}_{2}+\widetilde{w}_{3}}
$$

where $B_{1}^{\prime}=\ell_{11}+\ell_{21}$
and

$$
B_{2}^{\prime}=\ell_{12}+\ell_{22}
$$

and

$$
B_{3}^{\prime}=\ell_{13}+\ell_{23}
$$

$$
\left.\tilde{I}_{1 k}=\frac{\left(w_{1 k}{ }^{\ell} 1 k\right.}{}-w_{2 k} \ell_{2 k}+w_{2 k} \hat{B}^{\prime}\right)\left(w_{1 k}+w_{2 k} \quad,\right.
$$

$$
\widetilde{I}_{2 k}=\hat{B}^{\prime}-\widetilde{I}_{1 k}
$$

and $x_{l}^{2}=\sum_{k=1}^{3} \tilde{w}_{k}\left(B_{k}^{\prime}-B^{\prime}\right)^{2}=\sum_{k=1}^{3} \tilde{w}_{k} B^{\prime}{ }_{k}^{2}-B^{\prime 2} \sum_{k=1}^{3} \tilde{w}_{k}$.
Case IV: The following two hypotheses are tested: is the effect of birth order linear or does it require a second degree polynomial to describe the effect? The restrictions are:

$$
L_{11}+L_{21}=L_{13}+L_{23}
$$

and $L_{11}+L_{21}-2 L_{12}-2 L_{22}+L_{13}+L_{23}=0$ and the estimate of B is

$$
\begin{aligned}
& \hat{B}^{\prime}=\frac{\left(\widetilde{w}_{1} B_{1}^{\prime}+\tilde{w}_{3} B_{3}^{\prime}\right)}{\widetilde{w}_{1}+\widetilde{w}_{3}} \\
& \text { where } B^{\prime}= L_{11}+L_{21}=L_{13}+L_{23} \\
& \text { and } B_{1}^{\prime}=\tilde{\ell}_{11}+\ell_{21} \\
& B_{3}^{\prime}=\ell_{13}+\ell_{23} \\
& \tilde{L}_{11}=\frac{\left(w_{11} \ell_{11}-w_{21} \ell_{21}+w_{21} \hat{B}^{\prime}\right)}{w_{11}+w_{21}} \\
& \tilde{I}_{21}=\hat{B}^{\prime}-\tilde{Z}_{11} \\
& \tilde{L}_{12}=\ell_{12} \\
& \tilde{I}_{22}=\ell_{22} \\
& \tilde{I}_{13}=\frac{w_{13} \ell_{13}-w_{23} \ell_{23}+w_{23} \hat{B^{\prime}}}{w_{13}+w_{23}} \\
& \tilde{L}_{23}=\hat{B}^{\prime}-L_{13}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
x_{e}^{2} & =\tilde{w}_{1}\left(B_{1}^{\prime}-\hat{B}\right)^{2}+\tilde{w}_{3}\left(B_{j}^{\prime}-\hat{B}\right)^{2} \\
& =\tilde{w}_{1} B_{I}^{\prime}{ }^{2}+w_{3} B_{3}^{\prime 2}-\hat{B}^{\prime 2}\left(\tilde{w}_{1}+\tilde{w}_{3}\right) .
\end{aligned}
$$

Grizzle, Starmen and Koch (1969) fitted a linear model to analyze categorical data. Various models were used.

Suppose the data is arranged as follows:

Expected Cell Probabilities
Categories of response

Populations	1	2	r	Total
1	Π_{11}	H_{12}	$\mathrm{n}_{1 r}$	1
2	$\mathbb{\pi}_{21}$	H_{22}		$\Pi_{2 r}$	1
-	-	-		-	-
-	-	-		-	-
-	-	-		-	-
s	$\Pi_{s 1}$	$\mathrm{m}_{\mathbf{s} 2}$		$\mathrm{H}_{\text {sr }}$	1

Define

$$
p_{i j}=n_{i j} / n_{i}
$$

$$
{\underset{\sim}{i}}_{\prime}^{\sim}=\left[p_{i 1}, p_{i 2}, \ldots, p_{i r}\right]
$$

$V\left(p_{i}\right)=$ sample estimate of $V\left(\Pi_{i}\right) \quad\left(p_{i j}=\Pi_{i j}\right)$
$\mathrm{V}(\mathrm{p})=$ block diagonal with $\mathrm{V}\left(\mathrm{p}_{\mathrm{i}}\right)$ on the main diagonal
$f_{m}(I)=$ any function of the elements of p that has partial derivatives up to second order with respect to the $\Pi_{i j}$ $f_{m}(\Pi)=f_{m}(p)$ evaluated at $\Pi=p$

$$
H=\left[\left.\frac{\partial f m(\Pi)}{\partial \Pi_{i j}} \right\rvert\, \Pi_{i j}=p_{i j}\right]
$$

and $S=H V(p) H^{\prime}$.

Assume $\underset{u \times 1}{F} \quad(\pi)=\underset{u \times v}{x} \quad \underset{v}{\beta} \times 1$
where X is a known design matrix and β is a vector of unknown parameters. The test statistic used to see if the data fits a particular model is $S S[F(I)=x \beta]=F^{\prime} S^{-1} F * b^{\prime}\left(X^{\prime} S^{-1} X\right) b$ where $b=\left(X^{\prime} S^{-1} X\right)^{-1} X^{\prime} S^{-1} F$ which is distributed as chi-square with (u - v) degrees of freedom. If the value obtained is less than the known value, the data fits that model and therefore row
and column effects are tested. This is done by using the following statistic and by choosing the appropriate C matrix (depends on whether row or column effects are being tested) which is a ($d \times v$) matrix. The test statistic is

$$
S S[C \beta=0]=b^{\prime} C^{\prime}\left[C\left(X^{\prime} s^{-1} X\right)^{-1} C^{\prime}\right]^{-1} C b
$$

which is distributed as chi-square with d degrees of freedom.

Grizzle et al (1969) then described other models based on this general model which will be mentioned in the next chapter.

Patil (1974) described another method for analyzing an resxt contingency table. Suppose our data is arranged as follows:

${ }^{\mathrm{n}} 111$		n_{211}	$\mathrm{n}_{221} \ldots{ }^{n_{2 s 1}}$	$n_{r 11} \ldots n_{r s l}$
${ }^{n} 112$	$n_{122} \ldots{ }^{n}{ }_{1 s 2}$	n_{212}	$\mathrm{n}_{222} \cdots \mathrm{n}_{2 s 2}$	${ }^{n_{r 12}} \ldots{ }^{\text {n }}$ rs2
n_{11}	$n_{12 t} \ldots . . n_{1 s t}$	$\mathrm{n}_{21} \mathrm{t}$	$\mathrm{n}_{22 t} \ldots . \mathrm{n}_{2 s t}$	$n_{r l t} \ldots . . n_{r s t}$

Let $i=1, r$

$$
j=1, s
$$

$$
k=1, t
$$

Form the matrix $Y_{k}^{\prime}=\left(n_{11 k}, n_{12 k}, \ldots, n_{l(s-1) k} \ldots n_{(r-1)(s-1) k}\right)$

Let $\boldsymbol{n}_{\mathbf{i} . \mathrm{k}}=\boldsymbol{\sum}_{\mathbf{j}} \mathbf{n}_{\mathrm{ijk}}$

$$
\begin{aligned}
& n_{\cdot j k}=\sum_{i} n_{i j k} \\
& n_{\cdot . k}=\sum_{i j} n_{i j k}
\end{aligned}
$$

Calculate the matrix $\mu_{i j k}$ (mean vector) and $\Sigma_{i j k}$ (covariance matrix) for $k=1, \ldots, t$ when

$$
\mu_{i j k}=E\left(n_{i j k}\right)=\frac{n_{i . k}^{n} \cdot j k}{n_{0 . k}}
$$

and

$$
\Sigma_{i j k}=\frac{\left.n_{i \cdot k} n_{\cdot j k}^{(n} \cdot . k-n_{i, k}\right)(n \cdot . k-n \cdot j k)}{n_{\ldots . k}^{2}\left(n \cdot . k^{-1)}\right.}
$$

Now calculate X_{k}^{2} for $k=1, \ldots, t$.
This is done as follows

$$
x_{k}^{2}=\left(Y_{k}-\mu_{k}\right) \cdot \Sigma_{k}^{-1}\left(Y_{k}-\mu_{k}\right)
$$

and

$$
x_{0}^{2}=(Y-\mu)^{\prime} \Sigma^{-1}(Y-\mu)
$$

where $Y^{\prime}=\mathbf{E}_{\mathbf{k}} Y^{\prime}{ }_{k}$
and

$$
\Sigma=\sum_{k} \Sigma_{k}
$$

and

$$
\mu^{\prime}=\sum_{k} \mu_{k}^{\prime}
$$

Therefore the required statistic to test the null hypothesis which tests for zero second-order interaction is

$$
x^{2}=\sum_{k=1}^{t} x_{k}^{2}-x_{0}^{2} \text { with }(r-1)(s-1)(t-1) \text { degrees of freedom. }
$$

CHAPTER II

2.1. Orthogonal partitioning of chi-squares

We now analyze the data by adopting a straightforward linear model.

Consider the following mathematical model:

$$
\begin{align*}
E\left(Y_{i j k \ell}\right) & =\mu+E_{i}+B_{j}+I_{k}+(E B)_{i j}+(E I)_{i k}+(B I)_{j k} \tag{1}\\
i & =1,2 \quad l \quad l=1,2 \quad k=1,2 \quad \ell=1,2, \ldots, n_{i j k}
\end{align*}
$$

where single letters represent main effects and double letters represent first order interactions. We assume (see Scheffé, page 92).

$$
\begin{align*}
& \sum_{i=1}^{2} n_{i} . . E_{i}=0 \quad \sum_{j=1}^{2} n_{\cdot j} B_{j}=0 \quad \sum_{k=1}^{2} n \ldots k I_{k}=0 \tag{2}\\
& \sum_{i j} n_{i j} .{ }^{(E B)_{i j}}=0 \quad \sum_{i} \sum_{k} n_{i . k}{ }^{(E I)_{i k}}=0 \quad \sum_{k} \sum_{j}^{n}{ }^{n} \cdot j k{ }^{(B I)}{ }_{j k}=0
\end{align*}
$$

The objective is to test the null hypothesis that the main effects and interactions are all zero.

Since the distribution of $Y_{i j k l}$ is binomial, i.e., $\theta^{\mathbf{Y}}(1-\theta)^{\mathbf{Y}} \quad \mathbf{Y}=0,1$ (3) we cannot adopt the conventional analysis-of-variance technique to test the null hypothesis. However, we still can estimate parameters through "least square estimation".

We first want to find the least square estimators of the main effects and interactions. To do this, we must minimize the following expression:

$$
\begin{aligned}
A & =\sum_{i} \sum_{j} \sum_{k} \sum_{\ell}\left\{Y_{i j k \ell}-\mu-E_{i}-B_{j}-I_{k}-(E B)_{i j}-(E I)_{i k}-(B I)_{j k}\right\}^{2} \\
& =\sum_{i} \sum_{j} \sum_{k} \sum_{\ell}\left\{Y_{i j k \ell}^{2}-2 \mu Y_{i j k}-2 E_{i} Y_{i j k \ell}-2 B_{j} Y_{i j k \ell}-2 I_{k} Y_{i j k \ell}\right. \\
& -2 E_{i} B_{j} Y_{i j k \ell}-2 I_{k} E_{i} Y_{i j k \ell}-2 B_{j} I_{k} Y_{i j k \ell}+\mu^{2}+2 \mu E_{i}+2 \mu B_{j} \\
& +2 \mu I_{k}+2 \mu E_{i} B_{j}+2 \mu E_{i} I_{k}+2 \mu B_{j} I_{k}+E_{i}^{2}+2 B_{j} E_{i}+2 E_{i} I_{b} \\
& +2 E_{i}{ }^{2} B_{j}+2 E_{i}{ }^{2} I_{k}+6 E_{i} B_{j} I_{k}+B_{j}{ }^{2}+2 B_{j} I_{k}+2 E_{i} B_{j}{ }^{2}+2 B_{j}{ }^{2} I_{k}+I_{k}{ }^{2} \\
& +2 E_{i} I_{k}{ }^{2}+2 B_{j} I_{k}{ }^{2}+E_{i}{ }^{2} B_{j}{ }^{2}+2 E_{i}{ }^{2} I_{k} B_{j}+2 E_{i} I_{k} B_{j}{ }^{2}+E_{i}{ }^{2} I_{k}{ }^{2}+ \\
& \left.+2 E_{i} B_{j} I_{k}{ }^{2}+B_{j}{ }^{2} I_{k}{ }^{2}\right\} .
\end{aligned}
$$

Differentiating A with respect to the parameters and solving the resulting equations, the following estimators are obtained:

$$
\begin{aligned}
\hat{\mu} & =\bar{Y} \ldots \\
\hat{E}_{i} & =\bar{Y}_{i} \ldots-\bar{Y}_{\ldots} \ldots \\
\hat{B}_{j} & =\bar{Y} . j \ldots-\bar{Y} \ldots \\
\hat{I}_{k} & =\bar{Y} \ldots k .-\bar{Y} \ldots .
\end{aligned}
$$

$$
\begin{aligned}
& (\hat{E B})_{i j}=Y_{i j} \ldots-Y_{i} \ldots-Y_{. j} .+Y \ldots \\
& (\hat{E I})_{i k}=Y_{i . k}-Y_{i \ldots}-Y_{\ldots k}+{ }^{-} \ldots \\
& (\hat{B I})_{j k}=\bar{Y}_{. j k} .^{-\bar{Y}} . j \ldots-\bar{Y} \ldots k . \quad+\bar{Y} \ldots
\end{aligned}
$$

where $Y \ldots=\frac{1}{n} \sum_{i} \sum_{j} \sum_{k} \sum_{\ell} Y_{i j k \ell}=\frac{1}{N} Y \ldots$
where $N=\sum_{i} \sum_{j} \sum_{k} n_{i j k}$
and $Y_{i \ldots}=\frac{1}{n_{i}} \quad \sum_{j} \sum_{k} \sum_{\ell} Y_{i j k \ell}=\frac{1}{n_{i}} \quad Y_{i \ldots}$.
where n_{i}.
(These values are seen in Tables II and III). These estimators are asymptotically independently distributed.

As an example, it will be shown how the estimator $\hat{\mu}$ was obtained upon differentiating. When we differentiate A with respect to μ, the following terms are obtained: (the other terms do not contain μ and therefore are equal to zero).

$$
\begin{aligned}
B= & -2 \sum_{i} \sum_{j} \sum_{k} \sum_{\ell} Y_{i j k \ell}+2 \sum_{i} \sum_{j} \sum_{k} n_{i j k} \mu+2 \sum_{i} n_{i} . . E_{i} \\
& +2 \sum_{j}^{n} \cdot j \cdot{ }^{B}{ }_{j}+2 \sum_{k} n_{\ldots k} I_{k}+2 \sum_{i} \sum_{j} n_{i j} . E_{i} B_{j}+2 \sum_{i} \sum_{k} n_{i . k} E_{i} I_{k} \\
& +2 \sum_{j} \sum_{k} n^{n} \cdot j k B_{j} I_{k} .
\end{aligned}
$$

To minimize this, set it equal to zero. Note also from (2) that $\sum_{i} n_{i} \ldots E_{i}=0$ etc.

Therefore

$$
\begin{aligned}
& -\sum_{i}^{\sum \sum \sum \sum \sum} \sum_{i}^{\sum} Y_{i j k \ell}+\sum_{i} \sum_{j} \sum_{k} n_{i j k}{ }^{\mu}=0 \\
& \mu=\frac{\sum \sum \sum \sum \sum Y_{i j k \ell}}{\begin{array}{l}
\sum \sum \sum \sum n_{i j k} \\
i \\
j
\end{array} \sum_{i j}}=\frac{Y \ldots \ldots}{N}
\end{aligned}
$$

TABLE II
Values of $Y_{i j k \ell}$

TABLE III
Values of $n_{i j k}$

$$
\hat{\mu}=\bar{Y}_{\ldots}=\frac{1}{N} Y \ldots=\frac{199}{616}=.3230519
$$

standard error $=\sqrt{s^{2} / \mathrm{N}}=\sqrt{.000229}= \pm .0151$

$$
\hat{I}_{2}=Y \ldots 2 .-Y \ldots=\frac{49}{255}-\frac{199}{616}=-.1308951
$$

$$
\text { s.e. }=.003242= \pm .018
$$

$$
\hat{B}_{1}=Y .1 \ldots-Y \ldots=\frac{51}{291}-\frac{199}{616}=-.1477942
$$

s.e. $=\sqrt{.0002558}= \pm .01599$

$$
\hat{B}_{2}=Y .2 \ldots-Y \ldots=\frac{148}{325}-\frac{199}{616}=.1323327
$$

$$
\text { s.e. }=\sqrt{.0002051}= \pm .01432
$$

$$
\begin{aligned}
\left(\hat{(E B)_{11}=Y_{11 \ldots}-Y_{1 \ldots} \ldots Y_{1} \ldots+Y_{1} \ldots}\right. & =\frac{3}{138}-\frac{128}{329}-\frac{51}{291} \\
& +\frac{199}{616}=-.2195244
\end{aligned}
$$

$$
\begin{aligned}
& \hat{E}_{1}=Y_{1 \ldots-} \ldots \ldots=\frac{128}{329}-\frac{199}{616}=.0660058 \\
& \text { s.e. } \left.=\sqrt{\mathrm{s}^{2}\left(\frac{1}{\mathrm{~N}_{1}}\right.} \ldots-\frac{1}{\mathrm{~N}}\right)=\sqrt{.0001998}=\$.0141 \\
& \hat{E}_{2}=Y_{2} \ldots-Y \ldots=\frac{71}{287}-\frac{199}{616}=-.0756652 \\
& \text { s.e. } \left.=\sqrt{\mathrm{s}^{2}\left(\frac{1}{\mathrm{~N}_{2}}\right.} \ldots-\frac{1}{\mathrm{~N}}\right)=\sqrt{.0002625}= \pm .0162 \\
& \widehat{I}_{1}=\mathbf{Y} \ldots 1 .-\mathrm{Y} \ldots=\frac{150}{361}-\frac{199}{616}=.0924605 \\
& \text { s.e. }=\sqrt{.0001616}= \pm .0127
\end{aligned}
$$

s.e. $=\sqrt{\left(\frac{1}{138}-\frac{1}{329}-\frac{1}{291}+\frac{1}{616}\right) \mathrm{s}^{2}}= \pm .01838$
$(\hat{E B})_{12}=Y_{12 \ldots}-Y_{1 \ldots} Y_{.2 \ldots}+Y_{\ldots}=\frac{175}{191}-.3890577-\frac{148}{325}$ $+.3234519=.1330958$
s.e. $=\sqrt{.0001047}= \pm .0102$

$$
(\hat{E B})_{21}=Y_{21 \ldots}-Y_{2 \ldots}-Y_{.1 \ldots}+Y_{\ldots}=.2141329
$$

s.e. $= \pm .0132$

$$
(\hat{E B})_{22}=Y_{22 \ldots}-Y_{2} \ldots-Y_{12 \ldots}+Y_{\ldots}=-.208077
$$

s.e. $= \pm .01887$

$$
(\hat{E I})_{11}=Y_{1.1 .}-Y_{1 \ldots}-Y_{\ldots 1 .}+Y_{\ldots}=.0629844
$$

s.e. $= \pm .012165$

$$
(\hat{E I})_{12}=Y_{1.2}-Y_{1 \ldots}-Y_{112 .}+Y_{\ldots}=-.0842496
$$

s.e. $= \pm .0164$

$$
(\hat{E I})_{21}=Y_{2.1}-Y_{2 \ldots}-Y_{\ldots 1 .}+Y_{\ldots}=-.069259
$$

$$
\text { s.e. }= \pm .0197
$$

$$
(\hat{B I})_{11}=Y_{.111}-Y_{1.1}-Y_{\ldots 1 .}+Y_{\ldots}=-.0690003
$$

s.e. $= \pm .01605$

$$
(\hat{B I})_{12}=Y_{.12}-\mathrm{Y} .1 \ldots-\mathrm{Y} .2 .+\mathrm{Y} \ldots=.1037855
$$

$$
\begin{aligned}
& \text { ste. }= \pm .01536 \\
& (\hat{B I})_{21}=Y_{.21 .}-Y_{.2 \ldots}-Y \ldots 1 .+Y \ldots=.0326427 \\
& \text { ste. }= \pm .0096 \\
& \widehat{(B I})_{22}=Y_{.22}-Y_{.211}-Y_{112}+Y_{\ldots}=-.0828229 \\
& \text { ste. }= \pm .0204
\end{aligned}
$$

The standard errors were obtained using the following formulas.

$$
\begin{aligned}
& v(\hat{\mu})=\frac{\sigma^{2}}{N} \quad N=616 \\
& v\left(\hat{E}_{i}\right)=\sigma^{2}\left(\frac{1}{N_{i}}-\frac{1}{N}\right) \\
& v\left(\hat{B}_{j}\right)=\sigma^{2}\left(\frac{1}{N_{\cdot j}}-\frac{1}{N}\right)
\end{aligned}
$$

etc.
where σ^{2} is replaced by its least square estimate.

From above, it is seen that all the estimates of the parameters
deviate from zero more than four times their standard errors AND this is an indicAtion that the main EFFECTS AND INTERACTIONS are nor me Zîfl hypothesis that the main effects and interactions $C A N B E$
are zero \wedge tested by using orthogonal partitioning of chi-square as FOLCOWS. AN, EXCELLENT DESCRIPTION OF THE TECHNIQUE UF PARTITIONING CHI-SQURRE IS GIVEN by Mather (1957).

- The main effects can be tested by calculating the values of

$$
x^{2}=\left\{\frac{(\text { observed-expected })^{2}}{\text { expected }}\right\}+
$$

In the tables that follow (1) stands for the observed values and (2) stands for the expected values when the null hypothesis about that specific effect is true.

In Table IV, the null hypothesis that the main effect E is zero is being tested. The values for the table are obtained by using the following formulas:
(1) $\sum_{j} \sum_{k} n_{i j k}\left(\mu+E_{i}\right)$
(2) $\sum_{j} \sum_{k} n_{i j k}(\mu) \quad H_{0}: E_{i}=0$

The specific numbers is Table IV were obtained as follows:

$$
\begin{aligned}
& \text { for } i=1 \text { (1) valve was obtained from } \sum_{i} \sum_{k} n_{i j k}\left(\mu+E_{l}\right) \\
& \cong 329(.323+.066)=128 \\
& \text { for } i=2 \text { (1) value was obtained from } \sum_{j} \sum_{k} n_{i j k}\left(\mu+E_{2}\right) \\
& \cong 287(.323-.076)=71 \\
& \text { for } i=1 \text { (2) value was obtained from } \sum_{j} \sum_{k} n_{i j k}(\mu) \cong 329(.3230519) \\
& =106.284 \\
& \text { for } i=2(2) \text { value was obtained from } \sum_{j} \sum_{k} n_{i j k}(\mu) \cong 287(.3230519) \\
& =92.715909
\end{aligned}
$$

Table IV
Observed and expected values required for the determination of $x^{2} E$

$$
i=1 \quad i=2 \quad \text { Sum }
$$199

Therefore $X_{E}^{2}=\frac{(128-106.284)^{2}}{106.284}+\frac{(71-92.715909)^{2}}{92.715909}=9.523359$.

In a similar manner the values in Table V were obtained using:
(1) $\sum_{i} \sum_{k} n_{i j k}\left(\mu+B_{j}\right)$
(2) $\sum_{i} \sum_{j} n_{i j k}(\mu)$

$$
H_{0}: B_{j}=0
$$

Table V
Observed and expected values required for the determination of χ_{B}^{2} $j=1 \quad j=2 \quad$ Sum
$\begin{array}{llll}\text { (1) } & 51 & 148 & 199\end{array}$
(2) $94.008 \quad 104.992$
$X_{B}^{2}=\frac{(51-94.008)^{2}}{94.008}+\frac{(148-104.992)^{2}}{104.992}=37.293275$.

The values in Table VI were obtained by using:
(1) $\sum_{i} \sum_{j} n_{i j k}\left(\mu+I_{k}\right)$
(2) $\underset{i}{\sum} \sum_{j} n_{i j k}(\mu)$
$H_{0}: I_{k}=0$

Table VI

Observed and expected values required for the determination of X_{I}^{2} $j=1$ $j=2$ Sum

	(1)	150	49
(2)	116.622	83.378	199

$$
X_{I}^{2}=\frac{(150-116.622)^{2}}{116.622}+\frac{(49-83.378)^{2}}{83.378}=23.077137
$$

The interaction chi-squares are now calculated. For the determination of $x^{2}(E B)$, the following are used:
(1) $\sum_{k} n_{i j k}\left\{\mu+E_{i}+B_{j}+(E B)_{i j}\right\}$
(2) $\underset{k}{\sum} n_{i j k}\left(\mu+E_{i}+B_{j}\right)$
$H_{0}:(E B)_{i j}=0$

Table VII
Observed and expected values required for the determination of x^{2} (EB) $j=1$ $j=2$ Sum

	(1)	3	125	128
	(2)	33.294	99.586	132.88
	(1)	48	23	71
	(2)	152.238	50.882	66.12
	(1)	51	148	199

Sample calculation:
for $i=1, j=1$ the (1) value was obtained by $\sum_{k}\left\{\mu+E_{1}+B_{1}+(E B)_{11}\right.$

$$
=135(.323+.066-.148-.2195)=3 .
$$

Using Table VII, the chi-square values can now be calculated. The total chi-square subclasses are divided into three components: due to differences in row totals, due to differences in column totals and due to interaction between E and B.
$\mathrm{X}_{\text {subclasses }}^{2}=\frac{(3-33.294)^{2}}{33.294}+\frac{(48-15.238)^{2}}{15.238}+\frac{(125-99.586)}{99.586}$

$$
+\frac{(23-50.882)^{2}}{50.882}=119.767
$$

with three degrees of freedom. It is now divided into its three components: (a) due to differences in row totals:

$$
x^{2}=\frac{(128-132.88)^{2}}{132.88}+\frac{(71-66.12)^{2}}{66.12}=.5393866
$$

with one degree of freedom
(b) due to differences in column totals:

$$
x^{2}=\frac{(51-48.533)^{2}}{48.532}+\frac{(148-150.468)^{2}}{150.468}=.1660116
$$

with one degree of freedom
(c) due to interaction between E and B :

$$
x_{(E B)}^{2}=119.76742-.5393866-.1660116=119.06203
$$

with one degree of freedom. This $X_{(E B)}^{2}$ is the one that is used in analyzing the null hypothesis.

The values in Table VIII are obtained from:
(I) $\sum_{j} n_{i j k}\left\{\mu+E_{i}+I_{k}+(E I)_{i k}\right\}$
(2) $\sum_{j} n_{i j k}\left(\mu+E_{i}+I_{k}\right)$
$H_{0}:(E I)_{i k}=0$

Table VIII
Observed and expected values required for the determination of x^{2} (EI) $\mathbf{k}=1 \quad \mathrm{k}=2 \quad$ Sum

	(1)	104	24	128
$i=1$	(2)	91.970	35.676	127.596
	(1)	46	25	71
	(2)	57.774	13.63	71.404
	(1)	150	49	199

$x_{\text {subclasses }}^{2}=\frac{(104-91.97)^{2}}{91.97}+\frac{(24-35.676)^{2}}{35.676}+\frac{(46-57.774)^{2}}{57.774}$

$$
+\frac{(49-49.256)^{2}}{49.256}=17.251416
$$

with three degrees of freedom. Its three components are:
(a) due to differences in row totals:
$x^{2}=\frac{(128-127.596)^{2}}{127.596}+\frac{(71-71.404)^{2}}{71.404}=.0035649$ with one degree of freedom.
(b) due to differences in column totals:
$x^{2}=\frac{(150-149.744)^{2}}{149.744}+\frac{(49-49.256)^{2}}{49.256}=.0017681$ with one degree of of freedom.
(c) due to interaction between E and I:
$x_{(E I)}^{2}=17.251416-.0035649-.0017681=17.246083$ with one degree of freedom.

The values in Table IX are obtained from:
(1) $\sum_{i} n_{i j k}\left\{\mu+B_{j}+I_{k}+(B I)_{j k}\right\}$
(2) $\sum_{i} n_{i j k}\left\{\mu+B_{j}+I_{k}\right\}$
$H_{0}:(B I)_{j k}=0$

Table IX
Observed and expected values required for the determination of $X_{\text {(BI) }}^{2}$

	$k=1$	$k=2$	Sum	
$j=1$	(1)	31	20	51
	(2)	41.764	5.989	47.753
$=2$	(1)	119	29	148
	(2)	112.308	38.939	151.247
	(1)	150	49	199
	(2)	154.072	44.928	199

${\underset{\text { subclasses }}{2}}_{\chi^{2}}=\frac{(31-41.764)^{2}}{41.764}+\frac{(20-5.989)^{2}}{5.989}+\frac{(119-112.308)^{2}}{112.308}$

$$
+\frac{(29-38.939)^{2}}{38.939}=38.487994
$$

with three degrees of freedom. Its three components are:
(a) due to the difference in row totals:
$x^{2}=\frac{(51-47.753)^{2}}{47.753}+\frac{(148-151.247)^{2}}{151.247}=.2904893$
with one degree of freedom.
(b) due to the difference in column totals:
$x^{2}=\frac{(150-154.072)^{2}}{154.072}+\frac{(49-49.928)^{2}}{49.928}=.4766809$
with one degree of freedom.
(c) due to interaction between B and I :
$X_{(B I)}^{2}=38.487994-.2904893-.4766809=37.720824$
with one degree of freedom.

Note that in Tables VII, VIII and IX, the following equations (Scheffe, p. 92) are very nearly satisfied:

$$
\frac{1}{N} \sum_{i=1}^{2} n_{i j}{ }^{(E B)_{i j}}=\frac{1}{N} \sum_{j=1}^{2} n n_{i j} .^{(E B)_{i j}}=0 \text { etc. }
$$

Summary of the above:

$$
\begin{aligned}
& x_{E}^{2}=9.52 \\
& x_{I}^{2}=23.08 \\
& x_{B}^{2}=37.29 \\
& x_{(E B)}^{2}=119.06 \\
& x_{(E I)}^{2}=17.25 \\
& x_{(I B)}^{2}=37.72
\end{aligned}
$$

The above chi-squares are approximately distributed as X^{2} each having one degree of freedom. It is difficult to evaluate how accurate these approximations are but since the calculations are based on a large number of data points, these chi-square approximations are expected to be reasonably accurate. Therefore one could expect the true 5% significance value to be off by only a few units from the tabulated value of 3.841 . The above calculated values are greater than this 3.841 value and therefore the null hypothesis that the main effects and interactions are zero can be rejected. The following tentative conclusions can be drawn:
(1) the main effects B and I are important and the main effect E is relatively unimportant.
(2) the interaction (EB) is very important while the interactions (EI) and (BI) are relatively much less important.

2.2. Woolf's method as described by Plackett

This method tests for zero second-order interaction. Arrange the data as follows:

melanin present	E		I		B		EI		EB		IB	
	prs.	abs.	prs	abs.	prs	abs.	prs.	abs.	prs.	abs.	prs.	ab
	128	71	49	150	51	148	24	175	3	196	20	
melanin absent	201	216	206	211	240	177	114	303	135	282	115	30
ta	329	287	255	361	291	32	138	478	138	47	135	

This can be considered as six 2×2 tables, i.e. $t=6$.

Therefore

Therefore $z_{1}=\ln n_{11}-\ln n_{21}-\ln n_{31}+\ln n_{41}=.6613239$

$$
\begin{aligned}
& z_{2}=\ln n_{12}-\ln n_{22}-\ln n_{32}+\ln n_{42}=-1.0948331 \\
& z_{3}=\ln n_{13}-\ln n_{23}-\ln n_{33}+\ln n_{43}=-1.3698758 \\
& z_{4}=\ln n_{14}-\ln n_{24}-\ln n_{34}+\ln n_{44}=-1.0091932 \\
& z_{5}=\ln n_{15}-\ln n_{25}-\ln n_{35}+\ln n_{45}=-3.4428702 \\
& z_{6}=\ln n_{16}-\ln n_{26}-\ln n_{36}+\ln n_{46}=-1.2261585
\end{aligned}
$$

$$
\frac{1}{u_{1}}=\frac{1}{n_{11}}+\frac{1}{n_{21}}+\frac{1}{n_{31}}+\frac{1}{n_{41}}=.0315017
$$

$$
u_{1}=31.744318
$$

$$
\frac{1}{u_{2}}=\frac{1}{n_{12}}+\frac{1}{n_{22}}+\frac{1}{n_{32}}+\frac{1}{n_{42}}=.0366683
$$

$$
u_{2}=27.271512
$$

$$
\frac{1}{u_{3}}=\frac{1}{n_{13}}+\frac{1}{n_{23}}+\frac{1}{n_{33}}+\frac{1}{n_{43}}=.0361808
$$

$$
u_{3}=27.638968
$$

$$
\frac{1}{u_{4}}=\frac{1}{n_{14}}+\frac{1}{n_{24}}+\frac{1}{n_{34}}+\frac{1}{n_{44}}=.059453
$$

$$
u_{4}=16.820009
$$

$$
\begin{aligned}
& n_{11}=128 \quad n_{21}=71 \quad n_{31}=201 \quad n_{41}=216 \\
& n_{12}=49 \quad n_{22}=150 \quad n_{32}=206 \quad n_{42}=211 \\
& n_{13}=51 \quad n_{23}=148 \quad n_{33}=240 \quad n_{43}=177 \\
& n_{14}=24 \quad n_{24}=175 \quad n_{34}=114 \quad n_{44}=303 \\
& n_{15}=3 \quad n_{25}=196 \quad n_{35}=135 \quad n_{45}=282 \\
& n_{16}=20 \quad n_{26}=179 \quad n_{36}=115 \quad n_{46}=302
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{u_{5}}=\frac{1}{n_{15}}+\frac{1}{n_{25}}+\frac{1}{n_{35}}+\frac{1}{n_{45}}=.3493884 \\
& u_{5}=2.8621442 \\
& \frac{1}{u_{6}}=\frac{1}{n_{16}}+\frac{1}{n_{26}}+\frac{1}{n_{36}}+\frac{1}{n_{46}}=.0675933 \\
& u_{6}=14.794365
\end{aligned}
$$

If there is zero second-order interaction, then

$$
x^{2}=\sum_{k} u_{k} z_{k}^{2}-\left(\sum_{k} u_{k} z_{k}\right)^{2} \sum_{k} u_{k}
$$

is =asymptotically distributed as chi-square with ($t-1$) degrees of freedom.

$$
\begin{array}{ll}
u_{1} z_{1}=20.99326 & u_{1} z_{1}{ }^{2}=13.883355 \\
u_{2} z_{2}=-29.857754 & u_{2} z_{2}^{2}=32.689256 \\
u_{3} z_{3}=-37.861953 & u_{3} z_{3}^{2}=51.866173 \\
u_{4} z_{4}=-16.974638 & u_{4} z_{4}^{2}=17.130689 \\
u_{5} z_{5}=-9.8539909 & u_{5} z_{5}^{2}=33.926011 \\
u_{6} z_{6}=-18.140236 & u_{6} z_{6}^{2}=22.141804 \\
\sum_{k} u_{k}=121.1323 & \sum_{k} u_{k} z_{k}^{2}=171.73827 \\
\left(\sum_{k} u_{k} z_{k}\right)^{2}=8408.0271 & \\
\left(\sum u_{k} z_{k}\right)^{2}=69.411933 &
\end{array}
$$

Therefore $X^{2}=171.73827-69.411933=102.33$ with 5 degrees of freedom.

In order to accept the null hypothesis which is that of zero second-order interaction, the x^{2} value should be less than 11.1. As 102.23 is much greater than this value, we reject the null hypothesis of zero second-order interaction.

2.3. Linear model

The data was analyzed using two different models: the first model involved analyzing the data separately (presence or absence of melanin) and the second method was using a logarithmic model of the form: $F(\Pi)=K \log A \Pi$.

In analyzing the data separately, the data was considered as follows:

E	I	B	Number with melanin present	probability
1	1	1	1	.0050251
1	1	0	23	.1155778
1	0	1	19	.0954773
0	1	1	2	.0100502
1	0	0	6	.0301507
0	1	0	102	.5125628
0	0	1	29	.1457286
0	0	0	17	.0854271

where a "l" denotes that the chicken has that trait and a "0" denotes that the trait is not present e.g. E I B means the chicken has all three traits.

The following null hypothesis is tested: do the three traits have an equal effect on melanin being present ie. does
$E(E)=E(I)=E(B)$. Let $\Pi_{1}=\frac{1}{199}=.0050251, \Pi_{2}=\frac{23}{199}=.1155778$ etc. denote the cell probabilities. Therefore $E(E)=E(I)=E(B)$

$$
\begin{aligned}
& \pi_{1}+\pi_{2}+\pi_{3}+\pi_{5}=\pi_{1}+\pi_{2}+\pi_{4}+\pi_{6}=\pi_{1}+\pi_{3}+\pi_{4}+\pi_{7} \\
& \pi_{1}+\pi_{2}+\pi_{3}+\pi_{5}=\pi_{1}+\pi_{3}+\pi_{4}+\pi_{7} \\
& \pi_{2}+\pi_{5}=\pi_{4}+\pi_{7} \\
& \pi_{2}-\pi_{7}=\pi_{4}-\pi_{5} \\
& \pi_{2}-\pi_{7}-\pi_{4}+\pi_{5}=0
\end{aligned}
$$

Also $\quad \Pi_{1}+\Pi_{3}+\Pi_{4}+\Pi_{7}=\Pi_{1}+\Pi_{2}+\Pi_{4}+\Pi_{6}$

$$
\begin{aligned}
& \pi_{3}+\pi_{7}=\pi_{2}+\pi_{6} \\
& \pi_{2}-\pi_{7}=\pi_{3}-\pi_{6} \\
& \pi_{2}-\pi_{7}-\pi_{3}+\pi_{6}=0 .
\end{aligned}
$$

Therefore, choose $f_{1}(\pi)=\Pi_{2}-\Pi_{7}-\Pi_{4}+\Pi_{5}=0$

$$
\text { and } f_{2}(\Pi)=\Pi_{2}-\Pi_{7}-\Pi_{3}+\Pi_{6}=0 .
$$

Using $f_{1}(\Pi)$ and $f_{2}(\Pi), A$ is obtained
$\begin{array}{llllllll}\Pi_{1} & \Pi_{2} & \Pi_{3} & \Pi_{4} & \Pi_{5} & \Pi_{6} & \Pi_{7} & \Pi_{8}\end{array}$
$A=\left[\begin{array}{llrrllll}0 & 1 & 0 & -1 & 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 1 & -1 & 0\end{array}\right]$

$$
\begin{aligned}
& \mathrm{p}=\left[\begin{array}{l}
\Pi_{1}=.0050251 \\
\Pi_{2}=.1155778 \\
\Pi_{3}=.0954773 \\
\Pi_{4}=.0100502 \\
\Pi_{5}=.0301507 \\
\Pi_{6}=.5125628 \\
\Pi_{7}=.1457286 \\
\Pi_{8}=.0854271
\end{array}\right] \\
& \mathrm{V}(\mathrm{p})=\left[\begin{array}{cccccccc}
.000251 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & .0005136 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & .0004339 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & .0000439 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & .0001469 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & .0012554 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & .0006255 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & .0003926
\end{array}\right] \\
& \begin{array}{ll}
a_{1} p=-.01 & a_{2} p=.3869347 \\
x^{2}=\left[\begin{array}{ll}
a_{1} p & \left.a_{2} p\right]\left[\operatorname{AV}(p) A^{\prime}\right]^{-1}
\end{array}\left[\begin{array}{l}
a_{1} p \\
a_{2} p
\end{array}\right]=84.286\right.
\end{array}
\end{aligned}
$$

which is distributed as chi-square with two degrees of freedom. As our value is greater than the known value at the 5% level of significance, the null hypothesis is rejected i.e. not all the traits are equally effective on melanin being present, i.e., one trait may be present while another trait being present may not necessarily imply melanin will be present.

Another null hypothesis was tested: is the effect of any two traits independent of the third. This method is based on a previous method by Plackett (1962). For this analysis
$f(\Pi)=\ln \Pi_{1}-\ell n \Pi_{2}-\ln \Pi_{3}-\ln \Pi_{4}+\ell n \Pi_{5}+\ell n \Pi_{6}+\ell n \Pi_{7}-\ell n \Pi_{8}=$ The logarithmic model $F(\Pi)=K$ थn $A \Pi$ is used. A is the identity matrix and $K=\left[\begin{array}{llllllll}1 & -1 & -1 & -1 & 1 & 1 & 1 & -1\end{array}\right]$ and
$D=\left[\begin{array}{llllllll}p_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & p_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & p_{3} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & p_{4} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & p_{5} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & p_{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & p_{7} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & p_{8}\end{array}\right]$

Therefore

$$
\begin{aligned}
& K D^{-1} A=\left[\begin{array}{llll}
\frac{1}{p_{1}} & \frac{-1}{p_{2}} & \frac{-1}{p_{3}} & \frac{-1}{p_{4}} \frac{1}{p_{5}} \frac{1}{p_{6}} \frac{1}{p_{7}} \frac{1}{p_{8}}
\end{array}\right] \\
& f(p)=\ell n p_{1}-\ell n p_{2}-\ell n p_{3}-\ell n p_{4}+\ell n p_{5}+\ell n p_{6}+\ell n p_{7}-\ell n p_{8}
\end{aligned}
$$

Now $x^{2}=f(p) K D^{-1} A V(p) A^{\prime} D^{-1} K^{\prime} f(p)=.017=.02$ which is distributed as chi-square with one degree of freedom. As our value is less than the known chi-square value at the 5 \% level of significance, the null hypothesis is not rejected.

The data was then analyzed using the number of chickens with melanin absent. The data was arranged as follows:

Number with

E	I	B	melanin absent	probability
1	1	1	61	.1462829
1	1	0	53	.1270983
1	0	1	54	.1294964
0	1	1	74	.177458
1	0	0	38	.091127
0	1	0	13	.031175
0	0	1	51	.1223021
0	0	0	73	.1750599

The method is the same as above, the only difference is that the Π and p values are different. (note $\Pi=p$). When the following null hypothesis was tested: do the three traits have an equal effect on the absence of melanin,

$$
x^{2}=10.927 .
$$

As this is greater than the value at the 5% level of significance, the null hypothesis is rejected.

The null hypothesis: is the effect of any two traits independent of the third trait was then tested. The x^{2} value obtained was

$$
x^{2}=28.87
$$

As this is greater than the value at the 5% level of significance, the null hypothesis is rejected.

The data was then analyzed using a linear model of the form $F(\Pi)=X \beta$ but it was found that the $S S[F(\Pi)=X \beta]$ value was too great which meant that the data did not fit this model.

A logarithmic model of the form $F(\Pi)=K$ थn A was then fitted.

00000000000001
$\circ \circ 00000000 \mathrm{O}$ 0000000000 ト 0

$0000000001 \dot{0} 0$
○ ○ ○ 000001000
$00000000 \dot{0} 00$
$\circ \circ \circ \circ \circ \circ \circ$ roooo
0000000 म 0000
$\circ \circ 0000$ r 00000
000000 ○ 00000
$\circ \circ 000$ r 000000
$00000 \dot{1} 000000$
$\circ 000$ rooooooo
0000 i 0000000
000100000000
000 ウ 00000000
001000000000
00 ○ 000000000
○ $\mathrm{H} \circ \circ 000000000$
0 म 00000000000
$r 000000000000$
$亡 \quad 0 \quad 0$

Notice that a generalized inverse must be used as the variance matrix is singular.

$$
\operatorname{sS}[F(\pi)=x \beta]=102.33
$$

which is distributed as chi-square with five degrees of freedom. This result is interpreted as a test for no interaction. As this value is greater than the value at the 5% level of significance, the null hypothesis of no interaction was rejected.

Another method introduced by Berkson (1968) using minimum logit chi-square was then used.

Only Cases I and III were considered.
Using Case I, we test for no interaction.
Let $\ell_{1_{k}}=\ln \left(\frac{a_{k}}{b_{k}}\right)$

$$
\begin{aligned}
& \ell_{2 k}=\ell n\left(\frac{c_{k}}{d_{k}}\right) \\
& B_{k}=\ell_{1 k}-2 k \\
& C_{1 k}=\frac{1}{a_{k}}+\frac{1}{b_{k}} \\
& C_{2 k}=\frac{1}{c_{k}}+\frac{1}{d_{k}} \\
& w_{1 k}=\frac{1}{C_{1 k}} \\
& w_{2 k}=\frac{1}{C_{2 k}} \\
& \widetilde{w}_{k}=\frac{1}{C_{1 k}+C_{2 k}}
\end{aligned}
$$

The formula for the minimum logit chi-square for Case I is

$$
x_{l}^{2}=\sum_{k=1}^{6} \widehat{w}_{k} B_{k}^{2}-\hat{\beta}^{2} \sum_{k=1}^{6} \widetilde{w}_{k}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\widetilde{w}_{1}=31.74425809 \\
\widetilde{w}_{2}=27.27134362 \\
\widetilde{w}_{3}=27.6388297 \\
\widetilde{w}_{4}=16.81995136 \\
\widetilde{w}_{5}=2.862140325 \\
\widetilde{w}_{6}=14.7943215
\end{array}\right. \\
& \sum_{k=1}^{6} \tilde{W}_{k}=121.1308445 \\
& \hat{\beta}=\frac{\tilde{w}_{1} B_{1}+\widetilde{w}_{2} B_{2}+\widetilde{w}_{3} B_{3}+\widetilde{w}_{4} B_{4}+\widetilde{w}_{6} B_{6}}{\widetilde{w}_{1}+\widetilde{w}_{2}+\widetilde{w}_{3}+\tilde{w}_{4}+\tilde{w}_{5}+\widetilde{w}_{6}}=.7545479 \\
& =.569342606 \\
& \sum_{k=1}^{6} \tilde{w}_{k} B_{k}^{2}=171.01810189 \\
& \text { Therefore } X_{l}^{2}=171.01810189-(.569342606)(121.1308445) \\
& =102.05316
\end{aligned}
$$

Grizzle et al (1969) state that the value obtained by using the logarithmic model for no interaction, one obtains the same result. Looking back, one sees that the value obtained was 102.33 which is close enough. Note also that Woolf's (1955) method yields 102.23 which is close enough.

Case III was then used to test the equality of the traits. The formula used was

$$
x_{l}^{2}=\sum_{k=1}^{6} \tilde{w}_{k}{B_{k}^{\prime}}^{2}-\hat{\beta}^{\prime 2} \sum_{k=1}^{6} \tilde{w}_{k}
$$

where $\beta_{k}^{\prime}=\ell_{1 k}+\ell_{2 k}$
and $\hat{\beta}^{\prime \prime}=\frac{\tilde{w}_{1} B_{1}^{\prime}+\tilde{w}_{2} B_{2}^{\prime}+\tilde{w}_{3} B_{3}^{\prime}+\tilde{w}_{4} B_{4}^{\prime \prime}+\tilde{w}_{5} B_{5}^{\prime}+\tilde{w}_{6} B_{6}^{\prime}}{\tilde{w}_{1}+\tilde{w}_{2}+\tilde{w}_{3}+\tilde{w}_{4}+\tilde{w}_{5}+\tilde{w}_{6}}$
The value obtained was 22.25 . As this is greater than the x^{2} value at the 5% level of significance, the null hypothesis was rejected i.e. not all the traits are equal.

The reults obtained by using the various methods are summarized as follows:

Results

$$
\begin{aligned}
& X_{E}^{2}=9.52 \quad E \text { is relatively unimportant } \\
& X_{B}^{2}=37.29 \quad B \text { is relatively important } \\
& X_{I}^{2}=23.07 \quad \text { I is relatively important }
\end{aligned}
$$

Method I, i.e. systematic

$$
x_{(E B)}^{2}=119.06 \text { interaction } E B \text { is very important }
$$ partitioning of x^{2}

$$
X_{(E I)}^{2}=17.25 \text { interaction } E I \text { is relatively }
$$

$$
x_{(B I)}^{2}=37.72 \quad \text { interaction } B I \text { is relatively } \quad \text { unimportant }
$$

General conclusion is that the hypothesis that the main effects and interactions are zero is to be rejected.
Method II, i.e.
Woolf's test for
testing second-
order interaction $\left\{\begin{array}{l}\mathrm{X}^{2}=102.33 \text { reject the hypothesis of zero } \\ \text { second-order interaction which agrees with what } \\ \text { we above. }\end{array}\right.$

Method III, i.e. simple linear model
not all the traits have an equal effect which agrees with the above result

Method IV, i.e.
logarithmic model
SS $[F(\pi)=X \beta]=102.33$ which shows that the null hypothesis of no interaction is rejected. This agrees with Method II. $x_{\ell}^{2}=\sum_{k=1}^{6} \tilde{w}_{k} B_{k}^{2}-\hat{\beta}^{2} \sum_{k=1}^{6} \widetilde{w}_{k}=102.05$ which Method V, i.e., minimum logit chi-square shows that the null hypothesis of no interaction is rejected. It also agrees with Method II.

$$
x_{\ell}^{2}=\sum_{k=1}^{6} \widetilde{w}_{k} B_{k}^{\prime 2}-\hat{\beta}^{\prime 2} \sum_{k=1}^{6} \widetilde{w}_{k}=22.25 \text { which }
$$

shows that the null hypothesis that all traits are equal is rejected. This agrees with Method I.

This completes the analysis of the broiler chicken data. It can be seen that the traits do play a part in determining whether melanin is present or absent, and the interesting thing is that the simple method of systematic partitioning of chi-square developed in this project is more comprehensive and agrees with the published methods of analyzing categorical data.

PARENTS

Figure 1. The plumage color genotypes of the parents and male offspring are shown. At the right of the birds, the percent deposition of abdominal melanin for each genotype is represented by the black area in the column.

Bibliography

Bartlett, M.S. (1935). Contingency table interactions. J.R. Statist. Soc. Suppl. 2, 248-52.

Berkson, J. (1955). Maximum likelihood and minimum chi-square estimates of the logistic function. J. Amer. Stat. Ass. 50. 130-62.

Berkson, J. (1968). Application of minimum logit chi-square estimate to a problem of Grizzle with a notation on the problem of no interaction. Biometrics 24, 75-95.

Bhapkar, V.P. (1966). A note on the equivalence of two test criteria for hypothesis in categorical data. J.A.S.A. 61, 228-235.

Bhapkar and Kock, G.G. (1968). On the hypothesis of " no interaction " in contingency tables. Biometrics 24, 567-94.

Cochran, W.G. (1950). The comparison of percentages in matched samples. Biometrics 37, 256-66.

Goodman. J.A. (1963). On Plackett's test for contingency table interactions. J.R. Stat.Soc. B25, 179-88.

Goodman, J.A. (1964). Simultaneous confidence intervals for contrasts among multinomial populations. Ann. Math. Stat. 35, 716-25.

Grizzle, J.E., C.F.Starmer and G.G. Kock. (1969). Analysis of Categorical dats by linear models. Biometrics, 489-504.

Huntsman, C.M., F.N. Jerome and E.S. Snyder, (1960). The relationship between color phenotypes and the presence of black melanin in the abdomen of broiler chickens. Study 2. Poultry Sc. 39, 882-86.

Kastenbaum, M.A.and Lamphiear, D.E. (1959). Calculation of chi-square to test the no three-factor interaction hypothesis. Biometrics 15, 107-15.

Mather,K. (1957). Stat. Anal. in Biology. John Wiley and Sons.

Patil, K.D. (1974). Interaction test for three dimensional contingency tables. J.A.S.A. 69.164-68.

Plackett, R.L. (1962). A note on interactions in contingency tables. J.R. Stat. Soc. B24,162-66.

Roy,S.N. and Kastenbaum M.A. (1956). On the hypothesis of " no interaction " in a multi-way contingency table. Ann. Math. Stat. 27, 749-57.

Scheffé, H. (1959). The Analysis of Variance. John Wiley and Sons. Tiku and Jerome, University of Guelph Report.
Woolf, B (1955). On estimating the relation between blood group and disease, Ann. Hum. Genet. Lond., 19, 251-53.

