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CHAPTER 1 

. INTRODUCTION 

The stochastic approximation method has been very 

popular for system identification. It is a sequential technique for 

point estimation, first introduced by Robbins and Monro in 1951 [l] 

and later generalized by Dvoretzky [2]. 

Because of the great simplicity with which it can be 

implemented its application has been investigated by several authors 

[3] - [20]. Most of this work, however, deals with single-input 

single-output systems, little has been done on multivariable systems [21]. 

In this thesis a non-parametric normalized stochastic 

approximation algorithm has been developed for on-line identification 

of linear, multivariable, discrete-time stochastic systems. This 

algorithm does not require the knowledge .of the statistics of measurement 

noise and converges to the true values of the parameters in the mean­

square sense. 

In chapter 2, the stochastic approximation method {l],[2] and 

[22] - [251 is introduced in its generality. 

The proposed algorithm has been developed in Chapter 3. 

First, the system equations are transformed into a special canonical 

form proposed by Luenberger [26] - [29]. Then, using the method of 

1 
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Saridisan.d Lobbia [21], the system is formulated in a non-parametric 

form. The parameters of the non-parametric model are estimated by 

applying a set of single-output multi-input normalized stochastic 

approximation algorithms [4], [7], "[14]. The identification interval 

introduced in [21] has been varied and the effect of its increase on 

the accuracy of the estimates is investigated. Finally, the system 

parameters are recovered from the estimates of the non-parametric 

model using a transformation given in [21]. 

In Chapter 4, the proposed algorit~m is applied to the 

identification of two different multivariable systems with various 

noise-to-signal ratios. The effect of increasing the identification 

interval on the accuracy of the estimates and the increase in the 

computation time has been discussed. For the sake of comparison, the 

first system has been identified using Sen and Sinha's algorithm [31], 

the computation time and estimates have been compared with those of 

the proposed algorithm. The results of simulations are given which 

indicate that the proposed algorithm works quite well. 

Finally, the conclusions of this work and suggestions for 

future work are given in Chapter 5. 



CHAPTER 2 

THE STOCHASTIC APPROXIMATION METHOD 

2.1 Introduction 

Stochastic approximation is concerned with schemes converging 

to some sought value when, due to the stochastic nature of the problem, 

the observations involve errors. The interesting schemes are those 

which are self-correcting, that is, in which a mistake always tends to 

be wiped out in the limit, and in which the convergence to the desired 

value is of some specified nature. An example is mean-square convergence. 

Major contributions to the area of stochastic approximation 

have been made by Robbins and Monro [l] , Kiefer and Wolfowitz [22] 

and Dvoretzky [2]. 

2.2 Features of Stochastic Approximation: 

Stochastic approximation can be applied to any problem that 

can be formulated as some form of regression in which repeated observat­

ions are made. 

Compared to conventional methods such as maximum liklihood 

estimation it has the following advantages:­

(!) Only a small interval of data needs processing. 

(2) Only simple computations are required, even when the 

actual functional dependence of the regression functions 

3 
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on the parameters of interest is non-linear. 

(3) A priori knowledge of the process statistics is not 

necessary, nor is the detailed knowledge of the functional 

relationship between the desired parameters and the observed 

data. 

2.3 Stochastic Approximation Algorithms: 

The most general form of a stochastic approximation algorithm 

has been treated by Dvoretzky in [2]. He has proved a general theorem 

which deals with the convergence properties of a nonlinear measurable 

transformation T(x(l), ... ,x(n)), of a sequence of random measurements 

x (1).,, .. , x (n) to a point vector e: The algorithm is of the following 

general form 

x(n+l) = T (x(l), ... ,x(n)) + y + g(x(l), ... ,x(n)).
n 

In the above y is a random variable and g(•) is a measurable function, 
n 

For most practical applications stochastic approximation search 

algorithms are point estimators of the forms, 

a (k) = a (k-1) + [gain]k *[error correction]k-l (2.1) 

where the [gain]k {vk} is a sequence of suitable chosen smoothing 

values and the [error correction]k-l = {F(k-1)} sequence is generated 

at every time instant k by measuring the deviations from an appropriate 

goal [23], In order for (2.1) to qualify as a stochastic approximation 

algorithm, convergence to the unbiased true parameter a must be establish­

ed. 



s 

Conditions of convergence of the sequence a (k) to a in (2.1) 

are stated in Dvoretzky's special theorem [2]. This theorem has been 

modified to fit algorithm (2.1), and is presented in the sequel. 

In order to formulate the theorem, the relation (2.1) can be 

rewritten in the following form in which the gains are presented by vk and 

the error correction sequence is partitioned into a correction term F(k) and 

a noise term v(k); 

a(k) = a(k-1) + vk[F(k) + v(k)] (2. 2) 

Theorem ([2] simplified): 

If the gain sequence { vk} in (2. 2) satisfies 

00 00 

[ v = 00 l < 00 (2. 3)lim = 0 k ,k=l k=lk -r 00 

and the error correction sequence satisfies 

2 2 
E{j j a(k) + vk+l[F(k) + v(k)] 11 I a(k)}< E{j j a(k)+vk+/Ck) I I/ a(k)} 

2 2 
+ vk+l E{j jv(k) I I/ a(k)} 

2 
E{jja(O)II} < 00 E { I IV (k) 11 

2} 
< Q' 

2 
< 00 (2. 4) 

Then 
2 

P {limlla(k) - all= O} = 1 and lim{ 11 E a (k) · - a 11 }= 0 
r k-+oo k.+oo 

Proof of this theorem can be obtained from [2]. The conditions (2.3) on 

the gains may be interpreted heuristically as follows. The first provides 

the smoothing effect on the random correction term, the second provides 
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unlimited correction effort, and the third guarantees mutual cancellation 

of individual errors for a large number of iterations. The harmonic 

sequence {1/k} as well as any sequence of the form { 1/Pk + C} , 

1/2< P< 1, C >O satisfies condition (2.3). Conditions (2.4) imply 

that there is no cross-coupling between F (k) and v (k) and that the 

search does not start with an infinite uncertainty about the parameters. 

The parameter may be scalar, a vector, or a matrix. This affects 

only the bookkeeping of the algorithm. Historically, the first stochastic 

approximation algorithm was presented by Robbins and f.:onro in 1951 [l], 

to search for the zero of unknown function f(x) of a random variable x, 

corrupted with measurement noise v. 

z (x) = f (x) + v 

If conditions (2.3) and (2.4) are satisfied, the sequence 

x(k+l) = x(k) - v z(x(k))k+l 

converges with probability one and in the mean-square sense to the point G, 

f( 8) = 0. Kesten (24] proposed an acccleration,..scheme of the algorithm 

and Dupac (25] extended it to cover some nonstationary environments. 

Kiefer and \\'olfowitz in 1952 [22] proposed the second important 

stochastic approximation algorithm, suitable for the search of an extremur.1 

of the function f(x) of a random variable x corrupted with measurement 

noise v of the Robb ins-:-.tonro method. 

If the new conditions (2.3), 

k 
0 , 1 im ck = 0 1 im 

r'

l v 00 

]< -+ m k -+ 00 .n= l n 

k 2 

lim ~l < 00 (2.5) 
k -+ 00 1:= l c i n ­
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and the conditions (2.4) are satisfied then the sequence 

I z(x(k)+Ck) - z(x(k) - Ck) l 
x(k+l) = x(k) +vk 1---Jl 2Ck 

converges with probability one and in the mean-square sense to the point 

e . af(e)
' = 0 

a x 

Finally, in 1956 Dvoretzky presented his general and special 

theorems, a simplified version of which was given above. 



CHAPTER 3 


ALGORITHM FOR IDENTIFICATION OF MULTIVARIABLE SYSTEMS 


3.1 Introduction 

Consider a linear, time invariant, discrete-time system which 

is described by the following set of equations. 

x(k+l) = A x(k) + B u(k) 
(3) 

y(k) H x(k) + v(k) 

where, 

x(k) is an n-dimensional state vector. 

y(k) is an m-dimensional output measurement vector. 

u(k) is an r-dimensional vector sequence of independent random 

variables with zero mean and 

2T 
E { u(k) u(j)} = a I ~kj for all k and j. 

v(k) is an m-dimensional vector sequence of additive (not directly 

measured) random variables with zero mean and finite variances, un­

correlated with u(k). 

A,B, and Hare system matrices of dimensions nxn, nxr and mxn 

respectively. 

Our aim is to identify the matrices A,B,and H, of system (3), 

8 
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through subsequent observations of the variables u(k) and y(k) 

without knowing the statistics of the measurement noise. In order 

to do so, first, the matrices of system (3) will be transformed into a 

special canonical form. Then·, the system in its new canonical form 

will be transformed into a non-parametric form. After that, the para­

meters of the non-parametric model will be identified by a normalized 

stochastic approximation algorithm. Finally, system matrices are 

recovered from the parameters of the non-parametric model. 

3.2 Canonical Form Representation: 

Transforming the matrices of system (3) into canonical form 

has some advantages. 

1) It reduces the problems of identifying a total of 

n(n+m+r) unknown parameters of A,B, and H to a problem with 

fewer unknown ~oefficients, n(m+r). 

2) It permits one to obtain a set of transformations which 

map identification estimates into estimates of the unknown 

matrices of the system. 

To accomplish these objectives, Luenberger's canonical form 

[26] - [29] is used. 

The canonical form for system (3) is obtained by a linear 

transformation of the state vector to a new coordinate system. This 

transformation is defined by 

w(k) = P x(k) (3.2.1) 

where, 
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x(k) is the old state vector, 

w(k) is the state vector in the new coordinate system, and 

Pis the matrix producing linear mapping. 

The fundamental assumptions imposed on system (3) are 

1) The pair [A,B] is completely controllable. 

2) The pair [H,A] is completely observable. 

Assumption 1) implies that the nx(nr) controllability matrix defined by 

U = [B, AB, ••.••... , A
n-1 

B] (3.2.2) 

has rank n. 

Assumption 2) implies that the nx(mn) observability matrix defined by 

TT
A H , ....... , (3.2.3) 

has rank n. 

The selection procedure for matrix P entails the choice of n 

independent columns of the observability matrix V which are ordered as 

shown below: 

(3.2.4) 

where H T has been partitioned as 

!-! 
T 

= [hl, h2, ........... hm]. (3.2.5) 

The selection procedure therefore involves the following 

sequence of steps [26]: 

1) Selecting the first column of V, h1. 
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T
2) Selecting another column vector A h form V. Retain

1 

this column vector if it is linearly independent of h
1

. 
.T 

3) Any selected new column vector must be of the form A
1 

h., 
J.T 

where all the lower powers of Al 
t postmultiplied by h., 

J 
had already been previously retained. Retain the new column 

vector if it is linearly independent of all previously 

selected column vectors. 

4) The selection procedure terminates when n linearly in­

dependent column vectors have been found. Arrange then 

column vectors in proper order to obtain matrix PT. 

Since PT is a square matrix, the p. 's (3.2,4) define the number 
l 

of consecutive independent columns uninterrupted by a dependent one, 

and are referred to as observability subindices. They must satisfy the 

following equation. 

m 
L (3.2.6) 
i=l 

The selection may result in a case in which not all the columns of 

T . . h . PT 
1:-l will appear int e expression Then the corresponding output measure­

ment components will not provide useful information on the canonical form 

of the system, and may be dropped from the identification algorithm. How­

ever, it will be assumed, without any loss of generality, that all the 

T . PTcolumns of H appear in , 

Now through the change of coordinates w(k) = P x(k), system (3) can be 

transformed into a canonical form which will meet the identification 
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objectives stated earlier: 

w (k+l) = Aw(k) + Bu(k) 
(3.2.7) 

y(k) = Hw(k) 	 + v(k) 

where 
P1 P2 

.. 0 

I b 	 0 pl (3.2.8) 
xx .. x.. xx.. x.. xx... x 

-1 0 . 0 I 	 0 
A= PAP = 

xx .. x.. xx .. x. 	 .xx ... x 
• ••••••• j 

· 1 

xx.... xx ... 	 :xx..... 1 

.o 
0 0 I 

xx .... xx .. x.. xx .. ,.xj 

B .... ' b ] 	 (3.2.9)
r 

P1 P2 

1 0 ......................... 01 
j 

0 0 .. o 1 o.................. o 1 


0 0 .......... 0 1 0 ........ o l 
 (3.2.10) 

I 
o o ..................01··0 .• oi 
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The matrix in (3.2.8) is seen to be composed of blocks of 

phase-variable submatrices, situated along the main diagonal. The 

m rows of x's in A correspond to unknown elements and occur in rows 

P1, p +p2, ..... , p +p2+... +pm. In general, matrix B assumes no1 1

special form. 

Given the above canonical form, one needs to identify only 

mxn elements of A and nxr elements of B, a total of n(m + r) unknown 

coefficients of system parameters. 

There is another matrix, that is the dual of matrix P, 

which transforms system (3) into a canonical form [26]. This 

canonical form is derived by linear transformation of the state 

vector to a new coordinate system. 

z (k) = Q x (k) (3.2.11) 

The matrix Q is obtained from the controllability matrix U (3.2.2) 

via a selection procedure similar to that used for matrix P. Thus, 

n independent columns of U are chosen and reordered as follows: 

ql-1 q -1
2 

q -1 
r 

Q = [bl , Ab l , ... , A b ]
r 

(3.2.12) 

where B has been partitioned as 

(3.2.13) 

Since Q is a square matrix, the q's in (3.2.12) represent the number 

of consecutive independent columns uninterrupted1 by a dependent one, 
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and are referred to as controllability subindices. They must 

satisfy the following equation 

r 
q. =n (3.2.14)l 

i=l l. 

T . 
As with matrix P (3.2.4), we assume, for the sake of generality 

that all of the columns of B appear in the expression for Q. In 

special situations, in which one or more columns of B do not appear in 

Q, the corresponding components of the vector input signal provide no 

useful information about the canonical form and may be dropped from 

the identification algorithm. 

3.3 Non-Parametric Representation of the System 

System (3.2.7) is in a state space parametric form, now it will 

be transformed into a non-parametric form. 

Assuming that the initial conditions, (of equation (3.2.7)), 

are zeros, the state of system (3.2.7) at time k is given by: 

i 

w(k) = l A B u(k - i - I) 


i=O 


which can be rewritten as follows: 
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00L-1 i 	 r- i 
i'i (k) = 	[ A B u(k-i-1) + L 

1 A B u(k-i-1) (3.3. 1) 
i=O i=L 

where, Lis called the identification interval, which is a function 

of the observability and c9ntrollability subindices defined in section 

3.2, and is given by, [21], 

L = max[p.] 	 + max[q.] i=l,2, .... ,m; j=l,2, .. ,r 
1. 	 J 

(3.3.2) 

We 	 now define the following (Lr) - dimensional auxiliary vectors: 

T _ T_ _ T__ - LL-1•. 
0. = [ n.B, 	h.AB, .... ,h.A B] i=l,2, ... ,m (3.3.3)

1. 	 1. 1. 1. 

T 
(k+L-1) T T T 

U(k) = [u (k+L-1), u (k+L-2), .... ,u (k)] (3.3.4) 

where, H has been partitioned as 

_T 

H = [h1 , h 2 , ... ,hm]. (3.3.5) 


Using equations (3.3.1), (3.3.3), and (3.3.4) with equation (3.2.7); 

the output of system (3.2.7) at time (k+L) can be rewritten as 

T (k.+L-1) 
y. (k+L) = O.+ E. (k-1) + v. (k+L)

1 	 lJ (k) 1 1. 1 (3.3.6) 

where 

T 00 i+L 
E:. (k-1) = h· 

-. 
A I) u(k-i-1) i=l,:, .... ,m

11 	
i ::() 
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or in a more compact form as 

T(k+L-1) 
y. (k+L) = u(k) 0. + e. 

1 11 

where 

e. = £. (k-1) + v. (k+L) i=I,2, ... ,m (3.3.7)
1 1 1 

Equation (3.3,7) represents system (3,2.7) in its non­

parametric form. It also represents the impulse response of system 

(3.2.7) where; the elements 0i's represent the weightingfunctions of 

the 	system, and ei may represent a noise imposed 'on the ith output. 

It can be seen that as only L[L·= max[p.] +·max[q.], equation 
, 1 . J 

(3.3.2)] values of the impulse response are used in equation (3.3.7), 

not all information on the process dynamics is included in estimating 

the parameter vectors 0. 's. Therefore equation (3.3.7) gives an 
1 

approximation to the exact impulse response of system (3. 2. 7); and 

hence the estimates of system matrices A and B, recovered from the 

estimates of the parameter vectors [section 3.5], will always have 

a bias. 

In order to improve the estimates of system matrices 

A and B the value of L, defined above, will be increased. This means 

that system (3.3.7) will give a better approximation for system (3.2.7) 

as more values of the impulse response will be used in equation (3. 3. 7). 

The value of L will be; 

L > max[p.] + max[q.] i=l,2, .... ,m; j=l,2, ... ,r 
1 	 J 
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It is clear that increasing the value of L has certain 

advantages since this will increase the length of the parameter vectors 

e. 's and hence better estimates of the system matrices will be obtained. 
1 

On the other hand, increasing L will increase the computation effort. 

Thus, a compromise has to be made between the degree of accuracy required 

and the computation effort. Having transformed the system into its non­

parametric form (3.3.7), next a normalized stochastic approximation 

algorithm will be derived to identify the parameter vectors E) . I s. 
1 

3. 4 The Identific_ation Algorithm: 

The system (3.2.7) has been now transformed into a set of 

m non-parametric single-output multi-input subsystems (3.3.7). In 

this section, first a normalized stochastic approximation algorithm will 

be developed for the identification of the single-output multi-input 

systems. Then, the parameter vectors e. 's, i=l,2, ... ,m (3.3.3) of 
1 

the subsystems (3.3.7) will be identified by applying a set of the 

single-output multi-input identificatioij algorithms. 

3.4.1 The Normalized Mean-Square Error Criterion: 

Consider the following identification problem [4]. 

Defining the system to be identified as S, the input to the system U 

is a q-vector sequence and y is a scalar output sequence, both are 

assumed to be known precisely. 

Given a model 


= 




18 

select the vector o such that the model reproduces the system 

output as closely as possible in some specified sense. 

Our objective will be to select the parameter o to minimize 

the following criterion 

f(O) = Er e2 1 
2 (3.4.1)I lul 1 l 

._ _l 

where 

The choice of a normalized mean-square error criterion is 

motivated by the fact that it leads to a sequential estimation scheme 

with much more desirable convergence properties than does the mean-

square error criterion [4], [14]. 

The criterion can be given a simple geometric interpretation. 

Let A designate the space spanned by the parameter vector O. Let us0 

suppose that U and y are specified. Then the relation 

T
U O - y = e 

defines a family of hyperplanes in A with the parameter e. These 
8 

hyperplanes are parallel to each other and normal to U. The normal 

distance to the hyperplanes is; 

e 

I lu 11 
To prove this note that, if we set all elements of O except O equal to

1 

zero, then the hyperplane intersects the O axis at1 


= 
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where u is the first element of U. Hence, the distance between1 

the hyperplane of error e and the zero-error hyperplane is 

e 

Let n designate a unit vector in the 0 direction. Then the vector
1 1 

distance from the zero-error hyperplane of error e along the 0 axis
1 

is 

e 

The normal distance measured in the direction of U is the projection 

of this vector on U, which is 

e u = e 

I lul I 

Therefore, the normalized mean-square error criterion, is 

that of selecting the parameter vector 0 such that the expected square 

distance to the hyperplane corresponding to 0 from the zero-error 

hyperplane is a minimum. 

3.4.2 The Single-Output Multi-Input Identification Algorithm: 

Using the normalized mean-square error criterion discussed 

in subsection 3.4.1 a single-output multi-input normalized stochastic 

approximation algorithm is given. 

The reason for using the normalized mean-square error criterion 

in the identification algorithm is that stochastic approximation 
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identification algorithms with ordinary mean-square error criterion 

have the disadvantage that although asymptotic convergence is assured 

very little can be done to control the initial convergence properties. 

But those with normalized mean-square error criterion have very 

favourable characteristics in this regard and initial convergence is 

assured [ 4] , [ 14] . 

Nm,:, recall equation (3. 3. 7) and rewrite the equation of one 

row only; 
T(k+L-1) 

y (k+L) e (3.4.2)= uCk) e + 

where 

e = s(k-1) + v(k+L) 

This equation may represent a single...:output multi-input system where 
T(k+L-1) 

y(k+L) is a scalar output, U(k) is the input vector of length 

L, defined in (3.3.4), 0 is the parameter vector of length Lande 

is a noise term added to the output of the system, 

Our objective is to identify the parameter vector e, of 

equation (3.4.2), from the set of input output data. 
A 

Define e(k) as the estimate of the parameter vector eat 

the kth iteration step which minimize the normalized mean-square 
A 

error criterion, equation (3.4.1). This estimate e(k) can be 

obtained recursively, by analogy to the standard stochastic approximation 

algorithm [equation (2.2), chapter 2], [4], [7], and [14], using the 

following single-output multi-input algorithm; 



21 

(k+L-1) T(k+L-l)A 
G(k+L) = 0(k-l)+ y (k-1) U(k) [y(k+L)-U G(k-1)] 

--.-,,(..--k....,+L,,..._..,,.l"""")_2_ . (k)L+l 

11 uCk) 11 

k=l, L+2, ..•.... (3.4,3) 

Fig. (3,1) shows the scheme which illustratesthe identification 

algorithm given above. 

The above algorithm uses only measurements of the inputs and 

output and does not require knowledge of the statistics of measurement 

noise. The resulting estimate 8(i(L+l)), i=l,2, ... converges in 

the mean-square sense to the true value of the parameter vector 8 if 

the sequence y(k) satisfies the conditions (2.3) chapter 2 and the 

initial estimate 8(0) satisfies 
A 2 

00E{ 11 8(0) 11 } < , 

3.4.3 The Identification Algorithm For Multivariable Systems: 

Now, starting with equation (3.2.7), we make the following 

assumptions: 

(1) System (3.2.7) is completely controllable. Complete 

observability is implicit in (3.2.8) and (3.2.10). 

(2) The vector random sequences v(k) and u(k) all have 

finite moments up to the fourth order. 

Defining 8 as the identification estimates of the unknown 
i 
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parameter vectors 8., i=l,2, .... , m of equation (3.3 .. 7), which 
1 

minimize the following set of normalized mean-square error criterion. 

A 

f (8.) (3.4.4)l1 

0 Ck+L-l) j 
(k) ...! 

where 
T(k+L-1) 

ei = yi (k+L) - u(k) 8i i = 1,2, .... ,m 

Then, using m single-output multi-input identification algorithms, 

(equation (3.4.3) subsection 3.4.2), the estimates 8., i=l,2, ... ,m
1 

are computed recursively by means of the following set of normalized 

stochastic approximation algorithms; 

(k+L-1) T(k+L-1) 
A u A

8. (k+L) = 8. (k-l)+v(k-1) (k) · [y: (k+L)-U 8. (k-1)]
1 i (L 1) . i . k i 

+ (k+L-1) 2 

I lu Ck) 11 

k=l,L+.2, 2L+3, ... ,; i=l,2, ... ,m 

(3.4.5) 

A quick glance shows that these algorithms are not dependent upon 

knowledge of the statistics of the noise vector v(k). If the 

following conditions: 

00 00 


00
lim v (i) = [ V (i) : 00 
\ 
L_ /ci) < 

i+ i=l i=l 
00 

00 
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and i=l,2, ..... ,m 

are satisfied, estimates (3.4.5) converge in the mean-square 

sense to the true parameter vectors 0., i=l,2, ....m. 
l. 

The main advantage of the proposed algorithm is that it 

requires simple computation, that is because it uses stochastic 

approximation method. To show this, the number of arithmetic 

operations per iteration needed in the proposed algorithm and in 

Sen and Sinha's algorithm • [31] are given in table [3.1], where L 

is given the vilue of 2n in order to make the comparison, 

3.5 Recovering the Estimates of System Parameters 

After identifying the unknown parameter vectors G., i=l,2, .. ,
l. 

min equation (3.3,3), we need a set of transformations that map the 

components of 0. into the matrices Aand B. These are found in two 
l. 

steps [21]. First, we find the transformation which yields Band then 

the transformation that maps 8. into A., whereby we utilize the matrices 
l. 

P and Q, defined in section 3.2. The final result is a matrix trans­

formation which, in addition to having a tractable form, also provides 

a valuable test for determining the observability and controllability 

subindices, as well as the order of the system, should they be unknown. 



TABLE 3.1 

COMPARISON OF THE ARITHMETIC OPERATIONS 

No. 	 of additions and sub- No. of multiplications Matrix inversion 
Algorithm t 

tractions per iteration and divisions per iteration per iteration 

Proposed Alg. tt (2nr+l)m+l 4nrnr +l None 

Sen and Sinha's Alg. 2 2rn[n (rnr+l) +2rnn(mr+l) rnn(m+l)[3n(mr+l)+2m+2] One matrix inversion 
-m+l-n(mr+l)] (mxm) 

t 	 n is the order of the system 
r is the number of inputs 
rn is the number of outputs. 

tt 	 Lis given the value L = 2n N 
~ 
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3.5.1 Recovering Bfrom 8., i=l,2, .... ,m
l. 

We partition the (nxr)- dimensional matrix Bin equation 

(3.2.9) as follows: 

r Bl 1P1 

I")"/
B I P2 

= ...... I \ 

I (3.5.1) 

l""/'_/ pm 

By direct substitution of the canonical form, equations (3.2.8) to 

(3.2.10), and using definition of 8., equation (3.3.3), we get;
l. 

2 r1 r 81 81 81 

· (p1-l)r+l ·plrI P181 81I 
' ............................. 
I 1
I r 

i 82 82 
I 

I 
· (p -l)r+l P2P2T2
82 82 (3.5.2)

B = I 
I••••••••••••••••••••••••••••• 

I 
I 
I 

I 
i .... i ........... 2....... ·r· .. 

I 
I 8 8 8i m m m 

Pm~Cpm-l)r+l ePmr 

m m 
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j 
where the superscript j one. corresponds to the position of an 

1 

element in the (Lr)- dimensional vector e .. 
1 

3.5.2 Recovering Afrom e., i=l,2, ... ,m
1 

In equation (3.2.8), matrix Awas obtained from A by 

similarity transformation P, i.e., 

-1 
A= p A p (3,,5,3) 

and 
-1 

A = P A Q [PQ] (3.5,4) 

By substituting the elements of P and Q from equations (3.2.4) 

and (3.2.12) into equation (3.5.4) and performing the multiplication, 

one obtains: ( For convenience equations (3.S.5) and (3.5.7) are 

photocopied from [21].) 
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h?r\ql b 'I'fht Ab1 h 'I'Aq'b1 h1 Ab2 l r 
T ..,h1 A-b1 

hTAqplb h T A2b i,TAq,+lb1 1 1 2 ··1 r 


h T APlb hTAP1+Q1~lb 
 xhTAPlb h T API +q,-lbA 1 1 1 1 1 2 1 r 


hiTAbl • · • h/Aq 1b1 h T Aq'b

2 r 

(3:5.5) 
h TAP"' b h TAPm+q1-lb h TAP'" +q,-lbm l m 1 m ,. 

h?b1 h T Aql -1 b 
1 l h?b2 h T Aq,-lb

l r 

-1 

ht4bl hTAq1b 
1 l h?Ab2 h T Aq'b

1 r 

hTAP1-lb 
1 1 

h TAP! +q1-2b 
1 1 

hTAP1-lb 
l · 2 

h T API +q,-2b
1 r 

h/b1 hTAQ1-lb
2 1 

h,,TAq,-111 
~ 'r 

h T AP,.-1 b 
L m 1 

h T APm +qt -2b 
m l h TAP'" +q,-2b 

m r 

Since the input-output relationship of a linear system 

remains invariant under a similarity transformation, we have 

i = 1,2, ....... ,m; k=l,2, ... ,r;j = 0,1,2, .. 


(3.5.6) 

The elements of the matrices in equation (3.5.5) can therefore be 

replaced by the elements of vectors 0. from eq. (3. 3. 3) i.e.,
1 
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(} r+ 1 O r+2 (} q,r+r 

l 1 1 


0 2r+l (} (qi +llr+l (} 2r+i O~·,r+2r 

l 1 1 1 


O Ptr+2 e (q,+p1-llr+r(} P1r+l xA l l1 

Or+l (} r+2 Oq,r+r 

2 2 2 


(3.5.7) 
O Pmr+l 

m 

-1 
O q,re i ll 

O q,r+re Q1r+l e r+2 
l1 1 

e (pl -llr+l (} (qi +p1-2)r+ 1 (} (p1 -lln2 0 (q,,p1-llr 


l 1 l 
 I 

(}(Q1-llr+l f)2Ol O 
q,r 

2z 2 2 

Equations (3.5.2) and (3.5.7) thus provide the set of 

transformations which map the El.' s into· B and A. So estimates of A 
1 

and Bare found by substituting estimates (3.4.E) into equations (3.5.7) 

and (3.5.2), respectively. 
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3.5.3 	 Determination of Unknown Controllability and Observability 

Subindices of the System 

The identification interval Lin equation (3.3.2) is deter­

mined by the maximum values .of the controllability and observability 

subindices, given in equations (3.2.12) and (3.2.4), respectively. 

In addition, placement of the components of 8. in equation (3.5.2)
1 

and (3.5.7) depends upon exact knowledge of the numerical values of 

p . ' s and q . ' s . 
1 1 

If those numerical values are known in advance, the 

identification algorithm of subsection 3.4.3 can be applied and then 

the system matrices A and B can be recovered using the procedure 

described in subsections 3.5.1 and 3.5.2. 

In general, these numerical values are n~t readily availableJ 

and so they and also the order of the system when unknown, must be 

found. This situation will now be discussed. Define the product PQ as: 

F = p Q (3,5.8) 

Using the definition in equations (3.2.4) and (3.2.12) for 

P and Q, matrix F may be written as 

1 
Ir h T 

I 1 

h TA 
.1 

I 

I 
I h TAp1-l 

F = l 1 

I h T 
I 2 

I 

l 
i 

T Pm-1 
h A 

m 

q1-l -1 
[b ,Ab

1
.... ,A bl' b2' ... , Aqr b]

1 	 r nxn 

(3.5.9) 

n x n 
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Assuming that the order of the system and/or the controllability 

or observability subindices are unknown, initial guesses of these 

parameters can be made to set up the identification algorithm (3.4.5). 

It is understood, though, that the order of the system and para­

meters p. and q. are related to each other by equations (3.2.6) and 
1 1 

(3.2.14). Depending on the accuracy of these initial guesses, matrix 

F must satisfy the following conditions when identification estimates 

from equation (3.4.5) are used in equation (3.5.8). 

Conditions for Order and Subindex Identification: 

1. If the guess of the system order n' > n, or if the 

guesses of the controllability or observability subindices are wrong, 

i.e., the matrices Q or Pin equations (3.2.12} and (3.2.4) are 

singular, matrix F will converge to a singular matrix as the identifi­

cation estimates converge to 8 .. 
1 

2. If the guesses of the system order and the controllability 

and observability subindices are correct, matrix F will always be non­

singular with probability one. Proof of these two conditions is given 

in [21]. 

The following procedure should therefore be observed in case 

of uncertainty as to the order of the system and controllability 

and observability subindices, when identification estimates from 

equation (3.4.5) are used in matrix F: 

1. If the controllability and observability subindices are 

known (thus implying knowledge of the order of the system from equation 
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(3.2.6) or equation (3.2.14), one can use equation (3.3.2) to 

determine the identification interval L. Exact values of p. 'sand 
1 

q. 'scan then be used in equations (3.5.2) and (3.5.7).
1 

2.If the order of the system is given but the controllability 

and observability subindices are unknown, one should set L=2n, and 

arbitrarily assign the p. 'sand q. 's, subject to constraints (3.2.6) 
_ 1 1 

and (3.2.14). If the set of values is chosen incorrectly, matrix F 

(3.5.9) converges to a singular matrix as the identification process 

(3.4.5) converges. The correct set of p. 'sand q. 's may thus be 
1 1 

found by varying these coefficients (keeping in mind that equations 

(3.2.6) and (3.2.14) must always be satisfied) until F becomes non­

singular. The test for singularity can be performed on-line by 

monitoring the determinant of the right-hand matrix of equation (3.5.7) 

and noting whether it converges to zero with time. 

3. When the order of the system is unknown, n' can initially 

be chosen sufficiently large to ensure that n' ~ n, where n is the 

real order of the system, Step 2 is then performed, using this n'. 

If n' >n, there can be no nonsingular matrix under all the possible 

combinations of p. 'sand q. 's. The guessed order of the system n' is 
1 1 

then reduced by one and step 2 is repeated. The process will end 

when n' = n, the true controllability and observability subindices 

being found at this last stage. 



CHAPTER 4 

RESULTS OF SIMULATION 

4.1 Introduction: 

In this chapter the normalized stochastic approximation 

algorithm for the identification of multivariable systems, developed 

in Chapter 3, will be applied to the identification of two multi ­

variable systems under the realistic conditions of large noise-to­

signal ratios up to 66.2% due to imperfect measurements of the 

outputs. System subindices will be assumed known in advance, 

The first system has been identified using Sen and 

Sinha' s algorithm [31] for noise--to-signal ratio of 7~o and convergence 

rate and computational effort are given. 

The effect of increasing the identification interval L ,dis­

cussed in section 3.2 Chapter 3, on the accuracy of the parameter 

estimates and the computational effort is further examined. The number 

of arithmetic operations per iteration and the total computation time 

are given.· 

4.2 Example 1 

The system used for simulation here is a 2-output I-input 

3rd order discrete-time system, which is described by the following 

33 
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equations: 

1. 0 	 ro.12r0.0 0.011 
x(k+l) 0.3 0.1 x(k) + 0.36 u(k)= 	I0.1 

I o. 95 0.1 0.7 0.20lL 

r 
1. 0 0.0 o. 0 lz(k) = 	 x (k) + v (k) 

1 0.0 0.0 1.0 

where; 

x(k), u(k), z(k), v(k) are the state vector sequence, the 

scalar input sequence, the measi.+rement output vector sequence and the 

output noise vector sequence respectively. 

The scalar input sequence, u(k) is a zero-mean white 

noise sequence with unit variance. Each of the two outputs is 

contaminated with a white noise sequence with variance adjusted to vary 

the noise-to-signal ratio (defined below) at each output. 

The noise-to-signal ratio (N.S.R.) at the ith output is 

defined as, 
0 v.N.S.R. (i) = 1 

0 y.
l 

where; 

a is the standard deviation of noise sequence at the 
v. 

1 

ith output. 
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cry. is the standard deviation of the ith output sequence. 
1 

The given system is in the required canonical form. Its 

controllability and observability subindices are easily obtained as; 

p = 2 p = 1 q = 3. 1 2 1 

Hence, the identification interval Lis found to be, section 3,3 

Chapter 3, 

L > 5 

The above system will now be identified for two values of 

L using the proposed algorithm, equation (3.4.5) Chapter 3, which 

will be updated after each sample interval. 

First Case L = 5 

In this case, the identification interval L has been 

assigned the minimum allowable value L = 5. Then the system has 

been simulated for three different noise-to-signal ratios of 7%, 

23.4% and 66.2%. In each case the noise-to-signal ratio was kept 

the same at each of the two outputs. 

Figures (4.1), (4.2) and (4.3) show the rate of 

convergence of the identification algorithm for the different noise-

to - signal ratios. The error norm used in the figures is defined as: 
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2 
11 eck)-eError norm= 11­

2 
e(O)-e11 11 

where e is a vector formulated from all the parameters to be 

identified, that is; 

e = [ 0.1 o.3 0.1 o.95 0.1 o.7 0.12 o.36 0.2] 

e (k) is the estimate of the vector 8 at the kth interation and 

e (0) is the initial estimate which has been given the value of 

zero. 

The estimates of system matrices for the three noise-to­

signal ratios after 1200 iterations are given in Table (4.1). 

Second Case L =10 

In this case the identification interval L has been increased 

to L = 10. Then, the system was simulated with noise-to:-signal ratio 

of 66.2% at each of the two outputs with zero initial estimate. 

The convergence rate of the identification algorithm in 

this case is shown in Fig. (4.4). Also, the estimates of system 

matrices after 1200 iterations are given in Table 4.1. 

To show the main features of the proposed algorithm, the 

above system has been simulated using Sen and Sinha's algorithm [31] 

for noise-to-signal ratio of 7% at each of the two outputs with zero 

initial estimate. The convergence rate of this algorithm is shown 

in Fig. (4.5) which indicates that the estimates of system parameters 

possess a bias. The number of arithmetic operations per iteration and 

the total computation time for 1200 iterations are compared for the 
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TABLE 4.1 

ESTIMATES-OF SYSTEM MATRICES FOR EXAMPLE 1 

"- ·-· . -·-- -	 - . --~·---- ·-·----·-·-· -.. - ···-·--- ---··----------·-..-----------·--·· 

Algorithm N.S.R. 	 Matrix A 

Proposed alg. 
with white 
noise and 

L = 5 

Proposed alg. 
with white 
noise and 

L = 10 

-~-~----------------- ­
0,000 1.000 0.000 i 

i 
7.0% 0.100 0,301 0.100 I 

(at each out- 0,951 0.100 0. 700 J 

put) 

ro.ooo 1.000 0. 000 l 
23.4% 0.298 0.095I0.112 	

I 

I
(at each out- _0. 954 0.102 0. 710 J 

put) 

0,000 1.000 0.000 


66.2% 0, 130 0.282 0.081 


(at each out- 0.977 0.121 0.731 


put) 

·0.000 1.000 0. 000 l 
1 

66.2% 	 I 0.117 0.307 0. 110 J
l O. 951 0.101 0.703

(at each out­

put) 

- ---------· ------------------------------ ·­ ... ~--- -· ---------------··---------- ­

Vector B 

ro.1201 
I 

0,360 ! 
L0,200J 

'0,104 1 

0.361 

0.212_1 

0 .116 l 
o.357 I 

I 
i_0.237J 

ro.108lO. 362 
0.209 
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proposed algorithm with Sen and Sinha's algorithm which is given in 

Table (4.2). 

4.3 Example 2: 

The system used fo~ simulation in this example is a 2­

input 2-output 5th order discrete time system, which is described 

by the following equations: 

f" o.o 1. 0 0.0 0.0 o.o l 0.3r-0.5 
i ' 1 
!-0.125 0.75 o.o 0.0 o.o i 

, 0.65 1. 0 
I 
I 

I 
I 

II i 

_,i I 
I 

x(k+l) 0.0 0.0 0.0 1. 0 0.0 -0.7 u(k)lx(k)-, 
i o.o o.o o.o 0.0 1.0 0.4+ l:::5 

I 

l o.o 0.0 0.1 -0.5 1.2sJ 0.125 0.5 

1. 0 0.0 o.o o.o 0.0 Jl 
x(k) + v(k)[z (k) = o.o 0.0 1.0 0.0 0.0 

where, 

x(k), u(k), z(k), v(k) are the state vector sequence, the 

input vector sequence, the output measurement vector sequence and the 

output noise vector sequence respectively. 

Each of the two inputs is a zero-mean white noise sequence 

with unit variance. 

The system described above is in the required canonical form. 



TABLE 4.2 


THE COMPUTATION EFFORT FOR EXAMPLE 1 


No. of additions and No. of multiplications Total computation time Matrix inversion 
Algorithm 

subtractions per iteration and divisions per iteration for 1200 iterations (sec.) per iteration 

Proposed Alg. 
L = 5 

13 21 0.689 None 

Proposed Alg. 
L = 10 

23 41 1.283 None 

Sen &Sinha 's Alg. 538 594 18.270 2x2 matrix 

.j:::. 

.j:::. 
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Its controllability and observability subindices are easily 

obtained as; 

Pz = 3, = 3 

Hence, the identification interval Lis found to be, [section 3.3 

Chapter 3] 

L > 6 

The above system will now be identified for a three 

different cases using the proposed algorithm, equation (3.4.S) 

Chapter 3, Hhich will be updated after each sample interval, 

(1) White Noise with L = 6: 

In this case the identification interval L has been ass­

igned the minimum allowable value L = 6. Each of the t,.,o outputs 

has been contami~ated with a zero-mean white noise sequence. Then 

the above system is identified using the proposed algorithm for a 

noise-to-signal ratio of 12% at each of the two outputs. 

The rate of convergence of the identification algorithm 

is shown in Fig. (4. 6) and tho estimates of system matrices after 

1200 iterations are given in Table (4.3). 

(2) White Noise with L = 9: 

In this case the identification interval Lis increased 

to L 9. The output noise sequences arc the same as in case (1). 



TABLE 4.3 

ESTIMATES OF SYSTEM MATRICES FOR EXAMPLE 2 

------·-····­

Algorithm 

Proposed alg. with 
white noise and 

L = 6 

Proposed alg. with 
white noise and 

L = 9 

N.S.R. Matrix A 

- -- ---·<>·• ... --------- ...... ._ ___ ­

- 0.000 1.000 0.000 0.000 0.000 

-0 .134 0.761 0.000 0.009 0.018 
1290 0.000 0,000 0.000 1.000 0.000 

(at each out­
0.000 0.000 0.000 0.000 1. 000 .,put) 
0.004 0.001 0.110 -0.521 1.275 

0.000 1.000 0.000 0.000 0.000 

-0.124 0.751 0.001 0.007 0.017 

12% 0.000 0.000 0.000 1.000 0.000 
(at each out­

0.000 0.000 0.000 0.000 1.000put) 
_o. 003 0.000 0.103 -0.505 1.249 

-·- ·--------·--------------···------------ --------..-----­

-0.435 

0.640 

-0.209 

0.260 

0.129 

-0.498 

0.648 

0.204 

'0. 24 7 

0.120 

Matrix B 

0.309 

1.002 

-0.681 

0.407 

0.512 

0. 300l
1.001 

-0.689 

0. 404 J 
0.502 

.i::,. 

°' 



Table 4.3--continued 
____________.... ., _____

---------------------------- ·-- ... --- ··--·-- .~.... _,,._ 

Matrix B 

0.287 

0.993 

-0.667 

0.406 

0.503 

0.304 

1.008 

-0.693 

0.412 

0.509 

Algorithm 
- - ~- ·---·. ·------------- ­

Proposed alg.with 
white noise and 

L = 9 

Proposed alg. with 
coloured noise and 

L = 6 

N.S.R. 
-------------,--­

r o. ooo 
-0.141 

50% I o.000 
(at each out­ 0.000put) l O. 008 

0.000 

-0.118 

Output 1=23.73% 0.000 
Output 2=25. 72% 0.000 

0.001 

-----·------------··-·----- ­

Matrix A 

1.000 0.000 0.000 0.000 -0.457 

o. 778 0,007 -0.021 0,075 0.629 

0.000 0,000 1.000 0.000 0.202 

0,000 0.000 0.000 1.000 0.237 

0.001 0.106 -0.521 1.271 0.131 

1.000 0.000 0.000 0.000 r0.503 

0.6900.744 · -0.009 0.001 0.021 

0.1980.000 0.000 1.000 0.000 

0.000 0.000 0.000 1.000 I 0.262 

0.030 0.114 -0.510 1.182 L o.123 

---- -- ------ ·-·--·--···----·~--- ---------------- ­

.j::. 
'-I 
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The above system is then identified, using the proposed algorithm, 

for two cases of noise-to-signal ratios of 12% and 50%. In the 

two cases the noise-to-signal ratio was the same at each of the two 

outputs. The rate of convergence of the identification algorithm 

in each case is shown in Fig. (4.7) and Fig. (4.8), also the estimates 

of system matrices after 1200 iterations are given in Table (4.3). 

(3) Coloured Noise with L = 6: 

In this case the identification interval L has been 

assigned t~e value L = 6. But, each of the two output noise sequences 

has been taken as a coloured noise sequence which is otbained as the out­

put of a first-order digital filter with white-noise input i.e., 

v1(k+l) = O.Sv1(k) + .7E 1 (k) 


v2(k+l) = o.sv2(k) + ,7s (k)

2 

where, 

s1 (k) and s2 (k) are a zero-mean white noise sequences 

uncorrelated with the input sequences. The variances of sequences 

Ei(k) and s (k) are to be varied in order to change the noise-to­
2 

signal ratio at each output. 

The above system is then identified using the proposed 

algorithm with noise-to-signal ratios of 23.73% and 25,72% at the 

first and second output respectively. The rate of convergence of the 

identification algorithm in this case is shown in Fig. (4.9) and the 

estimates of system matrices after 1200 iterations are given in 
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Table (4.3). 

The number of arithmetic operations per iteration and 

the total computation time for 1200 iterations used in identifying 

the above system are given in Table (4.4) for the two cases of 

L = 6 and L = 9. 
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TABLE 4.4 


THE COMPUTATION EFFORT FOR EXAMPLE 2 


Algorithm 
No. of additions and 

subtraction per iteration 

No. of multiplications and 

divisions per iteration 

Total computation 

time for 

ions (sec.) 

1200 iterat-

Proposed 
Alg. L = 6 27 49 1. 75 

Proposed 
Alg. L = 9 39 73 2.575 



CHAPTER 5 


C.ONCLUSIONS 

In this thesis a non-parametric normalized stochastic 

approximation algorithm has been developed for the identification of 

multivariable systems from noisy measurements. This algorithm does 

not require the knowledge of the statistics of the noise contaminating 

the measurements. 

The proposed identification algorithm processes··live 

information at the rate it comes in and therefore it should be suitable 

for on-line applications. 

Two systems have been selected for simulation studies in 

Chapter 4, which exhibit most of the salient properties of the 

identification process. The results of simulation indicate that the 

proposed algorithm has desirable convergence properties even for high 

noise-to-signal ratios, also they show the initial convergence of the 

identification algorithm which is due to the use of the normalized mean­

square error criterion in the identification algorithm. As it is shown 

in Tables (4.2) and (4.4) Chapter 4, the number of arithmetic operations 

per iteration and the total computation time used in identifying the two 

examples using the proposed algorithm are very small. 

In spite of the large number of samples used for identifying 

55 
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the parameters of the system; the total computation time taken is 

quite small, as shown in Table (4.2) Chapter 4, compared to Sen and 

Sinha's algorithm. This is actually the main advantage of the 

stochastic approximation algorithms. 

It can be seen that, the proposed algorithm_is suitable for 

identifying systems which require fast identification in a very short 

time. On the other hand it is not suitable for the identification of 

systems with slow modes. 

The proposed algorithm can be used only for the identification 

of open-loop systems. In the case where feedback is present, a dif­

ficulty arises because the feedback control signal produces additional 

correlations in the identification algorithm developed for open-loop 

systems. In such cases the proposed algorithm must be modified to 

identify closed-loop systems. This is a topic for further study. 
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