ELASTOMERIC SLEEVE BEARING DESIGN



ELASTOMERIC SLEEVE BEARING DESIGN

By
LAWRENCE FAFARMAN, B.S.M.E.

A Thesie
Submitted to the School of Graduate Studles
in Partial Fulfillment of the Requirements
fof the Degree

Master of Engineering

McMaster University
March 1972



MASTER OF ENGINEERING (1972) . McMASTER UNIVERSITY

(Mechenical Design) Hamilton, Ontario
TITLE: Elastomeric Sleeve Bearing Design
AUTHOR: Lawrence Milton Fafarman, B.S.M.E.

(University of California at Santa Barbara)
SUPERVIBOR: Pfofessor W. R. Newcombe
NUMBER OF PAGES: vi, 83
SCOPE AND CONTENTS:

It 1s shown that the experimentally determined
deflectional behavior of certain elastomer-lined sleeve
bearings under statie radial loads can be modeled to some
extent by the compressive~behavior of flat elastomeric
slabs. I

.An equation for the thermal bearing-bore change is
developed using the conventional theory for the thermo-
elasticlty of homogeneous cylinders. Some experimental
results agree falrly well with this equation, An equation
for the.bpre‘contraotion.due to liquld swell 1s developed
in terms of thermoelasticity. |

Minimizing the lining thicknéss is‘recommended,for
minimizing both the radial deflections and the bore changes.

An analysis is made of the frictional forces involved
with the interference fit between the lining and 1ts housing.

Areas for further investigation'are suggested.
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PREFACE

The main purpose of this thesis 1s to develop sone
basic design information for elastomeric sleeve bearings,
}which consist of elastomeric(i.e., rubberlike) linings in
rigid housings. Although a particular elastomer trademarked
"Thordon™ is considered, the analysis here 1s intended to be
applicablé to other elastomers as well. In_addition, the
approaches used in the sections on clearances and interferences
are also applicable to plastic-lined sleeve bearings. @General
knowledge of the elasticlity of elastomers gives insight into
the deflectional behavior of these sleeve bearings when under
'radial loads, 830 it 1s a. secondary aim of this thesis to
vprovide an elementary background in the elasticity of
elastomers.,

vIt is the author's opinion that the scarcity, or non-
| existence, of speéific engineerihg knowledge on elastomeric
sleeve bearings greatly increases the chances of their being
misapplied or poorly designed, and dlscourages thelr selection
as é superior cholice for many abraéive operating environments,
| It is hoped, therefore, that this thesis will fi1ll a definite
engineering.needs | |

" The thesis is divided into the following three main
aubjects:
(1) Load deflections of elastomeric sleeve bearings;
(2) Clearances; ‘

(3) 1Interference fit with housing.
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1, LOAD DEFLECTIONS OF ELASTOMERIC SLEEVE BEARINGS

l.1 INTRODUGTION

An elastomeric sleeve bearing(Fig. 1.1) will
deflect significantly under heavy radial loads, even if
a stiff elastomer is used., For example, & Thordon bearing
of originally recommended wall thickness(about one-tenth the
shaft diameter) and under a radial projected-area pressure |
of 2,500 psi generally deflects in the neighborhood of 4%
of wall thickness., Though deflection is, of course, necessary
in the bush-type rubber mountings used as springs and
vibration isolators, it 1s usually undesirable in rotational
bearings, where deflections can produce harmful static and
vibrational stresses in shafts or in the elastomerlic lining
itself and affect the alignment of attached gears and other
precision: parts, though exceptions are the cases where the
bearing 1s deliberately employed to accommodate misalignment.
or to absorb shocks. It 1s obvious, therefore, that a
designer might require knowledge of theAload—deflection
| behavior of elastomeric sleeve bearings and also, if poasibie,
of means of controlling the deflection to some extent, Uﬁ-
foitunately, however, current engineering literature is
deficient in such knowledge, and 1t is one of the maln
purposes of this thesis to help correct this.

It’should be pointed out now that tha predictions of
radial beéring deflection to be.given here should only be -

1



' FIG. 1.1

ELASTOMERIC SLEEVE
BEARING

F1G. 1.2

APPROXI MATE SOLUTION FOR RADIAL STIFF-
NESS OF BONDED RUBBER BUSHINGS

FROM FIG. 4-17, PAGE 83 OF REF, |
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, ekpected to be rough guides because of. the followihg reasonss:

(1) The effeect of the surface contact conditions, at
both the bearing surfaces and at the interface between the |
lining and the housing, upon the lining's deflection. This
effect 1s difficult to control in laboratory tests as well
as in practical applicatlonse.

(2) The high 6reép of Thordon makes the loading history
an 1mportan£ factor, and the loading hlstory 1is difficult to
accurately control in tests and might be impossible to control
in the fleld. | | |

(3) From a practical standpoint, extreme accuracy in
" predicting deflection due to load would not be justified,
anyway, in those situatlions where this deflection would be
negligible compared to the other factors affecting alignment,
nemely wear and the large bearing clearances which are

required to offset thermal and liquid—swéll expansions and
‘to pfovide smooth running. These other factors alone would
generally be sufficient to prohibit use where extremely
accurate shaft alignments are required.



1.2 ANALOGIES FOR ELASTOMERIC DEFLECTIONS

One possible way of providing deflection data 1s to -
run deflection tests on every conceivable combination of
bearing specifications, varylng the length, diameter, wall
thickness, perhaps the bearing clearance, and also the sﬁrface 
contact conditions where the elastomer contacts the shaft and
the surrounding housing- the amouni of interfacial slippage
allowed by the surface conditions can have a large effect on
the radial stiffness of the bearing. However, a more'effic;enx,
and illuminating, method would be to attempt to analogize the
compresslve behavior of the sleeve bearing lining to that of
some simple shape for which there is already extensive
theoretical and experimental knowledge on compression or for
which such'knowledga can be readily determined. This idea
of analogy 1s not new; it was summed up by MePherson and
Klemin; as follows:

For shapes in which the load bearing faces are not
equal and parallel as required for the direct application
of the shape factor the stiffness may be calculated by
caleulating the stiffnegs of one or more shapes approx-
imating as closely as possible the desired shape, For
example, a tapered pilece or a truncated cone may be con-
sldered as having a load face equivalent to the average
of the actual load faces. A dome-shaped bumper may be
considered as a truncated cone., Such approximaetions as
these may be very rough, but they serve to establish &
size for experimental checking.

McePherson and Klemin2 then proceed to give the follow-
1ng example' '

A special case that is frequently encountered relates
to the radial deflection of a bushing adhered between
cylindrical surfaces having a common axis at no load.

The hollow cylinder of rubber may be considered as
represented by four equal blocks of rubber as shown



in Fig.(1.2), one being in compression, one in tension,

and two in shear. The combined stiffness may be calculated
by combining spring rates, or constants, as they are

more correctly termed, but a good approximation is 1.5
times the gtiffness of a block in compression having a
thickness Rp-R1 , a width 2R1 , and a length equal to

that of the bushing.

Unfortunately, the above.analogy,.though it appears
to be closely rélated to the problem at hand, was‘not
consldaered immediately applicable because of different aurface
’eonditions; the bush-type mountings considered above are
effectively bonded at both interfaces whereas the bearing
can at most be bonded at only one, introducing the surface
condition effect mentioned previously. Another difference
18 that in the case of the bearing, there would be little
contribution from shear and none from tension because of the
lack of a bond. However, the samée baslic concept 1s employed
for the analogy to'be developed here. )

Another, :similar analogy for a bonded bush=-type
mounting is given by Harris and Credes This analogy differs
from the first mainly in neglecting the shear and tension
contributions, whieh, according to the first, increase the
stiffness by one-half, | ‘

In fact, in the absence of ac¢tual results for sleeve
bearings, the Thordon sales brochure used a rough analogy
simllar to those given above, but without regard to shape
factors or surface conditions; the estimate of a deflection

of 4% of wall thickness at 2,500 psi projected-area pressure,

based on available data for a bonded flat disc, was, as it



‘turned out, with some coincidence, fairly good.

The last helpful example of an analogy 1s the
experimental proof that & rubber ring under axial or radia;
loads(see Fig. 1.3) behaves similarly to an equivalent
conpressed stralght cylinder, bonded at the ends, that
would be formed by cutting the ring and unrolling it.4

| The purpose of the next section is to develop the
background in rubber elasticity necessary for understanding

the sleeve bearing analogy to be used in this thesis,
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1.3 ELASTICITY OF ELASTOMERS
l.3¢1 Introduction

The elasticity of elastomers is a very broad and
involved subject, including such important areas as large
- straln theory and dynamic behavior. However, thls thesis
wiil concentrate'on what is here the most relevant-area-
compressive elastlicity. No prior knowledge of elastomeric
elasticity on the ﬁart of the reader is assumed. Although
the more familiar term rubber is usually used below, it

refers to elastomers in general,

l.3.2 General Elastic Properties

No introduction to rubber elastlcity would be completé
without at least passing mention of rubber's special, often
unique, elastic properties, The most obvious, but by no means
trivial, property is the ability to stretch to a\great extent,
often several hundred percent, and to recover more or less
completely on release. Some of the other most useful properties,
such as high abrasion resistance and energy storing ability,
are derived from that property. The following are some of
the 1esser—knownaproperties:?w:“-- |

(1) Energy storing ability- rubber can store 150 times
as much energy as an equal wéight of tempered steel?

(2) Creep- this may be noted whenever rubber is subjected
to stress 1f sufficiently precise observations are made, in

eontrast to metals, where creep seems to occur only under



relatively high stress or at elevated temperatures.

(3) Non-linearity of elasticity- Hooke's law of the
proportionality between stress and strain does not hold for
rubber in general; it does, however,-hold approximately for
relatively low eldng&tions, €e%e, Oof the order of a few
- percent, ’

(4) sSet- related to creep- set in rubber may or may not
recover more or less completely with time, whereas set in
metals 1s irreversible, -

(5) Incompressibility- it may come as & surprise'to
many people, but'despitegsolid;rubber“g great general
flexibility, when constrained against bulging it i1s practically
rigid in compression; that is, rubber has a high ratio of
bulk modulus to Young's modulus, giving rubber a Poisson's
ratio of very nearly one-half, | |

(6) The Gough~-Joule effect§ the name given to the
_possible increase in rubber's stiffness with an increase in
temperature,‘in contrast to the opposité effect with metals;
however, when temperature is low or deformation rate high,
so that equilibrium is not attained, the Gbugh-Joule effect
.18 no longer the governing factor determining temperature
dependence- at very low temperatures, rubbers in general
freeze ﬁo a glassy solld; when temperature is high, increased
creep rates tend to lower the apparent stiffness of the

rubber,
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l.3.,3 Stress-Strain Relations

Considerable confusion might be caused by the fact
that the stress-strain relationship for rubber is expressed
in two different ways, one way being the familiar linear
Hooke's law, sultable for the relatively small deformations
which are of greater interest here, the other accommodating
the non-linear behavior of large strains, However, since the
latter formulation 1is quite common.in,the rubber literature
and since 1t glves the more general plcture of rubber
elasticity, it, too, will be discussed here, and its agreement
" with Hooke's law at small deformations will subsequently be
shown, |
| ‘Hooke's law may be assumed to hold for compressive
strains in rubber up to about 10-20%, 1.e.z

(1.1) o = Ee

-where

o = stress., Because of small deformation, no
distinction is necessary here between initial
and final cross-sections when calculating stress;
compare with the definition in the nonlinear
formulation.

E = Young's modulus. Because 6f the non-linearity of
rubber's stress~strain curve at large deformations,
the term modulus as applied to rubber often has
a2 different meaning. For example, if a tensile
stress of 1,800 psi produces an elongation of
3004, the rubber is sald to have a 300% modulus
of 1,800 psl. However, let E here be the com-
pression modulus for homogeneous compressions,

A homogeneous compression, shown in Fig.(l.54),
1s one where the contact faces are perfectly
lubricated and thus completely free to slip, so
that.a flat slab in compression will not bulge
at the sldes; it is called homogeneous because
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all body elements are in the same state of
stress and strain, Furthermore, let E be taken
as the slope of the stress-strain curve at the
origin. :

e = elastic straln,

.The nonlinear form8 is given below:

(1.2) o= 6(\=-X"2)
-where

o = stress calculated on the basis of the original
undeformed cross-section(the engineer must be
careful to note that the rubber technologist's
stress-strain curve always has the stress
calculated in this way)e.

G = shear modulus(also called the modulus of
rigidity)

A= relative length- the ratio of strained to un-
strained length, the length being the dimension
in the direction of deformation(note that this
is not the same as the engineering elastic strain
e, which 1s the ratio of the difference of the

-strained and unstrained lengths to the unstrained
length; that is, A= l4e ).

A graph of Eg.(l.2) is shown in Fig.(l.4). It
should be noted that the drawing of the compression part
of this curve as & smooth continuation,‘through the origin,
of the tension part assumes that the compression is
homogeneous (Fige 1.54)%

Experiments confirm that Eqe.(l.2) and Fig.(l.4) are
reasonable representations of the behavior of rubber except
at fairly hiéh elongations, where the deviation is indicated
by the dotted line in Fig.(l.4). However, this deviation is
not of concern here,

G and E are related by the followling equation?
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= E
2(1+v)

-where V, Polsson's ratio, is about % for rubber.
Therefore, the value V=% will be used, making
(1.3) a= %E
Substituting Eq.(1%3) and the relation Azlse into
Eq.(1l.2) gives

(1e4) o= -;: E(lte-(1l+e)™2)

Expanding (1-1-e)'2 in a binomial series(assuming
e<l, which is certainly true for small strains),

(1.5) o= % E(l+e~(1-2e+3e2mbe 2))

For small strains, terms of e®, n>l, may be neglected.
Eqe(ls5) then reduces to
o= Ee

=-which is simﬁly Hooke's law, Eqe(lel)e

1l.3.4 Compressive Elasticity

le34441l Shape Functions and Shape Factors

It should first be reemphaslized that the compressive

~ behavior of rubber depends to & great degree on the amount

of élippage between the rubber and the compression faces and

on any other constraint limiting free sidewise expansion or

bulgins of‘the rubber, Some different slituations are shown

in Fige.(1l.5), in order of increasing stiffness, (A) to (D).
Fig.(1.6) shows quantitatively the eéffect of different contact-
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face conditions on the stress/deflection curve for a
typical rubber specimen under cbmpression. Condition A
(Sonded) in Fig.(1.6) corresponds to Fig.(l.5C). Note
that because of the excellent gripping ability of typlcal
rubbefs,,even the friction against dry; clean, polished
steel can behave here almost as a bond.
It is apparent from Fig.(1.6) that any unpredictability

(for example, that caused by uncertainty about the amount of
'lubridation present) as to the amount of slippage at the
contact suffgce would make it impossible to acéurately.predict
the deflection curve. ?ortunately, however, Fig.(l.é) indicates
that for deflections of the ordér éf magnitude generally
concerning these bearings(under 5%), the effect of slippage
is relatiﬁely much less severe than for large deflections;
this was éonfirmed in tests on Thordon. At any rate, the
surface conditidn.that has received most of the experimental
énd theoretical work for compression is the bonded one because

| thié'type_gives the most reproducible results and because many
.“1mportant applications,~such as rubber shock mountings and

vibration isolators, use bonds.

- As discussed in the last section, Hooke's law may be
assumed to hold for homogeneous compressions up to about
10-20% strain:

(1.6) o = Ee

The difference in compressional stiffness between a
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slab in homogeneous compression(Fige. 1.54) and the same
gleb with bonded'faces(Fig. 1.5C) may be accounted for
by the so-called shape function § in the following -

equation:

(1.7) o = ESee
or :

(L.72) 0 = Ege

In a comparison between Egs.{1.6), (1.7), and
(Le72), S may be considered to modify the original Young's
modulus E to form an “"apparent" compression modulus Eg,
which represents the compressive stiffness of bonded slabs,
Some formulas fof 8 are given in Table(l.l):m It is apparent”
that the shape function depends on the slab's relative
thicknéss, on the modulus or hardness of the rubber, and on
the cross-sectional configuration, in decreasing order of
importance(The effect of bulk compressibiiity for very thin
or stiff'slabs, to be discussed in Sec. l.3.4.2, 18 not,
hovever, accounted for by these shape functlions. There the
compressife stiffness of the slab 1s actually lower than
Eqe 1.7 and Table 1.1 indicate). The effect of relative
thickness, being the most important, is déscribed by
’aﬁdther expression, the so-called shape factor 8, defined

aa follows:
: (1.8) g = Loaded Area
Free Ares

; The Free Area is the unloaded érea at the sides which
is free to bulge as in Fig.(l.sc); the Loaded Area 1s that
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In all formulae 4 = height, i.e. in direction of compression

. Expressions For Siz@é Function”
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Variation of B, C, and D with shear
Cross-section " Shape function modulus G, 1b/in?
Square .
side = q 1 -+ B(a/h)y -
100- 150-  200-
o G<I00 ;55 200 300 ~ 3%
Circular
diameter = d 1 + B(d/h)* B0-120 0-103 0-080 0063 0-056
Rectangular ! C026 0225 0175 014 012
long side = { 1-:334-0-66w!{+C(w/h)?
short side = w 1+ wjl D 0065 0-056 0-044 0-035 0-030
Annulus ' ‘
outer diameter = d,
inner diameter = d, i
Case 1: d, much :
greater than d, 1 + B{d, — d))?*/m?
" Case 2: d, almost as
large as d, 133 4 D(d, — d\)*/h?
Hollow Square
outer side = a.
inner side = a,
Case 1: a, much
greater than a, 1 + B, — ap)?*/h®
Case 2: a, almost as
large as a, 1-33 + D(a. - a,)*/h? .
(Note: these symbols differ from
‘ those used in this thesis)
TABLE 1.1 10
Taken from Davey & Payne
400
Z 360 3
o e
-4 320 z,;
& 280 W
= &
; 240 i‘>_"
‘:};, 200 §
& 160 =
z g
8 120 S
-
zg 80 g
= .40 =
El el L g
0 04 08 12. 16 20 24.26
SHAPE FACTOR - 11
From Harris & Crede
FIG. 1.7 Loads for 10 per cent deflection

for rubber specimens having various
hardness values and shape factors.
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of the cross-section perpendlcular to the direction of
conpression. The relationshlp between the shape factor
end the compressive stiffness of rubber slabs 1s shown in
Fig.(1.7)%l Shape factér graphs‘such as Fig{l.7) are often
determined experimentally; on the other hand, Gent and
Lindley12 derive some shape functions theoretically,

The distinction between the shape function and the
shape factor should be kept clear, The shape function is -
intended to be a coefficient representing the ratio between
the compressive stiffness of a slab with both faces bonded
and that of the same slab in homogeneous compression, whereasf
the shape factor is a function only of the geometry of the
 sla5. If desired, the shape factor might be incorporated
into the shape function by making the appropriate dimeénsional
substitutions in rable(l.l)(alternatively, the shape functions
can be regarded as mathematical expressions of shape factor
’graphs). However, the shape factor is often used in graphs
such as Fig.(1.7), which are useful‘where the elastomer
‘does not obey a simple shape function. Also, the shape
functions as given in Table(l.l) automatically take into
account the cross-sectional configuration's effect, which is
}often neglected in presentations of thé shape factor; this
- effect is discussed next, as the similarity rulef .

Hooke's law(Eq. l.1) says, of course, that in
homogeneous compression any two flat slabs of equal Youns'a

modulus will have the same percentage deflection(i.e.,
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strain) under equal compressive loads per unit area(i.e.,
stress), regardless of their shapes. According to the
similarity rule, the same is true of two bonded slabs which
are geometrically similar, that is, of the same shape but
different size. When the simllarity rule fails to hold in
aotﬁal tests, the éause will be found in some difference in
the rubbers or in the.experimental;conditions%3 The similariﬁy
rule may also be applied to two bonded slabs of different
shape but equal shape factor, with the limitation that naerrow
thin strips are somewhat softér than thelr shape factors
would indicate~ strips with a length-width ratio of 10:1

were determined to be about 22% scf’cerl4 than discs of
corresponding shape factor. This exception to the similarity
rule will be relevant to theiagalogy to be developed here for

elastomeric sleeve bearings.

134442 Bulk Compressibility

Noting how the shape functions in Table(l.l) increase
without .limit as the . slab becomes relatively thimner(i.c., as
the shape factor becomes higher), it would thus seem that, in
theory, a slab could be givén an infinitley high apparent
cémpression modulus bx making it infinitesimally thin. In
actuality, however, bulk compressibility exerts a law of
‘diminishing returns here, limiting the apparent stiffness as

explained below. |
| 4 Gent and Lindleyl5 heve pointed out and demohstrated
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by actual measurements that where the bulk compression
becomes significant the total compressive strain e, must.
béwcalculated a&s the sum cf the elastie strain.e (as given
by.Eqe 1o7) and the volume strain ep: o

(1.9) ey = e+ e

The bulk modulus K is defined as follows:

(1a20) g =(H3)0Tyrdz)
extoy+er
-where the numerator of Eq.(l.10) is Op » the mean
normal stress, and, assuming small strains, the sum of strains
Agiven in the denominatorlis the volume compression, AV/Ve
If the "pot bearing" of Fig.(l.5D) were filled with
fluid and the x-axis were taken as the direction of compression,
then,using the property that a fluld trénsmits pressure equally
in all directions, |
Ox S 8y = 0z = Op = =P |
" N | -where p is the hydrostétic;pressure
It would also be true that
| e, = ey ~ and ey =8, = 0
Eq.(lilO) could then be written
= 22

AV/V =
K

Now, the rubber-filled pot~bearing may not be a case

(1.11) ey

of true hydrostatic compression; however, if the assumption.

is made that Op is here'broportionalitesthe;externaliapplied
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stress ¢, then

R - 4
(1.12) e, = —
Ke

-where K, is an “effective" bulk modulus.

Consider next the case of -2 bonded slab, Fig.{l.5C).
As.the slab becomeé thinner, bulging is reduced relative to
the slab's volume and the slab thus approaches the pot bearing
condition. For this reason, it is gésumed that Eq.(1l.12) is
also a good approximation for thin bonded slabs. |

Defining-a‘new "spparent® éompression modulus,”Eg,
in terms of the total stréin ety that is,
(1.13) o = Ej ey |
Ed.(1.9) then becomes, using,Eqs.(l;Ta),,(1%12), & (1.13),

(11%4) 1. 1,1

Eg_ Eq Kg
Defining a new quantity n as the ratio between E
‘end K, (1f K, were K, this ratio would be 1/(3(1-2v)),
aceording to therrelations betweén the'elastic'modulilé)

(1515) Kg = neE

L

Using Eqs.(1.7) and (1.15), Eq.(l.14) can be written

- | PTR !._ 1,~1

-where 8 is the shape function, not the shape factor.
Leaving Eq.(1.16) in terms of the shape fﬁnction.is the most
general form, as the equation would vary for different rubber

properties and different cross-sectional configurations if
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written in terms of shape factors.

- Defining an "apparent" shape function, S

a3 assoclated

with the new apparent compression modulus modulus E&y, In a
manner analogous to the definition of the shape function S,
(1.17) EY = SuE

-vhere S,, unllke 5, takes into account bulk
compressibility. ‘ | _

A comparison of Eqs.(1.16) and (l.17).gives

.].'. +* 3‘. Sa' 5 a
8 n

As the slab becomes thimner, 1/8—>0 . From Eqs.(1.18),
(1.17)y & (1.15), 1t 1s seen that as 1/s—>0 , S,->n and
E%je»Ke. Thus, after a certain point, further thinning of
the slab should result in essentially no increase in the
apparent compression modulus Eé (however, it should be noted
that this refers to relative or percentage stiffness, not to
absolute deflections. The latter should continue to decrease

as the slab is made thimner).
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a4 AN ANALOGY FOR SLEEVE - BEARING DEFLECTIONS
The purpose of this analogy is to determine the
bearing's approximate equivalents to the shape factor and
compressive stress of flat slabs so that the deflectional
behaviors of bearihgs and slabs can be compared, Three
examples of analogies for rubber deflections were giveh in
Sec.(l.2). OFf these, the analogy to be presented here bears

the most resemblance to the one of Harris &,Crede%7the major

changes belng the consideration of unbonded surface conditions
and correlation to a slab of’practically infinite length
rather than to one of the dimensions indicated in Fig.(l.2).
It seems reasonable to assume that the compressed area
of the lihing is effectively constrained, by the unloaded side
of the lining, against "bulging" in the circumferential
dlrection; thls compressed area thus seems approximately
equivalent to a flat rectangular area(see Fig.;l.B) free to
bulge at the sides but constrained at the ends as in the last
analogyl8 given in Sec.(le.2). Unfortunately, however, the
compressive behavior of that particular slab was not found
in the literature, so special tests, similar to those per-
formed in the case of reference 19, would have been desirable.
However, the analogy to the sleeve bearing was finally regarded
as a segment of a practically infinitely long strip(Fig. 1.8),
- where the remoteness of end effects, causing vertical trans-
verse planes to remain verticai, is more or less equivalent

to the end constraints; this slab has the advantage of belng
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discussed in the 11teréture.' The next question was whether
to attempt to use a shape function for the strip or to use
the shape faétor concept. The shape factor was selected for
‘the reasons stated below.

Shape functions for 1nfin1tely long rectangular slabs
are given by Gent &‘Lindleyao or can be derived from the shape
function for rectangular slabs, Table(l.l), by taking the
1imit as the length goes to infinity. However, the shape
fﬁnction approach was rejected for the following reasons:

(1) These shape functions are intended for slabs bonded
on both faces, a situation for which the sleeve bearing has
no counxerpart because the bearing surface must be free to
slip. | | |

(2) .At‘any rate, the experimental compressive behavior
-~ of Thordon discs of shape factors equivalent to those of
typilcal bearing linings deviated considerably from Eq.(l.16),
' and an attempt to develop and verify new theory would have
.beén an undertaking beyond the scope of this thesis.

It is true that the shape factor and the similarity
'rule(séc. le3e4.1) were also originally diécussed here with
_ regard to double-bonded slabs, However, that restriction is
overcome here by assuming that a similarity rule also applies
to other combinations of surface conditions; that is, two
articles of different shape but equlivalent in shape factor
would be expected to have approximately the’same apparent

compression modulus so long as they had the same surface
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conditions, The shape factor is thus to be used here mainly
as a basls for comparison between different shapes rather
than as an indicator of the effect of relative thickness on
the stiffness of bonded slabs,

If L and w. denote the wldth and height, respectively,
of the strip at the bottom of Fig.(l.8), with L corresponding
to the 1eﬁgth of the bearing and w to the lining thlckness,
and also if 1 represents an arbitrary length along the strip,
then the equivalent shape factor of the bearing becomes

g = Loaded Area _ L1 L
Free Area 21w 2w

.(1‘19)‘

In the actual deflection tests, discs were substituted
for the long strip. However, according to the similarity
- rule at the end of Sec.(le3e4.1), the dlses should be almost
equivalent to the long strip as regards the effect of shape
factor; hence, Eq.(l.19) will be used to directly correlate
Bleeve bearings with dliscs. _

The symbol o, shall be used to denote the "projected-
' area" pressure or stress, defined as the quotient of the
division of the total radial force by the projected area
(the top area of the slab in the middle of Fig.l.8); it is
a rough estimate of the typiecal bearing pressure. Incl- ...
dentally, the projected-area pressure multiplled by the
surface velocity forms the "P-V" limit, which is a measure
of a bearing's ability to dissipate and withstand the frictional

o : Sde
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heat generated. In this thesis, however, Op 18 to be used
along with the shape factor to correlate sleeve bearings

with discs; op for the sleeve bearings is to be considered
'roughly equivalent to the calculated compressive stresses |
for the die;s, permitting a direct comparison of the deflection
curves for the bearings with those for the dises. Sec.(l.5),
which follows, describes how these deflection curves were

deternined.



1.5 MEASUREMENTS oF DEFLECT;ONS

i.5.1»2;§g§

A few representative flat discs were tested in
compression for the following reasons:

(1) ﬁiscs involve fewer experimental and theoretical
variables than do elastomeric sleeve bearings,
' (2) Many of their experimental varlables are easier to

control than are those of the sleeve bearings,

(3) They provlide a more direet comparison with present
knowledge on compressive behavior than do the sleeve bearings.
(4) They are easier to prepare for testing than are

the sleeve bearings, requiring no housing, no slow, pains-
taking lathe turning or boring, and no speclal tegt Jig.
(5) fThey provide insight into the deflectional

behavior of the sleeve bearings in accordance with the
analogy of Sec.(l.4)e. |

4 - Thordon Regular(Thordon is made in three grades-
Regular, XL, and Super XL, the latter two containing a specisal
anti-friction additive) discs of three different shape factors
were compression tested by placing them between the loading
faces 6f a compression-testing machine(Tinius-Olsen by make);
the two higher shape factors are roughly in the same range
Aas the equivalent shape factors of typical bearings. The
discs were cut from stock-dlameter rods and the thinnest size

was mechined flat by an end mill in a vertical milling machine,
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e uniform thickness being assured by keeping each area pressed
flat against the table while being cut; the thicker dlscs were
held in a lathe chuck, with a section of rod behind for sup-
port, while being cut to final size. The test results, for
different surface conditions, are graphed in Figs.(1.9), (1.10),
& (1.11); o, the average compreésive streas, is based on the
initial cross-sections, as is customary. The testing machlne
had a bullt-in load-measuring device; the deflections were
'measured with a dial gauge placed under the compression cross-
head of the machine and as close as possible‘to the disec

to minimize the error introduced by the defigctiona of'the
testing machine itself- nonetheless, the test results were
corrected for the méchine deflections, which were determined
by applying the loads without a testplece being,present(Alu
ternativéiy; small hole gauges might be used to directly
measure the gap corresponding to the slab’s thickness).

For each test, © was raised steadily in the following
sequence, with the deflection being measured at each level:

- 500, 1000, 1500, 2000, 3000, 4000, 5000, & 6000 psi. A
pause of about 10 seconds was made at each level, Jjust long
enough for a reading to be taken; the timing.has.an 1mp§rtant
bearing on the results because of the rapid stress-relaxation
(assoclated with creep) that was observed. Each ourve was
drawn by visually smoothing data points that were averages

of two test runs. A few.general, qualitative observations
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about the results will be made below.

First, note that, in keeping with Eq.(1.6), the
curves for the homogeneous compreséions(both faces lubricated)
in Figs.(1.9), (1.10), & (1.11) are almost ldentical despite
the great differen¢ea in shape factor. The homogeneous
compression curves for the two thicker discs show a soften-
ing at'the largest measured deflectlions, whereas the
compressive side of Fig.(l.#)'indicates a stiffening with
increasing deflection; this discrepanecy 1s possibly due to
the high creep property of Thgrdqn. Each disc experimentally
showed a fairly high apparent shape function S, (the true
ratlio between the compressive stiffness bf a slab bonded on
both faces and that 6f the same slab in homogeneous compression),
in géﬁefal agreement with Fig.(l;G).} S, for the‘disc of
Fig.(1.10) is coneilderably higher than that for the disc of
 Fig.(1.9), as would be predicted by Eq.(1.7) and Table(l.1)
Af the reasonable assumption were made that the latter disc
15 too thick for bulk compressibility to be predominant.

-An ﬁnexpectéd’result is thatvthe thinnest disc has
" the lowest measured Sg. In fact, comparing the cases of
bonding on both faces, the thinnest disc actually deflected
a greatef absolute distance than did the next thicker disc,
though the latter disc was 504 thicker and had a much higher
shape factof. Gent & Lindley(see seetion on bulk compréssi-
Cbility, le3.4.2) did predict and observe an eventual leveling
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off of S with increasing shape factor, but not this.decreaae
in S, One difference is that the elastomer tested by Gent

& Lindley was, with a Young's modulus of about 270 psi, many
times softer than Thordqn% The compressive behavior of very
8t1ff elastomers like Thordon may be an area deserving further
study, which would probably involve the testing of a large
number of shape factors.

The cases of one bonded face with one lubricated face-
important here because they correspond to lubricated sleeve
bearings with bonded linings- were found to be intermediate
in stiffness between the double-lubricated and the double=-
bonded cases, as might be expected., The presence of 30-micron
abrasive powder at the interfaces: of the: thickest dlasc was
almost the equivalent of bonding so fdr as compressive stlff-
ness was concerned. | |

Taking the slopes of the~h6mogeneous compression
curves at about 3% deflection for the two thicker slabs and
at about 107 deflection for the thinnest slab(because these
are the points where the curves straighten out after the initial
reverse bends near the origins; slopes were. not taken exactly
et the origins because these initial bends were not predicted
by Fig. l.4) gives an average Young's modulus E of around
50,000 psi for the given rate of loading; G, which éhould be
ebout 1/3 of E, should therefore be about 17,000 psi. This
value of G is far off the range shown in Table(l.l), bringing
the shape functions there into some question.



1l.5.2 Sleeve Bearings-

Fige.(1.12) shows the apparatus that was set up for
ﬁeasuring.the static radial deflections of elastomerie
sleeve bearings. The top and bottom of the housing were
flattened off to provide good surfaces for applying force
and for the contact point of a dial gauge. Another dial gauge
wag placed under the shaft at a point near the bearing to
measure the amount of deflection réaulting,rrom bending of
the 'shaft and from indentations at the V-blocks; the difference
between the two dial readings was taken as the true deflectlion
of the bearing. A tilting compression head wag used.to.
compensate ‘for unevenness 'ln:the shaftls supports.

Four different Thordon Regular sleeve bearings were
tested, with different surface conditions at the bearing sur-
face and in the interference fit between the lining and the
housing., Two of the bearings had lining thicknesses of about
1/10th the bore diameter(approximately the thickness suggested
in the current brochure of Thomson-Gordon Ltd.) and differed
only in their 1engths.' The other two bearings had lining
thicknesses of less than 1/20th the bore diameter and also
differed only in their lengths, The bearing'cléarance(the.
difference between the bore and the shaft diameter), which.
affects the concentration of bearing pressure; was relatively
the same fof all the bearings.

The test results are shown in Figs.(1l.13), (l.l4),

(1.,15), & (1.16). Ops the "projected-area" stress, is, by
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the analogy of Sec.(l.4), here considered to be roughly
equivalent to o in the graphs for the discs. The "equivalent"
shape factors are based on Eq.(1l.1l9). When testing, stress
was increased in the following jumps, with a pause of about
10 seconds at each level for taking measﬁrements:v 250, 500,
750, 1000, 1500, 2000, 2500, 3750, & 5000 psl. This sequence
differs slightly from that used in the testing of the dises,
but that difference is not significant here. As in the case
of the discs, the curves were smoothed by eye through data
points thaﬁ were averages of two tests, Because of Thordon's
ereep, deflections for slower rates of loading would be
somewhat greaters | | |

_ .The purpose of testing the case of a lubricated fit
'with_a Jubricated shaft ﬁas to provide a comparison wiih the
homogeneous compression of the slabs; it is recommended that
in actual practice the interference fit not be lubricated
because lubrication there would greatly increase the danger
of the lining shifting in the housing(see Sec. 3.1). Note
that, like the curves for the homogeneous compressions of the
- disecs, all the curves for the lubricated fit-lubricated shaft
condition are similar despite the great differences in bearing
gebmetries.' Also, according to the graphs, the bearings appear
~ to be somewhat stiffer in this double-lubricated condition
than the discs; this 1s possibly due to the fact that the .
bearing linings have their surface slippage restricted in the

circunferential directlion whereas the discs'! surfaces are free
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to.8lip in all directiong‘

30-micron abrasive~powder; spread over cleaned
surfaces before press-fitting of the lining, was used to
increase the friction between the lining and the housings.
Tests with the dises showed the abrasive to be less effective
then a bond, but bonding was not tried in the bearings for
fear that it would prevent the suceessful separationhand ’
reuse of the 11ning;and‘the housinge As in the case of the
discs, this reduction or elimination of slippage on one face
had the effect of increasing the stiffness. Among the
bearings, this increase in stiffness was poorest for the
bearing with the highest equivalent shape factor(Fig. 1.16),
in agreement with the discs, among which the increase was
least for the one with the highest shapé factor(Fige l.11)%
The,probable reason for thls correlation is that the shape
factors of the dlscs are comparable in value to the equivalent

shape factors of the bearings;
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1.6 CONCLUSIONS

Using Figs.(1l.9), (1.10), (1.11), (1.13), (l.14),
(1.15), & (1.16), the following general conclusions are
reached here concerning the radial stiffnesses of the
bearings: | |

(1) In terms of the projected-area stresses and of
deflections taken as a percentage of the lining thlckness,
sleeve bearings of widely differing geometries were found
t0o have similar stress-~deflection curves. ‘

(2) Those stress-deflection curves were found to be
only somewhat stiffer than those for homogeneous compressions
of flat slabs, including the condition of‘lubrication both
on the bearing surface and in the interference fit(though it
should agein be emphasized that the fit should not be lubri-
cated in practice)s This implies that a rough idea of the
radial'stiffnesses of sleeve bearings of different geometrieas
éould be obtained from the homogeneous compression of a single
flat'slab. _

(3) The absolute stiffness of the bearing can}generally ~
be improved in the following two ways: (a) by increasing
friction, or by bonding, at the interference fit; (b) by
reduction of lining thickness, However, (a) provides no
aigniricant improvement for Thordon at low bearing pressures
-and bonding in particular may be expected to increase thermal
and liquid-swell bore contraections,
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(4) The main benefits from the analogy between sleeve
bearings and slabs were that it led to or explained the
conclusions above.

(5) The tests on Thordon bearings confirmed the
original design estimate of a deflection of about 4% of
the wall thickness at a projected-area stress of 2500 psi,
provided that this stress 1s gradually reached in about 1
minute and then released. Becausé of creep, the deflections
'for continuous loading periods of hours or days would be

substantially greater.



2. CLEARANCES
2.1 INTRODUCTION

In the first part of this thesis, it was shown that
for Thordon the radial_deflections due to load are generally
under 4% of wall thickness when the pProjected-area pressure
is within the recommended operating range of 2,500 psi, On
the other hand, the recommended clearance between the bore
and the shaft is generally at least 4-5% of wall thickness
and even greater where thermal and liquid-swell bore con-
tractlons must be allowed for. It is apparent, then, tﬁat
from the standpoint of accurate shaft alignment, the problem
of clearance can be at 1éast ag serious as that of elastic
deflections- much more'serious, in fact, in low pressure,
high velocity applications, where deflections are low but
heat buildup great,

The term total clearance here means the difference
between the diameters of the shaft and the bearing bore at
the time of installation. This total clearance might be con-
sidered td coneist of the following three parts:

(1) Running clearance- the actual clearance required'
when running to insure smooth operation;

(2) Thermal clearance- allows for thermal expansion
of the lining thickness;

(3) swelling clearance=-allows for the swelling caused

44
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by liquids,. _
Ideally, the last two clearances should be such that the
pboper running clearance is reached under steady state
operation~ These three clearances are all contained in. .
the following design equation recomménded_by a manuface
tureral: . '

(2;1) ¢ = 0,004d4 + 6w(c<al + g)

The above equation can be broken down as follows:

0.,004d = running clearance
6Wwoc AT = thermal clearance
6wg = swelling clearance
where-

total clearance

bore diameter

lining thickness

coefficient of thermal expansion

relative dimensional changes result-
ing from effect of liguld absorption

difference between temperature on
installation and operating temperature
(location of latter temperature not
specified; presumably it refers to either
"the bearing surface temperature or the
average lining temperature)

R QUAMO
TN RIRTE

AT

| No theoretical development was given for Eq.(2.1).
The main purpose of this second chapter is to theoretically
predict the required thermal and swellling clearances to
construct a total clearance equation similar to Ed.(Z.l).
The running clearance recommendation, however, will be based
on those of manufacturers, which are determined from practiéalr
eXperiehce. Some experimental-méasurements of the thermal

clearance will also be provideds



2.2 RUNNING CLEARANCE

The running clearance should not be so small that
. selzure results, nor.be so great ;hat poor alignment,
| vibration, and highlload concentrations become problems.
However, as selzure is the most likely of these factors
to cause rapid failure of the bearing, it 1s better, so far
as bearing life is concerned, to err on the high side rather
than on the low. For this reaéon, thermal c¢learances and
swelling clearances should be sufficlently generous to insure
that the actual running clearance will remain above the
minimum recommended value, | |

Three different running clearance recommendations,
as a function of bore diameter, are shown in Fig.(2.l).
One of these(BASF) is based on Eq.(2.1). A safe allowance
covering all of them is 0,005d,
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2.3 THERMAL CLEARANCE

2.3.1 Bagic Assumptions - |

There are two ways in which thermal expansions can
alter the bearing clearance: (1) by & change in the lining
thickness; (2) by & difference between the thermal expansion
of the housing and that of the shaft. Despite the fact that
metals in general have much lower coefficiehts of thermal
' expanéion than do elastomers(e.ge., 0.7X10'51n./1n$-°F for

steel, 1.,1X10™° for brass, and 1.4X10™° for aluminum, vs.
about 7X10‘5 in./in.-°F for Thordon, 4x107 =5 for ebonite,
and 10X10™2 to 201072 for soft rubbers)s> the individual
expanslions of the shaft and of the housing ean‘be significant
compared to the change in lining thickness; howevér, the
difference between the housing's and the shaft's expansions
should be insignificant, provided that the shaft and the '
housing have comparable coefficients of thermal expansion
‘and do not differ much 1n operating temperature(an example
"_1sjincluded at the end of Sec. 2.3.4). For this reason, the
_metailic expansions are disregarded here.

Disregarding thelmetallic expansions, the decrease=-
or increase, in the case of cerﬁain low teﬁpefature appli-
cations- of the bearing clearance becomes twice the thermal
change in wall thickness of the elastomerie lininé% This
change in wall thickness is estimated here to be the same
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as that of an unhoused lining, thﬁi is, a lining with no
restriction oh radial expansion. The basis of this assumption;
confirmed by actual measurements, 1s thai‘the total wall
thickness does not changé-signifiCantiy when the 1ining'is'
pressed into the hoﬁsing; hence, it should make little
differende vhether the thermal wall thickness changes are
measured with the lining housed or noﬁ, In other wofds,-the
princiﬁle_of the superposition oflmechanicai(and ﬁhermal
strains is assumed to hold. Thé following add1tiona1
assumpﬁions and'techhiques are used here: o
(1) The temperature distribution in the lining is
assﬁmed to be.indépendent of the axiél coordinate z; this
| aséumption'seems justified by the high length to wall-
thickness ratio, which should minimize end effects.
(é)‘The temperature distribution is assumed to be

_ symméﬁrical abdut the axis; this agsumption may not be
coﬁpletely valild where the temperature bﬁildup concentrates
6ﬁ the loaded side of the bearing, but greatly simplifies
thé probiem‘aﬁd_may‘be expected to glve é éonservative
answéf; o o | -

N (3) There 1s & condition of steady heat flow.

| (4) It was found to be easier in this problem to treat
the total thermal deformation of the unhoused lining as a
superpoaitionuof the following two imaglnary stages: (a) a

uniform temperature rise- that deformation which would occur
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by the uniform temperature change of the entire lining(Fig. 2.2)
from T,, the installation temperature, to Ty, the operating

temperature of the lining's outer radius(this includes those
low temperature applications where Ty, is less than T );

(b) the addition of the nonuniform temperature field- that
further deformation which would resulﬁ from then raisiﬁg the
inner radius to its operationg témperature, Ta} while holding
the outer radius at Tp. This superposition is valld because
the radial displacement u is linear with T in Eq.(2.2) and |
can also be shown to be so in Eq.(2.29). " |
(5) The thermal conductivity and the coefficient of
thefmal expansion are assumed to be temperature-independent.
'_(6) The solution selected will be that for blane strain
with ez=0(i.e., plane strain with zéro axlal strain). e,=0
wags chosen because it 1s desired here to allow for the worst
situation and it is intultively apparent that the thermal
bore contraction would be more severe where the 1ining is
axially constrained by bonding or friction in the housing
fit than where the lining 1s free to expand axially as in a
well-lubricated fit. Unfortunately, however, the available
solutions are for the case of F,=0 (plane strain with zero
end force), that is, where & uniform axlal stress, such as
to'make‘the cylinder's end faces free of axial forces, is
superposed on the axial stress for e,=0. Therefore, the

solution for e;=0 will be derived from that for F,=0 by a
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formula developed here to effect the conversion.‘
(7) For piane strain with e,20, 1t 1s only necessarj
to assume that all cross-sections are in the same condition
of thermoelésticity; it is not necessary to assume, as in
the case of plane strain with F,=0, that the cylinder 1is very
long and that the uncorrected solution is valid only far
away from the ends(this is because the solution for Fz:d‘does
not satisfy the boundary conditions at the ends; there must
therefore'be:selﬁ—equilibrating end effects which, by
Saint Venant's principle, become negligible at a sufficient
distaﬁce from the endsj. | |
~ (8) A thin-wall approximation i1s assumed for the case
‘of the nonuniform temperature field. |
(9) Fof generality, the shaft's and housing's expansions,
previously assumed to be equal, are here assumed to both be
zero, This new agsumption makes no difference so far as the
clearance 1s concerned, The amount of bore contraction then
corresponds to the thermal clearance and becomes equal to

twice the change in lining thickness,

2.3.2 Solution for Zero End Force

2.3.2.,1 Radial Displacements for Unhoused Lining

(a) General
For plane strain with F,=0, the radial displacements
in a long cylinder at a distance far from the ends 1823 in

the absence of external stresses:
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| r : 2 2 | b
(2.2) up(r) = —X—( (1ev) [ 1r ars{I=3vir7ta"(1+v) [or ar )
_ : a b2-32 a

3‘(19\/)

-where u and T are relative to what is consldered

the equilibrium econdition; that is,

ue(r) S radial displacement of & point at radius r
(as this equation is for small strains, it
does not matter whether this r is considered
initial or final), relative to .that point's
position in what 1s conslidered the unheated
(1.€., T=0 everywhere; see definition of T
belows condition of the c¢ylinder. The sub-
script f refers to the condition Fy=0.

T = T(r) = temperature distribution, here a function
: of the radius r, in an arbitrary tempera-
turé scalée in which T=0 everywhere
corresponds to u=0 everywhere.
X & coefficient of thermal expansion
a-z inner radius of cylinder
b & outer radius of eylinder

'V = Polsson's ratio

For the inner radius a and the outer radius b, Eq.(2.2)
reduces to: |

.(203) | uf(a')

i

. b
208 )/
Tr dr
ba-a2 a

, b
(2.8) up(v) = 222 [1r ar
' b =-a" &
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(b) Uniform Temperature Change

The radial displacemehts for a uniform temperature
change of the entire iining(here regarded as unhoused) from
To» the installation temperature, to T,, the operating
temperature of the lining's outer radius, are, from Egs.

(2.3) and (2.4),

b .
(2.5)  upy(a) T S22/ (myeto)r ar Soa(Ty-T,)
b -a“ &

Similarly,
(246) ue, (b) = b (Ty=T,)

-where the subseript u refers to the uniform
- temperature change.,

(¢) Nonuniform Temperature Field

Though this case can be ‘solved by éubstituting the
temperatﬁre distribution into Egqs.(2.3) and (2.4), another
approach that is simpler because the stresses are known
will be used here. The development up to Eq.(2.10) does
not involve the assumption of zero end force. |

| lknué éo ﬁhe agsumption of an axiall& symmetric
temperature distribution, there are no tangential dls-
placeménts; the tangential strain ep thefefore reduces
W
(2.7) eg T -
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Hooke's Law, modified to include thermal strains,
51ves:25

(2.8) €p = %(oé-v(0f+o¢)) +oT

Coﬁbining Eqs.(2.7) and (2.8) glves:
(2.9) u = r( %(Oé-v(6f+6z)) +oT )

EqQ.{2.9) 18 an alternate expression to Eqe(22) but
18 not restricted to the case F,=0.
Now, the obvious boundary conditions for the inner
radius & and the outer radius b are:
(2.10) op(a) = ob(b) =0
Also, provided that the following conditions are
met,
V (1) There is steady heat transfer with temperatures of
Ty on the inner radius and T, on the outer radius.
'(2) A uniform ﬁemperature of T, 1s taken as the un-
strained Eondition. | |
(3) F, = 0
(4) A thin wall approximation is made,
~then the other stresses at a and b reduce to:Z25

. «E(Ta-Tb)
2(1~v)

o .(b) = ﬁELEE:EE)
2t 2(1-v)

(2.11) Ogp(a) = 0,¢(8)

(2.12)  Gge(b)
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-where the subscript f again réfers to the condition
F,=0. | | |

Substituting Eqs.(2.10), (2.11), and (2.12) into
Eq.{2.9), with, in Eq.(2.9), T=Ty~T,, for r=a and T=0 for
r=b (the respectlvé temperatﬁre rises at these two radili,
referred to Ty) glves: |
ugp(a) = eca(Tg-Ty)
Upp(b) = £Xb(Ty~Tp)

-where the subscript n refers to the nonuniform

(2,13)

temperature field.

(d) Combined Displacement

Combining Egs.(2.5), (2.6), and (2.13) gives the |
following total displacements:
(2:14)  up(a) = up(a) +up,(a) sxa(F(Ta+Tp)=To)
(2.15)  ue(b) = up,(b) +up,(db) =xb(F(Ty+Tp)=T,)

2¢3.2.2 Changes in Lining Thickness and Bore Diameter
- If (Aw) denotes the change in thickneass for the
unhoused lining(or for the housed lining, by'the assunption
of no change-in w during press-fitting), then: \
(2.16)  (aw)p = ug(b) -ug(a)

From Eqs.(2.14) and (2.15), Eqe.{2.16) bé&omes:‘
(2.17)  (Aw)gp = (b-8) ok (3(Ta#Tp)=To)

-or, since (b-a)=w, Eq.(2.17) can be written,
(2.18)  (aw)y = wo< (3(Ta+Ty)=To)

By the assumption of zero housing expansion, the bore
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change, denoted below by ad, is the negative of twice the
change in lining thickness; that 1is,

(8d)p = =2(bw)e
Eqe.(2.18) then gives:

(2.19)  (ad)p = -2wec (3(Ta+Tp)-To)

-where, in summary,
Ad = change in bore diameter between 1nstallation
and steady state operation
W = lining thickness
o« = coefficient of thermal expansion
Tg operating temperature of inner radius of
lining
Tp = operating temperature of outer radius of
lining
To = installatlion temperature(or any other uniform
temperature at which ad is considered to -
be zero)

Hueun o

-and where it shouid be -noted that
(#(Ta+Tp)=To) = "average" operating temperature in lining
‘ (for a thin wall, the temperature distri-
bution is nearly linear and this can
therefore be taken as the true average)
| minus the installation temperature
Eqg.(2.19) predicts & bore contraction when the
average operating temperature is greater than Td’ and a
.bore expansion when it is less. ‘ ' *
Eq.(2.19) 1s for F,=0, whereas the desired solution, -
to be developed next, is for e,=0 ,» However, Eq.(2.19) is

to be used later for comparison,
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2+3+3 Solution for Zero Axial Strain

2e3e3+.1 Radlal Displacements for Unhoused Lining

(a) : Conversion of solutions- obtaining solution for

ez=0 from that for Fz=0.
Eq.(2.9) is still valid here; that 1is,

(2.20) ug = r( %(dee“’(are*"ze)) +xT)

-where the subscript e denotes the condition e,=0 %
For the same temperature distribution, o, and dg
are u'nchangedz? from the case of F,%0; that is,
(2421) Ope = Opp and  dgg = Ogr

From (2.21), (2.20) may be written,
(2.22) g = T( Z(0gpmv(0ppr0y)) +oT )

' -where the right side of Eq.(2.22) 1s the same as
the ,solution foi' F,=0 except for the term Ora’ hence, the
differencé between the two cases is entirely due to their
diﬁ‘erence in the term o,
| Now, the following two relations hold®8 for o,
(2423)  Opg = V(OpgtTge) ~*ET '
and
(2.24) G,p = Opp+Cor

From EQs.{2.21) a.nd (2.24), Eqe(2.23) can be written,
(2.25) S,e = V(O f-l-def) -=ET "= v(0,,) - <ET
Substituting Eq.(2.25) into Eq.(2.22) gives the
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following:

(2426)  ug = T( Z(0pg(Gppt¥(0y)-oET )) +ecT)

ngriting Eq.(2.26),
(2.27) Uy = r(tE(cfef-v(drfwzf-(1~v)62f-°°ET )) +aT )

Removing the terms (1-v)o ,p 8nd o<ET from inside ‘the

inner parenthesis gives:

(2428)  ug = T £(0gemv(0,#0,e)) +eeT )
+ ((1-V)gygrocem)

0f the two large terms on the right hand side of
Eq.(2.28), the first is, by Eq.(2.9), merely the solution

for F,=0 ; therefore,

(2.29) u, = up+r 3((1=¥)Gpgh o ET)

Hence, according to Eq.(2.29), u, can be found
‘simply by adding the glven expression to up, assumling, of

course, that the same temperature distributlion exists,

(b) Uniform Temperature Change

Before applying Eq.(2.29), it will first be shown
that o, 18 zero for a uniform temperature change.

From Timoshenko and Goodier29

: 2
B 1r-a
Qo .. -
(2‘3 ) Ope (1—v) =l 2.8 ,/Tr dar ,/Tr dr)
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 and

o< E 1 (I“‘+a

A 2 //Tr dr + //Tr dr - Tr
-a< a

For a uniform temperature change(T constant, regard-
less of r), Eqs.(2.30) & (2.31) reduce to:
(2.32) O.p = Jgp =0
"Eqs.(2.24)fand (2.32) then give:
(2.33) Oy = 0 .
New applying Eq.(2 29) with Eqs. (2.5), (2.6) and
(2+33) gives: | :
(2434)  ugy(a) = oca(Tb-To)m%(xE(Tb'-To)) s (l+v)eca(Ty-1,)
and: ' '
(2.35)  ugy(b) = (1+v)xb(Tp=Ty)
awhere the subscript u again denotes the unlform
temperature change. The radial displacements here differ
| by a factor of (1+4y) from the corresponding ones for F,=0 ,

(c) Nonuniform Temperature Field
Applying Eq.(2.29) with Egs.(2.11) and (2.13) gives:

«<E(Ta=Tb _ '
on(e) = #act (Ta-y) sak( (1-0) -*}(f;;’) F X E(Tg=Tp) )

or, aimplifying,
(2:36)  ugp(e) = 3(14v)eca(Ty-1p)
"-where the subscript n again denotes the nonunifonm '

temperature fleld.
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Similarly, from Eq.{(2.29) (with T=0, the femperature
change at redius b during the introduction of the nonuni form
temperature field) and Egs.(2.12) & (2.13),

: , E(Ta
tgn(B) = Fou(Tg-Ty) +bE( (1-v) (EER))
or |
(2437)  ugn(b) = #(1+v) xb(To-Tp)
(d) combined Displacement

Combining Eqs.(2.34) through (2.37) gives the follow—
ing total displacements:

ug(a) = ugy(a) + u,(a)

or

(2438)  ug(a) = (1ev) xa(F(Ta+Ty)=To)
on g (b) = ugy(b) + ug,(b)
(2.39)  ug(b) = (14v) e b(F(Ta#Ty)=To)

'2.3.3.2 Changes in Lininz Thickness and Bore Diameter

; As for the case of F,=0, '
”(2.40) (8a)g = -2(8w)e = ~2(ug(b)-ug(a))
| - From Eqs.(2.38) and (2-39), Eq.(2.40) becomes, with

W-b—&,

(2.41)  (ad), = -z(iw)w«(%(wawb)-wo)

The solution here differs by a factor of (l+v) from
that for F,=0 , Eq.(2.19), as does each of the displacements

derived above., B -
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Létting V=4, for elastomers, Eq.(2.41) becomes
(2.42)  (ad)g = =3woc ($(Ty+Tp)-To)

Eqe(2.42) 18 the solution for the assumed condition
of e,=0 . Eg.(2.42), like Eq.(2.19), predicts a bore
contraction when the average lining temperature is gréater
than T,, the installation temperature, and a bore expansion

when it is less.

2.3.4 Experimental Measurementgincluding temperatures)

The apparatus shown in Fig.(2;3) was used to measure
the'actual_tempefatures and bore contractions in a heated
Thordon sleeve bearing. SAE 50 motor o0il was selected as
the heating medium in preference to water for ihe following

reasons:
(1) The higher temperatures attainable;

(2) Thordon swells in water but is not supposed to
sewell or deteriorate in oil;

(3) . ~to protect.the measuring instruments,
H&weﬁer, the fire hazard from the oil required cautlon..

" The bore diameter was measured with a telescopic

' ﬁore gauge and a micrometer. The temperatures were measured
ﬁith copper-constantan thermocouples 1nserted at the points
'shown. Measurements were taken to the nearest .00l in.. at
01l temperature levels of 150 °F, 200 °F, anda 250 °F, after
‘walting a few minutes at each level for thermal equilibrium
to be reached. Both a standard(recommended) lining thickness
and a half-sténdard thlckness were tested. The results,
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es corrected to compensate -for the thermal expansion of thé
housing, are shown in Fig.(2.4). T, refers to the temperature
of the outer surface of the housing. Both the installation
temperature T, and the ambient'temperature during testing
wore 77 r, | |

A special word shbuld be sald about the proper
technique for the accurate dimensional measurement of |
elastomeric artlicles. The problem is that the tendeney of
the material to deflect under the_ﬁeasuring instrument can
lead to errorsibf several thousandths of an inch. This 1s
parﬁieulafly gserlious where the measurements are made on an

unhoused lining, as then the entire lining can warp out of

ehape(for thls reason, it is best to measure bores when the

lining is in the housing); however, it is a problem with
housed linings as well., An improved method, employed here,
is to use the measuring instrument like a feeiér gauge,
starting with a slightly loose adjustment(undersize for
inside dlameters, oversize for outside diameters), changing
the setﬁing one-thousandth of an inch at a time(using an
outside micrqmeter to preset the telescoplic gauge) and
testing each sétting by dragging or sliding ihe instrument
across the dimension to be measured; the last setting before
& sudden slight increase in drag is felt 1s then taken as
the actual dimension. Unfortunately, this method is highly
sensitive to "feel.," A still better method would be to take

& shaft a few thousandths of an inch undersize(for the
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apparatus of Fige. 2.3, the shaft should be hollow to prevent
overflow of the oll) and measure the clearance with a set
of leaf-type feeler gauges, the broad surfaces of the feeler
gauges reducing the problem of indentation of the material.
Perhaps the best method, which unfortunately would require
special preparation for each’rahge of measurement, would be
to use a set of "go=no-go" fixed diameter cylindfical plug

- gauges. IWhatever method 1s used, the thermal expansion of
the gauge itself should be accounted for. Alternatively,
the testa}might be made with a lining of a stiffer material
of high thermal expansion, though not so stiff as to affect
the expansion of the housing.

" An example below shows hcw the corrections for the
housing“s expansions were made. The housing was a cylindrical
steel sﬁell}of 2.4 in, inside diameter and 4 in. outside
diameter. The expansion of the 1nside~diameter=df“tha.shell;
was taken to be twice the radial change given by Eq.(2.14);
that is, , | o |
(2443) (88) 50715 208 (R(To+ Ty )=To)

-where a, b, and 4 here refer to the dimensions of
the shell. ‘

The installation temperature To was 77 F, for the.
oil-temperature of 250 F, the "average" shell temperature
was about 183 Op, and the cbefficient of thermal expansion
for steel i1s about 057x10"° in./in.-°F; the equation above

gives here
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(2.44)  (8d)gp007 = 2(0.7X107°)(1.2)(183-77) = 40018 in,
. expansion

This.expansion 6f the shell eounteracté the lining's
bore contraction, making the amount of the latter smaller than
it would be for a truly fixed housing. Hence, since for thils
oll temperature the measured bote contraction for the standard
lining was about .006 in., the Eore contraction in a fixed
housing would be,. according to Eq.{(2.4%4), .006 + .002 =
«008 in. All of the measured bore contractions shown iﬁ
Fig.(2.4) were corrected in this way.

In Fig.(2.4), note that the thinner wall produces
considerably lower bore contractions, as predicted by Eq.(2.42)
Also, the measurements agree fairly well with the theoretical
predictions of Eq.(2.42), which were based on an o< of
7X1O'51n./1n.-°F (determined by measuring the expansion of a
heated Thordon rod) and on the measured temperatures; most
of the discrepancies are within a thousandth of an inch.

If a shaft were also of steel and approximately at
the same temperatufe as the lining bore, its expansion would
be, for the standard thickness lining and the bore temperature
of 250 °F,

CO.?XlO-S)(E)(250-77) = 0024 in. expansion

The difference between this and the housing's
expansion, Eq.(2.44), 1s negligible compared to the lining's‘

- expansion for this temperature, thus Justifying for this
situation the neglect of metallic expansions when theoretically
estimating the thermal clearance.
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2,3.5 Heat Transfer Considerations

According to EQe(2.42), the thermal bore change is
dependent not only on the operating.ﬁemperéture of the bearing
surface, Ty, but also on the operating temperature of the
outer radius of the lining, Tpe Unfortunately, these tempera-
iures vary from one application té another and 1t is usually
| difficult to predict them even in a given application. -

Elastomers in general have very low thermal conduc-
tivities, which are comparable, in fact, to those of thermal
insulating materials, The thermal conductlivity of hard
rubber is sbout 0.09 BTU/hr-ft-°F and that of Thordon is
about 0.06, compared to typical values of 10-100 BTU/hr-rt-°F
for metals. Hence, by the electrical analogy of heat transfer,
where temperature drop corresponds to voltage drop and
thermal resistance to electrical resistance, the thermal
drop acréss the lining would be expected to be large compared
to that across the metallic housing, even if the lining were
quite thin; this expectation is certalnly satisfied by the
temperature distributions shown in Fig;(2.4).. However,
because of the thermal resistance between the housing itself
and the aﬁmosphere, the"thermél drop across the lining is
likely to be, a8 in Fig.(2.4), only a fraction of the total
~thermal drop between the bearing surface and the atmosphere.

. Hence, it 1s assumed for simpliéity that the average lining
temperature, #(Tg+T,), is practically the same as the bearing
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surface temperature. This assumption permits Eq.(2.42) to
be written in thé same form as the thermal clearance of
Eq.(2.1); that is, |

(2.45)  (ad)g = =3wecal

=where
AT = difference between the average lining
. temperature(or, if desired, the bearing
surface temperature) and the temperature
at installation. VWhen the former tempera--
ture is lower than the latter, the bore
‘should expand safely away from the shaft
and hence no thermal clearance should
then be requlred _
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2.4 SWELLING CLEARANCE

24441 Analogy to Thermoelasticity \
The stresses and strains resulting from liquid-swell

can be mathematically determined in the same manner as those

resﬁlting from thermal expansion if the swelling expahsion g

is eubstituted for the thermal expansion T for each infini-

tesinal body eleﬁent. Use of this~analosy is made belows

It is assumed here, és in the sectioh on thermel deformation,
that the bore change is twice what tha,wall¥thickness change

of an wnhoused lining would be. It 1s also assumed that the

- swelling 18 uniform throughout the lining. Zero axial strain
is agaln assumed; however, the solution for zero end foroce .

is also developed for comparison.

2442 Solution for Zero EnduForce;;

Substituting g for <T in Egs.(2.3) and (2.4) gives,
for the radial displacements produced in an unhoused lining
by swelling,' '

(246)  upg(e) 25— [erar
and S :

,‘ | . 2 b.
(2.47) ugg(b) = —" a/ gr ar

w=where the subseript s refers to swelling and the
subscript £ again refers to the condition F,=0 %

?or uniform swelling(conétant g), Eqs.(2.46) and
(2.47) give
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(2.48) uggla) = ga
and ,
(2.49) upg(b) = gb

The wall thickness change is, using Eqs.(2.48) and
(2.49), |
(2.50)  (aw)gg = upg(b)-upg(a) = g(b-a) = gw
and the bore contraction is

(2’051) (Ad)fs - -2({6")1.8 - "28‘7

2.#.3 Solution for Zero Axial Strain

In the equations of thermoelastlicity, uniform swelling
'corresponds to a uniform temperature rise. The radial
displacements for the uniform temperature rise (T,-T,) and
the condition e,=0 are given by Eqs.(2.34) and (2.35).
Substituting g for o«(Tp-Ty) in those equations éives

(2.52) ugg(a) = (1+v)ea
os3) Ues(b) = (1+v)eb

~ The wall expansion is, from Eqs.(2 52) and (2.53),
(2.54) (BW)ga= Ugg(b)=ugg(a) = (1+V)g(b-a) = (1+v)gw
-and, with))-l for elastomers, '
(2.55) OAd)es = 'Q(A?)e -2(l+v)gw S =3gw

Here, as in the case of thermal éxpansions, the
solutlon for e,=0 is 1% times as great as that for F,=0,
Eq'(2051)‘ v
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2.5 CONCLUSION- RECOMMENDED TOTAL CLEARANCE

Combining the running clearance of Sec.(2.2), the
thermel c¢learance of Eq.(2.45), and the swelling clearance
of Eq.(2.55) gives
(2.56) ¢ = 0,0054 + 3w(xaT+ g)

The syﬁbols.above are defined under Eq.(2.1).

The thermal clearance and swelling clearance
recommendations of Eg.(2.56) are half those of Eq.(2.1).
However; the thermal clearance in Egq.(2.56) 1s intended to
allow only for the lining's expansion; if the shaft is much
hotter or has a higher coefficient of thérmal expansion than
the housing, the estimated difference between the shaft*s and
the housing'’s thermal expansions should be added to the
clearance given by Eq.(2.56). When in doubt, it is better

to increase the clearance, as explained in Sec.(2.2).
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3. INTERFERENCE FIT WITH HOUSING
3.1 NORMAL TEMPERATURES.

The high friction provided by an interference fit
between the lining and the housing is often.the only means
used for anchoring the lining in place, though, of course,
other means, such as bonding,‘dovetail.groovés, or end
flanges, might be emplojed; The purpose of this section is
‘to try to determine the amount of interference necessary to
prevent axial or rotary slippage of the‘linxng in the housing.
Pure axial slippage might occur in the case of an axially
siiding.shaft; rotary slippage is undesirable because of
wear and because it may eventually work the lining loose.

It 1s assumed that the only forece ténding to dislodge
the lining is the frictional force on the bearing surface
between the lining and the shaft, This force is denoted
here as F,,. The assumed oriterion for no slippage is:

("‘301) . < Fj_ .

-where F; is the total frictional force in the in~
terference £it(in the case of rotary élippage, the difference
in radll where these two frictional forces act may be neglected
for a smell w/d ratio, where w is the lining thickneés and 4

is the bore diameter),

F, can be approximated as fbllows:

(3.2) Fy :)45(db¢nRL)) 

'72
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«where

% = "projected-area" pressure, as estimate of
~ bearing pressure

rtRL = approximate contact area of bearing
R = radius of lining(to avolid future complications,
inner radius a and outer radius b are not
distinguished here, which is permissible due
to the thin-wall assumption)
L = .length of bearing

Myp = coefficient of friction between lining end shafi

Fivarises from the following two causes: (1) the
interference fit; (2) radial loads, from the shaft, trans-
mitted through the lining. The former cause acts around the

: . g

whole circumference, the latter only on the loaded side of

the bearing. Superposing these two causes gives:
(3.3)  Fy = My(0y(2wRL)) + py (opnRL) 3 uywRL(20) 407,)

-where

M3 = coefficlent of friction in interference i,
between lining and housing -

oy = that part of the interfacial normsl pressure,

: in the interference fit, due to the interference

only '

Now o3 will'be related to the amount of interference
for normal temperatures, 1,. The housing bore is here regarded
ag-fixed in size, . Also, 1t 1s.assumed that, due,to a thin
wall, the circumferential strain may be treated as uniform
through the lining. Then the desired relation, taking the

interference as twice the radial displacement, is?o



T4
(3e4) i, 52

-where Young's modulus of 1in1n5

= thickness of lining

.12
B |
o 2%

or, rewriting,
Ew

(3.5) 0 = o i, |

Eq.(3+4) differs from the corresponding equation for
the deformation of & cylindrical pressure vessel by the.
absence of a component due to axlal streéses, which usually
are insignificant in the interference fit here,

Substituting Eq.(3.5) into Eq.(3.3) and simplifying

gives: .
. ,Ew:
(3.6) Fy = ,uinRL(-éﬁ' intop) |
Eqs.(3¢6), (3+2), and (3.1) now combine to give:
(l3:7) 11rRL( 1 + o, ) >y, OpTTEL

_ Rearranging Eq.(3.7) and using the relation that
R = %44 , 4 being the dlameter of the bore, gives:

i .
(3.8) -3“>,<§§)(;‘-}§ - 1)

~where, as beforé, w/d = relative wall thickness.

Eqe(3.8), the desired relationship, indicates the
minimum amount of interference theoretically required to
prevent movement of the lining. This equation is valid for
both the cases of rotating and reciprocating shafts, and it
is assumed that seizure of the shaft to the lining does not
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occur. No interference is required.by Eq.(3.8) when the
coefficient of friction in the fit is higher than that on
tﬁe bearing surface(however, some interference would of
course be necessary in practice to hold the lining in place).
Uheré the converse 1s true for the coefficients of friction,
Eq.(3.8) says that the required interference is directly
proportional to the bearing loads and 1nversely proportional
to the wall thickness. There is no apparent disadvantage

to having an interference higher than the minimum, so long
as the lining can be pressed into the housing without too
much,difficulty. »

The material trademarked Thordon was previously
estimated to have a Young's modulus of about 50,000 psi.
Assuming a typleal w/d ratio of 1/10, and taking the maximum
"recommended load of 2,500 psi, Eq;(3.8) glves:

. N .
(349) a-’-‘->%(£-‘i-- 1)

It is apparent from Eq.(3.9) that the interference
required for high bearing pressures would be excessive if
the frictional coefficient for the bearing surface, Mp,
were even slightly greater than that for the interference
fit, M4 % The situation would be even worse for a thinner
wall or a.softer}elastomer. Therefore, so far as anchoring
| the lining is concermed, it is recommended that either My
and Mp be adjusted such that the rormer is equal to or
higher than the latter(for this reason, a lubricated fit is
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not recommended here), or that the‘lining be held by a bond
or by end flanges. Bonding, unfortunately, should produce
highér thermal and swelling bore contractions than a well=-
lﬁbricated fit; however, dependence on high friction to hold
the 1lining might still allow some axial lining expansion and
consequently produce lower bore contractions than bonding
‘would. One method of increasing M4 is by introducing fine
abrasive powder(like 30-micron grit size) into the fit; the-‘
compressive deflection tests showed this powder to be effective
in inereasing frietion. In the case of end flanges, M1
mishp be reduced to insure free axial expansion; this might
also permit the lining to rotate in the housing, whidh,
however, might not be objectionable here.

If the above recommendation that M3 be made equal to
or greater than My 1s carried out, then the right side of
Eq.CB.B) becomes zero or negative, making Eq.(3.8) useless
for recommending an interference, Therefore, the recommen=-
dation to be given here will be in terms of the frictional
‘holding strength of the interference fit in the absence of
shaft loads, or, what b&siéally amounts to the same thing,
the force required to press-fit the lining, here called
F_, which is: |

P’ :
(3.20)  F, = /‘1(6i(2"RL))

From Eqs.(3.5)._(3.10), and noting that R = %d,

F&E /d)(Fp/ )

(3.11) 1,
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-where Fp/L is the pressing force per unit of
~ bearing length.,
As installation difficuliy increases with increasing

Fp/L, Fp/L should be the minimum value that can be depended
upon to hold the linings - F, does not have to be as high as
the bearing’ surface'’s forces so long as Eg.(3.8) is satis- -
fied by having Mi>Mp o For example, a Thordon bearing of
1% in. bore, 2 in,. lenéth, 4 in. wall thickness, and .008 in.
interference(more than the amount recommended by the Thordon
‘brochnre), was found by & compreasion'testing machine to
require & total pressing force of about 600 lbs., which 1s
considerably lower than the allowable bearing forces for this
- Bize bearing. Incldentally, this result agrees quite well

- with EqQ.(3.11) when the estimated values 40,7 , for Thordon
on polished steel, and E = 50,000 psi, are used. The choice
of Fp/L appears to be somewhat arbitrary, or best determined
by trial and error.

A For a constant bore-to-length ratlc, a constant Fp/L
would correspond to & linear proportionality-of F, to the
bore diameter and would also mean, according to Eqge.(3.1l)
(assuming a constant w/d), a constant i,, regardless of bore
.diameter; an FP/L proportional to the bore diameter would'
correspond to an Fp that varied as the square of the dlameter
and to an 1,, that was proportional to the dlameter. The .
1atter case 1s approximately the one suggested by the

inxerference'chart in the Thordon brochuree.
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Another problem in the application of Eq.(3.11) is
the dilfficulty in accurately specifying py, which 1s highly
dependeﬁt on such things as the elastomer's_hardness, the
finish of the housing bore, lubrication, additives, and the

interfacial pressure.
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3.2 EXTRA INTERFERENCE FOR LOW TEMPERATURES

As already mentioned, the interference fit is often
the only means used to keep the lining in place. When the
bearing is placed in an environment much colder than the
installation temperature, thermal contraction of the outside
diameter of the lining may result in loosening from the
housing. The purpose of this section is to determine the
additional interference necessary in the fit at installation
"to assure that this will not happen. -

It 1s desired that, if the interference fit were
aciually measured at the 1owést environmental temperature,
i1t would still be at least the minimum considered necessary
to hold the lining. Treating the lining as unhoused, the
extra lnterference required to reach this deslired conditlion
at the lowest temperature would be equal to the thermal
contraction of the lining's outside.diameter, This thermal
contraction can be determined by puttiﬁg'the temperature
difference into Eq.(2.6) and multiplying by two to give the
diametral change rather than the radial change, The final
result is: o | '

(3012) 1L = ot (To=Tg)*D
_-whére
1;, = extra interference required(to be added to the

recommended interference for normal temperatures)

To = installation temperature

Te = lowest environmental temperature to be encountered
D = 2b = outside dlameter of lining A

o« = coefficlent of thermal expansion
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4, OVERALL CONCLUSIONS

4,1 DESIGN RECOMMENDATIONS
On the basis of this thesls, the following 6vera11
design recommendations are made:

(1) Minimize the lining thickness to'minimize load
deflections, thermal and swelling.clearance requlrements,
and heat buildup. Very thin 1ihings can be machined by
éupporting the lining in a housing while boring.,

| (2) Make sure that the coefficient of friction in the
interference fit is at least as high as that of the bearing
éurfaces in order'to prevent slippage of the lining at high
loads. Raising the friction in the fit aléo reduces load
deflections, particulafly under high loads. The friction
can be increased by spreading fine abrasive powder over the

surfaces. An alternative 1s bonding.

80
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4,2 SUGGESTIONS FOR FURTHER INVESTIGATIONS

One area under the subject of deflections that might
be suitable for further study 1s the compressive behavior
of very stiff elastomers, particularly at high shape factors.
It is reéommended that'any further deflection testing for the
purpose of checking theory be done with bonded slabs or at
least with specimensvthat are bonded at all contact faces-
sleeve bearings introduce into both thecry and experiment tobA
many unpredietable, hard-to-control, or complicating fﬁctors
such as complex geometry, uneven pressure, and surface slip=-
page.s It should be repeated here that creep is a serious
problem in the elastic testing of Thordon.

Other areas that could use some further testing are
the thermal and swelling bore changes, particularly as regards
the effect of bonding. Large bearings should be used for
accuracy, and the measurement techniques suggested in Sec. .
(2¢3.4) might be used.

Some areas that are outside the scope of this thesis
are: (1) bearing friction and wear; (2) maximum permissible
P-V(pressure times velocity) values; (3) the distribution of
_beariﬁs pressure over the contact area., However, the first
two of these areas in particular would probably not be found
to be suitable for an extensive purely theoretical treatment,
and the number of variables they would involve might make
testing a great undertaking.
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