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SCOPE AND CONTENTS'.: 

It'is shown th.at the experimentally determined 

defleotional behavior of certain elastomer-lined sleeve 

bearings under static radial loads can be modeled to some 

extent by the compressive behavior of flat elastomeric 

slabs. 

An equation for the thermal bearing-bore change is 

developed using the conventional theory for the thermo­

elastioity of homogeneous cylinders. some experimental 

results agree fairly well with this equation. An equation 

for the bore contraction due to liquid swell is developed 

in terms of thermoelasticity. 

Minimizing the lining thickness is recommended for 

minimizing both the radial deflections and the bore changes. 

An analysis is made of the frictional forces involved 

with the interference fit between the lining and its housing. 

Areas for further investigation are suggested. 
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PREFACE 

The main purpose of this thesis.is to develop some 

basic design information for elastomeric sleeve bearings, 

which consist of elastomer1c(1.e., rubberlike) linings in 

rigid housings. Although a particular elastomer trademarked 

0 Tb.ordon"1 is considered, the analysis here is intended to be 

applicable to other elastomers as well. In addition, the 

approaches used in the sections on clearances and interferences 

are also applicable to plastic-lined sleeve bearings. General 

knowledge of the elasticity of elastomers gives insight into 

the deflectional behavior of these sleeve bearings when under 

radial loads, so it 18 a. secondary aim or this thesis to 

provide an elementary background in the elasticity of 

elastomers. 

It is the author's opinion that the scarcity, or non­

existence, of specific engineering knowledge on elastomeric 

sleeve bearings greatly increases the chances or their being 

misapplied or poorly designed, and discourages their selection 

as a superior choice for many abrasive operating environments. 

It is hoped, therefore, that this thesis will fill a definite 

engineering.need. 

· The thesis is divided into the following three main 

subjects: 

(l) Load deflections of elastomeric sleeve bearings; 

(2) Clearances; 

(3) Interference fit with housing. 

111 


http:thesis.is


AGUQIO!LEDGMEN;i 

The author would like to thank the following men 

for their invaluable assistance in this project: his 

supervisor, Prof. w. R• Dweombe, f'or patient counseling 

throughout the course of the project; Dr. M. Levinson, 

also of McMaster university, tor his many helpful hints 

alld clarifications; Mr. G. Thomson, of Thomson-Gordon Ltd. 

of Hamilton, for providing test material and practical advice. 

This work was financially supported by the l'ational 

Research Council of Canada. 

iT 



TABLE .Q[ CONTENTS 

PAGE 

1. 'CHAPTER 1- LOAD DEFLECTIONS OF ELASTOMERIC SLEEVE 
BEARINGS 

l l.l Introduction 

4 l.2 Analogies i'or Elastomeric Deflections 

8 
8 

1.3 Elasticity of Elastomers 
l.3.1 Introduction 

8 
10 

1.3.2 General Elastic Properties
1.3.3 Stress-strain.Relations 

12 
18 

i·.3.4.1 Shape Functions and Shape Factors 
1.3.4.2 Bulk Compressibility 

22 1~4 An Analogy for Sleeve Bearing Deflections 

27 1.5 Measurementsof·Detlections 
27 1.5.l Discs 
34 1.5.2 Sleeve Bearings 

42 1.6 Conclusions 

44 CHAPTER 2- CLEARANCES 

44 2.1 Introduction 

46 2.2 Running Clearance 

48 2·.3 Thermal Clearanoe 
48 
51 

2.3·~1 Ba.sic Assumptions
2.3.2 Solution for zero End Force 

51 
55 

2.3.2.1 Radial Displacements for Unhoused Lining
2.3.2.2 Changes in Lining Thickness and Bore 

Diameter 
57 2.3.3 Solution for Zero Axial Strain 
57 
60 

2.3.3.1 Ra.dial Displacements for Ullhoused Lining
2.3.3.2 Changes in Lining Thickness and Bore 

Diameter 
61 
67 

2.3.4 Experimental Measurement(including temperatures)
2.3.5 Heat Transfer Considerations · 

v 



PAGE 

69 
69 
69 

2.4 SweJ.ling C-J.earance 
2.4.1 Analogy to Thermoelasticity
2.4.2 Solution for zero End Force 

70 2.4.3 Solution for Zero Axial Strain 

71 2.5 Conclusion- Recommended Total Clearance 

72 CHAPTER 3- INTERFERENCE FIT WITH HOUSING 

72 3.1 Normal Temperatures 

79 3.2 Extra Interference for Low Temperatures 

80 CKAPTER 4- OVERALL CONCLUSIONS 

80 4.1 Design Recommendations 

81 4.2 Suggestions for Further Investigations 

82 BIBLIOGRAPHY 

vi 




l. LOAD DEFLECTIONS OF ELASTOMERIC SLEEVE BEARINGS 

1.1 INTRODUCTION 

An elastomeric sleeve bearing(Fig. 1.1) will 

deflect significantly under heavy radial loads, even if 

a stiff elastomer is used. For example, a Thordon bearing 

of originally recommended wall thickness(about one-tenth the 

shaft diameter) and under a radial projected-area pressure 

of 2,500 psi generally deflects in the neighborhood of 4% 

of wall thickness. Though deflection is, of course, necessary 

in the bush-type rubber mountings used as springs and 

vibration isolators, it is usually undesirable in rotational 

bearings, where deflections can produce harmful static and 

vibrational stresses in shafts or in the elastomeric lining 

itself and affect the alignment of attached gears and other 

precision:~ parts, though exceptions are the cases where the 

bearing is deliberately employed to accommodate misalignment, 

or to absorb shocks. It is obvious, therefore, that a 

designer might require knowledge of the load-deflection 

behavior of elastomerio sleeve bearings and also, if poes1ble, 

of means of controlling the deflection to some extent. Un­

fortunately, however, current engineering literature is 

deficient in such knowledge, and it 1s one of the main 

purposes of this thesis to help correct this. 

It should be pointed out now that the predictions ot 

radial bearing deflection to be given here should only be 

l 
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. FIG. 1.1 · 

ELASTOM ERi C SLEEVE 
BEARING 

FIG. 1.2 

. 
APPROX! MATE SOLUTION FOR RADIAL STIFF­

NESS OF BONDED RUBBER BUSHINGS 

FROM EIG. 4-17, PAGE 83 OF REF. 1 
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expected to be rough gu~des because.of.the' following.reasons:: 

(~) The effect of the surface contact conditions, at 

both the bearing surfaces and at the interface between the 

lining and the housing, upon the lining 11s deflection. This 

effect is difficult to control in laboratory tests as well 

as in practical applications. 

(2) The high creep of Thordon makes the loading history 

an important factor, and the loading history is difficult to 

accurately control in tests and might be impossible to control 

in the field. 

(3)· From a practical standpoint, extreme accuracy in 

predicting deflection due to load would not be justified, 

anyway, in those situations where this deflection would be 

negligible compared to the other factors affecting alignment, 

namely wear and the large bearing clearances which are 

required to offset thermal and liquid-swell expansions and 

to provide smooth running. These other factors alone would 

generally be sufficient to prohibit use where extremely 

accurate shaft alignments are required. 



1.2 ANALOGIES FOR-ELASTOMERIC DEFLECTIONS 

One possible way of providing deflection data is to 

run de:f'lection t.ests on every eonce1vable combination of 

bearing specifications, varying the length, diameter, wall 

thickness, perhaps the bearing clearance, and also the suri'ace. 

contact conditions where the elastomer contacts the sbai't and 

the surrounding housing- the amount oi' interi'acial slippage 

allowed by the surface conditions can have a large effect on 

the radial stiffness of the bearing. However~ a more eff1c~ent, 

and illuminating, method would be to attempt to analogi'ze the 

compressive behavior of the sleeve bearing lining to that of 

some simple shape for which there is already extensive 

theoretical and experimental knowledge on compression or for 

which such knowledge can be readily determined. This idea 

of analogy is not new; it was summed up by McPherson and 

Klem1n1 as follows: 

For shapes in which the load bearing faces are not 
equal and parallel as required for the direct application
of the shape factor the stiffness may be calculated by
calculating the stiffness of one or more sh.apes approx­
imating as closely- as possible the desired shape·. For 
example, a tapered piece or a truncated cone may be con­
sidered as having a load face equivalent to the average
of the actual load faces. A dome-shaped bumper may be 
considered as a truncated cone. such approximations as 
these may be very rough, but they serve to establish a 
size for experimental checking. 

McPherson and Klemin2 then proceed to give the follow­

ing example: 

A special case that is frequently encountered relates 
to the radial deflection of a bushing adhered between 
cylindrical surfaces having a common axis at no load. 
The hollow cylinder of rubber may be considered as 
r~presented by four equal blocks of rubber as shown 
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in F1g.(l.2), one being iri compression, one in tension, 
and two in shear. The combined stiffness may be calculated 
by combining spring rates, or constants, as they are 
more correctly termed, but a good approximation is 1.5 
times the stiffness of a block in compression having a 
thickness ~-R1 , a width 2R1 , and a length equal to 
that of the bushing. 

Unfortunately, the above.analogy,~though it appears 

to be closely related to the problem at hand, was not 

oons1~ered immediately applicable because of different surface 

conditions; the bush-type mountings considered above are 

effectively bonded at both interfaces whereas the bearing 

can at most be bonded at only one, introducing the surface 

condition effect mentioned previously. Another difference 

is that in the case of the bearing, there would be little 

contribution from shear and none from tension because of the 

lack of a bond. However, the same basic concept is employed 

tor the analogy to be developed here. 

Another, ... similar analogy for a bonded bush-type 

mounting is given by Harris and Crede~ This analogy dif'fers 

from the first mainly in neglecting the shear and tension 

contributions, which, according to the first, increase the 

stiffness by one-half. 

In fact, in the absence of actual results for sleeve 

bearings, the Thordon sales brochure used a rough analogy 

similar to those given above, but without regard to shape 

factors or surface conditions; the estimate of a deflection 

of 4% of wall thickness at 2,500 psi projected-area pressure, 

based o~ available data for a bonded flat disc, was, as it 
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turned out, with some coincidence, fairly good. 

The last helpful example of an analogy is the 

experimental proof that a rubber ring under axial or radial 

loads(see Fig. 1.3) behaves similarly to an equivalent 

compressed straight cylinder, bonded at the ends, that 
4

would be formed by cutting the ring and unrolling it. 

The purpose of the next section is to develop the 

background in rubber elasticity necessary for understanding 

the sleeve bearing analogy to be used in this thesis. 
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1.3 ELASTICITY OF ELASTOMERS 

1.3.1 Introduction 

The elasticity of elastomers is a very broad and 

involved subject, including such important areas as large 

strain theory and dynamic behavior. However, this thesis 

will concentrate on what is here the most ·relevant·-area­

compressive elasticity. No prior knowledge of elastomeric 

elasticity on the part of the reader is assumed. Although 

the more familiar term rubber is usually used below, it 

refers to elastomers in general. 

1.3.2 General Elastic Properties 

No introduction to rubber elasticity would be complete 

without at least passing mention of rubber''s special, often 

unique, elastic properties. The moat obvious, but by no means 

trivial, property is the ability to stretch to a great extent, 

often several hundred percent, and to recover more or leas 

completely on release. Some of the other most useful properties, 

such as high abrasion resistance and energy storing ability, 

are derived from that property. The following are some of 
' the lesser-known'. properties:· 

(1) Energy storing ability- rubber can store 150 times 

as much energy as an equal weight of tempered steel~ 

(2) Creep- this may be noted whenever rubber is subjected 

to stress if sufficiently precise observations are made, in 

contrast to metals, where creep seems to occur only under 
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relatively high stress or at elevated temperatures. 

(3) Non-linearity of elasticity- Hooke's law of the 


proportionality between stress and strain does not hold for 


rubber in general; it does, however,:··hold approximately for 


relatively low elongations, e.g., of the order of a few 


percent. 


(4) set- related to creep- set in rubber may or may not 


recover more or less completely with time, whereas set in 


metals is irreversible. 


(5) Incompressibility- it may come as a surprise to 

many people, but -despite solicLrubber•:s great general 

flexibility, when constrained against bulging it is practically 

rigid in compression; that is, rubber has a high ratio of 

bulk modulus to Young's modulus, giving rubber a Poisson's 

ratio of very nearly one-half. 
6(6) The Gough-Joule effect- the name given to the 

_possible increase in rubber's stiffness with an increase in 

temperature, in contrast to the opposite effect with metals; 

however, when temperature is low or deformation rate high, 

so that equilibrium is not attained, the Gough-Joule effect 

. is no longer the governing factor determining temperature 

dependence- at very low temperatures, rubbers in general 

freeze to a glassy solid; when temperature is high, increased 

creep rates tend to lower the apparent stiffness of the 

rubber. 
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l.3.•3 Stress-strain Relations 

Considerable 	confusion might be caused by the fact 

that the stress-strain relationship tor rubber is expressed 

in two different ways, one way being the familiar linear 

Hooke's law, 	suitable for the relatively small deformations 

which are of 	greater interest here, the other accommodating 

the non-linear behavior or large strains. However, since the 

latter formulation is quite conm.on in the rubber literature 

and. since it 	gives the more general picture of rubber 

elasticity, it, too, Will be discussed here, and its agreement 

with Hooke's 	law at small deformations Will subsequently be 

shown. 

Hooke's law may be assumed to hold for compressive 

strains in rubber up to about 10-20%, 1.e.1 
(l.l) Cf= 	Ee 

-where 

Cf : stress. Because of small deformation, no 
distinction 1s necessary here between initial 
and final cross-sections when calculating stress; 
compare with the definition in the nonlinear 
formulation. 

E =Young's modulus. Because bf the non-linearity of 
rubber's stress-strain curve at large deformations, 
the term modulus as applied to rubber often has 
a different meaning. For example, if a tensile 

··· 	 stress of 1,800 psi produces an elongation of 
300%, the rubber is said to have a 300% modulus 
of 1,800 psi. However, let E here be the com­
pression modulus for homogeneous compressions.
A homogeneous compression, shown in F1g.(l.5A),
is one where the contact faces are perfectly
lubricated and thus completely free to slip, so 
that~a·:r1at slab ill compression will not bulge 
at the sides; it is called homogeneous because 

i. 

http:F1g.(l.5A
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all body elements are in the same state of 
stress and strain. FU.rthermore, let E be taken 
as the slope of the stress-strain curve at the 
origin. 

e =elastic strain. 

The nonlinear form.8 is given below: 

(1.2) 

-where 

Cf= stress calculated on the basis of the original
undeformed cross-section(the engineer must be 
careful to note that the rubber technologist's
stress-strain curve always bas the stress 
calculated in this way).

G: 	shear modulus(also called the modulus of 
rigidity)

relative length- the ratio of strained to un­
strained length, the length being the dimension 

I 	
in the direction of deformation(note that this 
is not the same as the engineering elastic strain 
e, which is the ratio of the difference of the 
strained and unstrained lengths to the unstrained 
length; that is, ). = l+e ) • 

A graph of Eq.(1.2) is shown in Fig.(1.4). It 

should be noted that the drawing of the compression part 

of this curve as a smooth continuation, through the origin, 

of the tension part assumes that the compression is 

homogeneous,Fig. l.5A). 

Experiments confirm that Eq.(1.2) and F1g.(l.4) are 

reasonable representations of the behavior of rubber except 

at fairly high elongations, where the deviation is indicated 

by the dotted line in Fig.(1.4). However, this deviation is 

not of concern here. 

G and E are related by the following equation~ 
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EG=--­
2(l+v) 

-where v, Poisson.' s ratio, is about t f'or rubber. 

Therefore, the value \1 =t wil1 be used, making 
l 

(1.3) 	 G : 3E 
Substituting Eq. (l1.3) and the relation .A:l+e into 

Eqo (lo2) g1ves 

·(1.4) O' =! E(l+e-(l+e)-2 )
3 

Expanding (l+e)-2 in a binomial series(aasum1ng 

e<l, which is certainly true for small strains), 

(1.5) CJ': ~ E(l+e-(l-2e+3e2-4e3~~--)) 

For small strains, terms of en, n>l, may be neglected. 

Eq.(1.5) then reduces to 

er= Ee 

-which ls simply Hooke's law, Eq.(1.1). 

l.3o4 Compressive Elasticity 

1.3.4.l Shape Functions and Shape Factors 

It should first be reemphasized that the compressive 

behavior of rubber depends to a great degree on the amount 

of slippage between the rubber and the compression faces and 

on any other constraint limiting free sidewise expansion or 

bulging of the rubber. Some different situations are shown 

in Fig.(l.5), in order of increasing stiffness, (A) to (D). 

Fig.(1.6) shows quantitatively the effect ·of ·different contact­
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fac.e conditions on the stress/deflection curve for a 

t'ypical rubber:. specimen under compression. Condition A 

(bonded) in Fig. (1.6) corresponds to Fig. (l·.50). Note 

that because of the excellent gripping ability of typical 

rubbers, even the friction against dry, clean, polished 

steel can behave here almost as a bond. 

It is apparent from Fig.(1.6) that any unpredictability 

(for example, that caused by uncertainty about the amount of 

lubrication present) as to the amount of slippage at the 

contact surface would make it impossible to accurately predict 

the de1'1.ection curve. Fortunately, however, Fig.(1.6) indicates 

that for deflections of the order of magnitude generally 

concerning these bearings(under 5%), the effect of slippage 

is relatively much less severe than for large deflections; 

this was confirmed in tests on Thordon. At any rate. the 

surface condition that has received most of the experimental 

and theoretical work for compression is the bonded one because 

this type gives the most reproducible results and because many 

important applications,· such as rubber shock mountings and 

vibration isolators, use bonds. 

As discussed in the last section, Hooke's law may be 

assumed to hold for homogeneous compressions up to about 

10-20% strain: 

(1.6) 	 Cf= Ee 

The difference 1n compressional stiffness between a 
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slab in homogeneous compress1on(F1g. l.5A) and the same 

slab with bonded faces(Fig. l.50) may be accounted tor 

by the so-called shape function 8 in the following 

equation: 

(1.7) 
or 

(l.7a) CJ' a Eae 

In a comparison between Eqs. (1.6), (1'~7), and 

(l.7a), s may be considered to modify the original Young's 

modulus E to torm an "apparent" compression modulus Ea, 

which represents the compressive stiffness of bonded slabs. 

Some formulas for Sare given in Table{l.1). It is apparent 

that the shape function depends on the slab's relative 

thickness, on the modulus or hardness of the rubber, and on 

the cross-sectional configuration, in decreasing order of 

1mportance(The effect of bulk compressibility for very thin 

or stiff slabs, to be discussed in sec. 1.3.4.2, is not, 

however, accounted for by these shape :functions. There the 

compressive stiffness of the slab is actually lower than 

Eq. ,l.7 and Table 1.1 indicate). The effect of relative 

thickness, being the most important, is described by 

· another expression, the so-called shape factor s, defined 

as follows: 
. Loaded Area (1.8) 8 =----­Free Area 

The Free Area is the unloaded area at the sides which 

is free to bulge as in Fig.(l.5C); the Loaded Area is that 

http:Fig.(l.5C
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•Expressions For slui/Je Ful1c1ilii1 


In all formulae h =:= height, i.e. in direction of compression 


Variation of B, C, and D with shear 
Cross-section · Shape function modulus G, lb/in2 

I
Square 


side= a 
 J + B(a/W 

Circular 

diameter= d 
 1 + B(d/h)2 

Recta11gular 

Jong side= / 
 I ·33 +0·66wfl+C(w//z)2 

short side = 111 1 + w/l 

Annulus 
outer diameter = d2 


inner diameter= d, 

Case I: d2 much 


greater than d 1 
 I + B(d2 - d1) 2/h2 

· Case 2: d1 almost as 
large as d2 1·33 + D(d2 - d1) 2/h2I 


Hollow Square 

outer side= a, 

inner side = a, 


Case I: mucha2 

greater than a, 1 + B(a2 - a 1)
2/h2 

Case 2: a, almost as 

100- 150­ 200- > 300G<lOO 
150 200 300 

B 0·120 0·103 0·080 0·063 0·056 

C0·26 0·225 0·175 0·14 0·12 

D 0·065 0·056 0·044 0·035 0·030 

I ·33 + D(a 2 ..:.. a 1) 2/h2 I 
I, .large as a 2 

(Note: these symbols differ from 
those used in this thesis)

TABLE 1.1 
Taken from Davey & Payne10 

...J 

5 <t z 
SE 
0 z 

0.4 0.8 1.2 1.6 2.0 2.4. 2.6 
SHAPE FACTOR 

11From Harris & Crede 
Loads for 10 per cent deflectionFIG. 1.7 

f'or rubber specimens having various 
hardness values and shape factors. 
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of the cross-section perpendicular to the direction of 

compression. The relationship between the shape factor 

and the compressive stif:f'nesa of rubber slabs is shown in 

Fig.(1.7)~1 Shape factor graphs such as Fig~l.7) are otten 

determined experimentally; on the other hand, Gent and 

Lindley12 derive some shape !unctions theoretically. 

The distinction between the shape function and the 

shape factor should be kept clear. The shape function is . 

intended to be a coefficient representing the ratio between 

the compressive stiffness of a slab with both faces bonded 

and that of the same slab in homogeneous compression, whereas 

the shape factor is a function only of the geometry of the 

slab. If desired, the shape facto~ might be incorporated 

into the shape function by making the appropriate dimensional 

substitutions in Table(l.l)(alternat1vely, the shape !unctions 

can be regarded as mathematical expressions or shape factor 

graphs). However, the shape factor is often used in graphs 

such as Fig. (1.7), which are useful where the elastomer 

does not obey a simple shape function. Also, the shape 

functions as given in Table(l.l) automatic&lly take into 

account the cross-sectional configuration's effect, which is 

often neglected in presentations of the shape factor; this 

effect is discussed next,· a.s the .similarity rule~ • 

Hooke's law(Eq. l.l) says, of course, that in 

homogeneous compression any two flat slabs of equal Young's 

modulus will have the same percentage deflection(i.e., 
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strain) under equal compressive loads per unit area(i.e., 

stress), regard.l.ess of their shapes. According to the 

similarity rule, the same is true of two bonded slabs which 

are geometrically similar,. that is, of the same shape but 

different si~e. When the similarity rule tails to hold in 

actual tests, the cause Will be found in some difference in 

the rubbers or in the experimental cond.1tionsl3 The similarity 

rule may also be applied to two bonded slabs of different 

shape but equal sh.ape factor, with the limitation that narrow 

thin strips are somewhat softer than their shape factors 

would indicate- strips with a length-width ratio of 10:1 

were determined to be about 22% softer14 than discs of 

corresponding shape factor. This exception to the similarity 

rule Will be relevant to the ~logy to be developed here for 

elastomeric sleeve bearings. 

1.3.4.2 ~ Compressibility 

Noting how the shape runct1ons in Table(l.l) increase 

1dthout"l1m1t as the,slab becomes relatively th1nner(1.e., as 

the shape factor becomes higher), it would thus seem that, in 

theory, a slab could be given an infinitley high apparent 

compression modulus b:V: ma.king it infinitesimally thin. In 

actuality, however, bulk compressibility exerts a law of 

diminishing returns here, limiting the apparent stiffness as 

explained below. 

Gent and L1ndley15 have pointed out and demonstrated 
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by actual measurements that where the bulk compression 

becomes significant the total compressive .strain et must 

ba ealcu1ated as the .sum of the elastic strain.,e (as given 

by.Eq.1~7) ..·.and the volume strain eb: 

The bulk modulus K is defined as follows: 

X :Cl/3)(0"x+O'y+~z)(1~10) 
ex+ey+ez 

-where the numerator of Eq.(1.10) is crm , the mean 

normal stress, and, assuming small strains, the sum of strains 

given in the denominator is the volume compression, ~v/v. 

If the "pot bearing" of F1g.(l.5D) were filled with 

fluid and the x-axis were taken as the direction of compression, 

then,using the property that a :f'luid transmits pressure equally 

in all directions, 

O'x = (fl =O'z : O"m : -P 

-where pis the hydrosta..t1c:pressure 

It would also be true that 

eb =ex ·· and ey = e z =O 

Eq.(1~10) could then be 	written 

-p
(1~11) eb : b.V/V: 	­

K 


Now, the rubber-tilled pot-bearing m.a.y not be a case 

o:f true hydrostatic compression; however, if' the assumption. 

is made that t1'm is here 
_. 

proportional to· the.,external applied 

http:F1g.(l.5D
http:Eq.(1.10
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stress Cf, then 

<1.12) .... - ~ 
gb - -

Ke 

-where K is an ••ertective" bulk modulus.
8 

Consider next the case of-a bonded slab, F1g.('l.5C). 

As the slab becomes thinner, bulging is reduced relative to 

the slab's volume and the slab thus approaches the pot bearing 

condition. For this reason, it is assumed that Eq.(1.12) is 

also a good approximation for thin bonded slabs. 

Defining a new "apparent" compression modulus,· E:, 
in terms of the total strain et, that_ is, 

(l.13) 

Eq.('l.9) then becomes, using,Eqs.(l.7a),.(1'~12), &: (1'~13), 


(1.14) 1 ­
Defining a new quantity n as the ratio between E 

and Ke (if Ke were K, this ratio would be 1/(3(1-2v)), 

according to the relations between the elastic modu1116 ), 

Ke : n•E 

Using Eqs.(1~'?) and (1.15), Eq.(1.14) can be written 

(l.16) E'' _ E. (1 1)-1
a - -+­s n 

-where S is the shape function, not the shape factor. 

Leaving Eq.(1.16) in terms of the shape function is the most 

general form, as the equation would vary for different rubber 

properties and different cross-sectional configurations if 

http:Eq.(1.16
http:Eq.(1.14
http:Eq.(1.12
http:F1g.('l.5C
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written in terms of shape factors. 


Def'ining an "apparent"" shape tunct1on, Sa• associated 

with the new apparent compression modulus modulus E!', in a 

manner analogous to the def'1n1tion of the shape function s, 

(l.17) 	 EJ_' : Ba,E 

-where Sa, unlike s, takes into account bulk 

compressibilit.y. 

A comparison of Eqs.(1.16) a~d (l.17),gives 

l(l.18) Ba: --- or .!.. - l + 1 
1 l Sa - S n
-+­
B n 

As the slab becomes thinner, l/S ~ 0 • From Eqs. (1.18), 

(1.17), & (1.15), it is seen that as l/S ~o , Sa-+n and 

E~~ +Ke• Thus, after a certain point, further thinning of 

the slab should result in essentially no increase in the 

apparent compression modulus E~ (however, it should be noted 

that this refers to relative or percentage stiffness, not to 

absolute deflections. The .latter should continue to decrease 

as the slab is made thinner). 

http:Eqs.(1.16
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1~4 AN ANALOGY FOR SLEEVE BEARING DEFLECTIONS 

The purpose of this analogy is to determine the 

bearing's approximate equivalents to the shape facto:ra.nd 

compressive stress of flat slabs so that the detlectiona.l 

behaviors of bearings and ala.be can be compared. Three 

examples of analogies for rubber deflections were given in 

Sec.(1.2). Of these, the ans.logy to be presented here bears 
17the most resemblance to the one of Harris & Crede, the major 

changes being the consideration of unbonded surface conditions 

and correlation to a slab or practically infinite length 

rather than to one of the dimensions indicated in Fig.(1.2). 

It seems reasonable to assume that the compressed area 

of the lining is effectively constrained, by the unloaded side 

ot the lining, against "bulgingtt· in the circumferential 

direction; this compressed area thus seems approximately 

equivalent to a flat rectangular area(see Fig •.1.8) free to 

bulge at the sides but constrained at the ends as in the last 

a.na.logy18 given in sec.(l'.2). Unfortunately, however, the 

compressive behavior of that particular slab was not found 

in the literature, so special tests, similar to those per­

formed in the case of reference 19, would have been desirable. 

However, the analogy to the sleeve bearing was finally regarded 

as a segment of a pract1ca1ly infinitely long str1p(F1g. 1.8), 

where the remoteness ot end effects, causing vertical trans­

verse planes to remain vertical,. is more or less equivalent 

to the end constraints; this slab has the advantage of being 

http:facto:ra.nd
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discussed in the literature. The next question was whether 

to attempt to use a shape :f'unction for the strip or to use 

the shape factor concept. The shape factor was selected for 

the reasons stated below. 

Shape functions for infinitely long rectangular slabs 

are g1ven by Gent & L1ndley20 or can be derived from the shape 

function for rectangular slabs, Table(l.:L), by taking the 

limit as the length goes to infinity. However, the shape 

function approach was rejected for the following reasons: 

(l) These shape functions are intended for slabs bonded 

on both faces, a situation for which the sleeve bearing has 

no counterpart because the bearing surface must be free to 

slip. 

(2) At any rate, the experimental compressive behavior 

ot Thordon discs of shape factors equivalent to those of 

typical bearing linings deviated considerablyJfrom Eq.(1.16), 

and an attempt to develop and verify new theory would have 

been an undertaking beyond the scope of this thesis. 

It is true that the shape factor and the similarity 

rule(Sec. 1.3.4.1) were also originally discussed here with 

regard to double-bonded slabs. However, that restriction is 

overcome here by assuming that a similarity rule also applies 

to other combinations of surface conditions; that is, two 

articles of different shape but equivalent 1n shape factor 

would be expected to have approximately the same apparent 

compression modulus so long as they had the same surface 

http:Eq.(1.16
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conditions. The shape factor is thus to be used here mainly 

as a basis for comparison between different shapes rather 

than as an indicator of the effect of relative thickness on 

the stiffness of bonded slabs. 

If Land w.denote the Width.and height, respect.ively, 

ot the strip at the bottom of Fig.('l'e8), With L corresponding 

to the length of the bearing and.w to the lining thickness, 

and also if 1 represents an arbitrary length along the strip, 

then the equivalent shape factor of the bearing becomes 

Loaded Area Ll L 
. (l·.19) s:-----=-=­Free Area 2lw 2w 

In the actual deflection tests, discs were substituted 

for the long strip. However, according to the similarity 

rule at the end of Sec.(l.}.4.l):, the discs should be almost 

equivalent to the long strip as regards the effect of shape 

factor; hence, Eq. (l'.19) will be used to directly correlate 

sleeve bearings with discs. 

The symbol O"p shall be used to denote the "projected­

area" pressure or stress, defined as the quotient of the 

division of the total radial force by the projected area 

(the top area or the slab in the middle of Fig.1.8); it is 

a rough estimate of the typical bearing pressure. ?nci­

dentally, the projected-area pressure multiplied by the 

surface velocity forms the "P-V" limit, which is a measure 

of a. bearing's ability to dissipate and withstand the frictional 

'" . ·. 
" f• •• 
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heat generated. In this thesis, however, crp is to be used 

a1ong with the shape factor to correlate sleeve bearings 

with discs; O'"p for the sleeve bearings is to be considered 

roughly equivalent to the calculated compressive stresses 

tor the d1sos, permitting a direct comparison of the deflection 

curves for the bearings with those for the discs. Sec.(l.5), 

which follows, describes how these deflection curves were 

determined. 



1.5 MEASUREMENTS OF DEFLECTIOMS 

i.5.1 Discs 

A few representative flat discs were tested in 

compression for the following reasons: 

(l) Discs involve fewer experimental and theoretical 

variables than do elastomeric sleeve bearings. 

(2) Many of their experimental variables are easier to 

control than are those of the sleeve bearings. 

(3) They provide a ~ore direct co~parison with present 

knowledge on compressive behavior than do the sleeve bearings. 

(4) They are e~sier to prepare for testing than are 

the sleeve bearings, requiring no housing, no slow, pains­

taking lathe turning or.boring, and no special test jig. 

(5) They provide insight into the deflectional 

behavior of the sleeve bearings in accordance with the 

analogy of Sec. (1.4). 

Thordon Regular(Thordon is made in three grades­

Regular, XL, and Super XL, the latter two containing a special 

anti-friction additive) discs of three different shape factors 

were compression tested by placing them between the loading 

faces of a compression-testing maohine{Tinius-Olaen by make); 

the two higher sh.ape factors are roughly in the same range 

as the equivalent shape factors of typical bearings. The 

discs were cut from stock-diameter rods and the thinnest size 

was machined flat by a~ end mill in a vertical milling machine, 
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a uniform thickness being assured by keeping each area pressed 

flat against the table while being cut; the thicker discs were 

held in a lathe chuck, with a section of rod behind for sup­

port, while being cut to final size. The test results, to~ 

different surface conditions, are graphed in Figs.(1.9), .(1.10), 

& (1.11); <f, the average compressive stress, is based on the 

initial cross-sections, as is customary. The testing machine 

had a built-in load-measuring device; the deflections were 

1measured with a dial gauge placed under the compression cross­

head of the machine and as close as possible to the disc 

to minimize the error introduced by the deflections of the 

testing machine itself- nonetheless, the test results were 

corrected for the machine deflections, which were determined 

by applying the loads without a testpiece being prese~t,Al­

ternatively, small hole gauges might be used to directly 

measure the gap .corresponding to the slab 1 a thickness). 

For each test, O" was raised steadily in the following 

sequence, with the detleotion being measured at each level: 

.. 500, 1000, 1500, 2000, 3000, 4000, 5000, & 6000 psi. A 

pause ot about 10 seconds was made at each level, just long 

enough tor a reading to be taken; the timing has an important 

bearing on the results because ot the rapid stress-relaxation 

(associated with creep) that was observed. Each curve was 

drawn by visually smoothing data points that were averages 

ot two test runs. A tew~general; qualitative observations 
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about the results will be made below. 

First, note that, in keeping with Eq.(1.6), the 

curves for the homogeneous compressions(both faces lubricated) 

in F1gs.(1.9y, (1.10), & (l.11) are almost identical despite 

the great differences 1n shape factor• The homogeneous 

compression curves for the two thicker discs show a soften­

ing at the largest measured de:f'1ect1ona, whereas the 

compressive side of Fig.(1.4) indicates a stiffening with 

increasing de:f'1ect1on; this discrepancy is possibly due to 

the high creep property of Thordon. Each disc experimentally 

showed a fairly high apparent shape :fUnction Sa(the true 

ratio between the compressive stiffness of a. slab bonded on 

both faces and that of the same slab in homogeneous compression), 

in general agreement With F1g.(1~6). Ba. for the disc of 

Fig.(l.10) is considerably higher than that for the disc of 

Fig.(1.9), as would be predicted by Eq.(1.7) and Table(l.l) 

if the rea.son~ble assumption were made that the latter disc 

1s too thick for bulk compressibility to be predominant. 

An unexpected result is that the thinnest disc has 


the lowest measured Sa• In tact, compar~ng the cases of 


bonding on both faces, the thinnest disc actually deflected 


a greater absolute distance than did the next thicker disc, 


though the latter disc was 50% thicker and had a much higher 


shape factor. Gent & Lindley(eee section on-bulk compresai­

. bility, 1.3.4.2) did predict and observe an eventual leveling 

http:Fig.(l.10
http:F1gs.(1.9y
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ott ot Sa with increasing shape factor, but not this decrease 

in Sa• one difference is that the elastomer tested by Gent 

& L1nd1ey was, With a Young's modulus ot about Z'{O psi, many 

times softer than Thordon>;. The compressive behavior of very 

st1tt elastomers like Thordon may be an area deserving further 

study, which would probably involve the testing of a large 

number of sh.ape tactors. 

The cases of one bonded face w1th one lubricated face­

1mportant here because they correspond to lubricated sleeve 

bearings With bonded linings- were found to be intermediate 

1n stif.fness between the double-lubricated and the double­

bonded cases, as might be expected. The presence of 30-micron 

abrasive powder at the interfaces'.:;of the·. thickest disc was 

almost the equivalent of bonding so far as compressive stiff­

ness was concerned. 

Taking the slopes of the homogeneous compression 

curves at about 3% deflection for the two thicker slabs and 

at about 10% deflection for the thinnest slab(because these 

are the points where the curves straighten out after the initial 

reverse bends near the origins; ·slopes were .. not taken exactly 

at the origins because these initial bends were not predicted 

by Fig. 1.4) gives an average Young's modulus E of around 

50,000 psi for the given rate of loading; G, which should be 

about l/3 of E, should therefore be about 17,000 psi. This 

value or G is far off the range shown in Table(l.1), bringing 

the sh.ape flm.otions there into some question. 



1.5.2 Sleeve Bearinss ,_ 

Fig.(l.12) shows the appa.ratuatbat was set up t'or 

measuring the static radial det'lectiona ot elastomeric 

sleeve bearings. The top and bottom ot' the housing were 

tlattened of'f to provide good surfaces tor applying f'orce 

and t'or the contact point of a. dial gauge·~ .Another dial gauge 

was placed under the shaft at a point near the bearing to 

measure the amount of' deflection resulting trom bending of 

the ·sh.a~ and from .1.ndentations at the V-blocks; the di:f'terence 

between the two dial reading~ was taken.as the true deflection 

ot the bearing. A tilting .. compression. head .:was used_ to .. 

compensate 'for unevenness ,·in: the- sbaf't1's supports. 

Four different Thordon Regular sleeve bearings were 

tested, with different surface conditions at the bearing sur­

face and in the interference fit between the lining and the 

housing. Two of' the bearings had lining·thicknesses of about 

l/lOth the bore d1ameter(approX1mately the thickness suggested 

in the current brochure of Thomson-Gordon Ltd.) and di:f'f'ered 

only in their lengths. The other two bearings had lining 

thicknesses of less than l/20th the bore diameter and also 

di:f:f'ered only in their lengths. The bearing clearanee(the 

'dif':f'erence between the bore and the. sha:f't. diameter)' which 

a:f':f'ects the concentration of'·bearing pressure, was relatively 

the same for all the bearings. 

The test results are shown in F1gs.(lol3), (l.14), 

(l.15), & {l.16). crp, the "projected-area" stress, is, by 

http:taken.as
http:Fig.(l.12
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the analogy or Sec.(l.4), here considered to be roughly 

equivalent to Cf in the graphs for the discs. The "equivalent" 

shape factors are based on Eq.(1.19). When testing, stress 

wa.s increased in the following Jumps, with .a pause or about 

10 seconds at each level for taking measurements: 250. 500, 

750, 1000, 1500, 2000, 2500, 3750, & 5000 psi. Thia sequence 

differs sl~e;htly from that used in the testing of the discs~ 

but that difference is not significant here. As in the case 

of the discs, the curves were smoothed by eye through data 

points that were averages of two tests. Because or Thordon's 

creep, deflections for slower rates of loading would be 

somewhat greater. 

The purpose of testing the oase of a lubricated fit 

with a lubricated shaft was to provide a comparison with the 

homogeneous compression of the slabs; it is recommended that 

in actual practice the interference fit not be lubricated 

because lubrication there would greatly increase the danger 

of the lining shifting in the housing(aee sec. 3.1)~ Note 

that, like the curves for the homogeneous compressions or the 

discs, all the curves for the lubricated fit-lubricated. shaft 

condition are similar despite the great differences in bearing 

geometries. Also, aocording to the graphs, the bearings appear 

to be somewhat stiffer in this double-lubricated condition, 

than the discs; th1.s is possibly due to the tact that the .. 

bearing linings have their surface slippage restricted in the 

circumferential direction whereas the discs' surfaces are :free 

http:Eq.(1.19
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to.slip 1n al.l directions. 

30-micron abrasive powder, spread over o1eaned 

surfaces before press-fitting of the 11n.1ng, was used to 

inc.rease. the :f'r1et1on between the lining and .the housing:. 

Tests with the cliacs showed the abrasive to be less eftect.ive 

than a bond, but bonding was not tried in the bearings for 

fear that it wou1d prevent the successful separation and 

reuse of the lining and· the housing. As in the case of the 

discs, this reduction or elinrl.na.tion.of'.slippage on one face 

had the effect of increasing the stiffness. Among the 

bearings, this increase in.stiffness was poorest for the 

bearing with the highest equivalent shape :ta.ctor(Fig. 1.16), 

in agreement with the discs, among which the increase was 

least for the one with the highest shape factor(F1g. l.ll)o 

The probable reason for this correlation is that the shape 

factors of the discs are comparable in value to the equivalent 

shape factors of the bearings:~ 

..., 
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1.6 CONCLUSIONS 

Using Figs.(1.•9), (l.10), (l.11), ('1.13), (1.14), 

(l·.15), &: (l·:.16), the following general conclusions are 

reached here concerning the radial stiffnesses of the 

bearings: 

(l) In terms of the projected-area. stresses and of 

deflections taken a.s a. percentage of the lining thickness, 

sleeve bearings of widely differing geometries were found 

to have simi.lar stress-deflection curves. 

(2) Those stress-defieetion curves were found to be 

only somewhat stiffer than those for homogeneous compressions 

01' flat slabs, including the condition of lubrication both 

on the bearing surface and in the interference fit(though it 

should a.gain be emphasized that the fit should not be lubri­

cated 1n practice):~ This implies that a rough 1dea or the 

radial stiffnesses of sleeve bearings of different geometries 

could be obtained from the homogeneous compression of a single 

flat slab. 

('.3) The absolute stiffness of' the bearing can generally 

be improved in the following two ways: (a) by increasing 

friction, or by bonding, at the interference fit; (b) by 

reduction of lining thickness. However, (a) provides no 

significant improvement for Thordon at low bearing pressures 

and bonding in particular may be expected to increase thermal 

and liquid-swell bore contractions;. 
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(4) The main benefits from the analogy between sleeve 

bearings and slabs were that it led to or explained the 

conclusions above. 

(5) The tests on Thordon bearings confirmed the 

original design estimate of a def'J.ection of about 4% of 

the wall thickness at a projected-area stress of 2500 psi, 

provided that this stress is gradually reached 1n about l 

minute and then released. Because of creep, the deflections 

for continuous loading periods of hours or days would be 

substantially greater~ 



.,_:2 •.CLEARANCES 

2.1 INTRODUCTION 

In the first part of this thesis, it was shown that 

for Thordon the radial deflections due to load are generally 

under 4% of wall thickness when the projected-area pressure 

is within the recommended operating range of 2,500 psi·. On 

the other hand, the recommended clearance between the bore 

and the shaft ls generally at least 4-5% of wall thickness 

and even greater where therm.al and liquid-swell bore con­

tractions m.ust be allowed for. It is apparent, then, that 

from the stamdpoint of accurate shaft alignment, the problem 

of clearance can be at least as serious as that of elastic 

deflections- much more serious, in fact, in low pressure, 

high velocity applications, where deflections are low but 

heat bUildup great. 

The term total clearance here means the difference 

between the diameters of the sha~ and the bearing bore at 

the time of installation. Thia total clearance might be con­

sidered to consist of the following" three parts: 

(1) Running clearance- the actual clearance required 

when running to insure smooth operation; 

(2) Thermal clearance- allows for thermal expansion 

of the lining thickness; 

(3) Swelling clearance•··allows for the swelling caused 

http:therm.al
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by liquids. 

Ideally, ·the last two clearances should be such that the 

proper running clearance is reached under steady state 

operation. These three clearances are all contained in 

the following design equation recommended by a manufao­
21turer : 

(2.1) 	 c =o.oo4d + 6w(oc ~T + g) 

The above equation can be broken down as follows: 

o.004d : running clearance 
6w ex. AT =thermal clearance 

6wg : swelling clearance 

where-


c = total clearance 

d : bore diameter 
w : lining thickness 
<X: coefficient of thermal exnansion 
g =relative dimensional changes result­

ing from effect of liquid absorption 
~T =difference between temperature on 

installation and operating temperature
(location of latter temperature not 
specified; presumably it refers to either 
the bearing surface temperature or the 
average lining temperature) 

No theoretical development was given for Eq.(2.1). 

The main purpose of· this second chapter is to theoretically 

predict the required thermal and swelling clearances to 

construct a total clearance equation similar to Eq.(2.1). 

The running clearance recommendation, however, will be _based 

on those of manufacturers, which a.re determined from practical 

experience. Some experimental measurements of the thermal 

clearance will also be provided"~ 



2.2 RUNNING CLEARANCE 

!he running clearance should not be so small that 

seizure results, nor be so great that poor alignme~t, 

Vibration, and high load concentrations become problems. 

However, as seizure is the most likely of these factors 

to cause rapid failure of the bearing, it is better, so far 

as bearing life is concerned, to err on the high side rather 

than on the low. For this reason, thermal clearances and 

swelling clearances should be sufficiently generous to insure 

that the actual running clearance Will l"'Qmain above the 

minimum recommended value. 

Three different running clearance recommendations, 

as a function of bore diameter·, are shown in Fig. (2~1). 

One of these(BASF) is based on Eq.(2.1). A safe allowance 

covering all of them is 0.0054. 
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2.3 THERMAL CLEARANCE 

2.3•1 Ba.sic Assumptions 

i'here are two ways in which thermal expansions can 

alter the bearing clearance: (1) by a change 1n·the lining 

thickness; (2) by a difference between the thermal expansion 

of' the housing and that of' the shaft. Despite the fact 'f:,hat 

metals in general have :much lower coefficients of thermal 

expansion than do elastomere(e.go, 0.7Xl0-51n./1n'~-°F for 

steel, l.lXlo-5 for brass, and l.4Xl.o-5 for aluminum, vs. 

about 1xio-5 1n./1n.-°F for Thordon, 4no-5 for ebonite, 

and 10.xlo-5 to 2oxio-5 for s~ft l"Ubbers)~2 the individual 

expansions of the shaft and of the housing can be significant 

compared to the change 1n lining thickness; however, the 

difference between the housing's and the shaft ' 1s expansions 

should be insignificant, provided that the abaft and the · 

housing have comparable coefficients of thermal expansion 

and do not differ much in operating temperature (an example· 

is ·1l;lcluded at the end of Sec. 2.3.·4). For this reason, the 

metallic expansions are disregarded here. 

Disregarding the metallic expansions, the decrease­

or increase, 1n the case of certain low temperature app11­

cat1ons- ot the bearing clearance become.a twice the thermal 

change in wall thickness of the elastomer1c lining. This 

change in wall thickness is estimated here to be the same 

http:elastomere(e.go
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as that of an unhoused lining, that is, a lining with no 

restriction on radial expansion. The basis of this assumption, 

confirmed by actual measurements,·is· that the total wall 

thickness does not change significant=!-y when the lining is 

pressed into t~e housing; hence, it should make little 

difference whether the thermal wall thickness changes are 

measured with the lining housed or not_. In other words,_ the 

principle of the superposition of mechanical and thermal 

strains is assumed to hold. The following additional 

assumptions and techniques are used here: 

(1) The temperature distribution in the lining is 

assumed to be independent of the axial coordinate z; this 

assumption seems justified by the high length to wall­

thicknea~ ratio, which should minimize end effects. 

(2) ·The temperature distribution is assumed to be 

symmetrical about the axis; this assumption may not be 

completely valid where the temperature buildup concentrates 

on the loaded side of the bearing, but greatly simplifies 

the problem and may be expected to give a conservative 
. . 

answer. 

(3) There is a condition of steady heat flow. 

(4) It was found to be easier in this problem to treat 

the total thermal deformation of the unhoused lining as a 

superposition of the following two imaginary stages: (a) a 

uniform temperature rise- that deformation which would occur 
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by the uniform temperature change of the entire lin1ng(F1g. 2.2) 

from T
0 

, the installation temperature. to Tb,. the operating 

temperature of the lining's outer rad1us(th1s includes those 

low temperature applications where Tb is.less·tha.n T
0 

); 

(b) the addition of. the nonuniform temperature f1e;ld- that 

further deformation whioh would result from then raising the 

inner radius to its operations temperature, Ta, while ho~d1ng 

the outer radius at T},• This superposition is valid because 

the radial displacement u is linear with T in Eq.(2.2) and 

can also be shown to be so in Eq.(2.29). 

(5) The themal conductivity and the coefficient of 

thermal expansion are assumed to be temperature-independent. 

(6) The solution selected will be that for plane strain 

with ez:0(1.e., plane strain with zero axial strain). ez:O 

was chosen because it is desired here to allow for the worst 

situation and it is intuitively apparent that the thermal 

bore contraction would be more severe where the lining is 

axially constrained by bonding or friction in the housing 

fit than where the lining is free to expand axially as in a 

well-lubricated fit. Unfortunately, however, the available 

solutions are for the case of Fz:O (plane strain with zero 

end force), that is, where a uniform axial stress, such as 

to make the cylinder's end faces free of axia1 forces, is 

superposed on the axial stress for ez:O. Therefore, the 

solution for ez:O will be derived from that for Fz=O by a 

http:Eq.(2.29
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to:rmula developed here to effect the conversion. 


(7) For plane strain with ez:O, it is only necessary 

to assume that all cross-sections are in the same condition 

of thermoelastic1ty; it is not necessary to assume, as in 

the case of plane strain with Fz:O, that the cylinder is very 

long and that the uncorrected solution is valid only far 

away from the ends(this is because the solution for Fz:O .does 

not satisfy the boundary conditions at the ends; there must 

therefore 'be ~ell"-equilibrating end effects which, by 

saint venant 1's principle, become negligible at a sufficient 

distance from the ends~. 

(8) A thin-wall approximation is assumed tor the case 

ot the nonuniform temperature field. 

(9) For generality, the shaft's and hous1ng 1's expansions, 

prev1ously assumed to be equal, are here assumed to both be 

zero. This new assumption makes no difference so far as the 

clearance is concerned. The amount of bore contraction then 

corresponds to the thermal clearance and becomes equal to 

twice the change in lining thickness'• 

2.3.2 Solution for zero End Force 

2.3.2.1 Radial Dis~lacements for Unhoused Lining 

(a) General 

For plane strain with Fz:O, the radial displacements 

in a long cylinder at a distance far from the ends 1a~3 in 

the absence of external stresses: 
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r . 2 	 2 b 
ex ( (l+v >/Tr dr+(l-3v)r +a 'l+v) /.Tr dr ) 

r(l-v) a b2-a2 a 
(2.2) 

-where u and T are relative to what 1.s considered 

the equilibrium. condition; that 1s, 

radial displacement of a point at radius r 
(as this equation is for small strains, it 
does not matter whether this r is considered 
init1al or final), rela'tive to ..:that_ point 1 s 
position in what is considered the unheated 
(i.e_!t Ti:O everywhere; see definition .of T 
below} condition of the cylinder. The sub­
script f refers to the condition Fz=O. 

T : T(r) =temperature d1str1but1on, here a function 
ot the radius r, in an' arbitrary tempera­
ture scale in which T=O everywhere 
corresponds to u=O everywhere. 

oc: coefficient of thermal expansion 

a··: inner radius of cylinder 

b : outer radius of cylinder 

Y: Poisson's ratio 

For the inner radius a and the outer radius b, Eq.(2.2) 

reduces to: 

(2.3) 

2oc.b /b(2.4) 	 Ut{b) : 2 2 Tr dr 
b -a a 
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(b) uniform Temperature Change 

The radial displacements for a uniform temperature 

change of the entire 11n1ng(here regarded as unhoused) from 

T0 , the installation temperature, to ~' the operating 

temperature of the lining's outer radius, are, from Eqs. 

(2.3) and (2.4), 

Similarly, 


-where the subscript u refers to the uniform 

temperature change. 

(c) Nonuniform Temperature Field 

Though this case canbe,solved by substituting the 

temperature distribution into Eqs.(2.3) and (2.4), another 

approach that is simpler because the stresses are known 

will be used here. The development up to Eq.(2.10) does 

not involve the assumption of zero end force. 

Due to the assumption of an axially symmetric 

temperature distribution, there are no tangential dis­

placements; the tangential strain e8 therefore reduces 
24 

to: 

(2.7) e - ~ e - r 

http:Eq.(2.10
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Hooke's Law, modified to include thermal strains, 

g1ves: 25 

(2.8) e0 : i<C10-v(crr+crz)) +oe.T 

Combining Eqe.(2.7) and (2.8) gives: 
l(2.9) u : r( E(C19-V(O'r+C1z)) + oc.T ) 

Eq.(2.9) is an alternate expression to Eq.(2.2) but 

is not restricted to the case Fz:O. 

Now, the obvious boundary conditions for the inner 

radius a and the outer radius b are: 

(2.10) ~r(a) =~r(b) : O 

Also, provided that the following conditions are 

met, 

(l) There is steady heat transfer with temperatures of 

Ta on the inner radius and Tb on the outer radius. 

(2) A uniform temperature of Tb is taken as the un­

strained condition. 

(3) Fz : 0 

(4) 	 A thin wall approximation is made. 

-then the other stresses at a and b reduce to: 26 

: ~ (a) : _ ~E(Ta-Tb)(2.11) 
zf 2.(1-'V) 

( T -Tb)
: 6 (b) : ~E a(2.12) 

zf 2(1-v) 
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-where the subscript f aga1n refers to the condition 

Substituting Eqs.(2.10), {2.11), and (2.12) into 

Eq.(2.9), with, in Eq.(2.9), T=Ta-Tb :for r:a and T=O tor 

r=b (the respective temperature rises at these two radii, 

referred to ~) gives: 

urnCa) 	= tcr.a(Ta-11,)
(2.13) 

Ufn(b) : j-ocb(Ta-Tb) 

-where the subscript n refers to the nonuniform 

temperature field. 

(d) Combined Displacement 

Combining Eqs.(2.5), (2.6), and (2.13) gives the 

following total displacements: 

(2ol4) ur(a) : urn(a) +uru(a) =cx.a(i(Ta+~)-'?0 ) 

(2.15) ur(b): urn(b) +uru(b) :oc::b(i(Ta+TtJ)-T0 ) 

2.3.2 •.2 Chanses in Lining Thickness and Bore Diameter 

If {Aw) denotes the change in thickness for the 

unhoused lin1ng(or for the housed lining, by the assumption 

of no change in w during press-fitting), then: 

(2.16) 	 (Aw)r =ur(bf-ut(a) 

From Eqs.(2.14) and (2.15), Eq.(2.16) becomes: 

(2.17) 	 (Aw)t' : (b-a)()( (-f(Ta+1b)-To) 

-or, since (b-a):w, Eq.(2.17) can be written, 

(2.18) 	 (Aw):f : woe {}(Ta+Tb)-T0 ) 

By the assumption of zero housing expansion, the bore 

http:Eq.(2.17
http:Eq.(2.16
http:Eqs.(2.14
http:Eqs.(2.10


56 

change, denoted below by Ad. is the negative ot twice the 

change in lining thickness; that is, 

(Ad)"f : -2(6W):r 

gq.(2.18) then gives: 

(2.19) 

-where, in summary, 

Ad : change in bore diameter between insta1lation 
and steady state operation 

w =lining thickness 
oc. =coefficient of thermal expansion

Ta : operating temperatur~ of inner radius of 
lining

'lb: operating temperature.of outer radius of 
lining

To : installation temperature(or any other uniform 
temperature at which Ad is considered to 
be zero) 

-and where it should be-noted that 

11average" operating temperature in lining
(for a th.1.n wall, the temperature distri­
bution is nearly linear and th.1.s can 
therefore be taken as the true average)
minus the installation temperature 

Eq.(2ol9) predicts a bore contraction when the 

average operating temperature is greater than T , and a 
0 

bore expansion when it i~ less. 

Eq. (2.19) is for Fz:O, whereas the desired s'olution, 

to be developed next, is for ez:O • However, Eq.(2.19) is 

to be used later for comparison. 

http:Eq.(2.19
http:temperature.of
http:gq.(2.18
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2.3.3 Solution for zero Axial strain 

2.3.3.1 	Radial Displacements for Unhoused Lining 

(a) · Conversion of solutions- obtaining solution f'or 

ez=O 	 from that for Fz=O• 

Eq.(2.9) is still valid here; that is, 

(2.20) 

-where the subscript e denotes the condition ez:O ~ 

For the same temperature distribution, ar and 60 
are unchanged27 from· the case of Fz:o; that is, 

(2.21) 	 "'re =arr and cree = c5er 
From (2.21), (2.20) may be written, 

(2.22) 

-where the right aide or Eq.(2.22) is the same as 

the solution for Fz=O except for the term O"ze; hence, the 

difference between the two cases is entirely due to their 

difference in the term O"'z '• 

Now, the following two relations hold28 for er :... z 
(2.23) 

and 

(2.24) c5zf' =O'rf+<1er 

From Eqs.(2·.21) and (2.2J~), Eq.(2.23) can be written, 

(2.25) 	 d'ze : v (arr+d'e:r> -«ET-= v(o-zf'> - ex.ET 

Substituting Eq.(2.25) into Eq.(2.22) gives the 

http:Eq.(2.22
http:Eq.(2.25
http:Eq.(2.23
http:Eqs.(2�.21
http:Eq.(2.22
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following: 


(2.26) 

Rewriting Eq.(2.26), 


'.. . .. ..: 

(2.27) 

Removing the terms (l-v)c1zf' and oeET from inside the 

inner parenthesis gives: 

(2.28) 	 ue : r{ i<o-~f·v(O'rr-tctzr>) +oc.T ) 

+r S!c {l-V)d'zr""ocET) 
E 

Of' the two large terms on the right hand side of 

Eq.(2.28), the first is, by Eq.(2.9), merely the solution 

for Fz:O ; therefore, 

Hence, according to Eq.(2.29), ue can be found 

simply by adding the given expression to ur, assuming, of' 

course, that the same temperature distribution exists. 

(b) 	Uniform Temperature Change 

Before applying Eq.(2.29), it will first be shown 

that 	C1zf is zero for a uniform temperature change. 

From T1moshenko and Goodier~9 

oeE 1 r 2-a2 
/b /r(2.30) 	 arf : (- ) ~( 2 Tr dr - Tr dr)2l-V r b -a a a 

http:Eq.(2.29
http:Eq.(2.29
http:Eq.(2.28
http:Eq.(2.26
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and 
l 2 2 b r 

(2.31) 	 a :r = oc:E ~(r2+a.2 /Tr dr +/Tr dr - Tr2 )6 (1-v) r b -a . a. a 

For a uniform temperature cha.nge(T constant, regard.­

lea$ of r), Eqs.(2.30) & (2.31) reduce to: 

(2.32) 	 arr =C1'er =. o 
· Eqa. (2.24) and (2~32) then give: 

(2.33) 	 C1'zr =o 
<Now applying Eq.(2.29) with Eq·a.(2.5), (2.6) and 

~;2.33) 	 gives: 

(:2.34) Ueu(a) : oc:a(Tb-T0 )+8i(«E(1b;.T0 )) : (l+V)()('.a(Tb-T )
0 

and: 

--where the subscript u again denotes the uniform 

temperature change. The radial displacements here differ 

by a factor of (l+Y) from the corresponding ones_ for Fz:O , 

Eqs~(2.5) & (2.6). 

Cc) Nonuniform Temperature Field 

Applying Eq.(2.29) with Eqs.(2.11) and (2.13) gives: 

ll. 0tE(Ta-ib)
1u6 n(a) : j-aoc (Ta-~> +aE( (1-v)(. 

2
(l-v) ) tCKEfTa.:Tb) ) 

or, simplifying, 

u8 n(a) : i(l+\I) oc.a(Ta,-T1» 
. -where the subscript n again denotes the nonuniform 

temperature field. 

http:Eqs.(2.11
http:Eq.(2.29
http:8i(�E(1b;.T0
http:Eq.(2.29
http:Eqs.(2.30
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\ 

Similarly, from Eq.(2.29) (with T=O, the temperature 

change at radius b during the· introduction of the nonuniform 

temperature field) and Eqs.(2.12) & (2.13), 

or 


(d) Combined Displacement 

Combining Eqs.(2.34) through (2.37) gives the follow­

ing total displacements: 

ue(a) : ueuCa) + uen(a) 
or 
(2.38) 	 u6 (a) : (l+v) oc.a(t(Ta+Tb)-T0 ) 


Ue(b) =Ueu(b) + Uen(b) 

or 
(2.39)·,, ·, 

203.3.2 	Chan5es in Lining Thickness a.nd Bore Dia.meter 

A_s for the case of Fz:O, 
,. \ .... r,,·' 

(~o40) 	 (Ad)e: -2(Aw)e: -2(Ue(b)-Ue(a))
'• ' 

From Eqs.{2.38) and (2.39), Eq.(2.40) becomes, with 
,- f 

w : Q-a , 

(2.41) 	 (~d)e : -2(l+v )woe (j-(Ta+Tb)-T0 ) 

·The solution here d1f:fers by a factor of (l+v) from 

tba.t :f'or Fz=O , Eq. (2.19), as does each of the displacements 

derived above. 

http:Eq.(2.40
http:Eqs.{2.38
http:Eqs.(2.34
http:Eqs.(2.12
http:Eq.(2.29
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Letting V=t , for elastomers, Eq.(2.41) becomes 

(2.42) (Ad)e =-3woc CiCTa+Ti>)-To) 

Eq.(2.42) is the solution for the assumed condition 

ot ez:O • Eq.(2.42), like Eq.(2.19), predicts a bore 

contraction when the average lining temperature is greater 

than T0 , the installation temperature, and a bore expansion 

when it 1s l'ess. 

2.3.4 Experimental Measurement(includins temperatures) 

The apparatus shown 1n Fig.(2.3) was used to measure 

the actual temperatures and bore contractions in a heated 

'J.'hordon sleeve bearing. SAE 50 motor 611 was selected as 

the heating medium 1n preference to water for the following 

reasons: 
(1) The higher temperatures attainable; 

(2) Thordon swells in water but is not supposed to 

swell or deteriorate in oil; 

(3) . •to protect.the measuring instruments. 

H<iwever, the fire hazard from the oil required caution~. 

· The bore diameter was measured with a telescopic 

bore gauge and a·micrometer. The temperatures were measured 

With copper-constant.an thermocouples inserted at the points 

shown. Measurements were taken to the nearest .001 in •. at 

oil temperature levels of 150 °F, 200 °F, and 250 °F, after 

waiting a few minutes at each level for thermal equilibrium 

to be reached. Both a standa.rd(recommended) lining thickness 

and a half-standard thickness were tested. The results, 

http:copper-constant.an
http:Eq.(2.19
http:Eq.(2.42
http:Eq.(2.42
http:Eq.(2.41
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as corrected to compensate -for the thermal expansion or the 

housing, are sho-wn in Fig.(2.4). T refers to the temperature
8 

of the outer surface of the housing. Both the installation 

temperature T0 and the ambient temperature during testing 

were 77 °F. 
A special word should be said about the proper 

technique for the accurate dimensional measurement of 

elastomeric articles. The problem is that the tendency of 

the material to deflect under the measuring instrument can 

lead to errors of several thousandths of an inch. This is 

particularly serious where the measurements are made on an 

unhoused lining, as then the entire lining can warp out of 

sbape(for this reason, it is best to measure bores when the 

lining is in the housing); however, it is a problem with 

housed lining~ as well. An improved method, employed here, 

is to use the· measuring instrument like a feeler gauge, 

starting with a slightly loose adjustment(undersize for 

inside diameters, oversize tor outside diameters), changing 

the setting one-thousandth of an inch at a t1me(us1ng an 

outside micrometer to preset the telescopic gauge) and 

testing each setting by dragging or sliding the instrument 

across the dimension to be measured; the last setting before 

a sudden slight increase in drag is felt is then taken as 

the actual dimension. unfortunately, this method 1s highly 

sensitive to "feel. 11 A still better method would be to take 

a shaft a few thousandths of an inch undersize(for the 
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apparatus of Fig. 2.3, the sha.t't should be hollow to prevent 

overtl.ow of the oil.) and measure the cl.ea.ranee with a. set 

ot leaf-type feel.er gauges, the broad surfaces of .the reeler 

gauges reducing the problem of indentation of the material.. 

Perhaps the best method, which unfortunately woul.d require 

special preparation for each range of measurement, would be 

to use a set of "go-no-go" fixed diameter cyl.indrical. pl.ug 

gauges. Whatever method is used, the thermal expansion ot 

the gauge itself should be accounted for. Alternativel.y, 

the tests might be made with a. lining of a stiffer material 

of high thermal expansion, though not so stiff as to affect 

the expansion of the housing. 

An example below shows how the corrections for the 

hous1ng 11s expansions were made. The housing was· a oylindrioal 

steel shell of 2.4 in. inside diameter and 4 in. outside 

diameter. The expansion of the inside diameter of the shell:. 

was taken to be twice the radial change given by Eq.(2.14); 

that is, 

(2'.43) (Ad)shell.: 2o<: a{i(Ta.+TJJ)-T0 ) 

-where a, b, and d here refer to the dimensions of 

the shell. 

The installation temperature T0 was 77 °F; for the 

oil temperature of 250 °F, the ••average" shell temperature 

was a.bout 183 °F, and the coefficient of thermal expansion 

tor steel is about 0~7Xl0-S in./1n.-°F; the equation above 

gives here 

http:Eq.(2.14
http:overtl.ow
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(2.44) (Ad)shell =2(0.7xio-5 )(1.2)(183-77) : .0018 in. 
. expansion 

This expansion ot the shell counteracts the lining's 

bore contraction, making the amount of the latter smaller than 

it would be for a truly fixed housing. Hence, since for this 

oil temperature the measured bore contraction for the standard 

lining was about .006 in., the bore contraction in a fixed 

housing would be,. according to Eq.(2.44), .006 + .002 :· 

.008 in. All of the measured bore contractions shown in 

Fig.(2.4) were corrected in this way. 

In Fig.(2.4), note that the thinner wall produces 

considerably lower bore contractions, as predicted by Eq.(2.42). 

Also, the measurements agree fairly well With the theoretical 

predictions of Eq.(2.42), which were based on an oc:. of 

7Xl0-5in./in.-°F (determined by measuring the expansion of a 

heated Thordon rod) and on the measured temperatures; most 

ot the discrepancies are within a thousandth of an inch. 

It a shaft were also of steel and approximately at 

the same temperature as the lining bore, its expansion would 

be, for the standard thickness lining and the bore temperature 

of 250 °F, 

('.O.7X10-5 )( 2 )( 250-77 ) : • 0024 in. expansion 

The difference between this and the housing's 

expansion, Eq.(2.44), is negligible compared to the lining's 

expansion for this temperature, thus justifying for this 

situation the neglect of metallic expansions when theoretically 

estimating the thermal clearance. 

http:Eq.(2.44
http:Eq.(2.42
http:Eq.(2.42
http:Eq.(2.44
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2~3.5 Heat Transfer Considerations 

According to Eq.(2.42), the thermal bore change is 

dependent not only on the operating temperature of the bearing 

surface, Ta, but also on the operating temperature of the 

outer radius of the lining, Tb• U'llfortunately, these tempera­

tures vary from one application to another and 1t is usually 

difficult to predict them even in a given application. " 

Elastomers in. general have very 1ow thermal conduc­

t1vit1es, which are comparable, 1n fact, to those of thermal 

insulating materials. The thermal conductivity of bard 

rubber is about 0.09 BTU/hr-:tt-°F and that of Thordon is 

about· 0.06, compared to typical values of 10-100 BTU/hr-rt-0r 
for metals. Hence, by the electrical a.na.logy of heat transfer, 

where temperature drop corresponds to voltage drop and 

thermal resistance to electrical resistance, the thermal 

drop across the lining would be expected to be large compared 

to that across the metallic housing, even if the lining were 

quite thin; this expectation is certainly satisfied by the 

temperature distributions shotm in Fig.(2.4). However, 

because of the thermal ~sistance between the housing itself 

and the atmosphere, the thermal drop across the lining is 

likely to be, as in F1g.(2.4), only a fraction of the total 

thermal drop between the bearing surface and the atmosphere. 

Hence, it is assumed for simplicity that the average lining 

temperature, iCTa+~), is practically the same as the bearing 
.··., 

http:Eq.(2.42


68 


surface temperature. This assumption permits Eq.(2.42) to 

be written 1n the same form as the thermal clearance of 

Eq.(2.1); that is, 

(2.45) 


-where 
AT : difference between the average lining 

. 	 temperature(or, if desired, the bearing
surface temperature) and the temperat1tre 
at installation. When the former tempera-· 
ture is lower than the latter, the bore 
should expand safely away from the sha~ 
and hence no thermal clearance should 
then be required 

http:Eq.(2.42


2.4 SWELLING CLEARANCE 

2.4.1 Analogy to Thermoelastici·ty 

The stresses and strains resulting from liquid-swell 

can be mathematically determined in the same manner as those 

resulting from thermal expansion if the swelling e:xpans:ton g 

is substituted for the thermal e:xpansion.c:x.T for each infini­

tesimal body element. Use of this analogy is made belowo 

It is assumed here, as in the section on thermal deformation, 

that the bore change is twice what the wall-thiclmess change 

of an unhoused lining would be. It is also assumed that the 

swelling is uniform throughout the lining. zero axial strain 

is again assumed; however, the solution for zero end f'oroe .. 

is also developed for comparison. 

2.4.2 Solution for Zero End· Force ... 

Substituting g for oc.T in Eqs.(2.3) and (2.4) gives, 

for the radial displacements produced in an unhoused lining 

by swelling, 

'Ufs(a) : 
2a .· 
2 2 

b -a 

/b
gr dr 

a 
and 

(2.47 ): uf8 (b) : 2b 
2 2b -a 

/b'gr dr 
a 

•where the subscript s refers to swelling and the 

subscript 	f' again refers to the condition Fz:O ~ 

For uniform swelling(constant g), Eqs.(2.46) and 

(2.47) give 

http:Eqs.(2.46
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(2.48) UtsCa) : ga.
and 
(2.49) Ufs {:b ) : gb 

The wall thickness change is, using Eqs.(2.48) and 

(2~49), 

(2·~50) 

and. the bore contraction is 

(2~51) 

2.4.3 Solution for- Zero Axial Strain 

In'the equations of' thermoelasticity, uniform swelling 

corresponds to a uniform temperature rise. The radial 

displacements for the uniform temperature rise (Tb-T0 ) and 

the condition ez:O are given by Eqs.(2.34) and (2.35). 

SUbstituting g for oe(Tb-T0 ) 1n those equations gives 

(2.52) Ues<a) : (l+v)ga
and 
(2.53) ue 8 (b) : (l+v)gb 

' ' 

The wa1l expansion 1s, from Eqs.(2.52) and (2.53), 

(2.54) (llw)es= Ue'8 (b)-tte8(a) = (l+v)g(b-a) = (l+v)gw 

-and, with v:t for elastomera, 

(2.55) (Ad)es : -2(A:W>es : -2(1....v )gw : -3gw 

Here, as in the case of thermal expansions, the 

solution for ez=O is li times as great as that for Fz•O, 

Eq.(2.51). 

http:Eq.(2.51
http:Eqs.(2.52
http:Eqs.(2.34
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2.5 CONCLUSION- RECOMMENDED TOTAL CLEARANCE 

Combining the running clearance of seo.(2.?), the 

thermal clearance of Eq.(2.45), and the swelling clearance 

of Eq.(2.55) gives 

(2.56) 	 c : 0.005d + 3w(ecAT + g) 

The symbols above are defined under Eq.(2.1). 

The thermal clearance and swelling clearance 

recommendations of Eq.(2.56) are half those of Eq.(2.1). 

However, the thermal clearance in Eq.(2.56) is intended to 

allow only for the lining's expansion; if the shaft is much 

hotter or has a higher coefficient of thermal expansion than 

the housing, the estimated difference between the shatt•·s and 

the housing's thermal expansions should be added to the 

clearance given by Eq.(2.56). When in doubt, it is better 

to increase the clearance, as explained in Sec.(2.2). 

http:Eq.(2.56
http:Eq.(2.56
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3'• .INTERFERENCE FIT WITii HOUSING 

3.1 NORMAL TEMPER.~TURES• 

The high friction provided by an interference fit 

between the lining and the housing is often the on1y means 

used for anchoring the lining in place, though, of course, 

other means, such as bonding. dovetail grooves, or end 

flanges, might be employed'~ The purpose of this section is 

to try to determine the amount of interference necessary to 

prevent axial or rotary slippage of the lining in the housing. 

PUre axial slippage might occur in the case of an axial.ly 

sliding shaft; rotary slippage is undesirable because of 

wear and because it may eventually work the lining loose. 

It is assumed that the only force tending to dislodge 

the lini~g is the frictional force on the bearing surface 

between the lining and the shaft. Thie force is denoted 

here as Fb• The assumed criterion for no slippage is: 

(3.1) Pb< Fi 

-where F1 is the total frictional force in the in~ 

terZerenaetit(in the ease of rotary slippage, the difference 

in radii where these two frictional forces act may be neglected 

for a small w/d ratio, where w is the lining thickness and d 

is the bore diameter)~ 

Fb can be approximated as follows: 
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-where 

crp : "projected-area" pressure, as estimate of 
bearing pressure 

nRL : approximate contact area .of bearing 

R : 	 radius of lining(to avoid future compl1ca't1ona,
inner radius a and outer radius b are not 
distinguished here, which is perm1ssib1e due 
to the thin-wall asstimption) 

L :.length of bearing 

µb : coefficient of friction between lining and sh.a.ft 

Fi arises from the following two causes: (1) the 

interference fit; (2) radial loads, from the shaft, trans­

mitted through the lining. The former cause acts around the 
..... 

~ 	 ,.• . 

whole circumference, the latter only on the loaded side of 

the bearing. Superposing these two causes gives: 

-where 

: coefficient of friction in interference fit, 
between lining and housing 

a1 : that part of the interracial normal pressure,
in the interference fit, due to the interference 
only 

lfow a1 Will be related to the amount of interference 

tor normal tempsratures, 1n• The hous~g-bore ia here regarded 

as.:--fixeg. in size •. Also; it. is.assumeQ. that. due, to a thin 

wall, the circumferential strain may be treated as uniform 

through the lining. Then the desired relation, taking the 
. 	 '30 

interference as twice the radial displacement, is: 
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-where E : Young's modulus of lining 
w : thickness of lining 

or, 	rewriting, 
Ew

(3.5) 	 <11 : 2 in 
2R 

Eq.(3.4) differs from the.corresponding. equation tor 

the deformation of a cylindrical pressure vessel by the 

absence of a component due to axial stresses, which.usually 

are 1ns1gn1f1cant inthe interference fit here. 

substituting Eq.(3.5) into Eq.(3.3) and s1mpl1:f'y1ng 

gives: 
'Ew(3.6) 	 Fi :· ,.U1TTRL(~' 1.zi+crp) 

Eqa.(~.6), (3.2), and (3.l) now combine to give: 

.. . Ew ) .(3.7) ,U1TrRL( R2 1n + O'p >~br!PnRL 

Rearranging Eq.(3.7) and using the relation that 

R : id , d being the diameter of the bore, gives: 

(3.8) 

' 
-where, as before, w/d : relative wall thickness. 

Eq. (3.8), the desired relationship, indicates the 

minimum amount of interference theoretically required to 

prevent movement of' the lining. This equation is valid tor 

both the cases of rotating and reciprocating.sbatts, and it 

is assumed that seizure of the shaft to the lining does not 
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occur. lfo interference is required by Eq. (3.8) when the 

coefficient of friction in the fit is higher than that on 

the bearing surface(however, some interference would of 

course be necessary in practice to hold the lining in place). 

'Where the converse is true tor the coefficients of friction, 

Eq.(3.8) says that the required interference is directly 

proportional to the bearing loads and inversely proportional 

to the wall thickness;. There is no apparent disadvantage 

to having an interference higher than the minimum, so long 

as the lining can be pressed into the housing Without too 

much difficulty. 

The material trademarked Thordon was previously 

estimated to have a Young's modulus of about 50,000 psi. 

Assuming a typical w/d ratio of 1/10, and taking the maximum 

recommended load of 2, 500 psi, Eq·• ('3 .a ) gives: 

It is apparent from Eq.(3.9) that the interference 

required for high bearing pressures would be excess!ve if 

the frictional coefficient for the bearing surface, f-tb, 

were even slightly greater than that for the interference 

fit, f'i ~ The situation would be even worse for a thinner 

wall or a.softer elastomer. Therefore, so far as anchoring 

the lining is concerned, it is recommended that either fA 

and f"b be .adjusted such that the former is equal to or 

hie;her than the latter(for this reason, a.lubricated fit is 

.. 

1 
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not recommended he~e), or th.at the lining be held by a bond 

or by end flanges. Bonding, unfortunately, should produce 

higher thermal and swelling bore contractions than a well­

lubricated fit; however, dependence on high friction to hold 

the lining might still allow some axial lining expansion and 

consequently produce lower bore contractions than bonding 

would. One method of increasing }J1 is by introducing fine 

abrasive powder(like 30-micron grit size) into the fit; the. 

compressive deflection tests showed this powder to be effective 

in increasing friction. In the case of end flanges, )-Ai 

might be reduced to insure free axial expansion; this might 

also permit the lining to rotate in the housing, which, 

however, might not be objectionable here. 

If the above recommendation that ~i be made equal to 

or greater than H,b is carried out, then the right side of 

Eq.(3.8) becomes zero or negative, making Eq.(3.8) useless 

tor recommending an interference. Therefore, the recommen-­

dation to be given here will be in terms of the frictional 

holding strength of the interference fit in the absence of 

shaft loads, or, what ba·sically amounts to the same thing, 

the force required to press-fit the lining, here called 

FP' which is: 

(3.10) 


From Eqa.(J.5), (3.10), and noting that R: id, 


(3.11) 
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-where Fp/L is the pressing force per unit of 
bearing length. 

As installation difficulty 1noreases with increasing 

F~L, F~L should be the minimum value that can be depended 

upon·to hold the lining• Fp ·does not have.to b~ as.high as 

the bearing~surface's forces so long as ~q.(3.8) is satis­

fied by having JJ1>fb '• For example, a Thordon bearing of 

lt in. bore, 2 in. length, i in. wall thickness, and .008 in. 

1nterference(more than the amount recommended by the Thordon 

brochure), was found by a compression testing machine to 

require a total pressing force of about 600 lbs., which is 

considerably lower than the allowable bearing forces for this 

size bearing. Incidentally, this result agrees quite well. 

Yith Eq. (3.11) when the estimated valuea JJ. 1:o.7 , for Thordon 

on polished steel, and E = 50,000 psi, are used. The choice 
' 

ot Fr;/L appears to be somewhat arbitrary, or best determined 

by trial and error'~ 

For a constant bore-to-length ratio, a constant Fp/L 

would correspond to~ linear proportionality of Fp.to the 

bore diameter and·would also mean, according to Eq.(3.11) 

(assuming a constant w/dJ, a constant 1n, regardless of bore 

.diameter; an Fp/L proportional to the bore diameter would 

correspond to an Fp that varied as the square of the diameter 

and to an 1n that was proportional to the diameter. The 

latter case is approximately the one suggested by the 

interference chart in the Thordon brochure. 

http:Eq.(3.11
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Another problem in the app11ca.tion of Eq.(3.11) is 

the d.1f:t'icu1ty in accurate1y specifying )J- 1 , which is highly 

dependent on such thlngs as the elastomer' a hardness, the 

finish of the housing bore, lubrication, additives, and the 

1nterfac1al pressure. 

http:Eq.(3.11
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3.2 EXTRA INTERFERENCE FOR LOW TEMPERATURES 

As already mentioned, the interference fit is often 

the only means used to keep the lining in place. When the 

bearing is placed in an environment much colder than the 

installation temperature, thermal contraction of the outside 

diameter of the lining may result in loosening from the 

housing. The purpose of this section is to determine the 

additional interference necessary in the fit at installation 

to assure that this will not happen. · 

It is desired that, 1f the interference fit were 

actually measured at the lowest environmental temperature, 

it would still be at least the minimum considered necessary 

to hold the lining. Treating the lining as unhoused, the 

extra interference required to reach this desired condition 

at the lowest temperature would be equal to the thermal 

contraction of the lin1ng~s outside .. diameter. This thermal 

contraction can be determined by putting the temperature 

difference into Eq.(2.6) and multiplying by two to give the 

diametral change rather than the radial change. The final 

result is: 

(3.12) 


-where 

1L : extra interference required(to be added to the 
recommended interference for normal temperatures) 

: installation temperatureT0Te : lowest environmental temperature to be encountered 
D : 2b : outside diameter of lining 
cc. : coefficient of thermal expansion 



4. OVERALL CONCLUSIONS 

4.1 DESIGN RECOMMENDATIONS 

On the basis ot this thesis, the following overall 

design recommendations are made: 

(1) Minimize the lining thickness to minimize load 

deflections, thermal and swelling clearance requirements, 

and heat buildup. Very thin linings can be machined by 

supporting the lining in a housing while boring. 

(2) Make sure that the coefficient of friction in the 

interference fit is at least as high as that of the bearing 

surfaces in order to prevent slippage of the lining at high 

loads. Raising the friction in the fit also reduces load 

deflections1 particularly under high loads. The friction 

can be increased by spreading fine abrasive powder over the 

surfaces. An alternative is bonding. 
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4·.2 SUGGESTIONS FOR FURTHER INVESTIGATIONS 

one area under the subject of deflections th.at might 

be suitable for further study is the compressive behavior 

of very stiff elastomers, particularly at high shape f'acto:t's. 

It is recommended that any further deflection testing for the 

purpose of checking theory be done with bonded slabs or at 

least with specimens that are bonded at all contact faces­

sleeve bearings introduce into both theory and experiment too. 

many unpredictable, bard-to-control, or complicating factors 

such as complex geometry, uneven pressure, and surface slip­

page. It shouldbe repeated here that creep is a serious 

problem in the elastic testing of Thordon. 

Other areas that could use some further testing are 

the thermal and swelling bore changes, particularly as regards 

the effect of bonding. Large bearings should be used for 

accuracy, and the measurement techniques suggested in sec •. 

(2.3.4) might be used. 

Some areas that are outside the scope of this thesis 

are: (l) bearing friction and wear; (2) maximum permissible 

P-V(pressure times velocity) values; (3) the distribution of 

bearing pressure over the contact area. However, the first 

two of these areas in particular would probably not be found 

to be suitable for an extensive purely theoretical treatment, 

and the number of variables they would involve might make 

testing a great undertaking. 
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