RBC PERFORMANCE UNDER TRANSIENT LOADING CONDITIONS

230

Performance of Rotating Biological Contactors under Transient Loading Conditions

By

Michel P. Filion, B.A.Sc.

A Project Report

Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Engineering

> McMaster University November, 1979

Master of Engineering (Chemical Engineering	(1979))	McMaster University Hamilton, Ontario
Title	:	Performance of Rotating Biological Contactors under Transient Loading Conditions
Author	:	Michel P. Filion
		B.A. Sc. (University of Waterloo)
Supervisor	:	Professor K.L. Murphy
Number of Pages	:	X, 223

ii

Abstract

This report examines the dynamic response of a 0.5 metre pilot scale rotating biological contactor when operated under transient influent conditions. Experimental data are presented for two modes of operation: carbon oxidation and carbon oxidation plus nitrification. During the carbon oxidation experimental runs, a 2.0 metre RBC was operated in parallel with the 0.5 metre RBC, thus allowing comparisons in the performance of the units.

When the 0.5 metre RBC was operated under nitrifying conditions, it was found that the effluent filterable TKN responded positively to influent variations in filterable TKN loading, TKN concentration and hydraulic loading. Transfer function - noise models were developed which successfully predicted the time varying effluent TKN response. The response in effluent filterable TKN was predicted most precisely by influent TKN loading. Models based on influent TKN concentration and flow were not as precise in predicting effluent response. The effluent response of the 0.5 metre RBC was found to be greater than the response of activated sludge pilot units when operated at similar levels of removal.

When the 0.5 metre RBC was operated in the carbon oxidation mode, significant effluent responses were observed for carbon loading and concentration. Little correlation was found between influent flow and effluent carbon concentration. Operating under identical conditions, the 2.0 m RBC showed significant responses to carbon loading, carbon concentration and flow.

Acknowledgements

The completion of this report could not have been accomplished without the assistance and support of many people. I would like to acknowledge especially:

Dr. Keith Murphy, for his guidance, patience, and counsel through the investigation and writing;

The employees of the Environmental Protection Service, Wastewater Technology Centre, particularly Dr. B.E. Jank and Mr. J.P. Stephenson, for the use of their facilities and for technical support;

McMaster University, the Environmental Protection Service, IEC Consultants, and Central Mortgage and Housing Corporation for their financial support;

And, most importantly, a special thanks to my parents and my wife Ms Peggie, for their encouragement to complete this work after such a long delay.

TABLE OF CONTENTS

		PAGE
	Abstract	ii
	Acknowledgments	iv
	Table of Contents	v
	List of Figures	vii
	List of Tables	ix
1.	Introduction	1-1
2.	Literature Review	2-1
	2.1 Process Description	2-1
	2.2 Historical Development	2-2
	2.3 Carbon Oxidation	2-5
	2.3.1 Design	2-5
	2.3.2 Performance	2-7
	2.3.3 Diurnal Variability, Hydraulic	
	Pulses and Intermittent Flow	2-7
	2.4 Nitrification	2-9
	2.4.1 Design	2-10
	2.4.2 Performance	2-10
	2.5 Denicificación 2.6 Steady State Modelling	2-11
	2.7 Dynamic Modelling	2-12
	2.7 Dynamic Modelling 2.7 1 Linear Dynamic Stochastic Modelling	2-10
	2.7.2 The Box and Jenkins Method of	2-10
	Developing Linear Dynamic	
	Stochastic Models	2-20
3	Experimental Equipment and Procedures	3-1
0.	3.1 Pilot Plant Design and Operation	3-1
	3.2 Experimental Plan and Start-Up	3-1
	3.3 Diurnal Flow Experiments	3-5
	3.4 Dynamic or Non "Steady State" Experimental	
	Design	3-5
	3.5 Feed Characteristics	3-7
	3.6 Sample Preparation and Analyses	3-15
4.	Results and Discussion	4-1
	4.1 Dynamic Time Series Data	4-1
	4.2 System Response to Hydraulic, Organic	4 5
	4.2.1 Conoral	4-5
	4.2.1 General 4.2.2 Impulse Decrease Eurotiens	4-5
	4.2.2 Impulse Response Functions	1_9
	4 2 3 Impulse Response Functions	4-0
	- Nitrification Mode	4-11
	4.2.4 Discussion	4-14
	4.3 Dynamic Transfer Function - Noise (TF-N) Model	
	Development	4-14
	4.3.1 Introduction	4-14
	4.3.2 Model Development	4-15
	4.3.3 Effluent Filterable TKN Models	4-15
	4.3.4 TF-N model Analysis to Determine	
	Response Times	4-21

			PAGE
	4.4 4.5	System Response to Natural Diurnal Variations in Flow and Concentration 4.4.1 TF-N Model Forecast Results Comparison of RBC TF-N Models with Activated	4-21 4-22
	4.6	Studge Models Steady State Design 4.6.1 Carbon Oxidation Mode 4.6.2 Carbon Oxidation plus Nitrification	4-24 4-24 4-26
	4.7	Mode 4.6.3 Use of Mass Loading Plots in Design Scale-Up	4-31 4-35 4-35
5.	Conc	lusions	5-1
6.	Reco	mmendations for Future Work	6-1
7.	Refe	rences	7-1
App	pendix	A - Data Listing	A-1
Apı	pendix	B - <u>Analytical Procedures</u> Total Kjeldahl Nitrogen Ammonia Nitrate Nitrate plus Nitrite Chemical Oxygen Demand (COD) Biochemical Oxygen Demand (BOD) Total Organic Carbon (TOC) Suspended Solids Dissolved Oxygen Temperature pH Alkalinity	B-1 B-1 B-1 B-2 B-2 B-3 B-3 B-3 B-3 B-3 B-4 B-4 B-4
Apj	pendix	C - <u>Calculation Procedures</u> Identification of the Transfer Function Model: TKN Load vs TKN Concentration Identification of the Noise Model Fitting and Applying Residual Checks to the Combined Transfer Function - Noise (TF-N) Model Forecasting System Response to Impulse Forcings	C-1 C-1 C-2 C-2 C-6
		Transfer Function Calculation Procedures to Determine Response Times	C-7
Apj	pendix	 <u>Reactor Retention Times and Mixing</u> <u>Characteristics</u> Tanks in Series Model Theory Dispersion Model Theory 	D-1 D-2 D-2
Ap	pendix	E - Abbreviations and Symbols	E-1

LIST OF FIGURES

Figure No	Description	Page
3.1	Process Schematic	3-2
3.2	Planned Diurnal Flow Input to 0.5 m RBC for Peak/Average/Minimum Flow Ratio of 2/1/0.5	3-6
3.3	Experiment Cl Design, Carbon Oxidation Plus Nitrification	3-9
3.4	Experiment C2 and E2 Design, Carbon Oxidation Mode	3-9
3.5	Filterable COD Raw Wastewater Charac- teristics	3-10
3.6	Filterable TOC Raw Wastewater Charac- teristics	3-11
3.7	Filterable TKN Raw Wastewater Charac- teristics	3-12
3.8	Suspended Solids Raw Wastewater Charac- teristics	3-13
3.9	Correlation of Filterable BOD_5 with Filterable TOC, Summer of 1976	3-14
4.1	Input and Response of 0.5 m RBC, Carbon Oxidation Plus Nitrification Mode	4-2
4.2	Input and Response of 0.5 m RBC, Carbon Oxidation Mode	4-3
4.3	Input and Response of 2.0 m RBC, Carbon Oxidation Mode	4-4
4.4	Effluent Filterable TOC Impulse Response Weights, 0.5 m RBC, Carbon Oxidation Mode, First Difference	4-9
4.5	Effluent Filterable TOC Impulse Response Weights, 2.0 m RBC, Carbon Oxidation Mode, First Difference	4-10
4.6	Effluent Filterable TOC Impulse Response Weights, 0.5 m RBC, Carbon Oxidation Plus Nitrification Mode, First Difference	4 - 12
4.7	Effluent Filterable NO ₂ -N plus NO ₃ -N Impulse Response Weights, 0.5 m RBC, Carbon Oxidation Plus Nitrification Mode, First Difference	4-13

LIST OF FIGURES (Cont'd)

Figure No	. Description	Page
4.8	Comparison of Effluent Filterable TKN Response and TKN Load Model (A2) Fit	4 - 20
4.9	Effluent Filterable TKN Response and Forecast for Diurnal Loading	4-23
4.10	Steady State Design Data for Filterable TOC Removal, 0.5 m RBC, Carbon Oxidation Mode	4-27
4.11	Steady State Design Data for Filterable COD Removal, 0.5 m RBC, Carbon Oxidation Mode	4-28
4.12	Steady State Design Data for Filterable TOC Removal, 2.0 m RBC, Carbon Oxidation Mode	4-29
4.13	Steady State Design Data for Filterable COD Removal, 2.0 m RBC, Carbon Oxidation Mode	4-30
4.14	Steady State Design Data for Filterable TOC Removal, 0.5 m RBC, Carbon Oxidation plus Nitrification Mode	4-32
4.15	Steady State Design Data for Filterable COD Removal, 0.5 m RBC, Carbon Oxidation plus Nitrification Mode	4-33
4.16	Steady State Design Data for Filterable TKN Removal, 0.5 m RBC, Carbon Oxidation plus Nitrification Mode	4-34
4.17	Comparison of TOC Mass Removal, 0.5 m RBC versus 2.0 m RBC	4-36
4.18	Comparison of COD Mass Removal, 0.5 m RBC versus 2.0 m RBC	4 - 37
C-1	Autocorrelation and Partial Auto- correlation Functions of TKN Load Model Noise Sequence	C-3
C-2	Autocorrelation of the Fitted TKN Load TF-N Model Residuals	C-5
C-3	Cross correlation Model Check, ∇X_t vs. TF-N Model Residuals	C-5

LIST OF TABLES

Table No.	Description	Page
3.1	Summary of Experimental Programme	3-4
3.2	Design Levels for Experiments C1, C2 and E2 Carbon Oxidation Mode	3-8
4.1	Summary of Cross Correlation Results, First Difference	4-6
4.2	Transfer Function - Noise Models Describing Effluent Filterable TKN Concentration	4 - 16
4.3	Diagnostic Checks Applied to the Residuals	4-19
4.4	Substrate Loading Models for RBC and Activated Sludge Processes	4-25
A-1	General Operating Data, Experiments A-1, A-2, A-3, A-4, B-1, B-2, C-1, C-2 and E-2	A-2
A-2	Bio-Surf Pilot Plant Testing, Analytical Results, Experiments A-1, A-2, B-1, B-2, C-1, C-2 and E-2	A-21
C-1A	Sample Calculation Model Estimates	C-3
C-1	Computer Program Used for Cross Correlations and Matrix Inversion, with Sample Output for Model A-1	C-9
C-2	Main Program Used for Estimation of the Noise Model, with Sample Output for Model A-1.	C-22
C-3	Computer Program used for Simultaneous TF-N Model Parameter Estimation and Residual Checks, with Sample Output for Model A-1	C-32
C-4	Subroutine TSHAUS	C - 45
C-5	Forecast Program Used in Predicting Effluent Response	C - 53
D-1	Tracer Response Analysis, 0.5 metre RBC, at 0.82 L/min	D - 5
D-2	Tracer Response Analysis, 0.5 metre RBC, at 2.33 L/min	D-9
D-3	Tracer Response Analysis, 0.5 metre RBC, at 3.46 L/min	D - 14

LIST OF TABLES (Cont'd)

Table No.	Description	Page
D-4	Tracer Response Analysis, 2.0 m RBC, at 37.2 L/min	D - 16
D-5	Tracer Response Analysis, 2.0 m RBC, at 100.6 L/min	D-20
D-6	Tracer Response Analysis Computer Program	D - 24

Performance of Rotating Biological Contactors under Transient Loading Conditions

1. INTRODUCTION

The rotating biological contactor (RBC) is an aerobic biological treatment system based on the biosorption principle. It employs captive biological slimes to remove substrate from the liquid wastewater by physical and biochemical means.

RBC treatment design criteria are still in the development stage and have generally been based on hydraulic loading. Early investigations (Antonie, 1970) indicated that BOD_5 and ammonia removal followed first order kinetics. This led to designs based on percentage removal and hydraulic loadings. Further refinement of this approach provided designs based on effluent concentrations and areal hydraulic loadings, with no consideration provided for influent substrate concentrations or mass loadings. Recent publications (Antonie, 1976; Poon <u>et al</u>, 1977) suggest that influent substrate concentrations also have an influence on the design relationships.

Capital costs for the RBC have been shown to decrease linearly with hydraulic capacity (Antonie, 1976), potentially providing relatively inexpensive biological treatment for small communities, work camps, and summer camps. However, wastewaters from these sources tend to have large diurnal flow and substrate concentration fluctuations (Randtke <u>et al</u>, 1977) and if the RBC is to be used in these applications its dynamic behaviour must be evaluated and quantified.

Attempts to date to model the performance of the RBC have been based upon steady-state equations. Of the few kinetic studies reported, the deterministic models which have been developed are based on two general concepts (Friedman <u>et al</u>, 1976; Kornegay, 1969; Famolaro <u>et al</u>, 1976; Hansford <u>et al</u>, 1978):

- 1. kinetic models for growth, or
- 2. empirical models based on mass transport concepts.

To describe the removal capability of an RBC using these concepts, deterministic models must attempt to incorporate RBC mixing characteristics, retention time, active biofilm thickness, rotational speed, available surface area, system geometry, and diffusion coefficients for oxygen and substrate transfer. The parameter values describing these characteristics are estimates at best, and introduce potential weaknesses to the models. Further, model parameter values obtained in this fashion will not describe the dynamic relations between influent and effluent when the input to the RBC is highly variable.

An estimate of the stability for a RBC can only be obtained using techniques which elucidate the response to non-steady operation. Incorporation of the process dynamics into a deterministic model yields a complex system of linear differential equations (Kornegay, 1969). Time series analysis is an alternative to be considered as a method to describe the process dynamics. Using this method, insight into the significant influent variables affecting effluent quality, and forecasting of effluent quality for various influent values can be obtained to provide a basis for process assessment and control. Time series analysis as developed by Box and Jenkins (1970) is one approach that can be used to relate influent and effluent variables for actual experimental or operational data. The resulting model may be updated as more information becomes available. Berthoeux et al. (1976) and Murphy et al. (1977) have previously demonstrated the potential of time series model building for describing wastewater treatment systems.

This study has examined the performance of pilot scale RBCs operating under variable influent loadings of organic carbon and ammonia. The experimental design allowed the use of time series analysis to examine the response of RBCs under non-steady influent conditions and provided a means for assessing design criteria for the RBC. Comparisons of the performance of the pilot scale RBC with a full scale RBC and conventional activated sludge units have been made.

2. LITERATURE REVIEW

2.1 Process Description

The Rotating Biological Contactor (RBC) is an aerobic biological waste treatment system which is based on the "biosorption" principle. By using the adsorptive and absorptive properties of captive biological slimes, organic material is removed from liquid wastes by physical and biochemical means. Each unit consists of a large number of lightweight polyethylene discs which are bonded together in a stack, mounted on a horizontal shaft and placed in a semicircular tank. The discs, which are vacuum-formed in sizes up to four (4) metres in diameter, are slowly rotated while approximately one half of their surface area is in the wastewater. submerged Rotational speeds are generally in the range of 2 to 20 rpm.

Immediately after startup, organisms naturally present in a wastewater begin to adhere to the disc surfaces, and multiply. After a period of 2 to 3 weeks, the unit normally has acclimatized and produces a relatively stable, treated effluent. As the discs rotate, the growth is alternately exposed to the wastewater and atmosphere. The rotating action aerates the wastewater, provides oxygen necessary for organism growth and controls the biomass population. Shearing forces exerted on the biomass cause any excess biomass to slough from the discs into the mixed liquor. The solids remain in suspension until subsequent removal by settling.

RBCs are relatively new to North America. The acceptance and application of new and different methods of wastewater treatment systems has historically taken many years. As a result, the literature available on RBCs is general and tends to concentrate on their many apparent advantages. These may be summarized as follows.

- The system is not subject to washout conditions because of the large captive biomass.
- 2. The biomass population for the treatment of domestic wastewaters has been estimated to be the equivalent of 18000 to 30000 mg/L MLSS (Joost, 1969; Welch, 1968). Manufacturers suggest that these large numbers of captive microorganisms will provide a low F/M ratio and enable the system to absorb organic shock loads.
- 3. Capital investment costs are lower than activated sludge (Antonie, 1977) or trickling filter systems (Winkler, 1974). However, these costs increase linearly with treatment capacity and thus lose their competitive edge for large facilities.
- 4. Operating and maintenance costs are low, as little power is required to turn the discs, and head loss throughout the plant is minimal.

Little operator attention is required.

2.2 Historical Development

According to Hartmann (1960) the original concept of the RBC should be creditied to Travis, who, in 1901, tried to increase the efficiency of his "Hydrolytic Tank" by hanging thin wooden strips, called colloid catchers, in the settling compartment of his unit. Solids accumulated on the slats, but did not always slough off, thus causing partial clogging of the unit.

Doman (1929) presented results which were obtained from the operation of what was probably the first RBC to resemble modern units. The RBC consisted of fourteen 20 gague galvanized iron plates (16 inches in diameter) which were rotated in a 4.75 gallon, semi-circular tank. (At that time plastic materials were not available.) Doman obtained organic removal efficiencies characteristic of conventional aerobic treatment processes and identified research needs similar to those being investigated today. (i.e. optimum retention times, speed of rotation, suface area effects and temperature effects). Concurrently, Buswell (1929) reported on a system which he called the "Biologic Wheel" and cited as advantages that:

- the area requirements were about 1/10 of that needed for a trickling filter,
- 2. the power costs were low as compared to the activated sludge process, and
- 3. nitrification was obtained.

The Great Depression and Wold War II delayed further research until Hartmann and Popel began investigating the at the Technical University of process Stuttgart, in 1955. Hartmann (1960) described the operation of two experimental immersion drip filter disc plants. The paper outlined performance characteristics and economics for their use as a sewage treatment system. Subsequent papers by Popel (1964) and Hartmann (1965) indicated that disc filters had become moderately well established on the continent. Lohr (1967) described a prototype RBC plant which used power from the sewage flow to rotate the discs. Reinisch (1969) gave theoretical reasons to support the claims that rotary disc plants were more economical to operate than conventional treatment methods.

In the U.S.A. and Canada, much of the early research was concerned with the use of RBC's for the treatment of wastewaters from small communities or industrial plants (Antonie <u>et al</u>, 1969, 1970). Using designs similar to those

used in Germany, these plants were constructed to treat either primary or septic tank effluents. Torpey <u>et al</u> (1972) experimented with multiple staged disc units which included a final stage exposed to light in order to grow algae and thereby remove inorganic nutrients from the sewage.

More recently, Reimer <u>et al</u> (1976) compared the performance of several pilot scale wastewater treatment units. Under nitrifying conditions he concluded that the RBC did not produce as stable an effluent as an activated sludge unit.

Commercial marketing of the RBC began in Europe in 1959 by J. C. Stengelin Ltd., Tuttingen, W. Germany, who now have licences in several countries. By 1973 there were more than 1,000 installations in Europe (primarily West Germany, France and Switzerland) treating domestic, industrial and mixed wastewaters. Treatment capacities varied from that generated by a single residence to 45.4 kg BOD_5 removed per day (Beak, 1973).

Allis - Chalmers Ltd. initially introduced the RBC system to North America in the mid - 1960's and in late 1970, Autotrol Corporation acquired the patents, inventories and contracts from Allis - Chalmers. Other companies now operating in North America include Bio Disc (Ames Crosta Mills Ltd), Rotordisk (CMS Ltd), Euromatic Bio Drum (European Plastic Manufacturing Company), the Rotating Biological Surface (Geo. A. Hormel & Co.), Envirodisc (Envirodisc Corp.), and the Rotating Disc Biological Reactor (Environmental Dynamics Corp.).

2.3 Carbon Oxidation

2.3.1 Design

Hartmann (1965) provided the first detailed account of RBC design practices used in Germany. These designs were introduced to South Africa by Pretorius (1973) and to North America by Steels (1974). The design methods were based on hydraulic loading, inlet BOD_5 concentration, and areal BOD_5 loading, for a town population of 10,000. Multiplication factors were provided for communities of different sizes.

Joost (1969) suggested a steady state design equation based on the assumption that the biochemical reaction taking place is concentration dependent, following a first order equation of the type

> % <u>BOD Reduction</u> = $K \times C^a \times R^b \times T^c \times \Gamma^d$... (1) Stage

where: K is the treatability constant,

C is the concentration of the waste material,

R is the physical configuration constant,

T is the wastewater temperature,

 Γ is the residence time, and a, b, c, d are partial regression coefficients.

Unfortunately, data were not provided for the constants a, b, c, d or K. The above equation was solved using multiple regression analysis by Weng and Molof (1974), for a nitrifying system. The results indicated that influent loading, concentration and flow had an effect on effluent quality but no indication was given as to the relative importance of each parameter.

In North America, Antonie (1970) presented data which suggested that BOD_5 removal was a "first order" reaction with respect to BOD_5 concentration. "First order" removal kinetics implies that a given percentage BOD_5 removal is possible regardless of inlet BOD_5 concentration or loading. Therefore, Antonie introduced RBC treatment facility designs based solely on hydraulic loadings and percentage removals. This approach is analagous to the volumetric loading rates once used for activated sludge design and hydraulic loading rates for trickling filter design.

Although many investigators believed hydraulic flow rate to be the determining factor in BOD_5 or COD removal in fixed film systems (i.e. trickling filters), Cook and Kincannon (1971) presented data which indicated that the important design parameter for trickling filters was the organic loading. They recommended that any comparison between trickling filter be made on a g/d-m³ (lbs/d-1000 ft³) basis. These results led to a great deal of controversy among researchers as to what the primary design criterion for RBCs should be and how experimental data should be reported.

Since the paper by Antonie (1970), the RBC manufacturers have all tended to use areal hydraulic loading as their primary design basis. It was not until 1976 that data were published indicating that areal mass loading was possibly a better design criterion. Stover and Kincannon (1976) operated a RBC pilot plant on slaughterhouse wastewater. They found that a plot of mass loading versus mass removal followed Monod type kinetics for COD removal. The plot showed less variability than a similar one using hydraulic loading. A limiting removal of 22.5 g COD/d-m² was obtained for loadings greater than 50 g COD/d-m².

2.3.2 Performance

Because the rotating biological contactor is a relatively new wastewater treatment process, many of the papers published on RBC research are devoted to describing only their effectiveness in treating industrial and municipal wastes, in terms of percentage removals. Pretorius (1971) found that a maximum removal rate of 0.49 g COD/d-g biomass was achievable in his 9 disc RBC system. At the same time Wells (1971) found that for an influent BOD₅ concentration of 250 mg/l, it was possible to improve BOD₅ removal efficiency from 50% to 83% simply by decreasing the flow rate from 325.9 $1/d-m^2$ (8.0 U.S. gal/d-ft²) to 163 $1/d-m^2$ (4.0 U.S. $qal/d-ft^2$). The results of Pescod (1972) seemed to verify the "first order" kinetic results obtained by Antonie (1970). When viewed on a stage by stage basis, Pescod was able to obtain 95% COD removal at a loading of 4 kg $COD/d-m^2$ for organic wastes near 1000 mg/l.

Bruce <u>et al</u> (1973) recommended a maximum daily areal load of 6 g/d-m² (1.2 lb. BOD/d-1000 ft²) in order to obtain the standards set in the U. K.(30 ppm suspended solids, 20 ppm BOD₅). The MOE 1974 report recommended that a loading of 20 to 25 g/m²-d (1 lb BOD₅/d-1000 ft²) should be used to obtain 80 to 90% BOD₅ removal efficiency. EPA, on the other hand, simply suggested using an areal hydraulic loading of 61.1 $1/d-m^2$ (1.5 U.S.gal/d-ft²)) to obtain 87% BOD₅ removal or better.

2.3.3. Diurnal Variability, Hydraulic Pulses and Intermittent Flow

The problems peculiar to isolated sewage treatment plants serving small communities, summer camps and work camps are mainly related to highly variable flow conditions, limited supervision and maintenance. Despite these problems there is normally a requirement that the plant will at all times produce a consistent effluent quality. All of the positive aspects of RBCs indicate that these units should be ideally suited for such applications. In addition, economic studies reveal that RBC construction costs increase linearly with size, suggesting that their use be limited to small treatment applications. (EPS Report No. 4-WP-73-4; Winkler, 1974; Antonie, 1976).

Popel (1964), Markii(1964) and Antonie (1970) investigated RBC effectiveness in situations where cyclic operations, shift work, holidays and weekends tend to create problems of operation. All three investigators reported an increase in BOD_5 or COD removal efficiency during cyclic operation. However, this was not confirmed by NCASI (1974) or Davis (1976) who found an immediate deterioration in organic removal efficiency during hydraulic pulses

Bruce <u>et al</u> (1973) subjected a RBC test unit to diurnal peak flow variations of 3/1/0.6 (maximum/average/ minimum) in a rectangular wave pattern. The hydraulic pulse variation was considered to be a reasonable simulation of the flow pattern which would arise from a small community with synchronized activities such as schools and other institutions. The results of the study indicated that the RBC could not produce a stable effluent quality which would meet British effluent standards, although 90% BOD₅ removal was obtained. The report did not specify the influent organic loadings.

Three government institutions have recognized the potential of RBCs as a viable treatment alternative for small communities and initiated investigations into their use.

2-8

The EPA (1973) found the RBC process to be relatively well suited to summer camp application where sewage flow was low and fluctuated considerably. It should be noted however, that the hydraulic loadings were 4.9 to 48.9 $1/d-m^2$ (0.1 to 1.01 US gal/d-ft²) which are very conservative by manufacturers standards. The MOE (1974), EPS (1974), Bruce (1974) and Antonie (1970b) demonstrated that intermittent flow did not adversely affect organic removal efficiency, although they noted an initial increase in solids concentration where operations were resumed after a two-day stoppage in flow. Forgie (1974) operated a bio-disc unit at a five man workcamp in the Northwest Territories. The unit was subjected to loadings ranging from 4.9 to 19.5 g/d-m² BOD_5 (7.3 to 29.2 g/d-m² COD). Good percentage removals were obtained at all levels, although effluent concentrations varied considerably.

2.4 Nitrification

Nitrification of wastewaters may be achieved by using the activated sludge, trickling filter or RBC process operating under conditions favorable for the development of nitrifying bacteria. Nitrifying bacteria are strict autotrophs and are distinctly different from the heteretrophic bacteria responsible for the degradation of organic carbona-In the RBC process, nitrification has been ceous matter. observed to occur only in the final RBC stages owing to differences in yield between the nitrifiers and heterotrophes (Torpey 1972). Antonie (1972a, 1972b) noted that nitrifying bacteria can only begin to compete with the heterotrophes at BOD₅ concentrations of 30 mg/l or less in systems utilizing areal hydraulic loadings ranging from 4.9 to 49 l/d-m² (0.1 to 1 U.S. gal/d-ft²). Torpey (1972) and Weng and Molof (1974) found that the limiting BOD_r concentration was closer to 15 mg/l and noted that this was equivalent to a COD of 50 mg/l.

2.4.1 Design

Antonie (1970) claimed that ammonia removal kinetics are a first order function of retention time in the RBC system. Design considerations similar to carbon oxidation systems were therefore developed, namely, to base the primary design criterion on the areal hydraulic loading to the unit.

First order removal kinetics were also demonstrated by Stover and Kincannon (1975). They investigated NH₃-N removal at influent loadings of 0.56, 1.12 and 2.25 g $NH_3 - N/d - m^2$. Removal efficiency was shown to decrease from 100% to 51% in a semi-logarithmic fashion when the flow rate was increased four fold. The investigation did not distinguish between the effect of flow and mass loading. Weng and Molof (1974) demonstrated that loading and not flow rate should be the primary design criterion. Nitrification was shown to remain constant when the flow and concentration were varied while maintaining a constant mass loading. However, using designed experiments, Wilson (1975) could not determine if nitrification followed "zero order" or "first order" kinetics. Murphy et al. (1975) compared models based on "zero order", "half order" and "first order" kinetics. The model which was "zero order" with respect to TKN concentration was selected as the best able to describe the data.

2.4.2 Performance

As with carbon oxidation, most of the literature has been devoted to describing reactor performance in terms of percentage removal. Hao and Hendricks (1975) operated a pilot plant RBC in Columbus, Indiana and obtained 92% NH_3-N removal of at an areal flow rate of 0.06 m³/d-m² (1.5 U.S. gal/d-ft²). An increase to 0.1 m³/d-m² (2.5 U.S. gal/d-ft²) significantly decreased nitrification. Influent NH_3-N concentrations averaged 8.8 mg/l at the low flow rate and 10.8 mg/l at the high flow rate. Wilson (1975) obtained an average NH₃-N removal rate of 20 mg/h-m² (0.10 lb/d-1000 ft²) from his system with temperatures varying from 7 to 20°C. Variations in mass removal rate at different temperatures were related by an Arrhenius expression. Stover and Kincannon (1975) noted that NO₃-N production decreased with a simultaneous increase in NH₃-N and COD load. They concluded that the increased COD load must have caused the heterotrophs to multiply in the last RBC compartments, subsequently reducing overall nitrification rates.

2.5 Denitrification

In contrast to ammonia removal, complete nitrogen removal may be achieved by the biological nitrificationdenitrification process.

Denitrification on a RBC has been demonstrated by Pretorius (1973) and Davis and Pretorius (1974). These papers described the use of an enclosed, partially submerged, anaerobic RBC unit to denitrify a wastewater. They overcame two problems associated with conventional submerged biological bed denitrification processes:

- a) clogging of bed voids by the active biomass, and
- b) adherence of nitrogen gas to the sloughed biomass.

Shearing of the excess biological growth prevented clogging and exchange of the nitrogen gas to the wastewater and subsequently to the atmosphere prevented adherence. The maximum rate achieved was 250 mg NO_3 -N reduced/m²-h. Below 10°C, a severe inhibition of denitrification occurred.

Soyupak (1976) operated a submerged 0.5 metre RBC to denitrify sewage. He found that denitrification could be

expressed as zero order reactions. Denitrification rates were higher than suspended growth or packed column systems. Temperature dependency of the denitrification reaction rates were independent of flow rate in the range of 2.5 to 4.0 l/min and was empirically described using an Arrhenius relationship.

2.6 Steady State Modelling

Success at steady state modelling of RBCs based on empirical, semi-empirical or completely theoretical models is limited. Removal characteristics of conventional treatment systems have been described by biological growth kinetics and the mixing characteristics of the reactor. Using such an approach, models for rotating biological contactors must also incorporate parameters to describe the active biomass thickness, disc rotational speed, available surface area, system geometry, and diffusion coefficients for oxygen and substrate transfer. The methods used to describe these characteristics are at best, estimates, and therefore introduce potential weakness in the models.

Kornegay (1972) developed a kinetic expression for RBC substrate removal assuming Monod kinetics and a completely mixed reactor.

$$F(S_0 - S_1) = 2 PN \pi (r_0^2 - r_{\mu}^2) (\frac{S1}{K_g + S_1}) \dots (2)$$

where:

F is the flow rate,

S_o, S₁ are the influent and effluent substrate concentrations,

N is the number of discs,

 r_{o} is the total disc radius,

 r_{11} is the submerged disc radius,

 \tilde{K}_{o} is the saturation constant,

P is the area capacity constant equal

to $\frac{1}{Y} \mu_{\max} X_f d$,

 Y_g is the apparent yield of fixed film organisms, μ_{max} is the maximum specific growth rate, d is the active microorganism thickness, and X_f is the unit mass of biological film.

Kornegay assumed values for the parameters in the model and predicted removal capabilities for a number of theoretical design situations. The information gained from this study was used to determine RBC treatment capacities and design requirements. However, without model calibration using experimental data, the results can only be used to demonstrate a methodology.

A more recent investigation into the kinetic response of RBC's was conducted by Friedman <u>et al</u> (1976). Experimental data were used to calibrate a conventional plug flow "first order" model and an empirical model based on mass transport concepts.

Plug Flow Model

$$C_e = C_b e^{-K_e t}$$

Mass Transport Model

$$K_{\rm m} \left(\frac{1}{C_{\rm b}} - \frac{1}{C_{\rm bi}}\right) + \ln \left(\frac{C_{\rm bi}}{C_{\rm b}}\right)$$
$$= \frac{fh K_{\rm o}^{\star} A_{\rm s}}{V_{\rm 1}} \quad \Theta = \frac{K'' \quad \Theta}{V_{\rm 1}} \qquad \dots \quad (4)$$

(3)

. . .

where:

	C _{bi}	'	с _{b'}	C _e are the influent, soluble approach, and effluent substrate concentrations,			
	ĸe	is	the	reaction rate constant,			
	t	is	the	overall time in the system,			
	Km	is	the	half saturation constant,			
	f	is	the	proportionality constant,			
	h .	is	the	effective biomass depth,			
	к°	is	the	maximum areal removal rate,			
	As	is	the	submerged surface area per			
disc face or stage,							
	K"	equ	lals	$f.h.K_{o}^{\star} \cdot As,$			
	Θ	is	the	average hydraulic retention			
		tir	ne pe	er disc face, and			
	V ₁	is	the	tank liquid volume per disc			

A general method was presented for obtaining K" from the experimental data. The models were then compared to data collected from independent studies. The mass transport model was shown to be superior in predicting effluent quality on a stage by stage basis.

face.

Grieves (1972) incorporated a mass transport approach and Monod kinetics to develop a steady state model for rotating disc systems. The model is:

$$\frac{C_{b}}{C_{o}} = \frac{1}{1 + \frac{N}{E} \left[P_{1} \cdot A_{s} + P_{2} \cdot (rpm) \cdot (1 - \bar{e} P_{1}(A_{a})/(P_{2})(rpm))\right]} \dots (5)$$

5.7	h	0	20	0	
W	11	e	Т	e	•

- C_b, C_o are the concentration of the limiting substate in the bulk liquid, and in the raw feed,
- N is the number of discs,
- F is the flow rate,
- A_s is the area of one disc which is exposed to the atmosphere,
- A_a is the area of one disc submerged in the bulk liquid,
- P₂ is the quantity of liquid film attached to the biological film which enters the reactor per unit time,
- P₁ is defined as $K_2 K_1$ $\frac{1}{1 + K_1}$
- K₂ is the liquid film coefficient,
- K_1 is defined as $\frac{(\hat{\mu})(\chi)(\Delta z)}{(y)(K_c)(n)(K_L)}$,
- is the maximum specific growth rate,

X is the organism concentration,

- Z _____ is the active depth of biological film,
- y is the yield coefficient,
- K_c is the saturation constant in the Monod equation, and

n is the efficiency factor.

The model effectively described effluent concentrations obtained by a number of independent investigations for influent substrate concentrations less than 50 mg/l TOC.

2.7 Dynamic Modelling

The steady state models discussed previously have been used to predict the steady state behaviour for either RBC design or operation. Use of steady state models is inconsistent with the variable loading of most biological waste treatment systems. Parameter values which have been obtained for these models will not describe the temporal relationships between influent and effluent when the input to the RBC is highly variable. An estimate of the stability of RBCs can only be obtained by using techniques which elucidate the responses to non-steady operation. This fact was recognized by Grieves (1972) who developed a dynamic mathematical representation of fixed film reactors. The dynamic model was developed from theoretical and empirical considerations of a fixed biological film attached to a rotating surface, and is represented by the following differential equations:

$$\frac{dC_{1,1}}{dt} = \frac{K_{L}}{\Delta \overline{Z}_{1}} \begin{bmatrix} C^{*} - C_{1,1} \end{bmatrix} - \frac{D}{\Delta Z_{1}} \frac{C_{1,1} - C_{2,1}}{\frac{1}{2}(\Delta \overline{Z}_{1} + \Delta \overline{Z}_{2})} \\ - \frac{(\hat{\mu})}{(\overline{Y})} \frac{(X)}{[K_{c} + C_{1,1}]} \dots (6)$$

For L = 2 through 5, M = 1

$$\frac{dC_{L, 1}}{dt} = \frac{D}{\frac{1}{2}\Delta Z_{L}} \frac{C_{L-1, 1} - C_{L, 1}}{\Delta Z_{L-1} + \Delta Z_{L}} - \frac{C_{L, 1} - C_{L+1, 1}}{\Delta Z_{L} + \Delta Z_{L+1}}$$
$$- \frac{(\hat{\mu}) (X) (C_{L, 1})}{(\overline{Y}) [K_{C} + C_{L, 1}]} \dots (7)$$

For L = 6, M = 1

$$\frac{d C_{6,1}}{dt} = \frac{D}{\frac{l_2 \Delta Z_6}{2}} - \frac{C_{6,1} - C_{5,1}}{\Delta Z_5 + \Delta Z_6} - \frac{(\hat{\mu})(X)(C_{6,1})}{(Y)[K_c + C_{6,1}]} \dots (8)$$

For the liquid film,

$$\frac{d C_{LF, 1}}{dt} = -\frac{K_{L}}{\delta_{L}} \begin{bmatrix} C_{LF, 1} - C_{1, 1} \end{bmatrix} \dots (9)$$

For the bulk liquid,

$$\frac{d c_b}{dt} = F [c_o - c_b] / V_b - F_f [c_b - c_{LF,Q-1}] / V_b - (KL) (A) [c_b^* - c_{1,1}] / V_b \dots (10)$$

where: L is an element at any depth in the active biological film of thickness ΔZ_{L} ,

M is the angular position of the liquid film on the biological disc,

$$C_{b}$$
, C_{o} , F, $\hat{\mu}$, X, Y, K_{c} have been previously defined
in equation 5,

- D is the substrate diffusivity,
- C_{L,M} is the limiting substrate concentration in element L, M,
- K_T, is the liquid film coefficient,
- C* equals the C_{LF,M} if the element is in the reactor atmosphere,

- C* equals C_b if the element is submerged in the bulk liquid,
- A is the area in the plane perpendicular to the direction of diffusing limiting substate,
- δ_{L} is the thickness of an element LF in the liquid film,
- V_b is the volume of bulk liquid in the reactor, and
- C_{LF,1} is the concentration of the limiting substrate in the liquid film.

The equations were solved using an analog computer. Values for the parameters used in the model were obtained from literature sources and laboratory data. The adequacy of the model was substantiated with dynamic data generated from two laboratory rotating disc reactors.

2.7.1 Linear Dynamic Stochastic Modelling

The solution of the dynamic model presented by Grieves (1972) is both tedious and time consuming. A simpler mathematical model that would describe the system is desirable. The need for a simple dynamic model for fixedfilm systems is even more evident when it is considered that future treatment facilities may be automatically controlled using computers. For successful automatic control, predictive knowledge of the system response to dynamic inputs is necessary.

Time series analysis is a viable alternative to be considered as a method of describing the dynamics of a system, providing insight into the significant influent parameters affecting effluent quality, and forecasting future effluent quality for various influent situations. In addition, once the dynamic transfer function-noise models are developed, they are ideally suited for control purposes. Because time series analysis is simply a statistical approach relating influent and effluent parameters of actual experimental or operational data gathered on a discrete time basis, the model may be updated as more information about the system becomes available.

MacGregor (1975) and Berthoeux <u>et al</u> (1976) successfully developed time series models relating input BOD₅ data to effluent BOD₅. Tan (1975) did not observe any significant dynamic effects in effluent TOC or suspended solids concentration, but did observe significant relationships for effluent $NO_2-N + NO_3-N$ concentration for an activated sludge plant. Up to date literature reviews of dynamic modelling of suspended growth systems were provided by Tan (1975) and Sutton (1976). The state of the art of sewage treatment plant control was reviewed by Olsson (1976).

MacGregor (1975) recommended the use of designed input sequences in order to eliminate the high degree of correlation naturally present in municipal sewage (i.e. flow, organic carbon concentration and ammonia concentration). Sutton (1976) successfully used this design suggestion and was able to describe the dynamic nature of combined and separate nitrifying suspended growth systems. Dynamic models relating total Kjeldahl nitrogen (TKN) concentration to TKN effluent concentration and variations in effluent $NO_2-N + NO_3-N$ concentration to TKN input concentration plus input organic loading (TOC) were developed.

2.7.2 The Box and Jenkins Method of Developing Linear Dynamic Stochastic Models

Data analysis for building dynamic transfer function-noise models involves an iterative procedure to identify tentative models, to estimate model parameters, and to test residuals to determine the adequacy of the fit. These models have the form:

$$Y_{t} = \left(\frac{w_{0} - w_{1}\beta - w_{2}\beta^{2} - \dots - w_{s}\beta^{s})\beta^{b}}{(1 - \delta_{1}\beta - \delta_{2}\beta^{2} - \dots - \delta_{r}\beta^{r})} X_{t} + N_{t} \dots (11) \right)$$

β is the backward shift operator, and

$$N_{t} = \frac{(1 - \theta_{1}\beta - \dots - \theta_{q}\beta^{q})}{(1 - \beta)^{d} (1 - \phi_{1}\beta - \dots - \phi_{p}\beta^{p})} a_{t} \dots (12)$$

where: N_t is the sequence of disturbances in the output which is not explained by X_+ ,

 Θ, ϕ are the noise model parameters,

p,d,q are the noise model orders, and

at is a white noise sequence of independent random variables with zero mean and constant variance

To identify potential transfer function models, the cross correlation function between influent and effluent variables is used. The cross correlation function between two input-output series (X and Y) separated by a constant lag, k, is given by:

$${}^{\rho}xy(k) = {}^{\gamma}xy(k)/\sigma x {}^{\prime}\sigma y, \ k = 0, \ \pm 1, \ \pm 2, \ \dots \ \pm k \qquad \dots \ (13)$$

where: $\gamma_{xv}(k)$ is the cross covariance function between X and Y, and

> $\boldsymbol{\sigma}_{_{\boldsymbol{\mathrm{Y}}}}$ are the standard deviations of the X and Y σ_x. series.

The impulse response function, an equivalent form of the cross correlation function, can also be used to interpret the data. Analysis of the cross correlation function or the impulse response function allows the identification of potential transfer function models, the model orders (r,s), the delay period (b), and the initial estimate of the parameter values (w, δ) . The autocorrelation functions of the residuals of the fitted transfer function models are used to identify potential noise models, N_+ . Once the parameters of the combined transfer function-noise models are estimated efficiently by using a non-linear least squares technique, model adequacies are verified through diagnostic checks.

Diagnostic checks are made by calculating and examining the results of cross correlations between input and residuals, and by calculating the "S" statistic, which is then compared to the chi-square distribution (X^2) with k - r - s degrees of freedom:

$$S = m \Sigma r^{2} r^$$

Noise model verification is obtained by autocorrelating the residuals of the transfer function noise model. A general lack of fit test is obtained by calculating the "Q" statistic which is compared to the chi-square distribution (X^2) with k - p - q degrees of freedom:

2-21
$$Q = m \Sigma r^{2}_{\hat{a}\hat{a}} (k) \qquad \dots (15)$$

$$k=1$$

A more detailed description of the methods used are provided in Box and Jenkins (1976).

3. EXPERIMENTAL EQUIPMENT AND PROCEDURES

3.1 Pilot Plant Design and Operation

One 0.5 m RBC and one 2.0 m full scale RBC were used during this study. The units were obtained from Autotrol Inc., Milwaukee, Wisconsin. The 0.5 m unit provided 23.23 m² (250 ft²) of available disc surface area, while the 2.0 m unit had 733.93 m² (7900 ft²). Rotational speeds of the large and small unit were fixed at 3 RPM and 13 RPM respectively, thereby providing a peripheral tip velocity of 0.34 m/s (1.12 ft/s).

Feed to the half metre unit was provided by feed scoops or by a variable speed positive displacement pump, depending on the flow rates required. Feed to the 2 m unit was provided by variable speed positive displacement pumps. The influent raw feed used during the course of the experiments was degritted raw sewage from the Burlington Sewage Treatment Plant.

Figure 3.1 presents a schematic diagram of the system used and the identification codes for the units. The 0.5 m unit (0.5 M1) was operated indoors for a period of 2-1/2 months and for the remaining time, 0.5 M1 was run in parallel with the 2 m unit (2.0 M). The biodiscs were covered with hoods to provide insulation and protection from the natural environment (wind, rain, sunlight). All experiments were conducted with the hoods in place.

3.2 Experimental Plan and Start-Up

As previously discussed, the RBC has many inherent positive features which makes its use attractive in small community, workcamp and summercamp applications. Sewage generated by such sources is highly variable in both flow and concentration, and it is desirable to assess the per-

FIGURE 3.1

PROCESS SCHEMATIC

formance of an RBC under such conditions. Further, there is also a need to examine whether hydraulic or organic loading is the primary design criterion. To satisfy these goals, experiments were designed to permit the use of time series analysis to evaluate the dynamic response of the RBC. The experimental programme was developed to provide data in two modes of operation; carbon oxidation and carbon oxidation plus nitrification.

A summary of the experimental programme is provided in Table 3.1. The experimental designs are discussed in Sections 3.3 and 3.4.

Prior to start-up of each unit, dye studies were performed to characterize the mixing regime of the RBCs. (Series A1, A3, A5). This data also provided an indication of peak residence times which was used in the development of the discrete sampling programme. Results from the dye studies are presented in Appendix D.

Acclimation took place during June, 1976 (series A2) with start-up of 0.5 M1 on June 1. The feed rate was set at approximately 0.8 1/min to allow for the growth of nitrifiers. Almost complete nitrification was achieved in two weeks with the high influent temperatures (28°C) obtained by passing the degritted raw sewage through a heater. The heater was bypassed after two weeks and influent temperatures tures dropped to normal (18 to 20°C).

The 2.0 metre biodisc (2.0 M) was started up on July 16, 1976 in the carbon oxidation mode, at flow rates of approximately 100 l/min. Acclimation lasted until August 5, 1976. The 2.0 metre unit was not used in this study until September 7, 1976.

Runs in series Bl and Cl extended from June 29 to July 22, 1976. They were followed by an acclimation period

Table 3.1

Summary of Experimental Programme

Operational Mode	Experiment	Run No	Type of Sampling
Carbon Oxidation Plus Nitrification	Hydraulic Characterization 0.5 M1	A1	Grab
Carbon Oxidation Plus Nitrification	Acclimation, 0.5 M1	Α2	Grab and 24 hour composites
Carbon Oxidation	Hydraulic Charac- terization, 2.0 M	A3	Grab
Carbon Oxidation	Acclimation, 2.0 M	Α4	Grab and 24 hour composites
Carbon Oxidation Plus Nitrification	Diurnal Influent Variations, 0.5 Ml	B1	24 hour composites and hourly grab samples
Carbon Oxidation	Diurnal Influent Variations, 0.5 Ml	B2	24 hour composites and hourly grab samples
Carbon Oxidation Plus Nitrification	Dynamic Perfor- mance of 0.5 Ml	C1	hourly grab samples
Carbon Oxidation	Dynamic Perfor- mance of 0.5 M1 operated in parallel with 2.0 m	C2	30 minute grab samples
Carbon Oxidation	Dynamic Perfor- mance of 2.0 M Operated in Parallel with 0.5 M1	E2	30 minute grab samples

of 6 days before beginning series B2 (July 28, 1976 to August 9, 1976). Series C2 and E2 were conducted from September 7 to September 10, 1976 and concluded the experimental plan for this study.

3.3 Diurnal Flow Experiments (Series Bl + B2)

As the performance of rotating biological contactors was to be assessed for small community applications, the Series B experiments were designed to simulate the approximate diurnal flow and concentration variation typical of sewage from a small community. The 0.5 Ml was subjected to a sinusoidal flow input which attained max/avg/min peak flow ratios of 2/1/0.5, synchronous with the natural sewage concentration fluctuations of Burlington STP (Figure 3.2). Two average flow rates were employed, 65.1 1/d-m² (1.6 U.S. gal/d-ft²) for nitrification (Series Bl) and 208.3 1/d-m² (5.1 U.S. gal/d-ft²) for carbon removal (series B2).

During the course of these runs, 24-hour flow weighted composites and hourly grab samples were obtained from both the influent and effluent of 0.5 Ml. The data was used to verify the adequacy of the dynamic transfer functionnoise models which were to be developed from the Series C experiments, and also, to assess the performance of the RBC.

3.4 Dynamic or Non "Steady State" Experimental Design (Series Cl, C2, E2)

The purpose of the dynamic experiments was to examine the performance of the 0.5 metre and 2.0 metre RBCs under variable influent conditions and to develop transfer function models which describe the dynamic behaviour of the system. In order to do so, experiments were designed and samples taken according to the following:

> a factorial design was used to separate the effects of the influent variables chosen;

FIGURE 3.2 PLANNED DIURNAL FLOW IMPUT TO 0.5 m RBC FOR PEAK/ AVERAGE/MINIMUM FLOW RATIO OF

2/1/0.5

step changes in the influent variables were used to obtain the complete response spectrum;

large numbers of paired samples (>100) were collected at discrete, equispaced time intervals; and,

the sample interval was chosen consistent with the system response, which required prior knowledge of the residence time at various flow rates.

A two level, three parameter factorial design, presented in Table 3.2 and Figures 3.3 and 3.4, was selected. Three influent variables were chosen: hydraulic loading, filterable organic carbon concentration (TOC) and filterable total Kjeldahl nitrogen concentration (TKN). Experimental design levels are reported in Table 3.2. Loading boundaries (Table 3.2) were chosen to provide adequate system response while operating about the mean design level recommended for these units at municipal sewage treatment plants.

The design, using domestic sewage, required interference with the influent variables. This was accomplished by adding dextrose as an organic carbon spike, and ammonium chloride as a nitrogen spike. Two experiments were run to provide data for dynamic model building at average hydraulic loadings of 224 $1/d-m^2$ for carbon oxidation and 80 $1/d-m^2$ for nitrification. The units were run at the centre values of the parameters for two days prior to the start of experiments.

3.5 Feed Characteristics

The RBCs were continuously fed with normal degritted wastewater from Burlington STP. Probability distributions of filtered influent COD, TOC, TKN and suspended solids are given in Figures 3.5, 3.6, 3.7 and 3.8. A correlation of TOC with filtered BOD_5 is given in Figure 3.9.

Table 3.2

Design Levels for Experiments C1, C2 and E2

Carbon Oxidation Mode

	C1	C2 and	E2
Influent Variables		Operating Value	Design Level
Hydraulic Flow Rate	120	305	+
L/Day/m ²	40	143	-
Filtrable OC mg/ ℓ	50 to 60	80 to 90	+
	20 to 30	50 to 60	-
Filtrable TKN	50 to 60	25	+
mg/£	20 to 30	10	-
TOC Loading	6.6	26	+
G/Day/m ²	1	8	-
TKN Loading	6.6	7.6	+
G/Day/m ²	1	1.4	-

FIGURE 3.5

FILTERABLE COD RAW WASTEWATER CHARACTERISTICS

PERCENT OF OBSERVATIONS LESS THAN OR EQUAL TO STATED VALUE

FIGURE 5.6

FILTERABLE TKN RAW WASTEWATER CHARACTERISTICS

FIGURE 3.7

FIGURE 3.9

CORRELATION OF FILTERED BOD_5 WITH FILTERED TOC

1

SUMMER OF 1976

3-14

FILTERABLE TOC (mg./1)

3.6 Sample Preparation and Analyses

Samples for total organic carbon (TOC) analyses were filtered through 0.45 micron Gelman glass fibre filters followed by acidification to pH 2 with concentrated hydrochloric acid. Filtered COD, NH₃-N, NO₂-N, NO₃-N and TKN samples were frozen along with all BOD samples. Unfiltered COD and TKN samples were acidified to pH 2 with sulphuric acid before storage with the TOC samples at 0°C to 5°C. During the dynamic runs, the filtered COD samples were prepared in the same manner as the TOC samples. All samples were stored in polyethylene bottles.

Further details of the analytical procedures are given in Appendix B.

4. RESULTS AND DISCUSSION

4.1 Dynamic Time Series Data

The designed and observed influent concentration, effluent concentration, and flow rate for experiments Cl, C2 and E2 are presented in Figures 4.1, 4.2 and 4.3. The flow rates were obtained by direct measurement during the experiment and were identical to the design levels. All experimental raw data is presented in Appendix A.

Good agreement is indicated between the designed input sequence and the measured influent concentrations, except during the first ten hours of the carbon removal dynamic experiments (Figures 4.2 and 4.3), when the effluent TKN concentrations frequently exceeded influent TKN concentrations. Dilution water was used during this period to reduce influent TOC concentration according to the design. Inadequate mixing was achieved before the influent sample was taken, causing an underestimation of the actual influent concentrations. These data were eliminated before further analysis was undertaken.

An effluent TOC response to the influent TOC and flow fluctuations is observed (Figures 4.2 and 4.3), but it is not apparent which influent variable caused the variation in effluent TOC concentration. The sensitivity of the nitrification process to input variations is apparent in Figure 4.1. Analysis of the data by time series methods should allow an assessment of the system response to hydraulic, organic and inorganic loading variations.

SAMPLE TIME (Hrs)

4-4 FIGURE 4-3

4.2 System Response to Hydraulic, Organic and Inorganic Loading Variations

4.2.1 General

The impulse response function allows an assessment of the influent variables affecting effluent quality. It is also used to determine potential transfer function models which will describe the impulse response function and provide initial estimates of the potential transfer function model parameters (r, b, s, w, δ).

In order to verify suspected significant relationships between influent parameters and effluent response, the major relationships of interest were cross-correlated. The results of this initial screening are summarized in Table 4.1. Using Table 4.1, cause and effect relationships can be determined since a factorial design was used successfully in the experimental design.

The data presented in Table 4.1 provide several interesting relationships. During the carbon oxidation operational mode, influent carbon loading and concentration showed a significant correlation with effluent carbon concentration. However, significant effluent responses to dynamic flow conditions were not observed in the 0.5 metre RBC., while they were observed with the 2.0 metre RBC. There are two important ramifications from these observations:

- The 0.5 metre RBC is used in many situations to obtain pilot scale performance data for the design of treatment plants. Since the performance of the two units have not been shown to be identical, care should be taken in extrapolating performance data.
- As discussed in Chapter 2, the primary design criterion for RBCs has been based on areal hydraulic loading. However, a significant effluent

TABLE 4.1

SUMMARY OF CROSS CORRELATION RESULTS, FIRST DIFFERENCE*

			l •	
			Significant Cor	relations
Influent vs Eff	luent		At Low Lags (95%	Confidence)
			Carbon Oxidation	TKN Removal
Load	Conc.		Mode	Mode
COD Load	COD		Vec	Vec
TOC Load	COD		Ves	Vec
NH -N Lord	COD		Yes	No
TKN Load	COD		Yes	No
Flou	COD		Ies Vec/No	NO
FIOW	COD		ies/No	NO
COD Load	TOC		Yes	Yes
TOC Load	TOC		Yes	Yes
NH3-N Load	TOC		Yes	No
TKN Load	TOC		Yes	No
Flow	TOC		Yes/No	No
			· .	
COD Load	NH3-N		n/a	Yes
TOC Load	NH3-N		n/a	Yes
NH3-N Load	NH3-N		n/a	Yes
TKN Load	NH3-N		n/a	Yes
Flow	NH3-N		n/a	Yes
COD Load	TKN		n/a	Yes
TOC Load	TKN		n/a	Yes
NHo-N Load	TKN		n/a	Yes
TKN Load	TKN		n/a	Ves
Flow	TKN		n/a	Vec
COD Load	$NO_{2} + NO_{2} = N$		n/a	Vec
TOC Load	$NO_2 + NO_3 - N$		n/a	Vec
NU -N Load	$NO_2 + NO_3 - N$		11/a	No
NH3-N LOAD	$NO_2 + NO_3 - N$		n/a	NO
TKN LOAD	$NO_2 + NO_3 - N$		n/a	NO
FIOW	$NO_2 + NO_3 - N$		n/ a	ies
Conc.	Conc.			
COD	COD		Yes	No
TOC	COD		Yes	No
NH2-N	COD		No	No
TKN	COD		No	No
ÇOD	TOC		Yes	No
TOC	TOC		Yes	No
NH3-N	TOC		No	No
TKN	TOC		No	No
COD	NH - N		n/a	No
TOC	NHo-N		n/a	No
NHa-N	NHo-N		n/a	Yes
TKN	NH3-N		n/a	Yes
	0			
COD	TKN		n/a	No
TOC	TKN		n/a	No
NH3-N	TKN		n/a	Yes
TKN	TKN		n/a	Yes
COD	NOa + NOa-N		n/a	No
TOC	$NO_{2} + NO_{3} - N$		n/a	No
NH -N	$NO_0 + NO_0 - N$		n/a	Yes
TKN	$NO_0 + NO_0 - N$		n/a	Yes
	102 103 1		,	100

*This table applies for both 0.5 MI and 2.0M (2.0 M/0.5 MI) in the carbon oxidation mode, and only 0.5 MI in the nitrification mode.

response to hydraulic loading was not observed for carbon oxidation on the 0.5 metre RBC.

While the 0.5 metre RBC was operating under nitrifying conditions, significant effluent carbon responses were not observed to occur in relation to either hydraulic loading variations or carbon concentration (Table 4.1). However, the combined effect of these parameters (carbon loading) did show a significant relationship with effluent carbon concentration. Influent COD and TOC loadings were not excessive during the experiment and were within normal design limits. Such an observation would not be expected with an activated sludge plant operating under nitrifying conditions, and indeed such an effect was not observed by Sutton (1976). The observation indicates that the RBC may be overly sensitive to fluctuating influent loading conditions.

During the carbon oxidation plus nitrification mode of operation, influent ammonia loading, influent ammonia concentration and hydraulic loading showed significant correlations with effluent ammonia concentration (see Table 4.1). The effluent response to these influent conditions will be examined and quantified using time series modelling techniques.

An example of cause and effect is evident during the carbon oxidation plus nitrification operational mode. A significant correlation is observed between influent carbon loadings and effluent ammonia concentration (Table 4.1). However, significant correlations between influent carbon concentration and effluent ammonia concentration were not observed, while hydraulic loading versus effluent ammonia concentration was significant. Since hydraulic loading and substrate concentration were not confounded in the experimental design, it is reasonable to conclude that the significant effects observed must have been caused by hydraulic loading variations.

4.2.2 Impulse Response Functions - Carbon Oxidation Mode

The impulse response weights for influent filterable TOC loading and TOC concentration versus effluent filterable TOC concentration presented in Figure 4.4 indicate that a significant positive response was obtained in the effluent within one-half hour after the step changes occurred. Use of shorter sampling intervals might have defined the time to the maximum response. The response was directly proportional to the influent TOC loading and concentration. No significant effluent TOC response was observed for hydraulic loading to the 0.5 metre RBC.

Significant effluent filterable TOC responses are observed for variations in influent filterable TOC loading, TOC concentration, and flow rate to the 2.0 meter RBC (Figure 4.5). Figure 4.5 also indicates that the response was instantaneous, which is physically impossible. This result is observed because step changes were made 15 minutes before the hour, while discrete sampling was done at halfhour intervals, beginning on the hour. This lag time in sampling can be accounted for during model building, however, transfer function models were not developed for carbon removal as part of this work.

An important sidelight of Table 4.1 and more visually appreciated in Figures 4.4 and 4.5 is the fact that the variations in hydraulic loading did not significantly affect effluent TOC concentration for the 0.5 metre RBC, while it did for the 2.0 metre RBC. Hydraulic design levels were chosen from manufacturers specifications (which are based solely on areal hydraulic loading) to ensure that a response would be observed. These results reflect a difference in performance of the two RBC units and suggest that the design basis of flow per unit area is not comparable for scale-up purposes.

EFFLUENT TOC IMPULSE RESPONSE WEIGHTS, 0.5m RBC, CARBON OXIDATION MODE, FIRST DIFFERENCE

LAG (1/2 Hr)

4.2.3 Impulse Response Functions - Nitrification Mode

The significant positive correlations for filterable TKN loading, TKN concentration, and flow versus effluent filterable TKN concentration are presented in Figure 4.6 for the 0.5 metre RBC. The influent loading and concentration responses were observed to have a duration of about three hours. With flow, the significant TKN effluent response was observed only at a time delay of one hour. Shorter sampling intervals might have defined the time to maximum response.

The impulse response weights for filterable TKN loading, TKN concentration, and flow versus filterable effluent NO_2 -N + NO_3 -N formation are given in Figure 4.7. A significant positive correlation is observed for influent TKN concentration, as would be expected. A significant negative correlation is observed for hydraulic loading. The combined relationship of TKN loading does not show any significant relationship due to the opposite effects of TKN concentration and hydraulic loading.

Investigations by Davies and Pretorius (1974) suggest that a decrease in $NO_2-N + NO_3-N$ formation coupled with an increase in flow can be explained because of the simultaneous increase in organic loading. It was explained that the increased organic load would enhance the growth of heterotrophs, which would displace nitrifyer growth in the RBC system. As previously noted, the nitrifyers have been observed only in the final compartments of an RBC, while heterotrophs predominate in the initial RBC stages.

This explanation has merit in the long term. However, Table 4.1 indicates that there is no significant correlation at the 95 percent confidence level for TOC concentration versus NO_2-N+NO_3-N formation. Figure 4.7 indicates a negative correlation for flow rate. Since flow EFFLUENT TKN IMPULSE RESPONSE WEIGHTS, 0.5 m RBC, CARBON OXIDATION PLUS NITRIFICATION MODE, FIRST DIFFERENCE

4-13

EFFLUENT NO2-N PLUS NO3-N IMPULSE RESPONSE FUNCTIONS OF 0.5m RBC CARBON OXIDATION PLUS NITRIFICATION MODE, FIRST DIFFERENCE

FIGURE 4.7

EFFLUENT NO₂-N PLUS NO₃-N (mg/l)

rate and TOC concentration were not confounded in the experimental design, it is reasonable to conclude that the decrease in NO_2 -N+NO₃-N formation may be attributed primarily to retention time or flow rate, in the short term.

4.2.4 Discussion

The impulse response functions (Figures 4.4, 4.5, 4.6 and 4.7) would indicate several potential disadvantages of the RBC system. Response to step inputs took place in less than one sampling period. Recovery to new steady-state values was about one hour for carbon oxidation and three hours of carbon oxidation plus nitrification. This indicates that the RBC would be sensitive to influent fluctuations and would provide little reserve capacity to minimize fluctuations in effluent quality. Although these slugs should not seriously affect the biomass, additional treatment capacity or equalization may be required to reduce these fluctuations and improve treatment.

4.3 Dynamic Transfer Function - Noise Model Development

4.3.1 Introduction

The cross correlation results presented in Section 4.2 indicate that there are a several parameters which affect effluent quality. Design parameters for RBCs have been based on areal hydraulic loading, while the effect of concentration and substrate loading have essentially been ignored. Only in the past two years has some emphasis been placed on concentration (Antonie 1976).

Quantification of RBC effluent response to various input parameters can be obtained through the use of the dynamic transfer function - noise (TF-N) models developed in this study. Model development should indicate which of the three influent parameters (flow, concentration, or loading) best describes effluent quality, and therefore, is the best alternative on which to base design.

Transfer function - noise models were developed only for nitrifying conditions, using TKN data.

4.3.2 Model Development

The TF-N models listed in Table 4.2 describe effluent filterable TKN concentration. The models were developed according to the iterative procedure described from the impulse response weights and used as starting values in TSHAUS. The dynamic and noise model parameters were estimated simultaneously. Details of the calculation procedure are provided in Appendix C for a particular example. Diagnostic checks applied to the model residuals confirm both TF model and noise model adequacy at the 95% confidence level (Table 4.3).

4.3.3 Effluent Filterable TKN Models

Filterable influent TKN loading, TKN concentration and hydraulic loading models were found to adequately describe effluent TKN response (Table 4.2). Comparison of the dynamic transfer function-noise models was made through examination of the residual sums of squares. Extra sums of squares testing (Draper and Smith (1968)) was used to differentiate between models of different numbers of parameters. The TKN load model (Model A2) has the lowest residual mean square (Table 4.2) and, of the models considered, best describes effluent TKN concentration. Figure 4.8 demonstrates the good fit of the TF-N model with the experimental data. However, the TF model underestimates the peaks and valleys, while still adequately predicting response times. The sensitivity of the nitrifiers to varying influent loads, and the smooth response patterns as exhibited in Figure 4.8 are noted.

TABLE 4.2

TRANSFER FUNCTION-NOISE MODELS DESCRIBING EFFLUENT FILTERABLE TKN CONCENTRATION

Input/Output Variables [*]	Model No.	Model	Sum of Squares	Residuals Degrees of Freedom	Variance
TKN LOAD/TKN CONC.	A1	$Y_{t} = [(0.08312 \pm .01738) + (0.03450 \pm 0.02426)\beta] \beta X_{T} + a_{t}(1-\beta)^{-1}$	306.6	116	2.64
		(1-0.5590±0.1365β) (1-0.2339±0.1808β)			
TKN LOAD/TKN CONC.	A2	$Y_{t} = [(0.08110 \pm 0.01724) + (0.0460 \pm 0.02755)\beta + (0.02815 \pm 0.02813)\beta^{2}]\beta^{2}]$	X _T 294.4	115	2.56
		$(1-0.3994\pm0.2390\beta) + \frac{a_t (1-\beta)^{-1}}{(1-0.2203\pm0.1823\beta)}$			
		(1-0.220510.1025p)			
Log ₁₀ TKN LOAD/TKN CONC.	АЗ	$Y_{t} = \frac{[(7.134 \pm 1.878) + (3.946 \pm 2.663)\beta + (2.894 \pm 2.667)\beta^{2}]}{(1 - 0.4476 \pm 0.2471\beta)} \beta X_{T}$ $+ a_{t} (1 - \beta) - 1$	374.0	115	3.25
		(1-0.3401±0.1766β)			

Loading models of the form (0, 2, 1) and (1, 0, 1) were also developed, but inadequacies were found with the transfer function during cross-correlation residual checks.

* Loading units are in g/d, concentration units are in mg/l, flowrate is in l/d.

.

×

TABLE 4.2 (Cont'd)

Input/Output Variables*	Model No.	Model	Sum of Squares	Residuals Degrees of Freedom Variance
TKN CONC./TKN CONC.	B1	$Y_{T} = \frac{[(0.1066\pm0.0573)+(0.07413\pm0.07367)\beta+(0.0670\pm0.07640)\beta^{2}]}{(1-0.4148\pm0.4597\beta)}\beta X_{T}$	498.5	115 4.33
		+ $\frac{a_t(1-\beta)^{-1}}{(1-0.5409\pm0.1570\beta)}$		
TKN CONC./TKN CONC.	B2	$Y_{T} = \frac{[(0.1096\pm0.0578)+(0.04406\pm0.06974)\beta]\beta X_{T}}{(1-0.7078\pm0.2549\beta)} + \frac{a_{t}(1-\beta)^{-1}}{(1-0.5334\pm0.1553)}$	509.7 - 3β)	116 4.39
TKN CONC./TKN CONC.	вз	$Y_{T} = [(0.1029\pm0.0578)+(0.1064\pm0.0624)\beta+(0.08904\pm0.05776)\beta^{2}]\beta X_{T}$	512.8	116 4.42
		$(1-0.4148\pm0.4597\beta) + \underline{a_t(1-\beta)^{-1}}_{(1-0.5407\pm0.1564\beta)}$		

Some of the parameters in the above models pass through zero indicating models of the forms (1, 0, 1) and (0, 1, 1). However, models of these forms failed to pass the cross correlation checks between input and residuals and are therefore not reported.

* Loading units are in g/d, concentration units are in mg/l, flow rate in l/d.

TABLE 4.2 (Cont'd)

Input/Output Variables*	Model No.	Model	Sum of Squares	<u>Residuals</u> Degrees of Freedom	Variance
Flow Rate x 10 ⁻³ /TKN Co	ONC. Cl	$Y_{T} = \frac{(1.514\pm0.745)\beta X_{T}}{(1-0.6723\pm0.3327\beta)} + \frac{a_{t}(1-\beta)^{-1}}{(1-0.5693\pm0.1531\beta)}$	530.5	117	4.5 <mark>3</mark>
Flow Rate x 10 ⁻³ /TKN C	ONC. C2	$Y_{T} = [(0.1282\pm0.0720)+(0.6506\pm0.7204)\beta] \beta X_{T} + \frac{a_{t}(1-\beta)^{-1}}{(1-0.5891\pm0.1495\beta)}$	540.2	117	4.62
Flow Rate + TKN Conc./ TKN Con	D C	$X_{T} = \frac{[(0.09538\pm0.00225)\beta] W_{T}}{(1-0.6306\pm0.0748\beta)} - [0.07762\pm0.04708]\beta^{3} X_{T}$ $+ \frac{a_{t}}{(1-\beta)}$	321.8	117	2.75

The parameter in model C2 which passes through zero was eliminated, but the new model which was developed, (0, 0, 1), did not pass the model residual checks and is not reported.

* Loading units are in g/d, concentration units are in mg/l, flow rate in l/d.

TABLE 4.3

Input Variable	ble Model No. Residual Autocorrelation Results		C	Cross Correlation Results		
		Q	$X^2, \gamma = 0.95$	Sx ¹ â	$Sw^1\hat{a}$	$\frac{\chi^2}{\gamma}, \gamma = 0.95$
TKN Load	A1	12.8	31.41	25.5		32.67
	A2	14.5	31.41	20.2		32.67
Log TKN Load	A3	14.72	31.41	17.36		32.67
TKN CONC.	B1	22.7	31.41	15.0		32.67
	B2	22.9	31.41	16.9		32.67
	B3	21.3	31.41	16.1		32.67
Flow Rate	C1	12.6	31.41	15.46		32.67
	C2	14.1	31.41	23.1		32.67
Flow Rate + TKN CONC.	D	16.8	31.41	21.7	23.9	32.67
	20	20				

DIAGNOSTIC CHECKS APPLIED TO THE MODEL RESIDUALS

 $r_{aa}^{2}(k)$ $S = n \sum_{k=0}^{20} r_{x^{1}a}^{2}(k)$ $Q = n \Sigma$ where k=1

 $r_{(k)}$ = estimate of cross correlation function at lag K, or the autocorrelation function at lag K.

$$a^{(K)} = model n$$
$$x^{1} = (1-B)X$$

Х = influent condition model was developed for (load or concentration)

= influent flow condition w

= number of observations n

FIGURE 4.8

COMPARISON OF EFFLUENT FILTERABLE TKN RESPONSE AND MODEL(A2) FIT

TIME (Hrs.)
The results demonstrate that effluent filterable TKN concentration is best modelled using influent filterable TKN loading with this technique. Since the TKN load model had the lowest residual mean square, strong consideration should be given to basing RBC design criteria on TKN mass loading rather than hydraulic loading.

4.3.4 TF-N Model Analysis to Determine Response Times

The TF-N models developed in this study can be used to determine the approximate time at which a response in effluent conditions occurs to step changes in influent conditions. The analysis involves the projection of the impulse response function back through the time axis, or by calculation methods using the parameter values of the TF models (see Appendix C). Such an analysis revealed that there is an approximate time delay of 10 minutes before an effluent response occurs to a step change in influent load-This is fast for an effluent treatment system. ing. Sutton (1976) obtained an approximate 60 minute time delay for his separate activated sludge pilot plant when it was subjected to step inputs in TKN load.

A response to concentration variations in the input was calculated to be in the order of 20 minutes, while the response to hydraulic loading was almost instantaneous. A more accurate indication of the effluent response patterns and the system time delay may have been obtained using a shorter time interval between samples.

4.4 System Response to Natural Diurnal Variations

One of the objectives of this work was to determine the effect of diurnal inputs on instantaneous treatment efficiencies. In conjunction with this objective, it was desired to use an application of time series modelling, namely forecasting, to ensure that the model would describe the effluent variability of the RBC for a completely independent set of data.

The natural diurnal variation in influent flow and concentration normally encountered at a small wastewater treatment plant was approximated on the same 0.5 meter RBC used to collect the dynamic data. The unit was subjected to a sinusoidal variation in flow synchronous to the natural concentration fluctuations of Burlington STP sewage, with a peak/average/minimum flow ratio of 2.5/1/0.5. Influent and effluent concentration and flow were monitored at hourly intervals for a period of 2 days.

4.4.1 TF-N Model Forecast Results

The forecast filtered effluent TKN concentration successfully predicted the observed daily effluent variation. (Figure 4.9) Response and recovery times agreed with the experimental data and substantiated the transfer function-noise model developed in this study. Fluctuations in effluent concentrations were extremely smooth, which seems to be a characteristic of nitrifying systems. Peak effluent concentrations lagged the influent peak by two hours. Details concerning the forecast procedures are provided in Appendix C.

The large fluctuations in effluent TKN concentration demonstrate the poor treatment performance of the RBC when operated in the nitrification mode under variable loading conditions (Figure 4.9). It is apparent that if stable effluent quality is to be produced using the RBC, process modifications or flow equalization must be provided to damp out any influent fluctuations. EFFLUENT FILTERABLE TKN RESPONSE AND FORECAST FOR DIURNAL LOADING

Comparison of RBC TF-N Models with Activated Sludge

4.5

A comparison of the sensitivity of the RBC system to conventional combined and separate nitrifying activated sludge systems may be made by calculating the gains of the TF-N models describing these systems. Dynamic TF-N models describing the effluent TKN response of activated sludge pilot plants were developed by Sutton (1976). The models given in Table 4.4 describe the dynamic relationship of influent TKN load to effluent TKN concentration. The influent flow and concentration data of the pilot plants were of comparable magnitude, and the systems were linear over the flow and concentration regimes investigated.

A comparison of the gains of the activated sludge systems with the RBC indicates that for a unit step change in the influent, 5 to 6 times greater response in effluent TKN concentrations may be expected with the RBC. This confirms the observations of Reimer et al (1975), who operated a pilot plant RBC system in parallel with a pilot plant activated sludge unit. Weiner

Since the response of the RBC to input fluctuations is so much larger than an activated sludge system, greater effluent variability may be expected from an RBC treatment plant, especially when servicing small communities. To stabilize effluent concentrations and to provide consistently good effluent quality, flow equalization should be incorporated into the design of RBC treatment plants.

4.6 Steady State Design

Although steady state design methods cannot describe the temporal relationship in the effluent when the influent to the RBC is variable, the relationship between influent load and mass removal is desirable. Steady state design is feasible as long as the effluent variability is

Table 4.4

Transfer Function-Noise Substrate Loading Models for RBC and Activated Sludge Processes

			Ratio
System	Model	Calculated Gain	RBC to A/S
RBC	$Y_{T} = \frac{[(0.08110\pm0.01724)+(0.0460\pm0.02755)\beta+(0.02815\pm0.02813)\beta^{2}]\beta x}{(1-0.3994\pm0.2390\beta)}$	т 0.259	
	$+ \frac{a_{t} (1-\beta)^{-1}}{(1-0.2203\pm 0.1823\beta)}$		
Combined A/S system	$Y_{T} = \frac{0.011X_{t-1}}{(1-0.786\beta)} + \frac{(1-\beta)^{-1}}{(1-1.066\beta+0.336\beta^{2})}^{a}t$	0.051	5.0/1
Separate A/S	$Y_{T} = (0.012 + 0.008\beta)_{t} + (1-\beta)^{-1}_{t} a_{t}$	0.044	5.9/1
System	$(1-1.394\beta+0.540\beta^2)$		

4-25

Where X represents time varying influent TKN load, g/d Y_t^t represents time varying effluent TKN concentration, mg/ ℓ

kept in mind, and steps are taken to reduce influent variability.

The development of dynamic transfer function noise models has indicated that influent mass loading should be considered as the primary design criterion in nitrifying systems. Although this relationship has not been proven for carbon removal, there is a strong indication that this may be the case from Figures 4.4 and 4.5.

A number of mass removal versus influent mass loading plots have been developed using the time series data obtained in this study. Mass removal calculations were based on a lag separation of 1 between influent and effluent for both the carbon oxidation mode and the carbon oxidation plus nitrification mode. This interval corresponds to the average retention times in the system, as determined by the tracer studies (Appendix D). Data points occuring during a step change and up to two hours after the step were not included in the results in order to allow the unit to recover to a "pseudo" steady state condition. All plots were standardized to a unit area basis.

4.6.1 Carbon Oxidation Mode

Figures 4.10 and 4.11 present the TOC and COD mass removal plots for the 0.5 meter RBC. The equivalent TOC and COD mass removal plots for the 2.0 meter RBC, which was run in parallel with the 0.5 meter RBC, are given in Figures 4.12 and 4.13.

Mass carbon removal generally appears to be a linear function with mass loading. However, when the TOC plots (Figures 4.10 and 4.12) are compared with the COD plots (Figures 4.11 and 4.13), respectively, a limiting TOC influent loading condition appears to have been approached on the 2.0 meter and 0.5 meter RBCs.

STEADY STATE DESIGN DATA FOR FILTERABLE TOC REMOVAL, 0.5m RBC, CARBON OXIDATION MODE

TOC CONCENTRATION (mg/l)

STEADY STATE DESIGN DATA FOR FILTERABLE COD REMOVAL, 0.5m RBC, CARBON OXIDATION MODE

TOC CONCENTRATION (mg/1)

STEADY STATE DESIGN DATA FOR FILTERABLE TOC REMOVAL, 2.0 m RBC, CARBON OXIDATION MODE

TOC CONCENTRATION (mg/l)

STEADY STATE DESIGN DATA FOR FILTERABLE COD REMOVAL, 2.0 m RBC, CARBON OXIDATION MODE

REMOVED $(g/d-m^2)$

COD

COD CONCENTRATION (mg/l)

COD LOAD $(g/d-m^2)$

It is interesting to note that two linear relationships are apparent at low loadings on Figures 4.10 to 4.13. These relationships coincide with the two levels of hydraulic loading used in the experimental designs (143 $1/d-m^2$ and 305 $1/d-m^2$). The low hydraulic loading in each case provided for slightly improved treatment efficiency in terms of mass removal and stability. The variability in mass removal at the high loadings indicates that the RBCs were approaching unstable treatment conditions.

The presence of non-biodegradable residual organics is demonstrated by the fact that the plots do not pass through the origin.

4.6.2 Carbon Oxidation Plus Nitrification Mode

Mass loading plots for TOC and COD removal with the 0.5 metre RBC operating in the nitrification mode are given in Figures 4.14 and 4.15. Linear mass removal is apparent on both figures. Two levels of mass removal are apparent at equal mass loadings, with greater mass removal being obtained at the lower hydraulic loading.

The filterable TKN mass removal versus influent TKN load plot is presented in Figure 4.16. In contrast to carbon oxidation, a limiting mass removal was obtained at loadings greater than 2.0 g/d-m². Beyond this influent loading, mass removal becomes unstable with a maximum of 2 g/d-m² TKN being removed.

As in the carbon oxidation plots, a separate linear relationship exists at low loadings. This line projects through the origin, as would be expected.

STEADY STATE DESIGN DATA FOR FILTERABLE TOC REMOVAL, 0.5 m RBC, CARBON OXIDATION PLUS NITRIFICATION MODE

TOC CONCENTRATION (mg/l)

STEADY STATE DESIGN DATA FOR FILTERABLE COD REMOVAL, 0.5 m RBC, CARBON OXIDATION PLUS NITRIFICATION MODE

COD CONCENTRATION (mg/l)

COD LOAD $(g/d - m^2)$

STEADY STATE DESIGN DATA FOR FILTERABLE TKN REMOVAL, 0.5 m RBC, CARBON OXIDATION PLUS NITRIFICATION MODE

TKN CONCENTRATION (mg/l)

TKN LOAD($g/d-m^2$)

0

4.6.3 Use of Mass Loading Plots in Design

Figures 4.10 to 4.16 may be used for design purposes when considering influent loading conditions of minimal variability. The calculation procedure to determine the bio-disc surface area required to provide effective biological treatment is as follows:

- 1. Determine the influent concentration and flow rate for design.
- 2. Determine the effluent quality desired and from this, the mass removal required.
- 3. Compare the known influent concentration with the concentration isopleths on the plots. This will define the areal mass loading, RBC surface area, areal hydraulic loading and the areal mass removal. If the calculated mass removal is not sufficient to provide the predetermined effluent quality, then a larger surface area is required, thereby reducing the areal mass loading, and improving treatment. An iterative procedure must be continued until adequate mass removal is obtained.

4.7 Scale-Up

Scale-up is always an important consideration in any pilot scale study. Some correlation between the results obtained on a pilot scale unit and a full scale unit is necessary before the results obtained in the study are readily applicable. Since the 0.5 metre RBC and the 2.0 metre RBC were operated in parallel, and their areal loadings were comparable (within 3.5% at the high flow rate and 0.6% at the low flow rate) it was possible to evaluate the mass removal capabilities of the units (Figures 4.17 and 4.18).

TOC REMOVED, 2.0m RBC (g/d-m²)

TOC REMOVED, 0.5 m RBC(g/d-m²)

COD REMOVED, 2.0 m RBC $(g/d - m^2)$

FIGURE 4-18

COMPARISON OF COD MASS REMOVAL 0.5 m RBC VERSUS 2.0 m RBC As discussed in Section 4.2.2, a difference in performance of the two RBCs was observed through examination of the cross correlation results (Figures 4.4 and 4.5). The paired data shown on Figures 4.17 and 4.18 for TOC and COD mass removal demonstrate that the 0.5 metre RBC oxidized more carbon per unit surface area than did the 2.0 metre RBC. The difference in mass removal increases with loading to the units.

The mixing characteristics of the two reactors, as determined by dye studies (Appendix D), showed that mixing in the 0.5 metre RBC approached two CSTRs in series, while mixing in the 2.0 metre unit approached plug flow (7 CSTRs in series). If the biological oxidation reaction proceeds by first order kinetics, as indicated by Antonie (1970), then one would expect the 2.0 metre unit to have better removal than the 0.5 metre unit. However, improved performance was not observed, suggesting that the reaction does not follow a first order relationship and/or that some other effect is limiting the reaction.

Chesner and Molof (1976) demonstrated that at increased loading rates, dissolved oxygen concentration tends to decrease. They pointed out that as present design maintains a constant peripheral tip velocity, rotational speeds must decrease with increasing disc diameter, thereby decreasing aeration capacity. A dissolved oxygen limitation may therefore occur as loading and reactor size are increased. Dissolved oxygen was not regularly monitored during the experimental runs; therefore, one can only assume that this would explain the observations.

5.0 Conclusions

An evaluation of the response of rotating biological contactors (RBCs) operated under non-steady influent conditions indicates that:

- The RBC is sensitive to influent fluctuations of an organic, inorganic and hydraulic nature in terms of maintaining consistently good effluent quality.
- A statistically adequate representation of the dynamic TKN effluent response can be obtained using time series modelling techniques.
- 3. More emphasis should be placed on using influent mass loading as a design criteria.
- 4. The models developed indicate that:
 - a) the response in effluent filterable TKN is predicted most precisely by influent filterable TKN loading. Models based on influent TKN concentration and flow were not as precise in predicting effluent response;
 - b) positive effluent TKN response can be expected for increases in TKN loading, TKN concentration and hydraulic loading;
 - c) effluent response occurs almost instantaneously, with a duration of 3 to 4 hours; and
 - d) greater effluent variability may be expected with an RBC as compared to either a separate or combined activated sludge system operating under nitrifying conditions and at similar levels of removal.

- 5. Cross correlation results for carbon oxidation indicate that:
 - a positive TOC response can be expected for increases in TOC loading and concentration with the 0.5 metre RBC;
 - b) there is little correlation between effluent carbon concentration and hydraulic loading with the 0.5 metre RBC;
 - c) a positive TOC response can be expected for increases in TOC loading, concentration and hydraulic loading with the 2.0 metre RBC; and
 - d) the duration of the response is on the order of 1 hour.
- 6. An analysis of the raw data indicated that:
 - a) TOC and COD removal is a linear function of mass loading;
 - b) TKN mass removal is a linear function of TKN mass loading at loadings below 2.1 g/d-m²;
 - c) TKN mass removal becomes unstable at loadings above 2.1 g/d-m². The instability appears to be a function of flow rate rather than mass loading; and
 - areal organic mass removal was greater for the
 0.5 metre unit when operated in parallel with the
 2.0 metre unit.

6.0 Recommendations for Future Work

- A detailed investigation at the pilot scale level to develop further loading data on which to base design, under both nitrifying and carbon oxidation modes of operation is recommended.
- Develop transfer function-noise models based on the carbon oxidation data obtained in this study and examine the significance of mass carbon loading in design.
- 3. Develop design criteria for full scale RBCs based on pilot scale operating data. The investigation should encompass the mechanical scale-up consideration on which RBCs are currently designed.

REFERENCES

- Ahlberg, N. R. and Kwong, T.S", "Process Evaluation of a Rotating Biological Contactor for Municipal Wastewater Treatment", MOE Pollution Control Planning Branch, Research Paper No. W2041 (1974).
- Aluko, T. M., "The use of the Disc Filter for the Aerobic and Anerobic Treatment of Milk Wastes", MSC Thesis, University of Newcastle upon Tyne, UK (1970).
- Antonie, R. L. and Welch, F. M., "Preliminary Results of a Novel Biological Process for Treating Dairy Wastes", Proc. 24th Industrial Waste Conference, Purdue University, 115, May (1969).
- Antonie, R. L., "Application of the Bio-Disc Process to Treatment of Domestic Wastewater", 43rd Annual W.P.C.F. Conference, Boston, Oct. (1970).
- Antonie, R. L., "Response of the Bio-Disc Process to Fluctuating Wastewater Flows", Proc. 25th. Industrial Waste Conference, Purdue University, 427, May (1970).
- Antonie, R. L., "The 'Bio-Disc' Process: New Technology for the Treatment of Biodegradable Industrial Wastewater", <u>Water - 1970</u>, Chem. Eng. Symp. Series, <u>67</u>, 107, 585, (1971).
- Antonie, R. L., and Van Aacken, K. "Rotating Discs Fulfill Dual Wastewater Role", <u>Water and Wastes Engineering</u>, <u>37</u>, 1, (1971).
- Antonie, R. L. "Three Step Biological Treatment with the Bio-Disc Process", Presented at Water Pollution Control Meeting, New York, June (1972).
- Antonie, R. L., Kluge, D. L., and Mielke, J. H., "Evaluation of a Rotating Disk Wastewater Treatment Plant", <u>JWPCF</u>, <u>46</u>, 3, 498, (1974).
- Antonie, R. L., "Nitrification of Activated Sludge Effluent: Bio-Surf Process", <u>Water and Sewage Works</u>, <u>121</u>, 11, 44, (1974).
- Antonie, R. L., "Rotating Biological Contractor for Secondary Treatment", Presented at Culp/Wesner/Culp WWT Seminar, South Lake Tahoe, Stateline, Nevada, Oct. (1976).

- Autotrol Corporation, "Application of Rotating Disc Process to Municipal Wastewater Treatment", US Gov. WPC Research Series, Project No. 10750 DAM, Nov. (1971).
- B.C. Research, "Development of a Biological System for the Treatment of Mill Waste Waters Containing Thiosulfate", Project No. 1525, (1973).
- Beak, T. W., Consultants Ltd., "An Evaluation of European Experience with the Rotating Biological Contractor", Environmental Protection Service Report No. EPS4-WP-73-4, Oct., (1973).
- Bennet, D. J., Needham, T. and Summer, R. E., "Pilot Application of the Rotating Biological Surface Concept for Secondary Treatment of Insulating Board Mill Effluents", Tappi, 56, 12, 182, (1973).
- Berthouex, P. M., Hunter, W. G., Pallesen, L. and Shitt, C. Y., "The Use of Stochastic Models in the Interpretation of Historical Data from Sewage Treatment Plants", <u>Water</u> <u>Research</u>, <u>10</u>, 689, (1976).
- Birks, C.W. and Hynek, R.J., "Treatment of Cheese Processing Wastes by the Bio-Disc Process", Proc. 26th Ind. Waste Conference, Purdue University, 89, May (1971).
- Borchardt, J. A., "Observations on the Rotating Biological Disk", Pres. at Amer. Chem. Soc. Meeting, Chicago, Ill., (1970).
- Borchardt, J. A., "Biological Waste Treatment Using Rotating Discs", <u>Biotechnol. & Bioeng. Symp.</u>, <u>2</u>, <u>131</u>, (1971).
- Box, G. E. P., and Jenkins, G. M., <u>Time Series Analysis:</u> <u>Forecasting and Control</u>, Revised Edition, Holden Day Inc., San Francisco, Calif. (1976).
- Burns, R. J., Cochrane M. W., and Dastel J. A., "Cannery Waste Treatment with RBC and Extended Aeration Plants", Proc. 2nd Natl. Symp. Food Proc. Waste, p.227 (1971).
- Buswell, A. M. and Pearson, E.L., "The Nidus (Nest) Rack, a Modern Development of the Travis Colloider", <u>Sewage</u> <u>Works Jour.</u>, <u>1</u>, 2 (1929).
- Breed, R. S., Murray, E. G. D., and Smith, N. R., <u>Bergey's</u> <u>Manual of Determinative Bacteriology</u>, 7th Ed., The Williams and Wilkins Co., Baltimore, Maryland (1957).

- Bruce, A. M., Brown, B. L., Mann, H. T., "Some Developments in the Treatment of Sewage from Small Communities", <u>The</u> <u>Public Health Engineer</u>, 72, 3, 116 (1973).
- Chen, H. T., Fred rickson, E. E., Cormack, J. F. and Young, S. R., "Four Biological Systems for Treating Integrated Paper Mill Effluent", TAPPI, 57, 5, 111 (1974).
- Chesner, W. H., and Molof, A. H., "Biological Rotating Disk Scale-up Design: Dissolved Oxygen Effects", Prog. Wat. <u>Tech.</u>, 9, 811 (1977).
- Chittenden, J. A. and Wells, W. J. Jr., "Rotating Biological Contactors Following Anaerobic Lagoons", <u>JWPCF</u>, <u>43</u>, 5, 746 (1971).
- Chong, T. H. Y., "Evaluation of Package Rotating Biological Contactor Treatment Plants for Northern Communities", Master Thesis, University of Toronto (1974).
- Clark, S. E., Coutts, H. J., Christianson, C. D., McFall, W. T., Alter, A. and Scribner, J. W., "Alaskan Industry Experience in Artic Sewage Treatment", Proc. 26th Industrial Waste Conference, Purdue University, 235, May (1971).
- Cochrane, M. W., Burm, R. J. and Dostal, K. A., "Cannery Wastewater Treatment with Rotating Biological Contactor and Extended Aeration", U.S. Environmental Protection Agency Report EPA R-2-73-024, April (1973).
- Cochrane, M. W. and Dostal, K. A., "RBC Treatment of Simulated Potato Processing Wastes", Proc. 3rd National Symposium on Food Processing Wastes, U.S. Environmental Protection Agency Report EPA-R2-72-018, November (1972).
- Davies, R., "Bio-Disc Treats Small Community Wastes", <u>Water</u> and Pollution Control, <u>111</u>, 2, 20, (1973).
- Davies, T. R. and Pretorius, W. A., "Dentrification with a Bacterial Disc Unit", Water Research, 9, 4, 459 (1975).
- Doman, J., "Results of Operation of Experimental Contact Filter with Partially Submerged Rotating Plates", <u>Sewage Works Journal</u>, <u>1</u> 5, 500 (1929).
- Draper, N.E., and Smith, H., <u>Applied Regression Analysis</u>, John Wiley and Sons Inc., New York, p.67 (1968).
- Environmental Protection Agency, "Combined Sewer Overflow Treatment by the Rotating Biological Contactor Process", Report No. 670/2-74-050, June 1974.

- Forgie, D. J. L., "Application of the Rotating Biological Contactor to Individual Household Wastewater Treatment", M.S. Thesis, University of Saskatchewan, (1974).
- Forgie, D., Christensen, V., Heuchert, K. and Chong, T., "Workcamp Wastewater Treatment: Rotating Biological Contactor and Physical Chemical Treatment", Pres. at 26th Annual Western Canada Water and Sewage Conference (1974).
- Friedman, A. A., Woods, R. C., and Wilbey, R. C., "Kinetic Response of Rotating Biological Contactors". Proc. 31st Industrial Waste Conference, Purdue University, 420, May (1976).
- Gillespie, W. J., Marshall, D. W., and Springer, A. M., "A Pilot Scale Evaluation of Rotating Biological Surface Treatment of Pulp and Paper Mill Wastes", <u>Tappi</u>, <u>57</u>, 9, 112 (1974).
- Grieves, C. G., "Dynamic and Steady State Models for the Rotating Biological Disc Reactor", Doctorate Thesis, Clemson University, August (1972).
- Haseford, G. S., "A steady State Model for the Rotating Biological Disc Reactor, Part I," University of British Columbia, Dept. of Chemical Eng., Not Published.
- Hao, O. and Hendricks, G. F., "Rotating Biological Reactors Remove Nutrients", <u>Water and Sewage Works</u>, <u>12</u>, 10 and 11, (1975).
- Havis, M. P. and Hansford, G. S., "A Study of Substrate Removal in a Microbial Film Reactor", submitted to Water Research (May 1975).
- Hartman, H., "Development and Operation of Dipping Filter Plants", Gas-u-Wasserfach (GWF), 101, 12, 281, (1960).
- Hartman, H., "The Use of Dipping Contact Filters in Biological Treatment of Sewage", <u>Verbandsbericht Nr. 71/2</u> des Verbandes Schweizerischer Abwasser Fachleute (1964).
- Hartman, H., "Der Tauchtropfkorper" Osterreischische Wasserwirtschaft, <u>17</u>, (1965).
- Hartmann, L., "Influence of Turbulence on the Activity of Bacterial Slimes", JWPCF, 39, 6, 958, (1967).
- Hemens, J. and Stander, G. J., "Nutrient Removal from Sewage Effluents by Algal Activity", Adv. in Wat. Pollut. Res., Proc. of the 4th International Conference, Prague, p.701 (1969).

Hoehn, R. C. and Ray, A. D., "Effects of Thickness on Bacterial Film", JWPCF, 45, 11, 2302 (1971).

- Jackson, D. F., and Jackson, B. B., "Removal of Phosphates in Wastewater by Periphyton Communities on Rotating Discs", <u>Int. Ver. Theor. Angew. Limnol. Verh.</u>, <u>18</u>, 881 (1972).
- Jank, B. E., Hamoda, M.F., Leclair, B. P., "Biological Treatment of Base Metal Mining Industry Effluents Containing Thiosalts", 48th Annual Conf. Wat. Pollut. Control Fed., Miami Beach, October, (1975).
- Joost, R. H., "Systemation in Using the Rotating Biological Surface (RBS) Waste Treatment Process", Proc. 24th Ind. Waste Conference, Purdue University, 365, May (1969).
- Kato, K. and Sekikawa, Y., "Fixed Activated Sludge Process for Industrial Waste Treatment", Proc. 22nd Industrial Waste Conference, Purdue University, 926, May (1967).
- Kershaw, M. A., "Waste Water Treatment", Process Biochemistry, 1, (1970).
- Khan, A. N. and Siddiqi, R. H., "Treatment of Wastewater by Biological Discs", <u>Indian Journal of Environmental</u> <u>Health</u>, <u>14</u>, 289, (1972).
- Kolbe, F. F., "A Promising New Unit for Sewage Treatment", Die Siviele Ingenieur in Suid Afrika, p.327, (1965).
- Kornegay, B. H. and Andrews, J. F., "Kinetics of Fixed Film Biological Reactors", Proc. 22nd Ind. Waste Conference, Purdue University, 620, May (1967).
- Kornegay, B. H., "Characteristics and Kinetics of Fixed Film Biological Reactors," Ph.D. Thesis, Clemson University, (1969).
- Kornegay, B. H., "Modeling and Simulation of Fixed-Film Biological Reactors", Pres. at the 8th Annual Workshop of the Association of Environmental Engineering Professors on Mathematical Modeling in Environmental Engineering, (1972).
- Krauth, K.H. and Staab, K. F., "Die Leistung Von Tauchtropfkorperanlagen in der Praxis", <u>GWF-Wasser/Abwasser</u>, <u>114</u>, 34, (1973).
- Labella, S. A., Thaker, I. H. and Tehan, J.E., "Treatment of Winnery Wastes by Aerated Lagoon, Activated Sludge, and Rotating Biological Contactor", Proc. 27th Ind. Waste Conference, Purdue University, 803, May (1972).

- Labonte, R. "LaVerite sur les Disques Biologiques", <u>Eau du</u> <u>Quebec</u>, <u>3</u>, 8, (1975).
- Lager, J. A. and Smith, W. G., "Urban Stormwater Management and Technology", EPA-670/2-74-040, Program Element No. 1BB034, Contract No. 68-03-0179, (1974).
- Lee, E. G. H. and Mueller, J. C., "Rotating Biological Disc Treatment of Kraft Mill Effluents", <u>Water and Pollu-</u> tion Control, <u>113</u>, 5, 25 (1975).
- Levenspiel, O., <u>Chemical Reaction Engineering</u>, Second Edition, John Wiley and Sons, Inc., Toronto, Ontario (1972).
- Lohr, M., "The Contact Aeration Disk Filter Used in Combination with Preliminary Treatment, Final Sedimentation and Sludge Treatment in Sewage Works for Small Communities", <u>Gas-u Wasserfach (GWF)</u>, <u>108</u>, 36, 1029, (1967).
- Lue-Hing, C., Obayashi, A. W., Zenz, D. R., Washington, B., and Sawyer, B. M., "Nitrification of High Ammonia Content Sludge Supernatant by Use of Rotating Discs", 29th Proc. Ind. Waste Conf., Purdue University, 245, May (1974).
- MacGregor, J. F., "Optimal Choice of the Sampling Interval For Discrete Process Control", Department of Chemical Engineering, McMaster University, Feb. (1967).
- Malhotra, S. K., Williams, T. C., and Morley, W. L., "Performance of a Bio-Disk Plant in a Northern Michigan Community", Pres. at 1975 WPCF Conference, Miami Florida, Oct. (1975).
- Marki, E., "Results of Experiments by EAWAG with the Rotating Biological Filter", <u>Schweizeriche Zeitschrift Fur</u> Hydrologie, 26, 408 (1964).
- McAliley, J.E., "A Pilot Plant Study of a Rotating Biological Surface for Secondary Treatment of Unbleached Kraft Mill Waste", <u>Tappi</u>, <u>57</u>, 9, 106 (1974).
- Murphy, K. L., Sutton, P. M., Wilson, R. W. and Jank, B. E., "Nitrogen Control: Design Considerations for Supported Growth Systems", Pres. at 48th WPCF Conference, Miami, Florida, Oct. (1975).

- Murphy, K. L., Sutton, P. M. and Jank B. E., "Dynamic Nature of Nitrifying Biological Suspended Growth Systems", Progress in Water Technology, 9, 279, (1977).
- NCASI Technical Report, "A Pilot Investigation of Rotating Biological Surface Treatment of Pulp and Paper Wastes", NCASI Technical Bulletin No. 278 (1974).
- Olsson, G., "State of the Art of Sewage Treatment Plant Control", Pres. to 1976 Engineering Foundation Conference on Chemical Process Control, Asilomar Conference Grounds, Pacific Grove, California, Jan. (1976).
- Osterman, W. A., and Sullivan, R. A., "Pilot Plant Evaluation of Bio-Surf Biological Treatment System", Pres. at CPPA Tech. Conference, Toronto, Canada, Sept. (1974).
- Pescod, M. B. and Nair, J. V., "Biological Disc Filtration for Tropical Waste Treatment-Experimental Studies", Water Research, 6, 1509 (1972).
- Popel, Von F., "Aufbav, Abbavleistung und Bemessung von Tauchtropfkorpern, <u>Schweizerische Zeitschrift Fur</u> Hydrologie, 26, 394 (1964).
- Piel, K. M. and Gaudy, A.F. "Kinetic Constants for Aerobic Growths of Microbial Populations Selected with Various Single Compounds and with Municipal Wastes as Substrates", Appl. Microbiol, 21, 253 (1971).
- Pretorius, W. A., "Some Operational Characteristics of a Bacterial Disc Unit", Water Research, 5, 1141 (1971).
- Pretorius, W. A., "The Rotating Disc Unit: A Waste Treatment System for Small Communities", <u>Water Pollution Control</u>, <u>42</u>, 6, 721 (1973).
- Pretorius, W. A., "The Complete Treatment of Raw Sewage with Special Emphasis on Nitrogen Removal", Proc. of the 6th Ind. Conf. on Advances in Water Poll. Res., 685 (1973).
- Pretorius, W. A., "Nitrification on the Rotating Disc Unit", Pres. at the 7th Ind. Conf. of Water Poll. Res., Paris (1974).
- Reimer, R. E., Wukaseh, R. F., and Horsky, E. E., "Pilot Plant Studies and Process Selection for Nitrification City of Indianapolis, Indiana", Proc. of 31st Annual Ind. Waste Conf. Purdue University, 280, May (1976).

- Sach, W. A., and Phillips, S. A., "Evaluation of the Bio-Disc Treatment Process for Summer Camp Application", EPA Report No. EPA-670/2-73-022 (1973).
- Steels, I. H., "Design Basis for the Rotating Disc Process", Effluent and Water Treatment Journal, 14, 8, (1974).
- Simpson, J. R., "Waste Treatment for Small Communities", <u>Process Biochemistry</u>, 7, 1, 18 (1972).
- Stover, E. L. and Kincannon, D. F., "One Step Nitrification and Carbon Removal", <u>Water and Sewage Works</u>, <u>114</u>, 6, 66 (1975).
- Stover, E. L. and Kincannon, D. F., "Evaluating Rotating Biological Contactor Performance", <u>Water and Sewage</u> <u>Works</u>, <u>123</u>, 3, 88, (1976).
- Summer, R. E. and Bennett, D. J., "Pilot Treatability Study of Pulp, Paper and Fiberboard Effluents by Rotating Biological Surface", Pres. at Paper Ind. Air and Stream Improvement Conf., St. Andrews, N.B. (1973).
- Sword, B. R., "Dentrification by Anaerobic Filters and Ponds", Bio-Engineering Aspects of Agricultural Drainage, San Joaquin Project, Environmental Protection Agency, 13030 UBH, April (1971).
- Sutton, P. M., "Steady State and Dynamic Behavior of Combined and Separate Sludge Carbon Removal - Nitrification Systems", Ph.D. Thesis, McMaster University, Dept. of Chemical Engineering, September (1976).
- Tan, T. D., "Dynamic Modelling and Data Analysis of a Wastewater Treatment Plant", Master's Thesis, Dept. of Chemical Engineering, McMaster University, (1976).
- Thomas, J. L., and L. G. Koehrsen, "Activated Sludge -Bio-disc Treatment of Distillery Wastewater", EPA-660/ 2-74-014, April (1974).
- Timpany, P., "Variation in Axial Mixing in an Aeration Tank", Master's Thesis, Dept. of Chem. Eng., McMaster University (1966).
- Torpey, W. N., Heukelekian, H., Kaplovsky, A. and Epstein, R., "Rotating Disks with Biological Growths Prepare Wastewater for Disposal or Reuse", <u>JWPCF</u>, <u>43</u>, 11, 2181 (1971).

- Torpey, W., Heukelekian, H., Kaplovsky, A. J. and Epstein L., "Effects of Exposing Slimes on Rotating Discs to Atmospheres Enriched with Oxygen" Proc. of the 6th Int. Conf. on Adv. in Water Poll. Res., 405, (1972).
- Torpey, W. H., H. Heukelekian and A. J. Kaplovsky, "Rotating Biological Disc Wastewater Treatment Process - Pilot Plant Evaluation", EPA Report PB-232-133, No. 670/2-73-027, May (1974).
- Welch, F. M., "Preliminary Results of a New Approach in the Aerobic Biological Treatment of Highly Concentrated Wastes", Pres. at 23rd Ind. Waste Conf., Purdue University (1968).
- Welch, F. M., "New Approach to Aerobic Treatment of Wastes", Water and Wastes Engineering, 7, 12 (1969).
- Welch, F. M., "Potential Use of the Bio-Disc Process in Treating Wastewater from the Canning Industry", Pres. at Conf. on Treatment and Disposal of Wastes from Vegetable Processing, May (1970).
- Weng, C. N., "Biological Fixed Film Rotating Disks for Wastewater Treatment", Ph.D. Thesis, New York University, (1972).
- Weng, C. and Molof, A. H., "Nitrification in the Biological Fixed Film Rotating Disk System", <u>JWPCF</u>, <u>46</u>, 7, 1674, (1974).
- Wilson, R. W., "Continuous Fixed Film Biological Nitrification and Dentrification of Wastewater", Master Thesis, McMaster University, (1975).
- Winkler, W. W. and Welch, F. M., "Energy Conservation Dictates Innovative Treatment Plant Design", <u>Public Works Jour</u>., 3, 86 (1974).
- Zanoni, A. E., "Phosphorus Removal by Trickling Filter Slimes", U.S. Environmental Protection Agency Report, EPA-R2-73-279, July (1973).

APPENDIX A

DATA LISTING

This appendix contains a complete listing of the general operating procedures, including flow rates, influent and effluent temperatures, dissolved oxygen concentration, suspended solids, chemical additions, etc. as well as the analytical results obtained during the experimental runs. The results are presented in cronological order. Abbreviations and symbols used in the listings are defined in Appendix E.

Table A-1

GENERAL OPERATING DATA

SERIES A -START UP AND ACCLIMITIZATION

A-2_

A-1 HYDRAULIC VOLUME AND DYE STUDY (0.5M UNIT)

C25 05 0.5 M1 RPM=13.0 WATER.FEED CONNECTED.HOOD INSTALLED C 31 05 0.5 M1 DYE STUDY AT 0.813 L/M. RAW-SEWAGE-STARTED AT 1705 C01 06 0.5 M1 VOLUME=141.8 LITRES

	•	
· · · · · · · · · · · · · · · · · · ·		

	14	i na ka	Tar	ole A-	1 Cont'd		A-3
			GE	NERAL	OPERATING DATA		
	۵	-2 ACCLI	MITIZA	TION	PERFORMANCE OF 0.5	11 + 0	.5M2 UNITS
AVMON	PILOT	SAMPLE	FLOW	РН	ALK SS VSS 30 MIN	00	TEMP
	-UN 11	-IDENTITY	-L/M -	•	G/L-MG/EMG/E-SETTL	-MG/L	- <u>NEG-C</u>
01 06	0.5M1	RFG12	0.76				
01 06	0.5M1	EFG12	0.76	7.7			23.8
-01-06-	-0.5M1	TNT.ATR					
02-05-	-0-5M1-	-RFG0-8	-0.68-	6.7		-1.3	28.0
C2 06	0.5M1	EFG08	0.68	7.6		5.9	23.4
02 06	0.5M1	AMB. AIR					22.8
02 06	-0.541-	INT.AIR					23.2
C LIGHT	FILM (OF BROWN	SLIME	APPEA	RS IN STAGE 1		
							· ~ ~
03 06	0.541	RFG08	0.65	7.0		4.0	26.3
03 06	0.5M1	AMP. ATP	0.85	1.9	· · ·	0.0	24.3
03 06	0.5M1	INT.AIR					24.1
	_			******			
04 06	0 - 5M1	REGOR	0.81	7.0		1.2	25.6
-04 05-	-0.5M1	EFGC 8	0.81	8.0-		-7.1	24.6
04 06	0.5M1	EF CC 807	0.81		50 45		
04 06	0.5M1	AME.AIR					23.8
04 08	0.541	INT.AIR					24.5
C GROWT	H IS VE	ERY HEAVY	IN ST	G.1 A	ND LIGHT IN STG.2,	3+4	
C SECON	:0 BIO S	SURF INSI	ALLEDI	0.5 1	2) RPM=13.0 04/06/	76	
		Χ.,					
07-06	-05M1-	-RFG0 8	-0.81-	6.9-		- c . 8 -	28.7
07 06	C.5M1	EFG08	0.81	7.1		6.4	25.2
07 06	0.5M1	AMB. AIR			any is a surprise of the surpr		25.0
01 00	0. Juit	THIENTK					
		DEC.0.9		6-0			
-0706	0. 202	FFGD8	0.90	8.0		6.9	23.6
07 06	0. 5M2					~ ~ / /	26.0
07 06 07 06 07 06	0.5M2 0.5M2	AME.AIR					
07 06 07 06 07 06	0.5M2 0.5M2	AME.AIR		-			
07 06 07 06 07 06	0.5M2 0.5M2	AME.AIR	0.84	6.7		1.0	25.5
07 06 07 06 07 06 07 06 08 06	0.5M2 0.5M2 0.5M1 0.5M1	AME.AIR RFG08 EFG08	0.84 0.84	6.7 7.0		1.0	25.5
07 06 07 06 07 06 08 06 08 06 08 06	0.5M2 0.5M2 0.5M1 0.5M1 0.5M1	AME.AIR RFG08 EFG08 EFC0807	0.84 0.84 0.84	6.7 7.0	42 34	1.0	25.5 25.8
07 06 07 06 07 06 08 06 08 06 08 06 08 06 08 06	0.5M2 0.5M2 0.5M1 0.5M1 0.5M1 0.5M1	AME.AIR RFG08 EFG08 EFC0807 AME.AIR	0.84 0.84 0.84	6.7 7.0	42 34	1.0	25.5 25.8 26.4
07 06 07 06 07 06 08 06 08 06 08 06 08 06 08 06 08 06	0.5M2 0.5M2 0.5M1 0.5M1 0.5M1 0.5M1 0.5M1	AME.AIR RFG08 EFG08 EFC0807 AME.AIR INT.AIR	0.84 0.84 0.84	6.7 7.0	42 34	1.0	25.5 25.8 26.4 26.5

GENERAL OPERATING DATA

DAYMON	PILOT UNIT	SAMPLE I IDENTITY	FLOW L/M	РН	ALK MG/L	SS V MG/LM	SS 3 G/L	0 MIN SETTLE ML/L	DO MG/L	TEMP DEG-U	
08 05	0. 542	REGOR	0.85	6.7					1.0	25.5	
08 06	0. 5M2	SEG08	0.85	7.6					6.8	24.3	
18 06	0. 5M2	EFC0807 -	0.85			-122-	87		0.0	2403	
08 06	0. 5M2	AMP. ATP	0.05				07			26.4	
		ANCIALK								20.4	
-C-GROW	TH HEAN	Y IN STG			GHT TI	N STG	2.3+	<u>t</u>			
o okon		1 10 510	• 1 4 11			. 510.	2,0.	-			
	0-5M1	REGOR	0.77	6-8					+	-27-2-	
N9 N6	0. 5M1	FEGOR	0.77	7.4					5.5	26.3	
09 06	0. 5M1	AMP. ATR								26.9	
	-0. 5M1	TNT-ATR-								-26.8	
		1010 810								20.0	
	0-542	RFG08	-0-91-	6.8					1.0-	-27.2-	
09 06	0. 5M2	FEGDA	0.91	7.3					6.2	24.9	
19 16	0. 5M2	AMPATR							0.2	26.9	
0,00	0. 502	AUCAIN								20. 5	-
10 06	0.5M1	REGOS	0.75	6.8					1.2	25.8	
	-0-5M1-	FFG08	0-75-	7:0					5.8-	-26-1-	
10 06	0. 5M1	EF C0 80 7	0.75			68	43			2001	
16 06	0.5M1	AMB ATR				00	10			26.4	
	0. 5M1	TNT.ATR-		1967 - N. 197 - S. 198 - N.	n'na programme and an	the second second second second				-26.4	
			•							200	
				×							
	-0-5M2	RFG08	0-82	6-8					1.2	25.8	
10 06	D. 5M2	FEGG8	0.82	7.3					6.5	24.7	
10 06	0.5M2	EFC0807	0.82			167 1	16				
10 06	0.542	AMBAIR								26.4	
C H00D	INSTAL	LED'AT 11	30								
11 06	0.5M1	RFG08	0.74	6.8					1.2	27.8	
11 06	0.5M1	EFG08	0.74	7.5					5.5	26.0	
11 06	0.5M1	AME. AIR								25.1	
11 06	0.5M1	INT.AIR								25.2	
11 06	0.5M2	RFG08	0.85	6.8						27.5	
11 06	0.5M2	EFG08	0.85	7.5					1.2	25.4	
11 06	0.5M2	AMB. AIR							6.1	25.1	
11 06	0.542	INT. AIR								25.2	
(1000 (1000)	3			-							
14 06	0.541	RFG08	0.73	6.8					0.4	18.5	
14 06	0.5M1	EFG08	0.73	7.0					6.4	21.2	
14 06	0.541	AME. AIR								27.1	
14 06	0.5M1	INT. AIR								26.7	
								5.0			
C RAW F	EED LI	NE CHANGE	D CAU	SING	COOL	ER TEM	PERA	TURES			

A-4

	-		Та	ble	A-1 C	ont'	d		·		A-5
			65	NER	AL OPE	PATI	NG D	ATA			
DAYMON	PILOT UNIT	SA MPLE IDENTITY	FLOW (L/M	РН	ALK MG/L	SS MG/L	VSS MG/L	30 MIN SETTLE ML/L	D0 MG/L	TEMP DEG-C	c
14 06 14 06	0.5M2 0.5M2	RFG08 EFG08 AMB, ATR	0.80 0.80	6.8 7.0		1			0.9 6.2	18.7 21.4	
14 06	0.542	INT.AIR								26.7	
C RAW F	EED LI	N E CH ANGE	D-CAUS	SING	COOL	ER TN	EPER	ATURES	· ,		
	0.5M1	RFG08	0.77	6.7	7				0.7	19.2	
15 06 15 06	0.5M1 0.5M1	EFG08 EFC0807	0.77	7.1		156	125		6.2	21.7	
<u>15 06</u> 15 06	0.5M1 0.5M1	AME.AIR INT.AIR								27.4 26.8	
15 06	0.5M2	RFG08	0.80	6.7					1.2	19.5	1
15 06 	0.5M2 -0.5M2	EFG08 EFC0807	0.80	7.0		-86	-79-		6.2	22.0	
15 06 15 06	0.5M2 0.5M2	AMB.AIR INT.AIR								27.4 26.9	
16 06	0.5M1	RFG08	0.72	6.9					0.5	19.4	
16 06 16 06 16 06	0.5M1 0.5M1 0.5M1	AMB.AIR INT.AIR	0.72	7.1	a de constante de co			1. 1. 1.	5.9-	22.5 26.7 26.6	
								x			
1606 	0.5M2	EFG08	0.85	7.1					1.4 5.8	22.8	
16 06 16 06	0.5M2 0.5M2	AME.AIR INT.AIR								26.7 26.6	
17 05	0.5M1	RFG08	0.78	7.G					0.9	18.9	
17 06 17 06 17 06	0.5M1 0.5M1 0.5M1	EFG08 EFC0807 AME.AIR	0.78	7.3		153	124		6.1	25.1	
17-36	0.541	INT.AIR	51 - 							24.2	
17 06	0.5M2	RFG08	0.87	7.0					1.5	19.4	ana akada ana ana ana ina
17 06 17 06	0.5M2	EFG08 EFC0807	0.87	7.2		207	161		6.4	20.5	
17 06 17 06	0.5M2 0.5M2	AME.AIR INT.AIR		× 4)	······································	-				25.1-24.2	
18 06	0.5M1	RFG08	0.80	6.9					0.5	18.6	
18 06	0.5M1	AME.AIR	U • 5 0	1.2					2.1	-24-2-	
18 06	0.541	INT.AIR								23.6	

Table A-1 Cont'd

GENERAL OPERATING DATA

DAYM	ON	PILOT UNIT	SAMPLE IDENTITY	FLOW L/M	РН	ALK MG/L	SS MG/L	VSS MG/L	30 MIN SETTLE ML/L	D 0 M G / L	TEMP DEG-C	CH° H
18	06	0.5M2	RFG08	0.89	6.9					C.7	18.7	
18	06	0.5M2	EFGC8	0.89	7.2					5.8	19.9	
18	06 -	0.5M2	AMB.AIR				4				-24.2-	
10	00	0.542	INTOAIR								23.8	
21	06	0.5M1	RFGC8	0.61	6.8		4			1.2	18.7	
21	06	0.5M1	EFG08	C.61	7.1					6.2	20.4	
21	06	U. 5M1	AME AIR								24.2	
21	06	U. 5M1	INI.AIR								23.5	
C21	06	0.5M2	PUMP FAI	LURE	DURI	NG WE	EKEND	- N	O MEASU	REMEN	TS TAKE	N
22	06	0.5M1	RFG08	0.61	6.7					1.0	19.3	
22	06	0.541	EFG08	0.61	7.0					6.1	21.6	
-22-	06	0.5M1	EF C0 807	0.61	7	1.19	146	112				
22	06	0.5M1	AME.AIR								25.4	
22	06	0.5M1	INT.AIR								24.9	
22	06	0. 5M2	REG08	0.82	5.7					1.2	19.3	
	06-	0.5M2	EFGC8	0.82	7.0					6.2	-21.3	
22	06	0.5M2	EFC0807	6.82			292	213				
22	06	0.5M2	AME. AIR								25.4	
-22-	96-	-D. 5M2	-INT.AIR-		~						25.1	
- 23-	06	0 5M1	DEC0 8	0.80	6.3			1			1 9 9	
23	0.6	0. 5M1	EEG08	0.80	6.9					5.9	21.7	
23	06	0. 5M1	AMR. ATR	0.00	0.5						25.8	
23	06	0. 5M1	TNT.ATR									
			1		1						2 10 0	
-23	16	1. 5M2	PECIA	1.87	6-7	-		62.60		1.9	19.0	
23	0.6	0. 5.12	FEGDA	6.87	6.0					6-0	21.0	
23	0.5	0. 5M2	AMB. ATR	0.07	0.5					0.0	25.8	
23	06	0.5M2	INT.AIR								24.4	
			+- <u>-</u>	nu=	0-011	MD-00		с-т ы		CTTE-	CANDI EC	WEDE NOT-
624	00	0.7 1	14 0.542		0 90	HF FR	UBLEM	5 14	_ COMPO	2112	JANFLES	ALKE NUT
24	06	0.5M1	RFG08		6.4					0.9	18.9	
. 24	06	0.5M1	EFG08		7.0					6.3	20.1	
24	06	0.541	AMB AIR								26.7	
24	06	0.541	INT AIR					*			25.8	
24	06	0.542	RFG08		6.4					0.9	18.9	
24	06	0.5M2	EFGC 8		6.	9				6.5		5
24	06	0.5M2	AMB AIR								26.7	
24	06	0.5M2	INT AIR								25.8	
				b :	ante	A-I CC						
----------------------------------	---------------	-------------------------	-----------------------	--------------	-------------	----------------	----------------	---------------------	-------------	------------	---------------	---------
				GE	NERAI	L OPER	ATING	DATA				
NOMYAON	PIL	.ОТ [Т	SA MPLE IDENTITY	FLOW L/M	РН	ALK MG/L M	SS VS G/LMG	S 30 /L SE ML	MIN TTLE	DO MG/L	TEMP DEG-C	
25 06 25 06	0.9	5M1 5M1	RFG08 EFG08	0.61 C.61	6.7 7.0					1.3	20.0	
25 06	0.5	5M1	INT.AIR								26.2	
25 06 25 06	0.9	5M2	RFG08 EFG08	1.01	6.7 7.0					1.1 6.2	20.2 22.1	
25 06	0.5	542	INT. AIR								26.0	
C FURT	HER C	COMP A FO	OSITES W DR COMPAR	ERE TA	KEN PURP	OF BOT OSES	H UNI	TS (C	1.5M)		
16 08 16 08	0.51	11	· · ·	3.27								
17.00			0564.0	7.07	7.6					2.5		
17 08	0.51	11	EFG12	3.27	7.7				7	5.7	21.3	
17 03 17 03	0.51	11+2 11+2	AME.AIR RFC1009			3	70 1	86			25.0	
17 08 17 08	0.51	12	RFG12 EFG12	3.25	-7.6 77					2.5 5.5	21.0 21.4	
22 03 22 08 22 08	0.51	41+2 41 42	RF C1 41 3	3.27			94	84				
23 118	-1-51	M1+2	PFC1313-				98	9.0				8
	0.5	11		3.04								
23 08	3.5	42		3.04								
23 08					SAT	IN FR	IDGE	FOR	48.	BEFOR	PREP	RATION.
23 08 23 08 SAMP	LES	COLL	ECTED ON	23/00								
23 08 23 08 SAMP C 24 0	LES (8 19	SOOL	IR. 0.5M1	MOVEC) OUT	SIDE A	ND CC	NNECT	ו משו	O SAM	E FEED	AS 2.0M

Table A-1 Cont'd

GENERAL OPERATING DATA

A-3 HYDRAULIC VOLUME AND DYE STUDY OF 2.0M UNIT

2.0 M.RAW SEWAGE.STARTED USING FEED SCOOPS. 1300-FEED SHUTOFF 07 1-07 -2.0 M RAK SEWAGE STARTED USING-DIRECT FEED - RPM=3.0 07 2.0 M B10 SURF NOT LEVEL.WIER SET TO MINIMUN HEIGHT 07 2.0 M BASIC VOLUME(NO FLOW CONDITIONS) = 3364.0 LITRES 07 2.0 M ACCUMULATED SLUDGE IN THE BOTTOM OF EACH STAGE 2.0 M B10 SURF SHUT OFF FOR 6.0HR WHILE PIPING INSTALLED 07 2.0 M DYE STUDY AT 37.2L/M.HEAD VOL=104.4L. 07 VOLUME=3468.4 L. 2.0M DYE STUDY AT 100.3 L/M. HEAD VOL=181.6L.TOTAL VOL=3545.6 L. 07 2.3 M PUMP SHUT OFF AT 1400 BIO SURF STILL ROTATING : 07 2.0 M PUMP STARTED UP AT 1900. STG1+2 SHOW A HEAVY GROWTH . 07

ND OF EXPERIMENT

밖에 다양 찍는 것이 같아. 그는 것이 같아. 것이 없었는	

Table_A-1_Cont'd GENERAL OPERATING DATA

4-4 ACCLIMITIZATION PERFORMANCE OF 2.0M UNIT

07	2.0 M RFG14	97.38 6.2			18.3	
7	2.0 M EFG14	97.38 6.5			20.6	
7-	2.0 M STAGE	1 97.38		2.4	18.9	
7	2.0 M STAGE	4 97.38		4.1	20.3	
7	2.0 M AME.AI	R			29.5	
7	2.0 M RFC080	7 99.7 .	288 217			
7	2.0 M RFG08	99.7 6.3			19.3	
7	2.0 M EFG08	99.7 6.5			19.7	
7	2.0 M STAGE	1 99.7		5.0	19.7	
7	2.0 M STAGE	4 99.7		5.3	19.7	
7-	2.0 M AME.AI	R			22.5	
7-	2.0 M RFG08	99.7 6.4			19.3	
7	2.0 M EFG08	99.7 6.4			19.3	
7	2.0 M STAGE	1 99.7		4.1	19.1	
7-	-2.0-M-STAGE-	4-99.7		5.0-	19.2	
7	2.0 M AME.AI	R			20.5	
DD	GROWTH IN ALL	STAGES				
17	2.0 M RFC090 2.0 M EFG09	8119.70 119.7 7.1	330 250		18.4	
17-	2.0 M STAGE	1 119.7		2.3	18.5	
17	2.0 M STAGE	4 119.7		4.6	18.5	
7 (2.C M AME.AI	R.			16.0	
N NP	RATE INCREASE HAD SHUT CFF	D.RAIN HAS WAS DURING THE NIC	SHED OFF A GREA GHT.RESTART AT	T DEAL OF 0800	BIOMASS	
57	2.0 M RFG12	99.8 6.5			19.2	
17	2.0 M EFG12	99.8 7.0			20.8	
17	2.0 M STAGE	1 99.8		1.7	20.0	
17	2.0 M STAGE	4 99.8		3.3	20.5	
7-	2.0 M AME.AI	R			27.0	
IP E 1	HAD SHUT CFF 10 PUMP PROBLE	DURING THE NIC MS FLOW REDUCE	GHT AGAIN. ED-TO-99.8GPM.			
8	2.0 M RFG15-	99.8 6.6			18.8	
18	2.0 M FEG15	99.8 6.9			20.6	
38	2.0 M STAGE	1 99.8		1.7	19.6	
18	2. C M STAGEL	99.			-20-3	

08 2.0 M AME.AIR

A-9

25.5

				rable	A-1	cont.a			A-10
			G	ENEPA	L OP	ERATING DATA			
DAYMON	PILOT UNIT	SAMPL: IDENT	E FLOW ITY L/M	РН	ALK MG/L	SS VSS 30 MIN MG/LMG/L SETTLE ML/L	DO NG/L	TEMP DEG-C	H.
			×						
03 08	2.0 M	RFG08	111.68	6.8				18.7	
-03-08	-2.0-4	EFG08	111.68	-6.8				17.7	
03 08	2.0 M	STAGE:	1 111.68					47 7	
03 08	-2.1 /	AMB A	4 111.58				4.0	1/./	
00 00	205 11							10.0	
C FEED	PUMP IS	S PUMP	ING SOME	AIR	. MAY	AFFECT D.O.			
			100 0					10 5	
04 08	2.U M	PECCO	122.0	0.1		200		19.5	
84 08	2.0 M	EFGDA	122.6	6.8		200		16.4	
04 08	2.0 M	STAGE	1 122.6				4.1	18.7	
-04-08-	-2.C-M	STAGE	4-122.6				4.6	16.4	
04 08	2.0 M	AME.A	IR				· · ·	19.8	
P-CTTH			CNETEN		DEA	TROATED TH TUE	PM OF	THE 380	
U DILL	PUMPI	NG AIR	· JIJIEM	CAN	R L L A	LIDRAIEU IN INE			
C PUMP	SHUT O	NG AIR FF DUR	ING THE	NIGH	T . M	AY AFFECT COMPOS	ITE		
C PUMP	SHUT OF	NG AIR FF DUR FAILUR	ING THE	NIGHT	NITOR	AY AFFECT COMPOS CAUSED SHUT DOW		1400	
C PUMP C ELEC C PUMP 05 08 05 08 05 08	RESTAR	RFG10 RFC10 EFG10	0900. 0 124.8	NIGH NIGH OW MOI 00MPOS 6.7 6.8	NITOR	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351	- 050	1400 8 18.7 20.4	
C PUMP C ELEC C PUMP 05 08 05 08 05 08	RESTAR 2.0 M 2.0 M 2.0 M 2.0 M	RFG10 STAGE	0900. 0 124.8 1 124.8	NIGH NIGH 0W MOI 00MPOS 6.7 6.8	SITE	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351	- C50	1400 8 18.7 20.4 19.2	
C PUMP C ELEC C PUMP 05 08 05 08 05 08 05 08 05 08 05 08	2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M	RFG10 RFG10 EFG10 EFG10 STAGE STAGE	0900. 0 124.8 09 124.9 124.9 1 124.8 4 124.8	NIGH NIGH OW MOI 6.7 6.8	SITE	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351	- 050 3.4 4.2	1400 8 18.7 20.4 19.2 19.4 20.7	
C PUMP C ELEC C PUMP 05 08 05 08 05 08 05 08 05 08 05 08 05 08 C HOOD	RESTAR 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M	TED AT RFG10 RFG10 STAGE STAGE AMB.A	0900. 0 124.8 09 124.9 124.3 124.8 124.8 124.8 124.8 124.8 0608	NIGH NIGH OW MOI 6.7 6.8	SITE	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351	- 050 3.4 4.2	1400 8 18.7 20.4 19.2 19.4 20.7	
C PUMP C ELEC C PUMP C ELEC C PUMP 05 08 05 08 05 08 05 08 05 08 C HOOD C END 0	RESTAR 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M	RED ON RED ON RED ON	• SYSTEM ING THE E IN FLC 0900. C 124.8 09 124.9 1 124.9 1 124.8 4 124.8 IR 0608	NIGH NIGH OW MOI 6.7 6.8	F 4 C	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351 OMPOSITE SAMPLES	ITE N AT -050 3.4 4.2 WERE	1400 8 18.7 20.4 19.2 19.4 20.7 COLLECTE	D
C PUMP C ELEC C PUMP 05 08 05 08 05 08 05 08 05 08 05 08 C HOOD C END 0	RESTAR 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 1NSTAL	NG AIR FF DUR FAILUR TED AT RFG10 RFG10 EFG10 STAGE STAGE AMB.A LED ON RIMENT	• SYSTEM ING THE E IN FLC 0900. C 124.8 09 124.9 1 124.8 1 124.8 1 124.8 IR 0608 • A TOT	NIGH NIGH OW MOI 6.7 6.8	F 4 C	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351	ITE N AT -050 3.4 4.2 WERE	1400 8 18.7 20.4 19.2 19.4 20.7 COLLECTE	D
C PUMP C ELEC C PUMP 05 08 05 08	RESTAR 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M CF EXPE	NG AIR FF DUR FAILUR TED AT RFG10 EFG10 STAGE STAGE AMB.A LED ON RIMENT	• SYSTEM ING THE E IN FLC 0900. C 124.8 09 124.9 1 124.8 4 124.8 IR 0608 • A TOT	NIGH NIGH OW MOI 6.7 6.7 6.8	F 4 C	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351	ITE N AT -050 3.4 4.2 WERE	1400 8 18.7 20.4 19.2 19.4 20.7 COLLECTE	D
C PUMP C ELEC C PUMP 05 08 05 08 05 08 05 08 05 08 05 08 C HOOD C END 0	RESTAR 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 1NSTAL	TED AT RFG10 RFG10 EFG10 STAGE STAGE AMB.A LED ON	• SYSTEM ING THE E IN FLC 0900. C 124.8 09 124.9 1 124.8 4 124.8 IR 0608 • A TOT	NIGH NIGH OW MOI 6.7 6.8	F 4 C	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351 OMPOSITE SAMPLES	ITE N AT -050 3.4 4.2 WERE	1400 8 18.7 20.4 19.2 19.4 20.7 COLLECTE	D
C PUMP C ELEC C PUMP 05 08 05 08 05 08 05 08 05 08 05 08 05 08 C HOOD C END	RESTAR 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M CF EXPE	NG AIR FF DUR FAILUR TED AT RFG10 EFG10 EFG10 STAGE STAGE AMB.A LED ON RIMENT	• SYSTEM ING THE E IN FLC 0900. C 124.8 09 124.9 1 124.8 1 124.8 1 124.8 IR 0608 • A TOT	NIGH NIGH OW MOI 6.7 6.8	F 4 C	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351 OMPOSITE SAMPLES	ITE N AT -050 3.4 4.2 WERE	1400 8 18.7 20.4 19.2 19.4 20.7 COLLECTE	D
C PUMP C ELEC C PUMP 05 08 05 08 05 08 05 08 05 08 C HOOD C END 0	RESTAR 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M C.0 M C.0 M	NG AIR FF DUR FAILUR TED AT RFG10 EFG10 STAGE AMB.A LED ON RIMENT	• STSTEM ING THE E IN FLC 0900. C 124.8 09 124.9 1 124.8 4 124.8 IR 0608 • A TOT	NIGH NIGH OW MOI 6.7 6.8	F 4 C	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351 OMPOSITE SAMPLES	ITE N AT -050 3.4 4.2 WERE	1400 8 18.7 20.4 19.2 19.4 20.7 COLLECTE	.D
C PUMP C ELEC C PUMP 05 08 05 08 05 08 05 08 05 08 05 08 05 08 05 08 C HOOD C END 0	RESTAR 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M C.0 M C.0 M C.0 M	NG AIR FF DUR FAILUR TED AT RFG10 EFG10 STAGE STAGE AMB.A LED ON RIMENT	• SYSTEM ING THE E IN FLC 0900. C 124.8 09 124.9 1 124.8 1 124.8 4 124.8 IR 0608 • A TOT	MAS NIGH DW MOI 6.7 6.7 6.8	F 4 C	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351 OMPOSITE SAMPLES	ITE N AT -050 3.4 4.2 WERE	1400 8 18.7 20.4 19.2 19.4 20.7 COLLECTE	D
C PUMP C ELEC C PUMP 05 08 05 08 05 08 05 08 05 08 05 08 05 08 C HOOD C END 0	RESTAR 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M CF EXPE	NG AIR FF DUR FAILUR TED AT RFG10 EFG10 EFG10 STAGE AMB.A LED ON RIMENT	• SYSTEM ING THE E IN FLC 0900. C 124.8 09 124.9 1 124.8 1 124.8 IR 0608 • A TOT	NIGH NIGH OW MOI 6.7 6.8	F 4 C	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351 OMPOSITE SAMPLES	ITE N AT -050 3.4 4.2 WERE	1400 8 18.7 20.4 19.2 19.4 20.7 COLLECTE	D
2 PUMP 2 ELEC 2 PUMP 05 08 05 08 05 08 05 08 05 08 05 08 05 08 2 BND 0 2 END 0	RESTAR 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 2.0 M 0F EXPE	NG AIR FF DUR FAILUR TED AT RFG10 EFG10 STAGE AMB.A LED ON RIMENT	• STSTEM ING THE E IN FLC 0900. C 124.8 09 124.9 1 124.8 4 124.8 IR 0608 • A TOT	NIGH NIGH OW MOI 6.7 6.8	F 4 C	AY AFFECT COMPOS CAUSED SHUT DOW STARTED AT 1000 408 351 OMPOSITE SAMPLES	ITE N AT -050 3.4 4.2 WERE	1400 8 18.7 20.4 19.2 19.4 20.7 COLLECTE	D

٩.

Table A-l Cont'd

GENERAL OPERATING DATA

SERIES-B DIURNAL FLOW VARIATION (0.54 UNIT)

B-1 NITRIFICATION MODE

C25 06 0.5M2 SET AT AVERAGE OF FLOW TO 0.5M1 AUG=1.18L/M C25 06 0.5MI INSTALLED FLOW SPLITTER AT PEAK/AUG/MIN OF 2/1/0.5 C FLOWS TO 0.5-M2 MEASURED. TIME=0-IS-MIDNIGHT. FLOW=L/M. VOL.IN ML.

C T	INS	FLOW	WEIG	HTED	0L		TIME	FLOW	WEIGHTED VOL	
C .	n	0.813	3	78			12	0.826	79	
c	- i	-0.704		67			+3	-0-931		
C	2	0.636)	61			14	1.044	100	
C	3	0.567	,	54			15	1.475	141	
c	4	0.522		50			16	1.884	181	
C	5	0.522		50			17	2.143	205	
C	6	0.522	2	50			18	2.202	211	
C	7	0.522		50				2.088	200	
С	8	0.545	5	52			20	1.861	178	
C	9	0.590)	56.5			21	1.498	143	
c	10	0.658	3	63			22	1.067	100	
С	11	0.735	5	70			23	0.931	89	
C A	VER	AGE FLO	DW =1.05L	/M						
		•								
DAYN	10 N	PILOT	SAMPLE	FLOW	PH	ALK	SS VSS	30 MIN	DO TEMP	'
		UNIT	IDENTITY	L/M		MG7L-	MG/LMG/I	ML/L	MG/L DEG-C	
20.	06	0 - 5M1	PECIA					1	20-4	
20	0.0	0.541	EEC16	•	•				21 1	
29.	00	0 EN4	AMP ATO	•	•					
23	00	0.501	ANCOAIR						2383	
20	16	0. 5M2	PECIA	1.18					20.0	
29	06	0. 5M2	FEGIG	1.18					20.7	
29	0.6	0. 5M2	AMP. ATP	1.10					23-3	
s#	MPL	ER MALF	UNCTION	ON 29	/06 C	AUSED	SAMPLE	RUN TO	BE DISGARDED	
C30	06	SAMPLER	R MALFUNC	TION (CAUSE	D COM	POSITE	TO BE RE	STRARED AT 1300	
30	06	0.5M2	TIME=13	1.18						
02	07	0.5M2	REGOS	1.18	6.7				19.5	
02	07	0.5M2	EFG09	1.18	7.0				20.3	
02	07	0.542	AMB.AIR						23.5	
	0.7		-05-00	1 10			×			
02	07	0.511	RFGU9		7 0				T 20 E	
02	07	U. 5M1	EFGUS		7 • U					
02	07	0.501	AMEAIK						د٥.٦	

Table A-	-1 Con	nt'	d	
----------	--------	-----	---	--

GENERAL OPEPATING DATA

15 07 0.5M1 RFC1009 . 216 162 15 07 0.5M1 RFG08	
15 07 0.5M1 EFG08 20.3 15 07 0.5M2 RFC1009 325 235 15 07 0.5M2 RFG08 20.3 24.4 24.4 24HR.COMPOSITES PLUS HOURLY SAMPLING ON 07+08. 07 0.5M1 RFC1009 204 169 07 0.5M1 RFC1009 204 169 07 0.5M1 RFC1009 201 170 08 07 0.5M1 RFC1009 202 10 08 07 0.5M1 RFG08 6.4 08 07 0.5M1 RFG08 6.4 08 07 0.5M1 RFG08 6.4 08 07 0.5M1 RFG08 1.08 6.3 08 07 0.5M2 RFC1009 185 149 08 07 0.5M2 RFG08 1.08 6.3 0.8 08 07 0.5M2 RFG08 1.08 6.0 4.2 08 07 0.5M2 RFC1009 185 149 08 07 0.5M2 RFG08 1.08 6.0 25.3 08 07 0.5M2 RFG08 1.08 6.0 25.3 08 07 0.5M2 RFG08 1.08 6.0 25.3 08 07 0.5M2 AME.AIR 25.3 08 07 0.5M2 AME.AIR 25.0 1T MAS NOT POSSIBLE TO OBTAIN ACCESS TO STAGE 1 25.0 <th></th>	
5 07 0.5M2 RFC1009 325 235 5 07 0.5M2 RFG08 20.3 5 07 0.5M2 RFG08 20.3 5 07 0.5M2 AMB AIR 24.4 24HR.COMPOSITES PLUS HOURLY SAMPLING ON 07+08. 24.4 7 07 0.5M1 RFC1009 204 169 7 07 0.5M1 RFC1009 201 170 8 07 0.5M1 RFG08 6.4 0.4 20.1 8 07 0.5M1 RFG08 6.4 0.4 20.1 8 07 0.5M1 RFG08 6.4 2.8 21.4 8 07 0.5M1 STAGE 4 6.2 4.1 22.4 8 07 0.5M2 RFC1009 185 149 24.9 8 07 0.5M2 RFG08 1.08 6.3 0.8 20.1 8 07 0.5M2 RFC1009 185 149 25.3 8 07 0.5M2 RFC1009 185 149 25.3 8 07 0.5M2 RFC1009 185 149 25.3 8 07 0.5M2 AME.AIR 25.3 25.0 1T MAS NOT POSSIBLE TO OBTAIN - ACCESS TO STAGE 1 25.0 25.0 19 07 0.5M1 STAGE 1 6.4 3.2 21.0 19 07 0.5M1 STAGE 1	
13 07 0.5 M2 KFG08 19.7 15 07 0.5 M2 EFG08 20.3 15 07 0.5 M2 AMB AIR 24.4 24HR.COMPOSITES PLUS HOURLY SAMPLING ON 07+08. 24.4 24HR.COMPOSITES PLUS HOURLY SAMPLING ON 07+08. 24.4 27 07 0.5 M1 RFC1009 204 169 27 07 0.5 M1 RFC1009 201 170 28 07 0.5 M1 RFC1009 227 179 2.8 21.4 28 07 0.5 M1 STAGE 1 6.3 28 07 0.5 M1 STAGE 4 6.2 4.1 22.4 26.3 2.8 21.4 25.3 2.8 07 0.5 M1 AMB.AIR 25.3 2.8 07 0.5 M2 RFC1009 185 149 2.9 0.5 M2 RFC1009	
5 07 0.5 M2 AMB AIR 20.3 24HR.COMPOSITES PLUS HOURLY SAMPLING ON 07+08. 24.4 24HR.COMPOSITES PLUS HOURLY SAMPLING ON 07+08. 7 07 0.5 M1 RFC1009 204 169 7 07 0.5 M2 RFC1009 200 170 18 07 0.5 M1 RFC08 6.4 0.4 20.1 8 07 0.5 M1 RFC1009 227 179 0.4 20.1 8 07 0.5 M1 RFC1009 227 179 2.8 21.4 8 07 0.5 M1 STAGE 1 6.3 2.8 21.4 8 07 0.5 M1 STAGE 4 6.2 4.1 22.4 8 07 0.5 M2 RFG08 1.08 6.3 0.8 20.1 8 07 0.5 M2 RFG08 1.08 6.3 0.8 20.1 8 07 0.5 M2 RFG08 1.08 6.3 0.8 20.1 8 07 0.5 M2 RFG08 1.08 6.3 0.8 20.1 8 07 0.5 M2 RFG08 1.08 6.3 0.8 20.1 8 07 0.5 M2 RFG1009 185 149 25.3 25.0 11 WAS NOT POSSIBLE TO OBTAIN ACCESS TO STAGE	
24HR.COMPOSITES PLUS HOURLY SAMPLING ON 07+08. 27 07 0.5M1 RFC1009 204 169 27 07 0.5M2 RFC1009 200 170 28 07 0.5M1 RFG08 6.4 0.4 20.1 28 07 0.5M1 RFG08 6.3 2.8 21.4 28 07 0.5M1 STAGE 1 6.3 2.8 21.4 28 07 0.5M1 STAGE 4 6.2 4.1 22.4 28 07 0.5M1 STAGE 4 6.2 4.1 22.4 28 07 0.5M2 RFG08 1.08 6.3 0.8 20.1 28 07 0.5M2 RFG08 1.08 6.3 0.8 20.1 28 07 0.5M2 RFG08 1.08 6.0 4.2 21.9 28 07 0.5M2 RFG08 1.08 6.0 4.2 21.9 28 07 0.5M2 RFG1009 185 149 25.3 28 07 0.5M2 RFG108 1.08 6.0 4.2 21.9 28 07 0.5M2 INT.AIR 25.3 28 07 0.5M2 INT.AIR 25.3 29 07 0.5M1 RFG08 6.4 266 C.5 20.0 29 07 0.5M1 STAGE 1 6.4 3.2 21.0 29 07 0.5M1 STAGE 4 5.9 4.0 21.8	
07 0.5M1 RFC1009 204 169 07 0.5M2 RFC1009 209 170 08 07 0.5M1 RFG08 6.4 0.4 20.1 08 07 0.5M1 RFG08 6.4 0.4 20.1 08 07 0.5M1 RFG08 6.3 2.8 21.4 08 07 0.5M1 STAGE 4 6.2 4.1 22.4 08 07 0.5M2 INT.AIR 25.3 2.8 21.4 08 07 0.5M2 RFG08 1.08 6.3 0.8 20.1 18 07 0.5M2 INT.AIR 25.3 24.9 9 18 07 0.5M2 RFG1009 185 149 4.2 21.9 18 07 0.5M2 AME.AIR 25.3 23 24.9 18 07 0.5M2 INT.AIR 25.0 1 1 17 WAS NOT POSSIBLE TO OBTAIN ACCESS TO STAGE 1 4.2 20.0 1 19	
08 07 0.5M1 RFG08 6.4 0.4 20.1 08 07 0.5M1 RFC1009 227 179 2.8 21.4 08 07 0.5M1 STAGE 1 6.3 2.8 21.4 08 07 0.5M1 STAGE 4 6.2 4.1 22.4 08 07 0.5M2 INT.AIR 25.3 24.9 08 07 0.5M2 RFG08 1.08 6.3 0.8 20.1 08 07 0.5M2 RFG1009 185 149 24.9 08 07 0.5M2 RFC1009 185 149 08 07 0.5M2 RFC1009 185 149 08 07 0.5M2 RFC1009 185 149 08 07 0.5M2 AME.AIR 25.3 25.3 08 07 0.5M2 INT.AIR 25.0 25.0 11 MAS NOT POSSIBLE TO OBTAIN ACCESS TO STAGE 1 0.5 20.0 09 07	
08 07 0.5M1 RFC1009 227 179 08 07 0.5M1 STAGE 1 6.3 2.8 21.4 08 07 0.5M1 STAGE 4 6.2 4.1 22.4 08 07 0.5M1 AMB.AIR 25.3 08 07 0.5M2 INT.AIR 24.9 08 07 0.5M2 RFG08 1.08 6.3 0.8 20.1 08 07 0.5M2 RFG1009 185 149 08 07 0.5M2 STAGE 4 1.08 6.0 08 07 0.5M2 INT.AIR 25.3 08 07 0.5M2 INT.AIR 25.0 1T WAS NOT POSSIBLE TO OBTAIN ACCESS TO STAGE 1 25.0 09 07 0.5M1 STAGE 1 6.4 3.2 21.0 09 07 0.5M1 STAGE 4 5.9 4.0 21.8	
18 07 0.5M1 STAGE 1 6.3 2.8 21.4 8 07 0.5M1 STAGE 4 6.2 4.1 22.4 18 07 0.5M2 INT.AIR 25.3 24.9 18 07 0.5M2 INT.AIR 24.9 18 07 0.5M2 RFG08 1.08 6.3 18 07 0.5M2 RFC1009 185 149 18 07 0.5M2 RFG1 1.08 6.0 4.2 21.9 18 07 0.5M2 AME.AIR 25.3 25.0 1 17 MAS NOT POSSIBLE TO OBTAIN ACCESS TO STAGE 1 5.0 19 07 0.5M1 STAGE 1 6.4 3.2 21.0 19 07 0.5M1 STAGE 4 5.9 4.0	
8 07 0.5M1 STAGE 4 6.2 4.1 22.4 8 07 0.5M1 AMB.AIR 25.3 24.9 8 07 0.5M2 INT.AIR 24.9 8 07 0.5M2 RFG08 1.08 6.3 0.8 20.1 8 07 0.5M2 RFG08 1.08 6.3 0.8 20.1 8 07 0.5M2 RFC1009 185 149 4.2 21.9 8 07 0.5M2 STAGE 4 1.08 6.0 4.2 21.9 8 07 0.5M2 AME.AIR 25.3 25.0 1 8 07 0.5M2 INT.AIR 25.0 1 1 17 WAS NOT POSSIBLE TO 0BTAIN ACCESS TO-STAGE 1 1 1 2 9 07 0.5M1 STAGE 1 6.4 3.2 2 1.0 9 07 0.5M1 STAGE 4 5:9 5:9 4.0 2 1.0	
8 07 0.5M1 AMB.AIR 25.3 8 07 0.5M2 INT.AIR 24.9 8 07 0.5M2 INT.AIR 24.9 8 07 0.5M2 RFG08 1.08 6.3 0.8 20.1 8 07 0.5M2 RFC1009 185 149 4.2 21.9 8 07 0.5M2 STAGE 4 1.08 6.0 4.2 21.9 8 07 0.5M2 AME.AIR 25.3 25.3 8 07 0.5M2 AME.AIR 25.3 8 07 0.5M2 INT.AIR 25.0 IT WAS NOT POSSIBLE TO OBTAIN ACCESS TO STAGE 1 25.0 9 07 0.5M1 STAGE 1 6.4 266 5.5 20.0 9 07 0.5M1 STAGE 1 6.4 3.2 21.0 9 07 0.5M1 STAGE 4 5.9 4.0 21.8	
18 07 0.5M2 RFG08 1.08 6.3 0.8 20.1 18 07 0.5M2 RFC1009 185 149 18 07 0.5M2 RFC1009 185 149 18 07 0.5M2 RFC1009 185 149 18 07 0.5M2 STAGE 4.2 21.9 18 07 0.5M2 AME.AIR 25.3 18 07 0.5M2 INT.AIR 25.0 17 MAS NOT POSSIBLE TO OBTAIN ACCESS TO STAGE 1 5.0 19 07 0.5M1 STAGE 1 6.4 3.2 20.0 19 07 0.5M1 STAGE 1 6.4 3.2 21.0 19 07 0.5M1 STAGE 4 5.9 4.0 21.8	
08 07 0.5M2 RFG08 1.08 6.3 0.8 20.1 08 07 0.5M2 RFC1009 185 149 4.2 21.9 08 07 0.5M2 STAGE 4 1.08 6.0 4.2 21.9 08 07 0.5M2 STAGE 4 1.08 6.0 4.2 21.9 08 07 0.5M2 AME.AIR 25.3 25.0 08 07 0.5M2 INT.AIR 25.0 25.0 11 MAS NOT POSSIBLE TO OBTAIN ACCESS TO STAGE 1 5.0 09 07 0.5M1 STAGE 1 6.4 266 C.5 20.0 09 07 0.5M1 STAGE 1 6.4 3.2 21.0 09 07 0.5M1 STAGE 4 5.9 4.0 21.8	
18-07-0.5M2 STAGE 4 1.08-6.0 4.2 21.9 18 07 0.5M2 AME.AIR 25.3 18 07 0.5M2 INT.AIR 25.0 IT WAS NOT POSSIBLE TO 0BTAIN ACCESS TO STAGE 1 19 07 0.5M1 RFG08 6.4 266 C.5 20.0 19 07 0.5M1 STAGE 1 6.4 3.2 21.0 19 07 0.5M1 STAGE 4 5.9 4.0 21.8	
8 07 0.5M2 AME.AIR 25.3 8 07 0.5M2 INT.AIR 25.0 IT MAS NOT POSSIBLE TO OBTAIN ACCESS TO STAGE 1 25.0 9 07 0.5M1 RFG08 6.4 266 0.5 20.0 9 07 0.5M1 STAGE 1 6.4 3.2 21.0 9 07 0.5M1 STAGE 4 5.9 4.0 21.8	
8 07 J.5M2 INT.AIR 25.0 IT WAS NOT POSSIBLE TO OBTAIN ACCESS TO STAGE 1 9 07 J.5M1 RFG08 6.4 266 10.5 20.0 9 07 J.5M1 RFG08 6.4 266 1.5 20.0 9 07 J.5M1 STAGE 1 6.4 3.2 21.0 9 07 J.5M1 STAGE 4 5.9 4.0 21.8	
9 07 0.5 0.5 20.0 19 07 0.5 5.9 3.2 21.0 9 07 0.5 5.9 4.0 21.8	
9 07 0.5M1 STAGE 1 6.4 3.2 21.0 9 07 0.5M1 STAGE 4 5.9 4.0 21.8	- (
9 07 0.5M1 STAGE 1 6.4 3.2 21.0 9 07 0.5M1 STAGE 4 5.9 4.0 21.8	
9 07 0.5M1 STAGE 4 5.9 4.0 21.8	
9 U7 U.5M1 AME.AIR 25.8	
9 U7 U.5M1 INT.AIR 24.9	
9 07 0 • 5 MI EFGUO 190	
19 07 - 0.5M2 RFG08 1.11 6.5 264	
9 07 0.5M2 STAGE 1 1.11 6.3 4.2 21.6	
9 07 0.5M2 AMB.AIR 25.8	
19-07-0.5M2-INT.AIR-24.8-24.8	
19 07 0.5M2 EFG08 179	

		Ta	able A-1 Cont'd		A-13
		G	ENERAL OPERATING D	ΑΤΑ	
L 07 THE FI	COMPOS	SITE SAMPLE 11	13 - 22/07 COMPOS ED ON 16/07 AT1500	TIE SAMPLE TAKEN •5DAY ACCLIMITIZATION	
YMON	PILOT- UN IT	SAMPLE FLOW IDENTITY L/M	PH ALK SS VSS MG/L MG/LMG/L	30 MIN DO TEMP . SETTLE MG/L DEG-C ML/L	ti 1(3:
1 07	0.5M1	RFG11		19.8	
1 07	0.5M1	AME.AIR		24.1	
1 07 1 07	0.5M2 0.5M2	RFG11 EFG11		19.8 20.7	
2 07	0.5M1	RFG08 EFG0,		19.4	
2 07	0.5M1	AME.AIR		22.8	
2 07	0.5M2 0.5M2	RFG08 EFG08		19.4 20.6	
2 07 2 07 END	0.542 0.542 OF EXP	RFG08 EFG08 PERIMENT		19.4 20.6	
2 07 2 07 END	0.542 0.542 OF EXP	RFG08 EFG08 PERIMENT		19.4 20.6	
2 07 2 07 END	0.5M2 0.5M2 OF EXP	RFG08 EFG08 PERIMENT		19.4 20.6	
2 07 2 07 END	0.542 0.5M2 OF EXP	RFG08 EFG08 PERIMENT		19.4 20.6	
2 07 2 07 END	0.542 0.5M2 OF EXP	RFG08 EFG08 PERIMENT	•	19.4 20.6	
2 07 2 07 END	0.542 0.5M2 OF EXP	RFG08 EFG08 PERIMENT	•	19.4 20.6	
2 07 2 07 END	0.542 0.5M2 OF EXP	RFGO8 EFGO8 PERIMENT		19.4 20.6	
2 07 2 07 END	0.542 0.5M2 OF EXP	RFGO8 EFGO8 PERIMENT		19.4 20.6	
2 07 2 07 END	0.542 0.5M2 OF EXP	RFGO8 EFGO8 PERIMENT		19.4 20.6	
2 07 2 07 END	0.542 0.5M2 OF EXF	RF GO 8 EF GO 8 PERIMENT		19.4 20.6	

Table A-1_Cont'd GENERAL OPERATING DATA

SERIES B-2 ORGANIC CARBON REMOVAL MODE TIME FLOW WEIGHTED VOL. TIME FLOW WEIGHTED VOL. -----(L/M) ----(MLS) ----(L/M) ----(MLS) 2. 52 74 90 0 13 3.06 65 -3-42-100-2 2.06 60.7 15 4.65 137 3 1.91 56 16 5.86 172 1.84 54 -4-17 6.54 192 5 182 53 200 18 6.81 1.82 19 53 6.58 193 6 ---7 ---1.82 -53 -----20--6-36-173 8 1.82 53 21 4.99 141 9 1.91 56 22 3.40 100 10 2.04 23-2.84 60-83-11 2.27 67 24 2.52 74 12 2.63 AVERAGE=3.36 L/M. 77 AYMON PILOT SAMPLE FLOW PH ALK SS VSS 30 MIN DO TEMP UNIT IDENTITY L/M MG/L MG/LMG/L SETTLE MG/L DEG-C ML/L 23/07 TO 28/07 . ACCLIMITIZATION 23 D7 0.5M2 3.13 23 07 0.5M1 FLOW FROM FLOW CONTROLLER. FLOWS ARE LISTED . 28 07 24HR. COMPOSITE BEGAN AT 0900 28 07 0.5M1 RFC0908 275-241-28 07 0.5M1 EFC0 90 8 202 28 07 0.5M2 RFC0908 146 130 28 07 0.5M2 EFC0908 333 29 07 0.5M1 1000-2.0 29 07 0.5M1 . RFG09 6.9 29 07 0.5M1 EFG09 6.8 20.8 29 07 0.5M1 STAGEL 3.7 29 07 0.5M1 STAGE4 4.3 21.2 29 07 0.5 M1 AMB.AIR 23.1 29 07 J.5M2 RFGC9 3.4 6.9 29 07 0.5M2 EFG09 3.4 6.8 29 07 J.5 M2 20.8 STAGE1 3.4 6.8 29 07 0.5M2 4.2 20.7 STAGE4 3.4 6.8 29 07 0.5M2 23.1 AME. AIR 30 07 WASTED SLUDGE FROM THE SEWAGE PLANT IN THE INFLUENT AT 0900 (No. 64 08 0.5M1 STAGE1 6.5 1.8 20.4 21.0 64 08 0.5M1 STAGE4 3.8 7.0 04 03 0.5M1+2AMB.AIR-22.8 04 08 0.5M2 STAGE1 6.5 1.8 20.2 04 08 J.5M2 STAGE4 6.9 3.8 21.0

Table A-1 Cont'd GENERAL OPERATING DATA

DAYMON PILOT SAMPLE I UNIT IDENTITY	FLOW PH L/M	ALK SS VSS 30 MIN MG/L MG/LMG/L SETTL ML/L	DO TEMP Emg/l deg-c
04 08 0.5M1 RFC0908 04 08 0.5M1 EFC0908 		253 181 197 	
05 08 0.5M1 1530 05 08 0.5M1 RFG15 05 08 0.5M1 EFG15	5.13 6.0 6.06		1.4 20.4 3.0 21.2
05 08 0.5M2 EFG15	3.27 6.0 3.27 6.8		1.4 20.4 3.1 21.5
06 08 0.5M1 RFG 06 08 0.5M1 EFG 06 08 0.5M1+2AME.AIR	6.7 6.9		1.7 20.5 3.0 20.8 23.5
06 08 0.5M2 RFG15 06 08 0.5M2 EFG15	3.5 6.7 3.5 6.79		1.7 20.5 2.9 20.2
07 08 0.5M1 RFG13 07-08-9.5M1 EFG13 07 08 0.5M2 RFG13	6.7 6.9 3.47 6.7		20.6 21.1 20.6
07 08 0.5M2 EFG13 09 08 0.5M1 1530 09 08 0.5M1 RFG	5.08		20.8
09 08 0.5M1 EFG 09 08 0.5M1+2AM8.AIR 09 08 0.5M2 EFG09	3.44		21.0 24.3 21.2 20.8
END OF EXPERIMEN	τ		
			-

A-16 Table A-1 Cont'd GENERAL OPERATING DATA SERIES C DYNAMIC RESPONSE (G.5M UNIT) C-1 NITRIFICATION MODE 07 AVERAGE FLOW SET AT 1.3 L/M LL CHANGES TO FLOW DURING THIS RUN WERE MADE 15 MIN. BEFORE THE HOUR LL SPIKE CHANGES DURING THIS RUN-WERE-MADE 10 MIN. BEFORE THE HOUR H4CL=3G/L; NAHCO3= 9.0 G/L, DEXTROSE= 5G/L. THIS SOLUTION WAS ADDED AT 1100HR N 10/07 AT A FLOW RATE OF 12.9 ML/MIN UNTIL 2345HR ON 11/07 SPIKE CONCENTRATIONS. TKN SPIKE=7.71G NH4CL + 23.13G NAHCO3 IN ONE LITRE TOC SPIKE=7.CG DEXTROSE IN ONE LITRE HESE ARE THE CONCENTRATIONS USED FROM 12/07 TO 17/07 F=FLOW OF RAW FEED IN L/M , DW=FLOW OF DILUTION WATER IN L/M DC=FLOW OF TOC SPIKE IN ML/MIN , TKN=FLOW OF TKN SPIKE IN ML/MIN MON PILOT SAMPLE FLOW PH ALK SS VSS 30 MIN DO TEMP CHEMICALS -UNIT IDENTITY L/M MG/L MG/LMG/L SETTLE MG/L DEG-C RF ML/L DW TOCTKN 07 0.5MI -0 .672 0 1 14.2 07 0.5MI 1200 14.2 . 672 . 46 1 C7 0.5MI 1600 1.83 1.14 28.4 07 0.5M1 RFG12 6.8 368 19.0-07 0.5MI EFG12 7.0 190 20.3 0.5MI 07 . 672 n ۵ G 0 0.5MI 07 0800 .672 0 14.2 14.2 0.5M1 1600 07 1-97-1-14-9-0-07 0.5MI RFG10 390 3 20.5 7.6 07 0.5MI EFG10 7.3 230 4.3 21.0 0. 5MI 07 n .454 0 14.2 0 07 0.5MI-0800 1-94-8-6-28.4 1.94 1.14 39.7 07 0.5MI - 1200 0 07 0.5MI - 1600 1.94 0 26.1 n 07 0.5MI RFG10 21.5 07 0.5MI EFG10 22.5 07 0. 5MI 0 .633 0 13.0 17.0 07 0.5MI 0800 1.94 0 26.0 34.0 1300 26.1 07--0.5MT 1.94 0 -0-07 0.5MI 1600 1.94 0 C 0 07 0.5MI RFG14 20.5 7.2 07-0.5MI EFG14---7.1-360-21.0 07 0.5MI C 1.94 0 -<u>C</u>---0-0.5MI .672 07 0800 0 13.0 0 .672 0.57 13.0 0 07 0.5MI 1200 07-0.5M1 -1400 .672-0.57-0-

1.94

C

C

C

07

0.5MI

1600

		n bar N	Table GENE	e A-l (PAL OPS	Cont'd	I NG DATA					P	-17	_
ON	PILOT UNIT	SAMPLE FLOW Identity L/M	РН	ALK MG/L	SS MG/LI	VSS 30 MG/L SE ML	30 MIN SETTLE ML/L	DO MG/L	TEMP DEG-C	CHE RF	MICA	LS T	OCTKN
07 07	0.5M1 0.5M1	RFG14 EFG14							21.0				
07	0.5MI	0								.672	C	0	22.7
07	0.5MI	1600 END	OF	EXPER	IMENT					C	С	С	С
	ан с — с 				, , , , , , , , , , , , , , , , , , ,						-		
		an a naana											
		· · · · · · · · · · · · · · · · · · ·											
			-										
			~				-						
				e 	8				-				
	 	· · · · ·											
								1					
	r 		-										

.

			Т	able	A-1 Cont	'd					A-	18
			G	ENERAL	L OPERATI	ING D	ATA	Conten				
				С	-Z AND E	-2						
	ORGANIC	CARBON	REMOVAL	L MODE	E. 2.0M +	- 0.51	M UNITS	RUN I	IN PAF	RALLE	L	
-09	- OFCAN	EVOEDTHE	ENT-AT-	4.0.0GH	9-AL1-CH1	NCES			DEEL		u	
	SAMPLE	PS START	TEN 4 M	TN_BE!	FORE SAME		THE FOR	A MTN	- GR/			IK •
	RF=FLO	W OF SEL	HAGE (L	IN DE	W=FLOW OF	FINIL	UTTON W	ATER.	1. UK- (1.7M)	10.		
	TOC=FL	OW OF TO	C-SPIK	F. (ML	/M) TKN=	=FLOW	-OF-TKN	SPIKE	- (ML)	/M)		
	CONCEN	TRATION	OF SPI	KES.	TOC=100	1G. D'	FXTROSE	11.	TKN=	30 . 8G	NH4CL	11.
	BOTH U	NITS RUN	N AT AV	ERAGE	FLOW(113	3.5L/	M+3.4L/	MIFROM	1 1500	1 03/	D9 UNT	IL
-	-1000-0	7109. TC	JC SPIK	EAT	123ML/M F	ROM	0800 06	109-UN	ITIL 1	1000-	07/09.	
	DILUTI	ON WATER	R MAY H	AVE A	COOLING	AFFE	CT ON T	HE RAW	FEEC	J.		
									0			1.1.1.1
MON	PILUI	SAMPLE	-FLOW-	-PH	ALK	-122-	30-MIN-	-D0	TEMP-	CH	EMICAL	.5
	ОИТІ	IDENILI	IY L/M	r	MG/L MG/L	_MG/L	SETILE	MGZL	DE G-l	;	0W	TOOTK
					6		ML/L	Ne second second		RF	UW	TUCIK
09	100	0 -1 50 0HF	P .					1		74.9	0	66
			•							14	-	
-09			0-69.5-									
09	0.5M	1245	5 2.31						¥.			
		1								×		
09	150	8-2000HF	۶							123		49
- 0												
' 09	0.5M	1515	5 4.58									
	2.00	1920	1157-1	<i>c</i> 9					20.5	-	-	
109	0.07CH	EEC2601	n	6.0 4.9					19.1	5		
-09	-2.0M	-STAGE1		0.5			2		-19.1	, A		
, 09	0.5M	EFG1601	n	7.0					20.6	,		
-										·		
' 09	200	0-0100HF	R							56.7	19.0	-36
' 09	0.5M	2015	5 2.3									
109	2.0M	2241	0 77.5									
' 09	0.5+2M	RFG2C							20.4	+		
7 09	0.5+2M	AME.AIH	R				2		23.1	3		
1-09	2.04	STAGET		A					19.1	J		
7 09	2.04	STAGE4	^						19.0			
2-19	1-1-5M	-FF62001	n						-19.1	; 9		
							к;			•		
3 0 9	010	0-0600Hr	R.	а. – ²						75	G	122
8 0 9	0.5M	0200	0 2.32									
8 09	2.0M	0350	0 72.6						-			
8 09	0.5+24	REGUEST	0				A		20.	5		
8 09	0.5+2	AME.ALI	R						28.:	5		
8 U 3	2.04	STAGEL			1	,			20.0	J E		
8 U 3	0 54	STAUEN	o /						19.1)		
° 19	2-04	EF 60 631	n						19.	5		
0 0,	2.001	Ereuos	1						1.26.	, 		
8 0 9	060	0-1100HF	R.							159	Ũ	140
8 09	0.5M	0 901	0 4.5								1	/
8 19	2.04	091/	0147.0									

										•					
			Ψa	ble	A-1 (Cont	Б								0
		· · · · · · · · · · · · · · · · · · ·	GE	ENERA	L OP	ERAT	ING		4			-		A-1	.9
MON	PILOT UNIT	SA MPLE IDENTIT	FLOW Y L/M	РН	ALK MG/L	SS MG/I	VSS LMG/I	30 L S	IL/L MIN SETTLE	DO E MG/L	TEMP DEG-	RF CH) HEMI(DW CAL	TOCTKI S
09	1100)-1600HR	•									37.5	5 37 .	5	130
09	0.5M 2.0M	1230 1230	2.31 73.6												
09	0.5+2M 2.0M	RFG1230 STAGE1		6.9			i.A.				20.	с 8	-		
09	2.0M 0.5M	EFG1230 EFG1230		6.9 6.9							17.	4			
09	1600)-2100HR	•									125	36		82
09 09 09	0.5M 2.0M 0.5+2M	1620 1620 RFG1830	4.62 155.0	3							20.	0			
09	2.0M 2.0M 2.0M	STAGE1 STAGE4 EFG1830)								18. 18. 18.	7 7 7			
09	1830	WARMER	DILUT	ION P	ATER	INS	TALL	ED.			19.	1			
-09	2100)-0200HR					1.19					159	0		-265-
09 09 09	2.0M 2.5+2M 0.5+2M 0.5+2M	2145 2145 RFG2200 AMB.AIR	4.5 154-5-					1			20. 18.	5 0			
09 09 09 09	2.0 M 2.0 M 2.0 M 0.5 M	STAGE1 STAGE4 EFG2200 EFG2200							2		20. 20. 20. 20.	5 5 5 5			
09	0200	3-0700HR	•									75	٤		130
09 09 09 09 09	0.5M 2.0M 2.0M 2.0M 2.0M 2.0M	EFG0600 EFG0600 STAGE1 STAGE4 0550 0550	69.2								20. 20. 20. 20.	2 2 2 2			
03	6700	0-1200HR	•									159	C		259
09	2.0M 0.5M	1025 1111	146.5									7			

	Tab	le	A-	1	Co	n	t	'd	
			** *				-		

GENERAL OPEPATING DATA

HON	PILOT	SAMPLE	FLOW	PH	ALK	SS	VSS	30 MIN	DO	TEMP	СН	EMICAL	S
	UNII	IUENTITY	L/4		MG/L	MG/L	MG7L	ML/L	MG/L	026-0	RF	DW	TOCTKN
09	1200	-17CC									79.5	79.5	253 (
-09	2.0 M	1235-1	49.1	-									
09	9.5M	1235	4.6										
09	3.5+2M	RFG1245								19.7			
-09-	3.5+2M	AME. AIR				-				23.5			
09	2.0M	STAGE1								18.2			
09	2.0 M	STAGE4								18.8			
-09	-2.0M	EFG1245								-19-0	1		
09	0.5 M	EFG1245								19.2			
09	1700	0-2200									79.5	79.5	132
-09	0.5M-	1700-	4.7-					·····					
09	2.0M	1700 1	47.3										
09	0.5+2M	AME.AIR								22.5			
.09	3.5+2M	RFG1700								20.2			
09	U.5M	EFG1700								18.7			
09	2.04	STAGEL				1.132			# <u>_</u>	18.3			
09	2.0M	EF G1 700								18.3	5		
09	2201	-0-30 PHR.							<u>_</u>		75		-122-
09	0.5M	2245	2.3										
-09	2.0M-	2244	72.4										
09	0.5+2M	RFG2245								20.7	10		
09	0.5+2M	AME. AIR								20.0			
-09	0.5M	EF 62245				*11 B				20.3			and the second
09	2.0M	STAGE1								20.3			
09	2.0M	STAGE4								20.3			
-0-9	2.0 M	-EFG2245-								20.3			
09	2.0M 0.5M	0230	2.3										
09	0301	0 -0800 HR	•				1				159	C	260
-09	3.5+2M	-RFG0 423-				/				20.5	;		
09	0.5+2M	AME.AIR								15.5			
09	2.9M	STAGE1								20.6	1. 4.		
-09	2.04	STAGE4						1.84		20.4			
09	0.5M	EFG0 423								19.5			
09	0.5M	0730	4.66										
09	2.0 M	0730 1	45.3			16						1	
09	0800H	R. END O	FEXP	ERIM	IENT								

		1		6.		Table	_A-2_			Star (A-21	
					BI0-	SURF	PILO	T PL	ANT T	ESTI	NG					
MON	PILOT	SAME	LYTIO	CAL	RESU	LTS -	SER	IES	A1 + RED	A2 ()	ACCLI	FII	IZATI	ON) D		
	UNIT 1			-800	-000	TKN-	-800	-000	TKN	-800-	-000-	TOC	NH3N	NOZN	-N0-3N-	TKN
06	•5 M1	EFC	8 0 9 0				35	204	20.7	15	46	26	13.0	0.2	0.2	16.2
06	5M1+2	RFC	8 0 9 0										14.6	-0.1	-0-1	•
06	.5 M1	EFC	8060				19	108	20.6	7	21	18	13.0	0.4	0.2	15.8
06	5M1+2	RFC	90 8				91	293	26.2	33	105	31	17.0	0.1	1.6	19.9
06	.5M1	EFCI	8 0 9 0				16	96	3.8	5	33	17	0.8	10.1	0.0	2.3
-06-		EFC	8 06 0				-30	138	19.6	9	75	-22	15.0	C . 4	0.0	15.4
06	5M1+2	RFC	8 06 0				100	264	24.1	32	92	33	16.0	0.0	0.0	17.9
06	.5M1	EFC	0 90 8				16	75	6.2	6	59	15	0.8	17.0	1.5	1.7
06	• 5 M2	EFC	8000				35	205	18.9	9	.54	19	12.0	1.2	0.0	13.6
06	5M1+2-	RFC	8 06 0										18.0	0.0	0.0	•
06	.5 M1	EFC	0908				15	96	4.4	4	75	10	2.0	3.6	8.0	3.3
06	•5 M2	EFCI	0908				18	155	5.5	4	54	10	1.0	9.1	0 . G	2.7
06	.5M1	EFC	0 90 8				23	192	6.1	3	42	10	1.0	2.9	7.8	2.6
06	• 5 M2	EFCI	0908		<u>.</u>		23	172	9.7	5	46	10	1.0	9.7	0.0	2.2
06	5M1+2	RFC	0 90 8				100	310	25.2	32	96	36	19.0	G.G	0.2	19.2
06	.5M1	EFC	0 90 8				42	190	6.4	4	54	10	0.9	1.0	6.7	1.6
06	•5 M2	EFCI	0908					206	4.7	4	54	10	0.7	5.6	1.3	3.0
08	5M1+2	IRFC	1009			27.9	109	233	31.8		90	32	20.0	0.0	0.5	21.4
		-EFC:	1009	-22	46	20.8	109		-22-1		-60-	17	14.0	0.3	0.6	18.8
08	•5 M2	EFC	1009	18	37	21.6			23.1		60	18	18.0	0.1	0.2	19.4
08	. 5M1+2	ARFC:	1413		108		56	226	22.1		63	19	15.0	0.2	0.3	17.4
2 0 8	• 5 M1	EFC	1413		133	17.6			19.7		49	14	13.0	1.2	1.1	15.1
80	•5 M2	EFC	1413	22	97	19.5			21.6		50	15	14.0	0.5	0.8	15.6
													•		3.	
							<u></u>									
				. /							-					1
1									2.2							
15																
							<u> </u>									
											1.1.1					

					Г	able	A-2	Cont	'd				1	A-22_	
				8	10-	SURF	PILO	T PL	NT TE	STING					
			ΔΝΔΙ	YTTC		RESIL	1970	SER	TES B1	ICOMPOS	TTE	5)			
MO	N	PILOT	SAMPLE	SE	TTL	ED	UNF	ILTER	RED	100111-05	FI	TEPE)		
	(UNIT I	OFNTITY	SA	MPL	Ē	SI	AMPL			S	MPLE	, ,		
	-			800-	-000-	TKN	800	-000-	TKN	800 000	TOC-	NH3N	NO2N	-NO3N-	TKN-
	05	. 5M1	RFC0908			17.8	81	194	51.8	64	32	11.0	5.1	0.6	15.8
	65	. 5 1	EFC0908	8	69	5.5			19.9	49	14	4.6	1.0	4.2	4.8
	05	• 5M2	RF C C 90 8			16.8	72	205	24.2	62	26	11.0	0.1	0.7	16.2
	05	• 5 M2	EFC0908	11	117	7.3			11.8	42	14	1.0	1.5	2.9	5.2
	07	EM1	DECOORS			17.0	107	720	25 1	6.6	72	E 0	0 0	0.2	0.5
	07	-5M1-	-EF C0 90 8	-12-	-75	-5.9	105	520	-8.0-		-15	-2.9	-3.8	-3.3	
	07	. 542	RF C0 90 8			17.8	78	219	17.3	59	27	8.0	0.0	0.4	9.6
	67	• 5 12	EFC0908	9-	65	3.2			4.8	41	13	0.6	9.6	3.2	-1.7
	07	5M1-	RECOSOS			25.5	-119	-340-	27-4-	7-3	-46	-18-5		-0-3-	-20-4
	07	. 541	EF C0 90 8	14	103	12.3			15.2	66	27	7.0	0.1	5.3	13.0
	f.7-	- 5M2	RECOOR			-22-0		298	-24-7-			-1 4 - 6-		-1-2	19.0
	67	. 5M2	EFC0 908	10	77	8.3	00	230	11.2	58	22	4.0	0.7	5.9	7.3
		<u>.</u>													
	07	• 5M1	RF C0 90 8			27.2	137	376	30.1	70	48	16.0	0.1	0.1	20.1
	C7	. 5 1	EFC0908	19	89	10.9			16.7	54	22	7.2	0.5	4.6	9.0
	07	. 5M2	RF C0 90 8			23.5	103	322	25.1	56	37	14.0	0.0	0.0	17.1
	07	.5 M2	EFC0908	14	94	6.7			11.2	49	16	3.4	0.9	5.3	4 . 9
	07	. 5M1	RF C0908			24.7	1 31	359	30.3	G	40	15.0	0.4	0.3	19.6
	C7	• 5M1	EFC0 908	30	98	12.3			15.3	0	18	7.2	0.7	4.4	9.2
	07	. 5M2	RF C0 90 8			27.5	119	290	26.3	C	36	15.0	0.2	0.0	17.2
-	07	• 5M2	EF C0 90 8	37	83	-5.9			10.1-	C	15	3.0	-1.5	5.3	-4.3
-0.7			0000000						745		- - - -				
07		• 5 M1	FFC1110	3.0	120	16.0	140	440	23.0	140	21	20.0	2.6	2.8	14.2
0,		• • • • •	-, 01110	00	100	10.0			20.0				2.0	2.0	
07		•5 M2	RFC1110		237		134	415	-24-8-	130-	-38	21.0	0.3	0.5	-21 - 9
07		•5M2	EFC1110	11	87	5.8			11.7	65	17	4•0	1.2	2.7	4.2
EED	A	ND EFF	FLUENT S	AMPLE	ES I	N .5M	1 WE	RE I	NTERCH	ANGED BY	AC	CIDEN	T		
		1													
07		.5 M1	RFC1110		440	33.8			38.2	390	50	29.0	0.1	0.6	31.7
07		.5M1	EFC1110		315		145	369	27.9	162		7.0	2.5	2.2	9.2
		5 M2	DEC1110		263		30	1.27	20 1.	11.9	1.0	17 0	0 0	1 3	23.
07		. 2112	KI CIIIU		200		30	461	20.4	140	40	TION	0.0	3.5	

				Table	A=2	_Con	t'd					A-23	
			BI0-5	SURF	PILO	PL	ANT TES	STING					
*		ANAL	YTTCAL	RESUL	1976 TS -	SER	IFS B2	(COMPOS	TTE	5)			
MON	PILOT UNIT	SAMPLE	SETTLE	D	UNF				FII	TERE)		
07	5 M1	PECDODA	-BOD-COD	TKN	-B0D-	255	TKN	300 - 000-	TOC	NH3N	NO2N	NO3N	TKN
07	.5 11	EF C0 908	34 142	23.3	1 00		27.3	70	24	17.0	G.6	0.1	19.5
07	.5 M2	RFC0908	180	18.8	105	272	26.7	75	30	14.0	0.0	0.0	19.9
U /	• 7 112			10.0			22.0	45	20	11.0	0.9		13.0
07	.5 M1	RFC0908	192		114	293	21.3	88	25	14.0	0.1	0.5	17.7
0/	.5M1	EF C0 90 8-	24 88	14.8		167	18.4	5 0	-18	12.0	0.6	0.1	13.0
07	.5M2	RFC0908 EFC0908	117 -116 -192	17.8	29	251	25.9	6 C 7 2	18	13.3	0.6	0.1	15.9
												r	
08-	.5M1	RFC0908	241		109	328	29.1-		-34	13.0	6.0	0.4	16.1
08	•5 M1	EFC0908	37 183	24.4			26.9	66	22	18.0	G.2	0.3	22.0
08	.5 12	RFC0 90 8	261		79	274	26.4	82	29	17.0	0.0	0.2	21.3
08	•5M2	EFC0908	22 129	21.4			22.7	57	17	14.0	0.1	0.3	19.3
08	.5 M1	RFC1514	266		109	353	31.3	91	29	18.0	6.0	0.4	23.5
08	•5 M1	EFC1514	24 141	21.5			22.8	60	18	14.0	0.1	0.3	18.9
08	.5 M2	RFC1514	224		106	295	29.2	74	25	18.0	G.O	0.3	21.2
08	• 5 M 2	EF C1514	32 174	23.8			20.3	66	19	11.0	0.1	0.3	16.9
08	.5M1	RF C0 90 8	213		131	303	30.9	84	33	19.0	0.0	0.2	23.2
08	•5M1	EFC0908	38 160	24.3			29.3	65	-22	15.0	0.1	0.4	19.3
08	.5M2	RF C0 90 8	225		103	254	26.8	74	26	18.0	6.0	0.2	20.8
08	• 5 M2	EFC0908	23 98	23.8			25.1	60	19	18.6	0.0	0.3	24.3
08	•5 M1	RFC1009	242		103	303	27.0	93	32	23.0	0.0	0.4	24.
08	•5 M1	EFC1009	33 168	21.7			25.6	74	21	19.0	0.4	0.4	19.1
08-	-5 M2	RFC1009	213		-72	250	23.5	76	30	20.0	0.0	0.2	20.9
03	•5M2	EFC1009	23 131	19.7			23.4	71	20	17.0	ŭ • 4	0.4	17.8
1						27							
					si di k					2			
-													
					<u>()</u>					(

		-			Table	A-2 Cont'd					A-24 -	
					BTO-SUPE	PTIOT PLANT T	ESTING					
					510 30	1976	- 511110					
				AN	ALYTICAL PES	SULTS - SERIES	BI (HOUR	LYI				
1	MOM	F	PILOT	SAMPLE	FLOW RATE	UNFILTERED		FIL	TERED			
		ι	TINI	IDENTITY		SAMPLE		S	MPLE			
					IGPM	BOD COD TKN	-800-000-	TOC	NH3N-	NOZN	NOSN	TKN
1	7 (7	. 5M1	RFG 900	0.130		41	15	8.3	0.3	0.6	11.3
1	7 (17	. 5M1	RFG1000	0.145		49	16	11.0	0.2	0.3	13.0
. 1	7-1	17	. 5M1	- RFG1100	0.162		49-	-15-	15.0	0.0	-0-1-	17.6
1	7 0	7	. 5 11	RFG1200	0.182		86	31	20.0	C. 0	0.0	24.0
1	7 (17	. 511	RFG1300	0.210		102	47	23.0	0.2	0.0	25.8
	7(7-	.5M1		0.229			43	20.0	0.0	0.0	23.5
-	7 (17	. 5M1	RFG1500	C.324		169	78	21.0	0.0	0.0	28.4
1	7 (17	. 5M1	RFG1600	0.414		159	92	21.0	0.0	0.0	28.7
-1	7-0	17	. 5M1	-RFG1700-	0.471		153-	-70	19.0	0.0	0.0	25.3
1	7 (17	. 5M1	RFG1800	0.484		135	72	18.0	0.0	0.1	24.0
1	7 (17	. 5M1	RFG1900	0.459		142	74	19.0	0.0	0.0	24.5
-1	7-0	7-	. 5M1	RFG2000-	0.409			67	18.0	0.0	0.1	21.9
	7 (17	. 5M1	RFG2100	0.329		98	58	16.0	0.0	0.0	19.9
1	7 (7	. 5M1	RFG2200	0.235		90	53	14.0	G . C	0.0	17.6
	7 (7	. 5M1		C . 205			-39-	13.0	0.0	0.0	18.2
•	7 (17	. 5 11	RFG2400	0.179		74	37	12.0	0.0	0.0	15.4
1	8 (17	.5M1	RFG 100	0.155		65	32	13.0	0.0	0.0	14.5
-	8 (17	. 5M1	P.FG -20	0.140		57	-24	13.0	0.0	0.0	13.7
1	8 (17	. 5M1	RFG 300	0.125		51	23	12.0	0.0	0.0	14.1
1	8 0	37	. 5M1	RFG 400	0.115		59	24	13.0	0.0	0.0	14.0
	81	17-	.5M1		0.115		53	-19	12.0	0.0	0.0	13.0
1	8 (17	. 5M1	PFG 600	0.115		41	17	10.0	0.0	0.0	10.2
1	8 (17	. 5M1	RFG 700	0.115		45	17	9.0	0.1	0.0	9.4
-	81	17	. 5M1	RFG 800	0.120		43	16	9.0	0.2	0.5	-9.7
1	8 (17	. 541	RFG 900	0.130		47	15	8.0	0.3	0.3	9.9
1	8 (17	. 5M1	RFG1000	0.145		42	16	10.0	0.2	0.2	12.6
- 1	8 - (17	. 5M1	-RFG1100-	0.162		48	17-	14.0	0.2	2.0	16.8
	8 1	17	.5M1	RFG1200	0.182		53	41	21.0	0.0	0.1	24.5
1	8 (17	. 5M1	RFG1300	0.210		73	50	22.0	0.0	0.0	25.4
-	8 1	17	. 5M1	-RFG1400	0.229		62	53	23.0	0.0	0.0	25.3
,	8 (17	.5M1	RFG1500	0.324		82	60	20.0	0.0	0.0	24.6
	8 (27	. 5M1	RFG1600	0.414		121	75	21.0	6.0	0.0	25.5
	8 1	37	. 5M1	-RFG1700	0.471		101	-59	18.0-	0.0	0.0	-20-7
	8 (70	. 5M1	RFG1800	0.484		95	56	16.0	0.0	0.0	19.0
3	8 (17	.5M1	RFG1900	0.459		190	61	18.0	0.1	0.9	19.8
-	8-1	27-	. 5M1	RFG200C	0.409		89	48	14.0	0.9	0.0	16.8
	8 (57	. 5M1	RFG2100	0.329		95	57	16.0	G.1	0.0	20.0
1	8 (17	. 5M1	RFG 2200	0.235		82	51	16.0	0.0	0.0	19.3
	8 1	C7	. 5M1	RFG2300	0.205		62	-33	12.0	0.0	0.0	13.8
	8 1	67.	.5M1	RFG2400	0.179		55	30	12.0	3.5	0.1	13.3
	9 1	07	.5M1	RFG 100	0.155		69	41	14.0	0.G	0.0	15.6
-	9	07	. 5M1	RFG 200	0.140		77	42	13.0	0.0	0.0	15.0
1	9 1	07	. 5M1	P.FG 300	0.125		54	24	13.0	0.5	0.0	14.6
10	9 1	[7	. 541	RFG 400	0.115		56	24	12.0	0.8	0.1	14.6
• 1	9 1	17	. 5M1	RFG 500	0.115		54	31	12.0	0.4	0.4	13-8
	9 (17	. 5M1	RFG 600	0.115		54	16	9.0	0.6	1.4	11.9
1	9 1	07	. 5M1	RFG 700	0.115		49	16	8.3	C.3	2.1	10.9
	9-1	27-	.5M1	RFG-8CD	0.120		49	18	8.0	0.5	2.2	9.6
	9 1	C7	. 5M1	RFG 900	0.130		45	14	2.0	8.0	14.1	11.0
	9 1	07	• 5M1	RFG1000	0.145		48	15	9.0	6.4	3.3	13.8
1	9 1	07	. 5M1	RFG1100	0.162		63	-22	11.0	0.3	-1.0	17.7

			Table A-2 Co	nt'd					A-	-25	
		AM	ALYTTCAL RES	ULTS - SEPTES	81 (HOUR	(Y 1				
MON	PILOT	SAMPLE	FLOW RATE	UNFILTERED		100	FTL	TERE)		
	UNIT	IDENTITY		SAMPLE			S	MPIF			
			TGPM	BOD COD TKN	ROD	COD	TOC	NHRN	NO2N	NO3N	TKN
7 (7 . 5M1	EEG 900	0.130	500 005 INT	000	57	15	6.9	6.2	7.1	1.4
7	7		6.145				-14-	-0-7-	-0-2	-7-3-	
7 1	7 544					45	1 4	0.7	0.2	7.1	1.1
7	7 • 2 m 1					45	14	0.0	0.7	7 0	1.0
	1 • 2 m]		0.182			41	14	1.2	0.3	1.0	2.1
		EFG1300	0.210			41	14	2.3	0.5	8.3	3.0
<u> </u>	17 • 5M1	EFG1400	0.229			41	15	4.1	0.6	8.2	4.3
<u>/ (</u>	1 . 5M3	EFG1500	3.324			41	15	6.5	0.6	7.8	6.6
7-4	· 5M1	EFG1600	C•414			-57-	18	10.3	0.5	4.0	11.8
7	17 • 5M1	EFG1700	0.471			57	22	12.8	0.5	2.0	14.4
7	17 .5M1	EFG1800	0.484			55	25	13.5	6.4	1.7	16.3
7	7-5M	EFG1960	0.459	and the properties of the second s		-61-	-25	12.5	6.4	1.5	13.7
7 1	. 541	EFG 2000	0.409			61	28	12.5	0.5	1.7	13.9
7	17 .541	EFG2100	0.329			57	22	11.9	0.5	1.9	12.7
7-1	17 . 5M1	EFG2200	0.235			45	-19	10.6	0.5	2.4	12.3
7 1	17 . 5M1	L EFG230	G.205			45	17	9.0	6.5	3.3	10.5
7	17 . 5M	L EFG2400	3.179	×		41	17	7.4	0.5	4.2	8.9
8	17541	EFG-100	0.155			-45	18-	-5.7	0.6	-5.0	-7.3
8	17 .5M	EFG 200	0.140			45	16	4.0	6.5	5.8	5.4
8	17 . 5M1	EFG 300	0.125			41	17	2.6	0.6	6.6	3.9
8	17 . 54	EFG 400	0.115			42	16	-1.4	0.6	7.3	-2.7
8	17 . 5M	L EFG 500	0.115			46	16	1.1	0.5	7.5	2.7
8	17 . 5M	EFG 600	0.115			44	17	0.6	0.4	7.5	1.6
8	7 5M		0.115-			-44	-15-	-0.6	2.3	7.3	-2.0
8	17 . 54	FEG 800	0,120			16	13	0.5	0.3	7.1	2.1
8	17 . 5M	EFG 900	0.130			53	14	6.9	0.3	6.4	2.2
8	17 . 5M	FFG100	0.145			-51	13	- 8.7	-0.3	6.4	-1.7
A	17 . 5M	EFG1100	1 0.162			51	14	6.6	0.3	7.1	2.1
8	17 5 4	EFG1200	0.182			67	13	3.4	1.1	8.7	4.4
8	17	FEC 1301	0.102								
9	17 EM	E EEC 16 01				4.7	13	n 9	0 5	8.0	2.3
9	7 EM4					41	11	5.7	1.0	7.7	6.8
0	J/ • 211.						-+6-				
0						E.	10	12 0	0 7	3 4	17 0
0	J/ • 7M.					54	19	12.0	0.7	2 2	10.0
8	J7 • 54.	1 EFG180		1			10	12.0	0.1	2	14.0
8	17 • 5M.	EFG190	0.459			22	25	12.0	0.7	2 • 1	13.5
8	07 • 5M	EFG200	0 0.409			22	25	12.0	0.9	2.3	13.5
8	U/ • 5M	1 EFG210	0 0.329				19	10.0	0.0		12.0
8	07 . 5M	EFG220	U-235			52	21	10.0	0.0	3.2	11.5
8	07 • 5M	1 EFG230	0 0.205			52	1/	8.6	0.8	3.9	9.6
8	07 .54	1 EFG240	0 0.179			49	16	1.6	0.8	5.0	8.1
9	07 . 54	1 - EFG 10	0 0.155			50	-1/	5.4	0.9	5.0	5.1
9	07 .5M	1 EFG 20	0 0.140			49	16	3.9	0.9	6.6	5.4
9	07 .5M	1 EFG 30	G.125			53	16	2.4	0.9	1.5	3.6
-9	07 .5M	1 EFG-40	0-0.115			53	-15	1.2	0.8	8.3	2.9
9	07 .5M	1 EFG 50	0 0.115			53	16	0.7	0.6	8.6	2.1
9	07 .5M	1 EFG 60	0 0.115			53	16	C.5	0.4	8.4	1.9
9	07 .5M	1 EFG-70	00.115			-53	-17		5.4	8.4	-2.0
9	07 .5M	1 EFG 80	0 0.120			53	17	C . 3	0.3	8.3	1.8
9	07 .5M	1 EFG 90	0 0.133			53	13	3.7	0.5	1.0	4.8
9-	07 .5M	1-EFG100	0-145-			-52	-13	-0.7	0.3	7.7	4.5
9	07 .5M	1 EFG110	0 0.162			49	13	C.6	0.3	7.7	5.0

_____A=26_____

Table A-2 Cont'd

BIO-SURF PILOT PLANT TESTING

				NAL VITON DE	1976					
			A	NALYTICAL RE	SULTS - SERIES	B2 (HOUR	LY)			
Y	MUN	PILOT	SAPPLE	FLOW RATE	UNFILTERED		FILT	ERED		
		UNII	IDENTITY	TODA	SAMPLE		SAM			
-	• •	F		-IGPM	BUD COUTIEN-	-800-600-	10C-N	H3N-NUZ	N-NOSN	-IKN
3	80	• 5 M1	RFGC9	C • 42		119	31 1	2.0 6.	3 9.2	14.1
3	08	•5 M1	RFG1J	G • 45		46	13 1	2.0 0.	2 0.0	13.8
3-	-08			0.50			-14-1	5.0-0.	-2-0.0	16.2
3	08	•5M1	RFG12	0.58		59	17 1	9.0 0.	1 0.0	21.3
3	08	• 5 M1	RFG13	0.675	T	118	38 3	1.0 0.	2 0.1	33.0
3	08-	.541	RFG14	0.754		158	53 3	5.0 0.	1 0.0	37.3
3	08	• 5 M1	RFG15	1.025		184	64 4	1.0 0.	0.0	42.8
3	08	• 5 M1	RFG16	1.29		168	59 3	1.0 0.	0.0.0	33.1
3	08-	5M1-		1.44		150-	-5C-2	5.0 0.	0.0	-27-9
3	80	.5 M1	RFG18	1.50		128	31 2	2.0 0.	0 0.0	23.0
3	08	.5M1	RFG19	1.45		168	60 2	8.0 0.	0.0	29.7
3	08	.5 M1	RFG20	1.41		160	52-2	6.0 C.	1 0.1	27.6
3	08	.5M1	RFG21	1.1		158	51 2	5.0 0.	1 0.1	27.7
3	08	.5 M1	RFG22	0.75		132	37 2	2.0 C.	1 0.1	23.9
13-	-08	.5 M1	RFG23	0.625-		98-	-27-1	5.0 0.	1 0.0	17-2
13	08	.5M1	RFG24	0.555		92	24 1	4.0 0.	0 0.1	15.1
4	08	.5 M1	RFGC1	6.49		84	32 1	4.C C.	1 0.1	15.2
14	38-	.5 M1	RFG02	0.455		96	-27-1	4.0 0.	1 9.0	15.1
14	08	.5M1	RFGC3	C. 42		80	22 1	4.0 0.	1 0.0	15.0
14	80	.5 M1	RFG04	0.405		70	18 1	4.0 0.	1 0.1	15.3
14	08-	.5 M1	RFG05-				-16-1	4.0 0.	1 0.3	15.2
14	08	.5 M1	RFG06	0.40		53	15 1	3.0 0.	1 0.4	14.5
14	08	.5M1	RFG07	0.40		50	14 1	2.0 0.	1 0.4	13.2
14	08	.5 M1	PFG08	0.40		50	-14-1	2.0 0.	1 0.5	-13-1
14	08	. 5 M1	RFGC9	0.42		45	14 1	1.3 0.	2 0.6	12.1
14	08	.5M1	RFG10	0.45		66	18 1	2.0 0.	2 0.5	13.1
14	08	5 M1	RFG11	-0.50			-24-1	7-0-0-	7 0.0	-19.
14	08	. 5 M1	REG12	0.58		89	22 1	9.0 0.	5 0.1	22.1
14	0.8	.5M1	REG13	0.675		148	37 2	7.0 0.	G 0.C	29.
14	08-	-5 M1	REG14				67-3	7.0 0.	0 0.0	-41-1
14	0.8	-5M1	REG15	1.025		164	46 3	2.0 0.	0 0.0	33.
14	0.8	.5 M1	REGIS	1.29		206	57 3	1.0 0.	0 0.0	32.
14	08-	5 M1				182	-53-3	3-0-0	0-0-0	-33.
14	0.8	.5 M1	PEGIA	1.50		130	35 2	2.0 0.	0 0.0	23.
14	0.8	. 5 M1	REG19	1.45		160	55 2	8.0 0.	0 0.0	29.
14	-08-					122	-35-1	9-0-0-	4 0.0	-19.
14	0.8	. 5 M1	PEG21	1.1		114	31 1	5.0 0.	5 1.4	16
14	0.8	5 M1	REG22	0.75		109	31 1	4.0 0.	3 0.1	15.
14	11 8	5M1		0.75	-			4-0-0-	2-0-1	-15-
14	0.8	5 N1	PEC 24	0.555		100	48 1	3 0 0	2 0.0	14
15	0.0	E M4	DEC01	0.40		100	70 I		1 6.0	15
10	00	- SHI		0.45			-21-+			
15	00	• 5 HL	RFGC2	C 422		81	24 1	5 0 0	1 0 3	15
15	00	• 5 MI	REGUS	0.42		71	24 4		2 0 1	15.
15	00	• 5 M1	RFGU4	L • 40 7			21 1	4.0 U	2 0.4	12.
10	0.0	• 9 MI	REGUS	0.40		69	20 1	7 0 0	2 0.5	17.
12	00	• 5 MI	REGUS	0.40		60	17 1		1 0 0	17
10	00	• 5 M1		0.40		55	1/ 1			13.
15	00	• 5 11	PFGU8	0.40		54	20 1	L.O. C.	c 0.9	10.
15	80	• 5 MI	REGUS	0.42		52	1/ 1	4.0 L		15.
10	00	• 5 11	RFG1U	U • 45		54	15 1			12.
15	00	• 5 M1	REGII	0.50		20	16 1		2 0.4	15.
15	08	• 5 M1	REG12	0.58		71	21 1	9.0 0.	2 0.2	19.
15	08	.5 M1	RFG13	0.675		96	25 2	5.C C.	.5 0.2	26.

				Tab	le A-2 Cont'd				A-2	7	
						22 411211		· · · · · · · · · · · · · · · · · · ·		<u> </u>	
	0.11	DTIOT	AP	ALYTICAL PES	SULIS - SERIES	B5 (HOO)		TEOE			
m	UN	PILUI	SAPPLE	FLUW RATE	UNFILTEREU	000 000	FIL	IEREL	NORN	1071	TIZN
			TOENTTTY	IGPM	BUU LUU IKN	800 000	100	NHON	NUZN	NUSN	IKN
	0		DECT	0 75	SAMPLE	. 74	27	AMPLE		• •	
-0	0 -	• 5 M 1		0.754		131	37	22.0	0.0	0.0	20.0
	0	• 5 M1	REGIS	1.025		133	57	27.0	0.0	0.0	21.1
0	0	• 5 11	REGIO	1.29		194	51	29.6		0.0	29.5
U	8	• 5 M1	RFG17	1.44		146	42	24.0	0.1	0.1	25.5
. 0	8	• 5 11	RFG18	1.50		135	34	20.0	0.1	0.0	21.6
. 0	8	•5M1	RFG19	1.45		160	50	28.0	0.0	0.0	29.5
	8	• 5 M1	RFG20	1•41		139	40	23.0	6.2	3.0	24.0
0	8	.511	RFG21	1.1		88	27	18.0	0.6	0.4	19.5
0	8	•5 M1	RFG22	0.75		127	39	19.0	0.3	0.1	19.3
U	8	• 5 M1	RFG23	0.625	1 . Xe .	117	27	18.0	0.3	0.1	13.1
U	8	.5M1	RFG24	C . 555		78	33	15.0	0.4	0.2	15.5
0	8	• 5 M1	RFG01	6.49		74	20	14.0	0.4	0.4	15.3
; U	8	• 5 M1	RFGC2	0.455		79	21	16.0	0.3	0.3	16.7
U	8	.5 MI	REGUS	0.42		/1	20	16.0	0.2	0.2	17.3
. 0	8	• 5 M1	RFGC4	0.405		63	19	16.0	0.1	0.1	17.2
0	8	•5 M1	REGUS	0.40		61	19	16.0	0.1	0.2	16.9
0	8	• 5 M1	REGUS	0.40		55	16	15.0	0.1	0.3	16.1
, 0	8	.5M1	RFG07	0.40		55	15	14.0	0.2	0.4	15.0
0	8	• 5 MI	RFGU8	0.40		56	14	13.0	C • 2	0.5	14.4
×											
	9	5 1 1	FFC 00	0 4 2		07	27	5 0	27	n 6	7 1
-0	9-	• 2 M1-		0.42		0.5	23	2.0	2.1	0.0	
0	0	E M4	EFG10	0.49		40	4 1.	5.0	3.3	0.0	7 0
0	0	- DMI	EFG11	0.50		40	14	0.0	3.1	0.0	10.7
U 0	0	• 5 MI			λ	41	13	9.0	3.3	0.7	10.5
0	0	• 2M1	EFGIS	0.754		40	15	15.0	1.9	0.3	10.9
0	0	• 5 M1	EFG14	1 025		60	21	26 0	0.4	0.2	23.2
- 0	0	- 5M1	EF015	1.125				-97-0-	<u> </u>		-29-0
0	0	EMA	EF010	1.29		115	77	2/ 0	0.0	0.0	20.9
0	0	• 5 M1	EFG1/	1.44		115	37	49 0	0.0	0.0	20.1
-0	0	• 5 M1	EFG10	1.50		90	23	10.0	0.0	0.0	20.0
0	0	E M4	EFG19	1.45		110	30	22.0	0.0	0.0	23.1
0	0	• 5 ML	EFG20	1 4		111	21	17 0	0.0	0.0	10 1
0	8	• 5 M1	EFG21	1.1				-16-0-			17.1
0	9	6 J M1	55022	0.625		77	21	14. 0	0.0	0.0	11. 0
0	8	- 5M1	EFG25	0.555		13	21	17.0	0.0	0.0	1. 7
-0	8	-5M1	FFGN	<u>0.555</u>				12.0	-0.2	-0.2	13.7
0	8	5 M1	EFG02	0.455		60	1.8	11.0	6.4	0.2	12.9
0	8	5M1	FFGCZ	0.42		50	19	11.0	С. Б	0.2	12-8
-0	8-	-5 M1	-FFGR4-				-17	11.0	-11-8	- 1-3	12.8
0	A	5M1	FEGGS	0.40		54	16	10.0	0.8	0.3	12.1
0	8	-5 M1	FEGOS	0.40		40	17	10.0	n, a	0.4	11.0
	8	-5M1		0.40			-16	9.0		- 1.4	10.9
0	8	-5M1	FEGOR	n. 40		1.6	16	a , n	1.1	0.4	11 0
0	8	5 M1	FEGNO	0.40		40	14	9.0	1.1	0.5	10.6
	18		FFG10	n-45				-9-0-	<u>++</u> +	-1-6	11.5
0	8	.5M1	EFG11	0.50		40	13	9.0	1.2	0.0	10.9
	8	.5 M1	EFG12	0.58		4 4 L Q	16	12.0	0.9	0.3	13.5
	8	-5M1	EFG13	0.675		<u></u>	16	16.0	-0.9	-0.3	18-0
	8	. 5 M1	EFG14	0.754		75	20	20 - 0	0.2	0 - 1	22.2
	18	.5 M1	EFG15	1.025		162	27	23.0	C . D	3.0	24.9
-0	13	.5 M1	EFG16	1.29		141	-39	25-0	-0.0		25-9
. 0	18	.5M1	EFG17	1.44		166	43	29.0	0.0	0.0	31.1
. 0	18	. 5 M1	EFG18	1.50		119	32	21.0	0.0	0.0	22.7

				Table	A-2 Cont'd			A-28	
			۵	NALYTTCAL PES	III TS - SEDTES	B2 (HOUR			
Y	MON	PILOT	SAMPLE	FLOW RATE	UNETI TERED	52 (110 U	FTI TERE	1	
				IGPM	BOD COD TKN	300 000	TOC NH3N	NOZN NO3	N TKN
		UNIT	IDENTITY		SAMPLE		SAMPLE		
4	08	.5 M1	EFG19	1.45		96	27 21.6	0.0 0.	C 22.4
4-	08-	-5M1-	EFG20-				-22-19-0-	-6.0-0.	0-19-9
4	08	.5 M1	EFG21	1.1		92	28 15.0	0.6 0.	0 16.6
4	0 8	.5 M1	EFG22	0.75		75	20 15.0	6.6 0.	0 16.5
4-	-08	-5M1-	EFG23	0.625		64	-20-15-0	-0-0-0-	0-16-2
4	08	.5 M1	EFG24	0.555		60	19 14.0	6.2 0.	1 15.8
5	0.8	.5 M1	FFG01	0.49		57	19 13.0	0.2 0.	1 14.5
5	08	-5M1	-EFG02-	0.455			-17-13-0	-0-3-0-	0-14-2
5	08	.5 M1	EFG03	6.42		58	19 13.0	0.5 0.	0 13.0
5	08	.5 M1	EFG04	0.405		55	17 13.0	0.6 0.	1 14.2
5	-0.8		EFG05-				-16-13-0-	-0-7-0-	1-14-3
5	08	.5M1	EFGC6	0.40		52	16 13.0	0.8 0.	1 14.1
5	08	.5 M1	EFGC7	0.40		50	19 12.0	0.9 0.	1 13.8
5	08-	.5M1	EFG08-	0.40			-16 11.0	1.0-0.	2 12 0
5	80	.5M1	EFG09	0.42		43	13 11.0	0.1 0.	2 12.3
5	08	.5 M1	EFG10	0.45		44	13 11.0	0.6 1.	4 11.0
5	08	.5 M1	EFG11	0.50			-14-11-0	-0.7-0.	3-12-6
5	08	.5 M1	EFG12	0.58		46	13 13.0	0.8 0.	3 14.0
5	08	.5 M1	EFG13	0.675		47	14 17.0	0.7 0.	3 20.0
5	08-	.5 M1	EFG14	0.754			-15 21.0	- C.5 0.	3 23.3
5	08	.5M1	EFG15	1.025		60	18 21.0	0.3 0.	2 22.1
5	08	.5M1	EFG16	1.29		90	21 24.0	0.0 0.	0 25.7
5	-08	-5 M1-	EFG17-			92	-22-23.0		0-24-1
5	08	.5M1	EFG18	1.50		97	22 20.0	0.0 0.	6 21.0
5	08	.5M1	EFG19	1.45		109	24 24.0	0.0 0.	0 25.7
5	08	.5 M1	EFG20-	1.41		103	31 23.0	0.0 0.	0-23.7
5	08	.5M1	EFG21	1.1		68	19 17.0	0.0 0.	2 18.1
5	08	.5 M1	EFG22	C.75		77	20 17.0	0.3 0.	1 18.5
5	08-	-5M1-	EFG23	0.625		82	19 16.0	- C . O . O .	2-17-1
5	08	.5 M1	EFG24	0.555		64	17 15.0	0.0 0.	3 15.2
6	08	.5 M1	EFG01	0.49		54	16 14.0	0.1 0.	3 14.
6	08	.5M1	EFGC2	0.455		51	15 14.0	0.2 0.	3-14.0
6	08	.5 M1	EFG03	0.42		51	14 14.0	0.3 0.	2 15.
6	80	.5M1	EFG04	0.405		52	15 15.0	0.3 0.	3 16.1
6	08	.5 M1	-EFG05	0.40		54	-15-15.0	-0.4-0.	3-15-1
6	08	.5 M1	· EFGC6	0.40		52	15 14.0	6.4 9.	4 15.:
6	08	.5M1	EFG07	0.40		50	14 14.0	0.6 0.	3 14.
6	08	.5M1	EFG08	0.40		50	14 13.0	0.7 0.	4 13.
				~					
			·····						
						No. 1999 1 1000 1000 1000 autor autor and 1000			

			Tabl	e A-2 Cont'd				A-34	-	
			BIO-SURF	PILOT PLANT	TESTING					
				1976						
		AN AI	LYTICAL RESUL	LTS - SERIES	C2 + E2 (3	O MI	N)			
1 MO	IN F	PILOT SAMPLE	FLOW RATE	UNFILTERED		FIL	TERED			
	l	JNIT IDENTITY		SAMPLE		SA	MPLE			
			IGPM	-800-COD-T-KI	-003-C08	-toc-	NH3N-	NOSN	NO-3N-	TKN-
1 09	. 5	5M1+2MRFG1000			222	69	22.0	0.0	0.0	23.3
1 09	• •	5M1+2MRFG1030			250	74	21.0	C . O	0.0	22.0
-69	•	5M1+2MRFG1100			231	-74-	22.0-	-0-0-	-0.0-	-22.8
09	• •	5M1+2MRFG1130			277	100	20.0	0.0	0.0	21.7
09	•	5M1+2MRFG1200			212	65	18.0	0.0	0.0	19.5
-09	•	5M1+2MRFG1230			272-	80	16.9	-0-0-	0.0	17-8
09	•	5M1+2MRFG1300			328	117	10.0	0.0	0.0	11.1
1 0 9	•	5M1+2MRF G1 330			340	113	16.0	0.0	0.0	11.2
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	5H1+2HRF G1400			300	99	12.0	0.0	0.0	13.1
, 09	•	5M1+2MRFG1430			363	145	17.0	L • u	0.0	10.0
	•	5M1+2MRF 61500				-68	-9-0-	0.0	0.0	-11-1
1 10		5M1+2MPEG1600			1.51	55	7.0	0.0	0.0	7.9
, 19		5M1+2MRFG1630			86	34	6.0	0.0	0.0	7.1
1-09		5M1+2MRFG1700				-41-	-7.0-	-0-0-	-0-0-	-7-4
' 09		5M1+2MRFG1730			87	36	4.0	0.0	0.0	5.8
. 09		5M1+2MRFG1800			129	51	13.0	0.0	0.0	14.4
-09		5M1+2MRFG1830			184	-57	12.0	0.0	0.0	12.9
1 09	•	5M1+2MRFG1930			144	58	16.0	C.J	0.0	17.6
09	•	5M1+2MRFG1930			186	53	13.0	0.0	0.0	13.9
-09		5M1+2MRFG2000			184	63	14.0	0.0	-0.0	15.5
1 09	••	5M1+2MRFG2030			182	56	9.0	0.0	0.0	10.6
09	•	5M1+2MRFG2100			148	45	5.0	C.C	0.0	6.6
-09	•••	5M1+2MRF62130			132	47	7.0	0.0	0.0	
1 0 5	•••	5M1+2MRFG2200			117	42		0.0	0.0	9.0
1.00		5M1+2MRFG2250			192	-53-	4-5-0-		-0-0-	-16-3
1 00		5M1+2MPEG2330			151	4.8	12.0	0.0	0.0	13.1
, 00		5M1+2MRFG2400			118	42	9.0	0.0	0.0	10.7
5-04	-	5M1+2MRFG0030			140	-51	-9.0	-0.0	0.0	11.2
3 0 9	э.	5M1+2MRFG0100			342	103	12.0	C . C	3.0	13.5
3 09	э.	5M1+2MRFG0130			320	98	9.0	0.0	0.0	11.2
3-09	3	5M1+2MRFG0200				-95-	17.0	-C.O-	0.0	18.3
1 09	. 6	5M1+2MRFG0230			230	73	11.0	C . O	0.0	12.7
1 0 9	э.	5M1+2MRFG0300			230	70	21.0	C. ū	0.0	23.6
0.	•	5M1+2MRFG0330			235	72	12.0	0.0	0.0	13.7
1 09	•	5M1+2MRFG0400			246	71	15.0	0.0	0.2	16.9
1 0 9	••	5M1+2MRF G0430			242	70	16.0	U • U	0.2	16.9
5-09		541+2MRF GU 500			207	59	10.0	0.0	0.1	16 1
5 0 9	••	5M1+2MRF 60530			201	30	10.0	0.0	0.0	15 1
		SM1+2MPECIACO					14.0	-0.0	-0.0	-14-6
1 00		5M1+2MPECC700			1 7 9	41	12.0	6.6	0.0	13.3
1 00	á .	5M1+2MREG0730		~	137	39	13.0	6.0	0.0	13.7
1-04	9	5M1+2MRFG0800			133	-37	13.0	0.0	-0.1	14.1
3 0	э.	5M1+2MRFG0830			135	39	13.0	G • G	0.3	13.9
1 0	9.	5M1+2MRFG0900			140	41	13.0	C.1	0.3	13.9
1-0-	9	5M1+2MRFG0930			119	38	14.0	3.0	0.1	14.8
1 0 3	э.	5M1+2MRFG1000			102	42	18.0	6.0	0.2	20.7
3 0 9	9.	5M1+2MRFG1030			125	42	19.0	0.0	0.1	23.7
3-0-		5M1+2MRFG1100			37	14	10.0	0.0	-0.1	13.8
1 0	9.	5M1+2MRFG1130			39	15	11.0	5.0	0.2	13.0
1 0 9	4	2M1+CMR+G1200			52	65	11.0	U . U	1	13.5

	Table	A-2 Cont'd	P			A-3	5	
ΔΝΔΙ	YTTCAL RESUL	TS - SERTES C	2 + F2 (J 1			
Y MON PILOT SAMPLE	FLOW RATE	UNFILTERED		FILI	TERED	1 × 1		
UNIT IDENTITY		SAMPLE	ł	SAN	PLE			
	IGPM	BOD COD TKN	300 COD	TOC N	H3N	NO2N	NO 3N	TKN
3 09 .5M1+2MRFG1230			81	27 1	1.0	0.G	0.1	13.5
3-09 - 5M1+2MRFG1300		and the second	51-	-23-1	10.0	-0.0	-0.0-	12.6
3 09 .5M1+2MRFG1330			92	34 1	2.0	0.0	0.0	13.9
3 09 • 5M1+2MRFG1400			89	31 1	13.0	0.0	0.0	13.4
3 09 • 5M1+2MRFG1430			86	31	1.1.0-	0.0-	-0.0	12.8
3 09 • 5M1+2MRFG150C			79	30 1	12.0	0.0	0.7	13.1
3 09 .5M1+2MRFG1530			104	39 1	13.0	0.2	0.6	14.3
5-09-5M1+2MRF 61600-			185	62 1	9.0	0.5	0.6	20.5
3 U9 .5M1+2MRFG1630			200	69 2	22.0	0.0	0.1	23.8
3 U9 • 5M1+2MRFG17UU			138	40 1	16.0	0.0	0.1	17.1
) 09 • 5H1+2HRF G1/30			125	42 1	10.0	0.0	0.0	16.3
1 09 • 5M1+2MPEC1830			130	52 1		0.0	0.1	21.5
- 19 - 5M1+2MPEG1030				-52				20.1
1 03 5M1+2MPEC1930			155	51 1		6 1	0 5	20.0
1 09 .5M1+2MRE62000			134	48 1	14.0	0.0	0.2	16.2
3 09 5M1+2MRFG2030				-46-	6-0-	- 0.0	-1-4-	17-7
1 09 .5M1+2MRFG2100			438	123 2	28.0	0.0	0.1	29.0
1 09 .5M1+2MRFG2130			278	115 1	18.0	0.0	0.0	22.0
-09 .5H1+2MRFG2200			306	-87	9.0	0.0	0.0	-21.4
09 .5M1+2MRFG2230			322	83 1	19.0	6.0	0.0	21.7
1 09 . 5M1+2MRFG2300			263	83 1	18.0	0.0	0.0	19.9
09 .5M1+2MRFG2330-			290	82	9.0	0.0	0.0	-20-2
09 .5M1+2MRFG2400			288	79 1	18.0	0.0	0.1	19.2
) 09 .5M1+2MRFG0030			298	84 1	18.0	0.0	0.1	19.2
-09 -5M1+2MRFG0100			365	86 1	18.0	C.C	C.0	19.8
09 • 5M1+2MRFG0130			296	82 1	18.0	0.0	0.0	19.2
09 .5M1+2MRFG0200			280	79 1	18.0	0.0	0.0	18.8
1-09 -5M1+2MRFG0230			298	84	18.0	0.0	0.0	19.4
09 • 5M1+2MRFG0300			300	083 1	19.0	0.0	0.0	20.8
09 • 5M1+2MRF G0 330	-		268	75 1	19.0	0.0	0.0	20.5
19.5M1+2MRFG0400			230	70 3		0.0	0.0	20.4
09 .5M1+2MRFG0430			230	67		0.0	0.0	19.5
-19-5M1+2MPEC0530-					18-0-		0.0	-19-2
19 - 5M1+2MPEC8600			230	71 1	17.0	0.0	0.0	18.1
19 - 5M1+2MRF60630			236	70	17.0	0.0	0.0	17.7
09 .5M1+2MRFGC700	· · · · · · · · · · · · · · · · · · ·		252	73	7.0	-0.0	0.0	13.2
09 .5M1+2MRFG0730		8	263	78	17.0	0.0	0.4	18.1
09 . 5M1+2MRFG0800			263	75 1	16.0	0.0	0.2	17.0
-09-5M1+2MRFG0830-		· · · · · · · · · · · · · · · · · · ·	253	74	6.0	0.0	0.4	17.6
09 .5M1+2MRFG0900			253	75 :	16.0	Ο.ΰ	0.2	16.9
09 .5M1+2HRFG0930			280	81 1	18.0	0.1	0.4	19.3
09 .5M1+2MRFG1000			276	81 6	21.0	0.0	0.1	22.2
09 .5M1+2MRFG1030			242	74	18.0	0.0	0.0	23.0
09 • 5M1+2MRFG110C			280	85 2	25.0	C.O	0.0	28.4
09.5M1+2MRFG1130			310	89	24.0	0.0	0.0	25.1
09 • 5M1+2MRFG1200			255	73	10.0	C. C	0.0	13.5
U9 .5M1+2MRFG1230			270	82 :	12.0	0.0	0.1	13.8
U9 • 5M 1+2MRF G1 3C 0			253	/1	11.0	0.0	9.0	12.2
09 5M1+2MRF 61330			292	84 : 75	0.0	0.0	0.1	14.1
-13-5M412M0EC41.70-		1	210	()	3.0	U • 1	0.1	-11-0
19 5M112MDEC1EDD			200	77	10.0	0.0	0.0	12.7
19 . 5M1+2MPEC1570			206	80	11.0	0.0	0.1	11.6
			200					

	-										
		• •	Table	e A-2	2 Cont'd			-	_ A-3	36	
~	HON	ANAL	YTICAL RESUL	TS -	SERIES C	2 + E2 (3	30 M	[N]			
T	HUP	UNIT TOFNITTY	FLUW RATE	UNF	AMPLE		FIL	MPIF			
		SHIT IDENTIT	IGPM	BOD	COD TKN	800 COD	TOC	NH3N	NO2N	NO 3N	TKN
9	09	• 5M1+2MRFG1600	10111	000	000 1111	282	83	9.[0.0	3.0	11.5
9-	09-	-5M1+2MRFG1630				296-	-79-	10.0	-0.0	0.3	12.0
9	09	.5M1+2MRFG1700				170	45	8.0	0.0	0.2	10.1
9	09	•5M1+2MRFG1730				148	1+4	7.0	0.1	0.4	9.4
9	09	• 5M1+2MRFG1800	a talka a second to book		¥ 1	136	-41-	-7.0	- Ů• 1	-0.3	-9.2
9	09	• 5M1+2MRFG1830				148	44	7.0	0.1	0.6	9.5
9	-09 -09-	•5M1+2MRFG1900				180	50	11.0		0.5	12.1
0	0 9	- 5H1+2HRF 01950			•	192	51	11.0	2.1	0.3	11.5
g	09	• 5M1+2MREG2C30				190	61	12.0	0.1	0.3	12.1
9	09	•5M1+2MRFG2100	(19.30)))))))))))			204-	58-	12.0	-0.1-	-0.2	-12-6
9	09	.5M1+2MRFG2130				210	60	11.0	0.1	0.2	11.2
9	09	.5M1+2MRFG2200				296	39	19.0	0.0	0.1	22.2
9-	09					290	-84	16.0	-0.0	0.0	17.7
9	09	• 5M1+2MRFG2300				282	86	15.0	0.0	0.0	16.5
9	09	• 5M1+2MRFG2330				302	90	18.0	0.0	0.0	18.2
9	09	•5M1+2MRFG2400				272		15.0	0.0	0.0	17.1
.0	09	• 5M1+2MRFGUU3U				216	80	15.0		0.0	17 7
. U	- 0.9	• 5M 1+2MRF GU 100				202	-84-	15.0	- 0.0	- 0.0	16.5
n	ng	- 5M1+2MRFG0130				254	75	16.0	0.0	0.0	17.1
0	09	• 5M1+2MRFG0230				280	81	16.0	0.0	0.0	16.9
0-	- 09-	5M1+2MRFG0300	· · · · · · · · · · · · · · · · · · ·			270	-82	16.0	0.0	0.0	16.3
. 0	09	.5M1+2MRFG0330				286	80	15.0	0.0	0.0	15.8
.0	09	.5M1+2MRFG0400				448	136	13.0	ū.C	0.4	15.0
.0	89	.5M1+2MRFG0430					78	13.0	0.6	0.6	14.8
. 0	09	•5M1+2MRFG0500				282	77	12.0	0.1	0.5	14.6
.0	09	• 5M1+2MRFG0530				276	77	13.0	0.1	0.6	14.8
U	.0.9	- 5M1+2MRF GUOUU				208	77	12.00		0.0	140:
. U	09	• 5M1+2MRFGU63U				276	70	13.0		0.5	13.
	-09	• 5H1+2HRF GU7UU	·				-74	12.0	- 0.0	- 0 - 3	12.
0	09	.5M1+2MRFG0800				252	74	11.0	0.0	0.4	11.
		· · · ·									•
		·····									
					•						
						2					
		2									
			-								

Table A-2_Cont'd

BIO-SURF	PILOT	PLANT	TESTING		
	1976				

			AN	ALYTICAL RES	ULTS - SERIES C2 (3C	MIN)				
١Y	MON	PILOT	SAMPLE	FLOW RATE	UNFILTERED	FI	LTERE	D		
		UNIT	IDENTITY		SAMPLE	S	AMPLE			
	· · · · · · · · · · · · · · · · · · ·			IGPM	-300 COD-TKN -800 CO	0-10C	NH3N	NOSN	NO 3N	TKN
7	09	•5 M1	EFG1000	0.508	5	4 17	9.0	0.2	0.3	9.9
17	09	•5 M1	EFG1030	0.508	5	5 17	9.0	0.2	0.3	10.1
17	09	.5M1	EFG1100	0.508	5	9-19	-16-0		-0-2-	-16.8
17	09	.5 M1	EFG1130	0.508	6	6 2 0	10.0	0.1	0.1	10.7
17	09	.5M1	EFG1200	0.508	6	4 21	8.0	0.0	0.1	9.
17-	-09	-5 M1-	-EFG1230-	. 0.508	7	0-23	20.0	-0.1	-0.3	-22-1
7	09	.5M1	EFG1300	0.508	61	5 24	20.0	C . C	0.3	21.1
7	09	.5 M1	EFG1330	0.508	8	26	17.0	0.0	0.2	18.8
7	09	.5M1	EFG1400	0.508	9:	3-31	17.0	- C . O	0.1	17-1
17	09	.5M1	EFG1430	0.508	9	2 32	17.0	0.0	0.2	18.1
7	09	.5 M1	EFG1500	1.01	10	5 36	15.0	0.0	0.1	16.3
7	09	-5M1	FFG1530	1.11	q	5 35	-9.0	- 0.0	-0.2	-10-1
17	09	.5 M1	EE 01600	1.01	11	1 23	14.0	0.0	0.2	15.1
17	09	-5M1	EEG1630	1.01	7	0 30	18.0	0.0	0.3	19.
17	09	- 5M1	-EFG1700	1.01	6	9-23	-9-0		-0.2	-11-
17	09	- 5 M1	EEG1730	1.01	6	3 21	12.0	R . C	0.2	13.
17	0.9	-5M1	FFG1800	1.01	5	5 19	11.0	0.2	0.3	11.0
7	ng-					2 27	-10-0		-0-3	
7	00	EMA	5501000	1 01	7		17 0	0.7	0.0	4/.
17	09	• 5 ML	EF G1 900	1.01	1		10.0	0.2	0.2	41. (
7.	0.9-		EF 01930	1.01	21		14.0	0+2	0.0	14.
17	09	• 2 MI	EFGZUUU	0.507	4	5 24 7 33	12.0	0.2	0.3	14+4
17	09	• 5 M1	EFG2U3U	0.507	4	1 22	11.0	0.2	0.3	11.
11	09	•5M1	EFG2100	0.507	4	9 24	10.0	0.2	0.3	11.
17	09	• 5 MI	EF62130	0.507	6	2 22	/.0	0.1	0.2	9.1
11	09	•5M1	EFG2200	0.507	6	3 21	5.0	0.0	0.2	1.
17	09	• 5 M1	EF 62230	0.507	Ь	3 21	5.0	0.2	0.2	6.
17	09-	•5M1	EFG2300	0.507	6	3 20	4.0	0.1	0.1	5.
17	09	•5M1	EFG2330	0.507	5	8 20	5.0	0.1	2.0	6.
17	09	•5M1	EFG2400	0.507	5	6 20	5.0	0.1	0.2	6.
18	09	•5M1	EFG0030	0.507	5	5 19	9.0	0.2	0.2	3.
8	09	•5M1	EFG0100	0.511	5	3 19	9.0	C.2	0.3	11.
18	09	• 5 M1	EFG0130	0.511	5	7 21	7.0	0.2	0.2	8.
18	09-	.5M1	-EFG0200	0.511	6	0 21	-7.0	0.1	0.2	7.
18	09	• 5 M1	-EFG0230	0.511	5	9 21	6.0	0.1	0.1	7.
8	09	•5 M1	EFG030C	0.511	5	7 21	7.0	0.1	0.1	7.
8	09	.5M1	EFG0330	0.511	. 5	8 20	10.0	0.1	0.3	11.
18	09	.5M1	EFG0400	0.511	6	7 20	9.0	0.1	0.1	10.
18	09	•5 M1	EFG0430	0.511	6	8 20	10.0	9.1	0.2	13.
18	09-	•5M1	EFG0500-	0.511	6	7 20	11.0	5.2	0.2	12.
18	09	.5M1	EFG0530	C.511	6	3 19	11.0	0.3	0.1	11.
18	09	.5M1	EFG0600	0.991	б	1 19	11.0	0.1	0.2	11.
18	09	.5M1	EFG0630	0.991	5	7 18	12.0	0.1	0.1	12.
18	09	.5M1	EFG0700	C.991	5	9 17	12.0	0.1	0.1	13.
:8	09	.5M1	EFG0730	C.991	5	8 17	11.0	0.1	0.1	12.
18	-09-	.5 M1	EFG0800	0.991	5	6 17	11.0	0.1	0.1	12.
18	09	.5 M1	EFG0830	0.991	5	5 16	11.0	C.2	0.1	12.
18	09	.5M1	EFG0900	C•991	5	4 17	11.0	C.1	3.1	12.
18	-09-	.5 M1	EFG0930	C.991	5	6 17	11.0	C.1	0.2	12.
18	09	.5M1	EFG1000	0.991	4	0 15	13.0	0.3	0.4	13.
18	09	.5M1	EFG1030	C.991	4	C 14	15.0	0.1	0.2	16.
18	-09-	.5 M1	EFG1100	0.509	5	1-16	16.0	0.0	0.2	-17.
18	09	.5 M1	EFG1130	0.509	4	8 14	16.0	C. 0	0.3	15.
18	09	.5M1	EFG1200	0.509	14	4 13	11.0	0.1	0.3	14.

Table A-2 Cont'd A-38

	DTIOT	AN	ALYTICAL RE	SULTS - SERIES	C2 (30)	MIN)				
r HUN	PILUI	SAMPLE	FLUW RATE	UNFILTERED		FILI	ERED			
	UNIT	LUENIIIT		SAMPLE		SAM	IPLE			
	5 .44		IGPM	BOD COD IKN	800 000	IOC N	IH 3N	NOSN	NO 3N	TKN
8 0 9	•5 M1	EFG1230	0.509		44	12	9.0	3.1	0.4	11.3
8-09-	.5M1-	-EFG1300-	-0.509		4 3	-12-1	0.0	0.2	0.3	12.4
8 09	•5 M1	EFG1330	0.509		42	11 1	.0.0	0.2	0.4	11.0
8 0 9	•5 M1	EFG1400	0.509		73	18 1	.5.0	5.0	0.3	16.3
8 0 9	•5M1	EFG1430	C. 509		61	16-1	4.0-	0.0	0.2	15.7
8 0 9	.5 M1	EFG1500	0.509		56	15 1	.3.0	0.0	0.5	13.7
8 0 9	.5M1	EFG1530	0.509		42	15 1	.1.0	0.1	0.5	12.5
8-0-9-	.5M1	-EFG1600-	1.00		342	-96-	9.0	-:-1	.0.3	13.6
8 09	.5 M1	EFG1630	1.00		117	34 1	.2.0	0.0	0.1	13.5
8 09	.5M1	EFG1700	1.00		94	32 1	3.0	0.0	0.3	14.4
8 09	.5 M1 -	EFG1730	1.00		69	-20-1	1.0-	3.1	-0.2	13.3
8 0 9	.5M1	EFG1800	1.00		93	21 1	1.0	0.1	0.3	12.9
8 0 9	.5 M1	EFG1830	1.30		76	23 1	3.0	0.1	0.4	13.5
8-09-	541	EFG1 90 0-			74	-23-1	3.0	0.4	-1.6	13.7
8 09	.5M1	FFG1930	1.00		. 76	22 1	3.0	0.4	0.9	14.3
8 19	-5 M1	EEG2000	1.00		81	21 1	3.0	0.1	0.4	14.2
8 09	5 M1-	-FEG2030-			76		2-0-	-11-1-	- 1-3-	13-0
8 09	.5M1	EF 62100	n. 991		87	23 1	2.0	0.0	0.4	13.4
8 00	5 M1	EFG2130	0.991		132	1.0 1	a n	0.0	0.7	22 7
8-00-	5M4-	-FEC2200-			136	-17-2				-22-1
0 0 0	E M4	EF (2270	0.001		134	47 2	0.0	0.0	0.1	24 4
0 0 9	• 5 M1	EF GZZOU	0.991		130	40 1	.9.0	L.L	0.1	21.1
0 09	• 5 M 1	EFG2300	0.991		115	38 1	.0.0	0.0	0.0	20.9
8-09-	1 2 1	EF 62330	0.991		110	36-1	.0.0	0.0	9.0	19.5
8 09	• 5 M1	EFG2400	0.991		103	34 1	.6.0	0.0	0.0	17.9
9 0 9	• 5 M1	EFG0300	0.991		96	34 1	.8.0	0.0	0.0	19.7
9-09-	•5 M1	EFG0100	0.991			-33-1	.8.0	0.0	0.0	19.6
9 0 9	• 5 M1	EFG0130	0.991		98	35 1	.8.0	ū.O	0.0	19.6
9 0 9	•5M1	EFG0200	C.509		1[3	34 1	.8.0	C • C	0.0	19.3
9-09-	5M1-	-EFG0230-	0.509		80	-27-1	.8.0	-C.O	9.0	18.7
9 0 9	.5M1	EFG0300	0.509		78	25 1	.8.0	0.0	0.0	18.6
9 0 9	.5 M1	EFG0330	0.509		75	22 1	.7.0	0.0	0.0	17.9
9 09	.5M1	EFG0400	0.509		71	-22-1	.8.0	0.0	0.0	19.1
9 0 9	.5 M1	EFG0430	0.509		68	22 1	4.0	0.0	0.1	15.6
9 0 9	.5M1	EFG0500	0.509		63	20 1	5.0	0.0	0.1	15.9
9-09-	.5M1-	-EFG0530-	0.509-			-23-1	5.0	0.0	-0.1	15.9
9 0 9	.5 M1	EFG0600	0.509		64	21 1	5.0	0.0	0.2	16.2
9 0 9	. 5 M1	EFG0630	0.509		63	20 1	4.0	C.0	0.1	15.8
9-09-	5M1-	EFG0700			62	-19-1	4.0	0.0	0.1	15.1
9 0 9	.5 M1	EFG0730	1.91		41	19 1	1.0	C. C	0.1	12.7
9 11 9	.5M1	EFGD800	1.01		63	21 1	1.0	C . C	0.1	12.1
9-19-	5 M1	-FFG0830-					1-0-	-1.0		-12-5
9 19	.5M1	FEGNON	1.01		59	20 1	0.0	0.0	0.1	11.1
	5 M1	EFG0930	1.01		55	20 1	0.0	0.0	0.1	11.6
0 00		-FFC1000-					2.0	-6-0		-13-5
0 00	E MA		1.01		77	22 4			0 0	15 7
9 19	• 5 M 1	EFGILSU	1.01		71	22 1	7 0		0.0	19.3
9 09	• > M1	EFG1100	1. J1				. / • U	0.0		10.3
9 09	. 5 M1	EFG1130	1.01		-92	29-2	1.0	0.0	0.0	21.0
9 0 9	• 5 M1	EFG1200	1.01		109	35 2	0.0	C • C	0.0	22.02
9 0 9	•5 M1	EFG1230	1.01		103	30 1	1.0	0.0	0.1	14.6
9-09-	•5M1	EFG1300	1.01	•	54	58	7.0	0.0	0.0	10.3
9 0 9	. 5 M1	EFG1330	1.01		67	20	5.0	0.0	0.0	6.8
9 0 9	.5M1	EFG1400	1.01		7 0	20	4.0	0.C	0.0	5.(
9 03-	•5 M1-	EFG1430	1.01		72	-21	4.0	0.0	0.0	-6-3
9 0 9	.5M1	EFG1500	1.01		74	23	4.0	0.0	0.0	7.3
9 09	.5M1	EFG1530	1.01		64	22	4.0	0.0	0.0	6.0

				Tab	le A-2 Cor	t'd				A-3	9	
			A.N.	ALVITCAL DE	SIII TS - SE	DIES	02 175				1	
Y	MON	PTIOT	SANDIE	FLOW PATE	INETITER	FO	62 (36)		TEDER	h		
•	non	UNTT	TOFNITTY	I LON MAIL	SAMPLE	2.3		51	MPIE	,		
		0.11.	10201111	TCPM	BOD COD	TKN	200 000	TOC	NHIN	NO2N	NO TH	TVN
a	03	5M1	FEGIEDO	1 01	000 000		82	25	3 0	1021	NO SN	6 0
G-	-19	5 11-	-FFG1630	-1.01						-0-0-		-6-4
0	00	5 M4	EFC1700	1 0/			50	15	4.0	0.0	0.1	5 5
2	09	5 M1	EF G1700	1 04			54	19	3 0	0.0	0.1	5.5
q	03	- 5 M1	EFG1 800	1.04					-4-9-		-0-0-	-6-3
0	00	EN4	5561830	1 04			76	17	7.0	0.0	0.0	5.4
D	09	5 M1	EF 61 830	1 04			50	15	1. 0	6 2	0.0	5 5
- -	-0-0-	-541-		1.04				-+7			-1-2	-7.1
2	na	5 M1	5562000	1 04			56	17	5.0	0 1	0.0	7 0
2	09	5 MI	EF 62 0 0 0	1 04			50	16	5.0	0.1	0 1	7 7
2	0.5	5 M4	- EEC2400	1.04				10			0.1	
2	09	• 5 M1	EF 62 10 0	1.04			51	10	0.0	0.0	0.5	7 0
2	09	• 5 MI	EF G2 13 0	1.04			50	18	0.0	0.0	0.2	1.0
7	09	• 5 M1	EFG2200	0.507			59	16	6.0	0.0	0.0	1.3
1	09	.5 11	EFGZZSU	0.507			58	10	8.0	0.1	0.1	9.0
1	09	• 5 M1	EFG2300	0.507			.79	21	9.0	0.0	0.0	12.0
3	09	• 5 M1	EFG233U	0.507			83	23	11.0	U • U	0.0	13.2
3	09	.5 .1	EFG2400	0.507		1	83	22	12.0	0.0	0.1	14.0
1	09	• 5 1	EFG0030	0.507			83	22	11.0	0.0	. 1.3	14.5
1	09	•5 M1	EFG0100	0.507			11	23	12.0	0.0	0.1	13.8
T	09	• 5 M1	EFGU130	0.507		¥	75	22	11.0	0.1	0.1	14.3
]	09	•5M1	EFGC200	0.507			72	20	11.0	0.1	0.2	13.8
)	09	.5 41	EFG0230	0.507			71	24	11.0	0.0	0.4	13.0
1	-09 -	-5M1-	EFG0300-	1.03			73	21	11.0	0.0	0.1	14.4
1	09	•5 M1	EFG0330	1.03			71	22	11.0	G • J	0.4	13.5
i	09	•5 M1	EFG0400	1.03			89	27	11.0	0.0	0.3	12.6
F	-09-	.541	EFG0430	1.03		and the second secon	112	36	10.0	0.0	0.3	10.8
1	09	• 5 M1	EFG0500	1.03			88	29	8.0	0.0	0.6	9.9
;	09	•5M1	EFG0530	1.03			63	20	8.0	0.0	0.1	10.0
1	-09-	-5 M1-	-EFG0600-	1.03			79	-27	7.0	0.0	1.4	-9-0
L	09	• 5 M1	EFG0630	1.03			56	50	7.0	0.0	0.1	9.0
1	09	.5M1	EFG0700	1.03			57	59	7.0	0.0	0.1	8.4
-	09	•5 M1	EFG0730-	1.93		and the second	61	18	7.0	0.1	0.1	8,9
	09	•5 M1	EFG0800	1.03			59	18	7.0	0.0	0.1	8.9
			`				-					
		-					÷					
	(i.								
_												
Ī										1		
						-1						
											¥	

	Tab	le	A-2	Cont	d
--	-----	----	-----	------	---

				BIO-SURF	PILOT PLANT T	ESTING				
			AN	ALYTICAL RE	SULTS - SERIES	E2 (30 M	(NI)			
Y	MON	PILOT	SAMPLE	FLOW RATE	UNETL TERED		FILTERE	n		
		UNIT	DENTITY		SAMPLE		SAMPLE			
			* ·	IGPM		800 000	TOC NH3N	-NO2N-	NSSN	TKN
7	09	2 M	EFG1000	15.37		47	17 7.0	0.1	0.1	8.4
7	09	2 M	EFG1030	15.37		49	17 8.0	0.0	0.2	8.6
7	09	2 M	EFG1100	15.37		57	-20-11.0	-0-0-	-0-2	12.4
7	09	2 1	EFG1130	15.37		59	20 20.0	0.1	0.1	21.3
7	09	2 M	EFG1200	15.37		68	20 15.0	0.0	0.2	16.2
7-	09-	-2 M-	EFG1230	15.37		70	22 24.0	-0.1	0.1	-26.1
7	09	2 M	EFG1300	15.37		72	21 22.0	C.1	0.1	24.1
7	09	2 M	EFG1330	15.37		82	24 19.0	0.0	0.0	21.2
7	09	2 M	EFG1400	15.37		98	32 19.0	- C . C	0.0	-19-2
7	09	2 M	EFG1430	15.37		116	36 17.0	6.6	C.O	19.2
7	09	2 M	EFG1500	34.60		169	41 16.0	6.5	0.0	18.0
7-	09-	-2M-	EFG1530-	34.60		147	-36-19.0	0.0	0.0	19.6
7	09	2 M	EFG1600	34.60		132	37 15.0	0.0	0.0	16.1
7	09	2 M	EFG1630	34.60		117	30 9.0	C . C	0.1	9.7
7-	-09		-EFG1700-				-21-13-0		0.2	14.9
7	09	2 M	EFG1730	34.60		71	20 7.0	0.0	0.0	8.0
7	09	2 M	EFG1800	34.60		64	19 10.0	0.0	0.3	11.1
7-	-09-	<u>-2M</u>	EFG1830-	34.60		103	-31-14.0	-0.0	0.5	15.3
7	09	2 M	EFG1900	34.60		105	33 15.0	0.0	0.1	15.9
7	09	2 M	EFG1930	34.60		113	34 12.0	0.0	0.5	13.6
7-	-09-	2M	-EFG2000 -	17.11		93	-24-13-0	0.0	0.7	13.8
7	09	2 M	EFG2030	17.11		89	22 13.0	0.1	0.4	13.8
7	09	2 M	EFG2100	17.11		90	22 13.0	0.1	0.4	14.1
7-	09-	21	EF62130-	17.11		76	21 9.0	-0.1	0.2	10.2
7	09	2 1	EFG2200	17.11		69	22 9.0	0.1	0.1	10.2
7	09	2 M	EFG2230	17.11		68	22 10.0	0.1	3.1	10.7
7	09-		-EFG2300-	17.11		68	-19-11-0		-0.2	-11-1
7	09	2 M	EFG2330	17.11		70	20 10.0	.0.1	0.1	11.1
7	09	2 M	EFG2400	17.11		60	21 10.0	0.1	0.1	10.6
8	09		EFG0030	17.11		55	19 10.0	0.1	9.2	10.9
8	09	2 M	EFG0100	16.00		62	21 9.0	C.1	0.1	13.1
8	09	2 M	EFG0130	16.00		56	20 10.0	0.0	0.0	10.7
8	-09-		-EFG0200-			71	-24-09-0	- C . J	0.0	-9-2
8	09	2 M	EFGC 230	16.00		66	24 11.0	6.0	C.O	11.1
8	09	2 M	EFG0 300	16.00		64	21 11.0	0.0	0.1	12.1
8	09	-2M	EF 60330-	16.00		65	-21 12.0	0.0	0.0	12.2
8	09	24	EFG0400	16.00		68	20 12.0	0.0	3.1	13.1
8	09	2 M	EFG0430	16.00		7 C	21 11.0	0.0	0.0	12.6
8	-09-	2 M	EFGC50C-	16.00		64	20 11.0	3.6	0.0	-11-7
8	09	2 M	EFG0530	16.00		62	20 12.0	0.0	0.0	12.9
8	09	2 M	EF G0 6 0 0	32.40		61	19 12.0	Ú. 0	0.0	13.7
8	-09	-2M-	EFG0630	32.40		61	19 13.0	0.5	-3.1	13.9
8	09	2 1	EFG0700	32.40		64	20 12.0	6.0	0.1	13.1
8	09	2 M	EFG0730	32.40		64	20 12.0	0.0	0.0	13.4
8	09		EFG0 800	32.40		65	-20-11-0	0.0	0.0	12-1
8	09	2 M	EFG0830	32.40		58	18 11.0	0.1	0.1	12.5
8	09	2 M	EFG0900	32.40		61	19 11.0	0.0	0.0	12.1
8	-09-	2 M	EF60930	32.40		55	17 12.0	0.0	0.0	12.9
8	09	2 M	EFG1000	32.40		55	17 18.0	0.0	0.0	23.1
8	09	2 M	EFG1030	32.40		61	19 20.0	0.0	J. 0	24.8
8	09	2 M	EFG1100	16.20		60	-19-24-0		0.0	-25.1
8	09	2 M	EFG1130	16.20		50	16 20.0	0.0	0.2	21.8
8	09	2 M	EFG1200	16.20		40	14 14.0	0.0	0.3	16.6

Table A-2 Cont'd

			AN	ALYTICAL RE	SULTS - SERIES	E2	(30	MIN)			
Y	MON	PILOT	SAMPLE	FLOW RATE	UNFILTERED			FILTERE	0		
		UNIT	IDENTITY		SAMPLE			SAMPLE			
				IGPM	BOD COD TKN	800	COD	TOC NH3N	NO2N	NO 3N	TKN
8	09	2 M	EFG1230	16.20			42	13 16.0	0.1	0.3	16.2
8-	-0-3	-2M	EFG1300	16.20			42	14 14.0	0.1	0.6	15.5
8	09	2 M	EFG1330	16.20			42	15 11.0	C .3	0.4	14.5
8	09	2 M	EFG1400	16.20			45	15 15.6	C.1	0.4	17.1
8	09	2 M	EFG1430	16.20			-49	16 18.0	0.1	0.3	18.2
8	09	24	EFG1500	16.20			47	16 18.0	0.1	0.4	18.3
8	09	2 M	EF61530	16.20	×		51	15 14.0	0.1	0.5	15.6
0	09	21	EFGIGUU	34.10			540	46 13.0	0.0	0.0	15.1
0	09	2 1	EF G1 630	34.10			109	35 18.0	L.U	0.0	19.1
8.	- 09 -	217	EFGITUU	34+10			100	38 19.0	0.0	0.0	21.5
8	09	2 M	EFG1750	34.10			70	27 14 0		0.0	10.4
9	50	2 1	EFG1830	34.10			73	23 14.0	0.0	0.5	10.4
0	-00		EFG1050	34.10	· · · · · · · · · · · · · · · · · · ·		93	32 15.0		0.5	10.0
0	09	2 11		34.10			409	27 22.00	0.2	2.4	23.3
9	0.0	2 M	EF C2000	34.10			70	22 17 0		0.4	12.0
8		2 M	EF 62000	34.10			10	22 13.0	0.0	0.1	1401
0	0.9	2 1	EF 02030	74.00			41.7		0.0	0.0	15.1
0	09	2 11	EF 62100	34.00			211	40 10.0	0.0	0.0	10.0
9	09		EFG2130	34.00			-+70		0.0	0.0	20.0
8	6.0	2 1	EF 02230	34.00			150	55 15 0		0.0	16 2
8	09	2 1	EF G2230	34.00			153	55 15.0	0.0	0.0	15 0
8-	-09		-FF62330-	34.00			136				-15-1
a	na	2 M	EF 62 500	34.00	*		11.9	47 13 0	0.0	0.0	13.0
0	03	2 M	EF 02400	34.00			171	47 13.0	0 0	0.0	14. 2
9	-0-0		-FF 60400-	34.00			131	49 13.0		0.0	-++++
9	09	2 M	EF C0 130	34.00			11.3	40 13.0	6.0	0.0	14.1
a	09	2 M	EFG0200	15.20			120	49 13.0	r c	0.0	14.1
à	-00-		-FF 60 230							-1-0-	-14-1
á	10	2 M	EEC0300	15.20			81	27 13.0	0.0	0.0	17.7
a	09	2 M	EF 60 330	15.20	*		72	25 14.0	0.0	0.0	15.6
à	-19-		FFGGLOB	15.20				23 14.0			-14-9
á	0.9	2 1	EFG0430	15.20			65	25 13.0	0.0	0.2	13.6
á	19	2 M	FEGNENN	15.20			63	22 12.0	0.0	0.0	13.6
á	-19-		-FFG0530-				-63	-23-13-0	-0.0	-0.1	13.8
á	09	2M	FEGDEDD	15.20			63	22 12.0	0.0	0.0	13.1
á	ná	2 M	EFG0630	15.20			5.8	20 13.0	6.0	0.1	14.6
ġ	-09-		EFG0700	32.30			- 58	-23 12.0	-0.0	-0.0	13.3
9	09	2 M	FFG0730	32.30			79	29 12.0	0.0	0.0	13.3
g	09	2 M	EFG0800	32.30			94	33 12.0	0.0	0.0	12.9
g	-09-		-EF G0 830-	32.30			- 91	30 11.0	0.0	0.0	11-9
9	09	2 M	EFG0900	32.30			86	30 11.0	3.0	0.0	12.6
ģ	09	2 M	FF 60 930	32.30			92	31 10.0	0.ú	0.1	11.2
9	09	21	EFG1000	32.32			115	35 13.0	0.0	0.0	14.1
9	09	2 M	FFG1036	32.30			111	37 15.0	0.0	0.0	17.8
9	09	2 M	EFG1100	32.30			107	40 17.0	0.0	0.0	19.9
9	-09-	-2 M	EFG1130-	32.30			73		-0.0	0.0	24.6
9	09	2 M	EFG1200	32.80			122	45 21.0	C . C	0.0	24.2
9	09	2 M	EF G1230	32.80			113	37 10.0	G . G	G . O	13.0
9	09	211	EFG1 300	32.80			105	32 6.0	0.0	0.1	8.3
9	09	2 M	EFG1330	32.80			113	35 6.0	0.0	0.1	8.6
9	09	2 M	EFG1400	32.80			108	39 5.0	C. J	C . 1	7.6
9	09	2 M	EFG1430	32.80			114	-37-5-0	-0.0	-0.1	5.2
9	09	2 M	EFG1500	32.80			123	40 5.0	0.0	0.0	6.2
9	09	2 M	EFG1530	32.80			114	37 4.0	C . C	0.0	5.0

Table A-2 Cont'd

A-42	
------	--

		AN	ALYTICAL RE	SULTS - SERIES	E2 (30 M	(IN)				
MON	PILO	T SAMPLE	FLOW RATE	UNFILTERED		FIL	TERE)		
	UNIT	IDENTITY		SAMPLE		SI	MPLE			
			IGPM	BOD COD TKN	800 600	TOC	NH 3N	NO2N	NO 3N	TKN
09	2 M	EFG1230	16.20		42	13	16.0	0.1	1.3	15.2
-09-	-2M-		-16-20			-14	14.0-	-0-1-	-1-6-	15-5
na	2 M	EEC1 330	16 20		1.2	15	11 0	6 7	0.0	11. 5
10	2 11	EFG1330	10.20		42	15	11.0	0.5	0.4	14.7
09	2 M	EFG1400	16.20		45	15	15.6	6.1	0.4	17.1
09	2 M	EFG1430	16.20		49	16-	18.0	-0.1	0.3	18.2
09	2 M	EFG1500	16.20		47	16	18.0	0.1	0.4	18.3
09	2 M	EFG1530	16.20		51	15	14.0	0.1	0.5	15.6
-03-	-2M	EFG1600	34.10		540	46	13.0	C.C	0.0	15.1
09	2 M	FEG1630	34.10		109	35	18.0	6.0	0.0	19.1
na	2 M	EEG1700	34.10		106	7.9	19.0	0.0	0.0	21.5
- 10-			71-10		100		17.0	0.0		C107
09	211		34.10		67	04	10.0	0.0	0.0	10.4
09	2 M	EFGIBUU	34.10		79	23	14.0	U • U	0.6	16.4
09	2 M	EFG1830	34.10		93	32	15.0	C • O	0.5	16.8
09	2 M	EFG1900	34.10		89	27	22.0	0.2	2.4	23.3
09	2 M	EFG1930	34.10		108	33	14.0	0.1	0.4	15.6
09	2 M	EFG2000	34.10		78	22	13.0	0.0	0.1	14.1
09	2 M		34.10		83	-25-	12-0	- 0.6	-0.0	13-1-
na	2 M	FEG2100	34.00		143	1.6	15 0	0.0	0 0	16 3
00	2 M	EEC2130	34.00		211	40	10 0		0.0	20.0
-00-			34.00		211	00	19.0	0.0	0.0	20.0
09	2 11	EFGZZUU	54.00		179	22	10.0	0.0	0.0	1/./
69	2 M	EF G2230	34.00		159	55	15.0	0.0	0.0	16.2
09	2 M	EFG2300	34.00		152	54	14.0	0.0	0.0	15.0
-09-		EFG2330	34.00		136	49	14.0	0.0	0.0	15.1
09	2 M	EFG2400	34.00		148	47	13.0	C. ū	0.0	13.9
09	2 M	EFG0030	34.00		131	45	13.0	0.0	0.0	14.2
-09-	-24-	-FF 60 100-	34.00		133	-46	13.0	0.0	-0.6	14.1
ng	2 M	EEG0130	34.00		143	49	13.0	0.0	0.0	14.1
00	2 M	EFC0 200	15 20		120	1.2	17 0	r	0.0	14. 4
			15.20		120	44	13.0		0.0	14+1
09	2 11	EF GU 23U	15.20		09	50	13.0	0.0	0.0	14.1
09	2 M	EFG0 300	15.20		81	27	13.0	0.0	0.0	13.7
09	2 M	EFG0330	15.20		72	25	14.0	0.0	0.0	15.6
09	2 M	EFG0400	15.20		70	23	14.0	C.0	0.0	14.9
09	2 M	EFG0430	15.20		65	25	13.0	0.0	0.2	13.6
09	2 M	EFG0500	15.20		63	22	12.0	0.0	0.0	13.6
-09-	-2M-	-EFG0530-	15-20		63	-23	13.0	0.0	-0.1	13.8
19	2 M	FEGDEAR	15.20		63	22	12.0	0.0	0.0	13.1
60	2 1	EECO630	15.20		FR	20	13.0	6.0	0.1	14.6
			72 70				10.0			14.0
0.9	2 11	550700	32.30		50	2.5	12.0	0.0	0.0	13.3
09	2 M	EFGUTSU	32.30		79	29	12.0	0.0	0.0	13.3
09	2 M	EFG0 800	32.30		94	33	12.0	0.0	0.0	12.9
09	2M-	EFG083C	32.37	1	91	30	11.0	0.0	0.0	11.9
09	2 M	EFG0900	32.30		86	30	11.0	3.0	0.0	12.6
09	2 M	EFG0930	32.30		92	31	10.0	0.ü	0.1	11.2
-09	21	EFG1000	32.30		105	35	13.0	0.0	0.0	14.1
09	2 M	FFG1030	32.30		111	37	15.0	0.0	0.0	17.8
00	2 M	FEG1100	32.30		107	40	17.0	0.0	0.0	19.9
- 10 -	2 M-						-20-0-			-21-6
0.5	214	EFC4 000	70 00		100	50	24 0		0.0	24.0
09	211	EFG1200	32.80		122	45	21.0	U • U	0.0	24.2
09	2 M	EF G123C	32.80		113	37	10.0	0.0	0.0	13.0
-09-	2.1	EFG1300	32.80		105	32	6.0	0.0	0.1	8.3
09	2 M	EFG1330	32.80		113	35	6.0	0.0	0.1	8.6
09	2 M	EFG1400	32.80		108	39	5.0	C.ü	0.1	7.6
09	2 M	EFG1430	32.80			-37	-5.0	-0.0	-0.1	- 5.2
09	2 M	EFG1500	32.80		123	40	5.0	0.0	0.0	5.2
09	2 M	FEG1530	32.30		114	37	4.0	0.0	0.0	5.0
	C (1)	C. 01000			7	57	4.0	0.0		2.0

Table A-2 Cont'd A-43

•

			۵۸	ALYTTCAL PE	S - 27 III2	EDTES	E2 135 1	TNI				
1	MON	PTIO	TSAMPLE	FLOW RATE	INFTI TE	PEU		FTI	TEPE	ר		
		UNTT	TDENTTTY		SAMPI	F		51	MPIF	5		
		01111	IDENTIT	TCPM	BUD COD	TKH	800 000	TOC	NHIN	NO2N	NO TH	TYN
4	03	2 M	FEGIEDO	32.80	500 600	17.14	106	35	4 C	6 6	0.0	5.7
-	-19-						100				-0-0-	-6-3
2	09	2 M	EFG1 700	32.40			100	30	6 0	0 0	0.0	6 1
à	19	2 M	EFG1730	32.40			50	22	4.0	0.0	0.0	5.7
à	19	- 2 H	EFG1800	32 40			55			-0.4-		
2	na	2 M	EEC1830	32.40			1.5	10	6.0	0.1	0.0	0.5
2	09	2 1		32.40			45	10	4.0	0.0	0.2	4.1
2	-09-						24.	20	5.0	0.1	0.0	0.0
2	00	2 1	EF 61 930	72 40			02	23	0.0		0.1	7 7
2	00	2 1	EF 62000	32.40			70	23	6 0	0.0	0.1	1.3
2		219	EF 62030	32.40			75	27	0 • U	0.0	0.1	3.2
2	0.0	2 11	EF 62100	32.40			13	23	7 0	0.0	0.1	0.0
3	09	2 11	EF 62130	52.4U			04	21	7.0	0.0	0.1	0.4
7	-09	2 19		15.95			51	10	6.0	0.0	0.1	1.2
2	09	211	EF 62230	15.95			11	23	0.0	0.0	0.5	10.1
3	09	2 1	EF62300	15.95			. 95	28	10.0	0.0	0.5	13.4
חר	09	2 M	EF 62330	15.95			98	32	11.0	0.0	0.1	14.9
9	09	2 M	EF 62400	15.95			92	28	12.0	0.0	0.1	14.0
0	09	2 1	EFGUUSU	15.95			88	-29	13.0	0.0	0.1	14.6
U	09	2 M	EFG0100	15.95			86	24	12.0	0.0	0.2	14.6
0	09-	21	EFGUISU	15.95			66	59	12.0	0.0	0.3	14.0
0	09	2 M	EFG0200	15.95			48	25	12.0	0.0	0.2	14.0
0	09	2 M	EFG0230	15.95			84	25	12.0	0.0	0.2	14.0
0	09	2M-	EF60300	32.00		1	92	-29-	12.0	0.1	0.0	14.6
C	09	2 M	EFG0330	32.00			118	4 C	11.0	0.3	1.0	13.5
e	09	2 M	EFG040C	32.00			114	37	11.0	0.0	0.5	13.3
0-	09	2 M	EFG0430	32.00			149	-51	10.0	0.0	0.2	10.9
٥	03	2 M	EFG0500	32.30			104	37	09.0	0.0	0.1	10.0
C	09	2 M	EFG0530	32.00			91	30	8.0	6.6	0.9	19.7
C	-09	-2M-	EFG0600-	32.00			85	2.8	9.0	-0.0	3.1	10-6
0	09	2 M	EF 60 63 0	32.00			92	31	8.0	0.0	0.1	10.2
0	09	2 M	EFG0700	32.00			106	31	8.0	0.C	0.4	10.9
0	09-	2 M	EFGC730	32.00			91	30	8.0	0.0	0.2	10.8
С	09	2 M	EFG0800	32.00			88	29	8.0	0.0	0.1	10.5
							-					
			- 3									
									A.A.C. 12			
				NOTE THE REPORT OF A CONTRACT OF								
						~						
	**		n a ana a									

APPENDIX B ANALYTICAL PROCEDURES

Total Kjeldahl Nitrogen

Total kjeldahl nitrogen analyses (organic plus ammonia nitrogen) were performed according to Technicon Auto-analyser Industrial Method 146-71A. Essentially this procedure consists of digestion of organic matter at 380°C followed by measurement of the ammonia produced using the Berthelot reaction in which the formation of a blue indophenol complex occurs when ammonia reacts with sodium phenate followed by the addition of sodium hypochlorite. Glycine standards were used for calibration. For keeping unfiltered samples homogenized in the sample cups the system has two air aspirators. One aspirator provides complete mixing in the cup being sampled while the second aspirator mixes the next cup on the tray.

Ammonia

Analyses of ammonia nitrogen were conducted using Technicon Auto-analyser Industrial Method 98-70W. This is essentially the same technique employed for Total kjeldahl nitrogen with the omission of the selenium dioxide/surphuric acid/perchloric acid digestion step which ammonifies the organic nitrogen fraction. Ammonium chloride standards provided calibration.

Nitrate

Technicon Auto-analyser Industrial Method 100-70W was used for nitrite-nitrogen determinations. This technique involves a reaction between nitrite and sulphanilamide under acid conditions to form a diazo compound which in turn is coupled with N-l-naphthylethylenediamine to form a reddish purple azo dye. Colourimetric determination is then made on the sample.

Nitrate plus Nitrite

Nitrate plus nitrite-nitrogen analyses were performed using Technicon Auto-analyser Industrial Method 100-70W. In this method, the nitrate-nitrogen is reduced to nitrite in the copper-cadium reduction column. The sample is then analysed for nitrite nitrogen as described previously.

Chemical Oxygen Demand (COD)

COD determinations on 24 hour composite samples were done according to the dichromate reflux method described in "Standard Methods" (1971). During the dynamic experiments, when as many as 600 samples were collected for COD analyses in the space of 3-5 days, a less time consuming analytical technique was employed. A modified version of Technicon Auto-analyser Industrial Method No. 268-73W was adapted for COD analysis and a Technicon Solid prep 11 sampler was introduced in place of the normal sampler. Standard solutions were prepared using ammonium chloride. standards were first analysed using the "Standard The Methods" reflux technique and then analysed on the Technicon equipment. The standard peaks produced on the Technicon System were then calibrated against the "Standard Methods" results.

This complicated approach was necessary since the sample digestion time in the Auto-analyser was shorter than that in the standard reflux test. This resulted in a lower degree of reaction completion with the Auto-analyser when heterogeneous sewage samples were tested. With this procedure modification in effect, Auto-analyser COD results for sewage samples were generally only 5 to 7 percent lower than results obtained via the "Standard Methods" technique.

Biochemical Oxygen Demand (BOD)

The 5 day, 20°C BOD determinations were performed according to the method described in "Standard Methods" pages 489-495 (1971).

Total Organic Carbon (TOC)

Twenty micro-litre samples previously acidified and purged were injected into a Beckman Infrared Carbon Analyser. The resulting peaks were compared to a calibration curve prepared from standards using anhydrous potassium biphthalate.

Suspended Solids

GELMAN .45 micron glass fibre filters were dried, Previously Washed, for at least two hours in a 103 degree C oven. They were then cooled in a dessicator and weighed. Suspended solids determinations were made by filtering a minimum of 10 ml of solution through a filter. The filter was then re-dried at 103 degrees for two or more hours, dessicated for 15 minutes and re-weighed. The increase in weight was taken as a measure of the suspended solids.

Dissolved Oxygen

An Electromic Instruments Ltd. Dissolved Oxygen Metre Model 15A was used for dissolved oxygen determinations. It was found necessary to calibrate the probe roughly once a week.

Temperature

The D.O. metre also included a temperature probe and this was used for measurement of the feed stream and the reactor temperatures. Occasionally, a mercury thermometer was also used.

pН

pH was measured using an Orion Specific Ion Meter (Model 401) together with Fisher Combination electrodes (Cat. le-639-90).

Alkalinity

By using the Orion pH meter, 50 ml samples were titrated to a pH of 4.8 by addition of .02 N sulphuric acid. Results were expressed as mg/l of calcium carbonate.
APPENDIX C

CALCULATION PROCEDURES

Identification of the Transfer Function Model: TKN Load vs TKN Concentration

After sufficient differencing to induce stationarity in the data, the impulse response weights of the cross correlation function (Figure 4.1) were examined in order to identify the transfer function model orders (r, s, b). In this case the model orders may be tentatively identified as a (1, 1, 1) or a (1, 2, 1) process (Figure 4.1). In order to determine which model provided the best representation of the data, the models must be built and checked, and the residual sums of squares of the models compared.

The sample calculation will continue with the (1, 1, 1) model form. The preliminary transfer function model may therefore be identified as

$$Y_{t} = \frac{(W_{0} - W_{1} \beta)}{(1 - \delta_{1} \beta)} \beta X_{t} \qquad \dots \quad (C-1)$$

The preliminary estimates of the above model parameters were calculated from the impulse response weights:

$$W_0 = v_{j=b} = 0.083$$

 $\delta_1 W_0 - W_1 = v_{j=b+1} = 0.088$
 $\delta_1 v_{j-1} = v_{j=b+1} = 0.065$

Identification of the Noise Model

The model under consideration is

$$Y_{t} = \frac{W(\beta)}{\delta(\beta)} \quad X_{t-b} + N_{t} \qquad \dots \quad (C-2)$$

where N₊ is to be parsimoniously represented as

$$N_{t} = \frac{\theta(\beta)}{\Delta^{d} \varphi(\beta)} a_{t} \qquad \dots \quad (C-3)$$

Having already identified the transfer function model, ${\rm N}_{\rm t}$ may be obtained from

$$N_t = Y_t - \delta_1 Y_{t-1} - W_0 X_{t-1} + W_1 X_{t-2} + \delta_1 N_{t-1} \dots (C-4)$$

Plots of the autocorrelation and partial autocorrelation functions of the noise sequence are given in Figure C-1. Examination of these functions reveals a decaying autocorrelation function which becomes negligible after lag 1. A single significant spike at lag 1 is noted for the partial autocorrelation function. This is indicative of an autoregressive process of order 1 (AR(1)).

Therefore, $N_t = \frac{a_t}{(1 - \phi_1 \beta)}$... (C-5) with $\phi_1 = \rho_1 = 0.219$

Our tentatively identified model is therefore

$$Y_{t} = \frac{(w_{o} - w_{1} \beta) \beta X_{t}}{(1 - \delta_{1} \beta)} + \frac{a_{t}}{(1 - \emptyset_{1} \beta)} \dots (C-6)$$

Fitting and Applying Residual Checks to the Combined Transfer Function - Noise Model (TF-N)

The initial parameter estimates obtained from the previous

C-3 FIGURE C-I

AUTOCORRELATION AND PARTIAL AUTOCORRELATION FUNCTIONS OF TKN LOAD MODEL NOISE SEQUENCE

LAG K (Hrs.)

sections were used as starting values in TS HAUS (TS HAUS is an efficient non-linear least squares program developed for use with time series analysis). The dynamic and noise parameters were estimated simultaneously. The parameter estimates and their approximate 95% confidence limits appear in Table C-1A.

TABLE C-1A

SAMPLE CALCULATION MODEL ESTIMATES

Model	Init	ial Estimates	Final Estimates	95% 	Confidence Interval
(1,1,1)	۳o	0.083	0.08312	±	0.01738
	W ₁	-0.0267	-0.03450	±	0.02426
	δ1	0.739	0.5590	±	0.1365
	ø1	0.219	0.2339	±	0.1808

The two most frequent checks applied to diagnose transfer function noise model adequacy (or inadequacy as the case may be) are the autocorrelation function $r_{aa}^{\,\,\circ}(k)$ of the residuals from the fitted model and the cross correlation function between prewhitened input (or in our case the first difference Δx_t) and the model residuals. Assuming the form of the TF - N model is correct and that the parameter values are known, then the estimated autocorrelation function of the residuals will not be correlated and will be distributed normally about zero with variance n^{-1} , where n is the number of data points in the series. These checks are presented in Figures C-2 and C-3. The results in Figures C-2 and C-3 indicate that there is no serious transfer function model or noise model inadequacy and that the chosen models adequately represent the data. C-5

AUTOCORRELATION OF THE FITTED TKN LOAD TF-N MODEL RESIDUALS

A further assessment of the residuals involves taking the first k autocorrelations and computing the Q statistic. Comparing the result to the chi-square distribution (x^2) with k-p-q degrees of freedom, where p + q is the total number of parameters of the noise model, determines the significance of the residuals. In a similar manner the significance of the cross correlations between residuals and the stationary input series for each variable can be computed by comparing the S statistic to the chi-square (x^2) distribution. These results were presented in Table 4.3 for the models obtained in this work.

A complete listing of the computer programs used is provided in Tables Cl, C2, C3 and C4.

Forecasting System Response to Impulse Forcings

The forecasted effluent values discussed in Section 4.4.1 were determined using the minimum mean square error forecast with leading indicators, as developed by Box and Jenkins 1976, pgs. 402 to 405. The model used the following as input data:

- past values of influent TKN load in g/day at discrete 1 hour time intervals
- past values of effluent TKN concentration in mg/l at discrete time intervals

3) initial estimates for the error function, a_+ .

The initial estimates used in (3) above were obtained by calculating residuals for the forecast and the experimental data with a_+ initially set at zero. Calculated residuals were used to replace the estimate of zero and calculations were continued in this iterative fashion.

A listing of the computer program and the plotting routine used is provided in Table C-5.

Transfer Function Calculation Procedures to Determine Response Times (From Box and Jenkins (1976)

The continuous system satisfying

 $(1+TD)Y(t) = g X (t-b-c) \dots (C-7)$

is for a pulsed input, discretely coincident with the discrete system satisfying

$$(1-\delta\beta)Y_{+} = (W_{0} - W_{1} \beta) X_{+-b-1+} \dots (C-8)$$

where

$$\delta_{1} = e^{-1/T} \qquad \qquad 1-c \\ \delta_{1} = e^{-1/T} \qquad \qquad W_{0} = g(1-\delta^{-1}), \\ W_{1} = g(\delta - \delta^{1-c})$$

The gain, g and the fractional time delay of the system, c, are independent of the sample interval. T is the average residence time in the system.

The constants for loading model A1 (Table 4.2) are as follows:

Therefore

$$= \frac{W_{0} - W_{1}}{\delta^{1}} = 0.210$$

For the relationship:

g

$$W_{o} = g (1 - \delta^{\perp - C}) \qquad \dots (C - 9)$$

the only unknown is the fractional time delay, c. Substituting into equation C-9,

$$c = 0.134$$

Since discrete sampling took place at hourly intervals, the approximate time delay of the system is about 10 minutes for loading influent variations.

0 1 2 2	СC С		CRLO		C NG	0 2 1	REI		TI S	OF EF	FL	AI U				Na Ta		GH	TS LE	F	DP KN	S	sc	S	SY	ST	ËM	FIL
	C		11	11 <u>5</u> 6	151	0.4	А	(1	4,	10	1)	, ,	(()	Lć.	.,	, T ((1	21	1,	2 (12	1)	• W	(1	12	1)		
106			NL	=	NU	18	FR	0	۶	LA	GS	5																.*.
103	Č	(m.)			a.								-		<											-		
	<u>с</u>		DA	TA	по	37	12	17	• 1	ĽŹ	20	17																
113			NUX LIN	AD AD	2;		A (1)	;1	= 1		4	, , ,]=:	, 10	10	B)				_						
114		12	FO	R MA		26	X , (- 5	• 3	,1	9×	(,)	- 3	0	1	X , F X , F	- 3 - 3	• U • U	,1	x, x,	4 F 4 F	5.	1) 1)					
116 - 117		- 3-	REC	AD PMA	41	(I 3 I	2;	ΙY	, I	(4)			-														*	
118			PQ	INT (TF	FO	. I	х.	IY J.	-1	W	.1)		STO	יכן														
20		12	PR	INT		28	χ.	1 0	HF	т.	т=	: >	181	F	.3	1 X .	. 1	οн	FT	IT	- 0	۵ ٦	1 5)				
22		4.4	PRO	INT	1	1	Y	14				. т.	201	/	чт.	11	. 3	¥ .	12	4.2	۲ . ۲	TK	N (110	. /	1 1	. 5 Y	
23	.		115	HLC	<u>A</u>	IN	Ĝ	ĞМ	10	AY),	8	<,	131	ΗĒ	FF	Ŧ	ŔN	(M	GI	Ļ))-	14.1				, , ,	,
25		3	FO	RMA	TI	16	х,	1 H	x,	16	х,	1	ΗY ·	,1	ЭХ	,11	ΗZ	,1	9 X	,1	нм)						
23			SZ	=0.	č			-																				
129_			X (K) =	K=	1, IX	, K	3																				
131 132-			У (-Н (K)= K}=	= A (IYIH	, K) }																				
33			Z (SZ	K) = = S 7	= (X + 7	(K (K) * ')	Y (K)) *	6.	5	52															
35			SW	= SA	1+7	TK 1.		(к).	Y	к)		2()	<)	. W	(K)))											
37		10	EQ	RMA	ITI	žž	• E	10	• 2	.7	X	É	10	. 2	1	DX.	, F.	10	.2	,1	אנ	,F	10	. 2	2)			
39			AW	=5	1/F	LO	AT	(N	08	3)				1														
041			10.0	INT	1	01	,	21	~	61	7	M	- ^ >			~ ~	<. L#				,							
42		101		INT		ΰŻ	, A	ζ4	Ân		-			-	1.7	<u>, , (</u>		M	ne	AV	<u>,</u>							
044		102	F 0	_81		=1	20 • N	DB	F 1	. U .	31	, 1	JX	• -	IJ	• 51)											
046		81	и (Z (K) =	= W (= Z (K) K)	- A - A	W Z																				
148-			-6 A 6 0	tt	-ID	EN	F	TF	(-2	• •	+	10	3,1	٩Ł	• 1	}												
050			EN	D																								
US	AST	FORT	RAN	01	I A G	NO	ST	IC	5	2=5	SUL	T	S I	FO	2	ET	Ν.	MA	IN	_								
													3															
	N(D ERI	ROR	S												-		1.5										
															-1													
				(~										-					

Computer Program Used For Cross Correlations and Matrix Inversion, Sample Output For Model A-1

Table C-1

	01	5 0		SUBROUTINE IDENT TF(X,Y,NOB,NL,NDIFF)
	03		-	BY INVERSION OF MATRIX THIS SUBROUTINE REQUIRES THE SSPLIB
				COMMON SDA, SDX DIMENSION X(1),Y(1),AC(60),GAM(20,20),VGAM(400) DIMENSION CC1(21),CC2(21),L(400),M(400),V(20),VN(20) NDATA=NOB NDATA
		с С	18 5	PRINT 13 FORMAT(52H1 CROSS CORRELATIONS AT + AND - LAGS FOR NDIFF = 0) CALL CROSS(X,Y,NOB,NL,CC1,CC2) CALL ACORR(X,AC,SDZ,NOB,NL) BUILDING THE MATRIX OF INPUT AUTOCORRELATION GAM NLL=NL-1 DO 10 J=1.NLL
10		3	-	GAM(J,J)=1.0 <u>YI=NL-J+1</u>
		3	20 10	00 20 I=2,II IW=I+J-1 GAM(IW,J)=AC(I-1) CONTINUE GAM(NL,NL)=1.0
11		2 2 7		JU 3J J=2,NL JJ=J-1 D0 40 I=1,JJ
100	28	3	40	GAM(Î,J)=GAM(J,I) CONTINUE PRINT 42 ((GAM(I, I) T=1 NL) I=1 NL)
50.00		çC	42	FORMAT(10X,20F6.2) —TRANSFORMING_GAM_TO_A_VECTOR_MATRIX_VGAM
3	331			DO 60 I=1,20 IR=NL*(J=1)+I
000		5 7 8	60 50	VGAM(IR)=GAM(I,J) CONTINUE CONTINUE
1000				INVERSION OF MATRIX
500	14	3	51	PRINT 51,0 FORMAT(////////,10X,4H D =,E20.8)
10)	046	7 C		PRINT 42, (VGAM(I), I=1, NLL) CALCULATION OF THE TRANSFER FUNCTION PARAMETERS
000	040	9		CALL GAS003(VGAM,CC1,VN,NL,NL,1) DO 16 I=1,NL
101	05		16	V(I)=V(I)*SDA/SDX VN(I)=VN(I)*SDA/SDX PLOTTING PARAMETERS V
1000	054	45	- 3	PRINT 8,ND FORMAT(///,10X,38H V WEIGHTS AT + AND - LAGS FOR NDIFF=,I2)
500	051	78		CLN=-CL DO_2_K=1,NL
100	06	9 0 1		T=FLOAT(K) TT=-T KK=K-1
יננ	06:	2 3	2	K1=-KK PRINT 4,K1,VN(K),KK,V(K)
5)	06	56	12	PRINT 12,CL FORMAT(//,53H APPROX. 95 PER CENT CONF LIMIT ON IMPULSE PESPONS
1	06	/ 8 9		N DATA=NDATA-1 ND=ND+1
]]]	07	0		IF(ND.GT.NDIFF)50 TO 100 00 41 I=1,NDATA -X(T)=X(T+1)-X(T)
	07	34	41	$\hat{Y}(\hat{I}) = \hat{Y}(\hat{I}+\hat{I}) - \hat{Y}(\hat{I})$ PRINT 19
I	07	5	19	FURMATISZHI URUSS UUPRELATIONS AL + AND + LAUS FUR NUIFE = II GO TO 6

		Table C-l Co	nt'd	C-11
1	SUBROUTINE DIMENSION Z NL1 = NL+1 IN = N	ACORR(Z,AC,SOZ, (1),AC(1)	N, NL)	· · · · · · · · · · · · · · · · · · ·
2 6 27 1 38 19 19	SZ = 0. DO 13 I=1,N 3 SZ = SZ+Z(I -ZBAR = SZ/T DO 10 JJ=1, J = JJ-1) \ \L1		
1 2 3 4	SZZ = C. NN = N-J DC 11 I=1,N K=I+J	Υ		
5 1 61 7 8	1 SZZ=SZZ+(Z(0-AC(JJ)-= SZ SDZ = SOPT(VZ = AC(1)	Z/TN AC(1))	ZBAR)	
9 0 1 22	00 12 J=1,N 2 AC(J) = AC(RETURN END	J+1)/VZ		
USASI FOR	TRAN DIAGNOST	IC RESULTS FOR	ACORR	······································
NO E	RRORS			
0 1 C 2 C 3 C 4 C 5 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0	SUBROUTINE COMMON SDA, DIMENSION SDA, DIMENSION C CC1 ARE CR CC2 ARE CR CALL CRCORR PRINT 6 6 FORMAT (79H IRESIDUALS NL1 = NL+1 DO 7 K=1, NL KK = K-1 K1 = -KK 7 PRINT 8 - K 8 FORMAT (5X, CL = 2.0/SG PRINT 9, SC 1 = FORMAT (/, 5 1 = NL+1 DO 10 J=1, N 0 = Q+ Q = Q+FLOAT NDF = NL+1 PRINT 11, C 11 FORMAT (/, 25 1NO. OF DYNA RETURN END	CROSS(X,A,NO3,N SDX (NO3),A(NO3) C1(41),CC2(41) OSSCOPELATION (X,A,CC2,SDX,SD (A,X,CC1,SDA,S9 CRCSS-CORREL X(T)*A(T+K),77 1 1,CC1(K),KK,CC2 I3,5X,F6.3,10X, RT(FLOAT(NOB)) CL 5H APPROX. 95 P X,SDA H STANDARD DEVI L1 CC2(J) (NO3) .NDE H CHI SQUARED S MIC PARAMETERS)	L,CC1,CC2) AT NEGATIVE AT POSITIVE L A.NOB,NL) X,NOB,NL) ATIONS BETWEE (K) I3,5X,F6.3) ERCENT CONF. ATIONS S(X) +CC2(J) TATISTIC = ,F DEGREES OF F	LAGS AGS N MANIPULATED VARIABLES LIMIT ON CROSS-COPRELAT =,F12.4,5X,6HS(A) =,E12 6.2,/,1CH BASED ON(,I2, REEDOM)
USASI FOR	RTRAN DIAGNOST	IC RESULTS FOR	CROSS	
NO E	ERRORS			

	-	Table C	-l Cont'd	C-12
J001	SU	BROUTINE CRCORR()	(,Y,CC,SDX,SDY,N,NL)	
3003	SX	= 0.		
1004	SX	x = 0.		
1006	SY	Y = 0. 2 I=1.N		
3008	SX	= $SX + X (I)$		
0009	SX	x = SXX+X(I) + X(I)		
1011	2 SY	$A_{i} = N A_{i} + A_{i} (I) + A_{i} (I)$		-
013	<u> </u>	X = SORT((SXX - SX))	SX/TN)/TN)	
0015	NL	1 = NL+1	- 3 + 7 + 14 7 + 14 7	
101 5		-3 K=1, NL-1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
1018	4N	= N-K+1	•	·
020	K K	= I + K - 1		
1021		Y = SXY + (X(T) - SX) (K) = (SXY/TN)/(S	SDX*SOY)	
0023	RE			
				٤
USAS	I FORTRAN	DIAGNOSTIC RESUL	TS FOR CRCORR	
		·		× *
	NO ERROR	S		8
3,PDIR				
		FILTERABLE		FILTERABLE
FLOW	TIGAL/MINT	RF TKN(MG/L)	LOADING(GM/DAY)	EFF TKNT1G/L
	0.40	85.00	223.88	51.01
	0.40	99.00	260.76	42.00
	-3.40 3.40		253.39 302.90	- 45.00
	0.40	78.00	205.44	42.00
	0.40	76.00	184.37	44.00
	0.15	105.00	114.42	
		118.00		39.03
	0.15		109.58	39.03 44.03 47.03
	0.15	118.00 113.00 	109.58 	39.00 44.00 47.00 45.00
	0.15 0.15 0.15 0.15 0.15	118.00 113.00 	109.58 	39.00 39.00 44.00 47.00 45.00 45.00 45.03
	0 • 15 0 • 15	118.00 113.00 	109.58 105.70 91.15 90.18 82.42 101.82 184.24	39.00 39.00 44.00 47.00 45.00 45.00 45.03 48.00 47.00
	0 • 15 0 • 15	118.00 113.00 	109.58 105.70 91.15 90.18 82.42 101.82 184.24 164.85	39.00 39.00 44.00 47.00 45.00 45.00 45.00 47.00 47.00 47.00
	0 • 15 0 • 15	$ \begin{array}{r} 118.00\\ 113.00\\ -109.60\\ -94.00\\ -93.00\\ -93.00\\ -105.00\\ -105.00\\ -176.00\\ -178.00\\ -178.00\\ -176.00 -178.00 $	109.58 105.70 91.15 90.18 82.42 101.82 184.24 164.85 17.2.61 164.85	39.00 39.00 44.00 47.00 45.00 45.00 45.00 47.00 47.00 47.00 50.00 50.00 52.00
	0 • 15 0 • 15	$ \begin{array}{r} 118.00\\ 113.00\\ 94.00\\ 94.00\\ 95.00\\ 105.00\\ 105.00\\ 105.00\\ 176.00\\ 176.00\\ 176.00\\ 170.00\\ 225.00\\ 0 \end{array} $	109.58 105.70 31.15 90.18 82.42 101.82 184.24 164.85 17.2.61 164.85 164.85 164.85 164.85 164.85	39.00 39.00 44.00 47.00 45.00 45.00 45.00 45.00 47.00 47.00 50.00 50.00 50.00 50.00 50.00 50.00
	0 • 15 0 • 15	$ \begin{array}{r} 118.00\\ 113.00\\ -109.00\\ -94.00\\ -93.00\\ -93.00\\ -105.00\\ -105.00\\ -176.00\\ -176.00\\ -176.00\\ -176.00\\ -176.00\\ -125.00\\ -130.00\\ $	109.58 105.70 91.15 90.18 82.42 101.82 184.24 164.85 164.85 164.85 218.18 126.06	39.00 39.00 44.00 47.00 45.00 45.00 45.00 47.00 47.00 47.00 50.00 50.00 50.00 50.00 50.00 50.00
	0 15 0 15	$ \begin{array}{r} 118.00\\ 113.00\\ 94.00\\ 94.00\\ 93.00\\ 105.00\\ 105.00\\ 105.00\\ 176.00\\ 176.00\\ 176.00\\ 176.00\\ 170.00\\ 225.00\\ 130.00\\ 225.00\\ 130.00\\ 225.00\\ 130.00\\ 225.00\\ 130.00\\ 225.00\\ 00 \end{array} $	109.58 105.70 31.15 90.18 82.42 101.82 184.24 164.85 17.2.61 164.85 164.85 218.18 126.06 118.30 252.49	39.00 39.00 44.00 47.00 45.00 45.00 45.00 47.00 47.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
	0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 14 0 43	$ \begin{array}{c} 118.00\\ 113.00\\ 109.60\\ 94.00\\ 93.00\\ 35.00\\ 105.00\\ 135.00\\ 176.00\\ 176.00\\ 176.00\\ 170.00\\ 225.00\\ 130.00\\ 225.00\\ 130.00\\ 276.00\\ 376.00\\ 76.00\\ 76.00\\ 76.00 \end{array} $	109.58 105.70 91.15 90.18 82.42 101.82 184.24 164.85 164.85 164.85 218.18 126.06 118.30 252.49 215.61	39.00 39.00 44.00 47.00 45.00 45.00 45.00 47.00 47.00 47.00 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.00000 50.00000 50.0000000000
	0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 43 0 43 0 43	$ \begin{array}{c} 118.00\\ 113.00\\ 109.60\\ 94.00\\ 93.00\\ 85.00\\ 105.00\\ 175.00\\ 176.00\\ 176.00\\ 178.00\\ 170.00\\ 225.00\\ 130.00\\ 225.00\\ 130.00\\ 76.00\\ 76.00\\ 76.00\\ 72.00\\ \end{array} $	$ \begin{array}{r} 109.58\\ 105.70\\ 91.15\\ 90.18\\ 82.42\\ 101.82\\ 184.24\\ 164.85\\ 164.85\\ 164.85\\ 164.85\\ 218.18\\ 126.06\\ 118.30\\ 252.49\\ 215.61\\ 198.59\\ 204.27\\ \end{array} $	39.00 39.00 44.00 47.00 45.00 45.00 47.00 47.00 47.00 50
	0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 143 0 443 0 443 0 43	$ \begin{array}{c} 118.00\\ 113.00\\ 94.00\\ 94.00\\ 94.00\\ 93.00\\ 105.00\\ 135.00\\ 176.00\\ 176.00\\ 176.00\\ 170.00\\ 225.00\\ 130.00\\ 76.00\\ 76.00\\ 70.00\\ 72.00\\ 93.00\\ 93.00 \end{array} $	$ \begin{array}{r} 109.58\\ 105.70\\ 31.15\\ 90.18\\ 82.42\\ 101.82\\ 184.24\\ 164.85\\ 154.85\\ 164.85\\ 164.85\\ 164.85\\ 218.18\\ 126.06\\ 118.30\\ 252.49\\ 215.61\\ 198.59\\ -204.27\\ 232.64\\ 263.84 \end{array} $	$ \begin{array}{r} 3.7 \\ 3.7 \\ 3.7 \\ 4.7 \\ 4.6 \\ 4.7 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 4.5 \\ 5.0 \\ $
	0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 433 0 433 0 433 0 433	$ \begin{array}{c} 118.00\\ 113.00\\ 109.60\\ 94.00\\ 93.00\\ 85.00\\ 135.00\\ 135.00\\ 176.00\\ 176.00\\ 176.00\\ 176.00\\ 176.00\\ 176.00\\ 176.00\\ 122.00\\ 89.00\\ 70.00\\ 70.00\\ 93.00\\ 90.00\\ 90.00\\ \end{array} $	$ \begin{array}{r} 109.58\\ 105.70\\ 91.15\\ 90.18\\ 82.42\\ 101.82\\ 184.24\\ 164.85\\ 164.85\\ 164.85\\ 164.85\\ 218.18\\ 218.18\\ 218.18\\ 215.61\\ 198.59\\ 204.27\\ 232.64\\ 263.84\\ 255.33\\ \end{array} $	$ 39 \cdot 00 39 \cdot 00 44 \cdot 00 44 \cdot 00 44 \cdot 00 45 \cdot 00 45 \cdot 00 45 \cdot 00 47 \cdot 00 47 \cdot 00 47 \cdot 00 47 \cdot 00 50 \cdot 00 $
	0 15 0 14 0 43 0 43 0 15 0 15 0 15 0	$ \begin{array}{c} 118.00\\ 113.00\\ 109.60\\ 94.00\\ 93.00\\ 93.00\\ 105.00\\ 105.00\\ 170.00\\ 176.00\\ 176.00\\ 178.00\\ 178.00\\ 170.00\\ 225.00\\ 130.00\\ 225.00\\ 130.00\\ 76.00\\ 72.00\\ 32.00\\ 93.00\\ 90.00\\ 79.00\\ 218.00 \end{array} $	$ \begin{array}{r} 109.58\\ 105.70\\ 31.15\\ 90.18\\ 82.42\\ 101.82\\ 184.24\\ 164.85\\ 17.2.61\\ 164.85\\ 17.2.61\\ 164.85\\ 17.8.30\\ 218.18\\ 126.06\\ 118.30\\ 252.49\\ 215.61\\ 198.59\\ 204.27\\ 232.64\\ 263.84\\ 255.33\\ 224.12\\ 142.83\\ \end{array} $	$\begin{array}{c} 37 \cdot 03 \\ 39 \cdot 03 \\ 44 \cdot 03 \\ 44 \cdot 03 \\ 44 \cdot 03 \\ 45 \cdot 03 \\ 47 \cdot 00 \\ 50 \cdot 00 \\ 50 \cdot 00 \\ 50 \cdot 00 \\ 50 \cdot 00 \\ 55 \cdot 00 \\$
	0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 143 0 433 0 433 0 433 0 433 0 433 0 433 0 433 0 10	$ \begin{array}{c} 118.00\\ 113.00\\ 94.00\\ 94.00\\ 94.00\\ 93.00\\ 105.00\\ 135.00\\ 176.00\\ 176.00\\ 176.00\\ 176.00\\ 170.00\\ 225.00\\ 130.00\\ 76.00\\ 70.00\\ 225.00\\ 93.00\\ 93.00\\ 90.00\\ 79.00\\ 218.00\\ 278.00\\ 200 $	$ \begin{array}{r} 109.58\\ 105.70\\ 31.15\\ 90.18\\ 82.42\\ 101.82\\ 101.82\\ 184.24\\ 164.85\\ 164.85\\ 164.85\\ 164.85\\ 164.85\\ 164.85\\ 218.18\\ 126.06\\ 118.30\\ 252.49\\ 215.61\\ 198.59\\ 204.27\\ 232.64\\ 263.84\\ 255.33\\ 224.12\\ 142.83\\ 182.15\\ 167.00 $	$\begin{array}{c} 39 \cdot 03 \\ 39 \cdot 03 \\ 44 \cdot 03 \\ 44 \cdot 03 \\ 47 \cdot 00 \\ 45 \cdot 03 \\ 45 \cdot 03 \\ 45 \cdot 03 \\ 47 \cdot 00 \\ 47 \cdot 00 \\ 47 \cdot 00 \\ 50 \cdot 00 \\ 50 \cdot 00 \\ 50 \cdot 00 \\ 55 \cdot 00 \\$
	0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 433 0 433 0 433 0 433 0 433 0 433 0 433 0 433 0 433 0 10 0 10 0 10	$ \begin{array}{c} 118.00\\ 113.00\\ 109.60\\ 94.00\\ 93.00\\ 93.00\\ 109.60\\ 135.00\\ 135.00\\ 176.00\\ 176.00\\ 176.00\\ 176.00\\ 176.00\\ 122.00\\ 130.00\\ 122.00\\ 130.00\\ 122.00\\ 130.00\\ 225.00\\ 130.00\\ 76.00\\ 76.00\\ 76.00\\ 76.00\\ 76.00\\ 218.00\\ 93.00\\ 90.00\\ 218.00\\ 250.00\\ 250.00\\ 256.00\\ $	$ \begin{array}{r} 109.58\\ 105.70\\ -31.15\\ 90.18\\ 82.42\\ 101.82\\ 184.24\\ 164.85\\ 164.85\\ 164.85\\ 164.85\\ 218.18\\ 218.18\\ 126.06\\ 118.30\\ 252.49\\ 215.61\\ 198.59\\ 204.27\\ 232.64\\ 263.84\\ 255.33\\ 224.12\\ 142.83\\ 182.15\\ 163.80\\ 163.86\\ \end{array} $	$\begin{array}{c} 39 \cdot 03 \\ 39 \cdot 03 \\ 44 \cdot 03 \\ 44 \cdot 03 \\ 44 \cdot 03 \\ 45 \cdot 00 \\ 45 \cdot 03 \\ 45 \cdot 03 \\ 45 \cdot 03 \\ 47 \cdot 00 \\ 50 \cdot 00 \\$
	0 15 0 1433 0 10 0 10 1 10	$ \begin{array}{c} 118.00\\ 113.00\\ 94.00\\ 94.00\\ 94.00\\ 93.00\\ 105.00\\ 135.00\\ 176.00\\ 176.00\\ 176.00\\ 176.00\\ 170.00\\ 225.00\\ 130.00\\ 76.00\\ 76.00\\ 72.00\\ 93.00\\ 93.00\\ 93.00\\ 90.00\\ 79.60\\ 218.00\\ 256.00\\ 25$	$ \begin{array}{r} 109.58\\ 105.70\\ 31.15\\ 90.18\\ 82.42\\ 101.82\\ 101.82\\ 184.24\\ 164.85\\ 172.61\\ 164.85\\ 172.61\\ 164.85\\ 164.85\\ 218.18\\ 218.18\\ 126.06\\ 118.30\\ 252.49\\ 215.61\\ 198.59\\ 204.27\\ 232.64\\ 263.84\\ 255.33\\ 224.12\\ 142.83\\ 182.15\\ 163.80\\ 163.80\\ 163.80\\ 163.80\\ 153.97\\ \end{array} $	$ \begin{array}{r} 39 \cdot 00 \\ 39 \cdot 00 \\ 44 \cdot 00 \\ 44 \cdot 00 \\ 47 \cdot 00 \\ 45 \cdot 00 \\ 45 \cdot 00 \\ 45 \cdot 00 \\ 47 \cdot 00 \\ 47 \cdot 00 \\ 47 \cdot 00 \\ 50 \cdot 00 \\ $

/	Table C-1	Cont'd	C-13
V WEIGHIS	AT + AND - LAGS	FOR NDIFF= 1	
	1	-C.022 -C.022	
-3 -0 003	3	-0.009	
	5	-Č.015	
	7	-0.004	
	9 10	0.004 - C.002	
	11 12	-0.014	
	<u>1</u> 3 14	-C.002	
-15 -0.021 -16 0.009	15	C.012 -C.010	
-17 0.002 -13 -0.007	17	C • J I 4 9 • 9 C 7	
-13 -0.012	19	-0.005	
XOX. 35 PER CENT	CONF LIMIT ON IN	IPULSE RESPONSE = 0	.023
	EILTERABI	£	FILTERAE
FLOW(IGAL/	MIN) RF TKN(MG) Y	(L) LOADING(GM/DAY)	EFF TKN(MG
0.40	34.43 36.20	90.61 95.35	9.51 16.21
0.40	33.70	88.76 93.77	21.00 22.20
Q • 40	35.87		23.33
0 + 0 0 + 40 0 + 40	31.30 30.60	82.44 80.60	24.40
0.15	18.70 18.60	18.13 18.04	23.03 17.C3
0.15	16.40	15.22	10.10
	14.10	13.67	
0.15		11.83 10.67	1.00
0.15	33.20	32.19	3.01
0.15	44.20	42.86	2.30
		4/ • / 1	
0.15	29.00	28.12	3.30
0.43		36.88	2.20
9.43	9.20	26.10	1.43
9.43			1.40
0.43	11.40	32.34	1.30
0.10	21.10	13.82	0.60
0.10	19.50	12.78	1.60
<u>j.ič</u>	13.30	8.71	1.50
0.43	32.90 37.90	92.04	7.70
0.43 0.43	41.60	116.38	23.43
0.43	45.70	127.86	33.73
2.43	-8.10	134.57	35.20

35509639658679219435069945733136205494535548932375688918813525377 198246820384049653642312696863601909887446638999945072892474442 3443121112211142387910813221797485435361738513649555444444320 14443431211122111423879108132217974854353617385136495554444443209356 14444444444438879108132217974854353617385136495554444443209356 332 27 002502 2011 ひこう nononon n 00000 4101000000 9.93 9.73 8.38 3.82 28.1 29.5 31.7 33.1 0000

Z MEAN

58.817

15.603

03055_0	ORRELATIONS	Table C-1	Cont'd	FF = 0	C-15	
-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -12 -13 -14 -15 -6 -7 -8 -9 -10 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12	$\begin{array}{c} 0.720\\ 0.628\\ 0.530\\ 0.430\\ 0.326\\ 0.234\\ 0.161\\ 0.107\\ 0.086\\ 0.064\\ 0.052\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.018\\ 0.026\\ 0.013\\ 0.009\\ -0.001\\ -0.001\\ -0.048\\ -0.063\\ \end{array}$	BETWEEN MANIN 1 2 3 4 5 6 7 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20	0.720 0.810 0.337 0.337 0.337 0.374 0.528 0.425 0.425 0.425 0.222 0.146 0.091 0.047 0.040 0.034 0.032 0.034 0.032 0.007 -0.016	LA3LE5 + ;	ΚΕΥΙΟ ΟΑ Γ Υ	
		NFLIMIT-ON- S(X) = 37	CROSS-CORREI	LATIONS =	9.182 163E+J2	
CHI SQUARE BASED O'1 (2	D STATISTIC NO. OF DY 1.00 0.89 0.89 1.00 5.79 6.99 0.54 0.67 0.54 0.67 0.02 0.14 0.02 0.02 0.02 0.02 0.02 0.02	= 493.93 NAMIC PARAMET. 0.79 0.67 0.89 0.79 1.03 0.89 0.89 1.03 0.79 0.89 0.57 0.79 0.54 0.67 0.41 0.54 0.27 0.41 0.27 0.62 0.02 0.02 -0.05 -0.02 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.01 -0.02 0.02 -0.05 -0.01 -0.02 0.02 -0.05 -0.01 -0.02 0.02 -0.05	ERS) DEGREES 0.54 0.41 0.67 0.54 0.89 0.79 1.00 0.89 0.89 1.00 0.79 0.89 0.67 0.79 0.67 0.79 0.54 0.67 0.41 0.54 0.27 0.41 0.14 0.27 0.02 0.14 -0.02 0.02 -0.05 -0.02 -0.05 -0.02 -0.05	S_OF_FREED 0.27 0. 0.41 0. 0.54 0. 0.67 0. 0.79 0. 0.05 0. 0.05 -0. 0.05 -0. 0.	01 14 0.02 27 0.14 0.27 54 0.41 0.54 79 0.54 79 0.89 0.79 0.89 0.89 0.89 0.79 0.89 0.79 0.89 0.79 0.89 0.79 0.67 41 0.54 79 0.67 0.54 79 0.54 79 0.54 79 0.54 79 0.54 79 0.54 79 0.54 79 0.54 79 0.54 79 0.54 79 0.54 70 0.54 70 0.54 70 0.54 70 0.54 70 0.54 70 0.54 70 0.54 0.54 70 0.55 0.	$\begin{array}{c} 0 \cdot 0 2 - 0 \cdot 0 \\ 0 \cdot 1 4 - 0 \cdot 0 \\ 0 \cdot 1 4 - 0 \cdot 0 \\ 0 \cdot 1 4 - 0 \cdot 0 \\ 0 \cdot 1 4 - 0 \cdot 0 \\ 0 \cdot 1 4 - 0 \cdot 0 \\ 0 \cdot 1 4 - 0 \cdot 0 \\ 0 \cdot 2 7 - 0 \cdot 1 \\ 0 \cdot 4 1 - 0 \cdot 2 \\ 0 \cdot 5 4 - 0 \cdot 4 \\ 0 \cdot 5 4 - 0 \cdot 5 \\ 0 \cdot 7 9 - 0 \cdot 6 \\ 0 \cdot 7 9 - 0 \cdot 8 \\ 0 \cdot 7 - 0 \cdot 1 \\ 0 \cdot 1 + 0 \cdot 2 \\ 0 \cdot 1 +$
D 	= 0.53 $6.24 -5.76$ $5.76 11.55$ $0.43 -5.36$ $0.02 -0.46$ $0.23 -0.46$ $0.23 -0.18$ 0.018 $0.11 -0.34$ $0.31 -0.19$ $2.56 -2.15$ $2.29 4.67$ $0.12 -2.40$ 0.86 $0.59 -1.37$ $1.46 0.17$ $1.10 -1.48$ $0.80 -1.85$ $0.75 -0.11$ $1.66 -1.73$ $0.27 -1.31$	$\begin{array}{c} 5499512-14\\ -0.43 & 0.62 & 0\\ -0.43 & 0.62 & 0\\ -5.36 & -0.46 & -0\\ -5.32 & -11.39 & -5\\ -5.32 & -11.39 & -5\\ -5.32 & -11.39 & -5\\ -5.32 & -11.39 & -5\\ -5.32 & -11.39 & -1\\ -0.21 & -0.37 & -5\\ -0.38 & -0.39 & -0\\ -0.25 & 0.46 & -0\\ -0.39 & -0.14 & 0\\ -0.25 & 0.46 & -0\\ -0.39 & -0.14 & 0\\ -0.39 & -0.14 & 0\\ -0.39 & -0.14 & 0\\ -0.39 & -0.14 & 0\\ -0.39 & -0.14 & 0\\ -0.39 & -0.14 & 0\\ -0.39 & -0.14 & 0\\ -0.39 & -0.14 & 0\\ -0.39 & -0.14 & 0\\ -0.39 & -0.14 & 0\\ -0.39 & -0.14 & 0\\ -0.39 & -0.14 & 0\\ -1.41 & 0.22 & -1\\ -1.41 & 0.22 & -1\\ -1.91 & -1.47 & 0\\ -1.60 & 0.75 & 0\\ -75 & 0.11 & -1\\ -1.06 & 0.75 & 0\\ -75 & -1.41 & 0\\ -75 & 0.11 & -1\\ -1.06 & 0.75 & 0\\ -75 & -1.41 & 0\\ -75 & -1.41 & 0\\ -75 & -1.41 & -1\\ -1.06 & 0.75 & 0\\ -75 & -1.41 & -1\\ -1.06 & 0.75 & 0\\ -75 & -1.41 & -1\\ -1.06 & 0.75 & -1\\ -$	$\begin{array}{c} 23 & -0 & 11 \\ \hline & 18 & 0 & 34 \\ \hline & 19 & 0 & 37 \\ \hline & 19 & -0 & 37 \\ \hline & 30 & -5 & 29 \\ \hline & 29 & 11 & 20 \\ \hline & 23 & -5 & 15 \\ \hline & 44 & -0 & 30 \\ \hline & -23 & -5 & 15 \\ \hline & 44 & -0 & 30 \\ \hline & -23 & -5 & 15 \\ \hline & -23 & -5 & 15 \\ \hline & -48 & -0 & 56 \\ \hline & -55 & -0 & 14 \\ \hline & -59 & -0 & 24 \\ \hline & -48 & -1 & 10 \\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.56-2 -2.054 -0.34-0 -0.48-0 -0.48-0 -0.4994-0 -11.994-12 -0.4994-12 -0.555-12 -0.4994-12 -0.555-12 -0.4994-12 -0.555-12 -0.4994-12 -0.555-12 -	29 0.12 67 -2.465555 512 -0.555 512 -0.7 512 -0.7 21 -0.7 20

-0.05 -0.05 -0.05 -0.02 -0.06 -0.01 00001247147990997741742 -0.02 0.05 0.05 0.04 0.02 -0.01 -0.02 -0.05 -0.05 -0.05 -0.02 0.02 0.04 -0.0 -0.0 -0.0 -0.01 -0.02 -0.05 -0.05 -0.05 -0.05 -0.05 -0.02 0.14 0.27 -0.06 -0.05 -0.05 -0.02 0.02 0.02 0.14 -0.05 -0.05 -0.05 -0.05 -0.05 10-27 0-27 0-57 0-57 0-57 0.89 0.41 0.02 1.00 0.89 0.79 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.27 0.14 0.54 0.57 0.79 0.39 1.00 0.39 0.39 0.39 0.39 0.57 U.41 U.67 U.79 U.89 1.00 U.89 J.79 0.89 0.54 0.54 0.67 0.79 0.89 0.27 0.67 0.27 1.00 0.89 0.41 0.89 1.00 0.5+ 0.27 -1.31 1.73 -1.85 0.75 0.11 -1.91 1.47 3.22 -1.40 0.79 -1.37 0.73 C . 8) -1.85 1.43 0.22 -1.30 0.74 -1.10 1.40 0.24 -1.16 1.73 0.18 417103362.6545616536.816 -01013102.500515005.816 -01013102.500515005.816 -0.05 -1.06 0.731-73223513960+6 -100-7772513960+6 -00-77729900346 -1.40 J.74 -1.82 -1.82 -1.93 -1.93 -1.23 -1.43 -1.91 1.43 0.24 J .1 1.8 1.4 C.8C -1.1C .48 -1.41 0.735 -2.255 -1.855 -0.355 -0.358 -1.10 0.46 0.59 -1.84 0.12 -2.29 -2.56 0.31 -1.45 -1.36 -1.36 -1.85 -1.85 -0.14 $\begin{array}{c} 0 & 17 \\ -1 & 37 \\ 0 & 40 \\ -2 & 65 \\ -2 & 65 \\ -0 & 2 \\ -0 & 2 \\ -0 & -11 \\ -0 \\ -5 & 55 \\ 11 & 57 \\ -5 \\ \end{array}$ 4.655 -1.855 -0.3258 -0.3258 -0.5358 -0.5358 -0.5358 -0.5358 -0.5358 -0.5358 -0.5358 -0.5358 -0.5358 -0.5358 -0.5358 -0.5358 -0.5558 -1000150 -0.14 -0.39 -0.39 -5.19 11.39 -0.32 -0.40 -0.11 0.23 C.02 -C.43 -0.30 -0.44 -1.46 -1.25 -0.19 0.31 084956 -5.75 0.11 5.2

		Table C-1 Cont'o	1	C-17
	WEIGHTS AT	+ AND - LAGS FO	R NOIFF = J	
	0.250	00. 1 C.	025 091	
-2	0.003	2 C.	388 353	
-4	-C.C.22 -0.037	4 C •	029 006	
	-G.C40	6 -0. 7 -C	009	
			028	
- 10	0.033	10 C.	013	
-12	-0.003	12 -0.	004	
-13	-0.038	13 Ľ• 14 Č•	006	
-15	0.001 0.048	15 G. 16G.	011 311	· · · · · · · · · · · · · · · · · · ·
-17	-0.002	17 C• 18 C•	015 011	
-19	-0.050	19 -0.	043	
APPROX. 95	PER CENT CO	NE LIMIT ON THPUL	SE RESPONSE =	0.142
				1. A A A A A A A A A A A A A A A A A A A
		• • •		
		s		
		-		
-				
	<u>````</u>			
-				
	5. : P :	~ · ·		
			······································	
		x		
k in an				
			*	
		The second of the second se		

CROSS_C CROSS-C	ORPELATIONS A	Table C-1 AT + AND - L BETWEEN MANI	Cont'd AGS FOR N PULATED V	DIFF = 1 ARIABLES	C-1 + RESIDUALS	8 <u> </u>
$ \begin{array}{r} -0 \\ -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -8 \\ -9 \\ -13 \\ -11 \\ -12 \\ -13 \\ -15 \\ -15 \\ -15 \\ -15 \\ -16 \\ -17 \\ -18 \\ -19 \\ -20 \\ \end{array} $	$\begin{array}{c} 0 & 42 \\ 0 & 249 \\ 0 & 015 \\ 0 & 0325 \\ -0 & 1543 \\ -0 & 0543 \\ -0 & 0482 \\ -0 & 0482 \\ -0 & 0242 \\ -0 & 0227 \\ -0 & 0227 \\ -0 & 0227 \\ -0 & 0227 \\ -0 & 0227 \\ -0 & 0227 \\ -0 & 0237 \\ -0 & 0237 \\ -0 & 0237 \\ -0 & 0237 \\ -0 & 0237 \\ -0 & 035 \\ 0 & 038 \\ -0 &$	0 1 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 19 20	$\begin{array}{c} 0 & 42 \\ 0 & 43 \\ 0 & 43 \\ 0 & 43 \\ 0 & 37 \\ 0 & 23 \\ 0 & 2$			
	-PERCENT-CONF	$F_{\bullet} - LIMIT - ON$	-CROSS-COR 5.9733	RELATIONS S(A) =	J. 3288E+01	
CHI SQUARE BASED ON (2	$\begin{array}{c} \begin{array}{c} \text{D} & \text{STATISTIC} \\ 1 & \text{NO} & \text{OF} & \text{DYN} \\ 1 & 0 & 0 & \text{C} & \text{O1} \\ -0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 3 & -0 & 0 & 1 \\ 0 & 0 & 3 & 0 & 0 & 8 \\ 7 & 0 & 3 & 0 & 0 & 8 \\ 7 & 0 & 3 & 0 & 0 & 0 & 3 \\ 7 & 0 & 4 & 0 & 0 & 0 & 4 \\ 0 & 0 & 2 & -0 & 0 & 1 & 4 \\ -0 & 0 & 4 & 0 & 0 & 0 & 4 \\ -0 & 0 & 2 & -0 & 0 & 1 & 4 \\ -0 & 0 & 2 & -0 & 0 & 1 & 2 \\ -0 & 0 & 5 & -0 & 0 & 1 & 4 \\ -0 & 0 & 4 & 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & -0 & 0 & 1 & 4 \\ -0 & 0 & 4 & 0 & 0 & 0 & 5 \\ 0 & 0 & 2 & 0 & 0 & 1 & 4 \\ -0 & 0 & 4 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & -0 & 0 & 0 & 4 \\ 0 & 0 & 5 & 0 & 0 & 2 \\ -0 & 0 & 5 & 0 & 0 & 2 \\ \end{array}$	$\begin{array}{c} 79.49\\ AMIC PARAME1\\ 9.08 C.03\\ -0.01 9.08\\ 1.00 - 0.01\\ -0.01 1.00\\ 0.08 - 0.01\\ -0.01 1.00\\ 0.08 - 0.01\\ -0.03 0.08\\ 0.00 0.03\\ 0.04 0.00\\ -0.02 - 0.04\\ -0.02 - 0.04\\ -0.02 - 0.04\\ -0.02 - 0.04\\ -0.02 - 0.04\\ -0.02 - 0.04\\ -0.02 - 0.04\\ -0.02 - 0.04\\ -0.04 0.02$	$\begin{array}{c} \left[= 2, S \right] & D \in G^{2}, \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} E \\ E \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 2 = E \\ 0 \\ -0 \\ -0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} -0 & 0 & 5 & -0 & 1 \\ -0 & 35 & -5 & 0 \\ -0 & 0 & 2 & -0 & 3 \\ -0 & 0 & 2 & -0 & 0 \\ 0 & 0 & 2 & -0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & $
	NOTE: The f	inal 9 colu ded on the	mns of the next page.	ese matric	ces are /	2 19 78
	D = 0.1 $1.23 0.05$ $9.05 1.23$ $-9.05 0.04$ $-9.02 -9.06$ $9.01 -0.03$ $-0.03 0.01$ $9.01 -0.03$ $-0.03 0.01$ $9.01 -0.03$ $-0.03 0.01$ $9.01 -0.03$ $-0.03 0.01$ $9.01 -0.03$ $-0.03 0.01$ $9.01 -0.03$ $-0.03 0.01$ $-0.03 0.01$ $-0.03 0.01$ $-0.03 0.01$ $-0.03 0.01$ $-0.03 0.01$ $-0.05 -0.07$ $-0.13 0.05$ $-9.10 0.13$ -9.06	$\begin{array}{c} 1456284\overline{c}+00\\ -0.05-0.02\\ 0.04-0.05\\ 1.23& 0.04\\ 1.23& 0.04\\ 1.23& 0.05\\ -0.04& 1.23\\ -0.06& 0.05\\ -0.03& -0.06\\ 0.01& -0.03\\ -0.03& 0.01\\ -0.03& 0.01\\ -0.04& 0.07\\ 0.04& 0.07\\ 0.04& 0.07\\ 0.04& 0.07\\ 0.04& 0.07\\ 0.04& 0.02\\ 0.48& 0.07\\ 0.04& 0.02\\ 0.48& 0.07\\ 0.05& -0.02\\ 0.48& 0.07\\ 0.02& 0.02\\ 0.48& 0.07\\ 0.02& 0.02\\ 0.48& 0.07\\ 0.02& 0.02\\ 0.03& 0.02\\ 0.03& 0.02\\ 0.03& 0.03\\ 0.05& -0.08\\ 0.13& 0.05\\ -0.11& 0.12\\ \end{array}$	$\begin{array}{c} 0 & 0 & 1 & -c \\ -9 & 0 & 3 & 0 \\ -0 & c & 6 & -0 \\ 0 & c & 5 & -0 \\ 1 & 2 & c & 0 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 5 & 0 \\ -0 & 0 & 5 & -0 \\ -0 & 0 & 5 & -0 \\ -0 & 0 & 5 & -0 \\ -0 & 0 & 5 & -0 \\ -0 & 0 & 3 & -0 \\ 0 & 0 & 3 & -0 \\ -0 & 0 & 3 & -0 \\ 0 & 0 & 3 & -0 \\ -0 & 0 & 3 & -0 \\ 0 & 0 & 0 & -0 \\ 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 \cdot 10 & 0 \cdot 1 \\ 0 \cdot 4 \cdot 9 & 0 \cdot 1 \\ 0 \cdot 6 \cdot 7 & 0 \cdot 4 \\ -6 \cdot 6 \cdot 2 & -0 \cdot 6 \\ -0 \cdot 6 \cdot 3 & -0 \cdot 6 \\ 0 \cdot 6 \cdot 1 & -0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & 0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & 0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & 0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & 0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & 0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & 0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & 0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & 0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & 0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & 0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & -0 \cdot 6 \\ -0 \cdot 6 \cdot 6 \cdot 7 & -0 \cdot 6 \\ -0 \cdot 6 \cdot $

•D2 •125 •35 •05 -0.04 0.02 -0.12 -0.35 -0.35 -0.14 0.09 -0.04 C.DC 6.05 0.02 -0.05 C.DC -0.04 -0.14 -0.14 -0.12 -0.12 -0.12 -0.35 -0.35 -0.02 -0.04 -0.14 0.09 0.05 0.00 0.02 -0.02 -0.12 -0.05 -0.14 -0.04 -0.04 0.0 0.05 0 -0.0 4 -0.14 0.0 ġ -0.04 0.02 -0.12 -0.05 -0.02 -0.02 -0.04 -0.04 0.00 0.00 -0.35 -0.02 -0.04 0.04 -0.05 -0.35 -0.ú2 -0.ú4 .04 -0.04 -0.14 0.09 .04 -0.0 0.0 -0.1 -0.0 -0.04 -0.14 -0.04 -0.02 -0.12 4225 .03 -08 -01 -00 -00 0.04 0.03 0.00 -0.35 0.03 -0.04 0.04 0.00 -0.05 0.08 0.03 -0.01 -0.02 0.03 -0.04 50.C -0.0 6.04 4 •030 •030 •044 •025 -0.03 -0.01 -0.01 -0.01 c.08 -0.03 0.03 0.03 0.03 -0.01 0.33 -0.01 0.01 0.04 -0.04 0.01 ú • 0 0 0 • 0 3 0 • 0 8 0.04 - 0 1.0C -0.01 -0.08 C.03 0.03 -0.01 6.08 -0.04 -0.04 0.00 1.0 0 0.01 3.64 -0.01 1.00 0.05 0,19 0.00 -0.11 0.12 0.05 -0.01 .05 0.05 -0.07 5.08 0.13 -0.10 0.13 J.05 0.04 0.05 -C.01 G.19 0.05 .48 0.09 0.11 -0.00 0.06 -0.10 0.08 .04 0.41 0.09 0.03 -0.0 t ù. û 5 ū.1 3 -0.10 -0.00 0.10 0.48 0.07 -0.024 -0.024 -0.013 -0.013 0.03 -0.03 -0.03 -0.047865 -0.047865 • C.13 0.05 -0.05 0.11 -0.07 .01 • 41 0.38 0.00 3.33 3.4 50 010017757 -0.04 0.06 -0.04 0.1 0.10 C -0.05 0.48 0.10 -0.00 0.01 -0.01-03 C.10 -0.05 0.48 8 -0.0 5 13 0.04 6.01 C.01 •07 •01 •04 •01 -0.0 -0.05 1.20 1.20 1.20 -0.00 -0.03 0.01 -0.03 J-J53462 0.02 0.4 -0.0 -0.06 551 -13 0.04 -0.0 -0.0 6 -0.0 0.01 0.0 -0.05 -0.05 3-1-0 435 0.05 -_ .48 0.01 5 -0.0

<u></u>	-	Table C-l Con	t'd	C-20
$ \begin{array}{r} -3 \\ -12 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -6 \\ -7 \\ -10 \\ -112 \\ -112 \\ -113 \\ -114 \\ -115 \\ -117 \\ -113 \\ -19 \\ \end{array} $	V WEIGHTS A 0.034 0.005 -0.021 -0.025 -0.055 -0.	AT + AND - LAGS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13 19	FOR NDIFF = 1 -0.006 C.083 C.088 0.065 C.037 0.008 -C.001 -C.010 C.022 C.015 C.022 C.014 C.000 C.005 C.005 C.011 0.005 C.019 C.033 C.005 C.033 C.035 C.035 C.035 C.035 C.037 C.022 C.0314 C.005 C.035 C.055 C.035 C.05	
APPROX. 9 1 1 1 STOP	5 PER CENT (CONF LIMIT ON IM	PULSE RESPONSE =	0.039
		× 1		
	1			· · · · · · · · · · · · · · · · · · ·
			1	
	ж. Х. Х.			
		<u> </u>		
		· · · · ·		
	· · · · · ·			

Table C-2

Main Program Used For Estimation of the Noise Model

With Output for Model A-1

Ç	PROGRAM MAIN
С	COM JON X(141),Y(141) EXTERNAL MODELA,MODELG,MODELCO
	DIMENSION_SCRAT(1532),TH(8),A(1+,1+1) READ_3, EPS1,EPS2,FLAM,FNU,MIT,NPROB,NOB,NP READ_1,((A(I,J),I=1,7),J=1,NO3) READ_2,((A(I,J),I=8,14),J=1,NOB)
C C C X	DESIGNATES THE INFLUENT SERIES AND Y THE EFFLUENT SERIES
C	AX=0.0 AY=0.0 D0 5 I=1.N03
	$ \begin{array}{l} X(I) = L(1, I) + L(7, I) + 6.552 \\ Y(I) = A(14, I) \\ \Delta X = AX + X(I) \\ \Delta Y = AY + Y(I) \end{array} $
5	CONTINUE PRINT 4 DO 9 I=1,NOB PRINT 7.X(T),Y(T)
	UBTRACTING THE MEAN FROM THE SERIES
Ĉ	BX=AX/FLOAT(N03) BY=AY/FLOAT(N03) D0 6 4=1 - N08
6	X(J)=X(J)-BX Y(J)=Y(J)-EY CONTINUE CALL CIFF(NOB)
	NP=3 TH(1)=.083 TH(2)=068 TH(3)=055
··· · ·	CALL ISHAUS(NPROB,MODELA,NOB,NP,TH,EPS1,EPS2,MIT,FLAM,FN0,SCR4T, NPROB=2 NP=2 TH(1)=.083
	TH(2)=1.00 CALL TSHAUS(NPROB,MODELB,NOB,NP,TH,EPS1,EPS2,MIT,FLAM,FNU,SCRAT) NPRO8=3 NP=3
	TH(1) = .383 TH(2) =0267 TH(3) = J.739 CALL_TSHAUS(NPROB,MODELC,NOB,NP,TH,EPS1,EPS2,MIT,FLAM,ENU,SCRAT)
	NPROB=+ NP=4 TH(1)=0.063 TH(2)=0408
1	<pre>IH(3)=.0613 TH(4)=0.569 CALL TSHAUS(NPROB, MODELCD, NOB, NP, TH, EPS1, EPS2, MIT, FLAM, FNU, SORAT FORMAT(26X, Ep.3, 19X, E4.0.1X, E3.0, 1X, 4Ep.1)</pre>
3 4	FORMAT(26X,F5.3,21X,F3.3,1X,F3.0,1X,4F5.1) FORMAT(4F10.3,4I4) FORMAT(1H1,19X,18H TKN LOAD - GM/DAY,15X,20H EFFLUENT TKN - PPH. *//)
7	FORMAT(23X,E12.4,20X,E12.4) STOP END
SASI FOR	TRAN DIAGNOSTIC RESULTS FOR MAIN

NO ERROFS

						1. 43a	स्रोटेंदन	A. Stat	
. :								te ke a	
			Table	C-2 Cont	'd	- 64		C-23	
	LN 00002 LN 00003 LN 00005 LN 00006 LN 0006 LN 0008	1	SUBROUT COMMON NOB=NOB DO 1 II X(II)=X Y(II)=Y RETURN END	INE DIFF(X(141),Y(-1 =1,NOB (II+1)-X((II+1)-Y(NOB) 141) II)				
	USA	SI FORT	RAN DIAG	NOSTIC RE	SULTS	OR DIF	for the second		
		NO ERI	RORS		يەر ئەتلەر بىر				
ja k						<u> </u>			
	LN 0001 LN 0002 LN 0003 LN 0004 LN 0004		SUBROUT COMMON OIMENSIA(1)=0 A(2)=0	INE MODEL X(141),Y ION A(1),T	A (NPROE (141) (H(1)	3,TH,A,	NOB,NP)		
ş.,	LN 0007 LN 0008	1	A(3) = 0 $DO \ 1 \ I =$ A(I) = Y(3)	4,NOB	•X(I-1)•	+TH(2)*	X (I-2) +T	H(3) * X(]	[-3]
	LN 3010	a a	END					- 40 T. 4	
_	US	ASI FORT	RAN DIAG	NOSTIC RE	SULTS F	FOR MOD	ELA		
		NO ER	RORS		, li				
	1 N 0.004		540.2044			· · · ·			
	LN 0003 LN 0003 LN 0004 LN 0005		COMMON DIMENS: A(1)=0. DO 1 I	X(141),Y ION(A(1), 0 =2,NOB	LB(NPRU (141) TH(1)	В, ІН, А,	NUB, NP)		
	LN 0007 LN 0008	1	A(I) = RETURN END	Y(<u>1)-</u> TH(1) *X (I-	1)-TH(2) + Y (I-1)	+TH(2)+	1 (I-1) 57
	US	ASI FORT	RAN DIA	SNOSTIC R	ESULT,S	FOR MOD	ELB.		
		NO ER	RORS						
							P.		
			Ì						
							制弹		
•				.					

TKN LOAD - G/DAY	EFFLUENT	TKN -	PPM
5.92512+32 .95357+02	0.95	J0E+J1 20E+02	
		10E+12	
3.9.729E+62	J. 23	30E+02	
0 • 5323E+02 0 • 52345=+02	J. C+ J. 24	40 = + 52	
<u> </u>	0 • 23 0 • 23	<u>805+02</u> 005+02	
0.13045+02 0.13905+32	0.17 J.10	005+02 105+02	
<u>0,13222+52</u> ,13572+32	26	<u>865+81</u> 885+88	
0.1251E+32	0.60	365+36	
	3.10		
	0.30	10 <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
0.33262+32 3.4256E+02	0.23 0.23		
0.47712+12 0.43752+02	0.29 0.31	00E+01 00E+01	
0.3152E+02 3.2812E+02	/ D.37 0.33	00E+01 00E+01	
0.51355+02 0.35385+32	0.27	002+01	
0.3234E+02	0.18		
L. 30362+02	2.13		
	0.14		
0.13522+122	0.12	<u>. E+.1</u>	
1.13821+12 0.12715+02	0.EC 0.70	105+100 20E+00	
<u>0.12765+02</u> 0.52+2E+01	0.10	<u>865+01</u> 665+01	
6.1394E+32 9.9697E+51	0.15 0.15	00 E+01 07 E+01	
	0.15	00F+01	
1.9204E+22 1.9204E+22	0.77	005+01	
	0.23	-0-+02	
C • 1393E+35	0.20 0.30	40E+02	
<u> </u>	0.33	212+32 762+32	
0.1427E+03 > 0.1346E+E3	0.34 0.35	205+02	
0.1265E+13 0.1255E+03	0.35	16E+02 25E+02	
0.1270E+33 0.1390E+03	0.34	705+02 505+02	
0.1276E+03	3.35	405+02	
0.24955+32 	0.32	60 E+02	
C. 4320E+02	5.24	50E+02	
J. 4366E+J2	0.20	205+02	
0.41001+02 0.42295+02	2.17		
0.11135+33	0.15	302+02 302+02	
U.9238E+32 U.1024E+33	9.21 5.24	40E+J2 60E+J2	
<u>0,1111E+33</u> 0,1319E+33	0.25	60 E+02 60 E+02	
0.14.495+03		40 - + 02	
<u> </u>	1.32	20=+ 2	
0.57632+02	0.25	90 E + 02	
		705+12	
0.13195+02	0.95	G0 E+01	

NON-LINEAR ESTIMATION, PROBLEM NUMBER 3
120 OBSERVATIONS, 3 PARA HETERS
INITIAL PARAMETER VALUES
L.8333E-31 -).257CE-01 2.739CE+03
INITIAL SUM OF SQUARES = 0.4295E+03
ITERATION NO. 1 DETERMINANT = 0.2334E+00 ANGLE IN SCALED COORD. =40.58DEGREES
TEST POINT PARAMETER VALUES C.8005E-01 -0.2987E-01 0.6059E+00
TEST POINT SUM OF SQUARES = 0.3320E+03
PARAMETER VALUES VIA REGRESSION
0.8009E-01 -0.2987E-01 0.6059E+00
LAMEDA = 0.10(F-02 = 332 04
DETERMINANT = 0.2563E+00 ANGLE IN SCALED COORD. =32.50DEGREES
TEST POINT PARAMETER VALUES 0.82965-01 -0.42955-01 0.51215+00
TEST POINT SUM OF SQUARES = 0.32485+03
PARAMETER VALUES VIA REGRESSION
1 0.82965-01 -0.4295E-01 0.5121E+00
LAMBDA = 0.100E-03 SUM OF SQUARES AFTER REGRESSION =324.76
DETERMINANT = C.2889E+00 ANG_E IN SCALED COORD. =48.88DEGREES
TEST POINT PARAMETER VALUES C.8336E-01 -C.3998E-01 0.5328E+00
TEST POINT SUM OF SQUARES = 0.32452+03
PARAMETER VALUES VIA REGRESSION
8.8356E-01 -0.3998E-01 0.5328E+00
LAMBDA = 0.100E-34 SUM OF SQUARES AFTER REGRESSION =324.52
DETERMINANT = 0.2791E+CC ANGLE IN SCALED COORD. =36.32DEGREES

TEDT POINT SUM OF SUMPED = C.32455+13
PARAMETER VALJES VIA PEGHESSION
1 2 3 1 83565 - 1 - 2 41145 - 1 2 52525+1 2
SUM OF SQUARES AFTER REGRESSION
LANBOA = 0.1002-05 = 324.50
DETERMINANT = 0.2825E+00 ANGLE IN SCALED COORD. =34.45DEGREES
TEST POINT PARAMETER VALUES [.83572-01 -0.43742-01 0.52782+00
TEST POINT SUM OF SQUARES = 0.32-5E+03
PARAMETER VALUES VIA REGRESSION
0.8357E-01-0.4074E-01 0.5278E+00
LAMBDA = C.1005-06 SUM OF SQUARES AFTER REGRESSION =324.49
DETERMINANT = 0.2813E+LJ ANGLE IN SCALED COORD. =3+.51DEGREES
TEST POINT PARAMETER VALUES 0.83572-01 -0.40385-01 0.52695+00
TEST POINT SUM OF SQUARES = 0.32455+03 Determinant = 0.28135+00 Angle in scaled coord. =34.51Degrees
TEST POINT PARAMETER VALUES 0.8357E-J1 -C.4086E-C1 C.5269E+C0
TEST POINT SUM OF SQUARES = 0.32455+03 DETERMINANT = 0.28135+00 ANGLE IN SCALED COORD. =34.51DEGREES
TEST POINT PARAMETER VALUES 0.83572-01 -0.43882-01 0.52698+00
TEST POINT SUM OF SQUARES = 0.32455+03 DETERMINANT = 0.28135+00 ANGLE IN SCALED COORD. =34.51DEGREES
TEST POINT PARAMETER VALUES 0.8357E-01 -0.4088E-01 0.5259E+00
TEST POINT SUM OF SQUARES = 0.32455+03 DETERMINANT = 0.28155+00 ANGLE IN SCALED COORD. =34.50DEGREES
TEST POINT PARAMETER VALUES 0.83575-01 -0.40885-01 0.52696+00
TEST POINT SUM OF SQUARES = 0.32452+03 DETERMINANT = 0.28322+00 ANGLE IN SCALED COORD. =34.47DEGREES
TEST POINT PARAMETER VALUES 6.83572-61 -0.40882-01 0.52692+00
TEST POINT SUM OF SQUAPES = 0.32457403 DETERMINANT = 0.30368401 ANGLE IN SCALED COORD. = 34.13DEGREES
TEST PCINT PARAMETER VALUES 0.8357E-01 -0.4087E-01 0.5269E+00
TEST POINT SUM OF SOUARES = C.3245E+C3 DETERMINANT = C.5C42E+C0 ANGLE IN SCALED COORD. =31.17DEGREES
TEST POINT PARAMETER VALUES

DETERMINANT = 0.6201E+01 ANGLE IN SCALED COORD. =18.48DEGREES
TEST POINT PARAMETER VALUES 0.83585-01 -0.40755-01 0.52768+00
TEST POINT SUM OF SQUARES = 0.3245E+13
TEST POINT PARAMETER VALUES 0.83572-01 - 0.4074E-01 - 0.5277E+00
TEST POINT SUM OF SQUARES = 0.3245E+33
PARAMETER VALUES VIA REGRESSION
D.8357E-01 -C.4074E-C1 C.5277E+CC
LAMBDA = 0.101E+31 SUM OF SQUARES AFTER REGRESSION =324.49
ITEPATION STOPS - PELATIVE CHANGE IN SUM OF SQUARES LESS THAN 0.1000E-DE

FINAL RESIDUAL VALUES	
0.00002+00 0.00002+00 -J.97572+03 -0.19502+00 -0.2529	E+00 3.8105E+C
-0.44122+01 0.73202-01 0.79302+00 0.23372+01 -0.7069	E+00 [.4851E+C
-C.1364E+01 -C.5930E+00 D111E+00 L.8544E+00 -0.1536	E+01 -C.6337E+C
-0.3164E+00 -0.1425E+00 0.9713E+00 0.1664E+01 0.1229	E+01 0.9300E+0
-C.11822+01 C.21852+01 C.18922+01 -C.56682+00 C.5185	E-01 -0.4360E+0.
-0,1639E+00 0.1289E+01 0,1337E+00 0.1371E-01 -0.1799	E+31 0.6336E+0.
-G.2004E+00 -0.6856E+30 -3.8366E+00 -0.9322E-01 -0.1648	E+00 -0.1112E+C:
-0.4866E+01 0.2516E+01 -0.288+E+01 -0.3403E+01 -0.1036	<u>E+01 0.1337E+0:</u>
0.1037E+01 0.1086E+01 0.3297E+00 0.9734E+00 0.1193	E+3C -6.4179E+L
-C.2483E+01 -C.3368E+31 C.4384E+C0 -C.1452E+01 C.8177	E+90 0.1-88E+6
-0.7253E+00 -0.2741E+01 -0.1382E+01 -0.5878E+00 0.1742	E+J1 0.+675E+0:
0.1307E+01 -0.2397E+30 0.5413E+10 0.2967E+00 -0.1366	E+31 C.8265E-C:
NOTE: The final 4 columns of this matrix are given or CORRELATION MATRIX	1 page C-31
1 2 3	*
1 1.0000 2 0.3948 1.0000	
3 0.0068 0.7107 1.0000	
NORMAL TZINC ELEMENTS	
G.536CE-02 0.7620E-02 0.3581E-01	
VARIANCE OF RESIDUALS = 0.2773E+01, 117 DEGREES OF FRE	EDOM
INDIVIDUAL CONFIDENCE LIMITS FOR EACH PARAMETER (ON LIN	EAR HYPOTHESIS)
<u>1</u> <u>2</u> <u>3</u> 0.101/F+00 -0.1536F-01 <u>0.6469F+00</u>	
0.6572E-01 -0.6512E-01 0.4084E+00	

C.1335E+31	-6.2267E+30	-1.41212+11	-J.:393E+L1
C.7081E+03	-0.23892+01	-J.115-E+01	-J.85+7E+00
0.41922+36	0.10392+01	0.5996E+6C	-3.12322+00
C.1007E+01	6.3091E+C0	6.3467E-11	C.1513E+6C
-0.9374E+83	0.4044E+D0	-0.113EE+00	-0.61642+00
0.1771E+01	0.3855E+01	0.9061E+CL	2.2623E+0C
•C.1318E+01	0.6644E+00	-0.49262+00	0.30822+00
6.9299E+30	0.1714E+01	6.2-775+06	-0.9831E+00
•C.6343E+30	-0.1415E+00	J.∂849E+JU	J.1218E+J1
C.1006E+J1	-0.1571E+01	-0.5119E+00	0.60802+.1
0.46562+01	0.3126E+01	0.75252-01	J.1984E+00
C.1322E+01	0.73655+30	0.167(E+11	0.12455+11

AUTO AND PAPTIAL	CORRELATIONS OF	THE PESIDUALS	
I	AUTO	PARTIAL	
123	8.219 -0.045 -0.064	0.219 -0.098 -0.033	
567	-0.043 -0.042 0.089	-0.027 -0.035 0.136	
<u>8</u> 9	-0.016 -0.016 -0.087	-0.052 -0.152	
11 12 13	L.117 L.127	-0.015 -0.123	
154		0.000 -0.000 -0.000 -0.000	
17 18 19	-0.049 0.089 0.045 0.043	-0.105 0.079 0.031 0.052	2.3.
21 22 23 24	0.048 -0.007 0.002	0.031 -0.012 0.135	
2526278	€.03 -0.12+ -0.072 €.072	-0.035 -0.139 0.005 0.17	
29 30	-0.021 0.109	-0.121 0.049	
APPROX. 95 PERCEN	T CONF. LIMIT ON	CORRELATIONS = 5.183	
CHI-SQUARED STATI BASED ON (30 - NO	STIC = 26.46 OF STOCHASTIC	PARAMETERS) DEGREES OF F	REEDOM

		Table C-3
	Cor	nputer Program Used For The Simultaneous TF-N Model Parameter
:		Estimation and Residual Checks With Output for
LN		C
	1333	C COMMON X(141) Y(141)
<u>Fi</u>	11:3	EXTERNAL GODELA, GODELA, MODELC, MODELAA, MODELCD, MODELBB
		READ 3, EPS1, EPS2, FLAM, ENU, MIT, NPRDB, NPB, NPB, SALAN
)] <u>]</u>]	$\begin{array}{c} P = A D & 1, ((A(I,J), I = 1, 7), J = 1, NO3) \\ P = A D & 2, ((A(I,J), I = 3, 1+), J = 1, NO3) \end{array}$
LY	1110	
ĒN	1512	C X DESIGNATES THE INFLUENT SERIES AND Y THE EFFLUENT SERIES
1.1	1014	C
	1115	
- <u></u>		$\frac{100.5}{((T) = 1((T, T) + 6(T, T) + 6(5, 55))}$
Li	1111	Y(I) = A(14, I)
1.1	1021	$A \mathbf{Y} = A \mathbf{Y} + \mathbf{Y} (\mathbf{I})$
LN	1022	5 CONTINUE PRINT +
Ē	122	$\begin{array}{c} 10 9 I=1, \text{NO3} \\ 0 0 1 7 Y(T) Y(T) \end{array}$
LY	1125	
LN	1:23	C SUBTRACTING THE MEAN FROM THE SERIES
LN	1023	
LN	1031	3X = 4X / FLOAT(NOB)
LN	1122	$\frac{10}{10} \div J=1.003$
LN	1034	$Y(J) = Y(J) - \Theta X$
LN	1035	6 CONTINUE CALL DIFF (NOB)
LN	1034	NP=4 TH(1)=0.00067
LN		TH(2) = 3.36241
LN	1042	$\frac{[H(3) = -0.07395}{[H(4) = 0.192]}$
LN	1043	CALL TSHAUS (NPROB, MODELA, NOB, NP, TH, EPS1, EPS2, MIT, FLAM, FNU, S
11	11+5	<u>TGES*NP+1+NZERO</u> NG3=NO3-NZERO
LN	3047	CALL CROSS(X (NZERO), SCRAT(IG), NOB,23)
-	1048	NO9=NO8+NZ=RO NBR03=2
LN	0050	IH(1) = 1935 IH(2) = 1.36
LM	1052	TH(3) =. 395
LN	1154	CALL TSHAUS (NPROB, MODEL3, NUB, NP, TH, EPS1, EPS2, MIT, FLAM, FNU, S
LN	1156	NZERD=2 IG=5*NP+1+NZERD
IN	1153	$\frac{1}{1} \frac{1}{1} \frac{1}$
LN	1359	10B=103+NZER0
19		<u>IH(1) = 08357</u>
LN	1002	TH(2) =04674 TH(3) =, 5277
LN	1064	TH(4) = 219
LN	1160	CALL TSHAUS (NPROB, 10)ELC, NOB, NP, TH, EPS1, EPS2, MIT, FLAM, FNU, S
LN	1168	16=5tNP+1+22=R0
LN	1070	CALL 02055(X(NZERO), SCRAT(IG), NO8,20)
LN	1073	108=N03+NZER0
T:	<u>jj73</u>	IH(1) =
LN	1175	IH(3) = -33234
LN	117-	[4(+)=,3575 [4(3)=],208
LN	1273	№ Р=5

				IdD.	re c-s	contra				33
3			л (р. 1. С	- v. e. 3.						
1079 1161		NZERO=	TSHAUS (NPROB,	10DELCO	D , 108 , Ni	P, TH, EPS	1, EPS2,	MIT, FLA	H, ENU,
) J 8 1] J 8 2		103=10	12+1+N.Z	280						
1133		109=10	22055(X 23+NZER	(<u>'17 ==)</u> 0	.SC941	(IG),NU)3,27)	-		****
1045		NP208= NP=5	=11							
133		IH(1) = IH(2) =	25:4	<u>.</u>						
1193		TH(3) =	=+3.259	-6						
1012		CALL 1	SHAUS (NPROB,	10DELAA	A, NOB, NI	P,TH,EPS	1,EPS2,	MIT,FLA	M, FNU,
1191		1G=5+N		590		t a c		4.2.097		
196			2055(X	(NZERO)	,SCRAT	r(IG),NO	08,23)	· · ·		
1248		1P-03=	=21	•			-			
		TH(1)= TH(2)=	=.1905 =1.06	1			Υ		1	
	J.	CALL 1	ISHAUS (NPROB .	10DEL35	B, NOB, NE	P, TH, EPS	1, EPS2,	NIT, FLA	H, FNU,
)1114)1155		IG=5*N NC3=N(19+1+NZ	E 70 0						
1106 1157		CALL C	CROSS(X	(NZERO)	,SCRAT	r(IG) • NC	08,20)			
]158]109	2	F 09 14 1 F 08 14 1	r(25X,= r(25X,F	5.3,19	(,=4.). (,F3.]	1X,F3.),1X,4F3 ,1X,4F3	•1) •1)	~ 영화 문	
	3	F 02 14 1 F 02 14	Γ(+F10, Γ(:41,1	3,414) =X,1=4	TKYLC	14.) - G	1/ DA Y. 15	Х, 204 -	FELUENT	IKN -
	. 7	F 02 14 1	r(23X, E	12.4,20	X,E12.)		14. ¹		
1115		5100				•				
USAS	I FOR	TRAN DI	AGNOSTI	C RESUL	TS FOR	R HAIN			7	

	N0 5	२२०२ऽ								
	NO 5	:49095								
	NO 5	:२२० <i>२</i> ऽ								
	N 0 5	: २२० २S								
	NO 5	:२२० २S								
	NO 5	:२२० २S								
	NO 5	:२२० २S								
	NO 5	:२२० २S								
	NO 5	:२२० २S								
	NO 5	२२०२S								
	NO 5	:२२० २S								
	NO 5	2202S								
	NO 5	290 95								
	NO 5	2202S								
	NO 5	2202S								
	NO 5	290 9S								
	NO 5	2202S								

•			Table C-3 (Cont'd	2	C-35
R TRAN (2.3)/MASTE	R INTEG	<u>ER WORD SIZE</u>	= 1 , +	OPTION IS	OFF , O OPTION IS
012345	SUBRO COMMO DIME A (1) A (3)	OUTINE MODE DN X(141),Y NSION A(1), C.	LCD(NPROB,TH (141) TH(1)	, A, NOB, NF	2)	
078 099 111 121	A (4) = DO 1 1 A (I) = 2) * A (1) 3 - TH 4 + TH 8 FTUS	I=5,NOB I=5,NOB Y(I)-TH(1) I=1) S)*Y(I=1)+ (1)*TH(5)*X	*X (I-1)+TH(2 TH(5) *TH(4) * (I-2) -TH(2)*) * X (I - 2) 4 Y (I - 2) TH (5) * X (]	-TH(3) *X(I- [-3) -TH(3) *	3) - TH (4) + Y (I - 1) + TH (4 TH (5) + X (I - 4)
14	END	.^	1			
USASI	FORTRAN DI	AGNOSTIC R	ESULTS FOR M	ODELCO		
	NO ERRORS		•	-		
2 TR AN ()	2.3)/MASTER	INTEG	ER WORD SIZE	= 1 , *	OPTION IS	OFF , O OPTION IS
1234567890.12	SUBRO COMMO DIMEN A(1) = A(2) = DO 1 1 A(1) = 2 -TH(3 +TH RETUR END	UTINE MODE N X(141),Y ISION A(1), C. I=4,NOB Y(I)-TH(1) 4)*Y(I-1)+ I(1)*TH(4)*	LC(NPROB,TH, (141) TH(1) *X(I-1)+TH(2 TH(4)*TH(3)* X(I-2)-TH(2)	A,NOB,NP))*X(I-2) Y(I-2) *TH(4)*X(-TH(3)+Y(I- 1-3)	1)+TH(3)*A(I-1)
USASI	FORTRAN DI	AGNOSTIC R	ESULTS FOR M	ODELC		
	NO ERRORS					
	н А.	а і , 1				

	Table C-3 Cont'd	C-36
ORTRAN (2.3) MASTER	INTEGER WORD SIZE = 1 , + OPTION IS OFF	, O OPTION IS
0001 SUBROUTINE 0002 COMMON X(14) 0003 DIMENSION A 0005 A(1) = C. 0006 A(2) = 0. 0007 A(2) = C. 0007 A(4) = C. 0007 A(4) = C. 0007 A(4) = C. 0007 A(4) = C. 0008 DO 1 I=6,NO 010 1 011 *) *Y(I-2)	MODELAA(NPROB,TH,A,NOB,NP) (1),Y(141) (1),TH(1) DB TH(1)*X(I-1)+TH(2)*X(I-2)+TH(3)*X(I-3)-T	Ή(4) + Υ(I-1)-TH
012 2 +1H(1)+1H 013 3 +TH(1)+TH 014 RETURN 015 END	(4) * X (1-2) - 1H (2) * 1H (4) * X (1-3) - 1H (3) * 1H (4 (5) * X (1-3) - TH (2) * TH (5) * X (1-4) - TH (3) * TH (5)) *X (1-4)) *X (1-5)
USASI FORTRAN DIAGNOST	TIC RESULTS FOR MODELAA	
NO ERRORS		<u> </u>
OR TRAN (2.3)/MASTER	INTEGER WORD SIZE = 1 , * OPTION IS OFF	, O OPTION IS
001 SUBROUTINE 002 COMMON X(1) 003 DIMENSION 004 A(1)=0. 005 A(2)=0. 006 D01 I=3,NI 007 1 A(I) = Y(I) 008 2 + A(I-1) -	MODELBB(NPROB,TH,A,NOB,NP) 41),Y(141) A(1),TH(1) DB D-TH(1)*X(I-1)-TH(2)*Y(I-1)+TH(2)*A(I-1) TH(2)*A(I-2)	
019 RETURN 010 END		
USASI FOPIRAN DIAGNOS	TIC RESULTS FOR MODELBB	
NU ERRURS		
-		
a and a second		
	Table C-3 Cont'd	C-37
--	----------------------------------	--------------------------
TKN	LOAD - GM/DAY	EFELUENT TKN - PPM.
(
	0.90615+32	0.9500E+01
	0.9535E+02	3.16205+02
	0.88762+02	0.21005+02
>	0.94295+02	<u>1.23305+02</u>
	0.83232+02	0.2400E+02
	J • 8244E+J2	0.24402+02
	0.8060E+02	3.2380E+02
	0.1804F+02	0.17005+02
	J. 1590E+02	0.1010E+02
	0.1522E+02	0.2500E+J1
		0.9000E+00
	0.1183E+02	1.2200E+01
	0.1067E+02	0,10005+01
	0.2793E+02	0.1100E+01
	0.33265+02	
	0.4286E+02	9.2300E+01
	0.4771E+02	0.2900E+01
	3.4975E+02	0.31005+01
	0.28125+02	0.3700E+01
to come communication of the c	0.5135E+02	0.2700E+01
	0.3688E+02	0.2200E+01
	0.32342+02	0,1800E+01
	0.3036E+02	0.1300E+01
	0.3291E+02	0.1400E+01
		0.14005+01
	0.13825+02	3.1200E+01
	0.1382E+12	0.6000E+00
	0.1271E+02	
	0.52425+01	0.1400 E+01
	0.1094E+02	0.1500E+01
	0.9697E+01	
	G. 9848E+02	0.1506 E+01
	0.9204E+02	0.7700E+01
	0.1060E+03	0.16905+02
	0.1318E+03	0.2660E+02
	0.1393E+03	0.30405+02
		0.33205+02
	0.1427F+03	0.34205+02
	0.1346E+03	0.35205+02
	0.12652+03	0.35105+02
	0.1270E+03	0.3470F+02
	0.1390E+03	J. 3450E+02
	0.1276E+D3	0.35405+02
		1.3260E+02
	0.4485E+02	C. 2720E+02
	0.4320E+02	0.24505+02
	0.43665+02	
	-G. 4183E+02	3.1900E+02
	J. 4229E+02	1.1760E+02
to matters and a second s	0.4100E+02	<u>0.1630E+02</u>
~	J. 9288E+12	0.2140F+02
	0.1024E+03	1.2460E+02
		<u>0.25605+02</u>
	0.14495+03	0.3140F+02
-	0.1326E+03	0.35405+02
	0.1136E+33	0.3200E+02
	0 • 7834E + 02 6 • 5763E • 02	U. 3320E+02
	1.3945E+12	0.1700E+02
	0.51202+02	j.ic705+02
	0.5036E+12	0.9500E+01
	0.10196+02	0.92302+01 1.8030E+01
	1. 4364E+12	

C-39 Table C-3 Cont'd NON-LINEAR ESTIMATION, PROBLEM NUMBER 3 120 OBSERVATIONS, 4 PARAMETERS 636 SCRATCH REQUIRED INITIAL PARAMETER VALUES $0.835\frac{1}{72}-01$ - $0.407\frac{2}{42}-01$ 0.52772+00 0.21902+00 INITIAL SUM OF SQUARES = 0.3076E+03 ITERATION NO. DETERMINANT = 0.3975E+0.0ANGLE IN SCALED COORD. = 18.40DEGREES TEST POINT PARAMETER VALUES 0.82985-01 -0.3341E-01 0.5684E+00 0.2235E+00 TEST POINT SUM OF SQUARES = 0.3068E+03 PARAMETER VALUES VIA REGRESSION 0.8298 = -01 - 0.3341 = -01 0.5684 = +00 0.2235 = +00LAMBDA = 0.100E-02SJM OF SQUA After Regression = 306.7ANGLE IN SCALED COORD. = 38.75DEGREES DETERMINANT = 0.3725E+00TEST POINT PARAMETER VALUES 0.8316E-01 -0.3529E-01 0.5535E+00 0.2365E+00 TEST POINT SUM OF SQUARES = 0.3067E+13 PARAMETER VALUES VIA REGRESSION 4 0.23655+00 0.83162-01 -0.35292-01 0.5535E+00 LAMBDA = 0.100E-03SUM OF SQUAR After Regression = 306.6 ANGLE IN SCALED COORD. = 32.57DEGREES DETERMINANT = 0.3873E+00TEST POINT PARAMETER VALUES 0.8310E-01 -0.3424E-01 0.5610E+00 0.2327E+00 TEST POINT SUM OF SQUARES = 0.3067E+C3 PARAMETER VALUES VIA REGRESSION 0.5610E+C0 0.8310E-01 -0.3424E-01 0.2327E+00 LAMBDA = 0.100E-04SUM OF SQUAF After Regression = 306.65 ITERATION NO. 4 ANGLE IN SCALED COORD. = 35.82DEGREES DETERMINANT = 0.3811E+00 TEST POINT PARAMETER VALUES 0.83142-01 -0.3471E-01 0.5574E+50 0.2348E+00

Table C-3 Cont'd IEST POINT SUM OF SQUARES = 0,30675+03	C-40
PARAMETER VALUES VIA REGRESSION	
1 -0.3471E-01 0.5574E+C0 C.2348E+C0	
LAMBDA = 0.100E-05 After Re	SJ4 OF SQUAR gression = 306.65
DETERMINANT = 0.3841E+00 ANGLE IN SCALED COO	DN NO. 5 RD. = 34.96DEGREES
TEST POINT PARAMETER VALUES 0.83122 -01 -0.3449E-01 0.5591E+00 0.2338E+00	
TEST POINT SUM OF SQUARES = 0.3066E+03	
PARAMETER VALUES VIA REGRESSION	
0.8312E-01 -0.3449E-01 0.5591E+00 0.2338E+00	
LAMBDA = 0.100E-06	SUM OF SQUAR
After Re	gression = 306.65
ITERATI	ON_NO6
DETERMINANT = 0.3827E+00 ANGLE IN SCALED COOL TEST POINT PARAMETER VALUES	RD. = 35.27DEGREES
0.83132-01 -0.34602-01 0.5583E+00 0.2343E+00	
DETERMINANT = 0.3827E+00 ANGLE IN SCALED COOL	RD. =35.27DEGREES
TEST POINT PARAMETER VALUES 0.83135-01 -0.3460E-01 0.5583E+00 0.2343E+00	-
IEST POINT SUM OF SQUARES =0.3066E+03DETERMINANT =0.3827E+00ANGLE IN SCALED COOP	RD. =35.27DEGREES
TEST POINT PARAMETER VALUES 0.83135-01-0.3460E-01 0.5583E+00 0.2343E+00	
TEST POINT SUM OF SQUARES = 0.3066E+03 DETERMINANT = 0.3827E+00 ANGLE IN SCALED COOP	RD. = 35.27DEGREES
TEST POINT PARAMETER VALUES	
TEST POINT SUM OF SQUARES = 0+30662+03	
TEST_POINT PARAMETER VALUES	(U 35.2 60EGREES
$\frac{0.8313 - 01 - 0.3460 - 01 0.5583 + 00 0.2343 + 00}{\text{TEST POINT SUM OF SQUARES} = 0.30667 + 03}$	
DETERMINANT = 0.3853E+00 ANGLE IN SCALED COOL	RD. = 35.23DEGREES
0.8313E-01 -0.3459E-01 0.5583E+00 0.2343E+00	
DETERMINANT = 0.409GE+00 ANGLE IN SCALED COOP	RD. = 34.35DEGREES
TEST POINT PARAMETER VALUES 0.8313E-01 -0.3459E-01 0.5583E+00 0.2343E+00	- Andrew Colored Colored

DETERMINANT = 0.1315E+02 ANGLE IN SCALED COORD. = 15.41DEGREES TEST POINT PARAMETER VALUES 0.83132-01 -0.34502-01 J.5589E+00 0.2340E+00 TEST POINT SUM OF SQUARES = 0.3066E+03 TEST POINT PARAMETER VALUES 0.83122-01 -0.34502-01 0.5590E+00 C.2339E+00 TEST POINT SUM OF SQUARES = 0.3066E+03 PARAMETER VALUES VIA REGRESSION 0.8312E-01 -0.3450E-01 0.5590E+00 0.2339E+00 SJM OF SQUARES LAMBDA = J.100E+91After Regression = 306.65ITERATION STOPS - RELATIVE CHANGE IN SUM OF SQUARES LESS THAN 0.1000E-0

Table C-3 Cont'd

FINAL RESIDUAL VALUES 0.0000E+C0 0.00002+00 0.00002+00 0.4975E+00 0.9057 = 010.9914E+C -0.3983E+01 0.1206E+01 0.8634E+00 C.2213E+01 -C.12C9E+01 0.6822E+C -0.1151E+01 -0.2882E+00 0.5131E+00 C.6554E+00 -0.1737E+01 -0.2273E+C <u>-0.26495+00 -0.62385-01 0.99225+00 0.13875+01 0.86075+00 0.66775+0</u> -0.1173E+01 C.28C4E+C1 0.1242E+C1 -C.1180E+C1 0.1311E+D0 -C.4974E+C -0.9157E-01 0.1276E+01 -0.1701E+00 0.1063E-02 -0.1755E+01 0.1043E+0 -0.1510E+00 -C.5668E+00 -0.6809E+60 0.1522E+00 -0.9219E-01 -0.7992E+0 -0.4973E+01 0.3514E+01 -0.3615E+01 -0.2877E+01 -0.2672E+00 0.1612E+0 0.1323E+01 0.9181E+00 0.5514E-01 0.8709E+00 -0.1454E+00 -0.4494E+0 -0.2673E+01 -0.2404E+01 0.1152E+01 -0.1503E+01 C.1167E+01 0.1232E+C -0.2640E+01 -0.2685E+01 -0.7779E+00 -0.3533E+00 0.1979E+01 0.4288E+0 _0.1254<u>2+01_-0.6135E+00__0.6060E+00__0.1667E+00_-0.1144E+01__0.3357E+</u>0 NOTE: The final 4 olumns of this matrix are on the next page. CORRELATION MATRIX 1 2 3 1 1.3000 2 0.1944 1.0000 3 -0.1021 0.7028 1.0000 1.0000 0.0054 0.0115 4 - 1. 1447 NORMAL IZING' ELEMENTS 0.7461E-02 0.4199E-01 C.5560E-01 0.53465-02 VARIANCE OF RESIDUALS = 0.2644E+01, 115 DEGREES OF FREEDOM INDIVIDUAL CONFIDENCE LIMITS FOR FACH PARAMETER (ON LINEAR HYPOTHESIS) 0.6955E+00 C.4147E+00 0.4225E+00 0.5312E-01 0.1005E+00 -0.1024E-01 0.6574E-01 -0.5876E-01

Table C-3 Cont'd

-0.3499E-01	-0.2156E+00	-0.3510E+00	-0.1510E+01		
0.62242+00	-0.2469E+01	-0.5905E+C0	-0.6013E+00		
0.50725+00	0.9188E+00	0.3442E+00	-0.2266E+00		
0.81165+00	0.6683E-01	C.7318E-02	0.1505E+00		
-C.8862E+00	0.4935E+00	-0.2833E+00	-0.5685E+00		
0.1526E+01	0.3219E+01	0.1235E+00	0.1742E+00		
-0.1210E+01	0.9360E+00	-0.67622+00	0.4404E+00		
0.7751E+00	0.1558E+01	-0.2062E+00	-0.8400E+00		
-0.60052+00	0.69532-03	0.8866E+00	0.9076E+00		
0.6687E+00	-0.1682E+01	-0.1377E+00	0.8196E+01	,	
0.3543E+01	0.2017E+01	-0.572CE+00	0.1743E+00		
0.10252+01	0.50662+00	0.1517=+01	<u>0.8400E+00</u>		
	•				
	κ.				
	_				
		• • •			
	×		· · · · · · · · · · · · · · · · · · ·		
				<u>}</u>	
		2 2			
		er er er er er de en er er be			
				·····	
			10		
			••••••••••••••••••••••••••••••••••••••		

AUTO AND PARTIAL CORRELATIONS OF THE RESIDUALS 14. Sa 244 PARTIAL AUTO Ι $\begin{array}{c} 0.018 \\ -0.080 \\ -0.029 \\ -0.029 \\ -0.067 \\ 0.066 \\ 0.119 \\ -0.033 \\ -0.112 \end{array}$ 0.018 Te man 123 -0.080 -0.048 -0.034 4 -0.075 0.061 0.104 -0.035 567 there as a Care- $\begin{array}{c} 0 \cdot 174 \\ -0 \cdot 035 \\ \hline 0 \cdot 095 \\ 0 \cdot 029 \\ \hline 0 \cdot 0112 \\ \hline 0 \cdot 0115 \\ \hline -0 \cdot 0115 \\ \hline 0 \cdot 0111 \\ \hline 0 \cdot 123 \\ \hline 0 \cdot 047 \\ \hline 0 \cdot 031 \\ \hline 0 \cdot 031 \\ \hline 0 \cdot 047 \\ \hline 0 \cdot 042 \\ \hline -0 \cdot 037 \\ \hline 0 \cdot 110 \\ \hline 0 \cdot 112 \\ \hline 0 \cdot 030 \\ \hline -0 \cdot 126 \\ \hline -0 \cdot 047 \\ \hline 0 \cdot 147 \\ \hline 0 \cdot 147 \\ \hline -0 \cdot 102 \\ \hline 0 \cdot 092 \\ \hline \end{array}$ 8 -0.1175 0.0991 -0.1016 -0.1361 -0.0598 -0.0598 0.026 -0.0598 0.026 -0.031 -0.0598 -0.0559 -0.03552 -0.03552 -0.03552 -0.0176 -0.1176 -0.1176 -0.0735 9 111 012 COL N 13456 1111222222 PH TY WAR 22222 29 Stor files E Kie N APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = 0.183 10.24 CHI-SQUARED STATISTIC BASED ON (30 - NO, OF = 22.73 STOCHASTIC PARAMETERS) DEGREES OF FREEDOM Berry Carles The West State State Principal 1.2 6 17 BETWEEN MANIPULATED VARIABLES AND RESIDUA CPOSS-CORRELATIONS -0.028 -0.028 0.047 -0.050 0123 - 3 ut. 111 - [. -1 -0.037 3.176 -3.714 -0.170 0.115 -0.0728 -5-7 673 all's the april . A.S.L - 20 -0.048 C.012 C.053 C.046 C.146 -10 1-1-1-1 -11 SOCO -0.115 -0.042 0.031 -0.041 0.174 -----115.07 • 1 5 -18 0.036 C.J11 -C.CO4 -C.CO4 18 1. Set and See. States () 1 APPROX. 95 PERCENT CONF. LIMIT ON CROSS-CORRELATIONS = 0.185 States States STANDARD DEVIATIONS S(X) 1723=+62 S(A) 1514E+3 CHI-SOUARED STATISTIC = 21.33 BASED ON 21 DEGREES OF FREEDOM

Carl State

723.

C.

C-44

2525

1. 17 1.3

Table C-3 Cont'd

Table C-4 Subroutine TSHAUS

C 1	
	SUBROUTINE TSHAUS (NPROB, MODEL, NOB, NP, TH, EPS1, EPS2, MIT, ELAM, ENU.
	1 SCRAT)
С	RESIDUALS ARE RETURNED IN SCRAT(IG) WHERE IG=5*NP+1
	DIMENSION SCRAT(1)
. · · ·	IA =1
	$T_{c} = T_{c}$
	IS - ILTNP IH=IG+NOP
	TI = IH + NP + NOB
1	IJ = IH
	CALL HAUSTS(NPROB, MODEL, NOB, NP, TH, EPS1, EPS2, MIT
	1,FLAM,FNU, SCRAT(IA), SCRAT(IB), SCRAT(IC), SCRAT(ID),
	2 SCRAT(IE), SCRAT(IG), SCRAT(IH), SCRAT(II), SCRAT(IJ))
	CALL IDENT (SCRAT (IG), NOB, 20, 2)
	RETURN
1	ENU SUBDOUTINE HAUSTSINDDDO MODEL NDO. NO TH EDIS EDDS
	THITE FLAM ENTLY OF DEPHTETRE DEALORDEL, NOUS NULLING EFISIEFES
C	EORTRAN IT VERSION
Č	ADAPTED FOR THE CDC 6400 (J. F. MACGREGOR 9/72)
c	
С	DIMENSION TH(NQ), R(NBO)
С	DIMENSION $Q(NQ)$, $P(NQ)$, $E(NQ)$, $PHI(NQ)$, $TB(NQ)$
C	DIMENSION A(NQ,NQ), D(NQ,NQ), DELZ(NBO,NQ)
	DIMENSION TH(1), Q(1), P(1), E(1),
	$\frac{1}{1} \frac{PH1(1)}{1} \frac{1}{1} \frac{1}{1} \frac{PD(1)}{1} \frac{P(1)}{1} P($
	$\Delta COS(Y) = \Delta TAN (SOPT(1, 0/Y**2 - 1, 0))$
	NP = NO
	NPROB = NPRBO
	NOB = NBO
	EPS1 = EP1S
	EPS2 = EP2S
	NPSQ = NP * NP
	NSCRAC = 5 + NP + NPSQ + NOB + NP + NOB
	PRINT 1000, NEROD, NOD, NE, NSCRAC
	CALL GASSER(1. NP. TH. TEMP. TMEP)
	IF (MINO(NP-1,50-NP,NOB-NP,MIT-1,999-MIT))99.15.15
15	IF(FNU-1.0)99, 99, 16
16	CONTINUE
<u> </u>	DO 19 I=1,NP
	IF (ABS(TH(I))) 99,99,19
19	CONTINUE
	GA - FLAM
	TE(EPS1) = 5.70.70
5	EPS1 = 0
7	SSQ = 0
	CALL MODEL (NPROB, TH, R, NOB, NP)
, ,	$00 \ 90 \ I = 1, \ NOB$
9	SQ=SSQ+R(I)*R(I)
	PRINT 1003, SSQ

	Table C-4	C_46
100	GA = GA / FNII	
100	INTCNT = 0	
	PRINT 1004 . NIT	
101	JS = 1 - NCB	
	00 130 J=1,NP	
(-TEMP TH(J)	
	P(J) = 0.01 + T + (J)	
	TH(J) = TH(J) + P(J)	
	Q(J)=0	1
	JS = JS + NOR	
-	CALL MODEL (NPROB, TH, DELZ(JS),	NOB, NP)
	IJ = JS - 1	
	DO 120 I = 1, NOB	
	IJ = IJ + 1	
1.00	$\frac{UELZ(IJ)}{UELZ(IJ)} = R(I) - \frac{UELZ(IJ)}{UELZ(IJ)}$	
120	Q(J) = Q(J) + DELZ(IJ) + R(I)	
	Q(J) = Q(J)/P(J)	O-VIND ISTEEDEST OF COENTS
170	TH(1) = TEMP	W-ALTR ISIECHEST DESUENT
130	11137 - 1207	
101	-10-151 - J=1 + T	
	SUM = 0	
	KJ = NOB + (J-1)	
	KI = NOB + (I - 1)	
	$160 \ K = 1$, NOR	
	KI = KI + 1	
	-KJ-=-KJ-+-1	
160	SUM = SUM + DELZ(KI) * DELZ(KJ)	
	TEMP = SUM/(P(I) + P(J))	
	JI = J + NP* (I-1)	
	D(JI) = TEMP	
	IJ = I + NP + (J-1)	
151-	-U(1J) = -1EMP	
150	E(I) = SQRT(D(JI))	
666		
	10 153 1 = 1, NP	
	IJ = I - NP	
	$ \begin{array}{c} 10 155 J-1 1 \\ \hline \hline \\ \hline$	
	$\Delta(T_{cl}) = D(T_{cl}) / (F(T) + F(t))$	
	JI = J + NP + (T-1)	
153	A(JI) = A(IJ)	
c		A= SCALED MOMENT MATRIX
	II = - NP	
	D0 155 I=1,NP	
I.	P(I) = Q(I) / E(I)	
	PHI(I)=P(I)	
	II = NP + 1 + II	
155	A(II) = A(II) + GA	
I C		
	UALL MAIIN(A, NP, P, I, DET)	
L U		PVE = CURRECTION VECTOR
		• · · · · · · · · · · · · · · · · · · ·
	SUM2=0.	
h. 	SUM3=0.	
;	DO 231 T=1 NP	
	SUM1=P(I) + PHI(I) + SUM1	
1		

	Table $C-4$ Cont'd $C-47$
	SUM2 = P(I) + P(I) + SUM2
	SUM3 = PHI(I) + PHI(I) + SUM3
231	PHI(I) = P(I)
	TEMP = SUM1/SQRT(SUM2+SUM3)
	TEMP = AMIN1(TEMP, 1.0)
	TEMP = 57.295+ACOS(TEMP)
1	PRINT 1041, DET, TEMP
170	CO 220 I = 1, NP
	P(I) = PHI(I) * STEP / E(I)
1	TB(I) = TH(I) + P(I)
220	CONTINUE
	-PRINT 7000
7000	FORMAT(30HOTEST POINT PARAMETER VALUES)
	PRINT 2006, (TB(I), $I = 1$, NP)
	SUMB=0
	CALL MODEL (NPROB, TB, R, NOB, NP)
	DO 230 I=1,NOB
230	-SUMB=SUMB+R(I)+R(I)
1. A. 1.	PRINT 1043, SUMB
	IF(SUMB - (1.0 + EPS1) + SSQ) 662, 662, 663
	-IF (AMIN1 (TEMP-30.0, GA)) -665, 665, 664
665	STEP=STEP/2.0
	INTCNT = INTCNT + 1
	TF(INTCNT - 36) 170, 2700, 2700
664	GA=GA*FNU
	INTCNT = INTCNT + 1
	TELINICNI - 361 666. 2700. 2700
562	PRINT 1007
. GOL	P0 669 I=1 NP
660-	TH(T)=TR(T)
005	CALL GASSED (1. NP. TH. TEMP. TEMP)
	PRINT 1040 - GA. SUMB
	-TE-(EPS2)-229-229-225
220	TE (EDS1) 270, 270, 265
225	10 240 T = 1 - NP
	-TF (ARC(P(T))) / (1, F=2) + ARC(TH(T)) = FPC(2) - 24(1, -24) - 24(1, -24)
21.4	TE (EDS1) 270 26E
241	IF (EFS1) 2/0,2/0,200
240	-DOTNT-1000-EDS2
	$C_{0} = T_{0} = 20$
265	TE(ADS(SUMD - SSO) - EDS(*SSO) 266 266 276
205	$\frac{1}{101} + \frac{1040}{1040} = \frac{100}{100} = $
200	CO TO 200
270	
270	22/1= 20/18
	$\frac{1}{2} (N11 - M11) 100, 100, 280$
2700	
2/10	FURNATIVITISHUTTT THE SUM OF SUDARES CANNUT BE REDUCED TO THE SUM
	ICF SQUARES AT THE END OF THE LAST TIERATION - TTERATING STOPS 7)
C	
U	ENUTIERATION
C	
280	FRINT 1011
	PRINT 2001, (R(I), I = 1, NOB)
1	SS Q= SUMB
1	IDF=NOB-NP
	PRINT 1015
1	I=0
	CALL MATIN(D, NP, P, I, DET)

· · · · · · · · · · · · · · · · · · ·	Table C-4 Cont'd	C-48
00 7692 I=1,NP		
$II = I + NP^{*}(I-1)$		
7692 E(I) = SQRT(D(II))		
DO 340 I=1,NP		
JI = I + NP*(I-1)	- 1	
IJ = I + NP* (I-2)		
DO 340 $J = I$, NP		
JI = JI + 1	1	
A(JI) = D(JI)-/-(E(I)*E(J))	
IJ = IJ + NP		
340 A(IJ) = A(JI)		
CALL GASSED (3, 1	P, TEMP, TEMP, A)	
PRINT 1016		
CALL GASS60(1, M	P, E, TEMP, TEMP)	
IF (IDF)-341, 410	-341	
341 SDEV = SSQ / IDF		
PRINT 1014, SDEV	IDF	
SUEV = SURTISUEN		
UO 391 1=1,NP	T. 4 00.5W	
$P(1) = (H(1) + 2 \cdot U + E)$	IT SUEV	
PRINT 1039		
	P, 18, P, 1EMP)	
CALL DADTAL (AC D		
DDINT 50	9 3 0 7	
59 ED PM AT (1 H1 - 47H-A1	TA-ANA-PAPTTAL-CAPPELATTANS OF	THE PEST DUAL S-//
	-14Y. THPARTIAL CORRELATIONS OF	THE RESIDURES ()
	114X, /// AKTAC///	
58 PRINT 57 . I.AC()).PP(T)	
57 FORMAT (8X-12-13)	•F5 • 3 • 1 3X • F6 • 3)	
CL = 2.0/SGRT(FL)	AT (NOB))	
PRINT 54 .CL		
54 FORMAT(//50H APPI	OX. 95 PERCENT CONF. LIMIT ON C	ORRELATIONS = .F5.
13)		
CHI = 0.		
DO 56 I=1,30		
56 CHI = $CH'I + AC(I)$ *	C(I)	
CHI = CHI*FLOAT(08)	
PRINT 55, CHI		
55 FORMAT(/25H CHI-	QUARED STATISTIC = ,F6.2/65H BA	SED ON (30 - NO. 0
1F STOCHASTIC PAR	METERS) DEGREES OF FREEDOM /)	
410 CONTINUE		
RETURN		
99 PRINT 10 34		
GO TO 410		
10000FORMAT (38H1NON-L	NEAR ESTIMATION, PROBLEM NUMBER	13,// 15,
1 14H UBSERVATIO	5, 15, 11H PARAMETERS 114, 17H	SCRATCH REQUIRED
1001 FORMAT(/25H0INIT	AL PARAMETER VALUES)	
1003 FURMAI(/25HUINI)	AL SUM UP SQUARES = ± 12.4)	
1004 FURMAT(////45X,	SHITERATION NU. 14)	
	TION STOPS - DELATIVE CHANCE IN	EACH BADANETED IS
TUUSUFUKHAT(/OZHUTTEK	TITON STOPS - RELATIVE CHANGE IN	LAUN PARANCIER LE
10100E004AT//6240TTE0	TTON STOPS - DELATIVE CHANCE TH	SUN OF SOUNDES IF
101UUFUKHAT(/ DZEUITEK	TION STOPS - RELATIVE CHANGE IN	SOIL OF SQUARES LE
133 THAN E1244)	RESTRUAT VALUES	
1012 FORMATE///// 0400		
1014 FORMAT (//24HOVAD	ANCE OF RESTRIALS =	Hatha
TATA LOUINI () / CHINAN	ANOL OF NEDIDOMES - 96124491	

	and the second	
	Table C-4_Cont'd	C-49
	1214 DECREES OF EDECROM	
4045		ng tan ka sa ka sa ka
1015	15 FURMAT(////19HUCURRELATION MATRIX)	
1016	16 FURMAT(////21HUNORMALIZING ELEMENTS)	
1034	34 FORMAT(/16+0PARAMETER ERROR)	
10390	390FORMAT(/71HOINDIVIDUAL CONFIDENCE LIMITS FOR E	ACH PARAMETER (ON LI
	INEAR HYPOTHESIS)	
10400	+OOFORMAT(/9HOLAMBDA =E10.3,40X,33HSUM OF SQUARES	AFTER REGRESSION =
	1E1 5. 7)	
1041	+1 FORMAT(14H DETERMINANT = E12.4, 6X, 25H ANGLE	IN SCALED COORD. =
	1 F5.2, BHDEGREES)	
1043	43 FORMAT(28HOTEST POINT SUM OF SQUARES = E12.	4)
2001	D1 FORMAT(/10E12.4)	
2006	06 FORMAT(10E12.4)	
	END	
	SUBROUTINE MATIN (A, NVAR, B, NB, DET)	
	DIMENSION A(NVAR, 1), B(NVAR, 1)	
	COMMON/GASPAR/DUMIES(7), PIVOTM	
	PIVOTM = A(1,1)	
	DET = 1.0	
	CO 550 ICOL = 1, NVAR	
	PIVOT = A(ICOL, ICOL)	
	PIVOTM = AMIN1 (PIVOT. PIVOTM)	
	DET = PIVOT * DET	
- c		
C	DIVIDE PIVCT ROW BY PIVOT ELEMENT	
C		
	A(ICOL, ICOL) = 1.0	
	PTVOT = AMAX1(PIVOT, 1.F-20)	
-	PIVOT = A(ICOL, ICOL)/PIVOT	
	00 350 L=1.NVAR	·
350	$A(ICOL \cdot L) = A(ICOL \cdot L) + PTVOT$	
	TF (NB . EQ. 0) - GO - TO - 371	
	10 370 1 = 1 NB	
370	B(ICOL, L) = B(ICOL, L) + PIVOT	
C	REDUCE NON-PIVOT ROWS	
ĉ		
	1	
011	TE411 . ED. TCOL) GO TO 550	
	I = A(11, TO(1))	
	A(1 + TO(1) = 0	
	PO (50 1 - 1 - NVAP)	
1.50	0 A(14 1) = A(14 1) = A(TCO) 1) + T	
490	TE(NB - E0 - 0) = 0 = 50	
500	0 - P(11 - 1) - P(11 - 1) - P(TCOL - 1) + T	
500	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
550		
	DINCHOLINE GASSBUILTTE, NU, A, B, U)	
	UIMENSION A(NU), B(NU), G(NO, NQ)	
	NP = NQ	
	NR = NP/10	
	LOW = 1	
	LUP = 10	
10 -	IF (NR) 15,20,30	
15	RETURN	
20	LUP=NP	

	Table C-4 Cont'd C-50
	IF (LOW . GT. LUP) RETURN
30	$PRINT = SUS \cdot (J_{\bullet}J_{\bullet} I_{\bullet} I_{\bullet}$
	CO TO (40, 60, 80) - TTYPE
1.0	PPTNT 600 (A(1) (-10W (1)P)
40	CO = TO = 100
00	
9.0	
90	PRINT 720,1,000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	1F(LOW2 .GT. NP) GU TU 100
0.5	LU 99 I-LUWZ,NP
95	PRINT 720, 1, (G(J, 1), J=LOW, LUP)
100	LOW = LOW + 10
	-L0P = L0P + 10
	NR = NR - 1
	GO TO 10
500	FORMAT(/18,9112)
600	FORMAT(10E12.4)
720	FORMAT(1HG,I3,1X,F7.4,9F12.4)
	CONTINUE
	RETURN
	END
	SUBROUTINE CROSS(X,A,NOB,NL)
	DIMENSION X(NOB), A(NOB)
	DIMENSION CC1(41), CC2(41)
	CALL CRCORR(X,A,CC2,SDX,SDA,NOB,NL)
7	CALL CRCORR(A, X, CC1, SDA, SDX, NOB, NL)
	PRINT 6
	5 FORMAT (1H1,13X,78H CROSS-CORRELATIONS BETWEEN MANIPULATED VARIABL
	1ES AND RESIDUALS X(T)*A(T+K),//)
	NL1 = NL+1
	- DO -7-K=1,NL1-
	KK = K-1
	$K_1 = -KK$
	7 PRINT 8 , K1,CC1 (K),KK,CC2 (K)
	B FORMAT (5X-13-5X-F6-3-10X-13-5X-F6-3)
	CL = 2.0/SQRT(FLCAT(NOB))
1	2 FORMAT(//56H APPROX. 95 PERCENT CONF. LIMIT ON CROSS-CORRELATIONS
-	1 = .F6.3
	PRINT 9. SDX.SDA
	9 FORMAT ($/28H$ STANDARD DEVIATIONS S(X) = E12.4.5X.6HS(A) = E12.4
	1)
	$D_{2} = 0$
4	0 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
1	-0 = (0 = (0 = (0 + 1) +
	NDE = 21
	nDF = 21
	TAINT II GINUT - FARMAT 1/25H CHT-SAUADER-STATISTISTISTISTISTISTISTISTISTISTISTISTIST
1	TORGAT VESH UNI-SQUARED STATISTIS - 9FC+2910H DASED JN 912920H UE 100555 of Edeedom /)
	DETIDM
	ENU
	SUBRUUTINE URUURRIX, T, GU, SUX, SUY, N, NLJ
	CIMENSION X(N), Y(N), UC(1)
	$SX = U_{\bullet}$
	SY = 0.
	SXX = 0.

<pre>SYY = 6. D0 2 I=1.N SY = 5Y+X(I) SY = 5</pre>		Table C-4 Cont'd
D 2 I II.N SX = SX+X(I) SX = SX+X(I)*X(I) SX = SQRT((SXX-SX*SX/TN)/TN) TN = N SOX = SQRT((SXX-SX*SX/TN)/TN) NL1 = N(+1 D0 3 K=1,NL1 SXY = C. EN = N-K+1 D0 4 I=1,NN KX = I+K-1 KX = I+K-1 C0 4 I=1,NN KX = I+K-1 SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION /(1),AC(E0),PP(E0) DIMENSION /(1),AC(E0),PP(E0) SUBROUTINE IDENT(Z,NDARD PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1025 OF SERIES,//) C0 FRANT(1),AC(E0),ADD PARTIAL CORRELATIONS OF SECOND DIFFERE AC(ES) OF SERIES,//) C0 FRANT(1),AC(E0),PP(E1) SF FORMAT(4),AC(E0),ADD PARTIAL CORRELATIONS OF SECOND DIFFERE AC(E) OF SERIES,//) C1 = AC(MAT(2),AC(E0),ADD PARTIAL CORRELATIONS OF SECOND DIFFERE AC(E) OF SERIES,//) C1 = AC(E),AC(E),ADD PARTIAL CORRELATIONS OF SECOND DIFFERE AC(E) OF SERIES,//) C1 = AC(E),AC(E),ADD PARTIAL CORRELATIONS OF SECOND DIFFERE AC(E) OF SERIES,ADD PARTIAL,ADD P	SYY = D.	
<pre>SX = SX+X(I) SY = SX+X(I) SX = SX+X(I)+X(I) ZYY = SYY+Y(I)+X(I) TN = N SDX = SQRY((SX-SX*SX/TN)/TN) SDY = SQRY((SY-SY/SY/TN)/TN) NL1 = NL+1 DD 3 K=1.NL1 SYY = C. NN = N-K+1 DD 4 T=1.NN KK = T+K+1 4 SXY = SXY+(X(I)-SX/TN)+(Y(KK)-SY/TN) 3 CC(K) = (SY/TN)/(SDX+SDY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION = (I)+,AC(G)+FP+G0) DIMENSION = (I)+,AC(G)+F</pre>		
<pre>SY = SY+V[1] SXX = SXX+V[1]+V[1] TN = N SDX = SQRT([SXX-SX*SX/TN]/TN) SDY = SQRT([SYX-SX*SX/TN]/TN) NL1 = N(+1 D0 3 K=1.NL1 SXY = C. NN = N+K41 D0 4 T=1.NN KK = T+K-1. 4 SXY = SXY+(X(1)-SX/TN)*(Y(KK)-SY/TN) 3 CC(K) = (SXY/TN)/(SDX*SDY) RETURN ENC SUBROUTINE IDENT(2,NOB,NL,NDIFF) DIMENSION 2(1);AD(60);PP(60) DIMENSION 2(1);AD(60);PP(7) DIMENSION 2(1);AD(7);PP(7) DIMENSION 2(1);AD(7);PP(7) DIMENSION 2(1);AD(7);PP(7) DIMENSION 2(1);AD(7);PP(7) DIMENSION 2(1);AD(7);PP(7) DIMENSION 2(1);AD(7);PP(7) DIMENSION 2(1);AD(7);PP(7);DIMENSION 2(1);PP(7);DIMENSION 2(1);PP(7);DIMENSIO</pre>	SX = SX + X (T)	
<pre>SX = SX + f(1) + X(1) SY = SY + Y(1) + Y(1) TN = N SDX = SQRT((SX + SX + SX + XIN) / TN) NL1 = NL+1 DO 3 K=1.NL1 SXY = C. NN = N-K+1 CD 4 [=1.NN1 4 SXY = C. NN = N-K+1 CD 4 [=1.NN1 5 SY = SX + (X(1) - SX / TN) + (Y(KK) - SY / TN) 3 CC(K) = (SX / TN) / (SDX + SOY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION = (SX / TN) / (SDX + SOY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION = (SX / TN) / (SDX + SOY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION = (SI) + AC(6) + PP(6) OIMENSION = (SI) + AC(6) + AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15,7/1 CD 10 20 41 PRIMT 30 31 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 162S OF SERIES, //) CD 720 42 PRIMT = (SI) + AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFEREN- 162S OF SERIES, //) CD 720 42 PRIMT = (SI) + AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFEREN- 162S OF SERIES, //) CD 720 42 PRIMT = (SI) + AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFEREN- 162S OF SERIES, //) CD 720 42 PRIMT = (SI) + AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFEREN- 162S OF SERIES, //) CD 720 42 PRIMT = (SI) + AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFEREN- 163 FORMAT(4K, 1H1,14X, 4HAUTO,14X, 7HPARTIAL, //) CALL ADORR(M, AC, SDZ, NDATA, NL) 113 FORMAT(4K, 2L, SIX, F6, SJ, 13X, F6, SJ) PRIMT 59, AC(NZ) PRIMT 59, AC(NZ) PRIMT 50, AC(NZ) PRIMT 51, AC(L) 54 FORMAT(7/SUH APROX, 35 PERCENT CONF, LIMIT ON CORRELATIONS = +F5, 13) PRIMT 60, SOZ PRIMT 54, AC(L) 54 FORMAT(7/SUH APROX, 35 PERCENT CONF, LIMIT ON CORRELATIONS = +F5, 13) PRIMT 60, SOZ PRIMT 50, AC(MZ) 54 FORMAT(7/SUH APROX, 35 PERCENT CONF, LIMIT ON CORRELATIONS = +F5, 13) PRIMT 60, SOZ PRIMT 50, AC(L) 54 FORMAT(7/SUH APROX, 35 PERCENT CONF, LIMIT ON CORRELATIONS = +F5, 13) PRIMT 60, SOZ PRIM</pre>	SY = SY + Y(I)	
<pre>2 SVY = SVY + (1) + V(1) TN = N SDX = SORT((SXX-SX*SX/TN)/TN) DY = SORT((SYT-SY*SY/TN)/TN) NL1 = NL+1 D0 3 K=1,NL1 D0 3 K=1,NL1 D0 4 T=1,NN KK = T+K-1 C N = N-K+1 D0 4 T=1,NN KK = T+K-1 SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION - Z(1);AC(60);PP(60) DIMENSION - Z(1);AC(60);PP(10) SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION - Z(1);AC(60);PP(10) SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION - Z(1);AC(10);PP(1) SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION - Z(1);AC(1);PP(1) SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION - Z(1);AC(1);PP(1) SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION - Z(1);AC(1);PP(1) SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION - Z(1);AC(1);PP(1) SUBROUTINE - Z(1);AC(1);PP(1) SUBROUTINE - Z(1);AC(1);PP(1) SUBROUTINE - Z(1);AC(1);PP(1) SUBROUTINE - Z(1);AC(1);PP(1) SUBROUTINE - Z(1);AC(1);</pre>	$(1) \mathbf{X}^{*} (1) \mathbf{X} \mathbf{X} \mathbf{X} = \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$	
<pre>TN = N TN = N SDX = SORT((SXX-SX*SX/TN)/TN) SDY = SORT((SYX-SY*SY/TN)/TN) NL1 = NL+1 D 3 K=1,NL1 SXY = C. NN = N-K+1 D 4 I=1,NN KK == I*K-1 4 SXY = SXY+(X(I)-SX/TN)+(Y(KK)-SY/TN) 3 CC(K) = (SXY/TN)/(SDX*SOY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION - Z(1)+AC(60)+PP(60) OI HENSION - Z(1)+AC(60)+PP(60) OI HENSION - Z(1)+AC(60)+PP(60) NDATA = NOP N0 = 7 NZ=NL+1 D 0 10 I=1,NOB 10 - M(1) = Z(1) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE IS;//1 C0 TO 20 41 PRINT 31 31 = FORMAT(1H1,10X,61H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1CS OF SERIES,//) C0 TO 20 42 = PRINT 32 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7MPARTIAL,//) C4 L PRINT 32 33 FORMAT(1H1,4C,60,P,NL) D0 58 I=1,NL 54 FORMAT(1H1,4C,70,PP,NL) D0 58 I=1,NL 55 PGMAT(1H1,4C,4C,90,P,NL) D0 58 I=1,NL 56 PGMAT(1//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 60 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 60 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 60 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 60 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 60 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 60 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 60 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 60 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 60 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 60 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 61 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 61 FORMAT(//SOH APPROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = (F5. 13) PRINT 50, SOZ 51 FORMAT(</pre>		· /
<pre>SDX = SORT((SXX-SX*SX/TN)/TH) SDY = SORT((SYX-SY*SY/TN)/TN) NL1 = NL+1 D0 3 K=1,NL1 SYY = C. NN = N-K+1 D0 4 T=1,NN KX = T+X-1 4 SXY = SXY+(X(I)-SX/TN)+(Y(KK)-SY/TN) 3 CC(K) = (SXY/TN)/(SDX*SOY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION -Z(1)+AC(60)+PP(60) 0 IMENSION -Z(1)+AC(1) 0 THENSION -Z(1)+AC(1) 0</pre>		
<pre>by - SQR(((SY-SY-SY-TH)/TH) SUY = SQR(((SY-SY-SY/TH)/TH) NL1 = NL+1 D 3 K-1,NL1 SXY = C. NN = N-K+1 D 4 I=1,NN KK-= I*K-1 4 SXY = SXY+(X(I)-SX/TN)*(Y(KK)-SY/TN) 3 CC(K) = (SXY/TN)/(SOX*SDY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION Z(11;AC(60);PP(60) 01HENSION H(400) NDATA = NOP ND = 7 NZ=NL+1 D 0 ID I=1,NOB 10 M(I)=Z(I) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE IS;//) C0 TO Z0 41 PRINT 31 31 FORMAT(1H1,10X,61H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1CS OF SERIES,//) C0 TO Z0 42 PRINT 32 33 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) C0 TO Z0 42 PRINT 32 33 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) C1 CAL ACOR(N,A,C,SOZ,NDATA,NL) 113 FORMAT(1H1,14X,4HAUTO,14X,7MPARTIAL,//) C1 AL ACOR(N,A,C,SOZ,NDATA,NL) 113 FORMAT(1H1,14X,65,1,3X,F6,3) PXINT 59, AC(M2) 59 FORMAT(2X,12,13X,F6,3,13X,F6,3) PXINT 59, AC(M2) 59 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 50, SOZ 60 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 50, SOZ 60 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 50, SOZ 60 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 50, SOZ 60 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 50, SOZ 60 FORMAT(7/SDH APROX, 35 PERCENT CONF. LIMIT</pre>	$\mathbf{N} = \mathbf{N}$	
<pre>N1 = NL1 = NL1 N1 = NL1 = NL1 D0 3 K=1,NL1 SYY = C. NN = N-K+1 D0 4 I=1,NN KK = I+K-1 4 SXY = SXY+IX(I)-SX/IN)+(Y(KK)-SY/IN) 3 CC(K) = (SXY/IN)/(SOX*SOY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION 7(1),AC(60),PP(60) DIMENSION 7(1),AC(60),PP(60) DIMENSION 7(1),AC(60),PP(60) DIMENSION 7(1),AC(60),PP(60) NOATA = NOB NO = - 0 NZ=NL+1 D0 10 I=1,NOB 10 W(I)=7(I) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 1S;//) G0 T0 20 41 PRINT 31 31-FORMAT(1H1,10X,61H-AUTO-AND-PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1CCS OF SERIES,//) G0 T0 20 42 - PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE INCES OF SERIES,//) 20 -PRINT 33 33 FORMAT(1H1,41X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(M,4C,50Z,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL ACORR(M,4C,51,3X,F6,3) PRINT 59, AC(N2) 59 FORMAT(7/22H WEAN OF THE SERIES = ,E12.5) CL = 2.0/SCR(IFLCAT(NDATA)) PRINT 54, CL 54 FORMAT(7/50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, S0Z B0 CORMAT(7) AC(1) CH = CH1+AC(1)*AC(1) CH = CH1+AC(1)*AC(1)</pre>		
<pre>ncl = ncl D 3 K=1.NL1 SY = C. NN = N-K+1 D 4 I=1.NN KK = I+K-1 4 SXY = SXY+IX(I)=SX/TN)*(Y(KK)=SY/TN) 3 CC(K) = (SXY/TN)/(SOX*SOY) RETURN ENC SUBCOTINE IDENT(Z.NOB.NL.NDIFF) DIMENSION = 2(1),AC(60),PP(60) OIMENSION = 1(AC(60),PP(60) OIMENSION = 1(AC(60),PP(60) NOATA = NOB NO = 7 NZ=NL+1 D 0 10 I=1,NOB 10 M(I)=Z(1) PRINT 30 30 FORMAT(IH1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15,7/1 G TO 20 41 PRINT 31 31 FORMAT(IH1,10X,61H AUTO AND PARTIAL CORRELATIONS OF PIRST DIFFEREN ICES OF SERIES,//) G TO 20 42 PRINT 32 32 FORMAT(IH1,10X,62H AUTO AND PARTIAL CORRELATIONS OF PERST DIFFEREN ICES OF SERIES,//) 20 PRINT 33 33 FORMAT(IH1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE INCES OF SERIES,//) 20 PRINT 34 32 FORMAT(IH1,410X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE INCES OF SERIES,//) 20 PRINT 35 33 FORMAT(IK1,11,44X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H,AC,SDZ,NOATA,NL) 13 FORMAT(IH1,4HTEST) CALL PARTAL(AC,PP,NL) D 58 FIL,NL 53 PRINT 57, I,AC(I),PP(I) 54 FORMAT(I/22H MEAN OF THE SERIES = ,E12.5) CL = 2,0/SCR(IFLCAT(NOATA)) PRINT 54, CL 54 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(//SIH STANOARD DEVIATION OF SERIES =,E14.7) CHI = 0. DO 56 I=1,NL 56 CHI = CH1+AC(I) * AC(I) CHI = CH1+AC(I) * AC(I)</pre>	SDT = SQRT((STT-ST))	517 (11)7 (11)
DU 5 X-INLI SXY = C. NN = N-K+1 DU 4 I=1,NN KK = I4K-1 SXY = SXY + IX(I)-SX/TN)*(Y(KK)-SY/TN) 3 CC(K) = (SXY/TN)/(SOX*SOY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION X(400) NDATA = NOB ND = C NZ=NL+1 DU 10 I=1,NOB 10 W(I)-Z(I) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE (S,7/) GO TO 20 41 PRINT 31 31 FORMAT(1H1,10X,61H-AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1CSS OF SERIES,//) GO TO 20 42 -PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1CSS OF SERIES,//) GO TO 20 42 -PRINT 32 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H,AC,SOZ,NOATA,NL) 113 FORMAT(1K,12,13X,F6.3,13X,F6.3) PRINT 57-, T.AC(I),PP(I) 58 PRINT 57-, T.AC(I),PP(I) 59 FORMAT(7/22H WEAN OF THE SERIES = ,£12.5) CL = 2.0/SCR(FLCAT(NOATA)) PRINT 54, CL 54 FORMAT(//SIH STANDARD DEVIATION OF SERIES =,£14,7) CHI = 0, DO 56 I=1,NL 54 CMIAT (FLOAT(NDATA)) FRINT 54, CL 54 FORMAT(//SIH STANDARD DEVIATION OF SERIES =,£14,7) CHI = 0, DO 56 I=1,NL 54 FORMAT(H1, FLOAT(NDATA)) FRINT 64, SDZ 55 CHI = CH1+4C(I) * C(I) CHI = CH1+4C(I) * C(I) CHI = CH1+4C(I) * C(I) CHI = CH1+4C(I) * C(I) CHI = CH1+4C(I) * C(I)	$\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$	
<pre>NN = N-C. NN = N-K+1 D0 4 I=1,NN K<= I+K-1 4 SXY = SXY+(X(I)-SX/TN)*(Y(KK)-SY/TN) 3 CC(K) = (SXY/TN)/(SDX*SOY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) D1MENSION Z(1),AC(60),PP(60) D1MENSION Z(1),AC(60),PP(60) NDATA = NOB NO = C NZ=NL+1 D0 10 I=1,NOB 10 W(I)=Z(I) PRINT 30 30 FORMAT(IH1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15,7/) G0 T0 20 41 PRINT 31 31=FORMAT(IH1,10X,61H AUTO AND PARTIAL CORRELATIONS OF PIRST DIFFEREN 1CISS OF SERIES,//) G0 T0 20 42 PRINT 32 32 FORMAT(IH1,10X,62H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 1CISS OF SERIES,//) 20 PRINT 33 33 FORMAT(IN1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCCS OF SERIES,//) 20 PRINT 32 32 FORMAT(IN1,11,14X,4HAUTO,14X,7MPARTIAL,//) CALL ACORR(H,AC,SOZ,NDATA,NL) 113 FORMAT(IH1,4HTEST) CALL PARTAL(AC,PP,NL) 00 55 I=1,NL 53 PRINT 57, I,AC(I),PP(I) 54 FORMAT(I/SUBAC(I),PP(I) 55 PRINT 1// SUBAC(I),PP(I) 55 PRINT 54,CL 54 FORMAT(//SUBAC(I), SOZ 56 CHI = CH1+AC(I)*AC(I) CHI = CH1+AC(</pre>		
<pre>NY = NYX1 D) 4 T=1,NN KK == TiK-1 4 SXY = SXY+(XII)=SX/TN)*(Y(KK)=SY/TN) 3 CC(K) = (SXY/TN)/(SDX*SDY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) D)HENSION Z(1);AC(60);PP(60) DIMENSION Z(1);AC(60);PP(60) DIMENSION W(400) NDATA = NOE NO = ? NZ=NL+1 D0 10 I=1,NOB 10 W(1)=Z(1) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE IS;//) C0 TO 20 41 PRINT 31 31 FORMAT(1H1,10X,61H=AUTO AND PARTIAL CORRELATIONS OF PIRST DIFFEREN 1CES OF SERIES;//) G0 TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 1CES OF SERIES;//) C0 TO 20 42 PRINT 33 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SDZ,NDATA;NL) 13 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SDZ,NDATA;NL) 13 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SDZ,NDATA;NL) 54 PRINT 57 -, I;AC(1);PP(1) 57 FORMAT(7Z2H HEAN OF THE SERIES = ,E12.5) CL = 2.0,SCR(1FLCA(INDATA)) PRINT 54,CL 54 FORMAT(7Z2H HEAN OF DEVIATION OF SERIES =,E14.7) CH = 0, ND 56 I=1;NL 56 CHI = 0, HIAC(I)*AC(I) CH = 0, HIAC(I)*AC(I) CH = CHI+4C(I)*AC(I) CH = CHI</pre>	$S \times T = 0$	
<pre>b0 4 1-1:NN k < 1+k-1 4 SXY = SXY+(X(I)-SX/TN)*(Y(KK)-SY/TN) 3 CC(K) = (SXY/TN)/(SX*S0Y) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION -Z(1);AC(60);PP(60) NDATA = NOE NO = 7 NZ=NL+1 DO 10 I=1;NOB 10 W(1)=Z(1) PRINT 30 30 FORMAT(1H1;10X,61H-AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15;7/) GO TO 20 41 PRINT 31 31 FORMAT(1H1;10X,61H-AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 16ES OF SERIES;//) GO TO 20 42 PRINT-32 32 FORMAT(1H1;10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES;//) 33 FORMAT(1H1;14X;4HAUTO,14X;7HPARTIAL,//) CALL ACORR(H:AC,SOZ,NOATA,NL) 13 FORMAT(1H1;4H1EST) CALL ACORR(H:AC,SOZ,NOATA,NL) 13 FORMAT(1H1;4H,FG:1;5G:3;13X;FG:3) PRINT 59; AC(M2) 59 FORMAT(72H MEAN OF THE SERIES = ;E12.5) CL = 2.0/SCRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(73H ASHDARD DEVIATION OF SERIES =;E14,7) C4I = CHI+4E(DATA) PCINE 50, SDZ 50 FORMAT(1)*AC(1) CH = CHI+4E(DATA) CH = CHI+4E(DATA) CH = CHI+4E(DATA) CH = CHI+4E(DATA) CH = CHI+4E(DATA) CH = CHI+4E(DATA) 50 FORMAT(73H CONTACTORE) 51 FORMAT(73H CONTACTORE) 52 FORMAT(73H CONTACTORE) 53 FORMAT(73H CONTACTORE) 54 FORMAT(73H CONTACTORE) 55 FORMAT(73H CONTACTORE) 55 FORMAT(73H CONTACTORE) 56 CH = CHI+4E(DATA) 57 FORMAT(73H CONTACTORE) 57 FOR</pre>	NN = N - N + 1 DO / T = 1 - NN	
<pre>NN = 1XL1 4 SXY = SXY+(X(I)-SX/TN)*(Y(KK)-SY/TN) 3 CC(K) = (SXY/TN)/(SDX*SDY) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) 0 IMENSION = Z(1),AC(60),PP(60) 0 IMENSION = Z(1),AC(60),PP(60) 10 IMENSION = Z(1),AC(60),PP(60) 10 IMENSION = Z(1),AC(60),PP(60) 10 IMENSION = Z(1),AC(60),PP(60),INENCESS 0 FORMAT(1H1,10X,61H-AUTO-AND-PARTIAL CORRELATIONS OF ORIGINAL SERIE IS,//) 0 IMENSION = Z(1),AC(60),INENCESS 0 FORMAT(1H1,10X,61H-AUTO-AND-PARTIAL CORRELATIONS OF FIRST DIFFEREN ICESS OF SERIES,//) 0 IMENSION = Z(1),AC(60),INENCESS 0 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE INCESS OF SERIES,//) 20 PRINT 33 21 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE INCESS OF SERIES,//) 20 PRINT 32 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) 00 S I I I, NL 54 FORMAT(7ZH "4ENTOF THE SERIES = ,E12,5) CL = Z(1),SCRIT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(7ZH "4ENTOF THE SERIES = ,E12,5) CL = Z(1),SCRIT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(7ZH "4ENTOF THE SERIES = ,E12,5) CL = Z(1),SCRIT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(7ZH "4ENTOF THE SERIES = ,E12,5) CL = Z(1),FCL 54 FORMAT(7ZH "4ENTOF THE SERIES = ,E14,7) CH I = CHIFFLOAT(NDATA) PRINT 54,CL 54 FORMAT(7ZH "4ENTOF DEVIATION OF SERIES = ,E14,7) CH I = CHIFFLOAT(NDATA) PRINT 54,CL 54 FORMAT(7ZH "4ENTOF DEVIATION OF SERIES = ,E14,7) CH I = CHIFFLOAT(NDATA) PRINT 54,CL 54 FORMAT(7ZH "4ENTOF DEVIATION OF SERIES = ,E14,7) CH I = CHIFFLOAT(NDATA) CH I = CHIFFLOAT(NDATA) CH I = CHIFFLOAT(NDATA) CH I = CHIFFLOAT(NDATA) CH I</pre>		
<pre>4 3A L = 3A F(T, F) 3A (T, KA) (SDX* SDY) 7 C(K) = (SXY)TN)/(SDX* SDY) RETURN ENC SUBROUTINE IDENT(2,NOB,NL,NDIFF) DIMENSION H(400) NDATA = NOC ND = 7 NZ=NL+1 D0 10 I=1,NOB 10 W(I)=Z(I) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE IS,//) G0 TO 20 41 PRINT 31 31 FORMAT(1H1,10X,61H-AUTO AND PARTIAL CORRELATIONS OF PIRST DIFFEREN- 1CES OF SERIES,//) G0 TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1CES OF SERIES,//) 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H),AC,SDZ,NDATA,NL) 113 FORMAT(1H1,14X,16L,7,13X,76,3,13X,76,3) PRINT 59, AC(NZ) 59 FORMAT(1Z,12,13X,15G,3,13X,76,3) PRINT 59, AC(NZ) 59 FORMAT(1Z,12,13X,76L,3,13X,76,3) PRINT 59, AC(NZ) 50 FORMAT(7Z)H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(73)H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0, D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI+AC(I)*AC(I)</pre>	V = V + V + V + V + V + V + V + V + V +	
<pre>S LG KY = (SAT/RI/ (SDA*SUT) RETURN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION Z(1);AC(1)/PP(60) DIMENSION W(400) ND ATA = NOE NO = - 7 NZ=NL+1 D0 10 I=1,NOB 10 W(1)=2(1) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15,7/1 GO TO 20 41 PRINT 31 31-FORMAT(1H1,10X,61H-AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1625 OF SERIES,//) GO TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1625 OF SERIES,//) 20-PRINT 33 33 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1ACES OF SERIES,//) 20-PRINT 33 33 FORMAT(4X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H,AC,SD2,NDATA,NL) 113 FORMAT(1K1,22,13X,F6.3,13X,F6.3) PRINT 57, I,AC(I),PP(I) 57 FORMAT(4X,122,13X,F6.3,13X,F6.3) PRINT 54, CL 54 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 131 PRINT 54, SAU 55 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 133 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 131 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 135 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 136 PRINT 61, SOZ 60 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 137 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 138 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 139 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 130 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 131 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 131 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 132 PRINT 60, SOZ 61 FORMAT(//SDH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 134 PRINT 60, SOZ 62 FORMAT(//SDH APPROX. 35 PERCENT CONF. L</pre>	4 5xt = 5xt + (x(1) - 5x)	
<pre>REIOWN ENC SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION Z(1);AC(60);PP(60) DIMENSION W(400) NDATA = NOE NO = 0 NO = 0</pre>	5 LU(K) = (SXT/IN)/(SU	11-2011
SUBROUTINE IDENT(Z,NOB,NL,NDIFF) DIMENSION Z(1);AC(50);PP(60) DIMENSION H(400) NDATA = NOG NO = 7 NZ=NL+1 DO 10 I=1,NOB 10 W(11=Z(1) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE (5,77) GO TO 20 41 PRINT 31 31 FORMAT(1H1,10X,61H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 16ES OF SERIES;//) GO TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 16ES OF SERIES;//) 20 PRINT 33 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H,AC,SDZ,NDATA,NL) 113 FORMAT(1X1,4H,14X,4HAUTO,14X,7HPARTIAL,//) CALL PARTAL(AC,PP,NL) DO 58 I=1,NL 58 PRINT 57; TAC(I);PP(I) 57 FORMAT (8X,12,13X,F6.3,13X,F6.3) PRINT 54, AC(I) PRINT 54, CL 54 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 133 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 135 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 137 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 138 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 139 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 130 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 130 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 131 PRINT 60, SOZ 60 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 132 PRINT 60, SOZ 614 = CHI+AC(I) AC(I) 615 FIL, SDATORE	RETORN	
DURENSION LELENTLEINDERLENDERF DIMENSION V(400) NDATA = NOP ND = 7 NZ=NL+1 DO 10 I=1.NOB 10 W(1)=Z(I) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15;//) GO TO 20 41 PRINT 31 31-FORMAT(1H1,10X,61H-AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1625 OF SERIES,//) GO TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1625 OF SERIES,//) 20 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20 PRINT 33 - 33 FORMAT(9x,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SOZ,NDATA,NL) 13 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) DD 58 I=1,NL 58 FORMAT(8x,112,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(7/22H MEAN OF THE SERIES = ,512.5) CL = 2.0/SCRT(FLCAT(NDATA)) PRINT 54, CL 54 FORMAT(7/50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 50 FORMAT(7/31H STANDARD DEVIATION OF SERIES =,E14.7) CH = CH1+AC(1)*AC(1) CH = CH1+AC(1)*AC(1) CH = CH1+AC(1)*AC(1)	SUPPOUTING TOCHT 17	
DIRENSION 2(1),ACTON,FP(50) DIRENSION W(400) NOATA = NOE NO = ? NZ = N(+1) DO 10 I=1,NOB 10 W(1)=Z(I) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15,7/) GO TO 20 41 PRINT 31 -31-FORMAT(1H1,10X,61H-AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1625 OF SERIES,//) GO TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NGES OF SERIES,//) 20-PRINT 33 - 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H,AC,SOZ,NOATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) DO 58 I=1,NL 58 PRINT 57 -, I,AC(I),PP(I) 57 FORMAT (4X,12,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(//21H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SCRT(FLCAT(NDATA)) PRINT 50, SDZ 60 FORMAT(//31H STANDARD DEVIATION OF SERIES =,E14.7) CH = 0. DO 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CH = CHI+AC(I)*AC(I)		
<pre>Dimension without NOTATA = NOE NO = 0 NO = 0 NO = 10 NO = 10 NO = 10 PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 1S,//) GO TO 20 41 PRINT 31 -31 FORMAT(1H1,10X,61H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 1CIS OF SERIES,//) GO TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 1NCES OF SERIES,//) 20 -PRINT 33 -33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H,AC,SOZ,NOATA,NL) 113 FORMAT(1H1;4HTEST) CALL PARTAL(AC,PP,NL) DO 58 I=1,NL 58 PRINT 57 -, I,AC(I),PP(I) 57 FORMAT(2X,1HI,14X,4F6,3,13X,F6,3) PRINT 57 -, I,AC(I),PP(I) 59 FORMAT(7/22H MEAN OF THE SERIES = .512.5) CL = 2.0/SCRT(FLCAT(NOATA)) PRINT 50, CC 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 13) PRINT 50, SOZ 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 13) PRINT 50, SOZ 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 13) PRINT 50, SOZ 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 13) PRINT 50, SOZ 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = .F5. 13) PRINT 50, SOZ 56 CHI = CHI+AC(I)*AC(I) CHI = CHI+FLOAT(NOATA)) CHI = CHI+FLOAT(NOATA) CHI = CHI+FLOAT(NOATA)) CHI = CHI+FLOAT(NOATA) CHI = CHI+FLOAT(NOATA)) CHI = CHI + CHI+FLOAT(NOATA)) CHI = CHI + CHI</pre>	DIMENSION Z(1),AU(0)	UJ, PP (00)
NOATA - NOC NO = ? NZ=NL+1 DO 10 I=1,NOB 10 W(1)=Z(1) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15,//) GO TO 20 41 PRINT 31 31 FORMAT(1H1,10X,61H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 1CES OF SERIES,//) GO TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20 PRINT 33 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(4,AC,SOZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) DO 58 I=1,NL 58 PRINT 57 -, I,AC(I),PP(I) 57 FORMAT (8X,12,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SCRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SOZ 56 U FORMAT(73HH STANDARD DEVIATION OF SERIES =,E14.7) CH I = 0. DO 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CH I = CHI+FLOAT(NDATA)		
NU - 2 NZ=NL+1 D0 10 I=1,NOB 10 W(I)=Z(I) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15,//) G0 T0 20 41 PRINT 31 -31 FORMAT(1H1,10X,61H-AUTO-AND-PARTIAL CORRELATIONS OF FIRST DIPFEREN- 1CES OF SERIES,//) G0 T0 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20 PRINT -33 -33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H,AC,S0Z,NDATA,NL) 113 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL PARTAL(4C,PP,NL) D0 58 I=1,NL 58 PRINT 57 -, I,AC(I),PP(I) 57 FORMAT (8X,12,13X,F6,3,13X,F6,3) PRINT 59, AC(NZ) 59 FORMAT(//SUH APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(73H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0, D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI+FLOAT(NDATA))	NDATA = NUE	
<pre>N2=NL+1 D0 10 1=1,N0B 10 H(1)=Z(1) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15,//) G0 T0 20 41 PRINT 31 31=FORMAT(1H1,10X,61H=AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 1CES OF SERIES,//) G0 T0 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20=PRINT</pre>		
<pre>10 10 1-1,NOD 10 H(1)=Z(1) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15,//) GO TO 20 41 PRINT 31 31-FORMAT(1H1,10X,61H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 1CES OF SERIES,//) GO TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20 -PRINT 33 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SDZ,NDATA.NL) 113 FORMAT(1H1,4HTEST) CALL ACORR(W,AC,SDZ,NDATA.NL) 113 FORMAT(1A,1C,13X,F6.3,13X,F6.3) PRINT 57, I,AC(1),PP(1) 57 FORMAT (4X,IZ,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SCRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(73H STANDARD DEVIATION OF SERIES =,E14.7) CH = 0. DO 56 I=1,NL 56 CHI = CHI4AC(1)*AC(1) CHI = CHI4FLOAT(NDATA)) CHI = CHI4FLOAT(NDATA)) CHI = CHI4FLOAT(NDATA)</pre>	NZ=NL+1	
<pre>10 R(1-2(1) PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15,//) 60 TO 20 41 PRINT 31 31-FORMAT(1H1,10X,61H-AUTO-AND-PARTIAL CORRELATIONS-OF FIRST DIFFEREN- 1CES OF SERIES,//) 60 TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20-PRINT-33 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H,4C,S0Z,NOATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) 00 58 I=1,NL 58 PRINT 57 -, I,AC(1),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(7/22H MEAN-OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT-CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 69, S0Z 60 FORMAT(731H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI*FLOAT(NDATA))</pre>		
<pre>PRINT 30 30 FORMAT(1H1,10X,49H AUTO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 15,7/) GO TO 20 41 PRINT 31 31 FORMAT(1H1,10X,61H-AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 1CES OF SERIES,7/) GO TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,7/) 20-PRINT 33 33 FORMAT(9X,1H1,14X,64AUTO,14X,7HPARTIAL,7/) CALL ACORR(H,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) DO 58 I=1,NL 58 PRINT 57-, I,AC(1),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(7/22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(7/31H STANDARD DEVIATION OF SERIES =,E14.7) CH I = 0. DO 56 I=1,NL 56 CH I = CHI*FLOAT(NDATA)</pre>	10 K(1) = 2(1)	
<pre>30 FORMATTHI,10,10,49H A0TO AND PARTIAL CORRELATIONS OF ORIGINAL SERIE 10,77) 60 TO 20 41 PRINT 31 31-FORMAT(1H1,10X,61H-AUTO-AND PARTIAL CORRELATIONS OF FIRST DIFFEREN- 1CES OF SERIES,//) 60 TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20-PRINT 33 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) 00 58 F1,NL 58 PRINT 57 -, I,AC(I),PP(I) 57 FORMAT(6X,12,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(7/22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SCRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(7/50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(731H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CH1*FLOAT(NDATA)</pre>	PRINT SU	AUTO AND DADITAL CORDELATIONS OF ODICINAL SERIE
<pre>13,77,7 GO TO 20 41 PRINT 31 31 FORMAT(1H1,10X,61H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 1CES OF SERIES,//) GO TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20 PRINT 33 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL ACORR(W,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL ACORR(W,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) DO 58 I=1,NL 58 PRINT 57 , I,AC(I),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(//31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0, DO 56 I=1,NL 56 CHI = CHI+AC(I)+AC(I) CHI = CHI+AC(I)+AC(I)</pre>	50 FORMATTINI,102,49H	AUTU AND PARTIAL CORRELATIONS OF ORIGINAL SERIE
<pre>41 PRINT 31 31 FORMAT(1H1,10X,61H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 1CES OF SERIES,//) G0 TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20 PRINT 32 33 FORMAT(9X,1H1.14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL ACORR(H,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) 00 58 I=1,NL 58 PRINT 57 , I,AC(I),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(N2) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SCRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SOZ 60 FORMAT(//31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)+AC(I) CHI = CHI+AC(I)+AC(I) CHI</pre>		
<pre>31 FORMAT(1H1,10X,61H AUTO AND PARTIAL CORRELATIONS OF FIRST DIFFEREN 1CES OF SERIES,//) 60 TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20 PRINT 33 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SOZ,NDATA,NL) 113 FORMAT(H1,4HTEST) CALL PARTAL(AC,PP,NL) DO 58 I=1,NL 58 PRINT 57 , I,AC(1),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(7/2H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(/3H STANDARD DEVIATION OF SERIES =,E14.7) C4I = 0, D0 56 I=1,NL 56 CHI = CHI+AC(I)+AC(I) C4I = CHI+AC(I)+AC(I)</pre>	AI PRINT 31	
<pre>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>		AUTO-AND-PARTTAI-CORRELATIONS-OF-FTRST-OTFFFREN-
GO TO 20 42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20 PRINT 33 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(H,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) 00 58 I=1,NL 58 PRINT 57 , I,AC(I),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(7/2H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//SOH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(731H STANDARD DEVIATION OF SERIES =,E14.7) CH = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CH = CHI*FLOAT(NDATA)	ICES OF SERIES (/)	
42 PRINT 32 32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20 PRINT 33 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) D0 58 I=1,NL 58 PRINT 57 , I,AC(I),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(7/22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(7/50H APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(731H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	60 TO 20	
<pre>32 FORMAT(1H1,10X,62H AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE 1NCES OF SERIES,//) 20-PRINT-33 - 33 FORMAT(9X,1H1,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SOZ,NOATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) D0 58 I=1,NL 58 PRINT 57 -, I;AC(I),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(7/22H MEAN OF THE SERIES = ,E12.5) CL = 2.D/SCRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(7/50H APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SOZ 60 FORMAT(7/31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)</pre>	42 PRINT 32	
<pre>SET OF SERIES,//) 20-PRINT-33 - 33 FORMAT(9x,1HI,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) D0 58 I=1,NL 58 PRINT 57 , I,AC(I),PP(I) 57 FORMAT (8x,I2,13x,F6.3,13x,F6.3) PRINT 59, AC(NZ) 59 FORMAT(7/22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SCRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//SDH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(73H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)</pre>	32 FORMAT (1 H1 - 10X - 52H	AUTO AND PARTIAL CORRELATIONS OF SECOND DIFFERE
20-PRINT 33 33 FORMAT(9X,1HI,14X,4HAUTO,14X,7HPARTIAL,//) CALL ACORR(W,AC,SDZ,NDATA,NL) 113 FORMAT(1HI,4HTEST) CALL PARTAL(AC,PP,NL) D0 58 I=1,NL 58 PRINT 57 , I,AC(I),PP(I) 57 FORMAT (8X,12,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(7/22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(7/50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(7/31H STANDARD DEVIATION OF SERIES =,E14.7) CYI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	INCES OF SERIES.//)	
<pre>33 FORMAT(9x,1HI,14x,4HAUTO,14x,7HPARTIAL,//) CALL ACORR(W,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) D0 58 I=1,NL 58 PRINT 57 ; I,AC(I),PP(I) 57 FORMAT (8x,I2,13x,F6.3,13x,F6.3) PRINT 59, AC(NZ) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(//31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)</pre>		
CALL ACORR(W,AC,SDZ,NDATA,NL) 113 FORMAT(1H1,4HTEST) CALL PARTAL(AC,PP,NL) D0 58 I=1,NL 58 PRINT 57 -, I,AC(I),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(//31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	33 FORMAT (9X. 1HT. 14X.4)	HAUTO 14X THPARTIAL //)
<pre>113 FORMAT(IHI,4HTEST) CALL PARTAL(AC,PP,NL) D0 58 I=1,NL 58 PRINT 57 , I,AC(I),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(//31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)</pre>	CALL ACORR (W.AC. SDZ	NDATA.NI)
CALL PARTAL(AC,PP,NL) D0 58 I=1,NL 58 PRINT 57 , I,AC(I),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SCRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(/31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	113 FORMAT (1H1,4HTEST)	
D0 58 I=1,NL 58 PRINT 57 , I,AC(I),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SCRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SOZ 60 FORMAT(/31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	CALL PARTAL (AC. PP. N	
58 PRINT 57 , I,AC(I),PP(I) 57 FORMAT (8X,I2,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SCRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(/31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. DO 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	DO 58 T=1.NI	
57 FORMAT (8X,12,13X,F6.3,13X,F6.3) PRINT 59, AC(NZ) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(/31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	58 PRINT 57 . I.AC(I).	PP(T)
PRINT 59, AC(NZ) 59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(/31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. DO 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	57 FORMAT (8X-12-13X-F	6.3.13X.F6.3)
59 FORMAT(//22H MEAN OF THE SERIES = ,E12.5) CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(/31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	PRINT 59. AC(N7)	0.010/10/0101
CL = 2.0/SGRT(FLCAT(NDATA)) PRINT 54,CL 54 FORMAT(//50H APPROX. 35 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(/31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	59 FORMAT(//22H MEAN OF	F THE SERTES = .F12.51
PRINT 54,CL 54 FORMAT(//SOH APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(/31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. DO 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	CL = 2.0/SCRT(FLCAT)	(NDATA))
54 FORMAT(//50H APPROX. 95 PERCENT CONF. LIMIT ON CORRELATIONS = ,F5. 13) PRINT 60, SDZ 60 FORMAT(/31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. D0 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	PRINT 54-CI	
13) PRINT 60, SDZ 60 FORMAT(731H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. DO 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	54 FORMAT (//SOH APPROX	- 95 PERCENT CONF. LIMIT ON CORRELATIONS =
PRINT 60, SDZ 60 FORMAT(731H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. DO 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	13)	
60 FORMAT(/31H STANDARD DEVIATION OF SERIES =,E14.7) CHI = 0. DO 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	PRINT 60 - 507	
CHI = 0. $D0 56 I=1, NL$ $56 CHI = CHI+AC(I) + AC(I)$ $CHI = CHI + FLOAT(NDATA)$	60 FORMATIZAH STANDAR	D DEVIATION DE SERTES =-E14.71
DO 56 I=1,NL 56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	$\Gamma \Psi T = 0$	- SETTATION OF SECTOR - PETTIN
56 CHI = CHI+AC(I)*AC(I) CHI = CHI*FLOAT(NDATA)	DO 56 T=1-NI	
CHI = CHI*FLOAT(NDATA)	56 CHT = CHT+AC(T)*AC(۲)
	CHT = CHT*FLOATINDA	ΤΔ)
PRINT 55. CHI.NI	PRINT 55. CHI.NI	

Table C-4 Cont'd

55 FORMAT(/25H CHI-SQUARED STATISTIC = ,F6.2,10H BASED ON ,I2,19H DEG 1RESS OF FREEDOM. /) NDATA = NDATA-1ND = ND+1IF (ND.GT.NDIFF) GO TO 100 CO 40 I=1, NDATA-40 W(I) = W(I+1) - W(I)GO TO (41,42), ND 100-RETURN ----END SUBROUTINE ACORR (Z, AC, SDZ, N, NL) DIMENSION Z(1), AC(1) NL1 = NL+1TN = NSZ-=-0.-CO 13 I=1,N 13 SZ = SZ+Z(I) ZBAR = SZ/TN 03 10 JJ=1,NL1 J = JJ-1522-= 0.-NN = N-JDO 11 I=1, NN K=I+J-11 SZZ=SZZ+(Z(I)-ZBAR)*(Z(K)-ZBAR) 10 AC(JJ) = SZZ/TN-SOZ =- SQRT (AC(1))-VZ = AC(1)DO 12 J=1, NL 12 - AC(J) = AC(J+1)/VZ-RETURN END SUBROUTINE-PARTAL(R, PAUTO, M)-DIMENSION R(1), PAUTO(1), PHAT(40), PHATN(40) PAUTO(1) = R(1)PHAT(1) = R(1)*(1.-R(2))/(1.-R(1)**2) PHAT(2) = (R(2) - R(1) + 2)/(1 - R(1) + 2)PAUTO(2) = PHAT(2)00 4 I=3,M L = I-1 FNUM = 0. DENOM = 0. 00 1 J=1,L K = I - JFNUM = PHAT(J) *R(K) + FNUM 1 DENOM = DENOM+PHAT(J)*R(J) PHATN(I) = (R(I) - FNUM) / (1 - DENOM)PAUTO(I) = PHATN(I)CO 2 J=1,L K = I - J2 PHATN(J) = PHAT(J) - PHATN(I) + PHAT(K) -DO 3 J=1,I 3 FHAT(J) = PHATN(J)4 CONTINUE RETURN

END

	PROGRAM TST (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) DIMENSION IIILX(2),TITLY(2),DATA(1000),A(14,141) DIMENSION C1(141),C2(141),B1(141),B2(141) DIMENSION X(141),Y(141),FS(141)
	REAL N(141) DIMENSION TH(10),TIME(141) COMMON/AAB/NTY,XORG COMMON/AAA/XMIN,XMAX,V,NTX,XSCALE,NPLTS DATA NS/0/,NF/141/,YORG/0.00/,NTOT/02/,NTX/12/,NOB/141/ NTOT=3
• • •••	X\$CALE=10. NTX=13 NOB=121 NPT=0 CALL INIT(NTOT) READ {5,10} {{A{I,J},J},J=1,N08},
- - 	READ (5,10) ((A(1,J)) == 8,14), J=1,008) READ (5,12) YSCALE, NTY, TITLX(1), TITLX(2), TITLY(1), TITLY(2) IFLAG=0 NPT=NPT+1 Do 15 I=1,008 Y(I) =A(14,I) Y(T) =A(14,I)
15	TIME(I)=I-1 CONTINUE NOB=NOB=6 CALL PLDTA(IFLAG,NPT,NS,NOB,YSCALE,YORG,TITLX,TITLY,Y(5),TIME(5)) PRINT(6,30)
	PRINT(6,31) IFLAG=1 NPT=NPT+1 FS(1)=0• FS(2)=0• FS(2)=0•
	FS(4) = 0 FS(5) = 0 N(5) = 0 $TH(5) = 0 \cdot 2203$ $TH(4) = 0 \cdot 3994$ $TH(3) = -0 \cdot 02815$
16	TH(2)=-0.046 TH(1)=0.0811 CONTINUE NOB=NOB+6 DO 83 I=6,NOB FS(I)=(TH(4)+TH(5))*Y(I=1)-TH(4)*TH(5)*Y(I=2)+TH(1)*X(I=1)-TH(2)*
	$\begin{array}{l} 2X(I-2) - TH(3) *X(I-3) - TH(5) *(TH(I) *X(I-2) - TH(2) *X(I-3) - TH(3) *X(I-4)) \\ 3-TH(4) *N(I-1) \\ 4 + Y(I-1) - TH(4) *Y(I-2) - TH(5) *Y(I-2) + TH(4) *TH(5) *Y(I-3) \\ 5 - TH(1) *X(I-2) + TH(1) *TH(5) *X(I-3) + TH(3) *X(I-4) + TH(2) *X(I-3) = TH(2) * \\ 6 - TH(5) *X(I-4) - TH(3) *TH(5) *X(I-5) \\ - N(T) = Y(I) - FS(I) \end{array}$
83 10 12 30	CONTINUE FORMAT (26X,F5.3,19X,F4.0,1X,F3.0,1X,4F5.1) FORMAT (26X,F5.3,21X,F3.0,1X,F3.0,1X,4F5.1) FORMAT (F5.1,I5,4AI0) FORMAT (1H1,48H EFFLUENT TKN INFLUENT TKN LOAD FORECAST TKN/) FORMAT (52H MG/L MG/L MG/L MG/L ///)
3233437	FORMAT (F10.2,3X,F10.2,1X,F10.2,4X,F10.2) FORMAT (1H1,15H AVERAGE VALUES,//,F10.2,3X,F10.2,1X,F10.2,4X,F10.2) FORMAT (3F15.2) FORMAT (1H1,15H AVERAGE VALUES,//,F10.2,5X,F10.2) DO 35 I=1,NOB TIME (1) = I=1
32	NOB=NOB-6 CALL PLDTA(IFLAG,NPT,NS,NOB,YSCALE,YORG,TITLX,TITLY,FS(5),TIME(5)) NPT=NPT+1 NOB=NOB+6 D0_36_I=1,NOB
36	IF AG=0 READ (5,12) YSCALE,NTY,TITLX(1),TITLX(2),TITLY(1),TITLY(2) CALL PLDTA(IFLAG,NPT,NS,NOB,YSCALE,YORG,TITLX,TITLY,X,TIME) STOP

1	SUBROUTINE INIT(NTOT) COMMON/AAB/NTY,XORG
ç	COMMON/AAA/XMIN, XMAX, V, NTX, XSCALE, NPLTS THIS SUBROUTINE INITIALIZES THE PLOT ROUTINE
č.	A MAXIMUM OF 1000 POINTS MAY BE PLOTTED PER CALL TO PLOTA THE CALL TO THIS SUBROUTINE MUST BE THE FIRST EXECUTABLE STATEMENT
	IN THE MAIN PROGRAM As of october 20 1976 the control cards necessary to plot on The bensentlehner are
000	ACCN,MT1. ATTACH,PLOTLIB,ID=QPAK.
JOOC	ETN. LDSET(LIB=PLOTLIB)
	NTX - NUMBER OF TIC MARKS ON X AXIS
CCC	EVERY TIC MARK IS 10 MM FROM THE NEXT AND IS ANNOTATED
	NPLTS - NUMBER OF PLOTS DESIRED INCLUDED ANY PLOTS TO BE SUPERIMP-
č	INITIALIZE PLOT ROUTINE TO CENTIMETERS
	XL=XURG+NIX*XSCALE XMAX=1.1*XL V=XORG-I0*XSCALE
	XMIN=V NPLIS=NTOT
	RETURN END

	SUBROUTINE PLDTA (IFLAG, NPT, NS, NOB, YSCALE, YORG, TITLX, TITLY, DATA, TIM
	DIMENSION TITLX(2),TITLY(2),FMT(5) COMMON/AAB/NTY,XORG COMMON/AAA/XMIN,XMAX,V,NTX,XSCALE,NPLTS
с	DATA $FMT/f(F5.2) \neq i \neq (F5.2) \neq i \neq (F4.1) \neq i \neq (F4.1) \neq i \neq (F5.0) \neq i$
CUCC	NPT - NUMBER OF CURRENT DATA SET <u>IFLAG - IF NON ZERO THEN CURRENT PLOT SUPERIMPOSED ON LAST GRID</u> NS - THE FIRST ABSCISSA VALUE IE 0 OR 10 OR 15
unin r	YSCALE - THE INCREMENT PER TIC MARK ALONG THE ORDINATE AXIS YORG - ORIGIN OF THE PLOT IN DATA UNITS THEREFORE THE VALUES ALONG THE ORDINATE WILL BE YORG YORG+YSCALE YORG+2*YSCALE
CCC	YORG+5*YSCALE TITLX - A 20 CHARACTER TITLE TO BE PRINTED ON THE ABSCISSA TITLX - A 20 CHARACTER TITLE TO BE PRINTED ON THE ORDINATE
	THE FIRST ELEMENT CORRESPONDS TO THE NS TH DATA POINT NTY - NO. OF TICS IN Y DIRECTION
Č 6001	WRITE (6,6001) NPT, NOB, YORG, YSCALE FORMAT (1H1:///,20X; #PLOI_NUMBER#: 12://,20X; #NUMBER_OBS #14;
	$\frac{17 \cdot 20X}{2F_{10} \cdot 6}$
6002	FORMAT(1H0,20X, \neq DATA FOR PLOTTING \neq) WRITE(6,6003)(DATA(L),L=1,NOB)
6003 C	FORMAT(1H \$7E10.4) IF(NPT.NE.1)GO TO 20 INITIALIZE PLOT BOUNDARIES ON FIRST PLOT ONLY
20	CALL PLOT(00
C	IF (IFLAG.NE.0)GO TO 10 INCREMENT NUMBER OF INDIVIDUAL GRIDS CALL PLOT(DXL+10.,0.,-3)
30	XNTY=NTY W=YORG-(XNTY-1.)*YSCALE/2.
	YMIN=W YL=YORG+YSCALE*(XNTY-1.)
8	CALL PLTIN(XSCALE, YSCALE, V, W, XMIN, XMAX, YMIN, YMAX) PLACE GRID ON X AND Y AXIS DETERMINE DATA ORIGIN IN PLOTTER UNITS
c .	CALL UNITID (XORG, YORG, DX, DY) CALL PLOT (DX, DY, 3) DETERMINE END POINTS OF AXIS IN PLOTTER UNITS DXI = DX+NTX
с	DYE=DY+NTY CALL PLOT(DXL,DY,2) PLACE TIC MARKS ALONG AXIS Y=DY1

		DO 39 I=1 • NTX X=DX+I
с	39	CALL MATH(X,Y,.1,90.,2) CONTINUE DRAW Y AXIS CALL PLOT(DX,DY,3)
с		CALL PLOT (DX, DYL, 2) PLACE Y AXIS AT RIGHT HAND EDGE OF X AXIS CALL PLOT (DXL, DY, 3) CALL PLOT (DXL, DY, 3)
С	× •	PLACE LINE ACROSS THE TOP OF GRAPH CALL PLOT (DX, DYL, 3) CALL PLOT (DXL, DYL, 2)
Ç		INSERT TIC MARK AR RIGHT HAND EDGE XX=DXL D0 49 I=1,NTY Y=DY+I Y=20:05
с	49	CALL MATH(XX,Y,.1,0.,2) CONTINUE PLACE TIC MARKS AT LEFT HAND EDGE X=DX1
		D0 50 I=1,NTY Y=DY+I Y=Y-0.05 CALL MATH(X,Y,.1,02)
C	50	CONTINUE INSERT SCALE ON X AXIS PLACE / ON AXIS Y=DY-15
c		CALL SYMBOL (DX,Y, 20,1H0,90.1) INSERT NO ALONG AXIS Y=DY-1. _D0_59_I=2,NTX,2
	59	X=DX+I NUM=XSCALE*I CALL INUMBR(X,Y,.2,NUM,0.,4H(I4)) Continue
с		X=DX=1.5 PUT NO ALONG Y AXIS NTY=NTY+1 DO 69 I=1.NTY
c	69	Y=DY+I-1 YVAL=YORG+(I-1)*YSCALE CALL NUMBER(X,Y,.2,YVAL,0.,6H(F6.1)) CONTINUE INSERT TITLE ON X AXIS X=DX+0.3*NTX Y=DY-1.5
c	10	X=DX-1.8 Y=DY+0.5 CALL SYMBOL(X,Y,.25,TITLY,90.,20) CONTINUE PLOT DATA WITHIN GRID DO 9 J=1.NOB YD=DATA(J)

Table C-5 Cont'd

APPENDIX D

REACTOR RETENTION TIMES & MIXING CHARACTERISTICS

Dye studies were performed on the 0.5 metre RBC and the 2.0 metre RBC for two reasons:

- The tracer studies provided an indication of peak retention times and RBC response to influent spikes. This then provided the basic information necessary for choosing discrete time intervals for the dynamic experiments.
- 2. To identify the mixing characteristics of each RBC, which previously had been shown to approximate two CSTR's in series for a 0.5 metre RBC.

Dye studies were performed with a Turner Model III flowmeter. Samples (200 ml) were obtained at discrete time intervals so as not to miss the peak. Fresh water was used to feed the RBC's except in the case of 2.0 m which was being acclimatized at the same time with raw sewage. The 0.5 metre RBCs did not have a biological growth on them at the time the dye studies were conducted. Calibration curves were determined using dye solutions of known concentration. To initiate each study a slug of dye of known concentration was added to the RBC inlet. The RBC was stopped for approximately 10 seconds for this purpose.

The results of the studies and further details of each study are included in Tables D1, D2, D3, D4 and D5. A computer listing of the program used is presented in Table D6. Flow conditions for both the carbon oxidation and carbon oxidation plus modes were investigated. A description of the flow models used to develop the computer program is given below.

Tanks in Series Model Theory

The final effluent of a system of j equal sized CSTR's in series can be found from the following equation:

$$\frac{C}{C_{o}} = \frac{j^{j} \theta^{j-1}}{(j-1)!} e^{-j\theta} \dots (D-1)$$

where:	С	=	effluent tracer concentration
	θ	=	dimensionless time
	j	=	number of tanks
	С	=	the quantity of tracer added divided by
	-		the volume of the entire system.

This applies only to a pulse input of tracer. In this type of system, as j approaches large values (say > 15), the flow regime approximates plug flow whereas, when j is equal to 1, the flow is completely mixed. If the time at which the peak dye concentration occurs is known, the above equation can be solved for j by taking the derivative and equating the result to zero. Theta peak is determined by dividing the peak time by the residence time. The final form of the equation is:

$$j = 1$$
 ... (D-2)

Dispersion Model Theory

The dispersion model is developed in such a way that it

assumes plug flow for a given reactor system with the inclusion of a term which describes the degree of molecular disperson or deviation from the ideal. The general equation of this model is:

$$D \frac{\partial^{2} c}{\partial x^{2}} - u \frac{\partial c}{\partial x} - \frac{\partial c}{\partial t} = 0 \qquad \dots (D-3)$$

where: u = mean displacement velocity
C = concentration

$$\frac{\partial C}{\partial x}$$
 = concentration gradient
 $\frac{\partial C}{\partial t}$ = reaction term
D = turbulence expression

The solution of this equation for a tracer pulse input to a closed vessel given by Mjjachi (1953) is quoted by Timpany (1):

$$\frac{C}{Co} = 2 \frac{2}{D} \frac{U_n (U \sin U_n + \cos U_n)}{(U^2 + 2U + U_n^2)} EXP \qquad \frac{U - (U^2 + Un^2)}{2U} \Theta \dots (D-4)$$
where:
$$U_n = COT^{-1} \left(\frac{Un}{U} - \frac{U}{U_n} \right) / 2$$

$$U = \frac{UL}{2D}$$

$$L = tank length$$

The value U_n is best calculated by trial and error using an iterative approach. Also, the summation in equation 4 is taken to some reasonably large but finite value for practical purposes.

Instead of determining a value for D by the normal variance technique suggested by Levenspiel (1967), a correlation between peak time and D/UL developed by Timpany (1966) was used. Proper use of the variance method for D/UL calculation generally requires concentration data to be entered for at least seven detention times which is rarely practical. Since the concentration data approached zero after two detentions times data for about three detention times were used.

Table	D-1	
the set provides the		

Tracer Response Analysis, 0.5 Ml, At 0.82 L/min.

TPACER RESPONSE ANALYSIS	
Rotating Biological Contactor	
HYDRAULIC CHARACTERIZATION	
TEST METHOD USTIC & DILLSE TUDIT OF DODAMINE UT OVE	
TEST TETHOS OSING A POESE INPOT OF RODAMINE WI STE	
REACTOR OPERATION AND TEST CONDITIONS	
	-
VOLUME OF REACTOR = 141.BOLITRES	
HYDPAULIC LOADING = C.32LITRES/MIN	
DYE INJECTION = C.UC30LITRES	
CONC OF DYE ADDED = 0.238E+07PPB Dye / Tank volume = 50.35PPB	
	-
TEST RESULTS AND CALCULATED VALUES	
DYE PEAK TIME = 85.00MIN	
PEAK/THEOR DET = 5.489	
PEAK/MEAN_DYE_RES_= 0.F96MIN	
$\frac{142.50MIN}{PER DYE RECOVERY} = 94.314r$	-
FR. STAGNANT ZONE = J.181	
CSTR S IN SERIES USING THEORETICAL PES. = 1.96	
CSTR S IN SERIES USING MEAN DYE PES. = 2.48 DZUL VALUE USING THEORETICAL RESIDENCE = 2.3336E+32	
D/UL VALUE USING MEAN DYE RESIDENCE = 0.2282E+00	

Table D-1 Cont'd

EXPERIMENTAL RESULTS C/CO VERSUS THETA

THETA

C/20

2 • • • • • • • • • • • • • • • • • • •	0.043 0.1280 0.172 0.252 0.252 0.252 0.252	 C. 316 2. 779 J. 179 0. 318 0. 447 C. 571
	0.345 0.338 0.431 0.556 0.556 0.603 0.647	0 • 735 0 • 7774 0 • 8014 0 • 8014 0 • 907 0 • 767
	G.693 C.7719 C.7719 C.88658 C.8999 C.999 C.999	C
	1.035 1.078 1.124 1.164 1.207 1.250 1.293 1.437	0.000 54444860 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000
- -	1 • 581 1 • 724 1 • 868 2 • 012	0.240 0.199 0.166 0.131
	2.155	0.07C

Table D-l Cont'd

CALCULATED C/CO VERSUS THETA VALUES FOR CSTR IN SERIES MODEL

THEOPETICAL DETENTION	ACTUAL DETENTION
THETA C/CD	THETA C/CO
$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 \\ 0 & 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$
2 • 800 6 • 0 +1 3 • 000 6 • 0 30 3 • 200 0 0 • 0 30 3 • 200 0 0 • 0 1	2.600 0.041 3.500 0.030 7.200 7.021
3 • 4 ° C 0 • 2 1 5 7 • 6 0 C 5 • 0 1 1 3 • 8 0 0 0 • 0 3 8 4 • 9 C 0 0 • 0 3 5	3.600 0.011 3.600 0.011 3.300 0.006 4.000 0.005
4.200 0.314	4.2)(0.004

 THEORETICAL DETENTION
 ACIUAL DETENTION

 0:100
 0:400
 0:425
 0:400

 0:300
 0:717
 0:300
 0:442

 0:400
 0:884
 0:400
 0:442

 0:700
 0:884
 0:400
 0:400

 0:700
 0:872
 0:400
 0:884
 0:400

 0:700
 0:717
 0:300
 0:412
 0:400

 0:700
 0:749
 0:400
 0:400
 0:400

 0:700
 0:777
 0:710
 0:929
 0:652

 0:700
 0:713
 0:800
 0:654
 0:929

 0:800
 0:713
 0:800
 0:654
 0:929

 0:800
 0:713
 0:800
 0:654
 0:929

 1:910
 0:572
 1:120
 0:413
 0:349

 1:910
 0:349
 1:4300
 0:349
 0:413

 1:920
 0:4150
 1:700
 0:205
 0:205

 1:920
 0:4150
 1:700
 0:205
 0:205

 1:920
 0:173
 1:820
 0:1215
 0:1215

 1:920
 0

CALCULATED C/CO VERSUS THETA VALUES

ľa	bl	е	D-2

Tracer Response Analysis, 0.5 M2, At 2.33 L/min.

TRACER RESPONSE ANALYSIS

Rotating Biological Contactor HYDRAULIC CHARAGEERIZATION

TEST METHOD USING A PULSE INPUT OF RODAMINE WT DYE

REACTOR OPERATION AND TEST CONDITIONS.

	VOLUME OF REACTOR = HYDRAULIC LOADING = THEOPETICAL DET =	131.40LITRES 2.33LITRES/ 56.394IN	MIN	
	CONC OF DYE ADDED = DYE / TANK VOLUME =	6.238E+07PPB 54.3+PPB		
TEST	RESULTS AND CALCULATED	VALUES		
1 	DYE PEAK TIME = PEAK/THEOR DET =	<u>39.0341</u> 0.692		
	PEAK/MEAN DYE RES = MEAN DYE RESIDENCE =	0.591MIN 66.00MIN		
	FR. STAGNANT ZONE =	83•247+ -0•170		

CSTR S IN SERIES USING THEORETICAL RES. = 3.24 CSTP S IN SERIES USING MEAN DYE RES. = 2.44 D/UL VALUE USING THEORETICAL RESIDENCE = 0.1444E+30 D/UL VALUE USING MEAN DYE RESIDENCE = 0.2344E+30 Table D-2 Cont'd

EXPERIMENTAL RESULTS C/CO VERSUS THETA

CALCULATED C/CC VERSUS THETA VALUES FOR OSTR IN SERIES MODEL

THEORETICAL DETENTION: ACTUAL DETENTION

	THETA	C/C)	1	тнета	0100	
	0.000	0.000		C.JOD	0.000	
1.00	0.050 0.100	0.129 0.100		0.050	<u> </u>	
		C.194 D.296		C.15C C.200	0.444	
	2.30	· + 9 +		r.300	2.659	
	0.400	0.651		0.350	0.719	
÷.	0.500	2.753		<u>c</u> . <u>5</u> <u>j</u> c	.736	
	0.500	0.333		0.600	J. 723	
	2.700	0.310		2.735	0.693	
	0.800	0.784		C . 8 0 0	0.646	
	0.900	1.735		0.900	1.595	
	1.010	0.672		1.000		
	1.470	3.337		1.400	0.341	
	1.800	1.1.98		1.800	0.197	
	2.200	0.134		2.200	0.128	
	2.400	0.037		2.000	0.057	
	3.000	0.015			C. 030	
	33.44	0.006		3.400	0.015	
	3.800	0.012		3.800	0.011	
	4.300	C.001 C.001		4.000	3.005	

Table D-2 Cont'd

CALCULATED C/CD VERSUS THETA VALUES FOR DISPERSION MODEL

THEORETICAL DETENTION

ACTUAL DETENTION

0.190	3.000	0.100	3.021
0.30 r	1 94	C .33C	1.457
0.500	C. 321	0.500	0.919
0.600	1.995	C.60C	0.957
	1.004	Č. 800	0.922
0.900	0.914	C.900 1.000	J. 753 D. 657
1.100	0.683	1.100	2.566
1.300	0.+73	1.300	0.410
1.400	0.337	1.400 1.500	0.347
1.670	2.254		1.246
1.900	0.163	1.300	0.173
1.000			0.145
2.100	0.083	2.100	J.171
2.300	0.052	2.350	0.071
2.400	<u> </u>	2.425	<u>1.051</u>
2.600	0.026	2.630	0.041
2.82	0.016	2.805	0.029
**			
2.90 0	0.113	2. 400	n. r 2 +
3.100		5.000	0.020

Table D-3

Tracer Response Analysis, 0.5 M2, At 3.46 L/min,

TRACER RESPONSE ANALYSIS

Rotating Biological Contactor HYDRAULIC CHARACTERIZATION

TEST METHOD JSING A PULSE INPUT OF RODAMINE WT DYE REAGTOR OPERATION AND TEST CONDITIONS

VOLUME OF REACTOR = 133.50LITRES HYDRAULIC LOADING = 3.46LITRES/MIN
THEORETICAL DET = 38.58MIN DYE INJECTION = 0.0030LITRES CONC OF DYE ADDED = 0.233E+07PP9 DYE / TANK VOLUME = 53.48PPB
TEST RESULTS AND CALCULATED VALUES
DYE PEAK TIME = 22.00MIN PEAK/THEOR DET = 0.570
 PEAKZMEAN DYE RES = C.629MIN MEAN DYE RESIDENCE = 35.00MIN PER DYE RECOVERY = 71.957#
FE. STAGNANT ZONE = 0.033 OSTE S IN SEPTES USING THEORETICAL RES. = 2.33
CSTP S IN SERIES USING MEAN DYE RES. = 2.69 D/UL VALUE USING THEORETICAL PESIDENCE = 0.2590E+JJ D/UL VALUE USING MEAN DYE RESIDENCE = 0.1956E+JC

Table D-3 Cont'd

EXPERIMENTAL PESULTS C/CO VEPSUS THETA

THETA

0/10

0.078 0.1257 0.2311 0.3467 0.454	0.100540 0.100540 0.45776
0 • 622 0 • 700 0 • 700 0 • 778 0 • 855 0 • 933 1 • 011	0.52 5.52 5.52 5.44 0.45
1.166 1.244 1.322 1.427 1.555	1.318 0.255 0.2259 0.2259
1.533 1.711 1.788 1.866 1.944 2.922	0.158 0.153 0.136 0.122 0.110 0.110
2.099 2.177 2.255 2.337 2.592 2.851 3.115	 0.030 0.081 7.074 7.067 7.067 7.068 7.038
3.3628 3.628	0.029 0.024

3.888

3.019

CALCULATED CZCD VERSUS THETA VALUES FOR OSTP IN SERIES MODEL

THEOP	ETICAL DE	TENTION	ACTUAL	DETENTION
ТН	ΕΤΑ	C/C0	τηετα	6700
	220	0.330	0.000	0.000 2.029
0 0 0	100 150 200 250	0 • 327] • 4 + 4 9 • 5 3 6 7 • 6 3 7	C.100 C.150 C.200 C.250	0.100
0.	300 350 490 450	0.659 0.695 0.719 0.719	0.350 0.350 0.400 0.450	0.494 0.579 0.651 0.759
	500 550	0.736 0.732 0.723	C • 500 C • 500 C • 500 C • 600 C • 600 C • 600 C	0.753 0.784 0.803
1.00 0.00 0.00	700 750 800	1.690 1.690 1.659 1.646		0.211 0.810 0.800 0.784 0.762
	950 950 950	C • 5 9 5 C • 5 6 8 C • 5 6 1 C • 5 4 1 C • 4 3 5	0.915 C.95C 1.000	2.735 0.705 0.672 0.531
1.1.2	400 600 800	3 • 3 41 0 • 2 5 1 0 • 1 37 0 • 1 47	1.400 1.650 1.850 2.030	0.397 0.284 0.198 0.134
2.	200 400 600	0.108 0.279 0.057	2.200 2.400 2.600	0.058 0.058 0.037
3.3.3.		0.030 0.021 0.015	3.000 7.000 7.000 7.000 7.000	0.015
3 • 3 • 4 •	30 C	U • U 11 0 • 908 0 • 835		
Table D-3 Cont'd

FOR DISPERSION MODEL

THEORETICAL	DETENTION		ACTUAL	DETENTION	
1000 - 1000 - 2000 - 400	0.002 0.160 0.515 0.794		C.10C C.206 C.300 C.+00	0.000	
6.50C 0.50C 0.70C 0.80C	C • 925 0 • 944 0 • 896 0 • 816		C.500 C.600 C.700 D.800	0.000 0.000000	
	0.724 0.632 1.546 0.468			0.803 5.706 7.605 7.514	
1.300 1.400 1.500 1.600	0.339		1.500		
	0.173 0.146 0.123	-	1.900 1.900 2.100		_
2 • 20 0 2 • 3 1 0 2 • 4 5 0	0.033 0.074 0.062		2.200 2.300 2.400	0.079 0.055 0.053	
2.50C 2.60C 2.70C	0.052	 	2.500	0.044	
2.900	3.026		2.930	0.027	

Table D-4

Tracer Response Analysis, 2.0 M, At 37.2 L/min.

TRACER RESPONSE ANALYSIS

ROIATING BIOLOGICAL CONTACTOR HYDRAULIC CHARACTERIZATION

TEST METHOD JSING A PULSE INPUT OF RODAMINE WT DYE

REACTOR OPERATION AND TEST CONDITIONS

× .	VOLUME OF REACTOR = 3466.40LITRES HYDRAULID LOADING = 37.20LITRES/MIN THEORETICAL DET = 93.24MIN DYE INJECTION = 6.0013LITRES	
	COND OF DYE ADDED = 0.238E+09PPB DYE / TANK VOLUME = 85.77PP3	
TEST	RESULTS AND CALCULATED VALUES	
1		
	$\frac{DYE PEAK_TIME}{PEAK/THEOR DET} = 0.794$	
4.4. 	PEAK/MEAN DYE RES = 0.725MIN MEAN DYE RESIDENCE = 132.00MIN PER DYE RECOVERY = 91.973+ FR. STASNANT ZONE = -0.094	
	CSIR S IN SERIES USING THEOREFICAL RES. CSIR S IN SERIES USING MEAN DYE RES. D/UL VALUE JSING THEOREFICAL RESIDENCE D/UL VALUE JSING MEAN DYE RESIDENCE	 4.85 3.64 C.89355-01 C.12275+00

Table D-4 Cont'd

CALCULATED C/CO VERSUS THETA VALUES FOR CSTR IN SERIES MODEL

THEORETICAL DETENTION	ACTUAL DETENTION
THETA C/CO	THETA CZOD
0.150 0.150 0.031 0.200 0.146	0.150 0.079 0.150 0.079 0.200 0.153 0.250 0.245
0.350 0.350 0.400 0.451 0.455 0.5553	0.300 0.347 0.350 0.451 0.400 0.551 0.400 0.643
0.550 0.550 0.650 0.840 0.650 0.901	0.500 0.722 0.550 0.787 0.500 0.835 0.500 0.870
0.700 0.944 0.750 0.969 0.800 0.977 0.850 0.977	0.700 0.890 0.750 0.896 0.800 0.896 0.800 0.896 0.800 0.896 0.850 0.896
0.900 D.949 0.950 D.318 1.000 S.877 1.200 D.659	0.900 0.850 0.951 0.818 1.010 0.781 1.200 0.607
1.400 0.456 1.600 0.286 1.800 0.169 2.100 1.095	1.400 0.433 1.600 J.290 1.300 J.186 2.400 0.115
2.200 0.051 2.400 0.027 2.600 0.013 2.800 0.013	2.200 2.400 0.045 2.505 2.505 2.605 2.
3.000 3.200 3.400 0.002 3.400 0.001	3.036 3.037 3.200 3.0034 3.400 0.032
3.850 0.550 4.000 0.500 4.200 0.500	3.800 4.000 4.200 5.000 5.000

Table D-4 Cont'd D-20 CALCULATED C/CO VERSUS THETA VALUES FOR DISPERSION MODEL THEORETICAL DETENTION ACTUAL DETENTION G.00J 0.0J7 0.127 0.127 0.127 0.9357 1.085 1.085 0.859 0 0.-130 3.200 6.300 0.200 0.200 0.300 0.000 0.001 U.UU1 U. 0.40C 0.50C 0.60C 0.70C 0.300 0.900 1.000 0.839 1.100 1.200 1.300 $\begin{array}{c}
1.100 \\
1.200 \\
1.300
\end{array}$ 3.543 1.430 1.500 1.500 1.790 1.800 1.900 1.400 1.500 1.600 1.700 1.800 1.900 0.400 0.320 0.254 0.254 0.157 0.123 Q.4224547 324547450 3.107450 3.005429 3.005429 0.002215 10 0.002215 10 0.000 0.000 0.000 0.000 0.123 0.035 0.074 0.058 0.0455 0.0455 0.0455 0.0455 0.0216 0.0216 2 2.8JU 2.9JJ 3.JUC 2.800 2.900 3.300 C.036 2.024 C.003 0.012 5.010 5.010

		Table D-5						
Tracer	Response	Analysis,	2.0	Μ,	At	100.6	L/min.	

TRACER RESPONSE ANALYSIS

ROTATING BIOLOGICAL CONTACTOR HYDRAULIC CHARACTERIZATION

TEST METHOD USING A PULSE INPUT OF RODAMINE WT DYE

REACTOR OPERATION AND TEST CONDITIONS

 VOLUME OF REACTOR = 35+5.60LITRES HYDRAULIC LOADING = 100.56LITRES/MIN THEORETICAL DET = 35.26MIN DYE INJECTION = 0.1513LITRES CONC OF DYE ADDED = 0.238E+09PPB DYE / TANK VOLUME = 03.91PP3		
TEST RESULTS AND CALCULATED VALUES		
GYE PEAK TIME = 30.50MIN		
 PEAK/THEOR DET = G.865 PEAK/MEAN DYE RES = G.752MIN MEAN DYE RESIDENCE = 4C.00MIN		
 FR. STAGNANT ZONE = -U.134 CSTR S IN SERIES USING THEORETICAL RES.	= 7.41	
OVIL_VALUE_USING_MEAN_DYE_RES.	= 4.21 = 0.6257E=	11

Table D-5 Cont'd

EXPERIMENTAL RESULTS C/CO VERSUS THETA

THETA	C/CO
$\begin{array}{c} 0.085\\ 0.255\\ 0.255\\ 0.340\\ 0.425\\ 0.511\\ 0.596\\ \hline 0.681\\ 0.766\\ 0.851\\ \hline 0.851\\ \hline 0.936\\ 1.021\\ 1.105\\ 1.191\\ 1.276\\ 1.361\\ 1.446\end{array}$	$\begin{array}{c} 0 \cdot 0 \cdot 1 \\ 5 \cdot 0 \cdot 1 \\ 0 \cdot 0 \cdot 6 \\ 1 \\ 0 \cdot 1 \cdot 5 \\ 0 \cdot 3 \cdot 3 \cdot 4 \\ 0 \cdot 4 \cdot 5 \cdot 4 \\ 0 \cdot 5 \cdot 4 \cdot 6 \\ 0 \cdot 5 \cdot 4 \cdot 6 \\ 0 \cdot 5 \cdot 6 \cdot 2 \\ 0 \cdot 6 \cdot 6 \cdot 4 \\ 0 \cdot 6 \cdot 6 \cdot 4 \\ 0 \cdot 6 \cdot 6 \cdot 4 \\ 0 \cdot 6 \cdot 6 \cdot 8 \\ 0 \cdot 6 \cdot 6 \cdot 4 \\ 0 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 4 \cdot 4 \cdot 6 \\ 0 \cdot 4 \cdot 6 \\ 0 \cdot 4 \cdot 6 \\ 0 \cdot 6 \cdot 4 + 6 \\ 0 \cdot 6 \cdot 4 + 6 \\ 0 \cdot 6 \cdot 4 + 6 \\ 0 \cdot 6 \cdot 5 \cdot 4 + 6 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 4 + 6 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 4 + 6 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 4 + 6 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 4 + 6 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 6 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 5 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 5 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 5 \cdot 5 \cdot 5 \cdot 3 \\ 0 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \\ 0 \cdot 4 \cdot 4 \cdot 6 \\ 0 \cdot 6 \cdot 5 \cdot 5 \\ 0 \cdot 6 \cdot 5 \\ 0 \cdot 5 \cdot 5 \\ 0 \cdot 6 \cdot 5 \\ 0 \cdot 5 \\ 0 \cdot 5 \cdot 5 \\ 0 \cdot 5 \cdot 5 \\ 0 \cdot 5 \\ 0 \cdot 5 \\$
1.532	0.394
1.617	0.360
1.702	0.313
1.787	0.277
1.872	0.245
1.957	0.224
2.042	0.196
2.127	0.173
2.212	0.152
2.297	0.131
2.382	0.113
2.467	0.095
2.553	C.08C
2.836	0.043
3.120	0.025
3.403	0.014
3.687	0.005

	·		
THEORETICAL	DETENTION	ACTUAL DE	TENTION
ТНЕТА	C/C0	THETA	C/CO
$\begin{array}{c} 0 \cdot 0 0 0 \\ 0 \cdot 0 5 0 \\ 0 \cdot 1 0 0 \\ 0 \cdot 1 5 0 \\ 0 \cdot 1 5 0 \\ 0 \cdot 2 0 0 \\ 0 \cdot 2 5 0 \\ 0 \cdot 3 5 0 \\ 0 \cdot 3 5 0 \\ 0 \cdot 4 0 0 \\ 0 \cdot 5 5 0 \\ 0 \cdot 5 0 \\ 0$	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 \\ 0 & 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0.000 0.0029 0.029
$ \begin{array}{r} 1 \cdot 2 \\ 1 \cdot 4 \\ 0 \\ 1 \cdot 6 \\ 0 \\ 1 \cdot 6 \\ 0 \\ 1 \cdot 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	C · 768 0 · 478 0 · 262 0 · 1 31 0 · 061 0 · 027 0 · 011 0 · 002 0 · 002 0 · 002 0 · 000 0 · 0000 0 · 00000 0 · 0000 0 · 0000 0 · 0000 0 · 0000 0 · 0000 0 · 0000 0	1 • 200 1 • 400 1 • 600 1 • 800 2 • 000 2 • 200 2 • 400 2 • 600 3 • 000 3 • 000 3 • 600 3 • 600 3 • 600 3 • 600 4 • 000 4 • 200	0.617 0.433 0.290 0.186 0.185 0.058 0.040 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.001 0.001 0.000 0.000

CALCULATED C/CO VERSUS THETA VALUES FOR CSTR IN SERIES MODEL

Table D-5 Cont'd

CALCULATED C/CO VERSUS THETA VALUES FOR DISPERSION MODEL

THEORETICAL D	ETENTION	ACTUAL	DETENTION
0.100	0.000	0.100	0.003
0.300	0.007	0.332	0.072
0.500	0.393 0.804	C.500 0.600	0.676 3.964
3.760 0.800 0.900	1.147	0.830 C.900	1.112
1.000	1.164	1.030	0.929
<u> </u>	0.586	<u>1.200</u> 1.300	0.648
1.50C 1.60C	<u> </u>	1.500 1.6J0	0.323 0.250
<u> </u>	0.154	<u> </u>	0.133
1.900	0.072	1. 300 2.000	0.112
2.100	0.033	2.100	J. [5 4 J. 0 4 8
2.300		2.510 2.410 2.510	
2.600 2.70C	0.004	2.600	0.015 0.011
2.900		2.800	0.023
5.000		5.440	1.01.5

TABLE D-6 TRACER RESPONSE ANALYSIS COMPLETER PROCRAM
C THE TWO CHIEF REFERENCES USED FOR THIS PROGRAMME ARE
C
C 1. LEVENSPIEL, CHEMICAL REACTION ENGINEERING, CHAPTER 9
C 2. TIMPANY . VARIATION IN AXIAL MIXING IN AN AFRATION
C TANK, MASTERS THESIS, DEPT. OF CHEM ENG., MCHASTER
C UNIVERSITY, 1966.
C THE UPOL VALUE FOR THE UISPERSION MODEL IS SOLVED BY USING THE
C
C THE CSTR IN SERIES MODEL IS SOLVED BY TAKING THE DERIVATIVE OF
C EQUATION 9-35 IN LEVENSPIEL - EQUATING THE RESULT TO ZERO AND
C SULVING FUR THE NUMBER OF EQUAL TANKS IN SERIES, J , IN TERMS
C THEORETICAL RESIDENCE TIME.
C
C THE C/CO VALUES FOR THE DISPERSION MODEL ARE SOLVED BY ITERATION
C USING EQUATION 8 IN CHAPTER 2 OF TIMPANY.
C THE C7CO VALUES FOR THE CSTR TN SERIES MODEL ARE SOLVED USING
C EQUATION 9-35 IN LEVENSPIEL FOR VARIOUS VALUES OF THETA.
C
DIMENSION $C(500)$, $COL(500)$, $AAKS(5)$, $AW(5)$, $OULP(5)$, $HETA(2, 100)$ DIMENSION $CCO(2, 100)$, $U(500)$, $AMU(5, 500)$, $COCO(5, 500)$, $CCT(100)$
DIMENSION TTB(100), TBAR(2), RATIO(500), BETA(500), ETA(500)
DIMENSION BLUE (100)
DIMENSION CE(200)
C VOLTETANK VOLUME IN LITRES VELREFLOW IN LITRES/MIN
C TPEAK=PEAK TIME IN MINUTES DYIN=AMOUNT OF DYE IN LITRES
C DY CON=CONC-OF-DYE IN PPB DT=MINUTES BETWEEN DATA PTS
C N=NUMBER OF DATA PTS
C C(I)=CONC OF DTE IN EFFLOENT PPB
CO 545 IJKJ=1,3
READ 1, VOLT, VFLR, TPEAK, DYIN, DYCON, DT
PRINT 1, VOLT, VFLR, TPEAK, DYIN, DYCON, DT
PRINT 2.N
READ 3, (C(I), I=1,N)
PRINT 3, (C(I), I=1, N)
C PERCENT DIE RECOVERT
AMT= C(1) + DT + VFLR + 10 . + + (-6)
CUL(1) = AMT
DO 100 I=2,N
AM1 = .5 + (C(1) + C(1-1)) + D1 + VFLR + 10. + + (-6)
CUL(I) = CUL(LUL) + AMT
100 CONTINUE
DYE = DYCON+DYIN+10.++(-6)
PER = GUL(N)/DYE + 100.
C CALCULATION OF MEAN RESIDENCE TIME OF THE TOTAL DYE RETRIEVED
C CALCULATION OF PERCENT STAGNANT ZONE

Table D-6 Cont'd TBAR(1) = VOLT/VFLR ANT = 1.I = 1ZONE = CUL(N)/2.201 IF (CUL(I).GT.ZONE) GO TO 200 ANT-= ANT-+-1. I = I + 1GO TO 201 200 TBAR (2) = ANT+DT----DEAD = (TBAR(1) - TBAR(2)) / TBAR(1)С C CALCULATION NUMBER OF TANKS IN SERIES С TP1 = TPEAK/TBAR(1) TP2--- TPEAK/TBAR (2)-TANKS(1) = 1./(TP1*(1./TP1-1.))TANKS(2) = 1./(TP2*(1./TP2-1.))C TRUNCATE TO NEAREST WHOLE NUMBER OF TANKS С С AW(1) = TANKS(1)-AA = 1.5203 IF (AW(1) .LT. AA) GO TO 202 AA = AA + 1. GO TO 203 202 AW(1) = AA - .5AW (2) = TANKS(2) AA = 1.5205 IF (AW(2) . LT. AA) GO TO 204 AA = AA + 1. GO TO 205 204 AW(2) = AA - .5- C CALCULATION OF TIMPANY #S PEAK TIME D/UL VAULES C С IF ((TP1.GT.0.03) . AND. (TP1.LT. 3.3)) GO TO 206 IF((TP1.GT.0.3).AND. (TP1.LT.0.8)) GO TO 207 GO TO 208 206-DULP(1)= .2*(TP1**(-1.34))-GO TO 209 207 DULP(1) = 4.027*(10.**(-2.09*TP1))GO TO 209 208 PRINT 300 IF (TP1.LE.0.03) GO TO 206 ---- GO TO 207 209 CONTINUE IF((TP2.GT.0.03).AND.(TP2.LE.0.3)) GO TO 210 IF ((TP2.GT.C.3). AND. (TP2.LE.0.8)) GO TO 211 GO TO 213 210 DULP(2) = .2*(TP2**(-1.34))GO TO 214 211 DULP(2) = 4.027*(10.**(-2.09*TP2)) GO TO 214 213 PRINT 300 IF (TP2.LE.C.O3) GO TO 210 GO TO 211 214 CONTINUE С С CALCULATION OF C/CO VS THETA VALUES FOR CSTR MODELS

	Table D-6 Cont'd
С	DERIVATIVE AT PEAK DYE CONC METHOD USED
С	
	CO 101 I=1,2
	X = AW(I) + AW(I)
	XX =1.
	-28=1.
216	IF (AW(I).EQ.BB) GO TO 215
	XX = X X + (AH(I) - BB)
	GO TO 216
215	FACT = XX
	THETA(1,1) =0.
	102 J=2,21
	THETA(I,J) = THETA(I,J-1) + .05
102	CCO(I,J) = X/XX*THETA(I,J)**(AW(I)-1.)*EXP(-AW(I)*THETA(I,J))
	$CO \ 1\ G3 \ J = \ 22,37$
	THETA(I,J) = THETA(I,J-1) + .2
103	CCO(I,J) = X/XX*THETA(I,J)**(AW(I)-1,)*EXP(-AW(I)*THETA(I,J))
101	CONTINUE
C	
C	CLACULATION OF ACTUAL C/CO VALUES FROM EXPERIMENTAL DATA
C	
	CNOT = DYIN*DYCON/VOLT
	MM = 0
	DRAG = 0.
	NN = 0
	10 - 104 = 1,30
	NN = NN + 3
	MM = MM + 1
	RATIO(MM) = C(NN)/CNOT
	CRAG = DRAG + 3+DT
	EETA(MM) = URAG/TEAR(1)
104	-ETA(MM) = -URAG7TBAR(2)
	19 = (N - 90)/10 + 29
	mn = mn + 1
	$URAG = URAG + 10 \cdot 10$
	NN = NN + 10
	$R_{T} = 0 (R_{T}) + 0 (R_{T}$
	ETA(MM) = DRAG/DAR(T)
	CONTINUE - DEMOZORIOT
0	
C	CALCULATION OF C/CO VALUES VS THETA FOR D/UL METHOD
C	
U	M = 1
<u> </u>	
	$\Delta M(1(M,T) = 1.6)$
	U(M) = .5/DULP(M)
4	AMU(M,I) = AMU(M,I) 001
	FR = COS(AMU(M, I))/SIN(AMU(M, I))
	FR = FR - AMU(M,I) + DULP(M) + .25/(AMU(M,I) + DULP(M))
	TF (FR) 45.45.50
50	AMU(M-T) = AMU(M-T) + .00001
5	FR = GOS(AMU(M,T))/STN(AMU(M,T))
	FR = FR - AMU(M,T) + DU(P(M)) + -257 (AMU(M-T) + DU(P(M)))
	TE (EP) 55, 50, 50
50	$\Delta M U (M - T) = \Delta M U (M - T)0000001$
2.	ternyar hostiyar testevez

Table	D-6	Cont'	d

		FR = COS(AMU(M,T))/STN(AMU(M,T))
		FQ = FP - AMII(M, T) + DIII D(M) + 2577AMII(M, T) + DIII D(M))
		TE(EP)55.55.60
	6.0	
	60	1 = 1 + 1
		$A_{10}(m_{1}) = A_{10}(m_{1}-1)+3\cdot141/$
		IF(1.LE.507-60-10-45
		M = M + 1
		IF (M.LE.2) GO TO 40
		00 80 M=1,2
	999	ZETA = 0.C
		CO 70 K=1,30
		ZETA = ZETA + .1
		COCO(M,K) = 0.0
		D0 65 I=1,50
		A=2.0*AMU(P.T)*(U(M)*SIN(AMU(M.I)) + AMU(M.I)*COS(AMU(M.I)))
		B = EXP(U(M) - ((U(M))) + 2 + AMU(M, T)) + 2)/(2, 0+U(M))) + 7ETA)
		D=U(M) + 2 + 2 + 0 + U(M) + AMU(M - T) + 2
	-	CE(T) = 4 + R/D
		COCO(M-K) = COCO(M-K) + CE(T)
	65	
	-67-	
	70	CONTINUE
	70	CONTINUE
	80	CONTINUE
C		
С		PRINT INSTRUCTIONS AND DATA PRESENTATION FORMAT
С		
		PRINT-700
	700	FORMAT(1H1,42X,24HTRACER RESPONSE ANALYSIS///)
		PRINT 701
	701	FORMAT(40X,29H FLUIDIZED BED)
		PRINT 702
	702	FORMAT(42X,26HHYDRAULIC CHARACTERIZATION///)
		PRINT 703
	703	FORMAT (30X. #TEST METHOD USING A PULSE INPUT OF RODAMINE WI DYE#./)
		PRINT 704
	704	FORMATI23X-37HRFACTOR OPERATION AND TEST CONDITIONS///)
		PPINT 705. VOLT
	705	EXAMPLE AND THE OF PEACTOR - $F7.2$ SHITTES)
	105	PORMAT(SIX)20HV0LOME OF REACTOR - 9F74290HLTTREST
	700	FRINT TOO, VELK
	100	FURMATISIX, 20HHTURAULIG LUADING = $F(\cdot,2,1)$ HETIRES/MIN)
		PRINT /U/, IBAR(1)
	107	FURMATISTX, 2UHTHEURETIGAL UET = 977.2.5 MMINT
	1 -	PRINT 708, DYIN
	708	FORMAT(31X,20HDYE INJECTION = ,F7.4,6HLITRES)
		PRINT 709, DYCON
* 1	709	FORMAT($31x$,20HCONC OF DYE ADDED = ,E10.3,3HPPB)
		PRINT 710, CNOT
	710	FORMAT(31X,20HDYE / TANK VOLUME = ,F7.2,3HPPB,///)
		PRINT 711
	711	FORMAT(23X,34HTEST RESULTS AND CALCULATED VALUES,///)
		PRINT 712, IPEAK
	712	FORMAT(31X,2CHDYE PEAK TIME = $F7.2.3HMIN$)
		PRINT 713. TP1
	71-7-	-FORMAT131X-20HPFAK/THFOR-DFT
		POINT 714. TP2
	741	ENDMAT(317,20HDEAK/MEAN DVE DES = E7 7 3HMTN)
	114	DOTNT 745 TRAD(2)
	74 5	FRANKT (19410AR LE) FRANKT/74V ANEAN DVE DESTRENCE -4 E7 2 ANTHAN
	115	$PUKMAT(SIX) \neq MEAN UTE RESIDENCE = f + f (+ 2 + FMINF)$
		PKINI (10, PER

	Table D-6 Cont'd D-29
716	FORMAT(31X,20HPEP DYE RECOVERY = ,F7.3,1H+) PRINT 717,DEAD
717	FORMAT (31X, 20HFR. STAGNANT ZONE = , F7.3, /)
	PRINT 718, TANKS(1)
718	FORMAT(31X,42HCSTR S IN SERIES USING THEORETICAL RES. = ,F7.2)
	PRINT-719, TANKS(2)
719	FORMAT(31X,42HCSTR S IN SERIES USING MEAN DYE RES. = ,F7.2) PRINT 729.CULP(1)
-720-	FORMAT (31X .42HD/UI VALUE USTNG THEORETICAL RESIDENCE = .E11.4)
	PRINT 721. DULP(2)
721	FORMAT (31X,42HD/UL VALUE USING MEAN DYE RESIDENCE = .E11.4)
	PRINT 722
722	FORMAT(31X.38HEXPERIMENTAL RESULTS C/CO VERSUS THETA.////)
	PRINT 723
-723-	FORMAT (14X.5HTHETA.15X.4HC/CO.///)
	PRINT 724. ($BFTA(T)$, $RATTO(T)$, $T=1$, MM)
724	FORMAT(15X-F5-3-15X-F5-3)
1 - 1	PRINT 725
725	FORMAT(31X-35HCALCHLATED C/CO VERSUS THETA VALUES)
, ,	PRINT 726
	-FNPMAT/37X-24HFNP-CSTP-TN-SFPT-S-MANF1-/////
120	POTNT 727
727	FRINT /2/
121	PORMATTIZA # THEORETICAL DETENSION ACTUAL DETENSION# # ACTUAL DETENSION# # #
728	FRINT 720
120	$\begin{array}{c} \text{PORMATCIDA, 5} \text{ FILE TA, 6A, 4} \text{ HO/60, 15A, 5} \text{ FILE TA, 6A, 4} \text{ HO/60, 7777} \\ \text{PORMATCIDA, 5} \text{ HIETA(1, 1), CO(1, 1), THETA(2, 1), CO(2, 1), 1-1, 37) \\ \end{array}$
129	FURIAL (15A)F 50 51 6A)F 50 51 5A 9F 50 5 96 A 9F 50 54
	PRINT 725
	PRINT 750
130	FURMATIZES, ZUHFUR DISPERSION MUDEL , ////
	PRINT 727
Π	$ELUE(1) = \cdot 1$
	-00-731 K=2,30
	$PLUE(K) = BLUE(K-1) + \cdot 1$
731	CONTINUE
	PRINT 729, (BLUE(K), COCO(1,K), BLUE(K), COCO(2,K), K=1,30)
1	FORMAT(4F10.4,E10.2,F10.4)
2	FORMAT(I10)
	FORMAT(2X, 5F10.3)
300	FORMAT(10X,44HPEAK TIME OUTSIDE LIMIT FOR D/UL CALCULATION)
545	CONTINUE
	STOP
	END

APPENDIX E ABBREVIATIONS AND SYMBOLS

Abbreviations and symbols appearing in this report are defined within the text, with the exception of those used in Appendix A, "Data Listing". These are defined below:

Amb. AIR -	ambient air
ALK -	alkalinity
DO –	dissolved oxygen
DW -	flow of dilution water in $\ensuremath{\text{L/m}}$
EFC 0807	effluent composite sample from
	0800 hours to 0700 hours
EFG 1200 -	effluent grab sample taken at
	1200 hours
INT. AIR -	internal air i.e. air within
	the hood enclosing the RBC
RF –	flow of raw feed in L/m
RFC 0807 -	raw feed composite sample
	taken between 0800 hours and
	0700 hours
RFG 1200 -	raw feed grab sample taken at
	1200 hours
STG -	RBC stage
SS –	suspended solids
VSS -	volatile suspended solids
30 min settle -	30 minute settling test in

1 litre graduated cylinder