AGRICULTURAL LABOUR INPUT ALLOCATION AND EFFICIENCY
AGRICULTURAL LABOUR INPUT ALLOCATION
AND EFFICIENCY IN NORTH GRIMSBY
TOWNSHIP

By

JOHN GRAHAM FITZSIMONS, B.A.

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree
Master of Arts

McMaster University
October 1969
TITLE: Agricultural Labour Input Allocation and Efficiency in North Grimsby Township.

AUTHOR: John Graham Fitzsimons, B.A. (University of Wales)

SUPERVISOR: Dr. L. G. Reeds

NUMBER OF PAGES: vii, 167

SCOPE AND CONTENTS:

This thesis examines the allocation and relative efficiency of the agricultural labour input in North Grimsby Township. The relative efficiency of the labour input is determined by the construction of an Index of Labour Efficiency, in which the actual labour input is compared with the labour input requirement for the farm as determined from studies undertaken by the Ontario Department of Agriculture. Certain normative hypotheses are tested, relating elements of the farm economic structure and the physical environment to the Labour Efficiency Index.
ACKNOWLEDGEMENTS

The author wishes to thank the many people whose advice and criticism were freely given during the preparation, research, and writing of this thesis.

Particular thanks are to my supervisor Dr. L. G. Reeds and to Dr. H. A. Wood for their interest and constructive criticism. Thanks are also due to Dr. W. Mackenzie, Department of Economics, McMaster University, who spent much time helping me to understand the limitations of farm management techniques.

I am indebted to H. K. Scott, Chief, Crops Section, Canada Census of Agriculture, and his staff. Without their help this study would not have been possible. H. W. Buck, Wentworth County representative, Ontario Department of Agriculture and Food, also provided much useful information. My thanks are also due to Mrs. Dorothy Brown for typing the manuscript.

Finally, I should like to express my appreciation to Heather Palmer and to my father, John Henry Fitzsimons for their constant encouragement.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope and Contents</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>List of Maps</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>Chapter I</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II Data and Methodology</td>
<td>27</td>
</tr>
<tr>
<td>III Farm Enterprise Classification</td>
<td>40</td>
</tr>
<tr>
<td>IV Analysis of the Economic Structure of Farm Holdings in North Grimsby Township</td>
<td>52</td>
</tr>
<tr>
<td>V Agricultural Labour Input Structure in North Grimsby Township</td>
<td>68</td>
</tr>
<tr>
<td>VI Determination of the Relative Efficiency of the Agricultural Labour Input</td>
<td>103</td>
</tr>
<tr>
<td>VII Factors Influencing Labour Efficiency</td>
<td>118</td>
</tr>
<tr>
<td>VIII Summary and Conclusions</td>
<td>146</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>155</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>158</td>
</tr>
<tr>
<td>Bibliography</td>
<td>163</td>
</tr>
<tr>
<td>Fig.</td>
<td>Map Title</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Fig. 1</td>
<td>Location of the Study Area</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>North Grimsby Township - Main Physiographic Subdivisions</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>North Grimsby Township - Main Soil Types</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>North Grimsby Township - Agricultural Land Use 1962</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>North Grimsby Township - Farm Enterprise Types</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>North Grimsby Township - Leading Farm Activity</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Percentage of Operator's Labour - Original Map</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Percentage of Operator's Labour - Third Order Trend Surface</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>Percentage of Operator's Labour - Residuals from Third Order Surface</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>Percentage of Paid Labour - Original Map</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>Percentage of Paid Labour - Second Order Trend Surface</td>
</tr>
<tr>
<td>Fig. 12</td>
<td>Percentage of Paid Labour - Residuals from Second Order Surface</td>
</tr>
<tr>
<td>Fig. 13</td>
<td>Percentage of Unpaid Labour - Original Map</td>
</tr>
<tr>
<td>Fig. 14</td>
<td>Percentage of Unpaid Labour - Third Order Trend Surface</td>
</tr>
<tr>
<td>Fig. 15</td>
<td>Percentage of Unpaid Labour - Residuals from Third Order Surface</td>
</tr>
<tr>
<td>Fig. 16</td>
<td>Labour Efficiency</td>
</tr>
<tr>
<td>Fig. 17</td>
<td>Underemployment and Overemployment 1961</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Levels of Analysis</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>Agricultural Activity Classes and Component Activities</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>Type of Farm Classification</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Enterprise Classification</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>Farm Economic Structure - Township Scale</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Farm Economic Structure - Specialised Holdings</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>Farm Economic Structure - General Holdings</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>Farm Economic Structure - Mixed Holdings</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>Farm Economic Structure - Tree Fruits</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>Farm Economic Structure - Cattle</td>
<td>64</td>
</tr>
<tr>
<td>11</td>
<td>Farm Economic Structure - Grapes</td>
<td>66</td>
</tr>
<tr>
<td>12</td>
<td>Farm Labour Structure - Township Scale</td>
<td>89</td>
</tr>
<tr>
<td>13</td>
<td>Farm Labour Structure - Specialised Holdings</td>
<td>91</td>
</tr>
<tr>
<td>14</td>
<td>Farm Labour Structure - General Holdings</td>
<td>92</td>
</tr>
<tr>
<td>15</td>
<td>Farm Labour Structure - Mixed Holdings</td>
<td>93</td>
</tr>
<tr>
<td>16</td>
<td>Farm Labour Structure - Tree Fruits</td>
<td>96</td>
</tr>
<tr>
<td>17</td>
<td>Farm Labour Structure - Cattle</td>
<td>98</td>
</tr>
<tr>
<td>18</td>
<td>Farm Labour Structure - Grapes</td>
<td>99</td>
</tr>
<tr>
<td>19</td>
<td>Labour Efficiency Indices - Township and Enterprise Types</td>
<td>114</td>
</tr>
<tr>
<td>20</td>
<td>Labour Efficiency Indices - Leading Activities</td>
<td>116</td>
</tr>
<tr>
<td>21</td>
<td>Soil Drainage Classes</td>
<td>125</td>
</tr>
<tr>
<td>22</td>
<td>Soil Texture Classes</td>
<td>127</td>
</tr>
<tr>
<td>Number</td>
<td>Section Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>23</td>
<td>Factors Associated with the Labour Efficiency Index - Township Scale</td>
<td>132</td>
</tr>
<tr>
<td>24</td>
<td>Factors Associated with the Labour Efficiency Index - Specialised Farms</td>
<td>133</td>
</tr>
<tr>
<td>25</td>
<td>Factors Associated with the Labour Efficiency Index - General Farms</td>
<td>134</td>
</tr>
<tr>
<td>26</td>
<td>Factors Associated with the Labour Efficiency Index - Mixed Farms</td>
<td>135</td>
</tr>
<tr>
<td>27</td>
<td>Factors Associated with the Labour Efficiency Index - Tree Fruits</td>
<td>137</td>
</tr>
<tr>
<td>28</td>
<td>Factors Associated with the Labour Efficiency Index - Cattle</td>
<td>138</td>
</tr>
<tr>
<td>29</td>
<td>Factors Associated with the Labour Efficiency Index - Grapes</td>
<td>139</td>
</tr>
<tr>
<td>30</td>
<td>Physical Factors Associated with the Labour Efficiency Index - Township Scale</td>
<td>141</td>
</tr>
<tr>
<td>31</td>
<td>Physical Factors Associated with the Labour Efficiency Index - Enterprise Type Scale</td>
<td>142</td>
</tr>
<tr>
<td>32</td>
<td>Physical Factors Associated with the Labour Efficiency Index - Leading Activity Scale</td>
<td>143</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

"Labour is one of the major inputs on modern commercial farms. It follows that efficient management and use of labour is necessary for the successful management of today's farms."

1.1 Definition of the Problem.

The purpose of this study is to throw some light on one of the aspects of farm management in Ontario, the agricultural labour input. The labour input can be regarded as the most important input in the farm-firm. In 1949, labour accounted for 67% of the total agricultural income in the United States of America. The other input factors, land and capital received 25% and 8% respectively.\(^2\)

In order to conduct a meaningful study of the agricultural labour input it is necessary to make some assessment of the relative efficiency\(^3\) of the labour input in each farm enterprise and to determine the factors influencing labour efficiency. The relative efficiency of the labour input will be determined by the construction of a Labour Efficiency Index in which the total labour input on a

\(^3\)For the purposes of this study, efficiency is defined in terms of inputs, with no specific reference to levels of output. This concept is further explained in the review of literature, Chapter 1.3 and in the definition of the Labour Efficiency Index, Chapter 5.5.
holding is compared with the theoretical labour requirements for an efficient farm of that type in the province.

Factors influencing the relative efficiency of the labour input in the farm-firm are both numerous and diverse. They may be classified under three main headings; physical, social and economic. Physical factors include the ease with which the soil may be cultivated, topographic controls on the efficiency of machinery usage and the influence of climatic factors. Social factors include the ability of the operator as an entrepreneur and the effectiveness of the farm operator, his family and any hired labour in supplying the labour input required on the holding. Economic factors include elements of farm structure, such as enterprise type, investment in machinery and layout of buildings as well as macro-economic influences from the national or regional economy in the form of minimum wage legislation and compulsory marketing schemes.

It is not possible in this study to consider all the variables described above. Of the physical factors climate, and topographic controls on machinery usage were omitted, the former because of a lack of sufficiently detailed climatic data for the study area, and the latter because no satisfactory method for quantifying surface roughness could be devised. Quantification problems also prevented the inclusion of entrepreneurial skill, layout of farm buildings and the macro-economic influences from the regional and national economy.

It is postulated that the remaining variables will influence the Labour Efficiency Index in one of two ways. Firstly, by
influencing the quality of the labour input. Factors examined in this category are the age of the farm operator and the structure of the farm labour input. Secondly, by influencing the effectiveness of a given labour input. The factors within this group may be further sub-divided into physical and economic variables. The physical variable examined will be soil workability and the economic variables will include various measures of farm size, capitalisation, mechanisation and the diversity of the farm operation.

The association between these variables and the Labour Efficiency Index will be determined by the testing of normative hypothesised relationships between the L.E.I. and the selected variables. The nature of the relationships is predicted from existing theory.

The area selected for the study is North Grimsby, a township in Lincoln County, Ontario. The township contains a wide variety of farm types, ranging from the relatively small, specialised tree fruit farms of the Lake Ontario Plain to the larger mixed enterprises, with an emphasis on livestock, in the area to the south of the Niagara Escarpment. The original aspects of this study will be its use of generalisation and the attempt to correlate the Labour Efficiency Index with elements of farm structure and the physical environment.

Generalisation is used at two levels. Firstly, in the use of Census data as the main data source instead of a detailed farm management survey. The use of census data necessitates grouping of farms and trends are therefore diluted. Secondly, the Labour Efficiency Index is used in a multi-enterprise environment instead of in the analysis of the single farm-firm for which it was designed, and a certain amount of detail is lost in this process of generalisation.
The study may be regarded as a preliminary step in the examination of spatial variations in Labour Efficiency, for its purpose is to test the methodology and to ascertain which factors play a significant rôle in determining the efficiency of labour input use and which factors may be ignored in future studies in the area.

1.2 Summary of objectives.

The study has the following objectives:

(a) to determine and describe spatial trends in the structure of the agricultural labour force.

(b) to determine the relative efficiency of the agricultural labour input by the construction of a Labour Efficiency Index for farm enterprise-types in the area.

(c) to test certain normative hypothesized relationships between the Labour Efficiency Index and selected elements of the farm structure and physical environment.

1.3 Review of Literature.

The Research Method

The research method in Geography has been examined in a sequential model by McCarty\(^4\) and expanded by Hagget\(^5\) into a series of "regression cycles".

The basic sequence is one where problems are defined, hypotheses applied and tested, and new hypotheses developed to explain discrepancies.

General Studies of Work and Labour input in Agriculture

A comprehensive study of Work in agriculture has been made by Duckham. The emphasis of approach is on the effective seasonal use of the agricultural labour input. To accomplish this end, a detailed examination is made of Dating Control Theory, a framework in which the dating of farm operations could be explained and measured on a "scientific basis". Improvements in Dating Control Theory would:

1. Help the individual farmer to improve efficiency.
 (a) biologically, by better dating of husbandry actions
 (b) economically, by better use of farm resources

2. Help agricultural economists and farmers in budgeting and in linear and other forms of program planning of changes in farming systems.

3. Help scientists and economists by pin-pointing research problems, e.g., need to breed sugar beet with greater drilling or greater harvest date tolerance.

An examination is also made of overall work load on the agricultural holding. Methods of aggregation and integration of different work phases are examined and a consideration is made of the interactions between work load, cropping and stocking programs, specialisation, mechanisation and the functional mobility of different classes of seasonally used farm equipment.

The Nature of Labour

The nature of labour has been examined in its economic context by Chryst and Back. 7 We define labour as the application of human effort, manual or mental. We include in this definition, decision making, management or entrepreneurship as labour, since they are all human inputs in the production process and can be hired as such.

Labour is not homogeneous. It is a human input and hence varies in quality with the capacity and motivation of its supplier. Labour has been divided into its basic components by Black, et al. 8 Three basic types are defined; operator's labour, which varies in quality with its supplier, and is a combination of physical labour and entrepreneurship, or decision making. Family labour is similar to operator's labour in capacity, but has different motivations. For example, as children grow older their attitudes towards work and hence their effectiveness at performing tasks can alter considerably. Hired labour varies in capacity, motives, and hence efficiency. The hired labourer is interested in his wages, the security that his job provides, and the prospects available for future advancement. The problems of defining labour simply as an hourly figure are thus exposed.

The importance of the labour input in Agriculture

The importance of labour in the agricultural economy has been

examined by Heady and Jensen. In 1949 labour accounted for 67% of the total agricultural income in the United States of America. The other factors, land and capital received 25% and 8% respectively. Proper understanding and application of the principles underlying the planning and conduct of work is, according to Sturrock, at least as important as the knowledge of the seasonal impact of economics and science.

Brayshaw found that on nearly half the farm holdings in a sample taken in the northern counties of Great Britain, efficient labour use was the most important single factor influencing profitability. Those farmers who combined the forward planning of work with good day to day control were most effective in reducing labour costs.

Nix has examined the importance of labour in the farm cost structure:

"Excluding small and highly intensive farms, the fixed costs, (i.e., regular labour, power and machinery, rent and general overheads) usually comprise between 50% and 60% of Gross Output. Labour and Machinery together normally account for nearly threequarters of the fixed costs or between 35% and 40% of Gross Output."

Labour Efficiency

The measurement of the efficiency of labour use on farms has received much attention recently. It has been examined in terms of time spent in agricultural activities on the holding by Guither. In Guither's study, actual labour inputs were determined by interviews with a selected population of farm operators in Illinois. The total labour employed on the holding was compared with the theoretical requirements for an efficient farm of that type, employing the standard labour requirements for a unit of crops or livestock derived from farm management research findings. When Day-Units of labour required were equal to the actual labour employed, it was assumed that the labour was fully occupied; if the figure showed a deficit, the labour was overemployed, if a surplus, it was underemployed. Refinements in this technique have been made by Scoville in which allowance was made in the calculations for the age of the labour input.

Nix reviewed a similar method of determining the efficiency of labour input use in the United Kingdom. Nix holds the view that labour efficiency can be measured in either physical or financial terms, or a combination of the two. Net output per £100 of labour

and machinery is the most commonly used measure of efficiency, but financial output is influenced by many factors, both environmental and managerial, that have little or no relation to the efficiency of labour use. In Nix's view, the ideal way to overcome this problem is the use of a measure such as the Labour Efficiency Index (L.E.I.) or the Man-Work Unit Index, which is similar to the method described by Guither.\(^{16}\)

Nix\(^{17}\) is cautious about the use of such measures of efficiency:

"In terms of economic theory it is easy to criticise these measures. In particular, they are primarily ratios depicting average relationships, whereas it is what happens at the margin that is useful in business decision making. Nevertheless, they can be a useful starting point for an investigation of labour efficiency, providing they are interpreted sensibly....."

The use of standard labour requirements from farm management sources has been examined briefly by Coppock\(^{18}\) who used the technique in the classification of farm enterprises. Ideally, standard labour inputs should relate exactly to local physical conditions, since the same cultivation tasks on different soils rarely require the same labour input. Nix\(^{19}\) proposes the use of a Gang-Work System for analysing labour efficiency in an attempt to overcome this problem. Gang-Work rates vary with the soil and topographic conditions in the area being studied.

The factors influencing the efficiency of labour use on agricultural holdings have been examined by Heady and Jensen.20 A number of general factors are discussed, such as the enterprise combination system used on the holding, the diversification of production and the farm layout.

The influence of climate and soils on farm operations has been extensively reviewed by Duckham.21 Farm activities are controlled by the trafficability and cultivability of the soil. Trafficability is defined as the capacity of a soil, on a given day, to provide adequate wheel grip for tractors and to bear the weight of farm machinery. Cultivability is the capacity of a soil on a given day to provide adequate wheel grip for tractors, and to permit such soil moving operations as ploughing, rotovating, seedbed preparation, drilling and crop lifting. Good trafficability generally demands a harder surface and a more compacted soil than cultivability. Duckham combines cultivability and trafficability as a single factor — soil workability. Workability is closely related to the moisture status of the soil.

Soil workability has been examined in a study of farms in the south west of the United Kingdom by Morris.22 He determined that

operations requiring field trafficability and cultivability occupied eighty percent of total tractor-hours. The remaining tractor-hours were utilised by operations such as road haulage which required neither trafficability nor cultivability.

The problems of labour use on farms of various types have been examined by Black, Claisson, Sayre and Wilcox. It is their opinion that family farms are liable to be less efficient in their use of labour inputs than other types of enterprise, since there is usually a greater availability of unpaid labour. Family labour availability runs in a cycle, with the farm enterprise structured accordingly.

The transfer of labour resources from farm to non-farm employment has been examined by numerous workers. The writings of Bishop, Brandow, Schultz, Heady, Fox and Tauber

25 Brandow, "Alternatives to Orthodox Programs and Goals of Agricultural Adjustment". J. Farm Econ. 29 (1957), p. 1634.

provide examples of the causes, need for, and aggregate effects of shifting farm labour into non-farm employment. Guither30 has analysed part-time and full-time farming in an area of the state of Illinois. One of the main factors in the withdrawal of farmers from agriculture was the fact that many were chronically underemployed on their present holdings. However, these holdings still remained too large to operate as part-time enterprises where the opportunities in employment, not requiring attendance five days per week, were limited.

Bishop31 has shown how family income on the small overemployed holdings may be raised substantially by programming that unit as a part-time operation.

Farm Enterprise Classification

Problems associated with the classification of farm enterprise types have been examined by Chisholm.32 Any idea that a classification can be objective, in the sense used by Birch,33 is dismissed.

31Bishop, C.E., Programming Farm-Non Farm Allocation of Farm Family Resources. \textit{J. Farm Econ.} 38 (1956), 396-407.
All classifications involve two elements of judgement.

(1) In the choice of critical limits.

(2) In the combination of disparate phenomena not classified in common units.

Chisholm continues by examining various methods by which these problems may be overcome. In the case of the choice of critical limits, examples are given of studies by Board, in which quartiles and octiles are used, and the use of the Weaver technique by Thomas and Coppock.

In the latter example, the farm enterprise combination is matched against a theoretical one crop, two crop, "n" crop combination, and the combination selected which shows the best "least-squares" fit.

The problem of combining disparate phenomena is examined with an example of Weaver's use of standard man Days. A contrast may be made between the results obtained by this method and those of

36 Weaver, J.C., Crop combinations in the Middle West, Geographical Review, 44 (1954), pp. 175-200.

37 Thomas, D., 'Agriculture in Wales during the Napoleonic Wars' (Cardiff: University of Wales, 1963).

Hartshorne and Dickens, who attempted to delimit enterprise regions, in an area in which both livestock and field crops were important, on the sole basis of crop acreages.

Literature describing the study area

Finally, it is necessary to examine some of the work that has been carried out in recent years in the study area, North Grimsby Township, and in the Niagara region in general.

The economic aspects of farming in the Niagara region have been examined in reports published by the Ontario Department of Economics and Development. The general Structure of Agriculture in 1961 was examined in the Niagara Region Economic Survey, and brought up to date in 1966 with the publication of Niagara 1966. The physical and economic aspects of mixed farming in the Niagara Peninsula have been examined by Reeds in a two-part survey designed to cover the entire field of agriculture within the region.

The physical characteristics of the region were examined by Chapman and Putnam44 in their work on the physiography of Southern Ontario. Wicklund and Matthews45 have described the soils of Lincoln County, Ontario, in the Soil Survey Series produced for the Ontario Department of Agriculture.

The climate of Southern Ontario has been examined by Chapman and Putnam,46 and the climate of the Niagara Fruit Belt has received much attention from Mercier and Chapman,47 who concentrated their study on the influence of climate on the distribution of tree fruits.

On a smaller scale, Krueger48 has investigated land-use change in the Fruit Belt, with special reference to the loss, by urbanisation, of the "tender fruit soils".

Irving49 and team investigated the factors liable to affect land-use in Louth Township, in an attempt to produce a methodology for future land-use studies. The report emphasised the physical controls of land use and tended to neglect the major problem of the

45 Wicklund, R.E., & Matthews, B.C., Soil Survey of Lincoln County, Report No. 34 Ontario Soil Survey (Ottawa: Canada, Dept. of Agriculture, and Ontario Agricultural College 1963).

area: the loss of good agricultural land to residential and industrial development.

Finally, a general study of agricultural land use in North Grimsby Township was made by McLeod in 1953.

1.4 The study area.

Location of the Area under Investigation

North Grimsby Township is situated some fifteen miles east of the City of Hamilton on the northern Lake Ontario shore of the Niagara Peninsula. The location of the township is shown in figure 1.

The township extends south from the lake shore beyond the Niagara Escarpment and thus provides a cross-section of conditions in the northern Niagara Peninsula.

The township had a population of 5,757 in 1961, an increase of 51.0% in a decade. This increase reflects the rapid development of the area, the result not only of an increase in industry and related services in the township, but of the function of the township as a dormitory for commuters to the City of Hamilton. Rapid growth has had a marked effect on agriculture. The main result has been an increase in land values associated with urban encroachment, particularly in areas adjacent to the Town of Grimsby on the Lake Ontario Plain.

The following sections describe the physical factors influencing agriculture; landforms, climate and soils.

LOCATION OF THE STUDY AREA

Fig. 1 SCALE IN MILES
Landforms

On the basis of physical features, it is possible to divide North Grimsby Township into three main subdivisions as shown in Figure 2.

(a) Iroquois or Lake Ontario Plain

The Iroquois Plain was formed by the waters of glacial Lake Iroquois, the proto Lake Ontario, and slopes from a height of 350 ft. A.M.S.L. at the base of the Niagara Escarpment to the Lake Ontario shoreline at 250 ft. A.M.S.L. Slopes average 2%, but are greater where the plain is crossed by creeks draining into the Lake.

(b) Niagara Escarpment

The Niagara Escarpment is the most outstanding physical feature in the township, rising 150 ft. above the Lake Ontario Plain. It extends across the township from east to west. The slopes are wooded and the face is quarried to provide construction materials.

(c) Haldimand Clay Plain

The Haldimand Clay Plain stretches from the Escarpment brow to the southern boundary of the township. The landscape is rolling in the area of till moraine immediately south of the Escarpment but becomes smoother towards the southern boundary of the township.

Climate

Climate has been one of the most important factors contributing to the growth and development of the Niagara Fruit Belt. The superiority of the area below the escarpment for the growth of tender fruit crops has long been recognised.

Climate has been examined by Mercier and Chapman, who found that the chances of low temperature damage to fruit trees were five times less on holdings located below the Escarpment than on holdings located elsewhere in the area.

The Niagara region has a climate with warm summers, temperatures in July averaging 70°F, and a growing season extending from early April to early November. The region experiences 3-50 degree days with the temperature exceeding 42°F. Annual precipitation fluctuates between 30 ins and 34 ins, 14 ins of this falling during the period from May to September.

Soils

The distribution of the main soil types in the township is shown in Figure 3, and described in detail by Wicklund and Matthews and Reeds. The main soil types may be divided into three classes. Those developed on clays, soils developed on sands and a group of miscellaneous soils.

1. Soils developed on clay parent materials.

The largest group of soils in the township fall into this category. The soils are developed upon glaciolacustrine or lacustrine clays and silts. Although these soils have a high plant nutrient content, continuous cropping has severely reduced the mineral content

NORTH GRIMSBY TOWNSHIP
MAIN SOIL TYPES
SCALE: ONE INCH TO ONE MILE.

FOR LEGEND SEE OVER

Fig. 3
LEGEND

<table>
<thead>
<tr>
<th>MAP SYMBOL</th>
<th>SOIL SERIES</th>
<th>TYPE</th>
<th>PARENT MATERIAL</th>
<th>DRAINAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chcl</td>
<td>Chingueousy</td>
<td>clay loam</td>
<td>Clay till</td>
<td>Imperfect</td>
</tr>
<tr>
<td>Fcl</td>
<td>Farmington</td>
<td>clay loam</td>
<td>Thin deposits on limestone bedrock</td>
<td>Imperfect</td>
</tr>
<tr>
<td>Grs</td>
<td>Grimsby</td>
<td>sandy loam</td>
<td>Deltaic sand deposits</td>
<td>Good</td>
</tr>
<tr>
<td>Grscl</td>
<td>Grimsby</td>
<td>fine sandy loam</td>
<td>Deltaic sand deposits</td>
<td>Good</td>
</tr>
<tr>
<td>Hcl</td>
<td>Haldimand</td>
<td>clay loam</td>
<td>Clay till</td>
<td>Imperfect</td>
</tr>
<tr>
<td>Hclcl</td>
<td>Haldimand</td>
<td>silty clay loam</td>
<td>Clay till</td>
<td>Imperfect</td>
</tr>
<tr>
<td>Hcl</td>
<td>Haldimand</td>
<td>silt loam</td>
<td>Clay till</td>
<td>Imperfect</td>
</tr>
<tr>
<td>Jcl</td>
<td>Jeddo</td>
<td>clay loam</td>
<td>Clay till</td>
<td>Poor</td>
</tr>
<tr>
<td>Jcl</td>
<td>Jeddo</td>
<td>stony loam</td>
<td>Clay till</td>
<td>Poor</td>
</tr>
<tr>
<td>Lcl</td>
<td>Lincoln</td>
<td>clay</td>
<td>Clay till</td>
<td>Poor</td>
</tr>
<tr>
<td>Maie</td>
<td>Morley</td>
<td>silty clay loam</td>
<td>Silty clay loam till</td>
<td>Poor</td>
</tr>
<tr>
<td>Oil</td>
<td>Oneida</td>
<td>loam</td>
<td>Clay till</td>
<td>Moderately Good</td>
</tr>
<tr>
<td>Scl</td>
<td>Smithville</td>
<td>loam</td>
<td>Clay till</td>
<td>Moderately Good</td>
</tr>
<tr>
<td>Scl</td>
<td>Smithville</td>
<td>silt loam</td>
<td>Clay till</td>
<td>Moderately Good</td>
</tr>
<tr>
<td>Sclcl</td>
<td>Smithville</td>
<td>silty clay loam</td>
<td>Clay till</td>
<td>Moderately Good</td>
</tr>
<tr>
<td>Tacl</td>
<td>Trafalgar</td>
<td>silty clay loam</td>
<td>Silty clay loam till</td>
<td>Imperfect</td>
</tr>
<tr>
<td>Vcl</td>
<td>Vineland</td>
<td>sandy loam</td>
<td>Deltaic sand deposits</td>
<td>Imperfect</td>
</tr>
<tr>
<td>Vcl</td>
<td>Vineland</td>
<td>fine sandy loam</td>
<td>Deltaic sand deposits</td>
<td>Imperfect</td>
</tr>
<tr>
<td>Wcl</td>
<td>Winona</td>
<td>sandy loam</td>
<td>Deltaic sand deposits over clay till</td>
<td>Imperfect</td>
</tr>
<tr>
<td>Wcl</td>
<td>Winona</td>
<td>fine sandy loam</td>
<td>Deltaic sand deposits over clay till</td>
<td>Imperfect</td>
</tr>
<tr>
<td>R</td>
<td>Ravines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esc</td>
<td>Escarpment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
in some areas. The main agricultural activities on these soils are the production of grain crops and cultivated hay.

Well drained clay soils

Soils of this type occur in the moraine area to the south of the Niagara Escarpment. The soils are deep, well drained and rate amongst the best in the Niagara region for the growth of grain and forage crops.

Imperfectly drained clay soils

This soil group, of which the Haldimand Clay covers the largest area is found to the south of the Niagara Escarpment. The clays are fine-textured, preventing free drainage and causing the soils to be sticky and hard to work in the spring, and to dry out too quickly in the summer. The soils are used for the growing of grapes, hay, pasture and some grains.

Poorly drained clay soils

Soils of this type can be found on the Lake Ontario Plain and in certain parts of the Haldimand Clay Plain. Restricted drainage results in these soils being used for woodland and pasture south of the escarpment. Below the escarpment, on the Lincoln and Jeddo Series, these soils are utilised for the cultivation of grapes, pears and plums.

(2) **Soils derived from sandy parent materials.**

Although sandy soils occupy a much smaller area than the clay soils, the former are of greater economic significance since they provide the basis for the "good fruit soils" of the Niagara Fruit Belt.
LEGEND

- INDUSTRIAL AREAS
- RESIDENTIAL & COMMERCIAL
- ASSOCIATED URBAN AREAS
- HAY
- GRAIN
- HORTICULTURE
- VINEYARDS
- TREE FRUITS
- IMPROVED PASTURE
- OPEN GRASSLAND
- SCRUB GRASSLAND
- WOODLAND
- OPEN WOODLAND
- SCRUB WOODLAND
Well-drained and imperfectly-drained sandy soils

Krueger refers to these soils as the 'tender fruit soils'. They are derived from deltaic sand deposits. West of the town of Grimsby, the sands are very thin and are underlain by clays. To the east, the sands are between 2 ft. to 3 ft. thick and their value for the growth of tree fruits, especially peaches, increases.

(3) Miscellaneous Soils.

In this group are included soils developed on the Escarpment where slopes are too great for normal soil development.

Agricultural Land-Use.

The agricultural land use in North Grimsby township is shown in Fig. 4. Three basic zones trending east-west may be defined.

In the northern area of the township on the Lake Ontario Plain, the main agricultural activities are the cultivation of grapes and tree fruits, the majority of grapes being grown on the heavier soils in the west of the township. The areas of grassland bordering highway 8 and the Queen Elizabeth Way are mostly idle, and can be thought of as speculative land.

Immediately south of the escarpment, land use is a mixture of grapes, hay and grains with tree fruits important in the eastern area near the Clinton township boundary. In the southern area of the township, hay and pasture predominate with small areas of grapes and an increased area of woodland.

CHAPTER II

DATA & METHODOLOGY

2.1 Data Requirements

The general problem of data requirements for a study of this nature has been examined by Duckham\(^1\) and Nix\(^2\), and reviewed in a previous section. The data required is of three basic types:

1) Information on the present labour allocation, farm structure crop acreages, livestock numbers, and income and expenditure statistics of the individual farms, or groups of farms within the study area.

2) Standard labour requirements for a crop or livestock unit expressed in Standard Man Hours, for the crop and livestock types present in the township, adjusted to suit local conditions.

3) Information on the area and characteristics of soil types on each farm group or farm in the study area.

Data Sources.

1) Information on present farm structure and Labour allocation

Nix\(^3\) is of the view that it is rarely possible to obtain satisfactory information on farm structure, in the form of income

and expenditure figures, crop and livestock statistics and information or labour inputs, from the farm operator in sufficient detail for this type of analysis. Personal experience by the author in farm surveys conducted in the United Kingdom tended to support this view. Recent work by Darnel has suggested that in one area of the Niagara Peninsula, at least, a survey of this type can be successful, and adequate co-operation can be obtained from farm operators. The process is, however, time consuming since most interviews with operators require at least two hours. It was therefore decided, for the purposes of the present study, to utilise a secondary source of statistics, the Canada Census of Agriculture, as the main source of information. Although the last census was taken in 1966, tabulated results were not available in the form required at the time that the present study commenced, and so the previous census taken in 1961 was utilised as the main data source.

The Census of Agriculture for 1961 consisted of a four page questionnaire, requiring answers to over 180 questions on the structure of the individual farm unit. The census questionnaire is reproduced as Appendix Two.

Normally, tabulated results of the census are published only on a township, county or provincial basis. For the purposes of this study, a special tabulation was utilised in which the 335 farms in the township were reduced to 94 averaged farm groups, on the basis

of size and proximity of location. The number of component farms in each group ranged from three to five. This technique is a refinement of the "super block" method of analysis of farm data used by Irving\(^6\) and Mage.\(^7\)

The 168 questions on the census questionnaire were reduced to forty-four variables for the purposes of initial analysis.

Problems associated with the use of secondary data sources.

The implications of dependence on secondary sources have been examined by Haggett.\(^8\) Three basic problems are discussed.

1. Data obtained from the census or any other secondary source is collected primarily for non-geographical purposes and hence has a tendency to be oblique to the direct needs of a geographical study. Haggett\(^9\) cites studies by Gregor\(^10\) and Coppock\(^11\) as examples of this problem.

An example of this problem in the case of the Census of Agriculture data may be seen in the method of determining present farm labour inputs. These are given on the basis of the number of

days worked off the farm by the farm operator, and in weeks worked on the farm by hired and unpaid labour. Considerable variation exists in the length of the working day or week of most categories of farm labour, and in the length of the working day or week at the various seasons of the year. This can introduce a possible source of error into the investigation.

(2) The research worker is dependent upon the accuracy of the original survey, a factor beyond his personal control. This level of accuracy has proved to be low in several cases. Haggett12 has cited a study by Morgenstern13 as an example of this problem.

Recent studies in the Niagara Peninsula have raised the question of the accuracy of Census of Agriculture data. Darnel14 suggests that census returns are relatively accurate in their estimate of the units of crops and livestock on a holding. Problems exist, however, where the operator is confused by the census definition of a particular agricultural activity, or chooses for personal reasons to enter an incorrect figure on the census questionnaire.

Reeds15 has indicated that financial information on the census return may show considerable variation from the actual figure. It is his estimate that the value of production statistics could be up to 30% below their actual value.

13Morgenstern, O., \textit{On the Accuracy of Economic Observations} (Princeton 1963).

14Darnel, W., 1968, Personal Communication.

15Reeds, L.G., 1968, Personal Communication.
(3) The final problem associated with the use of secondary data is its form of release, which may generate problems of interpretation and mapping. Haggett16 cites work by Duncan, Cuzzort and Duncan17 as an example of this problem. The data for the present study was made available, with the co-operation of the Dominion Bureau of Statistics, in the form of a special tabulation. Since the confidential nature of the original data had, by law, to be maintained, the data was released in grouped form, the size of the group ranging from three to five farm holdings. The groups were chosen on the basis of proximity of location, similarity of enterprise and size of the component farm units. This grouping has unavoidably introduced a degree of subjectivity in the sampling of the original data.

(2) Information on standard labour inputs in man hours for crops and livestock.

In order to examine the relative efficiency of labour input allocation in the farm firm, it is necessary to obtain data on the average work inputs in standard man hours per year, for each crop or livestock activity undertaken on the farm enterprises. Several points have been made by Duckham18 about the use and interpretation of such data.

(1) Much of this type of data has been gathered by Provincial Agricultural Departments from surveys made for other

17 Duncan, O.D., Cuzzort, R.P. & Duncan, B., \textit{Statistical Geography} (Glencoe: Free Press 1961).

purposes, (e.g. farm management surveys and enterprise
cost studies). According to Duckham, this will not
invalidate the accuracy of the data, but may obscure
important points which would come to light had the survey
been specifically directed towards labour use.

(2) The figures for man hours are weighted averages and do not
take into account variations in work times on specific
enterprises. Apart from year to year differences attri­
butable to weather and economic variations, these averages
cannot take into account the effect of geographical loca­
tion, differences resulting from a variety of farming
systems, differences due to the personal preferences of
the farmer or differences in carrying out a specific job.

(3) The rate of technical change, and to a lesser extent, econ­
omic change is now so rapid that some of the standard factors
are inevitably out of date.

(4) Perhaps of greatest importance is the fact that the data
represents the labour input used by a number of operators
for a specific purpose during a particular year. It does
not necessarily reflect what input should have been required
or even what input the entrepreneur desired. Even on the
best run farms there are many factors which may upset an
entrepreneur's plans, such as weather, machinery breakdowns,
manpower shortages, day to day mistakes in organisation, and
competition between various enterprises.

(5) Although these data on man hours are most often described as
Work Requirements, they would generally best be described as Work Inputs. Such inputs can frequently be either (a) excessive, a result of the limits of present mechanical development, the farmer's lack of knowledge of the quickest method of doing a job, or even due to overstaffing, or (b) deficient because there is often not enough time for doing a job properly.

In summary, published records of farm operations are not necessarily the best guides as to what should be done on a given farm. Nevertheless, Duckham\(^\text{19}\) is of the opinion that such records are of considerable use in creating an average picture of an average year. They are, in fact, the only authenticated records available.

The source of standard labour input data for this study was the Farm Business Management Handbook of the Ontario Department of Agriculture and Food.\(^\text{20}\) This volume contains a variety of information on farm management practices, average production costs, returns, etc., in the Province of Ontario.

The statistics contained in this volume are derived from two main sources. Firstly, farm surveys conducted by the Ontario Department of Agriculture, or other agencies, within the Province, and secondly, statistics derived from surveys taken in regions outside the province and modified to suit the agricultural conditions in Ontario.

Surveys in Ontario.

The surveys conducted in the Province of Ontario represent a range of studies carried out over a number of years. The number of farm holdings and enterprise characteristics examined in the surveys varies considerably. It must be noted that in many of the cost of production reports published by the Ontario Department of Agriculture, farms were selected on the basis of the willingness of the farm operator to co-operate with the survey, rather than on the basis of the farm being part of a representative sample.

The number of farms examined in the survey also casts doubts on the validity of the statistics presented. In one case, vegetable production costs, supposedly representative of the whole province, are tabulated from a survey of only nine holdings.

Sources from other surveys

Many of the statistics in the Ontario Farm Management Handbook are derived from studies undertaken in areas where production conditions, both physical and economic, differ markedly from those experienced in the Niagara Peninsula. An example of this is to be found in the Standard Labour Input statistics for livestock, which were derived from the Farm Budgeting Reference Manual, produced by

21 Examples of such reports are to be found in: Ontario Dept. of Agriculture and Food. Farm Business Management Handbook, (Toronto: Ontario Dept. of Agriculture and Food, 1966-1968).

the United States Department of Agriculture and Cornell University.24 The validity of the inclusion of such statistics in this study is dependent upon the adjustments made to the statistics by the Ontario Department of Agriculture in order to make them applicable to conditions in the Province.

(3) \textbf{Information on the area and characteristics of soil types in the study area.}

Information on the area and characteristics of the soil types on each farm or group of farms was obtained from Wicklund and Matthews.25 The area of a particular soil type or each farm-group was obtained from the soil map accompanying the report. The area was measured by polar planimetry and checked by re-measurement using one m.m. square graph paper. The percentage of the farm area occupied by each soil type was calculated and used as a basis for analysis.

\textbf{Other data sources}

Several other sources of data were utilised during the course of the study. The nature and relative accuracy of these minor data sources is examined in the relevant section of the text.

\textbf{Data storage and processing}

The data obtained from the Census of Agriculture in Ottawa, in the form of group averages was transferred to punched cards to

facilitate analysis. Data processing for the study was carried out on the I.B.M. 7040 computers at the McMaster University Data Processing Centre and in the Computer Centre at the University of Western Ontario, London, Ontario.

Methodology

The initial problem encountered in the study was the collection of the data, on farm enterprise structure, from the Census of Agriculture in Ottawa. Data was obtained from the census enumeration forms and combined into farm groups, on the basis of proximity of location and size of holding. The farm groups were then averaged, and the mean data for each group transferred to punched cards to facilitate analysis.

The first part of the analysis consisted of the delimitation of the main enterprise types in the township, since these would provide the framework within which the detailed analysis of labour inputs and their relative efficiency would be tackled. To achieve this end, the farm group totals of crop acreages and livestock numbers were reduced to the common denominator of standard man hours employed in each activity. This was accomplished by the use of standard man-hours factors for each activity, obtained from the Ontario Farm Business Management Handbook.

Farms were grouped into Specialised, General or Mixed Enterprises on the basis of the percentage of the total labour input devoted to the various enterprises being carried on within the farm group. Distinction was made between part-time and full-
time holdings on the basis of the number of days worked by the operator off the holding during the course of the year. A further subdivision of enterprises was made based on the leading crop or activity, e.g., cattle, tree fruit, grapes, etc., determined by the percentage of total labour input in each farm group devoted to the crop or activity.

The three main levels of analysis, Township, Enterprise Type and Leading Activity, together with their respective subdivisions are shown in Table 1.

Once the Enterprise Type and Leading Activity Subdivisions were delimited, analysis of the labour input structure of the township was possible. This was accomplished in three main stages. Stage one consisted of the determination of actual labour inputs by farm groups from the data on farm structure obtained from the Census of Agriculture, utilising Standard Working Week and Work-Day factors obtained from the Canada Department of Labour. 27

Labour input by component type, e.g., Operator's Labour, Hired Labour, etc., was examined at all levels of the analytical hierarchy. In addition, an attempt was made to describe general and local spatial trends in labour type at the Township scale by means of Trend Surface Analysis

The second stage of analysis was an attempt to determine the relative efficiency of use of the 1961 agricultural labour input

26 Full definitions of all such terms employed in the study are contained in Appendix 1.

TABLE 1

LEVELS OF ANALYSIS ADOPTED FOR USE IN THE STUDY AREA.

TOWNSHIP (All Farms)

<table>
<thead>
<tr>
<th></th>
<th>Full Time Farms</th>
<th>Part Time Farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTERPRISE TYPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIALISED</td>
<td>Full Time Farms</td>
<td>Part Time Farms</td>
</tr>
<tr>
<td>GENERAL</td>
<td>Full Time Farms</td>
<td>Part Time Farms</td>
</tr>
<tr>
<td>MIXED</td>
<td>Full Time Farms</td>
<td>Part Time Farms</td>
</tr>
<tr>
<td>LEADING ACTIVITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree Fruits</td>
<td>Cattle</td>
<td>Grapes</td>
</tr>
<tr>
<td>Tree Fruits</td>
<td>Cattle</td>
<td>Grapes</td>
</tr>
</tbody>
</table>
in the township. The technique utilised was the Labour Efficiency Index, in which an average labour input level for each farm, derived from the Standard Labour Input factors utilised by Ontario Dept. of Agriculture Extension Service workers, was compared to the actual 1961 labour input. The result is expressed in a decimal index, in which a figure of 1.00 is regarded as conforming to an average level of input efficiency on a Provincial basis.

The final stage of the analysis was to determine which of certain selected economic and socio-economic elements of farm structure and elements of the physical environment showed a significant association with the Labour Efficiency Index at each of the levels of analysis. It was proposed that a particular type of linear relationship existed between these variables and the L.E.I. The hypothesized relationships were tested by means of the Pearson Product-Moment correlation coefficient.

28 Ontario Department of Agriculture and Food. Farm Business Management Handbook for Extension Workers. (Toronto, Ontario Dept. of Agriculture. 1966)
CHAPTER III
THE CLASSIFICATION OF FARM ENTERPRISE TYPES

The purpose of this chapter is to describe the techniques used to divide the farm groups in the township into farm enterprise types, showing similarities of enterprise structure, in order to facilitate further investigation of labour input allocation and efficiency.

3.1 Enterprise Classification.

The subject of farm enterprise classification has been extensively reviewed in a previous section. According to Chisholm,\(^1\) two elements of choice are involved in making any classification. The first involves the combination of disparate phenomena, such as units of crops and livestock, and the second involves the choice of the critical limits between classes.

The Combination of Disparate Phenomena

Farms have been classified on the basis of land use, labour requirements, or value of sales of farm products.\(^2\) In view of the importance of livestock on many farms, it is difficult to employ land use alone as a basis for classification. In the absence of data

on sale of products or of the actual input labour used in farm activities, it is possible to use standard labour factors or sales factors derived from farm management studies. Since sales data in the census proved unsatisfactory for the type of classification desired, standard labour requirements had to be used as the basis for the enterprise-type classification, despite the fact that they are relatively unsatisfactory.

Standard labour requirements used as a basis for enterprise classification are open to criticism. Variations in the degree of mechanisation, in farm and field size, and in terrain make their use questionable in many cases. Such differences are, however, more likely to affect the absolute rather than the relative importance of the various farm activities.³ In spite of their limitations, the standard labour factor approach has been utilised in the United Kingdom as the basis of a government scheme to aid small farmers and in the calculation of minimum sizes of enterprises for other schemes of assistance.⁴

Enterprise Types

To simplify calculation, the agricultural activities of the township were grouped into fourteen activity types. The activity classes are shown in Table 2 together with their component crop and livestock activities. Hay and pasture were regarded as separate

TABLE 2. AGRICULTURAL ACTIVITY CLASSES AND COMPONENT ACTIVITIES.

1. **GRAIN CROPS**
 - Spring Wheat
 - Durham Wheat
 - Winter Wheat
 - Oats
 - Barley
 - Mixed Grains
 - Fall Rye
 - Spring Rye
 - Buck wheat
 - Dry Peas
 - Dry Beans
 - Grain Corn

2. **HAY AND FODDER CROPS**
 - Corn for Ensilage or Fodder
 - Alfalfa
 - Tame Hay
 - Oats (cut green)
 - Other Fodder Crops

3. **POTATOES AND ROOTS**
 - Potatoes
 - Turnips
<p>| (4) OTHER CROPS | Sugar Beet |
| | Other Field Crops |
| (5) STRAWBERRIES | |
| (6) RASPBERRIES | |
| (7) GRAPEs | |
| (8) CATTLE | Dairy Cattle |
| | Beef Cow-Calf |
| | Purchased Calves |
| | Purchased Yearlings |
| (9) PIGS | Conventional Swine |
| | Weanling Pigs |
| | Feeder Hogs |
| (10) POULTRY AND BROILERS | |
| (11) TREE FRUITS | Apples |
| | Pears |
| | Plums |
| | Cherry - Sweet |
| | Cherry - Sour |
| | Peaches |
| | Apricots |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(12) VEGETABLES</td>
<td></td>
</tr>
<tr>
<td>Asparagus</td>
<td></td>
</tr>
<tr>
<td>Beans</td>
<td></td>
</tr>
<tr>
<td>Beets</td>
<td></td>
</tr>
<tr>
<td>Broccoli</td>
<td></td>
</tr>
<tr>
<td>Cabbage</td>
<td></td>
</tr>
<tr>
<td>Carrots</td>
<td></td>
</tr>
<tr>
<td>Cauliflower</td>
<td></td>
</tr>
<tr>
<td>Celery</td>
<td></td>
</tr>
<tr>
<td>Cucumbers</td>
<td></td>
</tr>
<tr>
<td>Green Peas</td>
<td></td>
</tr>
<tr>
<td>Lettuce</td>
<td></td>
</tr>
<tr>
<td>Onions</td>
<td></td>
</tr>
<tr>
<td>Spinach</td>
<td></td>
</tr>
<tr>
<td>Sweet Corn</td>
<td></td>
</tr>
<tr>
<td>Tomatoes - Processing</td>
<td></td>
</tr>
<tr>
<td>Tomatoes - Early Market</td>
<td></td>
</tr>
</tbody>
</table>

| (13) **IMPROVED PASTURE** | |

| (14) **UNIMPROVED PASTURE** | |

| (15) **WOODLOT** | |
activities if no livestock was recorded in the farm group. Since these groups are similar to those used in the farm efficiency index, detailed discussion of the derivation of the factors will be included in a later chapter.

Method

Each acreage of crops and unit of livestock is multiplied by its relevant man-hours factor to obtain a figure for the number of man-hours claimed by that activity during a year. The totals were then summed to obtain the total number of man-hours used on the holding during the year.

Choice of Critical Limits

The second problem involved in the classification process is the choice of critical limits for each farm enterprise type. This could be done on the basis of a Weaver\(^5\) type classification in which the percentage of the total labour inputs supplied by one to 'n' individual activities on the farm are compared to the ideal distribution amongst one to 'n' activities. The extent of the deviation of the actual case from the one crop, two crop, three crop, 'n' crop / activity from the ideal model, is measured by squaring the differences between the percentage shares of the actual case, and those of the ideal distribution. Each farm group will then be classed by the grouping which shows the least sum of squared deviation from the 'ideal' model.

A simple classification of farm enterprise types has been

<table>
<thead>
<tr>
<th>Type</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized Fluid Milk</td>
<td>Over 75 per cent of the gross income from the dairy enterprise and the main dairy product was fluid milk.</td>
</tr>
<tr>
<td>General Fluid Milk</td>
<td>Between 50 and 75 per cent of the gross income from the dairy enterprise, and the main dairy product was fluid milk.</td>
</tr>
<tr>
<td>Specialized Non-fluid Milk</td>
<td>Over 75 per cent of the gross income from the dairy enterprise and the main dairy product was manufactured milk and/or cream.</td>
</tr>
<tr>
<td>General Non-fluid Milk</td>
<td>Between 50 and 75 per cent of the gross income from the dairy enterprise and the main dairy product was manufactured milk and/or cream.</td>
</tr>
<tr>
<td>Specialized Beef Cows</td>
<td>Over 75 per cent of the gross income from the beef enterprise and no dairy products sold.</td>
</tr>
<tr>
<td>General Beef Cows</td>
<td>Between 50 and 75 per cent of the gross income from the beef enterprise and no dairy products sold.</td>
</tr>
<tr>
<td>Specialized Steer</td>
<td>Over 75 per cent of the gross income from feeder cattle enterprises.</td>
</tr>
<tr>
<td>General Steer</td>
<td>Between 50 and 75 per cent of the gross income from a feeder cattle enterprise.</td>
</tr>
<tr>
<td>Specialized Swine</td>
<td>Over 75 per cent of the gross income from swine enterprises.</td>
</tr>
<tr>
<td>General Swine</td>
<td>Between 50 and 75 per cent of the gross income from swine enterprises.</td>
</tr>
<tr>
<td>Specialized Poultry</td>
<td>Over 75 per cent of the gross income from poultry enterprises.</td>
</tr>
<tr>
<td>General Poultry</td>
<td>Between 50 and 75 per cent of the gross income from poultry enterprises.</td>
</tr>
<tr>
<td>Specialized Cash Crop</td>
<td>Over 75 per cent of the gross income from cash crop enterprises.</td>
</tr>
<tr>
<td>General Cash Crop</td>
<td>Between 50 and 75 per cent of the gross income from cash crop enterprises.</td>
</tr>
<tr>
<td>Mixed Farms</td>
<td>Not more than 50 per cent of the gross income from any single enterprise.</td>
</tr>
</tbody>
</table>
TABLE 4.

ENTERPRISE CLASSIFICATION ADAPTED FOR THE STUDY AREA FROM A CLASSIFICATION DEvised BY THE ONTARIO DEPARTMENT OF AGRICULTURE

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIALISED HOLDINGS</td>
<td>Farm groups with over 75% of the total annual labour requirement engaged in one activity.</td>
</tr>
<tr>
<td>GENERAL HOLDINGS</td>
<td>Farm groups with between 50% and 75% of the total annual labour requirement engaged in one activity.</td>
</tr>
<tr>
<td>MIXED HOLDINGS</td>
<td>Farm groups with no one activity requiring more than 50% of the total annual labour requirement.</td>
</tr>
</tbody>
</table>
developed by the Ontario Department of Agriculture. In this classification, the farm enterprises were classified by the percentage of their gross income obtained from a specific activity. If the figure is over 75% for one activity, the farm is described as Specialised. General farms are units obtaining between 50% and 75% of their gross income from one activity, and Mixed farms have no one enterprise contributing more than 50% of the total gross income.

The classification is further subdivided by the main activity on the holding, e.g. milk, hogs, poultry, cash crops, etc. The classification is reproduced in Table 3.

It was decided to utilise in part this less complex classification as a basis for this study. Farm groups were allocated to three main enterprise types, Specialised, General and Mixed, according to the percentage of labour hours allotted to each activity, and a further subdivision made on the basis of the leading activity.

The structure of the enterprise classification adopted for the study area is shown in Table 4.

3.2 Spatial Distribution of Main Enterprise-Types.

Enterprise-type Scale

The distribution of the three enterprise types Specialised, General, and Mixed is shown in Figure 5. Specialised holdings are concentrated in the north-east of the township in one of the tender-fruit soils. Further west on the Lake Ontario Plain, the soils are

SPECIALISED—OVER 75% TOTAL MAN HOURS IN ONE ACTIVITY

GENERAL—50% — 75% MAN HOURS IN ONE ACTIVITY

MIXED—NO ONE ACTIVITY OVER 50% TOTAL MAN HOURS

NORTH GRIMSBY TOWNSHIP
FARM ENTERPRISE TYPES
SCALE: ONE INCH TO ONE MILE
heavier and a General type of farming predominates, although there are groups of specialised holdings on the lighter soils.

To the south of the escarpment, there is a band of General farms on the lighter soils of the moraine area whilst the heavier clay soils support Mixed enterprises.

Leading Crop/Activity Scale

The distribution of leading activities is shown in Figure 6. Tree fruits enterprises of various types dominate the northern and eastern areas of the township in terms of labour input utilisation. Grapes are found in isolated areas both above and below the escarpment. The southwest and southern portions of the township are dominated by cattle-oriented enterprises; generally these types of farming are located on the heavier soils.
CHAPTER IV

ANALYSIS OF THE ECONOMIC STRUCTURE OF FARM HOLDINGS IN NORTH GRIMSBY TOWNSHIP

This chapter will examine selected elements of the economic structure of the farm-firm at the township, enterprise-type and leading activity scales.

Variables examined are, in many cases, related to the size of the farm operation, and it is hypothesized that some of these variables are associated with the efficiency of use of the labour input as defined by the Labour Efficiency Index. Formal testing of these hypotheses is contained in a later section, but description of the variables is included at this stage in the study in order to provide an economic framework within which the labour input structure may be placed in perspective.

4.1 Definition of Variables.

The variables under consideration may be grouped into four general categories.

(a) Direct Measures of the Size of the Enterprise

The size of the farm units is usually defined in terms of acreage. It will become apparent in the later stages of analysis that acreage is not a good measure of farm size, but merely a measure of the input factor, land.
A better measure of farm size, one that has been considerably neglected in geographical studies, is that of total capital investment. This would include the current value of land, buildings, machinery and livestock.

It was not possible to include livestock statistics in the present study, and so total capital investment is defined as the value of land, buildings and machinery.

(b) Mechanization

The level of mechanization employed by a holding is a measure of the extent to which capital in the form of machinery is substituted for other inputs. Two measures of the level of mechanization are employed. The first is the ratio of the value of machinery to the value of the labour input, an indication of the level of substitution of machinery for labour. The second measure is the ratio of the value of machinery to the total value of capital on the holding, as defined in the previous section. The latter may be regarded as an indication of the relative importance of mechanization in the farm-firm.

(c) Productivity

Three measures of the productivity of the holding are examined. The productivity in dollars per acre is used as an indicator of the intensity of production of the farm-firm.

The productivity of labour inputs in dollars per dollar of labour used is calculated in order to determine the relative productivity of this input in the farm-firm. Finally, the productivity of capital in dollars per dollar invested is used to assess the return to the farm operator on his overall investment.
(d) The Diversity of the Enterprise

The diversity of activities on the holding is measured by means of a Diversity Index based on the percentage of total labour input utilized in the various component activities that make up the farm operation. The method used to derive the index is that used by Weaver¹ to determine crop combination regions in the Mid-western U.S.A.

4.2 Analysis of Selected Elements of Farm Economic Structure

(1) Township Scale

Selected elements of farm economic structure at the township scale are shown in Table 5.

(a) Farm Size

The mean acreage of all holdings in the township was 41.6 acres. This figure is substantially lower than the mean figure for Lincoln County. It would seem likely that this is a result of the large number of small tree fruit farms in the township. The mean acreage of full-time holdings is 4.6 acres larger than that of the part-time farms.

Capitalization on all farms in the township amounted to over $800 per acre. The figure is almost twice the average for the Niagara Peninsula and nearly four times the provincial average. It is thought that the township mean value of capital statistics are greatly influenced by the large number of specialized tree fruit holdings with abnormally high land values, the result both of the

SELECTED ELEMENTS OF FARM ECONOMIC STRUCTURE 1961

TABLE 5.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>TOWNSHIP SCALE</th>
<th>ALL FARMS</th>
<th>FULL TIME</th>
<th>PART TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Acreage</td>
<td>41.65</td>
<td>38.88</td>
<td>43.86</td>
<td>44.38</td>
</tr>
<tr>
<td>Total Capital Value</td>
<td>33086.00</td>
<td>14654.87</td>
<td>34997.73</td>
<td>2598.38</td>
</tr>
<tr>
<td>Machinery/Capital Ratio</td>
<td>0.11</td>
<td>0.06</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>Machinery/Labour Ratio</td>
<td>0.79</td>
<td>0.51</td>
<td>0.68</td>
<td>0.51</td>
</tr>
<tr>
<td>Productivity per Acre</td>
<td>224.00</td>
<td>295.65</td>
<td>250.78</td>
<td>323.62</td>
</tr>
<tr>
<td>Productivity of Capital</td>
<td>0.17</td>
<td>0.20</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td>Productivity of Labour</td>
<td>1.06</td>
<td>1.06</td>
<td>0.93</td>
<td>1.34</td>
</tr>
<tr>
<td>Diversity Index</td>
<td>2.90</td>
<td>2.09</td>
<td>3.04</td>
<td>2.05</td>
</tr>
</tbody>
</table>

1. Average Size of Farm in Acres.
2. Total Value of Land, Buildings and Machinery.
3. Value of Machinery divided by the Total Value of Capital.
4. Value of Machinery divided by the Total Labour Input.
5. Value of Production in Dollars per Acre.
6. Value of Production Divided by the Total Value of Capital.
7. Labour Productivity in Dollars per Dollar Input of Labour.
8. Diversity of farm enterprise.
nature of the soils, the mature orchards on these holdings, and the influence of land-use competition from non-agricultural uses in certain parts of the township.

(b) Mechanization

The values of the machinery-labour ratio indicate a wide variation in the levels of substitution of machinery for labour. The statistics indicate a higher level of machinery substitution on part-time holdings. This could be the result of the need to substitute machinery for the labour input to compensate for the increased level of off-farm employment, but may also be due to an underestimation by the census of part-time or unpaid labour. No significant variation exists in the value of the machinery/capital ratio at this scale.

(c) Productivity

Wide variations exist about the mean value of all measures of productivity, which severely limits any conclusions that may be drawn from them.

Productivity per acre is substantially greater on full-time holdings, whereas with labour productivity the reverse is true. It is possible that this is the result of underestimation of the part-time labour input. No significant variations exist at this level in the productivity of capital.

(d) Diversity

At the township level, variation about the mean value of this variable make comparisons between groups insignificant.
4.3 Enterprise-type Scale

Selected elements of farm economic structure at the Enterprise-type scale are shown in Tables 6, 7, and 8.

(a) Farm Size

Large variations about the mean values as indicated by the standard deviations make detailed analysis of mean values of these variables unreliable. Mean acreages of farm units range from 16.98 acres for specialized holdings to over 70 acres in the case of mixed farms. The inadequacy of acreage data as an indicator of farm size is apparent if the figures for total capital value are examined. If all farms are considered, there is little difference in the amount of total capital investment on either Specialized or General holdings. As might be expected, the more extensive full-time holdings have a larger level of capital investment than their smaller part-time counterparts.

(b) Mechanization

The level of machinery-labour substitution is highest on the Specialized and Mixed holdings. The high value in the former group was unexpected because of the extensive use of labour in picking operations on this predominantly tree-fruit oriented group. All part-time holdings appear to have a higher level of machinery-labour substitution. It could be argued that this is the result of having to substitute more machinery to compensate for the off-farm employment of the operator, or that the extra income derived from the off-farm employment is used in part to provide more capitalization in
SELECTED ELEMENTS OF FARM ECONOMIC STRUCTURE 1961

ENTERPRISE-TYPE SCALE - SPECIALISED HOLDINGS

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ALL FARMS</th>
<th>S/D</th>
<th>FULL TIME HOLDINGS</th>
<th>S/D</th>
<th>PART TIME HOLDINGS</th>
<th>S/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Acreage</td>
<td>16.98</td>
<td>15.88</td>
<td>15.62</td>
<td>11.30</td>
<td>18.18</td>
<td>20.71</td>
</tr>
<tr>
<td>Total Capital Value</td>
<td>$35560.26</td>
<td>$13129.91</td>
<td>$35659.78</td>
<td>$12077.71</td>
<td>$34671.21</td>
<td>$16486.67</td>
</tr>
<tr>
<td>Machinery/Capital Ratio</td>
<td>0.10</td>
<td>0.06</td>
<td>0.10</td>
<td>0.07</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>Machinery/Labour Ratio</td>
<td>0.88</td>
<td>0.61</td>
<td>0.77</td>
<td>0.67</td>
<td>0.94</td>
<td>0.50</td>
</tr>
<tr>
<td>Productivity per Acre</td>
<td>281.05</td>
<td>276.70</td>
<td>360.88</td>
<td>315.18</td>
<td>170.16</td>
<td>119.86</td>
</tr>
<tr>
<td>Productivity of Capital</td>
<td>0.09</td>
<td>0.09</td>
<td>0.12</td>
<td>0.11</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Productivity of Labour</td>
<td>0.78</td>
<td>0.60</td>
<td>0.81</td>
<td>0.64</td>
<td>0.74</td>
<td>0.56</td>
</tr>
<tr>
<td>Diversity Index</td>
<td>1.53</td>
<td>1.46</td>
<td>1.39</td>
<td>1.27</td>
<td>1.50</td>
<td>1.60</td>
</tr>
</tbody>
</table>
SELECTED ELEMENTS OF FARM ECONOMIC STRUCTURE 1961

ENTREPRISE TYPE SCALE - GENERAL HOLDINGS

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ALL FARMS MEAN</th>
<th>S/D</th>
<th>FULL TIME MEAN</th>
<th>S/D</th>
<th>PART TIME MEAN</th>
<th>S/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Acreage</td>
<td>49.07</td>
<td>34.56</td>
<td>47.31</td>
<td>34.68</td>
<td>43.98</td>
<td>30.66</td>
</tr>
<tr>
<td>Total Capital Value</td>
<td>34060.67</td>
<td>16853.23</td>
<td>37880.46</td>
<td>19733.65</td>
<td>28034.34</td>
<td>6178.71</td>
</tr>
<tr>
<td>Machinery /Capital Ratio</td>
<td>0.11</td>
<td>0.07</td>
<td>0.08</td>
<td>0.04</td>
<td>0.13</td>
<td>0.06</td>
</tr>
<tr>
<td>Machinery /Labour Ratio</td>
<td>0.72</td>
<td>0.42</td>
<td>0.55</td>
<td>0.39</td>
<td>0.94</td>
<td>0.35</td>
</tr>
<tr>
<td>Productivity per Acre</td>
<td>232.46</td>
<td>370.78</td>
<td>231.18</td>
<td>382.09</td>
<td>220.70</td>
<td>366.70</td>
</tr>
<tr>
<td>Productivity of Capital</td>
<td>0.23</td>
<td>0.26</td>
<td>0.17</td>
<td>0.14</td>
<td>0.23</td>
<td>0.33</td>
</tr>
<tr>
<td>Productivity of Labour</td>
<td>1.22</td>
<td>1.31</td>
<td>1.13</td>
<td>0.99</td>
<td>1.42</td>
<td>1.75</td>
</tr>
<tr>
<td>Diversity Index</td>
<td>3.84</td>
<td>1.99</td>
<td>3.47</td>
<td>1.64</td>
<td>4.07</td>
<td>2.20</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>ALL FARMS</td>
<td>S/D</td>
<td>FULL TIME</td>
<td>S/D</td>
<td>PART TIME</td>
<td>S/D</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>Mean Acreage</td>
<td>71.78</td>
<td>45.95</td>
<td>91.97</td>
<td>54.20</td>
<td>54.97</td>
<td>35.41</td>
</tr>
<tr>
<td>Total Capital Value</td>
<td>26014.14</td>
<td>11567.91</td>
<td>30116.29</td>
<td>14843.71</td>
<td>23187.77</td>
<td>7763.58</td>
</tr>
<tr>
<td>Machinery Capital Ratio</td>
<td>0.13</td>
<td>0.05</td>
<td>0.13</td>
<td>0.02</td>
<td>0.14</td>
<td>0.07</td>
</tr>
<tr>
<td>Machinery Labour Ratio</td>
<td>0.82</td>
<td>0.50</td>
<td>0.65</td>
<td>0.28</td>
<td>0.96</td>
<td>0.56</td>
</tr>
<tr>
<td>Productivity per Acre</td>
<td>96.72</td>
<td>109.59</td>
<td>116.64</td>
<td>128.29</td>
<td>111.73</td>
<td>109.06</td>
</tr>
<tr>
<td>Productivity of Capital</td>
<td>0.20</td>
<td>0.17</td>
<td>0.25</td>
<td>0.17</td>
<td>0.21</td>
<td>0.26</td>
</tr>
<tr>
<td>Productivity of Labour</td>
<td>1.23</td>
<td>1.09</td>
<td>1.12</td>
<td>0.66</td>
<td>1.24</td>
<td>1.34</td>
</tr>
<tr>
<td>Diversity Index</td>
<td>3.95</td>
<td>1.80</td>
<td>4.09</td>
<td>1.72</td>
<td>4.07</td>
<td>2.13</td>
</tr>
</tbody>
</table>
the form of machinery on the farm. However, the lack of variation in the machinery-capital ratio between full-time and part-time farm groups could indicate again that the labour input for part-time holdings is underestimated.

(c) Productivity

Productivity per acre is greatest on the small, very intensive specialized holdings and least in the extensive mixed farm group. In all cases, the productivity per acre of full-time farms exceeds that of part-time holdings. However, if productivity is measured in terms of returns to capital invested on land, buildings and machinery, specialized holdings have the lowest return of any enterprise type. Labour productivity is lowest on the specialized holdings, probably because of the large unpaid labour input, which has been charged as an opportunity cost in this analysis. The highest returns to labour occur on part-time farms, but as in the analysis at the township level, part of this return could be accounted for by an underestimation of the unpaid labour input.

(d) Diversity of Enterprise

Since enterprise-types at this level are defined in terms of relative diversity of operation, there is no need to examine this variable in detail. It would appear, however, on analysis of part-time holdings, that these farms are marginally more diverse than their full-time counterparts. This may be the result of an attempt to spread the labour input requirement more evenly over the year to enable the operator to work off the holding for a longer period.
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>SPECIALISED</th>
<th></th>
<th>GENERAL</th>
<th></th>
<th>MIXED</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>S/D</td>
<td>MEAN</td>
<td>S/D</td>
<td>MEAN</td>
<td>S/D</td>
</tr>
<tr>
<td>Average Acreage</td>
<td>17.02</td>
<td>15.73</td>
<td>38.12</td>
<td>31.65</td>
<td>93.27</td>
<td>56.36</td>
</tr>
<tr>
<td>Total Capital Value</td>
<td>35656.37</td>
<td>13840.98</td>
<td>39798.20</td>
<td>16410.78</td>
<td>32726.72</td>
<td>13157.71</td>
</tr>
<tr>
<td>Machinery Capital Ratio</td>
<td>0.09</td>
<td>0.06</td>
<td>0.10</td>
<td>0.04</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>Machinery Labour Ratio</td>
<td>0.86</td>
<td>0.60</td>
<td>0.79</td>
<td>0.34</td>
<td>0.93</td>
<td>0.55</td>
</tr>
<tr>
<td>Productivity per Acre</td>
<td>255.98</td>
<td>223.17</td>
<td>146.17</td>
<td>85.22</td>
<td>108.39</td>
<td>97.77</td>
</tr>
<tr>
<td>Productivity of Capital</td>
<td>0.08</td>
<td>0.08</td>
<td>0.11</td>
<td>0.06</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>Productivity of Labour</td>
<td>0.77</td>
<td>0.60</td>
<td>0.79</td>
<td>0.37</td>
<td>1.37</td>
<td>0.57</td>
</tr>
<tr>
<td>Diversity Index</td>
<td>1.36</td>
<td>1.34</td>
<td>3.34</td>
<td>1.72</td>
<td>3.37</td>
<td>1.56</td>
</tr>
</tbody>
</table>
4.4 Analysis of Selected Elements of Farm Structure of the Leading Activity Scale.

Tree Fruits

Selected elements of farm economic structure of farms with tree fruits as the dominant crop are shown in Table 9.

(a) Farm Size

Mean acreages of this farm group range from 17 acres in specialized holdings to over 92 acres for the mixed farm group. Total capital value indicates, however, that levels of investment in the holding are much the same for all farm types.

(b) Mechanization

The level of mechanization appears highest on the more extensive mixed farms according to all measures of this variable examined.

(c) Productivity

As expected, productivity per acre was highest on the intensive specialized holdings and lowest on the mixed holdings where the diversity of production was greatest.

Grapes

Selected elements of farm structure of holdings with grapes as the leading crop are shown in Table 10.

(a) Farm Size

The usual trend in the township of mixed holdings being more extensive than general or specialized farms is reversed in the case
SELECTED ELEMENTS OF FARM ECONOMIC STRUCTURE 1961

LEADING ACTIVITY SCALE - GRAPES

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>SPECIALISED</th>
<th>GENERAL</th>
<th>MIXED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Acreage</td>
<td>No Observations</td>
<td>58.59</td>
<td>13.43</td>
</tr>
<tr>
<td>Total Capital Value</td>
<td>$34385.48</td>
<td>$21496.18</td>
<td>$19608.20</td>
</tr>
<tr>
<td>Machinery/Capital Ratio</td>
<td>0.11</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>Machinery/Labour Ratio</td>
<td>0.65</td>
<td>0.29</td>
<td>0.59</td>
</tr>
<tr>
<td>Productivity per Acre</td>
<td>$124.77</td>
<td>$109.72</td>
<td>$137.38</td>
</tr>
<tr>
<td>Productivity of Capital</td>
<td>$0.22</td>
<td>$0.19</td>
<td>$0.15</td>
</tr>
<tr>
<td>Productivity of Labour</td>
<td>$0.91</td>
<td>$0.76</td>
<td>$0.73</td>
</tr>
<tr>
<td>Diversity Index</td>
<td>2.83</td>
<td>0.98</td>
<td>3.50</td>
</tr>
</tbody>
</table>
of holdings with grapes as the leading crop. Mixed holdings are virtually half the size of general farms both in acreage and value of land, buildings and machinery.

(b) Mechanization

The machinery-labour ratio indicates a greater reliance on mechanization in the more extensive mixed holdings. No significant variation in the relative importance of mechanization in terms of total capital investment could be detected on the two groups of holding.

(c) Productivity

Productivity per acre is highest on the smaller mixed holdings. A similar trend is found with tree fruit, the other crop which uses labour intensively at harvest time, although in the case of tree fruits it is the specialized farms which possess the smallest mean acreage.

Productivity in terms of capital investment is highest on the mixed farms, with their higher level of investment. Labour productivity is higher on the larger general farms although the level of productivity for both farms is very low. The low level of labour productivity results from the extensive use of unpaid, family labour on these farm-types.

Cattle

Selected elements of economic structure of farm-holdings with cattle as the dominant crop are shown in Table 11.

(a) Farm Size

Mixed holdings possess the largest mean acreage and value of
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>SPECIALISED</th>
<th>GENERAL</th>
<th>MIXED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>S/D</td>
<td>MEAN</td>
</tr>
<tr>
<td>Mean Acreage</td>
<td>71.32</td>
<td>38.86</td>
<td>73.16</td>
</tr>
<tr>
<td>No. Observations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Capital Value</td>
<td>19579.22</td>
<td>4648.49</td>
<td>23801.79</td>
</tr>
<tr>
<td>Machinery Capital Ratio</td>
<td>0.13</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>Machinery Labour Ratio</td>
<td>0.66</td>
<td>0.63</td>
<td>0.88</td>
</tr>
<tr>
<td>Productivity per Acre</td>
<td>53.02</td>
<td>30.47</td>
<td>103.39</td>
</tr>
<tr>
<td>Productivity of Capital</td>
<td>0.17</td>
<td>0.08</td>
<td>0.24</td>
</tr>
<tr>
<td>Productivity of Labour</td>
<td>1.36</td>
<td>1.45</td>
<td>1.39</td>
</tr>
<tr>
<td>Diversity Index</td>
<td>5.85</td>
<td>1.77</td>
<td>4.87</td>
</tr>
</tbody>
</table>

TABLE II.
capital, although there is more variation within this group than in the general holdings.

(b) Mechanization

The machinery/labour ratio indicates a greater reliance on labour on the more extensive mixed holdings. No significant variation can be determined in the machinery capital ratios.

(c) Productivity

Productivity per acre is lowest on the general farms, although the standard deviation indicates more variation within this group than on mixed holdings. Productivity of the labour input at $1.35 per dollar of labour input is substantially greater than labour productivity figures observed in holdings with grapes as the leading crop.

Productivity of capital is seven per cent higher on the mixed holdings, a reflection of the higher level of investment.
CHAPTER V

AGRICULTURAL LABOUR INPUT STRUCTURE IN
NORTH GRIMSBY TOWNSHIP

The aim of this chapter is to describe the component structure of the agricultural labour input in North Grimsby Township in 1961. Analysis is conducted at the township, enterprise-type and leading activity scales. In addition, an attempt is made to isolate regional and local components in the spatial distribution of agricultural labour types at the township scale by means of trend surface analysis.

5.1 Labour Force Structure

Labour is a human input and hence varies in quality with the capability and motivation of its supplier. It is essential in any analysis concerning labour to separate the labour force into components, showing similarity of capability and motivation. Black, Clawson, Sayre and Wilcox have divided agricultural labour into three components, operator's labour, unpaid labour and hired labour. Further distinction as regards capability of labour types has been attempted by Scoville with the introduction of a table of adjustments to be made to work capability figures, depending upon the age of the worker. In the present study, labour is divided into operator's labour, unpaid labour and hired labour for the purposes of analysis. No attempt was made to adjust standard labour hours worked by any of the labour types

using Scoville's2 tables, because information on age was available only for operator's labour from the 1961 census.

Types of Labour

(a) Operator's Labour

Operator's labour is a combination of both physical labour and the functions of the entrepreneur. The farm operator not only controls the operation of the holding but in many cases supplies a substantial part of the total labour required for its operation. The operator's capability in either of these two roles can substantially affect the net income of the holding.

The age of the operator will have some bearing on the decisions he makes as entrepreneur, as well as his capacity for physical labour. Although as mentioned above, age of operator is not used to modify the standard man hours factors for operator's employment, it is included in the analysis as a separate entity so that comparison between labour structure and operator's age can be made.

(b) Unpaid Labour

Unpaid labour forms a substantial portion of the total labour used on many holdings. It is generally derived from the operator's immediate family, although other relations and non-family personnel are sometimes utilised at times of peak labour demand.

According to Black et al,3 unpaid labour shares many of the

2Scoville, O.J., "Relationship Between Size of Farm and Utilisation of Machinery and Equipment". U.S.D.A. Technical Bulletin 1037. Washington, D.C.

characteristics of Operator's labour, so far as motivation is concerned. In many cases, the supervision of the holding is in the joint control of the operator and senior members of his family. Unpaid labour is not directly motivated by thought of immediate economic gain and can thus be isolated from other forms of farm labour. Unpaid labour, by definition receives no direct monetary reward. A result of this is a lack of awareness on the part of the Operator, and to a certain extent, on the part of the Unpaid labour, of the true or opportunity cost of this type of labour input.

(c) Hired Labour

Since Hired labour is working for direct economic gain, it possesses its own characteristic capabilities and motivations.

In terms of capability, Hired labour can equal or exceed that of the farm operator with regard to specific activities on the holding. An experienced herdsman is often more knowledgeable in his own specialisation than the operator of a large dairy enterprise.

Motivations of hired workers have been the subject of considerable study by economists, sociologists and psychologists. A study of agricultural workers in Ontario by Lane and Campbell found that three main factors were considered important by the worker and thus could influence his efficiency in performing tasks. Reasonable and regular hours were considered of prime importance, good food and living accommodation ranked second and good wages third.

The study is concerned not with the characteristics of individual labour types in farm structure, but with their overall

efficiency in the farm holding. Consequently, it is the percentage of the total labour used on the farm supplied by each labour type that is considered rather than actual hours worked.

5.2 Data Sources

Information on labour use in 1961 was obtained from the Census of Agriculture\(^5\) in the form of the answers to questions 142, 144 and 145 of sections XVI and XXII of the enumeration form. (See Appendix two). These questions include the number of days worked off the farm by the operator during the past twelve months, and the number of weeks worked during the past twelve months by paid and unpaid family workers.

5.3 Standardisation of Labour Statistics

The variety of forms in which labour was reported had to be standardised to standard-man-hours so that comparison could be made with the optimum crop factors.

Various conversion factors for the standard agricultural working week are available. In reality, the working day and week vary from farm to farm and any attempt at standardisation severely reduces the accuracy of the study. Castle and Baker\(^6\) recommend the use of a ten hour working day for farm labour studies, but this statistic is based on experience in the western United States.

Conversion factors representative of Canadian agricultural conditions were obtained from the Canada Department of Labour.7 In 1958, the average working week on agricultural holdings in Canada amounted to fifty-four hours or a nine hour day, six days per week. These figures were utilised as conversion factors for the purposes of the present study.

There are indications that the factors used are a conservative estimate. Other studies have shown a high percentage of agricultural labour (over 58\%) working over 55 hours per week8 and this has been confirmed by work in the mixed farming area of the Niagara Peninsula.9

5.4 Spatial Analysis of Labour Force Structure.

The aim of this section is to analyse the spatial pattern of labour structure in North Grimsby Township at the Township scale.

The analysis could be conducted in two ways. The components of labour force structure, operator's, unpaid and hired labour, could be treated as a series of discrete quantities with point locations. The alternative is to treat the percentage of each component as a continuous surface. In the latter case, the surface can be thought

7Canada Department of Labour. Trends in the Agricultural labour force in Canada. (Ottawa: Queen's Printer, 1962).

9Darnel, Wolfe. Personal communication, April 1968.
of as a response surface in which height (i.e. percentage of total labour supplied by a particular component) varies as a response to controlling factors.

The major problem in the analysis of spatial distributions and surfaces is that of scale components. A method of analysis must be used that will separate high scale or regional trends from the lower scale or local components. One method which allows the mapping of regional and local components of spatial distributions is Trend Surface Mapping.

Trend Surface Mapping

Krumbein and Graybill11 have provided a definition of Trend Surface Mapping.

"Trend surface analysis may be defined as a procedure by which each map observation is divided into two or more parts: some associated with the "large scale" systematic changes that extend from one map edge to another and the others associated with "small scale" apparently non-systematic fluctuations that are superimposed on the large scale patterns".

Most trend surface analysis involves the fitting of polynomial surfaces to data by means of the general linear model. Thus techniques as presently developed can be described as least squares-linear model techniques.

Trend can be defined as a polynomial surface that may contain all or parts of the linear, quadratic or higher terms,12 although in

practice, because of computational problems and the increasing complexity of resultant surfaces in what is designed to be a simplification procedure, the trend seldom exceeds the third or fourth order surface.13

Computation Procedure for Trend Surfaces

Krumbein and Graybill14 describe the computation process involved in the fitting of trend surfaces.

The single map observation is designated $T(U_iV_j)$ in a two-dimensional field with co-ordinates (U_kV_j).

The general linear model used in the computation takes the form:

$$T(U_iV_j) = (U_iV_j) + \epsilon$$

where $T(U_iV_j)$ is the observable mappable variable, and is equal to the trend, (U_iV_j), plus a random component ϵ. The trend has unknown parameters and may be expressed as:

$$r(U,V) = \alpha_{00} + \alpha_{10}U + \alpha_{01}V + \ldots + \alpha_{pq}U^pV^q$$

the α's in the above expression being the polynomial coefficients in the general linear model. Thus the general model for the linear or first degree surface is:

\[T(UiVj) = \alpha_{\infty} + \alpha_{1} U + \alpha_{1} V + ij \]

In the case of this study, the third order or cubic surface was the highest order surface fitted.

From the resulting values a contour map of the surface may be drawn. Deviations between the values of the original map and the fitted surface are known as residuals and can be regarded as the 'local' components of the original distribution.

Significance of Surface

The significance of a fitted surface is evaluated by means of analysis of variance in which:

\[F = \frac{S_2}{S_1} \text{ or } \frac{S_2}{S_1} \text{ (whichever is larger)} \]

where \(S_1 \) and \(S_2 \) are the two sample standard deviations. This test assumes that the two populations have roughly the shape of the normal distribution.\(^{15}\) All surfaces described were significant at the 5% level.

Program Utilised in the Present Study

Many programs have been written for trend surface analysis. This present analysis was conducted with a program written by David Ingram\(^ {16}\) in Fortran IV for the I.B.M. 7040 computer. The program attempts to fit linear, quadratic and cubic surfaces to irregularly spaced data and results are shown in tabular and contour map form, together with a map of the residuals for each surface.

\(^{16}\) Department of Geography, McMaster University, Hamilton, Ontario.
Regional and Local Components in Labour Force Structure at the Township Scale.

(a) Operator's labour

A map showing the spatial distribution of the percentage of operator's labour employed on the farm groups in the township is shown in Fig. 7. A contour map of the third order surface fitted to the above data is shown in Fig. 8.

Regional Trends

The general trend is for a high percentage of operator's labour to be found in the north and south of the township with maximum values near the southern boundary of the township in the Mixed farming area. Values decrease sharply in the west of the township and in the east. The decrease coincides generally with the area of tree fruit holdings. The town of Grimsby appears to have little influence on the spatial trend, although the sharp decline in the west of the township could be indicative of an increase in off-farm employment as a result of the influence of the City of Hamilton.

Local Trends

Positive and negative residuals from the third order surface fitted to the percentage of operator's labour are shown in Fig. 9.

Positive residual distribution, indicating a higher level of operator participation in farm operations tend to be associated with Mixed farming areas in the south of the township and with areas dominated by specialised and General tree fruit holdings in the east of the township. Another positive zone in the General Tree Fruit enterprise area is found west of the town of Grimsby.
NORTH GRIMSBY TOWNSHIP
PERCENTAGE OF OPERATORS LABOUR
ORIGINAL MAP
SCALE : ONE INCH TO ONE MILE

Fig. 7
NORTH GRIMSBY TOWNSHIP
PERCENTAGE OF OPERATORS LABOUR
THIRD ORDER TREND SURFACE
SCALE: ONE INCH TO ONE MILE

Fig. 8
NORTH GRIMSBY TOWNSHIP

PERCENTAGE OF OPERATORS LABOUR
RESIDUALS FROM THIRD ORDER SURFACE
SCALE: ONE INCH TO ONE MILE
(b) Paid Labour

A map showing the data to which the second order surface was fitted is reproduced in Fig. 10. A second order surface was found to be significant at the 5% level and a contour map of this surface is shown in Fig. 11.

Regional Trend

Maximum values were obtained in the western area of the township where general farming predominates. Values decrease north and south of the central area of the township which is also dominated by general farms. In the eastern portion of the township, the 20% contour closely follows the boundary of the tree-fruit farms. Minimum values are obtained in the southern area of the township in a zone dominated by mixed holdings.

Local Trends

The pattern of residuals from the second order trend surface fitted to the percentage of paid labour utilised on holdings is shown in Fig. 12.

The areas of positive residuals tend to be associated with the zone of the lighter clay soils, especially in the moraine area immediately south of the Niagara escarpment. The farms on these soils relatively extensive and yet are dominated by crop rather than the livestock activities found on heavier soil to the south. Hence the labour requirement, on an annual basis, for these holdings is higher.

(c) Unpaid Labour

The original map to which the surface was fitted is shown in
NORTH GRIMSBY TOWNSHIP
PERCENTAGE OF PAID LABOUR
ORIGINAL MAP
SCALE: ONE INCH TO ONE MILE

Fig. 10
NORTH GRIMSBY TOWNSHIP

PERCENTAGE OF PAID LABOUR
SECOND ORDER TREND SURFACE
SCALE: ONE INCH TO ONE MILE

Fig. 11
NORTH GRIMSBY TOWNSHIP

PERCENTAGE OF PAID LABOUR

RESIDUALS FROM SECOND ORDER SURFACE

SCALE: ONE INCH TO ONE MILE

Fig. 12
Fig. 13. The third order surface was found to be significant at the 5% level, and a contour map of this surface is shown in Fig. 14.

Regional Trend

The third order surface fitted to the percentage of unpaid labour had a maximum value of 30% in the south-east of the township in the area of Mixed and General holdings. High values are generally associated with tree-fruit dominated holdings, although they do include an area with Mixed cattle enterprises in the south-east of the township. Minimum values are located in the south-west, where mixed cattle enterprises are predominant. Another area of minimum values is located in the north-west of the township in an area which contains many general holdings with tree-fruits as the leading crop.

Local Trends

The residuals of the third order surface fitted to the percentage of Unpaid labour are reproduced in Fig. 15.

There would appear to be no distinct connection between the residual pattern produced from the third order surface and the enterprise-type distribution, although there are some indications that the pattern is associated with soil types.

Areas of positive residuals are found both above and below the Escarpment, especially on areas of the Jeddo and Lincoln clay. Both these soil types rate poorly for the cultivation of the principal crops and the indication is that returns per acre on these enterprises do not permit efficient production under present operating constraints.
NORTH GRIMSBY TOWNSHIP

PERCENTAGE OF UNPAID LABOUR

ORIGINAL MAP

SCALE: ONE INCH TO ONE MILE

Fig. 13
NORTH GRIMSBY TOWNSHIP
PERCENTAGE OF UNPAID LABOUR
THIRD ORDER SURFACE
SCALE : ONE INCH TO ONE MILE

Fig. 14
NORTH GRIMSBY TOWNSHIP
PERCENTAGE OF UNPAID LABOUR
RESIDUALS FROM THIRD ORDER SURFACE
SCALE: ONE INCH TO ONE MILE
Under these conditions, Unpaid participation in the operation of the holding would be necessary to reduce operating expenses to a minimum.

5.5 Analysis of Labour Input Structure by Farm-Type

This section will describe the structure of the agricultural labour input in the township at the township, enterprise-type and leading activity scales. Analysis is also conducted of the labour input structure of part-time and full-time holdings at the scales at the township and enterprise-type scales.

1. Township scale.

(a) Age of operator

The average age of farm operators in North Grimsby Township is 51.08 years. Full-time operators, whose average age is 52 years are some four years older than their part-time counterparts.

It is to be expected that as the operator increases in age he is able to accumulate more capital and possibly increase the size of his holding. This would result in a reduced need for off-farm employment to increase the total farm family income.

(b) Total hours worked

The mean total labour input for the township as a whole amounted to 4901 hours per holding in 1961. Larger full-time holdings have an annual mean input of 5858.7 hours in contrast to the part-time input of 3466.0 hours.

(c) Component labour structure

The importance of the family unit in the operation of the holding is evident from the statistics on the structure of the labour
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ALL FARMS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S/D</td>
<td>Mean</td>
<td>S/D</td>
<td>Mean</td>
<td>S/D</td>
</tr>
<tr>
<td>Age of Operator</td>
<td>51.08</td>
<td>38.50</td>
<td>52.93</td>
<td>12.80</td>
<td>48.05</td>
<td>49.11</td>
</tr>
<tr>
<td>Total Hours Worked</td>
<td>4901.00</td>
<td>2418.09</td>
<td>5858.71</td>
<td>2598.38</td>
<td>3466.40</td>
<td>3650.45</td>
</tr>
<tr>
<td>Percentage of Operators Labour</td>
<td>57.0%</td>
<td>19.21</td>
<td>57.1%</td>
<td>18.1%</td>
<td>58.7%</td>
<td>62.15</td>
</tr>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>18.0%</td>
<td>16.08</td>
<td>18.0%</td>
<td>16.3%</td>
<td>19.0%</td>
<td>24.76</td>
</tr>
<tr>
<td>Percentage of Family Labour</td>
<td>75.0%</td>
<td>20.15</td>
<td>75.6%</td>
<td>20.2%</td>
<td>77.0%</td>
<td>80.11</td>
</tr>
<tr>
<td>Percentage of Hired Labour</td>
<td>24.0%</td>
<td>16.08</td>
<td>24.0%</td>
<td>20.2%</td>
<td>19.0%</td>
<td>24.76</td>
</tr>
</tbody>
</table>

1 Age of the Farm operator in years
2 Total annual labour input on the farm in 1960
3 Percentage of the total labour input supplied by the operator.
4 Percentage of the total labour input supplied by unpaid labour.
5 Percentage of the total labour input supplied by family labour (sum of 3&4)
6 Percentage of the total labour input supplied by hired labour.
input. Family labour accounts for some 75% of the total labour input of all farms in the township. The average operator supplies over one-half of the total farm labour input and unpaid labour accounts for the remaining 18%.

Part-time operators tend, on average, to undertake a greater percentage of the total labour input than their full-time counterparts, and employ a lower percentage of Hired labour.

2. Enterprise-type Scale.

Labour characteristics of farm groups at the enterprise-type scale are summarised in Tables 13, 14, and 15.

(a) Age of operator

The average operator on specialised and general holdings is 53 years of age whereas mixed farmers are, on average, ten years younger. Many factors could account for this variation, but it seems probable that this farm group, with its substantially lower mean value of land and buildings, contains a larger proportion of younger operators who have commenced farming operations only recently.

The average age of general farm operators shows the least amount of variation about the mean value, an indication that tenure within this group is more stable.

Full-time operators are, in general, older than their part-time counterparts, except in the case of General holdings where the difference in mean values is not significant. This trend can probably be attributed to the need of the younger part-time operator to earn a larger income to support a growing family and to accumulate capital for investment in the holding.
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ALL FARMS</th>
<th>S/D</th>
<th>FULL TIME</th>
<th>MEAN</th>
<th>S/D</th>
<th>PART TIME</th>
<th>MEAN</th>
<th>S/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Operator</td>
<td>54.20</td>
<td>11.90</td>
<td>57.12</td>
<td>11.62</td>
<td></td>
<td>47.54</td>
<td>12.25</td>
<td></td>
</tr>
<tr>
<td>Total Labour Input</td>
<td>4125.37</td>
<td>1132.50</td>
<td>5180.97</td>
<td>1254.45</td>
<td></td>
<td>2926.56</td>
<td>1014.61</td>
<td></td>
</tr>
<tr>
<td>Percentage of Operators Labour</td>
<td>61.0%</td>
<td>17.2%</td>
<td>58.0%</td>
<td>15.1%</td>
<td></td>
<td>65.2%</td>
<td>19.2%</td>
<td></td>
</tr>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>17.0%</td>
<td>16.3%</td>
<td>21.1%</td>
<td>14.2%</td>
<td></td>
<td>14.2%</td>
<td>16.3%</td>
<td></td>
</tr>
<tr>
<td>Percentage of Family Labour</td>
<td>78.0%</td>
<td>16.7%</td>
<td>79.2%</td>
<td>17.1%</td>
<td></td>
<td>79.4%</td>
<td>16.3%</td>
<td></td>
</tr>
<tr>
<td>Percentage of Hired Labour</td>
<td>21.4%</td>
<td>16.7%</td>
<td>20.7%</td>
<td>17.1%</td>
<td></td>
<td>20.5%</td>
<td>16.3%</td>
<td></td>
</tr>
<tr>
<td>VARIABLE</td>
<td>ALL FARMS</td>
<td></td>
<td>FULL TIME</td>
<td></td>
<td>PART TIME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>S/D</td>
<td>MEAN</td>
<td>S/D</td>
<td>MEAN</td>
<td>S/D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age of Operator</td>
<td>53.06</td>
<td>7.96</td>
<td>53.23</td>
<td>10.88</td>
<td>52.30</td>
<td>4.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Labour Input</td>
<td>5616.20</td>
<td>2138.85</td>
<td>6456.37</td>
<td>3298.74</td>
<td>4025.26</td>
<td>978.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Operators Labour</td>
<td>51.0%</td>
<td>16.7%</td>
<td>52.1%</td>
<td>19.8%</td>
<td>47.6%</td>
<td>14.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>17.8%</td>
<td>16.0%</td>
<td>18.0%</td>
<td>17.0%</td>
<td>21.9%</td>
<td>14.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Family Labour</td>
<td>68.9%</td>
<td>21.1%</td>
<td>70.2%</td>
<td>22.2%</td>
<td>69.5%</td>
<td>20.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Hired Labour</td>
<td>31.0%</td>
<td>21.1%</td>
<td>29.7%</td>
<td>22.2%</td>
<td>30.4%</td>
<td>20.7%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 14.
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ALL FARMS</th>
<th></th>
<th></th>
<th></th>
<th>PART TIME</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>S/D</td>
<td>MEAN</td>
<td>S/D</td>
<td>MEAN</td>
<td>S/D</td>
<td>MEAN</td>
<td>S/D</td>
</tr>
<tr>
<td>Age of Operator</td>
<td>45.77</td>
<td>12.69</td>
<td>46.32</td>
<td>10.49</td>
<td>43.10</td>
<td>14.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Labour Input</td>
<td>4652.52</td>
<td>1093.87</td>
<td>6291.11</td>
<td>2707.13</td>
<td>3483.99</td>
<td>1108.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Operators Labour</td>
<td>62.6%</td>
<td>19.8%</td>
<td>54.7%</td>
<td>20.8%</td>
<td>71.5%</td>
<td>18.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>19.9%</td>
<td>15.4%</td>
<td>19.3%</td>
<td>17.0%</td>
<td>14.6%</td>
<td>13.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Family Labour</td>
<td>82.6%</td>
<td>21.0%</td>
<td>74.0%</td>
<td>24.1%</td>
<td>86.1%</td>
<td>17.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Hired Labour</td>
<td>17.4%</td>
<td>21.0%</td>
<td>25.9%</td>
<td>24.1%</td>
<td>13.8%</td>
<td>17.8%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(b) **Total hours worked on the holding**

General holdings have the largest mean total labour input requirement with 5616 hrs. per annum. Although these holdings are smaller in terms of mean acreage than Mixed farms, they are more intensive in terms of production. Specialised holdings have the lowest total labour input requirement, but are the most intensive in use of labour due to their small mean acreage.

In all cases, part-time holdings have a lower labour requirement than full-time farms. This may be explained not only by their smaller mean acreage, but also because there is evidence of machinery-labour substitution to reduce the total labour work load.

(c) **Component labour structure**

The farm operator provides the bulk of the total labour input on specialised and mixed farms, but only 51% on general holdings which are both large in acreage and relatively intensive in production.

The family as a group supply 82% of the total labour input on the less intensive Mixed holdings compared to 78% on specialised farms and 68% on general holdings.

Use of hired labour is greatest on the relatively intensive General farms and of least importance on the extensive Mixed holdings.

The percentage of hired labour employed on specialised holdings is relatively low when it is considered that the majority of these holdings specialised in tree-fruits which require much manual labour for pruning trees and harvesting.

The operator supplies a greater percentage of the total labour input on part-time farms compared to full-time holdings in the same
groups. As might be expected on this type of holding, the family plays a larger role in the operation of the holding, although the figure is only statistically significant in the case of the more marginal mixed holdings.

3. Leading Activity Scale.

Tree Fruits

The labour structure of farm holdings, whose dominant activity in terms of labour input is the growth of tree fruits, is shown in Table 16.

(a) Age of operator

The mean age of farm operators on mixed holdings is some seven years less than on similar specialised and general farms. The mixed farming group also show less variation about the mean value.

(b) Total hours worked

The total labour input is greatest on mixed holdings as a result of the diversity of activities and the more extensive nature of the enterprise. There would appear to be less variation about the mean value of total labour inputs for specialised holdings, resulting from the lower level of enterprise diversification within this group.

(c) Component labour structure

The farm operator supplies a larger percentage of the total labour input on specialised holdings than in the other more extensive groups, although there is a marginally greater variation about the mean value within this group. Specialised holdings also show a much higher level of family participation in the operation, resulting in
LABOUR STRUCTURE 1961 NORTH GRIMSBY TOWNSHIP
LEADING ACTIVITY SCALE - TREE FRUIT HOLDINGS

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>SPECIALISED</th>
<th></th>
<th>GENERAL</th>
<th></th>
<th>MIXED</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>S/D</td>
<td>MEAN</td>
<td>S/D</td>
<td>MEAN</td>
<td>S/D</td>
</tr>
<tr>
<td>Age of Operator</td>
<td>53.25</td>
<td>12.83</td>
<td>54.79</td>
<td>11.06</td>
<td>47.88</td>
<td>10.28</td>
</tr>
<tr>
<td>Total Hours Worked</td>
<td>4220.5I</td>
<td>1619.94</td>
<td>5697.16</td>
<td>3257.64</td>
<td>5810.25</td>
<td>3192.52</td>
</tr>
<tr>
<td>Percentage of Operators Labour</td>
<td>61.3I</td>
<td>17.25</td>
<td>51.5%</td>
<td>18.07</td>
<td>53.94</td>
<td>21.80</td>
</tr>
<tr>
<td>Percentage of Hired Labour</td>
<td>19.8%</td>
<td>16.19</td>
<td>30.46</td>
<td>22.27</td>
<td>31.1%</td>
<td>26.86</td>
</tr>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>18.7%</td>
<td>16.44</td>
<td>18.0%</td>
<td>15.26</td>
<td>14.9%</td>
<td>13.45</td>
</tr>
<tr>
<td>Percentage of Family Labour</td>
<td>80.1%</td>
<td>16.19</td>
<td>69.5%</td>
<td>22.27</td>
<td>68.9%</td>
<td>26.86</td>
</tr>
</tbody>
</table>
the lower mean acreage and total labour requirement of this type of farm.

Component labour structure of General and Mixed holdings is very similar, despite disparities in economic structure.

Cattle

The component labour structure for farm groups with cattle as the major activity is shown in Table 17.

No enterprises within the township could be regarded as specialising in cattle.

(a) Age of operator

Mixed holdings again possessed the lowest mean age of operator, although there was substantially greater variation within this group when compared to the older general farmers.

(b) Total hours worked

Both types of enterprise have similar total labour inputs, although the mean value is marginally greater for General holdings.

(c) Component labour structure

The component labour structure is similar for both farm groups, although there is slightly more variation within the mixed farm group. The percentage of the total labour input supplied by the operator in General holdings is ten percent above the level on the average mixed cattle farm. There are indications that the slightly greater total labour input required on these holdings necessitates substitution of unpaid labour to take care of the extra labour required.

The smaller mixed holdings appear to be predominately family-run enterprises with little reliance on hired labour. Because of
LABOUR STRUCTURE 1961 NORTH GRIMSBY TOWNSHIP

LEADING ACTIVITY SCALE - CATTLE HOLDINGS

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>SPECIALISED</th>
<th>GENERAL</th>
<th>MIXED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN</td>
<td>S/D</td>
<td>MEAN</td>
</tr>
<tr>
<td>Age of Operator</td>
<td>No Observations</td>
<td>51.79</td>
<td>4.64</td>
</tr>
<tr>
<td>Total Hours Worked</td>
<td></td>
<td>4750.12</td>
<td>1517.39</td>
</tr>
<tr>
<td>Percentage of Operators Labour</td>
<td></td>
<td>56.24</td>
<td>15.69</td>
</tr>
<tr>
<td>Percentage of Hired Labour</td>
<td></td>
<td>16.1%</td>
<td>10.11</td>
</tr>
<tr>
<td>Percentage of Unpaid Labour</td>
<td></td>
<td>27.6%</td>
<td>21.89</td>
</tr>
<tr>
<td>Percentage of Family Labour</td>
<td></td>
<td>83.8%</td>
<td>10.11</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>SPECIALISED</td>
<td>GENERAL</td>
<td>MIXED</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Age of Operator</td>
<td>50.84</td>
<td>6.87</td>
<td>47.10</td>
</tr>
<tr>
<td></td>
<td>No Observations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hours Worked</td>
<td>6194.15</td>
<td>3662.58</td>
<td>3484.06</td>
</tr>
<tr>
<td>Percentage of Operators Labour</td>
<td>45.5%</td>
<td>23.40</td>
<td>76.8%</td>
</tr>
<tr>
<td>Percentage of Hired Labour</td>
<td>31.0%</td>
<td>21.54</td>
<td>5.51</td>
</tr>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>23.3%</td>
<td>14.52</td>
<td>17.58</td>
</tr>
<tr>
<td>Percentage of Family Labour</td>
<td>68.9%</td>
<td>21.54</td>
<td>94.4%</td>
</tr>
</tbody>
</table>

TABLE I8.
their smaller size, the operator is able to play a much larger role in the operation of the mixed farm unit than on general holdings where hired labour accounts for nearly one-third of the total labour input requirement.

A greater range about the mean values of labour components occurs in the general holdings, possibly because their monthly labour input pattern would show greater variations, depending on the enterprise combination employed, than the more diverse mixed farms.

Grapes

The labour input structure of farm-groups with grapes as the leading activity is shown in Table 18. No farm groups in the township could be regarded as specialising in the production of grapes.

(a) Age of operator

In accordance with the trend in the township, the mean age of farm operators on mixed farms is lower and shows more variation than the mean age of general farm operators.

(b) Total hours worked

General holdings, with their greater mean acreage of this labour intensive crop possess a substantially larger mean total labour input than mixed farms.

(c) Component labour structure

Mixed farm groups appear to consist predominantly of family-farm units, as evidenced by the high percentage of family labour. General holdings, with their higher labour input requirement make extensive use of hired labour.
5.6 Summary

This chapter has outlined the labour structure of farm enterprise types in North Grimsby township. The distinction is made between the various component labour types, operator's labour, hired labour and unpaid labour, and their characteristics are discussed.

General trends and local variations in the spatial distribution of these component labour types are examined by means of trend surface analysis. The third order trend surface indicated increased operator participation in areas dominated by mixed holdings and tree-fruit farms. Positive residuals are found in specialised tree-fruit and mixed cattle areas. Percentage of paid labour is greatest on the General holdings in the township and positive residuals are found in the area of General holdings on the lighter soils in the township, indicating an even higher Paid labour requirement.

Unpaid labour is highest in the mixed and general tree-fruit zones, and positive residuals of the fitted surface indicate an even greater proportion of unpaid labour on the poorer clay soils and around the town of Grimsby as a result of part-time farming in zones of urban encroachment.

Labour structure is examined in some detail by farm type at the township, enterprise-type and leading crop/activity scale.

Mixed holdings are shown to have the lowest mean age of operator and highest level of family participation.

Specialised holdings have a relatively low total labour input requirement when compared to other types of enterprise, but are intensive in their use of labour since the labour input requirement is
high in comparison with the mean acreage. The family supplies 78% of total labour compared with 82% on mixed holdings.

General holdings are more intensive in their use of the labour input than mixed holdings and consequently a higher proportion of hired labour is used on these farms.
CHAPTER VI

DETERMINATION OF THE RELATIVE EFFICIENCY OF THE AGRICULTURAL LABOUR INPUT IN NORTH GRIMSBY TOWNSHIP 1961

The purpose of this chapter is to outline the method used to determine the relative efficiency of the agricultural labour inputs of farm-firms in North Grimsby Township. The method of labour input efficiency determination is discussed; together with the derivation of the Standard Labour Input factors used in the analysis.

6.1 Methods of Determining the Relative Efficiency of Agricultural Labour Inputs

Several methods are in current use by farm management consultants for the assessment of the relative efficiency of labour inputs. These have been reviewed briefly in a previous section. The method chosen for use in this study is the technique described by Nix\(^1\) and utilised by Guither\(^2\) in his study of part-time and full-time farmers in Illinois. The method, known as the Labour Efficiency Index, compares present labour input allocation to the standard labour inputs that should be used on a holding of that size and type. Although many criticisms have been made of this method, it remains perhaps the most useful for an initial investigation of labour input efficiency.\(^3\)

provided that the results are properly interpreted. It must be remembered that this type analysis is based on the use of average factors and consequently the results can only be viewed in general terms.

The method is used extensively in farm management planning in many parts of the world, although it is being replaced by such techniques as the Gang Work Index in the United Kingdom. The latter is of more practical value to the farm operator since it deals in terms of specific numbers of men employed on specific tasks for specific periods at different times of the year, rather than dividing the labour input into man-hours.

6.2 Derivation of Individual Activity Factors

The usefulness of a study of this nature depends upon the validity of the conversion factors used to determine the optimum labour input, under local conditions, for that type of holding. It is proposed, therefore, to describe in some detail the calculation of factor levels used in this study and comment upon their relative accuracy.

Component activities for which factors were required are shown in Table 2 together with the relevant groupings from the Census of Agriculture.

6.3 Derivation of Activity Factor Levels

Initially, use was made of averaged Standard Labour Factors for each activity group, obtained by grouping the activities from

the Census of Agriculture questionnaire. However, this practice substantially reduced the man-hours factors for some activity groups. An average factor for cattle was 54 Standard Man-Hours per head per year whereas the figure for dairy cattle should approximate 94 Standard Man-Hours per head per year. The resulting Labour Efficiency Index reflected the fact that Standard Man-Hours factors produced in this manner were unrealistic.

It was decided, therefore, for the purposes of the present study, to utilise the maximum man-hours factor for each enterprise-group. In most cases, where one factor was required, or where the activity grouping coincided with the factor grouping, the choice of a factor level did not influence the result. An element of error has been introduced where there is a considerable difference in the Standard Man-Hour factors of the component activities. An example may be drawn from the case of the factor group cattle. The Standard Man-Hour factor for dairy cattle is 94 Standard Man-Hours per head, per year, whereas the factors for beef cattle range from 8 Standard Man-Hours per head, per year, to over 30 Standard Man-Hours per head, per year. Thus in the case of a dairy farm, the factor used is relatively accurate, but beef enterprise labour inputs have been over-assessed.

Results computed with the higher level factors proved to be more realistic than those computed using average input factor levels, and this fact, coupled with the small number of groups affected by

5 Ontario Department of Agriculture, Farm Business Management Handbook for Extension Workers, (Toronto: Ontario Department of Agriculture, 1966)
over-weighting, justified the use of the higher factors in the present study.

1. **Crop and Livestock Factors**

 The purpose of this section is to describe and explain the derivation of individual crop and livestock labour input factors utilised in the study.

(a) **Grain Crops**

 The factor for grain crops was obtained by utilising the factor for grain corn, of 8.5 Standard Man-Hours per acre. The grain corn factor was obtained from studies in Ontario during the period 1958 to 1960. The figure taken was the average figure, and not the high, since the latter would represent only a small sample of provincial farms.

(b) **Hay Crops**

 The standard factor for hay crops, which the Census of Agriculture defines to include silage corn, tame hay, alfalfa, and oats was obtained by taking the figure for silage corn, 9.6 Standard Man-Hours per acre given by the Ontario Department of Agriculture Handbook. The factor was derived from a study in Western Ontario during the period 1957 to 1959.

(c) **Potatoes and Roots**

 The factor for potatoes and root crops utilised was that for potatoes of 51.2 Standard Man-Hours per acre. The factor was derived

7Ontario Department of Agriculture, *op. cit.*, p. 120-821.
from studies carried out in New Brunswick in 1959,8 and adjusted to suit Ontario conditions.

(d) **Strawberries**

The factor for strawberries, 759.0 Standard Man-Hours per acre is derived from studies carried out by the Farm Economics, Cooperatives and Statistics Branch of the Ontario Department of Agriculture,9 during 1951 and 1953.

(e) **Raspberries**

The standard labour factor for raspberries used was 476.0 Standard Man-Hours per acre. The factor was obtained from an Ontario study conducted during the period 1951 to 1953.10

(f) **Grapes**

The factor for grapes was obtained from a survey in the Niagara Peninsula during 1965 and 1966.11 The factor used was 91.0 Standard Man-Hours per acre.

(g) **Tree Fruits**

One factor was chosen for tree fruits. The largest labour factor is that for cherries of 270 Standard Man-Hours per acre,12 whereas the lowest is pears with 158 Standard Man-Hours per acre. It was decided in this case alone to use an average factor of 206 Standard Man-Hours per acre.

8 Ontario Department of Agriculture, \textit{op. cit.}, p. 161-821.
9 Ontario Department of Agriculture, \textit{op. cit.}, p. 230-821.
10 Ontario Department of Agriculture, \textit{op. cit.}, p. 230-821.
11 Ontario Department of Agriculture, \textit{op. cit.}, p. 200-821.
12 Ontario Department of Agriculture, \textit{op. cit.}, p. 200-822.
(h) Cattle

In the choice of factors for cattle, several problems had to be faced, most of them arising from the variety of enterprise types involving livestock, each with a separate Standard Labour Input factor. The main difficulty faced was the variation in labour requirement between a beef and a dairy enterprise. If the average of two Standard Labour factors was taken it would be too high for beef, but too low for dairy cattle. Since the majority of cattle in the township are associated with dairy enterprises, it was decided to utilise the dairy standard factor of 92 hours per head per year.

The source for this factor was the Farm Budget Reference Manual of the United States Department of Agriculture, adapted to suit Ontario conditions by the Ontario Department of Agriculture.\(^ {13} \)

(i) Vegetables

The factor for Vegetable crops was derived from studies undertaken by the Ontario Department of Agriculture in various areas of the Province.

6.5 The Labour Efficiency Index

Once standard labour requirements had been calculated for the farm groups in the township, the Labour Efficiency Index was computed by dividing the 1961 Labour input allocation by the group's Standard Labour Requirement expressed in Standard Man-Hours:

\[
\text{Labour Efficiency Index} = \frac{\text{Total hours worked on the holding in 1961}}{\text{Sum of Standard Labour Input factors for the holding}}
\]

\(^ {13} \text{Ontario Department of Agriculture, op. cit., p. 823.}\)
Optimum labour allocation produced an index of 1.00. Holdings characterised by under-employment have indices greater than 1.00, and holdings overemployed less than 1.00.

Assumptions

The calculation of the Labour Efficiency Index in the manner described above involved the use of several limiting assumptions.

1) All labour inputs, regardless of type of supplier, are assumed to be homogeneous.

2) Standard Labour Input factors are assumed to be realistic in terms of the conditions existing in the area.

3) Production methods are assumed to be similar on all farm groups in the study area.

4) Output per acre will be uniform under standard conditions on all farms in the study area.

6.6 Spatial Analysis of Labour Efficiency

The spatial distribution of Labour Efficiency Indices for farm groups in North Grimsby Township is shown in Figure 16.

An attempt was made to determine regional and local trends in the Labour Efficiency Index by means of trend surface analysis of degrees one through three, but no surface significant at the 5% level could be fitted. The indications are that at this scale of analysis, spatial variations in Labour Efficiency Indices are complex.

Despite the inability to fit a surface to the data, spatial analysis of general trends was possible. This was accomplished by sorting farm groups into holdings that:
NORTH GRIMSBY TOWNSHIP
LABOUR EFFICIENCY INDEX
SCALE: ONE INCH TO ONE MILE

Fig. 16
(a) appear to be relatively efficient in their use of the labour
input.

(b) show signs of under-employment of the labour input.

(c) show signs of over-employment of the labour input.

The definition of under-employment utilised in this study is
that adopted by Guither\(^{14}\) in his study of farm operations in Illinois.

Guither regarded as underemployed, farms whose labour input
showed a level of employment less than 30%. Converting this level
for use with the Labour Efficiency Index, underemployment may be
defined as holdings whose Labour Efficiency Index exceeds 1.20.

No examination is made by Guither of the problem of over-
employment. It was therefore decided to adopt a similar margin as
that defined for underemployment. Hence farm groups with Labour
Efficiency Indices less than 0.8 are regarded as overemployed? It
could be argued that farms with Labour Efficiency Indices lower than
this limit are merely more efficient in their use of the labour input.
The limit as defined above will most likely include some of these
superefficient holdings, but will also include holdings where an
attempt is being made to operate an enterprise with a labour input
that is too low in comparison to normal requirements, with a resultant
loss of production.

The distribution of overemployed and underemployed holdings
in the township is shown in Figure 17.

Underemployment seems to be the general trend in the town-
ship, especially to the south of the Niagara escarpment in the area

NORTH GRIMSBY TOWNSHIP
UNDEREMPLOYMENT AND OVEREMPLOYMENT 1961
SCALE : ONE INCH TO ONE MILE

Fig. 17

- Farm groups overemployed
- Farm groups underemployed
- Farm groups with an L.E.I. of 0.80 to 1.20
of General and Mixed farming. Fifty-five percent of the 94 groups in the township are underemployed. This compares with forty-five percent of the sample of holdings examined by Guither in Illinois. The majority of Guither's underemployed holdings were grain farms where overemployment could be attributed to lack of agricultural activity in the winter months. The seasonal employment pattern is even more marked in North Grimsby Township with the high proportion of tree-fruit farms, coupled with the low mean acreage of holdings.

Holdings showing characteristics of overemployment are widely scattered in the township, but generally coincide with areas of General holdings. Overemployment is present on 12 farm groups representing twelve percent of the holdings in the township.

Farm groups with an optimum labour input are concentrated in areas where General holdings predominate, especially in the General Tree Fruit holdings situated on the heavier soils of the Lake Ontario plain, west of the town of Grimsby.

6.7 Analysis of Labour Efficiency by Farm Type

1. Township and Enterprise - Type Scale

Labour Efficiency Indices for farm groups at the township and enterprise-type scales are shown in Table 19.

The mean Labour Efficiency Index for all farms examined in the township was 1.81. This would indicate that a majority of farm holdings in the township are underemployed in terms of their total labour input, although the standard deviation of 1.40 indicates considerable variation exists.
TABLE 19.

NORTH GRIMSBY TOWNSHIP AGRICULTURAL LABOUR EFFICIENCY INDEX AT THE TOWNSHIP AND ENTERPRISE TYPE SCALES.

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Mean</th>
<th>S/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOWNSHIP</td>
<td>All Farms</td>
<td>1.81</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>Full time</td>
<td>1.88</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>Part time</td>
<td>1.68</td>
<td>1.07</td>
</tr>
<tr>
<td>SPECIALISED</td>
<td>All Farms</td>
<td>1.72</td>
<td>1.17</td>
</tr>
<tr>
<td>HOLDINGS</td>
<td>Full time</td>
<td>1.69</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>Part time</td>
<td>1.76</td>
<td>1.54</td>
</tr>
<tr>
<td>GENERAL</td>
<td>All Farms</td>
<td>1.59</td>
<td>1.02</td>
</tr>
<tr>
<td>HOLDINGS</td>
<td>Full time</td>
<td>1.59</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>Part time</td>
<td>1.55</td>
<td>1.00</td>
</tr>
<tr>
<td>MIXED</td>
<td>All Farms</td>
<td>2.30</td>
<td>2.07</td>
</tr>
<tr>
<td>HOLDINGS</td>
<td>Full time</td>
<td>2.83</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>Part time</td>
<td>2.03</td>
<td>1.18</td>
</tr>
</tbody>
</table>
It would appear from Table 19 that part-time holdings are more efficient in their use of the labour input than full-time holdings. Part-time farms also show less variation about the mean. This would seem to suggest that the part-time operator is more conscious of the need for efficient labour organisation although it must be remembered that the Census of Agriculture uses a minimum age limit when recording details of labour inputs on a farm, and the apparent efficiency of part-time holdings could be due in part to an under-estimation of the labour input by the Census.

At the enterprise-type scale, General holdings tended to have a lower Labour Efficiency Index and less overall variation than the more labour intensive specialised holdings. The mixed holding group, which were the most extensive in terms of acreage of farm groups in the township have the highest Labour Efficiency Index and variation about the mean value of any farm group in the township.

Part-time holdings, with their relatively lower labour input requirement and higher level of investment in machinery, possess lower mean Labour Efficiency Indices than full-time holdings in the General and Mixed farm group, and show less variation about the mean value. The exception to this trend are full-time specialised holdings, where part-time farms appear relatively less efficient and show considerable variation within the group in comparison with full-time farms.

2. Leading Activity Scale

Labour Efficiency Indices for farm groups at the Leading Activity scale are shown in Table 20.
TABLE 20.

NORTH GRIMSBY TOWNSHIP AGRICULTURAL LABOUR EFFICIENCY INDEX AT THE LEADING ACTIVITY SCALE.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Type</th>
<th>Mean</th>
<th>S/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREE FRUITS</td>
<td>Specialised</td>
<td>1.75</td>
<td>1.18</td>
</tr>
<tr>
<td>(All Farms)</td>
<td>General</td>
<td>1.37</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Mixed</td>
<td>1.08</td>
<td>0.48</td>
</tr>
<tr>
<td>CATTLE</td>
<td>General</td>
<td>2.08</td>
<td>1.71</td>
</tr>
<tr>
<td>(All Farms)</td>
<td>Mixed</td>
<td>2.45</td>
<td>1.82</td>
</tr>
<tr>
<td>GRAPES</td>
<td>General</td>
<td>2.21</td>
<td>1.03</td>
</tr>
<tr>
<td>(All Farms)</td>
<td>Mixed</td>
<td>3.90</td>
<td>2.83</td>
</tr>
</tbody>
</table>
The lowest values of the Labour Efficiency Index at this scale are found in farm groups with tree fruits as the Leading Activity. In this group it is the more diversified enterprise types which show the lowest mean value of the Labour Efficiency Index and the smallest amount of variation within the group.

In the case of enterprises dominated by cattle and grapes, it is the less diversified holding groups which possess the lowest mean value for the Labour Efficiency Index and show less variation about the mean value.
CHAPTER VII

FACTORS INFLUENCING LABOUR EFFICIENCY

Previous sections have described the agricultural labour input structure in North Grimsby in 1961, at the township, enterprise-type, and leading activity scales. An attempt has been made to determine the relative efficiency of the labour input by the construction of an Index of Labour Efficiency. The purpose of this chapter is to generate and test hypothesised relationships between certain selected elements of farm structure, the physical basis of agricultural activities, and the labour efficiency index.

7.1 Definition of variables and statement of hypotheses.

The variables examined in this analysis are those elements of the physical environment, of the farm and labour input structure which are thought to be related to the Labour Efficiency Index. It is thought that these factors will influence the Labour Efficiency Index in one of two ways:

1) by influencing the quality of the labour input
2) by influencing the effectiveness of the labour input in the farm firm.

(1) Factors which may influence the quality of the labour input.
Age of operator \((x_1) \)

As a farm operator becomes older, his capacity to perform a given unit of work decreases. It is expected that this will result
in an increasing length of time being taken over a particular task. The operator's functioning as an entrepreneur may also be adversely affected with a resultant influence on the utilisation of other input factors. It has been demonstrated that the operator supplies a large percentage of the total labour input on many of the holdings in the township, and consequently it is hypothesized that as the age of operator increases the Labour Efficiency Index will increase, i.e., the relative efficiency of labour input utilisation will decline.

Percentage of Total Labour Input Supplied by the Farm Operator \((x_2)\)

This variable is a measure of the participation of the operator in the operation of the farm holding and thus indirectly could be construed as a measure of farm size. A high level of operator participation could indicate overworking of this labour input component. It is proposed that an increased operator participation will result in an increase in the Labour Efficiency Index.

Percentage of Total Labour Input Supplied by Unpaid Labour \((x_3)\)

Unpaid labour is by definition part of the operator's family. As such, wide ranges in capacity and motivation towards work can result. In addition, much of this labour could be engaged in activities other than farm work for a greater part of the day, and undertake farm work as a part-time activity. A result of this can be the fragmentation of individual operations with a consequent waste of the labour input.

It is therefore proposed that as the unpaid labour input increases, so the Labour Efficiency Index will increase.
Percentage of Family Labour Employed on the Holding \((x_4)\)

Family labour is defined as the combination of variables \(x_2\) and \(x_3\). It is included to investigate the overall influence of the family farm on the Labour Efficiency Index. As has been indicated for \(x_2\) and \(x_3\) above, an increasing level of family participation will result in an increasing Labour Efficiency Index.

Percentage of Hired Labour Employed on the Holding \((x_5)\)

This input may be expected to be more efficient in the performance of a given task than unpaid labour, by reason of its direct economic motivation and less variation in capacity to perform a work. Hired labour is usually able to perform a given series of tasks without the fragmentation problems experienced by the unpaid labour input. It is therefore proposed that as the percentage of hired labour employed on the holding increases, so the Labour Efficiency Index will decrease.

(2) Factors influencing the effectiveness of a given labour input.

The second group of variables influence the effectiveness with which a given unit of labour may be employed on the farm. The group may be divided into (1) elements of farm structure including aspects of farm size, the level of mechanisation and the diversity of the farm firm and (2) elements of the physical environment in which the farm firm is situated and over which the entrepreneur has little or no direct control.

(1) Elements of farm structure

Direct Measures of Farm Size

The size of a holding is important in any consideration of
Many enterprises were originally set up under economic and technical conditions which no longer apply today. The result is that these holdings are often too small to utilise modern day techniques to maximum efficiency, with the result that efficiency of input use may be reduced. Two direct measures of farm size are considered.

Mean Acreage (x_6)

The first is the acreage (x_6) which is a physical measure of the extent of the land input. It is proposed that as the land input increases so the use of more efficient machinery becomes possible, with a resultant decrease in the Labour Efficiency Index.

Value of Capitalization (x_7)

The other measure of farm size is the value of capitalization in the form of land, buildings, and machinery, and the best measure of the scale of the enterprise. It is hypothesized that as the value of capitalization increases, the operator is better able to take advantage of the economies of scale, with a consequent decrease in the Labour Efficiency Index.

Mechanization

The level of mechanization is a direct influence on the relative efficiency of the labour input. Two measures of the level of mechanization are used.

Machinery/Labour Ratio (x_8)

The first variable is the value of machinery - value of annual

labour input ratio, and is a measure of the substitution of machinery for the labour input on the holding. According to Heady and Jensen, one method of increasing the efficiency of labour use on the farm is to substitute machinery for labour. It is therefore proposed that as the machinery/labour ratio increases, the Labour Efficiency Index will decrease.

Machinery/Capital Ratio (x_9)

The second measure of the level of mechanization is the ratio of the value of machinery to the total value of land, buildings, and machinery. This can be regarded as a measure of the level of mechanization in comparison to the scale of the enterprise.

It is hypothesized that the greater the level of investment in machinery compared to total investment, the lower will be the value of the Labour Efficiency Index.

Diversity Index (x_{10})

The final economic factor examined is the diversity of production undertaken on the holding. The more diverse forms of operation utilise the labour input more efficiently on an annual basis than does a holding with a concentrated peak labour demand. It is therefore proposed that the Labour Efficiency Index will decline as the value of the Diversity Index increases. The Index of Diversity is a series of discrete numerals of 1,........14 calculated in the manner used by Weaver in his analysis of crop combinations in the U.S. mid-west. The derivation of the index has been described in a previous section.

(2) Physical Environment: Soils and Climate

"I drown in the drumming ploughland, I drag up
Heel after heel from the swallowing of earth's mouth,
from clay that clutches my each step to the ankle
with the habit of dogged grave."

Ted Hughes "The Hawk in the Rain". 4

Climatic factors and weather conditions affect the date and
speed of farm operations. They are the factors which determine the
dates or days upon which it is possible to sow or harvest, to hoe
or spray. Climatic factors and weather also affect the state of the
crop, the ability of a machine to work on a crop and the workability
(trafficability and cultivability) of the soil. It may therefore be
expected that climate, meteorology and soils have considerable
influence on the effectiveness of a given labour input.

Lack of sufficient detailed information prevented the in-
clusion of any climatic or meteorological variables in the analysis.
It must be assumed for the purposes of this study that homogeneous
climatic and meteorological conditions exist in all parts of the
township. This assumption is not strictly valid, since variations
do occur in climate and weather conditions between the Lake Ontario
Plain and the area to the south of the escarpment. However, this
limitation has been partially overcome by using soil drainage character-
istics as a variable.

Soils

The importance of soil workability (trafficability and
cultivability) as a factor in the relative efficiency of farm opera-

4Hughes, T., The Hawk in the Rain, (London: Faber, 1957)
tions has been emphasised by Morris. Duckham has indicated that soil workability is closely associated with the moisture status of the soil. Since homogeneous climatic conditions have been assumed in the study area, it is to be expected that an association will exist between soil drainage characteristics and the effectiveness of the labour input expressed in terms of the Labour Efficiency Index.

(1) Soil Drainage

Soil types in the township were divided into the four drainage classes proposed by Wicklund and Matthews. The drainage classes and their component soil types are reproduced in Table 21. The drainage class shown for each soil type is made for the soils under present drainage conditions. The installation of drains would, in the case of many of the clay soils, considerably improve their drainage and hence crop yields. The following relationships between variables and the Labour Efficiency Index are proposed.

Percentage of soils with Good (x_{11}) and Moderate to Good (x_{12}) Drainage.

Well drained soils dry out faster after the spring thaw or periods of heavy precipitation and tend to be easier to cultivate and possess a higher level of trafficability than less well-drained soils. It is therefore hypothesized that a negative relationship will exist between the Labour Efficiency Index and the percentage of soils in the Good (x_{11}) and Moderate to Good (x_{12}) category.

<table>
<thead>
<tr>
<th>Soil Drainage Classes</th>
<th>Soil Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) GOOD</td>
<td>Grimsby Sandy Loam</td>
</tr>
<tr>
<td></td>
<td>Grimsby Fine Sandy Loam</td>
</tr>
<tr>
<td>2) MODERATE TO GOOD</td>
<td>Oneida Loam</td>
</tr>
<tr>
<td></td>
<td>Smithville Loam</td>
</tr>
<tr>
<td></td>
<td>Smithville Silt Loam</td>
</tr>
<tr>
<td></td>
<td>Smithville Silty Clay Loam</td>
</tr>
<tr>
<td>3) IMPERFECT</td>
<td>Chinguacousy Clay Loam</td>
</tr>
<tr>
<td></td>
<td>Haldimand Clay Loam</td>
</tr>
<tr>
<td></td>
<td>Haldimand Silty Clay Loam</td>
</tr>
<tr>
<td></td>
<td>Haldimand Silt Loam</td>
</tr>
<tr>
<td></td>
<td>Trafalgar Silty Clay Loam</td>
</tr>
<tr>
<td></td>
<td>Vineland Sandy Loam</td>
</tr>
<tr>
<td></td>
<td>Vineland Fine Sandy Loam</td>
</tr>
<tr>
<td></td>
<td>Winona Sandy Loam</td>
</tr>
<tr>
<td></td>
<td>Winona Fine Sandy Loam</td>
</tr>
<tr>
<td></td>
<td>Farmington Clay Loam</td>
</tr>
<tr>
<td>4) POOR</td>
<td>Jeddo Clay Loam</td>
</tr>
<tr>
<td></td>
<td>Jeddo Stony Loam</td>
</tr>
<tr>
<td></td>
<td>Lincoln Clay</td>
</tr>
<tr>
<td></td>
<td>Morley Silty Clay Loam</td>
</tr>
</tbody>
</table>
Percentage of soils with Imperfect \((x_{13})\) and Poor \((x_{14})\) Drainage Characteristics.

Poor soil drainage delays farming operations by making the soil more difficult to cultivate. It is therefore proposed that a positive relationship will exist between the percentage of poorly drained soils and the Labour Efficiency Index.

(2) Soil texture

In addition to the testing of the hypothesized relationships between soil drainage characteristics and the Labour Efficiency Index, it was decided to supplement the soil drainage tests with an analysis of the influence of soil texture on the L.E.I. Soil types were divided into eight textural classes based on the official classification of soil texture of the United States Department of Agriculture. The textural groups and their component soil types are shown in Table 22. Analysis of the textural classes was performed in a slightly different manner than that adopted for farm structure and soil drainage. The complexity of the textural groupings and the wide variations in farm enterprise types in the township prevented the formulation of specific hypothesized relationships. The variables were tested for significant association with the Labour Efficiency Index with no prior assumption of the form or existence of any type of relationship and the results used to supplement the analysis of the influence of soil drainage conditions.

7.2 Method of Analysis.

The Pearson Product-moment Correlation Coefficient \((r)\) was used to test the hypotheses at each scale of analysis. The statistic
SOIL TEXTURE CLASSES

STONY LOAMS (9)
- Jeddo Stony Loam

SANDY LOAMS (10)
- Grimsby Sandy Loam
- Vineland Sandy Loam
- Winona Sandy Loam

FINE SANDY LOAMS (11)
- Grimsby Fine Sandy Loam
- Vineland Fine Sandy Loam
- Winona Fine Sandy Loam

LOAMS (13)
- Oneida Loam
- Smithville Loam

SILT LOAM (14)
- Haldimand Silt Loam
- Smithville Silt Loam

SILTY CLAY LOAMS (17)
- Haldimand Silty Clay Loam
- Smithville Silty Clay Loam
- Trafalgar Silty Clay Loam
- Morley Silty Clay Loam
<table>
<thead>
<tr>
<th>CLAY LOAM (18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinguacousy Clay Loam</td>
</tr>
<tr>
<td>Jeddo Clay Loam</td>
</tr>
<tr>
<td>Haldimand Clay Loam</td>
</tr>
<tr>
<td>Farmington Clay Loam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLAY (21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lincoln Clay</td>
</tr>
</tbody>
</table>
is the most widely used measure of the strength of a linear relationship between two variables.\(^8\)

It can be argued that non-linear relationships are as probable as linear ones, for some of the variables defined, but, as Found\(^9\) stated in his analysis of the relationship of certain elements of farm structure to output per unit area, the proposal of more rigorous mathematical relationships is impossible because of insufficient theoretical knowledge.

Freund\(^10\) has pointed out that:

"Linear relationships are important not only because there exist many relationships that are actually of this form but also because they often provide close approximations (at least within a given range of interest) to relationships which would otherwise be difficult to describe in mathematical terms."

The measure is purely statistical in that no assumptions are made that variable \(x\) controls variable \(y\). According to Krumbein and Greybill:\(^{11}\)

"Any such interpretation is purely substantive and must be evaluated in terms of the problem at hand."

The Product Moment Correlation Coefficient

The formula used in calculating the Product-moment correlation coefficient is given below:

\(^8\) Freund, J.E., Modern Elementary Statistics

\[r = \frac{n(xy) - (x)(y)}{\sqrt{n(x^2) - (x)^2} \sqrt{n(y^2) - (y)^2}} \]

\(x \) and \(y \) are the two variables

\(n \) is the number of observations

The statistic \(r \) indicates the goodness of fit of a line fitted by the method of least squares. In turn, this indicates the existence of a linear relationship between \(x \) and \(y \). If \(r \) is close to 0.0, the fit is poor, whereas a value of \(\pm 1.0 \) is indicative of a strong positive (+) or negative (-) linear relationship.

Significance of the Correlation Coefficient

The significance of the correlation coefficient is evaluated by means of the \(t \) distribution, using the formula:

\[t = \frac{r \sqrt{n-2}}{\sqrt{1-r^2}} \]

Where \(n \) = number of pairs of data studied, and where the degrees of freedom are \((n-2)\). The test assumes that the population from which the sample is taken is normally distributed.

Assumptions

The use of the product-moment correlation coefficient involves the making certain assumptions\(^{12}\) about the population from which the observations are drawn.

Firstly, it is assumed that the relationship between two variables is linear. This point has been examined in a previous section. Using a linear approximation to a function that is not

linear will result in errors of estimate that will be increasingly larger in relation to the degree with which the true function departs from a straight line. One result of this is that the correlation coefficient is usually an underestimate of the true correlation that holds between two variables, rather than an overestimate.

The second assumption made is that the distribution of each variable is normal and that their joint distribution is normal. In the case of the distribution of the variables used in this analysis, many of the distributions were found to approximate the normal. Variables whose distribution was not approximately normal were transformed. The transformation used for each variable is indicated in the table of results.

7.3 Results of the Analysis.

The hypotheses outlined in the previous section were tested at the township, enterprise type and leading activity scales. Testing of the hypotheses on full-time and part-time holdings at the latter scale was not possible because of lack of sufficient observations.

The correlation coefficients and names of variables found significantly associated with the Labour Efficiency Index at each level of analysis are listed in Tables 23 to 26.

It is evident from the results that neither one nor all the hypotheses are upheld at all levels of analysis. Each particular level of analysis appears unique with respect to the relationships between the Labour Efficiency Index and the various independent variables. It would appear therefore that the existence of the
TABLE 23.

FACTORS ASSOCIATED WITH THE LABOUR EFFICIENCY INDEX - TOWNSHIP SCALE

ALL FARMS

<table>
<thead>
<tr>
<th>Factor</th>
<th>(r)</th>
<th>(r^2)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Family Labour (sqrt)</td>
<td>0.396</td>
<td>15.7%</td>
<td></td>
</tr>
<tr>
<td>Percentage of Unpaid Labour (log)</td>
<td>0.368</td>
<td>13.5%</td>
<td></td>
</tr>
<tr>
<td>Total Capital Value (log)</td>
<td>-0.422</td>
<td>17.8%</td>
<td></td>
</tr>
<tr>
<td>Percentage of Hired Labour (log)</td>
<td>-0.396</td>
<td>15.7%</td>
<td></td>
</tr>
<tr>
<td>Machinery / Labour Ratio</td>
<td>-0.264</td>
<td>7.0%</td>
<td></td>
</tr>
</tbody>
</table>

FULL TIME FARMS

<table>
<thead>
<tr>
<th>Factor</th>
<th>(r)</th>
<th>(r^2)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Family Labour (sqrt)</td>
<td>0.430</td>
<td>18.5%</td>
<td></td>
</tr>
<tr>
<td>Percentage of Unpaid Labour (log)</td>
<td>0.427</td>
<td>18.2%</td>
<td></td>
</tr>
<tr>
<td>Total Capital Value (log)</td>
<td>-0.475</td>
<td>22.6%</td>
<td></td>
</tr>
<tr>
<td>Machinery / Labour Ratio</td>
<td>-0.454</td>
<td>20.6%</td>
<td></td>
</tr>
<tr>
<td>Percentage of Hired Labour (log)</td>
<td>-0.430</td>
<td>18.5%</td>
<td></td>
</tr>
</tbody>
</table>

PART TIME FARMS

<table>
<thead>
<tr>
<th>Factor</th>
<th>(r)</th>
<th>(r^2)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Family Labour (sqrt)</td>
<td>0.390</td>
<td>15.4%</td>
<td></td>
</tr>
<tr>
<td>Percentage of Unpaid Labour (log)</td>
<td>0.344</td>
<td>11.8%</td>
<td></td>
</tr>
<tr>
<td>Total Capital Value (log)</td>
<td>-0.440</td>
<td>19.2%</td>
<td></td>
</tr>
<tr>
<td>Percentage of Hired Labour (log)</td>
<td>-0.390</td>
<td>15.4%</td>
<td></td>
</tr>
<tr>
<td>TABLE 24. FACTORS ASSOCIATED WITH THE LABOUR EFFICIENCY INDEX - ENTERPRISE TYPE SCALE</td>
<td>SPECIALISED HOLDINGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL FARMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Observations: 34</td>
<td>Significance at the 0.05 level: ±0.370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of Farm in Acres</td>
<td>-0.542</td>
<td>29.4%</td>
<td></td>
</tr>
<tr>
<td>Total Capital Value</td>
<td>-0.477</td>
<td>22.8%</td>
<td></td>
</tr>
</tbody>
</table>

FULL TIME FARMS		
Number of Observations: 20	Significance at the 0.05 level: ±0.444	
FACTOR		
Percentage of Operators Labour	0.571	32.6%
Size of Farm in Acres	-0.653	42.6%

PART TIME FARMS		
Number of Observations: 14	Significance at the 0.05 level: ±0.532	
FACTOR		
Percentage of Unpaid Labour	0.727	52.9%
Total Capital Value	-0.535	28.6%
TABLE 25.

FACTORS ASSOCIATED WITH THE LABOUR EFFICIENCY INDEX - ENTERPRISE TYPE SCALE

GENERAL HOLDINGS

<table>
<thead>
<tr>
<th>ALL FARMS</th>
<th>Number of Observations: 37</th>
<th>Significance at the 0.05 level: ±0.330</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR</td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>0.577</td>
<td>33.3%</td>
</tr>
<tr>
<td>Percentage of Family Labour</td>
<td>0.405</td>
<td>16.4%</td>
</tr>
<tr>
<td>Percentage of Hired Labour</td>
<td>-0.405</td>
<td>16.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FULL TIME FARMS</th>
<th>Number of Observations: 23</th>
<th>Significance at the 0.05 level: 0.413</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR</td>
<td></td>
<td>r</td>
</tr>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>0.630</td>
<td>39.7%</td>
</tr>
<tr>
<td>Machinery/Capital Ratio</td>
<td>-0.480</td>
<td>23.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART TIME FARMS</th>
<th>Number of Observations: 14</th>
<th>Significance at the 0.05 level: ±0.532</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Factors significant</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 26.

FACTORs ASSOCIATED WITH THE LABOUR EFFICIENCY INDEX - ENTERPRISE TYPE SCALE

MIXED HOLDINGS

ALL FARMS

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>r</th>
<th>r^2</th>
<th>Significance at the 0.05 level ±</th>
<th>Number of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Capital Value</td>
<td>-0.486</td>
<td>23.6%</td>
<td>±0.430</td>
<td>32</td>
</tr>
<tr>
<td>Size of Farm in Acres</td>
<td>-0.445</td>
<td>19.8%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FULLTIME FARMS

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>r</th>
<th>r^2</th>
<th>Significance at the 0.05 level ±</th>
<th>Number of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of Farm in Acres</td>
<td>-0.649</td>
<td>42.1%</td>
<td>0.632</td>
<td>20</td>
</tr>
</tbody>
</table>

PART TIME FARMS

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>r</th>
<th>r^2</th>
<th>Significance at the 0.05 level ±</th>
<th>Number of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Family Labour</td>
<td>0.597</td>
<td>35.6%</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Percentage of Hired Labour</td>
<td>-0.597</td>
<td>35.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machinery Labour Ratio</td>
<td>-0.584</td>
<td>34.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machinery Capital Ratio</td>
<td>-0.551</td>
<td>30.4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
hypothesized relationships is dependent on various complex local interrelationships. A degree of intercorrelation occurs between the various independent variables defined, but it occurs in various ways at each level.

(a) Labour Input and Farm-firm Structure

The hypothesized relationships most consistently related to the Labour Efficiency Index are the positive linear relationship proposed with the percentage of unpaid labour \(x_3\) and the value of land, buildings and machinery \(x_7\). The former hypothesis is upheld mainly in part-time and labour intensive operations, whereas the latter is upheld in General and associated farm groups where relatively extensive operations are undertaken using large amounts of capital.

The hypothesized positive relationship between the percentage of family labour \(x_4\) and the Labour Efficiency Index was upheld in five farm groups. Farms relying on the family for the bulk of their labour will be small operations, unable in many cases to take advantage of modern economies of scale.

The expected negative relationship between the percentage of hired labour employed and the Labour Efficiency Index was upheld on five farm-types. It is interesting to note that the hypothesis was not confirmed on small, intensive farm types with a concentrated peak labour demand. The proposed negative relationship between the size of holding in acres \(x_6\) and the Labour Efficiency Index was upheld on only four farm types. It should be noted that this hypothesis was upheld largely on full-time and specialised holdings, an
TABLE 27.

FACTORS ASSOCIATED WITH THE LABOUR EFFICIENCY INDEX – LEADING ACTIVITY SCALE

TREE FRUITS

SPECIALISED

<table>
<thead>
<tr>
<th>Factor</th>
<th>Number of Observations</th>
<th>Significance at the 0.05 level: ± 0.349</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of Farm in Acres</td>
<td>33</td>
<td>$r = -0.588$</td>
</tr>
<tr>
<td>Total Capital Value</td>
<td>33</td>
<td>$r^2 = 34.6%$</td>
</tr>
</tbody>
</table>

GENERAL

<table>
<thead>
<tr>
<th>Factor</th>
<th>Number of Observations</th>
<th>Significance at the 0.05 level: ± 0.444</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery Labour Ratio</td>
<td>20</td>
<td>$r = -0.445$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r^2 = 19.8%$</td>
</tr>
</tbody>
</table>

MIXED

<table>
<thead>
<tr>
<th>Factor</th>
<th>Number of Observations</th>
<th>Significance at the 0.05 level: ± 0.666</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>9</td>
<td>$r = 0.627$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r^2 = 39.3%$</td>
</tr>
<tr>
<td>Machinery Capital Ratio</td>
<td>9</td>
<td>$r = -0.796$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r^2 = 63.4%$</td>
</tr>
</tbody>
</table>
TABLE 28.

FACTORS ASSOCIATED WITH THE LABOUR EFFICIENCY INDEX - LEADING ACTIVITY SCALE CATTLE

GENERAL

<table>
<thead>
<tr>
<th>Factor</th>
<th>(r)</th>
<th>(r^2)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations :7</td>
<td>Significance at the 0.05 level ± 0.754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of Family Labour</td>
<td>0.816</td>
<td>66.6%</td>
<td></td>
</tr>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>0.810</td>
<td>65.6%</td>
<td></td>
</tr>
<tr>
<td>Percentage of Hired Labour</td>
<td>-0.816</td>
<td>66.6%</td>
<td></td>
</tr>
</tbody>
</table>

MIXED

<table>
<thead>
<tr>
<th>Factor</th>
<th>(r)</th>
<th>(r^2)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations :8</td>
<td>Significance at the 0.05 level ± 0.708</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Capital Value</td>
<td>-0.780</td>
<td>60.8%</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 29.

FACTORS ASSOCIATED WITH THE LABOUR EFFICIENCY INDEX AT THE LEADING ACTIVITY SCALE - GRAPES

GENERAL

<table>
<thead>
<tr>
<th>Factor</th>
<th>Number of Observations</th>
<th>Significance at the 0.05 level ± 0.811</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>6</td>
<td>r</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.840</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70.6%</td>
</tr>
</tbody>
</table>

MIXED

<table>
<thead>
<tr>
<th>Factor</th>
<th>Number of Observations</th>
<th>Significance at the 0.05 level ± 0.811</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Unpaid Labour</td>
<td>6</td>
<td>r</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.802</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64.3%</td>
</tr>
</tbody>
</table>
indication that many of these holdings are too small to fully utilise their current resource inputs.

The negative relationship between the machinery labour ratio \((x_8) \) and the Labour Efficiency Index is upheld on three farm types. The relationship was confined to the larger mixed and general holdings with no extensive use of manual labour during the picking season. The hypothesized negative relationship between the Efficiency Index and the machinery capital ratio was significant on the same farm types. The positive linear relationship between the Labour Efficiency Index and the percentage of operator's labour was upheld only on one farm type, the small full-time specialised holdings.

The proposed negative relationship between the Diversity Index and the Labour Efficiency Index was rejected at all levels of analysis. This is significant, since farm management workers often advise a higher level of diversification in order to utilise resources more fully on an annual basis.

(b) Physical Variables: Soils

Physical variables showing significant association with the Labour Efficiency Index (L.E.I.) are shown in Tables 30 to 32.

Soil Drainage

Few of the normative hypothesized relationships proposed concerning the association between the soil drainage characteristics and the Labour Efficiency Index were upheld by the analysis.

At the township scale on full-time farms, the positive relationship between the poorly drained soils \((x_{14}) \) and the L.E.I. was upheld,
TABLE 30.

PHYSICAL FACTORS ASSOCIATED WITH THE LABOUR EFFICIENCY INDEX

TOWNSHIP SCALE

ALL FARMS

Number of Observations 94
Significance at the 0.05% level ± 0.21

<table>
<thead>
<tr>
<th>Variable</th>
<th>r</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Clay Soils</td>
<td>0.31</td>
<td>9.61%</td>
</tr>
</tbody>
</table>

FULL TIME FARMS

Number of Observations 46
Significance at the 0.05% level ± 0.32

<table>
<thead>
<tr>
<th>Variable</th>
<th>r</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Clay Soils</td>
<td>0.44</td>
<td>19.2%</td>
</tr>
<tr>
<td>Percentage of Fine Sandy Loam Soils</td>
<td>0.33</td>
<td>10.8%</td>
</tr>
<tr>
<td>Percentage of Poorly Drained Soils</td>
<td>-0.38</td>
<td>14.4%</td>
</tr>
</tbody>
</table>
TABLE 31

PHYSICAL FACTORS ASSOCIATED WITH THE LABOUR EFFICIENCY INDEX

ENTERPRISE TYPE SCALE

SPECIALISED FARMS - ALL FARMS

<table>
<thead>
<tr>
<th>Variable</th>
<th>(r)</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Soils with Good Drainage</td>
<td>0.45</td>
<td>20.6%</td>
</tr>
</tbody>
</table>

Number of Observations: 31 Significance at the 0.05% level: ±0.35

GENERAL FARMS - FULL TIME

<table>
<thead>
<tr>
<th>Variable</th>
<th>(r)</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Soils with Moderate to Good Drainage</td>
<td>0.48</td>
<td>23.0%</td>
</tr>
</tbody>
</table>

Number of Observations: 23 Significance at the 0.05 level: ±0.44

MIXED FARMS - ALL FARMS

<table>
<thead>
<tr>
<th>Variable</th>
<th>(r)</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Soils with Imperfect Drainage</td>
<td>0.49</td>
<td>24.0%</td>
</tr>
</tbody>
</table>

Number of Observations: 22 Significance at the 0.05 level: ±0.46
TABLE 32.

PHYSICAL FACTORS ASSOCIATED WITH THE LABOUR EFFICIENCY INDEX.

LEADING ACTIVITY SCALE

TREE FRUITS - SPECIALISED

<table>
<thead>
<tr>
<th>Variable</th>
<th>r</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Soils with Good Drainage</td>
<td>0.46</td>
<td>0.2112</td>
</tr>
</tbody>
</table>

Note

No other factors were found significant at the 0.05 level.
but the relationship of the percentage of imperfectly-drained soils \(x_{13} \) to the Labour Efficiency Index was shown to be negative rather than positive.

The results of the analysis at the Enterprise and Leading Activity Scales all showed variables significantly associated with the Labour Efficiency Index in a manner contrary to that hypothesized. Soils in the well-drained category were positively associated with the Index on specialised, General full-time and farms with Tree Fruits as the leading activity. On mixed farms imperfect drainage was negatively associated with the Labour Efficiency Index.

Soil Texture

Significant associations between soil texture and the L.E.I. were obtained only at the township level. The percentage of clay soils was positively associated with the L.E.I. on "all farms" in the township and on "full-time" farms, a result which confirms the hypothesized positive relationship obtained between poorly-drained soils and the L.E.I. The percentage of fine sandy loam soils is also shown to be positively associated with the L.E.I. at this level of analysis. The result in the case of the latter variable would appear anomalous since a majority of these soil types fall within the imperfectly-drained soil category shown to be negatively associated with the Labour Efficiency Index.

The results of the analysis tend to confirm the overall importance of the type of labour input and size of enterprise in the determination of the relative efficiency of the labour input structure at all levels in the township. Soil workability would seem to be
important only at the township scale where poorly-drained clay soils are a definite hindrance to the efficient operation of the farm holding.
8.1 Summary.

The main objectives of the study were:
(a) to determine and describe spatial trends in the structure of the agricultural labour force.
(b) to determine the relative efficiency of the agricultural labour input by the construction of a Labour Efficiency Index for farm enterprise types in the study area.
(c) to test certain normative hypothesized relationships between the Labour Efficiency Index and selected elements of the farm structure and physical environment.

Information on farm structure in North Grimsby was obtained from the Canada Census of Agriculture taken in 1961. In order to maintain the anonymity of individual census returns, it was necessary to group farms on the basis of size of holding, defined in terms of acreage and proximity of location.

To identify the main types of farm enterprise in the township, crop acreages and livestock numbers were reduced to the common denominator of Standard Labour Inputs expressed in Man-Hours. Conversion factors were obtained from the Ontario Department of Agriculture, and are those in current use by extension workers.

The main farm-types in the township were delineated on the basis of the percentage of the total labour input allocated to each
component activity undertaken on the farm. Three main enterprise-types were delineated:

(1) Specialised holdings, with over 75% of total labour input in one activity.

(2) General holdings, with between 50% and 75% of total labour input allocated to one activity.

(3) Mixed holdings, with not more than 50% of the total labour input in any single activity.

Enterprise types as defined above, were further subdivided according to the leading agricultural activity. Limitations imposed by the data prevented detailed analysis beyond the three main agricultural activities of Tree fruits, Grapes and Cattle.

Analysis of farm structure was conducted at three scales:

(1) Township

(2) Enterprise-type

(3) Leading Activity

In addition, distinction was made within each of the first two scales between full-time and part-time holdings. Part-time holdings were defined as farm groups where the operator was employed at farm or non-farm work off the holding for more than one hundred days per year.

The economic structure of the farm groups was examined under three main headings (a) farm size, measured in terms of acreage and total capital investment; (b) mechanization (c) productivity.

Farms in the township tended to be smaller than similar holdings in adjacent counties. In particular, the holdings specialising in tree fruits were found to possess significantly smaller
mean acreages. The total value of land, buildings and machinery on farm holdings in the township was larger than on similar holdings in other areas of Lincoln County. This was thought to be the result of a combination of first rate physical conditions for the growth of tree fruits and land-use competition from non-agricultural land uses. Specialised holdings were found to have the smallest mean acreage of any farm group in township, although they possessed the highest total values of land, buildings and machinery. Specialised holdings also had the highest machinery-labour ratio of all farms examined, despite the reliance of this type of enterprise on the extensive use of manual labour for harvesting. The more extensive Mixed holdings possessed the highest amount of machinery in comparison with their total capitalisation, although the latter figure was much below other enterprise types in the township.

Evidence of increased machinery-labour substitution was encountered on part-time holdings although this could possibly be attributed to an underestimation of the unpaid labour input.

Productivity per acre was highest on the intensive specialised holdings and lowest on the more extensive mixed farms. In terms of the productivity of capital, both general and mixed show returns over 20% whilst the low returns on specialised holdings could be the result of the high initial investment involved in the operation of these holdings.

The structure of the agricultural labour input in the township during 1961 was examined at the township, enterprise-type and leading activity scales. Labour input statistics were derived from the Census.
of Agriculture and converted to Standard Man-Hours using conversion factors supplied by the Canada Department of Labour.

Examination was made, not only of the total labour input for each farm group, but also of the component structure of the labour input including the percentage of operators labour, the percentage of hired labour and the percentage of unpaid labour. In addition, an analysis was made of the average age of the farm operator, since this has been shown to influence attitudes and work capability.

General trends and local components of the spatial distribution of the component labour types were examined at the township level by means of trend surface analysis. Fitted surfaces indicated a general trend for operator participation to be greatest in areas of Mixed holdings and in areas dominated by Specialised and General tree fruit farms. Positive residuals indicated a local trend towards increased operator participation in Specialised tree fruits and in areas where Mixed cattles enterprises were dominant. The percentage of paid labour was greatest in areas dominated by General holdings and positive residuals were found where this enterprise type coincided with the lighter and more easily tillable soils. The Unpaid Labour surface indicated a maximum coinciding with mixed and General tree fruit dominated areas. Positive residuals indicated an even greater reliance on unpaid labour on the heavier clay soils and in the area around the Town of Grimsby.

Further detailed analysis of labour force structure was undertaken at the enterprise-type and leading activity levels. Mixed holdings had the lowest mean age of operator and the highest level of family participation. Specialised holdings were the most intensive farm group in
terms of labour inputs per acre. Family participation was found to be lower on specialised holdings than on the larger, but less intensive, mixed farms. General holdings were both extensive in acreage and intensive in their use of labour.

Part-time holdings were found to have a lower total labour input than full-time farms. This could result, not only from their smaller acreage, but also because of the possibility of machinery-labour substitution in order to maximise production from a reduced labour input. An alternative explanation of the high level of the machinery-labour ratio on these farms is the possibility of an underestimate by the Census of the unpaid labour input.

The relative efficiency of agricultural labour use was determined by comparing the total farm labour input in Man-Hours to the Standard Labour Requirement of the holding, calculated from Standard Labour input factors supplied by the Ontario Department of Agriculture. The result was expressed in the form of a Labour Efficiency Index for each farm-group. An attempt was made to analyse the spatial distribution of Labour Efficiency in the Township, by means of trend surface analysis. No surface significant at the 0.05 level could be fitted.

Distinction was made, however, between farm groups that were underemployed, i.e. utilised more labour than the Standard Labour Requirement, and overemployed holdings where the standard labour requirement exceeded the labour input on the holding. Underemployment appeared to be a general trend in the Township, especially in the General and Mixed farming area to the south of the Niagara
Evidence of overemployment was found on twelve farm groups mostly in areas dominated by general holdings, although this could be taken as evidence of above average efficiency.

Farm groups with optimum labour inputs were concentrated in areas where general farms predominate, especially on the heavier soils of the Lake Ontario plain, west of the town of Grimsby.

Part-time holdings had, in general, lower labour efficiency indices than their full-time counterparts, although this could be the result of an underestimation on the part of the census of the unpaid labour input.

Finally, it was proposed, mainly on the basis of previous works, that particular linear relationships existed between the Labour Efficiency Index and elements of farm structure and the physical environment. The variables examined relate to the component structure of the farm labour input, the degree of mechanisation, the size of the farm operation, the diversity of the enterprise and the workability of the soil expressed in terms of drainage characteristics and soil texture. Climatic variables were not examined because of a lack of suitable data.

The hypotheses were tested by means of the Pearson Product-Moment Correlation Coefficient, and hypotheses rejected if results fell below the 0.05 significance level, or if the relationship indicated by the correlation coefficient was contrary to that hypothesized.

The results of the analysis indicated that none of the original hypotheses were universally applicable to farm types in the township.
The analysis tended to confirm the overall importance of the type of labour input and size of enterprise in the determination of the relative efficiency of the labour input at all levels of analysis. Soil workability appeared to be important only at the township scale, where poorly drained soils proved to be a definite hindrance to the efficient operation of the farm holding.

8.2 Conclusions.

"It is too often forgotten that geographical studies are not descriptions of the real world, but rather perceptions passed through the double filter of the author's mind and his available tools of argument and representation".¹

The study has demonstrated that predicted normative hypothesized relationships exist at most levels of analysis between the Labour Efficiency Index, the component structure of the labour input, the size of the farm firm measured in terms of capitalisation or acreage, and level of mechanisation. Of the variables described above, the component structure of the labour input, in the form of the percentages of Unpaid and family labour and measures of farm size were significant at almost all levels of analysis, the level of substitution of machinery for labour appeared to be of secondary importance. The hypothesized relationships between the Labour Efficiency Index and the percentages of clay and poorly drained soils were the only predicted physical hypotheses upheld.

Rejection of hypothesized relationships in this analysis could be the result of three possible causes.

(1) the hypothesized relationship is not valid in the study area.
(2) the size of the sample population on which the analysis is based is too small to allow meaningful testing of the hypotheses.
(3) the use of grouped Census Statistics as the main data source has obliterated the trend being examined.

Two of the economic variables were rejected at all levels of analysis. No significant association was obtained between the Labour Efficiency Index, the age of farm operator and the diversity of the farm enterprise. In the case of the age of the operator, it is likely that the grouping of farms necessitated by the use of Census of Agriculture Data has sufficiently diluted the variable to prevent analysis of its true significance. Diversification of the farm enterprise has long been regarded as a method of increasing labour input efficiency. It is therefore surprising to find that this variable was not significant at any level of the analysis. Two possibilities exist, either grouping of farms has obliterated the effects of this variable, or it is not valid in the study area. The problem can only be resolved by an analysis of individual farm firms using non-grouped data.

In addition to the outright rejection of hypotheses, a number of physical variables were shown to be significantly associated with the Labour Efficiency Index in a manner contrary to that predicted. The percentages of well drained soil groups were shown to be positively associated with the Labour Efficiency Index at the Enterprise-type level, instead of the predicted negative association. In the case of these variables it is possible that the normative hypothesis, as proposed, is not correct, for the results suggest that more care is taken in the cultivation of the better soils in the area.
The general failure of the physical variables to show significant associations at the lower levels of analysis could result from the limited number of observations on which the hypotheses were tested. It must be noted, however, that enterprise-types at these levels are each located on similar soil types, with the result that inter-enterprise-type variations are more likely than intra-group differences.

The validation of many of the normative hypotheses at various levels of the analysis leads to the conclusion that the Labour Efficiency Index adopted for the study is adequate for the examination of factors influencing the relative efficiency of the farm labour input in a multi-enterprise environment. There are indications, however, that the use of grouped census data is not entirely satisfactory as a basis for a study of this nature. Variables showing considerable variability within the farm groups, eg. age of operator and diversity of enterprise, were not found significantly associated with the Labour Efficiency Index at any level of analysis, whereas hypotheses involving factors with a lesser degree of intra-group variability were upheld. It is likely that the use of grouped census data with a high degree of intra-group variability, dilutes the data sufficiently to prevent the true significance of the variable from being discerned. Some form of grouping is unavoidable when using Canadian census of agriculture data, and therefore it is recommended that data from individual farm firms be used in any detailed analysis of labour input at the micro scale.
DEFINITION OF CENSUS TERMS USED IN THE STUDY

DEFINITION OF A FARM.

In the 1961 Census, a farm is defined as an agricultural holding of one acre or more with sales of agricultural products during the past twelve months of $50 or more.

The holding may consist of a single tract of land or of a number of separate tracts held under the same or different tenures, and operated as a single unit. Where the farm was made up of several parts located in different municipalities, the 1961 census reported the complete farm as one unit in the municipality where the headquarters was located.

FARM OPERATOR.

This term is used to designate the person who is directly responsible for the agricultural operations of the farm, whether as owner, tenant or hired manager. As only one operator was listed for each farm, the number of farm operators is the same as the number of farms. If the farm is operated as a partnership only one partner is considered as the farm operator.

FARM VALUES.

This is the value of the farm capital; land and buildings, machinery and equipment (including automobiles), and livestock and poultry. The value reported was to be an estimate of market value, not the original, replacement or assessed value.
The value of land and buildings was to be the value of the property when used for agricultural purposes.

The value to be reported for farm machinery was the present market value -- that is, the amount for which machinery and equipment would sell if there were a willing buyer and a willing seller and not a forced sale. The original or replacement value was not to be reported unless it conformed to the market value.

The total value of farm machinery and equipment includes the value of items not reported separately as well as the value of the machines which are reported separately.

FARM MACHINERY AND EQUIPMENT

The number and value was to be reported for farm machines on the farm at the census date, regardless of whether the machines were owned by the operator or not. Old machines not longer in use were not to be reported. Equipment owned in partnership was to be reported on the farm where it was located as of the census date.

AGRICULTURAL LABOUR

Number of weeks of agricultural labour for persons 15 yrs. of age and older was collected for male and female workers and for paid workers and unpaid family workers.

Any person doing farm work on the farm for wages, salary, commission, or piece rate or labour contract basis was reported as paid labour. This included paid managers and members of the operator's family receiving regular or specified cash wages.

Members of the operator's family who did agricultural work or chores full time or part-time on the farm, but did not receive specified cash wages were reported as unpaid family labour.
FARM EXPENDITURES

Specified farm expenditures, whether paid by cash or obtained on credit were reported for each farm for the twelve month period June 1st 1960 to May 31st 1961. If the operator preferred to report expenditures for the calendar year 1960 this was permitted. In the case of tenant-operated farms, expenditures for feed and seed were to include those paid for by the landlord as well as those purchased by the tenant-operator.

If the farmer had a livestock or poultry contract with some other person or firm, the enumerator was to include the value of any feed supplied by the other party.

FARM REVENUES

Farm revenues represent the value of sales of all agricultural products sold from the farm, including products traded or exchanged, whether received by the operator, or some other person. For tenant-operated farms, the landlord's share of products sold was to be included. Sales were reported over the twelve month period June 1, 1960 to May 31, 1961, or the calendar year 1960 if the operator preferred.

Government deficiency payments were to be reported for the particular products for which payments were being made.

SOURCE

APPENDIX 2

AGRICULTURAL CENSUS ENUMERATION FORM 1961
Section I - Operator, June 1, 1961

1. Name and address of the operator (Person in charge of this holding - owner, tenant, or hired manager)

 (Give name and initials) R.R. No.

2. How many months did the operator live on this holding during past 12 months? (Check one)
 - 9-12 months []
 - 5-8 months []
 - Under 5 months []
 - Did not live on this holding []

3. Age of the operator at last birthday (Check one)
 - Under 25 years []
 - 25-34 years []
 - 35-44 years []
 - 45-54 years []
 - 55-64 years []
 - 65-69 years []
 - 70 years and over []

Section II - Location, Area, Tenure and Value, June 1, 1961

4. Location - List each lot, section to part separately. Include all land appraised in this conservation area or elsewhere, whether owned, rented or leased from others, or managed by others.

Land Description

<table>
<thead>
<tr>
<th>Quarter and Section</th>
<th>Township (a)</th>
<th>Range (b)</th>
<th>Section (c)</th>
<th>Owned, rented or leased, managed (state which) (d)</th>
<th>Area in acres (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. What is the total area of all land you operated? (in this conservation area or elsewhere. This must agree with area given in question 2).

6. Tenure Summary (Questions 4, columns (a) and (b))
 - (a) Area owned (exclude land you rent to others) []
 - (b) Area rented or leased from others (exclude land worked by you on share) []
 - (c) Area operated for others as a hired manager (The total of questions 6(a), 6(b) and 6(c) must equal the total acreage in question 2).

7. That is your estimate of the present market value of the land and buildings on this holding? (include value of land and buildings rented from others) []

Section III - Field Crops

Grains to be harvested or consigned

- Spring wheat (exclude durum) []
- Durum wheat []
- Winter wheat (now in fall) []
- Oats for grain []
- Barley []
- Mixed grains (two or more grains grown together) []
- Fall rye for grain (now in fall) []
- Spring rye for grain []
- Buckwheat []
- Dry field peas (exclude canning peas) []
- Dry field beans []
- Corn for grain (exclude sweet and canning corn and oats for ensilage or fodder) []
- Hay and fodder crops
 - Alfalfa and alfalfa mixtures cut or to be cut for hay, ensilage or seed []
 - All other tame hay cut or to be cut for hay, ensilage or seed (exclude alfalfa and other mixtures) []
 - Oats to be cut for green feed, hay or ensilage []
- Oilseed crops
 - Flaxseed []
 - Soybeans for beans []
 - Soybeans for oil []
 - Canola or rape for beans []
 - Canola or rape for oil []
- Other oilseed crops - To be cut for grain, hay, green feed, or ensilage []

Section IV - Fruits, Greenhouses and Nurseries

Cultivated small fruits (limited for sale)

- Do you grow walnuts for sale any grapes, berries or other small cultivated fruits? []
 - Yes []
 - No []
- What is the acre in 1953 of the following?
 - Strawberries []
 - Raspberries []
 - Grapes []

- Other fruits, bushes, etc. []
Section VII - Unimproved Pasture, New Breaking and Grass Silage

- **80. Unimproved pasture**
 - Area of unimproved land (question 78) used for pasture
 - 83 acres
- **81. New breaking**
 - Area of virgin land first ploughed in 1950
 - None
- **82. Grass silage**
 - Tons of grass, alfalfa and clover to be cut for ensilage in 1961
 - None
 - (Include grass mixtures and prairie or mixed hay)

Section VIII - Grain on Hand

- **83. Wheat**
 - Bushels
- **84. Oats**
 - Bushels
- **85. Barley**
 - Bushels

Section IX - Forage Seed Harvested in 1960

- **88. Alfalfa**
 - Tons
- **89. Other (specify)**
 - Tons
- **91. Sweet clover**
 - Tons
- **90. Red clover**
 - Tons
- **92. Timothy**
 - Tons

Section X - Machinery and Electric Power

- **101. Automobiles**
 - Number
- **102. Motor trucks**
 - Number
- **103. Tractors (except gasoline tractors)**
 - Number
- **104. Grain combines (a) Self-propelled**
 - (b) Other
- **105. Grain binders**
 - Number
- **106. Threshing machines**
 - Number
- **107. Pick-up hay balers**
 - Number

Electric Power

- **114. Source of electric power on this holding**
 - DCC
 - Other sources
 - None

Section VI - Use of Land in 1961

- **73. Cropland sown as or to be sown for harvest in 1961**
 - Acres
- **74. Improved land for pasture or grazing**
 - Acres
- **75. Summer fallow**
 - Acres
- **76. Other improved land**
 - Acres
- **77. Total of questions 73 to 78**
 - Acres

Section V - Vegetables Grown for Sale

- **56. Will any vegetables be harvested for sale which were grown in 1961**
 - No
 - If "No" skip to question 79
 - If "Yes" answer questions 59 to 72

Greenhouse and Nursery Products, Mushrooms (Mainly for sale)

- **51. Do you grow greenhouse or nursery products, yes or no?**
 - No
 - If "No" skip to question 52

Section VI - Use of Land in 1961

- **73. Cropland sown or to be sown for harvest in 1961**
 - Acres
- **74. Improved land for pasture or grazing**
 - Acres
- **75. Summer fallow**
 - Acres
- **76. Other improved land**
 - Acres
- **77. Total of questions 73 to 78**
 - Acres

Section X - Machinery and Electric Power

- **101. Automobiles**
 - Number
- **102. Motor trucks**
 - Number
- **103. Tractors (except gasoline tractors)**
 - Number
- **104. Grain combines (a) Self-propelled**
 - (b) Other
- **105. Grain binders**
 - Number
- **106. Threshing machines**
 - Number
- **107. Pick-up hay balers**
 - Number

Electric Power

- **114. Source of electric power on this holding**
 - DCC
 - Other sources
 - None
Section XI - LIVESTOCK ON THIS HOLDING, JUNE 1, 1961

CATTLE

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>129.</td>
<td>Total cows and calves</td>
</tr>
<tr>
<td>130.</td>
<td>If "none" skip to question 122</td>
</tr>
<tr>
<td>132.</td>
<td>(a) Calves, under 1 year</td>
</tr>
<tr>
<td>133.</td>
<td>(b) Steers, 1 year and over</td>
</tr>
<tr>
<td>134.</td>
<td>(c) Bulls, 1 year and over</td>
</tr>
<tr>
<td>135.</td>
<td>(d) Heifers, 1 year and under 2</td>
</tr>
<tr>
<td>136.</td>
<td>(e) Cows and calves, 2 years and over</td>
</tr>
</tbody>
</table>

SHEEP

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>137.</td>
<td>Total sheep and lambs</td>
</tr>
<tr>
<td>138.</td>
<td>If "none" skip to question 122</td>
</tr>
<tr>
<td>139.</td>
<td>(a) All lambs, under 1 year</td>
</tr>
<tr>
<td>140.</td>
<td>(b) Ewes, rams and wethers, 1 year and over</td>
</tr>
</tbody>
</table>

OTHER LIVESTOCK

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>141.</td>
<td>Total goats and poodles (all ages)</td>
</tr>
<tr>
<td>142.</td>
<td>None</td>
</tr>
</tbody>
</table>

Section XII - POULTRY, JUNE 1, 1961

HENS AND CHICKENS

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>143.</td>
<td>Total hens and chickens (all ages)</td>
</tr>
<tr>
<td>144.</td>
<td>If "none" skip to question 122</td>
</tr>
<tr>
<td>145.</td>
<td>(a) Chicks, under 2 months</td>
</tr>
<tr>
<td>146.</td>
<td>(b) Pullets, 2 to 6 months, intended for laying</td>
</tr>
<tr>
<td>147.</td>
<td>(c) Hens and pullets, 6 months and over, kept for laying</td>
</tr>
<tr>
<td>148.</td>
<td>(d) All other chickens over 2 months not intended for laying (exclude roosters)</td>
</tr>
</tbody>
</table>

OTHER POULTRY

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>149.</td>
<td>Turkeys (all ages)</td>
</tr>
<tr>
<td>150.</td>
<td>Goose (all ages)</td>
</tr>
<tr>
<td>151.</td>
<td>Ducks (all ages)</td>
</tr>
</tbody>
</table>

Section XIII - LIVESTOCK, POULTRY AND EGG CONTRACTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>152.</td>
<td>Did you produce under contract with a feed dealer, processor, hatchery, retailer, or co-operating any livestock, poultry or any of the above during the past 12 months?</td>
</tr>
<tr>
<td>153.</td>
<td>(a) Pigs (include sales made to meat packer)</td>
</tr>
<tr>
<td>154.</td>
<td>(b) Cows and calves, 2 years and older</td>
</tr>
</tbody>
</table>

Section XIV - FUR-BEARING ANIMALS

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>155.</td>
<td>Were any fur-bearing animals on this holding this spring?</td>
</tr>
<tr>
<td>156.</td>
<td>Number of buckets hung this spring</td>
</tr>
</tbody>
</table>

Section XV - MAPLE SYRUP AND SUGAR

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>157.</td>
<td>Number of buckets containing maple syrup this spring</td>
</tr>
<tr>
<td>158.</td>
<td>Number of buckets containing maple sugar this spring</td>
</tr>
</tbody>
</table>

Section XVI - PART-TIME WORK DURING THE PAST 12 MONTHS

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>159.</td>
<td>Days operator worked at non-agricultural work and at agricultural work on this holding during the past 12 months (Day-night exchange work)</td>
</tr>
</tbody>
</table>

Section XVII - AGRICULTURAL LABOUR

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>160.</td>
<td>Hours worked during the past 12 months on this holding (excluding household)</td>
</tr>
<tr>
<td>161.</td>
<td>(a) by paid workers</td>
</tr>
<tr>
<td>162.</td>
<td>(b) by unpaid family workers</td>
</tr>
</tbody>
</table>

Section XVIII - PRODUCTION OF WHOLE MILK, MAY 1961

Milk Equivalent Table

<table>
<thead>
<tr>
<th>Gallons of Milk</th>
<th>Pounds of Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 gal. milk</td>
<td>100 lb. milk</td>
</tr>
<tr>
<td>1 lb. cream</td>
<td>16 lb.</td>
</tr>
<tr>
<td>1 lb. butter</td>
<td>20 lb.</td>
</tr>
</tbody>
</table>

Sale of Milk and Cream, May 1961

<table>
<thead>
<tr>
<th>Description</th>
<th>Gallons of Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole milk sold</td>
<td>160.</td>
</tr>
<tr>
<td>Milk sold, fat-not shown, factory or direct to consumers</td>
<td>147.</td>
</tr>
<tr>
<td>Cream sold, fat-not shown, factory or direct to consumers</td>
<td>149.</td>
</tr>
</tbody>
</table>

Home Use of Milk and Cream, May 1961

<table>
<thead>
<tr>
<th>Description</th>
<th>Pounds of Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole milk fed to livestock</td>
<td>150.</td>
</tr>
<tr>
<td>Milk and cream used in households</td>
<td>146.</td>
</tr>
<tr>
<td>Butter made on this holding</td>
<td>154.</td>
</tr>
</tbody>
</table>
Section XIX - Expenditures During the Past 12 Months

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount (dollars only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>152. Tobacco</td>
<td>$0.00</td>
</tr>
<tr>
<td>153. Rent for all agricultural property now owned or rented by your household</td>
<td>$0.00</td>
</tr>
<tr>
<td>154. Cash wages paid to hired agricultural labour</td>
<td>$0.00</td>
</tr>
<tr>
<td>155. Feed and seed purchases</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

Section XX - Value of Agricultural Products Sold During the Past 12 Months

<table>
<thead>
<tr>
<th>Item</th>
<th>Value (dollars only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>156. Wheat, corn, oats, barley</td>
<td>$0.00</td>
</tr>
<tr>
<td>157. Other cash grains, hay, haylage, small grains, peas, beans, flax, flaxseed, hay</td>
<td>$0.00</td>
</tr>
<tr>
<td>158. Oils and fats, nuts, sunflower, rape, mustard, safflower</td>
<td>$0.00</td>
</tr>
<tr>
<td>159. Hay and fodder crops, including forage crop seed</td>
<td>$0.00</td>
</tr>
<tr>
<td>160. Potatoes, root vegetables, sugar beets, and other field crops</td>
<td>$0.00</td>
</tr>
<tr>
<td>161. Other receipts such as PFAA payments, government payments, etc. received during the past 12 months</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

Section XXI - Mortgages or Agreements for Sale

- 180. Is there a mortgage or agreement for sale on any part of the agricultural property that you own? **Yes**
- 181. Is this mortgage or agreement for sale held by: [Indicate type of mortgage or agreement]

Section XXII - Irrigation

182. Have you a crop irrigation system of any kind on this holding? **Yes**

Section XXIII - Forest Products and Forest Fires

- 183. Are any wood products from this holding cut or sold or used during the past 12 months? **Yes**

Comments
BIBLIOGRAPHY

Books and Pamphlets

Thomas, T. *Agriculture in Wales During the Napoleonic Wars*. Cardiff: University of Wales, 1963.

BIBLIOGRAPHY

Articles

Nix, J. "Labour Organisation on the Farm". Agriculture, 75, (1968), 60.
